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Preface

The material in this text is drawn from the author’s 35 years of teaching, research, and indus-
trial experiences in the areas of vibrations, finite elements, dynamics, and feedback control.
The teaching experiences include both undergraduate and graduate course instruction in
vibrations, graduate courses in finite elements and boundary elements, and undergraduate
courses in controls and dynamics. The research experiences include performing sponsored
research for NASA Glenn and Marshall, ONR, ARL, DOE, and a host of industrial com-
panies. The industrial experience is drawn from employment at Southwest Research Insti-
tute, Bently Nevada, and Allis-Chalmers Corp.

The pedagogical motivation for this book resulted from a desire to fulfill the following
perceived needs of college and university students and practicing engineers and scientists for
learning vibrations and finite elements:

1. Provide a convincing and motivational first chapter about “why” the material presented
in the book is important. As was so eloquently expressed in the writings of John Henry
Newman, learning for the sake of exercising the intellectual dimension of the person is an
important activity which enriches our life experience and strengthens our reasoning
faculties with endless benefits. This is very true; however, the application of this knowl-
edge to better understand nature and direct it to better the human condition through engi-
neering practice is also an important motivational benefit for the reader. For this reason,
Chapter 1 provides an overview of everyday vibration experiences, fundamental con-
cepts, deleterious effects of vibrations, and industrial standards. A brief introduction
to the concept of finite elements is also included, which is the most common tool for
vibration analysis in industry and research. Finally, Chapter 1 concludes with a discus-
sion of the concept of active vibration control, which is one area of “smart” technologies
that seem ubiquitous in engineering and popular news.

2. Provide a chapter that contains subjects that need to be initially grasped in order to more
quickly comprehend and utilize the core material that appears in the later chapters. The
preparation subjects include computer coding, mathematical theory, modeling, and kin-
ematic constraints. Quite often, the above subjects are folded into the major areas such as
free and forced vibration theory or are relegated to appendices that in the author’s expe-
rience are rarely referenced. Chapter 2 presents these preparatory subjects in an isolated,
front, and center manner with the goal of providing a solid background for the reader
before he or she embarks on using them in sometimes subtle steps, nested in more com-
plicated vibration theory and problems. Divide and conquer is a very effective strategy in
vibrations, as in all educational pursuits!

This chapter also introduces the student to the use of the symbolic math codes
MAPLE and MATLAB symbolic. These tools are utilized in many of the chapters to
facilitate complicated and tedious algebraic and differential and integral calculus calcu-
lations in an elegant and minimal error manner. Working knowledge of these tools will
aid the reader in many areas of engineering practice which fulfills a holistic learning goal
of engineering education.

The common thread for implementation of structural modeling methods is kinematic
constraints (deformation assumptions). As discussed in Chapter 2, rigid body, assumed
modes (Rayleigh–Ritz), finite elements, and boundary element models all impose

xv
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kinematic constraints (deformation assumptions) that reduce the dimensionality of a
structural model in order to provide a practical solution path to its governing differential
equations. Understanding this common thread removes some of the apprehension for
learning or instructing assumed modes or finite elements, when they are viewed as exten-
sions of more elementary and familiar kinematic constraints. These may include coupled
rigid body systems or examples from strength of materials, for example, plane sections
remain plane in the beam deformation theory.

3. Provide initial chapters that elucidate the understanding and application of Newton’s
laws (Chapter 3) and the energy-based (Chapter 4) approaches (conservation and
Lagrange equations) for deriving governing differential equations. Instructional expe-
rience has so often exposed the inability of students to derive accurate governing dif-
ferential equations, prior to utilizing them to obtain vibration-related response
characteristics such as natural frequencies, transient response, etc. The student’s solution
is maimed by an erroneous governing equation from the start, and the ensuing results are
misleading and often nonsensical. This occurs in spite of the possible mastery of other
modeling, simulation, and presentation skills. Frankly speaking, garbage in leads to gar-
bage out (no matter how polished and visual is its presentation format).

Chapter 4 demonstrates that the most widely used engineering vibration simulation
tool—finite elements—follows naturally from Lagrange equations with the removal of
the kinematic (deformation) constraints (assumptions) of the simpler models. This
requires a somewhat rigorous demonstration that Lagrange’s equations are valid for flex-
ible members and their assemblages in structural systems. Most texts leap over this dem-
onstration by implicitly invoking a variant of “it can be shown.” Thus, it is presupposed
that the demonstration of the generalized force of a coil spring being obtained from the
derivative of its potential energy is sufficient for justifying the application of the same
approach for modeling the elastic properties of a 10 000-degree-of-freedom solar panel
array on a satellite. This approach, although ultimately valid, is deficient for leaving
an important gap in the sound understanding of the approach by the reader. The chapter
also provides detailed derivations of the Lagrange equations for rigid body, assumed
modes, and finite element-type models with a wide variety of stiffness and damping
interconnections.

The assumed modes section of Chapter 4 is included for its intrinsic modeling value
and as an introduction to the finite element approach. The chapter also utilizes bar/truss
elements for the initial presentation of deriving finite element stiffness and mass matrices
and force vectors and for the matrix assembly procedure. The assembly procedure is pre-
sented with significant detail for fully automating in a computer code, for both free and
constrained structures. The method presented is nearly universal and is applied without
significant modification for beams in Chapter 9, 2D and axisymmetric solids and mem-
branes in Chapter 10, and 3D solids in Chapter 11.

Symbolic math examples are provided in bothChapters 3 and 4 to demonstrate their
usage for automating steps in deriving equations of motion, such as substitutions, com-
bination, sorting, integrations, and differentiations, which typically are steps prone to
error when worked by hand.

4. Provide a more pedagogically effective approach for instructing free, transient, and
harmonic vibrations as compared with the traditional approach. The major simulation
application areas of vibrations—free vibrations (F), transient forced vibrations (T),
and steady-state forced harmonic vibrations (SSH)—are treated in Chapters 5, 6, and
7, respectively. A pedagogical goal for this arrangement of the text was to provide unin-
terrupted treatments of these three major areas of vibrations. The format of many
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vibrations textbooks is frequently to present F, then T, and then SSH for single-degree-
of-freedom models; next to present F, then T, and then SSH for 2-degree-of-freedom
models; then to present F, then T, and then SSH for multiple-degree-of-freedom models;
and finally to present F, then T, and then SSH for continuous member models. The
author’s pedagogical experience is that a more effective approach is to cover F for 1,
2, and multiple degree of freedom and continuous members and then present similar
learning sequences for T and finally for SSH. Instructing free vibrations from single
degree of freedom through continuous members without multiple circulations through
transient and SSH vibrations seems far less confusing and more effective and logical.
A similar conclusion holds for treatments of transient vibrations and steady-state har-
monic vibrations. In the author’s opinion, the format of prior texts, as outlined above,
has lost a significant justification with the advent of modern math tools, which have
greatly lessened the solution difficulties encountered in transitioning from single-
degree-of-freedom to 2-degree-of-freedom to N-degree-of-freedom models.

Chapter 5 expands the conventional content covered in free vibrations by including
treatment of rotating systems with gyroscopic moments, the destabilizing effect of cir-
culatory forces, flexible unconstrained structures, orthogonal damping matrices, and
unstable systems. Likewise, Chapter 6 expands the conventional content covered in tran-
sient vibrations by including response spectrums, modal condensation for general
M,K, andC systems, flexible unconstrained structures, base excitation, participation fac-
tor and modal effective mass, and numerical integration methods. Finally, Chapter 7
expands the conventional content covered in steady-state harmonic response by includ-
ing peak amplitude and frequency for the simple single-degree-of-freedom oscillator
(SDOFO), parameter identification methods for the SDOFO, high spot–heavy spot
and influence coefficient balancing for a simple Jeffcott rotor, demonstration that reso-
nance may occur in any general M,K, andC linearized vibrating system, use of recep-
tances for the synthesis of substructures and mode shape identification, and use of the
modal assurance criterion (MAC) for mode shape correlation.

5. Provide a treatment of techniques for improving computational efficiency for larger-
order models by utilizing approximate methods. Large-scale finite element models are
utilized throughout industry and in research and economic solutions are typically a neces-
sity. Long run times inhibit use of optimization approaches such as genetic algorithm
guided design which requires a large multitude of simulations with parameter variations.
Modal condensation for accelerating system transient solutions is covered very thor-
oughly in Chapter 6, including use of the modal acceleration method. Chapter 7 also
introduces a receptance approach for economically determining the response of coupled
substructures through receptance synthesis. Chapter 8 covers other areas for economic,
large-order system model solutions including Guyan reduction-static condensation, sub-
structures–superelements, modal synthesis, eigenvalue–eigenvector perturbations with
reanalysis, and the Rayleigh quotient approach.

6. Provide an in-depth presentation of finite elements that far surpasses the conventional
content of only 2D Euler–Bernoulli beams and present an implementation algorithm that
is universally applicable among the various types of elements and treats both fixed and
time-varying boundary conditions. This goal reflects the author’s experiences with finite
elements in industry and research, namely, various types of elements are utilized and in
most cases 3D models are inevitably required. Chapter 9 presents theory and examples
for 2D Euler–Bernoulli and 2D and 3D Timoshenko beams with shear deformation
effects. The Timoshenko beam development includes a truly “consistent mass matrix”
utilizing the Timoshenko shape functions, derived from the solution of the beam’s static
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governing equations, in the kinetic energy expression for deriving the element mass
matrix. Most developments employ a lumped mass formulation or an “inconsistent”
mass matrix formulation utilizing Timoshenko beam shape functions for displacements
and Euler–Bernoulli (Hermite cubic polynomials) shape functions for velocities in the
beam’s kinetic energy expression. A general approach and accompanying 2D beam-
frame example are provided for the case of imposed motion excitation at boundary points
in a finite element model. The Timoshenko beam theory presented is for general 3D
frames including I beams, box beams, etc. The matrix assembly algorithm presented
in Chapter 4 is again utilized for all beam-frame models in Chapter 9. The standard for-
mat of only including 2D Euler–Bernoulli beams in vibration texts is clearly surpassed in
Chapter 10 which includes treatment of 2D solid elements for plane stress and plane
strain and axisymmetric and 2D vibrating membranes. Detailed algorithms are provided
for determining stresses at interior and surface points for use in high-cycle fatigue stud-
ies. Both bilinear (2 node) and quadratic (9 node) isoparametric element formulations are
presented. The extra (incompatible) shape function approach is utilized in order to accel-
erate convergence especially in 2D bending-type problems. Most commercial finite ele-
ment codes utilize automated mesh generators with lower-order finite element models.
The formulation for a constant strain triangle is presented for this purpose. The
MATLAB code MESH2D is utilized for creating an automated triangular element mesh,
which is then solved for natural frequencies and mode shapes. Large-order problems cre-
ate large systems of linear algebraic equations that must be solved for the unknown nodal
vibrations. The corresponding matrices may be highly sparse as described by a small
bandwidth to order ratio. This fact may be exploited to economize on the required com-
putation time for solving the equations. A banded solver assembly procedure and coding
are provided and demonstrated with a steady-state harmonic vibration response example.

Chapter 11 provides theory, assembly procedures, and an example for a general
8-node, 3D solid (brick) hexahedral isoparametric element including extra (incompati-
ble) shape functions for improved bending deformation modeling. The example reveals
modes and natural frequencies that are absent from the corresponding 2D solid and
Timoshenko beam models. A detailed discussion is provided for determining interior
and surface point stresses for usage in high-cycle fatigue studies.

7. Provide an intermediate-level treatment of active vibration control (AVC) which is often
categorized as an area of smart structures and materials. The need for lightweight, high-
performance structures, vehicles, machines, and devices that may be required to function
in extreme environments and adapt to various operating conditions has spawned a vast
amount of research and development efforts in AVC. Chapter 12 provides in-depth treat-
ments of both electromagnetic and piezoelectric actuator types, ideal (infinite) and finite
bandwidth modeling and effects, and closed-loop stability and steady-state response
determination. Closed-loop feedback control models that assume infinite bandwidths
for all feedback components (sensors, controllers, power amplifiers, and actuators) are
prone to miss unstable poles that appear in the as-built system and preclude the use
of predetermined design feedback gains. This point is elucidated by both theory and
example in Chapter 12. Examples are provided for systems with electromagnetic actua-
tors or with piezoelectric stack or patch (layer) actuators.

8. Provide an appendix which contains a summary of the basic equations of elasticity (equi-
librium, constitutive law, strain displacement, compatibility, strain energy) for easy ref-
erence when deriving the assumed modes and finite element stiffness matrices.

All chapters have a generous number of EXERCISES. Limitations on the size and cost
of the textbook precluded including the EXERCISES within the textbook. The exercises are
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accessible from a dedicated website (www.wiley.com/go/palazzolo), which is maintained
by Wiley. The website contains a wide variety of intermediate to challenging exercises.
A typed solution manual for the exercises is available from Wiley for instructors.

MATLAB and MAPLE codes are utilized in the examples throughout the text and
in the exercise solutions. Many of the code listings are contained in the chapters or in
Appendices B–F. The remaining codes are provided in a dedicated website (www.wiley.
com/go/palazzolo) maintained by Wiley for instructors.

Limitations on the size and cost of the textbook precluded including sections on test
instrumentation and sensors, nonlinear vibrations, and random vibrations. These are all very
important subjects although much can be obtained on instrumentation and sensors by web
search. Other texts that are readily accessible to students have introductory sections on non-
linear and random vibrations. The author has taught nonlinear vibrations at Texas A&M for
the past 12 years and is planning a specialized book in this area.
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About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/palazzolo

This website includes:

• Appendices B through F which contain listings of MATLAB and MAPLE Codes for
major examples in the text

• Exercises

• Matlab and Maple Codes

Exercises will be updated to reflect reader comments and the database of exercises will be
expanded. This technological innovation will make the text a ‘living’ document, whilst
having an expanding and polished Exercises section on a website reduces the size and cost
of the book.
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Chapter 1

Background, Motivation,
and Overview

1.1 INTRODUCTION

The word “university” is derived from the word “universal” (Newman, 1927) in that the
university is the foremost setting for teaching universal knowledge. Philosophy, chemistry,
agriculture, mechanics, theology, biology, and so on are all topics of learning, teaching, and
exploring at the true university. The study of vibrations is a microcosm of the ideal univer-
sity, encompassing aspects of dynamics, fluid mechanics, structural deformation and
fatigue, electromagnetism, feedback control, sound, and other phenomena. Confronting
this, the eager investigator feels great satisfaction in drawing ideas from each area and then
forging solutions to vibration problems. As an athlete develops calves and biceps, shoulders,
and forearms and then enjoys using these in harmony and mutual support in competition, so
the vibration engineer delights in recognizing and using many disciplines to tame vibrations.

With its arsenal of anomalies—fastener looseness, structural member fatigue and
failure, noise, internal rubs in machinery, human fatigue and distractions, optical instrumen-
tation and machining errors, and so on—vibration continues to present formidable engineer-
ing challenges and to limit energy efficiency and cost reduction in machinery and structures
in the twenty-first century. New machinery that pushes the envelopes of efficiency and
power density; new structures that stretch the imagination in size, materials, light weights,
and locations; and new vehicles that propel us through land, air, sea, and space with ever
increasing speed and comfort level all hold great promise for an efficient and convenient
future. These advances will come at a price though and vibration will be there to collect
its due. The author extends his best wishes for success to those who meet the vibration chal-
lenges that continue to arise in mankind’s quest to subdue nature and use its awesome forces
for peace, human dignity, and prosperity.

1.2 BACKGROUND

The following sections provide discussions of many important aspects of vibration. The
intent of this section is to provide some basic backgroundmaterial to facilitate understanding
of the following sections. Vibration is the study of dynamic motions of mechanical, struc-
tural, or anatomical components or systems about their static equilibrium configurations.
The motion may be sinusoidal periodic, complex periodic, quasiperiodic, transient, chaotic,
or random. Monotone (single-frequency) sinusoidal vibration is characterized by an
equilibrium position xeq and the dynamic displacement amplitude (Ax), phase angle (ϕx),
frequency ( f ), and period (T ) as shown in Figure 1.2.1.

1

Vibration Theory and Applications with Finite Elements and Active Vibration Control, First Edition. Alan B. Palazzolo.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/palazzolo

www.konkur.in



The period and frequency are related by

f =
1
T

cycles s or Hz, ω= 2πf circular frequency in rad s 1 2 1

Period markers are seen to occur at 0, 2π/ω, 4π/ω,…. This may represent a once per
revolution event on a rotating shaft or just some arbitrarily referenced pulse that indicates
the beginning of a new forcing period. The motion is described using the expression

x t =Ax cos ωt +ϕx 1 2 2

The positive peaks occur when the argument of the cosine function is a multiple of 2π,
that is,

ωtpn +ϕx = 2πn n= 1,2,… 1 2 3

which implies

tpn
2π
ω

−
ϕx

ω
,
4π
ω

−
ϕx

ω
,
6π
ω

−
ϕx

ω
,… 1 2 4

Thus, it is seen by comparison of (1.2.4) and Figure 1.2.1 that the phase angle ϕx has a
physical interpretation, namely, it provides a measure of the time between x(t) experiencing
a positive peak and the occurrence of a period marker. This time lag is

Δtp =
ϕx

ω
1 2 5

The velocity and acceleration expressions are obtained by differentiating (1.2.2)

v t = x t =Av cos ωt +ϕv 1 2 6

a t = v t = x t =Aa cos ωt +ϕa 1 2 7

where

Av =ωAx, ϕv =ϕx +
π

2

Aa =ωAv =ω2Ax, ϕa =ϕv +
π

2
=ϕx + π

1 2 8

The motion depicted in Figure 1.2.1 could result from displacing or striking the com-
ponent and allowing it to freely vibrate as in the case of a swing, traffic light, car antenna,

T T

t

(Increasing time)Ax

Ax

ω ω ω2π 4π 6π

xeq

x(t) ϕx
ω

ϕx
ω

Figure 1.2.1 Pure tone sinusoidal vibration
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cantilevered ruler, bell, or guitar string. The frequency of this natural or “free” motion is
called a “natural frequency.” Alternatively, the motion could result from being forced by
some source that has a frequency ω, as in the case of a washing machine with an unbalanced
load, a vehicle with a slightly oval tire, or an offshore platform subjected to periodic wave
forces at frequency ω. The oval tire would actually induce a vibration at frequency 2ω if its
rotation frequency is ω.

So what happens if the forcing (source) frequency nearly equals the structural compo-
nent’s natural frequency? The answer is that the vibration may become very large and even
cause failure of the component. This phenomenon is called resonance, and it was a major
reason for the spectacular failure of the Tacoma Bridge in Washington, United States, on
November 7, 1940. Many years later, resonance still persists as a common source of failure
for many structures and machines. An explanation for the increase in vibration amplitude at
resonance accentuates a major distinction between static deflection and dynamic motion,
namely, the existence of an inertial force. The stiffness force in a component is proportional
to its deflection and acts to restore it to its equilibrium state when deflected. The inertial force
is proportional to acceleration which is 180 out of phase with the displacement as shown
by (1.2.8). The inertial force may become large and cancel the restoring stiffness force. This
causes the dynamic motion (vibration) to become very large and destructive. This simplified
example of resonance is extended to complex systems in Chapter 7.

Free (unforced) vibration decays with time due to energy dissipating forces such as:

• Viscous, dry, or atmospheric friction

• Material hysteresis

• Eddy current generated magnetic forces of an electrically conductive component that
vibrates in a magnetic field

This vibration decay is illustrated in Figure 1.2.2. The presence of the damping force
prevents exact cancellation of the stiffness restoring force by the inertial force at resonance.
This, and nonlinear effects, reduces the infinite amplitude, resonant vibrations to finite
values. Thus, damping is generally good for attenuating resonant vibrations. As with most
things in life though, too much of a good thing may be bad, and damping is no exception.
The velocity at the point where a viscous damper is attached to a flexible body will become
zero as the damper strength increases. The energy dissipated by the damper is proportional to
the square of the velocity of the attachment point. Therefore, very little energy is dissipated
and all other points on the flexible body may vibrate severely. Thus, an optimum level of
damping is sought in practice.

Systems may vibrate with many free and/or forced frequencies simultaneously. This
results because:

• Actual components such as buildings, piping systems, shafts, blades, guitar strings, and
so on have many natural frequencies.

Figure 1.2.2 Damped free vibrations
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• Some systems are excited by multiple sources at different frequencies. For example, a jet
engine generally has two coaxial shafts: one a power turbine and the other a gas generator.
Mass imbalances on the two shafts exert forces on the engine at the power turbine spin
frequency and at the gas generator spin frequency.

• Some forces are periodic but not purely sinusoidal such as piston pressure or crankshaft/
connecting rod/piston inertial forces in a vehicle engine or reciprocating pump or com-
pressor, or a jack hammer striking building flooring, and so on.

Multifrequency vibration is referred to generally as complex periodic and is illustrated
by Figure 1.2.3. A Fourier series expansion (see Chapter 2) will reveal all of the amplitudes,
phase angles, and frequencies of the constituent sine waves that are superimposed to form
the complex waveform.

Some vibrations are not entirely periodic since these result from nonperiodic excitations
such as step, impulse, ramp, or more general shock inputs. Finally, some excitations such as
atmospheric buffeting of airplanes or helicopters may be random, which causes the
responses also to be random. Complex and random vibration waveforms may display many
sinusoidal components of varying amplitude and duration. A common measure of severity
determined from these responses is the root mean square (rms) value

xrms =
1
T

T

0
x2 t dt 1 2 9

Figure 1.2.3 Lowest four constituent harmonics and their sum
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where T is the period of measurement. For single-frequency sinusoidal motion, (1.2.9)
yields

xrms =
1
T

T

0
Ax cos ωt +ϕx

2dt =
Ax

2
1 2 10

where T is one cycle of the motion. For multiharmonic complex motion, (1.2.9) yields

xrms =
1
T

T

0
Ax1 cos ωt +ϕx1 +Ax2 cos 2ωt +ϕx2 + +Axn cos nωt +ϕxn

2dt

=
1
2

A2
x1 +A

2
x2 + +A2

xn

1 2 11

where T equals the period of the lowest (fundamental) harmonic

T =
2π
ω

1 2 12

which is also the period of the complex, multiharmonic waveform.

1.2.1 Units

The vast majority of the units in this text are metric. Some helpful conversions are
given below:

1g (gravity constant) = 9.81 m/s2 = 386 in./s2 (on earth)

1 mil = 0.001 in. = 0.0254 mm = 25.4 μm
1 in. = 0.254 m = 2.54 cm = 25.4 mm

1m = 39.37 in. = 3.281 ft

1 km = 0.62 miles

1 N = 0.219 lbf

1 lbf = 4.54 N

1 N/m = 0.0056 lb/in.

1 lb/in. = 178.6 N/m

1 N/m2 = 1 Pa = 1.42 × 10−4 lb/in.2

1 lb/in.2 = 7032.3 N/m2

1 in.4 = 4.162 × 10−7 m4

1 m4 = 2.403 × 106 in.4

1 lb.s/in. = 178.6 N.s/m

1 N.s/m = 0.0056 lb.s/in.

1 in.lb/rad = 0.1153 N.m/rad

1 N.m/rad = 8.672 in.lb/rad

Weight of 1 kg = 9.81 N = 2.161 lbf (on earth)

Chapter 1 Background, Motivation, and Overview 5
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1.3 OUR VIBRATING WORLD

The term vibration has many different connotations but is most often connected with
oscillatory motion of an object about some equilibrium position and/or operating point.
The Merriam-Webster dictionary entry for vibration provides a commendable description
for the “vibrations” studied in this text, that is, “periodic motion of the particles of an elastic
body or medium in alternately opposite directions from the position of equilibrium when
that equilibrium has been disturbed (as when a stretched cord produces musical tones or
molecules in the air transmit sounds to the ear).” A vibration engineer might add “a source
of cyclic fatigue, looseness, human health or contact damage which limits the performance
of machines and people.”

Vibrations are often related to a natural frequency and resonance. Objects vibrate at
certain characteristic frequencies due to the periodic exchange of energy between kinetic
and potential forms. So bells, traffic lights, pendulums, car antennas, turbine blades, and
so on sway and ring at certain frequencies when displaced and released. Resonance occurs
when an excitation or disturbance acts on an object with nearly the same frequency as the
object’s natural frequency. The result may be large, damaging, and sometimes catastrophic
vibrations.

1.3.1 Small-Scale Vibrations

The potential energy that is created when atoms are collected in a lattice produces forces that
act like spring connecting the atoms. These masses connected by “springs” vibrate and are
particularly sensitive to certain excitation frequencies referred to as resonance frequencies.
Cesium 133 atoms have a resonant frequency at 9,192,631,770 cycles/s. When excited at
this frequency, the atoms change state. A voltage applied to a piezoelectric crystal causes
it to deform. The vibrating piezoelectric is utilized to create microwaves which impinge on
the cesium atoms. If the frequency of the voltage varies near 9,192,631,770 Hz, the micro-
waves cause the cesium 133 to experience a peak in the number of transformed atoms as
resonance occurs at the atomic natural frequency. These atoms are continuously counted
as the frequency of the voltage applied to the piezoelectric is varied. A peak count indicates
that the frequency is exactly 9,192,631,770 Hz (cesium 133 atomic resonant frequency).
The cycles are counted and every 9,192,631,770 cycles form 1 second. Hence, vibrations
even on the atomic level reveal a practical usage, that is, an atomic clock.

The lens-free atomic force microscope (AFM) employs a tiny 100 μm length cantilever
beam to measure local sample height (topography) at the atomic level. The beam has a very
low spring stiffness (0.1 N/m) yet very high natural frequency. Mounted on the end of the
cantilever is a sharp tip that is typically a 3 μm tall pyramid with 10–30 nm end radius. The
deflection of the tip is measured with a laser. The beam and tip may also function in a non-
contact mode where topographic images are derived frommeasurements of attractive forces.
Environmental vibration, that is, due to a passing truck, can cause severe distortion of the
images produced by an AFM.

On a slightly larger scale, a tiny quartz crystal in a watch may vibrate (ring) for minutes
similar to a tuning fork due to a lack of damping. Deflection of the quartz (piezoelectric)
crystal creates a voltage that can be amplified and reapplied to the crystal to sustain the vibra-
tion at its “natural” frequency. This frequency is known and constant so a count of the num-
ber of cycles executed provides a means to determine the passing of 1 second—that is, the
fundamental time unit for the watch.

Vibrations occur in the human body on a very small scale yet they are also very impor-
tant. Consider the auditory system consisting of the external, middle, and inner ear. The
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outer portion of the external ear (auricle) directs sound waves to the 2.5 cm long ear canal,
passing to the ear drum (tympanic membrane). The ear drum is about 1 cm in diameter, has
a concave shape, and vibrates in response to the incoming sound waves. Its displacement
amplitude during normal speech (~60 dB sound level) is estimated to be about equal to
the size of a molecule of hydrogen. The middle ear consists of three solid material
“ossicles,” the hammer (malleus), the anvil (incus), and the stirrup (stapes), which increase
the vibratory force about 20 times as it is transmitted from the ear drum to the “oval win-
dow.” This results from lever action of the ossicles and the decrease in area between the ear
drum and oval window. The stapes displaces the oval window as it transmits the sound
waves (vibration). This oval window acts as a piston oscillating the fluid (perilymph)
within the snail-shaped cochlea which winds about 23/4 turns. The fluid causes the “basilar
membrane” in the cochlea to vibrate in different manners according with the frequency of
the exciting sound wave. Frequencies below 50 Hz cause vibration of the entire mem-
brane, whereas higher frequencies (15–24 KHz) cause the membrane to vibrate only at
its base attachment point. The membrane is covered with hair cells that move against a
second membrane (tectorial). Microvilli (minute projections of cell membranes that
greatly increase surface area) that are embedded in the tectorial membrane bend in
response to movement of the basilar membrane. Bending of the microvilli causes ionic
actions that stimulate nerves connected to the acoustic cortex in the brain, via the basilar
hair cells. As mentioned, different frequencies cause different parts of the basilar mem-
brane to deflect which in turn bends different microvilli, which in turn affect different
nerves that synapse (membrane-to-membrane contact of two nerve cells that promotes
transmission of nerve impulses) with the basilar hair cells. These nerves are connected
to different positions along the acoustic cortex. Thus, the frequency of the sound waves
determines which part of the basilar membrane vibrates, which tectorial membrane micro-
villi bend, which basilar membrane hairs synapse with nerves to the acoustic cortex, and
which portion of the acoustic cortex is stimulated. The audible frequency range extends
from 20 Hz to 24 KHz. For reference, the lowest frequency of a piano is 27.5 Hz and
the highest is 4186 Hz. In addition, middleC is 400 Hz, and the nextC is one octave (factor
of 2) higher at 800 Hz. J. S. Bach divided each octave into 12 equal frequency intervals
to include flats and sharps (Cannon, 1967). Each note is then 21/12 (1.0595) higher in
frequency than the next lower note. From this discussion, it is clear that the ear acts as
a transduction device that converts vibrations into nerve impulses.

Small vibrations also occur in the vocal folds (chords) of the human throat. The left
and right vocal folds are made of muscles and form a “V” when viewed from above. The
folds are pulled apart from one another when breathing and are pulled together during
speech. Talking, singing, and humming cause the two folds to open and close very
quickly as air passes from the lungs through the windpipe and then through the folds.
The folds are forced open by the higher air pressure in the windpipe but quickly close
as the pressure decreases due to the escaping air. The windpipe pressure builds up again
and the pattern is repeated at a high frequency. Thus, sound is produced as the small jets
of air pass through the moving vocal folds. The shape of the vocal tract changes as the
tongue, jaw, palate, and lips are moved. This causes the air in the voice tract to respond
(resonate) at different frequencies (acoustic natural frequencies) to the vocal fold vibra-
tion and corresponding air jets. This is similar to blowing across the openings of several
bottles that are filled to different levels with water, each producing a distinct pitch due
to the difference in cavity shape. The lowest (fundamental) spoken frequency is about
100 Hz and the highest about 3000 Hz. Articulation is the action of changing the vocal
tract geometry to produce desired sounds. Vowels resonate in the throat and consonants
in the nasal passages.
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1.3.2 Medium-Scale (Mesoscale) Vibrations

Trucks, autos, buses, trains, and amusement park rides bounce and buzz due to road or
track unevenness and machinery forces developed in the engine, transmission, and aux-
iliary equipment. Airplanes shake and vibrate due to air turbulence and dynamic forces in
their engines. The same scenario exists for helicopters with the addition of torque trans-
mission-related dynamic forces for the main and tail rotor. Ships utilize many machines
(turbines, gear boxes, propellers, pumps, ventilation fans, and so on) that cause vibration
and also experience sea wave excitation. Industrial chemical, petroleum, paper product,
and power plants utilize hundreds of compressors, turbines, pump, fans, and so on that
vibrate due to rotating imbalance, misalignment, gear and blade forces, and so on and in
turn excite many kilometers of attached piping and vessels. Mills, lathes, drill presses, and
saws shake and vibrate due to imbalance and cutting forces in thousands of machine
shops and manufacturing facilities. This may cause delirious effects on surface finish,
and limit the depth and rate of cut, and consequently the tool performance. Buildings
for the most part buzz and vibrate due to HVAC equipment and sway due to wind buf-
feting. Precision optical instruments such as lasers, telescopes, microscopes, and interfe-
rometers vibrate due to transmission of forces from neighboring machinery and forces,
oftentimes degrading the instrument’s performance. Musical instruments (strings and
drums) vibrate but in a (hopefully) pleasant manner. Skis, baseball bats, tennis rackets,
and golf clubs also vibrate in response to impact loading. These medium-scale vibrations
typically occur with an amplitude range of 0.01–10.0 mm and a frequency range of
2–2000 Hz. These vibrations are rarely detectable with the naked eye but can have cat-
astrophic consequences.

1.3.3 Large-Scale Vibrations

About 100 earthquakes occur each year with the strength to cause significant damage. The
earth’s crust (outer layer) surrounds its hot liquid inner core and is broken up into giant
plates of rock. Sometimes two plates collide along a fault and pressure builds up until
the plates snap into a new position. The release of this traction (pressure) causes vibrations
that we feel as an earthquake. When the vibration of the earth has the same frequency as the
natural frequency of a building, a resonance occurs and the building vibrations may
become very destructive. The Mexico City earthquake of 1985 was especially destructive
for buildings 10–14 stories tall since they had natural frequencies near the ground shake
frequency. The Northridge, California, earthquake of 1994 registered 6.7 on the Richter
scale and yielded motions up to 0.35 m. Typical earthquake frequencies range from 0.2
to 5.0 Hz.

The field of helioseismology has discovered that the sun, being a deformable ball of hot
gas, vibrates in millions of resonant modes with the major ones ringing at frequencies
between 1 and 5 milli-hz. These modes may ring for days or even months before decaying
away. Similar phenomena have been observed by astronomers noting the brightness of
other very distant stars. The radial vibration velocity observed in one case was in the
1–3 km/s range.

Our universe is filled with vibrating objects: some big–some small, some near–some
far, some good–some bad, shaking an atom and shaking a star! Feel like vibrating?
Place your fingertips on your throat and say a long “e” with a big cavity and with a small
cavity-shaped throat. Feel the vibes! This level of vibration would be considered as
severe if it was measured on the bearing housings of a large industrial turbine or
compressor.
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1.4 HARMFUL EFFECTS OF VIBRATION

Some beneficial reasons to create vibrations include:

(a) Music

(b) Radar/sonar/radio/microwaves

(c) Back massagers

(d) Lithotripsy (for kidney stone fragmentation)

(e) Industrial vibrators for clearing blockages and hang-ups of grain screenings, soya meal,
gypsum coal, refined ore, and other materials in bins, chutes, hoppers, and silos

These are the good vibrations. In contrast, most vibrations are adverse to human,
machinery, and structural health, and an important engineering objective is to reduce them
to harmless levels.

1.4.1 Human Exposure Limits

Body vibration is usually classified according to “whole body vibration” (WBV) or “local
vibration” (Griffin, 1990). The three principal possibilities for WBV are sitting on a vibrat-
ing seat, standing on a vibrating floor, or lying on a vibrating surface. Local vibration results
when a limb or the head contacts a vibrating surface. Effects of vibration on the body depend
on frequency, amplitude, and duration and range from “motion sickness” (low frequency–
high amplitude) to fatigue-decreased proficiency and permanent damage to hands and arms
(high frequency–low amplitude).

The International Standard Organization’s (ISO) Standard ISO 2631-1, 1997 “Mechan-
ical Vibration and Shock—Evaluation of Human Exposure to Whole Body Vibration” pro-
vides a quantitative, measurable means to determine how severe a particular vibration may
be on human health, based on statistical surveys. This document should be directly con-
sulted in an actual design study; however, some general guidelines are that WBV acceler-
ation vibrations less than 0.75 m/s2 may be mildly disagreeable, from 0.75 to 1.5 m/s2 may
be disagreeable, and higher levels may be very disagreeable. The Standard parses these gen-
eral divisions into much more finely divided levels and is a “living document” that is peri-
odically updated. Continuous exposure to vibration over some duration of time may be risky
to health as illustrated by the ISO standards.

A measure of vibration exposure that includes both amplitude and duration is the vibra-
tion dose value (VDV). This is defined as (Griffin, 1990)

VDV=
T

t = 0
a4 t dt

1 4

1 4 1

where a(t) is the vibration acceleration in m/s2. The caution zone is reached when the VDV
is 8.5 m/s1.75 and a health risk occurs for VDV greater than 17 m/s1.75. Referring to British
standard 6472, Guide to evaluation of human exposure to vibration in buildings, Hassan
(2009) provides VDV levels for the threshold of “adverse comment” of people working
in various types of buildings and offices. These values range from 0.1 m/s1.75 for residential
buildings at night to 0.8 m/s1.75 for busy offices or workshops.

The transportation safety department of the Australian Transport Safety Bureau iden-
tified potential WBV-related health problems as:

(a) Discomfort and interference with activities

(b) Disorders of the joints and muscles and especially the spine
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(c) Cardiovascular, respiratory, endocrine, and metabolic changes

(d) Problems in the digestive system

(e) Reproductive damage in females

(f) Impairment of vision or balance

(g) Low back pain arising from early degeneration of the lumbar system

(h) Muscular fatigue and stiffness

The motions referred to thus far represent input motions to the whole body. The vibra-
tions of certain parts of the body could be much worse if internal resonance occurs. Griffin
(1990) states that a human body should only be considered to act rigidly for frequencies
less than 2 Hz. For instance, the eye’s natural frequency (fn) falls in the range 20–70 Hz,
the head relative to shoulders fn lies between 20 and 30 Hz, and the trunk’s fn lies between
4 and 6 Hz.

Local body vibration may also cause serious health problems. An example of this is
vibration that is localized to the hand and arm. Prolonged exposure may result in the
hand–arm vibration syndrome (HAVS), which is also known as “white finger,” “dead
finger,” or “Raynaud’s syndrome” (Griffin, 1990). HAVS is a vascular (blood vessel) dis-
order-related disease of increased risk with exposure to cold, loud noise, and tobacco smoke
(CDC, 1994). Early signs of HAVS include:

• Tingling fingertips

• Fingertips turning white or blue

• Trouble picking up small objects

• Numbness

• Clumsiness with hands

• Trouble buttoning and zipping clothes

• Reduced sense of heat, cold, and pain in hands

According to the US National Institute of Occupational Safety and Health (NIOSH,
1989), HAVS reduces blood circulation due to narrowing of the blood vessels. This results
in one or more fingers becoming white and cold. This condition may become irreversible
with long-term vibration exposure. The disease is prevalent among workers using chipping
hammers, drills, riveters, grinding wheels, chain saws, and driving motorcycles. Relevant
information on HAVS exposure limits may be found in ISO Standards 5349 and 8662
and ANSI S3.34-1986 (American National Standard) as well as in Griffin (1990). Thus,
for example, these references indicate that a vibration acceleration level of 30 m/s2

(≈ 3g s) is generally safe for 1 hour exposure but it may be unsafe for 2 hours or more
of exposure. The actual standards should be referenced in any industrial design study.
Appropriate use of the standards requires measurement of the acceleration component direc-
ted into the hand so as to generate compression rather than shear motion. The standard
should be applied to the worst frequency component of the acceleration signal’s Fourier
series (spectrum). There is also a probabilistic aspect to interpreting the standards. This
is illustrated by noting, for instance, that for the 4–8-hour exposure zone, a latency period
of 10–20 years is expected to yield vascular symptoms in 10% of the exposed population.
The harmful effects of long-term exposure to hand and arm vibration extend beyond blood
circulation (vascular) disorders to include a large number of bone and joint disorders
(Griffin, 1990).
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1.4.2 High-Cycle Fatigue Failure

The intent here is to present a primer on high-cycle fatigue (HCF) to illustrate the practical
importance of studying vibrations. More advanced texts such as Nicholas (2006) or Lee et al.
(2012) should be referenced for a more in-depth understanding and for applications. Stress is
a measure of the internal or surface force density in an object. For example, the beam shown
in Figure 1.4.1 has a cantilever support and a circular cross section and is subjected to a
transverse force F(t), axial force P(t), and twisting torque τ(t). The vibrations caused by
these excitations create an internal shear force V(x, t), internal bending moment M(x, t),
internal axial force f(x, t), and internal torque Γ(x, t) at position x. These internal actions cre-
ate stresses in beams described by the strength of materials type formulas

σbend t =
M t c

I
, σaxial t =

P t

A
, τshear t =

V t

A
, τtors t =

Γ t c

J
1 4 2

where A is the cross-sectional area, I is the bending area moment of inertia, and J is the tor-
sion constant. As implied by (1.4.2), loads and resulting stresses generally vary with time.

Materials are compared and characterized by the amount of stress they can withstand
before breaking. For example, the ultimate strength (stress) for high-strength 340 Aermet
steel is σut≈325000lb in 2, where the more common A36 steel has an ultimate strength
σut≈56000lb in 2. Guess which costs more, or which is more likely to be found in a
high-performance aircraft, given that they both have the same density? The amount of stress
that a component can tolerate is reduced if the stress varies cyclically with time. This impor-
tant fact gave birth to the entire subject of fatigue. To demonstrate this, bend an ordinary
metal coat hanger by 180 , and you’ll find it does not break. However, if the bending defor-
mation is repeated many times, failure will occur, even for angles that are much less than
180 . This phenomenon is referred to as low-cycle fatigue failure if the bent section breaks
in less than approximately 1000 cycles and the maximum stress is near the tensile (ultimate)
strength Sut. HCF represents the same phenomena of cyclic stress; however, failures occur
after 103, 104, 105, 106 or higher cycles and the failure stress may be much less than Sut or
even much less than the yield stress.

How does this relate to vibrations? Well, within the limits of linear theory, stresses are
proportional to strains, which are in turn proportional to displacements, aka vibration. Thus,
the larger the vibration deformation becomes, the larger the stress. HCF failures may occur
when vibrations become excessive as will be the case if the component has low damping and
is being forced at a frequency near to one of its free vibration (natural) frequencies, that is,
near resonance.

Several practical examples from industry will illustrate the importance of HCF consid-
erations. Gas turbine engines mix compressed air with fuel, combust the mixture, and expel

Figure 1.4.1 Simple cantilever pipe subjected to bending, axial, and torsional loads
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the resulting hot gases through a turbine wheel. The torque that this causes on the turbine
wheel may spin a compressor creating compressed air or a generator creating electricity. The
air that flows through the compressor is directed by stationary (nonrotating) stator vanes
to optimally impinge on the rotating blades. A similar situation occurs with the hot gases
in the turbine. Any rotating blade experiences an impulse-type force as it collides with
the flow through the passage between two stator vanes. The rotor blade is then excited at
the frequency

fexcit = Rotor spin frequency ∗ Number of stator vanes 1 4 3

which is referred to as the blade-pass frequency. This excitation causes the blades to vibrate
causing time-varying (alternating) stresses along with the static, centrifugal-induced stress
in the blades. The level of alternating stress that is tolerable is reduced by the presence of the
static (mean), tensile, and centrifugal stresses. Figure 1.4.2 shows an HCF crack on a blade
from an aircraft gas turbine engine.

The combination of alternating stress and mean stress may cause an HCF failure (cat-
astrophic crack) if the rotor blade is not properly designed. The vibration (and stress) level
will substantially increase if fexcit or one of its harmonics is in the vicinity of a rotor blade
natural frequency, that is, a resonant condition. HCF of blades is a constant concern of all
turbine and compressor designers with applications to steam or gas turbines for power gen-
eration, aircraft, helicopters, ships, chemical processing, or even to the space shuttle main
engines. The consequences of “throwing off” a cracked blade are frequently catastrophic
and sometimes fatal. The US Air Force has determined that more than 50% of accidents
involving aircraft damage result from HCF.

Piping and tubing systems are also subjected to vibration-induced cyclic stress due to
pressure pulsation forces generated by attached machinery, such as reciprocating compres-
sors, or from internally generated vortices. These systems are also subjected to static stress
from internal pressure and partially constrained thermal expansion. Experienced chemical
plant personnel know that an HCF-induced crack in a high-pressure gas line will sometimes
emit a high-pitch whistle as the gas escapes through the crack, signaling all nearby workers
to shut down the machinery and flee.

Figure 1.4.2 Turbine blade with high-cycle fatigue crack. Reproduced with permission from
Transport Safety Board of Canada
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These examples illustrate cases where vibration of machinery and structures induces
cyclic stress, which may cause HCF failure. This may occur at stress levels well below
the yield stress or ultimate/tensile strength (Sut), which is illustrated by the simplified
S–N (alternating stress amplitude vs. number of cycles to cause failure) diagram in
Figure 1.4.3. The sloped portion of the curve is of primary interest and has the general
form

Sfailure = γN
α 1 4 4

where the constants γ and α are determined experimentally and are a property of the material.
The endurance limit stress Se is defined as the level below which failure will not occur

independent of the number of cycles. The value of Se is most accurately obtained by exper-
iment with the material and geometry of interest; however, it is sometimes approximated for
steels as (Shigley, 1989)

Se =

0 50∗Sut, Sut ≤ 1400MPa 200kpsi

700MPa, Sut > 1400MPa

100kpsi, Sut > 200kpsi

Se = kSe

1 4 5

where k is a series product of modifying factors and Se is the endurance stress limit of a
highly polished, cylindrical specimen at room temperature. The modifying (Marin) factors
account for surface condition, size, load types, temperature, plating, corrosion, and so on. In
addition, a modifying factor also may be applied to account for the reliability of Se, which is
a statistical quantity, typically provided in tables as a mean value over many tests of “iden-
tical” specimens. This modifying factor is usually based on the assumption of a Gaussian
distribution for the measured endurance limit and a ratio of its standard deviation to the mean
value of, for instance, 8%. The maximum value of stress taken over the entire component
should be utilized in Figure 1.4.3 since stress varies spatially.

Figure 1.4.4 shows a weight attached to the end of a cantilevered beam. The static
weight causes a static deflection and strain, which causes a constant mean stress σm that
is maximum at the wall since the moment is largest there and the nominal beam stress is
magnified by the local geometry (stress concentration) at the connection to the wall. The
weight vibrates about its statically deflected position creating a time-varying deflection
and corresponding alternating stress.

Figure 1.4.3 Simplified S–N curve for HCF failure evaluation plotted on log–log format
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Stress waveforms may contain components at several frequencies including a static
component as illustrated in Figure 1.4.5. Define the alternating stress amplitude as

σa =
σmax−σmin

2
1 4 6

Thenσa can be utilized in Figure 1.4.3 to estimate the life of the component. Collins (1981)
states that the minor “frequency component” (small bumps) in Figure 1.4.5 may be ignored if
they are substantially smaller than the primary component. The effective cycle period becomes
Teff as shown in Figure 1.4.5. The effect of the “static” or “mean” stress in Figure 1.4.5

σm =
σmax + σmin

2
1 4 7

is to reduce the alternating stress level below which HCF failure will not occur, that is,
reduce the infinite life stress threshold to a value less than Se. This is illustrated by the mod-
ified Goodman diagram in Figure 1.4.6. The failure line connecting Se and Sut provides the
effective endurance limit Se,eff as a function of the mean stress σm.

Figure 1.4.6 Modified Goodman diagram
for combined static and dynamic stresses

Figure 1.4.4 (a) Cantilevered block with (b) static (mean) and (c) static plus dynamic deflections and stresses

Figure 1.4.5 Stress response with multiple frequencies and a static component
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This figure is only applicable for positive values of σm (tensile stress). For compressive
σm values, the part will eventually fail if σa > Se or will fail if σm > Sut, that is, the static and
dynamic failure criteria are uncoupled. The obvious implication of the Goodman diagram is
that the effective endurance limit Se,eff decreases as mean stress increases. Another view is
that the alternating stress amplitude should be divided by this same reduction factor when
using the S–N curve in Figure 1.4.3, that is, utilize the following effective alternating stress
in Figure 1.4.3:

σa,eff =
σa

1−σm Sut
1 4 8

Although the endurance limit may decrease with increasing tensile mean stress, the
maximum total stress (mean plus alternating) for which failure will eventually occur typi-
cally increases with mean stress as indicated by Figure 1.4.7.

Fatigue test data is generally consistent with Figure 1.4.7. Fatigue data is available from
several sources and is generally presented in the form depicted in Figure 1.4.8. This figure is
“Figure 2.3.1.3.8(l). Best-fit S–N curves for notched, KT = 3.3, AISI 4340 alloy steel bar,
FTU = 200 ksi, longitudinal direction” in the extensive database supported by MMPDS-08,
Battelle Memorial Institute, at www.mmpds.org. The “stress ratio” R is defined by

R=
σmin

σmax
=
σm−σa
σm + σa

=
1−σa

σm

1 + σa
σm

1 4 9

which increases monotonically as σa/σm decreases. Note that R= −1 corresponds to a zero
mean stress, σm = 0, condition, that is, the maximum stress is the amplitude of the alternating
stress. Similarly, R = 1 corresponds to a zero alternating stress, σa = 0, condition, that is, the
maximum stress is the mean stress. The test data is typically accompanied by curve fits in
forms similar to

Cycles to failure = 10 a1 −a2 ∗ log10 σmax ∗ 1−R a3 −a4 1 4 10

where σmax is in units of ksi and the ai are constants. Care must be taken to utilize the curve
fit equation only when the argument σmax ∗ 1−R a3 −a4 of the logarithm is positive.

Note that the peak allowable stress increases as R increases, indicating an increase in
total allowable stress as σa/σm decreases. Some components experience a nearly pure state of
torsional shear stress such as a shaft in an industrial machinery train. The shear stress in a
circular shaft or coupling due to pure torsional torque loading is given by

τ =
T router

J
where J =

π

2
r4outer−r

4
inner 1 4 11

Figure 1.4.7 Peak stress at failure
versus mean tensile stress
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where τ is the shear stress, T is the transmitted torque through the coupling/shaft, router is the
outer radius of the coupling/shaft, rinner is the inner radius of the coupling/shaft, and J is the
torsion constant. For this case, Wang (2006) states that “Experimental results tend to show
that the value of the mean shear stress has no influence on the fatigue life of a ductile struc-
tural component subjected to cyclic torsional loading as long as the maximum stress is less
than the yield strength of the material. Hence, the plot of the alternating shear stress τa versus
mean shear stress τm is bound by a horizontal line with τa = τe and a 45 deg yield line.” This
is illustrated in Figure 1.4.9.

The parameters in Figure 1.4.9 are τe, the torsional endurance limit; τy, the torsional
yield strength; τm, the torsional mean stress; and τa, the torsional alternating stress. The
material will fail after a finite number of stress cycles if either

if
τm < τy−τe and τa > τe 1 4 12

Figure 1.4.8 Typical S–N curves for various R values MMPDS-08. (Figure 2.3.1.3.8(I). Best-fit S–N
curves for notched, KT = 3.3, AISI 4340 alloy steel bar, FTU = 200 ksi, longitudinal direction.)
Reproduced with permission of Battelle Memorial Institute

Figure 1.4.9 Plot of effective
torsional stress endurance limit
(solid line) versus mean torsional
shear stress
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then τa,eff = τa (mean stress has no influence)

or if

τm > τy−τe and τa > τy−τm 1 4 13

then τa,eff = τa
τe

τy−τm
(mean stress has influence).

Most components of structural systems are subjected in general to complex states of
combined normal and shear stresses. The above approach for evaluating HCF failure
may still be utilized by employing the equivalent, or “von Mises (VM)”, stress utilized
in the von Mises–Hencky, or distortion energy yielding failure theory. This failure theory
states that the material will yield if the actual structure’s local, distortion-strain energy
density, due solely to distortion and not to the hydrostatic stress components, exceeds
the distortion-strain energy density in a uniaxially loaded test specimen, at the yield condi-
tion. This condition produces the following condition for yield failure

σ ≥
SY
n

1 4 14

where SY is the yield strength of the material (in general another statistical quantity), n is the
selected design safety factor, and σ is the so-called von Mises, or equivalent, stress

σ =
1

2
σ1−σ2

2 + σ2−σ3
2 + σ3−σ1

2

=
1

2
σX −σY

2 + σY −σZ
2 + σZ −σX

2 + 6 τ2XY + τ
2
Y Z + τ

2
XZ

1 4 15

where (1, 2, 3) indicates principal normal stresses and (X, Y, Z) indicates Cartesian coordi-
nate, component stresses. The alternating amplitude and mean value for each component
or principal stress in (1.4.15) are evaluated by applying equations (1.4.6) and (1.4.7) to
the respective stress’s time history. These alternating and mean values are then utilized
to determine the equivalent mean VM stress and the equivalent alternating VM stress as
follows:

mσ =
1

2
mσX −

mσY
2
+ mσY −

mσZ
2
+ mσZ −

mσX
2
+ 6 mτ2XY +

mτ2YZ +
mτ2XZ

1 4 16

a
σ =

1

2
aσX −

aσY
2
+ aσY −

aσZ
2
+ aσZ −

aσX
2
+ 6 aτ2XY +

aτ2YZ +
aτ2XZ 1 4 17

Then mσ and aσ are employed in Figure 1.4.6, in place of σm and σa, respectively, to
determine whether HCF failure will occur, including the effects of the corresponding safety
factor and the reduced value of the endurance limit due to the mean stress mσ . Vibration
simulation models are frequently assembled from beam, plate, bar, or other structural mod-
eling components that provide nominal stress values. Consideration of abrupt changes in
geometry such as holes, fillets, welds, and so on requires multiplication of the nominal stres-
ses by respective stress concentration factors to obtain accurate stress values (Budynas and
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Nisbett, 2008). The equivalent stresses in (1.4.16) and (1.4.17) then assume the more com-
plicated forms

mσ =
1

2

mσXKX −mσYKY
2
+ mσYKY −mσZKZ

2
+ mσZKZ −mσXKX

2

+ 6 mτXYKXY
2
+ mτYZKYZ

2
+ mτXZKXZ

2 1 4 18

aσ =
1

2

aσXKX − aσYKY
2
+ aσYKY − aσZKZ

2
+ aσZKZ − aσXKX

2

+ 6 aτXYKXY
2
+ aτYZKYZ

2
+ aτXZKXZ

2 1 4 19

where the K terms are stress concentration factors derived from test data or analysis (Pilkey,
1997). The K factors can also be modified from their static load values for application to
fatigue problems as indicated in Budynas and Nisbett (2008).

1.4.2.1 Miner–Palmgren Rule

Suppose an object is exposed to Nloads distinct sets of loadings characterized by effective
alternating stress amplitudes σai, actual number of load cycles ni at this stress amplitude,
and number of load cycles Ni for failure at this stress amplitude. Define the damage done
by the ith load set as

Ri =
ni
Ni

1 4 20

Then the object is predicted to fail by the Miner–Palmgren rule when the damage

D=
Nloads

i= 1

Ri = β 1 4 21

where typically β = 1; however, for a more conservative approach, some researchers utilize
0.6 or 0.7 instead. Stress will be calculated at many locations in the component’s model, and
the part will be predicted to fail if any of these locations have a cumulative fatigue damage
that exceeds β. A thorough fatigue analysis requires that the damage be evaluated at many
locations.

1.4.2.2 Rainflow Cycle Counting

In general, loading may be nonperiodic (Chapter 6) but recurring and cause vibratory deflec-
tions and stresses. The most common example is random excitation as might occur on
a wind turbine blade or offshore platform. Another occurrence is a system subjected to a
transient load that causes vibratory stresses and is applied at well-separated and varying
time intervals, such as the transient start-up torque applied by an electric motor to a machin-
ery train. It is not obvious how one should properly identify load cycles and equivalent
alternating stress amplitudes to utilize (1.4.20), (1.4.21), and Figure 1.4.2 to predict
damage and life for this type of loading. The “rainflow method” is the most common of
the “cycle counting” techniques that provide a systematic means to identify arrays of alter-
nating stress amplitudes and corresponding mean stresses during an arbitrary varying stress
time history.
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Consider the following definitions:

Extremum: a point Pi in a stress versus time history when the stress is either a local
maximum or minimum. The plural of extremum is extrema. Reference Figure 1.4.10.

Extrema set: collection of extremum points in a stress versus time history.

Extrema pair: two members in an extrema set.

Extrema trio: three consecutive members (a, b, c) in an extrema set.

Begin point: first point in an extrema set.

Change C: absolute value of the difference between two stresses in an extrema pair.

Mean stress: average of the two stresses in an extrema pair.

Alternating stress: one-half of the absolute difference of the two stresses in an extrema pair.

The overarching logic of themethod is to systematically locate extrema trios (a, b, c) such
that the changeCbc between (b, c) is greater than the changeCab between (a, b). This justifies
counting Cbc as ½ load cycle. The rainflow procedure is illustrated by the example given
below. Start with the extrema set that contains all extrema in a stress versus time history,
for example,P1 throughP14 in Figure 1.4.10. These extrema and their values (in ksi) are given
in row 1 of Table 1.4.1. Table 1.4.1 lists the 14 steps needed to identify the equivalent load
cycles for given stress time history. The extrema set of step i is given by the numbers in row i of
Table 1.4.1. The number of members in the extrema set diminishes as the rainflow process
proceeds. Each step considers a new trio (a, b, c) of points in the current extrema set and com-
pares the respective changesCab andCbc of extrema pairs (a, b) and (b, c). The trio (a, b, c) are
boldened for each step in Table 1.4.1.

As demonstrated in Table 1.4.2 for each rainflow step:

• Trio (a, b, c) are always three consecutive points in the updated extrema set.

• The trio (a, b, c) is updated in going from step i to step i+ 1 in the following manner:
Point “c” is the next point in the extrema set in going from step i to step i+ 1, with the
exception that if in step i (point “a” is not the begin point of the extrema set and
Cbc Cab ≥ 1), then in step i+ 1 point “a” is set equal to the begin point.

• If Cbc Cab ≥ 1 and the begin point and “a” are the same, then remove point “a” from the
extrema set, and accumulate ½ cycle of stress with the mean and alternating stress of
extrema pair (a, b).

• If Cbc Cab ≥ 1 and the begin point and “a” are different, then remove points “a” and “b”
from the extrema set, and accumulate 1 cycle of stress with the mean and alternating stress
of extrema pair (a, b).

• If Cbc Cab < 1, then no points are removed from the extrema set and no load cycles are
accumulated.

Figure 1.4.10 Stress extrema set in a stress versus time history
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Table 1.4.2 Rainflow cycle counts for Figure 1.4.10

Step
Begin
point a b c Cab Cbc

Removeda

point “a” or
“a” and “b”

Number
of cycles
of (a,b)a σmin

b σmax
b σm

b σa
b

1 1 1 2 3 20 26 1 ½ −12 8 −2 10
2 2 2 3 4 26 28 2 ½ −12 14 1 13
3 3 3 4 5 28 32 3 ½ −14 14 0 14
4 4 4 5 6 32 22 — — — — — —

5 4 5 6 7 14 11 — — — — — —

6 4 6 7 8 11 31 6 and 7 1 4 15 9.5 5.5
7 4 4 5 8 32 34 4 ½ −14 18 2 16
8 5 5 8 9 34 21 — — — — — —

9 5 8 9 10 21 13 — — — — — —

10 5 9 10 11 13 28 9 and 10 1 −8 5 −1.5 6.5
11 5 5 8 11 34 36 5 ½ −16 18 1 17
12 8 8 11 12 36 17 — — — — — —

13 8 11 12 13 17 13 — — — — — —

14 8 12 13 14 13 9 — — — — — —

15 8 8 11 — 36 — 8 ½ −16 20 2 18
16 11 11 12 — 17 — 11 ½ 3 20 11.5 8.5
17 12 12 13 — 13 — 12 ½ 3 16 9.5 6.5
18 13 13 14 — 9 — 13 ½ 7 16 11.5 4.5

a Only if Cbc >Cab.
b Values for extrema pair interval (a, b).

Table 1.4.1 Rainflow points for Figure 1.4.10

Point
step

1
(8)

2
(−12)

3
(14)

4
(−14)

5
(18)

6
(4)

7
(15)

8
(−16)

9
(5)

10
(−8)

11
(20)

12
(3)

13
(16)

14
(7)

1 1 2 3 4 5 6 7 8 9 10 11 12 1 14
2 — 2 3 4 5 6 7 8 9 10 11 12 13 14
3 — — 3 4 5 6 7 8 9 10 11 12 13 14
4 — — — 4 5 6 7 8 9 10 11 12 13 14
5 — — — 4 5 6 7 8 9 10 11 12 13 14
6 — — — 4 5 6 7 8 9 10 11 12 13 14
7 — — — 4 5 — — 8 9 10 11 12 13 14
8 — — — — 5 — — 8 9 10 11 12 13 14
9 — — — — 5 — — 8 9 10 11 12 13 14

10 — — — — 5 — — 8 9 10 11 12 13 14
11 — — — — 5 — — 8 — — 11 12 13 14
12 — — — — — — — 8 — — 11 12 13 14
13 — — — — — — — 8 — — 11 12 13 14
14 — — — — — — — 8 — — 11 12 13 14

Parentheses: stress value in ksi.
Bold indicates “a,” “b,” and “c” points of current step.
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The above procedure is repeated until point “c” of the trio (a, b, c) is the last extrema
point. A ½ load cycle is counted for each of the surviving consecutive extrema pairs in the
final extrema set. This is illustrated by steps 15–18 in Table 1.4.2.

For the sake of illustration, assume that Se = 5ksi, Sut = 25ksi and the S–N curve follows
the following common form (Budynas and Nisbett, 2008):

γ =
ϕSut

2

Se
= 80000, α= −

1
3
log10

ϕSut
Se

= −0 200

Cycles to failure =N =
σa,eff
γ

1 α

if σa,eff > Se

∞ if σa,eff < Se

where ϕ is a constant that is taken as 0.8 for this example. The effective alternating stress is
obtained from the modified Goodman formula (1.4.8) as

σa,eff =

σa
1− σm Sut

if σm > 0

σa if σm ≤ 0

Table 1.4.3 summarizes the load cycles obtained by the rainflow method in Table 1.4.2,
the corresponding effective alternating stresses, and the cycles to failure.

The damage as given by (1.4.21) is

D=
11

i= 1

ni
Ni

= 0013

This implies that for aD = 1 failure criteria, 1/D = 765 repetitions of the sample load set
would be required to fail the component.

The rainflow counting algorithm is tedious by hand for a large data set and is frequently
implemented in an automated form such as found in the MATLAB code (Nieslony, 2010).
Additional reading on the rainflow method may be found in ASTM E-1049–85 (2011).

1.4.3 Rotating Machinery Vibration

Spinning shafts of industrial, aviation, and aerospace machinery such as turbines, compres-
sors, motors, fans, and so on vibrate due to their inherent imbalance, misalignment, loose-
ness, resonance, inadequate damping, interaction with the transmitted liquid or gas, gear

Table 1.4.3 Load cycles for example in Table 1.4.1

j 1 2 3 4 5 6 7 8 9 10 11

No. of
cycles ni

½ ½ ½ 1 ½ 1 ½ ½ ½ ½ ½

σm (ksi) −2 1 0 9.5 2 −1.5 1 2 11.5 9.5 11.5
σa (ksi) 10 13 14 5.5 16 6.5 17 18 8.5 6.5 4.5
σa,eff (ksi) 10 13.5 14 8.9 17.4 6.5 17.7 19.6 15.7 10.5 8.3

Ni × 105 0.33 0.07 0.06 0.60 0.02 2.82 0.019 0.011 0.034 0.259 0.815
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forces, failed bearings, and so on. Most of the machines mentioned above operate at high
speeds (1000–50 000 rpm) and have very small clearances between the spinning (rotor) and
stationary (stator) components. These clearances may be as small as 0.01 mm per 1 cm of
shaft diameter. This accentuates the potential seriousness of controlling vibration, which
may lead to internal rubs followed by loss of machinery, product, and, in rare instances,
lives. For this reason, standards have been established to aid in purchasing and operating
various types of rotating machine. The American Petroleum Institute (API) standards are
often utilized throughout the petrochemical and process industries. Some API standards
include:

• API STD 610—Centrifugal Pumps for General Refinery Service

• API STD 611—General Purpose Steam Turbines for Petroleum, Chemical, and Gas
Industry Services

• API STD 617—Axial and Centrifugal Compressors and Expander—Compressors for
Petroleum, Chemical, and Gas Industry Services

• API Standard Paragraphs Rotordynamic Tutorial: Lateral Critical Speeds, Unbalance
Response, Stability, Train Torsionals, and Rotor Balancing. API Recommended Practice
684, 2nd Ed., August 2005, Reaffirmed, November 2010

An example rule from API STD 617 is as follows: Let x represent the peak-to-peak
vibration of the rotating shaft relative to the stator at the bearing locations, and then the max-
imum allowable value for x is

x ≤ 25∗ 12000
Nmax

μm, p-p 1 4 22

where Nmax is the maximum continuous speed of the compressor in revolutions per minute.
It is very important to note that the API standards are “living documents” that are being con-
tinuously updated by panels of experts and that the standards should be consulted directly
for use of the most up-to-date formulas for actual industrial applications.

Recall the phenomenon of resonance that was discussed in Sections 1.2 (Tacoma Nar-
rows Bridge), 1.3 (clocks and earthquakes), and 1.4 (human body). Machinery resonance is
a particularly detrimental problem, which may lead to premature and possibly catastrophic
failure. Resonance occurs when an excitation (forcing) frequency coincides with a natural
frequency. An excitation frequency in rotating machinery is the spin (rotational speed) fre-
quency since mass imbalance forces of the rotor vary sinusoidally at the spin frequency.
Consequently, the operating speed range of most machinery is kept well separated from
any bending natural frequencies of the spinning shaft. API 684 provides rules pertaining
to designing and operating rotating machinery in a manner to avoid resonance, which for
rotating machinery is referred to as “critical speed.” The API standards account for the pos-
sible presence of a resonance both above and below the operating speed (rpm) range (OSR)
of the machine, by defining a below OSR minimum separation margin (SM) and an above
OSRminimum SM. As one might expect, the specified minimum SM increases as the inten-
sity (danger) of the resonance increases. Intensity is quantified as the amplification factor
AF, which increases as the resonance peak increases in relative height, and is calculated
using the half power point method (Eqs. (7.3.52) and (7.3.53), Figure 7.3.9).

A second source for vibration severity guidelines in rotating machinery is the Interna-
tional Organization for Standardization (ISO). The ISO Standard ISO 3945-1977(E)
entitled “Mechanical Vibration for Large Rotating Machines with Speed Ranges from
10 to 200 rev/s—Measurement and Evaluation of Vibration Severity in situ” bases vibration
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severity on the measured velocity of vibration on all bearing housings of a machine.
Specifically, the rms velocity

vrms =
1
T

T

0
v2 t dt 1 4 23

is utilized, where T is the total measurement period and v(t) is the measured vibration
velocity in the frequency range 10–1000 Hz. The velocity severity measure vrms may also
be evaluated from the relation (1.2.11)

vrms≈
1
2

v21 + v
2
2 + + v2n 1 4 24

if the Fourier frequency component amplitudes v1 v2 vn of v(t) are known. Let vmax
rms

represent the maximum value of vrms over all measurement locations (typically two bearing
housings) and directions (typically horizontal, vertical, and axial) on a machine. Similar
standards are published by other organizations and vibration instrumentation manufacturers.
Table 1.4.4 shows a sample chart presented only for illustration purposes. Actual standards
from ISO or other sources should be consulted in practice.

It is notable that the intent of the standard is to provide an evaluation of machinery
health based upon a relatively easily taken set of measurements and the accumulated expe-
rience of the standard’s authors. This approach is clearly justified by the time and cost asso-
ciated with surveying large numbers of rotating machines in chemical, refinery, paper
processing, power, steel, and equipment manufacturing plants and also on ships. A more
detailed set of measurements such as stress, force, and so on should be made if high vibration
is indicated by use of tables in the standards.

Vibration in rotating machinery most often results frommass imbalance of the spinning
shaft. This causes centrifugal forces that deflect the shaft and react against the bearings and
machinery support structure in a sinusoidally varying manner. The corresponding excitation
frequency is the rotational speed frequency of the shaft. ISO has developed standards to
specify acceptable imbalance levels since the imbalance force is an important driver (source)
of vibrations. For process equipment such as gas and steam turbines, turbo-compressors,
turbine-driven pumps, and so on, ISO 1940-1973(E) recommends

eω ≤ 2 5mm s 1 4 25

where

e= offset of the rotating assembly’smass center

relative to its geometric center spin axis inmm
1 4 26

Table 1.4.4 Example vibration severity table—in terms of peak,
RMS vibration velocity

vrms (mm/s) vrms (in./s) Condition

<1.27 <0.05 Smooth
>1.27 and <3.8 >0.15 and <0.15 Mild
>3.8 and <10.2 >0.15 and <0.4 Rough
>10.2 and <15.2 >0.4 and <0.6 Severe
>15.2 >0.6 Unacceptable
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ω= spin frequency of the rotating assembly in rad s 1 4 27

For example, consider a steam turbine rotor that weighs 1000 N and spins at 10 000 rpm
(1047 rad/s). The recommended maximum eccentricity level becomes

e =
2 5mm s
1047rad s

= 2 4μm 1 4 28

The centrifugal force corresponding to this mass eccentricity and speed is

Fc =meω
2 =

1000N
9 8m s2

∗2 4 × 10−6m∗ 1047s−1
2
= 268N 1 4 29

This represents the dynamic force transmitted through the bearings only if the rotational
speed frequency is well below all rotating assembly or support natural frequencies. The
transmitted force may be much higher at resonance and much lower at shaft speeds well
above resonance.

It is important to note that most standards are “living documents” that evolve as the
understanding of related anomalous vibrations is increased through experience and research.
The latest standards should be referred to in actual practice.

EXAMPLE 1.4.1 Effective Endurance Limit, Safety Factor, and Vibration Severity

A large, motor-driven fan is supported at the end of a uniform pipe, which is fastened to a
fixed wall. The pipe is modeled as a massless, cantilevered Euler beam (Figure E1.4.1(a)).

The pipe may eventually fail (crack) due to HCF if the alternating component of the von
Mises stress aσ at the wall exceeds the effective endurance limit for the pipe material
accounting for the mean von Mises stress mσ . The equation for the boundary curve in
the modified Goodman diagram of Figure 1.4.6 provides the effective endurance limit as

Se,eff = Se−
Se
Sut

mσ 1

The vertical, transverse deflection δTtip t at the tip of the beam has a mean (constant)

component δTm due to the weight of the motor/fan assembly and a sinusoidally varying
component δTa t due to the rotating imbalance force of the fan

δT t = δTm + δTa t = δTm + δTa sin ωt 2

Figure E1.4.1(a) Motor supported by cantilever pipe
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The term δ
T
a sin ωt represents the vibration. In addition, the fan blade–air interaction

forces cause a static torque Γfan about the pipe axis and a static, tensile force Ffan along the
pipe axis. These cause the constant axial and torsional deflections δAm and θAm, respectively, at
the tip of the beam.

Let Fwall, Mwall, and Γwall be the axial force, bending moment, and torque at the wall,
respectively. Then the maximum values of the component, nominal stresses at the wall
become

σaxial =
Fwall

A
, σbend =

Mwall ∗DO

2I
, τshear =

Γwall ∗DO

2J
3

where

I = bending moment of inertia =
π

64
D4

O−D
4
I

J = torsion moment of inertia =
π

32
D4

O−D
4
I

A= pipe cross-sectional area =
π

4
D2

O−D
2
I

DO,DI = outer and inner diameters of the pipe

4

The load combination described above only produces a normal stress σX along the
direction of the pipe axis and a shear stress τX Y on the pipe cross section. The corresponding
stress concentration factors at the pipe-wall connection plane are KX and KX Y, respectively.
All of the remaining stress components are zero. The parameter values for this problem are

E = 30 0 × 106psi, G= 12 0 × 106psi, KX = 3 0, KXY = 2 0, L= 40in , DO = 3 5in., DI = 3 0in.

Sut = 100000psi, Se = 25000psi for a zero mean stress state and includes

Marin correction factors

δ
T
m = 0 080in., δTa = 0 020in., δAm = 0 0005in., θAm = 0 002 rad

5

where X is the axial direction along the pipe axis and Y is the vertical direction. In general,KX

will be different for axial and bending loads, in which case the component stresses are ampli-
fied (multiplied) by their respectiveKX values prior to forming σX. For the sake of simplicity,
the KX values are the same in this problem:

(a) Determine the amplitude of the alternating and the mean (steady) transverse forces that
the motor/fan exerts on the free end of the pipe:

Alternating Mean

Ftip
a =

3EI
L3

∗δTa Ftip
m =

3EI
L3

∗δTm
Ftip
a = 95 3lb Ftip

m = 381lb

6

(b) Determine the mean (steady) axial force and torque exerted by the wall on the pipe:

Faxial =
EA

L
∗δAm = 957 2lb, Γ =

GJ

L
θAm = 4068 in lb 7
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(c) Determine the maximum x component of mean pipe stress including both bending and
axial load contributions:

σaxialm =
Faxial

A
, σbendm =

Mm ∗D0 2
I

, σxm = σaxialm + σbendm , σxm = 8250psi 8

(d) Determine the maximum x component of alternating pipe stress:

σbenda =
Ma∗D0 2

I
, σxa = σ

bend
a , σxa = 1969psi 9

(e) Determine the pipe’s mean shear stress at the wall:

τm =
Γ∗D0 2

J
, τm = 1050psi 10

(f) Determine the maximum von Mises, mean pipe stress:

σm =
1

2
2 KX ∗σxm 2

+ 6 τm ∗KXY
2, σm = 25016psi 11

(g) Determine the maximum von Mises, alternating pipe stress:

σa = σ
x
a ∗KX , σa = 5906psi 12

(h) Determine the effective endurance limit “Se,eff” at the wall where the above von Mises
stresses occur:

Se,eff = −
Se
Sut

σm + Se, Se,eff = 18746 13

Note that this is lower than the endurance limit (Se = 25000psi) in the absence of a
mean stress.

(i) What is the safety factor on the vibration amplitude δTa relative to the effective endurance

limit, that is, what factor applied to δ
T
a will cause the alternating von Mises stress to

exceed the effective endurance limit “Se,eff.”

The alternating stress increases in proportion to δ
T
a ; therefore, the factor on δ

T
a to

exceed Se,eff is

Se,eff
σa

= 3 17

(j) Assume that the fan spins and the beam vibrates at ω= 100rad s. Also assume that the

vibration amplitude on the fan bearing is the same as δTa , and the supports are considered
to be flexible. Provide a qualitative description of the vibration severity level. Provide a
numerical justification for your answer.

The vibration velocity amplitude is v =ωδTa so its rms value is

vrms =
ωδ

T
a

2
=
100∗0 020

2
= 1 414in s = 36mm s

Table 1.4.4 shows this is an unacceptable level of vrms.
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Military standard MIL-STD-810D “Environmental Test Methods and Engineering Guide-
lines” provides guidance for inspectors and vendors of jet engine aircraft, propeller aircraft,
and helicopters. Specifically, its objectives are:

(a) “To disclose deficiencies and defects and verify corrective actions”

(b) “To assess equipment suitability for its intended operational environment”

(c) “To verify contractual compliance”

Excessive vibration is considered to be potentially harmful due to the possibility of

• Wire chafing

• Loosening of fasteners

• Intermittent electrical content

• Touching and shorting of electrical parts

• Seal deformation (leakage)

• Component fatigue

• Optical misalignment

• Cracking and rupturing

Although these considerations concern mechanical distress, pilot fatigue is also a major
concern. Standard MIL-STD-810D is a very comprehensive document, which contains a
section on vibrations (section 514). Category 6 of section 514 considers helicopter vibration,
which has a broadband random nature with strong sinusoidal vibrations due to onboard
rotating machinery. This machinery includes engines, main and tail rotors, and meshing
gears (transmission). The major peaks in the vibration spectrum are usually harmonics of
the main rotor’s blade-pass frequency (no. of blades ∗ main rotor spin frequency); however,
different areas of the helicopter will have different sources at different frequencies as shown
in Figure 1.4.11. The standard contains severity tables similar with Table 1.4.4 for various
types of helicopters and general locations on the helicopters.

1.4.4 Machinery Productivity

Tool speed and depth of cut play a major role in productivity in machining and woodwork-
ing processes. Both of these factors are limited due to vibration. Chatter type vibrations
result as the tool bit interacts with previously cut paths in milling, drilling, and boring opera-
tions. Suppressing these vibrations can yield a significant payoff in increased productivity.

Figure 1.4.11 Helicopter dominant vibration zones
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1.4.5 Fastener Looseness

Preloaded bolts (or nuts) rotate loose, when relative motion between the male and female
threads takes place. This motion reduces the friction grip and permits the off-torque, which
is proportional to the preload and thread pitch, to loosen the fastener. Transversely applied
alternating forces generate the most severe condition for self-loosening. Appropriate
choice of washers, installation of tie wires, and use of special bolts with more uniform load
distributions between mating thread surfaces are some means to reduce bolt loosening.
Attenuation of vibration treats this problem at its source. Fastener looseness is an especially
important concern in high-performance machinery such as aircraft, helicopters, space
shuttle, race cars, trains, roller coasters, and so on.

1.4.6 Optical Instrument Blurring

Lasers, telescopes, microscopes, interferometers, mirrors, and so on require a nearly
vibration-free environment. This is typically accomplished by passive or active isolation
of the equipment. Vibration has been called “the curse” in airplane- or helicopter-based aer-
ial photography. Engine dynamic forces are transmitted through the airframe and into the
camera resulting in blurry photos. High shutter speeds alleviate this problem at the expense
of grainy photographs with less contrast. The camera must be soft mounted (isolated), which
is more of a challenge for helicopter installations since the main rotor has a typically low
frequency (e.g., ~30 Hz) and the camera must also be isolated from the tail rotor and engine
frequencies (e.g., ~150 and ~250 Hz).

On the very small level, the lens-free AFM employs a tiny 100 μm length cantilever beam
to measure local sample height (topography) at the atomic level. The beam has a very low
spring stiffness (0.1 N/m) yet very high natural frequency. Mounted on the end of the cantilever
is a sharp tip that is typically a 3 μmtall pyramidwith 10–30 nmend radius. The deflection of the
tip is measured with a laser. The beam and tip may also function in a noncontact mode where
topographic images are derived frommeasurements of attractive forces. Environmental vibration
can cause severe blurring of the topographic image produced by an AFM.

The space-based Hubble Space Telescope (HST) (Figure 1.4.12) experienced poor
imaging due to vibrations of its original solar panels. The “jitter” interfered with operation

Figure 1.4.12 Hubble space-based telescope with original flexible and new rigid, smaller, and more
powerful solar arrays.Reproduced with permission from NASA Goddard Space Flight Center
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of the onboard optical instrumentation. The vibrations were induced by thermal deforma-
tions resulting from its cyclic exposure to 45 minutes of searing heat and 45 minutes of
frigid cold during every 90 minutes orbit around the earth. The transition from extreme
hot to extreme cold occurs almost instantaneously subjecting the solar arrays to a transient
thermal shock load in a very low vacuum. The vibration frequency of the arrays occurred
at about 0.1 Hz (1 cycle/10 seconds).

1.4.7 Ethics and Professional Responsibility

Section 1.4 has stressed some practical aspects of vibrations and why they should be tamed.
I once heard a person say “why worry about standards, there are not the law.” This is true
however from a commercial and sometimes litigation standpoint they have very high impor-
tance. It may be quite difficult to sell a machine that vibrates in excess of the limits defined
by the standards during commissioning of the machine to industry or government users.
Similarly, it may be challenging to defend operation of a machine prior to failure that
may have resulted in loss of millions of dollars of products, facility damage, injury, or even
death, if vibrations were related to the failure and the operating vibrations exceeded the lim-
its provided in the standards. Insurance companies which pay for failures and accidents and
judicial arbiters view industry and government standards with great seriousness, sometimes
even more so than arguments based on detailed testing or simulation model results.

1.4.8 Lifelong Learning Opportunities

The list of vibration standards and related materials is very long and includes documents
from many countries. A web search at the time of the writing of this book identified the
following:

(a) International Organization for Standardization (ISO—130 member countries)
http://www.iso.org/iso/home/store/catalogue_ics.htm (search vibration)

(b) US Military Standards (MIL)
http://quicksearch.dla.mil/ (search vibration)

(c) UK Health and Safety Executive
www.hse.gov.uk/index.htm (search vibration)

(d) American Petroleum Institute (API)
http://www.api.org/Standards/

This large number of standards is just one example of the fact that it is truly a lifelong
learning experience to be a vibrations expert.

1.5 STIFFNESS, INERTIA, AND DAMPING FORCES

Systems vibrate due to the interplay (energy exchange) between stiffness (restoring), inertia
(mass), and damping (drag) related forces. Figure 1.5.1 shows the top view of a horizontal
spring/mass/damper system. The deflection of the spring in Figure 1.5.1(a) would always be

x t =
F t

k
1 5 1

in a world without mass. This follows from Newton’s second law (with mass = 0) and the
spring’s force–deflection relation. Equation 1.5.1 shows that point p will vibrate (oscillate)
only if the external force F is oscillatory (periodic). Experience reveals that real systems
oscillate even in the absence of oscillatory external forces, that is, the occurrence of natural
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vibrations or vibrations due to a nonperiodic force. To understand why, consider the follow-
ing discussion.

The spring stiffness acts to pull point p back toward its static equilibrium position
(SEP). In fact, if k became infinite, it would pull x to the SEP independent of a finite valued
F(t). Equation (1.5.1) implies that

x =
F0 k, F t =F0

0, F t = 0
1 5 2

so that x would instantaneously become zero at the moment F(t) was removed. Suppose a
mass is now attached to point p as shown in Figure 1.5.1(b). This mass will deflect by
x0 =F0 k if F(t) is pseudostatically increased from zero to F0. Should the response in
(1.5.2) still be expected if F0 is suddenly removed with m attached? Intuition tells us no
for several reasons:

(a) The spring has potential energy PE = 1 2 kx20 when deflected at x= x0. If x becomes
zero, its P.E. is zero. Where did the potential energy go? The answer is kinetic energy,
which implies that x t is not equal to zero at x = 0.

(b) By (a) m has velocity −v0 , that is, momentum as it passes through x = 0 at t = t0.
The spring force needs time to change the momentum of m from zero at x = x0
to −mv0 at x = 0. This results from the impulse and momentum theorem

Ik = impulse onm from spring k =
t0

0
−kxdt =Δ mv =mΔv= −mv0 1 5 3

Thus, x cannot return to zero instantaneously as was the case with no mass m in (1.5.2).
The spring force exerts a positive impulse as soon as x becomes less than zero som begins to
decelerate. This implies that v0 is the maximum velocity of m. The potential energy of the
spring will become 1 2 kx20 at x= −x0. Therefore, the mass must have zero kinetic energy at
x= −x0 by conservation of energy, so its velocity is zero. The spring’s impulse increases and
m’s velocity again becomes positive. In this manner, the impulse of the spring force peri-
odically changes m’smomentum (velocity direction) alternately positive and negative. This
is the mechanism of free vibration. Both k andm influence the period of free vibration as can
be seen from Equation (1.5.3).

The work performed on m by the damper in Figure 1.5.1(c) is negative since

Wc =
x2

x1

Fcdx =
t2

t1

−cxxdt = −c
t2

t1

x2dt < 0 1 5 4

Figure 1.5.1 Response of spring/mass/damper system to external force F(t)
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Energy is therefore removed from the system by damper c and the vibration diminishes
to zero. This diminution to zero will not occur if another external force performs positive
work on the system.

The word stiffness typically invokes an image of a coil spring that may deform in stretch
or compression creating a force or in torsion creating a torque. Ultrahigh-strength springs as
shown in Figure 1.5.2 are used in a myriad of machinery, instrument, transportation, and/or
other applications.

In general, stiffness results from the restoring force capability of strain energy in a
deformed elastic object. Table 1.5.1 shows an assortment of typical stiffness elements.

Table 1.5.1 Assorted stiffness elements

Entry Description Figure Stiffness

1 Free cantilever k =
F

δ
= 3

EI

L3

2 Guided cantilever (zero rotation at tip) k =
F

δ
= 12

EI

L3

3 Simply supported beam k =
F

δ
= 48

EI

L3

4 Coiled spring (round wire)

k =
F

δ
=

Gd4

8D3N

G = shear modulus

N = number of coils

5 Stretched rod k =
F

δ
=
EA

L

6 Torsion spring

kT =
Fd

θ
=
GJ

L
G = shear modulus

J = torsion constant

Figure 1.5.2 Assortment of extension–compression and torsion springs.Reproduced with permission from
Murphy & Read Spring Manufacturing Co.
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Likewise, Tables 1.5.2 and 1.5.3 show assortments of mass and damping elements. Finally,
Table 1.5.4 shows a table of force expressions.

The following analysis shows a derivation of entry 2 (Table 1.5.3). A liquid flowing
with velocity u and laminar Reynolds (Re) number ((ρudH)/μ) experiences the pressure drop

Δp = ρ
L

dH

u2

2
f 1 5 5

as it flows through a pipe of length L. The laminar flow friction factor may be obtained from
most fluid mechanics text as

f =
64
Re

=
64μ
udHρ

1 5 6

Substitute (1.5.6) into (1.5.5) to obtain

Δp = 32
Lμu

d2H
1 5 7

Let A be the entire area of the piston and “a” the area of a single hole. Then the time rate
of change of the upper volume is

ΔV
Δt

= vA =
Δx
Δt

A 1 5 8

Table 1.5.2 Assorted mass elements

Entry Description Figure Inertia

1 Hollow cylinder
m=

ρπL D2−d2

4

Iy =
m

8
D2 + d2

Ix = Iz =m
L2

12
+

D2 + d2

16

ρ =mass density
G = mass center

2 Long slender rod m =ALρ

Ix = Iz =
mL2

12

G = mass center

3 Vibration of soil in liquid Cross-sections

Motion2c

Motion
b

a

Motion

2b
2a

Added mass per unit length
ρ = density of liquid ρπc2

ρπb2

1.15 ρπa2, (a = b)
1.14 ρπa2, (a = 10b)

32 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



The volumetric flow rate through the n holes is

QH = nua 1 5 9

Conservation of the mass for an incompressible liquid requires that

QH =
ΔV
Δt

u =
v

n

A

a
=
v

n

πD2 4
πd2H 4

=
v

n

D

dH

2

1 5 10

Substitute (1.5.10) into (1.5.7)

Δp =
32Lμ

d2H

v

n

D2

d2H
1 5 11

The net force on the piston is

F =ΔpA =
πD2

4
Δp 1 5 12

Table 1.5.3 Assorted damping elements

Entry Description Figure Damping

1 Parallel plate damper
C =

F

v
=
μA

tA = plate wetted area
μ = absolute viscosity

2 Orifice damper
C =

F

v
=
8πLμ
n

D

dH

4

μ = fluid absolute viscosity
n = no. of orifice holes

3 Torsional damper
CT =

Γ
ω
=
2πμLD3

8gμ = fluid absolute viscosity
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if na<<A. Insert (1.5.11) into (1.5.12) to obtain

F = cv 1 5 13

where

c=
8Lμπ
n

D

dH

4

1 5 14

1.6 APPROACHES FOR OBTAINING THE DIFFERENTIAL
EQUATIONS OF MOTION

The equations of motion for a vibrating system model provide a starting point for simulating
the system’s response to initial conditions, external forces, or parametric excitation (time-
dependent system parameters). Approaches for deriving the equations of motion for a model
of a vibrating system are discussed below.

(a) Newton’s Laws (Chapter 3)
These laws represent the balance between external and inertial forces as first proposed
by Sir Isaac Newton. Practical applications required extension of this balance from a
particle to a collection of particles and finally to a rigid body. The translational and rota-
tional forms of Newton’s laws for rigid bodies are presented in Chapter 3.

Table 1.5.4 Assorted force expressions

Entry Description Figure Force

1 Pressure force F(t) = pA(t)

2 Wave force on
circular cylinder

F y, t = force per unit length

= g1 y g2
πD

L
∗cos ωt−g3

T = wave period
g1 y =

2ρgH
k

cosh k d + y
cosh kd

ω=wave frequency

= 2π T g2
πD

L
= J1

πD

L

2

+ Y1
πD

L

2 −1 2

k =wave frequency

= 2π L g3 = tan−1

J1
πD

L

Y1
πD

L
ρ = mass density of

water
J1 = derivative of the first order Bessel function

of the first kind
g = gravity constant Y1 = derivative of the second order Bessel

function of the second kind
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(b) The Power Conservation Approach (Chapter 4)
Applying power conservation for deriving the equations of motion has a physical intu-
ition appeal. The potential and kinetic energy expressions form the starting point for
applying the method. This approach has an advantage of being able to disregard all
forces that perform a net work of zero, as discussed in Chapter 4.

(c) The Lagrange–Hamilton Approach (Chapter 4)

The Lagrange–Hamilton approach utilizes expressions for kinetic and potential energy
to develop the equations of motion for the system. This approach may be interpreted as a
restatement of Newton’s laws or an entirely different physical principle based on mak-
ing an “action” integral stationary, using the calculus of variations.

The Lagrange approach for formulating the equations of motion of a rigid or flex-
ible body model circumvents some tasks for direct application of Newton’s law. These
include:

• No direct evaluation of acceleration vectors for the mass center(s)

• Less applications of Newton’s third law for equal and opposite reactions in many
instances

• Less sign determination for many forces

• Direct use of potential energy to evaluate internal force effects in a flexible body

• Direct means to formulate equations of motion in terms of any generalized coordi-
nate, which may consist of an actual physical coordinate or of a parameter that gov-
erns a distributed shape for deflections (this is a key capability in the assumed modes
and finite element methods)

The Lagrange approach is discussed extensively in Chapter 4.

1.7 FINITE ELEMENT METHOD

The finite elementmethod (FEM) iswidely used in industry for avoidingmachinery and struc-
tural vibration problems. User-friendly graphically driven interfaces have greatly facilitated
the efficient use of thismethod.Direct conversionof solidmodeler geometry descriptions into
finite element “meshes” is quickly becoming standardpractice for the simulationof vibrations
of components and systems of all sizes and shapes. This is illustrated in Figure 1.7.1.

The meshes consist of discrete node points that define finite-sized subvolumes referred
to as elements. The motions within any element are approximated by interpolation func-
tions, which interpolate the displacements at the node points throughout the element.
The interpolation functions are generally linear or quadratic functions of position but
may be more complex as a result of “isoparametric” transformations that enable the element
to possess general 2- or 3-dimensional shapes. The FEM has its theoretical foundations in
the more general areas of energy principles and weighted residual methods. The former uti-
lizes the variational approach of determining the solution of the equilibrium equations by
finding solutions that make a companion functional stationary (maximum or minimum),
as in the case of the principle of virtual work, Hamilton’s principle, or the principle of min-
imum total potential energy. The latter develops a “weak” form of the original equilibrium
equations by integrating products of weight functions times the equilibrium equations while
lowering continuity requirements on the interpolation functions utilizing integration by parts
(divergence theorem). The net result is typically a very large order system of linear differ-
ential equations that are numerically integrated to obtain the time-varying displacements at
the node points. These displacements can then be utilized to solve for stresses, which are in
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turn utilized to predict fatigue life. The system of equations can also be solved to obtain
eigenvalues and eigenvectors, which describe the “mode” shapes and “natural” frequencies
of the modeled system in free (unforced) vibration. This is illustrated in Figure 1.7.2 for the
finite element model in Figure 1.7.1.

So why study finite element theory when its application tools are quickly progressing
toward a nearly automated state? There are several very good reasons, including:

(a) Cost: The “honeymoon is over” as far as cheap software when one leaves the university
and enters industry or private practice. Single seat, annual licensing fees in the tens of
thousands of dollar range for industrial users are common.

(b) Proper usage of commercial software (CS): CS can be easily misused by not under-
standing the limitations (assumptions) of the theory implemented by the CS. Under-
standing the theory will guide one to utilize the appropriate software options and
avoid the ineffective ones.

(c) Advancement and customization: Engineering technology is advancing at an incredible
rate requiring the use of novel materials, smart and multidisciplinary systems, newly
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Figure 1.7.2 Vibration “mode shape” obtained from a finite element model
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Figure 1.7.1 Finite element mesh generated from a solid model of a shaft
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discovered empirical force descriptions, and so on. CS sometimes lags behind these
needs requiring engineers to develop their own finite element software. Customer input
and output requirements may also motivate engineers to develop their own finite ele-
ment software.

(d) General innovation: Who knows what new methods of modeling and simulation lies
over the horizon? It’s hard to say, however, chances are good that it will build on
the theory of existing methods. Knowledge of finite element theory will provide a foot-
hold to reach out and develop new theoretical approaches for simulation.

The book provides the necessary theory and implementation tools required to develop
your own finite element codes. The progression of element sophistication is ordered from
simple spring mass systems to general 3D solids in the book to facilitate comprehension and
to provide results of significant practical value.

1.8 ACTIVE VIBRATION CONTROL

Passive vibration control seeks to achieve vibration mitigation goals via structural modifi-
cation and installation of devices such as absorber masses, spring, and dampers to reduce the
system sensitivity to external disturbances and to self-excitation forces, that is, instability.
Passive devices have limits though in adaptability and environmental operating conditions.
Active vibration control AVC devices can replicate the behavior of a passive device as
described and also produce forces with a more general dependence on motion variables.
AVC devices may also adapt to changing operating condition variables and function well
even in extreme temperature and pressure environments, including vacuum conditions.
Chapter 12 provides an in-depth introduction to the methodology of AVC. This includes
discussions of modeling methods, common architecture, simulation and solution proce-
dures, and analysis of electromagnetic and piezoelectric actuators.

1.9 CHAPTER 1 EXERCISES

1.9.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website:
www.wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed
book, yielding a significant cost savings for the college student and allows the author to
provide additional exercises.

1.9.2 Exercise Goals

The goal of the Exercises in Chapter 1 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) The presence of vibrations in natural and industrial processes and devices

(b) The deleterious effects of vibration on the reliability, efficiency, and safety of industrial
processes and devices and on human health

(c) The quantified descriptions of vibrations

(d) The determination of failure and life of a vibrating object

(e) The use of vibration standards established by industry and government
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1.9.3 Sample Exercises: 1.6 and 1.11

Exercise 1.6 illustrates the use of machinery vibration standards for multiharmonic vibra-
tions of an electric motor-driven pump. Exercise 1.11 considers a vibrating, pulsation sup-
pression vessel for a natural gas transmission compressor. This exercise requires evaluation
of component and von Mises (equivalent) stresses and component life, given mean and
alternating (vibrating) motions. This exercise should impress on the student the role that
vibration analysis plays in designing machines for greater reliability and sharpen skills in
fatigue-related failure.
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Chapter 2

Preparatory Skills: Mathematics,
Modeling, and Kinematics

2.1 INTRODUCTION

Mathematics is often referred to as the “language of science.” This description is very accu-
rate with regard to the science of vibrations, where the capability to predict responses of
complex systems is made possible through specialized mathematical methods. This chapter
provides a foundation for understanding mathematical-based solutions and derivations in
subsequent chapters. Modern tools for mathematical manipulation and solution are becom-
ing essential parts of the efficient solution of vibration problems. The two commercial soft-
ware packages that are integrated into the text are MATLAB and MAPLE due to their
generality and popularity. Short primers in the usage of these programs are presented first
since subsequent sections utilize these codes. Notably, an introduction for the usage of these
codes with symbolic operations is included. This chapter also presents some key aspects of
modeling, specifically degrees of freedom (dofs) and motion constraints. Motion constraints
are the basis for approximation in solving vibration problems and have the form of boundary
and interconnection conditions, particle and RBMs, and flexible body models utilizing the
assumed modes and finite element methods (FEMs). Some believe that simpler forms of
modeling are approaching obsolescence as advanced finite element modeling tools have
evolved to yield highly detailed models requiring only a solid model input. Without denying
the great value of sophisticated finite element models, one should also consider that

• Engineering intuition is required to form the solid models and is typically based on simple
model approximations.

• Many practical problems can be solved with simple models that combine engineering
experience with knowledge of the related natural laws and analytical techniques.

• Commercial finite element codes are quite expensive so they may not be available to
some analysts, designers, or problem troubleshooters.

• Design is an iterative process, requiring variation of possibly many parameters, so that
use of highly detailed models may become computationally time prohibitive.

• Highly complex model responses generally behave similar to simpler models. The sim-
pler models provide a “reality check” for verifying the complex models.

Simple models still play a key role in shaping intuition and for design and retrofitting
systems via vibration engineering.
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2.2 GETTING STARTED WITH MATLAB AND MAPLE

This section provides a foothold to get started using math software for vibration problem
solution. It is placed here, and not in an appendix, to address the reality that mathemati-
cal/numerical simulation plays an essential role in vibration engineering and in the examples
provided in the text. It is also placed front and center to motivate the students to initiate
learning computational skills very early in the course. This section also provides explana-
tions for symbolic operations utilizing these codes. This capability is used often in Chapters
4, 5, 6, 7, and 12 and can reduce the analyst/student workload tremendously and increase
the accuracy of derivations.

2.2.1 MATLAB

Real Scalar Operations

(1) addition, (2) subtraction, (3) multiplication, (4) division, (5) exponentiation,
(6) absolute value, (7) sign, (8) log10, (9) loge, (10) square root, (11) cosine,
(12) sine, (13) tangent, (14) tan−1, (15) cosh, (16) sinh

Code:
y1 = 2+5 , y2 = 2-5 , y3 = 2*5 , y4 = 2/5
y5 = 2^3 , y6 = abs(-8) , y7 = sign(-8)
y8 = log10(1000) , y9 = log(2.7183) , y10 = sqrt(144)
y11 = cos(3.1416) , y12 = sin(-3.1416/2) , y13 =
tan(45/57.2956)
y14a = atan2(-1,0)*57.2956 , y14b = atan2(1,1)*57.2956
y14c = atan2(0,0), y15 = cosh(0) , y16 = sinh(0)

Output:
y1 = 7, y2 = -3, y3 = 10, y4 = 0.4000
y5 = 8, y6 = 8, y7 = -1
y8 = 3.0000, y9 = 1.00, y10 = 12
y11 = -1.0000, y12 = -1.00, y13 = 1.0000
y14a = -89.9997, y14b = 44.9999
y14c = 0, y15 = 1, y16 = 0

Complex Scalar Operations

(1) addition, (2) subtraction, (3) multiplication, (4) division, (5) exponentiation,
(6) magnitude, (7) angle, (8) conjugate

Code:
z1 =(3+i*4)+(5-i*8), z2 =(3+i*4)-(5-i*8), z3 =(3+i*4)*(5-i*8),
z4 =(3+i*4)/(5-i*8), z5 =(3+i*4)^3 , z6 = abs(3+i*4)
z7 = angle(2+i*2)*57.2956 , z8 = conj(2+i*2)
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Output:
z1 = 8.0000 - 4.0000i, z2 = -2.0000 +12.0000i,
z3 = 47.0000 - 4.0000i
z4 = -0.1910 + 0.4944i, z5 = -1.1700e+002 + 4.4000e + 001i , z6 = 5
z7 = 44.9999, z8 = 2.0000 - 2.0000i

Matrix Operations

(1) addition, (2) transpose∗∗∗, (3) multiplication, (4) inverse, (5) eigenvalues, (6)
eigenvectors, (7) rank, (8) null matrix, (9) unit matrix, (10) ones, (11) partition
matrix assembly, (12) partition matrix extraction, (13) element-wise multiplica-
tion, (14) element-wise sine

∗∗∗Taking the transpose A’ of a complex array A will yield the transpose of the com-
plex conjugate of the original array. Utilize A.’ in order to suppress the complex conju-
gate operation.

a=
1 2 3

4 5 6
, b =

2 −3

−5 7
, c =

22 −8 −9

−8 19 −12

−9 −12 30

,

d=

1 2 4

7 4 18

9 −3 15

, e =

0 π 2 π

−π 2 π 4 0

ρ 3π 2 0

, f=

a

a

a

c

d

Code:
a = [1 2 3 ; 4 5 6 ] , b = [2 -3 ; -5 7 ]
c = [22 -8 -9 ; -8 19 -12; -9 -12 30], d = [1 2 4 ; 7 4 18 ; 9 -3 15]
e = [0 pi/2 pi ; -pi/2 pi/4 0; pi 3*pi/2 0]

m1 = c + d, m2 = a’ % transpose of a, m3 = b*a
m4a = inv(c) % inverts matrix c
m5 = eig(c) % eigenvalues of c
[m6,evalues] = eig(c) ; % eigenvectors and eigenvalues of c
m6 % print matrix of eigenvectors of c
m7 = rank(d) % the rank of matrix d
m8 = zeros(3,4) % matrix of zeros
m9 = eye(3) % the unit matrix
m10 = ones(3,4) % matrix of ones

% Form a partitioned matrix:
m11(1:2,1:3) = a ; , m11(3:4,1:3) = a ; , m11(5:6,1:3) = a ;
m11(1:3,4:6) = c ; , m11(4:6,4:6) = d ;
m11

% Extract a part of a partitioned matrix m12 = m11(2:4,3:6)
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% Element-wise multiplication of 2 arrays m13 = c.*d
% Element-wise sine of an array m14 = sin(e)
a = 1 2 3 b = 2 -3 c = 22 -8 -9

4 5 6 -5 7 -8 19 -12
-9 -12 30

d = 1 2 4 e = 0 1.5708 3.1416
7 4 18 -1.5708 0.7854 0
9 -3 15 3.1416 4.7124 0

m1 = 23 -6 -5 m2 = 1 4 m3 = -10 -11 -12
-1 23 6 2 5 23 25 27
0 -15 45 3 6

m4a = 0.1018 0.0832 0.0638 m5 = 28.6036
0.0832 0.1384 0.0803 38.6066
0.0638 0.0803 0.0846 3.7898

m6 = -0.7964 0.2666 0.5429 m7 = 2 m8 = 0 0 0 0
0.6029 0.4217 0.6773 0 0 0 0
0.0484 -0.8667 0.4965 0 0 0 0

m9 = 1 0 0 m10 = 1 1 1 1
0 1 0 1 1 1 1
0 0 1 1 1 1 1

m11 = 1 2 3 22 -8 -9
4 5 6 -8 19 -12
1 2 3 -9 -12 30
4 5 6 1 2 4
1 2 3 7 4 18
4 5 6 9 -3 15

m12 = 6 -8 19 -12 m13 = 22 -16 -36 m14 = 0 1 0
3 -9 -12 30 -56 76 -216 -1 .7071 0
6 1 2 4 -81 36 450 0 -1 0

Miscellaneous

• Always start your code with “clear.” This will eliminate accumulated operations.

• Utilize “whos” command to obtain list of dimensions of all variables.

• Utilize “help” command to understand the usage of any MATLAB command.
For example, to understand how to use the matrix inverse command inv, type:

help inv
in the MATLAB workspace.

• The “global” command allows arrays or scalars to be transferred between the main
code and subfunctions.

• Use syms commands for all symbolic variables
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• Loops may be defined as for example:

for i=1:1:100 , a(i) = i^2 + 3, end

• Conditional statements may be defined as for example:

if i+3 ==5 , jj = 5 + I, end

• MATLAB has a symbolic option as illustrated by the matrix multiplication, determi-
nant, derivative, and integration examples given below.MATLAB symbolic is utilized
in Chapters 6 and 12.

clear all
syms x1 y1 x2 y2 x3 y3 x4 y4 z1 z2 b1 b2 b3 g1 g2 g3 e1 e2

e3 nu E Q
H = [x1 y1; x2 y2]
Q = 1/4*[ z2-1 -z2+1 ; z1-1 -z1-1 ]
J = Q*H
det_J = det(J)
HH = [x1^2 0; x2^2 0];
int(HH, x1)
diff(HH,x1)

Outputs
H =[ x1, y1]

[ x2, y2]
Q =[ z2/4 - 1/4, 1/4 - z2/4]

[ z1/4 - 1/4, - z1/4 - 1/4]
J =[ x1*(z2/4 - 1/4) - x2*(z2/4 - 1/4), y1*(z2/4 - 1/4) -

y2*(z2/4 - 1/4)]
[ x1*(z1/4 - 1/4) - x2*(z1/4 + 1/4), y1*(z1/4 - 1/4) -
y2*(z1/4 + 1/4)]

det_J = (x1*y2)/8 - (x2*y1)/8 - (x1*y2*z2)/8 + (x2*y1*z2)/8
ans = [x1^3/3, 0]

[ x1*x2^2, 0]
ans = [ 2*x1, 0]

[0, 0]

2.2.2 MAPLE (Symbolic Math)

This section provides a foothold for using the symbolic math code MAPLE for vibration
applications. Symbolic manipulation is used in several key areas in the text, including auto-
mated formulation of equations of motion (EOMs), the assumed modes method, and
for obtaining orbital equilibrium states for harmonically forced nonlinear systems.
MAPLE symbolic is utilized in Chapters 3, 4, 5, and 9. Alternatively, one may prefer to
use MATLAB’s symbolic math features (see above MATLAB code).

2.2.2.1 Solving Systems of Nonlinear Algebraic Equations

The commands below illustrate how to solve simultaneous linear or nonlinear algebraic
equations. This tool is useful for obtaining algebraic expressions for natural frequency,
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damping, and other characteristics in terms of system parameters. The subs command
is included to illustrate how to substitute a numerical value into a symbolic variable in
your code.

> eqs:= {y=zeta*theta^2, y-alpha*theta-.25=0};

eqs = y − αθ − 0 25 = 0, y = ζθ2

> eqs1:= subs(zeta=2.,alpha=0.1, eqs);

eqs1 = y − 0 1θ − 0 25 = 0, y = 2 θ2

> solve(eqs1,{y,theta});

θ = −0 3294361720, y = 0 2170563828 , y = 0 2879436172, θ = 0 3794361720

2.2.2.2 Symbolic Differentiation

This tool is very useful for applying Lagrange’s equations to obtain EOMs.

> g:= cos(beta) + 2*y + 3.*beta^3 + b*sin(beta);

g = cos β + 2y + 3 β3 + 5sin β

> der_g_wrt_beta:= diff(g,beta);

der _ g _wrt _ beta = −sin β + 9 β2 + 5cos β

2.2.2.3 Symbolic Integration

This tool is very useful for implementing the assumed modes method for obtaining EOMs
for generalized coordinates.

> g:= cos(beta) + 2*y + 3.*beta^3 + b*sin(beta);

g = cos β + 2y + 3 β3 + 5sin β

># Integrate this function with respect to β
> int_g_wrt_beta:= int(g,beta);

int _ g _wrt _ beta = sin β + 2 yβ + 0 7500000000 β4−5 cos β
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># Integrate this function with respect to β from β =0 to β =5 0

> g:= cos(beta) + 2*y + 3.*beta^3 + b*sin(beta);

g = cos β + 2y + 3 β3 + bsin β

> int_g_wrt_beta:= int(g,beta=0..5.0);

int _ g _wrt _ beta = 0 7163378145 b + 467 7910757 + 10 y

2.2.2.4 Evaluation of the Jacobian Matrix

The Jacobian matrix is very helpful for identifying the stability and “domains of attraction”
for the multiple equilibrium points of a nonlinear dynamical system and for simple linear-
ization of force expressions.

> # The Jacobian matrix for 2 functions (g1(x,y), g2(x,y)) of
2 independent variables x and y is defined by the 2 by 2 matrix:
> # J = [ d(g1)/dx d(g1)/dy
> # d(g2)/dx d(g2)/dy ]

> # Consider the following example.
> g1:= 5*x^2+x - 5.*y^3 ; g2:= 5.*sin(x) + 3.*cos(y);

g1 = 5x2 + x−5 y3

g2 = 5 sin x + 3 cos y

> # The Maple linear algebra package must be entered in order to
form the Jacobian matrix.
> with(linalg): # enter into the Maple linear algebra pkg.
> # Then the Jacobian Matrix may be formed as follows:
> Jmat:= jacobian([g1,g2],[x,y]);

Jmat =
10x + 1 −15 y2

5 cos x −3 sin y

2.2.2.5 Eigenvalues and Eigenvectors

This tool is very useful for calculating natural frequencies and mode shapes of a vibrating
system.

> with(linalg): # enter into the Maple linear algebra pkg.
> # Next consider evaluation of the eigenvalues of the jacobian
matrix at x = 5 and y = -3
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> Jmat1:= simplify(subs(x=5.,y=-3.,evalm(Jmat)));

Jmat1 =
51 −135

1 418310928 0 4233600243

> # The simplify command simplifies the expression, i.e. in this
case it causes the sin and cos expressions to be numerically
evaluated.
> # The evalm command implies “evaluate numerical value of
matrix”
> # Next evaluate the eigen-solutions of matrix Jmat1
> eigenvectors(Jmat1);

46 87833191, 1, 9 564175146, 0 2920026335 ,

4 545028115, 1, 3 334295489, 1 147367431

> # Note that each of the output groups contain an eigenvalue, its
algebraic multiplicity (no. of times its repeated) and its
corresponding eigenvector

Simple Y versus X Type Plot

# A simple plot of one quantity (Q) vs. another (psi) is
illustrated next
> Q:= 2. + arccos(psi) +4;

Q = 6 + arccos ψ

> plot(Q,psi=-1..1, title =“Figure 1. Plot of Q vs. psi”,
labels=[“psi”,“Q”]);

9

8.5

8

7.5Q

7

6.5

6

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

psi

Figure 1. Plot of Q vs. psi
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Miscellaneous

MAPLE has a very useful “help” feature that is accessible at the upper toolbar.

> # The following topics may be viewed via the help icon and
clicking " new users tour"
> # These tours provide useful instructions and examples for many
engineering math
> # related operations

(1) Working Through the New User’s Tour

(2) Numerical Calculations

(3) Algebraic Computations

(4) 2-D Graphics

(5) 3-D Graphics

(6) Calculus

(7) Vector Calculus

(8) Differential Equations

(9) Linear Algebra

(10) Programming

(11) Programming the Maple Graphical User Interface

(12) Help System

(13) Summary

General:
> # The pounce (#) symbol is for writing comments.
> restart; # The restart command is employed to clear all arrays
of their present values. It is recommended to always employ this
command at the very beginning of your codes
> # In order to execute the command at the present position of
the cursor click the ! icon on the tool bar.
> # In order to execute the entire code click the !!! icon on the
tool bar
> # Click the [> icon on the above toolbar to add a line below the
current position of the toolbar
> # Subscripted symbols may be utilized by employing brackets.
Warning there are some Maple commands that will not work with
subscripted variables.
> a[1,1] := 3*5 ; b[1][2] := a[1,1]/2 ;

a1,1 = 15 b12 =
15
2

> # Floating point results may be obtained by employing the feval
command or by expressing numerical values with a decimal. Some
examples are
> a:= 4; b:= 5; c:= a/b; d:= evalf(a/b); e:= 4./5.;
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a = 4 b = 5 c =
4
5

d = 0 8000000000 e = 0 8000000000

> # Terminate a command with a semi-colon for display of results.
Terminate a command with a colon for no display of results.

2.3 VIBRATION AND DIFFERENTIAL EQUATIONS

Two principles presented in a second year course on static and dynamic are:

(a) Static equilibrium implies that all forces and moments on a body sum to zero:

F = 0 , Γ= 0 2 3 1

(b) Dynamic equilibrium implies that all forces on a body sum to mass times acceleration
and all moments sum to mass moment of inertia times angular acceleration:

F =ma , Γ= I α 2 3 2

The acceleration term in that course is typically treated as a constant, or the force bal-
ance is considered at one instant (snapshot) in time in (2.3.2). The result is that (2.3.2) yields
one or more algebraic equations for unknown forces, moments, or accelerations. Vibration
analysis seeks to determine motions as time varies, which requires that the acceleration be
expressed as the second derivative of position or the first derivative of velocity in (2.3.2).
The left-hand side of (2.3.2) may contain terms that are explicit functions of time or func-
tions of velocities and displacements. The net result is that (2.3.2) becomes a differential
equation. Depending on the coordinates selected, the left- and right-hand sides of (2.3.2)
may have nonlinear and linear functions of position and its first and second derivatives.
Thus, (2.3.2) may be a linear or nonlinear differential equation.

The use of differential equations in vibration theory should be of no surprise to the
student who has completed a first course in differential equations and is familiar with the
following simple cases:

(a) x + 2ξωx +ω2x= 0
with solution form C∗e−ξωnt cos ωdt +ϕ

(b) x + 2ξωx +ω2x=F cos ωt

with solution form C∗e−ξωnt cos ωdt +ϕ +Bcos ωt + β

These examples have decaying (damped) response, free and forced frequencies, and
phase angle, which are all characteristics of vibration behavior.

2.3.1 MATLAB and MAPLE Integration

Instructions for utilizing MATLAB and MAPLE for integration are provided below.
This subject is treated in greater detail in Chapter 6 on transient vibrations and is required
prior to Chapter 6 to integrate EOM for obtaining responses to initial conditions or forced
excitation.

50 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



EXAMPLE 2.3.1 MATLAB Numerical Integration

The governing differential equations for the system in Figure E2.3.1(a) may be obtained by
the methods presented in Chapter 3.

The results are

MV +CV+KX=F X, t 1

where

M=

m1 0 0

0 m2 0

0 0 m3

, C=

c2 −c2 0

−c2 c2 0

0 0 0

, K=

k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

,

X=

x1

x2

x3

, V=

v1

v2

v3

, F=

0

0

F3

=

0

0

F0 sinωt−α x3−x2
3

2

Use of MATLAB’s ordinary differential equation (ODE) suite requires that a subfunc-
tion file be written defining the first derivative expressions (right-hand side of (3)). For
example, in this problem,

q
6 × 1

=
V

X
=

M−1 F X, t −CV−KX

V
3

The initial condition for this example depicts the system being released from rest with
an initial displacement at x3.

q 0 = 0 0 0 0 0 x30
T 4

Main File (see code output in Figure E2.3.1(b))

clear
global M K C F0 alpha omega
format short
% define parameters to be transferred to the subfunction file
% through global
m1 = 5 , m2 = 3 , m3 = 7 ;
k1 = 30000 , k2 = 20000 , k3 = 10000;

Figure E2.3.1(a) Simple vibratory system model
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c2 = 100;
F0 = 10 , alpha = 1.0e+11 , f = 20 , omega = 2*pi*f ;

% define system matrices
M = zeros(3,3) , M(1,1) = m1 , M(2,2) = m2 , M(3,3) = m3 ;
C = zeros(3,3) , C(1,1) = c2 , C(1,2) = -c2 , C(2,1) = -c2 ,
C(2,2) = c2 ;
K = zeros(3,3) , K(1,1) = k1+k2 , K(1,2) = -k2 , K(2,1) = -k2 ,
K(2,2) = k2+k3 ;
K(2,3) = -k3 , K(3,2) = -k3 , K(3,3) = k3 ;

% define integration time range , (nplot = no. of points to be
% plotted)

tbegin = 0 , tfinal = 0.5 , nplot = 1000 ;
tspan=linspace(tbegin,tfinal,nplot) ; % creates an array of
nplot % equally spaced points

% define initial conditions
x30 = .001 , q0 = [0 0 0 0 0 x30] ;

% call Matlab ODE45 numerical integrator (explicit Runge Kutta
%(4,5) formulation)

Figure E2.3.1(b) Response plots: (i) x1 (solid), x2 (dashed), and x3 (dotted) displacements, (ii) relative
displacements x3 − x2, and (iii) spring force in k3
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% The sub-function that defines qdot has the filename
%Ch2MatlabODEsub
% Both the main and sub-function files must reside in the same % % %
directory. The sub function filename is Ch2MatlabODEsub
[t,q] = ode45(‘Ch2MatlabODEsub’,tspan,q0) ;

% plot results
subplot(3,1,1)
plot(t,q(:,4)*1000,‘k-’,t,q(:,5) ∗1000,‘k--’,t,q
(:,6) ∗1000,‘k:’)
grid on
title(‘Ch.2 Matlab ODE Example’);
ylabel(‘x1,x2,x3 in mm’)
msg = sprintf(‘x1(solid) x2(dashed) x3(dotted) ’)
gtext(msg)

subplot(3,1,2)
plot(t,(q(:,6)-q(:,5))*1000,‘k-’)
grid on
ylabel(‘relative disp. x3-x2 in mm’)

subplot(3,1,3)
plot(t,(q(:,6)-q(:,5))*k3,‘k-’)
grid on
ylabel(‘k3 spring force in N’)
xlabel(‘time in seconds’)

Subfunction file: Store this file in the same directory as the main file.

%This filename is Ch2MatlabODEsub
function qdot = Ch2MatlabODEsub(t,q)

global M K C F0 alpha omega

tee = t % displays the current integration time

qdot = zeros(6,1); % initialize qdot

F = [0 0 F0*sin(omega*t)-alpha*(q(6,1)-q(5,1))^3 ]’ ;

qdot(1:3,1) = inv(M)*( F- C*q(1:3,1) -K*q(4:6,1) ) ;

qdot(4:6,1) = q(1:3,1) ;

EXAMPLE 2.3.2 MAPLE Symbolic Differential Equation Solution

Determine the analytical solution for the following differential equations and initial
conditions:

3x + x + 20x = 3cos 100t , x 0 = 1, x 0 = 0

Chapter 2 Preparatory Skills: Mathematics, Modeling, and Kinematics 53

www.konkur.in



> restart:
> with(DEtools):
> with(plots):
> diff_eq:= 3.*D(D(x))(t)+1.0*D(x)(t)+20.*x(t)=
3.*cos(100.*t);

diff _ eq = 3 D 2 x t + 1 0D x t + 20 x t = 3 cos 100 t

> init_con:=x(0)=1.0, D(x)(0)= 0.0 ;

init _ con = x 0 = 1 0,D x 0 = 0

> dsolve( {diff_eq,init_con} , {x(t)} );

x t =
44936017

10740784280
e

−
t

6 sin
239t
6

239 +
44945017
44940520

e
−
t

6 cos
239t
6

−
4497

44940520
cos 100t +

3
8988104

sin 100t

EXAMPLE 2.3.3 MAPLE Numerical Differential Equation Solution

Determine the numerical integration solution for the following differential equations and
initial conditions:

x = y y = −ε x2−1 y−x, x 0 = 3 y 0 = 0

> # The Maple commands for simply numerically integrating the
state equations is illustrated below.
> restart:
> with(DEtools):
> with(plots):
> epsilon:= 0.1:
> sola:=dsolve({diff(x(t),t)=y(t),diff(y(t),t)=-epsilon*
(x(t)^2-1.)*y(t)-x(t),x(0)=3.0,y(0)=0.0},{x(t),y(t)},
numeric):
>
ppa:=odeplot(sola,[t/2./Pi,x(t)],0..15.0*Pi,numpoints=500,
thickness=1,color=black,axes=boxed,title=“Figure 5 Demo of
Maple Numerical Integration”,labels=[“t/(2*Pi)”,“x”]):
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> display(ppa); # Display X(t) vs. t

3

2

1

0

–1

x

–2

0 1 2 3 4 5 6

t/(2*Pi)

7

Figure 5 Demo of Maple Numerical Integration

>
ppb:=odeplot(sola,[x(t),y(t)],0..15.0*Pi,numpoints=500,
thickness=1,color=black,axes=boxed,title=“Figure 6 Demo of
Maple Numerical Integration”,labels=[“x”,“y”]):
> display(ppb); # Display Y(t) vs. X(t) (Phase Plot)

2

1

0y

x

–1

–2

–2 –1 0 1 2 3

Figure 6 Demo of Maple Numerical Integration
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2.4 TAYLOR SERIES EXPANSIONS AND LINEARIZATION

Motion-dependent forces always become nonlinear as the magnitude of the motion
increases. This is common, for example, in Hertzian contact forces, aerodynamic damping,
and rubber vibration mounts. The Hertzian contact force is the repulsive force that occurs
at the interface between two bodies that are compressed against each other. The nonlinearity
is readily apparent in the compression test data, and mildly apparent in the shear test data
in Figure 2.4.1, for an isolation mount used to reduce vibrations due to forces in machinery.
Figure 2.4.1 (i) and (ii) illustrates hardening (stiffness increasing with deflection) and
softening (stiffness decreasing with deflection) springs, respectively.

Figure 2.4.2 shows a similar nonlinear curve for a Belleville washer, which is a com-
ponent frequently employed to provide a preload force in ball bearings and other devices.

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
500

1000

1500

2000

2500

3000

L
b

In.

Figure 2.4.2 Nonlinear load versus deflection curve for a steel (solid) and composite (dashed) Belleville washer

Figure 2.4.1 Nonlinear test data for vibration isolation mount with (i) hardening and (ii) softening nonlinear
load versus deflection curves
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A Taylor series expansion is frequently utilized to simplify a nonlinear force expression
and express it as a truncated polynomial series, the most common form being a two-term
series that provides a linear approximation of the force, about some operating point
(OP). The OP force is typically a larger constant force that would deflect the springs in
Figures 2.4.1 and 2.4.2 to a constant deflection. A smaller dynamic force is then included
as the source of the linearized vibrations about the OP. The single variable Taylor series
formula is (Hildebrand, 1976; Kreyzig, 1972)

f x = f x0 +Δx = f x0 +
df

dx x0

Δx +
1
2
d2f

dx2 x0

Δx2 + +
1

n−1
dn−1f

dxn−1 x0

Δxn−1 +

2 4 1

EXAMPLE 2.4.1 Inclined Spring Force

Amass vibrates in the horizontal direction and is attached to ground via an inclined stiffness,
utilizing a Taylor series expansion to obtain a polynomial approximation for the horizontal
component of the spring force in terms of the mass’s displacement x (Figure E2.4.1(a)).

The exact expressions for the spring force and its horizontal component are

Fk x = f δ= k a2 + b2− a−x 2 + b2

Fkx x =Fk cos θ = k a2 + b2− a−x 2 + b2
a−x

a−x 2 + b2

1

The Taylor series for Fkx in (1) is obtained from the MAPLE code shown below.

> restart;
> :simplify(taylor(k*(sqrt(a^2+b^2)-sqrt((a-x)^2+b^2))*
(a-x)/sqrt((a-x)^2+b^2), x=0,4)) ;

Fkx =
ka2

a2 + b2
x−

3kb2a

2 a2 + b2 2 x
2−

kb2 4a2−b2

2 a2 + b2 3 x3 +O x4 2

Figure E2.4.1(a) Inclined spring that causes a nonlinear force on mass m in the x direction
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The Taylor series for a function of two variables is given by

f x,y = f x0 +Δx,y0 +Δy = f x0,y0 +
∂f

∂x x0,y0

Δx+
∂f

∂y x0,y0

Δy

+
1
2

∂2f

∂x2 x0,y0

Δx2 + 2
∂2f

∂x∂y x0,y0

ΔxΔy+
∂2f

∂y2 x0,y0

Δy2 +

+
1
n

Δx
∂

∂x
+Δy

∂

∂y

n

f x,y x0,y0 +

2 4 2

The most common use of Taylor series in vibration is for linearization of force functions
that are nonlinear functions of position and velocity. Only the first two terms of the Taylor
series expansion are utilized for linearized model applications, that is,

f x = f x0 +Δx ≈ f x0 +
df

dx x0

Δx 2 4 3

f x,y = f x0 +Δx,y0 +Δy ≈ f x0,y0 +
∂f

∂x x0,y0

Δx+
∂f

∂y x0,y0

Δy 2 4 4

or in the case of n functions of m independent variables

f x = f x0 +Δx ≈ f x0 + J
x
0

Δx 2 4 5

where

x= x1 x2 xm
T, x0 = x10 x20 xm0

T, Δx = Δx1 Δx2 Δxm T 2 4 6

f x
n× 1

=

f1 x1, ,xm

f2 x1, ,xm

fn x1, ,xm

2 4 7

and the “Jacobian” matrix is

J=

∂f1
∂x1

∂f1
∂x2

∂f1
∂xm

∂fn
∂x1

∂fn
∂x2

∂fm
∂xm

2 4 8

Some care must be exercised in applying linearization since sufficiently large vibrations
may violate the linearization assumptions yielding unusual vibrations such as chaos.

EXAMPLE 2.4.2 Two Variable Linearization of a Magnetic Force

Statement: This example illustrates the use of the Taylor series to obtain an approximate,
linear representation of a nonlinear force containing two variables. The results are also
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utilized in the electromagnetic actuator-based active vibration control (AVC) examples in
Chapter 12.

Objective:Obtain a two-term Taylor series approximation for the force of an electromagnet.

Motivation: Linearization of the given force will greatly simplify the dynamic equilibrium
equations for the system containing the force.

Solution: The magnetic force developed by the C-core arrangement in Figure E2.4.2(a) is

F x, i =
N2i2μ0A

4x2
1

where N is the number of turns in the coil, i is the electric current in the wire, μ0 is the
magnetic permeability in free space 4π 10−7mkgs−2A−2 , A is the cross-sectional area
of a pole, and x is the air gap distance.

Equation (1) shows that the force varies nonlinearly with both gap x and current i.
Let x0 and i0 represent the OP (steady-state) values of x and i, respectively, and Δx and Δi
perturbations about x0 and i0. Then by (2.4.3),

F x, i =F x0 +Δx, i0 +Δi ≈F x0, i0 +
∂F

∂x x0, i0

Δx +
∂F

∂i x0, i0

Δi

=
N2i20μ0A

4x20
+ −

N2i20μ0A

2x30
Δx +

N2i0μ0A

2x20
Δi

2

The coefficients in (2) are commonly referred to as stiffnesses or force gains, that is,

kpos = position stiffness = −
N2i20μ0A

2x30
3

ki = current stiffness =
N2i0μ0A

2x20
4

so that (2) may be written as

F x, i ≈F x0, i0 + kposΔx+ kiΔi 5

Figure E2.4.2(a) C-core electromagnetic generating force F
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Summary: The approximate force expression in (5) allows the analyst to evaluate system
vibration stability by calculating eigenvalues or to determine steady-state harmonic
response. These are essential steps for assuring the goodness of a system’s design with
regard to vibrations.

EXAMPLE 2.4.3 Euler’s Identity

Here is a Taylor series expansion for a very familiar identity used extensively in Chapter 7
on steady-state harmonic response. The MAPLE command taylor(exp(beta ∗ x), x=0,6)
yields the lowest six terms of the Taylor series for eβx about x = 0, as

eβx = 1+ βx +
βx 2

2
+

βx 3

6
+

βx 4

24
+

βx 5

120
+ 1

substitute the imaginary unit i for β to obtain

eix = 1+ ix−
x 2

2
− i

x 3

6
+

x 4

24
+ i

x 5

120
+ = cos x + isin x 2

which follows from the Taylor series expansions for sin(x) and cos(x). This identity is very
useful for determining forced harmonic responses, natural frequencies, and mode shapes in
vibration analyses.

2.5 COMPLEX VARIABLES (CV) AND PHASORS

The concept of phase (time) lag was initially discussed in Section 1.2. The concept may be
understood by considering the vertical oscillation of a buoy as it experiences a train of water
waves traveling left to right as shown in Figure 2.5.1. The figure depicts “wave-powered
buoys” that are used for an energy harvesting application. The peak upward displacement
(heave) of the buoy occurs after the crest of the wave passes beneath it due to inertia and
damping forces. Thus, a time lag occurs between the wave crest and the peak displacement
events. This time lag can be expressed as a “phase angle” with one complete wave period
equivalent to 360 and the phase lag angle = wave frequency × time lag. Chapter 7 shows
how measurement of the phase lag angle can be used to identify damping, mode shapes,
natural frequencies, mass imbalance in a rotating shaft, and so on, so it is a very important
quantity. Phase lag occurs in all physical devices since no device can react instantaneously
to an input. There is always an inertia or inductance like action that delays the response of a

Figure 2.5.1 Buoys with peak vertical heave motion delayed by a time lag after occurrence of the peak
wave crest force
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system, which is the root cause of phase lag. There also exists a time lag (phase angle)
between harmonically varying displacement, velocity, and acceleration. Descriptions of har-
monic motion thus require both amplitude and phase angle for completeness. This has long
been referred to as utilizing “phasor” quantities, having amplitude and phase, in the study of
electric circuits.

A complex number has both a magnitude and phase angle ϕ, which allows it to
represent the magnitude of a vibratory response and its time lag relative to inputs, or other
responses. Figure 2.5.2 shows a typical complex number z.

In rectangular form,

z = x+ iy, i= −1 2 5 1

and in polar (phasor) form,

z= z eiϕz , z = x2 + y2, ϕz = tan
−1 y

x
2 5 2

This may be proven by the use of Euler’s identity (Example 2.4.3). The conjugate of z is
defined by

z = x− iy = z e− iϕz 2 5 3

so that

zz= z 2ei ϕz −ϕz = z 2 2 5 4

Let

z1 = z1 e
iϕ1 , z2 = z2 e

iϕ2 2 5 5

be two complex numbers. Then,

z1z2 = z1 z2 e
i ϕ1 +ϕ2 2 5 6

z1
z2

=
z1
z2

ei ϕ1 −ϕ2 2 5 7

The utility of complex variables may be demonstrated by considering the solution for
the particular (steady-state) part of the common vibration differential equation:

mq + cq + kq =Acos ωt +Bsin ωt 2 5 8

Figure 2.5.2 Illustration of complex
numbers z and z
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The real variable solution proceeds by substituting the assumed form of the particular
solution

qp t = αcos ωt + βcos ωt 2 5 9

into (2.5.8) and equating coefficients of the sin and cos terms. This yields two linear alge-
braic equations for the real constants α and β. A simpler approach consists of making the
following substitutions

q t Q t =Qr t + iQi t , cos ωt eiωt, sin ωt − ieiωt 2 5 10

yielding

mQ + cQ+ kQ =Aeiωt − iBeiωt 2 5 11

Equate the real parts of both sides of this equation to obtain

mQr + cQr + kQr =Acos ωt +Bsin ωt 2 5 12

This demonstrates that the real part of the complex variable Q(t) has the same differ-
ential equation as the original real variable q(t), which suggests the alternative approach of
obtaining q(t) by solving (2.5.11) for Q(t) and then taking its real part to obtain q(t). The
particular solution for (2.5.11) is obtained by substituting the assumed form

Q=Qeiωt 2 5 13

into (2.5.11) yielding

−ω2m + iωc+ k Q=A− iB 2 5 14

Then, solve for Q t :

Q=
A− iB

−ω2m+ iωc + k
2 5 15

The term Q t may be written in polar form:

Q = Q ei∠Q 2 5 16

Then, the solution for the original real variable q(t) becomes

q t =Real Q t =Real Qeiωt = Q cos ωt +∠Q 2 5 17

Thus, by (2.5.5)–(2.5.7) and (2.5.15), the amplitude of the displacement response is

q = Q =
A2 +B2

k−mω2 2 + cω 2 2 5 18
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and the phase angle of the displacement response is

∠q =∠Q=∠numerator of Q−∠denominator of Q

= tan−1 −B

A
− tan−1 ωc

k−ω2m

2 5 19

2.6 DEGREES OF FREEDOM, MATRICES, VECTORS, AND SUBSPACES

Mechanical and structural systems may vibrate in simple or complex ways. This is typically
quantified by identifying the number of independent dofs that are required to capture all
important motions of the system. “Independent dof” refers to the ability of the corresponding
motion (dof ) to occur, when all other dofs are intentionally held fixed. A familiar example
is the 6 dofs of a rigid body with longitudinal travel such as an auto, ship, train, or plane, as
shown in Figure 2.6.1.

Translations: (1) Heave (vertical up/down), (2) Sway (side to side), (3) Surge (front
to back)

Rotations: (4) Roll (about front/back longitudinal axis), (5) Pitch (about side to side
axis), (6) Yaw (about up/down axis)

Figure 2.6.2 shows a ship undergoing predominantly roll and heave motions. A model
consisting of only heave and roll dofs or even just a roll dof may be adequate to predict wave
amplitudes or frequencies that may cause the ship to capsize: an important vibration prob-
lem! A 4-dof surge direction model may be adequate for modeling the three-trailer truck
shown in Figure 2.6.3 for a fatigue-related failure or crashworthiness enhancement simula-
tion. The springs in this model represent the compliance that exists in the hitches that
connect the trailers with each other and the cab. The model could be further generalized

Figure 2.6.1 Six rigid body degrees of freedom (dof ) of body with longitudinal travel

Figure 2.6.2 Ship in rough seas and simplified roll and heave model
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to model the surge motion of a train as depicted in Figure 2.6.4 to mitigate vibration-induced
wear during start-up or to improve shock- and vibration-related crashworthiness for loco-
motive occupant safety. The train hitches may intentionally have gaps in order for the inertia
load pulled by the locomotive to increase gradually instead of all simultaneously on start-up
of the train. Even a simplified rigid body, surge motion only model may contain 100s of dofs
to represent the train vibration. A more complex rigid body model (RBM) could include
heave and pitch motions of each car, which are supported on springs and able to vibrate
independent of the wheeled bogies that provide a moving suspension for the cars and loco-
motives. Models obtain even a greater number of dofs when flexibility of each component is
accounted for. Each point on a component may vibrate totally independent of other points,
requiring a far greater number of dofs than the six rigid body ones. This has been illustrated
by the sand pattern on the rectangular steel plate shown in Figure 2.6.5. Sand is spread

Figure 2.6.5 Sand pattern (nodal lines) of plate in a resonance state. Reproduced with permission of
Professor Stephen Morris, Nonlinear Physics, University of Toronto © Prof. Stephen W. Morris

Figure 2.6.3 Three-trailer truck and simplified surge motion model

Figure 2.6.4 Model of train undergoing start-up conditions
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uniformly on a plate, which is then subjected to a vertical shaking force. The frequency of
the force is varied until it matches a resonant frequency (Section 1.2), under which condi-
tion, a standing wave pattern appears where peak vibrations (antinodes) occur at certain
locations and no motion occurs along “node” lines. The sand migrates away from the anti-
nodes and collects along the nodal lines due to the vertical shaking motion. The nodal lines
are clearly shown in the plate photo in Figure 2.6.5.

Finite element models as shown in Figure 1.7.1 include 3 translation dofs at each node
point in the model, where node point in the finite element context is different than the zero
vibration node points in the sand patterns. The finite element node points are locations where
the displacements in the elements are interpolated from. The points where the lines intersect
in Figure 1.7.1 are some of the finite element model’s node points.

The dofs of a model can be arranged as members of an n × 1 array:

U t = u1 t u2 t u3 t u4 t un t T n × 1 2 6 1

where the ui typically represent physical translations or rotations. A “linear model” is one
that expresses forces as either explicit functions of time or linear functions of the motion
variables, that is, displacements, velocities, and accelerations. Thus, equilibrium equations
for the linear model must have the general form

m11 m12 m1n

m21 m22 m2n

mn1 mn2 mnn

u1 t

u2 t

un t

+

c11 c12 c1n

c21 c22 c2n

cn1 cn2 cnn

u1 t

u2 t

un t

+

k11 k12 k1n

k21 k22 k2n

kn1 kn2 knn

u1 t

u2 t

un t

=

f1 t

f2 t

fn t

2 6 2

or be written in an abbreviated manner as

MU +CU +KU= f t 2 6 3

An objective of the FEM is to define the matrices M,C,K, f t given an FE mesh and

load description. A first impression may be that organization of coefficients andmotion vari-
ables into vectors and matrices in (2.6.2) and (2.6.3) is merely a bookkeeping aid. Although
there are some bookkeeping advantages for using vectors and matrices, a more important
reason is to bring the powerful theories and techniques of linear algebra to bear on the effi-
cient and comprehensive solution of the equations. Rewrite (2.6.1) using the modification
shown in (2.6.4). This new form expresses the system’s physical coordinate displacement
vector as the sum of contributions from a set of “basis vectors” e1,e2,…,en, each being mul-
tiplied by its respective physical coordinate, which varies with time. Clearly anyU in (2.6.4)
can be exactly represented by the correct choice of the ui, so the ei is said to form a complete
set of basis vectors, or equivalently to span “n-space.”
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U t =

u1 t

u2 t

un t

=

1 0 0

0 1 0

0 0 1

u1 t

u2 t

un t

=

1

0

0

u1 t +

0

1

0

u2 t + +

0

0

1

un t = u1 t e1 + + un t en 2 6 4

For the sake of illustration, Figure 2.6.6 depicts the terms in (2.6.4) for 3-space. Note
that the vector U could also be expressed in terms of a second set of basis vectors vi, as

U t = η1 t v1 + η2 t v2 + η3 t v
3
=

v11

v21

v31

η1 t +

v12

v22

v32

η2 t +

v13

v23

v33

η3 t

= v1 v2 v3

η1 t

η2 t

η3 t

=

v11 v12 v13

v21 v22 v23

v31 v32 v33

η1 t

η2 t

η3 t

=Vη t

2 6 5

Figure 2.6.6 The vector U and basis vectors ei and vi
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Thus, given the basis vector set vi, the corresponding “generalized coordinates ηi(t)”
required to form U may be determined from

η t =

v11 v12 v13

v21 v22 v23

v31 v32 v33

−1 u1 t

u2 t

u3 t

=V−1U t 2 6 6

This “transformation of coordinates” or “change of basis” fails if the inverse of the
matrix V does not exist, that is, the matrix V is singular, which occurs if the columns of
V are linearly dependent. This has a geometric interpretation in 3-space; namely, the three
basis vectors lie in the same plane. This is illustrated by the alternative set of basis vectors v1,
v2, and v4 that are coplanar in Figure 2.6.6. Clearly there is no way that a linear weighted sum
of v1, v2, and v4, as in (2.6.5), can equalU ifU has a component out of (perpendicular to) the
plane containing v1, v2, and v4. The condition that v1, v2, and v4 lie in a plane is mathemat-
ically expressed as

v4 = α1v1 + α2v2 2 6 7

for some real constants (α1, α2), since clearly v4 will lie in the plane formed from v1 and v2
if (2.6.7) is satisfied. The condition (2.6.7) may be stated in a more general form as

α1v1 + α2v2 + α4v4 = 0 2 6 8

and these vectors are then said to be “linearly dependent.” The change in basis in (2.6.5) is
valid only if the basis vectors vi form a linearly independent set.

The above discussion is generally valid for n-space where the transformation becomes

U t =
n

i= 1

ηi t vi = v1 v2 vn

η1 t

η2 t

ηn t

=Vη t 2 6 9

and vi must form a linearly independent set. This discussion begs the questions: If U can be
expressed with any set of valid basis vectors and corresponding generalized coordinates, are
there preferred basis vectors, or are the physical coordinate basis vectors ei always pre-
ferred? Solutions of large finite element models may be performed efficiently if a set of basis
vectors provides accurate predictions when the number m of basis vectors and generalized
coordinates is much smaller than the number n of physical coordinates. In this case, (2.6.9)
becomes

U t =
m

i= 1

ηi t vi = v1 v2 vm

η1 t

η2 t

ηm t

=Vη t 2 6 10

This restricts the response to the subspace spanned by the m basis vectors. Substitution
of (2.6.10) into the equilibrium equation (2.6.3) yields

Mη +Cη+Kη= f t 2 6 11
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where

M =VTMV, C =VTCV, K =VTKV, f =VTf 2 6 12

The matrices M, C, and K are all of dimensions m×m, and the vector f is of dimension

m× 1. The reduction in the number of coupled differential equations in (2.6.11) will greatly
reduce the computation time required to solve for the ηi, and the physical coordinates are
then easily obtained from (2.6.10). The computational time can be reduced further if
the matrices in (2.6.12) are diagonal, implying that ηi could be obtained by solving an
uncoupled set of m ODEs. The mathematical condition for this is obtained from
(2.6.10) and (2.6.12) as

M
i, j =V

T

i
M V

j
= 0, for i j

K i, j =V
T

i
K V

j
= 0, for i j

C i, j =V
T

i
C V

j
= 0, for i j

2 6 13

These are the so called “orthogonality” conditions. Though seemingly improbable,
nature does provide a suitable set of basis vectors to condense and uncouple the general-
ized coordinates, which is applicable to a large class of vibration problems. To illustrate
this, consider the spring-mass model of the space station module treated in Chapter 7
and shown in Figure 2.6.7. Resonances occur at natural frequencies as the frequency
of the force F at mass 2 is slowly increased from 0 to 100 Hz as shown in
Figure 2.6.8(a).

The vibrations at the nine masses are dominated by a unique pattern of relative ampli-
tudes and phases at each resonance (peaks in Figure 2.6.8(a)). These patterns are called the
“mode shapes” that correspond with their respective natural frequencies in Table 2.6.1 and
are shown in Figure 2.6.8(b).

The first mode shape (lowest curve in Figure 2.6.8(b)) is called a rigid body mode
since all of its values are identical and its natural frequency is zero (0). The other
mode shapes all have relative motions indicating that the body is straining and storing
strain energy as it vibrates in these “flexible” modes. For example, mode shape 8 has
the properties

f8 = 64 4Hz, V8 0 214, −0 662, −0 243,0 973, −1 00,0 741, −0 292,0 110, −0 028

2 6 14

The mode shapes form a linearly independent set of basis vectors if all of the natural
frequencies are distinct. Furthermore, the contribution of any mode to the system response

Figure 2.6.7 Spring-mass model of a space station module for modal basis vector example
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diminishes as the forcing frequency is displaced further away from the natural frequency of
that mode shape. Then, for instance, the contributions of modes 3–9 may be negligible if the
forcing frequency range is limited to 1–25 Hz. Thus the approximation

U t ≈
m = 2

i= 1

ηi t vi = v1 v2
η1 t

η2 t
=Vη t 2 6 15

may yield highly accurate results and reduces the dimension of the equilibrium equations
in (2.6.11) from 9 to 2. In addition, under certain conditions on damping, all of the matrices
in (2.6.12) may also become diagonal by using the mode shapes as basis vectors. Thus
the mode shapes form an orthogonal set of basis vectors satisfying (2.6.13). Utilizing a
reduced set of basis vectors is termed “subspace condensation,” since the response U t
of the physical coordinates is restricted to lie in the subspace spanned by them basis vectors,
as indicated in (2.6.10). The mode vectors are the most commonly used subspace basis vec-
tors in vibration practice; however, others such as Guyan basis vectors (Chapter 8) are also
utilized.

2.6.1 Matrix–Vector Related Definitions and Identities

The earlier discussion provided an introductory explanation to the importance of matrices
and vectors in vibration theory and modeling. The remainder of the text extends this discus-
sion to many other aspects of vibration analyses. The identities provided belowwill facilitate
the understanding of these topics.

0 10 20 30 40 50 60 70 80 90 100
10–10

10–8

10–6

10–2

10–4

100

 Hz

m
m

, 0
–P

(a)

0 2 4 6 8 10
0

2

4

6

8

10

DOF no.

M
od

e 
no

.

(b)

Figure 2.6.8 (a) Displacement amplitude of mass 8 versus forcing frequency and plots of (b) all nine mode
shapes

Table 2.6.1 Natural frequencies (in Hz) for space station module model

(1) 0 (2) 10.5 (3) 20.6 (4) 32.3 (5) 41.8 (6) 50.4 (7) 56.3 (8) 64.4 (9) 72.3
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2.6.1.1 Definitions and Usages

Consider the “n” dimensional vectors

A
n× 1

=

a1

a2

an

, B
n× 1

=

b1

b2

bn

, C
n × 1

=

c1

c2

cn

2 6 16

where an underbar (_) indicates a vector or matrix array. The “dot” or “inner” product is
defined by

ATB=BTA=
n

i= 1

aibi 2 6 17

and is utilized extensively for obtaining generalized forces that correspond to generalized
coordinates and nodal coordinates in finite element and assumed modes models.

Define the matrix

D=

d11 d1n

dn1 dnn

2 6 18

Some types of matrices and applications are provided below:

D symmetric massM, dampingC, and stiffnessK matrices for nonrotating

structures

DT =D 2 6 19

D skew-symmetric gyroscopicC and circulatoryK matrices for some rotating

structures

DT = −D 2 6 20

D orthogonal (coordinate transformation matrices for truss, plate, and beam finite
elements)

DT =D−1 2 6 21

D positive definite (M and K matrices are generally positive definite, which ensures
positive kinetic and potential energy)

xT
1× n

D
n× n

x
n× 1

> 0, for all x 2 6 22

D positive semi-definite (makes potential energy zero when applied to theKmatrix with
rigid body (strain-free) motion)

xT
1 × n

D
n× n

x
n× 1

≥ 0, for all x 2 6 23
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2.6.1.2 Identities

(a) Identities (a)–(d) are useful in demonstrating some unique properties of spinning
(gyroscopic) vibrating systems.
Let x and y be real N × 1 vectors and D a real, skew-symmetric N ×N matrix, that is,

DT = −D 2 6 24

Then since a scalar equals its transpose,

xTD y = yTDTx = −yTD x 2 6 25

Note that if x equals y, (2.6.25) yields

xTDx = −xTDx

or

xTDx = 0 2 6 26

(b) Let ψ be a complex vector and D skew-symmetric, then

ψTD ψ = ψT
R
− iψT

I
D ψ

R
+ iψ

I

= ψT
R
D ψ

R
+ψT

I
D ψ

I
+ i ψT

R
D ψ

I
−ψT

I
D ψ

R

The use of (2.6.25) and (2.6.26) simplifies this to

ψTD ψ = i2ψT
R
D ψ

I
= pure imaginary constant 2 6 27

where ψ =ψ
R
+ iψ

I

(c) Let x and y be real N × 1 vectors and E a real, symmetric N ×N matrix, that is,

ET =E

Then since a scalar equals its transpose,

xTE y = yTETx= yTE x 2 6 28

(d) If ψ is a complex vector and E symmetric,

ψTE ψ = ψT
R
E ψ

R
+ψT

I
E ψ

I
+ i ψT

R
E ψ

I
−ψT

I
E ψ

R

The use of (2.6.28) simplifies this result to

ψTE ψ =ψT
R
E ψ

R
+ψT

I
E ψ

I
= pure real constant 2 6 29
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(e) An important identity for subspace condensation methods in vibrations.
Let A be a n ×m matrix and x a m× 1 vector; then

A
n ×m

x
m × 1

= A1 A2 Am x =
m

i= 1

xiAi n × 1 2 6 30

where Ai is column iof A.

(f) An important identity used for decoupling equations of motion (EOMs). Let A be a
n ×m matrix and B a m× r matrix; then

A
n ×m

B
m× r

=A B1 B2 Br = A B1 A B2 A Br n× r 2 6 31

where Bi is column i of B. This product may also be written as

A B=

A1

A2

A n

B=

A1 B

A2 B

An B

n× r 2 6 32

where Ai is the ith row of A.

(g) An important identity used for decoupling EOMs. Let diag αi be an m×m diagonal

matrix; then

diag αi
m×m

A
m× n

= diag αi

A1

A2

Am

=

α1A1

α2A2

αmA m

2 6 33

where Ai is the ith row of A. Similarly

A
n ×m

diag αi
m ×m

= A1 A2 Am diag αi = α1A 1 α2A2 αmAm 2 6 34

(h) An important identity used for decoupling EOMs. Let A be an m× n matrix with
columns Ai and B be an n × r matrix with rows Bi; then

A
m× n

B
n× r

= A1 A2 An

B1

B2

Bn

= A1 0 0 + 0 A2 0 + + 0 0 An

B1

B2

B n

=
n

j= 1

Aj
m× 1

Bj
1 × r

2 6 35
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(i) An important identity used for developing concise frequency response equations for
harmonically forced systems. Let A,R,B, and diag αi be n × n invertible matrices. If

B R A= diag αi 2 6 36

then

A−1R−1B−1 = diag
1
αi

2 6 37

or using (2.6.34) and (2.6.35)

R−1 =A diag
1
αi

B=
1
α1

A1

1
α2

A2

1
αn

An

B1

B2

Bn

=
n

i= 1

1
αi
Ai Bi 2 6 38

where Ai is the ith column of A and Bi is the ith row of B.

(j) An important identity used for combining substructure models to form a system model.
Two partitioned matrices may be multiplied together by treating the partitions as scalars
if all matrix multiplications agree in dimension. For example, if

A11 A12 A13

A21 A22 A23

A31 A32 A33

B11 B12 B13

B21 B22 B23

B31 B32 B33

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

2 6 39

then

Cij =
3

k = 1

Aik Bkj 2 6 40

under the condition that matrices Aik andBkj have dimensions that are compatible for

matrix multiplication.

(k) The Lagrange equation approach requires differentiation of energy and work-type
expressions appearing as quadratic forms or inner products. The following identity
facilitates this process. Let r be the quadratic form

r =
1
2
qT

1× n

G
n× n

q
n× 1

2 6 41

and utilize the vector differentiation notation

∂r

∂q
n× 1

=

∂r

∂q1
∂r

∂q2

∂r

∂qn

2 6 42a

Chapter 2 Preparatory Skills: Mathematics, Modeling, and Kinematics 73

www.konkur.in



then

∂r

∂q
n× 1

= G
n × n

q
n × 1

2 6 42b

(l) An identity for applying the assumed modes and FEMs to vibration models. Let

u
1 × 1

= Φ
1 × n

q
n × 1

2 6 43

then

u2
1 × 1

= uT
1× 1

u
1 × 1

= qT

1 × n

ΦT

n × 1
Φ
1 × n

q
n× 1

2 6 44

Apply (2.6.42b) to (2.6.44) to obtain

∂u2

∂q
= 2ΦTΦ q 2 6 45

(m) An identity for applying the assumed modes and FEMs to vibration models.
Let u= α1q1 + α2q2 + α3q3 + + αnqn, then

u2 = q1 q2 q3 … qn

α1α1 α1α2 α1αn
α2α1 α2α2 α2αn

αnα1 αnα2 αnαn

q1
q2

qn

= qT α q 2 6 46

Apply (2.6.42b) to (2.6.45) to obtain

∂u2

∂q
= 2α q 2 6 47

(n) An identity for applying the assumed modes and FEMs to vibration models. Let

X=

x1
x2

xn

and Y=

y1
y2

yn

2 6 48

then

∂ YTX

∂X
=

∂ YTX

∂x1
∂ YTX

∂x2

∂ YTX

∂xn

=Y 2 6 49
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(o) Other useful matrix identities:

AT −1
= A−1 T

=A−T 2 6 50

The row i, column j entry of the triple matrix product

D=A C B=

A1

A2

Am

C B1 B2 Br 2 6 51

is

Dij =Ai C Bj 2 6 52

where Ai is the ith row of A and Bj is the jth column of B.

2.7 COORDINATE TRANSFORMATIONS

A coordinate transformation provides a means to express motion sensed in a fixed frame in
terms of motions sensed in a rotating frame. The motions sensed in the rotating frame are
typically much simpler than in the fixed frame, and the fixed frame motions are typically
needed to properly apply Newton’s law. A simple example is the simple up/down motion
of a mechanical horse as sensed in the rotating frame of a merry-go-round. The horse’s
motion has a simple description in the reference (viewing) frame attached to the merry-
go-round, but has a very complex description to a viewer in a fixed, nonmoving reference
frame. Vibration of blades attached to a spinning turbine disk presents a more practical
example. Another important application of coordinate transformations is in finite elements.
Element stiffness and mass matrices may be more easily derived in an element-based frame
and then transformed to a system frame of reference. A vector may be expressed with com-
ponents in any number of coordinate systems. For example, the vector G in Figure 2.7.1
is shown with components in the unprimed frame and in the rotated primed frame.

Figure 2.7.1 Components of vector

G in the rotated and fixed coordinate
frames: 2D case
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The two sets of components are related by the transformation

G1

G2

=
cosθ sinθ

−sinθ cosθ

G1

G2
2 7 1

or

G =CG 2 × 1 2 7 2

Note that

CTC=
1 0

0 1
2 7 3

so C is an orthogonal matrix, that is, C−1 =CT. Matrix C may also be defined by

Cij = cos∠ xi,xj = cosine of the angle between xi and xj 2 7 4

The rotating observer o frame and fixed n frame are shown in Figure 2.7.2 for the
3D case.

In general

Go1

Go2

Go3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

Gn1

Gn2

Gn3

3 × 1 2 7 5

where the direction cosine matrix entries are

Cij = cos∠ xoi,xnj = cos θij 2 7 6

Figure 2.7.3 illustrates a sequence of three rotation angles that will reorient the n frame
into the o frame. This has application in the modeling of beams in finite element frame mod-
els and in modeling vibrations of components attached to rotating bodies such as airplanes,
satellites, and ships.

Figure 2.7.2 Components of vector G in the
rotated and fixed coordinate frames: 3D case
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The n to o transformation matrix C is obtained from the Euler angles (θ1, θ2, θ3) as

eo1

eo2

eo3

=

1 0 0

0 cθ3 sθ3

0 −sθ3 cθ3

cθ2 0 −sθ2

0 1 0

sθ2 0 cθ2

cθ1 sθ1 0

−sθ1 cθ1 0

0 0 1

en1

en2

en3

= cij

en1

en2

en3
2 7 7

where cθ and sθ represent cos(θ) and sin(θ), respectively, and

c11 = cosθ1 cosθ2
c12 = sinθ1 cosθ2
c13 = −sinθ2
c21 = −cosθ3 sinθ1 + sinθ2 sinθ3 cosθ1
c22 = cosθ1 cosθ3 + sinθ1 sinθ2 sinθ3
c23 = sinθ3 cosθ2
c31 = sinθ1 sinθ3 + cosθ1 sinθ2 cosθ3
c32 = −cosθ1 sinθ3 + sinθ1sinθ2 cosθ3
c33 = cosθ2 cosθ3

2 7 8

It can be shown by direct multiplication that

CCT = I3 C−1 =CT i e , C is orthogonal 2 7 9

and from (2.7.7) and (2.7.9)

eo =C en, en =C
−1eo =C

Teo 2 7 10

For airplane, train, vehicle, or ship motion, θ1 is the yaw angle, θ2 is the pitch angle,
and θ3 is the roll angle for the fore and aft of the body along the + and −x1 direction, respec-
tively. Chapter 9 utilizes the aforementioned sequence of rotations for transforming 3D
beam elements from a local element-based frame to the system frame.

The vector G in Figure 2.7.2 may be expressed in two ways with vector notation and
two ways with array notation:

(a) Vector Notation

Gn =Gn1en1 +Gn2en2 +Gn3en3, Go =Go1eo1 +Go2eo2 +Go3eo3 2 7 11

Figure 2.7.3 Euler angle rotation sequence 3-2-1 from frame “n” to frame “o”
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(b) Array Notation

Gn =

Gn1

Gn2

Gn3 n

, Go =

Go1

Go2

Go3 o

2 7 12

The coordinate transformation can be applied to the unit vectors for the vector repre-
sentation, that is,

eo1

eo2

eo3

=

c11 c12 c13

c21 c22 c23

c31 c32 c33

en1

en2

en3

2 7 13

The vector G with components in frame o is given by (2.7.12). Substitute (2.7.13) into

(2.7.11) to obtain G with components in frame n:

Gn =Go1 c11en1 + c12en2 + c13en3 +Go2 c21en1 + c22en2 + c23en3

+Go3 c31en1 + c32en2 + c33en3

= c11Go1 + c21Go2 + c31Go3 en1 + c12Go1 + c22Go2 + c32Go3 en2

+ c13Go1 + c23Go2 + c33Go3 en3

=Gn1en1 +Gn2en2 +Gn3en3

2 7 14

The coordinate transformation can be applied to the arrays

Go1

Go2

Go3 o

=

c11 c12 c13

c21 c22 c23

c31 c32 c33

Gn1

Gn2

Gn3 n

Go =CGn

2 7 15

and since C is orthogonal C−1 =CT, it follows that

Gn1

Gn2

Gn3 n

=

c11 c21 c31

c12 c22 c32

c13 c23 c33

Go1

Go2

Go3 o

Gn =C
TGo

2 7 16

From (2.7.16)

Gn1 = c11Go1 + c21Go2 + c31Go3

Gn2 = c12Go1 + c22Go2 + c32Go3

Gn3 = c13Go1 + c23Go2 + c33Go3

2 7 17
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Note that the results of (2.7.14) and (2.7.17) are identical. The magnitude of any vector
is invariant in any coordinate system, that is,

G = GT
oGo = GT

nC
TCGn = GT

nGn 2 7 18

since C is orthogonal.

2.8 EIGENVALUES AND EIGENVECTORS

Displacing the tip of a car antenna and releasing it will result in it vibrating at nearly a single
frequency and shape, and the vibration will decay with time. Displacing the same car
antenna near its center while holding the tip fixed and then releasing it will result in vibration
at a different frequency, shape, and decay rate. This phenomenon occurs with all flexible
structures and machinery components and is termed natural or free vibrations. Its measure-
ment or prediction is commonly referred to as modal analysis. Resonance occurs when the
frequency of an external force and a natural frequency become nearly coincident. The stiff-
ness-related restoring forces are nearly cancelled by the inertia forces under these conditions
and the vibrations may become dangerously large. Determining natural frequencies and
their respective damping and characteristic mode shapes is an essential step in the design
of critical machines and structures. The frequencies, shapes, and decay rates are character-
istic (eigen) properties of the object itself, where “eigen” is the German expression for char-
acteristic. The frequency, decay rate, and vibrating shape are referred to as natural
frequency, damping, and mode shape, respectively. The unforced (free) form of the equi-
librium equation (2.6.3) is

MU +CU +KU= 0 2 8 1

This second-order form is converted into a first-order form in Chapter 6. The results are

X
n× 1

= D
n × n

X
n × 1

2 8 2

or

A
n× n

X
n× 1

= B
n × n

X
n× 1

2 8 3

Substitution of the solution form

X
n× 1

= eλt
1 × 1

ψ
n × 1

2 8 4

into (2.8.2) or (2.8.3) yields

λψ =D ψ 2 8 5

or

λA ψ =B ψ 2 8 6

where λ is an eigenvalue and ψ is an eigenvector of either A, B orD. Equations (2.8.5) and

(2.8.6) are referred to as a standard form and generalized form eigenvalue problem,
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respectively. Clearly, ψ = 0 is a solution to either (2.8.5) or (2.8.6); however by (2.8.4), this

would imply that the system does not respond, that is, a cantilever beam does not vibrate if
its tip is released from some initial deflection, or a bell does not ring if it is suddenly tapped.
Hence, if ψ 0, the condition

λI−D ψ = 0 2 8 7

λA−B ψ = 0 2 8 8

can be solved only if λI−D and λA−B are noninvertible, that is, singular matrices with

det λI−D = 0 2 8 9

det λA−B = 0 2 8 10

These expressions are often referred to as characteristic equations and their n roots (λj)
as “eigenvalues,” that is, characteristic roots. Substitution of an eigenvalue λj into (2.8.7) or
(2.8.8) allows the corresponding “eigenvector” ψ

j
to be determined. Clearly, if ψ

j
satisfies

(2.8.7) or (2.8.8), so will αψ
j
where α is an arbitrary complex constant. Thus, ψ

j
is unique

only to within a multiplication constant. The eigenvector ψ
j
is referred to as the jth

mode shape.
The complete solution for X t in (2.8.4) is by linear superposition

X t =
n

j= 1

γje
λj tψ

j
2 8 11

where γj are constants determined by the value of X at t = 0.
In general, the eigenvalues and eigenvectors are complex, that is,

λj = cj + idj 2 8 12

Then from (2.8.11) and Euler’s identity (Example 2.4.3),

X t =
n

j= 1

γje
cjt cos djt + isin djt ψ

j
2 8 13

Note that if cj are all less than or equal to zero, X t remains bounded (stable response).
However, if any λj lies in the right-hand side of the complex plane (Figure 2.5.2), that is,
cj > 0, the ecjt and consequently X t will become unbounded (unstable response) as
t ∞ . Eigenvalues are routinely calculated in vibration and control studies to determine
if the free vibration response is stable.

2.9 FOURIER SERIES

Many forces in machinery and nature are not sinusoidal but recur periodically, that is, with
a fixed period. A reciprocating compressor (Figure 2.9.1) has reciprocating pistons that
periodically compress gas in its cylinders and discharge the gas into the attached piping
through valves.
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The fundamental gas pressure frequency is the rpm of the compressor’s crankshaft,
which pushes and pulls the pistons as it rotates. The piping has acoustic natural frequencies,
similar to a flute. Coincidence of a harmonic of the periodic pressure frequency with an
acoustic natural frequency causes acoustic resonance, which can cause high-cycle fatigue
HCF cracking of piping. Not a good thing when the pipe holds 1200 psi natural gas or hydro-
gen sulfide gas! The author is acquainted with an incidence of a 36th pressure harmonic
causing an HCF crack in a compressor piping network on an offshore platform. Similarly
a concrete-busting jackhammer produces a periodic, nonsinusoidal force on the flooring,
which may cause excessive noise radiation or damage to nearby precision instrumentation
or computer hard drives. Fourier series (FS) provides a mathematical tool to decompose a
periodic force or response into a sum of sinusoidal contributions. The amplitudes, phase
angles, and frequencies of the Fourier components are all determined by the FS technique.
The number of mode shape basis vectors to include in a subspace, as in (2.6.10), can be
estimated by FS, since it will show the frequency above which the component force
amplitudes are negligible.

Any periodic waveform Y t =Y t + T , whereT is the period may be expressed as
the sum of sinusoids

Y t =
A0

2
+

∞

n = 1

An cos nωt +Bn sin nωt =
A0

2
+

∞

n= 1

Cn cos nωt−ϕn 2 9 1

where

Cn = A2
n +B

2
n 2 9 2

ϕn = tan
−1Bn

An
2 9 3

Figure 2.9.1 Six-cylinder industrial reciprocating compressor. Reproduced with permission ofMetrix
Instrument Co., LP. © Adriana Romero-Metrix Instrument Co.
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A0 =
2
T

T

0
Y t dt, An =

2
T

T

0
Y t cos

2π
T
nt dt, Bn =

2
T

T

0
Y t sin

2π
T
nt dt

n = 1,2,3,…∞
2 9 4

The frequency and period are related by

T = fundamental period of the complex waveform

f =
1
T
= fundamental frequency inHz

ω= 2πf =
2π
T

= circular fundamental frequency in rad s

2 9 5

The formulas in (2.9.1)–(2.9.4) result from the “orthogonality” relations

T

0
cos nωt cos mωt dt =

0, m n

T

2
, m= n

T

0
sin nωt sin mωt dt =

0, m n

T

2
, m= n

T

0
sin nωt cos mωt dt = 0 for allm and n

2 9 6

where m and n are integers and ω= 2π T .

EXAMPLE 2.9.1 Fourier Series for Sawtooth Function

Derive the Fourier sinusoid amplitudes and phase angles for a repeated ramp waveform.
This might represent the dynamic component of a periodic pressure-induced force. The
static pressure component will exceed the dynamic component so that the total (static plus
dynamic) pressure will not become negative. For example, Figure E2.9.1(a) could represent
a dynamic pressure waveform.

For this example,

Y t =A−
2A
T
t, 0 ≤ t < T 1

Determine the An and Bn by inserting (1) into (2.9.4):

A0 =
2
T

T

0
A−

2A
T
t dt =

2A
T

t−
1
T
t2

T

0

= 0 2

Figure E2.9.1(a) Periodic sawtooth waveform with amplitude A and period T
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An =
2
T

T

0
A 1−

2
T
t cos

2π
T
nt dt

=
2A
T

T

0
cos

2π
T
nt dt−

4A
T2

T

0
t cos

2π
T
nt dt

=
2A
T

T

2πn
sin

2πn
T

t
T

0

−
4A
T2

T

2πn

2

cos
2πn
T

t +
T

2πn
t sin

2πn
T

t

T

0

=
2A
T

0−0 −
4A
T2

T

2πn

2

+ 0−
T

2πn

2

−0

An = 0, n = 1,2,3,…

3

Bn =
2
T

T

0
A 1−

2
T
t sin

2π
T
nt dt

=
2A
T

T

0
sin

2π
T
nt dt−

4A
T2

T

0
t sin

2π
T
nt dt

=
2A
T

−T

2πn
cos

2πn
T

t
T

0

−
4A
T2

T

2πn

2

sin
2πn
T

t −
T

2πn
t cos

2πn
T

t

T

0

=
2A
T

−T

2πn
−

−T

2πn
−
4A
T2

T

2πn

2

∗0− T

2πn
T 1 −

T

2πn

2

∗0−0

=
−4A
T2

−T2

2πn
=
2A
πn

Bn =
2A
nπ

, n = 1,2,3,…

4

Insert (2), (3), and (4) into (2.9.1):

Y t = 0+
∞

n = 1

0∗cos nωt +
2A
nπ

sin nωt =
2A
π

∞

n = 1

1
n
sin nωt 5

2.10 LAPLACE TRANSFORMS, TRANSFER FUNCTIONS,
AND CHARACTERISTIC EQUATIONS

Multidisciplinary interaction problems generally model multiple domains of different phys-
ical natures. For example, AVC seeks to reduce the vibration of structures or machines by
measuring the vibrations and applying actuator forces determined by controllers. The con-
troller output power is inadequate for powering the actuators, so the controller outputs are
routed through servo power amplifiers (SPAs) to drive the actuators as discussed in
Chapter 12 on AVC . The SPAs are dynamic systems themselves as characterized by fre-
quency response functions (FRFs) that vary in amplitude and phase angle as a function of
frequency as shown in Figure 2.10.1. The FRFs are the ratios of output over input for the
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given device. A transfer function may be obtained from the FRF via curve fitting algorithms
and codes such as MATLAB’s invfreqs. A challenge is combining the dynamics model of
the structure being controlled with the dynamics model of the controller and power ampli-
fier, which may contain 1000s of components. The structural model is typically described by
a set of ODEs, which have the general form of (2.6.3) for a linear model. The SPA is too
complex of a system to likewise describe with coupled differential equations. The remedy
for this is to treat the SPA as a “black box” and experimentally measure its FRF. Curve fit-
ting this provides the equivalent transfer function for the SPA. The transfer function may be
converted to an equivalent set of first-order state differential equations that are readily
coupled to the structural component differential equations as in Chapter 12. Conversely,
for small-order models the structural equations may be converted into transfer functions
and then combined with the SPA transfer function to obtain a system model.

The earlier discussion is equally valid for soil–structure and fluid–structure interaction
problems where the soil or fluid is governed by laws described with complex sets of differ-
ential equations; however, their output (typically force)/input (typically motion) frequency
response characteristics may be relatively easily measured. An example is the force gener-
ated by the leakage flow in a liquid seal on a high-speed pump shaft in response to transverse
vibration of the spinning shaft. The FRF of this force may be measured and then included in
the fluid–structure interaction model.

The conversion of an experimentally derived transfer function to an equivalent set of
first-order state differential equations is given below. The transfer function has the gen-
eral form

T s =
Output
Input

=
y s

u s
=

b1sn−1 + b2sn−2 + + bn
sn + a1sn−1 + a2sn−2 + + an

2 10 1

(a)

100 101 102 103

10–0.3

10–0.2

10–0.1

100

Hz

100 101 102 103

Hz

D
im

–150

–100

–50

0

D
eg

re
es

(b)

Figure 2.10.1 (a) Servo power amplifier and its (b) output current/input voltage amplitude and phase angle
versus frequency. Photograph reproduced with permission of Jon Elson of Pico Systems © John Elson
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Given the input u(t), the output y(t) may be obtained by solving the following (canonical
form) state equations:

X =AX+Bu 2 10 2

y=CX 2 10 3

where

A=

−a1 −a2 −a3 −an−1 −an

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

2 10 4

B= 1 0 0 … 0 T, C= b1 b2 b3 … bn

The Laplace transform method (LTM) also provides a convenient way to solve EOMs.
The Laplace transform (LT) of the EOM is performed, and the result is solved for the LT
of the response variable. The response is obtained by comparing the LT of the response
variable with a table of LTs. The following list contains some LTs and LT properties.

The LT of a function f(t) is defined by

F s = L f =
∞

0
e−stf t dt 2 10 5

(a) If α is a constant,

L αf =
∞

0
e−stαfdt = α

∞

0
e−stfdt = αF s 2 10 6

(b) If f1 and f2 are two functions and β1 and β2 are two constants,

L β1f1 + β2 f2 =
∞

0
β1f1 + β2 f2 e−stdt = β1

∞

0
f1e

−stdt + β2
∞

0
f2e

−stdt

= β1F1 s + β2F2 s

2 10 7

(c) If f is the time derivative of f and using integration by parts udv= uv− vdu

L βf =
∞

0
βf e−stdt = β fe−st ∞

0 −
∞

0
f −se−st dt = β sF s − f 0 2 10 8

(d) If f is the second time derivative of f and using two integrations by parts,

L βf =
∞

0
βf e−stdt = β f e−st

∞
0
−

∞

0
f −se−st dt

= β − f 0 + s fe−st ∞
0 −

∞

0
f −se−st dt = β s2F s − f 0 −sf 0

2 10 9
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Some common LTs are given in Table 2.10.1. Taking the LT of a linear ODE will yield
a relationship between the LTs of the output (y) and input (u),

G s =
y s

u s
=
N s

D s
2 10 10

where G(s) is referred to as the transfer function and N(s) and D(s) are its numerator and
denominator polynomials, respectively. The denominator D(s) is often referred to as the
characteristic polynomial.

2.11 KINEMATICS AND KINEMATIC CONSTRAINTS

Imagine modeling an automobile for vibrations by starting with relative motions of atoms!
From a computational view, one would quickly replace the quantummechanics descriptions
and models with continuum models that in some manner impose reasonable motion con-
straints. The motion constraints are typically based on experiment and/or intuition and
greatly reduce the number of dofs to a manageable level.

2.11.1 Particle Kinematic Constraint

The simplest model of a finite-sized object is that it behaves as a “particle.” The underlying
assumptions are that the object does not deform or rotate. The point “particle” model can

Table 2.10.1 Table of common Laplace transforms

f(t) F(s)

1. e−at
1

s + a

2. tn n= 0,1,2,…
n

sn+ 1

3. cosωt
s

s2 +ω2

4. sinωt
ω

s2 +ω2

5.
ωn

1−ξ2
e−ξωnt sin ωdt where ωd =ωn 1−ξ2

ω2
n

s2 + 2ξωns+ω2
n

6. − tf t
dF s

ds

7. −1 ntnf t
dnF s

dsn

8. δ t−a = unit impulse Dirac delta function at t = a e−as

9. u t =
0, t < a

1, t ≥ a
Unit step or Heaviside function e−as

s

10.
1
ω2
n

1−cosωnt
1

s s2 +ω2
n

11.
1
ω3
n

ωnt−sinωnt
1

s2 s2 +ω2
n

12.
1

s + a s2 +ω2
n

e−at

a2 +ω2
n

+
asinωnt

ωn a2 +ω2
n
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represent the motion at any location on the body since the motion is the same over the entire
body. Some examples might include a boat, plane, car, or train car translating along a
straight or curved path with negligible rotation or deformation. Even large masses such
as the water tower tank in Figure 2.11.1 can be treated as a particle as long as it only trans-
lates, without rotation.

The following list contains some mathematical relationships for particle motion.
Figure 2.11.2 shows a particle traversing a path in three dimensions. The position, velocity,
and acceleration of this point are given by the following formulae:

2.11.1.1 Rectilinear Coordinates

rp o = x1e1 + x2e2 + x3e3, vp = x1e1 + x2e2 + x3e3, ap = x1e1 + x2e2 + x3e3 2 11 1

The following formulas relate the position, velocity, or acceleration quantities.

(a) Functions of time

xi = vidt, vi = aidt, vi =
dxi
dt

, ai =
dvi
dt

2 11 2

(b) Functions of position

vi xi =
dxi
dt

t =
dxi
vi xi

2 11 3

Figure 2.11.2 Particle motion in 3D space

Figure 2.11.1 Horizontal translation of water tower tank due to earthquake motion
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ai xi =
dvi
dt

=
dvi
dxi

dxi
dt

= vi
dvi
dxi

, vidvi = ai xi dxi,
v2i
2
= ai xi dxi 2 11 4

(c) Functions of velocity

ai vi =
dvi
dt

t =
dvi

ai vi
2 11 5

or from (2.11.4)

ai vi = vi
dvi
dxi

xi =
vi

ai vi
dvi 2 11 6

2.11.1.2 Cylindrical Coordinates

Often, it is more convenient to use a curvilinear coordinate system to describe particle
motion as illustrated by the cylindrical and normal–tangential systems shown in
Figure 2.11.3. The cylindrical coordinate unit vector’s directions vary with time as they fol-
low the particle, although their magnitudes remain equal to one, as shown in Figure 2.11.4.

Note that

Δer = 1Δθ eθ 2 11 7

so

der
dt

= lim
Δt 0

Δθ
Δt

eθ = θeθ 2 11 8

Figure 2.11.3 Cylindrical and normal–tangent coordinates for point motion

Figure 2.11.4 Cylindrical coordinate unit vectors
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Likewise,

deθ
dt

= −θer 2 11 9

and therefore

Rp t = rer 2 11 10

Vp t = rer + r
d

dt
er = rer + rθeθ =Vrer +Vθeθ 2 11 11

ap =
d

dt
Vp = arer + aθeθ = rer + rer + rθeθ + rθeθ + rθeθ

ar = r −rθ
2
, aθ = rθ + 2rθ

2 11 12

2.11.1.3 Normal–Tangential Coordinates

The tangential and normal unit vectors vary in direction with time as they follow the path or
particle P, although their magnitudes remain equal to one, as shown in Figure 2.11.5.

The parameter S represents distance along the path and the radius of curvature is
given by

ρ =

1 +
dx2
dx1

2 3 2

d2x2
dx21

2 11 13

Note that

et = lim
Δt 0

Δet
Δt

=
1 Δϕ
Δt

en =
ΔS ρ

Δt
en =

S

ρ
en 2 11 14

and since

v = S and Vp =Vet 2 11 15

ap =Vet +Vet = atet + anen 2 11 16

where

at = v, an =
V2

ρ
2 11 17

Figure 2.11.5 Normal–tangent unit vectors
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2.11.2 Rigid Body Kinematic Constraint

The RBM is a zero strain model in which an observer fixed to the body does not sense any
relative deflections of the body itself. A pointCmoves along path Γ on the rigid body shown
in Figure 2.11.6

2.11.2.1 Position, Velocity, and Acceleration

The position of C is given by

rC A = rB A + rC B 2 11 18

The velocity and acceleration expressions for point C are

VC =VB +VC B + ω × rC B 2 11 19

where

ω = angular velocity of the rigid body

VC B = velocity of C as sensed in a reference frame attached to the rigid body

aC = aB + α × rC B + ω × ω× rC B + 2ω ×VC B + aC B 2 11 20

where

aC B = acceleration of C as sensed in a reference frame attached to the rigid body

α = d dt ω = angular acceleration of the rigid body

2.11.2.2 Transport Theorem

The transport theorem is a very useful tool for analyzing motions of masses that vibrate with
respect to a rigid body that is itself undergoing general translational and rotational motions
as illustrated by mass mC in Figure 2.11.6. The vector G may represent any vector quantity

Figure 2.11.6 Point C moving along a path Γ on a
rigid body

90 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



such as position, velocity, force, momentum, and so on and is defined in the primed and
unprimed frames in Figure 2.11.7 as

G =G1e1 +G2e2 2 11 21

G =G1e1 +G2e2 2 11 22

where e1, e2 and e1,e2 are unit vectors in the unprimed and primed frames, respectively.

The time rate of change of G, as sensed by an observer in the x1x2 frame, is

dG

dt
=G1e1 +G1e1 +G2e2 +G2e2 2 11 23

From Figure 2.11.7(b), it is seen that

e1 = lim
Δt 0

Δe1
Δt

= lim
Δt 0

Δθe1
Δt

= θe2 2 11 24

Similarly

e2 = −θe1 2 11 25

Substitution of (2.11.24) and (2.11.25) into (2.11.23) yields

dG

dt
=G1e1 +G2e2−θG2e1 + θG1e2 =G1e1 +G2e2 + θe3 G1e1 +G2e2 2 11 26

or

Transport Theorem

dG

dt
=

’ dG

dt
+ ω × G 2 11 27

Figure 2.11.7 (a) Vector G defined in two reference frames with relative angular velocity ω and
(b) infinitesimal rotation of unit vector e1
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or as expressed in words

The time rate of change of vector G as sensed by an observer in the unprimed frame

equals

the time rate of change of G as sensed by an observer in the primed frame

plus

the cross product of the (angular velocity of the primed frame relative to the unprimed

frame) with the vector G. A consistent set of unit vectors should be employed in this
manipulation.

This result is applicable to 3D as well as 2D vectors.

2.11.2.3 Constraints

Reduction of dofs in a structural component or system model may result from geometrical
constraint considerations. These cases usually involve the implicit assumption of rigidity of
one or more components. This is illustrated by the following example:

EXAMPLE 2.11.1 Natural Motion Constraints

Statement: The following simple systems illustrate how the number of dofs in a model may
be reduced by imposing natural constraint conditions.

Objective: Determine the mathematical constraint conditions for the systems in
Figure E2.11.1(a).

Figure E2.11.1(a) (a–d) Motion constraints in four subsystem models
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Motivation: Imposing natural constraint conditions on a system dynamics model, via essen-
tial boundary conditions or linear constraint equations, reduces the number of unknowns
and ensures kinematic agreement between the model and actual system.

Solution: System (a) has 3 dofs, which are interdependent due to the rolling contact con-
dition and to the incline. Application of the coordinate transformation in Equation (2.7.1)
yields

u1

u2
=

cosβ −sinβ

sinβ cosβ

q1

q2
=

u1

0
1

This implies

q1 sinβ + q2 cosβ = 0 q2 = − tanβq1 2

The rolling contact condition and Equation (1) yields

u1 = cosβq1−sinβq2 = −rq3 3

q3 = −
1
r
cosβ + sinβ tanβ q1 4

Equations (2) and (4) show that there is only one independent dof in this subsystem.

System (b) has 2 dofs, which are interdependent if the cable is assumed to be inextensible.
The springs in this system are pretensioned to prevent the cable from becoming slack. The
cable length in the static equilibrium state is

l= a1 +
π

2
r1 + a2 +

π

2
r2 + a3 + πr3 + a3 + a4 5

and in the displaced state is

l = a1−q1 +
π

2
r1 + a2 +

π

2
r2 + a3−q2 + πr3 + a3−q2 + a4 6

Equating (5) and (6) yields

−q1−2q2 = 0 q2 = −
q1
2

7

which again demonstrates that there is only one independent dof in the subsystem.

System (c) has 4 dofs, which are interdependent due to the gear and lever actions, that is, for
small motions

q2 = −
RA

RB
q1, q3 = RA + l2 q1, q4 = − RA + l2 q1 8

System (d) has pretensioned springs and 2 dofs, which are interdependent due to the
inextensible cable of length l. At static equilibrium,

l= b+ a2 + c2
1 2

9

In a displaced state,

l= b+ q2 + c−q1
2 + a2

1 2
10

Chapter 2 Preparatory Skills: Mathematics, Modeling, and Kinematics 93

www.konkur.in



Equate (9) and (10) to obtain

0 = a2 + c2
1 2

− c−q1
2 + a2

1 2
−q2 11

The second term in this equation may be approximated by a two-term Taylor series
expansion (2.4.3) for small q1 values, that is,

f q1 = f q1 = 0 +
∂f

∂q1 q1 = 0

q1 12

so that

c−q1
2 + a2

1 2
≈ a2 + c2

1 2
+
1
2

c−q1
2 + a2

−1 2
2 c−q1 −1

q1 = 0

q1

= a2 + c2
1 2

−
cq1

a2 + c2 1 2

13

Substitute (13) into (11):

q2≈
cq1

a2 + c2 1 2
= q1 cosα 14

where

α= tan−1 a

c
15

Summary: These simple examples have shown how model dofs may be reduced by impos-
ing geometric constraint conditions. For small motions these constraint conditions could all
be expressed by the set of linear constraint conditions

q= TGqr 16

where the subscript r represents retained dofs. For examples (a)–(d),

q
r
= q1 17

and

(a) q =

q1

q2

q3

, TG =

1

− tanβ

−
1
r
cosβ + sinβ tanβ

18

(b) q =
q1

q2
, TG =

1

−1 2
19

(c) q =

q1

q2

q3

q4

, TG =

1

−RA RB

RA + l2

− RA + l1

20
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(d) q=
q1

q2
, TG =

1

c a2 + c2
1 2 21

The above constraints are called scleronomic constraints since they do not contain
any explicit function of time t.

EXAMPLE 2.11.2 Hinged Beam–Pulley System

Statement: Figure E2.11.2(a) and E2.11.2(b) depicts a hoist system that is driven by an
electric motor. The cable is assumed to be inextensible. Horizontal beam 1 shown is free
to rotate about pivot 4. Pulley 2 is free to rotate about pivot 5; however, pulley 3 is fixed
against rotation, that is, the motor has a brake applied. Pivot 6 and its support block can only
translate vertically, without rotation.

Figure E2.11.2(a) Hoist system model

Figure E2.11.2(b) Hoist system—simplified model
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Objectives

(a) Derive an expression for the cable force that results due to a small, static, downward
rotation θ of the beam.

(b) Show the complete derivation and express the answer in terms of θ and the system
constants.

Motivation: Understand the importance of the kinematic step for modeling a system in a
vibration analysis study.

Solution: Consider the simplified diagram shown below.
Consider pivot 5 as fixed on beam 1. Then the arc that it sweeps through is

s5 = L1θ 1

Next consider pulley 2 as “rolling” on cable segment b. Then the distance that “5”
traverses is

d5 =R2θ2 2

for small angles

d5≈s5 3

so

θ2≈
L1
R2

θ 4

Again assume that pulley 2 rolls on segment b; then the downward motion of Pmay be
expressed utilizing (4) as

ΔP= 2R2θ2 = 2L1θ 5

So the cable force is

Fc = kΔP= 2L1kθ 6

As will be shown in Chapter 3, the force expression in (6) is required to obtain a state-
ment of dynamic equilibrium for this system utilizing Newton’s law.

2.11.3 Assumed Modes Kinematic Constraint

Chapter 4 shows how the assumed modes method constrains the infinite number of dofs of a
flexible structural member to deflect accordingly with the weighted sum of analyst selected
displacement patterns that extend over the entire member. For example, the assumed form
for the (x1, x2, x3) direction displacements (u1, u2, u3) is

u1 x1,x2,x3, t =
N1

i= 1

qi1 t ∗ϕi1 x1,x2,x3 =
N1

i= 1

ui1 x1,x2,x3

u2 x1,x2,x3, t =
N2

i= 1

qi2 t ∗ϕi2 x1,x2,x3 =
N2

i= 1

ui2 x1,x2,x3

u3 x1,x2,x3, t =
N3

i= 1

qi3 t ∗ϕi3 x1,x2,x3 =
N3

i= 1

ui3 x1,x2,x3

2 11 28
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where the displacement patterns are ϕij and the weighting factors qij(t) vary with time, are
referred to as generalized coordinates, and determine the contribution of any given displace-
ment pattern to the overall displacement field. The ϕij are selected by the analyst’s intuition
and must form a set of linearly independent functions of position. These functions may also
form an orthogonal set

V
ϕi1ϕk1dm

1, i k

mi, i= k
2 11 29

if it is desired to uncouple the generalized coordinate EOMs, where V is the volume of the
structural member. Note that ϕij are functions only of the coordinates x1, x2, and x3 and are
referred to as “global shape functions” since they are defined over the entire structural mem-
ber. A simple example of this is the beam deflection shown in Figure 2.11.8.

In this case ϕ12(x1) and ϕ22(x1) are selected to be

ϕ12 x1 =
3x21
L2

−
2x31
L3

2 11 30

ϕ22 x1 =
−x21
L

+
x31
L2

2 11 31

where

u2 x1 = q12ϕ12 x1 + q22ϕ22 x1 2 11 32

Note that

ϕ12 0 =ϕ22 0 =ϕ12 0 =ϕ22 0 = 0 2 11 33

which by (2.11.32) implies

u2 0 = u2 0 = 0 2 11 34

Since ϕ12 and ϕ22 satisfy the zero deflection and slope conditions at the wall, they are
referred to as “kinematically admissible shape functions.” Also since they provide an
approximate value of u2 over the entire member, they are referred to as “global shape func-
tions.” Note that the deflection of any point along the beam may be obtained if the two gen-
eralized coordinates q12(t) and q22(t) are known. Therefore, it can be said that this model has
N= 2 independent dofs. As in the case of the rigid body approximation, the effect of the
deflection assumption is to reduce the number of dofs from ∞ to a small finite number,
N = 2 in this example and N =N1 +N2 +N3 in general. The assumed modes method uses
a global (over the entire body) interpolation approximation. Figure 2.11.9 shows a general

3D body, with point P located by position vector RP.

u12
u22 u2

x2 x2 x2

u12 = q12ϕ12(x1)

= q12ϕ12(x1) + q22ϕ22(x1)
u22 = q22ϕ22(x1)

u2(x1) = u12 + u22
x1

x1

x1

x1

L

+ =

Figure 2.11.8 Approximate deflection of a beam utilizing two global shape functions

Chapter 2 Preparatory Skills: Mathematics, Modeling, and Kinematics 97

www.konkur.in



The velocity of P as expressed with the assumed modes approximation is

VP =RP = u1n1 + u2n2 + u3n3

=
N1

i = 1

qi1 t ϕi1 x1,x2,x3 n1 +
N2

i = 1

qi2 t ϕi2 x1,x2,x3 n2 +
N3

i = 1

qi3 t ϕi3 x1,x2,x3 n3

2 11 35

The form for the velocity field in (2.11.35) facilitates the evaluation of the kinetic
energy of the body, which will be utilized to derive the EOMs for the assumed modes gen-
eralized coordinates qij(t), via the Lagrange equation method.

2.11.4 Finite Element Kinematic Constraint

The FEM subdivides a continuous member into a large number of small subvolumes called
elements. This is illustrated for a blade model in Figure 2.11.10. The FE method then
employs a local (element-based) set of “shape functions” to interpolate displacements

Figure 2.11.10 Blade FE model composed of 8-node, 3-dof/node brick elements

Figure 2.11.9 Point P located by RP on body B
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within the element. This is in contrast to the assumed modes approach where the “global”
shape function must approximate a likely deflection pattern for the entire member and also
satisfy displacement and slope “essential” boundary conditions. Each element possesses a
finite set of nodes, and displacements at any nonnodal point positions in the element are
obtained by interpolation from the nodal point displacement values. The node point displa-
cements become the model’s coordinates to be solved for. The node point displacements at
node k in Figure 2.11.10 are represented by uejk t , where j= 1,2,3 and k = 1,8.

The displacements at any location xe1,x
e
2,x

e
3 within element e are given by

uej xe1,x
e
2,x

e
3, t =

8

k = 1

uejk t Ne
k xe1,x

e
2,x

e
3 j= 1,2,3 2 11 36

The “shape functions” Ne
k are known functions of position, which are selected by the

analyst and must satisfy the shape function consistency condition

Ne
k xe1i,x

e
2i,x

e
3i =

1, i= k

0, i k
2 11 37

in order for (2.11.36) to yield the nodal point displacements uejk t when the formula is eval-

uated at the nodal point coordinates xe1i,x
e
2i,x

e
3i , where index “i” indicates node i. From

(2.11.36) the deflections at any location within element e can be obtained once the
twenty-four nodal displacements in e are known. The nodal displacements uejk are the gen-
eralized coordinates for the displacements in element e. If the entire blade model has
N nodes, there will be 3N nodal displacements in the model from which all other displace-
ments in the model may be obtained by the interpolation formula (2.11.36) for each element.
The 3N generalized coordinates of the model are

q1,q2,q3,…,q3N = u11,u12,…,u1N ,u21,u22,…,u2N ,u31,u32,…,u3N 2 11 38

where uij is the i direction displacement at node j of the model. These values determine the
motions over the entire blade model by (2.11.36). The motion approximation of (2.11.36)
constrains the actual deflections to some assumed pattern and reduces the number of dofs
from ∞ to a finite number n= 3N . The velocity of some point P in Figure 2.11.10 is given
via the FE approximation of (2.11.36) as

nd

dt
RP =

nve1n1 +
nve2n2 +

nve3n3 2 11 39

where

nvej xe1,x
e
2,x

e
3, t =

nd

dt
uej xe1,x

e
2,x

e
3, t =

8

k = 1

uejk t Ne
k xe1,x

e
2,x

e
3 2 11 40

and ujk t is the velocity in direction j at node k of element e, as sensed in frame n. The form
for the velocity field in (2.11.40) facilitates the evaluation of the kinetic energy of the body,
which will be utilized to derive the EOMs for the generalized coordinates in (2.11.38)
utilizing the Lagrange equation method.
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2.12 DIRAC DELTA AND HEAVISIDE FUNCTIONS

A concentrated (point) force or mass is a mathematical idealization of a physical force or
mass distribution. For instance, all forces are applied over finite-sized areas and thus are
more accurately considered to be resultants of pressure or traction distributions, as illustrated
in Figure 2.12.1.

Pressures and tractions have units of force per area and produce a force(s) when inte-
grated over their areas of application. The Dirac delta function is a special mathematical
device that is employed to represent the corresponding pressure, traction, or force per length
for an idealized concentrated (point) force. The Dirac delta function has the following spe-
cial properties:

δ z−d = 0, z d 2 12 1

and

∞

−∞
δ z−d dz = 1 2 12 2

In view of (2.12.1), (2.12.2) may be written as

L

0
δ z−d dz = 1 2 12 3

where 0 < z < L is a finite interval that contains z = d. Multiply (2.12.3) by F(t), noting that
F is not a function of z.

L

0
F t δ z−d dz =F t 2 12 4

Therefore, F t δ z−d is the force per unit length for the point force F(t) since when
integrated from 0 to L it yields F(t). Another important property of the Dirac delta function is

L

0
f z δ z−d dz = f d 2 12 5

The Dirac delta function is utilized with the assumed modes method in Chapter 4, the
FEM in Chapter 9, and the AVC in Chapter 12. An important Dirac delta function identity
utilized in Chapter 12 for piezoelectric AVC is

Figure 2.12.1 Actual force distributions and their concentrated (point) representation
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∞

−∞
f z

d

dz
δ z−a dz = −

df

dz z= a

2 12 6

The Dirac delta function is the derivative of the Heaviside function H, which is shown
in Figure 2.12.2. The Heaviside function is utilized for transient response analysis in
Chapter 6 and in AVC in Chapter 12.

2.13 CHAPTER 2 EXERCISES

2.13.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website: www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding significant cost savings for the college student, and is updated.

2.13.2 Exercise Goals

The goal of the exercises in Chapter 2 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) Areas of math that are frequently used for vibration analysis and measurements.

(b) Identification of kinematic constraint conditions in order to remove redundancy
in the description of a system’s motion and determine a set of independent
coordinates.

(c) Utilize linearization to approximate nonlinear forces when considered for small motions
about an OP, thus making the problems solvable within the vast framework of linear
differential equations.

(d) Extend the concept of kinematic constraints in (b) to include motions of deformable
objects via the assumed modes and the finite element FEM methods.

2.13.3 Sample Exercises: 2.9 and 2.17

Although the system in (2.9) appears to have many dofs, the student is tasked to demonstrate
that only two are independent. Likewise, the deformable beam in (2.17) has an infinite num-
ber of dofs; however, the student is tasked to formulate an approximate model with just three
generalized coordinates using the assumed modes approach.

Figure 2.12.2 Heaviside function H(z − a) with argument z = a
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Chapter 3

Equations of Motion
by Newton’s Laws

3.1 INTRODUCTION

The governing equations of motion (EOMs) provide a bridge between modeling and vibra-
tion response simulation (Figure 3.1.1). Solution of the EOM provides natural frequencies,
mode shapes, stability, steady-state harmonic, and transient responses. Computational tools
such as MATLAB and MAPLE greatly facilitate solution of the EOMwhether in numerical
form or symbolic form. EOMs are derived fromNewton’s laws in this chapter and by energy
and variational approaches in Chapter 4. The impulse–momentum principle is discussed and
follows from integration of Newton’s law for an aggregate of moving particles. The result
provides a convenient way to write EOMs for system which gain or lose mass and for pro-
viding initial conditions for impact problems. The usage of a symbolic math code is demon-
strated for reducing the workload and improving the accuracy in deriving EOM.

3.2 PARTICLE MOTION APPROXIMATION

The motions of many objects may be accurately modeled as a “particle.” The key assump-
tions for utilizing this approximation are that the body is rigid and rotational inertia effects
are negligible. Figure 3.2.1 shows three examples of “particle” motion.

These particles are acted on by the forces shown in the free body diagrams (FBD) of
Figure 3.2.2.

Newton’s law states in each of these cases

ma = Fext, i 3 2 1

where a is the particle’s acceleration vector and Fext, i is the ith external force acting on the
particle. Therefore, for Figure 3.2.2(a)

ma1 = −Fdrag +FWR 3 2 2

and for Figure 3.2.2(b)

max1 =Rx1, max2 =Rx2, m∗0 =Rx3−W 3 2 3

and for Figure 3.2.2(c)

max1 =Fdragx1, max2 =Fdragx2, max3 = −W +Fdragx3 3 2 4
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Themotions xj(t) and vj(t) are obtained by solving the above differential equations given
expressions for all forces.

EXAMPLE 3.2.1 Jet Landing on Aircraft Carrier

Statement: A jet lands on a carrier deck and is quickly decelerated by a constant friction
braking force FB and a tailhook device which utilizes a hydraulic cylinder and cable mech-
anism. The tailhook device is represented by a simplified model consisting of a spring and
damping force

Fk = −k1x−k3x
3−cx 1

as shown in Figure E3.2.1(a). The cubic spring stiffness term is used to provide a hardening
effect that is small for small deflections but increases rapidly for large deflections. This low-
ers the deceleration effect on the pilot yet still performs the function of stopping the plane.

Objective: Derive two first-order differential equations that govern the landing dynamics.

Motivation: This problem represents a classic engineering design trade between minimiz-
ing the landing distance and minimizing the acceleration ( x ) loading on the jet structure
(and its occupants!). The solution can provide useful quantities such as the maximum decel-
eration and stopping distance for various values of FB and k. In practice, FB becomes zero as
the jet slows to a stop and the jet is secured by some mechanical means.

Figure 3.1.1 EOM bridges system modeling and vibration response simulation

Figure 3.2.1 (a–c) Three examples of particle motion approximation

Figure 3.2.2 (a–c) Free body diagrams (FBDs) of particles in Figure 3.2.1
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Solution: By Newton’s law,

ma=mx = −FB−cx−k1x−k3x
3 2

The two first-order (state) equations are

x= v, v = −
FB

m
−
c

m
v−

k1
m
x−

k3
m
x3 3

These equations can be solved given initial conditions x0 = 0 and v0.

EXAMPLE 3.2.2 Engine on Nonlinear Isolation Mounts

Description: Vehicle and industrial engines are commonly “soft” supported on rubber iso-
lation mounts to attenuate the transmission of forces originating in the engine to the sur-
rounding environment. These mounts may be filled with liquid that circulates through
internal orifices and passages to provide low- and high-frequency attenuation of forces
as discussed in Kim and Singh (1995). Figure E3.2.2(a) illustrates a simplified model of
a soft mounted engine subjected to input (chassis) motion y(t) and crankshaft/piston unbal-
anced loads F(t). The nonlinear stiffness characteristic of the isolation mount is expressed by

Fk = − k1 x−y + k3 x−y 3 1

Objective:

(a) Derive the equation of motion for this system by the Newton approach.

(b) Linearize (Section 2.4) the nonlinear EOM about the static deflection position xs to
obtain the linearized EOM for the displacement perturbation

δx t = x−xs 2

where xs is the static deflection due only to the engine weightW, that is, F t = y t = 0.

Motivation: Ride quality based on minimum noise and vibration sells. The EOM can be
used to determine and hopefully reduce forces transmitted to the chassis from the engine.

Solution: The coordinate reference here at x = 0 corresponds to the undeflected isolation
mount, that is, without weight W, force F(t), or support input y(t) applied.

(a) From the free body diagrams (FBD),

+ Engine mx =F +Fk +Fc−W

=F−k1 x−y −k3 x−y 3−c x−y −W
3

Figure E3.2.1(a) Jet landing on carrier deck
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(b) Consider the static equilibrium case with (x = x =F = y = 0). Then (3) becomes

0 = −k1xs−k3x
3
s −W 4

This is a cubic algebraic equation which can be easily solved by MATLAB,
MAPLE, MATHCAD, and so on for the static deflection xs. The nonlinear term in
(3) is Q3 where

Q = x−y 5

which can be approximated by a two-term Taylor series expansion (2.4.1) about

Qs = xs−ys = xs 6

that is,

Q3≈Q3
s +

∂Q3

∂Q Qs

Q−Qs =Q3
s + 3Q

2
s Q−Qs 7

Insert (5)–(7) and

x = xs + δx t 8

into (3) to obtain

m xs + δx =F−k1 xs + δx−y −k3 x3s + 3x
2
s xs + δx−y−xs −c xs + δx−y −W 9

Simplifying (9) by substituting (4) and

xs = xs = 0 10

since xs is a constant to obtain

mδx =F−k1 δx−y −3k3x
2
s δx−y −c δx−y 11

or

mδx + cδx + k1 + 3k3x
2
s δx =F t + k1 + 3k3x

2
s y + cy 12

The final EOM (12) for the perturbation δx of x about xs is a linear EOM as com-
pared with (3) which is nonlinear in x. This provides an EOM from which approximate
responses may be readily solved for. The approximation is only valid for small motions
about the statically deflected position.

Figure E3.2.2(a) Soft mounted engine
with support input motion
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3.3 PLANAR (2D) RIGID BODY MOTION APPROXIMATION

Consider a rigid body moving in the x1, x2 plane as shown in Figure 3.3.1.

3.3.1 Translational Equations of Motion

This body may represent a part in a machine, or an entire machine or structure. Let n rep-
resent an inertial reference frame (fixed, or translating with constant velocity without rota-
tion) and dm a differential mass within the body. The forces on dm can be of an external type

d F , that is, from tractions, pressures, gravity, magnetic fields, and so on, or an internal

type d f , that is, from interaction with neighboring dm. The d f are assumed to satisfy

Newton’s third law of equal and opposite reactions, and pointG represents the instantaneous
location of the mass center. From Newton’s second law for particle kinetics,

dm
nd2

dt2
R = df + dF 3 3 1

or

dm
nd2

dt2
RG + q = df + dF 3 3 2

Integrate this equation over the body to obtain

m
nd2

dt2
RG +

B

nd2q

dt
dm =

B
df +

B
dF 3 3 3

wherem is the total mass of body B. The second integral in this expression may be written as

nd2

dt2 B
qdm =

nd2

dt2
0 = 0 3 3 4

Figure 3.3.1 Illustration of general shaped rigid body for 2D kinetic analysis
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by definition of the mass center and by virtue of the invariance of the integration domain,
that is, a rigid body. The third integral in (3.3.3) is zero if all internal interaction forces satisfy

Newton’s third law. The fourth integral is the resultant Fext of all external forces acting on

the body. Then (3.3.3) reduces to:

2D Translational Equation of Motion (TEOM)

maG =Fext 3 3 5

where

m =mass of bodyB

Fext = resultant of all external forces acting on bodyB=Fext1n1 +Fext2n2
3 3 6

and

aG =
nd2

dt2
RG = acceleration of mass centerG, in inertial frame n

=
nd2

dt2
xGn1n1 + x

G
n2n2 = xGn1n1 + x

G
n2n2 3 3 7

3.3.2 Rotational Equation of Motion

Define the “angular momentum vector” of body B relative to moment point A and sensed in
frame n as

nH
B A

=
B
r × dm

ndr

dt
3 3 8

Let (b1, b2) be the unit vectors of a reference frame that is fixed to the body and has its
origin at A, as shown in Figure 3.3.1. Then ωb n is the angular velocity of body B relative to
inertial frame n. Apply the transport theorem (2.11.27) to the derivative term in (3.3.8)

nd

dt
r =

bd

dt
r +ωb n × r 3 3 9

If B is a “rigid” body

bd

dt
r = 0 3 3 10

substitute (3.3.10) and (3.3.9) into (3.3.8) to obtain

nH
B A

=
B
r × ω b n × r dm 3 3 11
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Apply the cross product formula

g × c × d = g d c − g c d 3 3 12

to the integrand in (3.3.11) to obtain

r × ω b n × r = r r ωb n− r ωb n r 3 3 13

For 2D motion, r is perpendicular to ωb n so (3.3.13) reduces to

r × ω b n × r = r2 ω n3 3 3 14

Substitution of (3.3.14) into (3.3.11) yields

nH
B A

= IA ω 3 3 15

where

IA =
B
r2dm = mass moment of inertia of bodyB about pointAonB 3 3 16

ω =ωn3 = θn3 = angular velocity of B relative to inertial frame n 3 3 17

In order to derive the rotational equation of motion (REOM or Euler’s equation), take
the time derivative in frame n of Equation (3.3.8):

nd

dt
nH

B A
=

nd

dt B
r ×

nd

dt
r dm =

B

nd

dt
r ×

nd

dt
r + r ×

nd2

dt2
r dm 3 3 18

The first term in the integrand is zero (a × a = 0, for any a), and use Figure 3.3.1 to obtain

nd

dt
nH

B A
=

B
r ×

nd2

dt2
R−

nd2

dt2
RA dm 3 3 19

Substitute (3.3.1) and use the vector relation a× b = −b × a to obtain

nd

dt
nH

B A
=

B
r × df + dF +

nd2

dt2
RA ×

B
rdm 3 3 20

The first integral vanishes since neighboring dm have the same r and equal and opposite

d f or because df is parallel to the relative position vector connecting neighboring dm. The
second integral is the total moment acting on body B, as taken about point A. This includes
all contributions from external forces and torques:

ΓA =
B
r × dF

= resultant moment of all external forces and torques

acting on bodyB, taken about pointA

3 3 21
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Finally, the third integral in (3.3.20) may be written according to Figure 3.3.1 as

nd2

dt2
RA ×

B
rG A + q dm 3 3 22

B
qdm= 0 3 3 23

yielding

nd2

dt2
RA × rG Am 3 3 24

Collecting results into (3.3.20) yields

nd

dt
nH

B A
=ΓA−rG A ×m

nd2

dt2
RA 3 3 25

Summarizing:

2D Rotational Equation of Motion—Form 1 (2D REOM-1)

IA α + rG A ×maA =ΓA 3 3 26

where

IA = I
B b
33 =

B
r2dm =mass moment of inertia of bodyB about axis n3,

passing through pointA
3 3 27

α = θ1n3 3 3 28

ΓA = resultant moment of all external forces and torques acting on bodyB,

taken about pointA
3 3 29

aA =
nd2

dt2
RA = acceleration of pointA, as sensed in inertial frame n 3 3 30

A second, common form for the 2D REOM is obtained as follows:
By the parallel axis theorem:

IA = IG +mr2G A 3 3 31

and from 2D rigid body kinematics:

aG = aA + α × rG A + ω × ω× rG A 3 3 32

Insert (3.3.31) and (3.3.32) into (3.3.26) to obtain

IG +mr2G A α +mrG A × aG− α × rG A− ω × ω× rG A =ΓA 3 3 33
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Utilize the following vector identity:

rG A × α× rG A = r2G A α − rG A α rG A 3 3 34

The second term on the RHS is zero since rG A and α are perpendicular. Therefore,

rG A × α× rG A = r2G Aα 3 3 35

Utilize the vector identity:

rG A × ω× ω× rG A = rG A × ω rG A ω− ω ω rG A 3 3 36

The first term on the RHS is zero since rG A and ω are perpendicular, and the second

term on the RHS is zero since a × a = 0, for all a. Therefore,

rG A × ω× ω× rG A = 0 3 3 37

Substitution of (3.3.35) and (3.3.37) into (3.3.33) yields

IG α +mr2G A α + rG A × maG −mr2G A α =ΓA 3 3 38

Summarizing:

2D REOM—Form 2

IG α + rG A × maG =ΓA 3 3 39

where

IG =
B
q2dm =mass moment of inertia of bodyB about axis n3,

passing through its mass centerG
3 3 40

α = θ1n3 3 3 41

ΓA = resultant moment of all external forces and torques acting on bodyB,

taken about pointA
3 3 42

aG =
nd2

dt2
RG = acceleration of pointG, as sensed in inertial frame n 3 3 43

A third form of the 2D REOM is obtained by substituting (3.3.5) into (3.3.39):

2D REOM—Form 3

IG α + rG A ×Fext =ΓA 3 3 44

where

Fext = resultant of all external forces acting on bodyB 3 3 45
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Inspection of REOM—Forms I, II, and III shows:

2D REOM—IV

IA α =ΓA 3 3 46

if any of the following conditions are satisfied

1 Base point A is located at the mass center G

2 Base point A is fixed or moving with a constant velocity vector as sensed in

inertia frame n

3 rG A and
nd2

dt2
RA are always parallel 3 3 47

EXAMPLE 3.3.1 Resonant Vibrator for Compound Potting

Description: Various compounds are employed for potting components. These compounds
flowmore readily when vibrated with a high amplitude and frequency, providing an example
of a “good vibration.” Figure E3.3.1(a) depicts a specialized device for vibrating parts (mQ)

Figure E3.3.1(a) Resonant vibrator mechanism
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that are being filled with potting compound. The container that is intentionally vibrated has
massmQ and is held by arm FH using an electromagnetic. The mechanism is powered by the
double-acting hydraulic piston—cylinderwhich produces the force fp(t) atA. Springs atB and
D are installed to place themechanism’s natural frequency at 100 Hz. This frequency has been
experimentally determined to be an optimal shaking frequency for the potting process. The
alternating force fp is operated near this frequency to drive the system into resonance, thereby
yielding the highest vibration amplitudes at H. The shape of the mechanism results from
accommodating obstructions that exist in the manufacturing facility. The springs are seen
to be installed at 45 to the horizontal to avoid existing obstructions to the machine. Pivots
C andF are assumed to produce drag (friction) torques proportional to their angular velocities.

Objective:

(a) Derive the equation of motion (EOM) for this system by the Newton/Euler approach.

(b) Determine an expression for the power required to drive this mechanism.

Motivation: The EOM provides a means to simulate the mechanism to obtain:

(a) Power requirements, bearing loads, and motion amplitudes at H

Assumptions:

(a) Small angular motions, Rods AB and DE, remain horizontal, all joints are ideal (zero
rattle space), and Rods AB and DE are light in weight, so m2 =m4 = 0.

(b) At static equilibrium,

xA = θ3 = θ5 = 0 1

Solution:
Stiffness Transformations

As shown in Figure E3.3.1(a), the springs are oriented at 45 to avoid obstructions in the
machine. The effective stiffness in the x and y directions may be determined by considering
Figure E3.3.1(b).

From this figure, it is seen that

Fx

Fy
=

kβ 0

0 0

x

y
2

Figure E3.3.1(b) Transformation of stiffness in rotated frames
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or

F = k x 3

The coordinate transformation for this case is (Eq. 2.7.1)

x

y
=

cosβ sinβ

−sinβ cosβ

x

y
4

or

x = c x 5

Similarly,

F = c F 6

where

F=
Fx

Fy
7

Substitute (5) into (3) and premultiply by cT to obtain

cTF = cTk c x 8

F= k x 9

where

k = cTk c 10

cosβ −sinβ

sinβ cosβ

kβ cosβ kβ sinβ

0 0
=

kβcos2β kβ cosβ sinβ

kβ cosβ sinβ kβsin
2β

11

In general, if nspr springs are attached at angles β1, β2,…, βnspr, the following rela-
tion holds:

k=
nspr

i= 1

kβi
cos2βi cosβi sinβi
cosβi sinβi sin2βi

=
kxx kxy

kxy kyy
12

where

Fx

Fy
= k

x

y
13

For the small angle assumption, yB and yD are both approximately zero. Therefore, (12)
and (13) imply

Fk
Bx = kγcos

2 315 + kαcos
2 45 x=

1
2

kα + kγ x 14
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Fk
By = kγ sin 315 cos 315 + kα sin 45 cos 45 x =

1
2

kα−kγ x 15

Similarly,

Fk
Dx =

1
2

kα + kγ x, Fk
Dy =

1
2

kγ −kα x 16

Assume that for this mechanism

kα = kγ = k 17

Then

Fk
Bx =F

k
Dx = kx, Fk

By =F
k
Dy = 0 18

Free Body Diagrams
Figure E3.3.1(c) shows the FBDs for the mechanism in Figure E3.3.1(a).
Kinematic Constraints
From Figures E3.3.1(a) and E3.3.1(c), it can be seen that

L3
2
θ3 = x

θ3 =
2x
L3

19

Figure E3.3.1(c) Free body diagrams for mechanism in Figure E3.3.1(a)
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Similarly,

L5bθ5 = x

θ5 =
x

L5b
20

and

δH = L5θ5 =
L5
L5b

x 21

From the FBDs,

+ m1x = −cAx+ fp−Ax 22

+ m2x = 0∗x =Ax−Bx−F
k
Bx 23

For the next EOM, use 2D REOM-II (Equation (3.3.39)) with A=G:

+ IG3θ3 =
L3
2
Bx−cTCθ3− Fk

Dx +Dx
L3
2

24

+ m4x = 0∗x =Dx−Ex 25

For the next EOM, use 2D REOM-I (Equation (3.3.26)) with aA = 0:

+ IF5Qθ5 = −cTFθ5 + L5bEx + L5a + L5b θ5 w5 +mQg 26

where IF5Q includes the inertias of bar FH and of mQ. These five equations must be com-
bined to eliminate all internal reaction forces and produce one EOM in terms of δH. From
Equation (22),

Ax = −cAx + fp−m1x 27

From Equations (17), (23), and (27),

Bx =Ax−F
k
Bx = −cAx+ fp−m1x−kx 28

From (17), (19), (24), and (28),

Dx =
2
L3

L3
2
Bx−cTCθ3− IG3θ3 −Fk

Dx

=
2
L3

L3
2

−cAx + fp−m1x−kx −cTC
2x
L3

− IG3
2x
L3

−kx

= −m1−
4

L23
IG3 x + −cA−

4cTC
L23

x−2kx + fp

29

From (25),

Ex =Dx 30
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From (21), (26), (29), and (30),

IF5Q
δH
L5

= −cTF
δH
L5

+ L5b −m1−
4
L23

IG3
L5b
L5

δH + −cA−
4cTC
L23

L5b
L5

δH −2k
L5b
L5

δH + fp

+ L5a + L5b W5 +mQg
δH
L5

31

Summarizing:

MeqδH +CeqδH +KeqδH =Feq 32

where

Meq =
IF5Q
L25

+
L25b
L25

m1 +
4
L23

IG3 33

Ceq =
cTF
L25

+
L25b
L25

cA +
4cTC
L23

34

Keq = 2k
L25b
L25

−
L5a + L5b

L25
W5 +mQg 35

Feq =
L5b
L5

fp 36

The power required to drive this mechanism is

Pin
ow = fpx= fp

L5b
L5

δH 37

To obtain this power, solve Equation (32) for δH t and then evaluate Equation (37).

EXAMPLE 3.3.2 Labeling Mechanism

Description: The system shown in Figure E3.3.2(a) is part of a mechanism employed to
attach labels in a manufacturing process. Vibration of the system results from actuator forces
f1(t) and f2(t) and torque τ1(t).

Objective: Derive the two equations of motion for coordinates q1 and q2 utilizing Newton’s
laws, and derive an equation for determining the horizontal reaction force at pin A.

Assumptions: q1 and q2 are small motions.
Newton’s Law
It is helpful to employ the free body diagrams in Figure E3.3.2(b) for utilizing the

Newton’s law solution approach.
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The change in length of the k1−c1 impedance in Figure E3.3.2(c) is approximated by a
two-term Taylor series expansion (Example 2.4.1):

ΔD=D−D ≈ΔD q1 = 0 +
∂ΔD
∂q1 q2 = 0

q1

= D−D −
1
2

a−2q1
2 + b2

−1 2
2 a−2q1 −2 q1 = 0q1 =

2a

a2 + b2
q1

1

Figure E3.3.2(b) (i and ii) Free body
diagram of pendulum and cylinder

Figure E3.3.2(c) Inverted pendulum and k1−c1 impedance geometries

Figure E3.3.2(a) Vibrating mechanical system with two dofs and three excitations
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Therefore,

F1 = k1ΔD + c1ΔD=
2a

a2 + b2
k1q1 + c1q1 2

and then

F1x≈F1
a

a2 + b2
=

2a2

a2 + b2
k1q1 + c1q1 3

The k2−c2 force is given by

F2 = k2 q1 + L2q2 + c2 q1 + L2q2 4

The k3−c3 moment is given by

+ MA = −k3q2−c3q2 5

The torque above A of the pendulum’s weight is given, for small q2, by

+ MG =m2gL1 sinq2≈m2gL1q2 6

Newton’s laws (3.3.5) and (3.3.46) as applied to the disk in Figure E3.3.2(b) yield

+ m1q1 = −F1x−F2 +Ex + f1 7

+ IBθ = IB
−q1
r

= rF1x + rEx 8

Divide (8) by −r and add to (7)

m1 +
IB
r2

q1 = −F1x−F2 + f1−F1x

= −2
2a2

a2 + b2
k1q1 + c1q1 −k2 q1 +L2q2 −c2 q1 + L2q2 + f1 t

9

Newton’s law as applied to the pendulum in Figure E3.3.2(b) yields

IAq2 =MA + τ1−L2F2 + L1f2 +MG

= −k3q2−c3q2 + τ1 +L1f2−L2 k2 q1 + L2q2 + c2 q1 + L2q2 +m2gL1q2
10

Expressing (9) and (10) in matrix–vector form yields

Mq +Cq +Kq =F t n × 1 11

where

n = 2 12

q=
q1

q2
13
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M=
m1 + IB r2 0

0 IA
14

C=
αc1 + c2 c2L2

c2L2 c3 + c2L22
15

K=
αk1 + k2 k2L2

k2L2 k3 + k2L22−m2gL1
16

F t =
f1

τ1 +L1f2
17

α=
4a2

a2 + b2
18

Equation (11) may be integrated to obtain q1(t), q2(t), q1 t , and q2 t , after which the
reaction force Ax may be obtained via Newton’s laws applied to Figure E3.3.2(b):

+ m2xG =m2 −L1q2 =Ax− f2 +F2 19

Ax = −m2L1q2 + f2− k2 q1 + L2q2 + c2 q1 + L2q2 20

where q2 may be obtained from Equation (10).

EXAMPLE 3.3.3 Static Equilibrium Reference (SEP): Newton Approach

Objective: A common practice in formulating equations of motion is to reference deflec-
tions relative to the static equilibrium state and to ignore the static forces (typically the
weight) that caused the deflections at static equilibrium. The following examples illustrate
the method and a possible pitfall:

EXAMPLE 1
Consider a mass m suspended by a linear spring and damper as shown in Figure E3.3.3(a).

Figure E3.3.3(a)-(i) shows the spring in its zero force state which establishes the
unloaded (UL) reference line A−A. The weight of the mass compresses the spring by the

(i) (ii) (iii)

Figure E3.3.3(a) (i–iii) SEP and UL references for a simple m, k, c system
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static deflection xs and establishes the SEP reference line B−B. The dynamic force f(t) is
applied and m is displaced by δx away from the SEP. Static equilibrium in state
(ii) requires that

kxs−mg = 0 1

Newton’s law applied to state (iii) yields

mx = −kx−cx +mg + f t 2

Substitute

x = xs + δx t 3

into (2) to obtain

mδx = −kxs−kδx−cδx +mg + f t 4

Substitute (1) into (4) to obtain

mδx = −kδx−cδx + f t 5

Equation (5) is also the result obtained simply by ignoring the mg force and writing the
force expressions in terms of the coordinate δx referenced relative to SEP, instead of x refer-
enced relative to UL.

EXAMPLE 2
The system in Figure E3.3.3(b) consists of a hinge supported bar, coil spring, damper, static
torque Γs, and dynamic torque ΓD. The static deflection angle αs due to Γs may be large;
however, deflections δα about αs are assumed to be small (typically < 5 ), where

α= αs + δα 1

Figure E3.3.3(b) shows the unloaded (UL) reference line AA with Γs, ΓD, and mg
removed. The combined actions of the weight (mg) and static torque Γs rotate the bar to
the SEP reference AB. The dynamic torque ΓD(t) is applied and the bar is displaced away

Figure E3.3.3(b) SEP and UL references for pendulum with static offset angle αs
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from SEP by the angle δα. Static equilibrium at the SEP requires that the sum of the moments
about A equals zero:

Γs−mgLsinαs−kαs = 0 2

Newton’s law (3.3.46) applied to state AC requires that

mL2α =Γs +ΓD−mgLsinα−kα−cα= 0 3

Substitute

α= αs + δα 4

into (3) to obtain

mL2δα =Γs +ΓD−mgLsin αs + δα −kαs−kδα−cδα 5

Substitute (2) into (5) to obtain

mL2δα = −mgL sin αs + δα −sinαs −kδα−cδα +ΓD 6

Expand the first sine term

mL2δα = −mgL sinαs cosδα + cosαs sinδα−sinαs −kδα−cδα +ΓD t 7

For small δα, let

cosδα≈1 8

sinδα≈δα 9

Then (7) becomes

mL2δα = −mgLcos αs δα−kδα−cδα +ΓD t 10

Consider the result obtained by ignoringmg and Γs and evaluating the motions as refer-
enced from SEP instead of UL. From Figure E3.3.3(b),

mL2δα =ΓD−kδα−cδα 11

Note that themgLcos(αs)δα term is missing in (11). Thus, by inspection of (10) and (11),
the latter, SEP-referenced, approach is valid only if

k > >mgLcos αs 12

that is, a “stiff” spring system. These two examples illustrate that use of static equilibrium
state-referenced variables simplifies the derivation of the equations of motion but may yield
erroneous results in some cases.

EXAMPLE 3.3.4 Symbolic Math Code Assistance for Writing Equations of Motion

Motivation: The algebra involved with writing equations of motion for a single- or
multiple-degree-of-freedom system may become very tedious and prone to human error.
Use of a symbolic math code like MAPLE, MATLAB-Symbolic, or MATHEMATICA
can greatly simplify this process and significantly reduce human errors.

122 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



Objective: Figure E3.3.4(a) depicts a mechanical system with support excitation angle β(t)
and rigid masses m1,m2,m3, and IG4. Assume that all coordinates are referenced to their
static equilibrium positions and that all angles are small. Utilize the symbolic math code
MAPLE to obtain the EOM for the coordinates y1 y2 y3 θ1 θ2 .

Solution Outline:

(a) Code expressions for the following in MAPLE (or MATLAB-Symbolic – pg. 45):

(i) Absolute displacements y4 through y9 in terms of β, L1 through L5, y3, θ1, θ2, and R

(ii) Relative displacements (δ1 through δ5) across the springs and dampers, in terms of
y1 through y9

(iii) Internal forces F1 through F5 in terms of δi, δi, ci, and ki
(b) Code the y1, y2, y3, θ1, and θ2 equations of motion (EOM) in terms of Fi, Li, yi, θi and the

inertias (m1,m2,m3, IG3, and IG4).

(c) Code calculates five EOMs in (b) in terms of y1 through y3, θ1, θ2, R, Li, ci, β, and ki.

(d) Identify all ri, Mii, Cij, and Kij coefficients, for j ≥ i, in the matrix expression

Mq +C q +K q = r t 5 × 1

for the five EOMs where

q= y1 y2 y3 θ1 θ2
T 5 × 1

and rows 1–5 are the EOM’s in the order y1, y2, y3, θ1, and θ2.

Figure E3.3.4(a) Multidegree-of-freedom vibrating system model
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Solution:

(a) (i) This part of the problem seeks to reduce the number of coordinates by identifying
dependency relations between the coordinates. The set of independent coordinates
are θ1, θ2, y1, y2, and y3:

y4 = −L1β, y5 = L2β, y6 = y3−L4θ1, y7 = y3 + L5θ1,

y8 = y3− L3 +L4 θ1, y9 = −Rθ2

(ii) The relative displacements are required for evaluating the spring and damper
forces:

δ1 = y1−y4, δ2 = L6−y1, δ3 = y2−y5, δ4 = y7−y2, δ5 = y8−y9

(iii) Now, the spring and damping forces may be expressed in terms of the relative dis-
placements and relative velocities:

F1 = k1δ1 + c1δ1, F2 = k2δ2 + c2δ2, F3 = k3δ3 + c3δ3,

F4 = k4δ4 + c4δ4, F5 = k5δ5 + c5δ5

(b) The EOMs are obtained via application of (3.3.5) and (3.3.46) to the above free body
diagrams:

+ m1y1 =F2−F1 1

+ m2y2 =F4−F3 2

+ m3y3 = −F2−F4−F5 3

+ IG3θ1 = −L5F4 + L4F2 + L3 +L4 F5 4

+ IG4θ2 = −RF5 5
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(c) MAPLE performs the derivatives of the relative displacement expressions, sums the
terms in the EOMs from (b), and collects coefficients of like expressions in the EOMs:

> restart;
>
> # Absolute Displacements
> y[4]:= -L[1]*beta(t);
> y[5]:= L[2]*beta(t);
> y[6]:= y[3](t)-L[4]*theta[1](t);
> y[7]:= y[3](t)+L[5]*theta[1](t) ;
> y[8]:= y[3](t)-(L[3]+L[4])*theta[1](t);
> y[9]:= -R*theta[2](t);

y4 = −L1β t y5 = L2β t y6 = y3 t −L4θ1 t

y7 = y3 t +L5θ1 t y8 = y3 t − L3 + L4 θ1 t y9 = −R θ2 t

> # Relative Displacements

> delta[1]:= y[1](t)-y[4];
> delta[2]:= y[6]-y[1](t);
> delta[3]:= y[2](t)-y[5];
> delta[4]:= y[7]-y[2](t);
> delta[5]:= y[8]-y[9];

δ1 = y1 t +L1β t δ2 = y3 t −L4θ1 t −y1 t δ3 = y2 t −L2β t

δ4 = y3 t +L5θ1 t −y2 t δ5 = y3 t − L3 + L4 θ1 t +Rθ2 t

> # Internal Forces

> F[1]:=k[1]*delta[1]+c[1]*diff(delta[1],t);
> F[2]:=k[2]*delta[2]+c[2]*diff(delta[2],t);
> F[3]:=k[3]*delta[3]+c[3]*diff(delta[3],t);
> F[4]:=k[4]*delta[4]+c[4]*diff(delta[4],t);
> F[5]:=k[5]*delta[5]+c[5]*diff(delta[5],t);

F1 = k1 y1 t + L1β t + c1
∂

∂t
y1 t + L1

∂

∂t
β t

F2 = k2 y3 t −L4θ1 t −y1 t + c2
∂

∂t
y3 t −L4

∂

∂t
θ1 t −

∂

∂t
y1 t

F3 = k3 y2 t −L2β t + c3
∂

∂t
y2 t −L2

∂

∂t
β t

F4 = k4 y3 t + L5θ1 t −y2 t + c4
∂

∂t
y3 t + L5

∂

∂t
θ1 t −

∂

∂t
y2 t

F5 = k5 y3 t − L3 + L4 θ1 t +R θ2 t

+ c5
∂

∂t
y3 t − L3 + L4

∂

∂t
θ1 t +R

∂

∂t
θ2 t

> ### Y1 Equation of Motion
> e1:= m[1]*diff(y[1](t),t,t)+F[1]-F[2]:
> e2:=collect(e1,theta[2](t)):
> e3:=collect(e2,theta[1](t)):
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> e4:=collect(e3,y[3](t)):
> e5:=collect(e4,y[2](t)):
> e6:=collect(e5,y[1](t)):
> e7:=collect(e6,diff(theta[2](t),t)):
> e8:=collect(e7,diff(theta[1](t),t)):
> e9:=collect(e8,diff(y[3](t),t)):
> e10:=collect(e9,diff(y[2](t),t)):
> eY1_final:=collect(e10,diff(y[1](t),t));

eY1 _ final = c1 + c2
∂

∂t
y1 t −c2

∂

∂t
y3 t + c2L4

∂

∂t
θ1 t + k1 + k2 y1 t

−k2y3 t + k2L4θ1 t +m1
∂2

∂t2
y1 t + k1L1β t + c1L1

∂

∂t
β t

> ### Y2 Equation of Motion
> e1:= m[2]*diff(y[2](t),t,t)+F[3]-F[4]:
> e2:=collect(e1,theta[2](t)):
> e3:=collect(e2,theta[1](t)):
> e4:=collect(e3,y[3](t)):
> e5:=collect(e4,y[2](t)):
> e6:=collect(e5,y[1](t)):
> e7:=collect(e6,diff(theta[2](t),t)):
> e8:=collect(e7,diff(theta[1](t),t)):
> e9:=collect(e8,diff(y[3](t),t)):
> e10:=collect(e9,diff(y[2](t),t)):
> eY1_final:=collect(e10,diff(y[1](t),t));

eY1 _ final = c3 + c4
∂

∂t
y2 t −c4

∂

∂t
y3 t −c4L5

∂

∂t
θ1 t + k3 + k4 y2 t

−k4y3 t −k4L5θ1 t +m2
∂2

∂t2
y2 t −k3L2β t −c3L2

∂

∂t
β t

> ### Y3 Equation of Motion
> e1:= m[3]*diff(y[3](t),t,t)+F[2]+F[4]+F[5]:
> e2:=collect(e1,theta[2](t)):
> e3:=collect(e2,theta[1](t)):
> e4:=collect(e3,y[3](t)):
> e5:=collect(e4,y[2](t)):
> e6:=collect(e5,y[1](t)):
> e7:=collect(e6,diff(theta[2](t),t)):
> e8:=collect(e7,diff(theta[1](t),t)):
> e9:=collect(e8,diff(y[3](t),t)):
> e10:=collect(e9,diff(y[2](t),t)):
> eY1_final:=collect(e10,diff(y[1](t),t));

eY1 _ final = c5 + c2 + c4
∂

∂t
y3 t + −c2L4 + c4L5 + c5 −L3−L4

∂

∂t
θ1 t

+ c5R
∂

∂t
θ2 t + k2 + k4 + k5 y3 t + −k2L4 + k5 −L3−L4 + k4L5 θ1 t

+ k5R θ2 t +m3
∂2

∂t2
y3 t −k2y1 t −c4

∂

∂t
y2 t −k4y2 t −c2

∂

∂t
y1 t

126 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



> ### Theta1 Equation of Motion
> e1:= I[G3]*diff(theta[1](t),t,t)+L[5]*F[4]-L[4]*F[2]-(L[3]

+L[4])*F[5]:
> e2:=collect(e1,theta[2](t)):
> e3:=collect(e2,theta[1](t)):
> e4:=collect(e3,y[3](t)):
> e5:=collect(e4,y[2](t)):
> e6:=collect(e5,y[1](t)):
> e7:=collect(e6,diff(theta[2](t),t)):
> e8:=collect(e7,diff(theta[1](t),t)):
> e9:=collect(e8,diff(y[3](t),t)):
> e10:=collect(e9,diff(y[2](t),t)):
> eY1_final:=collect(e10,diff(y[1](t),t));

eY1 _ final = c4L5−c2L4− L3 + L4 c5
∂

∂t
y3 t

+ c4L25 + c2L
2
4− L3 + L4 c5 −L3−L4

∂

∂t
θ1 t − L3 + L4 c5R

∂

∂t
θ2 t

+ k2L4y1 t −k4L5y2 t + k4L5−k2L4− L3 + L4 k5 y3 t

+ k4L25 + L
2
4k2− L3 + L4 k5 −L3−L4 θ1 t − L3 + L4 k5R θ2 t

+ IG3
∂2

∂t2
θ1 t −c4L5

∂

∂t
y2 t + c2L4

∂

∂t
y1 t

> ### Theta2 Equation of Motion
> e1:= I[G4]*diff(theta[2](t),t,t)+R*F[5]:
> e2:=collect(e1,theta[2](t)):
> e3:=collect(e2,theta[1](t)):
> e4:=collect(e3,y[3](t)):
> e5:=collect(e4,y[2](t)):
> e6:=collect(e5,y[1](t)):
> e7:=collect(e6,diff(theta[2](t),t)):
> e8:=collect(e7,diff(theta[1](t),t)):
> e9:=collect(e8,diff(y[3](t),t)):
> e10:=collect(e9,diff(y[2](t),t)):
> eY1_final:=collect(e10,diff(y[1](t),t));

eY1 _ final =R c5 −L3−L4
∂

∂t
θ1 t +R2c5

∂

∂t
θ2 t + k5R y3 t

+R k5 −L3−L4 θ1 t + k5R2θ2 t + IG4
∂2

∂t2
θ2 t +R c5

∂

∂t
y3 t

(d) Use the EOMs from part (c) to identify all coefficient terms in the matrix–vector form of
the system EOM:

Mq +C q +K q = r t 5 × 1
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where

q= y1 y2 y3 θ1 θ2
T 5 × 1

and rows 1–5 are the EOMs in the order y1, y2, y3, θ1, and θ2. The results of this match-
ing process are

• From y1 equation,

M11 =m1

c11 = c1 + c2, c12 = 0, c13 = −c2, c14 = c2L4, c15 = 0

k11 = k1 + k2, c12 = 0, k13 = −k2, k14 = k2L4, k15 = 0

r1 t = −k1L1β t −c1L1β t

• From y2 equation,

M22 =m2

c21 = 0, c22 = c3 + c4, c23 = −c4, c24 = −c4L5, c25 = 0

k21 = 0, k22 = k3 + k4, k23 = −k4, k24 = −k4L5, k25 = 0

r2 t = k3L2β t + c3L2β t

• From y3 equation,

M33 =m3, r3 t = 0

c31 = −c2, c32 = −c4, c33 = c2 + c4 + c5, c34 = −c2L4 + c4L5 + c5 −L3−L4 , c35 =Rc5

k31 = −k2, k32 = −k4, k33 = k2 + k4 + k5, k34 = −k2L4 + k5 −L3−L4 + k4L5, k35 =Rk5

• From θ1 equation,

M44 = IG3, r4 t = 0

c41 = c2L4, c42 = −c4L5, c43 = c4L5−c2L4−c5 L3 +L4 ,

c44 = c4L25 + c2L
2
4 + c5 L3 +L4

2, c45 = − L3 +L4 Rc5

k41 = k2L4, k42 = −k4L5, k43 = k4L5−k2L4−k5 L3 +L4 ,

k44 = k4L25 + k2L
2
4 + k5 L3 +L4

2, k45 = − L3 +L4 Rk5

• From θ2 equation,

M55 = IG4, r5 = 0

c51 = c52 = 0, c53 =Rc5, c54 = − L3 + L4 Rc5, c55 =R
2c5

k51 = k52 = 0, k53 =Rk5, k54 = − L3 + L4 Rk5, k55 =R
2k5
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3.4 IMPULSE AND MOMENTUM

3.4.1 Linear Impulse and Momentum

The Newton translational equation of motion (TEOM) was shown to be Equation (3.3.5) for
the rigid body in Figure 3.3.1:

m
nd

dt
nVG =Fext = resultant of all external forces acting on the body

m= body mass 3 4 1

nVG =
nd

dt
RG = velocity vector of the body’smass center, as viewed in inertial frame n

Integration of Newton’s law between times t1 and t2 yields:

Linear Impulse and Momentum Principle

nPG t2 −nPG t1 = IL t1, t2 3 4 2

where

nPG =mnVG = linear momentum vector of the rigid body as sensed in frame n 3 4 3

IL t1, t2 =
t2

t1

Fextdt = linear impulse received by the body fromFext between times t1 and t2

3 4 4

For external force-free motion

Conservation of Linear Momentum (COLM)

If

Fext = 0 3 4 5

then

IL t1, t2 = 0 3 4 6

then Equation (3.4.2) implies

nPG = a constant vector between times t1 and t2, as sensed in the inertial frame 3 4 7

COLM is often utilized to solve multibody collision problems. Figure 3.4.1 depicts two

bodies colliding with equal and opposite reaction forces FC .

The forces F1 and F2 represent external forces such as arising from springs, dampers,
gravity, or other sources. For body 1, Equation (3.4.2) implies
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nPG1 t2 −nPG1 t1 =
t2

t1

F1 +FC dt 3 4 8

For body 2, Equation (3.4.2) implies

nPG2 t2 −nPG2 t1 =
t2

t1

F2−FC dt 3 4 9

Summing these equations cancels the contact force, yielding

ΔnPG1 +ΔnPG2 =
t2

t1

F1 +F2 dt 3 4 10

If the collision duration is very small, an engineering approximation is that

t2

t1

F1 +F2 dt≈ F1 +F2 Δt≈ F1 +F2 0 = 0 3 4 11

from which (3.4.10) becomes

ΔnPG1 +ΔnPG2 = 0 3 4 12

or

nPG1 t2 −nPG1 t1 + nPG2 t2 −nPG2 t1 = 0 3 4 13

or

nPG1 +
nPG2

t2
= nPG1 +

nPG2
t1

3 4 14

Therefore, the sum of the individual linear momentums is conserved. The system mass cen-
ter location is given by

rG =
m1rG1 + m2rG2

m1 +m2
3 4 15

Figure 3.4.1 Collision between two
rigid bodies
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Define the system linear momentum as

nPG = m1 +m2
nVG = m1 +m2

nd

dt
rG =m1

nVG1 +m2
nVG2 =

nPG1 +
nPG2 3 4 16

so that (3.4.14) implies

nPG
t2
= nPG

t1
3 4 17

that is, the “total system” momentum is also conserved. To solve for the motions of both
masses following collision requires at minimum one additional equation. The relation

e =
vAn1−v

A
n2

vBn1−v
B
n2

3 4 18

is often used, where e is an experimentally measured coefficient of restitution; B and A refer
to before and after collision, respectively; and n indicates the velocity components normal to
the surfaces at the contact point. Only one velocity is unknown following collision if the
impact is perfectly plastic (bodies stick together) as depicted in Figure 3.4.2. In this case,
(3.4.18) is not required.

EXAMPLE 3.4.1 Platform Fire and Piping Damage

Statement: Forensic engineers perform accident reconstruction simulations and tests to
explain sources of machinery, systems, or structural failures as requested by client compa-
nies or individuals involved in related lawsuits. To illustrate their work, consider the

Figure 3.4.2 Perfectly plastic collision of concrete rubble with trailer bed
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following hypothetical case history. A fire on a platform in a large petrochemical plant was
traced to leakage of combustible gases through cracks in piping attached to a hydrogen gas
compressor on the platform. Downtime for the platform cost the company $10M in lost
product. The insurance carrier for the plant has sued the plant builder charging that inade-
quate piping bellows installation led to thermal expansion-induced, low-cycle fatigue failure
(cracking) of the pipes. The builder on the other hand has learned that one week prior to the
fire, a heavy vessel accidentally fell onto the platform while being transported over it by an
overhead crane. Although the vessel did not hit any piping, it did cause a significant vertical
vibration of the platform and attached piping. The piping stress due to the vibration may be
determined via a finite element-based software package which requires the platform motion
as input. The platform’s motion after impact can be estimated utilizing the idealized model
in Figure E3.4.1(a). The equivalent stiffness keq and damping ceq represent the combined
properties of the columns and attached piping. The mass mpc is the mass of the platform
and H2 compressor, and the mass mv is the mass of the dropped vessel.

Objective:Determine the initial velocity of vertical motion of the platform following impact
by the dropped vessel. This and the zero initial position may be used to estimate the platform
vibration following impact.

Solution:

(a) Draw FBDs for the impact process as shown in Figure E3.4.1(b).

(b) List assumptions: It is assumed that the time Δt = 0+ −0− required for the vessel to
“stick” onto the platform and form a single mass m is very short.

(c) Apply the COLM to determine the velocity v of m at t = 0+ . Use “+” superscripts to
denote just after impact t = 0+ and “−” superscripts to denote just before impact
t = 0− . In considering the system of two masses, the impulse of the contact forces can-
cels as discussed in the derivation of Equation (3.4.10). The impulse of the external
forces, that is,

Figure E3.4.1(a) Illustration for machine dropped on platform and equivalent model
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0+

0−
Wv−Fd −Fk dt≈ Wv−Fd −Fk Δt≈0 1

since

• Δt is almost zero, and

• Fd = ceqx and Fk = keqx are both nearly zero because both x and xwere zero at t = 0−

and barely change in the time interval Δt.
Under these assumptions, Equation (3.4.14) may be applied:

nPGv +
nPGpc

0−
= nPGv +

nPGpc
0+

2

mvv−v +mpcv−pc =mvv +v +mpcv +pc

mvv−v + 0= mv +mpc v=mv
3

or

v =
mvv−v
m

4

The same result is obtained using the “System” COLM form in (3.4.17), that is,

• The system mass center’s position and velocity just before impact are

x−G =
mvx−v +mpcx−pc

mv +mpc
v−G =

mvv−v +mpcv−pc
mv +mpc

=
mvv−v
m

5

Therefore, the system’s total momentum just prior to impact is

nP−
G =mvG =mvv

−
v 6

Figure E3.4.1(b) FBDs for the platform—vessel impact simulation
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• The system mass center’s position and velocity just after impact are

x+G =
mvx + +mpcx +

mv +mpc
v +G =

mvv +mpcv

mv +mpc
= v 7

Therefore, the system’s total momentum just after impact is

nP+
G =mv 8

Equate (6) and (8) by the System COLM in (3.4.17) to obtain

mv=mvv
−
v 9

or

v =
mvv−v
m

10

which is the same as (4).

Summary: The result in (4) or (10) provides the initial velocity to determine the platform’s
motion for all time t, following the vessel impact. The piping stresses may then be deter-
mined given the platform’s motion.

3.4.2 Angular Impulse and Momentum

The Newton REOM for a single rigid body was shown to be Equation (3.3.25):

nd

dt
nH

B A
=ΓA 3 4 19

if

(a) base point A is located at mass center G, or

(b) base point A is fixed or moving with a constant velocity vector as sensed in inertial
frame n, and where

ΓA = resultant moment of all external forces and torques acting on

bodyB, taken about pointA
3 4 20

nH
B A

=
B
r × dm

ndr
dt = IA ω

= angular momentum vector of bodyB relative to moment point

A, as sensed in inertial frame n ref Eqs 4 3 8 and 4 3 15

3 4 21

Integration of (3.4.19) between times t1 and t2 yields:
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Angular Impulse and Momentum Theorem

If

nH
B A

t2 −nH
B A

t1 = IA t1, t2 3 4 22

where

IA t1, t2 =
t2

t1

ΓAdt = angular impulse received by the body fromΓA between times t1 and t2

3 4 23

For external moment-free motion

Conservation of Angular Momentum (COAM)

If

ΓA = 0 t1 < t < t2 3 4 24

then

IA t1, t2 = 0 3 4 25

and Equation (3.4.22) implies

nH
B A

= constant vector between times t1 and t2, as sensed in inertial frame n 3 4 26

The angular momentum of a point massm, with position vector rc o, about fixed point o
is from (3.3.8)

nH
c o

= rc o × mvc o 3 4 27

where o is a point that is fixed in inertial space n. Differentiate (3.4.27) in frame n

nd

dt
nH

c o
= rc o × mvc o + rc o × mvc o =mvc × vc + rc o ×Fc = rc o ×Fc =Γc o 3 4 28

Integrating from t1 to t2 yields:

Angular Impulse-Momentum Principle for a Point Mass about Fixed Point O

nH
c o

t2 −nH
c o

t1 = I
c o

=
t2

t1

Γc odt 3 4 29

where

Γc o = rc o ×Fc 3 4 30

Fc is the resultant of all forces acting on mass mwhich has position vector rc o and
nH

c o

is defined by (3.4.27).
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EXAMPLE 3.4.2 Ship Motion for Machinery Fault Study Following Cargo Drop Upset

Statement: Continuous operation of onboard machinery is of prime importance following
an upset event. Some typical machines on a ship may include pumps, compressors, turbines,
motors, gearboxes, and so on. Critical machines may be soft mounted on the decks (as car
chassis are on suspension springs and shock absorbers and as large buildings are near
earthquake fault lines) to mitigate the force they experience during a support motion upset
event. In approaching the problem of design for isolating shipboard machinery, the upset
motions of the ship must first be calculated (it is much cheaper and less dangerous than
performing a test!). Thus, here we consider a study of the accidental dropping of a heavy
cargo load from an overhead crane onto the deck of a docked ship. This is depicted in
Figure E3.4.1(a).

For simplicity, assume that the crate (1) falls in the center plane of the ship (plane of
mass center G) so that the ship (2) only pitches (θ2) and heaves (x3G) but does not roll
θ3 = 0 , or yaw θ1 = 0 . The ship’s mass includes its structural mass, plus the “added mass”
that results from accelerating the surrounding water when it oscillates:

m=ms +mA 1

Likewise, the ship’s inertia includes an “added” mass contribution due to the water

J = I22 = Js + JA 2

The added mass is a significant amount and can be nearly equal to the mass of the water
displaced by the vessel, that is, from Blagoveshchensky (1962), the mass of the water vol-
ume equivalent to the submerged portion of the vessel volume.

Objective: Simulation of the ship’s motion after impact of the dropped cargo requires solu-
tion of its TEOM and REOM for a given set of initial conditions (ICs). The only objective of
this example is to demonstrate howCOLM and COAMmay be utilized to determine the ICs:

v3G 0 = v3G0 = x3G 0 3

and

ωb2 0 =ωb20 = θ2 0 4

Motivation: In actuality, the overarching motivation would be to determine the ship’s
motion at the location of some critical machine (point A in Figure E3.4.2(a)) and then to
use this motion as the inputs for a study/simulation of the machine’s response to the motion
of the ship.

Figure E3.4.2(a) Ship subjected to sudden impact by dropped cargo load
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Solution: The dropped cargo is treated as a point mass in the following analysis.
From (3.4.29),

nH
c o

t2 −nH
c o

t1 = I
c o

=
t2

t1

Γc odt 5

Apply (5) to the cargo load from just prior to impact to just after impact:

−amcvc + − −amcvc− =
0+

0−
aFc−aWc dt≈aFcΔt−aWcΔt 6

The cargo is assumed to stick to the ship after impact so by (2.11.19)

t = 0 + , nvc =
nvG + svc G +ωs n × rc G 7

where “s” indicates a frame of reference attached to the ship. Therefore,

vc+ = v3G0 + −ωb20a 8

and (6) becomes

amc v3G0−aωb20 = amcvc− −aWcΔt−aFcΔt 9

The angular momentum of the ship is from (3.3.15)

H2 = Jωb2 10

so that from (3.4.22)

Jωb2 0+ −Jωb2 0− =
t2

t1

ΓGdt =
t2

t1

−aFc +ΓB dt = −aFcΔt +ΓBΔt 11

where ΓB is a buoyancy restoring torque which results from Archimedes principle and is
proportional to x3G and θ2. The terms (aWcΔt) and (ΓBΔt) are assumed to be negligible
as Δt 0, so subtracting (9) from (11) yields

Jωb20−amcv3G0 + a
2mcωb20 = −amcvc− 12

Apply the linear impulse–momentum principle (3.4.2)–(3.4.4) to the cargo

mcvc + −mcvc− =
0+

0−
−Fc +W dt 13

or from (8)

mc v3G0−aωb20 mcvc− −FcΔt 14

Apply the linear impulse–momentum principle to the ship

mv3G + −mvG− =
0+

0−
Fc +Wc +FB Δt 15

where

FB = buoyant force 16

Chapter 3 Equations of Motion by Newton’s Laws 137

www.konkur.in



Then, for Δt 0,

mv3G0 =FcΔt 17

Add (17) and (14)

m+mc v3G0−amcωb20 =mcvc− 18

Combine (18) and (12) to obtain

m+mc −amc

−amc J + a2mc

v3G0

ωb20
=

mcvc−

−amcvc−
19

Therefore,

v3G0 =
J

m +mc J +mmca2
mcvc− 20

ωb20 =
−am

m+mc J +mmca2
mcvc− 21

Summary: This example has demonstrated how to use the angular and linear impulse–
momentum principles to obtain the ICs for solving for the motion of a ship when a cargo
load is accidentally dropped onto one of its decks.

3.5 VARIABLE MASS SYSTEMS

Newton’s lawmust be modified from its form in (3.3.5) for systems with time-varying mass.
Consider the object that is gaining mass as depicted in Figure 3.5.1.

From (3.4.2)–(3.4.4), the impulse–momentum balance applied to Δm between t and
t +Δt becomes

Δm VG +ΔVG −ΔmVa =
t +Δt

t
−FCdt 3 5 1

Figure 3.5.1 Variable mass object subjected to external force resultant F
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where ΔVG is the change in the velocity of the body’s mass center between t and t +Δt. An
impulse–momentum balance applied to the body between t and t +Δt becomes

m VG +ΔVG −mVG =
t +Δt

t
FCdt +

t +Δt

t
Fdt 3 5 2

Adding these equations yields

m+Δm VG +ΔVG −mVG−ΔmVa =
t +Δt

t
Fdt 3 5 3

Divide by Δt, cancel terms, and take the limit as Δt 0 to obtain

m t a =mVa m + F t 3 5 4

where

m= the rate of gaining or losing mass experienced by the body

a =
d V

dt
,Va m = relative velocity of the entering or exiting mass 3 5 5

EXAMPLE 3.5.1 Partially Lifted Vertical Chain Supported by Two Springs

Description: The chain has mass per unit length m and is suspended above the floor by a
length y(t) (Figure E3.5.1(a)). The system is the suspended portion of the chain and gains or
losses mass as the chain vibrates in the vertical direction.

Objective: To derive the equation of motion for the vertical movement of point A.

Solution: The system is the total length of chain that is suspended above the floor;
therefore,

m t =my t 1

Figure E3.5.1(a) Vertical chain supported by two springs
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The rate of change of mass experienced by the system (suspended part of the chain) is

m=m
dy

dt
2

The relative velocity of the entering or exiting mass is

Va m =Va−Vm = 0−
dy

dt
3

since the chain on the floor has zero velocity whether it is about to enter or after it has exited
the suspended portion of the chain, as the chain vibrates vertically. The net external force is
given by

F = −m t g + k y−y t for y< y 4

where y is the suspended length of the chain when it is raised up and first attached to the
unstretched spring. The inequality in (5) is included to express the condition that the chain
must stay in tension, since it cannot be in compression. Substituting (1)–(4) into (3.5.4)
yields

my t
d2y

dt2
=m

dy

dt
−
dy

dt
−my t g + k y−y t

or

myy +my2 +myg + ky = ky for y < y

5

which is the desired equation of motion (EOM).

3.6 CHAPTER 3 EXERCISES

3.6.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website: www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding a significant cost savings for the college student, and is updated.

3.6.2 Exercise Goals

The goal of the exercises in Chapter 3 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) The governing differential equation(s) of equilibrium is not an end but instead an
enabling device for system simulation which is a critical task for design and trouble-
shooting. Exercises task the students with obtaining numerically integrated responses
using their derived governing equations.

(b) Deriving governing differential equations using Newton’s law for fairly complex sys-
tems. These systems include many kinematic constraints which fortunately were treated
as an independent skill in Chapter 2.

(c) Utilizing impulse–momentum theory in order to obtain initial conditions that are
required to simulate the transient time response of a vibrating system.
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3.6.3 Sample Exercises: 3.8 and 3.21

Exercise (3.8) requires use of both Newton’s translational and rotational equations of
motions and has some challenging kinematic constraint conditions. Exercise (3.21) has
strong application appeal and requires kinematic constraint solving skills.

REFERENCES
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Chapter 4

Equations of Motion by
Energy Methods

4.1 INTRODUCTION

The use of an energymethod-based approachmay significantly simplify the derivation of the
governingdifferential equations ofmotion (EOMs). To illustrate this, consider Example 3.3.1
which demonstrated how an EOM for a multimember rigid body (RB) system could be
derived by applyingNewton’s law to each individual member. Figure E3.3.1(c) shows forces
A, B,D, E that act equal and opposite on interconnected links and forces C and F that act
between a link and ground. All six of these forces share something in common; they all per-
form zero work, where the work of a force is the integral of the product of its tangent com-
ponent along a path times the differential of path length. Force A moves along a path and
because of its directions performs negative work on m1 and an equal and opposite amount
of positive work on m2, so its net work equals zero. Similar conclusions hold for the forces
at B,D, E. The forces at C and F do not move so their work is also zero. A significant effort
was required to include these six forces on the free bodydiagrams, only to later eliminate them
in the equations to obtain the systemEOM.An advantage of energy-basedmethods for deriv-
ing the EOM is the elimination of this inefficient step of including zero work forces only to
eliminate themat a later point. Thederivation of expressions for these forcesmaybenecessary
if the forces are of interest for the design, but the forces may be neglected in obtaining the
EOM. Some other advantages of energy-based EOMapproaches include removal of the need
to write expressions for accelerations and identify the numerical sign of forces that may be
derived from potential functions. Most importantly, energy-based approaches provide a
means to model flexible bodies with distributed mass by utilizing the assumed modes
and finite element methods (FEM). The approaches presented in this chapter include
(i) energy/power conservation and (ii) Lagrange’s equations (LE). Derivations are provided
to justify LE applications such as assumed modes that are presented without proof in other
texts. A symbolic math code is demonstrated for reducing the workload and improving the
accuracy in applying this EOM approach.

4.2 KINETIC ENERGY

4.2.1 Particle Motion

The “particle”model may also represent finite-sized bodies with negligible rotational inertia
and flexibility effects. Consider the particle of mass m acted on by a set of forces with
resultant F

!
as shown in Figure 4.2.1. This, for example, could represent a camera mounted

on a wing, an antigalloping device fastened to a transmission line cable, or the vertical
motion of a traffic light on a flexible support pole as shown in Figure 4.2.1.
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From this figure,

r
! = x1ê1 + x2ê2 + x3ê3, v

!=
nd

dt
r
!= v1ê1 + v2ê2 + v3ê3, F

!
=F1ê1 +F2ê2 +F3ê3 ð4:2:1Þ

and

Particle Kinetic Energy

T =
m

2
v
! � v! = m

2
v21 + v

2
2 + v

2
3

� � ð4:2:2Þ

4.2.2 Two-Dimensional Rigid Body Motion

Consider an RB which is free to translate and rotate in the x1−x2 plane as shown in
Figure 4.2.2.

The kinetic energy of the body is

T =
ð
�vj j2
2

dm=
ð
v
!� v!dm

2
=
ð
_
R
!� _R!dm

2
ð4:2:3Þ

but

R
!
=R
!
G + q

! ð4:2:4Þ
so

T =
ð
_
R
!
G � _R

!
G
dm

2
+
ð
_q
!� _q!dm

2
+
_
R
!
G �
ð
_q
!
dm ð4:2:5Þ

m

Figure 4.2.1 Particle model for kinetic energy equation
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By the definition of the center of mass G,ð
�qdm = 0 ð4:2:6Þ

∴
d

dt

ð
q
!
dm=

ð
_q
!
dm = 0 ð4:2:7Þ

Also since _q
! is the velocity of A relative to G,

_�q = ω
! × q

! ð4:2:8Þ
Use the vector identity

ðA! × B
!Þ� C! = A

! �ðB! × C
!Þ ð4:2:9Þ

and (4.2.8) to obtain

_�q � _�q = ω
! × q

! � ω! × q
! = ω

! � q! × ω
!× q

!� � ð4:2:10Þ

Apply the vector identity A
!
× ðB! × C

!Þ = ðA! � C!ÞB! −ðA! � B!ÞC! to obtain

_q
!� _q!= ω

! � q
!� q!� �

ω
!
− q

!� ω!� �
q
!� � ð4:2:11Þ

Since q! and ω
! are perpendicular, this simplifies to

_q
!� _q!=ω2q2 ð4:2:12Þ

Insert (4.2.7) and (4.2.12) into (4.2.5) to obtain

T =
m

2
v
!
G �v!G +

ω2

2

ð
q2dm ð4:2:13Þ

Kinetic Energy of Rigid Body with 2D Motion

T =
m

2
v
!
G �v!G +

IG
2
ω2 =

m

2
v
!2
G +

IG
2
ω2 ð4:2:14Þ

Figure 4.2.2 Rigid body in 2D motion
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where

IG =
ð
q2dm= mass moment of inertia of the body about mass centerG ð4:2:15Þ

Note that if some point B on the body is fixed in the inertial frame n, then

v
!
G = ω

! × r!G=B ð4:2:16Þ

Then by (4.2.8)–(4.2.12),

v
!
G �v!G = ω

! × r!G=B
� � � ω!× r!G=B� �

=ω2 r
!2
G=B ð4:2:17Þ

Combining (4.2.14) and (4.2.17), and use of the parallel axis theorem (Appendix D),
yields

Kinetic Energy of a Rigid Body with 2D Motion and a Fixed Point B

T =
IB
2
ω2 ð4:2:18Þ

where

IB = IG +mr2G=B = the mass moment inertia of the body about pointB ð4:2:19Þ

4.2.3 Constrained 2D Rigid Body Motion

Kinetic energy should be written with only independent generalized coordinates. Constraint
conditions such as in Example 2.11.1 must be imposed to eliminate dependent generalized
coordinates. For example, consider the two-dimensional (2D) motion system in
Figure 4.2.3.

The constraint conditions between bodies 1 and 2 are

xG2n1 = xG1n1 + l1 cosθ1 + l2 cosθ2, xG2n2 = xG1n2 + l1 sinθ1 + l2 sinθ2 ð4:2:20Þ

Figure 4.2.3 Planar rigid body motion model with interconnection constraint
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Differentiating these expressions yields

_xG2n1 = _xG1n1 − l1 _θ1 sinθ1− l2 _θ2 sinθ2, _xG2n2 = _xG1n2 + l1 _θ1 cosθ1 + l2 _θ2 cosθ2 ð4:2:21Þ
Equations (4.2.20) and (4.2.21) eliminate two redundant generalized coordinates and

their derivatives. The system kinetic energy is

T =
m1

2
_xG1n1
� �2

+ _xG1n2
� �2h i

+
IG1
2

_θ
2
1 +

m2

2
_xG2n1
� �2

+ _xG2n2
� �2h i

+
IG2
2

_θ
2
2 +

m3

2
_xG3n1
� �2

+ _xG3n2
� �2h i

+
IG3
2

_θ
2
3

ð4:2:22Þ

Define the generalized coordinates

q1 = x
G1
n1 , q2 = x

G1
n2 , q3 = θ1, q4 = θ2, q5 = x

G3
n1 , q6 = x

G3
n2 , q7 = θ3 ð4:2:23Þ

Then using (4.2.20), (4.2.21), and (4.2.23) in (4.2.22) yields T in terms of the seven
independent generalized coordinates instead of the original nine coordinates. The result is

T =
m1

2
_q21 + _q22
� �

+
IG1
2

_q23

+
m2

2
_q1− l1 _q3 sinq3− l2 _q4 sinq4ð Þ2 + _q2 + l1 _q3 cosq3 + l2 _q4 cosq4ð Þ2

h i
+
IG2
2

_q24 +
m3

2
_q25 + _q26
� �

+
IG3
2

_q27

ð4:2:24Þ

Therefore, T has the general form

T = T q1,q2� � �qn, _q1, _q2� � � _qnð Þ ð4:2:25Þ
where the generalized coordinates are the center of mass displacements and rotation angles
for this example. Alternatively, constraints may be treated with Lagrange multipliers.

4.3 EXTERNAL AND INTERNAL WORK AND POTENTIAL ENERGY

The work performed by force F
!
in Figure 4.3.1 between times t1 and t2 is expressed by

WF
1!2 =

ðt2
t1

F
!� dR

!
F

dt
dt =

ð
R
!
F1

R
!
F2

F
! �dR!F ð4:3:1Þ

Figure 4.3.1 Work performed by force F
!
for (a) translational and (b) rotational motions
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Figure 4.3.1(a) shows work being performed by a force on a single particle or body as it
moves through space. An example of this would be the work of air friction as the space
shuttle descends into the earth’s atmosphere. Figure 4.3.1(b) shows work being performed
by a force on many particles, each particle only experiencing the force F

!
for a short duration

of time dt, over which time the particle moves a distance d R
!
. An example of this would be

the flywheel braking mechanism shown. Note that since

dRF =RFdθ and MF =RFF ð4:3:2Þ

the work performed by F becomes

WF
1!2 =

ðR!F2
R
!
F1

F
! �dR!F =

ðθ2
θ1

FRFdθ =
ðθ2
θ1

MFdθ =
ðt2
t1

MFω dt ð4:3:3Þ

where MF is the moment produced by F and ω is the angular velocity of the wheel. The
torque MF in (4.3.4) may also represent the resultant torque τ due to a distribution of
forces, for example, in the case of the drag torque produced by lubricant friction in a bear-
ing or the drive torque produced by a magnetic field on a motor armature. Discrete forces
cannot be identified in these cases; instead, only the torque resultant of the distributed
forces is sensed. Thus, a system of nF forces and nT torques acting on an RB perform
the work

W1!2 =
XnF
i= 1

ðR! 2ð Þ
Fi

R
! 1ð Þ
Fi

F
!
i �ndR

!
Fi +
ðt2
t1

XnT
k = 1

τ
!
k

 !T

�ω!b=n
dt ð4:3:4Þ

or in array notation

W1!2 =
XnF
i= 1

ðR! 2ð Þ
Fi

R
! 1ð Þ
Fi

FT
i

ndRi +
ðt2
t1

XnT
k = 1

τ
!
k

 !T

ωb=ndt ð4:3:5Þ

where

ndR
!
Fi = change in the position of the particle or point on the body atwhich the force

F
!
is applied, in time interval dt, as sensed in inertial frame n ð4:3:6Þ

τ
!
k = kth torque due to a force distribution acting on the body ð4:3:7Þ

ω
!b=n

= angular velocity of the body relative to inertial frame n ð4:3:8Þ
When using (4.3.4) or (4.3.5) to evaluate work, it is important to note the following:

(a) R
!
F locates a particle’s position at the point of application of the force F

!

(b) The symbol τ! in the second work integral of (4.3.4) or (4.3.5) represents a torque due to
a force distribution. Discrete force work contributions should be accounted for in either
the first integral of (4.3.5) or in the expression

ð
R
!
F × F

! �ω!b=n
dt ð4:3:9Þ
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The work contribution of some forces is zero as illustrated in Figure 4.3.2.

The rolling contact forces in (a) are nonzero; however, dR
!
F is zero because of the

no-slip condition between P and P0; therefore,

W1!2 =
ð

Ft̂i+Fn ĵ
� � �dR!F = 0 ð4:3:10Þ

In (b), the normal force F
!
n on the frictionless sliding bead is perpendicular to dR

!
F :

F
!
n �dR

!
F = 0 ð4:3:11Þ

Finally, in (c), if the bearing at A is considered to be ideal, that is, frictionless rotation

(τ!friction = 0) and no translational “rattle,” dR
!
F = 0; therefore,

W1!2 =
ð

Fx̂i+Fŷj
� � �dR!F + ð τ!friction � ω! dt = 0 ð4:3:12Þ

For the case of two or more bodies or particles, a contact force or force distribution
between the bodies may contribute zero net work since Newton’s third law applies to the
force(s) so the work on the two bodies cancel. This applies, for example, to the system
depicted in Figure 4.2.3, and the next example.

EXAMPLE 4.3.1 Cable Tension Work in Pulley System

Statement: Cable and pulleys provide another means to couple the motions of two or more
components. This example shows how a cable tension force contributes zero net work to the
system shown in Figure E4.3.1(a).

Objective: Demonstrate that the net work performed by cable tension T is zero.

Solution:
Let l2 and l3 be the dimensions shown at static equilibrium, that is, yA = yB = 0; then

l2 = l21 + l2−yAð Þ2 ð1Þ
and since the cable is inextensible,

2l+ b = 2l+ l3−yBð Þ = constant ð2Þ
Equations (1) and (2) imply

2ldl= −2 l2−yAð ÞdyA ð3Þ

Figure 4.3.2 Examples of forces that do not perform work for (a) rolling contact, (b) a normal force in
sliding, and (c) a zero rattle space pin joint
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2dl−dyB = 0 ð4Þ
or by eliminating dl

dyB =
−2 l2−yAð Þ

l
dyA = −2sinθ dyA ð5Þ

The work performed by T on mass mA between times t1 and t2 is

WT
1!2

��
A
=
ðyA2
yA1

2T
!�dy!A =

ðyA2
yA1

2T sinθ dyA ð6Þ

Similarly, the work performed by T on mass mB between times t1 and t2 is

WT
1!2

��
B
=
ð
T
!�dy!B =

ðyB2
yB1

TdyB =
ðyA2
yA1

T −2sinθ dyAð Þ ð7Þ

by Equation (5). Thus, the work performed by T on the entire system is

WT
1!2

��
sys

=WT
1!2

��
A
+WT

1!2

��
B
= 0 ð8Þ

Summary:
This example illustrated another force system that contributes zero net work.

4.3.1 External Work and Potential Energy

Some forces yield work expressions that only depend on the initial and final states of the
system. This is true for the gravitational force in Figure 4.3.3(a) and the spring force in
Figure 4.3.3(b). Consider the work performed by gravity as mass m moves from elevations
y1 to y2 along path s:

Wg
1!2 =

ðr!2
r
!1
F
!
g �dr =

ð
−mgĵ � dx̂i+ dŷj� �

=
ðy2
y1

−mgdy =mg y1−y2ð Þ ð4:3:13Þ

Next, consider the work performed by the deformation of a spring attached to mass m.
The spring force on mass m is

F
!
k = −k x î ð4:3:14Þ

Figure E4.3.1(a) Two-mass system with inextensible cables and frictionless, massless pulleys
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Therefore, the work done by k on the mass is

Wk
1!2 =

ðx2
x1

−k x î
� � � dx̂i� �

=
−kx2

2

x2

x1

���� =
−k

2
x22−x

2
1

� � ð4:3:15Þ

Note that in both casesWg
1!2 andW

k
1!2, the work expressions are only dependent on the

end point coordinates and not on the path traversed by the particle in going from 1 to 2. Thus,
the work may be expressed in terms of the change in the value of a function that depends
only on position variables (dofs). Equations (4.3.13) and (4.3.15) may then be written as

Wg
1!2 = − Ug

��
2ð Þ−Ug

��
1ð Þ

� �
= −ΔUg ð4:3:16Þ

Wk
1!2 = − Ukj 2ð Þ−Ukj 1ð Þ

� �
= −ΔUk ð4:3:17Þ

where

Ug = gravity potential energy function =mgy ð4:3:18Þ

Uk = spring potential energy function =
k

2
x2 ð4:3:19Þ

Evaluating the work by calculating the change in a scalar function is certainly easier
than performing the integral in (4.3.1). Note that in both cases, the forces may be expressed
as the gradient of the potential energy function, that is,

F
!
g = −∇Ug = −

∂

∂x
Uĝi−

∂

∂y
Uĝj= 0̂i−mĝj ð4:3:20Þ

F
!
k = −∇Uk = −

∂

∂x
Ukî= −kxî ð4:3:21Þ

4.4 POWER AND WORK–ENERGY LAWS

4.4.1 Particles

Consider the particle of mass m acted on by a set of force with resultant F
!
as shown in

Figure 4.4.1.

Figure 4.3.3 (a) Weight and (b) spring force examples for work dependent only on initial and final
configurations
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From this figure,

r
! = x̂i+ ŷj, v

!=
d r
!

dt
= vx̂i+ vŷj, F

!
=F
!
x̂i+F

!
ŷj ð4:4:1Þ

Define the kinetic energy of m to be

T =
m

2
v
!�� ��2 = m

2
v
! � v! = m

2
v2x + v

2
y

� �
ð4:4:2Þ

Take the time derivative of T:

dT

dt
=
m

2
_v
!� v! + m

2
v
! � _v!=m _v

!� v! ð4:4:3Þ

Substitute (4.4.1) into (4.4.3) and integrate from t1 to t2

ðt2
t1

dT =
ðt2
t1

m _v
!� d r

!

dt
dt =

ðr!2
r
!1
F
!�d r! ð4:4:4Þ

since by Newton’s law

m _v
!=ma

! = F
! ð4:4:5Þ

Then Equation (4.4.4) yields the result

Work–Energy Principle for a Particle

ΔT = T t2ð Þ−T t1ð Þ=W1!2 ð4:4:6Þ

where

W1!2 =
ðr!2
r
!1
F
! �d r! =work performed by F

!
onm between t1 ≤ t ≤ t2

T =
m

2
v
!�� ��2 = m

2
v2x + v

2
y

� �
ð4:4:7Þ

Figure 4.4.1 2D motion of a particle with

force resultant F
!
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Substitute (4.4.5) into (4.4.3) to obtain

Conservation of Power Principle for a Particle

dT

dt
= F
! � v! ð4:4:8Þ

where

F
! � v!= power contributed by force resultant F

!

Equations (4.3.16) and (4.3.17) showed that the work performed by some forces could
be expressed by changes in a potential energy function U. Then (4.4.6)–(4.4.7) may be
expressed as

Work–Energy Principle for a Particle with Conservative and Nonconservative
Forces

ΔE =E t2ð Þ−E t1ð Þ=WNC
1!2 ð4:4:9Þ

where

E =T +U = particle’s total energy ð4:4:10Þ
WNC

1!2 =
ð
r
!
1

r
!
2

F
!NC �d r! =work of resultantF!NC of all nonconservative forces ð4:4:11Þ

4.4.2 Rigid Body with 2D Motion

Recall from (4.2.14) that the kinetic energy for the RB planar motion depicted in
Figure 4.4.2 is

T =
m

2
v
!
G �v!G +

IG
2
ω2 ð4:4:12Þ

Then

dT

dt
=
m

2
v
!
G � _v!G +

m

2
_v
!
G �v!G + IGω _ω=ma!G �v!G + IGαω=ma!G � dr

!
G

dt
+ IGα

dθ

dt
ð4:4:13Þ

Figure 4.4.2 Rigid body with 2D motion and external forces
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Substitute (3.3.5) and (3.3.39), with A at G, to obtain

dT =F
!
ext �dr!G +ΓGdθ ð4:4:14Þ

Then by integrating from t1 to t2

Work–Energy Principle for a Rigid Body (RB) with Planar Motion in Terms of
Resultant Force and Moment

ΔT = T t2ð Þ−T t1ð Þ=W1!2 ð4:4:15Þ

where

W1!2 =
ð
r
!
G1

r
!
G2

F
!
ext �dr!G +

ðθ2
θ1

ΓGdθ ð4:4:16Þ

F
!
ext = resultant of all external forces acting on theRB ð4:4:17Þ
ΓG = resultant moment of all forces about mass centerGplus pure

torques acting on theRB
ð4:4:18Þ

Note that F
!
ext is the resultant force vector on the body

F
!
ext =

Xn
i= 1

F
!
i ð4:4:19Þ

and Γ
!
G is the resultant torque vector acting on the body, that is,

Γ
!
G =
Xn
i= 1

r
!
i=G ×F

!
i + τ

! ð4:4:20Þ

where τ! is the resultant of all pure torques acting on the body. Insert (4.4.19) and (4.4.20)
into (4.4.14) to obtain

dT

dt
=
Xn
i= 1

F
!
i �v!G +

Xn
i= 1

r
!
i=G ×F

!
i

� �
� ω! + τ

! � ω! ð4:4:21Þ

Use the vector identity

a
! × b

! � c! = c
!× a

!� � � b! ð4:4:22Þ

and the kinematical relation v
!
i = v

!
G + ω

! × r!i=G
� �

to write (4.4.21) as

dT

dt
= v!G �

Xn
i= 1

F
!
i +
Xn
i= 1

ω
!× r!i=G �F

!
i + τ

! � ω! =
Xn
i= 1

v
!
G + ω

! × r!i=G
� � �F!i + τ

! � ω!

=
Xn
i= 1

F
!
i �v!i + τ

! � ω! ð4:4:23Þ
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Utilize

v
!
i =

dR
!
i

dt
, ω

! =
dθ
!

dt
ð4:4:24Þ

and integrate (4.4.23) to obtain

Work–Energy Principle for a Rigid Body (RB) with Planar Motion in Terms of
Individual External Forces and Pure Torques

ΔT = T t2ð Þ−T t1ð Þ =WF
1!2 +W

τ
1!2 ð4:4:25Þ

where

T =
m

2
v2G +

IG
2
ω2 ð4:4:26Þ

WF
1!2 =

XnF
i = 1

ð
r
!
i1

r
!
i2

F
!
i �dr =work done by external forces acting on the bodyRB ð4:4:27Þ

W τ
1!2 =

ðθ2
θ1

τdθ =work done by all pure torques acting on theRB ð4:4:28Þ

F
!
i = ith external force acting on theRB i = 1, 2, …, nFð Þ ð4:4:29Þ

τ = resultant sumð Þ of all external pure torques acting on theRB ð4:4:30Þ

(The term τ does not include any r
! × F

!
type moment terms.)

Equation (4.4.23) directly yields the power relationship

Conservation of Power Principle for an RB with Planar Motion in Terms of
Individual External Forces and Pure Torques

dT

dt
=PF +Pτ ð4:4:31Þ

where T is defined by (4.4.26) and

PF =
XnF
i= 1

F
!
i �v!i = power exchange due to external forces

Pτ = τω= power exchange due to pure torques

τ = resultant of all pure torques acting on the rigid body: This excludes r!× F
!

all moments

F
!
i = ith external force acting on the rigid body i = 1,2,…,nFð Þ
v
!
i = velocity of point on rigid body where forceF

!
i is applied
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EXAMPLE 4.4.1 Resonant Vibrator for Compound Potting (Example 3.3.1
by Energy Approach)

Description: Reference Figure E3.3.1(a)

Objective:

Derive the equation of motion for this system by the power conservation approach.

Determine an expression for the power required to drive this mechanism.

Assumptions:

Small angular motions, Rods AB and DE, remain horizontal. All joints are ideal (zero
rattle space), and Rods AB and DE are light in weight, so m2 =m4 = 0.

At static equilibrium,

xA = θ3 = θ5 = 0 ð1Þ

Solution:
Stiffness Transformations

From Example 3.3.1, it was shown that the stiffness forces at B and D could be repre-
sented by

Fk
Bx =F

k
Dx = kx and Fk

By =F
k
Dy = 0 ð2Þ

Free Body Diagram
The free body diagram in Figure E3.3.1(c) is nearly not required for the energy

approach.
Kinematic Constraints

As discussed in Example 3.3.1, motion coordinates are related by the following
equations:

) θ3 =
2x
L3

, θ5 =
x

L5b
, δH =L5θ5 =

L5
L5b

x ð3Þ

Newton/Euler Approach
The equation of motion obtained from the Newton approach in Example 3.3.1 is

given by

Meq€δH +Ceq _δH +KeqδH =Feq

where Meq =
IF5Q
L25

+
L25b
L25

m1 +
4
L23

IG3

	 

, Ceq =

cTF
L25

+
L25b
L25

cA +
4cTC
L23

	 

,

Keq = 2k
L25b
L25

−
L5a + L5bð Þ

L25
W5 +mQgð Þ, Feq =

L5b
L5

fp

ð4Þ

Power Conservation Approach
The total kinetic energy is obtained from Figure E3.3.1(a) and (3) as

T =
1
2
m1 _x

2 +
1
2
IG3 _θ

2
3 +

1
2
IF5Q _θ

2
5 =

m1

2
L25b
L25

+
IG3
2

4

L23

L25b
L25

+
IF5Q
2

1

L25

	 

_δ
2
H ð5Þ
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The power terms are

Pow = fp _x−F
k
Bx _x−F

k
Dx _x− w5 +mQgð Þ _yG5Q−cA _x _x−cTC _θ3 _θ3−cTF _θ5 _θ5 ð6Þ

Unlike Newton’s law, the force terms at the interconnections and connections to ground
are ignored since they perform zero net work (and consequently zero net power). Note that
by using a two-term Taylor series expansion (2.4.1) of the cosine function,

yG5Q = − L5a + L5bð Þ 1−cosθ5ð Þ≈ − L5a + L5bð Þ θ25
2

	 

ð7Þ

Therefore

_yG5Q≈ − L5a + L5bð Þθ5 _θ5 = −
L5a + L5b

L25

	 

δH _δH ð8Þ

Then by (3) and (6),

Pow =
L5b
L5

fp _δH −
L5b
L5

_δH 2k
L5b
L5

δH

	 

− w5 +mQgð Þ −

L5a + L5bð Þ
L25

δH _δH

� �
−cA

L25b
L25

_δ
2
H −cTC

4

L23

L25b
L25

_δ
2
H −

cTF
L25

_δ
2
H

ð9Þ

Differentiate T and equate the result to Pow and cancel _δH to obtain

Meq€δH +Ceq _δH +KeqδH =Feq ð10Þ

where Meq,Ceq, Keq, and Feq are Newton’s law (4).
Summary:
The power approach is simpler than the Newton approach in the following ways:

(a) Internal forces were allowed to be ignored.

(b) The free body diagram is less detailed and important.

(c) The spring force directions are not required.

4.5 LAGRANGE EQUATION FOR PARTICLES AND RIGID BODIES

The Lagrange approach is widely used to obtain the EOM of a rigid or flexible body model.
Some reasons for this include:

(a) Acceleration vectors of mass centers are not required.

(b) Force vectors that contribute zero net work are not required.

(c) Sign determination for forces derived from derivatives of scalar potential functions is
not required.

(d) Easily applied to flexible, such as assumed modes and finite elements, as well as rigid
and hybrid body models.
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4.5.1 Derivation of the Lagrange Equation

The “R” Identities Kinetic energy of the system always has the general form

T =T q1, q2,…, qn, _q1, _q2,…, _qnð Þ ð4:5:1Þ
as illustrated by (4.2.25), where qi are independent generalized coordinates. These may rep-
resent translations or angles of an RB, assumed modes coordinates as in (2.11.28), or finite
element node translations or rotations as in (2.11.36). A body or system of bodies can be
considered to be a collection of an infinite number of differential masses dm’s, that is,

m=
XN∞

i= 1

mi ð4:5:2Þ

in the limit as N∞!∞ and mi! 0. The position vector of mass mi is R
!
i, so that

R
!
i =R

!
i q1 q2 � � � qn, tð Þ ð4:5:3Þ

and

_
R
!
i =

_
R
!
i q1 q2 � � � qn, _q1 _q2 � � � _qn, tð Þ ð4:5:4Þ

For example, Figure 4.5.1 shows a long, slender pendulum modeled as a RB. The
motions of all particles comprising this body can be expressed in terms of a single general-
ized coordinate, the angle q1.

Two special derivative relationships between R
!
i,
_
R
!
i, qj, and _qj are required to derive the

LE. These will be derived utilizing the chain rule of differentiation (Hildebrand, 1976) on
the function f(q1, q2,…, qn, t), yielding

nedf
dt

=
∂f

∂t
+
Xn
k = 1

∂f

∂qk

nedqk
dt

=
∂f

∂t
+
Xn
k = 1

∂f

∂qk
_qk ð4:5:5Þ

where the first term on the RHS accounts for the explicit presence of t in the definition of f
and the left superscript ñ indicates that the time derivative is taken by an observer in the
inertial (nonaccelerating) frame of reference n. First, apply Equation (4.5.5) to the compo-
nents of the vector R

!
i, which from (4.5.3) yields

_
R
!
i =

ned
dt
R
!
i q1 q2 � � � qn tð Þ = ∂R

!
i

∂t
+
Xn
k = 1

∂R
!
i

∂qk

∂qk
∂t

ð4:5:6Þ

Ri(q1) = ri cos(q1)i + ri sin(q1) ĵˆ

ˆˆRi (q1,q1) = –riq1 sin(q1)i + riq1 cos(q1) j = Ri

Figure 4.5.1 Rigid body model of pendulum with one generalized coordinate q1
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but since qk is an “independent” generalized coordinate, it is only a function of t and not a
function of qj, j 6¼ k

� �
so

∂qk
∂t

=
nedqk
dt

= _qk ð4:5:7Þ

The last step should be kept in mind since it explains why the generalized coordinates
must be independent. Insert (4.5.7) into (4.5.6):

_
R
!
i =

∂R
!
i

∂t
+
Xn
k = 1

∂R
!
i

∂qk
_qk ð4:5:8Þ

Note that by (4.5.3), R
!
i and ∂R

!
i=∂qk are not functions of _qk. Likewise, the partial

derivative of R
!
i with respect to t in (4.5.8) treats qk as constants, so ∂R

!
i=∂t is also not a

function of _qk. Therefore, taking the partial derivative of (4.5.8) with respect to _qj yields
the first “R

!
” identity:

∂
_
R
!
i

∂ _qj
=
∂R
!
i

∂qj
ð4:5:9Þ

This identity is illustrated by the double pendulum example in Figure 4.5.2. This figure
shows the derivatives of the position and velocity vectors of the mass enter of link 2, with
respect to the two generalized coordinates and their time derivatives. Equation (4.5.9) is
shown to hold for the example.

The chain rule was applied to R
!
i to derive the identity in (4.5.9). A second identity is

obtained by applying the chain rule to ∂R
!
i=∂qj. Note that by (4.5.3), ∂R

!
i=∂qj is only an

explicit function of q1 q2 � � � qn, tð Þ and not of _q1 _q2 _q3 � � � _qnð Þ. Therefore, by the
chain rule,

ned
dt

∂R
!
i

∂qj

 !
=
∂

∂t

∂R
!
i

∂qj

 !
+
Xn
k = 1

∂

∂qk

∂R
!
i

∂qj

 !
_qk =

n∂
2

R
!
i

∂t∂qj
+
Xn
k = 1

∂2R
!
i

∂qk∂qj
_qk =

∂

∂qj

∂R
!
i

∂t
+
Xn
k = 1

∂R
!
i

∂qk
_qk

 !
ð4:5:10Þ

Figure 4.5.2 Double pendulum example of first R
!
identity (4.5.9)
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The term in brackets in (4.5.10) is
_
R
!
i from (4.5.8). Therefore, (4.5.10) yields the second

“R
!
” identity:

∂

∂qj

ned
dt

R
!
i

� � !
=
∂
_
R
!
i

∂qj
=

ned
dt

∂R
!
i

∂qj

 !
ð4:5:11Þ

4.5.2 System of Particles

The kinetic energy of a mass contained in volume V is defined by

T =
1
2

ð
V

end
dt

R
!� �
�
end
dt

R
!� �

dm= T q1 q2 � � � qn, _q1 _q2 � � � _qn, tð Þ ð4:5:12aÞ

or by (4.5.1) as

T =
1
2

XN∞

i= 1

nd

dt
R
!
i

	 
 nd

dt
R
!
i

	 

mi

=
1
2

XN∞

i= 1

_
R
!
i q1 q2 � � � qn, _q1 _q2 � � � _qn, tð Þ� _R!i q1 q2 � � � qn, _q1 _q2 � � � _qn, tð Þmi

ð4:5:12bÞ

where the left superscript indicates that the time derivative is sensed in inertial frame ñ. Then
it follows that

dT

dqj
=
XN∞

i= 1

1
2

∂
_
R
!
i

∂qj
� _R!i + _

R
!
i � ∂

_
R
!
i

∂qj

0@ 1Ami =
XN∞

i= 1

_
R
!
i � ∂

_
R
!
i

∂qj
mi ð4:5:13Þ

for all independent generalized coordinates j= 1,2,…,n. Substitute (4.5.10) into (4.5.13) to
obtain

dT

dqj
=
XN∞

i= 1

mi
_
R
!
i �

nd

dt

∂R
!
i

∂qj

 !
ð4:5:14Þ

Similarly, from (4.5.12b),

dT

d _qj
=
XN∞

i= 1

mi
_
R
!
i � ∂

_
R
!
i

∂ _qj
ð4:5:15Þ

for all independent generalized coordinates j= 1,2,…,n. Substitute the first R
!
i identity

(4.5.9) into (4.5.15):

dT

d _qj
=
XN∞

i= 1

mi
_
R
!
i � ∂R

!
i

∂qj
ð4:5:16Þ
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Next, take the time derivative of (4.5.16):

ned
dt

dT

d _qj

 !
=
XN∞

i= 1

mi
€
R
!
i

	 

� ∂R

!
i

∂qj
+mi

_
R
!
i �

ned
dt

∂R
!
i

∂qj

 !" #
ð4:5:17Þ

Substitute (4.5.14) into (4.5.17) to obtain

ned
dt

∂T

∂ _qj

 !
−
∂T

∂qj
=
XN∞

i= 1

mi
€
R
!
i

	 

� ∂R

!
i

∂qj
ð4:5:18Þ

Newton’s second law states that

mi
€
R
!
i =F

!
i = F

! app
i + F

!int
i ð4:5:19Þ

where

F
! app
i = the sum (resultant) of all applied forces acting on differential mass mi

F
!
int
i = the sum (resultant) of all interaction forces acting on differential mass mi due to

its neighboring differential masses

Thus, (4.5.18) may be written as

nd

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=
XN∞

i= 1

F
!app
i + F

!int
i

� �
� ∂R

!
i

∂qj
ð4:5:20Þ

Apply Newton’s third law (equal and opposite reactions) and assume that the interac-
tion forces only exist between neighboring mi that are separated by an infinitesimally small
distance. This will cancel terms like

F
! int
i �

∂R
!
i

∂qj
+ F
!int
i+ 1 �

∂R
!
i + 1

∂qj
= F
!int
i �

∂R
!
i

∂qj
− F
!int
i �

∂R
!
i

∂qj
= 0 ð4:5:21Þ

where mi and mi+ 1 represent neighboring masses. In Equation (4.5.21), it is assumed that
neighboring particles i and i + 1 are separated by an infinitesimal distance and have identical
motions. This is true if these particles are embedded in a continuous structural member, but
may not be true if they represent particles at a contact point between two bodies that have

relative sliding motion. The contact forces should be considered to be applied forces F
!app
i

� �
for this case. Collecting these results in (4.5.18) yields

ned
dt

∂T

∂ _qj

 !
−
∂T

∂qj
=
XN∞

i= 1

F
!app
i �

ne∂R!i
∂qj

ð4:5:22Þ

Note that applied forces only occur at a finite number (nF) of locations in the system;
therefore, (4.5.22) becomes
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Lagrange’s Equations for a System of Particles

ned
dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj ð4:5:23Þ

j= 1,2,…,n independent generalized coordinates (q1, q2,…, qn)

T = sum of all kinetic energies in the system

Qj = jth “generalized force” =
XnF
i = 1

F
!app
i �

ne∂R!i
∂qj

=
XnF
i = 1

F
!app
i �

ne∂v!i
∂ _qj

ð4:5:24Þ

where the second equality holds if (4.5.9) is satisfied.

F
! app
i = ith applied force in the system

nF = total number of applied forces acting in the system, including equal and oppo-
site forces at connections of members

R
!
i = position vector to the point of application for F

! app
i

v
!
i = velocity of the point of application for F

! app
i

This result provides a full set of n EOM to solve for the n generalized coordinate qi. The
proceeding derivation demonstrated that if the system is in dynamic equilibrium (all masses
move in accordance with Newton’s law (4.5.19)), then LE will be satisfied, that is, satisfac-
tion of LE is a necessary condition for equilibrium. The proof that the solution of LE is a
sufficient condition for dynamic equilibrium, that is, that the EOM obtained by solving LE
are identical to those obtained by solving Newton’s laws, may be shown utilizing the prin-
ciple of virtual work and D’Alembert’s principle.

4.5.3 Collection of Rigid Bodies

Consider the RBmodel depicted in Figure 4.5.3. The position vector R
!
i to the point of appli-

cation of force F
! app
i is

R
!
i =R

!
A +R

!
i=A ð4:5:25Þ

Thus, the corresponding velocity relation is

nv
!
i =

nv
!
A +

nv
!
i=A ð4:5:26Þ

where A is a point about which moments are taken.
From (4.5.24),

Qj =
XnF
i= 1

F
!app
i �

n∂R
!
i

∂qj
=
XnF
i= 1

F
!app
i

!
�
n∂R

!
A

∂qj
+
XnF
i= 1

F
!app
i �

n∂R
!
i=A

∂qj

 

=F
!app
tot �

n∂R
!
A

∂qj
+
XnF
i= 1

F
!app
i �

n∂R
!
i=A

∂qj

 !
ð4:5:27Þ

162 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



where

F
! app
tot = resultant of all applied forces acting on the rigid body =

XnF
i= 1

F
!app
i ð4:5:28Þ

By the chain rule (4.5.4),

ndR
!
i=A

dt
=
∂R
!
i=A

∂t
+
Xn
k = 1

∂R
!
i=A

∂qk
_qk ð4:5:29Þ

For reasons similar to the derivation of (4.5.9), taking the partial derivative of (4.5.29)
with respect to _qk yields

∂
_
R
!
i=A

∂ _qk
=
∂R
!
i=A

∂qk
ð4:5:30Þ

Then (4.5.27) becomes

Qj = F
! app
tot �

n∂R
!
A

∂qj
+
XnF
i = 1

F
!app
i �

n∂
_
R
!
i=A

∂ _qj

0@ 1A ð4:5:31Þ

Utilize the transport theorem (2.11.27) on the term R
!
i=A:

nd

dt
R
!
i=A

� �
=
_
R
!
i=A =

bd

dt
R
!
i=A

� �
+ω!

b=n
b ×R

!
i=A ð4:5:32Þ

The first term on the RHS of (4.5.32) is zero by the RB approximation. Substitute
(4.5.32) into (4.5.31):

Qj = F
! app
tot �

n∂R
!
A

∂qj
+
XnF
i= 1

F
!app
i �

∂ ω
!b=n
b ×R

!
i=A

� �
∂ _qj

0@ 1A ð4:5:33Þ

Figure 4.5.3 Rigid body with applied forces and moment point A
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The vector R
!
i=A is independent of _qj so (4.5.33) becomes

Qj =F
!app
tot �

n∂R
!
A

∂qj
+
XnF
i= 1

F
!app
i � −R

!
i=A ×

∂ω
!b=n
b

∂ _qj

 !
ð4:5:34Þ

Utilize the triple product formula

a
! � b

!
× c
!

� �
= a

!× b
!� �
� c! ð4:5:35Þ

to obtain

Qj =F
!app
tot �

n∂R
!
A

∂qj
+
XnF
i= 1

− F
!app
i ×R

!
i=A �∂ω

!b=n
b

∂ _qj
=F
!app
tot �

n∂R
!
A

∂qj
+
XnF
i= 1

R
!
i=A × F

!app
i

 !
� ∂ω

!b=n
b

∂ _qj

ð4:5:36Þ

The resultant moment of the applied forces taken about point A is

Γ
! app
tot =

XnF
i= 1

R
!
i=A × F

! app
i ð4:5:37Þ

Point forces are idealized representations of actual force distributions. For instance,
most forces are applied over a finite area over which they exert a pressure or more generally
a traction. Some force distributions are unknown except for the resultant force and pure tor-
que (τ) which they produce. Some examples are the magnetic field in a motor, the hydro-
dynamic force in an oil film bearing, or the aerodynamic force in a fan or turbine. Some
devices such as an oil film bearing produce resultant forces (to support a spinning shaft)
plus a pure torque τD (drag torque due to oil friction). Thus, Equation (4.5.37) may be
extended to include a resultant of pure (distributed) torques and a resultant moment about
A of concentrated forces. Then (4.5.36) can assume amore general form that accounts for the
existence of pure torques. These results are summarized below with the use of (4.5.9) for
generalization.

Generalized Forces Qj for a Single Rigid Body in Terms of Force, Moment, and
Torque Resultants

Qj =F
!
tot �

n∂R
!
A

∂qj
+ Γ

!
tot,A + τ

!
tot

� �
�
n∂ ω

!b=n
b

∂ _qj

=F
!
tot �∂

nv
!
A

∂ _qj
+ Γ

!
tot,A + τ

!
tot

� �
�
n∂ ω

!b=n
b

∂ _qj

ð4:5:38Þ

where
A = an arbitrary point about which moments are taken, which is fixed in body-fixed

frame b (Figure 4.5.3)

qj = jth generalized coordinates for j= 1,2,…,n

F
!
tot =

XnF
i= 1

F
!app
i = resultant of all applied forces acting on the rigid body
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R
!
A =R

!
A q1, q2,…, qn, tð Þ = position vector for point A

Γ
!
tot,A =

XnF
i= 1

R
!
i=A × F

! app
i = resultant moment about point

Aof all applied forces acting on the rigid body
ð4:5:39Þ

τ
!
tot =

XnF
i= 1

τ
!
k = resultant of all pure torques acting on the rigid body

nω
!b=n
b = angular velocity of body-fixed frame b, relative to inertial frame n, with

components in b
nv
!
A = velocity of point A, as sensed in inertia frame n

The second equality in (4.5.38) holds if n∂R
!
A=∂qj = ∂nv

!
A=∂ _qj

Sometimes, it is preferable to use only the individual forces instead of their resultants
for evaluating the generalized forces Qj. This avoids evaluation of Γ

!
tot,A and nv

!
A. Recall from

(4.5.24) that

Qj =
XnFF
i= 1

F
!app
i �

n∂R
!
i

∂qj
+
XnFτ
i= 1

F
!app
i �

n∂R
!
i

∂qj
ð4:5:40Þ

The second sum in this expression is taken over all force distributions that produce pure
torques, and the first sum is over all remaining forces and force distributions. The former
include differential forces acting over differential areas, combining to form a torque. Force
distributions that produce pure torques may also produce nonzero force resultants. These
force resultants are accounted for in the first sum of (4.5.40). Consideration of (4.5.38)
shows that the second sum in (4.5.40) is

XnFτ
i= 1

F
!app
i �

n∂R
!
i

∂qj
= τ!tot �

n∂ ω
!b=n
b

∂ _qj
ð4:5:41Þ

Therefore, Qj in (4.5.40) may be written as

Generalized Forces Qj for a Single Rigid Body with Component Forces and a
Resultant Torque

Qj =
XnF
i= 1

F
!app
i �

n∂R
!
i

∂qj

 !
+ τ!tot �

n∂ ω
!b=n
b

∂ _qj
=
XnF
i= 1

F
!app
i �

n∂nv
!
i

∂ _qj

 !
+ τ!tot � ∂ω

!b=n
b

∂ _qj
ð4:5:42Þ

where

nF = total number of applied forces acting on the rigid body

R
!
i = position vector for point of application of F

! app
i , in Figure 4:5:3

F
! app
i = ith applied force on bodyB:These include resultants of force

distributions which may or may not produce torques τ!

ð4:5:43Þ

The second equality in (4.5.42) holds if n∂R
!
i=∂qj =

n∂nv
!
i=∂ _qj
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Recall from (4.5.23) that LE apply to the total system. Thus, for a collection of RB, T is
the sum of the kinetic energies of all the RB expressed in terms of generalized coordinates

q1, q2,…, qn, _q1, _q2,…, _qnð Þ. Also, F! app
i include all forces acting on the RB with equal and

opposite interconnection forces included independently.Therefore, from (4.5.9) and (4.5.24),

Qj =
XnFE
i= 1

F
!app
iE �

n∂R
!
i

∂qj
+
XnFI
i= 1

F
!app
iI �

n∂R
!
i

∂qj

 !
rigid
body1

+
XnFE
i = 1

F
!app
iE �

n∂R
!
i

∂qj
+
XnFI
i = 1

F
!app
iI �

n∂R
!
i

∂qj

 !
rigid
body 2

+ � � � +
XnFE
i= 1

F
!app
iE �

n∂R
!
i

∂qj
+
XnFI
i= 1

F
!app
iI �

n∂R
!
i

∂qj

 !
rigid
bodyNB

ð4:5:44Þ

or by using (4.5.9)

Qj =
XnFE
i = 1

F
!app
iE �∂

n
v
!
i

∂ _qj
+
XnFI
i= 1

F
!app
iI �∂

n
v
!
i

∂ _qj

 !
rigid
body 1

+
XnFE
i= 1

F
!app
iE �∂

n
v
!
i

∂ _qj
+
XnFI
i= 1

F
!app
iI �∂

n
v
!
i

∂ _qj

 !
rigid
body 2

+ � � � +
XnFE
i= 1

F
!app
iE �

∂
n
v
!
i

∂ _qj
+
XnFI
i= 1

F
!app
iI �

∂
n
v
!
i

∂ _qj

 !
rigid
bodyNB

ð4:5:45Þ

The first sum in all terms of (4.5.44) or (4.5.45) accounts for external (E) forces acting
on the bodies, and the second sum accounts for the interaction (I) forces between bodies.
Some of the interaction forces are distributed in nature. These local force distributions
may be replaced by force resultants and friction torques. The definition of Qj as a sum in
(4.5.44) or (4.5.45) permits net contributions from bodies joined at an interconnection to
simplify or sum to zero. For example, let body (1) and body (2) be joined at an “ideal joint”
(zero rattle space). Then the joint reaction’s contribution to Qj in (4.5.45) is

F
! app
iI �

∂nv
!
i1

∂ _qj
+ − F

!app
iI

� �
�∂

nv
!
i2

∂ _qj
=F
!app
iI �

∂nv
!
i1=i2

∂ _qj
≡0 ð4:5:46Þ

since the relative velocities nv
!
i1=i2 between bodies (1) and (2) at an ideal joint is zero. The

expression in (4.5.46) will also be zero for the same reason if:

• One of the bodies is ground (fixed in inertial space), that is, nv!i1 = nv
!
i2 = 0.

• The two bodies are connected by a rolling contact interface, since the relative velocity
nv
!
i1=i2 of the two bodies at the rolling contact point is zero.

The first sum in (4.5.44) or (4.5.45) may be expressed in the forms of (4.5.38) or
(4.5.42) for each body. The result for a collection of RB is summarized below.

Generalized ForcesQj for (NB) Multiple Rigid Bodies with Component or Resultant
Forces and Resultant Torque

Qj =
XNB

l= 1

Qjl ð4:5:47Þ
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Qjl =QFjl + τ
!
tot, l �

n∂ω
!bl=n
bl

∂ _qj
ð4:5:48Þ

where any of the following forms can be used for QFjl:

(a) Use force resultant on each body:

F
!l
tot �

n∂R
!
Al

∂qj
+Γ
!l
tot,A �

n∂ ω
!bl=n
bl

∂ _qj
ð4:5:49Þ

(b) Use force resultant on each body:

F
!l
tot �

∂nv
!
Al

∂ _qj
+Γ
!l
tot,A �

n∂ ω
!bl=n
bl

∂ _qj
ð4:5:50Þ

(Same as (a) but with (4.5.9).)

(c) Use individual forces on each body:

XnFl
i= 1

F
!
il �

n∂R
!
il

∂qj
ð4:5:51Þ

(d) Use individual forces on each body:XnFl
i= 1

F
!
il � ∂

nv
!
il

∂ _qj
ð4:5:52Þ

and the remaining terms are defined by

F
!l
tot =

XnFl

i= 1
F
!
il = resultant of all F

!
il acting on rigid body l

Γ
!l
tot,A =

XnFl

i= 1
R
!
il=Al ×F

!
il = resultant moment about point A of all forces acting on

rigid body l

qj = jth independent generalized coordinate of the system

τ
!
tot, l = vector sum of all pure torques acting on rigid body l, including external and

interconnection (drag or friction) pure torques

ω
!bl=n
bl = angular velocity vector of rigid body l with respect to the inertial frame n,

with components in bl (reference frame fixed to body l)

F
!
il = ith force acting on body l, excluding all reaction forces at interconnections

between bodies with QFjl contributions that cancel when the system is
considered as a whole (see (4.5.46) and related discussion). (The number
of these forces on body l is nF l.)

Al = an arbitrary point that is fixed on body l and about which moments of
forces acting on body l are taken

R
!
Al = position vector of Al, as sensed in inertial frame n ð4:5:53Þ

R
!
il = position vector of the point of application for F

!
il

R
!
il=Al = position vector of point of application of force F

!
i l relative to moment point

Al, that is, R
!
il=Al =R

!
il−R

!
Al
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nv
!
Al =

nd
dt R
!
Al = velocity of point Al, as sensed in inertial frame n

nv
!
il =

nd
dt R
!
il = velocity of point of application for F

!
il, as sensed in inertial frame n

4.5.4 Potential, Circulation, and Dissipation Functions

Implementation of LE is simplified by replacing forces and torques in the generalized
force formulas (4.5.47)–(4.5.52) with gradients of scalar functions. Recall from Section 4.3
that conservative forces can be represented as gradients of potential functions. Viscous damp-
ing and circulatory forces may also be expressed in a similar manner. To illustrate this, con-
sider the intentionally general system of interconnected RBs shown in Figure 4.5.4.

4.5.4.1 Weight Loads (wi)

Recall from (4.3.18) that the potential energy function for the weight wi of RB i is

Uwi =wix
Gi
n3 ð4:5:54Þ

The contribution of wi to Qj is from (4.5.51)

Qwi
j = −win3 � ∂R

!
Gi

∂qj
= −

∂Uwi

∂xGin3
n3

	 

� ∂xGin1

∂qj
n1 +

∂xGin2
∂qj

n2 +
∂xGin3
∂qj

n3

	 

= −

∂Uwi

∂xGin3

∂xGin3
∂qj

= −
∂Uwi

∂qj

ð4:5:55Þ

Figure 4.5.4 System of rigid bodies with motion-dependent forces
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Summarizing, if

F
!wi

= −win3 ð4:5:56Þ
the potential energy Uwi is

Uwi =wix
Gi
n3 ð4:5:57Þ

and the contribution of wi to the generalized force Qj becomes

Qwi
j = −

∂Uwi

∂qj
ð4:5:58Þ

4.5.4.2 Translational Stiffness Defined in the Inertial Frame:
Symmetric Stiffness Matrix

Consider the case where the p force elements in Figure 4.5.4 represent a general stiffness
connection between D and E, that is,

FKDE = −KDE RD−RE

� �
−KDE RD0−RE0

� �
= −KDERD=E −KDER

0
D=E ð4:5:59Þ

whereKDE is a symmetric matrix and R0
D=E is a vector of prestretch displacements of the stiff-

ness element. A special case occurs if KDE is diagonal and R0
D=E equals zero which implies

FKDE = −kn1Δxn1n1−kn2Δxn2n2−kn3Δxn3n3 ð4:5:60Þ

where

Δxn1 = xn1D−xn1E, Δxn2 = xn2D−xn2E, Δxn3 = xn3D−xn3E ð4:5:61Þ

This, for instance, could be the force representation for the vehicle suspension leaf
spring in Figure 4.5.5.

Define the scalar potential function

UKDE =
1
2
RT
D=E
1 × 3

KDE
3 × 3

RD=E
3 × 1

+ RT
D=E
1 × 3

KDE
3 × 3

R0
D=E
3 × 1

ð4:5:62Þ

Note that since KDE is a constant, symmetric matrix and by using (4.5.59)

−
∂UKDE

∂qj
= −

1
2

∂ RT
D=E

� �
∂qj

KDERD=E−
1
2
RT
D=E KDE

∂RD=E

∂qj
−
∂ RT

D=E

� �
∂qj

KDE R
0
D=E

= −
∂ RT

D=E

� �
∂qj

KDE RD=E +R
0
D=E

� �
=FKDE

∂RD=E

∂qj
=F
!
KDE � ∂R

!
D

∂qj
−F
!
KDE �∂R

!
E

∂qj

ð4:5:63Þ
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The stiffness force is applied at both D and E in the system, and this force is equal and
opposite at D and E. This and a comparison of (4.5.63) with (4.5.51) show

Summarizing, if

FKDE
3 × 1

= −KDE RD−RE

� �
+ RD0−RE0

� � �
= − KDE

3 × 3
RD=E
3 × 1

+ R0
D=E
3 × 1

 !
ð4:5:64Þ

where KT
DE =KDE and R0

D=E contains the prestretch deflections of the stiffness element-

and the scalar potential function is defined by

UKDE =
1
2
RT
D=E
1 × 3

KDE
3 × 3

RD=E
3 × 1

+ RT
D=E
1 × 3

KDE
3 × 3

R0
D=E
3 × 1

ð4:5:65Þ

then the contribution of FKDE to the generalized force Qj in (4.5.47) becomes

QKDE
j = −

∂UKDE

∂qj
ð4:5:66Þ

Equations (4.5.64)–(4.5.66) apply ifD and E are on two separate bodies or if E orD is
fixed or is given some prescribed displacements in the inertial frame n.

EXAMPLE 4.5.1 Generalized Force for a Symmetric Stiffness Matrix with
Prestretch and 1D Spring

Objective: Show that the generalized force expression (4.5.66) utilizing potential energy
yields the same result as the general expression (4.5.51) for a 1-dimensional spring with
prestretch (Figure E4.5.1(a)).

For this example,

RD=E = xD−xE, R0
D=E = xD0−xE0, KDE = k ð1Þ

FD = −k xD0 + xD− xE0 + xEð Þ½ � = −k xD−xE + xD0−xE0ð Þ ð2Þ

Leaf Spring

Figure 4.5.5 Vehicle suspension with translational springs and dampers
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FE = −FD = k xD−xE + xD0−xE0ð Þ ð3Þ
From (4.5.65),

UkDE =
1
2
xD−xEð Þk xD−xEð Þ+ xD−xEð Þk xD0−xE0ð Þ

=
k

2
xD−xEð Þ2 + k xD−xEð Þ xD0−xE0ð Þ

ð4Þ

From (4.5.47) and (4.5.51), the generalized forces are

QE =F
!
E �∂R

!
E

∂qE
=FE

∂xE
∂xE

=FE, QD =F
!
D � ∂R

!
D

∂qD
=FD

∂xD
∂xD

=FD ð5Þ

From (4.5.66),

QE = −
∂UkDE

∂qE
=
∂UkDE

∂xE
= k xD−xEð Þ+ k xD0−xE0ð Þ

QD = −
∂UkDE

∂qD
= −

∂UkDE

∂xD
= −k xD−xEð Þ−k xD0−xE0ð Þ

ð6Þ

Either the force (5) or potential (6) approach produces the same results by (2) and (3).

4.5.4.3 Translational Stiffness Defined in the Inertial Frame:
Unsymmetric Stiffness Matrix

Displacement-dependent forces arise in rotating machinery due to circulation of fluids in
tight clearance components such as the fluid film bearing shown in Figure 4.5.6.

These forces are caused by deformation of the fluids by the vibrating shaft and may be
described by a nonsymmetric stiffness matrix. The direct stiffness terms are analogous to
structural stiffnesses, but the off-diagonal terms are nonsymmetric. A reason for this can
be seen from Figure 4.5.7, which is the end view of a shaft, spinning within a fluid film
bearing or liquid seal. The observer at A sees fluid circulating in the + y direction, but
the observer at B sees the fluid circulating in the −x direction. The shaft is centered and
the bearing is axisymmetric; therefore, by symmetry, a force applied on the shaft in the
+ x direction produces displacements in the + x and + y directions, and the same force

Figure E4.5.1(a) Prestretched spring in its unstretched, prestretched, and actual states
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applied in the + y direction will cause displacements in the + y and −x direction. This yields
an antisymmetric stiffness matrix with equal and opposite off-diagonal terms.

Excellent discussions of this topic may be found in many references including
Venkataraman and Palazzolo (1997), Moore and Palazzolo (1999), Suh and Palazzolo
(2014), Vance (1987), and Childs (1993). Let KDE be nonsymmetric in (4.5.59), that is,

KDE =K
NS
DE ð4:5:67Þ

and define the circulatory scalar function

ℑc
DE =

∂ RT
D=E

� �
∂t

KNS
DERD=E = R

: T

D=E
1 × 3

KNS
DE

3 × 3
RD=E
1 × 3

ð4:5:68Þ

Note that

−∂ℑc
DE

∂ _qj
=
−∂ _R

T
DE

� �
∂ _qj

KNS
DERD=E −

_R
T
D=EK

NS
DE

∂ RD=E

� �
∂ _qj

=
−∂ _R

T
DE

� �
∂ _qj

KNS
DERD=E ð4:5:69Þ

since RD=E is not a function _qj. Recall from (4.5.59) that

FNS
KDE = −KNS

DERD=E ð4:5:70Þ

Figure 4.5.6 Five-pad tilting pad journal bearing for supporting a high-speed compressor shaft

Figure 4.5.7 End view of a component (bearing or seal) with annular clearance and a spinning shaft
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so that

−∂ℑc
DE

∂ _qj
= FNS

KDE

� �T ∂ _RD=E

� �
∂ _qj

ð4:5:71Þ

or in vector notation

−∂ℑc
DE

∂ _qj
= F
!NS
KDE �

∂ nv
!
D=E

� �
∂ _qj

= F
!NS
KDE �

∂nv
!
D

∂ _qj
− F
!NS
KDE �

∂nv
!
E

∂ _qj
ð4:5:72Þ

The circulatory force is applied at bothD and E in the system, and this force is equal and
opposite at D and E. This and a comparison of (4.5.72) with (4.5.52) show

If

FKDE
3 × 1

= −KDE RD−RE

� �
= −KDE

3 × 3
RD=E
3 × 1

forKDE general ð4:5:73Þ

and the circulatory scalar function is defined by

ℑc
DE =R

: T

D=E
KDERD=E ð4:5:74Þ

the contribution of FKDE to the generalized force Qj in (4.5.47) becomes

QKDE
j = −

∂ℑc
DE

∂ _qj
ð4:5:75Þ

Equations (4.5.73)–(4.5.75) apply ifD and E are on two separate bodies or if E orD is fixed or is
given some prescribed displacements in the inertial frame n.

EXAMPLE 4.5.2 Generalized Force for an Unsymmetric Stiffness Matrix

Objective: Show that the generalized force expression (4.5.75) utilizing the circulatory sca-
lar function yields the same result as the general expression (4.5.52) for an unsymmetric
stiffness matrix (Figure E4.5.2(a)).

For this example,

RD=E =
xD−xE

yD−yE

( )
, KDE =

kxx kxy

kyx kyy

" #
, _RD=E =

_xD− _xE

_yD− _yE

( )
ð1Þ

FxD = −FxE = −kxx xD−xEð Þ−kxy yD−yEð Þ ð2Þ
FyD = −FyE = −kyx xD−xEð Þ−kyy yD−yEð Þ ð3Þ

From (4.5.47) and (4.5.51), the generalized forces are

QxD =F
!
xD � ∂R

!
xD

∂qxD
=FxD

∂xD
∂xD

=FxD ð4Þ
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Similarly,

QyD =FyD, QxE =FxE, QyE =FyE ð5Þ
From (4.5.74) and (1),

ℑc
DE = _R

T
D=EKDERD=E

= _xD− _xEð Þ kxx xD−xEð Þ+ kxy yD−yEð Þ� �
+ _yD− _yEð Þ kyx xD−xEð Þ + kyy yD−yEð Þ� � ð6Þ

From (4.5.75), (2), (3), and (6),

QxD =
∂ℑc

DE

∂ _xD
= −kxx xD−xEð Þ−kxy yD−yEð Þ =FxD ð7Þ

Similar results follow for QyD, QxE, and QyE.The force (4) or potential (7) produces the
same result for the generalized forces (Q’s).

4.5.4.4 Translational Damping Force Defined in the Inertial Frame

Damping may result from the intrinsic internal energy dissipation in a deformable compo-
nent or may result from a specialized damping device as shown by the dampers in
Figure 4.5.8.

Consider the case when the p force element in Figure 4.5.4 represents a general, trans-
lational damping connection between D and E, that is,

FCDE = −CDE
_RD−

_RE

� �
= −CDE

nvD=E ð4:5:76Þ

where CDE is symmetric. A special case occurs if CDE is diagonal which implies

F
!
CDE = −cn1Δ _xn1n1−cn2Δ _xn2n2−cn3Δ _xn3n3 ð4:5:77Þ

Figure E4.5.2(a) Spinning shaft in seal or bearing yielding an unsymmetric stiffness matrix
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Define the scalar “Rayleigh dissipation function”

ℑd
DE =

1
2
n vTD=E
1 × 3

CDE
3 × 3

n vD=E
3 × 1

ð4:5:78Þ

Note that since CDE is a constant, symmetric matrix and by using (4.5.76)

−∂ℑd
DE

∂ _qj
=
−∂ nv

!
D=E

� �
∂ _qj

CDE
nvD=E =F

T
CDE �

∂nv
!
D=E

∂ _qj
=F
!T
CDE �

∂nv
!
D

∂ _qj
−F
!
CDE � ∂

nv
!
E

∂ _qj
ð4:5:79Þ

The damping force is applied at both D and E in the system, and this force is equal and
opposite at D and E. This and a comparison of (4.5.52) and (4.5.79) show

If

FCDE
3 × 1

= −CDE
_RD−

_RE

� �
= −CDE

3 × 3

nvDE
3 × 1

forCT
DE =CDE ð4:5:80Þ

and the scalar Rayleigh dissipation function is defined by

ℑd
DE =

1
2
nvTD=ECDE

nvD=E ð4:5:81Þ

the contribution of FCDE to the generalized force Qj in (4.5.47) becomes

QCDE
j = −

∂ℑd
DE

∂ _qj
ð4:5:82Þ

Equations (4.5.80)–(4.5.82) apply ifD and E are on two separate bodies or if E orD is fixed or is
given some prescribed motion in the inertial frame n.

EXAMPLE 4.5.3 Generalized Force for a Symmetric Translational Damping Matrix

Objective: Show that the generalized force expression (4.5.82) utilizing the Rayleigh dis-
sipation function yields the same result as the general expression (4.5.52) for a symmetric
damping matrix (Figure E4.5.3(a)).

dampers

Figure 4.5.8 Translational damper on a vehicle
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For this example,

VDE = vD−vE = _xD− _xE, CDE = c ð1Þ
FD = −c _xD− _xEð Þ, FE = c _xD− _xEð Þ ð2Þ

By (4.5.47) and (4.5.52),

QD =F
!
D � ∂V

!
D

∂ _qD
=FD

∂ _xD
∂ _xD

=FD ð3Þ

QE =F
!
E � ∂V

!
E

∂ _qE
=FE

∂ _xE
∂ _xE

=FE ð4Þ

From (4.5.81),

ℑd
DE =

1
2

_xD− _xEð Þc _xD− _xEð Þ= c

2
_xD− _xEð Þ2 ð5Þ

By (4.5.82) and (2),

QD = −
∂ℑd

DE

∂ _qD
= −

∂ℑd
DE

∂ _xD
= −c _xD− _xEð Þ=FD ð6Þ

QE = −
∂ℑd

DE

∂ _qE
= −

∂ℑd
DE

∂ _xE
= c _xD− _xEð Þ =FE ð7Þ

Both force and potential approaches yield the same result for the generalized
forces (Q’ s).

4.5.4.5 Rotational Stiffness

The relative rotation between two objects produces a restoring torque in a torsional spring
connecting the objects. Figure 4.5.9 shows a high-strength commercial torsional spring.
Other familiar examples include self-closing door hinges or torsion bars on the front sus-
pension of a vehicle. Torsional stiffness-related vibration problems often occur in structural
members, for example, drillstrings, that deflect torsionally due to drive and load (typically
cutting or friction) torques.

The torsional spring kT connects RB (1) and (2) in Figure 4.5.4. These bodies have a
relative angular velocity

ω
! 2=1
b0 = _θ

0
1 b
0
3 ð4:5:83Þ

Figure E4.5.3(a) Damping element connecting points D and E
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Let τ!KT represent the torque provided by the spring, that is,

τ
!
KT = −kTθ

0
1 b
0
3 ð4:5:84Þ

This description of the torsional spring torque could be generalized by considering up to
three Euler angles (Section 2.7) at the joint connecting bodies (1) and (2) as illustrated by the
ball and socket joint in Figure 4.5.10. With reference to Figure 4.5.11, the joint torque may
appear as

τ
!
KT = −kT1 θ1 b

0
3−kT2 θ2 b

00
2 −kT3 θ3 b

000
1 ð4:5:85Þ

The stiffness torque in (4.5.85) may be generalized to the form

τKT = −KTΘ−KTΘ0 ð4:5:86Þ

where KT is symmetric, Θ0 are initial angular deflections, and

Θ= θ1 θ2 θ3ð ÞT ð4:5:87Þ

Torsion Spring

Figure 4.5.9 Rotational (torsional) spring. Reproduced with permission from Murphy & Read Spring
Manufacturing Co.

Figure 4.5.10 Ball and socket joint with a three internal rotational spring stiffness

Chapter 4 Equations of Motion by Energy Methods 177

www.konkur.in



Note the first, second, and third rows in τ
!
KT , KT , or Θ correspond to the directions

b03, b
00
2 , and b0001 , respectively. Define the scalar potential function

UKT =
1
2
ΘT

1× 3
KT
3 × 3

Θ
3 × 1

+ ΘT

1 × 3
KT
3 × 3

Θ0
3 × 1

ð4:5:88Þ

Then

−
∂UKT

∂qj
= −

1
2
∂

∂qj
ΘTKTΘ−

1
2
ΘTKT

∂

∂qj
Θ−

∂

∂qj
ΘTKTΘ0

= −
∂

∂qj
ΘT

	 

KTΘ+KTΘ0

� � ð4:5:89Þ

which by (4.5.9) implies

−
∂UKT

∂qj
= −

∂

∂ _qj
_ΘT

� �
KTΘ+KTΘ0

� � ð4:5:90Þ

The relative angular velocity between bodies (1) and (2) is

ω
!2=1 = _θ1 b

0
3 + _θ2 b

00
2 + _θ3 b

000
1 ð4:5:91Þ

The unit vectors b03, b
00
2 , and b0001 are functions of the qj via the direction cosine trans-

formation matrices (DCTM) (2.7.6) which relate them to the inertial frame unit vectors n1,
n2, and n3.

They are, however, not functions of _qj since _qj does not appear in the DCTM. Hence,

∂ω
!2=1

∂ _qj
=
∂ _θ1
∂ _qj

b03 +
∂ _θ2
∂ _qj

b 002 +
∂ _θ3
∂ _qj

b0001 ð4:5:92Þ

or

∂

∂ _qj
ω2=1 =

∂

∂ _qj
_Θ ð4:5:93Þ

Figure 4.5.11 Successive (3–2–1) Euler angle rotations from frame “n” to frame “b” and angular velocity

vector ω
!
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Substitute (4.5.86) and (4.5.93) into (4.5.90) to obtain

−
∂UKT

∂qj
=

∂

∂ _qj
ω2=1

 !T

τKT = τ
T
KT

∂

∂ _qj
ω2=1
� �

= τTKT
∂

∂ _qj
ω2=n−τKT

∂

∂ _qj
ω1=n ð4:5:94Þ

The stiffness torque is applied to both bodies 1 and 2 in the system and is equal and
opposite on the bodies. This and a comparison of (4.5.48) with (4.5.94) shows:

If

τKT
3 × 1

= −KT
3 × 3

Θ
3 × 1

−KT
3 × 3

Θ0
3 × 1

ð4:5:95Þ

for KT symmetric, θ0 the pretwist of the stiffness element, and

τKT =

stiffness torque between the bodies; taken about b03
stiffness torque between the bodies; taken about b 002
stiffness torque between the bodies; taken about b0001

8><>:
9>=>; ð4:5:96Þ

Θ=

θ1

θ2

θ3

8><>:
9>=>; =

relative rotation between the bodies; about b03
relative rotation between the bodies; about b 002
relative rotation between the bodies; about b0001

8><>:
9>=>; ð4:5:97Þ

and the scalar potential function is defined by

UKT =
1
2
ΘT

1× 3
KT
3 × 3

Θ
3 × 1

+ ΘT

1 × 3
KT
3 × 3

Θ0
3 × 1

ð4:5:98Þ

The contribution of τKT to the generalized force Qj in (4.5.47) becomes

QKT
j = −

∂UKT

∂qj
ð4:5:99Þ

EXAMPLE 4.5.4 Generalized Force for a Symmetric Torsional Stiffness Matrix

Objective: Show that the generalized force expression (4.5.99) utilizing the potential energy
function (4.5.98) yields the same result as the general expression (4.5.48) for a symmetric
torsional stiffness matrix (Figure E4.5.4(a)).

For this example,

θ = θD−θE, θ0 = θ
0
D−θ

0
E, KT = kT ð1Þ

Torque on body D:

τD = −kT θ0D + θD
� �

− θ0E + θE
� �� �

= −τE ð2Þ
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From (4.5.48), the generalized forces are

QθD = τ
!
D �∂ω

!
D

∂ _θD
= τD

∂ _θD

∂ _θD
= τD, QθE = τ

!
E � ∂ω

!
E

∂ _θE
= τE

∂ _θE

∂ _θE
= τE ð3Þ

From (4.5.98),

UKT =
1
2
θD−θEð ÞkT θD−θEð Þ− θD−θEð ÞkT θ0D−θ

0
E

� �
=
kT
2

θD−θEð Þ2 + kT θD−θEð Þ θ0D−θ0E
� � ð4Þ

From (4.5.99),

QθD = −
∂UKT

∂qθD
= −

∂UKT

∂θD
= −kT θD−θEð Þ−kT θ0D−θ

0
E

� �
QθE = −

∂UKT

∂qθE
= −

∂UKT

∂θE
= kT θD−θEð Þ+ kT θ0D−θ

0
E

� � ð5Þ

Comparison of (2), (3), and (5) shows that the generalized forces are identical from the
force approach (3) or potential approach (e).

4.5.4.6 Rotational Damping

Suppose that the torque discussed in the preceding section was caused by viscous drag
instead of stiffness, that is,

τCT = −CT
_Θ ð4:5:100Þ

instead of (4.5.86). Conducting a derivation similar to (4.5.87)–(4.5.94) would yield

Figure E4.5.4(a) Torque developed by relative rotations and torsional spring
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Rotational, Symmetric Damping Matrix Connection between Two Bodies�

If

τCT
3 × 1

= −CT
3 × 3

_Θ
3 × 1

ð4:5:101Þ

for CT symmetric, and

τCT =

damping torque between the bodies; taken aboutb03
damping torque between the bodies; taken about b 002
damping torque between the bodies; taken about b 0001

8><>:
9>=>; ð4:5:102Þ

_Θ=

_θ1
_θ2
_θ3

8><>:
9>=>; =

relative angular velocity between the bodies; about b03
relative angular velocity between the bodies; aboutb 002
relative angular velocity between the bodies; about b 0001

8><>:
9>=>; ð4:5:103Þ

and the scalar dissipation function is defined by

ℑd
CT =

1
2
_ΘT
CT

_Θ ð4:5:104Þ

The contribution of τCT to the generalized force Qj in (4.5.47) becomes

Qj = −
∂ℑd

CT

∂ _qj
ð4:5:105Þ

EXAMPLE 4.5.5 Generalized Force for an Symmetric Torsional Damping Matrix

Objective: Show that the generalized force expression (4.5.105) utilizing the Rayleigh
dissipation function (4.5.104) yields the same result as the general expression (4.5.48)
for a symmetric torsional damping matrix (Figure E4.5.5(a)).

For this example,

θ = θD−θE, θ
:
= _θD− _θE ð1Þ

Torque on body D:

τD = −cT _θD− _θE
� �

= −τE ð2Þ

From (4.5.48), the generalized forces are

QθD = τ
!
D �∂ω

!
D

∂ _θD
= τDk̂ � ∂

_θDk̂

∂ _θD
= τD, QθE = τ

!
E � ∂ω

!
E

∂ _θE
= τEk̂ � ∂

_θEk̂

∂ _θE
= τE ð3Þ

∗The above formula applies if one of the bodies is fixed or is given some prescribed angular velocities
in the inertial frame.
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From (4.5.104), the Rayleigh dissipation function is

ℑD
CT =

1
2

_θD− _θE
� �

cT _θD− _θE
� �

=
cT
2

_θD− _θE
� �2 ð4Þ

From (4.5.105),

QθD = −
∂ℑD

CT

∂ _qθD
= −

∂ℑD
CT

∂ _θD
= −cT _θD− _θE

� �
QθE = −

∂ℑE
CT

∂ _qθE
= −

∂ℑE
CT

∂ _θE
= cT _θD− _θE

� � ð5Þ

Comparison of (2), (3), and (5) shows that the generalized forces are identical from the
force approach (3) or potential approach (e).

4.5.5 Summary for Lagrange Equation

Consideration of the previous discussion and examples about obtaining generalized forces
from derivatives of scalar functions, along with the basic LE (4.5.23) and generalized force
summation (4.5.47), yields

Lagrange’s Equations of Motion: NB Rigid Bodies and Scalar Potentials

nd

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ ℑc +ℑd
� �

∂ _qj
ð4:5:106aÞ

j = 1, 2, 3, …, n (the number of independent generalized coordinates (q1, q2,…, qn))

This equation may be expressed in vector form by utilizing the vector differentiation
notation in (2.6.42a), which yields

nd

dt

∂T

∂ _q

 !
−
∂T

∂q
=Q−

∂U

∂q
−
∂ ℑc +ℑd
� �

∂ _q
ð4:5:106bÞ

Figure E4.5.5(a) Torque developed by relative rotations and torsional damper
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The kinetic energy is

T =
XNB

i = 1

1
2
mi

nvTGi
nvGi +

1
2

ωbi=n
bi

� �T
IBi=biGi ωbi=n

bi

	 

ð4:5:107Þ

U = sum of all scalar potential functions in the entire system. Some special cases include

• Uw in 4:5:57ð Þ
• UKDE in 4:5:65ð Þ
• UKT in 4:5:98ð Þ

ð4:5:108Þ

ℑc = sum of all circulatory scalar functions in the entire system, that is,

• ℑc
DE in 4:5:74ð Þ ð4:5:109Þ

ℑd = sum of all Rayleigh dissipation scalar functions in the entire system, that is,

• ℑc
DE in 4:5:78ð Þ

• ℑc
CT in 4:5:104ð Þ ð4:5:110Þ

Qj = jth generalized force determined from only the forces which are not described by
U, ℑc, or ℑd type functions.

See Equations (4.5.47)–(4.5.53) for the related Qj definitions. (4.5.111)

Another common form of LE is obtained from (4.5.106a) as

Lagrange’s Equations of Motion: Lagrangian Function

Note that in general

∂U

∂ _qj
= 0 ð4:5:112Þ

and also define the “Lagrangian function”

L= T −U ð4:5:113Þ
then (4.5.106a) becomes

nd

dt

∂L

∂ _qj

 !
−
∂L

∂qj
=Qj−

∂ ℑc +ℑd
� �

∂ _qj
ð4:5:114Þ

4.5.6 Nonconservative Generalized Forces and Virtual Work

Some vibration texts utilize Hamilton’s variational principle

δ T +Uð Þ= δWnc ð4:5:115Þ

Chapter 4 Equations of Motion by Energy Methods 183

www.konkur.in



to derive the LE, where the variational operator δ represents an infinitesimally small change
in a function or variable. The independent generalized coordinates qj are given variations δqj
which cause the points of application of applied nonconservative forces to displace. Let the
ith nonconservative force on body l be designated by F

!
il and its point of application be the

position vector R
!
il, which changes by the infinitesimal amount δR

!
il δq1,δq2,…,δqnð Þ due to

the variations δqj of the generalized coordinates. The “virtual work” performed by F
!
il mov-

ing through the virtual displacement δR
!
il is given by

δWil = δR
!
il �F
!
il =

Xn
j= 1

∂R
!
il

∂qj
δqj

 !
�F!il ð4:5:116Þ

where the total differential of R
!
il has been used. The virtual work performed by all noncon-

servative forces on body l becomes

δWl =
XnFl
i= 1

δWil = δR
!
il �F
!
il =
XnFl
i= 1

Xn
j= 1

∂R
!
il

∂qj
δqj

 !
�F!il

 !
ð4:5:117Þ

A rearrangement of terms yields

δWl =
Xn
j= 1

Qjlδqj ð4:5:118Þ

where

Qjl =
XnFl
i= 1

F
!
il � ∂R

!
il

∂qj
ð4:5:119Þ

for

l= 1,2,…,NB

Operations on the left-hand side of (4.5.115) similar to the derivation of (4.5.23) and
consideration of all NB in the system yield

Xn
j = 1

d

dt

∂T

∂ _qj

 !
−
∂T

∂qj
+
∂U

∂qj

 !
δqj =

XNB

l = 1

δWl =
XNB

l= 1

Qjl

 !
δqj ð4:5:120Þ

The virtual displacements are independent and totally arbitrary, so from (4.5.120), it
follows that

d

dt

∂T

∂ _qj

 !
−
∂T

∂qj
+
∂U

∂qj
=Qj ð4:5:121Þ

where

Qj =
XNB

l= 1

Qjl ð4:5:122Þ

Equation (4.5.121) is LE, and (4.5.119) and (4.5.122) are identical to the originally
derived generalized force expressions (4.5.47) and (4.5.51). The preceding analysis shows
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the relation between generalized forces and virtual work. Specifically, (4.5.118) provides
the interpretation of the jth generalized force Qj as being the force which moves through
the jth generalized coordinate’s virtual displacement δqj to contribute the virtual work.

EXAMPLE 4.5.6 Wind Tunnel Mounted Wing Vibration

Description: The model below depicts an airfoil mounted on a support structure in a wind
tunnel. The θ and x coordinates define the pitch and heave motions (Figure 2.6.1), respec-
tively. The forces and moments that act on this rigid body model of the airfoil include the
attachment stiffnesses for heave (k) and pitch (kR) motions, aerodynamic pressure (fp(t) and
mp(t)), aerodynamic drag c _x and cR _θ

� �
, and an engine-related, rotating mass imbalance

force FE(t). A static equilibrium position (SEP) reference is utilized for coordinates x and
θ; therefore, the weight and initial spring deflections due to “static sag” may be ignored.
Small-angle approximations are assumed for the following analysis.

Objective: Derive the EOMs for the wing model shown in Figure E4.5.6(a) utilizing
Lagrange’s equations. The two generalized coordinates are q1 = x for heave motion and
q2 = θ for pitch motion (ref. Figure 2.6.1).

Solution:

(a) The kinetic energy of the system is expressed as (4.2.14)

T q1, q2, _q1, _q2ð Þ= m

2
_q1−e _q2ð Þ2 + IG

2
_q22 ð1Þ

(b) Sum all contributions to the scalar potential function in (4.5.108). The weight contri-
bution is ignored since the coordinates in Figure E4.5.6(a) are SEP referenced:

• For kR, (4.5.98) becomes

UKR =
1
2
θkRθ =

kR
2
θ2 ð2Þ

• For k, (4.5.65) becomes

UK =
1
2
xkx =

k

2
x2 ð3Þ

Therefore

U =UKR +UK =
kR
2
θ2 +

k

2
x2 =

kR
2
q22 +

k

2
q21 ð4Þ

Figure E4.5.6(a) Simplified airfoil model with attachment stiffnesses and aerodynamic forces
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(c) Sum all contributions to the scalar dissipation functions in (4.5.110):

• For cR, (4.5.104) becomes

ℑd
cR =

1
2
_θcR _θ =

cR
2
_θ
2 ð5Þ

• For c, (4.5.81) becomes

ℑd
c =

1
2
_xc _x=

c

2
_x2 ð6Þ

Therefore

ℑd =ℑd
cR +ℑ

d
c =

cR
2
_θ
2
+
c

2
_x2 =

cR
2
_q22 +

c

2
_q21 ð7Þ

(d) Sum all generalized force contributions for forces that cannot be expressed with U,ℑd,
orℑc. Note that l = 1 in Equation (4.5.47) since there is only one rigid body in the body.
Therefore, by (4.5.47) and (4.5.48),

Qj =Qj1 =QFj1 + τ
!
tot,1 �

n∂ ω
!b1=n
b1

∂ _qj
ð8Þ

where from (4.5.52)

QFj1 =
XnF1
i= 1

F
!
i1 � ∂

nv
!
i1

∂ _qj
ð9Þ

The resultant of all of the pure external torques acting on body 1 is

τ
!
tot,1 = mp tð Þ� �

n3 ð10Þ

where n3 is the unit vector perpendicular to the plane of the paper. Note that

n∂ω
!b1=n

∂ _q1
=
∂ _q2n3ð Þ
∂ _q1

= 0n3,
n∂ω

!b1=n

∂ _q2
=
∂ _q2n3ð Þ
∂ _q2

= n3 ð11Þ

Therefore, from (8),

Q1τjl= 1 = τ!tot,1 �
∂ω
!b1=n
b1

∂ _q1
= 0, Q2τjl= 1 = τ

!
tot,1 � ∂ω

!b1=n
b1

∂ _q2

 !
=mp tð Þ ð12Þ

The external force applied at B1 is fp(t). Therefore, from (9),

QjB1 =F
!
11 � ∂

nv
!
11

∂ _qj
= − fp tð Þn1 � ∂

nv
!
11

∂ _qj
ð13Þ

where since fp(t) is applied at B1

nv
!
11 = _q1n1)

∂nv
!
11

∂ _q1
=
∂ _q1n1ð Þ
∂ _q1

= n1) ∂nv
!
11

∂ _q2
=
∂ _q1n1ð Þ
∂ _q2

= 0n1 ð14Þ
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Combining (13) and (14) yields

Q1B1 =F
!
11 � ∂

nv
!
11

∂ _q1
= − fp tð Þ, Q2B1 =F

!
11 � ∂

nv
!
11

∂ _q2
= 0 ð15Þ

The external force applied at B2 is FE(t). Therefore, from (9),

QjB2 =F
!
21 � ∂

nv
!
21

∂ _qj
=FE tð Þn1 � ∂

nv
!
21

∂ _qj
ð16Þ

where since FE(t) is applied at B2

nv
!
21 = _q1− lE _q2ð Þn1) ∂nv

!
21

∂ _q1
=
∂ _q1− lE _q2ð Þn1ð Þ

∂ _q1
= n1 ð17Þ

) ∂nv
!
21

∂ _q2
=
∂ _q1− lE _q2ð Þn1ð Þ

∂ _q2
= − lEn1

Combining (16) and (17) yields

Q1B2 =F
!
21 � ∂

nv
!
21

∂ _q1
=FE tð Þ, Q2B2 =F

!
21 � ∂

nv
!
21

∂ _q2
= − lEFE tð Þ ð18Þ

Combining the results of Equations (12), (15), and (18) into (8) yields

Q1 =Q1τ +Q1B1 +Q1B2 = − fp tð Þ +FE, Q2 =Q2τ +Q2B1 +Q2B2 =mp tð Þ− lEFE tð Þ ð19Þ

(e) Substitute the expressions for T (Eq. 1),U (Eq. 4),ℑd (Eq. 7), and Equation (19) into the
Lagrange equations (4.5.106a) yields

nd

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ ℑc +ℑd
� �

∂ _qj
ð20Þ

nd
dt

∂

∂ _qj

m

2
_q1−e _q2ð Þ2 + IG

2
_q22

	 
( )

=
− fp tð Þ +FE tð Þ, for j= 1
− lEFE tð Þ +mp tð Þ, for j = 2

( )
−

∂

∂qj

kR
2
q22 +

k

2
q21

	 

−

∂

∂ _qj

cR
2
_q22 +

c

2
_q21

� � ð21Þ

EOM for q1 = x, from Equation (21):

d

dt
m _q1−e _q2ð Þð Þ =m€q1−me€q2 = − fp tð Þ+FE tð Þ−kq1−c _q1 ð22Þ

EOM for q2 = θ, from Equation (21):

d

dt
m _q1−e _q2ð Þ −eð Þ+ IG _q2ð Þ= −me€q1 + IG +me2

� �
€q2

= − lEFE tð Þ+mp tð Þ−kRq2−cR _q2
ð23Þ
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Equations (22) and (23) may be written in matrix form as

m −me

−me IG +me2

" #
€q1
€q2

( )
+

c 0

0 cR

" #
_q1
_q2

( )
+

k 0

0 kR

" #
q1

q2

( )
=

FE tð Þ− fp tð Þ
mp tð Þ− lEFE tð Þ

( )
ð24Þ

This result has the general form for the matrix governing differential equation of a
linear vibrating system:

M€q +C _q +Kq =F tð Þ ð25Þ
The Lagrange equations’ advantages over Newton’s law for this example include accel-

eration expressions or stiffness and damping force sign identifications were not required.

EXAMPLE 4.5.7 Resonant Vibrator for Compound Potting (Examples 3.3.1
and 4.4.1 Revisited)

Background: This examplewas presented inExample 3.3.1 (Newton’s law) andExample 4.4.1
(conservation of power).

Objective: Derive the EOMs utilizing the Lagrange approach in (4.5.106a) with the single
generalized coordinate q1 = δH .

Solution:
Figure E4.5.7(a) shows the vibrator mechanism with the equivalent spring stiffness,

follower weight, and bearing drag moments.

Figure E4.5.7(a) Resonant vibrator mechanism
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The following constraints were identified in Example 4.4.1 with q1 = δH :

θ3 =
2
L3

L5b
L5

q1) _θ3 =
2
L3

L5b
L5

_q1, θ5 =
1
L5

q1) _θ5 =
1
L5

_q1

x =
L5b
L5

q1) _x =
L5b
L5

_q1, yG5Q = −
L5a + L5b

2L25
q21, _yG5Q = −

L5a +L5b
L25

q1 _q1 ð1Þ

and the kinetic energy was identified in Example 4.4.1 as

T =
Meq

2
_δ
2
H =

Meq

2
_q21 ð2Þ

where

Meq =
IF5Q
L25

+
L25b
L25

m1 +
4
L23

IG3

	 

ð3Þ

• Sum all contributions to the scalar potential function in (4.5.108). The weight contribu-
tion w5 +mQgð Þ cannot be ignored since it is not balanced by an initial spring deflection:
° For k at B, (4.5.65) becomes

UkB =
1
2
xkx =

k

2
x2 =

k

2
L25b
L25

q21 ð4Þ

° For k at D, (4.5.65) becomes

UkD =
1
2
xkx =

k

2
x2 =

k

2
L25b
L25

q21 ð5Þ

° For w5 +mQgð Þ at G5, Equation (4.5.57) becomes

Uw5G = w5 +mQgð ÞyG5Q = − w5 +mQgð Þ L5a + L5bð Þ
2L25

q21 ð6Þ

Therefore, the potential energy function for the entire system becomes

∴ U =UkB +UkD +Uw5G =
1
2L25

2kL25b− w5 +mQgð Þ L5a + L5bð Þ� �
q21 ð7Þ

• Sum all contributions to the scalar dissipation function in Equation (4.5.110):

° For cTF at F, Equation (4.5.104) becomes

ℑd
F =

1
2
_θ5cTF _θ5 =

cTF
2

1
L25

_q21 ð8Þ

° For cTC at C, (4.5.104) becomes

ℑd
C =

1
2
_θ3cTC _θ3 =

cTC
2

4
L23

L25b
L25

_q21 ð9Þ
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° For cA at A, (4.5.81) becomes

ℑd
A =

1
2
_xcA _x =

cA
2
L25b
L25

_q21 ð10Þ

Therefore, the Rayleigh dissipation function for the entire system becomes

ℑd =ℑd
F +ℑ

d
C +ℑ

d
A =

1
2L25

cTF + cAL
2
5b + 4cTC

L25b
L23

	 

_q21 ð11Þ

• Sum all generalized force contributions for forces and moments that cannot be expressed
withU, ℑd, orℑc. The only force or moment that satisfies this requirement is the pressure
force fp(t). Recall from (4.5.47), (4.5.48), and (4.5.52) that

Qj =
XNB

l= 1

Qjl, Qjl =QFjl + τ
!
tot, l �

n∂ ω
!bl=n
bl

∂ _qj
, QFjl =

XnFl
i= 1

F
!
il � ∂

nv
!
il

∂ _qj
ð12Þ

Therefore, by (1) and (12),

QδH =Qq1 =Q1 = fp̂i
� � � ∂ _x̂i

� �
∂ _δH

= fp tð ÞL5b
L5

ð13Þ

• Substitute the expressions for T (Eq. 2), U (Eq. 7), ℑd (Eq. 11), and QδH (Eq. 13) into the
Lagrange equation (Eq. (4.5.106a))

nd

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ ℑc +ℑd
� �

∂ _qj
ð14Þ

to obtain

nd

dt

∂

∂ _q1

Meq

2
_q21

	 
	 

=
L5b
L5

fp tð Þ− ∂

∂q1

Keq

2
q21

	 

−

∂

∂ _q1

Ceq

2
_q21

	 

ð15Þ

)Meq€q1 +Ceq _q1 +Keqq1 =Feq tð Þ ð16Þ

where

Ceq =
cTF
L25

+
L25b
L25

cA +
4cTC
L23

	 

, Keq = 2k

L25b
L25

−
L5a + L5bð Þ

L25
W5 +mQgð Þ ð17Þ

Meq =
IF5Q
L25

+
L25b
L25

m1 +
4

L23
IG3

	 

, Feq =

L5b
L5

fp ð18Þ

Summary: The Lagrange approach is seen to be simpler in execution than the Newton
approach (Example 3.3.1) since it does not require free body diagrams, expressions for
accelerations, or ideal joint reaction forces (due to (4.5.46)). The Lagrange approach is seen
to be as simple to apply as the conservation of power approach (Example 4.4.1) and will also
provide all EOMs for a multi-DOF model.
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EXAMPLE 4.5.8 Labeling Mechanism (Example 3.3.2 Revisited)

Description: The system shown in Figure E4.5.8(a) is part of a mechanism employed to
attach labels in a manufacturing process. Vibration of the system results from actuator forces
f1(t) and f2(t) and torque τ1(t).

Objective: Derive the two equations of motion for coordinates q1 and q2 utilizing
Lagrange’s approach.

Assumptions: q1 and q2 are small motions.
Recall from Example 3.3.2 that the change in length of the k1−c1 impedance was

approximated as a two-term Taylor series expansion:

ΔD=D−D0≈
2affiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2
p q1 ð1Þ

The kinetic energy of the system is (4.2.14)

T =
1
2
IA _q

2
2 +

1
2
m1 _q

2
1 +

1
2
IB _θ

2
=
1
2
IA _q

2
2 +

1
2

m1 +
IB
r2

	 

_q21 ð2Þ

The potential energy is obtained from Figure E4.5.8(b) and (4.5.57), (4.5.65),
(4.5.98) as

U = −m2gL1 1−cosq2ð Þ + k3
2
q22 +

k2
2

q1 + L2q2ð Þ2 + k1
2
ΔD2 ð3Þ

where ΔD is given by (1) and via a two-term Taylor series expansion

cosq2≈1−
q22
2

ð4Þ

for small motions. The dissipation function is (4.5.81) (4.5.104)

ℑd =
c3
2
_q22 +

c2
2

_q1 +L2 _q2ð Þ2 + c1
2
Δ _D

2 ð5Þ

Figure E4.5.8(a) Vibrating mechanical system with two dofs and three excitations
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where from (1), for small motion

Δ _D=
2affiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2
p _q1 ð6Þ

The generalized forces are given by (4.5.47), (4.5.48), and (4.5.52)

Qj =
XNB

l= 1

Qjl, Qjl =QFjl + τ
!
tot, l �

n∂ ω
!bl=n
bl

∂ _qj
, QFjl =

XnFl
i= 1

F
!
il � ∂

nv
!
il

∂ _qj
ð7Þ

as

Qj = τ1ez � ∂ _q2ezð Þ
∂ _qj

+ f1ex � ∂ _q1exð Þ
∂ _qj

− f2ex � ∂ −L1 _q2exð Þ
∂ _qj

= τ1
∂ _q2
∂ _qj

+ f1
∂ _q1
∂ _qj

+ f2L1
∂ _q2
∂ _qj

ð8Þ

Therefore,

Q1 = f1, Q2 = τ1 + L1f2 ð9Þ
The Lagrange equation (4.5.106a)

d

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ℑd

∂ _qj
ð10Þ

yields for j= 1

m1 +
IB
r2

	 

€q1 = f1−k2 q1 +L2q2ð Þ−k1 4a2

a2 + b2
q1−c2 _q1 + L2 _q2ð Þ−c1 4a2

a2 + b2
_q1 ð11Þ

and for j = 2

IA€q2 = τ1 + L1f2 +m2gL1q2−k3q2−k2 q1 + L2q2ð ÞL2−c3 _q2−c2 _q1 + L2 _q2ð ÞL2 ð12Þ
Equations (11) and (12) are identical to the Newton’s laws results as obtained in

Example 3.3.2.

Figure E4.5.8(b) Inverted pendulum and k1−c1 impedance geometries
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EXAMPLE 4.5.9 Industrial Screening Machine

Description: Figure E4.5.9(a) depicts an industrial screening machine utilized for separat-
ing minerals. Two stages of screening are shown with each stage containing two screens.
A scotch yoke mechanism provides a harmonic input motion z(t) which is assisted by a
hydraulic force f(t) and torque τ(t). Assume that the vibration angle q5 of bar AD is much
smaller than its orientation angle γ.

Objective: Determine the equations of motion utilizing the Lagrange method.
Kinematics
The reaction forces at A andD are functions of the horizontal displacements of A andD,

respectively. The generalized force contribution at C is determined from the horizontal
velocity at C. These motions are determined in the following manner:

+ ) ΔAx =
L

2
sin γ + q5ð Þ− L

2
sin γð Þ ð1Þ

The two-term Taylor series (Section 2.4) for sin γ + q5ð Þ is

sin γ + q5ð Þ≈sinγ +
∂sin γ + q5ð Þ

∂q5

����
q5 = 0

∗q5 = sinγ + cosγ∗q5 ð2Þ

Combining (1) and (2) yields

+ ) ΔAx≈
L

2
cos γð Þq5 ð3Þ

Similarly,

+ ( ΔCx≈
L

4
cos γð Þq5, + ( ΔDx =

L

2
cos γð Þq5 ð4Þ

Energy and Dissipation Functions
From (4.2.14),

T =
m1

2
_q21 +

m2

2
_q22 +

m3

2
_q23 +

m4

2
_q24 +

IG
2
_q25 ð5Þ

Figure E4.5.9(a) Five-degree of freedom (dof ) lumped inertia model of an industrial screening machine
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From (4.5.65),

U =
k1
2

q1−zð Þ2 + k2
2

q2−q1ð Þ2 + k3
2

ΔAx−q2ð Þ2 + k4
2

q3−ΔDxð Þ2 + k5
2

q4−q3ð Þ2 ð6Þ

From (4.5.81),

ℑd =
c1
2

_q1− _zð Þ2 + c2
2

_q2− _q1ð Þ2 + c3
2

Δ _Ax− _q2
� �2

+
c4
2

_q3−Δ _Dx

� �2
+
c5
2

_q4− _q3ð Þ2 ð7Þ

Generalized Forces
From (4) and (4.5.47), (4.5.48), and (4.5.52),

Qj =
XNB

l= 1

Qjl, Qjl =QFjl + τ
!
tot, l �

n∂ ω
!bl=n
bl

∂ _qj
, QFjl =

XnFl
i= 1

F
!
il � ∂

nv
!
il

∂ _qj
ð8Þ

it results that

Qj = − fex � ∂
∂ _qj

−Δ _Cxex
� �

+ τez � ∂
∂ _qj

_q5ezð Þ = f ∂

∂ _qj

L

4
cos γð Þ _q5

	 

+ τ

∂

∂ _qj
_q5ð Þ ð9Þ

Therefore,

Q1 =Q2 =Q3 =Q4 = 0, Q5 = f
L

4
cos γð Þ+ τ ð10Þ

Lagrange’s Equations
The Lagrange equation (4.5.106a)

d

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ℑd

∂ _qj
ð11Þ

yields

j= 1 : m1€q1 + c1 _q1− _zð Þ−c2 _q2− _q1ð Þ + k1 q1−zð Þ−k2 q2−q1ð Þ = 0 ð12Þ

j= 2 : m2€q2 + c2 _q2− _q1ð Þ−c3 L

2
cos γð Þ _q5− _q2

	 

+ k2 q2−q1ð Þ−k3 L

2
cos γð Þq5−q2

	 

= 0

ð13Þ

j= 3 : m3€q3 + c4 _q3−
L

2
cosγ∗ _q5

	 

−c5 _q4− _q3ð Þ + k4 q3−

L

2
cosγ∗q5

	 

−k5 q4−q3ð Þ= 0

ð14Þ
j= 4 : m4€q4 + c5 _q4− _q3ð Þ + k5 q4−q3ð Þ = 0 ð15Þ

j = 5 : IG€q5 + c3
L

2
cosγ∗ _q5− _q2

	 

L

2
cosγ−c4 _q3−

L

2
cosγ∗ _q5

	 

L

2
cosγ

+ k3
L

2
cosγ∗q5−q2

	 

L

2
cosγ−k4 q3−

L

2
cosγ∗q5

	 

L

2
cosγ = f

L

4
cosγ + τ

ð16Þ
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Expressing these in matrix–vector form yields

M€q +C _q +Kq=F ð17Þ

q= q1 q2 q3 q4 q5ð ÞT 5 × 1ð Þ ð18Þ

M = diag m1 m2 m3 m4 IGð ÞT 5 × 5ð Þ ð19Þ

F=

c1 _z+ k1z

0

0

0
L

4
cos γð Þ∗ f tð Þ + τ tð Þ

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð20Þ

K=

k1 + k2 −k2 0 0 0

−k2 k2 + k3 0 0 −αk3

0 0 k4 + k5 −k5 −αk4

0 0 −k5 k5 0

0 −αk3 −αk4 0 α2 k3 + k4ð Þ

26666664

37777775 ð21Þ

C=

c1 + c2 −c2 0 0 0

−c2 c2 + c3 0 0 −αc3

0 0 c4 + c5 −c5 −αc4

0 0 −c5 c5 0

0 −αc3 −αc4 0 α2 c3 + c4ð Þ

26666664

37777775 ð22Þ

where

α=
L

2
cosγ ð23Þ

4.5.7 Effects of Gravity for the Lagrange Approach

The gravity force (weight) and initial static deflection may be neglected in some, but not all
models (ref. Example 3.3.3). The coordinates are referenced to the static equilibrium state
SEP in these models.

EXAMPLE 4.5.10 Linear Spring Mass

Consider the linear spring mass system shown in Figure E4.5.10(a).
Let Δ be the static deflection due to gravity, that is,

kΔ=mg ð1Þ
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qT: total deflection of the spring

q: spring deflection relative to SEP

Consider the Lagrange equation contribution ∂U=∂q if U is evaluated by:

(a) Including gravity g and utilizing the total spring deflection coordinate qT:

Ua =
k

2
q2T−mgqT =

k

2
q +Δð Þ2−mg q+Δð Þ ð2Þ

∂Ua

∂qT
= kqT−mg= k q+Δð Þ−mg = kq ð3Þ

where (1) has been used.

(b) Neglecting g and utilizing the SEP referenced coordinate q:

Ub =
k

2
q2 neglect gravityð Þ ð4Þ

∂Ub

∂q
= kq ð5Þ

Therefore,

∂Ua

∂qT
=
∂Ub

∂q
ð6Þ

and either approach yields the same contribution to the Lagrange equation. Note that the
gravity force must be ignored if the coordinate is referenced to SEP, that is,

U =
k

2
q2−mgq ð7Þ

is incorrect and will result in an incorrect equation of motion (EOM).

Figure E4.5.10(a) Unloaded, static equilibrium, and dynamically deflected states of simple single-
mass oscillator
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EXAMPLE 4.5.11 Linearized System with a Nonlinear Spring

This system is the same as the previous example; however, the spring is a cubic hardening
spring:

Fk = −kq3T ð1Þ

The gradient of the corresponding potential energy function Uk will equal −Fk if Uk is
defined as

Uk = −

ðqT
0

−kq3T
� �

dqT =
kq4T
4

ð2Þ

Static equilibrium (
P

forces = 0) is satisfied if

mg= kΔ3 ð3Þ

(a) Method I: Include gravity and utilize qT:

Ua =
kq4T
4

−mgqT ð4Þ

∂Ua

∂qT
= kq3T−mg ð5Þ

A two-term Taylor series linearization about the SEP (qT =Δ) then yields

q3T≈q3T
��
qT =Δ

+ 3q2T
��
qT =Δ

∗ qT−Δð Þ ð6Þ

∴
∂Ua

∂qT

����
lin

= k Δ3 + 3Δ2 ∗q� �
−mg ð7Þ

Substitute (3) into (7) and cancel terms to obtain

∂Ua

∂qT

����
lin

= 3Δ2∗q∗k ð8Þ

where by (3) Δ =
mg

k

� �1=3
.

(b) Method II: Utilize q, ignore gravity, and ignore Δ (static deflection):

Ub =
k

4
q4 ð9Þ

∂Ub

∂q
= kq3 ð10Þ

Performing a two-term Taylor series linearization about the SEP (q = 0) yields

∂Ub

∂q

����
lin

≈kq3
��
q = 0 + 3kq

2
��
q= 0q = 0 ð11Þ
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Thus, for the nonlinear spring system, the potential energy U should be expressed
in terms of the total deflection coordinate qT and include the gravity force (weight) as
shown in Equation (4), since (11) is incorrect (force = 0 when q 6¼ 0).

EXAMPLE 4.5.12 Linear Spring with Geometric Nonlinearity and
Small Motion Assumption

Consider the inclined, inverted pendulum shown in Figure E4.5.12(a).
Let

Δ= static deflection of the spring≈L sinγs−sinγ0ð Þ ð1Þ
Take moments about A for static equilibrium:

+ FkLcosγs = kΔLcosγs =mg
L

2
sinγs ð2Þ

The total deflection of the spring is the sum of the static and dynamic deflections:

xKT =Δ +L sinγ−sinγsð Þ ð3Þ
The vertical deflection of G is

YG = −
L

2
cosγ0−cosγð Þ ð4Þ

Therefore, the potential energy evaluated relative to the undeformed configuration is

Ua = −mg
L

2
cosγ0−cosγð Þ+ k

2
Δ +L sinγ−sinγsð Þ½ �2 ð5Þ

The angular deflection relative to the undeformed state is

β = γ−γ0

) ∂

∂β
=

∂

∂γ

∂γ

∂β
=

∂

∂γ
ð6Þ

Figure E4.5.12(a) Inclined, inverted pendulum with a horizontal spring
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The potential energy term in Lagrange’s equation becomes

∂Ua

∂β
=
∂Ua

∂γ
= −mg

L

2
sinγ + k Δ+ Lsinγ−Lsinγsð ÞLcosγ ð7Þ

where the total angle coordinate β is utilized and the gravitational force (weight) is included.
Note that

γ = γs + α ð8Þ
where α is a small perturbation angle referenced to the static equilibrium state (γ = γs).

Consider the Taylor series representations utilizing (8)

sinγ≈sinγs + cosγsα ð9Þ
cosγ≈cosγs−sinγsα ð10Þ

sinγ cosγ≈sinγs cosγs + cos2γs−sin
2γs

� �
α−sinγs cosγsα

2 ð11Þ

Neglect the α2 term in (11), since α is a small quantity, and insert (9)–(11) into (7):

⇒
∂Ua

∂β
ffi−mg

L

2
sin γs−mg

L

2
cos γsα+ kΔL cosγs−kΔL sinγsα

+ kL2½sin γs cos γs +  ðcos2 γ−sin2 γsÞα�+ kL2½−sin γs cos γs  +  sin2γsα�
ð12Þ

Substitute the static equilibrium condition (2) into (12) and cancel terms to obtain

∂Ua

∂β
ffi kL2cos2γsα−kΔLsinγsα−mg

L

2
cosγsα ð13Þ

Substitute (1) into (13) to obtain

∂Ua

∂β
ffi kL2 cos2γs−sin

2γs + sinγs sinγ0
� �

α−mg
L

2
cosγsð Þα ð14Þ

Static Equilibrium Position (SEP) Reference
Next, consider evaluating the potential energy relative to the SEP (neglecting gravity

effects):

Ub =
k

2
Lsin γs + αð Þ−Lsin γsð Þ½ �2 ð15Þ

∂Ub

∂α
= k Lsin γs + αð Þ−Lsinγs½ �Lcos γs + αð Þ ð16Þ

Substitute (11) and (12) into (16) to obtain

∂Ub

∂α
= kL2 cos2γsα ð17Þ

Equations (14) and (17) are not identical, so in a strict sense, evaluation of U should
utilize Ua and not Ub. Consider a “stiff spring” approximation, that is, the static deflection
is approximately zero:

) γs = γ0 ð18Þ
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Then, (14) becomes

∂Ua

∂β
ffi kL2cos2γsα−mg

L

2
cosγsα ð19Þ

For (18) to be true, k must be a large number so that it is reasonable to assume that

mg
L

2
� kL2 cosγs ð20Þ

Therefore, (19) becomes

∂Ua

∂β
≈kL2cos2γsα ð21Þ

which is identical to the SEP referenced results (17). The EOM is obtained from (4.5.106a)
with the total deflection coordinate β:

d

dt

∂T

∂ _β

	 

−
∂T

∂β
+
∂Ua

∂β
= 0 ð22Þ

where since _β = _α

T =
IA
2
_β
2
=
IA
2
_α2 ð23Þ

and
∂Ua

∂β
≈kL2cos2γsα is defined in (13). Equation (22) yields

∴ IA€α + keqα= 0 ð24Þ
where

keq = kL2 cos2γs−sin
2γs + sinγs sinγ0

� �
−mg

L

2
cosγs

= kL2cos2γs−kLΔsinγs−mg
L

2
cosγs

≈kL2cos2γs

ð25Þ

for the stiff spring approximation and Δ� L.

EXAMPLE 4.5.13 Vertical, Inverted Pendulum with Horizontal Spring

Consider the inverted pedulum with side spring shown in Figure E4.5.13(a).
The potential energy is

U =
k

2
Lθð Þ2−mgL

2
1−cosθð Þ ð1Þ

∂U

∂θ
= kL2θ−mg

L

2
sinθ ð2Þ

sinθ ≈ sin 0ð Þ+ cos 0ð Þ∗θ = θ ð3Þ
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∂U

∂θ
= kL2−mg

L

2

	 

θ ð4Þ

The gravity term must be included here since the physical system’s motion requires a
moment to cause the pendulum to drop if k! 0. The gravity term may be ignored
for kL�mg.

4.5.8 “Automating” the Derivation of the LE Approach

Obtaining a full set of EOM via (4.5.106) or (4.5.114) may become very tedious and error
prone when conducted manually on large-order, nonlinear systems. Maple, Mathematica,
MATLAB, or other symbolic math codes can be employed to somewhat automate this proc-
ess. Following this approach may provide more accurate results or at least a good “second
opinion” on your by-hand calculations. Example 3.3.4 illustrates this approach utilizing the
Newton’s law method.

EXAMPLE 4.5.14 EOMs for Pipe Transport Elevator

Description: The Figure E4.5.14(a) depicts an elevator of mass mC that transports circular
pipe of various radii r. The mass and moment of inertia of a single pipe aremP and IP, respec-
tively. The carriage has a circular inner profile with center point O and radius R. The cables
that support C are flexible with stiffness k and are pulled vertically with support motion z(t).
The guide bearings for C cause a vertical drag force −b _y. The carriage motor causes a ver-
tical force F(t).

Objective: The objective here is to derive the two EOMs with the Lagrange equations uti-
lizing the symbolic math software Maple.

Assumptions: Rolling (no-slip) contact between the pipe and carriage.

Solution:

(a) Figure E4.5.14(b) shows a velocity vector diagram for the mass center GP of pipe mP.
The velocity of the mass center is given by

V
!
GP =V

!
O +V

!
GP=O = vyĉj+ Rω cos θð Þ̂i+Rω sin θð Þ̂j� � ð1Þ

Figure E4.5.13(a) Vertical, inverted pendulum with horizontal spring
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where ω= _θ.

(b) Figure E4.5.14(c) shows an angular velocity diagram for pipe P. The arc length AA0 can
be expressed as viewed in a reference frame attached to the carriage, that is,
(AA0 = R+ rð Þθ) or in a rotating reference frame that is attached to line OGP , that is,
(AA0 = rϕ). Equating these expressions yields

ϕ= −
R+ r
r

θ = − 1 +
R

r

	 

θ ð2Þ

where the minus sign is included since θ is positive in the counterclockwise sense and
ϕ is positive in the clockwise sense.

The kinetic energy due to rotation is given by 1
2IPΩ

2 where Ω is the total angular
velocity of the pipe, that is,

Ω = angular velocity of reference frame OGP plus the angular velocity _ϕ as sensed
in frame OGP

= _θ + _ϕ = _θ− 1 +
R

r

	 

_θ = −

R

r
_θ = −

R

r
ω ð3Þ

(c) The kinetic energy of this system is obtained from (4.2.14) and Figures E4.5.14(a),
E4.5.14(b), and E4.5.14(c) as

T =
mC

2
v2yc +

mP

2
v2Gp +

IP
2
Ω2

=
mC

2
v2yc +

mP

2
R2ω2cos2θ + vyc +Rω sinθ

� �2h i
+
IP
2
R2

r2
ω2

ð4Þ

Figure E4.5.14(a) Pipe transport elevator with support motion carriage C

Figure E4.5.14(b) Velocity
diagram for the pipe’s mass
center GP
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This simplifies to

T =
mC +mPð Þ

2
v2yc +

mP

2
R2ω2 +RωvycmP sinθ +

IP
2
R2

r2
ω2

=
mtot

2
v2yc +

Ieq
2
ω2 +RmPωvyc sinθ

ð5Þ

where

mtot =mC +mP ð6Þ

Ieq = IP
R2

r2
+mPR

2 ð7Þ

(d) The potential energy of this system has contributions from the elevation change
R−Rcosθð Þ of GP (ref. Eq. (4.5.57)) and from the deformation of the cables (springs)
(ref. Eq. (4.5.65)):

U =mPgR 1−cosθð Þ+ k

2
z−yð Þ2 ð8Þ

The weight potential energy of mC is not included due to employing the SEP
reference.

(e) TheRayleigh dissipation function is given by Equation (4.5.81) and Figure E4.5.14(a) as

ℑd =
1
2
bv2yc ð9Þ

where b is the damping constant.

(f) The generalized forces due to the motor force F(t) are obtained from (4.5.47), (4.5.48),
and (4.5.52) as

Qy =Fĵ � ∂vyĉj
∂vyc

=F, Qθ =Fĵ � ∂vyĉj
∂ω

= 0 ð10Þ

(g) The Lagrange equations are then formed from (4.5.106a):

nd

dt

∂L

∂ _qj

 !
−
∂L

∂qj
=Qj−

∂ℑd

∂ _qj
ð11Þ

Figure E4.5.14(c) Angular velocity diagram for pipe P
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j = 1, qj = y, _qj = vyc ð12Þ
j = 2, qj = θ, _qj =ω ð13Þ

(h) The MAPLE code shown below performs the operations in Equation (11) to obtain the
two EOMs shown below:

y : mtot€y +RmP
€θ sinθ +RmP

_θ
2
cosθ + b _y+ ky = kz +F tð Þ ð14Þ

θ : Ieq€θ +RmP€y sinθ +RmPgsinθ = 0 ð15Þ
Summary: Automation of the EOM process of Lagrange by utilizing MAPLE or another
symbolic math code may greatly facilitate the process or provide a reliable “second opinion”
if the process is also performed manually:

># Example 4.5.14 EOM’s for Pipe Transport Elevator
>restart;
># Define Auxiliary Variables
>thetadot(t):= diff(theta(t),t) ; ydot(t):= diff(y(t),t) ;

thetadot tð Þ : = d

dt
θ tð Þ ydot tð Þ : = d

dt
y tð Þ

># Kinetic Energy
>T := Mtot/2*Vyc^2 + Ieq/2*omega^2

+ R*Mp*omega*Vyc*sin(theta) ;

T : =
1
2
Mtot Vyc2 +

1
2
Ieq ω2 +R Mp ω Vycsin θð Þ

># PotentialEnergy
>U := Mp*g*R*(1-cos(theta)) + k/2*(z-y)^2 ;

U : =Mp g R 1−cos θð Þð Þ + 1
2
k z−yð Þ2

># Rayleigh Dissipation Function
>Fd := b/2*Vyc^2;

Fd : =
1
2
b Vyc2

># Circulatory Forces
>Fc := 0 ;
Fc : = 0
># Generalized Forces
>Qy := F ; Qtheta := 0 ;
Qy :F Qtheta : = 0
*********************************************************
># ******** Lagrange Equation For j=1 (q=y , qdot=vy) *****
># See eq. 4.5.114
*********************************************************
># Lagrangian Function L (See eq 4.5.113)
>L:= T - U ;

L :
1
2
Mtot Vyc2 +

1
2
Ieq ω2 +R Mp ω Vycsin θð Þ−Mp g R 1−cos θð Þð Þ

−
1
2
k z−yð Þ2
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# Partial derivative of L with respect to y dot
>dLdVyc:= diff(L,Vyc);
dLdVyc : =Mtot Vyc +R Mp ωsin θð Þ
dLdVyc:= subs(Vyc=Vyc(t), omega=omega(t),y=y(t),

theta=theta(t),dLdVyc) ;
dLdVyc : =Mtot Vyc tð Þ+R Mp ω tð Þsin θ tð Þð Þ
# Time derivative of ( Partial derivative of L with

respect to y dot)
>d_dLdVyc_dt(t) := diff(dLdVyc,t) ;

d _ dLdVyc _ dt tð Þ : =Mtot
d

dt
Vyc tð Þ

	 

+R Mp

d

dt
ω tð Þ

	 

sin θ tð Þð Þ

+R Mp ω tð Þcos θ tð Þð Þ d

dt
θ tð Þ

	 

LEQa := subs(omega(t)=thetadot(t), Vyc(t)=ydot(t),

d_dLdVyc_dt(t));

LEQa : =Mtot
d2

dt2
y tð Þ

	 

+R Mp

d2

dt2
θ tð Þ

	 

sin θ tð Þð Þ

+R Mp
d

dt
θ tð Þ

	 
2

cos θ tð Þð Þ
# Partial derivative of L with respect to y

>LEQb := diff(L,y);
LEQb : = k z−yð Þ
LEQb:= subs(Vyc=Vyc(t),omega=omega(t),y=y(t),theta=
theta(t),LEQb);
LEQb : = k z−y tð Þð Þ
>LEQb := subs(omega(t)=thetadot(t),Vyc(t)=ydot(t),LEQb);
LEQb : = k z−y tð Þð Þ
# y generalized force

>LEQc := Qy;
LEQc : =F
# Partial derivative of dissipation function with respect

to y dot
>LEQd := diff(Fd,Vyc) ;
LEQd : = b Vyc
>LEQd := subs(Vyc=ydot(t),LEQd);

LEQd : = b
d

dt
y tð Þ

	 

# Partial derivative of the circulatory function with

respect to y dot
>LEQe := diff(Fc,Vyc) ;
LEQe : = 0
># The y EOM is the equation (LEQ1 = 0)
>LEQ1:=LEQa+LEQd-LEQb+LEQe-LEQc ;

LEQ1: =Mtot
d2

dt2
y tð Þ

	 

+R Mp

d2

dt2
θ tð Þ

	 

sin θ tð Þð Þ

+R Mp
d

dt
θ tð Þ

	 
2

cos θ tð Þð Þ+ b d

dt
y tð Þ

	 

−k z−y tð Þð Þ−F
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*********************************************************
># ****** Lagrange Equation For j=2 (q=theta , qdot=omega)
># See eq. 4.5.114
> *******************************************************
>dLdomega:= diff(L,omega);
dLdomega : = Ieq ω +R Mp Vycsin θð Þ
dLdomega:= subs(Vyc=Vyc(t),omega=omega(t),
y=y(t),theta=theta(t),dLdomega);
dLdomega : = Ieq ω tð Þ +R Mp Vyc tð Þsin θ tð Þð Þ

>d_dLdomega_dt(t):= diff(dLdomega,t) ;

d _ dLdomega _ dt tð Þ : = Ieq d

dt
ω tð Þ

	 

+R Mp

d

dt
Vyc tð Þ

	 

sin θ tð Þð Þ

+R Mp Vyc tð Þcos θ tð Þð Þ d

dt
θ tð Þ

	 

LEQa:= subs(omega(t)=thetadot(t),Vyc(t)=ydot(t),
d_dLdomega_dt(t));

LEQa : = Ieq
d2

dt2
θ tð Þ

	 

+R Mp

d2

dt2
y tð Þ

	 

sin θ tð Þð Þ

+R Mp
d

dt
y tð Þ

	 

cos θ tð Þð Þ d

dt
θ tð Þ

	 

>LEQb := diff(L,theta);
LEQb : =R Mp ω Vyccos θð Þ−Mp g R sin θð Þ
LEQb:= subs(Vyc=Vyc(t),omega=omega(t),y=y(t),

theta=theta(t),LEQb);
LEQb : =R Mp ω tð Þ Vyc tð Þcos θ tð Þð Þ−Mp g R sin θ tð Þð Þ
>LEQb := subs(omega(t)=thetadot(t),Vyc(t)=ydot(t),LEQb);

LEQb : =R Mp
d

dt
y tð Þ

	 

cos θ tð Þð Þ d

dt
θ tð Þ

	 

−Mp g R sin θ tð Þð Þ

>LEQc := Qtheta;
LEQc : = 0
>LEQd := diff(Fd,omega) ;
LEQd : = 0
>LEQd := subs(omega=thetadot(t),LEQd);
LEQd : = 0
>LEQe := diff(Fc,omega) ;
LEQe : = 0
># The theta EOM is the equation (LEQ2 = 0)
>LEQ2:=LEQa+LEQd-LEQb+LEQe-LEQc ;

LEQ2; = Ieq
d2

dt2
θ tð Þ

	 

+R Mp

d2

dt2
y tð Þ

	 

sin θ tð Þð Þ+Mp g Rsin θ tð Þð Þ

EXAMPLE 4.5.15 Industrial Louver System for a Large Air Duct

Description: The model in Figure E4.5.15(a) depicts a door that is used to control airflow
through a large air duct in an industrial process. The inverted pendulum-type louver is
opened by retraction of a holding latch during certain stages in the operation. The upstream
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air pressure forces the unlatched door open causing it to swing downward and oscillate. The
equations of motion are to be derived in order to develop a simulation model to assist in
designing the bearings and other components of the device. The base mass m is allowed
to slide to accommodate thermal expansion concerns and is compliantly mounted to help
absorb sudden pressure fluctuations in the air supply. The louver has a rotational return
spring and damper.

Objective:Write the equations by both the Newton and Lagrange approaches and compare
results. Assume large motions to derive the nonlinear equations of motion and then linearize
the equations about the closed state x = θ = 0.

Assumptions: The louver (door) is subjected to a constant, uniform pressure p at all times.
A near-frictionless restraint constrains the mass m from rotating.

(a) Kinematic Relationships

xG = x+ hsinθ, _xG = _x + hcosθ _θ, €xG =€x + hcosθ€θ−hsinθ _θ
2 ð1Þ

yG = hcosθ, _yG = −hsinθ _θ ð2Þ

r
*
G=A = hsin θ̂i+ hcos θ̂j ð3Þ

a
*
A =€xî ð4Þ

(b) Newton’s Law Approach
From Figures E4.5.15(b) and E4.5.15(c), the resultant pressure forces and

moment are

Fx =
ðL
0
pbdzcosθ = pbLcosθ ð5Þ

Fy = −

ðL
0
pbdzsinθ = −pbLsinθ ð6Þ

Figure E4.5.15(a) Model of louver for airflow control in industrial ductwork
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Using the right-hand rule about the k̂ unit vector (directed into the page),

MA = −

ðL
0
zpbdz = −pb

L2

2
ð7Þ

The translational equations of motion (EOMs) are

m€x =Ax−kx−c _x ð8Þ

mG€xG =mG €x + hcosθ€θ−hsinθ _θ
2

� �
=Fx−Ax = pbLcosθ−Ax ð9Þ

From (7) and (3.3.26), [IA α
! + r!G=A × mGa

!
A =Γ

!
A], and using the right-hand rule

about k̂ yields

IA −€θ
� �

k̂ + hsin θ̂i+ hcos θ̂j
� �

×mG€xî= −pb
L2

2
+ kTθ−mGghsinθ

	 

k̂ + cT _θ ð10Þ

IG +mGh
2

� �
€θ +mGhcosθ€x =

pbL2

2
−kTθ−mGghsinθ−cT _θ ð11Þ

Figure E4.5.15(c) Diagram for analysis of pressure-induced forces and moments

Figure E4.5.15(b) Free body diagram for Newton law-based derivation
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Sum Equations (8) and (9) to eliminate Ax:

m +mGð Þ€x +mG hcosθ€θ −hsinθ _θ
2

� �
= −kx−c _x + pbLcosθ ð12Þ

(c) Lagrange Approach
Kinetic energy:

T =
m

2
_x2 +

mG

2
_x2G + _y2G
� �

+
IG
2
_θ
2 ð13Þ

T =
m

2
_x2 +

mG

2
_x + hcosθ _θ
� �2

+ hsinθ _θ
� �2h i

+
IG
2
_θ
2

Potential energy:

U =
k

2
x2 +

kT
2
θ2 +mGghcosθ ð14Þ

Dissipation function:

ℑd =
c

2
_x2 +

cT
2
_θ
2 ð15Þ

Lagrange’s equation (4.6.52):

d

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ℑd

∂ _qj
ð16Þ

∂T

∂x
= 0 ð17Þ

∂T

∂θ
=mG _x+ hcosθ _θ

� �
−hsinθ _θ
� �

+ hsinθ _θ
� �

hcosθ _θ
� �� �

=mG −h _xsinθ _θ
� � ð18Þ

∂T

∂ _x
=m _x+mG x + hcosθ _θ

� � ð19Þ

∂T

∂ _θ
=mG _x+ hcosθ _θ

� �
hcosθð Þ+ hsinθ _θ

� �
hsinθð Þ� �

+ IG _θ =mG _xhcosθ + h2 _θ
� �

+ IG _θ

ð20Þ
d

dt

∂T

∂ _x

	 

=m€x +mG€x +mGhcosθ€θ −mGh _θ

2
sinθ ð21Þ

d

dt

∂T

∂ _θ

	 

= IG€θ +mGh

2€θ +mGh €x cosθ− _x _θ sinθ
� � ð22Þ

∂U

∂x
= kx,

∂U

∂θ
= kTθ−mGghsinθ ð23Þ

∂ℑd

∂ _x
= c _x,

∂ℑd

∂ _θ
= cT _θ ð24Þ

Generalized forces for applied pressure (ref. 4.5.51):

dF
!
= pdA cos θ̂i−sin θ̂j

� � ð25Þ
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R
!
F =R

!
B = x + ysinθð Þ̂i + ycos θ̂j ð26Þ

Qx =
ðL
0
dF
!� ∂F

!
R

∂x
=
ðL
0
pbdy cos θ̂i−sin θ̂j

� � � î= ðL
0
pbdzcosθ = pbLcosθ ð27Þ

Qθ =
ðL
0
dF
!� ∂F

!
R

∂θ
=
ðL
0
pbdz cos θ̂i−sin θ̂j

� � � zcos θ̂i−ysin θ̂j� �
=
ðL
0
pb cos2θz + sin2θz
� �

dz = pb
L2

2

ð28Þ

Substituting the above results into Lagrange’s equations (16) yields
x EOM:

m +mGð Þ €x +mGhcosθ€θ−mGh _θ
2
sinθ = pbLcosθ−kx−c _x ð29Þ

θ EOM:

IG +mGh2ð Þ€θ +mGh €x cosθ− _x _θ sinθ
� �

+mGh _xsinθ _θ

= pb
L2

2
−kTθ +mGghsinθ−cT _θ

ð30Þ

(d) Comparison
The Lagrange approach results (Equations (29), (30)) are identical to the Newton

approach results (Equations (11), (12)).

(e) Linearized EOM

Linearization is performed with the Taylor series approach shown in
Equations (2.4.3)–(2.4.7). The equilibrium state (ES) is defined by

x = _x=€x = θ = _θ = €θ = 0 ð31Þ
The pressure is considered to be zero at t = 0 and suddenly jump to p at t = 0+

(when the louver is unlatched):
x EOM (Equations (12) or (29)):

f1 = cosθ€θ

≈ f1jES +
∂f1
∂θ

����
ES

θ +
∂f1
∂€θ

����
ES

€θ = cosθ€θ
��
ES

+ −sinθ€θ
� ���

ES
θ + cosθjES€θ = €θ

ð32Þ

f2 = _θ
2
sinθ

≈ f2jES +
∂f2
∂ _θ

����
ES

_θ +
∂f2
∂θ

����
ES

θ = _θ
2
sinθjES + 2 _θ sinθ

��
ES
_θ + _θ

2
cosθ

���
ES
θ = 0+ 0 + 0 = 0

ð33Þ

f3 = cosθ≈ f3jES +
∂f3
∂θ

����
ES

θ = cosθjES−sinθjESθ = 1−0 = 1 ð34Þ

θ EOM (Equations (11) or (30)):

f4 =€x cos _θ ≈ €x similar to 32ð Þð Þ ð35Þ
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f5 = _x _θ sinθ ≈ f5jES +
∂f5
∂ _x

����
ES

_x+
∂f5
∂ _θ

����
ES

_θ +
∂f5
∂θ

����
ES

θ

= _x _θ sinθjES + _θsinθjES _x + _xsinθjES _θ + _x _θcosθjES θ = 0+ 0 + 0 + 0 = 0
ð36Þ

f6 = sinθ≈ f6jES +
∂f6
∂θ

����
ES

θ = sinθjES + cosθjES θ = 0 + θ = θ ð37Þ

Substituting the linearized forms into (29) and (30) yields
x EOM (linearized about ES):

m+mGð Þ€x +mGh€θ = pbL−kx−c _x ð38Þ
θ EOM (linearized about ES):

IG +mGh
2

� �
€θ +mGh€x = pb

L2

2
−kTθ +mGghθ−cT _θ ð39Þ

or

m+mG mGh

mGh IG +mGh2

" #
€x

€θ

( )
+

c 0

0 cT

" #
_x

_θ

( )
+

k 0

0 kT −mGgh

" #
x

θ

( )
=

pbL

pbL2

2

8<:
9=; ð40Þ

4.6 LE FOR FLEXIBLE, DISTRIBUTED MASS BODIES: ASSUMED
MODES APPROACH

Section 4.5 provided a derivation of the fundamental form of LE (4.5.23) for a system of
particles. These results were then specialized (4.5.106) for RB which are connected to
ground or to each other via stiffness, damping, etc. and had forces obtainable from scalar
potential, circulation, and dissipation functions. This section extends the use of (4.5.106)
to include the forces and kinetic energy internal to a flexible body with distributed inertia.
The importance of considering flexible structure vibrations is illustrated by the failure of a
NASA prototype Helios solar-powered aircraft shown in Figure 4.6.1.

Figure 4.6.1 Prototype solar–electric aircraft shortly before and after failure due to vibration. Reproduced with
permission from NASA
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The displacements in a flexible component are approximated by a weighted sum of
known displacement functions using the assumed modes method (2.11.28). The resulting
form of LE enables vibration modeling of flexible bodies by using assumed modes.

4.6.1 Assumed Modes Kinetic Energy and Mass Matrix Expressions

From Figure 4.6.2 and Equation (4.2.3), the most general expression for the kinetic energy is

T =
1
2

ð
V

nd

dt
R
!� �
�
nd

dt
R
!� �

dm ð4:6:1Þ

where the left superscript n indicates that the time derivatives are taken as sensed in the
inertial reference frame n. The assumed modes approximation to the velocities in (4.6.1)
is by (2.11.35):

_
R
!
= _u1n1 + _u2n2 + _u3n3

=
XN1

i= 1

_qi1ϕi1 x1, x2, x3ð Þ
 !

n1 +
XN2

i = 1

_qi2ϕi2 x1, x2, x3ð Þ
 !

n2 +
XN3

i= 1

_qi3ϕi3 x1, x2, x3ð Þ
 !

n3

ð4:6:2Þ
where ni are unit vectors along xni in Figure 4.6.2 and where the global shape functions
ϕij(x1, x2, x3) are known functions of the spatial coordinates x1, x2, x3. The shape functions
must satisfy the actual displacement boundary conditions of the problem. This property is
referred to as “kinematic admissibility” and is discussed in the text following (2.11.34).

Substitution of (4.6.2) into (4.6.1) yields the kinetic energy

T =
1
2

ð
V

XN1

i = 1

_qi1ϕi1

 ! XN1

k = 1

_qk1ϕk1

 !
+
XN2

i = 1

_qi2ϕi2

 ! XN2

k = 1

_qk2ϕk2

 !
+
XN3

i= 1

_qi3ϕi3

 ! XN3

k = 1

_qk3ϕk3

 !" #

=
1
2

XN1

i = 1

XN1

k = 1

emik1 _qi1 tð Þ _qk1 tð Þ + 1
2

XN2

i= 1

XN2

k = 1

emik2 _qi2 tð Þ _qk2 tð Þ + 1
2

XN3

i = 1

XN3

k = 1

emik3 _qi3 tð Þ _qk3 tð Þ

ð4:6:3Þ

Figure 4.6.2 Diagram for kinetic energy derivation of a flexible body
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where

emikj =
ð
V
ϕijϕkjdm=

ð
V
ϕij x1, x2, x3ð Þϕkj x1, x2, x3ð ÞρdV

j= 1,2,3
i= 1,Nj

k = 1,Nj

8<: ð4:6:4Þ

and ρ is the mass density of the material. The emikj are symmetric since

emikj =
ð
V
ϕijϕkjρdV =

ð
V
ϕkjϕijρdV = emkij ð4:6:5Þ

Thus, the total number of independent emikj is reduced to

N1 N1 + 1ð Þ
2

+
N2 N2 + 1ð Þ

2
+
N3 N3 + 1ð Þ

2
ð4:6:6Þ

The total number of independent emikj can be further reduced to

N1 +N2 +N3 ð4:6:7Þ
if the density ρ is constant and ϕij are selected to be orthogonal functions (2.11.29), that is,

emikj = ρ
ð
V
ϕijϕkjdV =

0, i 6¼ k

mii, i= k

�
, j = 1,2,3, i = 1,Nj, k = 1,Nj ð4:6:8Þ

In general, the kinetic energy in (4.6.3) may be expressed as the quadratic form

T =
1
2
_qTem _q 1 × 1ð Þ ð4:6:9Þ

where

_q =

_q
1

N1 × 1

_q
2

N2 × 1

_q
3

N3 × 1

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
=N × 1vector of independent generalized coordinate velocities ð4:6:10Þ

N =N1 +N2 +N3 = number of independent generalized coordinates ð4:6:11Þ

q
1

N1 × 1ð Þ
=

q11
q21

..

.

qN11

8>>><>>>:
9>>>=>>>;, q

2
N2 × 1ð Þ

=

q12
q22

..

.

qN22

8>>><>>>:
9>>>=>>>;, q

3
N3 × 1ð Þ

=

q13
q23

..

.

qN33

8>>><>>>:
9>>>=>>>; ð4:6:12Þ

and the “generalized coordinate mass matrix” is

em
N ×Nð Þ

=

em1
N1 ×N1ð Þ

0
N1 ×N2ð Þ

0
N1 ×N3ð Þ

0
N2 ×N1ð Þ

em2
N2 ×N2ð Þ

0
N2 ×N3ð Þ

0
N3 ×N1ð Þ

0
N3 ×N2ð Þ

em3
N3 ×N3ð Þ

2666664

3777775 ð4:6:13Þ
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where

em1

� �
ik
= emik1, i= 1,N1, k = 1,N1

em2

� �
ik
= emik2, i= 1,N2, k = 1,N2

em3

� �
ik = emik3, i= 1,N3, k = 1,N3

ð4:6:14Þ

EXAMPLE 4.6.1 Assumed Modes Generalized Mass Matrix for Cantilever Beam

Objective: To demonstrate the evaluation of an assumed modes matrix for the simple can-
tilever beam shown in Figure 2.11.8.

Solution: From (2.11.30) to (2.11.32), the only deflection is in the x2 direction:

u2 x1, tð Þ = q1 tð Þϕ12 x1ð Þ + q2 tð Þϕ22 x1ð Þ ð1Þ

N1 +N3 = 0, N2 = 2 ð2Þ
Equation (4.6.5) yields

em112 =
ðL
0
ϕ12ϕ12dm=

ðL
0
ϕ12 x1ð Þϕ12 x1ð Þρ x1ð ÞA x1ð Þdx1

em122 = em212 =
ðL
0
ϕ12ϕ22dm=

ðL
0
ϕ12 x1ð Þϕ22 x1ð Þρ x1ð ÞA x1ð Þdx1

em222 =
ðL
0
ϕ22ϕ22dm=

ðL
0
ϕ22 x1ð Þϕ22 x1ð Þρ x1ð ÞA x1ð Þdx1

ð3Þ

where

ϕ12 x1ð Þ= 3x21
L2

−
2x31
L3

, ϕ22 x1ð Þ= −x21
L

−
x31
L2

ð4Þ

A x1ð Þ = cross-sectional area of beam which may vary with x1

ρ x1ð Þ= mass density of beammaterial which may vary with x1
ð5Þ

The shape functions in (4) are kinematically admissible since they satisfy the zero
slope and deflection boundary conditions of the cantilevered beam at x1 = 0 in
Figure 2.11.8. The em112, em122, and em222 are constants since all function in (4) and (5)
are known and the integrals in (3) may then be evaluated. The kinetic energy for this exam-
ple is from (4.6.9):

T =
1
2

_q1 _q2ð Þ em112 em122em122 em222

" #
_q1

_q2

( )
ð6Þ

The following MAPLE code performs the integrals in (3) for constant ρ and A, yielding

em112 = ρA
13L
35

, em122 = −ρA
11L2

210
, em222 = ρA

L3

105
ð7Þ
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Maple Code for Assumed Mode Mass Matrix

>restart;
>phi1 := 3*x^2/L^2-2*x^3/L^3 :
>phi2 := -x^2/L +x^3/L^2 :
>int(phi1*phi1 , x=0..L) ;
13
35

L

>int(phi1*phi2 , x=0..L) ;

−
11
210

L2

>int(phi2*phi2 , x=0..L) ;
1

105
L3

Summary: This example provides a simple illustration for evaluating an assumed modes
generalized mass matrix. The mass matrix will become an essential part of the assumed
modes coordinate, dynamic equilibrium equations obtained via Lagrange’s equation.

4.6.2 Rotating Structures

The assumed modes approach is often applied to model the deflections of a structural mem-
ber that is most effectively modeled as vibrating in a rotating reference from b. Some exam-
ples of this include blade on wind turbines, steam turbines, fans or compressors, and solar
arrays on spinning satellites. Figure 4.6.3 shows a steam turbine bladed disk and a wind
turbine for illustration.

For these cases, Figure 4.6.2 and the transport theorem (2.11.27) imply

ndR
!

dt
=
_
R
!
=

ndR
!
G

dt
+

bdq
!

dt
+ω!

b=n
b × q

! ð4:6:15Þ

where b represent the RB on which the flexible structural member is attached and

bdq
!

dt
= velocity of pointAon the flexible structural member, as sensed in frame b: ð4:6:16Þ

Figure 4.6.3 Wind turbine and industrial turbine examples for vibration in a rotating frame.Wind turbine photos
reproduced with permission from Center for Wind Energy, University of Massachusetts Lowell. Industrial
turbine photo reproduced with permission from JETMAX Feinmechanik

Chapter 4 Equations of Motion by Energy Methods 215

www.konkur.in



The assumed modes approximation is applied to the velocities and displacement as
sensed in the rotating frame, that is, the term bdq

!
=dt is from (4.6.2),

bdq
!

dt
=
XN1

i = 1

_qi1ϕi1 x1b, x2b, x3bð Þ
 !

b1 +
XN2

i = 1

_qi2ϕi2 x1b, x2b, x3bð Þ
 !

b2 +
XN3

i = 1

_qi3ϕi3 x1b, x2b, x3bð Þ
 !

b3

ð4:6:17Þ

4.6.3 Internal Forces and Strain Energy of an Elastic Object

Previous energy expressionsU as in (4.5.65) or (4.5.98) were derived for ideal, concentrated
stiffness models. The following development instead focuses on obtaining a potential
energy expression for components with distributed stiffness and mass. Wings and blades
may come to mind; however, the majority of all machine and structural components behave
with distributed stiffness and response. Figure 4.6.4 illustrates this by the sand pattern nodal
lines of a violin body when it is shaken at a resonance state. The sand indicates near-zero
vibration, whereas all other locations have vibrations strong enough to repel the loose sand.

The following analysis demonstrates that the internal stiffness-related generalized
forces in the flexible body can be accounted for in LE (4.5.106) utilizing a potential energy
function, an approach similar to the concentrated stiffness case.

Equation (A.6.11) shows that the strain energy stored in a linear elastic solid is
given by

UI =
1
2

ð
Vi

εTEεdV ð4:6:18Þ

The volume of the entire deformable body is represented by the integration domain
symbol V in this formula. Represent the displacements in the (x1, x2, x3) directions in V

Figure 4.6.4 Distributed deflection response of a violin shaken at resonance. Reproduced with
permission from Renaud Carpentier and Emmanuel Bossy, University of New South Wales
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by (u1, u2, u3), respectively. The corresponding small displacement strains are given by
Equation (A.3.18) as

ε =

ε11

ε22

ε33

γ23

γ13

γ12

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
=

ε11

ε22

ε33

2ε23

2ε13

2ε12

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
=

∂x1 0 0

0 ∂x2 0

0 0 ∂x3

0 ∂x3 ∂x2

∂x3 0 ∂x1

∂x2 ∂x1 0

26666666664

37777777775
u1
u2
u3

8><>:
9>=>; ð4:6:19Þ

and the material (constitutive) matrix E is defined in the isotropic stress–strain rela-
tion (A.4.3):

σ11

σ22

σ33

σ23

σ13

σ12

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
=

E

1 + vð Þ 1−2vð Þ

1−v v v 0 0 0

v 1−v v 0 0 0

v v 1−v 0 0 0

0 0 0
1−2vð Þ
2

0 0

0 0 0 0
1−2vð Þ
2

0

0 0 0 0 0
1−2vð Þ
2

2666666666666664

3777777777777775

ε11

ε22

ε33

2ε23

2ε13

2ε12

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð4:6:20Þ

or

σ =E ε ð4:6:21Þ
where

v = Poisson’s ratio and E = Young’s modulus.

For small deflection, the integration domain in Equation (4.6.18) is approximately
invariant with deformation; therefore,

−
∂UI

∂qj
= −

1
2
∂

∂qj

ð
V
εTE εdV = −

1
2

ð
V

∂εT

∂qj
E ε + εTE

∂ε

∂qj

	 

dV = −

ð
V

∂εT

∂qj
E εdV ð4:6:22aÞ

since the transpose of a scalar equals itself and since E is assumed to be symmetric.
Substitute (4.6.21) into (4.6.22a) to obtain

−
∂UI

∂qj
= −

ð
V
σT

∂ε

∂qj
dV

= −

ð
V

σ11
∂ε11
∂qj

+ σ22
∂ε22
∂qj

+ σ33
∂ε33
∂qj

+ σ21
∂γ21
∂qj

+ σ13
∂γ13
∂qj

+ σ32
∂γ32
∂qj

	 

dx1dx2dx3

= −

ð
V

σ11dx2dx3∗ ∂ε11
∂qj

dx1 + σ22dx1dx3∗ ∂ε22
∂qj

dx2 + σ33dx1dx2∗ ∂ε33
∂qj

dx3

	
+ σ21dx1dx3 ∗ ∂γ21

∂qj
dx2 + σ13dx2dx3∗ ∂γ13

∂qj
dx1 + σ32dx1dx2∗ ∂γ32

∂qj
dx3
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= −

ð
V

σ11dx2dx3
∂

∂qj
u1 + ε11dx1ð Þ− ∂u1

∂qj

� �
+ σ22dx1dx3

∂

∂qj
u2 + ε22dx2ð Þ− ∂u2

∂qj

� ��

+ σ33dx1dx2
∂

∂qj
u3 + ε33dx3ð Þ− ∂u3

∂qj

� �
+ σ21dx1dx3

∂

∂qj
u1 + γ21dx2ð Þ− ∂u1

∂qj

� �

+ σ13dx2dx3
∂

∂qj
u3 + γ13dx1ð Þ− ∂u3

∂qj

� �
+ σ32dx1dx2

∂

∂qj
u2 + γ32dx3ð Þ− ∂u2

∂qj

� ��
ð4:6:22bÞ

Representing the volume integral as the limit of a sum over differential volumes, recog-
nizing that σ∗dA type terms produce stress resultants represented by Fik, and finally by add-
ing the identity ∂ui=∂qj−∂ui=∂qj = 0

� �
to individual terms yield

−
∂UI

∂qj
= −

ð
V
σT

∂ε

∂qj
dV

= lim
ΔV!0

X
entire
body

F11
∂

∂qj
u1 + ε11dx1ð Þ−F11

∂u1
∂qj

� �
+ F22

∂

∂qj
u2 + ε22dx2ð Þ−F22

∂u2
∂qj

� ��

+ F33
∂

∂qj
u3 + ε33dx3ð Þ−F33

∂u3
∂qj

� �
+ F21

∂

∂qj
u1 + γ21dx2ð Þ−F21

∂u1
∂qj

� �
+ F13

∂

∂qj
u3 + γ13dx1ð Þ−F13

∂u3
∂qj

� �
+ F32

∂

∂qj
u2 + γ32dx3ð Þ−F32

∂u2
∂qj

� ��
ð4:6:23Þ

Recall from (4.5.51) that

Qj =
X

F
!� ∂R

!

∂qj
ð4:6:24Þ

which by comparison with Figure A.6.1 and Equation (4.6.23) yields

Generalized Force for Internal Forces of a Deformable, Linear, Elastic Body

QI
j = −

∂UI

∂qj
ð4:6:25Þ

where

UI =
1
2

ð
V
εTE εdV =

1
2

ð
V
σTεdV ð4:6:26Þ

From (4.6.21) and (4.6.25)

QI
j = −

ð
V

∂εT

∂qj
E εdV ð4:6:27Þ
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4.6.4 The Assumed Modes Approximation

Recall from (2.11.28) that the deflections of a deformable body (in three dimensions) can be
approximated by

u=

u1

u2

u3

8>><>>:
9>>=>>; =

Xn1
i= 1

qi1 tð Þ∗ϕi1 x1, x2, x3ð Þ

Xn2
i= 1

qi2 tð Þ∗ϕi2 x1, x2, x3ð Þ

Xn3
i= 1

qi3 tð Þ∗ϕi3 x1, x2, x3ð Þ

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;

=

ϕ11 ϕ21 � � � ϕn11 0
1 × n2

0
1 × n3

0
1 × n1

ϕ12 ϕ22 � � � ϕn22 0
1× n3

0
1 × n1

0
1 × n2

ϕ13 ϕ23 � � � ϕn33

266666664

377777775

q11

q21

..

.

qn11
q12

q22

..

.

qn22
q13

q23

..

.

qn33

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:6:28Þ

or

u x1, x2, x3, tð Þ
3 × 1

= Φ x1, x2, x3ð Þ
3 × n

q tð Þ
n × 1

ð4:6:29Þ

where

n= n1 + n2 + n3 = total number of generalized coordinates ð4:6:30Þ

Note from Equation (A.3.19), the strain–displacement relationship can be expressed as

ε
6 × 1

= D
6 × 3

u
3 × 1

ð4:6:31Þ

where D is a spatial derivative operator matrix (Eq. (A.3.18)). The assumed modes strains
may then be expressed by combining (4.6.29) and (4.6.31):

ε
6 × 1

= D
6 × 3

Φ
3 × n

	 

q tð Þ
n× 1

ð4:6:32Þ
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or

ε
6 × 1

= B x1, x2, x3ð Þ
6 × n

q tð Þ
n × 1

ð4:6:33Þ

where

B
6 × n

= B1 B2 � � � Bn

� �
6 × n

= D
6 × 3

Φ
3 × n

ð4:6:34Þ

Bj
6 × 1

= jth column of B ð4:6:35Þ

Note that ε may be represented from (4.6.33) as

ε=
Xn
i= 1

qiBi ð4:6:36Þ

so

∂ε

∂qj
=Bj ð4:6:37Þ

Substitution of (4.6.33) and (4.6.37) into (4.6.27) yields

QI
j = −

ð
V
BT
j

1 × 6

E
6 × 6

B
6 × n

q
n× 1

dV ð4:6:38Þ

The vector of all internal force-related generalized forces becomes

QI

n × 1

=

QI
1

QI
2

..

.

QI
n

8>>>>><>>>>>:

9>>>>>=>>>>>;
n× 1

= −

ð
V

BT
1

BT
2

..

.

BT
n

2666664

3777775
n × 6

E
6 × 6

B
6 × n

q
n × 1

dV ð4:6:39Þ

Note that q is only a function of t so it may come out of the integral and that the first

matrix of the integrand is BT. Summarizing these results yields

Generalized Force Vector of Internal Forces for Assumed Modes Model

QI tð Þ
n × 1

=

QI
1

QI
2

..

.

QI
n

8>>>>><>>>>>:

9>>>>>=>>>>>;
n× 1

= − K
n× n

q tð Þ
n × 1

ð4:6:40Þ

where

K
n× n

=
ð
V
BT

n× 6
E

6 × 6
B

6 × n
dV = assumed modes stiffness matrix ð4:6:41Þ
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B
6 × n

= D
6 × 3

Φ
3 × n

ð4:6:42Þ

U
3 × 1

= Φ
3 × n

q
n × 1

ð4:6:43Þ

ε
6 × 1

= D
6 × 3

u
3 × 1

ð4:6:44Þ

4.6.5 Generalized Force for External Loads Acting on a Deformable Body

Differentiate the external work expressionWE in (A.6.12) with respect to qj while assuming
that the integration domain and the force �FEV and �FES are independent of qj:

∂W E

∂qj
=
ð
V

�FT
EV

∂u

∂qj
dV +

ð
S

�FT
ES

∂u

∂qj
udS ð4:6:45Þ

Consideration of the integrals in (4.6.45) as limits of sums over particles and recalling
that by (4.5.43)

Qj =
X∞
j= 1

F
!
i � ∂R

!
i

∂qj
=
X∞
j= 1

FT
i �

∂Ri

∂qj
ð4:6:46Þ

shows that

Generalized Force for External Forces Acting on a Deformable Body

Qj =
∂W E

∂qj
=
ð
V

�FT
EV

∂u

∂qj
dV +

ð
S

�FT
ES

∂u

∂qj
dS ð4:6:47Þ

4.6.6 Assumed Modes Model Generalized Forces for External Load Acting
on a Deformable Body

Recall from (2.11.28) that for the assumed modes approach, the displacement fields are
approximated by

u1 =
Xn1
i= 1

qi tð Þϕi x1, x2, x3ð Þ, u2 =
Xn1 + n2

i= n1 + 1

qi tð Þϕi x1, x2, x3ð Þ, u3 =
Xn

i= n1 + n2 + 1

qi tð Þϕi x1, x2, x3ð Þ

ð4:6:48Þ

where

n = n1 + n2 + n3 ð4:6:49Þ
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All ϕi(x1, x2, x3) are known (given) functions of position. Substitute (4.6.48) into
(4.6.47), noting that

∂qi
∂qj

=
0, i 6¼ j

1, i= j

(
ð4:6:50Þ

to obtain

Generalized Force Vector of External Forces for Assumed Modes Model

Qj =
∂W E

∂qj
=

ð
V

�FEV1ϕjdV +
ð
S

�FES1ϕjdS, j ≤ n1

ð
V

�FEV2ϕjdV +
ð
S

�FES2ϕjdS, n1 < j ≤ n1 + n2

ð
V

�FEV3ϕjdV +
ð
S

�FES3ϕjdS, n1 + n2 < j ≤ n

8>>>>>>>>><>>>>>>>>>:
ð4:6:51Þ

EXAMPLE 4.6.2 Assumed Modes Generalized Forces for Cantilever Beam

Objective: To demonstrate the evaluation of assumed modes generalized forces for the sim-
ple cantilever beam shown in Figure 2.11.8. Themass matrix for this example was derived in
Example 4.6.1.

Solution:
From (2.11.30) to (2.11.32), the only deflection is in the x2 direction:

u2 x1, tð Þ = q1 tð Þϕ12 x1ð Þ + q2 tð Þϕ22 x1ð Þ ð1Þ

N1 =N3 = 0, N2 = 2 ð2Þ

The externally applied forces (F
!
EVk,F

!
ESk) and global shape functions (ϕj) are known

(given) functions of position (x1, x2, x3) within volume V and/or on bounding surfaces S.
Hence, the Qj may be evaluated per the integrations in (4.6.51).

For the model in Figure E4.6.2(a), the shape functions are selected as

ϕ12 x1ð Þ = 3x21
L2

−
2x31
L3

ð3Þ

ϕ22 x1ð Þ = −x21
L

−
2x31
L2

ð4Þ

and F 2(x) is a force per unit length applied in the x2 direction. In this case, (4.6.51) gives

Qj =
ðL
0
F2 xð Þϕj2 xð Þdx j= 1,2 ð5Þ
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4.6.7 LE for a System of Rigid and Deformable Bodies

The preceding results show that the formof the LE (4.5.106) is still valid for systems composed
of flexible and rigid bodies along with additional conservative, nonconservative, dissipative,
and circulatory forces. The following is a summary of the LE for a combination of flexible and
rigid bodies that are interconnected by force elements such as springs and dampers. The flex-
ible bodies are modeled by either finite elements or assumed modes approximations.

Lagrange’s Equations of Motion for a Combination of NRB Rigid and NFB

Flexible Bodies

Lagrange’s Equations

From (4.5.106),

nd

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ ℑc +ℑd
� �

∂ _qj
ð4:6:52Þ

j= 1,2,…,n independent generalized coordinates (q1, q2,…, qn)

Kinetic Energy

A general expression for the total system’s kinetic energy is

T = total system kinetic energy = TRB + TFB ð4:6:53Þ

where from (4.5.107) for rigid bodies

TRB =
1
2

XNRB

i= 1

mi
nvTGi

nvGi + ωbi=n
bi

� �T
I Bi=biGi ωbi=n

bi

	 

ð4:6:54Þ

Figure E4.6.2(a) Two shape functions for the assumed modes solution
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and from (4.6.1) for flexible bodies

TFB =
1
2

XNFB

l= 1

ð
VR

nd

dt
R
!� �
�
nd

dt
R
!� �

dm ð4:6:55Þ

(a) Kinetic Energy for Assumed Modes Model of a Flexible Body
Assume the following form for the displacement field for a flexible body:

R
!
= u1n1 + u2n2 + u3n3 =

XN1

i= 1

qi1ϕi1

 !
n1 +

XN2

i= 1

qi2ϕi2

 !
n2 +

XN3

i= 1

qi3ϕi3

 !
n3

ð4:6:56Þ

where qij(t) are generalized coordinates to be solved for and ϕij(x1, x2, x3) are known
shape functions. Then from (4.6.9)

TFBl =
1
2
_qTem _q ð4:6:57Þ

The Lagrange equation (4.6.52) derivatives of this kinetic energy component
become

∂TFBl
∂ _q

= em _q ð4:6:58Þ

d

dt

∂TFBl
∂ _q

 !
= em€q ð4:6:59Þ

where from (4.6.10) to (4.6.12)

N =N1 +N2 +N3 = number of independent generalized coordinates ð4:6:60Þ

_q =

_q
1

N1 × 1

_q
2

N2 × 1

_q
3

N3 × 1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
=N × 1 vector of independent generalized coordinate velocities

ð4:6:61Þ

q
1

N1 × 1ð Þ
=

q11

q21

..

.

qN11

8>>>>><>>>>>:

9>>>>>=>>>>>;
, q

2
N2 × 1ð Þ

=

q12

q22

..

.

qN22

8>>>>><>>>>>:

9>>>>>=>>>>>;
, q

3
N3 × 1ð Þ

=

q13

q23

..

.

qN33

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð4:6:62Þ

and the “generalized coordinate mass matrix” is given by (4.6.13)
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em
N ×Nð Þ

=

em1
N1 ×N1ð Þ

0
N1 ×N2ð Þ

0
N1 ×N3ð Þ

0
N2 ×N1ð Þ

em2
N2 ×N2ð Þ

0
N2 ×N3ð Þ

0
N3 ×N1ð Þ

0
N3 ×N2ð Þ

em3
N3 ×N3ð Þ

2666666664

3777777775
ð4:6:63Þ

em1

� �
ik = emik1, i= 1,N1, k = 1,N1

em2

� �
ik
= emik2, i= 1,N2, k = 1,N2

em3

� �
ik
= emik3, i= 1,N3, k = 1,N3

ð4:6:64Þ

where from (4.6.5)

mikj =mkij =
ð
V
ϕijϕkjdm =

ð
V
ϕij x1, x2, x3ð Þϕkj x1, x2, x3ð ÞρdV

j= 1,2,3

i= 1,Nj

k = 1,Nj

8>><>>: ð4:6:65Þ

(b) Potential Energy of a Flexible Body
A general expression for the system’s potential energy is given by

U = total system potential energy =US +UW +U I ð4:6:66Þ

• External Sources

US = sum of all potential energy contributions due to

discrete stiffness in the model; reference
UKDE in 4:5:65ð ÞorUKT in 4:5:88ð Þ ð4:6:67Þ

UW = sum of all potential energy contributions due to rigid body weights (refer-
ence (4.5.57))

• Internal Sources:

UI =
1
2

XNFB

i= 1

ð
Vi

εTE εdV

= sum of all potential energy contributions from internal
forces and strain in all flexible
bodies reference 4:6:18ð Þð Þ and the associated generalized
forces are 4:6:27ð Þ ð4:6:68Þ

QI
j = −

∂U I

∂qj
= −

ð
V

∂εT

∂qj
E εdV ð4:6:69Þ
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(c) Potential Energy for an Assumed Modes Model of a Flexible Body
If the deflections of a flexible body are approximated by (4.6.28)–(4.6.29)

u =

u1

u2

u3

8>>><>>>:
9>>>=>>>; =

Xn1
i= 1

qi1 tð Þϕi1 x1, x2, x3ð Þ

Xn2
i= 1

qi2 tð Þϕi2 x1, x2, x3ð Þ

Xn3
i= 1

qi3 tð Þϕi3 x1, x2, x3ð Þ

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;

=

ϕ11 ϕ21 � � � ϕn11 0
1× n2

0
1 × n3

0
1 × n1

ϕ12 ϕ22 � � � ϕn22 0
1 × n3

0
1 × n1

0
1 × n2

ϕ13 ϕ23 � � � ϕn33

2666664

3777775

q11

q21

..

.

qn11

q12

q22

..

.

qn22

q13

q23

..

.

qn33

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:6:70Þ

or

u x1, x2, x3, tð Þ
3 × 1

= Φ x1, x2, x3ð Þ
3 × n

q tð Þ
n × 1

ð4:6:71Þ

where

n= n1 + n2 + n3 = total number of generalized coordinates ð4:6:72Þ

and the strains and displacements are related by (4.6.31)

ε
6 × 1

= D
6 × 3

u
3 × 1

ð4:6:73Þ

Then for that body

U =
1
2

ð
V
εTE ε dV =

1
2
qTKq ð4:6:74Þ
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where by (4.6.41) and (4.6.42)

K
n× n

=
ð
V
BT

n× 6
E

6 × 6
B

6 × n
dV = assumed modes stiffness matrix ð4:6:75Þ

B
6 × n

= D
6 × 3

Φ
3 × n

ð4:6:76Þ

The corresponding generalized forces are from (4.6.40):

QI tð Þ
n× 1

= −
∂U I

∂q
=

QI
1

QI
2

..

.

QI
n

8>>>>><>>>>>:

9>>>>>=>>>>>;
n × 1

= − K
n× n

q tð Þ
n× 1

ð4:6:77Þ

(d) Circulatory and Dissipation Functions

ℑc = sum of all circulatory scalar functions in the entire system ð4:6:78Þ
(e.g., ℑc

DE in (4.5.74))

ℑd = sum of all Rayleigh dissipation; scalar functions in the entire system

ð4:6:79Þ

(e.g., ℑd
DE in (4.5.78) or ℑd

CT in (4.5.104))

(e) All Remaining Forces

Qj =QjRB +QjFB

= sum of all generalized force contributions from forces
not described byU, ℑc, and ℑd terms

ð4:6:80Þ

QjRB =Qj terms for forces and “pure torques”
acting on rigid bodies ref: 4:5:47ð Þ− 4:5:53ð Þð Þ ð4:6:81Þ

QjFB =Qj terms for flexible bodies ref:4:6:47ð Þ

=
XNFB

i= 1

ð
Vi

�FT
EV

∂u

∂qj
dVi +

ð
Si

�FT
ES

∂u

∂qj
dSi

	 
 ð4:6:82Þ

where from (A.6.13) to (A.6.14)

�F EV =

�FEV1 x1, x2, x3ð Þ
�FEV2 x1, x2, x3ð Þ
�FEV3 x1, x2, x3ð Þ

8>><>>:
9>>=>>;

= applied distributed body force acting inside the body force per unit volumeð Þ
ð4:6:83Þ
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�F ES =

�FES1 x1, x2, x3ð Þ
�FES2 x1, x2, x3ð Þ
�FES3 x1, x2, x3ð Þ

8>><>>:
9>>=>>;

= distributed surface traction acting on the surface of the body force per unit areað Þ
ð4:6:84Þ

u =

u1 x1, x2, x3ð Þ
u2 x1, x2, x3ð Þ
u3 x1, x2, x3ð Þ

8>><>>:
9>>=>>;

= displacements of body in regions of application of either �FEV or �FES

ð4:6:85Þ

(f) Generalized Forces for External Loading in an Assumed Modes Model of a Flexible
Body Given the assumed modes deflection (4.6.70), Equation (4.6.51) provides

Qj =
∂W E

∂qj
=

ð
V

�FEV1ϕjdV +
ð
S

�FES1ϕjdS, j ≤ n1

ð
V

�FEV2ϕjdV +
ð
S

�FES2ϕjdS, n1 < j ≤ n1 + n2

ð
V

�FEV3ϕjdV +
ð
S

�FES3ϕjdS, n1 + n2 < j ≤ n

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð4:6:86Þ

where �FEVj is the external force per unit volume (gravity, magnetic, etc.) in the xj
direction and �FESj is the external force per unit are (pressure, traction, etc.) in the

xj direction

The scalar form of the LE (4.6.52) can be written in vector form by using the notation of
(2.6.42), yielding

d

dt

∂T

∂ _q

 !
n× 1

−
∂T

∂q
n× 1

+
∂U

∂q
n × 1

+
∂ℑd

∂ _q
n× 1

= Q
n× 1

ð4:6:87Þ

The standard forms for the kinetic energy, potential energy, and dissipation function are
typically quadratic forms and inner products, that is,

T =
X
i

1
2
_qTMi _q ð4:6:88Þ

U =
X
j

1
2
qTKj q−q

TSj

	 

ð4:6:89Þ

ℑd =
X
k

1
2
_qTCk _q ð4:6:90Þ
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where the summations extend over all sources of kinetic and potential energy and dissipation
functions. Substitute (4.6.88)–(4.6.90) into (4.6.87) and utilize the vector differentiation
formulas (2.6.42) and (2.6.49) to obtain

X
i

Mi

 !
n× n

€q
n × 1

+
X
k

Ck

 !
n × n

_q
n× 1

+
X
j

Kj

 !
n× n

q
n× 1

= Q
n × 1

+
X
j

Sj ð4:6:91Þ

which is in the standard form for linear system vibration analysis.

EXAMPLE 4.6.3 Vortex-Driven Vibration of a Thermocouple Probe

Statement: A thermocouple probe protrudes into the discharge line of a gas compressor.
A high-temperature elastomeric plug supports the probe while dampening the probe’s vibra-
tion, as depicted in Figure E4.6.3(a). The properties of the two components are listed below
(Table E4.6.3(a)).

The exhaust flow about the probe creates vortices which force the probe in a direction
transverse to the flow (Blevins, 1977). A simplified model of the force is given by the force
per unit length

f x, tð Þ=
0, x<

L

3

γ
3x
2L

−
1
2

	 

sinωst, x ≥

L

3

8>><>>: ð1Þ

The constant γ is experimentally determined and the forcing frequency is given by

ωs = 2πfs rad=sð Þ, fs =
SV

D
Hzð Þ ð2Þ

where

S =Strouhal Number≈0:2
for circular cross sections of diameter D and Reyolds numbersð
VD=vð Þ in the range 100−100,000Þ

Figure E4.6.3(a) Bending motion (i) of thermocouple due to vortex shedding (ii)
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V = flow velocity in meters=second

D= diameters in meters ð3Þ
Objective: Derive the equations of motion for this system utilizing the assumed
modes method with the following two shape functions which are depicted in Figure E4.6.3(b):

ϕ1 xð Þ = 3x2

L2
−
2x3

L3
, ϕ2 xð Þ = −x2

L2
+
x3

L3
ð4Þ

These shape functions are kinematically admissible (Section 2.11) since they satisfy the
zero slope and deflection boundary conditions at x = 0.

Assumptions:

• Small motions (linear strain–displacement and stress–strain relations hold)

• Both components deflect as beams in bending.

Solution:

(a) In this example, there are n= 2 generalized coordinates (q1, q2) where the lateral
deflection of the probe assembly is approximated by the assumedmodes model (4.6.56):

u x, tð Þ = q1 tð Þϕ1 xð Þ+ q2 tð Þϕ2 xð Þ ð5Þ
(b) The kinetic energy derivative terms in Lagrange’s equations are given by (4.6.59)

d

dt

∂T

∂ _q

 !
=

d

dt

∂T

∂ _q1

	 

d

dt

∂T

∂ _q2

	 

8>>>><>>>>:

9>>>>=>>>>; =M€q =
m11 m12

m21 m22

" #
€q1

€q2

( )
ð6Þ

Table E4.6.3(a) Properties of thermocouple probe system

Plug Probe

Density ρ α1ρ

Length L/3 2L/3
Modulus E α2E

Area inertia I0 1−0:6
x

L

� �2
α3I0

Area A0 1−0:6
x

L

� �
α4A0

Figure E4.6.3(b) Two shape functions for the assumed modes solution
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and also

∂T

∂q
=

∂T

∂q1
∂T

∂q2

8>><>>:
9>>=>>; =

0

0

( )
ð7Þ

The generalized mass coefficients are determined from (4) and (4.6.65):

m11 =
ð
V
ϕ1ϕ1dm =

ð
V
ϕ2
1ρdV =

ðL
0
ϕ1 xð Þϕ1 xð Þρ xð ÞA xð Þdx

=
ðL
3

0
ϕ1 xð Þϕ1 xð ÞρA0 1−0:6

x

L

� �
dx +

ðL
L
3

ϕ1 xð Þϕ1 xð Þα1ρα4A0dx

= c1

ðL
3

0
ϕ1ϕ1g dx+ c2

ðL
L
3

ϕ1ϕ1dx

ð8Þ

where

c1 = ρA0, c2 = α1α4ρA0, g xð Þ = 1−0:6
x

L

� �
ð9Þ

Similarly,

m12 =m21 =
ð
V
ϕ1ϕ2dm =

ð
V
ϕ1ϕ2ρdV =

ðL
0
ϕ1 xð Þϕ2 xð Þρ xð ÞA xð Þdx

=
ðL
3

0
ϕ1 xð Þϕ2 xð ÞρA0g xð Þdx+

ðL
L
3

ϕ1 xð Þϕ2 xð Þα1ρα4A0dx

= c1

ðL
3

0
ϕ1 xð Þϕ2 xð Þg xð Þdx+ c2

ðL
L
3

ϕ1 xð Þϕ2 xð Þdx

ð10Þ

m22 = c1

ðL
3

0
ϕ2 xð Þϕ2 xð Þg xð Þdx + c2

ðL
L
3

ϕ2 xð Þϕ2 xð Þdx ð11Þ

Summarizing,

M =
m11 m12

m21 m22

" #
= c1

ðL
3

0

ϕ1ϕ1g ϕ1ϕ2g

ϕ1ϕ2g ϕ2ϕ2g

" #
dx+ c2

ðL
L
3

ϕ1ϕ1 ϕ1ϕ2

ϕ1ϕ2 ϕ2ϕ2

" #
dx ð12Þ

The integrals in (12) are evaluated with Maple as shown below, yielding

M = c1L
0:00411 −0:00122

−0:00122 0:000361

" #
+ c2L

0:3665 −0:051

−0:051 0:0091

" #
ð13Þ
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Maple Code for Mass Matrix in Equation (12)

phi1:= 3*x^2/L^2 - 2*x^3/L^3;
phi2:= -x^2/L^2 + x^3/L^3;
g:= 1-0.6*x/L;
A:= linalg[matrix](2,2, [phi1*phi1*g, phi1*phi2*
g, phi1*phi2*g, phi2*phi2*g]);
B:= linalg[matrix](2,2, [phi1*phi1, phi1*phi2, phi1*phi2,
phi2*phi2]);

c1*map(int, A, x=0..L/3) + c2*map(int, B, x=L/3..L);

(c) The potential energy of the beams is evaluated assuming Euler–Bernoulli beam theory
holds. The bending strain varies linearly over a cross section of a beam and is zero at the
neutral axis as shown in Figure E4.6.3(c).

From elementary strength of materials, the bending strain (curvature formula) is

εB = −y
∂2u

∂x2
ð14Þ

However, by (4.6.73), ε =Du; therefore,

D=D= −y
∂2ð Þ
∂x2

ð15Þ

The shape function matrix for this 1-dimensional example is given by (4.6.71)

Φ= ϕ1 xð Þ ϕ2 xð Þ½ � ð16Þ
and from (4.6.76)

B=DΦ= −y
d2

dx2
ϕ1 xð Þ ϕ2 xð Þ½ �= −y ϕ 001 ϕ 002

� � ð17Þ

where from (4)

ϕ 001 =
6
L2

−
12x
L3

, ϕ 002 = −
2
L2

+
6x
L3

ð18Þ

Figure E4.6.3(c) Bending strain over cross section of beam
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The generalized forces corresponding to the strains and internal forces are from
(4.6.75) and (4.6.77):

QI tð Þ
2 × 1

= − K
2 × 2

q tð Þ
2 × 1

ð19Þ

where

K=
ð
V
BTEBdV =

ð
V
E

ϕ 001
ϕ 002

" #
ϕ 001 ϕ 002
� �

y2dAdx ð20Þ

Recalling that

I =
ð
A
y2dA ð21Þ

and perform the “inner” integral over dA in (21) to obtain

K =
ðL
0
E xð ÞI xð Þ

ϕ 001 ϕ
00
1 ϕ 001 ϕ

00
2

ϕ 001 ϕ
00
2 ϕ 002 ϕ

00
2

24 35dx
=
ðL
3

0
EI0 1−0:6

x

L

� �2 ϕ 001 ϕ
00
1 ϕ 001 ϕ

00
2

ϕ 001 ϕ
00
2 ϕ 002 ϕ

00
2

" #
dx+

ðL
L
3

α2Eα3I0
ϕ 001 ϕ

00
1 ϕ 001 ϕ

00
2

ϕ 001 ϕ
00
2 ϕ 002 ϕ

00
2

" #
dx

= c3

ðL
3

0
g2

ϕ 001 ϕ
00
1 ϕ 001 ϕ

00
2

ϕ 001 ϕ
00
2 ϕ 002 ϕ

00
2

" #
dx+ c4

ðL
L
3

ϕ 001 ϕ
00
1 ϕ 001 ϕ

00
2

ϕ 001 ϕ
00
2 ϕ 002 ϕ

00
2

" #
dx ð22Þ

where

c3 =EI0, c4 = α2α3EI0 ð23Þ
The MAPLE code shown below evaluates (22) to obtain

K=
c3
L3

5:020 −1:386

−1:386 0:402

" #
+
c4
L3

6:222 −4:444

−4:444 3:556

" #
ð24Þ

Maple Code for Stiffness Matrix in Equation (22)

with(linalg);
phi1pp:= 6/L^2 - 12*x/L^3;
phi2pp:= -2/L^2 + 6*x/L^3;
g:= 1-0.6*x/L;
A:= linalg[matrix] (2,2,[g^2*phi1pp*phi1pp,
g^2*phi1pp*phi2pp, g^2*phi1pp*phi2pp, g^2*phi2pp*phi2pp]);
B:= linalg[matrix] (2,2,[phi1pp*phi1pp, phi1pp*phi2pp,
phi1pp*phi2pp, phi2pp*phi2pp]);

c3*map(int, A, x=0..L/3) + c4*map(int, B, x=L/3..L);
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(d) The generalized forces contributed by the vortex-generated disturbances are obtained
from (4.6.86) and (1):

Q1

Q2

( )
=

ðL
0
f x, tð Þϕ1 xð Þdx

ðL
0
f x, tð Þϕ2 xð Þdx

8>>>><>>>>:

9>>>>=>>>>;=

γ sinωst

ðL
L
3

3x
2L

−
1
2

	 

ϕ1 xð Þdx

γ sinωst

ðL
L
3

3x
2L

−
1
2

	 

ϕ2 xð Þdx

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð25Þ

where ϕ1 and ϕ2 are defined in Equation (4). Integration of (25) with theMAPLE code
shown below yields

Q1 = 0:279Lγsinωst, Q2 = −0:03457Lγsinωst ð26Þ

Maple Code for External Generalized Force Vector of Equation (25)

h:= 1.5*x/L - 0.5;
phi1:= 3*x^2/L^2 - 2*x^3/L^3;
phi2:= -x^2 /L^2 + x^3/L^3;

int(phi1*h, x=L/3..L)
int(phi2*h, x=L/3..L)

(e) The system equations of motion for the generalized coordinates are obtained by com-
bining the above results into Lagrange’s equations. Substitute (6), (7), (19), and (25) into
((4.6.52), (4.6.91)) to obtain

eM€q−0 =
Q1

Q2

( )
−Kq ð27Þ

Substitution of (13), (24), and (26) into (27) yields:
Thermocouple Probe/Plug EOMs

n= 2, ϕ1 =
3x2

L2
−
2x3

L3
, ϕ2 =

−x2

L2
+
x3

L3

c1L
0:00411 −0:00122

−0:00122 0:000361

� �
+ c2L

0:3665 −0:051

−0:051 0:0091

� �	 

€q1
€q2

� �

+
c3
L3

5:020 −1:386

−1:386 0:402

� �
+
c4
L3

6:222 −4:444

−4:444 3:556

� �	 

q1
q2

� �

= γ sinωst
0:279L

−0:03457L

� �
ð28Þ

where

c1 = ρA0, c2 = α1α4ρA0, c3 =EI0, c4 = α2α3EI0 ð29Þ
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Equation (28) may be solved by analytic or numerical means for the generalized
coordinate q1(t) and q2(t) as a function of time as will be demonstrated in Chapters 5,
6, and 7.

(f) The displacement field may then be obtained by recalling from (4) and (5) that

u x, tð Þ = q1 tð Þϕ1 xð Þ+ q2 tð Þϕ2 xð Þ ð30Þ

where

ϕ1 xð Þ = 3x2

L2
−
2x3

L3
, ϕ2 xð Þ = −x2

L2
+
x3

L3
ð31Þ

Therefore, if q1(t) and q2(t) are obtained from integrating (28), then u(x, t) may be
obtained from (30).

Summary: This example has demonstrated the use of two shape functions and generalized
coordinates for estimating the response of a thermocouple probe assembly to vortex-induced
forces. The results were two coupled ordinary differential equations (ODEs) for the general-
ized coordinates q1(t) and q2(t). These equations (28) may be integrated to obtain q1(t) and
q2(t) for given initial conditions (ICs):

q1 0ð Þ,q2 0ð Þ, _q1 0ð Þ, _q2 0ð Þ ð32Þ

The displacements u(x, t) may then be obtained from (30). Note that a limitation of the
assumed modes approach is that simulations cannot be performed for arbitrary initial dis-
placements and velocity distributions u x,0ð Þ, _u x,0ð Þð Þ. Instead, the ICs are restricted to lie
in the subspace (Section 2.6) spanned by ϕ1 and ϕ2, namely, only those u ’s and _u ’s obtain-
able from (30). Quite often, only the steady-state solution of (28) is desired in which case the
ICs are not required, and they can be set to zero. Stresses may be estimated for purposes of
fatigue life evaluation via (14) and (30):

σ =Eε = −yE
∂2u

∂x2
= −yE q1 tð Þϕ 001 + q2 tð Þϕ 002

� �
= −yE q1 tð Þ 6

L2
−
12x
L3

	 

+ q2 tð Þ −

2
L2

+
6x
L3

	 
� � ð33Þ

EXAMPLE 4.6.4 Machine Mounted on a Platform with Flexible Flooring

Statement:Many machines in industrial processes are mounted on platforms to locate aux-
iliary equipment beneath the platform. Figure E4.6.4(a) depicts a machine that is mounted
on a platformwith flexible flooring and with support columns modeled as concentrated stiff-
ness and damping components. The machine’s mass �m and force F are localized at x = d, and
the platform supports are localized at x = 0 and x =L. The modulus of the platform’s flooring
is E, and it is modeled as a tapered beam with planar motion in the vertical direction. Coor-
dinates are referenced to the static equilibrium (sagged) state; hence, gravity loading and
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initial deflections due to gravity are ignored. The flooring’s rectangular cross-sectional area
and bending inertia vary along its length as

A= α1x + α2

I = α3x+ α4 ð1Þ

α1 =
b−að Þt
L

, α2 = at, α3 =
b−að Þt3
12L

, α4 =
at3

12
ð2Þ

Objective: Derive the equations of motion for this system utilizing a six generalized coor-
dinate assumed modes model for the flexible flooring of the platform:

u x, tð Þ=
X6
i= 1

qi tð Þϕi xð Þ=Φq= ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6½ �

q1

q2

..

.

q6

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð3Þ

The corresponding six shape functions are

ϕ1 xð Þ= 1, ϕ2 xð Þ= x

L
,

ϕ3 xð Þ= sin πx

L

� �
, ϕ4 xð Þ= sin 2πx

L

	 

ϕ5 xð Þ= sin 3πx

L

	 

, ϕ6 xð Þ= sin 4πx

L

	 
 ð4Þ

The first two shape functions produce rigid body translation and rotational motions
of the platform flooring; the last four produce its flexible motion. There are no essential
boundary conditions (fixed points) that the shape functions must satisfy to be “kinematically
admissible” in this problem.

Figure E4.6.4(a) Planar vibration model of flexible platform supporting a machine
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Assumptions:

• Small motions (linear strain–displacement and stress–strain relations hold).

• Platform behaves as beam in bending, that is, it is constrained against torsion, axial
motion, and axial motions and out-of-plane bending.

Solution:

(a) Kinetic Energy and Mass Matrix
The kinetic energy includes contributions from the platform flooring’s mass and

from the machinery’s mass, that is, from (4.6.57),

T = Tp + Tm =
1
2
_qTMp _q+

1
2
�m _u2 x = dð Þ = 1

2
_qTMp _q +

1
2
�m
X6
i= 1

_qiϕi dð Þ
 !2

ð5Þ

Note that

d

dt

∂Tm
∂ _qj

 !
= �mϕj dð Þ

X6
i= 1

€qiϕi dð Þð Þ ð6Þ

or

d

dt

∂Tm
∂ _q

 !
=Mm€q ð7Þ

where

Mm

� �
ij
= �mϕi dð Þϕj dð Þ

and

∂ð Þ
∂ _q

=
∂ð Þ
∂ _q1

∂ð Þ
∂ _q2

∂ð Þ
∂ _q3

∂ð Þ
∂ _q4

∂ð Þ
∂ _q5

∂ð Þ
∂ _q6

	 
T

ð8Þ

Also from (4.6.59),

d

dt

∂Tp
∂ _q

 !
=Mp€q ð9Þ

where from (4.6.65)

Mp

� �
ij
=
ð
V
ϕiϕjdm =

ðL
0
ϕi xð Þϕj xð ÞρA xð Þdx = ρ

ðL
0
α1x + α2ð Þϕi xð Þϕj xð Þdx ð10Þ
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The Mp matrix is evaluated with the following MAPLE code:

Maple Code for Obtaining the Platform Generalized Mass Matrix in Equation (11)

with(linalg);
piv := 3.141592654;
gg := alp1*x + alp2;
phi(1) := 1;
phi(2) := x/L;
phi(3) := sin(piv*x/L);
phi(4) := sin(2*piv*x/L);
phi(5) := sin(3*piv*x/L);
phi(6) := sin(4*piv*x/L);

for i from 1 by 1 while i<7 do
for j from 1 by 1 while j<7 do
f(i,j) := gg*phi(i) *phi(j);
end do;
end do;

A := matrix (6,6,f );
MP := rho*map(int, A, x=0..L);

The Maple code result is

Mp = α1L
2ρ

0:5 0:3333 0:3183 −0:1592 0:1061 −0:0796

0:2500 0:1893 −0:1592 0:10113 −0:0796

0:2500 −0:0901 0 −0:0072

0:2500 −0:0973 0

symmetric 0:2500 −0:0993

0:2500

26666666666664

37777777777775

+ α2Lρ

1 0:500 0:6366 0 0:2122 0

0:3333 0:3183 −0:1592 0:1061 −0:0796

0:500 0 0 0

0:500 0 0

symmetric 0:5000 0

0:5000

26666666666664

37777777777775

ð11Þ

From (2.6.46), (2.6.47), and (5) and (7), the mass matrix due to the machine is
obtained by evaluating the following matrix at x= d:
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Mm = �m

ϕ1ϕ1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ1ϕ5 ϕ1ϕ6

ϕ2ϕ2 ϕ2ϕ3 ϕ2ϕ4 ϕ2ϕ5 ϕ2ϕ6

ϕ3ϕ3 ϕ3ϕ4 ϕ3ϕ5 ϕ3ϕ6

ϕ4ϕ4 ϕ4ϕ5 ϕ4ϕ6

symmetric ϕ5ϕ5 ϕ5ϕ6

ϕ6ϕ6

26666666664

37777777775
jx= d

ð12Þ

The total mass matrix becomes

M =Mm +Mp ð13Þ

(b) Potential Energy and Stiffness Matrix
From Figure E4.6.4(a), the potential energy due to the support springs is (4.5.65)

Us =
1
2
ku2 0ð Þ+ 1

2
k
b

a
u2 Lð Þ = k

2

X6
i= 1

qiϕi 0ð Þ
 !2

+
kb

2a

X6
i= 1

qiϕi Lð Þ
 !2

ð14Þ

The corresponding generalized forces are obtained from (4.5.66) or (2.6.46) and
(2.6.47) as

Q
s
=
∂Us

∂q
= −

∂Us

∂q1
−
∂Us

∂q2
� � � −

∂Us

∂q6

	 
T

= −Ks

��
x = 0

q−
b

a
Ks

��
x= L

q= − Ks

��
x = 0

+
b

a
Ks

��
x= L

	 

q

where

Ks = k

ϕ1ϕ1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ1ϕ5 ϕ1ϕ6

ϕ2ϕ2 ϕ2ϕ3 ϕ2ϕ4 ϕ2ϕ5 ϕ2ϕ6

ϕ3ϕ3 ϕ3ϕ4 ϕ3ϕ5 ϕ3ϕ6

ϕ4ϕ4 ϕ4ϕ5 ϕ4ϕ6

symmetric ϕ5ϕ5 ϕ5ϕ6

ϕ6ϕ6

26666666664

37777777775
ð15Þ

whichmust be evaluated at x = 0 and x = L in (15). The generalized forces corresponding
to beam-type bending of the platform’s flooring are obtained from (4.6.77) as

QI tð Þ
n × 1

= −
∂U I

∂q
=

QI
1

QI
2

..

.

QI
n

8>>>>><>>>>>:

9>>>>>=>>>>>;
n× 1

= −KB
n× n

q tð Þ
n× 1

ð16Þ

where from (4.6.75)

KB
6×6

=
ð
V
BT
B

6×1
EB
1×1

BB
1×6

dV = assumed modes stiffness matrix ð17Þ
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and from (4.6.76) and Equations (15)–(17) of Example 4.6.3

B= −y
d2

dx2
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6½ � = −y ϕ 001 ϕ 002 ϕ 003 ϕ 004 ϕ 005 ϕ 006

� � ð18Þ

where from (4)

ϕ 001 = 0, ϕ 002 = 0,

ϕ 003 = −
π

L

� �2
sin

πx

L

� �
, ϕ 004 = −

2π
L

	 
2

sin
2πx
L

	 

ϕ 005 = −

3π
L

	 
2

sin
3πx
L

	 

, ϕ 006 = −

4π
L

	 
2

sin
4πx
L

	 
 ð19Þ

Similar to Equations (20)–(22) of Example 4.6.3, Equation (16) becomes

QI
B
= −KBq ð20Þ

where

KB =
ð
V
BTEBdV =

ðL
0
EI xð Þ

ϕ 001 ϕ
00
1 ϕ 001 ϕ

00
2 ϕ 001 ϕ

00
3 ϕ 001 ϕ

00
4 ϕ 001 ϕ

00
5 ϕ 001 ϕ

00
6

ϕ 002 ϕ
00
2 ϕ 002 ϕ

00
3 ϕ 002 ϕ

00
4 ϕ 002 ϕ

00
5 ϕ 002 ϕ

00
6

ϕ 003 ϕ
00
3 ϕ 003 ϕ

00
4 ϕ 003 ϕ

00
5 ϕ 003 ϕ

00
6

ϕ 004 ϕ
00
4 ϕ 004 ϕ

00
5 ϕ 004 ϕ

00
6

symmetric ϕ 005 ϕ
00
5 ϕ 005 ϕ

00
6

ϕ 006 ϕ
00
6

26666666664

37777777775
dx ð21Þ

where from (1)

I xð Þ = α3x + α4 ð22Þ
The integral in (21) is performed is performed utilizing the followingMAPLE code

Maple Code for Obtaining the Platform Flooring Generalized Stiffness Matrix
Due to Bending in Equation (22)

with(linalg);
Ib := alp3*x + alp4;
piv := 3.141592654;
phidd(1) := 0;
phidd(2) := 0;
phidd(3) := -(piv/L)^2*sin(piv*x/L);
phidd(4) := -(2*piv/L)^2*sin(2*piv*x/L);
phidd(5) := -(3*piv/L)^2*sin(3*piv*x/L);
phidd(6) := -(4*piv/L)^2*sin(4*piv*x/L);

for i from 1 by 1 while i<7 do
for j from 1 by 1 while j<7 do
f(i,j) := Ib*phidd(i)*phidd(j);
end do
end do

A := matrix(6,6,f );
KB := E*map(int, A, x=0..L);
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This produces the following results:

KB = α3
E

L2

0 0 0 0 0 0

0 0 0 0 0

24:35 −35:10 0 −11:23

389:64 −341:1 0

symmetric 1972:5 −1392:2

6234:2

26666666666664

37777777777775

+ α4
E

L3

0 0 0 0 0 0

0 0 0 0 0

48:70 0 0 0

779:27 0 0

symmetric 3945:1 0

12468:4

26666666666664

37777777777775

ð23Þ

which is the stiffness matrix for the flooring represented by the assumed modes general-
ized coordinate model given by (3) and (4). The generalized stiffness matrix for the total
platform model including the spring-modeled support columns and the beam-modeled
flooring is given by

K =Ks

��
x = 0

+
b

a
Ks

��
x = L

+KB ð24Þ

where Ks

��
x = 0

, Ks

��
x = L

, and KB are obtained from (15) and (23) and the associated
generalized force vector is

Q
U
= −Kq ð25Þ

(c) Rayleigh Dissipation Function and Damping Matrix
From Figure E4.6.4(a), the Rayleigh dissipation function due to the support dam-

pers is (4.5.81)

�d =
1
2
c _u2 0ð Þ+ 1

2
c
b

a
_u2 Lð Þ= c

2

X6
i= 1

_qiϕi 0ð Þ
 !2

+
cb

2a

X6
i= 1

_qiϕi Lð Þ
 !2

ð26Þ

The corresponding generalized forces are obtained from (4.5.82), (2.6.46), and
(2.6.47) as

Q
d
= −

∂�d

∂ _q
= −

∂�d

∂ _q1
−
∂�d

∂ _q2
−
∂�d

∂ _q3
−
∂�d

∂ _q4
−
∂�d

∂ _q5
−
∂�d

∂ _q6

	 

= −Cd

��
x = 0

_q−
b

a
Cd

��
x= L

_q= − Cd

��
x = 0 +

b

a
Cd

��
x = L

	 

_q = −C _q

ð27Þ
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where

Cd = c

ϕ1ϕ1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ1ϕ5 ϕ1ϕ6

ϕ2ϕ2 ϕ2ϕ3 ϕ2ϕ4 ϕ2ϕ5 ϕ2ϕ6

ϕ3ϕ3 ϕ3ϕ4 ϕ3ϕ5 ϕ3ϕ6

ϕ4ϕ4 ϕ4ϕ5 ϕ4ϕ6

symmetric ϕ5ϕ5 ϕ5ϕ6

ϕ6ϕ6

26666666664

37777777775
ð28Þ

which must be evaluated at x = 0 and x = L in (28).

(d) External Force Terms
The machinery force F(t) in Figure E4.6.4(a) is a concentrated point load so its

force/length expression is a Dirac delta function (ref. Section 2.12):

�FES =F tð Þδ x−dð Þ ð29Þ

The generalized force expression for the external force F(t) is given by (4.6.86),
that is,

Q
F
=
ðL
0
FES

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
dx =

ðL
0
F tð Þδ x−dð Þ

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
dx=F tð Þ

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;

���������������
d

ð30Þ

(e) Lagrange’s Equations for the Platform Model

The terms required in (4.6.52) are

(i) From (7) and (9),

d

dt

∂T

∂ _q

 !
=M€q = Mm +Mp

� �
€q ð31Þ

(ii) Q
F
from (30)

(iii) From (14), (16), (24), and (25),

−
∂U

∂q
= −Kq ð32Þ

(iv) From (28),

−
∂�d

∂ _q
=C _q ð33Þ
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Combining the results yields the following EOMs for the generalized coordinates:

Machinery/Platform Flooring EOMs: Summary

The vertical displacements of the flooring are assumed to have the form

u x, tð Þ=
X6
i= 1

qi tð Þϕi xð Þ=Φq= ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6½ �

q1

q2

..

.

q6

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð34Þ

where n = 6 generalized coordinates

ϕ1 xð Þ= 1, ϕ2 xð Þ = x

L
, ϕ3 xð Þ= sin πx

L

� �

ϕ4 xð Þ= sin 2πx
L

	 

, ϕ5 xð Þ = sin 3πx

L

	 

, ϕ6 xð Þ= sin 4πx

L

	 
 ð35Þ

The generalized coordinates qj(t) are obtained by solving

M€q +C _q+Kq =Q
F

ð36Þ

where

α1 =
b−að Þt
L

, a2 = at, α3 =
b−að Þt3
12L

, α4 =
at3

12
ð37Þ

M =Mm +Mp ð38Þ

Mm = �m

ϕ1ϕ1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ1ϕ5 ϕ1ϕ6

ϕ2ϕ2 ϕ2ϕ3 ϕ2ϕ4 ϕ2ϕ5 ϕ2ϕ6

ϕ3ϕ3 ϕ3ϕ4 ϕ3ϕ5 ϕ3ϕ6

ϕ4ϕ4 ϕ4ϕ5 ϕ4ϕ6

symmetric ϕ5ϕ5 ϕ5ϕ6

ϕ6ϕ6

26666666666664

37777777777775
jx = d

ð39Þ
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Mp = α1L
2ρ

0:5 0:3333 0:3183 −0:1592 0:1061 −0:0796

0:2500 0:1893 −0:1592 0:1013 −0:0796

0:2500 −0:0901 0 −0:0072

0:2500 −0:0973 0

sym 0:2500 −0:0993

0:2500

2666666666664

3777777777775

+ α2Lρ

1 0:500 0:6366 0 0:2122 0

0:3333 0:3183 −0:1592 0:1061 −0:0796

0:500 0 0 0

0:500 0 0

sym 0:5000 :0

0:5000

2666666666664

3777777777775

ð40Þ

K =Ks

����
x = 0

+
b

a
Ks

����
x = L

+KB ð41Þ

Ks = k

ϕ1ϕ1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ1ϕ5 ϕ1ϕ6

ϕ2ϕ2 ϕ2ϕ3 ϕ2ϕ4 ϕ2ϕ5 ϕ2ϕ6

ϕ3ϕ3 ϕ3ϕ4 ϕ3ϕ5 ϕ3ϕ6

ϕ4ϕ4 ϕ4ϕ5 ϕ4ϕ6

sym ϕ5ϕ5 ϕ5ϕ6

ϕ6ϕ6

26666666664

37777777775
ð42Þ

KB = α3
E

L2

0 0 0 0 0 0

0 0 0 0 0

24:35 −35:10 0 −11:23

389:64 −341:1 0

sym 1972:5 −1392:2

6234:2

266666666664

377777777775

+ α4
E

L3

0 0 0 0 0 0

0 0 0 0 0

48:70 0 0 0

779:27 0 0

sym 3945:1 0

12468:4

266666666664

377777777775

ð43Þ
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Q
F
=F tð Þ

ϕ1 dð Þ
ϕ2 dð Þ
ϕ3 dð Þ
ϕ4 dð Þ
ϕ5 dð Þ
ϕ6 dð Þ

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð44Þ

Summary: This example illustrated how to obtain EOMs for a flexible structure with
concentrated mass and stiffnesses via the assumed modes approach. The first two rows
and columns of the beam stiffness matrix KB are zeros since strain energy cannot be stored
in the rigid body modes:

ϕ1 xð Þ= 1, ϕ2 xð Þ = x

L
ð45Þ

EXAMPLE 4.6.5 Vibration of a Rotating Beam with Tip Mass, Damping,
and Aero-excitation

Statement: Rotating machinery blades become stiffer in bending vibration as their rota-
tional speed increase. The results from centrifugal force tending to straighten the beam back
to its undeflected state. This increased stiffness in the transverse direction raises the trans-
verse deflection natural frequencies as the rotating speed increases. A simplified rotating
blade model consists of a uniform flexible beam as shown in Figure E4.6.5(a). The disk
on which the blade is attached rotates with a constant angular velocity ω.

The blade has a tip mass and experiences a damping force proportional to its vibration
velocity. A distributed aerodynamic force per unit area (f) causes the beam to vibrate. The
beam width in the ĵ direction is b(x), its cross-sectional area is A(x), and its projected area in
the k̂ direction is a(x).

Figure E4.6.5(a) Vibrating blade attached to a spinning disk
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Objective: Derive the EOMs using the assumed modes approach with the variable
properties:

b = b xð Þ, A=A xð Þ, E =E xð Þ, I = I xð Þ ð1Þ
Assumptions: Small vibratory motion however includes a second-order strain term to
investigate the stress stiffening phenomena.

Solution:

(a) Two (n = 2) generalized coordinates are utilized to approximate the transverse vibration
of the beam. Thus, from (4.6.56),

u x, tð Þ =
X2
i= 1

qi tð Þϕi xð Þ ð2Þ

The kinetic energy includes both rotational and transverse components and is
derived with (4.6.54) and (4.6.55) as

TB =
1
2

ðL
0

R+ xð Þ2Ω2 + _u2
h i

ρA xð Þdxð Þ + �m

2
R+ Lð Þ2ω2 + _u2 L, tð Þ

h i
=
ρ

2

ðL
0
R+ xð Þ2Ω2A xð Þdx + �m

2
R+Lð Þ2ω2 +

ρ

2

ðL
0
_u2A xð Þdx+ �m

2
_u2 L, tð Þ

=
ρ

2

ðL
0
R+ xð Þ2Ω2A xð Þdx + �m

2
R+ Lð Þ2ω2

+
ρ

2

ðL
0
A xð Þ _q1ϕ1 + _q2ϕ2ð Þ2dx + �m

2
_q1ϕ1 Lð Þ+ _q2ϕ2 Lð Þð Þ2

ð3Þ

Therefore,

∂T

∂q1
=
∂T

∂q2
= 0 ð4Þ

d

dt

∂T

∂ _q1

	 

d

dt

∂T

∂ _q2

	 

8>>>><>>>>:

9>>>>=>>>>;=

ρ

ðL
0
A xð Þ €q1ϕ1 + €q2ϕ2ð Þϕ1dx + �m €q1ϕ1 Lð Þ + €q2ϕ2 Lð Þð Þϕ1 Lð Þ

ρ

ðL
0
A xð Þ €q1ϕ1 + €q2ϕ2ð Þϕ2dx + �m €q1ϕ1 Lð Þ + €q2ϕ2 Lð Þð Þϕ2 Lð Þ

8>>>><>>>>:

9>>>>=>>>>; =M€q

ð5Þ
where

M =

ðL
0
ρA xð Þϕ1ϕ1dx + �mϕ1 Lð Þϕ1 Lð Þ

ðL
0
ρA xð Þϕ1ϕ2dx + �mϕ1 Lð Þϕ2 Lð Þ

ðL
0
ρA xð Þϕ1ϕ2dx + �mϕ1 Lð Þϕ2 Lð Þ

ðL
0
ρA xð Þϕ2ϕ2dx + �mϕ2 Lð Þϕ2 Lð Þ

8>>>><>>>>:

9>>>>=>>>>; ð6Þ

€q =
€q1

€q2

( )
ð7Þ
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(b) The potential energy of the vibrating, rotating beam has two contributions. The first
arises from the transverse bending deflection of the beam as in the case of a nonrotating
cantilevered beam. The second source results from the tendency of the centrifugal force
to restore the deflected beam to its original, undeflected shape along the x axis. This
effect is analogous to a pendulum being pulled toward its vertical equilibrium state
by gravity. Thus, additional work is performed by the centrifugal radial force.
Figure E4.6.5(b) shows a differential length along the beam before (dx) and after
(ds) deformation.

The strain is given by the change in length per initial length:

ε =
ds−dx

dx
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du
dx dx
� �

+ dx2
q

−dx

dx
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du

dx

	 
2

+ 1

s
−1 ð8Þ

A two-term Taylor series expansion of the first term yields

ε xð Þffi 1 +
1
2

du

dx

	 
2
 !

−1 =
1
2

du

dx

	 
2

ð9Þ

This represents a higher-order strain that is nonzero on the neutral axis of the cross
section (Cook et al., 1989). The centrifugal force acting at the location of ε(x) is
given by

F xð Þ = σ xð ÞA xð Þ =
ðL
x
ω2 R+ ξð ÞρA ξð Þdξ + �m L+Rð Þω2 ð10Þ

where ξ is a dummy integration variable. For example, if A is constant,

F xð Þ= σ xð ÞA= ρAω2 Rξ+
ξ2

2

	 
����L
x

+ �m L+Rð Þω2

= ρAω2 RL +
L2

2
−Rx−

x2

2

	 

+ �m L+Rð Þω2

ð11Þ

The internal work performed to counteract this force is given by (A.6.8)

WC
I = −

ð
V

ðε
0

σ dε dV ð12Þ

Figure E4.6.5(b) Differential length of beam in pure bending
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Note that σ in (10) is independent of ε in (9); therefore, the inner integral in (12)
may be performed, yielding

WC
I = −

ð
V
σεdV = −

ðL
0

F xð Þ
A xð Þ

1
2

du

dx

	 
2

A xð Þdx = −
1
2

ðL
0
F xð Þ du

dx

	 
2

dx ð13Þ

The potential energy contribution due to the centrifugal force is by (A.6.11)
and (10):

UC
I = −WC

I =
1
2

ðL
0

ðL
x
ω2 R+ ξð ÞρA ξð Þdξ+ �m L+Rð Þω2

	 

du

dx

	 
2

dx

=
1
2

ðL
0

ρω2
ðL
x
R+ ξð ÞA ξð Þdξ + �m L+Rð Þω2

	 

q1ϕ

0
1 + q2ϕ

0
2

� �2
dx

ð14Þ

The corresponding generalized forces are given by (4.6.25)

QC =
QC

1

QC
2

8<:
9=; =

−
∂UC

I

∂q1

−
∂UC

I

∂q2

8>>>><>>>>:

9>>>>=>>>>;

=

−

ðL
0

ρω2
ðL
x
R+ ξð ÞA ξð Þdξ+ �m L+Rð Þω2

	 

ϕ01 q1ϕ

0
1 + q2ϕ

0
2

� �
dx

−

ðL
0

ρω2
ðL
x
R+ ξð ÞA ξð Þdξ+ �m L+Rð Þω2

	 

ϕ02 q1ϕ

0
1 + q2ϕ

0
2

� �
dx

8>>>><>>>>:

9>>>>=>>>>;
= −

KC
11 KC

12

KC
21 KC

22

24 35 q1

q2

8<:
9=;= −KCq

ð15Þ

where

KC = ρω2

ðL
0

ðL
x
R+ ξð ÞA ξð Þdξ

	 

ϕ01ϕ

0
1dx

ðL
0

ðL
x
R+ ξð ÞA ξð Þdξ

	 

ϕ01ϕ

0
2dxðL

0

ðL
x
R+ ξð ÞA ξð Þdξ

	 

ϕ01ϕ

0
2dx

ðL
0

ðL
x
R+ ξð ÞA ξð Þdξ

	 

ϕ02ϕ

0
2dx

266664
377775

+ �m L+Rð Þω2

ðL
0
ϕ01ϕ

0
1dx

ðL
0
ϕ01ϕ

0
2dxðL

0
ϕ01ϕ

0
2dx

ðL
0
ϕ02ϕ

0
2dx

266664
377775

ð16Þ

and

ϕ0j xð Þ =
dϕj

dx
ð17Þ
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(c) The generalized forces due to centrifugal force were considered in (b). This accounted
for the tendency of a deflected blade to return to the equilibrium state u = 0ð Þ due to
its spin. In addition, there is also a tendency of the blade to return to the equilibrium
state due to the bending strain potential energy. The corresponding generalized forces
were obtained in Equations (19) and (22) of Example 4.6.3 as

Q
B
=

QB
1

QB
2

( )
= −KBq ð18Þ

where

KB =
ðL
0
E xð ÞI xð Þ

ϕ 001 ϕ
00
1 ϕ 001 ϕ

00
2

ϕ 001 ϕ
00
2 ϕ 002 ϕ

00
2

" #
dx ð19Þ

(d) The distributed damping force is shown in Figure E4.6.5(a) as

dfc = − c _uð Þda= −c _ubdx ð20Þ
where c _u is a force per unit area and b is the width of the beam in the ĵ direction. The

Rayleigh dissipation function for dfc is given by (4.5.81) as

d�d
c =

1
2
_u cbdxð Þ _u ð21Þ

Therefore,

�d
c =

c

2

ðL
0
b xð Þ _u2 xð Þdx = c

2

ðL
0
b xð Þ _q1ϕ1 + _q2ϕ2ð Þ2dx ð22Þ

The generalized forces are obtained from (4.5.82) as

Q
D
=

QD
1

QD
2

( )
=

∂�d
c

∂ _q1

∂�d
c

∂ _q2

8>>>><>>>>:

9>>>>=>>>>;=

−c

ðL
0
b xð Þϕ1 _q1ϕ1 + _q2ϕ2ð Þdx

−c

ðL
0
b xð Þϕ2 _q1ϕ1 + _q2ϕ2ð Þdx

8>>><>>>:
9>>>=>>>;= −C _q ð23Þ

where

C=

c

ðL
0
b xð Þϕ1ϕ1dx c

ðL
0
b xð Þϕ1ϕ2dx

c

ðL
0
b xð Þϕ1ϕ2dx c

ðL
0
b xð Þϕ2ϕ2dx

26664
37775 ð24Þ

(e) A distributed aerodynamic force per unit area f(x, t) is shown acting on the blade in
Figure E4.6.5(a). The corresponding generalized forces are given by (4.6.51) as

Q
f
=

Qf
1

Qf
2

( )
=

ð
a
f x, tð Þϕ1dað

a
f x, tð Þϕ2da

8>><>>:
9>>=>>; =

ðL
0
f x, tð Þϕ1 xð Þb xð ÞdxðL

0
f x, tð Þϕ2 xð Þb xð Þdx

8>>><>>>:
9>>>=>>>; ð25Þ
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(f) Gathering terms into (4.6.52)

nd

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ �c +�d
� �

∂ _qj
ð26Þ

yields

M€q =Q
f
− KC +KB
� �

q−C _q ð27Þ

EOMs for a Damped Rotating Blade with Tip Mass and Aero Force

The transverse deflection field for the rotating, vibrating beam blade model is given by

u x, tð Þ =
Xn
i= 1

qi tð Þϕi xð Þ ð28Þ

where the generalized coordinates are obtained by solving

M €q +C _q + KC +KB
� �

q =Q
f

ð29Þ

(with the initial conditions qi(0)) for

q=
q1

q2

( )
ð30Þ

where

M
� �

ij
= ρ
ðL
0
A xð Þϕi xð Þϕj xð Þdx + �mϕi Lð Þϕj Lð Þ ð31Þ

C
� �

ij
= c
ðL
0
b xð Þϕi xð Þϕj xð Þdx ð32Þ

KC
� �

ij
= ρω2

ðL
0

ðL
x
R+ ξð ÞA ξð Þdξ

	 

ϕ0i xð Þϕ0j xð Þdx + �m L+Rð Þω2

ðL
0
ϕ0iϕ

0
jdx ð33Þ

KB
� �

ij =
ðL
0
E xð ÞI xð Þϕ 00i xð Þϕ 00j xð Þdx ð34Þ

where

ϕ0 =
dϕ

dx
, ϕ 00 =

d2ϕ

dx2
; ð35Þ

and

Q
f

� �
i
=
ðL
0
f x, tð Þϕi xð Þb xð Þdx ð36Þ
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(g) To illustrate a seminumerical evaluation of the EOMs, consider the following example:

ϕ1 xð Þ= x

L

� �3
−3

x

L

� �2
, ϕ2 xð Þ= x

L

� �4
−

x

L

� �2
, ϕ1 Lð Þ = −2, ϕ2 Lð Þ = 0

A xð Þ =A0 1−0:5
x

L

� �
, b xð Þ= b0 1−0:5

x

L

� �
, E xð Þ=E0

I xð Þ= I0 1−0:5
x

L

� �2
, f x, tð Þ= β x

L

� �
sin ωf t
� �

ð37Þ

The integrals in (31)–(36) are performed in the following MAPLE code yielding

• The mass matrix in (29) and (31):

M =
0:5589ρA0L+ 4 �m 0:0831ρA0L

0:0831ρA0L 0:01706ρA0L

" #
ð38Þ

• The damping matrix in (29) and (32):

C= cLb0
0:5589 0:0831

0:0831 0:0176

" #
ð39Þ

• The centrifugal stiffness matrix in (29) and (33):

KC = ρω2A0

0:688L+ 0:921R 0:077L+ 0:1286R

0:077L+ 0:1286R 0:0381L+ 0:054R

" #
+ �m

R+ Lð Þ
L

ω2
4:8 −0:3

−0:3 0:42

" #
ð40Þ

• The bending stiffness matrix in (29) and (34):

KB =
E0I0
L3

9:3 1:25

1:25 5:876

" #
ð41Þ

• The generalized aero force vector in (29) and (36):

Q
f
= βb0Lsin ωf t

� � −0:3333

−0:05476

( )
ð42Þ

Substitution of these results into (29) yields

Summary for Model Defined by (37)

M€q +C _q+ KC +KB
� �

q =Q
f

ð43Þ

or
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0:5589ρA0L+ 4 �m 0:0831ρA0L

0:0831ρA0L 0:01706ρA0L

24 35 €q1

€q2

8<:
9=; + cLb0

0:5589 0:0831

0:0831 0:0176

24 35 _q1

_q2

8<:
9=;

+ ρω2A0

0:688L+ 0:921R 0:077L+ 0:1286R

0:077L+ 0:1286R 0:0381L+ 0:054R

24 358<:
+ �m

R+Lð Þ
L

ω2
4:8 −0:3

−0:3 0:42

24 35+
E0I0
L3

9:3 1:25

1:25 5:876

24 359=; q1

q2

8<:
9=;

= βb0Lsin ωf t
� � −0:3333

−0:05476

8<:
9=;

ð44Þ

The transverse deflection field for the rotating, vibrating beam blade model is
given by

u x, tð Þ =
X2
i= 1

qi tð Þϕi xð Þ ð45Þ

where the generalized coordinates are obtained by solving (43) with the initial
conditions qi(0).

Maple Code for Obtaining the Blades Matrices in Example 4.6.5

with(linalg);
# maple 7 code for obtaining the blade matrices
phi1 := (x/L)^3 - 3*(x/L)^2;
phi2 := (x/L)^4 - (x/L)^2;
phi1d := diff(phi1,x);
phi2d := diff(phi2,x);
phi1dd := diff(phi1d,x);
phi2dd := diff(phi2d,x);
g := (1-0.5*x/L);
A := A0*g;
b := b0*g;
IA := I0*g^2;

# evaluate mass matrix
f(1,1) := rho*A*phi1*phi1;
f(1,2) := rho*A*phi1*phi2;
f(2,1) := rho*A*phi2*phi1;
f(2,2) := rho*A*phi2*phi2;
AAA: = matrix(2,2,f );
MMAT := map(int, AAA, x=0..L);
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# evaluate damping matrix
f(1,1) := c*b*phi1*phi1;
f(1,2) := c*b*phi1*phi2;
f(2,1) := c*b*phi2*phi1;
f(2,2) := c*b*phi2*phi2;
AAA := matrix(2,2,f );
CMAT := map(int, AAA, x=0..L);

# evaluate centrifugal stiffness matrix
force_centrif := int((R+zeta) *A0*(1-0.5*zeta/L),
zeta=0..L);
f(1,1) := (rho*omega^2*force_centrif+mbar(L+R)*omega^2)
*phi1d*phi1d;
f(1,2) := (rho*omega^2*force_centrif+mbar(L+R)*omega^2)
*phi1d*phi2d;
f(2,1) := (rho*omega^2*force_centrif+mbar(L+R)*omega^2)
*phi2d*phi1d;
f(2,2) := (rho*omega^2*force_centrif+mbar(L+R)*omega^2)
*phi2d*phi2d;
AAA := matrix(2,2,f );
KCMAT := simplify(map(int, AAA, x=0..L), symbolic);

# evaluate bending stiffness matrix
f(1,1) := E0*IA*phi1dd*phi1dd;
f(1,2) := E0*IA*phi1dd*phi2dd;
f(2,1) := E0*IA*phi2dd*phi1dd;
f(2,2) := E0*IA*phi2dd*phi2dd;
AAA := matrix(2,2,f );
KBMAT := simplify(map(int, AAA, x=0..L), symbolic);

# generalizedaeroforce vector
f_aero := beta*x/L*sin(omegaf*t);
f(1,1) := f_aero*phi1*b;
f(2,1) := f_aero*phi2*b;
AAA := matrix(2,1,f );
fvect := simplify(map(int, AAA, x=0..L), symbolic);

Summary: This example illustrates how to derive the assumed modes EOMs for centrifugal
stiffening, damping, tip mass, aerodynamic force, and disk radius effects. The centrifugal
stiffness matrix in (33) adds to the bending stiffness matrix, that is, it becomes a hardening
spring as ω increases. Therefore, the natural frequencies vary with centrifugal load and thus
with speed as illustrated by the Campbell diagram in Figure E4.6.5(c). Similar results may
be found with any structural member under axial load as discussed in (Cook et al., 1989).
Examples of this include guitar strings, loaded columns and long vertical pump shafts with
end suction impellers, etc. The general phenomenon is referred to as “stress stiffening” in
finite element books and commercial software.
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EXAMPLE 4.6.6 Vibration of Plate-Type Support Struts for an In-Line Fan System

Statement: Figure E4.6.6(a) depicts an in-line fan supported by four plates attached to the
fan body and inner diameter of a circular pipe. The plates have experienced high-cycle
fatigue failure due to vibration. Engineers at the vendor company seek to develop a simu-
lation model of the plate to predict its response and to simulate thickness distribution mod-
ifications for eliminating the failure.

Objective: Derive the plate EOMs using the assumed modes approach.

Assumptions: Vibration measurements on the fan body indicate very little motion com-
pared to that measured on the plates, and the plate vibration is mainly in the out-of-plane
direction (x3 in Figure E4.6.6(b)). This justifies use of fixed (zero deflections, zero slope)
boundary conditions at x2 = ± bwhich represents the pipe inner diameter and fan body outer
surface. The plate is fairly thin which justifies utilizing a plane stress model. The material
law (Appendix A.4) becomes (Dym and Shames, 1973)

σ
3 × 1

= E
3 × 3

ε
3 × 1

ð1Þ

Figure E4.6.5(c) Interference or Campbell diagram

Figure E4.6.6(a) In-line fan and support plates
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where

σ =

σ11

σ22

σ12

8>><>>:
9>>=>>;,ε =

ε11

ε22

2ε12

8>><>>:
9>>=>>;,E=

E

1−v2

1 v 0

v 1 0

0 0
1−v
2

26664
37775 =

E

1−v2
Ê ð2Þ

and due to the plane stress assumption

σ13 = σ23 = σ33 = 0 ð3Þ

The deformation assumption for thin plates is similar to that of a Euler beam (plane
sections remain plane and perpendicular to the neutral axis) and is illustrated in
Figure E4.6.6(c).

From this figure, it is seen that

u1 = −x3
∂u3
∂x1

, u2 = −x3
∂u3
∂x2

ð4Þ

Figure E4.6.6(c) Small out-of-plane deflection of a thin plate

Figure E4.6.6(b) Support plate geometry
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From Appendix (A.3.21) and Equation (4),

ε11 =
∂u1
∂x1

= −x3
∂2u3
∂x21

, ε22 =
∂u2
∂x2

= −x3
∂2u3
∂x22

, ε12 =
1
2

∂u1
∂x2

+
∂u2
∂x1

	 

= −x3

∂2u3
∂x1∂x2

ð5Þ

Equations (5) may be written in the form of (4.6.73):

ε
3 × 1

= D
3 × 1

u
1 × 1

ð6Þ

where

u = u3 ð7Þ
and

D = −x3

∂2

∂x21

∂2

∂x22

2∂
∂x1∂x2

266666666664

377777777775
ð8Þ

Solution:

(a) The shape functions for this problem must satisfy

u3 x2 = ± bð Þ= ∂u3
∂x2

x2 = ± bð Þ = 0 ð9Þ

to be kinematically admissible (see discussion of Eq. (2.11.34)). Any functions

ϕj =ϕjx1 x1ð Þϕjx2 x2ð Þ ð10Þ

satisfies (14) if ϕjx2(x2) has the form

ϕjx2 x2ð Þ =ϕI
jx2 x2ð ÞϕII

jx2 x2ð Þ ð11Þ

where

ϕI
jx2 x2 = −bð Þ = ∂ϕI

jx2

∂x2
x2 = −bð Þ= 0, ϕII

jx2 x2 = bð Þ= ∂ϕII
jx2

∂x2
x2 = bð Þ= 0 ð12Þ

This follows since

ϕj x2 = ± bð Þ=ϕjx1 x1ð ÞϕI
jx2 x2 = ± bð ÞϕII

jx2 x2 = ± bð Þ= 0 ð13Þ

and

∂ϕj

∂x2
x2 = ± bð Þ =ϕjx1 x1ð Þ ϕII

jx2

∂ϕI
jx2

∂x2

 !
±b

+ϕjx1 x1ð Þ ϕI
jx2

∂ϕII
jx2

∂x2

 !
±b

= 0 ð14Þ
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For example, a set of admissible shape functions may be generated from

ϕ m,nð Þ x1, x2ð Þ =ϕ mð Þ
x1 x1ð ÞϕI nð Þ

x2 x2ð ÞϕII nð Þ
x2 x2ð Þ ð15Þ

where

ϕ mð Þ
x1 x1ð Þ= sin mπ

1
2
+
x1
2a

	 
� �
or cos mπ

1
2
+
x1
2a

	 
� �
ð16Þ

ϕI nð Þ
x2 x2ð Þ= 1+

x2
b

� �2
sin nπ

1
2
+
x2
2b

	 
� �
, ϕII nð Þ

x2 x2ð Þ= 1−
x2
b

� �2
ð17Þ

The shape functions in (21) are plotted in Figure E4.6.6(d) for the sin option in (16)
with (m, n) = (1,1), (1,2), (2,1), and (2,2).

The assumed modes deflection interpolation is given by (4.6.71)

u3 x1,x2, tð Þ
1 × 1

= Φ
1 × 4

x1, x2ð Þq tð Þ
4 × 1

ð18Þ

1

Shape function 1   m = 1, n = 1 Shape function 2   m = 1, n = 2

Shape function 4   m = 2, n = 2Shape function 3   m = 2, n = 1
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Figure E4.6.6(d) Lowest four shape functions
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where

q tð Þ= q1 tð Þ q2 tð Þ q3 tð Þ q4 tð Þð ÞT ð19Þ

and

Φ x1, x2ð Þ = ϕ1 x1, x2ð Þ ϕ2 x1, x2ð Þ ϕ3 x1, x2ð Þ ϕ4 x1, x2ð Þð Þ
= ϕ 1,1ð Þ ϕ 1,2ð Þ ϕ 2,1ð Þ ϕ 2,2ð Þ� � ð20Þ

(b) TheKmatrix in (4.6.75) first requires evaluation of the Bmatrix in (4.6.76), that is, from
(8) and (20):

B
3 × 4

= D
3 × 1

Φ
1 × 4

= −x3

∂2=∂x21

∂2=∂x22

2∂2=∂x1∂x2

26664
37775 ϕ1 ϕ2 ϕ3 ϕ4ð Þ

= −x3

ϕ1,11 ϕ2,11 ϕ3,11 ϕ4,11

ϕ1,22 ϕ2,22 ϕ3,22 ϕ4,22

2ϕ1,12 2ϕ2,12 2ϕ3,12 2ϕ4,12

2664
3775= −x3Φ̂ x1, x2ð Þ

ð21Þ

where

ϕi, jl =
∂2ϕi

∂xj∂xl
ð22Þ

The eK matrix of (4.6.75) becomes

eK
4 × 4

=
ð
V
BT

4× 3
E

3 × 3
B

3 × 4
dV =

E

1−v2

ða
−a

ðb
−b

ðt=2
− t=2

x23Φ̂
T
Ê Φ̂dx3dx2dx1

=
E

1−v2

ða
−a

ðb
−b

t̂3 x2ð Þ
12

Φ̂T
x1, x2ð ÞÊ Φ̂ x1, x2ð Þdx2dx1

ð23Þ

where the integration over x3 is performed, and from Figure E4.6.6(b), the plate thick-
ness function is

t̂ x2ð Þ = t̂min + t̂max− t̂minð Þ x2
b

� �2
ð24Þ

The stiffness matrix eK in (23) was evaluated byMAPLE code below for the param-
eter values E = 2:0 × 1011 N=m2, v = 0:3 dim, t̂min = 0:002 m, t̂max = 0:003 m, a= 0:3 m,
and b= 0:1 m. The result is

eK = 107

0:2081 0 0 0

0:7629 0 0

symmetric 0:2360 0

0:8130

266664
377775N=m ð25Þ
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(c) The mass matrix for the plate is obtained from (4.6.65) as

eM =
ð
V
ΦTΦdm=

ð
V
ΦTΦρdV =

ða
−a

ðb
−b

ðt=2
− t=2

ΦTΦρdx3dx2dx1

=
ða
−a

ðb
−b

ρt x2ð ÞΦTΦdx2dx1

ð26Þ

This matrix is evaluated in the MAPLE code below with ρ = 7700 kg=m3. The
result is

eM =

0:31528 0 0 0

0:17971 0 0

symmetric 0:31528 0

0:17971

266664
377775kg ð27Þ

(d) The governing differential equation for the generalized coordinates q1 tð Þ� � �q4 tð Þ
becomes

eM€q + eKq = 0 4 × 1ð Þ ð28Þ

where eM and eK are defined in (27) and (25), respectively,

q =

q1

q2

q3

q4

8>>>><>>>>:

9>>>>=>>>>; ð29Þ

and the transverse deflection is given by (18)

u3 x1, x2, tð Þ=
X4
i = 1

qi tð Þϕi x1, x2ð Þ ð30Þ

where the ϕi are defined in (15)–(17) and (20):

Maple Code for Obtaining the Plate Matrices

>restart;
>with(linalg):
>a:=.3 : b:= .1 : tmin:= .002 : tmax:= .003 : nu:=.3 : Pie :
=3.14159265:
>E:=2e+11 : rho:=7700:
>fun:= evalf(sin(m*Pie*(1/2+x1/2/a))*(1+x2/b)^2*(1-x2/b)
^2*sin(n*Pie*(1/2+x2/2/b))):
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>phi(1):= subs(m=1,n=1,fun): phi(2):= subs(m=1,n=2,fun):
phi(3):= subs(m=2,n=1,fun): phi(4):= subs(m=2,n=2,fun):
>
>plot3d( phi(1), x1=-a..a, x2=-b..b, axes=BOXED,
lightmodel=light3,
color=gray,title="SHAPE FUNCTION 1 m=1 , n=1" );
>
>plot3d( phi(2), x1=-a..a, x2=-b..b, axes=BOXED,
lightmodel=light3,
color=gray,title="SHAPE FUNCTION 2 m=1 , n=2" );
>
>plot3d( phi(3), x1=-a..a, x2=-b..b, axes=BOXED,
lightmodel=light3,
color=gray,title="SHAPE FUNCTION 3 m=2 , n=1" );

>plot3d( phi(4), x1=-a..a, x2=-b..b, axes=BOXED,
lightmodel=light3,
color=gray,title="SHAPE FUNCTION 4 m=2 , n=2" );

>Phi:=matrix(1,4,[phi(1),phi(2),phi(3),phi(4)]);

Φ : = sin 1:570796325 + 5:235987748x1ð Þ 1:+ 10:x2ð Þ2 1:−10:x2ð Þ2
h

sin 1:570796325 + 15:70796325x2ð Þ,
sin 1:570796325 + 5:235987748x1ð Þ
1:+ 10:x2ð Þ2 1:−10:x2ð Þ2 sin 3:141592650 + 31:41592650x2ð Þ,
sin 3:141592650 + 10:47197550x1ð Þ 1:+ 10:x2ð Þ2 1:−10:x2ð Þ2
sin 1:570796325 + 15:70796325x2ð Þ,
sin 3:141592650 + 10:47197550x1ð Þ
1:+ 10:x2ð Þ2 1:−10:x2ð Þ2 sin 3:141592650 + 31:41592650x2ð Þ�

>
>Phihatrow1:=simplify(map(diff,Phi,x1,x1)):
>Phihatrow2:=simplify(map(diff,Phi,x2,x2)):
>Phihatrow3:=simplify(map(diff,Phi,x1,x2)):
>Phihat:=stackmatrix(Phihatrow1,Phihatrow2,2*Phihatrow3):
>Phihat:=matrix(3,4,Phihat):
>Ehat:=matrix(3,3,[1,nu,0,nu,1,0,0,0,(1-nu)/2]):
>thk:= tmin + (tmax - tmin)*(x2/b)^2 :
>
># Evaluate Stiffness Matrix
>Kmat := simplify(evalm(E/12/(1-nu^2)*thk^3*transpose
(Phihat)&*Ehat&*Phihat)):
>Kmat := simplify(map(int,evalm(Kmat),x1=-a..a)):
>
>Kmat:= simplify(map(int,evalm(Kmat),x2=-b..b));

Kmat : =

0:2080690074 107 0:002945363596 0:0002867800424 0:5000809593

0:002945363623 0:7629397779 107 0:5000809737 10−12 0:0005288867360

0:0002867800424 0:5000809737 10−12 0:2359860115 107 0:003438333736

0:5000809667 10−12 0:0005288867360 0:003438333736 0:8130102610

266664
377775
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># Evaluate Mass Matrix
>Mmat := simplify(evalm(rho*thk*transpose(Phi)&*Phi)):
>Mmat := simplify(map(int,evalm(Mmat),x1=-a..a)):
>Mmat:= simplify(map(int,evalm(Mmat),x2=-b..b));

Mmat : =

0:3152796693,0:6289456068 10−9, −0:4094541153 10−18, −0:8168124791 10−27

0:6289456068 10−9,0:1797055656, −0:8168124791 10−27, −0:2333838511 10−18

−0:4094541153 10−18, −0:8168124791 10−27,0:3152796691,0:6289456160 10−9

−0:8168124791 10−27, −0:2333838511 10−18,0:6289456160 10−9,0:1797055655

266664
377775

EXAMPLE 4.6.7 Longitudinal Vibration of a Mixed Rigid–Flexible Body System with
Concentrated and Distributed Mass, Stiffness, and Damping

Description: The triangular bar shown in Figure E4.6.7(a) vibrates in its longitudinal (x)
direction. The bar has a distributed external damping ec xð Þ (per unit length) and an internal,

viscoelastic, strain-rate damping γEA
∂ _u

∂x
. The triangular bar is subjected to a force per unit

lengthef 0 along its entire length and to a concentrated force �f applied at x= L=4. The forcing
functions ef 0 and �f vary with time but not with x.

Objective: Derive an approximate set of differential equations for the assumed modes gen-
eralized coordinates.

Assumptions: Assume that γ,ec,E,A0, and ρ are constants.
The cross-sectional area of the bar varies with x according to

A xð Þ=A0 1−
x

L

� �
ð1Þ

Figure E4.6.7(a) Axial vibration model for a triangular bar–mass–pendulum system
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The concentrated mass em is welded to the triangular bar in the above figure. The
assumed modes deflection interpolation expression for this example is

u≈q1 tð Þϕ1 xð Þ+ q2 tð Þϕ2 xð Þ ð2Þ
where

ϕ1 xð Þ = sin πx

2L

� �
, ϕ2 xð Þ= sin 3πx

2L

	 

ð3Þ

Note that both ϕ1 and ϕ2 are kinematically admissible since

ϕ1 x= 0ð Þ =ϕ2 x = 0ð Þ= 0 ð4Þ
that is, they satisfy the deflection boundary conditions.

(a) Begin by deriving the EOMs for only the isolated triangular bar systemwith the attached
concentrated mass em. This will be coupled with the remaining components in step (b).

Obtain the mass matrix coefficients from (4.6.65) with A(x) from (1), ρ = constant,
a point mass em at x= L=2 and ϕl(x) from (3)

emjk = ρ
ðL
0
A0 1−

x

L

� �
ϕj xð Þϕk xð Þdx+ emϕj

L

2

	 

ϕk

L

2

	 

ð5Þ

with

ϕ1
L

2

	 

=

ffiffiffi
2
p

2
, ϕ2

L

2

	 

=

ffiffiffi
2
p

2
ð6Þ

The second term in (5) results from the kinetic energy contribution from em and can
be derived with formulas (2.6.46) and (2.6.47):

d

dt

∂Tem
∂ _qj

 !
=
d

dt

∂

∂ _qj

em
2
_u

L

2
, t

	 
2
 ! !

=
d

dt

∂

∂ _qj

em
2

X2
i= 1

_qiϕi
L

2

	 
 !2
0@ 1A0@ 1A

= emϕj
L

2

	 

€q1ϕ1

L

2

	 

+ €q2ϕ2

L

2

	 
	 
 ð7Þ

Evaluation of the integrals in (5) yields

em11 =
ρA0L

4
1−

4
π2

	 

+
�m

2

em12 = em21 =
ρA0L

π2
+
�m

2

em22 =
ρA0L

4
1−

4
9π2

	 

+
�m

2

ð8Þ

Obtain the stiffness coefficients from (4.6.73) to (4.6.76):

ε =Du)B=DΦ)K =
ð
V
BTEBdV ð9Þ

262 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



The strain–displacement relation for simple uniaxial deformation of the bar is

ε=
∂u

∂x
) D =

∂

∂x
ð10Þ

Therefore, the B matrix becomes

B=D Φ =
∂

∂x
ϕ1 ϕ2½ �= dϕ1

dx

dϕ2

dx

� �
ð11Þ

Substitute this form of B along with the volume differential expression dV =A xð Þdx
into the above formula for K to obtain

ekjk =EA0

ðL
0

1−
x

L

� �dϕj

dx

dϕk

dx
dx + �kϕj

L

2

	 

ϕk

L

2

	 

ð12Þ

From (3),

dϕ1

dx
=

π

2L
cos

πx

2L

� �
,
dϕ2

dx
=
3π
2L

cos
3πx
2L

	 

ð13Þ

Therefore, (12) yields

ek11 = E

4
A0

L
1−

π2

4

	 

+
�k

2
, ek12 =ek21 = 3EA0

4L
+
�k

2
, ek22 = EA0

4L
1 +

9π2

4

	 

+
�k

2
ð14Þ

The second term in (12) results from the potential energy stored in the “spring to
ground” �k and can be derived with the generalized force (4.6.25) and the formulas
(2.6.46) and (2.6.47):

Q�k
j = −

∂U

∂qj

	 

=

∂

∂qj

�k

2
u

L

2
, t

	 
2
 !

=
∂

∂qj

�k

2

X2
i= 1

qiϕi
L

2

	 
 !2
0@ 1A= �kϕj

L

2

	 

q1ϕ1

L

2

	 

+ q2ϕ2

L

2

	 
	 
 ð15Þ

Obtain the damping coefficients from the Rayleigh dissipation function �d for this
system (4.5.81):

�d =
ðL
0

ec
2
_u2 +

γEA

2
∂ _u

∂x

	 
2
 !

dx +
�c

2
_u

L

2
, t

	 
2

ð16Þ

Therefore, the generalized force due to damping is (4.5.82):

QC
j = −

∂�d

∂ _qj
= −

ðL
0
ec _u ∂ _u

∂ _qj
+ γEA

∂ _u

∂x

∂

∂ _qj

∂ _u

∂x

	 
 !
dx−�c _u

L

2
, t

	 

∂

∂ _qj
_u

L

2
, t

	 
	 

ð17Þ

where

u x, tð Þ = q1 tð Þϕ1 xð Þ+ q2 tð Þϕ2 xð Þ ð18Þ
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Substitution of (18) into QC
j yields

QC
j = −cj1 _q1−cj2 _q2 ð19Þ

where

ecjk =ecðL
0
ϕjϕkdx + γEA0

ðL
0

1−
x

L

� �dϕj

dx

dϕk

dx
dx+ �cϕj

L

2

	 

ϕk

L

2

	 

ð20Þ

ec11 =ecðL
0
sin

πx

2L

� �
sin

πx

2L

� �
dx+ γEA0

ðL
0

1−
x

L

� � π

2L
π

2L
cos

πx

2L

� �2
dx+

�c

2

=ecL
2
+
γEA0

4L
1 +

π2

4

	 

+
�c

2

ð21Þ

and

ec12 =ec21
=ecðL

0
sin

πx

2L

� �
sin

3πx
2L

	 

dx+ γEA0

ðL
0

1−
x

L

� � π

2L
3π
2L

cos
πx

2L

� �
cos

3πx
2L

	 

dx +

�c

2

=
3γEA0

4L
+
�c

2

ð22Þ

ec22 =ecðL
0
sin

3πx
2L

	 

sin

3πx
2L

	 

dx

+ γEA0

ðL
0

1−
x

L

� �3π
2L

3π
2L

cos
3πx
2L

	 

cos

3πx
2L

	 

dx+

�c

2

=ecL
2
+
γEA0

4L
1 +

9π
4

	 

+
�c

2

ð23Þ

The concentrated force �f is treated as a Dirac delta-type force distribution as
explained in Section 2.12, and the distributed force �f 0 only varies with time; therefore,
(4.6.86) yields

eQ1 =ef 0ðL
0
ϕ1dx + �fϕ1

L

4

	 

=
2L
π
ef 0 + 0:383�f tð Þ ð24Þ

eQ2 = f0

ðL
0
ϕ2dx + �fϕ2

L

4

	 

=
2L
3π

f0 + 0:942�f tð Þ ð25Þ

System Equations
The system EOMs are obtained with the mass, stiffness, damping, and generalized

force terms derived above as

em11 em12em21 em22

" #
€q1

€q2

( )
+
ec11 ec12ec21 ec22
" #

_q1

_q2

( )
+
ek11 ek12ek21 ek22
" #

q1

q2

( )
=

eQ1eQ2

( )
ð26Þ
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Equation (26) may be solved for q1(t) and q2(t) by numerical or numerical integra-
tion means. The axial displacement u at any location (x) along the length of the bar is
then obtained from (2) as

u x, tð Þ =ϕ1 xð Þq1 tð Þ+ϕ2 xð Þq2 tð Þ ð27Þ

where ϕ1(x) and ϕ2(x) are defined in (3).

(b) Next, consider the entire system including the plate, attached concentrated mass em,
sprung mass mc, and the inverted pendulum mB.

• The additional kinetic energy from the mass and pendulum is (Figure E4.6.7
(a), (4.2.14))

TA =
mc

2
_q23 +

IA
2
_q24 ð28Þ

The related terms in Lagrange’s equations are

∂TA
∂qj

= 0 ð29Þ

d

dt

∂TA
∂ _qj

 !
=

0, j= 1

0, j= 2

mc€q3, j= 3

IA€q4, j= 4

8>>>><>>>>: ð30Þ

• The additional generalized force terms are

QjA =
X

F
!
l �∂v

!
l

∂ _qj
= 0 �∂v

!
l

∂ _qj
= 0 ð31Þ

that is, no additional generalized forces result since the velocities of the points of

applications of �f and ef are independent of _q3 and _q4.

• The additional Rayleigh dissipation function term (4.5.78) is

�d
A =

cA
2
_q24 ð32Þ

The new terms in Lagrange’s equations are

∂�d
A

∂ _qj
=

0, j= 1

0, j= 2

0, j= 3

cA _q4, j= 4

8>>>><>>>>: ð33Þ

• The additional potential energy terms (4.5.57), (4.5.65) are

UA =
ka
2

q3−u L, tð Þð Þ2 + kb
2

q3 +LBq4ð Þ2−mBg
LB
2

1−cosq4ð Þ ð34Þ
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where cos q4ð Þ≈1−q24=2 for small angles q4, and from (2) and (3),

u L, tð Þ =ϕ1 Lð Þq1 +ϕ2 Lð Þq2 = q1−q2 ð35Þ

Therefore,

UA≈
ka
2

q3−q1 + q2ð Þ2 + kb
2

q3 +LBq4ð Þ2−mBg
LB
2
q24 ð36Þ

The new potential energy terms in Lagrange’s equations are

∂UA

∂qj
=

−ka q3−q1 + q2ð Þ, j = 1

ka q3−q1 + q2ð Þ, j = 2

ka q3−q1 + q2ð Þ+ kb q3 + LBq4ð Þ, j = 3

kb q3 + LBq4ð ÞLB−mBg
LB
2
q24, j = 4

8>>>>><>>>>>:
ð37Þ

Combining these additional terms for Lagrange’s equations with those from part
(a) yields the total system EOM:

M
4 × 4

€q
4 × 1

+ C
4 × 4

_q
4 × 1

+ K
4 × 4

q
4 × 1

= Q tð Þ
4 × 1

ð38Þ

where

M
4 × 4

=

em11 em12 0 0

em12 em22 0 0

0 0 mc 0

0 0 0 IA

26666664

37777775, C
4 × 4

=

ec11 ec12 0 0

ec12 ec22 0 0

0 0 0 0

0 0 0 cA

26666664

37777775 ð39Þ

K
4 × 4

=

ek11 + ka ek12−ka −ka 0ek12−ka ek22 + ka ka 0

−ka ka ka + kb kBLB

0 0 kbLB kBL2B−mB
gLB
2

2666664

3777775 ð40Þ

The force vector in (39) is given by (24), (25), and (31) as

Q =

eQ1eQ2

0

0

8>>>><>>>>:

9>>>>=>>>>; =

2L
π
ef 0 tð Þ + 0:383�f tð Þ

2L
3π
ef 0 tð Þ + 0:924�f tð Þ

0

0

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð41Þ
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Equation (38) may be solved for q1(t), q2(t), q3(t), and q4(t) by analytical or numer-
ical integration means. The axial displacement u at any location (x) along the length of
the bar is then obtained from (2):

u x, tð Þ =ϕ1 xð Þq1 tð Þ+ϕ2 xð Þq2 tð Þ ð42Þ

where by (3)

ϕ1 xð Þ = sin πx

2L

� �
, ϕ2 xð Þ= sin 3πx

2L

	 

ð43Þ

4.7 LE FOR FLEXIBLE, DISTRIBUTED MASS BODIES: FINITE ELEMENT
APPROACH—GENERAL FORMULATION

This section provides the framework for obtaining the finite element-based EOMs for any
linear finite element model. An 8-node, 3-degree of freedom (dof ) per node element is uti-
lized to illustrate the theory component of this framework. The theory applies to any element
with an arbitrary number of nodes and dofs per node. The theory will be utilized for truss
elements in Section 4.8, beam elements with 2 nodes and 6 dof per node in Chapter 9, plane
stress–strain elements with 4 nodes and 2 dof per node, in Chapter 10, and 3D solid elements
with 8 nodes and 3 dof per node in Chapter 11.

4.7.1 Element Kinetic Energy and Mass Matrix

Recall from Figure 2.11.10 and Equation (4.2.3) that the most general expression for kinetic
energy is

T =
1
2

ð
V

nd

dt
R
!� �
�
nd

dt
R
!� �

dm ð4:7:1Þ

For the FEM, the domain V is subdivided into subdomains called elements, as depicted
in Figure 2.11.10. Consequently, T may be written as

T =
XNe

e = 1

Te ð4:7:2Þ

where

Te =
1
2

ð
Ve

nd

dt
R
!� �
�
nd

dt
R
!� �

ρdV ð4:7:3Þ

Ne : number of elements in the model

Te : kinetic energy contributed to the system kinetic energy by element e

Ve : domain of element e

ð4:7:4Þ
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The deflections within Ve are given, for example, in an 8-node element by (2.11.36)

uej xe1,x
e
2,x

e
3, t

� �
=
X8
k = 1

uejk tð ÞNe
k xe1,x

e
2,x

e
3

� �
j= 1,2,3 ð4:7:5Þ

The velocity shape functions are called “consistent” if they are the same as those used
for the displacement interpolation, that is,

nvej xe1,x
e
2,x

e
3, t

� �
=

nd

dt
uej xe1,x

e
2,x

e
3, t

� �
=
X8
k = 1

_uejk tð ÞNe
k xe1,x

e
2,x

e
3

� � ð4:7:6Þ

where _uejk tð Þ is the velocity of mode k of element e, in direction j, as sensed in frame n.
Therefore,

nd

dt
R
!
= nve1n1 +

nve2n2 +
nve3n3 ð4:7:7Þ

and from (4.7.3),

Te =
1
2

ð
Ve

nve1
� �2

+ nve2
� �2

+ nve3
� �2h i

ρdV

=
1
2

ð
Ve

X8
i= 1

X8
k = 1

_ue1k _u
e
1iN

e
kN

e
i + _ue2k _u

e
2iN

e
kN

e
i + _ue3k _u

e
3iN

e
kN

e
i

� �
ρdV

=
1
2

X8
i= 1

X8
k = 1

_ue1k _u
e
1i

ð
Ve

Ne
kN

e
i ρdV + _ue2k _u

e
2i

ð
Ve

Ne
kN

e
i ρdV + _ue3k _u

e
3i

ð
Ve

Ne
kN

e
i ρdV

	 

=
1
2

_UT
e1eme

_Ue1 + _UT
e2eme

_Ue2 + _UT
e3eme

_Ue3

� �
ð4:7:8Þ

where

_Ue1 = _ue11 _ue12 � � � _ue18
� �T

= eight nodal velocities in direction n1 8 × 1ð Þ
_Ue2 = _ue21 _ue22 � � � _ue28

� �T
= eight nodal velocities in direction n2 8 × 1ð Þ

_Ue3 = _ue31 _ue32 � � � _ue38
� �T

= eight nodal velocities in direction n3 8 × 1ð Þ
ð4:7:9Þ

eme

� �
ki
=
ð
Ve

Ne
kN

e
i ρdV ð4:7:10Þ

Define the vector of generalized coordinates as the nodal displacements:

q
e

24 × 1ð Þ
=

Ue1

Ue2

Ue3

8><>:
9>=>; = ue11 ue12 � � � ue18 ue21 ue22 � � � ue28 ue31 ue32 � � � ue38ð ÞT

= q1 q2 q3 � � � q24ð ÞT
= element e’s nodal displacements that occur at its 8 nodes in the n1,n2,
and n3 directions

ð4:7:11Þ

The kinetic energy in (4.7.8) then becomes

Te =Te _q1 _q2 _q3 � � � _q24ð Þ = 1
2

_qT
e

1 × nð Þ
Me
n× nð Þ

_q
e

n× 1ð Þ
1 × 1ð Þ ð4:7:12Þ
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where

n = 24 = number of independent generalized coordinates ð4:7:13Þ

Me
n× nð Þ

= “consistent”mass matrix of element e =

eme
8 × 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

eme
8 × 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

eme
8 × 8ð Þ

2666664

3777775 ð4:7:14Þ

eme is defined in (4.7.10), and the term “consistent” refers to the velocity and displacement
shape functions being identical. Note that as in the RB or assumed modes approximations,
the finite element approximation yields a kinetic energy expression (4.7.12) of the form

T =T _q1 _q2 _q3 � � � _q24ð Þ ð4:7:15Þ
where qi are the generalized coordinates.

4.7.2 Element Stiffness Matrix

From (2.11.36) and Figure 2.11.10, the displacements within an 8-node brick element (e) are
interpolated from the nodal displacements according to

u =

ue1 x1, x2, x3, tð Þ
ue2 x1, x2, x3, tð Þ
ue3 x1, x2, x3, tð Þ

8>><>>:
9>>=>>;=

X8
k = 1

ue1k tð ÞNe
k x1, x2, x3ð Þ

X8
k = 1

ue2k tð ÞNe
k x1, x2, x3ð Þ

X8
k = 1

ue3k tð ÞNe
k x1, x2, x3ð Þ

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;

=

Ne
1 Ne

2 � � � Ne
8

1 × 8
0

1× 8
0

1× 8

0
1× 8

Ne
1 Ne

2 � � � Ne
8

1 × 8
0

1× 8

0
1× 8

0
1× 8

Ne
1 Ne

2 � � � Ne
8

1 × 8

2666664

3777775

ue11

ue12

..

.

ue18

ue21

ue22

..

.

ue28

ue31

ue32

..

.

ue38

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:7:16Þ
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or

ue x1, x2, x3, tð Þ
3 × 1

=Ne x1, x2, x3ð Þ
3 × 24

q
e
tð Þ

24 × 1

ð4:7:17Þ

where

q
e
= ue11 � � � ue18 ue21 � � � ue28 ue31 � � � ue38ð ÞT = q1e � � � u24eð ÞT ð4:7:18Þ
uejk tð Þ = deflection of node k of element e, in the jth direction

e= 1,nE number of elements inmodelð Þ
j= 1,2,3

k = 1,2,…,8

ð4:7:19Þ

and

Ne
k = kth shape function givenð Þ of element e ð4:7:20Þ

Substitution of (4.7.17) into (A.3.19) yields

εe
6 × 1

= D
6 × 3

Ne

3 × 24

	 

q
e

24 × 1

ð4:7:21Þ

or

εe
6 × 1

= Be
6 × 24

q
e

24 × 1

ð4:7:22Þ

where

Be
6 × 24

= B1e B2e � � � B24e

� �
6 × 24

= D
6 × 3

Ne

3 × 24
ð4:7:23Þ

Bje
6 × 1

= jth column of Be ð4:7:24Þ

Note that from (4.7.21) and (4.7.23)

ε=
X24
i= 1

qiBie ð4:7:25Þ

Then

∂ε

∂qj
=Bje ð4:7:26Þ

Substitute (4.7.22) and (4.7.23) into (4.6.27) to obtain

QIe
j = −

ð
Ve

BT
je

1 × 6

Ee
6 × 6

Be
6 × 24

q
e

24 × 1

dV ð4:7:27Þ
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The vector of all internal force-related generalized forces becomes

QIe

24 × 1

=

QIe
1

QIe
2

..

.

QIe
24

8>>>>><>>>>>:

9>>>>>=>>>>>;
24 × 1

= −

ð
Ve

BT
1e

BT
2e

..

.

BT
24e

2666664

3777775
24 × 6

Ee
6 × 6

Be
6 × 24

dV q
e

24 × 1

ð4:7:28Þ

Summarizing these results yields

Generalized Force Vector of Internal Forces for a Finite Element (8-Node Brick)

QIe tð Þ
24 × 1

=

QIe
1

QIe
2

..

.

QIe
24

8>>>>><>>>>>:

9>>>>>=>>>>>;
24 × 1

= − Ke
24 × 24

q
e
tð Þ

24 × 1

ð4:7:29Þ

where

Ke
24 × 24

=
ð
Ve

BT
e

24 × 6
Ee
6 × 6

Be
6 × 24

dV = element stiffness matrix ð4:7:30Þ

Be
6 × 24

= D
6 × 3

Ne

3 × 24
ð4:7:31Þ

ue
3 × 1

= Ne

3 × 24
q
e

24 × 1

ð4:7:32Þ

εe
6 × 1

= D
6 × 3

ue
3 × 1

ð4:7:33Þ

Ve = volume of element e ð4:7:34Þ

Note that

ue
3 × 1

= Ne

3 × 24
q
e
tð Þ

24 × 1

=
X24
i = 1

Ne
i q

e
i ð4:7:35Þ

where Ne
i is the ith column of Ne. Therefore,

∂ue

qei
=Ne

i ð4:7:36Þ

Substitute (4.7.36) into (4.6.47) to obtain

Qe
j =
ð
Ve

�FT
EVN

e
j dVe +

ð
Se

�FT
ESN

e
j dSe ð4:7:37Þ
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where dVe is the element’s differential volume and Se is the portion of the element’s surface
where external tractions are applied. Utilize (4.7.16) and (4.7.37) to obtain

Generalized Force Vector of External Forces for an 8-Node Brick-Type
Finite Element

Qe
j =
ð
Ve

�FEV1N
e
j dVe +

ð
Se

�FES1N
e
j dSe

Qe
j+ 8 =

ð
Ve

�FEV2N
e
j dVe +

ð
Se

�FES2N
e
j dSe

Qe
j+ 16 =

ð
Ve

�FEV3N
e
j dVe +

ð
Se

�FES3N
e
j dSe

for j= 1,2,…,8

ð4:7:38Þ

The externally applied forces �FEVk, �FESkð Þ and element shape functions are known
(given) functions of position (x1, x2, x3) in element volume Ve or on the element bounding
surface Se. Hence, the Qj may be evaluated per the integrations in (4.7.38).

4.7.3 Summary

The following provides a summary of the general formulation for finite elements. An
8-node, 3-degree of freedom (dof ) per node element is treated for illustration. Similar
formulations apply for elements with arbitrary number of nodes and dofs per node.

Finite Element Kinetic Energy and Mass Matrix

This displacement within element e are interpolated as

uej xe1,x
e
2,x

e
3, t

� �
=
X8
k = 1

uejk tð ÞNe
k xe1,x

e
2,x

e
3

� �
j= 1,2,3 ð4:7:39Þ

in the element volume Ve where the uejk tð Þ are nodal displacements and Ne
k xe1,x

e
2,x

e
3

� �
are

given shape functions. The kinetic energy of element e is

Te = Te _q1 _q2 _q3 � � � _q24ð Þ= 1
2

_qT
e

1 × nð Þ
Me
n × nð Þ

_q
e

n × 1ð Þ
1 × 1ð Þ ð4:7:40Þ

and the corresponding Lagrange equation derivatives are

∂Te
∂ _q

e

=Me _qe ð4:7:41Þ

d

dt

∂Te
∂ _q

e

 !
=Me€qe ð4:7:42Þ

∂Te
∂q

e

= 0 ð4:7:43Þ
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q
e

24 × 1ð Þ
=

Ue1

Ue2

Ue3

8><>:
9>=>; = ue11 ue12 � � � ue18 ue21 ue22 � � � ue28 ue31 ue32 � � � ue38ð ÞT

= q1 q2 q3 � � � q24ð ÞT
= element e0s nodal displacements that occur at its 8 nodes in the n1,n2,
and n3 directions ð4:7:44Þ

n = 24 = number of independent generalized coordinates ð4:7:45Þ

Me
n× nð Þ

= “consistent”mass matrix of element e =

eme
8 × 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

eme
8 × 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

0
8× 8ð Þ

eme
8 × 8ð Þ

26666664

37777775 ð4:7:46Þ

eme

� �
ki =
ð
Ve

Ne
kN

e
i ρdV ð4:7:47Þ

Potential Energy for a Finite Element Model of a Flexible Body

The deflection within an 8-node brick element is approximated by

u=

ue1 x1, x2, x3, tð Þ
ue2 x1, x2, x3, tð Þ
ue3 x1, x2, x3, tð Þ

8>><>>:
9>>=>>; =

X8
k = 1

ue1k tð ÞNe
k x1, x2, x3ð Þ

X8
k = 1

ue2k tð ÞNe
k x1, x2, x3ð Þ

X8
k = 1

ue3k tð ÞNe
k x1, x2, x3ð Þ

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;

=

Ne
1 Ne

2 � � � Ne
8

1 × 8
0

1 × 8
0

1 × 8

0
1× 8

Ne
1 Ne

2 � � � Ne
8

1 × 8
0

1 × 8

0
1× 8

0
1 × 8

Ne
1 Ne

2 � � � Ne
8

1 × 8

26666664

37777775

ue11

ue12

..

.

ue18

ue21

ue22

..

.

ue28

ue31

ue32

..

.

ue38

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:7:48Þ
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or

ue x1, x2, x3, tð Þ
3 × 1

=Ne x1, x2, x3ð Þ
3 × 24

q
e
tð Þ

24 × 1

ð4:7:49Þ

where

q
e
= ue11 � � � ue18 ue21 � � � ue28 ue31 � � � ue38ð ÞT = q1e � � � u24eð ÞT ð4:7:50Þ
uejk tð Þ = deflection of node k of element e, in the jth direction

e= 1,nE number of elements inmodelð Þ
j= 1,2,3

k = 1,2,…,8

ð4:7:51Þ

and

Ne
k = kth shape function givenð Þ of element e ð4:7:52Þ

and the strains and displacements are related by

ε =Due ð4:7:53Þ

Then the strain potential energy of this element is

U =
1
2

ð
Ve

εTEeε dVe =
1
2
qT
e
keqe ð4:7:54Þ

where

Ke
24 × 24

=
ð
Ve

BT
e

24 × 6
Ee
6 × 6

Be
6 × 24

dV = element stiffness matrix ð4:7:55Þ

Be
6 × 24

= D
6 × 3

Ne

3 × 24
ð4:7:56Þ

and from (A.4.4) the constitutive matrix is defined from

σ =Eε ð4:7:57Þ

The corresponding generalized forces are

QIe tð Þ
24 × 1

= −
∂U

∂q
e

=

QIe
1

QIe
2

..

.

QIe
24

8>>>>><>>>>>:

9>>>>>=>>>>>;
24 × 1

= − Ke
24 × 24

q
e
tð Þ

24 × 1

ð4:7:58Þ
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Generalized Forces for External Loading in a Finite Element (8-Node Brick
Element) Model of a Flexible Body

Qe
j =
ð
Ve

�FEV1N
e
j dVe +

ð
Se

�FES1N
e
j dSe

Qe
j+ 8 =

ð
Ve

�FEV2N
e
j dVe +

ð
Se

�FES2N
e
j dSe

Qe
j+ 16 =

ð
Ve

�FEV3N
e
j dVe +

ð
Se

�FES3N
e
j dSe

for j= 1,2,…,8

ð4:7:59Þ

Element Degree of Freedom (DOF) Equation of Motion (EOM)

From (4.5.106b),

nd

dt

∂T

∂ _qj

 !
−
∂T

∂qj
=Qj−

∂U

∂qj
−
∂ �c +�d
� �

∂ _qj
ð4:7:60Þ

Substitution of (4.7.42) and (4.7.58) into this equation yields the element dof EOM

Me€qe +Keqe =Q−
∂ �c +�d
� �

∂ _q
ð4:7:61Þ

4.8 LE FOR FLEXIBLE, DISTRIBUTED MASS BODIES: FINITE ELEMENT
APPROACH—BAR/TRUSS MODES

4.8.1 Introduction

The FEM provides a means to model highly complicated structural and machinery compo-
nents for vibration response simulation. The FEM can model complex shapes, material
property variations, boundary conditions, and loading patterns with relative ease. This is
accomplished in a building block approach by considering the relationships between force
and displacement variables within a small part, or element, of the model. The displacement
field is approximated within an element by interpolating it between user-specified “node”
points typically arranged in a regular geometric pattern within the element in its physical or
mathematically transformed form. The element building blocks are then assembled into a
system model typically defined by mass, stiffness, and damping matrices and a force vector.
The assembly is automated by utilizing connectivity arrays which are bookkeeping devices
that relate local (element) nodes and degrees of freedom to their system-level counterparts.
Boundary conditions are applied to the system model, and then natural frequencies, mode
shapes, eigenvalues, or displacements at the node points are solved for. Displacements
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throughout each element may then be obtained along with the associated strains, stresses,
and forces. The FEM is the approach of preference in most industrial and research and devel-
opment environments. Acquiring a good grasp of the corresponding theory will assist the
person utilizing commercial finite element software to respect its assumptions and limita-
tions and properly apply it in solving real-world vibration problems.

4.8.2 1D Truss/Bar Element

The simplest structural finite element is a bar element which can deform only along its lon-
gitudinal axis. The bar element (e) shown in Figure 4.8.1 has 2 nodes located at the end
point, with 1 degree of freedom per node (deflections q1 and q2) and with distributed
force/length �f x, tð Þ, density ρ, Young’s modulus E, cross-sectional area A, length L, end
actions (forces) aj, and deflection u(x, t).

4.8.3 1D Truss/Bar Element: Element Stiffness Matrix

The uniaxial strain–displacement relation for this element is given by

εxx =
∂u

∂x
ð4:8:1Þ

Thus, the strain–displacement operator matrix in (4.7.35) is

D=
∂

∂x
ð4:8:2Þ

The displacement interpolation within the element is (4.7.48)–(4.7.50):

u x, tð Þ= q1 tð ÞN1 xð Þ+ q2 tð ÞN2 xð Þ= Ne xð Þ
1 × 2

q
e
tð Þ

2 × 1

ð4:8:3Þ

where

Ne = N1 xð Þ N2 xð Þ½ �= 1−
x

L

x

L

h i
, q

e
= q1 q2ð ÞT ð4:8:4Þ

The shape functions in (4.8.4) satisfy the consistency conditions in (2.11.37).
From (4.7.56),

Be
1 × 2

= D
1 × 1

Ne

1 × 2
=

∂

∂x
N1 xð Þ N2 xð Þ½ �= N 01 N 02½ � ð4:8:5Þ

Figure 4.8.1 One-dimensional bar element
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The material (constitutive) relation for this element is given by (A.4.4)

σ =E ε=Eεxx ð4:8:6Þ

Thus,

E=E ð4:8:7Þ

The element stiffness matrix is obtained from (4.7.55), (4.8.5), and (4.8.7) as

K eð Þ
2 × 2

=
K eð Þ
11 K eð Þ

12

K eð Þ
21 K eð Þ

22

24 35=
ð
Ve

BT
e

2 × 1
Ee
1 × 1

Be
2 × 1

dVe

=
ðL
0

N 01

N 02

8<:
9=;E N 01 N 02½ �Adx=

ðL
0
E xð ÞA xð Þ

N 01N
0
1 N 01N

0
2

N 02N
0
1 N 02N

0
2

24 35dx
ð4:8:8Þ

4.8.4 1D Truss/Bar Element: Element Mass Matrix

The element mass matrix is obtained from (4.7.46) and (4.7.47):

M eð Þ =
M eð Þ

11 M eð Þ
12

M eð Þ
21 M eð Þ

22

" #
=
ðL
0
ρ xð ÞA xð Þ N1N1 N1N2

N2N1 N2N2

" #
dx ð4:8:9Þ

4.8.5 1D Truss/Bar Element: Element Damping Matrix

Let ec xð Þ be the damping per unit length exerted on the bar by its surrounding medium. The
Rayleigh dissipation function (4.5.81) for the bar element becomes

�d =
1
2

ðL
0
_u2ecdx ð4:8:10Þ

where from (4.8.3)

_u x, tð Þ= _q1 tð ÞN1 xð Þ+ _q2 tð ÞN2 xð Þ= Ne xð Þ
1 × 2

_q
e
tð Þ

2 × 1

ð4:8:11Þ

Substitution of (4.8.11) into (4.8.10) yields

�d =
1
2

ðL
0
_u2ecdx= 1

2
_qTC eð Þ _q ð4:8:12Þ

where the element damping matrix becomes

C eð Þ =
C eð Þ
11 C eð Þ

12

C eð Þ
21 C eð Þ

22

" #
=
ðL
0
ec xð Þ N1N1 N1N2

N2N1 N2N2

" #
dx ð4:8:13Þ
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4.8.6 1D Truss/Bar Element: Generalized Force Vector

The bar’s generalized forces are given by (4.5.7) and (4.5.52):

Qj = a1̂i � ∂ _q1̂i
∂ _qj

+ a2̂i � ∂ _q2̂i
∂ _qj

+
ðL
0

�f dx̂i
� � � ∂ _ûi

∂ _qj
ð4:8:14Þ

This simplifies to

Q =
Q1

Q2

( )
=

a1

a2

( )
+

f1

f2

( )
= a eð Þ + f eð Þ ð4:8:15Þ

where

f eð Þ =
f1

f2

( )
=
ðL
0

�f
N1

N2

( )
dx ð4:8:16Þ

For constant �f e,ρe,Ae,Ee, Equations (4.8.4), (4.8.8), and (4.8.9) yield

K eð Þ =EeA
e
ðLe
0

N 01N
0
1 N 01N

0
2

N 02N
0
1 N 02N

0
2

" #
dx=EeAe

ðLe
0

1=L2e −1=L2e
−1=L2e 1=L2e

" #
dx =

EeAe

Le

1 −1

−1 1

" #
ð4:8:17Þ

M eð Þ = ρeAe

ðLe
0

N1N1 N1N2

N2N1 N2N2

" #
dx = ρeAeLe

1=3 1=6

1=6 1=3

" #
ð4:8:18Þ

C eð Þ =
ðL
0
ec xð Þ N1N1 N1N2

N2N1 N2N2

" #
dx =ece 1=3 1=6

1=6 1=3

" #
ð4:8:19Þ

f eð Þ = �f e

ðLe
0

N1

N2

( )
dx = �f e

L

2

1

1

( )
ð4:8:20Þ

Application of LE (4.7.61) to the bar element yields the element dof EOM:

M eð Þ€q +C eð Þ _q +K eð Þq= a eð Þ + f eð Þ 2 × 1ð Þ ð4:8:21Þ

The motions (q, _q, €q) may be obtained by solving (4.8.17), for example, by numerical

integration (ref. Example 2.3.1). Then the end actions (forces) may be determined from
(4.8.17), written as

a eð Þ =M eð Þ€q +C eð Þ _q +K eð Þq− f eð Þ ð4:8:22Þ

utilizing the calculated motions. The end (nodal) actions a eð Þ are typically very important
quantities since stresses may be determined from the end actions. Most fatigue-related the-
ories of failure are based on the levels of stress as discussed in Section 1.4.
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4.8.7 1D Truss/Bar Element: Nodal Connectivity Array

Figure 4.8.2 represents a mathematical model, consisting of E bar elements, which is
employed to predict the longitudinal vibration of a machine or structural system. The dis-

placement and internal action (force) at local node i of element e are denoted by q eð Þ
i and a eð Þ

i ,
respectively.

Connected elements share nodes which cause a redundancy in the displacement
and action labeling system shown in Figure 4.8.2. For example, note that local node 2 of
element 1 is local node 1 of elements 2, 3, and 4. Therefore,

q 1ð Þ
2 = q 2ð Þ

1 = q 3ð Þ
1 = q 4ð Þ

1 ð4:8:23Þ
and by Newton’s third law, the internal forces (actions) at the nodes are

a 1ð Þ
2 = − a 2ð Þ

1 + a 3ð Þ
1 + a 4ð Þ

1

� �
ð4:8:24Þ

Equation (4.8.23) is an interelement displacement compatibility condition, and
Equation (4.8.24) is an interelement equilibrium condition. The redundancy in “local” dis-
placements is removed by defining a “global” node system as illustrated in Figure 4.8.3.

Note that the nodes may be shared by adjacent elements and that there are a total of NN

independent nodes. For example,

Global node 1 = local node 2 of element 1 = local node 1 of element 2

The “nodal” connectivity array (NCA) provides a systematic means to relate local
nodes of connected elements to unique global node numbers. This aids “assembly” of

Figure 4.8.3 Global node numbering of structural model with system of bar elements

Figure 4.8.2 Local (element) node numbering for a system of bar elements
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the element matrices into the system matrices in an automated (programmable) manner. To
illustrate this, consider the 8-element model shown in Figure 4.8.4.

The nodal connectivity for this model is contained in the B array in Table 4.8.1.
Formally, the “NCA” is defined as

Bej =NCA= “global”node number for local node j of element e

e = 1,2,…,E, j= 1,2
ð4:8:25Þ

where for the model in Figure 4.8.4, E = 8 and NN = 9.

4.8.8 System of 1D Bar Elements: Matrix Assembly

Each element is in a state of dynamic equilibrium, that is, from (4.8.17),

M 1ð Þ€q 1ð Þ +C 1ð Þ _q 1ð Þ +K 1ð Þq 1ð Þ = a 1ð Þ + f 1ð Þ ð4:8:26Þ

..

.

M eð Þ€q eð Þ +C eð Þ _q eð Þ +K eð Þq eð Þ = a eð Þ + f eð Þ ð4:8:27Þ

..

.

M Eð Þ€q Eð Þ +C Eð Þ _q Eð Þ +K Eð Þq Eð Þ = a Eð Þ + f Eð Þ ð4:8:28Þ

Table 4.8.1 Nodal connectivity array B for the model in Figure 4.8.4

Element no. e Local node 1 Be1 Local node 1 Be2

1 1 2
2 2 3
3 2 4
4 3 6
5 4 5
6 6 7
7 7 8
8 7 9

Figure 4.8.4 A bar-type structural model
with 8 elements and 9 nodes
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where E is the total number of elements in the systemmodel. The dynamic equilibrium equa-
tion for the entire structure is “assembled” from these element equations. Redundancies are
eliminated in the process by enforcing:

• Interelement compatibility

• Interelement equilibrium

and by expressing local node displacements in terms of global node displacements utilizing
the NCA B. The final result of this assembly procedure is a systematic, programmable
algorithm for obtaining the dynamic equilibrium equations

M€q +C _q+Kq= f NN × 1ð Þ ð4:8:29Þ

of the total system from the element M eð Þ,C eð Þ, K eð Þ matrices and f eð Þ vectors. Note that the
interelement actions a eð Þ do not appear in (4.8.29) since they cancel by Newton’s third law
in the assembly process. The assembly procedure is summarized by the following steps:

(a) LetG representM,C, orK andG eð Þ representM eð Þ,C eð Þ, orK eð Þ: ð4:8:30aÞ

(b) ThenG is formed by initializingG= 0 ð4:8:30bÞ
and then adding the row r, column s entry of G eð Þ, that is, G eð Þ� �

rs
, into the (row Ber,

column Bes) position of G for all elements e= 1,2, � � �Eð Þ and all rows and columns

r = 1,2,s= 1,2ð Þ of each element matrix G eð Þ. This is illustrated in Figure 4.8.5.

(c) The excitation vector f is formed by initalizing f = 0 ð4:8:30cÞ

and then by adding the rth entry of f eð Þ, that is, f eð Þ
� �

r
, into the row Ber position of f

for all elements e = 1,2,…,Eð Þ and all rows of each element force vector f eð Þ. This is
illustrated in Figure 4.8.6.

Figure 4.8.6 Assembly of the f vector

Figure 4.8.5 Assembly of the M and K matrices
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The result of this assembly procedure is the system M,C, and K matrices and the f

vector for the unconstrained system. This procedure is applicable to any type of element
but will first need to be extended to accommodate constrained (fixed) degrees of freedom
and elements with multiple degrees of freedom per node.

EXAMPLE 4.8.1 Matrix Assembly for Model in Figure 4.8.4 and Table 4.8.1

Description: The model in Figure 4.8.4 consists of 8 bar elements and 9 nodes. Element 3
has a distributed force �f , and node 7 has a concentrated force eF. From Table 4.8.1, the nodal
connectivity matrix is

B=

local
node
1

local
node

2

1 2

2 3

2 4

3 6

4 5

6 7

7 8

7 9

266666666666666666664

377777777777777777775

 element 1

 element 2

 element 3

 element 4

 element 5

 element 6

 element 7

 element 8

ð1Þ

Application of the algorithm illustrated in Figure 4.8.5 to this model yields the
results in Table E4.8.1(a) for assembling the element stiffness Ke and mass Me matrices
of elements 1, 2, and 8 into the system or “global” stiffness K and mass M matrices,
respectively.

According with (4.8.16), the distributed force �f acting on element 3 creates the element
force vector

f 3ð Þ =
f 31
f 32

( )
=
ðL3
0

�f
N1

N2

( )
dx ð2Þ

According with Figure 4.8.6, the element 3 force vector components add into the global
force vector as follows:

f 31 ) e = 3, r = 1 and from Equation 1ð ÞBer =B31 = 2) so add f 31 into row2of f ð3Þ

Likewise,

f 32 ) e = 3, r = 2 and from Equation 1ð ÞBer =B32 = 4) so add f 32 into row4of f ð4Þ
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The generalized forces corresponding to the concentrated force eF at node 7 are given
by (4.5.51) as

Qj =
XnFl
i= 1

F
!
i �

n∂R
!
i

∂qj
= eFî �∂q7̂i

∂qj
= eF ∂q7

∂qj
=

0, if j 6¼ 7eF if j = 7

(
ð5Þ

Consideration of (2)–(5) shows that the global force vector equals

f= 0 f 31 0 f 32 0 0 eF 0 0
� �T ð6Þ

EXAMPLE 4.8.2 Pile Impact Simulation

Description: Piles are pounded into the soil by repeated drops of a ram onto a cap block.
This example utilizes a simplified model of the soil, pile, and driver to illustrate the usage of
bar-type finite elements.

Objective: Determine the vibration response of the pile due to a ram strike event.

Assumptions:

• Soil drag is modeled by a coulomb dry friction force.

• The dry friction force, density, cross-sectional area, and Young’s modulus are assumed
constant within each element.

• Ae,ρe,�f e,Ee are constant within an element (e).

• Gravity effect neglected.

Table E4.8.1(a) Assembly of elements 1, 2, and 8 into the global stiffness and
mass matrices

Element (e) r s Ber Bes

Add Ke
� �

rs

into K
� �

Ber Bes

Add Me
� �

rs

into M
� �

BerBes

1 1 1 1 1 K11 M11
1 2 1 2 K12 M12
2 1 2 1 K21 M21
2 2 2 2 K22 M22

2 1 1 2 2 K22 M22
1 2 2 3 K23 M23
2 1 3 2 K32 M32
2 2 3 3 K33 M33

8 1 1 7 7 K77 M77
1 2 7 9 K79 M79

2 1 9 7 K97 M97
2 2 9 9 K99 M99

Chapter 4 Equations of Motion by Energy Methods 283

www.konkur.in



Model: The model consists of 10 in-line bar elements plus two lumped masses, mr and mc,

and soil friction forces, efj , as shown in Figure E4.8.2(a).
The pile element properties are:

• Nominal area = A= 0:01m2, nominal Young’s modulus = E = 2 × 1011N=m2

• Nominal density = ρ = 7000kg=m3, nominal element length = L= 1m

• Nominal friction force per length = �f
�� ��= μpC = 50μ

• Ae =A,Le =L for all e, except L1 = L=2

The nodal connectivity and element properties are shown in Table E4.8.2(a) based on
Figure E4.8.2(a).

Solution:

(a) Assemble M and K in (4.8.29) as explained in (4.8.30a) and (4.8.30b) and shown in
Figure 4.8.5. The lumped masses must also be added into the system mass matrix as
follows:

M
� �

11 = M
� �

1,1 +mr, M
� �

2,2 = M
� �

2,2 +mc ð1Þ
to account for the ram and pile cap masses at node 1 and 2.

Figure E4.8.2(a) Finite element model of pile with soil forces

Table E4.8.2(a) Nodal connectivity array and element properties E = 10 elements
NN = 11nodes, μ= 0:5

e 1 2 3 4 5 6 7 8 9 10
Be1 1 2 3 4 5 6 7 8 9 10
Be2 2 3 4 5 6 7 8 9 10 11
Ee E/5 E

ρe ρ/5 ρ

�f e
�� �� 0 0 �f

�� �� 2 �f
�� �� 3 �f

�� �� 4 �f
�� �� 5 �f

�� �� 6 �f
�� �� 7 �f

�� �� 10 �f
�� ��
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(b) From (4.8.16),

f e =
f e1
f e2

( )
=

�f e L=2ð Þ
�f e L=2ð Þ

( )
=
Le
2

�f e
�� ��∗ − sgn _qe1

� �� �
�f e
�� ��∗ − sgn _qe2

� �� �( )
ð2Þ

where the friction force direction is made opposite to the direction of the velocity by
utilizing the sgn function:

sgn xð Þ =
−1, x < 0

0, x = 0

1, x > 0

8><>: ð3Þ

Assemble f in (4.8.29) as explained in (4.8.30c) and illustrated in Figure 4.8.6.

(c) Solve for the system’s transient response utilizing the MATLAB ODE 45 numerical
integration solver as illustrated in Example 2.3.1. By (4.8.29),

_V = −M−1CV−M−1Kq +M−1f= −M−1Kq +M−1f, _q =V, _x= Âx+ f̂ ð4Þ

where

Â =
0 −M−1K

I 0

" #
, f̂ =

M−1f

0

( )
, x =

V

q

( )
ð5Þ

The ram strike is modeled by imposing an initial velocity on degree of freedom
1 per the discussion of impulse and momentum in Section 3.4. The initial conditions are

q
0
= 0

V10 = 1m=s, Vj0 = 0, j 6¼ 1
ð6Þ

Figure E4.8.2(b) shows the movement of degree of freedom q11 in response to a
ram strike.

4.8.9 Incorporation of Displacement Constraint

The previous section provided an assembly procedure for a free (unconstrained) structure,
for which the total number of dofsNd equals the number of free dofsNf. In many instances, a
structure will possess displacement constraints applied at one or more nodes in the model in
order to eliminate rigid body motions or to prestretch or precompress the structure. These
constraints require an additional “bookkeeping” array for the system model assembly pro-
cedure. For illustration, consider the model shown in Figure 4.8.7 undergoing longitudinal
(axial) vibration. The element numbers are indicated in parentheses.

The shaded regions are considered rigid and therefore represent a single node. This
structure has four constrained (zero displacement) nodes:

ic 2 1 4 7 17ð Þ ð4:8:31Þ
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Figure E4.8.2(b) (i) Displacement q11 for 0 ≤ t ≤ 1:5 seconds and (ii) displacement q11 for
0 ≤ t ≤ 0:02 seconds

Figure 4.8.7 Structural model with displacement constraints
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Therefore, only 15 nodes are free ( f ) to move, that is,

q
f
= qf1 qf2 qf3 qf4 qf5 qf6 qf7 qf8 qf9 qf10 qf11 qf12 qf13 qf14 qf15
� �T

= q2 q3 q5 q6 q8 q9 q10 q11 q12 q13 q14 q15 q16 q18 q19ð ÞT
ð4:8:32Þ

where for this example

Nf = number of free dofs = 15 ð4:8:33Þ

Define the jarray as containing the dof numbers for the free (unconstrained) nodes:

eJ = j1 j2 � � � j15ð Þ = 2 3 5 6 8 9 10 11 12 13 14 15 16 18 19ð Þ ð4:8:34Þ

Define the larray which indicates the locations of each free (unconstrained) node in the
vector q

f
of only free (unconstrained) node displacements:

eL= l1 l2 � � � l19ð Þ
= 0

1
1
2

2
3

0
4

3
5

4
6

0
7

5
8

6
9

7
10

8
11

9
12

10
13

11
14

12
15

13
16

0
17

14
18

15
19

� � ð4:8:35Þ

For reference, the positions of these entries are indicated by the index numbers shown
beneath the array in (4.8.35). Note that li is set equal to zero if node i is fixed. Imposing the
zero-displacement constraint conditions yields the following “condensed” dynamic equilib-
rium equation for the constrained structure:

Mf
Nf ×Nf

€q
f

Nf × 1

+ Cf
Nf ×Nf

_q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

ð4:8:36Þ

The nodal connectivity B and free node assignment larrays are employed to assemble
Mf ,Kf , and Ff as summarized by the following steps:

(a) LetGf representMf ,Cf , orKf andG
eð Þ representM eð Þ,C eð Þ, orK eð Þ: ð4:8:37aÞ

(b) ThenGf is formed by initalizingGf = 0 ð4:8:37bÞ

and then adding the row r, column s entry of G eð Þ, that is, G eð Þ� �
rs
, into the (row lBer ,

column lBes ) position of Gf for all elements e = 1,2, � � �Eð Þ and for all rows and columns

r = 1,2, s= 1,2ð Þ of each element matrix G eð Þ. The addition operation is performed if
and only if lBer 6¼ 0 and lBes 6¼ 0. This procedure is illustrated in Figure 4.8.8.

(c) The excitation vectorFf is formed by initalizingFf = 0 ð4:8:37cÞ

then adding the rth entry of f eð Þ, that is, f eð Þ
� �

r
, into the row lBer position of Ff for all

elements e= 1,2, � � �Eð Þ and all rows r = 1,2ð Þ of each of each element force vector f eð Þ.
The addition operation is performed if and only if lBer 6¼ 0.
This procedure is illustrated in Figure 4.8.8.
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The result of this assembly procedure is the systemMf ,Cf , andKf matrices and the Ff

vector for the constrained system. The concentrated force fc at node 10 in Figure 4.8.7 con-
tributes the following generalized forces (4.5.28) to LE:

Qj = f̂ ĉi �
∂ _q10̂i

∂ _qj
=

fc, j= 10

0, j 6¼ 10

(
ð4:8:38Þ

However, node 10 in the unconstrained system is the l10 free node. Then by
Equation (4.8.35), l10 = 7, the concentrated force fc modifies Ff in the following manner:

Ff

� �
7
= Ff

� �
7
+ fc ð4:8:39Þ

The concentrated damper cc in Figure 4.8.7 has the dissipation function

ℑd =
cc
2
_q219 ð4:8:40Þ

Therefore, its contributions to the LE are

∂ℑd

∂ _qj
=

0, j 6¼ 19

cc _q19, j= 19

(
ð4:8:41Þ

However, node 19 in the unconstrained system is the l19 free node. Then by
Equation (4.8.35), l19 = 15, so the concentrated damper cc modifies Cf in the following

manner:

Cf

� �
15,15

= Cf

� �
15,15

+ cc ð4:8:42Þ

Figure 4.8.8 Assembly of the free dof
system Mf and Kf matrices and Ff vector

for a constrained system
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Likewise, kc has the effect

Kf

� �
15,15

= Kf

� �
15,15

+ kc ð4:8:43Þ

For sake of illustration, let

Ae = 0:01m
2, Ee = 2 × 10

11N=m2, ρe = 7000kg=m
3, Le = 1m

for all elements e. Furthermore, let

kc = 2 × 10
8N=m, cc = 10000Ns=m

Figure 4.8.9 shows the time history of the dynamic force applied at degree of freedom
q10 in Figure 4.8.7.

The response of the q10 degree of freedom in Figure 4.8.7 is shown in Figure 4.8.10.
This is obtained by MATLAB ODE 45 numerical integration (ref. Example 2.3.1).

4.8.10 Modeling of 2D Trusses

The preceding discussion of bar elements was for models with nodal displacements in a sin-
gle direction. 2D truss models allow nodal deflections to occur in two orthogonal directions
(x1 and x2). Consider a structure consisting of bars that are connected by hinges as illustrated
by the trusses shown in Figure 4.8.11.

The standard rules employed for static truss analysis are often stated as:

• The internal forces (actions) at the ends of a truss member are collinear.

• If three truss members are joined at a node that is free from external loads, and two of the
members are collinear, then the third member has a zero action.

These rules are invalid for vibration of trusses due to the presence of inertial forces. The
main assumption of 2D truss analysis for vibrations is that the strain energy is dominated
by axial deformation so that bending (transverse deflection) is negligible. This assumption
is not imposed for modeling of frames with Euler–Bernoulli or Timoshenko beams
(Chapter 9). Consider the truss member shown in Figure 4.8.12. Note that there are 2 nodes
per element with 2 degrees of freedom (displacements) per node. The actions are the internal
reaction forces that occur at a node shared between two or more elements.

The local and global coordinates are related by the following coordinate transforma-
tions (2.7.1):

eq
e
=TTeqe, eae = TTeae, ef e =TTe fe ð4:8:44Þ

Figure 4.8.9 Applied force (fc) time history
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Figure 4.8.10 Displacement q10 versus t for bar structure over (a) full simulation time and (b) over
time from 0.1 to 0.25 seconds
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where

q
e
= q1e q2e q3e q4eð ÞT, eq

e
= eq1e eq2e eq3e eq4eð ÞT ð4:8:45Þ

ae = a1e a2e a3e a4eð ÞT, eae = ea1e ea2e ea3e ea4eð ÞT ð4:8:46Þ
f
e
= f1e f2e f3e f4eð ÞT, ef

e
= ef 1e ef 2e ef 3e ef 4e� �T ð4:8:47Þ

and

TTe
4 × 4

=
Ce 0

0 Ce

" #
ð4:8:48Þ

where

Ce =
cosδe sinδe

−sinδe cosδe

" #
ð4:8:49Þ

Figure 4.8.12 Truss element (e) shownwith local (a) and global (b) nodal displacements (q), internal actions (a),
and applied (external) forces ( f )

Figure 4.8.11 Typical 2D trusses
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4.8.11 2D Truss/Bar Element: Element Stiffness Matrix

The element stiffness matrix corresponding to the local coordinates shown in Figure 4.8.12
(a) may be easily inferred from the 1D bar element case in Figure 4.8.1 and Equation (4.8.8)
or (4.8.17):

eKe
4 × 4

=

eK11 0 eK13 0

0 0 0 0eK31 0 eK33 0

0 0 0 0

266664
377775 ð4:8:50Þ

where the odd number rows and columns correspond to the axial direction, and even number
rows and columns correspond to the transverse direction in Figure 4.8.12, and

eK11 =
ðLe
0
Ee exð ÞAe exð ÞN 01eN 01edex

eK13 = eK31 =
ðLe
0
Ee exð ÞAe exð ÞN 01eN 02edex

eK33 =
ðLe
0
Ee exð ÞAe exð ÞN 02eN 02edex

ð4:8:51Þ

N1e = 1−
ex
Le

, N2e =
ex
Le

ð4:8:52Þ

The potential energy (4.7.54) in the truss element is the same whether evaluated in the
local coordinates of Figure 4.8.12(a) or the global (system) coordinates of Figure 4.8.12(b).
The potential energy expressed in local coordinates (Figure 4.8.12(a)) is (4.7.54)

eUe =
1
2
eqT
e
eKeeqe ð4:8:53Þ

Substitution of (4.8.44) into (4.8.53) yields

eUe =
1
2
qT
e
TTTeeKeTTe
� �

q
e

ð4:8:54Þ

The potential energy has the following form in global coordinates:

Ue =
1
2
qT
e
Keqe ð4:8:55Þ

The element stiffness matrix in global coordinates is obtained by equating (4.8.54) and
(4.8.55), which yields

) Ke =T
T
Te
eKeTTe ð4:8:56Þ

For the special case, when Ee and Ae are independent ofex, Equations (4.8.48)–(4.8.52)
and (4.8.56) yield

Ke
4 × 4

=
EeAe

Le

Λe −Λe

−Λe Λe

" #
ð4:8:57Þ
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Λe =
cos2δe sinδe cosδe

sinδe cosδe sin2δe

" #
ð4:8:58Þ

4.8.12 2D Truss/Bar Element: Element Mass Matrix

The axial (parallel to ex ) and transverse (perpendicular to ex ) displacements of the bar in
Figure 4.8.12(a) are interpolated with the same shape functions:

eu1 =eq1N1 +eq3N2 ð4:8:59Þeu2 =eq2N1 +eq4N2 ð4:8:60Þ
This does not violate the zero bending assumption since N1 and N2 are linear in ex, so

that ũ2 represents rigid body (no bending) displacements in the transverse direction. The
kinetic energy is then given by (4.7.1)

eTe =
1
2

ðLe
0

_eu21 + _eu22� �
ρeAedex= 1

2

ðLe
0

_eq1N1 + _eq3N2

� �2
+ _eq2N1 + _eq4N2

� �2� �
dex

=
1
2
_eqT
e
eMe

_eq
e

ð4:8:61Þ

where

eMe =

eM11 0 eM13 0

0 eM22 0 eM24eM31 0 eM33 0

0 eM42 0 eM44

266664
377775 ð4:8:62Þ

eM11 = eM22 =
ðLe
0
ρe exð ÞAe exð ÞN1N1dex

eM33 = eM44 =
ðLe
0
ρe exð ÞAe exð ÞN2N2dex

eM13 = eM24 = eM31 = eM42 =
ðLe
0
ρe exð ÞAe exð ÞN1N2dex

ð4:8:63Þ

The kinetic energy expressed in local coordinates (Figure 4.8.12(a)) is (4.7.12)

eTe =
1
2
_eqT
e
eMe

_eq
e

ð4:8:64Þ

Substitution of (4.8.44) into (4.8.64) yields

eTe =
1
2
_qT
e
TTTe eMeTTe
� �

_q
e

ð4:8:65Þ

The kinetic energy expressed in global coordinates (Figure 4.8.12(b)) is (4.7.12)

Te =
1
2
_qT
e
Me _qe ð4:8:66Þ
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The element mass matrix in global coordinates is obtained by equating (4.8.65) and
(4.8.66), which yields

Me = T
T
Te
eMeTTe ð4:8:67Þ

For the special case, when ρe and Ae are independent of ex, Equations (4.8.4), (4.8.18),
(4.8.62), and (4.8.63) yield

eMe = ρeAeLe

1=3 0 1=6 0

0 1=3 0 1=6

1=6 0 1=3 0

0 1=6 0 1=3

26664
37775 ð4:8:68Þ

Substitution of (4.8.48), (4.8.49), and (4.8.68) into (4.8.67) provides the result

Me = eMe ð4:8:69Þ

4.8.13 2D Truss/Bar Element: Element Damping Matrix

Consider a distributed viscous damping (per length) ec exð Þ which acts both in the transverse
and axial directions with respect to the bar element. The corresponding dissipation function
(4.5.81) is

ℑd
e =

1
2

ðLe
0
ec exð Þ _eu12 + _eu22� �

dex ð4:8:70Þ

By comparing (4.8.61) with (4.8.70) and considering the corresponding LE
terms (4.7.60),

Mass matrix generation from :
nd
dt

∂T

∂ _qj

 !

Damping matrix generation from :
∂ℑd

∂ _qj

ð4:8:71Þ

it results that the mass and damping matrices have identical forms. Thus, from (4.8.62) and
(4.8.63), the element damping matrix becomes

eCe =

eC11 0 eC13 0

0 eC22 0 eC24eC31 0 eC33 0

0 eC42 0 eC44

266664
377775 ð4:8:72Þ

eC11 = eC22 =
ðLe
0
ec exð ÞN1N1dex

eC33 = eC44 =
ðLe
0
ec exð ÞN2N2dex

eC13 = eC24 = eC31 = eC42 =
ðLe
0
ec exð ÞN1N2dex

ð4:8:73Þ
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The element damping matrix in global coordinates (Figure 4.8.12(b)) is

Ce =T
T
Te
eCeTTe ð4:8:74Þ

For the special case when ec is independent of ex, Equations (4.8.72)–(4.8.74) yield

Ce = eCe =eceLe
1=3 0 1=6 0

0 1=3 0 1=6

1=6 0 1=3 0

0 1=6 0 1=3

266664
377775 ð4:8:75Þ

4.8.14 2D Truss/Bar Element: Element Force Vector

From (4.8.16) and Figure 4.8.12(a), the element force vector in local coordinates is

ef
e
=
ðLe
0

ef e exð Þ
N1

0

N2

0

8>>>><>>>>:

9>>>>=>>>>;dex ð4:8:76Þ

The coordinate transformation matrix TTe defined in (4.8.48) and (4.8.49) is orthogonal:

TTTe = T
−1
Te ð4:8:77Þ

Thus, (4.8.44) provides the global coordinate element force vector as

f
e
= TTTe

ef
e

ð4:8:78Þ

Substitution of (4.8.48), (4.8.49), and (4.8.76) yields

f
e
=
ðLe
0

�f e exð Þ
N1 cosδe

N1 sinδe

N2 cosδe

N2 sinδe

8>>>><>>>>:

9>>>>=>>>>;dex ð4:8:79Þ

where δe is the element orientation angle in Figure 4.8.12. For constant ef e exð Þ=ef e,(4.8.79)
becomes

f
e
= �f e

Le
2

cosδe

sinδe

cosδe

sinδe

8>>>><>>>>:

9>>>>=>>>>; ð4:8:80Þ
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4.8.15 2D Truss/Bar Element: Element Action Vector

The actions transform in the same manner as (4.8.78), yielding

ae = T
T
Teeae =

cos δeð Þea1e−sin δeð Þea2e
sin δeð Þea1e + cos δeð Þea2e
cos δeð Þea3e−sin δeð Þea4e
sin δeð Þea3e + cos δeð Þea4e

8>>>><>>>>:

9>>>>=>>>>; ð4:8:81Þ

The dynamic equilibrium equation for element e is (4.7.61):

Me€qe +Ce _qe +Keqe = ae + fe ð4:8:82Þ

The actions can be obtained if q
e
, _q

e
, and €q

e
are known, that is, from (4.8.78),

ae =Me€qe +Ce _qe +Keqe− fe ð4:8:83Þ

Then from (4.8.44), the actions in local coordinates become

eae =TTeae = ea1e ea2e ea3e ea4eð ÞT ð4:8:84Þ

The local coordinate actions are used to determine element stresses, for example,

σe1 tð Þ= ea1e tð Þ
Ae ex = 0ð Þ ð4:8:85Þ

σe2 tð Þ= ea3e tð Þ
Ae ex =Leð Þ ð4:8:86Þ

which can be employed to evaluate the fatigue life of each element (e) as discussed in
Section 1.4.

4.8.16 2D Truss/Bar Element: Degree of Freedom Connectivity Array
and Matrix Assembly

The 1D bar model had a single degree of freedom (dof ) at each node, which allowed all dof
information to be stored in the NCA (4.8.21). The 2D truss model has 2 dof at each node;
therefore, a new array is needed to store the local degrees of freedom information for assem-
bling the global (system) matrices. This is referred to as the “degree of freedom” connectivity
array (DFCA). For the 4 dof, 2D, 2-node bar element,

B̂ei = global dof corresponding to the local dof i of element e

e = 1,2,…,E, i= 1,2,3,4
ð4:8:87Þ

The DFCA B̂ei can defined by simple coding that utilizes:

(i) The nodal connectivity array NCA Bei

(ii) A convention for numbering the global dofs.
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The degree of freedom and matrix assembly method is illustrated by the following example.
The convention in (ii) is illustrated in Figure 4.8.13(a) which shows that the x1 and x2

dofs at node j are numbered as

x1 dof at global node j) q2j−1

x2 dof at global node j) q2j
ð4:8:88Þ

The nodal connectivity B and dof connectivity B̂ array entries for element 2 are shown
in Figure 4.8.13(a) as

B21 = 1, B22 = 3

B̂21 = 1, B̂22 = 2, B̂23 = 5, B̂24 = 6
ð4:8:89Þ

The nodal and degree of freedom (dof) connectivity arrays for the entire structure are

B
3 × 2

=

2 3

1 3

1 2

2664
3775, B̂

3 × 4
=

3 4 5 6

1 2 5 6

1 2 3 4

2664
3775 ð4:8:90Þ

Figure 4.8.13 Three-member truss model to illustrate constrained system assembly showing (a) entire truss and
(b) isolated element (2)
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The DFCA B̂ may be obtained from the NCA B utilizing the numbering convention
in (4.8.88) and the following “for” loops:

for e = 1 : 1 :E element index

for i= 1 : 1 : 2 local node index

for k = 1 : 1 : 2 local dof index at a node

α= 2∗ i−1ð Þ+ k local dof index in element

B̂eα = 2 Bei−1ð Þ + k
end

end

end

The l and j constraint arrays are also defined in terms of degree of freedom instead
of node numbers. The jarray contains the free degree of freedoms, that is, from
Figure 4.8.13(a):

eJ = j1 j2ð Þ= 5 6ð Þ ð4:8:91Þ
Nf = 2 free dofs ð4:8:92Þ

Then the position of each of the six system degrees of freedom in the free dof displace-
ment vector

q
f
= q f

1 q f
2

� �T
= qj1 qj2ð ÞT = q5 q6ð ÞT ð4:8:93Þ

is given by the larray:

eL= l1 l2 � � � l6ð Þ = 0 0 0 0 1 2ð Þ Nd × 1ð Þ ð4:8:94Þ
Nd = number of system dofs = 2 ×NN = 2 × 3 = 6 ð4:8:95Þ

Note that li is zero if the system dof i is fixed. The dynamic equilibrium equation for the
free dofs of the constrained structure has the general form

Mf
Nf ×Nf

€q
f

Nf × 1

+ Cf
Nf ×Nf

_q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

ð4:8:96Þ

The B̂ (dof connectivity) and eL (free node assignment) arrays are employed to assemble
Mf , Kf , and Ff as summarized by the following steps:

(a) LetGf representMf ,Cf , orKf andG
eð Þ represent element matricesM eð Þ,C eð Þ, orK eð Þ:

ð4:8:97aÞ

(b) Initialize Gf = 0 and Ff = 0.

(c) ThenGf is formed by adding the row r, column s entry ofG eð Þ; ð4:8:97bÞ

that is, G eð Þ� �
rs
, into the (row lB̂er

, column lB̂es
) position of Gf for all elements

e= 1,2,…,Eð Þ and all rows and columns r = 1,4, s= 1,4ð Þ of each element matrix
G eð Þ. The addition operation is performed if and only if lB̂er

6¼ 0 and lB̂es
6¼ 0.
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(d) The excitation vectorFf is formed by adding the rth entry of f eð Þ; ð4:8:97cÞ

that is, f eð Þ
� �

r
into the row lB̂er

position of Ff for all elements e = 1,2,…,Eð Þ and all

rows r = 1,4ð Þ of each of each element force vector f eð Þ. The addition operation is per-

formed if and only if lB̂er
6¼ 0.

This procedure is illustrated in Figure 4.8.14.
Repeat the above “assembly” step for all E elements in the model and for all four local

degrees of freedom, that is,

e= 1,2,…,E

r = 1,…,4

s= 1,…,4

ð4:8:98Þ

Table 4.8.2 provides the arrays required to assemble the global (system) matrices from
the element matrices for the three-member truss example shown in Figure 4.8.13.

By inspection of the last columns in Table 4.8.2, the matrix assembly criterion, lB̂er
6¼ 0

and lB̂es
6¼ 0, in (4.8.97b) is satisfied only for the entries shown in Table 4.8.3.

The last two columns of Table 4.8.3 are the row and column numbers in the free dof
matrices (Mf ,Cf , andKf ). Therefore, Table 4.8.3, along with the assembly diagram in

Figure 4.8.14, yields the free dof mass and stiffness matrices as

Kf =
k133 + k

2
33 k134 + k

2
34

k143 + k
2
43 k144 + k

2
44

" #
, Mf =

m1
33 +m

2
33 m1

34 +m
2
34

m1
43 +m

2
43 m1

44 +m
2
44

" #
ð4:8:99Þ

Figure 4.8.13 shows a damper is attached in the x2 direction at node 3. The dissipation
function (4.5.81) for this damper is

ℑd =
cd
2
_q26 =

cd
2

_qf
2

� �2
ð4:8:100Þ

Figure 4.8.14 Assembly of free dof system
matrices and force vector for a constrained
system
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Table 4.8.2 Dof Connectivity and constraint arrays for the model in Figure 4.8.13

e r s B̂er B̂es lB̂er
lB̂es

1 1 1 3 3 0 0
1 1 2 3 4 0 0
1 1 3 3 5 0 1
1 1 4 3 6 0 2
1 2 1 4 3 0 0
1 2 2 4 4 0 0
1 2 3 4 5 0 1
1 2 4 4 6 0 2
1 3 1 5 3 1 0
1 3 2 5 4 1 0
1 3 3 5 5 1 1
1 3 4 5 6 1 2
1 4 1 6 3 2 0
1 4 2 6 4 2 0
1 4 3 6 5 2 1
1 4 4 6 6 2 2
2 1 1 1 1 0 0
2 1 2 1 2 0 0
2 1 3 1 5 0 1
2 1 4 1 6 0 2
2 2 1 2 1 0 0
2 2 2 2 2 0 0
2 2 3 2 5 0 1
2 2 4 2 6 0 2
2 3 1 5 1 1 0
2 3 2 5 2 1 0
2 3 3 5 5 1 1
2 3 4 5 6 1 2
2 4 1 6 1 2 0
2 4 2 6 2 2 0
2 4 3 6 5 2 1
2 4 4 6 6 2 2
3 1 1 1 1 0 0
3 1 2 1 2 0 0
3 1 3 1 3 0 0
3 1 4 1 4 0 0
3 2 1 2 1 0 0
3 2 2 2 2 0 0
3 2 3 2 3 0 0
3 2 4 2 4 0 0
3 3 1 3 1 0 0
3 3 2 3 2 0 0
3 3 3 3 3 0 0
3 3 4 3 4 0 0
3 4 1 4 1 0 0
3 4 2 4 2 0 0
3 4 3 4 3 0 0
3 4 4 4 4 0 0
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Therefore, the contribution of cd to the constrained system EOM (4.8.96) is
from (4.5.82):

∂ℑd=∂ _q f
1

∂ℑd=∂ _q f
2

( )
=

0

cd _q
f
2

( )
=

0 0

0 cd

" #
_q f
1

_q f
2

( )
ð4:8:101Þ

Therefore, since cd is the only damper in the system,

Cf =
0 0

0 cd

" #
ð4:8:102Þ

in (4.8.96). Figure 4.8.13 shows a force in the x1 direction at node 3. The corresponding

generalized forces are obtained utilizing q f
1 = q5 and q

f
2 = q6 and the generalized force def-

inition (4.5.52) as

Q1 = f ê1 � ∂ _q5ê1 + _q6ê2ð Þ
∂ _q f

1

= f
∂ _q f

1

∂ _q f
1

= f ð4:8:103Þ

Q2 = f ê1 � ∂ _q5ê1 + _q6ê2ð Þ
∂ _q f

2

= f
∂ _q f

1

∂ _q f
2

= f �0 = 0 ð4:8:104Þ

Therefore, the constrained system force vector in (4.8.96) is

Ff =
Q1

Q2

( )
=

f

0

( )
ð4:8:105Þ

The constrained system EOM (4.8.96) for the free dofs is obtained from (4.8.99),
(4.8.102), and (4.8.105) as

m1
33 +m

2
33 m1

34 +m
2
34

m1
43 +m

2
43 m1

44 +m
2
44

" #
€q f
1

€q f
2

( )
+

0 0

0 cd

" #
_q f
1

_q f
2

( )
+

k133 + k
2
33 k134 + k

2
34

k143 + k
2
43 k144 + k

2
44

" #
q f
1

q f
2

( )
=

f tð Þ
0

( )
ð4:8:106Þ

where

q f
1 = q5, q f

2 = q6 ð4:8:107Þ

Table 4.8.3 Entries in Table 4.8.2 that assemble into the system matrices

e r s lB̂er
lB̂es

1 3 3 1 1
1 3 4 1 2
1 4 3 2 1
1 4 4 2 2
2 3 3 1 1
2 3 4 1 2
2 4 3 2 1
2 4 4 2 2

Chapter 4 Equations of Motion by Energy Methods 301

www.konkur.in



The absence of “3” as a superscript in (4.8.106) indicates that element 3 does not con-
tribute to the constrained system EOMs. This results since both of its nodes are fixed
as shown in Figure 4.8.13. The mass and stiffness matrix entries in (4.8.106) are obtained
from (4.8.57), (4.8.58), (4.8.68), and (4.8.69) for e= 1 and e= 2 in the following manner.

4.8.16.1 Element Mass Matrix Entries

Let

Rm =

1=3 0 1=6 0

0 1=3 0 1=6

1=6 0 1=3 0

0 1=6 0 1=3

266664
377775 ð4:8:108Þ

Then by (4.8.57) and (4.8.58) and the information provided in Figure 4.8.13,

M1 = 2ρALRm = 2mR
m

M2 =
ffiffiffi
2
p

ρALRm =
ffiffiffi
2
p

mR
m

M3 = 3ρALRm = 3mR
m

ð4:8:109Þ

where

m = ρAL=mass of elements 1 or 3 ð4:8:110Þ

4.8.16.2 Element Stiffness Matrix Entries

Recall from (4.8.57) and (4.8.58) that

Ke =
EeAe

Le

Λe −Λe

−Λe Λe

" #
ð4:8:111Þ

Λe =
cos2δe sinδe cosδe

sinδe cosδe sin2δe

" #
ð4:8:112Þ

Then from Figure 4.8.13 and the nodal ordering in B (4.8.90),

e= 1 δ1 = 0, Λ1 =
1 0

0 0

" #
ð4:8:113Þ

K1 =
EA

L
∗

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

266664
377775 ð4:8:114Þ
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e= 2 δ2 = 45
�, Λ2 =

1=2 1=2

1=2 1=2

" #
ð4:8:115Þ

K2 =
1
2
2EAffiffiffi
2
p

L
∗

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

266664
377775 ð4:8:116Þ

e = 3 δ3 = 90
�, Λ3 =

0 0

0 1

" #
ð4:8:117Þ

K3 =
3EA
L

∗

0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

266664
377775 ð4:8:118Þ

Substituting (4.8.109), (4.8.114), (4.8.116), and (4.8.118) into (4.8.106) yields the
system equilibrium equation

m

2
3
+

ffiffiffi
2
p

3
0

0
2
3
+

ffiffiffi
2
p

3

26664
37775 €q f

1

€q f
2

( )
+

0 0

0 cd

" #
_qf1

_qf2

( )
+
EA

L

1 +
1ffiffiffi
2
p 1ffiffiffi

2
p

1ffiffiffi
2
p 1ffiffiffi

2
p

26664
37775 q f

1

q f
2

( )
=

f tð Þ
0

( )

ð4:8:119Þ
where

qf1

qf2

( )
=

q5

q6

( )
ð4:8:120Þ

4.8.17 2D Truss/Bar Element: Rigid Region Modeling for 2D Trusses

Truss- and frame-type structures often support machinery or equipment that are very rigid
and geometrically complex relative to the truss or frame. One finite element modeling
approach is to “cover” the rigid area with truss members that are assigned artificially high
stiffness (Young’s modulus, cross-sectional area, etc.) and attach the inertia of the rigid com-
ponent near to its actual center of mass. The somewhat salient penalty for this approach is
that numerical solutions greatly increase in time if there is a large separation in the max and
min values in the stiffness matrix (ill conditioning). Thus, inserting elements of artificially
high stiffness may cause excessively long simulation times. An approach that circumvents
that problem is to incorporate the kinematic conditions that accompany rigid components
into the deformations of the elements that are attached to the rigid components.

Consider an RB with mass mR and centroidal mass moment of inertia IGR as shown in
Figure 4.8.15. The body undergoes small rotations and translations in planar motion.

The velocity at D may be expressed in terms of that at G as (2.11.19)

v
!
D = v!G + _θRê3 × r

!
D=G ð4:8:121Þ
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or

_q3eê1 + _q4eê2 = _qx1Rê1 + _qx2Rê2 + _θRê3 × −Δ1ê1−Δ2ê2ð Þ ð4:8:122Þ
_q3e = _qx1R +Δ2

_θR ð4:8:123Þ
_q4e = _qx2R−Δ1

_θR ð4:8:124Þ
Thus, for small motions,

q3e≈qx1R +Δ2θR ð4:8:125Þ
q4e≈qx2R−Δ1θR ð4:8:126Þ

The displacement vector for element e may then be written as

q
e
=

q1e

q2e

q3e

q4e

8>>>><>>>>:

9>>>>=>>>>;=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 Δ2

0 0 0 1 −Δ1

266664
377775

q1e

q2e

qx1R

qx2R

θR

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð4:8:127Þ

or
q
e

4 × 1

= Γe
4 × 5

q
Re

5 × 1

ð4:8:128Þ

The actions (internal forces) at local node 2 of each element attached to the rigid body R
contribute to the resultant forces andmoment acting on R. LetNcR be the number of elements
connected to rigid body R. Then the resultant forces and moment exerted on R due to the
truss actions are

ax1R

ax2R

aθR

8><>:
9>=>; =

XNc

e

0 0 1 0

0 0 0 1

0 0 Δ2e −Δ1e

264
375

a1e

a2e

a3e

a4e

8>>>><>>>>:

9>>>>=>>>>;=
XNc

e

β
e
∗ae ð4:8:129Þ

Figure 4.8.15 Rigid body attached to a 2D truss
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where β
e
is the matrix in (4.8.129). The sum in (4.8.129) includes only elements that are

attached to the rigid body R. Recall from (4.8.83) that

ae =Me €qe +Ke qe ð4:8:130Þ

Substitute (4.8.130) into (4.8.129) to obtain

ax1R

ax2R

aθR

8><>:
9>=>; =

XNc

e∗
β
e
Me€qe +Keqe

� �
ð4:8:131Þ

Inserting (4.8.128) yields

ax1R

ax2R

aθR

8><>:
9>=>; =

XNc

e∗
MRe€qRe +KReqRe

� �
ð4:8:132Þ

where

MRe
3 × 5

= β
e

3 × 4

Me
4 × 4

Γe
4 × 5

ð4:8:133Þ

KRe
3 × 5

= β
e

3 × 4

Ke
4 × 4

Γe
4 × 5

ð4:8:134Þ

Unlike the 2D elements that are not attached to R and have 4 dofs, there are 5 degrees of
freedom for the element (truss member +R) that extends from local node 1 of element e to
the mass center G of the rigid body, that is,

q
Re
=

q1e

q2e

qx1R

qx2R

θR

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð4:8:135Þ

Therefore, the size of the element stiffness matrix is 5 × 5 with the bottom three rows
given by (4.8.132), that is,

a1e

a2e

ax1R

qx2R

aθR

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
=

?

MRe

" #
€q
Re

n o
+

?

KRe

" #
q
Re

n o
ð4:8:136Þ
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where the summation in (4.8.132) is implicitly performed by assembling the matrices in
(4.8.136) into the total system mass and stiffness matrices for all elements with local node
2 on R. The top row partitions in (4.8.136) are obtained by recalling that

a1e

a2e

a3e

a4e

8>>>><>>>>:

9>>>>=>>>>; =Me€qe +Keqe =
M11e M12e

M21e M22e

" #
€q
e

n o
+

K11e K12e

K21e K22e

" #
q
e

n o
ð4:8:137Þ

Therefore,

a1e

a2e

( )
= M11e M12e

� �
€q
e
+ K11e K12e

� �
q
e

ð4:8:138Þ

Substitute (4.8.128) into (4.8.138):

a1e

a2e

( )
= M̂Re€qRe + K̂ReqRe ð4:8:139Þ

where

M̂Re
2 × 5

= M11e M12e

� �
2 × 4

Γe
4 × 5

2 × 5ð Þ ð4:8:140Þ

K̂Re = K11e K12e

� �
Γe 2 × 5ð Þ ð4:8:141Þ

Therefore, from (4.8.136) and (4.8.139), the final form for the element mass and stiff-
ness matrices, for elements with their node 2 on R, are

M0e
5 × 5

=

M̂Re
2 × 5

MRe
3 × 5

2664
3775, K0e

5 × 5

=

K̂Re
2 × 5

KRe
3 × 5

2664
3775 ð4:8:142Þ

Elements without nodes attached to R have the standard 4 × 4 matrices which are
assembled as discussed previously. The mass mR and inertia IGR of the rigid body are added
into the diagonal entries of the system mass matrix corresponding to dofs qx1R, qx2R, and θR.

Example 5.4.2 illustrates the usage of kinematic constraint conditions to model a rigid
component embedded in a flexible finite element model for natural frequencies and mode
shapes.

4.9 CHAPTER 4 EXERCISES

4.9.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website: www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding a significant cost savings for the college student, and is updated.
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4.9.2 Exercise Goals

The goal of the exercises in Chapter 4 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) Deriving governing equations of motion utilizing energy methods: power conservation
and Lagrange’s equations.

(b) Recognizing and implementing the advantages of using energy methods over Newton’s
laws: Ignoring forces that contribute zero net work, only determining velocity and
not acceleration, and the capability to model flexible body problems with distributed
stiffness and inertia.

(c) Deriving expressions for kinetic energy, potential energy, dissipation, and generalized
forces.

(d) Deriving equations of motion for systems comprised of both rigid and flexible bodies.

(e) Deriving equations of motion for finite element-derived models.

4.9.3 Sample Exercises: 4.43 and 4.52

These challenging exercises treat systems with both flexible and rigid bodies. Exer-
cises (4.43) and (4.52) utilize the assumed modes and finite element methods, respectively.
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Chapter 5

Free Vibration Response

5.1 INTRODUCTION

This chapter examines the free (unforced) vibration response and associated properties for
various types of linear vibration system models. The free vibration analysis of a system
typically consists of determining natural frequencies, damping ratios, mode shapes, and
the vibration due to imposing initial conditions (ICs) on displacements and velocities.
Themajor topics covered in this chapter include natural frequencies, damping, mode shapes,
modal orthogonality, IC response, and stability. The material covered progresses from a
simple single-degree-of-freedom (SDOF) model to an infinite degree-of-freedom (dof) con-
tinuous system model. Rotating systems with circulatory and gyroscopic moments are
considered along with the more common nonrotating system models. Self-excited unstable
systems are common in nature (communication cable whipping) and in industrial applica-
tions (machine tool chatter, fluid film bearing instability) and are discussed near the end of
the chapter. Results from this chapter will be utilized extensively in succeeding chapters in
transient response, steady-state harmonic response, modal synthesis, modal identification,
and other areas. The mode shapes provide excellent basis vectors to reduce the number of
variables required to predict the responses as discussed in Section 2.6.

The carillon bells in Figure 5.1.1 illustrate a system with widely separated natural fre-
quencies. The bell oscillates at a very low natural frequency in a pendulum-type SDOF
mode. The bell simultaneously oscillates (rings) at a much higher natural frequency in a
flexible structure-type multi-dof mode. The lower mode frequency is typically near 1 Hz,
and the higher frequency ringing occurs at 100s of Hz. A lack of damping is desired for
both natural frequencies, in the low-frequency case to sustain clanging and in the high-
frequency case to sustain the tone of the bell. A vibrating bell rings with many frequencies
of sound, each produced by a separate vibrational mode shape. These natural frequencies are
tuned by removing metal in annular rings, usually from the inside.

5.2 SINGLE DEGREE OF FREEDOM SYSTEMS

The equilibrium equation for an unforced SDOF linear system has the general form

mq + cq + kq = 0 5 2 1

The solution of this equation may be obtained by solving the complex variable differ-
ential equation (DE) (Section 2.5)

mz + cz + kz = 0 5 2 2

where

z t = zR + izI 5 2 3
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and then obtaining q(t) from

q t =Real z t 5 2 4

This is proven by substituting (5.2.3) into (5.2.2) to obtain

m zR + izI + c zR + izI + k zR + izI = 0 5 2 5

which is equivalent to the two real variable equations

mzR + czR + kzR = 0 5 2 6

mzI + czI + kzI = 0 5 2 7

Comparison of (5.2.6) to (5.2.1) shows that q and zR must be equivalent since they have
the same governing equation so (5.2.4) is proven. To solve (5.2.2), substitute

z t =ψ eλ t 5 2 8

into (5.2.2), where ψ and λ are in general complex constants, to obtain

mλ2 + cλ+ k ψ = 0 5 2 9

5.2.1 SDOF Eigenvalues (Characteristic Roots)

Note that by (5.2.8) vibrations will not occur, for all time t, if ψ = 0. This contradicts expe-
rience since a system will vibrate if given ICs and released; therefore, for the equality in
(5.2.9) to hold, it must be true that

mλ2 + cλ + k = 0 5 2 10

which is the “characteristic equation” of (5.2.1). Divide by m and define the variables

ωn =
k

m

1 2

= undamped natural frequency 5 2 11

Figure 5.1.1 A vibrating system with very low and very high natural frequencies. Wallace Memorial
Carillon. Reproduced by permission from Christ Church Cranbrook
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and

ξ=
c

2mωn
= damping ratio 5 2 12

to obtain the characteristic equation

λ2 + 2ξωnλ +ω
2
n = 0 5 2 13

The roots of this equation are readily solved with the quadratic formula or via the
Maple code:

Maple Code for Quadratic Formula

sdofeq := lambda^2 + 2∗zeta∗omegan∗lambda + omegan^2=0;
solve(sdofeq, lambda);

This yields the “proper or characteristic roots” or in German “eigenvalues”

λ= −ξωn ± iωn 1−ξ2 = −ξωn ± iωd 5 2 14

where

ωd =ωn 1−ξ2 = damped natural frequency 5 2 15

“Natural” describes the ability of the system to oscillate at this frequency, independent
of any external excitation. Some common examples include bells, tuning forks, light posts,
and car antennas. Less familiar examples include turbine blades, rotating shafts, vehicle,
offshore platforms, buildings, bridges, and so on. Equation (5.2.14) shows

λ2 = λ1 5 2 16

where denotes “complex conjugate.” This is consistent with taking the complex conju-
gate of (5.2.13), yielding

λ
2
+ 2ξωnλ +ω

2
n = 0 5 2 17

which shows that if a complex number λ satisfies (5.2.13), then it must also be true that λ and
ψ also satisfy (5.2.13). This property will hold independent of the number of dofs in the
model as will be demonstrated in the later sections of this chapter.

5.2.2 SDOF Initial Condition Response

Equation (5.2.2) is a linear DE; hence, its complete solution is the linear superposition of all
linearly independent solutions. From (5.2.8),

z t =ψeλt +ψeλt 5 2 18

where

λ= −ξωn + iωd, λ = −ξωn− iωd 5 2 19
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Use of Euler’s identity (Example 2.4.3) yields

Conj eλt =Conj e−ξωnt + iωd t =Conj e−ξωnteiωd t

= e−ξωnt cosωdt− isinωdt
= e−ξωnte− iωdt

= e −ξωn − iωd t = eλt

5 2 20

Therefore, (5.2.18) becomes

z t =ψeλt + ψeλt = 2Re ψeλt = 2Re ψR + iψ I e
−ξωnteiωdt

= 2e−ξωnt ψR cosωdt−ψ I sinωdt
5 2 21

Finally, from (5.2.4),

q t = 2e−ξωnt ψR cosωdt−ψ I sinωdt 5 2 22

Thus

q t = 2e−ξωnt ωd −ψRsinωdt−ψ Icosωdt −ξωn ψRcosωdt−ψ Isinωdt 5 2 23

It follows that

q 0 = 2ψR 5 2 24

q 0 = 2 −ωdψ I−ξωnψR 5 2 25

or

ψR =
q 0
2

5 2 26

ψ I = −

q 0
2

+ ξωn
q 0
2

ωd
5 2 27

Substituting (5.2.26) and (5.2.27) into (5.2.22) yields

q t = e−ξωn t q 0 cosωd t +
q 0 + ξωnq 0

ωd
sinωd t 5 2 28

This result may be rewritten using the trigonometric identity

Acosx+Bsinx= A2 +B2 cos x− tan−1 B

A
5 2 29

to obtain the IC displacement response from (5.2.29) as

q t = e−ξωnt q cos ωdt−∠q 5 2 30

where

q = q2 0 +
q 0 + ξωnq 0

ωd

2

, ∠q= tan−1 q 0 + ξωnq 0
q 0 ωd

5 2 31

This response is illustrated in Figure 5.2.1.
Differentiate (5.2.30) to obtain the IC velocity response

v = e−ξωnt q −ξωn cos ωdt−∠q −ωd sin ωdt−∠q
= e−ξωnt v cos ωdt−∠v

5 2 32
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where

v = q ωn, ∠v =∠q + tan−1 − 1−ξ2

−ξ
5 2 33

Similarly, the IC acceleration response is

a t = e−ξωnt a cos ωdt−∠a 5 2 34

where

a =ωn v =ω2
n q , ∠a =∠v + tan−1 − 1−ξ2

−ξ
=∠q+ 2tan−1 − 1−ξ2

−ξ
5 2 35

The IC jerk response is given by

J = a = q t = e−ξωnt J cos ωdt−∠J 5 2 36

where

J =ωn a =ω3
n q , ∠J =∠a+ tan−1 − 1−ξ2

−ξ
=∠q + 3tan−1 − 1−ξ2

−ξ
5 2 37

5.2.3 Log Decrement: A Measure of Damping—Displacement-Based Measurement

Damping limits vibration amplitude at resonance, reduces overshoot, and helps stabilize
self-excited vibrations. It is important to measure damping for obtaining an accurate simu-
lation model and for determining how prone a machine is to damaging vibrations. The fol-
lowing describes a commonly utilized approach for experimentally measuring damping.
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Figure 5.2.1 Initial displacement response for five values of damping ratio ξ (shown)
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A plot of displacement versus time (q vs. t) will show positive peaks whenever the
velocity v equals zero, that is, from (5.2.32) when

ωdtj−∠v=
π

2
+ 2πj tj =

π 2 + 2πj+∠v
ωd

=
π 2 + 2πj+∠q + γ

ωd
5 2 38

where

j= 0,1,2,… and γ = tan−1 − 1−ξ2

−ξ
5 2 39

Insert tj from (5.2.38) into (5.2.30) to obtain the peak displacement amplitudes shown in
Figure 5.2.1:

qpeak, j = e
−ξωntj q cos ωdtj−∠q = e−ξωntj q cos

π

2
+ 2πj+ γ = −e−ξωntj q sin γ 5 2 40

The sin(γ) term may be expressed in terms of ξ by considering Figure 5.2.2, from which

sinγ = − 1−ξ2 5 2 41

Therefore, (5.2.40) becomes

qpeak, j = q 1−ξ2e−ξωntj 5 2 42

The ratio of successive peak displacement amplitudes in Figure 5.2.1 is

qpeak, j
qpeak, j + 1

= e−ξωn tj − tj+ 1 5 2 43

Let

rqj =
qpeak, j
qpeak, j+ 1

5 2 44

and define the displacement log decrement as

δq = ln rqj = −ξωn tj− tj+ 1 5 2 45

Substitute tj from (5.2.38) into (5.2.45) to obtain

δq =
−ξωn

ωd
2πj−2π j+ 1 =

2πξ

1−ξ2
5 2 46

Figure 5.2.2 Damping angle (γ)
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This may be solved for ξ yielding

ξ=
δq

δq
2 + 4π2

5 2 47

Note that
qpeak, j
qpeak, j+ n

=
qpeak, j
qpeak, j+ 1

qpeak, j+ 1
qpeak, j+ 2

qpeak, j+ n−1
qpeak, j+ n

= rj∗rj+ 1∗ ∗rj+ n−1 5 2 48

Then

ln
qpeak, j
qpeak, j+ n

= ln rj + ln rj+ 1 + + ln rj+ n−1 = δq + δq + + δq = nδq 5 2 49

or

δq =
1
n
ln

qpeak, j
qpeak, j+ n

5 2 50

5.2.4 Log Decrement: A Measure of Damping—Acceleration-Based Measurement

Peaks in the acceleration (5.2.34) occur when J is zero in (5.2.36), that is,

ωdtja−∠a−γ =
π

2
+ 2πj, j= 0,1,2,… 5 2 51

therefore when

tja =
π 2 + 2πj+ γ +∠a

ωd
5 2 52

Substitute (5.2.52) into (5.2.34) to obtain

apeak, j = e
−ξωntja a cos

π

2
+ 2πj+ γ = −sinγ a e−ξωntja = 1−ξ2 a e−ξωntja 5 2 53

The ratio of successive peak acceleration amplitudes is
apeak, j
apeak, j+ 1

= e−ξωn tja − tj + 1,a 5 2 54

Substitute (5.2.52) to obtain

δa = ln
apeak, j
apeak, j+ 1

= −
ξωn

ωd
2πj−2π j+ 1 =

2πξωn

ωd
=

2πξ

1−ξ2
= δq 5 2 55

which shows thatmeasurement of log decrement for the SDOF system produces the same results
if either an acceleration or displacement sensor is utilized. Summarizing these results yields:

Underdamped SDOF Free Vibration Summary

In the case that ξ< 1 the damped SDOF EOM

mq + cq + kq = 0 5 2 56
has the initial condition response

q t = e−ξωntQcos ωdt−∠q 5 2 57
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v t = q t = e−ξωntωnQcos ωdt−∠q−γ 5 2 58

a t = q t = e−ξωntω2
nQcos ωdt−∠q−2γ 5 2 59

where

ωn =
k

m

1 2

, ξ =
c

ccr
, ccr = 2mωn 5 2 60

ωd =ωn 1−ξ2 5 2 61

γ = tan−1 − 1−ξ2

−ξ
5 2 62

Underdamped case ξ< 1 ωd > 0 Oscillation occurs
Critical damped case ξ = 1 ωd = 0 No oscillation
Overdamped case ξ> 1 No oscillation

5 2 63

For the underdamped case

Q= q2 0 +
q 0 + ξωnq 0

ωd

2 1 2

5 2 64

∠q = tan−1 q 0 + ξωnq 0
q 0 ωd

5 2 65

Peak Times

• Displacement tqj =
π 2 + 2πj +∠q+ γ

ωd

• Velocity tvj =
π 2 + 2πj+∠q + 2γ

ωd

• Acceleration taj =
π 2 + 2πj +∠q + 3γ

ωd
for j= 0,1,2,…

5 2 66

Peak Amplitudes

• Displacement qpeak, j =Q 1−ξ2e−ξωntqj

• Velocity vpeak, j =ωnQ 1−ξ2e−ξωntvj

• Acceleration apeak, j =ω2
nQ 1−ξ2e−ξωntaj

5 2 67

Logarithmic Decrement

δ = ln
qpeak, j
qpeak, j+ 1

= ln
vpeak, j
vpeak, j+ 1

= ln
apeak, j
apeak, j+ 1

5 2 68

or

δ=
1
N
ln

qpeak, j
qpeak, j+N

=
1
N
ln

vpeak, j
vpeak, j+N

=
1
N
ln

apeak, j
apeak, j+N

5 2 69

Damping Ratio

ξ =
δ

δ2 + 4π2
≈

δ

2π
for ξ << 1 5 2 70
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Damping

c = ξccr = 2mωnξ = 2 mkξ 5 2 71

Note from Equation (5.2.57) that the response will exponentially grow toward infinity if
ξ< 0. This form of vibration is typically referred to as unstable or self-excited and occurs in
many real engineering systems such as the flutter of airplane wings and turbine blades, the
chatter of machine tools and valves, and the fish tailing of trailers at high speeds. This sub-
ject will be discussed in detail in Section 5.6.

EXAMPLE 5.2.1 Slicing Mechanism

Statement: Figure E5.2.1(a) illustrates a cutting mechanism utilized as part of a manufac-
turing process. The motor torque Γm rotates drum 1 which rotates drum 2 through rolling
contact (no slip) at point A. The chopper B is attached to drum 2 and cuts part C which is
translated along table D in a direction normal to the plane of the drawing. The motor torque
is turned off at the end of the cutting stroke θ2 = θ2 0 = θ20 , and the return spring k pulls
the chopper back toward its starting position θ2 = 0 .

Objective:Derive the equation of motion (EOM) for this SDOFmodel and then solve for its
initial condition (IC) response during the return stroke.

Assumptions:

(a) Assume a no-slip interface at contact point A, so the kinematic constraint
(Section 2.11) is

r1θ1 = r2θ2 1

(b) Only consider the return cycle.

Solution:

(a) Derive the EOM by the Lagrange method. From (4.2.14), (4.5.88), and (4.5.104),

T =
1
2
IG1θ

2
1 +

1
2
IG2θ

2
2 =

1
2
IEQθ

2
2 2

where the equivalent SDOF inertia is

Ieq =
r2
r1

2

IG1 + IG2 3

Figure E5.2.1(a) Industrial slicing mechanism
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U =
1
2
kθ21 =

k

2
r2
r1

2

θ22 4

ℑd
c =

1
2
cθ

2
1 =

c

2
r2
r1

2

θ
2
2 5

Substitute the above into the Lagrange equation (4.5.106a)

d

dt

∂T

∂θ2
−
∂T

∂θ2
=Q−

∂U

∂θ2
−
∂ ℑd +ℑc

∂θ2
6

to obtain the EOM

Ieqθ2 = −k
r2
r1

2

θ2−c
r2
r1

2

θ2 7

or

Ieqθ2 +Ceqθ2 +Keqθ2 = 0 8

where the equivalent SDOF damping and stiffness are

Ceq = c
r2
r1

2

9

Keq = k
r2
r1

2

10

(b) Comparison of (8) to (5.2.56), and (5.2.60)–(5.2.62) yields

ωn =
Keq

Ieq
, Ccr = 2Ieqωn, ξ=

Ceq

Ccr
, ωd =ωn 1−ξ2 11

(c) The ICs for the return stroke are

θ2 0 = θ20, θ2 0 = 0 12

so that from (5.2.64) and (5.2.65)

Q = θ20 1 +
ξ2ω2

n

ω2
d

1 2

= θ20 1 +
ξ2

1−ξ2

1 2

=
θ20

1−ξ2
13

∠q = tan−1 ξωn

ωd
= tan−1 ξ

1−ξ2
14

Substitution of (13) and (14) into (5.2.57) yields

q t = e−ξωnt θ20

1−ξ2
cos ωdt− tan

−1 ξ

1−ξ2
15
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5.3 TWO-DEGREE-OF-FREEDOM SYSTEMS

Free vibration analysis of a system typically consists of determining natural frequencies,
damping ratios, mode shapes, and the vibration due to imposing ICs on displacements
and velocities. Systems that have a two-degree-of-freedom (2dof) model also have solutions
for free vibration response characteristics that can often be obtained in closed form. This is
generally untrue for systems with more than 2dofs which require a numerical solution.
A 2dof system has the general unforced form

Mq + C+G q+ K+KC q= 0 2 × 1 5 3 1

where

M =
m11 m12

m12 m22
=mass matrix,

C=
c11 c12

c12 c22
= damping matrix,

G=
0 g12

−g12 0
= gyroscopic matrix,

K=
k11 k12

k12 k22
= stiffness matrix,

KC =
0 kc12

−kc12 0
= circulatory matrix

5 3 2

The complex variable (Section 2.5) form of Equation (5.3.1) is

Mz + C+G z+ K+KC z= 0 5 3 3

where

z = z
R
+ iz

I
5 3 4

Then the real part of z, that is, z
R
, satisfies

Mz
R
+ C+G z

R
+ K+KC z

R
= 0 5 3 5

which has the identical form of (5.3.1), so it follows that

q t = z
R
t = Real z t 5 3 6

Substitute

z =ψeλt 5 3 7

into (5.3.5) to obtain

λ2M + λ C+G + K +KC ψ = 0 5 3 8

The displacement vector ψ is identically zero (null vector) if the coefficient matrix

A λ = λ2M + λ C+G + K+KC 5 3 9

is invertible (nonsingular) and (5.3.8) is satisfied. However, from (5.3.7), this would imply
that the system does not vibrate after being released with some ICs, which contradicts our
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experience. Therefore, the coefficient matrix must be noninvertible, that is, singular, which
from a mathematical standpoint requires that

det A λ = det
λ2m11 + λc11 + k11 λ2m12 + λ c12 + g12 + k12 + kc12

λ2m12 + λ c12−g12 + k12−kc12 λ2m22 + λc22 + k22
= 0

5 3 10

Equation (5.3.10) is the 2dof “characteristic equation.” The determinant is expanded
with the following symbolic math code:

Maple Code for Symbolic Determinant Evaluation

f(1,1): = lambda^2*m11+lambda*c11+k11;
f(1,2): = lambda^2*m12+lambda*(c12+g12)+k12+kc12;
f(2,1): = lambda^2*m12+lambda*(c12-g12)+k12-kc12;
f(2,2): = lambda^2*m22+lambda*c22+k22;
with (LinearAlgebra);
A:= Matrix([[f(1,1), f(1,2)], [f(2,1), f[2,2)])
Simplify (Determinant(A));

The results are

λ4 m11m22−m2
12 + λ3 m11c22 +m22c11−m12 2c12

+ λ2 m11k22 + c11c22 + k11m22−m12 2k12 + −c212 + g
2
12

+ λ c11k22 + c22k11−2c12k12 + 2g12kc12 + k11k22−k212 + k
2
c12 = 0

5 3 11

or

λ4 + c3λ
3 + c2λ

2 + c1λ + c0 = 0 5 3 12

where

c0 =
k11k22−k212 + k

2
c12

m11m22−m2
12

,

c1 =
c11k22 + c22k11−2c12k12 + 2g12kc12

m11m22−m2
12

,

c2 =
m11k22 +m22k11 + c11c22−2m12k12 + g212−c

2
12

m11m22−m2
12

,

c3 =
m11c22 +m22c11−2m12c12

m11m22−m2
12

5 3 13

A closed-form solution of (5.3.12) is possible if c1 and c3 are zero, that is, if the system
is undamped and if either

i g12 = 0 no gyroscopic terms or
ii kc12 = 0 no circulatory force term

5 3 14

Equations (5.3.12) and (5.3.13) simplify for these cases to the following form:

λ4 + α2λ
2 + α0 = 0 5 3 15
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where

Δ=m11m22−m
2
12, α0 =

k11k22−k212 + k
2
c12

Δ
, α2 =

m11k22 +m22k11−2m12k12 + g212
Δ

5 3 16

By (5.3.6), (5.3.7), and (5.3.15) and linear superposition, the total solution for q t is

q t =Real β1ψ1
eλ1t + β2ψ2

eλ2t + β3ψ3
eλ3t + β4ψ4

eλ4t 5 3 17

where λj has the form

λj = dj + iωj 5 3 18

Euler’s identity (Example 2.4.3) shows that

eλj t = edjteiωj t = edjt cosωjt + isinωjt 5 3 19

For physical reasons, the free response of undamped systems with positive direct stiff-
ness and without circulatory forces will neither dampen to zero nor grow to infinity. From
(5.3.19), this is expressed mathematically as

dj = 0 5 3 20

so that the eigenvalues are pure imaginary:

λj = iωj 5 3 21

Then the characteristic equation (5.3.15) becomes

ω4
j −α2ω

2
j + α0 = 0 5 3 22

This equation has the roots

ω1 = +
α2
2
−
1
2

α22−4α0
1 2

, ω2 = +
α2
2
+
1
2

α22−4α0
1 2

ω3 = −
α2
2
−
1
2

α22−4α0
1 2

, ω4 = −
α2
2
+
1
2

α22−4α0
1 2 5 3 23

Taking the conjugate of (5.3.8) yields

λ
2
M+ λ C+G + K+KC ψ = 0= 0 5 3 24

which shows that if λ and ψ solve (5.3.8), then λ and ψ will also solve (5.3.8). Note that this
results because the conjugates of the real matrices in (5.3.24) are the matrices themselves, so
by (5.3.23)

λ1 = iω1, λ2 = iω2, λ3 = iω3 = − iω1 = λ1, λ4 = iω4 = − iω2 = λ2 5 3 25

and

ψ
3
=ψ

1
, ψ

4
=ψ

2
5 3 26

Finally, by (5.3.17),

q t =Real β1ψ1
eiω1t + β2ψ2

eiω2t + β3ψ1
e− iω1t + β4ψ2

e− iω2t 5 3 27
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5.3.1 Special Case I (C =G=KC = 0) (Undamped, Nongyroscopic,
and Noncirculatory Case)

For this case, (5.3.8) becomes

λ2M+K ψ = 0 5 3 28

or by (5.3.25)

−ω2M +K ψ = 0 5 3 29

Row-wise equation (5.3.29) may be written as

−ω2m11 + k11 ψ1 + −ω2m12 + k12 ψ2 = 0 5 3 30

−ω2m12 + k12 ψ1 + −ω2m22 + k22 ψ2 = 0 5 3 31

Divide these equations by ψ1 to obtain

−ω2M +K
1
ψ

= 0 5 3 32

where

ψ =
ψ2

ψ1
5 3 33

Therefore, without loss of generality, ψ can be expressed in the form

ψ =
1
ψ

5 3 34

where by (5.3.30) and (5.3.33)

ψ =
ω2m11−k11
−ω2m12 + k12

5 3 35

Note that since all terms in (5.3.35) are real ψ and ψ are real and therefore

ψ =ψ 5 3 36

so from (5.3.27)

q t =Real β1e
iω1t + β3e

− iω1t ψ
1
+ β2e

iω2t + β4e
− iω2t ψ

2
5 3 37

In general, βj are complex, so

βj = βjR + iβjI , j= 1,2,3,4 5 3 38

and (5.3.37) become

q t = β1R cosω1t−β1Isinω1t + β3R cosω1t + β3Isinω1t ψ
1

+ β2R cosω2t−β2Isinω2t + β4R cosω2t + β4Isinω1t ψ
2

5 3 39

The βjR and βjI are arbitrary real constants, so by collecting terms (5.3.39) may be
written as

q t = α1c cosω1t + α1ssinω1t ψ1
+ α2c cosω2t + α2ssinω2t ψ2

5 3 40
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Differentiation yields

q t = −ω1α1c sinω1t +ω1α1s cosω1t ψ1
+ −ω2α2c sinω2t +ω2α2s cosω2t ψ2

5 3 41

where the α s are arbitrary real constants. At the initial time t = 0 , these equations become

q 0 =
q10
q20

= α1cψ1
+ α2cψ2

, q 0 =
q10
q20

= α1sω1ψ1
+ α2sω2ψ2

5 3 42

which implies

ψ
1

ψ
2

α1c
α2c

=
q10
q20

, ω1ψ1
ω2ψ

2

α1s
α2s

=
q10
q20

5 3 43

or since

ψ
1
=

ψ11

ψ21
, ψ

2
=

ψ12

ψ22
5 3 44

then

ψ11 ψ12
ψ21 ψ22

α1c
α2c

=
q10
q20

,
ω1ψ11 ω2ψ12
ω1ψ21 ω2ψ22

α1s
α2s

=
q10
q20

5 3 45

which has the solutions

α1c =
q10ψ22−q20ψ12

Δ
, α2c =

q20ψ11−q10ψ21

Δ

α1s =
q10ψ22−q20ψ12

ω1Δ
, α2s =

q20ψ11−q10ψ21

ω2Δ

5 3 46

where

Δ =ψ11ψ22−ψ12ψ21 5 3 47

Summarizing these results yields:

Two Dof System without Damping, Gyroscopics or Circulatory Forces

C =G =KC = 0 5 3 48

From (5.3.16) define

α0 =
k11k22−k212
m11m22−m2

12

and α2 =
m11k22 +m22k11−2m12k12

m11m22−m2
12

5 3 49

From (5.3.23), the two natural frequencies1 are

ω1 =
α2
2
−
1
2

α22−4α0, ω2 =
α2
2
+
1
2

α22−4α0 5 3 50

1The expression “natural frequencies” indicates that the oscillations in (5.3.54) occur at these frequencies due to the
initial conditions and to the nature of the system’s mass and stiffness parameters and not to any external excitation.
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From (5.3.33) and (5.3.34), the two mode shapes are

ψ
1
=

1
ψ1

, ψ
2
=

1
ψ2

5 3 51

and from (5.3.35)

ψ j =
ω2
j m11−k11

−ω2
j m12 + k12

j= 1, 2 5 3 52

Given the initial conditions

q 0 =
q10
q20

, q 0 =
q10
q20

5 3 53

the free vibration, initial condition response is given by (5.3.40)

q t =
q1 t
q2 t

= α1c cosω1t + α1s sinω1t ψ1
+ α2c cosω2t + α2s sinω2t ψ2

5 3 54

where from (5.3.34), (5.3.46), and (5.3.47)

α1c =
q10ψ2−q20

Δ
, α2c =

q20−q10ψ1

Δ
, α1s =

q10ψ2−q20
ω1Δ

, α2s =
q20−q10ψ1

ω2Δ
5 3 55

where

Δ=ψ2−ψ1 5 3 56

EXAMPLE 5.3.1 Gravel Loading Station Vibration

Statement: A structure used for crushing rocks (1) into gravel (2) and loading it into trucks
(3) is depicted below. A large quantity of gravel is quickly deposited (dropped) into arriving
trucks via the hatch (4). The container and its contents have mass 2m just prior to loading the
truck and m just after loading, and the mass of the rock crusher is m. A highly simplified
model for vibration simulation is shown in Figure E5.3.1(a). The top spring represents
the stiffness of the support columns (beams) beneath the container, the middle spring repre-
sents the stiffness of the columns between the container and crusher, and the uppermost
spring represents the stiffness of the side brace beams.

Objective: Determine the free vibration responses (x1, x2) of the crusher and container fol-
lowing the dumping of a load of gravel from the container into the truck.

Assumptions: The mass of the container and its contents changes from 2m to m instanta-
neously in a gravel dump (truck loading) event.

Solution:

(a) At t = 0− , the static equilibrium positions (SEPs) are at SEP1− and SEP2− , correspond-
ing to weights W1 =mg and W2 = 2mg. At t = 0+ , the SEPs change to SEP1+ and
SEP2+ , corresponding to weights W1 =mg and W2 =mg. The SEP changes are deter-
mined by considering the force balances in Figure E5.3.1(b) which show absolute
deflections (relative to the unloaded spring state).
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The static equilibrium equations for the two states are:

1. Before drop (t = 0− ):

k + k −k
−k k + k

δ−1
δ−2

=
mg
2mg

1

2. After drop (t = 0+ ):

2k −k
−k 2k

δ +
1
δ +
2

=
mg
mg

2

Subtract Equation (2) from (1) to obtain

2k −k
−k 2k

δ−1 −δ
+
1

δ−2 −δ
+
2

=
0
mg

3

Solving this equation yields

δ−1 −δ
+
1 =

mgk

3k2
=
mg

3k
, δ−2 −δ

+
2 =

2kmg
3k2

=
2mg
3k

4

Figure E5.3.1(a) Gravel loading station and corresponding vibration model

Figure E5.3.1(b) Free body diagrams
for SEP change determination. (i) Before
drop. (ii) After drop
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Equation (4) provides the positions of the masses before the gravel is dropped
(SEP1− and SEP2− ) relative to the static positions of the masses after the gravel is
dropped (SEP1+ and SEP2+ ). Therefore, the gravel dumping operation may be viewed
as an initial condition response problem. With reference to the coordinates (SEP1+ and
SEP2+ ) in Figure E5.3.1(a), the initial conditions become (4)

x1 0 =
mg

3k
, x2 0 =

2mg
3k

5

(b) The equations of motion for t > 0 are obtained by applying Newton’s law (3.3.5) to
masses 1 and 2 in Figure E5.3.1(b):

+ ⇩ mx1 = −kx1 + k x2−x1 6

+ ⇩ mx2 = −kx2−k x2−x1 7

or in matrix form

MX +K X= 0 8

where

M =
m11 m12

m12 m22
=

m 0
0 m

, K=
k11 k12
k12 k22

=
2k −k
−k 2k

, X=
x1
x2

9

(c) The natural frequencies are determined by substituting (9) into (5.3.49)–(5.3.50):

α0 =
3k2

m2
, α2 =

4mk
m2

10

∴ ω1 =
4k
2m

−
1
2

16k2

m2
−
12k2

m2
=

k

m
, f1 =

ω1

2π
=

1
2π

k

m
Hz 11

ω2 =
2k
m

+
k

m
=

3k
m
, f2 =

ω2

2π
=

1
2π

3k
m

Hz 12

(d) The corresponding mode shapes are obtained from (11), (12), (5.3.51), and (5.3.52) as

ψ1 =
ω2
1m−2k

−ω2
1 0−k

=
k−2k
−k

= 1, ψ2 =
ω2
2m−2k

−ω2
2 0−k

=
k

−k
= −1 13

∴ ψ
1
=

1
1

, ψ
2
=

1
−1

14

(e) The free vibration responses of the crusher (x1) and container (x2) to the given initial
conditions (5)

q 0 =
q10
q20

=
x10
x20

=
mg

k

1
3
2
3

, q 0 =
q10
q20

=
x10
x20

=
0
0

15
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are obtained from (5.3.53)–(5.3.56) as

α1c =
mg
3k ∗ −1 − 2mg

3k

−2
=
mg

2k
16

α2c =
2mg
3k − mg

3k

−2
= −

mg

6k
17

α1s = α2s = 0 18

X t =
x1 t
x2 t

= α1c cos ω1t ψ1
+ α2c cos ω2t ψ2

19

X t =
mg

2k
cos

k

m
t

1
1

−
mg

6k
cos

3k
m
t

1
−1

20

Summary:

• The results show that the first mode component of the response involves in-phase motion
of the crusher and container and is three times larger in amplitude than the second mode
component which involves out-of-phase motion of the crusher and container.

• The responses of the undamped model do not diminish with time t due to an absence of
damping in the model.

• The use of SEP coordinates allowed the weight loading (mg) to be ignored in writing the
dynamic equations of motion in (6) and (7). This approach may be explained alternatively
by writing the equations of motion with absolute coordinates (referenced to the unloaded
spring state) and including the applied weight loading, that is,

MX+K X =M
x1
x2

+K
x1
x2

=M
x1 + δ

+
1

x2 + δ
+
2

+K
x1 + δ +

1
x2 + δ +

2
=

mg
mg

21

Substitution of (2) into (21) and noting that δ
+
i = 0 yield the same result as the SEP

referenced equation (8) which ignores the mg weight loading.

EXAMPLE 5.3.2 Desktop Oscillating Curio with Beat Phenomenon

Introduction: Desktop curios that execute high-frequency oscillation modulated by low-
frequency amplitude variation are objects of fascination and delight. The flow of energy
between components of the devices is readily apparent and demonstrates how kinetic energy
can be transferred between components of a system, yet remain conserved.

Statement: An entrepreneur seeks to develop and sell a curio consisting of two oscillating
clowns and an ornate lightweight rod connecting the clowns (Figure E5.3.2(a)). The clowns
can freely oscillate about their hinged attachment points (A,B) to the rod. The same points
are suspended from the support arch via strings between A and C and B and D. The clown
figures are constructed from a thin plastic sheet and have a pendulum mass attached at their
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feet. The fascinating motions displayed by this apparatus are responses that occur after the
LHS clown’s foot mass m is displaced to the right and then released. The responses include
the following:

(a) Clown 1’s rocking amplitude increases then decreases as clown 2’s rocking amplitude
does the opposite, that is, decreases then increases. These amplitudes modulate the
rocking motion of the clowns.

(b) The connecting rod AB simultaneously sways at a single frequency which is lower than
the clown rocking frequency. The rod’s sway amplitude is constant with time.

Objective: Derive equations relating the natural frequencies of the curio to its dimensional
parameters. Select lengths a and b in Figure E5.3.2(b) such that the desired behaviors of the
curio in (a) and (b) actually occur.

Assumptions:
(a) Small-angle motion.
(b) All masses are negligible except for the two pendulum masses (m).

Solution:

(a) A simplified model for analyzing the motion of the clown desk curio is shown in
Figure E5.3.2(b).

The corresponding free body diagrams are shown in Figure E5.3.2(c).

Figure E5.3.2(a) Clown desk curio

Figure E5.3.2(b) Equivalent system
model for clown desk curio
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(b) The horizontal connecting rod has negligible mass, so its horizontal equation of motion
(EOM) becomes (3.3.5)

0≈mcRx = T1 sinθ + T2 sinβ−R1 sinϕ−R2 sinϕ 1

which for small angles implies

T1θ + T2β− R1 +R2 ϕ= 0 2

Assuming small angles and utilizing symmetry, the cable forces only change
slightly from their values at equilibrium θ = β =ϕ = 0 . Therefore

R1≈R2≈T1≈T2≈mg 3

Substitution of (3) into (2) yields the kinematic constraint condition

ϕ =
θ + β
2

4

(c) Next write the EOMs for both m s. Take moments about point A treating AE as a mass-
less rigid link with all of its mass (m) concentrated at its mass center E. The rotational
EOM (3.3.39) yields

IGθ + bmaE = −bmgsin θ 5

where for small angles

aE≈aϕ + bθ, sinθ≈θ 6

and since m is concentrated at E, that is, m is a point mass

IG≈0 7

Therefore, (5) becomes

bm aϕ + bθ = −bmgθ

or by using (4)

b +
a

2
θ +

a

2
β + gθ = 0 8

Similarly, for the mass at F,

a

2
θ + b +

a

2
β + gβ = 0 9

Figure E5.3.2(c) Free body diagram of model in Figure E5.3.2(b)
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or in matrix form

MX +K X= 0 2 × 1 10

where

M =
b +

a

2
a

2a

2
b+

a

2

, K=
g 0
0 g

, X=
θ
β

11

(d) Determine the natural frequencies for the system. From (11), (5.3.49), and (5.3.50),

α0 =
g2−0

b +
a

2

2
−
a2

4

=
g2

b2 + ab
, α2 =

2g b +
a

2
b2 + ab

12

ω1,2 =
g b+

a

2
b a+ b

g2 b+
a

2

2

b2 a+ b 2 −
g2

b a+ b
=

g b +
a

2
b a+ b

g
a

2
b a + b

13

ω1 =
g

a + b
, ω2 =

g

b

(e) Determine the mode shapes of the system. From (13), (5.3.51), and (5.3.52),

ψ1 =

g

a + b
b+

a

2
−g

−g

a + b
a

2

= 1, ψ2 =

g

b
b+

a

2
−g

−
g

b

a

2

= −1 14

Therefore

ψ
1
=

1
1

, ψ
2
=

1
−1

15

(f) From Figure E5.3.2(a), the foot of clown 1 is displaced to the right to start the rocking
sequence. This action exerts a horizontal force on the connecting rod which also dis-
places to the right. Clown 2 is free to pivot about B so its angle β does not change. There-
fore, by (4),

θ 0 = θ0, β 0 = 0, ϕ 0 =
θ0
2
, θ 0 = β 0 = 0 16

From (15), (16), and (5.3.55),

α1c =
θ0 −1 −0

−2
=
θ0
2
, α2c =

θ0
2
, α1s = α2s = 0 17

The initial condition response is obtained from (15), (17), and (5.3.54) as

θ t
β t

=
θ0
2
cos ω1t

1
1

+
θ0
2
cos ω2t

1
−1

18

The motion of the lightweight connecting rod is from (4) and (18)

ϕ = θ0 cosω1t 19
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This clearly demonstrates that behavior (b) in the Problem Statement will occur,
that is, the connecting rod rocks with a single frequency (the lower one) and constant
amplitude. Use the trig identities

cosx + cosy= 2cos
x−y

2
cos

x+ y
2

,

cosx−cosy = −2sin
x−y

2
sin

x + y
2

20

to write (18) as

θ t =Θc t cos
ω1 +ω2

2
t , β t =Θs t sin

ω1 +ω2

2
t 21

where

Θc t = θ0 cos
ω2−ω1

2
t , Θs t = θ0 sin

ω2−ω1

2
t = θ0 cos

ω2−ω1

2
t−90 22

Thus, it is seen that

• Both clowns rock at the same frequency ω1 +ω2 2.

• If a << b, then ω1≈ω2, and the rocking amplitudes of both clowns are modulated by a
low-frequency ω2−ω1 oscillation. This amplitude modulation (AM) is often
referred to as the “beat” phenomenon.

• Since the time-varying modulation amplitudes, Θc(t) and Θs(t), are phase shifted by
90 , it will appear that clown 1’s waving will increase as clown 2’s waving decreases,
and vice versa, so behavior (a) in the Problem Statement will occur.

Figure E5.3.2(d) shows the initial condition responses in (18) and (19) for
θ0 = 10 , a = 5 0cm, and b = 20 0cm.

Summary: This example has illustrated the phenomena of beats for free vibration. Forced
vibration-induced beats are much more common as exemplified by the following examples:

(i) Tuning of musical instruments, that is, when ω1 =ω2 the instruments are tuned to each
other. From (22), the beat period

T =
2π

ω2−ω1 2
23

goes to infinity, when the instruments are tuned so tuning has been accomplished when
beats, that is, sound amplitude oscillations, are no longer audible.

(ii) The beating sound of engines with slightly different speeds on a small commuter prop
plane or fans with slightly different speeds on a cooling tower.

0 10 20
–10

0

10

Seconds

D
eg

re
es

0 10 20
–10

0

10

Seconds
0 10 20

–5

0

5

Seconds

Figure E5.3.2(d) Left clown (top), right clown (middle), and connecting rod (bottom) angles
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EXAMPLE 5.3.3 Finite Element: Three-Member Truss Model

Introduction: The 6-dof truss in Figure 4.8.13 was condensed to a 2 “free” dof model repre-
sented by Equation (4.8.119)

m

2
3
+

2
3

0

0
2
3
+

2
3

q f
1

q f
2

+
0 0
0 cd

q f
1

q f
2

+
EA

L

1 +
1

2

1

2
1

2

1

2

q f
1

q f
2

=
f t

0

1

Objective: Determine the natural frequencies of this three-member truss for the following
parameter values:

E = 5× 1011N m2, ρ = 5000kg m3, A = 0 005m2, L= 3m, cd = 0 2

and where

m = ρAL=mass of elements 1 or 3 3

Solution: Use of (5.3.50) yields

ω1 = 1825rad s, f1 =
ω1

2π
= 290Hz, ψ

1
=

1

−1 93

ω2 = 4500rad s, f2 =
ω2

2π
= 716Hz, ψ

2
=

1

0 52

4

5.3.2 Special Case II C =KC = 0 (Undamped, Gyroscopic, and Noncirculatory Case)

For this case, (5.3.8) becomes

λ2M + λG+K ψ = 0 5 3 57

or by (5.3.25)

−ω2M+ iωG +K ψ = 0 5 3 58

Substitution of (5.3.2) into (5.3.58) yields

−ω2m11 + k11 −ω2m12 + iωg12 + k12
−ω2m12− iωg12 + k12 −ω2m22 + k22

ψ1

ψ2
=

0
0

5 3 59

Divide the first row of this equation by ψ1 and define

ψ j =
ψ2j

ψ1j
j= 1,2 5 3 60

to obtain

ψ j =
ω2
j m11−k11

−ω2
j m12 + iωjg12 + k12

5 3 61

Without loss of generality, the mode shapes may then be expressed as

ψ
1
=

1
ψ1

, ψ
2
=

1
ψ2

5 3 62
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corresponding to the natural frequencies ω1 and ω2. In the event that

m12 = k12 = 0 5 3 63

Equation (5.3.61) simplifies to

ψ j = iγj 5 3 64

where

γj =
k11−ω2

j m11

ωjg12
5 3 65

The mode shapes for this case become

ψ
j
=

1
iγj

j= 1,2 5 3 66

Consider the expression

Real βaψe
iωt + βbψe

− iωt =Real βaR + iβaI ψ
R
+ iψ

I
cosωt + isinωt

+ βbR + iβbI ψ
R
− iψ

I
cosωt− isinωt

=Real βaR + iβaI ψ
R
cosωt−ψ

I
sinωt + i ψ

R
sinωt +ψ

I
cosωt

+ βbR + iβbI ψ
R
cosωt−ψ

I
sinωt + i −ψ

R
sinωt−ψ

I
cosωt

= βaR + βbR ψ
R
cosωt−ψ

I
sinωt + −βaI + βbI ψ

R
sinωt +ψ

I
cosωt

5 3 67

and apply (5.3.67) to (5.3.27) to obtain

q t = β1R + β3R ψ
1R
cosω1t−ψ1I

sinω1t

+ −β1I + β3I ψ
1R
sinω1t +ψ1I

cosω1t

+ β2R + β4R ψ
2R
cosω2t−ψ2I

sinω2t

+ −β2I + β4I ψ
2R
sinω2t +ψ2I

cosω2t

5 3 68

The β are arbitrary constants so (5.3.68) may be written as

q t = a1 ψ
1R
cosω1t−ψ1I

sinω1t + a2 ψ
1R
sinω1t +ψ1I

cosω1t

+ a3 ψ
2R
cosω2t−ψ2I

sinω2t + a4 ψ
2R
sinω2t +ψ2I

cosω2t
5 3 69

where the ai are also arbitrary constants. Therefore, considering initial positions and
velocities

ψ
1R

ψ
1I

ψ
2R

ψ
2I

−ω1ψ1I
ω1ψ1R

−ω2ψ2I
ω2ψ

2R

a1
a2
a3
a4

=

q10
q20
q10
q20

5 3 70
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Substitute (5.3.66) into (5.3.70) to obtain

1 0 1 0
0 γ1 0 γ2
0 ω1 0 ω2

−ω1γ1 0 −ω2γ2 0

a1
a2
a3
a4

=

q10
q20
q10
q20

5 3 71

or by switching rows 3 and 4

1 0 1 0
0 γ1 0 γ2

−ω1γ1 0 −ω2γ2 0
0 ω1 0 ω2

a1
a2
a3
a4

=

q10
q20
q20
q10

5 3 72

Apply Gauss elimination between rows 1 and 3 and 2 and 4 to obtain

1 0 1 0
0 γ1 0 γ2
0 0 ω1γ1−ω2γ2 0
0 0 0 −ω1 γ2 γ1 +ω2

a1
a2
a3
a4

=

q10
q20

q20 +ω1γ1q10
q10− ω1 γ1 q20

5 3 73

The ai may be easily obtained from (5.3.73) by back substitution. Then, from (5.3.69),

q t = a1ψ1R
+ a2ψ1I

cosω1t + −a1ψ1I
+ a2ψ1R

sinω1t

+ a3ψ2R
+ a4ψ2I

cosω2t + −a3ψ2I
+ a4ψ2R

sinω2t
5 3 74

Note from (5.3.66)

ψ
jR
=

1
0

, ψ
jI
=

0
γj

5 3 75

So (5.3.74) may be written as

q t =
a1
a2γ1

cosω1t +
a2

−a1γ1
sinω1t +

a3
a4γ2

cosω2t +
a4

−a3γ2
sinω2t 5 3 76

Summarizing results yields:

Two Dof Gyroscopic System without Damping or Circulatory Forces

For
C=KC = 0 5 3 77

and with

m12 = k12 = 0 5 3 78

define from (5.3.16)

α0 =
k11
m11

k22
m22

, α2 =
k11
m11

+
k22
m22

+
g212

m11m22
5 3 79

Then from (5.3.23) the two natural frequencies are

ω1 =
α2
2
−
1
2

α22−4α0, ω2 =
α2
2
+
1
2

α22−4α0 5 3 80
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and from (5.3.65) and (5.3.66) the corresponding mode shapes are

ψ
1
=

1
iγ1

, ψ
2
=

1
iγ2

5 3 81

where

γj =
k11−ω2

j m11

ωjg12
5 3 82

Given the initial conditions

q 0 =
q10
q20

, q 0 =
q10
q20

5 3 83

the free vibration response is given by (5.3.76)

q t =
q1 t
q2 t

=
a1
a2γ1

cosω1t +
a2

−a1γ1
sinω1t +

a3
a4γ2

cosω2t +
a4

−a3γ2
sinω2t

5 3 84

where from (5.3.73)

a4 =
γ1q10−ω1q20
ω2γ1−ω1γ2

, a3 =
q20 +ω1γ1q10
ω1γ1−ω2γ2

, a2 =
q20−γ2a4

γ1
, a1 = q10−a3 5 3 85

5.3.2.1 Small Vibration: Gyroscopic Systems

Figure 5.3.1 shows a rigid cylinder which is spinning and vibrating with small motions, has
transverse IT and polar IP moments of inertia, and has mass center G.

The small angular displacements of the cylinder about the y and z axes are θy and θz,
respectively. Figure 5.3.2 shows the projections of the cylinder’s motion in the xz and yz
planes.

This depiction assumes that the Hx component dominates the other components of the

angular momentum vector H. It follows that the change in H is

ΔHg =ΔHgy +ΔHgz = IPωθz j− IPωθyk 5 3 86

Figure 5.3.1 Spinning rigid cylinder
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Then, for constant ω,

d

dt
Hg = IPωθz j− IPωθyk 5 3 87

The standard planar motion components of angular momentum are due to rotary inertia
and are expressed by

HI = ITθyj+ ITθzk 5 3 88

∴
d

dt
HI = ITθyj+ ITθzk 5 3 89

Newton’s rotational equation of motion (EOM) (3.3.25) may be stated in general
terms as

d

dt
H = Γ 5 3 90

where Γ equals the resultant torque vector relative to the cylinder’s mass center G.
Combining the gyroscopic and rotary inertia terms yields

d

dt
H =

d

dt
Hg +

d

dt
HI = ITθy + IPωθz j+ ITθz− IPωθy k =Γyj +Γzk 5 3 91

∴ ITθy + IPωθz =Γy 5 3 92

ITθz− IPωθy =Γz 5 3 93

The rotational EOMs in (5.3.92) and (5.3.93) and the translational EOMs (TEOM)

myG =Fy 5 3 94

mzG =Fz 5 3 95

form the full set of EOMs for transverse motions. The terms Fy, Fz, Γy, and Γz mainly arise
from elastic or damping restraint forces on the disk as shown in Figure 5.3.3.

EXAMPLE 5.3.4 Industrial Exhaust Fan Vibrations

Statement: A fan manufacturer produces a unit with a large diameter wheel (impeller) to
increase airflow rate when driven by a low-speed motor, as depicted in Figure E5.3.4(a).

The shaft (1) and bearing (2) are assumed to be rigid and the shaft spin rate Ω is con-
stant. The fan wheel is attached to the shaft via a flexible internal plate diaphragm (4) and a
bolted flange (5). The mass center (G) of the impeller coincides with the end of the rigid
shaft. This unit experienced large vibrations during several months of operation and then
failed catastrophically by complete separation of the wheel from the diaphragm. Inspection
of the 360 crack around the diaphragm revealed signs of high-cycle fatigue. It is known
that if the spin frequency Ω is near ± 15 to any natural frequency, large vibrations will

Figure 5.3.2 Approximate changes in the angular momentum vector H
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result so calculation of these frequencies is an important part of a post-failure investigation
conducted by the machinery user and vendor.

Objective: Determine the natural frequencies, mode shapes, and initial condition response
of the impeller wheel.

Assumptions:

(a) Small-angle oscillations of the wheel.

(b) The diaphragm is very stiff in the radial direction so the impeller’s mass center G does
not move radially (perpendicular to the shaft axis). The impeller only tilts and does not
translate.

(c) Axial vibration of the impeller is uncoupled from its bending vibration so the two pro-
blems may be treated independently.

(d) The large majority of the impeller’s mass is in its axisymmetric shroud plates (6) so
that its inertia matrix is axisymmetric and can be expressed as

IG =
IP 0 0
0 IT 0
0 0 IT

1

Figure 5.3.3 Elastic restraints on a spinning disk (a) rigid shaft and bearing and flexible disk attachment,
(b) rigid shaft and flexible bearings, and (c) rigid bearings and flexible shaft

Figure E5.3.4(a) Industrial fan impeller with a flexible diaphragm attachment
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where IP is the polar moment of inertia of the wheel and IT is the transverse moment
of inertia of the wheel about an axis passing through mass center G.

Solution:

(a) An equivalent model of the fan impeller and its flexible diaphragm support is shown
in Figure E5.3.4(b) which is similar to case (a) in Figure 5.3.3.

The torsional springs k represent the flexible diaphragm which is connected to
ground via the rigidly supported rigid shaft. The rotational stiffness (k) of the diaphragm
is typically determined by (i) experiment, (ii) by the finite element model, or (iii) by a
handbook formula, such as Roark and Young (1975):

k =
Et3

α

where E and t are Young’s modulus and the thickness of the diaphragm and α is a con-
stant that depends on the ratio of the flange’s bolt circle diameter to the diaphragm’s
outer diameter.

(b) The equations of motion for the disk are obtained from Equations (5.3.92) and (5.3.93)
and from the rotational spring torques implied in Figure E5.3.4(b):

ITθ1 + IPΩθ2 = −kθ1, ITθ2− IPΩθ1 = −kθ2 2

or in matrix–vector form

Mq +Gq +Kq = 0
where

M=
m11 m12

m12 m22

=
IT 0

0 IT
,

G=
0 g12

−g12 0
=

0 IPΩ

− IPΩ 0
,

K=
k11 k12

k12 k22
=

k 0

0 k
, q=

θ1

θ2

3

Figure E5.3.4(b) Equivalent inertia–stiffness representation for fan impeller vibration model
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(c) To obtain expressions for the natural frequencies, substitute (3) into (5.3.79)
and (5.3.80):

α0 =
k2

I2T
, α2 =

2k
IT

+
IP2Ω2

I2T
4

ω1,2 =
k

IT
+
I2PΩ

2

2I2T

I4PΩ
4

4I4T
+
k

IT

I2PΩ
2

I2T

=
k

IT
+
I2PΩ

2

2I2T

IPΩ
IT

k

IT
+
I2PΩ

2

4I2T
=

IPΩ
2IT

k

IT
+

IPΩ
2IT

2
2

5

Therefore

ω1 =
IPΩ
2IT

−
k

IT
+

IPΩ
2IT

2

=
k

IT
+

IPΩ
2IT

2

−
IPΩ
2IT

, ω2 =
IPΩ
2IT

+
k

IT
+

IPΩ
2IT

2

6

Note that these natural frequencies depend on the shaft’s spin rate Ω and that

lim
Ω ∞

ω1 = 0, lim
Ω ∞

ω2 = ∞ 7

(d) The mode shapes are obtained by first substituting (6) into (5.3.82):

γj =
k− ITω2

j

ωjIPΩ
=

k
IT
−ω2

j

IP
IT
Ωωj

8

where

ω2
1
2

=
k

IT
+
I2PΩ

2

2I2T

IPΩ
IT

k

IT
+

IPΩ
2IT

2

Therefore, from (5.3.82),

γ
1
2

=

−
IPΩ
2IT

±
k

IT
+

IPΩ
2IT

2

ωj
9

Substitution of (6) into (9) yields

γ1 = 1, γ2 = −1 10

Then, by (5.3.25), (5.3.26), and (5.3.81),

ψ
1
=

1
i

, ψ
2
=

1
− i

, ψ
3
=ψ

1
=

1
− i

, ψ
4
=ψ

2
=

1
i

11

where

ω3 = −ω1, ω4 = −ω2 12
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Mode 1 Visualization. From (5.3.17), the contribution of ψ
1
to the response is

θ1,1
θ2,1

=Real ψ
1
eiω1t =Real

1
i

cosω1t + isinω1t =
cosω1t
−sinω1t

13

Let point A lie on an imaginary extension of the wheel in Figure E5.3.4(a) such that
A is located on the x3 axis at a distance L from G if θ1 = θ2 = 0. For small angles, the
position coordinates of Point A in Figures E5.3.4(a) and E5.3.4(b) are

x1A =Lθ2,1, x2A = −Lθ1,1 14

The coordinates of A are shown in Figure E5.3.4(c).
Since

ϕ = tan−1 x2A
x1A

15

it follows that

ϕ =
1

1 +
x2A
x1A

2

d

dt

x2A
x1A

=
1

x21A + x
2
2A

x1Ax2A−x2Ax1A 16

or

sgn ϕ = sgn x1Ax2A−x2Ax1A 17

Insert (13) and (14) into (17) to obtain

sgn ϕ = sgn −sinω1t ω1 sinω1t − −cosω1t −ω1 cosω1t = sgn −ω1 = −1 18

Hence, since ϕ is negative, mode 1 with natural frequency

ω1 =
− IPΩ
2IT

+
k

IT
+

IPΩ
2IT

2

19

corresponds to a natural “whirling” of the fan impeller in a direction opposite to its spin
rate (Ω) (ref. Figure E5.3.4(c)). Thus, ψ

3
is referred to as a “backward precession

mode,” or simply “backward whirl mode,” in the vernacular of rotordynamics.

Figure E5.3.4(c) Coordinates of point A attached to an imaginary extension of the impeller
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Mode 2 Visualization. From (5.3.17), the contribution of ψ
2
to the response is

θ1,2
θ2,2

=Real ψ
2
eiω2t =Real

1
− i

cosω2t + isinω2t =
cosω2t
sinω2t

20

or by (14)

x1A
x2A

= L
θ2,2
−θ1,2

=L
sinω2t
−cosω2t

The whirl direction is again given by (17)

sgn ϕ = sgn sinω2t ω2 sinω2t − −cosω2t ω2 cosω2t = sgn ω2 = + 1 21

Hence, mode 2 with natural frequency

ω2 =
IPΩ
2IT

+
k

IT
+

IPΩ
2IT

2

22

corresponds to a natural “whirling” of the fan impeller in the direction of the spin rate
(Ω). This mode is referred to as a “forward whirl mode.” If the spin speed Ω is high
enough, that is,

IPΩ
2IT

2

>>
k

IT

the following asymptotic form is valid for ω2:

ω2≈
IP
IT
Ω 23

which shows that the forward mode natural frequency is proportional to the rotor spin
frequency, with proportionality constant (IP/IT), for high spin speeds.

(e) Determine the response of the impeller to the following initial conditions:

θ1 0 = θ2 0 = 0, θ1 0 = 0 01, θ2 0 = 1 24

From (10),

γ1 = −γ2 = 1

then the ai in (5.3.85) become

a4 =
γ1θ1 0 −ω1θ2 0

ω2γ1−ω1γ2
= 0, a3 =

θ2 0 +ω1γ1θ1 0
ω1γ1−ω2γ2

=
1 +ω1 + 1 0 01

ω1 +ω2

a2 =
θ2 0 −γ2a4

γ1
= 0, a1 = θ1 0 −a3 =

0 01ω2−1
ω1 +ω2

25

and the response from (5.3.84) becomes

q t =
θ1 t
θ2 t

=
a1
0

cosω1t +
0
−a1

sinω1t +
a3
0

cosω2t +
0
a3

sinω2t

or
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θ1 t =
0 01ω2−1 cosω1t + 1+ 0 01ω1 cosω2t

ω1 +ω2

θ2 t =
1−0 01ω2 sinω1t + 1 + 0 01ω1 sinω2t

ω1 +ω2

26

Summary: This example demonstrated how to determine the free vibration characteristics
of a rotating gyroscopic system. This type of system will always possess a non-null skew-
symmetric G matrix (3) and yield speed-dependent natural frequencies (6). The first natural
frequency diminishes as fan speed Ω increases and has a mode that provides a backward
whirl motion relative to the spin direction. The second natural frequency increases as Ω
increases and has a mode that provides a forward whirl motion component. The initial con-
ditions for the example

θ1 0 = θ2 0 = 0, θ1 0 = 0 01, θ2 0 = 1 27

impart an initial forward whirl motion to the impeller since by (14) and (17)

sgn ϕ = sgn −θ2θ1 + θ1θ2 = sgn 0∗0 + 0 01∗1 = + 1 28

Although this initial condition was forward, Equation (26) shows that the impeller
responds with both forward (ω2) and backward (ω1) components of motion.

5.3.3 Special Case III C=G= 0 (Undamped, Nongyroscopic, and Circulatory Case)

For this case, (5.3.8) becomes

λ2M +K +KC ψ = 0 5 3 96

or by using (5.3.2) with

m12 = k12 = 0, m11 =m22 = IT, k11 = k22 = k 5 3 97

it results

ITλ
2 + k kC
−kC ITλ

2 + k
ψ = 0 5 3 98

where kC is the circulatory stiffness. As discussed previously, the coefficient matrix in
(5.3.98) must be singular if the system has free vibrations. This implies that its determinant
must equal zero, yielding

λ4 + α2λ
2 + α0 = 0 5 3 99

where

α0 =
k2 + k2C
I2T

, α2 =
2k
IT

The following MAPLE code is utilized to solve for the roots of (5.3.99):

Maple Code for Root Determination

a2:=2*k/IT;
a0:=(k^2+kc^2)/IT^2;
solve(lambda^4+a2*lambda^2+a0=0, lambda);
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The results are

λ1 =
−k + ikC

IT
=
1
IT

k2 + k2C cos
θ1
2
+ isin

θ1
2

where θ1 = tan
−1 kC

−k

λ2 =
1
IT

k2 + k2C cos
θ2
2
+ isin

θ2
2

where θ2 = tan
−1 −kC

−k

λ3 = −λ1, λ4 = −λ2

5 3 100

The locations of the four roots in the complex (λ) plane are illustrated in
Figure 5.3.4, where

r =
1
IT

k2 + k2C 5 3 101

Roots 1 and 4 occur in the right half plane so that their real parts satisfy

λ1R > 0, λ4R > 0 5 3 102

The contributions of these roots to the free vibration response are given by (5.3.17),
that is,

β1ψ1
eλ1t = β1ψ1

eλ1Rteiλ1It = β1ψ1
eλ1Rt cosλ1It + isinλ1It 5 3 103

Hence, as t ∞ , the response also goes to infinity, since eλ1Rt increases monotonically
with time. This illustrates the “destabilizing” effects of the circulatory force term. Generally,
the circulatory forces arise in the bearings and seals of centrifugal (rotary) pumps and com-
pressors and increase with speed and with discharge pressures. These machines may become
unstable, experiencing large, destructive vibrations if the circulatory forces exceed the pos-
itive damping forces.

EXAMPLE 5.3.5 Damping in the Rotating Frame of a Turntable

Consider a mass (m) that is attached by springs and dampers to a table that is rotating with
constant spin rateω as shown in Figure E5.3.5(a). For example, the mass might represent the
impeller and the stiffness and damping represent the forces resulting from the in-plane
deflection of the flexible diaphragm in Figure E5.3.4(a).

Figure 5.3.4 Eigenvalue locations
for pure circulatory system
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Let

x1, x2: fixed frame (inertial frame) coordinates

x1R, x2R: rotating frame coordinates

Then

F1R = −kRx1R−cRv1R, F2R = −kRx2R−cRv2R 1

where

rR = x1Re1R + x2Re2R = x1e1 + x2e2 = r = position ofm 2

vR = v1Re1R + v2Re2R = velocity ofm as sensed in the rotating frame

= v − ω × rR = v − ω × r
3

since by the transport theorem (2.11.27)

d r

dt
=

R d r

dt
+ω× r 4

and

v = velocity ofm as sensed in the fixed frame 5

Let

FE = −cv = external damping force 6

Then

ma = −kR r −cRvR−c v = −kR r − c + cR v + cR ω × r 7

m x1e1 + x2e2 = −kR x1e1 + x2e2 − c + cR x1e1 + x2e2 + cRωe3 × x1e1 + x2e2 8

Separate the e1 and e2 terms to obtain

m 0
0 m

x1
x2

+
c + cR 0
0 c+ cR

x1
x2

+
kR 0
0 kR

direct stiffness matrix

+
0 cRω

−cRω 0

circulatory stiffness matrix

x1
x2

=
0
0

9

Figure E5.3.5(a) Motion of concentrated mass m in a rotating frame
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The Kmatrix in (9) is shown to consist of a symmetric and a skew-symmetric part. The
skew-symmetric part is the “circulatory” stiffness matrix (5.3.2)

KC =
0 kc12

−kc12 0
=

0 cRω
−cRω 0

circulatory stiffness matrix

Consider the free vibration solution of (9) by setting

x1
x2

=ψeλt 10

This yields

λ2m+ c + cR λ+ kR cRω
−cRω λ2m+ c + cR λ+ kR

ψ = 0 11

The eigenvector Λ cannot be 0 or free vibration would not exist; thus, the coefficient
matrix must be noninvertible, that is, its determinant is zero:

m2λ4 + λ3 2m c + cR + λ2 2mkR + c + cR
2 + λ 2kR c + cR + k2R + c

2
Rω

2 = 0 12

Divide by m2 and define

ω2
n =

kR
m
, ξR =

cR
2mωn

, ξ =
c

2mωn
13

Equation (12) becomes

λ4 + λ3 4ωn ξ+ ξR + λ2 2 + 4 ξ + ξR
2 ω2

n + λ 4ω3
n ξ+ ξR +ω4

n + 4ξ
2
Rω

2
Rω

2 = 0 14

Consider an example with

ξR = 0 03, ξ= 0 05, ωn = 100rad s 15

Figure E5.3.5(b) shows that the real part of the second eigenvalue becomes positive as
the spin speed (ω) of the rotating frame exceeds 260 rad/s. Thus, the system will become
unstable so damping in the rotating frame is shown to be counterproductive for suppressing
vibration. The instability frequency is nearly equal to the undamped natural frequency. The
instability onset frequency ratio is

Instability onset frequency ratio =
unstable mode frequency

spin frequency
=
100rad s
260rad s

= 0 385

Mode 1
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Figure E5.3.5(b) Real and imaginary parts of eigenvalues (in rad/s) versus spin rate
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5.4 N-DEGREE-OF-FREEDOM SYSTEMS

5.4.1 General Identities

An N-degree-of-freedom (Ndof ), unforced linear system has the general mathematical form

M
N ×N

q
N × 1

+ C
N ×N

+ G
N ×N

q
N × 1

+ K
N ×N

+ KC
N ×N

q
N × 1

= 0
N × 1

5 4 1

The characteristics of the IC response of the Ndof system are very dependent on which
matrices are present in (5.4.1).

5.4.2 Undamped, Nongyroscopic, and Noncirculatory Systems—Description

The equilibrium equation becomes

Mq +Kq = 0 5 4 2

Similar to (5.3.3)–(5.3.7), let

q t = Real eλtψ 5 4 3

so that (5.4.2) becomes

λ2M+K ψ = 0 5 4 4

Premultiply (5.4.4) by ψT (conjugate transpose of ψ) to obtain

λ2M +K = 0 5 4 5

where by (2.6.29) and since M and K are symmetric

m=ψTMψ = real constant, k =ψTKψ = real constant 5 4 6

Recall from Equations (4.7.40) and (4.7.54) that in general the kinetic energy has
the form

T =
1
2
qTMq 5 4 7

and the strain energy has the form

U =
1
2
qTKq 5 4 8

Therefore, it must be true that

xTM x ≥ 0 for all x, xTK x ≥ 0 for all x 5 4 9

where the stiffness matrix equality in (5.4.9) indicates motion in a zero strain state, that is,
rigid body motion. Matrices that satisfy (5.4.9) are called positive semidefinite (positive def-
inite if the equality never holds (2.6.22)). Considering the above results, it follows that ifM
is positive definite,

λ2 = −
k

m
5 4 10
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is negative real or zero. Consequently,

λj = ± iωj, where ωj =
kj
mj

5 4 11

Although Equation (5.4.11) proves that all eigenvalues (λ) of this system type are pure
imaginary, it does not provide a means to calculate them since it presupposes that ψ is avail-

able to form m and k. Many solution algorithms exist to determine the eigenvalues (λ) and

eigenvectors ψ of (5.4.4), and a summary of these may be found in Palazzolo and Pilkey

(1987). Substitution of (5.4.11) into (5.4.4) yields

−ω2
j M +K ψ

j
= 0 5 4 12

By (5.4.12), the eigenvector ψ would be zero if the coefficient matrix −ω2
j M+K is

invertible. By (5.4.3), this would imply that the flexible structure modeled by M and K
would never freely vibrate. Hence, it must be the case that for a certain set of ωj, the coef-
ficient matrix is singular, that is,

det −ω2
j M+K = 0 5 4 13

Although the ωj must satisfy (5.4.13), this condition is rarely used to obtain the ωj

because of its numerical inefficiency. The ψ
j
are real vectors since the coefficient matrix

in (5.4.12) is real. The ψ
j
are unique only to within a multiplicative constant since if ψ

j
satis-

fies (5.4.12), so does γψ
j
where γ is a constant.

5.4.3 Undamped, Nongyroscopic, and Noncirculatory Systems—Solution Form

Many commercially available math software packages can readily solve (5.4.12), that is, see
the example for MATLAB in Section 2.2 or the example for MAPLE in Section 2.3. These
codes can operate with either of the two general forms

A X= αB X 5 4 14

or

A X= αX 5 4 15

For the first form,

X=ψ , A =K, B=M, α=ω2 ωj = αj 5 4 16

There exist several common approaches to transform (5.4.12) into the second
form (5.4.15):

(a) The first approach is simply to multiply (5.4.12) by M−1, if it exists, yielding

A X= αX 5 4 17

where

X =ψ , A=M−1K, α=ω2 ωj = αj
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(b) The second approach is to multiply (5.4.12) by K−1, if it exists, yielding

A X= αX 5 4 18

where

X=ψ , A=K−1M, α=
1
ω2

ωj =
1
αj

Both approaches (a) and (b) form an unsymmetric matrix A from two symmetric matri-
cesM and K. The numerical solution for the eigenvalues and eigenvectors of an unsym-
metric matrix may require considerably more computation time than for an equally
dimensioned symmetric matrix. Therefore, the following approaches form a symmetric
A matrix.

(c) If M is diagonal with nonzero diagonal entries, which occurs for lumped mass models,

M = diag mii N ×N 5 4 19

then define

M1 2 = diag mii
1 2 N ×N 5 4 20

Introduce the transformation

ψ =M−1 2χ 5 4 21

into (5.4.12) to obtain KM−1 2χ =ω2
j M M−1 2χ

Premultiply this equation by M−1 2 to obtain

A X= αX 5 4 22

where

X= χ, A=M−1 2KM−1 2, α=ω2 ωj = αj

The coefficient matrix in (5.4.22) is symmetric since

M−1 2KM−1 2
T
=M−1 2KM−1 2 5 4 23

(d) In general, the assumed modes and finite element modeling approaches yield a nondia-
gonal “consistent”massMmatrix, unless the mass is lumped at the node locations. This
renders approach (c) unusable, so a different transformation is employed. IfK andM are
positive definite, they may be expressed by the following Cholesky factorizations from
(Franklin, 1968):

K =TKT
T
K 5 4 24

M= TMT
T
M 5 4 25

where TK andTM are lower triangular matrices. Define the transformation

ψ = T−1
K

T
χ = T−T

K χ 5 4 26
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Substitute (5.4.24) and (5.4.26) into (5.4.12) and then premultiply by T−1
K to obtain

A X= αX 5 4 27

where

X= χ, A= T−1
K M T−T

K , α =
1
ω2

ωj =
1
αj

Alternatively, define the transformation

ψ = T−1
M

T
χ = T−T

M χ 5 4 28

Substitute (5.4.25) and (5.4.28) into (5.4.12) and then premultiply by T−1
M to obtain

A X= αX 5 4 29

where

X= χ, A=T−1
M M T−T

M , α=ω2 ωj = αj

The benefit of having both options (5.4.27) and (5.4.29) is derived from the possibility
that one of the matrices M or K may not be positive definite so that its factorization,
(5.4.24) or (5.4.25), may not exist.

5.4.4 Undamped, Nongyroscopic, and Noncirculatory Systems—Orthogonality

The solutions of (5.4.12) have an interesting and useful property of being orthogonal. This
“orthogonality condition” may be derived as follows. Write (5.4.12) for two distinct solu-
tions i and j

−ω2
i Mψ

i
+Kψ

i
= 0 5 4 30

−ω2
j Mψ

j
+Kψ

j
= 0 5 4 31

Premultiply (5.4.30) by ψT
j
and (5.4.31) by ψT

i

−ω2
i ψ

T
j
Mψ

i
+ψT

j
Kψ

i
= 0 5 4 32

−ω2
j ψ

T
i
Mψ

j
+ψT

i
Kψ

j
= 0 5 4 33

Transpose (5.4.33) and then subtract the results from (5.4.32) to obtain

ω2
j −ω

2
i ψT

j
Mψ

i
= 0 5 4 34

since M =MT and K=KT. This implies that

ψT
j
Mψ

i
= 0 i j 5 4 35

sinceωi ωj for distinct natural frequencies. For i= j, the quadratic form in (5.4.35) is called
the “modal mass” m, so

mi =ψ
T
i
Mψ

i
5 4 36
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The orthogonality condition becomes

ψT
i
Mψ

j
=

0, i j
mi, i= j

= δijmi 5 4 37

where the Kronecker delta δij equals 0 for i j and 1 for i= j. The mode ψ is unique only to

within a multiplicative constant, since

ψ γψ 5 4 38

satisfies (5.4.12) for any real or complex constant γ, if ψ satisfies (5.4.12). The choice of the

constant γ is referred to as the mode normalization convention. Suppose ψ
i
is obtained from

a commercial code and the corresponding modal mass mi is obtained from (5.4.36). Surely
by (5.4.38)

ψ
i
=

ψ
i

mi
5 4 39

also satisfies (5.4.12) so it also is a valid mode corresponding to ωi. Its modal mass is
from (5.4.36)

ψT
i

mi
M

ψ
i

mi
=
mi

mi
= 1 5 4 40

The orthogonality condition becomes

ψT

i
Mψ

j
=

0, i j
1, i= j

5 4 41

The modes in (5.4.39) are said to be “mass orthonormalized.”
Define a “modal matrix” as

Ψ= ψ
1

ψ
2
… ψ

m
N ×m 5 4 42

where m<N and the modes form columns of Ψ. Then, by (5.4.37), (2.6.31), and (2.6.32)

ΨTMΨ
ij
=ψT

i
Mψ

j
=

0, i j
mi, i= j

5 4 43

Therefore

ΨT

m×N

M
N ×N

Ψ
N ×m

= Diag
m×m

mi 5 4 44

Substitute (5.4.37) into (5.4.33) to obtain

ψT
i
Kψ

j
=

0, i j
miω2

i i= j
5 4 45

So that similar to (5.4.44)

ΨT

m ×N

K
N ×N

Ψ
N ×m

= Diag
m×m

miω
2
i 5 4 46

The above formulas relate the property matrices M K of a system to its modes and
natural frequencies.
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5.4.5 Undamped, Nongyroscopic, and Noncirculatory Systems—IC Response

Equations (5.4.4) and (5.4.11) show that the λj for this problem occur inN pairs, that is, ±iωj,
and that the eigenvectors ψ are real. Therefore, the analysis for the 2dof case (5.3.36)–

(5.3.45) applies, yielding

q t =
N

j= 1

αjc cosωjt + αjs sinωjt ψ
j

5 4 47

So that at t = 0

Ψ
N ×N

αc
N × 1

= q
0

N × 1

, Ψ
N ×N

β
s

N × 1

= q
0

N × 1

5 4 48

where q
0
and q

0
are the given initial displacements and velocities, Ψ is the modal matrix

defined in (5.4.42) and

αc =

α1c
α2c

αNc

, β
s
=

β1s
β2s

βNs

=

ω1α1s
ω2α2s

ωNαNs

5 4 49

Equation (5.4.48) is solved for the αjc and βjs in αc and βs, and then the αjs are obtained

from (5.4.49)

αjs =
βjs
ωj

5 4 50

The time history of the displacements may then be obtained by substituting the calcu-
lated αjc and αjs into (5.4.47). The solution of (5.4.48) may be facilitated by premultiplying
these equations with ΨTM and then using the orthogonality condition (5.4.44)

Diag mi αc =Ψ
TMq

0
αc =Diag

1
mi

ΨTMq
0

5 4 51

Similarly

αs =

α1s
α2s

αNs

=Diag
1
ωi

β
s
=Diag

1
miωi

ΨTMq
0

5 4 52

Equations (5.4.51) and (5.4.52) may still be employed if the number of modes is incom-
plete m<N . It should be noted however that the vectors

q
0

N × 1

= Ψ
N ×m

αc
m × 1

=
m

j= 1

αjcψ j
, q0

N × 1
= Ψ

N ×m
β
s

m× 1

=
m

j= 1

ωjαjsψ j
5 4 53

are only approximations of q
0
and q

0
since the subspace (Section 2.6) that they are obtained

from is spanned by only m of the ψ
j
basis vectors instead of the full set of N.
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5.4.6 Undamped, Nongyroscopic, and Noncirculatory Systems—Rigid Body Modes

Some structures or structural components such as airplanes or rotating shafts operate with
one or more of their six rigid body motions unconstrained. This means that the objects are
capable of undergoing rigid body motions in the absence of applied forces so that for a
linear model

Mq
rig
= 0 5 4 54

Therefore by (5.4.2)

Kq
rig
= 0 5 4 55

The result (5.4.55) also follows from requiring that rigid body motions have zero strain
energy:

UI =
1
2
qT
rig
Kq

rig
5 4 56

Substitute (5.4.55) into (5.4.12) to obtain

ω2
rig, jMψ

rig, j
=Kψ

rig, j
= 0 5 4 57

Therefore, the natural frequenciesωrig,j corresponding to the rigid body modes are zero.
Conversely, the modes corresponding to zero natural frequencies obtained from the output
of an eigensolution solver are rigid body modes. In a mathematical sense, from (5.4.57), the
rigid body modes are the basis vectors (Section 2.6) that span the null space of K, and if
the number of these modes is nrig, then the rank of K is N−nrig. The solution of (5.4.54)
has the general form

q
rig
=

nrig

l= 1

αrig0, l ψ rig, l
+ αrig1, l t ψ rig, l

5 4 58

Combining (5.4.47) and (5.4.58), the total IC response of the flexible structure with
rigid body motion capability becomes

q t =
nrig

l= 1

αrig0, l ψ rig, l
+ αrig1, l t ψ rig, l

+
N−nrig

j= 1

αjc cosωjt + αjs sinωjt ψ j
5 4 59

The α s in (5.4.59) may be solved for by imposing the ICs

q 0 =
nrig

l= 1

αrig0, l ψ rig, l
+

N−nrig

j= 1

αjcψ j
5 4 60

q 0 =
nrig

l = 1

αrig1, l ψ rig, l
+

N−nrig

j= 1

αjsωjψ j
5 4 61
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5.4.7 Summary

The following provides a summary for the nongyroscopic, noncirculatory system case.

Initial Condition Response of Undamped, Nongyroscopic, Noncirculatory Systems

• Equilibrium equation (5.4.2):

Mq +Kq = 0 N × 1 5 4 62

• Eigensolution problem (5.4.12):

−ω2M +K ψ = 0 5 4 63

• Eigensolution forms (5.4.14)–(5.4.29)
(i) Equilibrium equation form AX= αBX

X=ψ , A =K, B=M, α=ω2 ωj = αj 5 4 64

X=ψ , A=M, B=K, α=
1
ω2

ωj =
1
αj

5 4 65

(ii) Equilibrium equation form A X= αX
If M−1 exists

X=ψ , A=M−1K, α=ω2 ωj = αj 5 4 66

If K−1 exists

X=ψ , A=K−1M, α=
1
ω2

ωj =
1
αj

5 4 67

If M is diagonal and M−1 exists

X=M1 2ψ , A=AT =M−1 2KM−1 2, α=ω2 ωj = αj 5 4 68

If the Cholesky factorization matrix TK exists, where (K= TKT
T
K)

X =TTKψ , A=AT =T−1
K M T−T

K , α=
1
ω2

ωj =
1
αj

5 4 69

If the Choleski factorization matrix TM exists, where (M= TMT
T
M)

X= TTKψ , A=AT = T−1
M KT−T

M , α=ω2 ωj = αj 5 4 70

• Orthogonality

δij =Kronecker delta =
0, i j
1, i= j

5 4 71
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From (5.4.37) the mass orthogonality condition is

ψT
i
Mψ

j
=miδij 5 4 72

From (5.4.41) for mass orthonormalized modes

ψT

i
Mψ

j
= δij 5 4 73

From (5.4.42) the modal matrix is defined by

Ψ= ψ
1
ψ
2

… ψ
m

N ×m 5 4 74

From (5.4.44) the mass orthogonality condition is

ΨT

m×N

M
N ×N

Ψ
N ×m

= Diag
m×m

mi m ×m 5 4 75

From (5.4.45) the stiffness orthogonality condition is

ψT
i
Kψ

j
= δijmiω

2
i 5 4 76

From (5.4.46) the stiffness orthogonality condition is

ΨT

m ×N

K
N ×N

Ψ
N ×m

= Diag
m×m

miω
2
i 5 4 77

• Initial condition response
From (5.4.47), for a structure constrained against rigid body motion

q t =
N

j= 1

αjc cosωjt + αjs sinωjt ψ j
5 4 78

where from (5.4.51) and (5.4.52)

αc =

α1c
α2c

αNc

=Diag
1
mi

ΨTMq
0
, αs =

α1s
α2s

αNs

=Diag
1

miωi
ΨTM0q0 5 4 79

• For a structure that is capable of undergoing one or more rigid body motions, the rigid
body natural frequencies are zero ωrig, j = 0, and from (5.4.57)

Kψ
rig, j

= 0 5 4 80

has nrig nontrivial solution vectors ψ
rig, j

where nrig is the number of unconstrained,

linearly independent, rigid body motions that the model nrig ≤ 6 is capable of
undergoing. From (5.4.59)

q t =
nrig

l= 1

αrig0, l ψ rig, l
+ αrig1, lt ψ rig, l

+
N−nrig

j= 1

αjc cosωjt + αjs sinωjt ψ j
5 4 81
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where the α s may be obtained from (5.4.60) and (5.4.61) as

αrig0, l

αjc

= ψ
rig, l

nrig columns

ψ
j

N−nrig columns −1

q
0

5 4 82

αrig1, l

αjs

= ψ
rig, l

nrig columns

ωjψ j

N−nrig columns −1

q
0

5 4 83

EXAMPLE 5.4.1 Platform Bracing Mishap Vibration

Statement: A vertical brace is installed at the left end of a platform raising it slightly as
shown in Figure E5.4.1(a). The brace accidentally snaps and falls away causing the platform
and its attached piping to vibrate due to the initial displacement distribution shown in
Figure E5.4.1(b). A stress simulation of the piping is required as part of a plant safety review
of the mishap. The initial condition response of the platform is a necessary step in the piping
stress simulation.

Figure E5.4.1(a) Planar vibration model of platform mounted machine
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The physical parameter values for the platform are

a = 4m, b = 6m, t = 0 25m, L= 20m, ρ = 4000 kg m3,

m= 1× 104kg, E = 1 × 1011N m2, k = 2 × 107N m, d = 12m,

α1 =
b−a t

L
= 0 025m, α2 = at = 1m

2,

α3 =
b−a t3

12L
= 1 3 × 10−4m3, α4 =

at3

12
= 5 21 × 10−3m3

1

Objective: Solve for the initial condition response of the platform using Equations(5.4.78)
and (5.4.79) and the six generalized coordinates model in Example 4.6.4 and compare the
results to a direct integration solution of the equilibrium Equation (5.4.2):

Mq +Kq = 0 2

Assumptions: Same as in Example 4.6.4.

Solution:

(a) Recall from Equation (4) of Example 4.6.4 that the six shape functions for this model are

ϕ1 x = 1, ϕ2 x =
x

L
, ϕ3 x = sin

πx

L
, ϕ4 x = sin

2πx
L

,

ϕ5 x = sin
3πx
L

, ϕ6 x = sin
4πx
L

3

The physical deflection of the platform is approximated by Equation (3) of
Example 4.6.4 as

u x, t =
6

l= 1

ql t ϕl x 4

Figure E5.4.1(b) shows that at t = 0

u x,0 = 0 1 1−
x

L
m=

6

l = 1

ql 0 ϕl x = 0 1ϕ1−0 1ϕ2 + 0ϕ3 + 0ϕ4 + 0ϕ5 + 0ϕ6 5

Therefore, the ICs for this example are

q
0
= q10 q20 q30 q40 q50 q60

T = 0 1 −0 1 0 0 0 0 T

q
0
= 0 6 × 1

6

Figure E5.4.1(b) Initial deflection of the platform relative to its static equilibrium (Sag) state
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(b) The mass matrix for this model is obtained from Equation (38) of Example 4.6.4, which
for the parameters given above becomes

M=Mp +Mm

= α1L2ρ

0 5 0 3333 0 3183 −0 1592 0 1061 −0 0796
0 2500 0 1893 −0 1592 0 1013 −0 0796

0 2500 −0 0901 0 −0 0072
0 2500 −0 0973 0

symmetric 0 2500 −0 0993
0 2500

+ α2Lρ

1 0 500 0 6366 0 0 2122 0
0 3333 0 3183 −0 1592 0 1061 −0 0796

0 500 0 0 0
0 500 0 0

symmetric 0 5000 0
0 5000

+m

ϕ1ϕ1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ1ϕ5 ϕ1ϕ6

ϕ2ϕ2 ϕ2ϕ3 ϕ2ϕ4 ϕ2ϕ5 ϕ2ϕ6

ϕ3ϕ3 ϕ3ϕ4 ϕ3ϕ5 ϕ3ϕ6

ϕ4ϕ4 ϕ4ϕ5 ϕ4ϕ6

symmetric ϕ5ϕ5 ϕ5ϕ6

ϕ6ϕ6 x = d

=

110000 0 59333 3 73172 5 −12244 1 15342 8 6327 5
40267 0 38743 0 −22625 0 9015 0 −3843 0

59045 0 −9193 0 −5590 0 8757 0
53455 0 −436 0 −5590 0

symmetric 53455 0 −9560 0
59045 0

7

in units of kg. The system stiffness matrix is obtained from Equation (41) of Example
4.6.4 as

K =Ks x = 0 +
b

a
Ks x = L +KB 8

where

Ks = k

ϕ1ϕ1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ1ϕ5 ϕ1ϕ6

ϕ2ϕ2 ϕ2ϕ3 ϕ2ϕ4 ϕ2ϕ5 ϕ2ϕ6

ϕ3ϕ3 ϕ3ϕ4 ϕ3ϕ5 ϕ3ϕ6
ϕ4ϕ4 ϕ4ϕ5 ϕ4ϕ6

symmetric ϕ5ϕ5 ϕ5ϕ6

ϕ6ϕ6

KB = α3
E

L2

0 0 0 0 0 0
0 0 0 0 0

24 4 −35 1 0 −11 2
389 6 −341 0

symmetric 1972 −1392
6234

+ α4
E

L3

0 0 0 0 0 0
0 0 0 0 0

48 7 0 0 0
779 3 0 0

symmetric 3945 0
12468

9
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Therefore

K= 108∗

0 5 0 3 0 0 0 0
0 3 0 0 0 0

0 0396 −0 01142 0 −0 00366
0 6342 −0 111 0

symmetric 3 21 −0 4532
10 15

10

in units of N/m. The undamped natural frequencies of the model are obtained from
(5.4.66), that is, AX= αX, since M−1 exists

Xj =ψ j
, A=M−1K, αj =ω

2
j , ωj = αj, fj =

ωj

2π

The MATLAB commands for obtaining the eigenvalues αj and eigenvectors Xj are

explained below:

>> help eig
EIG Eigenvalues and eigenvectors.
[V,D] = EIG(A) produces a diagonal matrix D of generalized eigenvalues (αj)

and a full matrix V whose columns are the corresponding eigenvectors
(Xj) so that A∗V =V∗D

The results are

f =
ω

2π
= 1 23 4 34 7 56 11 54 19 64 29 42 Hz 11

with the corresponding modal matrix

Ψ=

0 118 0 585 −0 8168 0 582 −0 788 −0 554
−0 030 −1 000 0 037 −1 000 0 049 1 000
1 000 −0 004 1 000 −0 137 1 000 0 043
0 009 0 494 0 017 −0 395 0 009 0 349
−0 000 0 019 −0 198 −0 005 0 533 0 054
0 001 0 004 0 004 0 064 0 005 0 320

12

The orthogonality check of (5.4.75) yields

ΨTMΨ=Diag mi

=Diag 75036 36919 21416 4946 8141 3588
13

and that of (5.4.77) yields

ΨTKΨ=Diag miω2
i

= 108diag 0 0446 0 275 0 482 0 26 1 24 1 23
14

Recall from (5.4.78) that the generalized coordinate response is given by

q t
6 × 1

=
6

j= 1

αjc cosωjt + αjs sinωjt ψ j
15
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and from (4) the actual vertical displacement vibration response is given by

u x, t =
6

l= 1

q1 t ϕl x =ΦTq 16

where

Φ =

ϕ1

ϕ2

ϕ3
ϕ4

ϕ5

ϕ6

=

1
x L

sin πx L
sin 2πx L
sin 3πx L
sin 4πx L

17

and

qT = q1 q2 q3 q4 q5 q6

Combining these equations yields

u x, t =
6

j = 1

αjc cosωjt + αjs sinωjt uj x 18

where

uj x =ΦTψ
j
=

6

i= 1

ϕi x ψ ij 19

Note the uj(x) are the mode shapes for the actual vertical displacement distribution,
whereas the ψ

j
are the mode shapes for the generalized coordinates. For example, from

the third column of Ψ in (12) and from (17) and (19),

u3 x =ψ13ϕ1 x +ψ23ϕ2 x +ψ33ϕ3 x +ψ43ϕ4 x +ψ53ϕ5 x +ψ63ϕ6 x

= −0 8168∗1 + 0 037∗ x
L
+ 1∗sin πx

L
+ 0 017∗sin 2πx

L

−0 198∗sin 3πx
L

+ 0 004∗sin 4πx
L

20

The actual vertical displacement mode shapes uj(x) are shown in Figure E5.4.1(c).
The initial conditions (6) on the generalized coordinates are substituted into

(5.4.79) to obtain αs = 0 and

αc =Diag m−1
i ΨTMq

0
21

where q
0
is defined in (6) and Diag m−1

i is defined in (13). This yields

αc = 0 0533 0 0426 −0 0338 0 0448 −0 0127 −0 0091 T 22

Then, from (18) and (21),

u x, t =
6

j= 1

αjc cos ωjt uj x 23

The responses u x = 0, t , u x= d, t , and u x = L, t are shown in Figure E5.4.1(d).
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This approach to obtain the initial condition response does not require analytical or
numerical integration and only requires evaluation of (23) for selected x and t. This is a
benefit of the orthogonality properties (5.4.73) and (5.4.76). Alternatively, the response
of the platform may also be determined by direct numerical integration of the EOMs
(5.4.2) written in the first-order (state) form

v = −M−1Kq 6 × 1 , q = v 6 × 1 24

whereM and K are defined in (7) and (10) and with the initial conditions defined in (6).
The numerical integration solution of the above initial value problem is similar to Exam-
ple 2.3.1 and yields the time histories of the generalized coordinates. The response of the
physical coordinates u(x, t) is then obtained from the selected shape functions ϕl(x) and
(16). The results of the direct numerical integration solution (Figure E5.4.1(e)) are the
same as the modal solution results (Figure E5.4.1(d)).
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Figure E5.4.1(c) Vertical displacement modes shapes uj(x) for the platform system
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Figure E5.4.1(d) Vertical displacement
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Figure E5.4.1(e) Displacements from direct integration of Equation (24)
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EXAMPLE 5.4.2 Truss Tower with Rigid Section Model

Description: Figure 4.8.15 and the accompanying analysis treated the modeling of a rigid
component in a flexible structure. This example models a 35-node truss tower with an
embedded rigid plate. The plate might represent an idealized model of a section of the tower
with auxiliary equipment that is attached to the tower by a heavy plate. This entire assembly
is then modeled as a single rigid body attached to the tower at certain truss members. To
simplify the example, the plate’s center of mass Gp is located at the center of the plate.
The truss member elements E, A, and ρ and the plate’s mass mp and inertia IGp are shown
in Figure E5.4.2(a). The rigid body mass mrig and IGrig are equal to the corresponding plate
terms plus the contributions of the elements that lie entirely on the plate (49, 50, 54, 55, 62,
and 63); thus

mrig = 4000kg, IGrig = 58133kg m2

Figure E5.4.2(a) Truss tower with rigid plate
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Objective: Determine the six lowest natural frequencies and mode shapes for the
truss tower.

Solution: Utilize (4.8.142) to form the element stiffness and mass element matrices for all
elements with a local node 2 attached to the rigid plate, that is, elements 41, 42, 43, 44, 45,
46, 48, 51, 53, 56, 58, 59, 61, 64, 66, and 67. The results are shown in Figure E5.4.2(b).

5.4.8 Undamped, Nongyroscopic, and Noncirculatory Systems—Response
to an IC Modal Displacement Distribution

From Equation (5.4.47), it is seen

q
0
=

N

j= 1

αjcψ j
5 4 84

If the structure is given the initial displacement

q
0
= γψ

k
5 4 85

(5.4.85) becomes

γψ
k
=

N

j= 1

αjcψ j
5 4 86

Premultiplication by ψT
l
M and use of the orthogonality condition (5.4.37) yield

γδklmk =
N

j= 1

αjcδljml = αlcml αlc =
0, l k
γ, l = k

5 4 87

where δ is the Kronecker delta. Therefore, from (5.4.47) and (5.4.48),

If q
0
= 0 and q

0
= γψ

k
then q t = γ cos ωkt ψ k

5 4 88

This shows that if the structure is released from rest, with initial displacements γψ
k
, it

will vibrate with the single frequency ωk and in the single mode ψ
k
for all ensuing time.
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Figure E5.4.2(b) Mode shapes 1–6 and natural frequencies (Hz) for the truss tower example
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5.4.9 Orthogonally Damped, Nongyroscopic, and Noncirculatory
Systems—Description

Suppose that a multi-dof structure is initially deflected into the pattern of its ith mode shape,
released from rest

q
0
= γψ

i
, q

0
= 0 5 4 89

and that its ensuing response at any dof had the same general form as a SDOF system
(Eq. 5.2.30). This implies that all dof respond with a single frequency ωdi, where

ωdi =ωi 1−ξ2i 5 4 90

and with a general damped time history of the form

q t =
γ

1−ξ2i

ψ
i
e−ξiωi t cos ωdit−∠χi 5 4 91

This behavior is quite common for nonrotating, lightly damped structures or structural
components, that is, towers, frames, wings, bridges, and so on. Here, we seek the form of the
damping matrix C0 that will produce this response behavior. As will be demonstrated, the
requirement is that C0 satisfies the additional orthogonality condition

ΨTC0Ψ=Diag ci 5 4 92

or in scalar form

ψT
i
C0ψk

= ciδik 5 4 93

The proof begins with the equilibrium condition

Mq +C0q +Kq = 0 5 4 94

Substitute the change in basis vectors (Section 2.6)

q =Ψχ 5 4 95

premultiply byΨT, and utilize the orthogonality conditions (5.4.75), (5.4.77), and (5.4.92) to
obtain

Diag mi χ +Diag ci χ +Diag miω
2
i χ = 0 5 4 96

Equation (5.4.96) is a set of N-uncoupled second-order DE

miχ i + ciχ i + kiχi = 0 5 4 97

where from (5.4.77)

ki =miω
2
i 5 4 98

Equation (5.4.97) has a form identical with (5.2.1), so its solution is given by (5.2.30)

χi t = e−ξiωi t χi cos ωdit−∠χi 5 4 99

where from (5.2.12) and (5.2.31)

ξi =
ci

2miωi
ci = 2miωiξi 5 4 100
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χi = χ2i 0 +
χi 0 + ξiωiχi 0

ωdi

2

, ∠χi = tan
−1 χi 0 + ξiωiχi 0

χi 0 ωdi
5 4 101

Substitute the ICs from (5.4.89) into the transformation (5.4.95) and use the orthogo-
nality condition (5.4.75) to obtain

χ 0 =Ψ−1q 0 = 0 5 4 102

ΨTMq
0
=ΨTM γψ

i
=ΨTMΨχ 0 Diag mi χ 0 = γ

0
0

mi

0

ith row

χj 0 =
0, j i
γ, j= i

5 4 103

Substituting (5.4.102) and (5.4.103) into (5.4.95) and substituting these results into
(5.4.99)–(5.4.101) yields,

q t = χi t ψ
i

5 4 104

where

χi t =
γ

1−ξ2i

e−ξiωi t cos ωdit−∠χi 5 4 105

This is identical to (5.4.91) which shows that if the undamped system eigenvectors are
orthogonal with respect to C0, that is, (5.4.92), (5.4.93) holds, and the system is released
from rest in the form of the ith mode shape (5.4.89), and the resulting response at all dofs
in the structure will have the same form as an SDOF system response (5.2.30), with the same
frequency and damping ratio:

ξi =
ci

2miωi
5 4 106

5.4.10 Orthogonally Damped, Nongyroscopic, and Noncirculatory
Systems—Eigenvalues and Eigenvectors

The eigenvalues of this system type are readily obtained by substituting

q = eλtΛ 5 4 107

into (5.4.94), yielding

λ2M + λC0 +K Λ = 0 5 4 108

Let

Λ =ΨΓ 5 4 109
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where Ψ is the modal matrix containing the undamped system eigenvectors (modes)
arranged as columns. Substitute (5.4.109) into (5.4.108), premultiply the result by ΨT,
and utilize the orthogonality conditions (5.4.75), (5.4.77), and (5.4.92) to obtain

Diag λ2mi + λci + ki Γ= 0 5 4 110

The determinant of the coefficient matrix must be zero, or Γ,Λ (5.4.109), and q

(5.4.107) will be zero for all time t, that is, no vibration. Therefore, the determinant is

N

i = 1

λ2mi + λci + ki = 0 5 4 111

which has the roots

λj =
−cj
2mj

± i
kj
mj

−
cj
2mj

2

which simplifies utilizing (5.4.98) and (5.4.100) to

λj = −ξjωj ± iωj 1−ξj
2 5 4 112

This form is identical to the SDOF case (5.2.14), except in the multi-dof case where
there are N eigenvalues instead of only one. Consider (5.4.110) for λ= λi, in which
case the ith term on the diagonal is zero and the other diagonal terms are nonzero. This indi-
cates that

Γj =
0, j i
1, j = i

5 4 113

or by (5.4.109) and (5.4.113)

Λi =ψ i
5 4 114

This shows that the eigenvectors (mode shapes) of the orthogonally damped system are
identical to those of the undamped system.

5.4.11 Orthogonally Damped, Nongyroscopic, and Noncirculatory
Systems—IC Response

The response of this system type to zero initial velocities and a modal distribution of initial
displacements was given by (5.4.104) and (5.4.105). The response to general initial condi-
tions is given by the linear superposition of all possible solutions of the form (5.4.107). Uti-
lizing (5.4.114) with (5.4.107) yields

q t =Real
N

k = 1

βke
λk tψ

k
+ βkce

λk tψ
k

5 4 115
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where ψ
k
are the real eigenvectors of the undamped system so that ψ

k
=ψ

k
. Substitution of

(5.4.112) yields

q t =Real
N

k = 1

e−ξkωk t βke
iωdk t + βkce

− iωdk t ψ
k

=
N

k = 1

e−ξkωk t βkR cosωdkt−βkI sinωdkt + βkcR cosωdkt + βkcI sinωdkt ψ k

Since the β are arbitrary real constants, q t may be written as

q t =
N

k = 1

e−ξkωk t αkc cosωdkt + αks sinωdkt ψ k
5 4 116

where the α are arbitrary real constants determined by the initial conditions. From (5.4.116)
at t = 0,

q 0 = q
0
=

N

k = 1

αkcψk
, q 0 = q

0
=

N

k = 1

ωdkαks−ξkωkαkc ψ
k

5 4 117

To solve for the αkc and αks, multiply (5.4.117) by ψT
l
M and use the orthogonality rela-

tion (5.4.72) to obtain

αlc =
1
ml

ψT
l
Mq

0
5 4 118

ψT
l
Mq

0
=ωdlαlsml−ξlωlαlcml αls =

ψT
l
M q

0
+ ξlωlq0

ωdlml
5 4 119

5.4.12 Orthogonally Damped, Nongyroscopic, and Noncirculatory
Systems—Determination of C0

This model type is commonly used when modeling structures and structural components
which do not involve very strong, localized sources of damping such as fluid film bearings
and liquid or gas seals in rotating machinery, and dampers, isolators, snubbers, absorbers,
and dashpots in machinery, mechanism, and structural system models. These strong sources
of localized damping can also be combined with the C0 matrix to represent the total system
damping.

Methods 1–4 below demonstrate how to form an “orthogonal damping matrix” C0
given some lower natural frequencies and their respective damping ratios ξi from measure-
ment or estimation. The orthogonal damping matrix C0 is required for simulations where a
modal equation solution (5.4.116) is impractical or invalid and a direct numerical integration
(Section 2.3) of the EOMs is utilized. This may be the case when a lightly damped structural
system or component that is accurately modeled with C0 is modified to include concentrated
damping, circulatory, gyroscopic, or nonlinear terms. Examples of this include a shaft sup-
ported by oil film or magnetic bearings or a nuclear power plant piping system with shock
absorbers (dampers). The matrix C0 accounts for the light structural damping internal to the
structure which may be very important for dampening high-frequency modes in actively
controlled vehicles, structures, or machines. Method 5 yields approximate damping ratios
ξi given the model’s damping matrix C. This is useful for converting the actual model into
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a simplified, but approximate, orthogonal damping model for ease of solution. Caution
should be exercised in employing this method due to the possibility of significant inaccuracy
in certain applications.

5.4.12.1 Method 1

The matrix C0 will automatically satisfy (5.4.92) for certain definitions of C0. For example,
if C0 has the form

C0 = μmM+ μkK 5 4 120

for arbitrary real constants μm and μk, it follows from (5.4.75), (5.4.77), and (5.4.100) that

ΨTC0Ψ= μmΨ
TMΨ+ μkΨ

TKΨ=Diag mi μm + μkω
2
i

=Diag ci =Diag 2miωiξi

5 4 121

Thus, if C0 is proportional to a linear combination ofM and K, it automatically satisfies
the orthogonality condition (5.4.92), and its corresponding damping ratios are given by

ξi =
μm
2ωi

+
μk
2
ωi 5 4 122

Equation (5.4.120) is the reason that C0 is referred to as a “proportional damping”
matrix or “Rayleigh damping” after its discoverer John William Strutt (Baron Rayleigh).
The constants μm and μk may be determined if two natural frequencies ωi and ωj and their
corresponding damping ratios ξi and ξj have been measured, that is, (by (5.4.122))

ξi
ξj

=

1
2ωi

ωi

2
1
2ωj

ωj

2

μm
μk

μm =
ξi
ωj

2
−ξj

ωi

2
Δ

, μk =

ξj
2ωi

−
ξi
2ωj

Δ
5 4 123

where

Δ=
ω2
j −ω

2
i

4ωiωj

The damping ratios ξl of the other modes in the model are constrained to satisfy

ξl =
μm
2ωl

+
μk
2
ωl 5 4 124

with μm and μk determined from (5.4.123) for modes i and j, which may yield results con-
flicting with the experimentally measured ξl for l i. Commercially available finite ele-
ments software for vibration simulation such as ANSYS and NASTRAN have options to
enter the constants μm and μk.

5.4.12.2 Method 2

A C0 matrix that can reproduce more than two measured damping ratios may be obtained by
including more terms in the relation (5.4.120) as presented in Clough and Penzien (1975) or
Craig (1981). Recall that the undamped modes satisfy (5.4.30)

−ω2
i Mψ

i
+Kψ

i
= 0 5 4 125
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Premultiply this equation by ψT
j
KM−1 and use the orthogonality relation (5.4.45) to

obtain

−ω2
i δijmiω

2
i +ψ

T
j
KM−1Kψ

i
= 0 ψT

j
KM−1K ψ

i
=

0, i j
miω4

i , i= j
5 4 126

Next, premultiply (5.4.125) by ψT
j
KM−1 KM−1 and utilize (5.4.126) to obtain

ψT
j
KM−1 2

Kψ
i
=ω2

i δijmiω
4
i 5 4 127

where the Kronecker delta δij equals 0 for i j and 1 for i = j. Continuation of this process
yields the first extended orthogonality relation

ψT
j
KM−1 r

Kψ
i
=ω2 r + 1

i δijmi r = 0,1,2,… 5 4 128

Note that for r = −1, premultiply (5.4.125) by ψT
j
KM−1 −1

=ψT
j
MK−1 to obtain

ψT
j
Mψ

i
=ω2

i ψ
T
j
MK−1Mψ

i
or ψT

j
MK−1Mψ

i
=
mi

ω2
i

δij 5 4 129

For r = −2, premultiply (5.4.125) by

ψT
j
KM−1 −2

=ψT
j
KM−1 −1

MK−1

and use (5.4.129) to obtain

ψ T

j
KM−1 −1

Mψ
i
=ω2

i ψ
T
j
KM−1 −1

MK−1Mψ
i

miδij
ω2
i

=ω2
i ψ

T
j
KM−1 −2

Mψ
i
or ψT

j
KM−1 −2

Mψ
i
=
miδij
ω4
i

5 4 130

Continuation of this process yields the second extended orthogonality relation

ψT
j
KM−1 −r

Mψ
i
=
miδij
ω2r
i

r = 0,1,2,… 5 4 131

where the Kronecker delta δij equals 0 for i j and 1 for i= j. Thus, C0 may have a more
general form than (5.4.120) and still satisfy the orthogonality condition (5.4.92). The more
general form for C0 is obtained by using (5.4.128) and (5.4.131) yielding

C0 =
+ ∞

r = −∞
μr + 1 KM−1 r

K 5 4 132

To illustrate the utility of this formula, consider a three-term r = −1,0,1 example

C0 = μ1M + μ2K+ μ3KM−1K 5 4 133

Then, by (5.4.37), (5.4.45), and (5.4.128),

ψT
i
C0ψ j

= μ1mi + μ2miω
2
i + μ3miω

4
i δij = ciδij = 2miωiξiδij 5 4 134

So that if three natural frequencies and their damping ratios are known, it results

ξ1 =
μ1
2ω1

+
μ2
2
ω1 +

μ3
2
ω3
1, ξ2 =

μ1
2ω2

+
μ2
2
ω2 +

μ3
2
ω3
2, ξ3 =

μ1
2ω3

+
μ2
2
ω3 +

μ3
2
ω3
3 5 4 135
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These three equations may be solved for μ1, μ2, and μ3 to form the matrix C0 in
(5.4.133), which produces damping ratios ξ1 at ω1, ξ2 at ω2, and ξ3 at ω3.

5.4.12.3 Method 3

The third approach, as discussed in Craig (1981), defines

C0
N ×N

=
N

l= 1

2ξlωl

ml
M

N ×N

ψ
l

N × 1

ψT
l

1 ×N

M
N ×N

5 4 136

where ξl are the desired damping ratios. Note that C0 is orthogonal with respect to ψ
i
since

ψT
i
C
0
ψ
j
=

N

l= 1

2ξlωl

ml
ψT
i
Mψ

l
ψT
l
Mψ

j

=
N

l= 1

2ξlωl

ml
miδilmjδjl = δijmi2ξiωi

5 4 137

which is the desired result by (5.4.121). Use of (5.4.136) to specify the damping in as many
modes as desired is quite simple and does not require solution of sets of linear equations as in
Equation (5.4.123) or (5.4.135). Consider the usual case where only a small set (m) of
undamped system modes is available for use in Equation (5.4.136):

C0 =
m

l= 1

2ξlωl

ml
Mψ

l
ψT
l
M 5 4 138

Then

ψT
i
C0ψ j

=mi2ξiωi = 0 for i >m 5 4 139

since ψ
i
does not appear in (5.4.138). Thus, the damping ξi is zero for i > m, which is an

undesired result since the higher modes need damping to suppress their oscillations in a
simulation.

5.4.12.4 Method 4

To insure that the modes i i >m possess damping, it is necessary to modify (5.4.136) into
the form (Craig, 1981)

C0 = μ1K+
m−1

l= 1

2κlωl

ml
Mψ

l
ψT
l
M 5 4 140

where m is the number of modes with prescribed damping values and the μ1 and κi are con-
stants to be solved for so thatC0 gives the desired modal damping ratios ξdi . Consider themth
mode case using (5.4.140)

ψT
m
C0ψm

= μ1ψ
T
m
Kψ

m
+ 0 = μ1mmω

2
m 5 4 141

since m >m−1 and by using the orthogonality relations (5.4.37) and (5.4.45). Then, from
(5.4.93), (5.4.106), and (5.4.141)

ψT
m
C0ψm

= cm = 2ξdmmmωm = μ1mmω
2
m μ1 =

2ξdm
ωm

5 4 142
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Thus, μ1 is selected so that C0 provides the desired damping ratio ξdm for mode m. Let κi
represent the values utilized in forming (5.4.140) and ξdi the desired damping ratio for
mode i. The κi must be solved for and then inserted into (5.4.140) to determine C0. Note
that by (5.4.93), (5.4.106), and (5.4.142),

ψT
i
C0ψ j

= δij2ξ
d
i miωi =

2ξdm
ωm

δijmiω
2
i +

m−1

l= 1

2κlωl

ml
δilδjlmimj 5 4 143

where the Kronecker delta δij equals 0 for i j and 1 for i= j. This shows that C0 as defined
by (5.4.140) remains orthogonal to all undamped system eigenvectors ψ

i
with distinct ωi

since by (5.4.143)

ψT
i
C0ψ j

= 0, i j 5 4 144

Consider (5.4.143) for the following three cases:

2ξdi miωi =

2ξdm
ωm

miω
2
i + 2κiωimi, i ≤m−1

2ξdm
ωm

mmω
2
m, i=m

2ξdm
ωm

miω
2
i , i>m

5 4 145

This shows that for modes l ≤m−1, the κl used to form C0 in (5.4.140) should be
calculated from

κl =
1

2ωlml
2ξdl mlωl−

2ξdmmlω2
l

ωm

which simplifies to

κl = ξ
d
l −ξ

d
m

ωl

ωm
5 4 146

For mode m, the damping ratio will be its desired value ξdm, and for mode l>m, the
damping ratio will automatically become

ξl = ξ
d
m

ωl

ωm
> ξdm 5 4 147

Thus, all modes numbered greater than m have damping ratios that are greater than the
value for the mth mode and increase linearly with frequency.

5.4.12.5 Method 5

Assume that the EOMs for a spring–mass–damper model with 2 or more dofs have been
derived and are available. The damping matrixC contains the damping constants that appear
in the system model along with lengths and possibly other constants. In general, there is no
reason to expect that the C matrix will satisfy the orthogonality relation (5.4.92), (5.4.93)

with the undamped system modes. So in general, the matrix C formed from

C =ΨTCΨ Diag 2miωiξi 5 4 148
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will not be diagonal. Method 5 ignores the off-diagonal coupling terms in C and forms the
damping ratios from the diagonal terms, that is, from (5.4.106),

ξi =
Cii

2miωi
5 4 149

Summarizing, methods 1–4 all provide an orthogonal damping matrix C0 given meas-
ured damping ratios ξi, and method 5 yields approximate damping ratios ξi given the
model’s damping matrix C.

EXAMPLE 5.4.3 Platform Leveling Mishap Vibration with an Orthogonal Damping Model

Statement: This example adds an orthogonal damping model to the same system and
parameter values as in Example 5.4.1. Assume that the damping ratios for the four lowest
modes were measured and are listed in Table E5.4.3(a). It is desired for the damping matrix
C0 to reproduce these same damping ratios.

Objective: Determine the following:

(a) Evaluate the C0 matrix which will produce the ξdl shown in Table E5.4.3(a) and provide
damping to modes 5 and 6. Utilize the formulas in (5.4.140) with κl defined in (5.4.146).

(b) Determine the system eigenvalues and from these the actual damping ratios of all six
modes in the model. Compare these with the specified ξdl in Table E5.4.3(a).

(c) Determine the damped system’s response to the initial conditions defined in
Figure E5.4.1(b) and compare to the undamped system model responses in
Figure E5.4.1(d) or Figure E5.4.1(e).

Solution:

(a) Recall that the response of this system model is given by the assumed modes formula
Equation (4) of Example 5.4.1:

u x, t =
6

l= 1

ql t ϕl x =ΦT x q t 1

where from Equation (17) of Example 5.4.1

Φ = ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 = 1
x

L
sin

πx

L
sin

2πx
L

sin
3πx
L

sin
4πx
L

2

and q t is obtained by solving (5.4.94) with the initial conditions given by Equation (6)

of Example 5.4.1, that is,

Table E5.4.3(a) Desired damping ratios for lowest four modes

Mode (l) Undamped natural frequency (Hz) ( fl from Eq. (11) of Example 5.4.1) f = ω
2π ξdl

1 1.23 0.05
2 4.34 0.10
3 7.56 0.075
4 11.54 0.14

372 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



Mq +C0q+Kq= 0, q
0
= 0 1 −0 1 0 0 0 0 T, q

0
= 0 6 × 1 3

The modal-based solution for q is given by (5.4.116)

q t =
6

k = 1

e−ξkωk t αkc cosωdkt + αks sinωdkt ψ k
4

Substitution of (4) into (1) yields

u x, t =
6

k = 1

e−ξkωk t αkc cosωdkt + αks sinωdkt uk x 5

where

uk x = lthmode shape =Φψ
k

6

(b) The form selected for C0 is (5.4.140) with m= 4, and utilize (5.4.142) to obtain

C0 = μ1K+
m−1

l= 1

2κlωl

ml
Mψ

l
ψT
l
M

C0
6 × 6

=
2ξd4
ω4

K+
3

l= 1

2κlωl

ml
Mψ

l
ψT
l
M 7

where from (5.4.146) and Table E5.4.3(a)

κ1 = ξ
d
1 −ξ

d
4
ω1

ω4
= 0 05−0 14

1 23
11 54

= 0 0351

κ2 = ξ
d
2 −ξ

d
4
ω2

ω4
= 0 10−0 14

4 34
11 54

= 0 0473

κ3 = ξ
d
3 −ξ

d
4
ω3

ω4
= 0 075−0 14

7 56
11 54

= −0 0167

κ4 = ξ
d
m = 0 14

8

Combining (7) and (8) and utilizing the modes and modal masses from
Equations (12) and (13) of Example 5.4.1 yield

C0 = 1 × 10
6

0 2213 0 1304 0 0428 −0 0075 −0 0398 0 0127
0 1416 0 0235 −0 0513 −0 0241 0 0017

0 0471 −0 0114 0 0016 0 0023
0 3682 −0 0384 0 0130

symmetric 1 1800 −0 1635
3 9196

9

(c) An orthogonality check on C0 yields

ΨTC0Ψ=Diag ci =Diag 2ξiωimi ξi =
ci

2ωimi

yielding
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Mode i 1 2 3 4 5 6

ci 57 880 200 950 152 390 100 480 477 350 473 750
ξi 0.050 0.10 0.075 0.14 0.238 0.357

This demonstrates that the desired ξdi in Table E5.4.3(a) will occur in the model.
The results for ξ5 and ξ6 are also in agreement with the theory (5.4.147)

ξl = ξ
d
m

ωl

ωm
> ξdm for l>m

(d) The eigenvalues of the system have the form

λj = −ξjωj ± iωj 1−ξ2j λj =ωj ξj =
−Re λj

λj
10

To obtain the eigenvalues, set

q = eλtΛ 11

in (3), yielding

λ2M + λC0 +K Λ = 0 12

Combine this and the identity

λMΛ = λMΛ 13

to obtain the first-order form

λEΓ=HΓ 14

where

E=
0 M
M C0

, H=
M 0
0 −K

, Γ= λΛ
Λ 15

MATLAB can extract the eigenvalues and eigenvectors of (14) as

>> help eig
EIG Eigenvalues and eigenvectors.
[V,D] = EIG(H,E) produces a diagonal matrix D of generalized eigenvalues

and a full matrix V whose columns are the corresponding eigenvectors
so that H*V = E*V*D

The results are from (10)

i λ ξ

1 −0.39 ± i7.7 0.051
2 −2.7 ± i27.13 0.100
3 −3.55 ± i47.32 0.075
4 −10.14 ± i71.77 0.140
5 −29.4 ± i119.8 0.238
6 −65.9 ± i172.6 0.357

which shows excellent agreement with Table E5.4.3(a) for the desired damping ratios.
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(e) A numerical integration solution of (3) yields the time histories of the generalized coor-
dinates qi(t). The response of the physical coordinates u(x, t) is then obtained from the
selected shape functions ϕl(x), the generalized coordinates qi(t), and Equation (1). The
responses at three locations along the platform are shown in Figure E5.4.3(a). The effect
of damping is clearly seen by comparing Figure E5.4.1(d) or E5.4.1(e) with
Figure E5.4.3(a).

EXAMPLE 5.4.4 Instrumentation Tower Impact Investigation

Statement: An instrumentation module is supported by a multilayered structure consisting
of “floor” masses with an interconnecting frame. The tower is accidentally struck by mate-
rials overhung on a passing truck, as depicted in Figure E5.4.4(a). The approximate impact
force of duration τ is also shown. A simplified N mass model of the pole is shown in
Figure E5.4.4(b), where ki represents the horizontal frame stiffness between mass i and mass
i−1. The model is formed as part of an effort to evaluate acceleration-induced damage to the
instrumentation. The present example only considers the mode shapes and natural frequen-
cies of the tower model. Examples 6.3.1 and 6.4.2 treat its transient response due to impact.

The physical parameters in this model are

N = 20, H = 20m, kj = 50000N m, mj = 20kg

hi = i∗HN , ms = 50kg, FI = 500N, τ = variable
1

Figure E5.4.4(a) Tower model with sudden impact loading
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Figure E5.4.3(a) Platform initial condition response including damping
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Objective: Determine the natural frequencies, mode shapes, and orthogonal damping
matrix for this system.

Assumption: Utilize an orthogonal damping matrix based on (5.4.140) with m = 5 and the
following desired damping ratios:

ξd1 = 0 02, ξd2 = 0 02, ξd3 = ξ
d
4 = 0 025, ξd5 = 0 03 2

Procedure:

(a) Form the M,K, andC0 matrices.

(b) The potential energy expression for the model is

U =
1
2

k1q
2
1 + k2 q2−q1

2 + k3 q3−q2
2 + + kN qN −qN−1

2 3

Then

∂U

∂qj
=

k1 + k2 q1−k2q2, j = 1
kj + kj+ 1 qj−kjqj−1−kj+ 1qj+ 1, j 1, j N
kNqN −kNqN−1, j =N

4

or

∂U

∂q
=Kq =

k1 + k2 −k2 0 0 0
k2 + k3 −k3 0 0

k3 + k4 −k4 0

symmetric −kN
kN

q1
q2

qN

5

The kinetic energy expression for the model is

T =
1
2

m1q
2
1 +m2q

2
2 + + mN +ms q

2
N 6

Then

d

dt

∂T

∂qj
=

mjqj, j N
mj +ms qj, j=N

or
d

dt

∂T

∂q
=Diag m∗

j q 7

where

m∗
j =

mj, j N
mN +ms, j=N

8

Figure E5.4.4(b) Simplified tower model diagram
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From (5.4.140), (5.4.142), and (5.4.146), the damping matrix is obtained from

C0 = μ1K+
4

l= 1

2κlωl

ml
Mψ

l
ψT
l
M, μ1 =

2ξd5
ω5

, κl = ξ
d
l −ξ

d
5
ωl

ω5
9

where ωl and ψ l
are the lth natural frequency and mode shape of the undamped system.

Solution:

(a) The undamped natural frequencies of the model are obtained from (5.4.66), that is,
AX= αX, since M−1 exists

Xj =ψ j
, A=M−1K, αj =ω

2
j , ωj = αj, fj =

ωj

2π
10

The MATLAB commands for obtaining the eigenvalues αj and eigenvectors Xj are

>> help eig
EIG Eigenvalues and eigenvectors.
[V,D] = EIG(A) produces a diagonal matrix D of eigenvalues (αj) and a full matrix

V whose columns are the corresponding eigenvectors (Xj) so that

A*V = V*D.

The natural frequencies are

fn 0 54 1 65 2 79 3 94 5 09 6 23 7 33 8 40 9 43 10 40
11 3 12 14 12 90 13 59 14 20 14 71 15 14 15 48 15 72 15 89 Hz

11

The modes are mass orthonormalized, yielding unity as the value for all modal
masses mi. The C0 matrix defined in (9) is orthogonal with respect to Ψ and the rela-
tionship in (5.4.137) yields

ξn 0 02 0 02 0 025 0 025 0 03 0 037 0 043 0 050 0 056 0 061
0 067 0 072 0 076 0 080 0 084 0 087 0 089 0 091 0 093 0 094

which agrees with (2) and (5.4.147). The lowest five modes are shown in
Figure E5.4.4(c).

5.4.13 Nonorthogonally Damped System with Symmetric Mass, Stiffness,
and Damping Matrices

The system EOMs

Mq +Cq +Kq=F 5 4 150

are augmented with the identity

Kq−Kq = 0 5 4 151

and definition

v= q 5 4 152
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to form the first-order (state) equations

−K 0
0 M

q

v
−

0 −K
−K −C

q

v
=

0
F

5 4 153

which may be written as

AX−BX=F 5 4 154

For free vibrations, (5.4.154) becomes

AX−BX= 0 5 4 155

Let

X=Λeλt 5 4 156

Then, for modes i and j,

λiAΛi−BΛi = 0 5 4 157

λjAΛj−BΛj = 0 5 4 158

Premultiply (5.4.157) by ΛT
j and (5.4.158) by ΛT

i to obtain

λi ΛT
j AΛi − ΛT

j BΛi = 0 5 4 159
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Figure E5.4.4(c) Five lowest mode shapes of the tower model
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λj ΛT
i AΛj − ΛT

i BΛj = 0 5 4 160

From (5.4.153) and (5.4.154), it follows that if M,K, andC are symmetric, then both
A andB are also symmetric matrices. Therefore, transposing (5.4.159) yields

λi ΛT
i AΛj − ΛT

i BΛj = 0 5 4 161

Subtract (5.4.159) from (5.4.160) to obtain

λj−λi ΛT
i AΛj = 0 5 4 162

Therefore, if λi and λj are distinct eigenvalues, it follows from (5.4.162) that

ΛT
i AΛj = 0 i j 5 4 163

Substitution of (5.4.163) into (5.4.161) yields

ΛT
i BΛj = 0 i j 5 4 164

Consideration of (5.4.161), (5.4.163), and (5.4.164) yields the orthogonality conditions

ΛT
i AΛj = νiδij, ΛT

i BΛj = νiλiδij 5 4 165

where the Kronecker delta δi j equals 0 for i j and 1 for i= j, and the generalized modal
mass is defined by

νi =ΛT
i AΛi 5 4 166

5.4.14 Undamped, Gyroscopic, and Noncirculatory Systems—Description

Example 5.3.3 illustrated that gyroscopic torques in linear models with small motions result
in a skew-symmetric matrix proportional to the speed (Ω) of a spinning structure or struc-
tural component in the model, that is,

G=ΩG = −GT 5 4 167

Some models contain several components rotating at different speeds, that is, a helicop-
ter gear box has a high-speed input shaft from a gas turbine engine and a low-speed (high
torque) output shaft that drives the main rotor. These shafts are not directly coupled by gyro-
scopic or inertia terms, that is, in this case, G will be the block diagonal form

G =Ω1

0 0 0 0 0
0 G1 0 0 0

0 0 0 0
0 0 0 rG2 0
0 0 0 0 0

5 4 168

where r =Ω2 Ω1, and the 0 main diagonal blocks account for nonspinning components in
the model. Note that the form (5.4.167) still applies to (5.4.168).
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5.4.15 Undamped, Gyroscopic, and Noncirculatory Systems—Eigenvalues
and Eigenvectors

The equilibrium equation for this model type is given by

Mq +Gq +Kq = 0 5 4 169

where

M positive definite , K positive semidefinite , GT = −G 5 4 170

Substitution of

q = eλtψ
G

5 4 171

into (5.4.169) yields

λ2M+ λG+K ψ
G
= 0 5 4 172

Recall that an overbar indicates a “conjugate” operation, and multiply (5.4.172) by ψT
G

to obtain

aλ2 + bλ + c = 0 5 4 173

where

a =ψT
G
Mψ

G
, b =ψT

G
Gψ

G
, c =ψT

G
Kψ

G

The matricesM and K are symmetric so that (2.6.29) indicates that the constants a and c
are pure real. The matrixG is skew-symmetric so that (2.6.27) indicates that the constant b is
pure imaginary, that is,

b = ibI

The solutions of (5.4.173) are

λ = −
ibI
2a

±
−b2I
4a2

−
c

a
= i

bI
2a

±
bI
2a

2

+
c

a
= iωG1, iωG2 5 4 174

which shows that the eigenvalues of an undamped gyroscopic system are pure imaginary.

EXAMPLE 5.4.5 Natural Frequencies of a Rigid Rotor on Flexible, Undamped Supports

Description: Figure E5.4.5(a) depicts a rigid spinning shaft on flexible support. The rotating
assembly which includes the shaft and two disks is assumed to be rigid with inertia proper-
ties IT, m, and IP referenced to the mass center G. The free body diagram for this model is
shown in Figure E5.4.5(b).

The reaction forces and torques due to the bearings are

Fy = −Fya−Fyb, Fz = −Fza−Fzb, Γy = aFza−bFzb, Γz = −aFya + bFyb 1

where Fya, Fyb, Γza, and Γzb are shown in Figure E5.4.5(b). Substitution of (1) into (5.3.92)–
(5.3.95) yields

Mq + CD +Cg q+Kq = 0 2

where
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q =

yG
zG
θy
θz

, M =

m 0 0 0
0 m 0 0
0 0 IT 0
0 0 0 IT

, Cg =

0 0 0 0
0 0 0 0
0 0 0 IPω
0 0 − IPω 0

K=

kya + kyb 0 0 akya−bkyb
kza + kzb −akza + bkzb 0

symmetric + a2kza + b2kzb 0
a2kya + b2kyb

3

and CD has an identical form to K with k replaced by c. Consider the undamped case with

Figure E5.4.5(a) Rigid rotor on flexible supports

Figure E5.4.5(b) Free body diagram for rigid rotor on flexible supports
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a = b =
L

2
, kya = kza = kyb = kzb = k 4

to illustrate the effects of only the gyroscopic moment terms. Set

q = eλtψ 5

in (5) to obtain

λ2

m 0 0 0
0 m 0 0
0 0 IT 0
0 0 0 IT

+ λ

0 0 0 0
0 0 0 0
0 0 0 IPω
0 0 − IPω 0

+

2k 0 0 0
0 2k 0 0
0 0 kL2 2 0
0 0 0 kL2 2

ψ y

ψ z

ψθy

ψθz

= 0

6

The determinant of the coefficient matrix in (6) must be zero for ψ to be nonzero, that is,

for vibrations to exist. This implies

λ2m+ 2k
2

λ2IT +
kL2

2

2

+ λ2ω2I2P = 0 7

which has the roots

λ1 = iΩ1 = i
2k
m

8

λ2 = iΩ2 = iΩT
IP
2IT

ω

ΩT
+ 1 +

IP
2IT

ω

ΩT

2

9

λ3 = iΩ3 = iΩT
− IP
2IT

ω

ΩT
+ 1 +

IP
2IT

ω

ΩT

2

10

λ4 = λ1, λ5 = λ2, λ6 = λ3 11

and where

ΩT = lim
ω 0

Ω2 = lim
ω 0

Ω3 =
kL2

2IT
12

The form of (8) shows that mode 1 is a simple “bounce mode”where the shaft whirls in
a cylindrical shape with θy = θz = 0. Equations (9) and (10) show that the second and third
natural frequencies are identical at 0 rpm; however, they diverge (bifurcate) with an increas-
ing spin speed ω and for large spin rates

Ω2≈
IP
IT
ω forω>>

2IT
IP

ΩT 13

Ω3 = 0 forω>>
2IT
IP

ΩT 14

Thus, for IP IT > 1, the second mode’s natural frequency always exceeds the spin
frequency. The rotating assembly’s shape is like a disk for IP IT > 1 as shown in
Figure E5.4.5(c). For a uniform, solid cylinder,

382 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



IP =
mD2

8
, IT =

m

12
L2 +

3D2

4
15

Therefore

IP
IT

> 1 D> 1 16L 16

Figure E5.4.5(d) shows plots of (Ω2/ΩT) and (Ω3/ΩT) versus (ω/ΩT) for various (IP/IT)
ratios. The dashed straight line represents Ω2 =ω and Ω3 =ω. Imbalance causes a force on
the rotor which has the same frequency as the spin speedω. Figure E5.4.5(d) then shows that
an imbalance-induced resonance of mode 2 will only occur if IP IT ≤ 1.

As a mode normalization step, set

ψθy = 1 17

in the third row of (6). This equation becomes

λ2IT + λIPωψθz +
kL2

2
= 0 18

ψθz, j =
− λ2IT + kL2 2

λIPω
=
i −Ω2

j IT + kL
2 2

ΩjIPω
j= 2,3 19

Substitution of Ω2 from (9) into (19) yields

ψθz,2 = − i= e− iπ 2 20

The actual physical motion in mode 2 becomes

θy,2 t =Re ψθy,2e
λ2t =Re 1∗eiΩ2t = cos Ω2t 21

and

θz,2 t =Re ψθz,2e
λ2t =Re e− iπ 2eiΩ2t = cos Ω2t−

π

2
= sin Ω2t 22

This demonstrates that θz lags θy by 90 ; hence, the end of the shaft in Figure E5.4.5(a)
will execute the motion shown on the left side of Figure E5.4.5(e) while whirling in a “pure”
mode 2 motion.

Therefore, mode 2 is a conically shaped (yG = zG = 0, θy 0, θz 0) mode in which
the shaft whirls in the same direction as the spin direction; hence, this is called a “forward
whirl mode.” Substitution of Ω3 from (10) into (19) yields

ψθz,3 = i= e
iπ 2 23

Figure E5.4.5(c) Effect of IP/IT ratio on rotor shape

Chapter 5 Free Vibration Response 383

www.konkur.in



The actual physical motion in mode 3 becomes

θy,3 t =Re ψθy,3e
λ3t =Re 1∗eiΩ3t = cos Ω3t 24

and

θz,3 t =Re ψθz,3e
λ3t =Re eiπ 2eiΩ3t = cos Ω3t +

π

2
= −sin Ω3t 25

The resulting whirl direction is counter to the spin direction as shown on the right side of
Figure E5.4.5(e); hence, mode 3 is referred to as a “backward whirl mode.”

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

Spin frequency/ΩT

Ω
2/

Ω
T IP/ IT

0.2

0.4

0.6

0.8
1.0

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spin frequency/ΩT

Ω
3/

Ω
T

IP/ IT0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

Figure E5.4.5(d) Second and third natural frequencies versus spin frequency
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5.4.16 Undamped, Gyroscopic, and Noncirculatory Systems—Biorthogonality

Unlike the undamped and orthogonally damped system models, the Gmatrix does not form
an orthogonality relation with respect to the undamped, nongyroscopic modes ψ , that is,

ψT
i
Gψ

j
0 for i j 5 4 175

Alternate orthogonality conditions will be derived beginning with (5.4.169), written in
first-order form as

0
N ×N

M
N ×N

M
N ×N

G
N ×N

V
N × 1

q
N × 1

=

M
N ×N

0
N ×N

0
N ×N

−K
N ×N

V
N × 1

q
N × 1

5 4 176

where

V= q N × 1

Equation (5.4.176) is expressed as

EX =HX 5 4 177

or

X =AX 5 4 178

where

A=E−1H=
−M−1GM

−1
M−1

M−1 0

M 0

0 −K
=

−M−1G −M−1K

IN 0
5 4 179

Let

X= eλtΓ 5 4 180

Figure E5.4.5(e) (i) Forward conical motion in mode 2. (ii) Backward conical motion in mode 1
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where since X has the form

X =
V
q =

q
q 5 4 181

it follows that the “right” eigenvector Γ must have the form

Γ=
λψ

G
ψ
G

5 4 182

Substitute (5.4.180) into (5.4.177) and consider for the ith eigensolution pair λi,Γ i

λiEΓ i =HΓ i 5 4 183

The “adjoint” or “left” eigensolution problem is obtained by considering
Equation (5.4.172) with M ,G ,K replaced by MT,GT,KT , that is,

λ2M
T
+ λGT +KT θ = 0 5 4 184

Augment this with the identity

αMTθ = αMTθ

to form the equations

α
0 MT

MT GT

αθ
θ

=
MT 0

0 −KT

αθ
θ

5 4 185

or by comparison with (5.4.176) and (5.4.177)

αETβ =HTβ 5 4 186

From (5.4.183), the eigenvalues λ are determined from

det λE−H = 0 5 4 187

From (5.4.186), the eigenvalues α are determined from

det αET−HT = 0 5 4 188

The determinant of the transpose of a matrix equals the determinant of the matrix itself
so from (5.4.188)

det αE−H = 0 5 4 189

Thus, the condition for determining α is the same as the condition for determining λ in
(5.4.187) so

α= λ 5 4 190

Equation (5.4.186) may then be written as

λjE
Tβ

j
=HTβ

j
5 4 191

where

β
j
=

λjθj
θj

5 4 192
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Premultiply (5.4.183) by βT
j
and (5.4.191) by ΓT

i to obtain

λiβ
T
j
EΓi = β

T
j
HΓi, λjΓT

i E
Tβ

j
=ΓT

i H
Tβ

j
5 4 193

Transpose the latter equation and subtract it from the former to obtain

λi−λj β
T
j
EΓi = 0 5 4 194

Thus, if λi and λj are distinct,

βT
j
EΓ

i
= eiδij

where δij is aKronecker delta and ei = β
T

i
EΓ

i

5 4 195

Substitution of (5.4.195) into (5.4.193) yields

βT
j
HΓi = λieiδij 5 4 196

Equations (5.4.195) and (5.4.196) are the two biorthogonality relations for the system.
The above results are valid for general (unsymmetric) M,G, andK matrices. Consider

the special case of symmetric M andK matrices and a skew-symmetric (gyroscopic) G
matrix.

Since α= λ by (5.4.190) and MT =M, KT =K, GT = −G for a pure gyroscopic system,
Equation (5.4.184) becomes

λ2M−λG+K θ = 0 5 4 197

Also recall that from (5.4.172)

λ2M+ λG+K ψ
G
= 0 5 4 198

From (5.4.174), λ = iωG for pure gyroscopic system so (5.4.197) and (5.4.198) may be
written as

−ω2
GM− iωGG+K θ = 0 5 4 199

−ω2
GM+ iωGG+K ψ

G
= 0 5 4 200

Take the conjugate of (5.4.199) to obtain

−ω2
GM + iωGG+K θ = 0 5 4 201

Comparison of (5.4.200) and (5.4.201) shows

θ =ψ
G

5 4 202

This demonstrates that if the “right” eigenvector

Γi =
λiψGi
ψ
Gi

5 4 203

is determined by solving (5.4.183), the “left” eigenvector may be obtained by (5.4.192) and
(5.4.202) as
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β
j
=

λj θj
θj

=
λj ψGj

ψ
Gj

5 4 204

Finally, using these results, the “generalized modal mass” (ei) in (5.4.195) may be
written as

ei = β
T
i
E Γi = λiψ

T

Gi
ψT
Gi

0 M

M G

λiψGi
ψ
Gi

= λiψ
T
Gi
Mψ

Gi
+ψT

Gi
λiM +G ψ

Gi
=ψT

Gi
2λiM +G ψ

Gi
5 4 205

which is a pure imaginary number by (2.6.27), (2.6.29), and (5.4.174).

5.4.17 General Linear Systems—Description

A general form for the linear free vibration problem is given by

Mq + C+G q+ K+KC q = 0 5 4 206

where

M ≥ 0 positive semidefinite symmetric

C symmetric , K symmetric

G skew-symmetric , KC skew-symmetric 5 4 207

In general, C will have the form

C=C0 +C 5 4 208

where C0 is an orthogonal damping matrix and C typically contains concentrated passive or
active dampers. Note that the forms of the coefficient matrices for q and q in (5.4.206) are

very general since any matrix may be decomposed into the sum of a symmetric and skew-
symmetric matrix, that is,

Q=Q
sym

+Q
skew

5 4 209

where

Q
sym

=
1
2

Q +QT , Q
skew

=
1
2

Q−QT 5 4 210

that is,

QT
sym

=Q
sym

, QT
skew

= −Q
skew

5 4 211

A common application area for the general form of (5.4.206) is in rotating machinery
vibration modeling in which case linearized representations of seal and bearing forces result
in significant concentrated damping terms, unsymmetric stiffness and damping terms, and
unsymmetric gyroscopic terms. Structures or structural components with concentrated dam-
pers or with active vibration control systems also require the general form in (5.4.206) for
more accurate modeling.
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5.4.18 General Linear Systems—Biorthogonality

The biorthogonality results of (5.4.195) and (5.4.196) are directly applicable to this case
with the following substitutions:

G C+G, K K+KC 5 4 212

This is valid since the derivations of (5.4.195) and (5.4.196) were independent of the
symmetry of G and K. Therefore, the following equations are valid for the general case of
(5.4.206) and (5.4.207).

From (5.4.171), (5.4.172), Quadratic Eigen-Problem

q= eλtΛ N × 1 5 4 213

λ2M+ λ C+G + K+KC Λ= 0 N × 1 5 4 214

From (5.4.176) and (5.4.177), First-Order Generalized Form

EX =HX 5 4 215

E
2N × 2N

=
0 M

M G +C
, H

2N × 2N

=
M 0

0 − K+KC

5 4 216

X
2N × 1

=
V
q , V

N × 1

= q 5 4 217

From (5.4.178) and (5.4.179), First-Order Standard Form

X =AX 2N × 1 5 4 218

A=E−1H=
−M−1 G+C −M−1 K +KC

IN 0
2N × 2N 5 4 219

From (5.4.182) and (5.4.183), the Right Eigenvector Problem

λiEΓi =HΓi 2N × 1 5 4 220

Γi =
λiΛi
Λi

2N × 1 5 4 221

From (5.4.191), the Left (Adjoint) Eigenvector Problem

λjE
Tβ

j
=HTβ

j
5 4 222

From (5.4.195) and (5.4.196), the Bi-Orthogonality Relations for Distinct Eigenvalues
in Scalar Form

βT
j
EΓi = eiδij 1 × 1 5 4 223

βT
j
HΓi = λieiδij 1 × 1 5 4 224
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ei = β
T
i
EΓi 1 × 1 5 4 225

δij =
0, i j
1, i= j

5 4 226

Bi-Orthogonality Relations for Distinct Eigenvalues in Matrix Form (follows from
(2.6.52), (5.4.223) and (5.4.224))

Γ = Γ1 Γ2 Γ2N 2N × 2N 5 4 227

β = β
1
β
2

β
2N

2N × 2N 5 4 228

βTEΓ=Diag ei 2N × 2N 5 4 229

βTHΓ=Diag λiei 2N × 2N 5 4 230

5.5 INFINITE DOF CONTINUOUS MEMBER SYSTEMS

5.5.1 Introduction

In reality, all points on a body may move independently of all other points. Thus, the rigid
body, assumed modes, and finite element approaches artificially constrain relative motions
on a body to produce a simulation model with a finite number of dofs that may be solved for
motions. Infinite dof models are free of these constraints and are typically derived by con-
sidering equilibrium requirements for a differential mass within the domain of the structural
member. This yields a partial differential equation (PDE) for the displacements at any point
on the body and for any time. Solutions of PDE are possible only for simple geometries and
boundary conditions (BC) and homogeneous materials. The following sections illustrate the
infinite dof (PDE) approach for some simple problems.

5.5.2 Transverse Vibration of Strings and Cables

Figure 5.5.1 shows the model of a string or cable undergoing transverse vibration and a por-
tion of its free body diagram.

Figure 5.5.1 Continuous model of vibrating string
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Let T represent the internal tension force, F the external applied force, w the lateral dis-
placement, and mi a differential mass at location. From the FBD and the geometry,

TiV =Ti sinθi≈Ti
Δw
Δx

=Ti
wi+ 1−wi

Δx
Then by the Newton TEOM (3.3.5) applied to mi

miwi =Fi−Ti−1
wi−wi−1

Δx
+ Ti

wi+ 1−wi

Δx
i= 1,2,…,n 5 5 1

Let
Δwi =wi+ 1−wi 5 5 2

Then Equation (5.5.1) becomes

miwi =Fi−Ti−1
Δwi−1

Δx
+ Ti

Δwi

Δx
5 5 3

or

mi
∂2wi

∂t2
=Fi +Δ Ti

Δwi

Δx
5 5 4

or

mi

Δx
∂2wi

∂t2
=

Fi

Δx
+
Δ Ti

Δwi

Δx
Δx

5 5 5

Consider the limit as Δx 0, which yields

f x, t = force per unit length = lim
Δx 0

Fi

Δx

m=mass per unit length = lim
Δx 0

mi

Δx
=
total mass

L

5 5 6

and

m
∂2w

∂t2
= f x, t +

∂

∂x
T
∂w

∂x
5 5 7

The string is initially pretensioned with a constant value τ, and the total tension also has
a time-varying component τ∗. It is assumed that τ∗ << τ so that the total tension is assumed to
be the constant τ. Equation (5.5.7) then becomes

∂2w

∂t2
=
f x, t
m

+ c2
∂2w

∂x2
5 5 8

where

c2 =
τ

m
5 5 9

For unforced vibrations, (5.5.8) becomes

∂2w

∂t2
= c2

∂2w

∂x2
5 5 10

The solution of this PDE is obtained using separation of variables method, that is, let

w x, t =X x T t 5 5 11
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Then Equation (5.5.10) becomes

XT = c2TX 5 5 12

where (•) indicates time derivative and ( ) indicates x derivative. Rearranging this equation
yields

1
c2T

T =
X

X
=Constant = −σ2 5 5 13

The expressions in (5.5.13) must be the constant shown since a function of independent
variable t can equal a function of independent variable x, only if both functions equal the
same constant. The special form of the constant shown produces an oscillatory temporal part
(T) of the solution, consistent with nature. First, consider the spatial DE

X + σ2X = 0 5 5 14

which has solutions of the form

X x = a1 sin σx + a2 cos σx 5 5 15

The BC for a cable or string fixed at both ends are

X 0 = 0 = a2, X L = 0= a1 sin σL 5 5 16

This condition is satisfied if a1 = 0 or sin σL = 0. The former condition would imply
that the system never vibrates which is analogous to setting ψ to zero in (5.4.12). The other

possibility is

sin σL = 0 5 5 17

Equation (5.5.17) is the “characteristic equation” for this continuous mass member
problem, which yields a set of special values of σ, that is,

σn =
nπ

L
n = 1,2,3,… 5 5 18

just like det −ω2M +K = 0 yielded special values (eigenvalues or natural frequencies) for
ω2 in (5.4.13). In addition, recall that once ω was determined from (5.4.13), it was substi-
tuted back into

−ω2M +K ψ = 0 5 5 19

to solve for ψ (the eigenvector or mode shape). Similarly, the solutions to σ in (5.5.18) are

substituted into (5.5.15) to obtain the mode shapes or “eigenfunctions”:

Xn x = an sin
nπ

L
x 5 5 20

Note that as in the case of the ψ ,Xn x is unique only to within a multiplication constant,

that is, an can be arbitrary and Xn(x) will still satisfy (5.5.14). The temporal DE in (5.5.13) is

T + σ2nc
2T = 0 5 5 21
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which has solutions

Tn t =An sin σnct +Bn cos σnct 5 5 22

Thus, from (5.5.9), (5.5.18), and (5.5.22), the natural frequencies are

ωn = σnc =
nπ

L
c =

nπ

L

τ

m
5 5 23

Note that the BC on the mode shape were essential in determining the natural frequen-
cies since the σn are determined from the BC (5.5.16). The total solution for w is obtained
from (5.5.11), (5.5.20), and (5.5.22) as

wn x, t =Xn x Tn t = cn sin σnx sin σnct + dn sin σnx cos σnct 5 5 24

where cn and dn are constants to be determined and σn is given by (5.5.18). All solutions of
the form (5.5.24) satisfy the PDE (5.5.10) and the BC (5.5.16); therefore, the total solution is
the superposition of all wn(x, t):

w x, t =
∞

i= 1

wn x, t =
∞

i = 1

cn sin σnx sin cσnt + dn sin σnx cos cσnt 5 5 25

The cn and dn are determined from the ICs using the orthogonality of the sine and cosine
functions, that is,

L

0
sin σnx sin σmx dx =

L

0
sin

nπx

L
sin

mπx

L
dx =

0, n m
L

2
, n=m

5 5 26

Let the IC on displacement be

w x, t = 0 =w0 x =
∞

i= 1

dn sin σnx 5 5 27

which follows from (5.5.25), evaluated at t = 0. Multiply (5.5.27) by sin(σmx) and integrate
from 0 to L using (5.5.26) to obtain

L

0
w0 x sin σmx dx = d1

L

0
sin σ1x sin σmx dx+ d2

L

0
sin σ2x sin σmx dx + = dm

L

2

5 5 28

Therefore,

dm =
2
L

L

0
w0 x sin σmx dx 5 5 29

Let the IC on velocity be

w x, t = 0 =w0 x =
∞

i= 1

cncσn sin σnx 5 5 30

which follows from (5.5.25), evaluated at t = 0. Multiply (5.5.30) by sin(σmx) and integrate
from 0 to L using (5.5.26) to obtain
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L

0
w0 x sin σmx dx = ccmσm

L

2

cm =
2

cσmL

L

0
w0 x sin σmx dx 5 5 31

Summarizing:

For a string or cable that is fixed at both ends has constant tension τ and mass per
unit length m

• The wave velocity is (5.5.9)

c =
τ

m
5 5 32

• The natural frequencies are (5.5.23)

ωn = cσn =
nπc

L
= n

π

L

τ

m
, n= 0,1,2,…,∞ 5 5 33

• The mode shapes are (5.5.20)

Xn x = sin
nπ

L
x 5 5 34

• Initial Condition Response from (5.5.25), (5.5.29), and (5.5.31)

w x, t =
∞

i = 1

cn sin σnx sin cσnt + dn sin σnx cos cσnt

cn =
2

cσnL

L

0
w0 x sin σnx dx, dn =

2
L

L

0
w0 x sin σnx dx

5 5 35

5.5.3 Axial Vibration of a Uniform Bar

Figure 5.5.2 shows the model of a uniform bar with axial vibration and its free body
diagram.

The above free body diagram and Newton’s law (3.3.5) yield

F + dF−F = dm
∂2w

∂t2
= ρAdx

∂2w

∂t2
5 5 36

Equations (A.3.16) and (A.4.4) give

F = σA =EεA =EA
∂w

∂x
5 5 37

Figure 5.5.2 Continuous mass model of a vibrating bar
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which implies

dF =
∂

∂x
EA

∂w

∂x
dx 5 5 38

Substitute (5.5.38) into (5.5.36) to obtain

∂2w

∂t2
= c2

∂2w

∂x2
5 5 39

where

c=
E

ρ
5 5 40

Equation (5.5.39) has an identical form with (5.5.10); therefore, the general form of the
solution for w(x, t) follows from (5.5.11), (5.5.15), and (5.5.22) as

w x, t =
∞

n= 1

Xn x Tn t 5 5 41

where

Xn x = a1n sin σnx + a2n cos σnx 5 5 42

Tn t =An sin cσnt +Bn cos cσnt 5 5 43

For the BC shown in Figure 5.5.2, the left end is fixed so

Xn 0 = 0 = a2n 5 5 44

and there is zero internal force at the free end, x =L, so from (5.5.37)

at x = L, F =EA
∂w

∂x
= 0

dXn

dx
= 0

d

dx
a1n sin σnx = 0

a1nσn cos σnx = 0
5 5 45

The constant a1n cannot be zero, since if it was then there would be no vibration by
(5.5.41)–(5.5.44). Thus, (5.5.45) requires that

σn =
2n−1
L

π

2
, n = 1,2,3,…,∞ 5 5 46

Equations (5.5.42), (5.5.44), and (5.5.46) show that the mode shapes Xn(x) have
the form

Xn x = a1n sin 2n−1
π

2
x

L
5 5 47

From (5.5.40), (5.5.43), and (5.5.46), the corresponding natural frequencies are

ωn = cσn =
E

ρ

2n−1
L

π

2
, n = 1,2,3,…,∞ 5 5 48

The above development shows how the BC on the mode shape were essential in deter-
mining the natural frequencies. The general form of the response is from (5.5.41), (5.5.43),
and (5.5.47)

w x, t =
∞

i= 1

cn sin σnx sin cσnt + dn sin σnx cos cσnt 5 5 49
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This form is identical to Equation (5.5.25) for the vibrating string. Therefore, by impos-
ing the ICs

w0 x =w x, t = 0 5 5 50

w0 x =w x, t = 0 5 5 51

on (5.5.49) and by using the orthogonality condition (5.5.26), the results found in (5.5.29)
and (5.5.31) are found to be applicable for the bar, that is,

cn =
2

cσnL

L

0
w0 x sin σnx dx, dn =

2
L

L

0
w0 x sin σnx dx 5 5 52

EXAMPLE 5.5.1 Impact of Translating Bar

Statement: Consider the bar that is translating to the right with constant velocity w0 x = v0
and hits and sticks to a barrier as shown in Figure E5.5.1(a).

Objective: Find the initial condition response w(x, t).

Solution: Utilize the fixed-free modes of the model in Figure 5.5.2. Since w0 x = 0,
Equation (5.5.52) implies dn = 0, and substituting w0 x = v0 into (5.5.52) yields

cn =
2

cσnL
v0

L

0
sin σnx dx=

2v0
cσnL

−1
σn

cos σnx
L

0

=
−2v0
cLσ2n

cos σnL −1 1

Collecting results into (5.5.49) yields the initial condition response for this example:

w x, t =
−2v0
cL

∞

n= 1

cos σnL −1
σ2n

sin σnx sin ωnt 2

where

c=
E

ρ
, σn =

2n−1
L

π

2
, n= 1,2,3 3

5.5.4 Torsion of Bars

Consider the bar shown in Figure 5.5.3
The internal torque is denoted by T and the external torque (per unit length) is τ. The

balance between torque and integrated shear stress, combined with the material law, yields
the standard strength of materials formula

Figure E5.5.1(a) Axial vibration of bar with initial velocity v0
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∂θ

∂x
=

T

J x G x
5 5 53

where G is the shear modulus of elasticity and J(x) is the torsion function which depends on
the cross-sectional geometry. The simplest cross-sectional geometry is an annulus with outer
diameter do(x) and inner diameter di(x) for which

J x =
π

32
d4o x −d4i x 5 5 54

The “torsion constant” in a structural member handbook should be utilized for other
geometries such as I beam, channels, box beams, and so on, since for noncircular geometries

J x Ix + Iy 5 5 55

Application of Newton’s rotational EOM (3.3.46) to the differential bar length in
Figure 5.5.3 yields

IGdx
∂2θ

∂t2
= T +

∂T

∂x
dx−T + τdx 5 5 56

IG
∂2θ

∂t2
=
∂T

∂x
+ τ 5 5 57

where ĨG(x) is the mass moment of inertia per unit length, evaluated about the x axis. Sub-
stitute T from (5.5.53) into (5.5.57) to obtain

IG
∂2θ

∂t2
=

∂

∂x
JG

∂θ

∂x
+ τ x, t 5 5 58

For a uniform bar ĨG, J and G are constants so that (5.5.58) simplifies to

∂2θ

∂t2
=
JG

IG

∂2θ

∂x2
+
τ x, t

IG
5 5 59

Consider the free vibration case τ = 0 and substitute the separation of variable solution

θ =X x T t 5 5 60

Figure 5.5.3 Bar undergoing pure torsional vibration
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to obtain

1
T

d2T

∂t2
=

JG

IGX

d2X

∂x2
5 5 61

The LHS of this equation is a function only of t and the RHS is a function only of x;
therefore, both sides must equal to the same constant, say, −ω2. The separation yields

d2T

∂t2
+ω2T = 0 5 5 62

d2X

∂x2
+
ω2IG
JG

X = 0 5 5 63

The solutions to these two ordinary DE are

T t =A cos ωt +B sin ωt 5 5 64

X x =C cos γ
x

L
+D sin γ

x

L
5 5 65

where

γ =ωL
IG
JG

5 5 66

The natural frequencies ωi are determined by imposing BC on the solution for X(x) in
(5.5.65). For example, consider the fixed-free bar in Figure 5.5.4.

Angle θ = 0 at x = 0 for all time t: therefore, from (5.5.60),

X 0 = 0 5 5 67

Torque T = 0 at x = 0 for all time t: therefore, from (5.5.53) and (5.5.60),

dX

dx x = L

= 0 5 5 68

Apply (5.5.67) to (5.5.65) to obtain

C = 0 5 5 69

Apply (5.5.68) and (5.5.69) to (5.5.65) to obtain

D
γ

L
cosγ = 0 5 5 70

Figure 5.5.4 Fixed-free bar undergoing torsional vibration
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IfD = 0, then X x = 0 for all x and t; however, this implies θ x, t = 0 for all x and t. This
contradicts free vibration (initial condition response) behavior, so it must be true that

cosγ = 0 5 5 71

γi = i−
1
2

π i = 1,2,… 5 5 72

Therefore, from (5.5.66), the ith natural frequency becomes

ωi = i−
1
2

π

L

JG

IG
, i = 1,2,… 5 5 73

Note that the BC on the mode shape were instrumental in determining the natural fre-
quencies. From (5.5.65), (5.5.69), and (5.5.72), the ith mode shape is

ψ i x =Xi x = sin γi
x

L
= sin π i−

1
2

x

L
5 5 74

Finally, by superposition of (5.5.60), (5.5.64), and (5.5.74), the free vibration response
has the form

θ x, t =
∞

i= 1

sin π i−
1
2

x

L
Ai cos ωit +Bi sin ωit 5 5 75

where ωi is defined in (5.5.73). The constants in this equation are obtained by considering
the ICs

θ x,0 =Θ0 x =
∞

i= 1

Ai sin π i−
1
2

x

L
5 5 76

θ x,0 =Ω0 x =
∞

i= 1

Biωi sin π i−
1
2

x

L
5 5 77

where Θ0(x) and Ω0(x) are the known (given) initial angular deflection and angular velocity
functions, respectively. Multiply (5.5.76) and (5.5.77) by

sin π j−
1
2

x

L
5 5 78

integrate from 0 to L, and utilize the orthogonality condition

L

0
sin π j−

1
2

x

L
sin π i−

1
2

x

L
dx =

0, i j
L

2
, i= j

5 5 79

to obtain

Ai =
2
L

L

0
sin π i−

1
2

x

L
∗Θ0 x dx 5 5 80
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Bi =
2
Lωi

L

0
sin π i−

1
2

x

L
∗Ω0 x dx 5 5 81

5.5.5 Euler–Bernoulli (Classical) Beam Theory

It is assumed that plane sections remain plane (no warping) and perpendicular to the neutral
axis, before and after deformation in Figure 5.5.5.

Figure 5.5.6 shows a free body diagram for a differential length (dx) of the beam.
The translational EOM is given by (3.3.5) and Figure (5.5.6) as

ρAdx
∂2w

∂t2
= f dx+V +

∂V

∂x
dx−V = f dx +

∂V

∂x
dx 5 5 82

ρA
∂2w

∂t2
= f +

∂V

∂x
5 5 83

where ρ is the mass density of the beam material and

f x, t = applied load per unit length 5 5 84

The length of the differential segment in Figure 5.5.6 is infinitesimally short, although
its height is finite as shown in Figure 5.5.7.

Figure 5.5.5 Euler–Bernoulli beam
segment

Figure 5.5.6 Free body diagram of differential length of beam
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Hence

IG y2dm = y2ρdAdx =

dx

ρ y2dA dx= ρ I dx= ρ dx I 5 5 85

where I is the area moment of inertia about axis a−a passing throughG. Newton’s rotational
EOM (3.3.46) for Figure 5.5.6 becomes

+ ρdxI
∂2θ

∂t2
= ρdxI

∂2

∂t2
∂w

∂x
=M +

∂M

∂x
dx−M +

dx

2
V +

∂V

∂x
dx+V +Γdx

5 5 86

where

Γ x, t = applied moment per unit length 5 5 87

Cancellations and neglect of the dx2 term in (5.5.86) yield

ρI
∂3w

∂t2∂x
=
∂M

∂x
+V +Γ 5 5 88

Differentiate (5.5.88) with respect to x to obtain

∂V

∂x
= ρI

∂4w

∂x2dt2
−
∂2M

∂x2
−
∂Γ
∂x

5 5 89

Substitution of (5.5.83) into (5.5.89) yields

ρA
∂2w

∂t2
= ρI

∂4w

∂x2dt2
−
∂2M

∂x2
−
∂Γ
∂x

+ f 5 5 90

Recall from the “strength of materials” that the formula for bending strain is

εB = −y
∂

∂x

∂w

∂x
5 5 91

and that integration of differential moments due to the bending stress

σB =EεB 5 5 92

Figure 5.5.7 Differential beam segment
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over the cross section yields the stress resultant moment

M =EI
∂θ

∂x
=EI

∂2w

∂x2
5 5 93

Substitution of (5.5.93) into (5.5.90) yields

ρA
∂2w

∂t2
= ρI

∂4w

∂x2dt2
−
∂2

∂x2
EI

∂2w

∂x2
−
∂Γ
∂x

+ f 5 5 94

Consider the case of free vibration f =Γ= 0 and negligible rotary inertia IG≈0 .

Then (5.5.94) simplifies to

ρA
∂2w

∂t2
+

∂2

∂x2
EI

∂2w

∂x2
= 0 5 5 95

Further simplification results by assuming a uniform (constant) cross section, yielding

ρA

EI

∂2w

∂t2
+
∂4w

∂x4
= 0 5 5 96

Utilize separation of variables

w=X x T t 5 5 97

to obtain

ρA

EI
XT +X T = 0 5 5 98

ρA

EI

T

T
= −

X

X
5 5 99

The LHS is a function of t and the RHS is a function of x. This can be true only if both
sides equal the same constant:

−X

X
= −σ4 5 5 100

ρA

EI

T

T
= −σ4 5 5 101

From (5.5.100),

X −σ4X = 0 5 5 102

which has the solution

X x = a cosh σx + b sinh σx + c cos σx + d sin σx 5 5 103

Equation (5.5.101) has the solution form

T t = e sin ωt + f cos ωt 5 5 104
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where

ω= σ2
EI

ρA
5 5 105

For illustration, consider the free vibration of the uniform, simply supported beam in
Figure 5.5.8.

The deflection and moment are zero at both ends of the beam so from (5.5.97)
and (5.5.103)

X 0 = a+ c = 0 5 5 106

X L = a cosh σL + b sinh σL + c cos σL + d sin σL = 0 5 5 107

X 0 = σ2a−σ2c = 0 5 5 108

X L = a cosh σL + b sinh σL −c cos σL −d sin σL σ2 = 0 5 5 109

From (5.5.106) and (5.5.108),

a = c = 0 5 5 110

From (5.5.107), (5.5.109), and (5.5.110),

b sinh σL = 0 b = 0 5 5 111

since sinh is never zero.
Substitute (5.5.110) and (5.5.111) into (5.5.109) to obtain

d sin σL = 0 5 5 112

σL= nπ, n= 1,2,…,∞ 5 5 113

Then, from (5.5.105) and (5.5.113), the natural frequencies are

ωn =
nπ

L

2 EI

ρA
5 5 114

Note that the BC on the mode shape were instrumental in determining the natural fre-
quencies. The corresponding mode shapes are obtained from (5.5.103) with a = b = c = 0:

Xn x = dn sin nπ
x

L
5 5 115

The total response is given by

w x, t =
∞

n = 1

Xn x Tn t =
∞

n = 1

sin nπ
x

L
∗ αn sin ωnt + βn cos ωnt 5 5 116

Figure 5.5.8 Simply supported Euler–
Bernoulli beam
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where the constants αn and βn are determined from the ICs w x,0 ,∂w ∂t x,0 .
Table 5.5.1 provides natural frequencies andmode shapes for the constant cross section,

Euler–Bernoulli beam neglecting rotary inertia, with various support conditions. The free–
free beam of course has two zero frequency rigid body modes (5.4.57) along with
those shown.

5.5.6 Timoshenko Beam Theory

Classical (Euler–Bernoulli) beam theory imposes the kinematic constraints:

(a) Plane sections remain plane (no warping).

(b) Plane sections remain perpendicular to the neutral axis before and after deformation.

Timoshenko developed a beam theory that removes constraint (b).
The slope angle for classical beam theory is ∂w ∂x , and the corresponding bending

strain is

εB = −y
∂

∂x

∂w

∂x
5 5 117

The plane section actually rotates through a smaller angle

θ <
∂w

∂x
5 5 118

due to shearing as shown in Figure 5.5.9. Hence, (5.5.117) becomes

εB = −y
∂θ

∂x
5 5 119

It can be shown that γ in Figure 5.5.9 is the shear strain (Appendix A, (A.3.16)), and
from this figure

γ =
∂w

∂x
−θ 5 5 120

Table 5.5.1 Beam natural frequencies for common support conditions:

ωn = αnL
2 L2 EI ρA

Cantilever (α1 L)
2 = 3.52 Clamped-Hinge (α1 L)

2 = 15.4
(α2 L)

2 = 22.2 (α2 L)
2 = 50

(α3 L)
2 = 61.7 (α3 L)

2 = 104

Simple Supports (α1 L)
2 = 9.87 Hinged-Free (α1 L)

2 = 0
(α2 L)

2 = 39.5 (α2 L)
2 = 15.4

(α3 L)
2 = 88.9 (α3 L)

2 = 50

Free-Free (α1 L)
2 = 22.4 Clamped-Clamped (α1 L)

2 = 22.4
(α2 L)

2 = 61.7 (α2 L)
2 = 61.7

(α3 L)
2 = 121 (α3 L)

2 = 121
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A second alteration of the classical beam theory is the shear stress that is reduced from
the average shear stress τave = V A to a modified, average shear stress

τshear =
1
k

V

A
5 5 121

where k is called a shear form factor and is analytically derived to match strain energies
between the approximate model (5.5.121) and a more exact model. For instance, for a cir-
cular cross section,

k =
6 1 + ν
7 + 6ν

5 5 122

where ν is the material’s Poisson ratio. The factor k is a standard input for beam elements in
commercial finite element codes and is discussed more extensively in Chapter 9. Integration
of the moment that results from bending stress σB =EεB over the cross section yields

M =EI
∂θ

∂x
5 5 123

where M is shown in Figure 5.5.10.
Newton’s translational equation (3.3.5) applied to Figure 5.5.10 yields

dm
∂2w

∂t2
= ρA x dx

∂2w

∂t2
=V +

∂V

∂x
dx−V + f dx 5 5 124

ρA x
∂2w

∂t2
=
∂V

∂x
+ f 5 5 125

Figure 5.5.9 Timoshenko beam kinematics

Figure 5.5.10 Free body diagram of differential beam segment of length dx
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where ρ is the mass density of the beam material and

f = load per unit length 5 5 126

Note from (5.5.120) and (5.5.121)

V = kAτshear = kA Gγshear = kAGγ = kAG
∂w

∂x
−θ 5 5 127

Substitute (5.5.127) into (5.5.125) to obtain

ρA x
∂2w

∂t2
=

∂

∂x
kAG

∂w

∂x
−θ + f 5 5 128

From (5.5.85) and Figure 5.5.10, the Newton’s rotational EOM (3.3.46) is

ρ dx I
∂2θ

∂t2
=M +

∂M

∂x
dx−M +Γdx +

dx

2
V +

∂V

∂x
dx +

dx

2
V 5 5 129

where Γ x, t is an externally applied moment per unit length. Simplification of (5.5.129) by
cancelling dx and ignoring second-order (dx2) terms yields

ρI
∂2θ

∂t2
=
∂M

∂x
+Γ +V 5 5 130

The two coupled PDE for the Timoshenko beam are obtained from (5.5.128) and sub-
stitution of (5.5.123) and (5.5.127) into (5.5.130):

ρI
∂2θ

∂t2
=

∂

∂x
EI

∂θ

∂x
+ kAG

∂w

∂x
−θ +Γ x, t 5 5 131

ρA
∂2w

∂t2
=

∂

∂x
kAG

∂w

∂x
−θ + f 5 5 132

Equations (5.5.131) and (5.5.132) provide two coupled PDE for the unknown rota-
tion angle θ of the cross section and transverse deflection w of the neutral axis.

For free vibration of a uniform beam (constant E, I, A, and G), Equations (5.5.131) and
(5.5.132) simplify to

ρI
∂2θ

∂t2
=EI

∂2θ

∂x2
+ kAG

∂w

∂x
−θ 5 5 133

ρA
∂2w

∂t2
= kAG

∂2w

∂x2
−
∂θ

∂x
5 5 134

These two second-order DE in w and θ may be combined into a single fourth-order DE
in w by eliminating θ in Equation (5.5.133). From Equation (5.5.134),
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∂θ

∂x
=
−ρ

kG

∂2w

∂t2
+
∂2w

∂x2
5 5 135

Differentiation of (5.5.133) with respect to x yields

ρI
∂2

∂t2
∂θ

∂x
=EI

∂2

∂x2
∂θ

∂x
+ kAG

∂2w

∂x
−
∂θ

∂x
5 5 136

Substitution of (5.5.135) into (5.5.136) yields

ρI
∂4w

∂t2∂x2
−
ρ2I

kG

∂4w

∂t4
=EI

∂4w

∂x4
−
EIρ

kG

∂4w

∂x2∂2t
+ kAG

∂2w

∂x2
+
kAGρ

kG

∂2w

∂t2
−kAG

∂2w

∂x2
5 5 137

EI
∂4w

∂x4
+
ρ2I

kG

∂4w

∂t4
+ ρI −1−

E

kG

∂4w

∂x2∂2t
+Aρ

∂2w

∂t2
= 0 5 5 138

Equation (5.5.138) is the desired fourth-order PDE for w(x , t). For illustration, consider
the free vibrations of the simply supported beam in Figure 5.5.8. The trial solution

w x, t =C sin
nπx

L
cos ωnt 5 5 139

satisfies the BC

w 0 =w L = 0 5 5 140

for

n = 1,2,3,…∞ 5 5 141

Substitute (5.5.139) into (5.5.138) to obtain

EI
nπ

L

4
+
ρ2I

kG
ω4
n + ρI −1−

E

kG
ω2
n

nπ

L

2
−Aρω2

n = 0 5 5 142

The second term and the first part of the third term on the left-hand side of (5.5.142) are
due to the inertial torque caused by bending rotation of the beam and are referred to as rotary
inertia terms. Equation (5.5.142) simplifies to the following form if “rotary inertia” is
neglected:

EI
nπ

L

4
−
ρIE

kG
ω2
n

nπ

L

2
−Aρω2

n = 0 5 5 143

ωn =
EI

nπ

L

4

ρIE

kG

nπ

L

2
+Aρ

=

EI

ρA
n4π4

L4 1 +
I

A

E

kG

n2π2

L2

5 5 144

From (5.5.114) and (5.5.144), it results that

ω2
n Timoshenko

ω2
n Euler

=

EI

ρA

n4π4

L4
1 +

I

A

E

kG

n2π2

L2

EI

ρA

n4π4

L4

=
1

1 +
I

A

E

kG

n2π2

L2

5 5 145
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which shows that shear deformation becomes important for short beams and for higher-order
modes and that the Timoshenko prediction of the nth natural frequency is always less than its
Euler–Bernoulli counterpart.

5.6 UNSTABLE FREE VIBRATIONS

The vibration of a structure or machinery component affects, and is affected by, its surround-
ing medium. The former is illustrated by the sound created by musical instruments, and the
latter is illustrated by the dampening effect of oil on the vibrations of a submerged component.
In contrast to dissipating energy, vibrations of a structure, structural member, or machinery
component in amoving gas or liquid, or in contactwith a sliding friction surface,may actually
cause the component to absorb energy, thereby increasing its vibration. These “self-excited”
or “unstable” vibrations are of growing concerns to designers as structures and machinery
become lighter weight and pushed to extreme performance levels to improve efficiency
and reduce cost. Some examples include fluid film bearing and seal-induced instabilities
in rotating machinery, galloping of power lines, machine tool chatter, whip of pipes transfer-
ring high-velocity fluids, airplane wing and turbomachinery blade flutter, wheel shimmy,
brake squeal, valve-induced pipe chatter, drillstring stick slip or bit bounce vibration, and
so on. The importance of controlling “self-excited,” or unstable, vibrations is clearly recog-
nized by considering that at a certain speed thewings of an aircraft or the bodyof a vehiclewill
vibrate violently leading to its destruction. This effect is exacerbated by lighter-weight, more
fuel efficient designs. The same holds true for high-speed rotating machinery which we
depend on for the production of gasoline, plastics, chemicals, electricity, paper, pharmaceu-
ticals, and so on. Linear system instability ismathematically identified by the presence of one
ormore system eigenvalues located in the right-hand complex plane, that is, with positive real
part. The response of the unstable linear systemmodel approaches infinity as time approaches
infinity; however, nonlinear forceswill arise in the real system that will restrain the vibrations
to a finite amplitude limit cycle, or the system will fracture and fail.

EXAMPLE 5.6.1 Valve Vibration

Description: Severe oscillatory vibration of household piping (plumbing) occurs often and
is caused by bath, sink, or toilet valves. This is a direct result of flow leaking around a com-
pliantly mounted valve plug as it is gradually opened or closed. To better understand this,
consider the flow of a viscous fluid through the small clearance surrounding a compliantly
mounted mass as shown in Figure E5.6.1(a).

The cylindrically shaped valve plug mass m is suspended by a compliant material of
stiffness k and damping c. The other parameters include:

D: inner diameter of the pipe,
Q: volumetric flow rate,
H: length of gap along m,
h: radial clearance (<<D, i.e., thin film),
μ: absolute viscosity of the fluid,
Pe: plug perimeter,
ρ: fluid density,
up: pipe velocity,
um: vertical velocity of m.

Objective: Write the equation of motion for the plug’s vertical displacement (x) assuming
laminar leakage flow, and determine an instability onset condition.
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Solution: Reynolds equation is a statement of mass conservation for the fluid in a thin film
(passage), expressed in terms of pressure by utilizing the momentum equation. It is com-
monly used to determine the pressure distribution in thin lubricant films. The incompressible
laminar flow version of Reynolds equation is

∂

∂z

ρh3

12μ
∂p

∂z
=

∂

∂z
ρhu +

d

dt
ρh 1

and its companion flow equation is

q =
ρQ

Pe
= ρh −u−

h2

12μ
∂p

∂z
2

where

u=
up + um

2
=
um
2

=
x

2
3

since the pipe’s velocity is assumed to equal zero. For a constant thickness film,

dh

dt
=
dh

dz
= 0 4

so (1) becomes

d2p

dz2
= 0 5

p = az + b 6

where a and b are constants in z. At z = 0 (top of mass m),

p 0 = pT 7

p = az+ pT 8

Figure E5.6.1(a) Flow around a valve plug

Chapter 5 Free Vibration Response 409

www.konkur.in



Insert (3) and (8) into (2) to obtain

ρQ

Pe
= ρh −

x

2
−

h2

12μ
a 9

a= −
12μ
h2

Q

Peh
+
x

2
10

Evaluate (8) at z=H (bottom of m):

pB = aH + pT 11

Δp = pT−pB = −aH =
12μH
h2

Q

Peh
+
x

2
12

Let x be referenced to the SEP and then Newton’s law applied to m yields

+ mx = −cx−kx +Δp∗Area 13

mx + cx + kx =
πD2

4
12μH
h2

Q

Peh
+
x

2
14

or

mx + cx + kx =
3πD2μHQ

Peh3
=
3D2μHQ

h3
15

where

c = c−
3
2
πD2μH

h2
16

The damping ratio is

ξ =
c

2mωn
17

Thus, instability will occur if the damping ratio becomes negative:

ξ< 0 18

c <
3
2
πD2μH

h2
19

Or conversely the system will be stable if

c >
3
2
πD2μH

h2
19

Note that the damping c of the valve plug support part must be large enough to over-
come the negative damping effect in order to prevent instability. A design objective may be
to keep the right-hand side of (19) small. Thus, a large value of h is desirable so that this
instability may be temporarily suppressed by increasing the opening of the valve.
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5.6.1 Oil Film Bearing-Induced Instability

The petrochemical and power utility industries utilize thousands of rotating machines with
high rpm shafts supported by fluid film bearings. Consider a highly simplified model of the
spinning shaft of a turbomachine supported symmetrically by two oil film bearings as
depicted in Figure 5.6.1.

The viscosity of the oil causes it to be dragged by the shaft into the converging clearance
creating a lift pressure that supports the shaft as shown in Figure 5.6.2.

The oil loses energy in going from the converging to the diverging side due to shear
losses. Thus, the pressure in the oil film is not symmetric about the line connecting the cen-
ters of the bearing and the shaft. The higher pressure on the converging side produces a force
with a component along the line of centers (lift force FL) and with a component FD perpen-
dicular to the line of centers in the direction of shaft spin. The latter is the source of the so-
called “destabilizing” component of bearing force. The shaft center is displaced away from
the bearing center due to static loading, which arises from the shaft weight, gear forces,
hydraulic side loads, and so on that act on the shaft. The statically displaced position of
the shaft center is called the equilibrium position. Vibrations of the shaft occur about the
equilibrium position and are due to mass imbalance, bearing and seal forces, misalignment,
flow forces, and so on. For example, the shaft center B may whirl in a nearly circular orbit
about the equilibrium position A as depicted in Figure 5.6.3 and described by the equations

x= a cosΩt, y = a sinΩt 5 6 1

Figure 5.6.1 Spinning shaft supported by two identical oil film bearings

Figure 5.6.2 Spinning shaft supported by oil film bearing
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where B “whirls” with frequency Ω and radius a.
Figure 5.6.3 shows that if the shaft center is along the x axis, the “destabilizing force

component” is in the y direction, that is, in the direction of vB, while the damping force
−cvB is in the opposite direction. This explains the name “destabilizing force component”
since it opposes the damping force.

Researchers solve the fluid dynamic equations (momentum, continuity) to obtain the
stiffness and damping coefficients of fluid film bearings. These coefficients represent a lin-
earization of the actual nonlinear forces exerted by the lubricant film on the shaft for small
motions about the shaft’s equilibrium position. The clearance distribution changes in the
bearing as a result of the vibration of the shaft. The clearance distribution changes the
oil film pressure distribution, which changes the forces, as represented in terms of the stiff-
ness and damping coefficients. Oil film bearing stiffness and damping coefficients are pro-
vided by design catalogs (Someya, 2014) and commercially available software (Texas
A&M Turbomachinery Lab, University of Virginia ROMAC, Dyrobes, and others) for
many types of bearings. The data is typically presented versus a nondimensional number
called the Sommerfeld number S:

S =
μNsLD

WB

R

cB

2

5 6 2

where

μ= absolute viscosity,

Ns = shaft speed in revolutions/second,

L= bearing length,

D= bearing diameter,

WB = weight supported by the bearing,

R= shaft radius,

cB = bearing radial clearance (bearing internal radius–shaft outer radius)

The linearized model reaction force exerted on the shaft by the bearing is composed of a
static component that reacts against the static weight and/or machinery steady force loading
and a dynamic component expressed by

Fx = −kxxx−kxyy−cxxx−cxyy,
Fy = −kyxx−kyyy−cyxx−cyyy

5 6 3

Figure 5.6.3 Circular whirl
vibration of a shaft in a fluid film
bearing
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The nondimensional stiffness kij and damping cij coefficients provided by the cat-
alogs or software are related to the actual stiffness (kij) and damping (cij) through the
relations

kxx =
WB

cB
kxx, kxy =

WB

cB
kxy, kyx =

WB

cB
kyx, kyy =

WB

cB
kyy 5 6 4

cxx =
WB

ωcB
cxx, cxy =

WB

ωcB
cxy, cyx =

WB

ωcB
cyx, cyy =

WB

ωcB
cyy 5 6 5

EXAMPLE 5.6.2 Rigid Rotor on Fluid Film Bearings

Let the rotor weight in Figure 5.6.1 be

W = 100 lbs 1

Then the static load on each bearing becomes

WB =
100
2

= 50 lbs 2

The bearing parameter values are

μ = 3 0 × 10−6 lb s in 2, L= 3 0 in , D= 4 0 in , R=
D

2
= 2 0 in , cB = 0 007 in 3

Consider the five shaft speeds

60∗Ns 330 rpm, 814 rpm, 2113 rpm, 4522 rpm, 6084 rpm 4

The Sommerfeld numbers for these shaft speeds are obtained from (5.6.2) and (2)–(4) as

S 0 323, 0 789, 2 07, 4 43, 5 96 5

The nondimensional stiffness and damping constants for the two-groove cylindrical oil
film bearing depicted in Figure E5.6.2(a) are listed in Table E5.6.2(a). This table also pro-
vides the SEP eccentricity ratio

ε =
static offset of shaft from its centered position

cB
6

and the SEP attitude angle

ϕ = angle between the line of centers and the load direction 7

Figure E5.6.2(a) Two-groove cylindrical oil film bearing
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Equation (5.6.2) and Table E5.6.2(a) show that S becomes smaller and ε becomes larger
as the static load WB on the shaft increases.

Figure E5.6.2(b) shows the dimensional stiffness and damping from Table E5.6.2(a)
and Equations (5.6.4) and (5.6.5). Note that the cross-coupled stiffnesses (kxy, kyx) are of
opposite sign and increase with shaft rpm. From the discussion of circulatory stiffness matri-
ces (reference. Figure 5.3.4), it will be recognized that this behavior of the cross-coupled
stiffness coefficients will increase the likelihood for unstable eigenvalues as the speed
increases. This propensity toward instability is exacerbated by the decrease in damping with
increased speed shown in Figure E5.6.2(b).

The free body diagram for the shaft in Figure 5.6.1 is shown in Figure E5.6.2(c). Note
that both bearings contribute to the forces and that the model is valid only for the cylindrical
(bounce) rotor mode vibration in which both ends of the rotor have identical motions.

Table E5.6.2(a) Bearing coefficients for the example bearing

Eccentricity and attitude angle Stiffness coefficient Damping coefficients

S ε ϕ kxx kxy kyx kyy cxx cxy cyx cyy

5.96 0.0750 82.6 1.77 13.6 −13.1 2.72 27.2 2.06 2.06 14.9
4.43 0.100 80.4 1.75 10.3 −9.66 2.70 20.6 2.08 2.08 11.4
2.07 0.200 71.6 1.88 5.63 −4.41 2.56 11.2 2.22 2.22 6.43
0.798 0.400 57.5 2.39 3.75 −1.57 2.17 7.32 2.24 2.24 3.50
0.373 0.600 44.7 3.65 3.62 −0.427 1.92 6.81 2.08 2.08 2.06
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kyx

kyy

0 1000 2000 3000 4000 5000 6000 7000
0
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1000

1500

Shaft (RPM)

cxx

cxy cyx

cyy

Figure E5.6.2(b) Bearing stiffness (lb/in.) and damping (lb.s/in.) versus shaft speed. Values are for each bearing

Figure E5.6.2(c) FBD of shaft with oil film bearings
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From this figure,

m 0
0 m

x
y

+
2cxx 2cxy
2cyx 2cyy

x
y

+
2kxx 2kxy
2kyx 2kyy

x
y

=
0
0

8

Let

x
y

=
x
y

eλt 9

In general, λ may be complex, that is,

λ= a + iωd 10

Then, from (9),

x = xeλt = xe a + iωd t = xeateiωd t 11

Note from (11) that the real part of the eigenvalue

a=Real λ 12

determines stability, that is,

if a < 0, eat 0 as t ∞ stable 13

if a> 0, eat ∞ as t ∞ unstable 14

Note also from (11) that the imaginary part of the eigenvalue

ωd = imaginary λ 15

determines the damped natural frequency, that is, from (11),

eiωd t = cos ωdt + i sin ωdt 16

To obtain the λ’s in (9), insert (9) into (8):

λ2m+ 2cxxλ + 2kxx 2cxyλ + 2kxy
2cyxλ+ 2kyx λ2m+ 2cyyλ+ 2kyy

x
y

=
0
0

17

In order for the system to vibrate, the determinant of the matrix in (17) must be zero.
This yields the system characteristic equation

CE Det
λ2m+ 2cxxλ+ 2kxx 2cxyλ+ 2kxy

2cyxλ + 2kyx λ2m+ 2cyyλ + 2kyy
= 0 18

λ4 m2 + λ3 2m cxx + cyy + λ2 2m kxx + kyy + 4 cxxcyy−cxycyx

+ λ 4 cxxkyy + cyykxx−cxykyx−cyxkxy + 4 kxxkyy−kxykyx = 0
19

Equation (19) is of the form

b4λ
4 + b3λ

3 + b2λ
2 + b1λ+ b0 = 0 20

where the bi are real numbers. Take the complex conjugate of (20), noting that the conjugate
of a real number, that is,

b2 = b2 + i0 = b2− i0 = b2 21
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is the real number itself. Therefore,

b4λ
4
+ b3λ

3
+ b2λ

2
+ b1λ+ b0 = 0 22

Comparison of (20) and (22) shows that

If λ solves the CE, then λ also does, where λ = a+ iωd = a− iωd.

For the example with stiffness and damping constants in Table E5.6.2(a), there exist
two negative real eigenvalues, λ1 and λ2, that are stable by Equation (13). The two remaining
eigenvalues are a complex conjugate pair:

λ4 = λ3 23

Figure E5.6.2(d) shows the real and imaginary parts of λ3 versus the five shaft speeds
considered in (4) and Table E5.6.2(a). The real part of λ3 crosses from negative (stable sys-
tem) to positive (unstable system) values at about 5200 rpm, at which speed the third mode
natural frequency is about 57 Hz (3420 cycles per minute (cpm)).

Equation (8) may be written in state space form as

vx =
1
m

−2kxxx−2kxyy−2cxxvx−2cxyvy 24

vy =
1
m

−2kyxx−2kyyy−2cyxvx−2cyyvy 25

x = vx, y = vy 26

Equations (24)–(26) are numerically integrated with the initial conditions

vx 0 = vy 0 = 0, x 0 = y 0 = 0 0001 in 27

Figure E5.6.2(e): (i) shows x versus t at a speed of 4522 rpm. Since this speed is less
than the instability onset speed (5200 rpm), the motion is stable (decays toward zero).
Figure E5.6.2(e): (ii) shows x versus t at 6084 rpm, that is, above the instability onset speed
(5200 rpm). Now the motion is clearly unstable (diverging toward infinity as time
increases). The period of the motion is seen to be about 0.0159 seconds which corresponds
to a frequency of 63 Hz. This is very close to the damped natural frequency, at 6084 rpm, as
shown in Figure E5.6.2(d). The motion in the actual machine would be bounded by a limit
cycle due to nonlinear forces in the bearings as the motion increases.
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Figure E5.6.2(d) Real and imaginary parts of the third eigenvalue versus shaft RPM
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Some summary points from this example are as follows:

• Unlike “resonance,” unstable (self-excited) vibrations do not require external forces to
sustain the unstable vibrations.

• In practice, operation above an instability onset speed is nearly always impossible, that is,
the machine will wreck.

• Stability/instability may be determined solely by the real part of the eigenvalues, that is,

if negative stable system, if positive unstable system
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Figure E5.6.2(e) X versus time at (i) 4522 rpm and (ii) 6084 rpm
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• Instability is a system design problem, that is, to correct it some mechanical or operations
related parameters must be altered. In general, the reduction of external forces will not
correct an instability.

5.7 SUMMARY

The topics covered in Chapter 5 should provide the reader with an understanding and work-
ing knowledge of:

(a) Free vibration analysis for linear 1, 2, N, and ∞ dof systems

(b) Solution for natural frequencies, mode shapes, and damping ratios given the lin-
ear EOMs

(c) Solution for initial condition responses of linear system

(d) Understanding of the beat phenomena and gyroscopic torque effects on natural
frequencies

(e) Formation of a damping matrix that “produces” desired modal damping ratios

(f) Understanding of orthogonality and biorthogonality relationships between modes

(g) A capability to solve continuous system models for providing examples to benchmark
finite element models against

(h) Understanding of unstable vibrations and related mathematical modeling approach

5.8 CHAPTER 5 EXERCISES

5.8.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following web site:www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding a significant cost savings for the college student, and is updated.

5.8.2 Exercise Goals

The goal of the exercises in Chapter 5 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) The mathematical aspects of free vibration, including eigenvalues, eigenvectors,
orthogonality, biorthogonality, modal coordinates, and so on

(b) Determination of natural frequencies, damping ratios (log decrements), and modes
shapes from the governing DE

(c) Calculation of free vibration response due to initial conditions

(d) Determination of free vibration parameters for both rigid body and flexible body sys-
tems (derived by assumed modes, finite elements, or continuous member modeling)

(e) Calculation of orthogonal damping matrices given a subset of damping ratios and nat-
ural frequencies

(f) Understand the nature of unstable vibratory systems and to obtain conditions for insta-
bility in term of system constant values
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5.8.3 Sample Exercises: 5.25 and 5.35

These challenging exercises task the student with obtaining speed-dependent natural fre-
quencies of a high-speed grinder and the natural frequencies and mode shapes of a finite
element truss model.
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Chapter 6

Vibration Response Due
to Transient Loading

6.1 INTRODUCTION

Structural or mechanical systems are often subjected to forces that may be aperiodic. Examples
of these include step, ramp, impulse, random, or any other form of nonperiodic loading. It is
often necessary to determine the displacement, velocity, acceleration, or stress responses to
these loads as part of the design process, troubleshooting, or accident reconstruction. This chap-
ter presents concepts and methodology for predicting the response of structural systems to ape-
riodic, that is, transient and external, forces. The emphasis will be on determining the system’s
total transient response due to initial conditions (ICs), applied external forces, and/or support
motion. Both single and multiple (N) degree of freedom systems are considered. Methods of
solution include both analytical (closed-form) and numerical integration (NI)-based
approaches. Condensation techniques are provided to reduce the dimensionality of the problem
in order to provide faster computer simulations.

6.2 SINGLE DEGREE OF FREEDOM TRANSIENT RESPONSE

This type of system is treated as a special case of N dof systems because closed-form solu-
tions are possible. It is also worth examining closely since the orthogonality or biorthogon-
ality conditions of modes discussed in Chapter 5 may be used to transform Ndof problems
into a set of uncoupled single degree of freedom (SDOF) modal coordinate equations, as
discussed in Section 6.3.

In general, the solution of a linear ordinary differential equation (ODE) consists of a
homogeneous part xh and particular part xp, that is, if

L x = f 6 2 1

where L is a linear differential operator, then

x = xh + xp 6 2 2

where

L xp = f 6 2 3

L xh = 0 6 2 4

Vibration Theory and Applications with Finite Elements and Active Vibration Control, First Edition. Alan B. Palazzolo.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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The proof of this follows from the linearity of L, that is,

L y + z = L y + L z 6 2 5

Therefore, if one determines functions xp and xh that satisfy (6.2.3) and (6.2.4) and then
defines the total solution as

x = xh + xp 6 2 6

it follows that

L x =L xh + xp = L xh + L xp = 0 + f = f 6 2 7

Therefore, x as defined in (6.2.6) is the solution of the original ODE (6.2.1).

6.2.1 Direct Analytical Solution Method

This approach relies on the availability of solutions to standard forms of differential equa-
tions. The steps include the following:

(a) Find a solution (xh) of the homogeneous ODE including unknown integration con-
stants L xh = 0.

(b) Find a solution (xp) of the particular ODE L xp = f .

(c) Define the total solution as x = xh + xp.

(d) Impose ICs on the total solution x to determine the unknown integration constants.

EXAMPLE 6.2.1 Pressure Relief Valve Blowout on Natural Gas Meter

Statement: Figure E6.2.1(a) depicts the rupture of a pressure relief valve on a gas meter
supported by a vertical pipe.

The stream of the outflowing gas has a velocity vg, and the resulting side force acting on
the meter is approximately

Fp = ρAv
2
g = cp 1

where c is a constant that depends on ρ, A and the orifice constant for the PRV.

Objective: Determine the motion um(t) and the stress at the base of the pipe for the three
pressure histories

p t = p0 step , p0t ramp , p0e
−γt exponential 2

Assumptions:

(a) Small motions.

(b) The mass of the pipe is negligible compared to mass of the meter.

(c) The meter is treated as a point mass.

(d) Both um andum are zero at t = 0.
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Solution:

(a) From the strength of materials, the horizontal force and horizontal deflection at the top
of the pipe are related by Fpipe = kum where the lateral stiffness of the pipe is

k =
3EI
L3

3

so Newton’s law (3.3.5) for the meter provides

mmum + kum =Fp t = cp t 4

(b) The solution to the homogeneous (p = 0) form of (3) is

umh =Acosωnt +Bsinωnt 5

where ωn = k mm
1 2 is the undamped natural frequency and A and B are the arbitrary

constants of integration.

(c) The particular solutions are selected to have the same form as the right-hand side (RHS)
of the ODE, that is, f in (6.2.1):

Case 1: Find the particular solution for p= p0 = constant.
From (4),

mmump + kump = cp0 6

Since cp0 is a constant, let

ump = constant = u0 mm∗0 + ku0 = cp0 ump = u0 =
cp0
k

7

Case 2: Find the particular solution for p= p0t.
From (4),

mmump + kump = cp0t 8

Since cp0t is a linear function of t, let

ump = a0 + a1t mm∗0 + k a0 + a1t = cp0t

Figure E6.2.1(a) Pressure release valve (PRV) event occurring on gas meter
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Equating coefficients of like powers of t yields

a0k = 0, and ka1 = cp0 ump t =
cp0
k

t 9

Case 3: Find the particular solution for p= p0e−γt.
From (4),

mmump + kump = cp0e
−γt 10

Since cp0e−γt is an exponential function of time, let

ump = βe−γt mmβγ2e−γt + kβe−γt = cp0e−γt

β =
cp0

mmγ2 + k
ump =

cp0e−γt

mmγ2 + k

11

(d) The total solution is the sum of the homogeneous and particular solu-
tions um = umh + ump :

Case 1 (p = p0):

um t =Acosωnt +Bsinωnt +
cp0
k

12

Case 2 (p = p0t):

um t =Acosωnt +Bsinωnt +
cp0
k

t 13

Case 3 (p = p0e−γt):

um t =Acosωnt +Bsinωnt +
cp0e−γt

mmγ2 + k
14

(e) The ICs

um 0 = um 0 = 0 15

are applied to each case to yield the final form of the responses:
Case 1: p= p0.
From (12),

um 0 = 0 A=
−cp0
k

um 0 = 0 ωnB= 0 B= 0 um t =
cp0
k

1−cosωnt 16

Case 2: p= p0t.
From (13),

um 0 = 0 A= 0

um 0 = 0 Bωn +
cp0
k

= 0 B=
−cp0
kωn

um t =
cp0
k

t−
1
ωn

sinωnt 17
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Case 3: p= p0e−γt.
Let α= cp0 mmγ2 + k , and then from (14),

um 0 =A+ α= 0 A= −α

um 0 =Bωn−γα= 0 B=
γα

ωn

um t =
cp0

mmγ2 + k
e−γt −cosωnt +

γ

ωn
sinωnt 18

(f) The preceding cases all involved undamped systems. Consider the effects of damping by
including the damping force cmum in (4):

mmum + cmum + kum =Fp t = cp t 19

Dividing by mm yields

um + 2ξωnum +ω2
num =

Fp t

mm
=
cp t

mm
20

The solution to the homogeneous form (F = p = 0) of (20) is

umh t = e−ξωnt Acos ωdt +Bsin ωdt 21

where A and B are integration constants determined from the ICs.
For illustration, consider the case 2 loading p = p0t so that (20) becomes

um + 2ξωnum +ω2
num =

cp0t

mm
22

Since cp0t mm is a linear function of t, let

ump = a0 + a1t 23

Substitute (23) into (22) to obtain

0 + 2ξωna1 +ω
2
n a0 + a1t =

cp0t

mm
24

Equating coefficients of like powers of t yields

2ξωna1 +ω
2
na0 = 0 and ω2

na1 =
cp0
mm

25

This results in

a1 =
cp0

mmω2
n

and a0 = −2ξ
cp0

mmω3
n

26

Therefore, the particular solution in (23) becomes

ump t = −2ξ
cp0

mmω3
n

+
cp0

mmω2
n

t 27
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The total solution becomes

um t = umh t + ump t = e−ξωnt Acos ωdt +Bsin ωdt −2ξ
cp0

mmω3
n

+
cp0

mmω2
n

t 28

Apply the IC for zero displacement in (15)–(28):

0 =A−2ξ
cp0

mmω3
n

A= 2ξ
cp0

mmω3
n

29

Apply the IC for zero velocity in (15)–(28):

um t = e−ξωnt −ξωn Acos ωdt +Bsin ωdt +ωd −Asin ωdt +Bcos ωdt +
cp0

mmω2
n

um 0 = −ξωnA+ωdB+
cp0

mmω2
n

= 0

B=
ξωnA−

cp0
mmω2

n

ωd
=
ξωn2ξ

cp0
mmω3

n

−
cp0

mmω2
n

ωd
=

cp0
mmω2

n

2ξ2−1

ωd

30

Substitution of A and B from (29) and (30) into (28) yields the final form for the
total solution of (22) which also satisfies the ICs (15).

(g) The outer fiber bending stress at the base of the pipe may be obtained for all pressure
cases using the solutions for um(t) derived above and the strength of materials formula:

σmo t =
Moment at base

I
ro =

FpipeL

I
ro =

kum t L

π r4o −r
4
I 4

ro 31

where ro is the outer radius of the pipe.
This stress could be employed to evaluate the possibility of fatigue-related failure

as described in Chapter 1, Section 1.4.

Summary: This example illustrates how to obtain analytical solutions for a 1 dof problem.
An alternative approach is to use the Maple code shown below.

Maple Code for Solving Example 6.2.1

> #Example 6.2.1
> # Form 1st derivative
> ud := diff(u(t),t);

ud =
d

dt
u t

> # Form 2nd derivative
> udd := diff(u(t),t,t);

udd
d2

dt2
u t

> ode1 := m ∗udd+k ∗u(t) = c ∗p0;

ode1 =m
d2

dt2
u t + ku t = cp0
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> simplify(dsolve({ode1,u(0)=0,D(u)(0)=0},{u(t)}));

u t = −

cp0 cos
kt

m
−1

k

> # This result agrees with (16)
> ode2 := m ∗udd+k ∗u(t) = c ∗p0tilda ∗t;
ode2 =m

d2

dt2
u t + ku t = cp0tilda t

> simplify(dsolve({ode2,u(0)=0,D(u)(0)=0},{u(t)}));
>

u t =
cp0tilda −sin

kt

m
m+ kt

k 3 2

> # This result agrees with (17)
> ode3 := m ∗udd+k ∗u(t) = c ∗p0 ∗exp(-gamma ∗t);
ode3 =m

d2

dt2
u t + ku t = cp0e −γt

> simplify(dsolve({ode3,u(0)=0,D(u)(0)=0},{u(t)}));

u t =
cp0 sin

kt

m
γ m−cos

kt

m
k +e −γt k

k k +mγ2

> # This result agrees with (18)
> assume( 0 < zeta, zeta <1); # zeta is positive and less than 1
>
> ode4 := udd + 2 ∗zeta ∗omega[n] ∗ud + omega[n]^2 ∗u(t) -
c ∗p_tilda_0 ∗t/Mm = 0;

ode4 =
d2

dt2
u t + 2ζ ωn

d

dt
u t +ω2

nu t −
cp _ tilda _ 0 t

Mm
= 0

> SOL1:=simplify(evalc(dsolve({ode4,u(0)=0,D(u)(0)=0},
{u(t)})));

SOL1 = u t = cp _ tilda _ 0 2e − tωnζ cos −ζ 2 + 1 ωnt ζ 3

−2e − tωnζ cos −ζ 2 + 1 ωnt ζ

−2e − tωnζ sin −ζ 2 + 1 ωnt −ζ 2 + 1 ζ 2

+ e − tωnζ sin −ζ 2 + 1 ωnt −ζ 2 + 1−2ζ 3 + 2ζ + tωnζ 2− tωn

ω3
n Mm ζ 2−1

> SOL2:=collect(SOL1,exp(-t ∗omega[n] ∗zeta) ):
> SOL3:=collect(SOL2, cos((1-zeta^2)^(1/2) ∗omega[n] ∗t)):
> SOL4:=collect(SOL3, sin((1-zeta^2)^(1/2) ∗omega[n] ∗t)):
> SOL5:=collect(SOL4,exp(-t ∗omega[n] ∗zeta) ):
> SOL6:=collect(SOL5,p_tilda_0):
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> SOL7:=collect(SOL6,c):
> SOL8:=collect(SOL7,1/Mm):
>SOL9:=collect(SOL8,1/omega[n]^3);

SOL9 = u t =
tζ 2− t p _ tilda _ 0 c

ζ 2−1 Mmω2
n

+
−2 1−ζ 2ζ 2 + 1−ζ 2 sin 1−ζ 2ωnt

ζ 2− t

+
2ζ 3−2ζ cos 1−ζ 2ωnt

ζ 2−1
e − tωnζ

+
−2ζ 3 + 2ζ

ζ 2−1
p _ tilda _ 0 c Mmω3

n

SOL9 = u t =
tζ 2− t p _ tilda _ 0 c

ζ 2−1 Mmω2
n

+
−2 −ζ 2 + 1ζ 2 + −ζ 2 + 1 sin −ζ 2 + 1ωnt

ζ 2− t

+
2ζ 3−2ζ cos −ζ 2 + 1ωnt

ζ 2−1
e − tωnζ

+
−2ζ 3 + 2ζ

ζ 2−1
p _ tilda _ 0 c Mmω3

n

The computer code-generated solutions above could have also been obtained utilizing
MATLAB SYMBOLIC as shown for case 2 with the t forcing term in (8) and (17), as
shown next:

clear all
syms u(t) m k c p0tilda
Du = diff(u);
assume(k>0 & m>0)
u(t) = dsolve(m*diff(u, t, t)+k*u(t) == c*p0tilda*t, u(0) == 0,
Du(0) == 0);
u(t) = simplify(u)

OUTPUT

u(t) = (c*p0tilda*t)/k - (c*m^(1/2)*p0tilda*sin((k^(1/2)*t)/
m^(1/2)))/k^(3/2)

6.2.2 Laplace Transform Method

The definition of the Laplace transform (LT), its usage, a related list of identities, and a table
of common LTs are discussed in Section 2.10. The following procedure is employed to solve
the governing differential equations of vibration problems:
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(a) Take the LT of the given differential equation.

(b) Algebraically solve for the LT of the dependent variable.

(c) Decompose theexpressionobtained in (b) into terms that appear inTable2.10.1, that is,Fi s .

(d) Use Table 2.10.1 to identify the functions of time corresponding to Fi s and assemble
these to form the total solution of the differential equation.

EXAMPLE 6.2.2 Pressure Relief Valve Blowout Analysis with Laplace Transforms

Statement: This example treats Example 6.2.1 with the LT solution method.

Objective: Determine the motion um(t) and the stress at the base of the pipe for
p t = p0 step , p0t ramp , p0e−γt (exponential).

Solution:

(a) The system differential equation is provided by Equation (4) of Example 6.2.1:
mmum + kum = cp t 1

Take the Laplace transform using (2.10.6)–(2.10.9) to obtain

mm s2Um s −um 0 −sum 0 + kUm s = cP s 2

Imposing the ICs yields

Um s =
cP s

mms2 + k
3

(b) Consider the three pressure cases given in Example 6.2.1 (Table E6.2.2).
Therefore, from this table and Equation (3), the LT of the meter displacement um is:

Case 1:

Um s = cp0
1

s mms2 + k
=
cp0
mm

1

s s2 +ω2
n

4

Case 2:

Um s = cp0
1

s2 mms2 + k
=
cp0
mm

1

s2 s2 +ω2
n

5

Case 3:

Um s =
cp0
mm

1

s+ γ s2 +ω2
n

6

(c) The unknown response um(t) may be determined by matching the time function in
Table 2.10.1 (left column) with the LT of um(t), that is,Um(s) in case 1, case 2, and case 3.
The results are:

Case 1 (Eq. (4) and Table 2.10.1, entry 10):

um t =
cp0
mm

1
ω2
n

1−cosωnt =
cp0
k

1−cosωnt 7

Case 2 (Eq. (5) and Table 2.10.1, entry 11):

um t =
cp0
mm

1
ω3
n

ωnt−sinωnt =
cp0
k

t−
1
ωn

sinωnt 8
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Case 3 (Eq. (6) and Table 2.10.1, entry 12):

um t =
cp0
mm

e−γt

γ2 +ω2
n

+
γ sinωnt

ωn γ2 +ω2
n

−
cosωnt

γ2 +ω2
n

=
cp0

mmγ2 + k
e−γt +

γ

ωn
sinωnt−cosωnt

9

Summary: The procedure of taking the Laplace transform of p(t) and the “inverse” Laplace
transform ofUm(s) can be readily performed via the followingMaple code. The results are in
agreement with Example 6.2.1 as expected. This example begs the question “why transform
the EOM to the s domain if solutions are readily available in the t domain.”One reason is the
occurrence of forces that are frequency dependent and are measured in the s domain as illus-
trated by Example 6.2.3.

Maple Code for Example 6.2.2

> #Example E6.2.2
> restart;
> with(inttrans):
> #Do LT of p(t)
> ps1 := laplace(p0,t,s);

ps1 =
p0

s

> ps2 := laplace(p0tilda ∗t,t,s);

ps2 =
p0tilda

s2

> ps3 := laplace(p0 ∗exp(-gamma ∗t),t,s);

ps3 =
p0

s + γ
> ubar := c/m/(s^2+omega^2);

ubar =
c

m s2 +ω2

> #Form U(s)and its Inverse LT
> Um1 := ubar ∗ps1;

Um1 =
cp0

m s2 +ω2 s

Table E6.2.2 Laplace transforms for pressure time histories

Case P(t)
P(s)

from Table 2.101

1 p0 p0
1
s
entry 9

2 p0t p0
1
s2

entry 2

3 p0e−γt p0
1

s+ γ
entry 1
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> um1 := invlaplace(Um1,s,t);

um1 =
cp0 −cos ωt + 1

mω2

> Um2 := ubar ∗ps2;

Um2 =
cp0tilda

m s2 +ω2 s2

> um2 := invlaplace(Um2,s,t);

um2 =
cp0tilda −

sin ωt
ω3

+
t

ω2

m
> Um3 := ubar ∗ps3;

Um3 =
cp0

m s2 +ω2 s + γ

> um3 := invlaplace(Um3,s,t);

um3 =

cp0
−cos ωt +

γsin ωt
ω

γ2 +ω2
+

e −γt

γ2 +ω2

m

The computer code-generated solutions above could have also been obtained utilizing
MATLAB SYMBOLIC as shown for case 2 with the “t” forcing term in (5) and (8), as
shown next:

clear all
syms t s p0tilda Um2 c m omega
laplace(p0tilda*t,t,s)
Um2 = c/m/(s^2+omega^2)*p0tilda/s^2;
ilaplace(Um2,s,t)

OUTPUT

ans =
p0tilda/s^2
ans =
(c*p0tilda*t)/(m*omega^2) - (c*p0tilda*sin(omega*t))/
(m*omega^3)

EXAMPLE 6.2.3 Rocket Launch Pad Vibration Response

Statement:A rocket launch facility consists of a concrete block resting on compliant soil as
shown in Figure E6.2.3(a). The transfer function of the soil beneath the pad is measured
to be
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G s =
Xs s

Fs s
=
L xs
L fs

=
α

s2 + 2ξsωss +ω2
s

=
soil vertical displacement

applied vertical force on soil
1

where α, ξs, and ω2
s are experimentally determined constants.

Objective: Determine the response (xp) of the launch pad mp to the rocket force

fR t =F0e
− t τ 2

Assumption: The mass of the rocket is much less thanmp so the change in static equilibrium
position (SEP) before and after liftoff can be neglected.

Solution:

(a) The EOM for the launch pad is

mpxp = fR t − fs t 3

(b) Take the LT of (3) by utilizing (2.10.9) with zero ICs

mps
2Xp s =FR s −Fs s 4

Use Table 2.10.1, entry 1, and (1) to obtain

mps
2Xp s =

F0

s + β
−
1
α

s2 + 2ξsωss+ω
2
s Xp s 5

Xp s mp +
1
α

s2 +
1
α
2ξsωss +

ω2
s

α
=

F0

s+ β
6

Xp s =
F0

γ s+ β s2 + 2ξsωss +ω
2
s

7

where

β =
1
τ
, γ = mp +

1
α

, ω2
s =

ω2
s

1 + αmp
, ξs =

ξs
1 + αmp

, ωsd =ωs 1−ξ
2
s

Figure E6.2.3(a) Launch pad vibration model
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(c) Take the inverse Laplace transform of Xp(s) to xp(t). This is programmed in the Maple
code in the following, where xp(t) is coded as xp.

(d) Utilize the following numerical values in the simulation:

F0 = 10
5N, τ = 15s, α= 10−5kg−1, ξs = 0 20, ωs = 3rad s, mp = 50000kg 8

Therefore, from (7),

β =
1
τ
= 0 067s−1, γ =mp +

1
α
= 150000kg, ωs = 2 45rad s, ξs = 0 163 dim 9

The Maple code yields the following results for these parameters:

xp t = 0 11198∗e−0 067t −e−0 3994t 0 11198∗cos 2 417t + 0 0154∗sin 2 417t 10

The response of the pad to the rocket thrust force is shown in Figures E6.2.3(b).

Summary: This example illustrated the usefulness of the Laplace transform approach when
a force in the model is given in terms of a transfer function (1). The form of this transfer
function is

1
msoils2 + csoils+ ksoil

11

so that by comparison with (1),

ksoil =
ω2
s

α
=

3s−1
2

10−5kg−1 = 900000N M 12

The static deflection due to the full thrust force is

δstat =
F0

ksoil
=

100000N
900000N M

=0 11m 13

Figure E6.2.3(b) shows that the dynamic response overshoots the static response by
100∗ 0 17−0 11 0 11 = 83 . This illustrates that a static response simulation may be
inadequate and it is very important to perform a dynamic simulation to estimate peak stres-
ses in the piping attached between the pad and ground.

Although the following code is in Maple, MATLAB symbolic could also be utilized.

0.16
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0.1
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0.06
0.04
0.02

0
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–0.02

0

t (seconds) t (seconds)
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Figure E6.2.3(b) Launch pad displacement and acceleration responses to rocket thrust force
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> #Example 6.2.3 Rocket Launch Pad Vibration Response
> restart ;
> with(inttrans);
> # Determine xp(t)
> xp:=simplify(invlaplace(F0/gamma/(s+beta)/(s^2
+2 ∗zshat ∗omshat ∗s+omshat^2),s,t));
xp =F0 e −βt omshat2 zshat2−1 e − t zshat omshat

cosh t omshat2 zshat2−1 omshat2 zshat2−1

+ sinh t omshat2 zshat2−1 e − t zshat omshat β

−sinh t omshat2 zshat2−1 e − t zshat omshat zshat omshat

β2−2zshat omshat β + omshat2 γ omshat2 zshat2−1

>xpnum:=simplify(subs(zshat=0.163,omshat=2.45,beta=.067,
F0=100000.,gamma=150000.,evalm(xp)));

xpnum = 0 1119793974e −0 06700000000 t

−0 1119793974e −0 3993500000 t cos 2 417233869t

−0 01539625653 sin 2 417233869t e −0 3993500000 t

> #evaluate complex exponential quantities
> xpnumplot:=evalc(xpnum);

xpnumplot = 0 1119793974e −0 06700000000 t

−0 1119793974e −0 3993500000 t cos 2 417233869t

−0 01539625653 sin 2 417233869t e −0 3993500000 t

> plot(xpnumplot,t=0..50,title="",labels=["t in seconds","xp
in meters"],thickness=2,axes=BOXED);
> apnum := diff(xpnumplot,t,t)/9.8;

apnum = 0 00005129341987e −0 06700000000 t

+ 0 06797591738e −0 3993500000 t cos 2 417233869t

−0 01313134716 sin 2 417233869t e −0 3993500000 t

> plot(apnum,t=0..50,title="",labels=["t in seconds","apnum
in G’s"],thickness=2,axes=BOXED);

6.2.3 Convolution Integral

Consider the simple SDOF damped oscillator shown in Figure 6.2.1.
The solution q(t) to its equilibrium equation

mq + cq + kq = f t 6 2 8

for the case that

f t = δ t−τ =Dirac Delta impulse Function Section 2 12 6 2 9
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is called a Green’s function or fundamental solution of the differential equation. Thus, the
Green’s function G(t, τ) satisfies

mG + cG+ kG= δ t−τ 6 2 10

The solution to (6.2.10) may be obtained via the LT approach (ref. Table 2.10.1, entry
8) yielding

G t,τ =
e−ξωn t−τ

mωd
sin ωd t−τ h t−τ 6 2 11

where h is the Heaviside function (Section 2.12)

h t−τ =
1, t > τ

0, t < τ
6 2 12

Multiply (6.2.10) by f(τ) and integrate from

0 < τ < ∞ 6 2 13

m
∞

0

d2

dt2
G t,τ f τ dτ + c

∞

0

d

dt
G t,τ f τ dτ + k

∞

0
G t,τ f τ dτ =

∞

0
f τ δ t−τ dτ

6 2 14

The differentiation and integration operations may be interchanged since the integration
limits are independent of t, yielding

mr + cr + kr =
∞

0
f τ δ t−τ dτ 6 2 15

where

r t =
∞

0
G t,τ f τ dτ 6 2 16

The Dirac delta (Section 2.12) satisfies

∞

0
f τ δ t−τ dτ = f t 6 2 17

Figure 6.2.1 Simple SDOF damped oscillator
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Therefore, (6.2.15) becomes

mr + cr + kr = f t 6 2 18

Comparison of (6.2.8) and (6.2.18) shows that r satisfies the same differential equation
as q:

∴ q t = r t =
∞

0
G t,τ f τ dτ 6 2 19

Thus, the solution to (6.2.8) reduces to the evaluation of the integral in (6.2.19). An
alternative derivation of (6.2.19) reasons that the excitation f(t) may be interpreted as a suc-
cession of impulses on mass m. Each impulse has the form f(t)Δt which by the impulse and
momentum theory (3.4.2) causes a change in velocity of m:

mΔv = fΔτ 6 2 20

Δq =
fΔτ
m

6 2 21

The displacement response following an imposed velocity change was determined in
the free vibration response equation (5.2.28). If the impulse (or velocity change) is imposed
at time τ, the change in response becomes

Δq =
Δ q

ωd
e−ξωn t−τ sin ωd t−τ 6 2 22

Substitute (6.2.21) into (6.2.22)

Δq=
f τ Δτ
mωd

e−ξωn t−τ sin ωd t−τ 6 2 23

By linear superposition, the total response is the sum of responses due to each impulse
acting independently. Let

q = Δq=
f τ

mωd
e−ξωn t−τ sin ωd t−τ Δτ 6 2 24

Let Δτ 0 and the sum becomes an integral, and then

q t =
∞

0

f τ

mωd
e−ξωn t−τ sin ωd t−τ dτ 6 2 25

which is the same form as (6.2.19) with (6.2.11) inserted.
Due to causality arguments, f(τ) cannot influence q(t) if τ > t; therefore, the integration

limit in (6.2.25) must be t, that is,

q t =
t

0

f τ

mωd
e−ξωn t−τ sin ωd t−τ dτ 6 2 26

An alternative form results from the change in integration variable

γ = t−τ 6 2 27
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Since t is treated as a constant in the integral in (6.2.26), it results that

dγ = −dτ, τ = 0 γ = t, and τ = t γ = 0 6 2 28

Then (6.2.26) becomes

q t =
t

0

f t−γ

mωd
e−ξωnγ sin ωdγ dγ 6 2 29

EXAMPLE 6.2.4 Undamped Oscillator Response to Finite Length Step Input

Statement: Utilize the convolution integral approach to obtain the displacement response
for the system depicted in Figure E6.2.4(a).

Given:

q 0 = q 0 = 0, ξ=
c

2mωn
= 0, ωd =ωn =

k

m
1

Solution:

• For 0 < t < T , Equation (6.2.29) becomes

q t =
1

mωn

t

0
f0 sin ωnγ dγ =

f0
mωn

−
cos ωnγ

ωn

t

0

=
f0
k

1−cos ωnt 2

• For t > T , Equation (6.2.26) becomes

q t =
T

0

f τ

mωn
sin ωn t−τ dτ 3

where the upper integration limit extends only to T since f τ = 0 for t > T . Let

u = t−τ, du= −dτ 4

then (3) becomes

q t =
f0

mωn

t

t−T
sin ωnu du=

f0
k
cos ωn t−T −cos ωnt

Figure E6.2.4(a) Undamped oscillator with finite length step input
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6.2.4 Response to Successive Disturbances

Consider the initial value problem

mq + cq + kq = f t 6 2 30

q 0 = q0, q 0 = q0 6 2 31

Divide (6.2.30) by m to obtain

q + 2ξωnq +ω
2
nq=

f t

m
6 2 32

Take the LT of (6.2.32) to obtain

s2q−sq0−q0 + 2ξωn sq−q0 +ω2
nq =

f

m
6 2 33

where

q s = L q =
∞

0
e−stq t dt 6 2 34

f s = L f =
∞

0
e−stf t dt 6 2 35

L =Laplace Transform of 6 2 36

Solve (6.2.33) for q s :

q =
f s

mΔ s
+
q0 s + 2ξωn + q0

Δ s
6 2 37

where

Δ s = s2 + 2ξωns+ω
2
n 6 2 38

The solution for q(t) is obtained by taking the inverse LT of Equation (6.2.37):

q t = L−1 q s =
1
m
L−1 f

Δ s
+L−1 q0 s + 2ξωn + q0

Δ s
6 2 39

Let the ICs be zero so that (6.2.39) simplifies to the form (6.2.41)

q0 = q0 = 0 6 2 40

q t =
1
m
L−1 f s

Δ s
6 2 41

The Heaviside function (Section 2.12) is illustrated in Figure 6.2.2 and defined by

h t−a =
1, t > a

0, t < a
6 2 42
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Let the excitation have the general form of a summation of delayed input forces

f t =
nE

j= 1

h t−aj fj t−aj 6 2 43

where a typical fj term is shown in Figure 6.2.3.
Thus, the effect of the Heaviside function is to turn on the force segment fj t−aj at time

t = aj. The LT of (6.2.43) is given by (Spiegel, 1998)

f s = L f =
nE

j= 1

e−ajsf j s 6 2 44

where

f j s = L fj t 6 2 45

Therefore, from (6.2.41),

q t =
1
m
L−1

nE

j= 1

e−ajsf j s

Δ s
=
1
m

nE

j= 1

L−1 e−ajs
f j s

Δ s
6 2 46

Let

qj t =
1
m
L−1 f j s

Δ s
6 2 47

Figure 6.2.2 Heaviside function

Figure 6.2.3 Delayed force term in Equation (6.2.26)
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and from the LT theory

1
m
L−1 e−ajs

f j s

Δ s
=

0, t < aj

qj t−aj , t > aj
= h t−aj qj tj 6 2 48

where

tj = t−aj 6 2 49

Then (6.2.46) becomes

q t =
nE

j= 1

h tj ∗qj tj =
nE

j= 1

h t−aj ∗qj t−aj 6 2 50

Equation (6.2.50) expresses the result that if the excitation is a sum of time-delayed
forces, as given by (6.2.43), then the response is the sum of time-delayed responses. These
time-delayed responses have the same form as the responses to the non time-delayed excita-
tions, with the exception that t is replaced by the shifted time t = t−aj.

Summarizing, if the governing differential equation of the SDOF model is

q + 2ξωnq +ω
2
nq=

f t

m
6 2 51

and the external force has the form of a sum of time-delayed forces

f t =
nE

j= 1

h t−aj fj t−aj 6 2 52

then the response has the form of a sum of time-delayed responses

q t =
nE

j= 1

h tj ∗qj tj =
nE

j= 1

h t−aj ∗qj t−aj 6 2 53

where qj(t) satisfies

qj t =
1
m
L−1 f j s

Δ s
6 2 54

Equation (6.2.53) provides the total solutions (particular + homogeneous) for the zero
IC case.

6.2.5 Pulsed Excitations

A pulse-type excitation is applied over some time interval and is then removed, as illustrated
in Figure 6.2.4.

Pulse excitations may be expressed with Heaviside functions as

f t = f t h t −h t−a =
f t 0 < t < a

0 t > a
6 2 55
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Note that (6.2.55) does not have the required form of (6.2.52) since

f t h t−a 6 2 56

appears instead of the required form

f t−a h t−a 6 2 57

This may be remedied in some cases by transforming the form in (6.2.56) to the form
required in (6.2.57). Consider, for example,

f t =Asin ωt =Asin ω t−a+ a

=Acos ωa sin ω t−a +Asin ωa cos ω t−a
6 2 58

where

a=
π

ω
6 2 59

Insert (6.2.59) into (6.2.58)

f t = −Asin ω t−a 6 2 60

Then Equation (6.2.55) becomes

f t = f t h t −h t−a

= f1 t h t − f2 t−a h t−a

= Asin ωt

f1

h t + Asin ω t−a

f2

h t−a 6 2 61

Equation (6.2.61) has the required form of (6.2.52).

EXAMPLE 6.2.5 Example for Pulsed Excitation: Rocket

Description:An instrument is softmounted inside of a rocket as depicted in Figure E6.2.5(a).
The rocket has a known acceleration y = at2 for t < t0 and y = 0 for t > t0. The actual accel-
eration −g of the rocket after the pulsed acceleration is considered negligible relative to its
peak, imposed pulsed acceleration, for determining peak response.

Figure 6.2.4 Pulse-type excitation
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Objective:Determine the relative motion x(t) of the instrumentmwith respect to the rocket.
Compare analytically and numerically derived solutions.

Assumption: Neglect the weight (mg) force for determining the relative motion.

Given: The solutions to the differential equations

qi + 2ξωnqi +ω
2
nqi =

α, i= 0

βt, i= 1

γt2, i= 2

1

with the ICs

q 0 = q 0 = 0 2

are

q0 t =
α

ω2
n

+ αe−ξωnt ξ 1−ξ2

ω2
n ξ2−1

sin ωdt −
1
ω2
n

cos ωdt 3

q1 t =
β

ω3
n

−2ξ +ωnt + βe−ξωnt
2ξ2−1 1−ξ2

ω3
n ξ2−1

sin ωdt +
2ξ
ω3
n

cos ωdt 4

q2 t =
γ

ω4
n

−2 + 8ξ2−4ξωnt +ω
2
nt

2

+ γe−ξωnt −2
ω3
n

ξ −3 + 4ξ2

ωd
sin ωdt −

2
ω4
n

−1 + 4ξ2 cos ωdt

5

respectively, where ωd =ωn 1−ξ2.

Solution: First, write the equation of motion for the instrument mass m in terms of the
relative motion coordinate x(t), ÿ and the system constants. By Newton’s law,

m
d2

dt2
y + x = −kx−cx 6

or

x +
c

m
x +

k

m
x = −y 7

Figure E6.2.5(a) Instrument package in launched rocket
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which becomes

x + 2ξωnx+ω
2
nx = −y 8

since

ω2
n =

k

m
,

c

m
= 2ξωn 9

From the figure,

y = at2 h t −h t− t0 10

where

at2 = a t− t0 + t0
2 = a t− t0

2 + 2t0 t− t0 + t20 11

Therefore,

y = at2h t −a t− t0
2 + 2t0 t− t0 + t20 h t− t0 12

Substitute (12) into (8) to obtain

x + 2ξωnx+ω
2
nx = f1 t h t + f2 t− t0 h t− t0 13

where

f1 t = −at2, f2 t− t0 = a t− t0
2 + 2t0 t− t0 + t20 14

The next task is to write the solution for x(t) in (13), in terms of Heaviside functions, q0,
q1, q2, t0, and a. Recall from (6.2.51)–(6.2.53) that if

q + 2ξωnq +ω
2
nq =

1
m

nE

j= 1

h t−aj f j t−aj 15

then

q t =
nE

j= 1

h t−aj ∗qj t−aj 16

where qj(t) is the solution of

qj + 2ξωnqj +ω
2
nqj =

1
m
f j t 17

From (13) and (14), x1(t) satisfies

x1 + 2ξωnx1 +ω
2
nx1 = −at2 18

The solution for

q2 + 2ξωnq2 +ω
2
nq2 = γt

2 19
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is given in (1) and (5). Therefore,

x1 t = q2 t γ = −a 20

From (14) and (17), x2(t) satisfies

x2 + 2ξωnx2 +ω
2
nx2 = a t2 + 2t0t + t

2
0 21

and from (1) to (5)

qi + 2ξωnqi +ω
2
nqi =

α, i= 0

βt, i= 1

γt2, i= 2

22

therefore,

x2 t = q2 t γ = a + q1 t β = 2at0
+ q0 t α = at20

23

Then

x2 t− t0 = q2 t− t0 γ = a + q1 t− t0 β = 2at0
+ q0 t− t0 α = at20

24

The total, analytically derived solution is given by (16), (20), and (24) as

x t = q2 t γ = −a∗h t + q2 t− t0 γ = a + q1 t− t0 β = 2at0
+ q0 t− t0 α= at20

h t− t0 25

Consider this solution for the following parameters and time range:

m= 5kg, k = 50000N m, c = 10Ns m, a = 50, t0 = 1second, 0 < t < 3 seconds

The analytical and numerical integration (see Example 2.3.1) solutions are plotted in
Figure E6.2.5(b). Both results are nearly identical.

6.2.6 Response Spectrum

The same loading history may be impressed on many different objects, for example, many
different structures are subjected to the same ground excitation during an earthquake. The
response spectrum approach provides a quick means to evaluate the peak responses for a

0 1 2 3
–5

0

5
Analytical
solution

m
m

 

0 1 2 3
–5

0

5 Numerical
integration solution

m
m

 

SecondsSeconds

Figure E6.2.5(b) Relative displacement x(t) of instrument during launch
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large class of structures, all subjected to the same loading history. This section treats this
problem only for SDOF systems, and the analysis is extended to multidegree of freedom
systems in the following section (ref. Figure 6.3.1). Consider the system subjected to base
motion excitation as depicted in Figure 6.2.5.

The relative motion between x(t) and xB(t) typically causes damage due to fracture,
yielding, or fatigue. The relative motion is represented by

xR t = x t −xB t 6 2 62

This implies that

x t = xB t + xR t , x t = xB t + xR t , x t = xB t + xR t 6 2 63

The translational equilibrium equation for this system is

mx + cxR + kxR = 0 6 2 64

Substitution of (6.2.63) into (6.2.64) yields

mxR + cxR + kxR = −mxB 6 2 65

and dividing by m yields

xR + 2ξωnxR +ω
2
nxR = −xB 6 2 66

The solution to (6.2.65) is given by the convolution integral approach (6.2.26) as

xR t =
t

0

−mxB τ

mωd
e−ξωn t−τ sin ωd t−τ dτ =

−1
ωd

t

0
xB τ e−ξωn t−τ sin ωd t−τ dτ

6 2 67

The displacement response spectrum corresponding to a given base excitation history
xB t is defined as

xSDR ωn,ξ =max xR t 0 < t < ∞ 6 2 68

Similarly, the velocity and acceleration response spectra are defined as

xSVR ωn,ξ =max xR t 0 < t < ∞ 6 2 69

xSA ωn,ξ =max xR t + xB t =max x t 0 < t < ∞ 6 2 70

Figure 6.2.5 Vibration of mass m due to base excitation xB(t)
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The objective is to evaluate the peak response for a large class of structures subjected to
the same base motion loading xB t . Therefore, xSDR , xSVR , and xSA are determined for wide
ranges ofωn and ξ utilizing the same xB t for all cases. The response spectra are then plotted
versus ωn and ξ. The base acceleration is often available in digital form as recorded at dis-
crete times as shown in Figure 6.2.6.

The base acceleration is linearly interpolated between consecutive data points
j and j+ 1 yielding

xB = x
B
j +

xBj+ 1−x
B
j

Δt
t− tj 6 2 71

Combining (6.2.66) and (6.2.71) yields

xR + 2ξωnxR +ω
2
nxR = −xBj −

xBj+ 1−x
B
j

Δt
t− tj , tj < t < tj+ 1 6 2 72

with the ICs

xR t = tj = xRj , xR t = tj = xRj 6 2 73

The solution of this initial value problem can be obtained by any of the methods pre-
sented in this section and is given by

xR t = e−ξωn t− tj Acos ωd t− tj +Bsin ωd t− tj + α+ β t− tj 6 2 74

where

Δt = tj+ 1− tj, a= −xBj , b= −
xBj+ 1−x

B
j

Δt

α=
a

ω2
n

−
2ξb
ω3
n

, β =
b

ω2
n

, A= xRj −α, B=
1
ωd

xRj −β +Aξωn

6 2 75

EXAMPLE 6.2.6 Response Spectrum for Northridge California Earthquake

Description: The ground acceleration during the Northridge California earthquake of
January 17, 1994, was recorded and is readily available in the literature.

Objective: Determine the displacement response spectrum for this earthquake.

Solution: Figure E6.2.6(a) shows an approximate, N–S ground motion acceleration record
xB t for the Northridge California earthquake. The acceleration axis is in units of
g’s (1g = 386in s2).

Figure 6.2.6 Base excitation record
described by discrete data points
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The record consists of 67 piecewise linear segments like shown in Figure 6.2.6. The
resulting displacements are solved utilizing (6.2.74) for each segment. The final conditions
of segment i become the ICs for segment i+ 1. Figure E6.2.6(b) shows the predicted dis-
placement and velocity time responses for ξ = 0 05 and Tn = 1 fn = 2π ωn = 3seconds.
The maximum displacement is approximately 9.5 in. for ξ = 0.05 and Tn = 1 fn =
2π ωn = 3seconds.

The displacement response spectrum for the Northridge earthquake is shown in
Figure E6.2.6(c). This provides the peak displacement response versus system natural
period and damping ratio. Buildings with light damping and natural period between 2.5
and 3.0 seconds are seen to be most susceptible to large, internal relative motions for the
given record of ground motion. This is a plot of

xSDR ωn,ξ =max xR t 0 < t < ∞ 1

0 5 10 15 20 25
–10

0

10

Seconds

in
.

0 5 10 15 20 25
–40

–20

0

20
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s
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Figure E6.2.6(b) Predicted relative displacement xR (in.) and velocity xR (in./s) for Northridge earthquake with
ξ= 0 05 and Tn = 1 fn = 2π ωn = 3 0 seconds
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Figure E6.2.6(a) Approximate acceleration record xB t of N–S ground motion for the Northridge California
earthquake of January 17, 1994
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The MATLAB code for this example is listed below.

clear
Zeta_plot = 0.05; Tn_plot = 3.0;
N_S_Northridge_t =[0 0.8 0.95 1 1.18 1.27 1.4 1.52 1.68 1.74 1.77 ...

1.81 1.95 1.97 2.1 2.3 2.4 2.43 2.45 2.49 2.52 ...

2.6 2.67 2.8 2.88 3.0 3.12 3.33 3.36 3.42 ...

3.5 3.55 3.7 3.82 3.92 4.02 4.21 4.3 4.34 ...

4.43 4.46 4.53 4.66 4.75 4.82 5.02 5.1 5.25 ...

5.33 5.7 6.0 6.06 6.17 6.28 6.4 6.44 6.65 6.89 ...

7.13 7.3 7.6 7.8 8.0 8.2 9 10 11].*2.17;

N_S_Northridge_g =[0 0 -.25 .45 -.43 .4 -.75 1.1 -1.75 1.15 -.65 ...

1.55 -1.1 1.75 -2.25 3.0 -1.1 0.49 -1.4 -.35 ...

-1.9 2.1 -1.9 1.08 -.7 1.6 -1.7 2.1 -1.4 1.7 ...

-.8 .8 -1.2 1.1 -1.4 0.55 -.55 1.75 -1 1.1 -1.3 ...

.8 -.7 1 -.8 .5 -.7 .4 -1.1 .75 -.6 .3 -.6 .8 ...

-.6 .3 -.6 .5 -.3 .3 -.5 .7 -.4 0 0 0 0 ]*0.1;

N_S_Northridge_inches_per_s2 = N_S_Northridge_g*386.;
plot(N_S_Northridge_t, N_S_Northridge_g)
grid on
title('Approximate N-S Ground Acceleration. Northridge
California Earthquake Jan. 17, 1994')
xlabel('Time in Seconds')
ylabel('Acceleration in g')
pause
close

nseg= size(N_S_Northridge_t,2) -1
zeta = [0.015 0.02 0.05 0.10 0.15] ;
for ij=1:1:5 % zeta loop
for k = 1:1:500 % Natural Period Loop

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

Natural period (sec)

In
ch

es

0.01

0.02
0.05
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0.15

Figure E6.2.6(c) Displacement response spectrum for the Northridge California earthquake N–S excitation for
five values of ξ
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k
XMAX(ij,k)=0;
XdMAX(ij,k)=0;
Natural_Period(k) = 0.01*k;
omegan = 2*pi/Natural_Period(k);
omegad = omegan*sqrt(1-zeta(ij)^2);
x0 = 0; xd0 = 0;

for j=1:1:nseg
if j==1
xRj = x0 ; xRdj = xd0;
else
xRj = xR(101) ; xRdj = xRd(101);
end
tj = N_S_Northridge_t(1,j);
tjp1= N_S_Northridge_t(1,j+1);
deltat = tjp1 - tj;
xddBj=N_S_Northridge_inches_per_s2(1,j);
xddBjp1 = N_S_Northridge_inches_per_s2(1,j+1);
b= -(xddBjp1 - xddBj)/deltat;
a = -xddBj;
alpha = a/omegan^2 - 2*zeta(ij)*b/omegan^3;
beta = b/omegan^2;
A = xRj - alpha;
B= 1/omegad*( xRdj - beta +A*zeta(ij)*omegan);
deltadeltat = deltat/100;
for i=1:1:101

t(i) = tj + (i-1)*deltadeltat;
xR(i)=exp(-zeta(ij)*omegan*(t(i)-tj))*(A*cos(omegad*

(t(i)-tj))+ B*sin(omegad*(t(i)-tj)) ) + alpha + beta*
(t(i)-tj);

xRd(i)=-zeta(ij)*omegan*exp(-zeta(ij)*omegan*(t(i)-tj))*
(A*cos(omegad*(t(i)-tj))+ B*sin(omegad*(t(i)-tj)) )+ ...

exp(-zeta(ij)*omegan*(t(i)-tj))*(-A*omegad*sin(omegad*
(t(i)-tj))+ B*omegad*cos(omegad*(t(i)-tj)) ) + beta;

ABSx = abs(xR(i));
ABSxd = abs(xRd(i));
if ABSx>XMAX(ij,k)

XMAX(ij,k)=ABSx;
end
if ABSxd>XdMAX(ij,k)
XdMAX(ij,k)=ABSxd;
end
t_tot(i+(j-1)*101) = t(i);
xR_tot(i+(j-1)*101) = xR(i);
xRd_tot(i+(j-1)*101) = xRd(i);

end % i
end % j
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if zeta(ij)==Zeta_plot
if Natural_Period(k)==Tn_plot

subplot(2,1,1)
plot(t_tot,xR_tot)
title('Relative Displacement. Northridge California
Earthquake Jan. 17, 1994')
xlabel('Time in Seconds')
ylabel('Displacement in inches')
grid on
msg = sprintf('Zeta = %0.2f Natural Period= %1.2f',Zeta_plot,
Tn_plot);
gtext(msg);

subplot(2,1,2)
plot(t_tot,xRd_tot)
title('Relative Velocity. Northridge California Earthquake
Jan. 17, 1994')
xlabel('Time in Seconds')
ylabel('Velocity in inches/second')
grid on
msg = sprintf('Zeta = %1.2f Natural Period= %1.2f',Zeta_plot,
Tn_plot);
gtext(msg);
pause
close
end
end
end %k
end % ij

for ij=1:1:5
plot(Natural_Period,XMAX(ij,:))
grid on
hold on
end
title('Displacement Response Spectra. Northridge California
Earthquake Jan. 17, 1994')
xlabel('Natural Period in Seconds')
ylabel('Displacement in inches')
for ij=1:1:5
msg=sprintf('zeta= %1.2f',zeta(ij));
gtext(msg)
end
pause
close

for ij=1:1:3
plot(Natural_Period,XdMAX(ij,:))
grid on
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hold on
end
title('Velocity Response Spectra. Northridge California
Earthquake Jan. 17, 1994')
xlabel('Natural Period in Seconds')
ylabel('Velocity in inches/second')
for ij=1:1:5
msg=sprintf('zeta= %1.2f',zeta(ij));
gtext(msg)
end
pause
close

6.3 MODAL CONDENSATION OF NDOF: TRANSIENT FORCED
VIBRATING SYSTEMS

The discussion of the determination of transient vibration response for arbitrary order vibrat-
ing systems begins with the general form of the linear model equilibrium equation

Mq +CTq+KTq = f t + g q,q, t N × 1 6 3 1

where (5.3.1), (5.4.212):

M = system mass matrix N ×N

CT =C+G= total rate matrix N ×N

KT =K +Kc = total stiffness matrix N ×N

f t = external forces that depend only on t N × 1

g q,q, t = external or nonlinear internal forces that depend on q, q, and t N × 1

6 3 2

A first-order form for Equation (6.3.1) may be derived by defining the velocity states
V as

q=V N × 1 6 3 3

and utilizing the identity

Mq=Mq N × 1 6 3 4

to obtain

0
N ×N

M
N ×N

M
N ×N

CT
N ×N

V
N × 1

q
N × 1

=

M
N ×N

0
N ×N

0
N ×N

−KT
N ×N

V
N × 1

q
N × 1

+

0
N × 1

f+ g
N × 1

6 3 5
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or similar with (5.4.215)

E
2N × 2N

X
2N × 1

= H
2N × 2N

X
2N × 1

+ f
2N × 1

6 3 6

Premultiplying by E−1 yields

X =A X+F t,X, X 6 3 7

where (5.4.219)

X=
V

q
, A=

−M−1CT −M−1KT

IN 0
6 3 8

F=E−1f =
M−1 f+ g

0
2N × 1 6 3 9

6.3.1 Undamped and Orthogonally Damped Nongyroscopic,
Noncirculatory Systems

For this case, (6.3.1) may be written as

Mq +C0q +Kq = f t + g q,q, t 6 3 10

Let’s assume the response is restricted to a subspace (see Section 2.6) spanned by some
of the lower modes of the undamped system. As discussed in Section 2.6,

q t
N × 1

= Ψ
N ×m

χ
m× 1

=
m

i= 1

χi t ψ i
6 3 11

where Ψ is the truncated modal matrix containing m undamped system mode shapes

Ψ= Ψ1 Ψ2 Ψm N ×M 6 3 12

and

ψ
i
= ith normal mode N × 1 6 3 13

where “normal” refers to an undamped, nongyroscopic, noncirculatory system. Substitute
(6.3.10) into (6.3.11), premultiply by ΨT, and use the orthogonality relations (5.4.44),
(5.4.46), (5.4.92), and (5.4.100) to obtain

diag mi χ + diag 2ξiωimi χ + diag miω
2
i χ = r t,q, q =ΨT f t + g t,q, q 6 3 14

The ith row of this equation states

χ i + 2ξiωiχi +ω
2
i χi =

ri
mi

i= 1,2,…,m 6 3 15

where
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ri = ithmodal force =ψT
i
f t +ψT

i
g t,q, q 6 3 16

Equation (6.3.15) is a second-order, real, uncoupled ODE so it may be solved by using
any approach discussed in Section 6.2. The ICs on the ri(t) are obtained by considering
(6.3.11) at t = 0, that is,

q 0 ΨTχ 0 =
m

i= 1

χi 0 ψ
i

6 3 17

Premultiply (6.3.17) by ψT
j
M and use orthogonality (5.4.75) to obtain

χi 0 =
1
mi

ψT
i
Mq 0 6 3 18

In a similar manner,

χi 0 =
1
mi

ψT
i
Mq 0 6 3 19

It should be noted that although Equations (6.3.18) and (6.3.19) provide formulas for
χi(0) and χi 0 , the vectors formed from

m

i= 1

χ i 0 ψ
i
,

m

i= 1

χi 0 ψ
i

6 3 20

will not in general be equal to q 0 and q 0 , respectively, since m <N. This should be read-

ily apparent by considering the m= 1 case, that is,

q 0 = χ1 0 ψ
1

6 3 21

where q 0 may have a totally arbitrary shape and ψ
1
is limited to the first mode shape.

Equations (6.3.18)–(6.3.20) provide an approximation for q 0 and q 0 that is consistent

with orthogonality of the modes and that exist in the same subspace as q t and q t . The

approximation for q 0 , q 0 , q t , and q t will improve as the number of basis vectors ψ
i

spanning the solution subspace increases. Table 6.3.1 provides an outline for the modal-
based solution procedure.

The utility of modal condensation can be appreciated by considering that finite element
structural models typically contain 1000s, 10 000s, or even 100 000s of degrees of freedom.
Thus, solution of the noncondensed EOMs would require integrating very many coupled
ODEs. The modally condensed systemmay include only about 5–10% of the modes, requir-
ing solution of only m uncoupled ordinary differential equations (6.3.15).

6.3.1.1 Mode Acceleration Approach

The number of modes required to obtain convergence of the response results may be reduced
by using the mode acceleration (MA) approach. The preceding section described the stand-
ard approach of solving for χ t in (6.3.14) and then recovering the q t from (6.3.11). The

MA approach instead recovers q using the equilibrium equation (6.3.10)
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q =K−1 f t + g t,q, q −Mq−C0q 6 3 22

where q and q are expressed in terms of the modal coordinate vector χ t in (6.3.11) yielding

q≈K−1 f t + g t,q, q −K−1MΨχ −K−1C0Ψχ 6 3 23

From (5.4.92) and (5.4.100), the orthogonally damped C0 matrix satisfies

ΨTC0Ψ= diag 2miξiωi 6 3 24

and from (5.4.75),

ΨTMΨ= diag mi 6 3 25

and from (5.4.77),

ΨTKΨ = diag miω
2
i Ψ−1K−1Ψ−T = diag

1

miω2
i

6 3 26

Premultiplication of (6.3.24) and (6.3.25) by (6.3.26) yields

Ψ−1K−1C0Ψ= diag
2ξiωi

ω2
i

6 3 27

and

Ψ−1K−1MΨ= diag
1
ω2
i

6 3 28

or

K−1C0Ψ =Ψdiag
2ξiωi

ω2
i

6 3 29

Table 6.3.1 Steps for modal condensation of the EOMs for orthogonally damped systems

1. Compute the undamped natural frequencies and mode shapes ωi andψ i
for i= 1,…,m. The number of

modes m is typically selected based on the experience of the analyst and may be checked by considering if q

has converged with the m modes
2. Use measurements or experience to assign a damping ratio ξi to each of the modes
3. Determine the modal force (ri) from (6.3.16) for each mode

4. Solve for the ICs on χi 0 ,χi 0 from (6.3.18) and (6.3.19)
5. Solve the m uncoupled, single dof equations given by (6.3.15) for χi(t). Any analytical or numerical

integration-type methods may be used for this purpose

6. Solve for q t and q t using χi(t) and (6.3.11)

q t
N×1

=
m

i= 1

χi t ψ i
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and

K−1MΨ=Ψdiag
1
ω2
i

6 3 30

Substitution of (6.3.29) and (6.3.30) into (6.3.23) yields

q≈K−1 f t + g t,q, q −Ψdiag
1
ω2
i

χ + diag 2ξiωi χ 6 3 31

The term g t,q, q may be evaluated at the preceding time step in an NI-type solution

of (6.3.14), and the bracketed terms in (6.3.31) may be evaluated from (6.3.14) as

χ + diag 2ξiωi χ = diag
1
mi

r t,q, q −diag ω2
i χ 6 3 32

The 1 ω2
i term in (6.3.31) is credited with accelerating convergence since it becomes

very small for higher modes. Combining (6.3.31) and (6.3.32) with the definition of r t in
(6.3.14) yields

q
N × 1

= Ψ
N ×m

χ
m × 1

+ β
c
f t + g t,q, q

N × 1

6 3 33

where

β
c

N ×N

= K−1

N ×N
− Ψ

N ×m
diag

1

miω2
i

m ×m

ΨT

m×N
6 3 34

Thus, it is seen that modal acceleration equation (6.3.33) for recovering q is identical to

the standard modal condensation equation (6.3.11) except for the second term on the RHS of
(6.3.33). If a full set of modes is employed, m=N Ψ is square and invertible, in which case
(6.3.26) implies

K−1 =Ψdiag
1

miω2
i

ΨT 6 3 35

Thus, if a full set of modes is used, then β
c
in (6.3.34) is zero and the MA and standard

modal condensation approaches are identical.

EXAMPLE 6.3.1 Instrumentation Tower Impact Investigation (Ex. 5.4.4 cont.)

Statement: An instrumentation module is supported by a multilayered structure consisting
of “floor” masses with an interconnecting frame. The tower is accidentally struck by mate-
rials overhung on a passing truck, as depicted in Figure E6.3.1(a). The approximate impact
force of duration τ is also shown. A simplified N mass model of the pole is shown in
Figure E6.3.1(b), where ki represents the horizontal frame stiffness between mass i and mass
i−1. The model is formed as part of an effort to evaluate acceleration-induced damage to the
instrumentation.
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The physical parameters in this model are

N = 20, H = 20m, kj = 50000N m, mj = 20kg

hi = i∗H N, ms = 50kg, FI = 500N, τ = variable
1

Damping:

ξd1 = 0 02, ξd2 = 0 02, ξd3 = ξ
d
4 = 0 025, ξd5 = 0 03 2

Objectives:

(a) Solve for the transient forced response of the tower subjected to the impact load.

(b) Compare response results between numerical integration of the full set of 20 coupled,
physical coordinate equations of motion and numerical integration of a partial set of
modal coordinate equations of motion, with and without MA.

(c) Determine the dependence of the peak response on the impact duration τ.

Assumption: Assume that the system is at rest and undeflected prior to impact.

Procedure:

(a) Form the M,K, andC0 matrices and f t vector.

The potential energy expression for the model is

U =
1
2

k1q
2
1 + k2 q2−q1

2 + k3 q3−q2
2 + + kN qN −qN−1

2 3

Figure E6.3.1(a) Tower model and impact loading

Figure E6.3.1(b) Simplified tower model diagram
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then

∂U

∂qj
=

k1 + k2 q1−k2q2, j= 1

kj + kj+ 1 qj−kjqj−1−kj+ 1qj+ 1, j 1, j N

kNqN −kNqN−1, j=N

4

or

∂U

∂q
=Kq =

k1 + k2 −k2 0 0 0

k2 + k3 −k3 0 0

k3 + k4 −k4 0

symmetric −kN

kN

q1

q2

qN

5

The kinetic energy expression for the model is

T =
1
2

m1q
2
1 +m2q

2
2 + + mN +ms q

2
N 6

then

d

dt

∂T

∂qj
=

mjqj, j N

mj +ms qj, j =N
7

or

d

dt

∂T

∂q
= diag m∗

j q 8

where

m∗
j =

mj, j N

mN +ms, j=N
9

An orthogonal damping matrix is required for comparing the solution of the phys-
ical coordinate model to the modal coordinate model. From (5.4.140), (5.4.142), and
(5.4.146), the damping matrix may be written as

C0 = μ1K+
4

l= 1

2κlωl

ml
Mψ

l
ψT
l
M 10

where

μ1 =
2ξd5
ω5

and κl = ξ
d
l −ξ

d
5
ωl

ω5
, l= 1,2,3,4 11

and ωl and ψ
l
are the lth natural frequency and mode shape of the undamped system.
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The force vector is obtained from the generalized force expression (4.5.52) and
noting that the force is applied at dof 5

Qj = δj5FIi
∂v5
∂qj

= δj5FIi
∂q5
∂qj

i=
0, j 5

FI , j= 5
12

where δj5 is a Kronecker delta. From (12),

f t =Q= 0 0 0 0 FI 0 0 T 20 × 1 13

(b) Equations of motion:
The equations of motion are obtained from Lagrange’s equation in the

form (4.7.61)

d

dt

∂T

∂q
=Q−

∂U

∂q
−C0q 14

Mq +C0q+Kq= f t N × 1 15

(c) Write code for solving the equations of motion with numerical integration of the phys-
ical coordinate equations using MATLAB’s ODE45 Runge–Kutta numerical integra-
tion routine (see Example 2.3.1). Let

v= q 16

then (15) is equivalent to the 2N first-order differential equations

q =V 17

V =M−1 f t −C0V−Kq 18

with the IC vectors

q 0 =V 0 = 0 19

(d) Modal coordinate-based solution:
Use theMATLABODE45 routine (see Example 2.3.1) to numerically integrate the

modal EOMs from (6.3.32)

χ
m× 1

= Vχ
m × 1

20

Vχ
m × 1

= diag
1
mi

m ×m

ΨT

m×N
f t
N × 1

− diag 2ξiωi

m×m

Vχ
m × 1

diag ω2
i

m ×m

χ
m× 1

21

whereΨ is the modal matrix andm is the number of modes m <<N utilized. The solu-
tion χ t of (20) and (21) is substituted into (6.3.11) to obtain the actual physical coordinate

displacements

q t
N × 1

= Ψ
N ×m

χ t
m× 1

22
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(e) Modal coordinate-based solution including modal acceleration:
Same solution procedure as (d); however, use (6.3.33) instead of (22) to obtain the

physical coordinate displacements, that is,

q
N × 1

= Ψ
N ×m

χ
m × 1

+ β
c

N ×N

f t
N × 1

23

where β
c
is defined in (6.3.34).

Solution:

(a) This problem is solved with the MATLAB code provided at the end of this example.
The natural frequencies for N = 20 are

fn 0 54 1 65 2 79 3 94 5 09 6 23 7 33 8 40 9 43 10 40

11 3 12 14 12 90 13 59 14 20 14 71 15 14 15 48 15 72 15 89 Hz
24

The modes are mass orthonormalized (5.4.39) yielding unity (5.4.41) as the value
for all modal massesmi. The C0 matrix defined in (10) and (11) and the modal matrixΨ
form an orthogonality relation (5.4.121) yielding

ξn 0 02 0 02 0 025 0 025 0 03 0 037 0 043 0 050 0 056 0 061

0 067 0 072 0 076 0 080 0 084 0 087 0 089 0 091 0 093 0 094
25

which agrees with (2). The lowest five mode shapes are shown in Figure E5.4.4(c).

(b) Physical coordinate solution:
Figure E6.3.1(c) shows the response of the pole at four locations (mass nos. 1, N/4,

N/2, and N) with an impulse duration of τ = 1 second. The MATLAB ODE45 integrator
(ref. Example 2.3.1) is employed to solve (17) and (18) for the ICs given by (19).

(c) Modal coordinate solution:
The responses are also obtained by numerically integrating the modal coordinate

EOMs given in (20) and (21) with χ = χ = 0 at t = 0. The MATLAB numerical integra-

tion option ODE45 (ref. Example 2.3.1) is utilized for this purpose. Figure E6.3.1(d)
shows the responses when 10% m= 2 and 15% m= 3 of the modes, respectively,
are utilized in the standard physical coordinate recovery formula (22).

0 1 2 3 4 5 6 7 8 9 10
–20

0
20

m
m

Mass 1 

0 1 2 3 4 5 6 7 8 9 10
–100

0
100

m
m

Mass N/4 

0 1 2 3 4 5 6 7 8 9 10
–100

0
100

m
m

Mass N/2 

0 1 2 3 4 5 6 7 8 9 10
–100

0
100

m
m

Mass N

Seconds

Figure E6.3.1(c) Displacements from direct integration of the physical coordinate EOMs for τ = 1 second
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(d) Modal coordinate solution with modal acceleration:
Figure E6.3.1(e) shows the responses when the modal coordinate EOMs are solved

with m= 2 and m = 3 modes and the physical coordinates are obtained using the modal
acceleration method (6.3.33).

Summary: This example provided a comparison between numerical integration of the
physical coordinate EOMs and the modal coordinate EOMs for 10 and 15% of the modes.
The latter approach is applied with and without modal acceleration for the determination of
the physical coordinate responses from the modal coordinate responses. Table E6.3.1(a)
summarizes the peak response predications for the various cases. The results show an
improvement resulting from application of the modal acceleration approach to the modal
condensation solution. The numbers in parentheses are the actual wall clock, elapsed times
(in seconds) for performing the integrations. The improved accuracy demonstrates an
advantage of using the modal condensation/acceleration approach. Figure E6.3.1(f) shows
the peak response over the entire model versus impact duration time τ in Figure E6.3.1(a).
The peak increases significantly up to τ = 0 5 seconds and then remains constant at approx-
imately 99 mm for longer impact durations. The corresponding static response of masses
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Figure E6.3.1(d) Displacements by integration of modal coordinate EOMs with (i) m= 2 modes and
(ii) m= 3 modes
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Figure E6.3.1(e) Modal acceleration displacements with (i) m= 2 modes and (ii) m= 3 modes
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5 through 20 to the 500 N force at mass 5 is δ=F keq =F kj 5 = 500 10000 = 50mm.
This illustrates the importance of performing a dynamic simulation since the vibration over-
shoot response is twice as large as the static response to the same force.

The preceding results were determined from the following MATLAB code.

clear
global N M K Co H height MINV mmod RedModMat diag2zetom omsqmat
iopt tau
% NOTE THAT N MUST BE A MULTIPLE OF 4 FOR PLOTTING PURPOSES AND
% IORDER MUST BE CHANGED IF N IS CHANGED
N=20 ; H = 20 ; k=50000 ; m=20 ; h = H/N ; ms = 50. ;
zetadesired = [.02 .02 .025 .025 .03 ];% desired damping ratios
for modes 1-5
height = h*linspace(1,N,N)
iopt = 2; % =0 for direct integration , =1 for modal solution
% =2 for modal solution with modal acceleration
mmod = 3 ; % No. of modes used in the modal solution
tau = 1.0 % impact duration
% Form mass matrix and its inverse
M= m*eye(N); M(N,N) = M(N,N) + ms ; MINV = inv(M) ;
% Form Stiffness Matrix
K= zeros(N,N);
kel = k*[1 -1 ; -1 1 ] ;
for i=1:1:N-1
K(i:i+1,i:i+1) = K(i:i+1,i:i+1) + kel ;

end
K(1,1) = K(1,1) + k ;

Table E6.3.1(a) Peak response summary (wall clock computation time in second)

No. of modes Physical coordinate integration

Modal coordinate integration

Without mode acceleration With mode acceleration

— 98.56 (4.56) — —

2 — 108.89 (1.32) 104.0 (1.65)
3 — 101.40 (1.98) 99.16 (2.31)

0 0.5 1 1.5 2 2.5
20

40

60

80

100

Impact duration τ (s)

m
m

Figure E6.3.1(f) Peak displacement response of the system versus impact duration (τ)
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% Determine the undamped system's natural frequencies and mode
shapes
[modalmatrix, otemp] = eig(K,M) ;
omegasquared = diag(otemp);
omega =sqrt(omegasquared);
natfreq = omega/2/pi;
% In general, the natural frequencies may not be arranged in
ascending order
% in omegasquared , omega and natfreq . For this example the
ordering is
iorder= [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];
% Reorder mode shapes and natural frequencies in ascending order
as follows
for i=1:1:N

orderomega(iorder(i)) = omega(i) ;
ordernatfreq(iorder(i)) = natfreq(i) ;
ordermodmat(1:N,iorder(i)) = modalmatrix(1:N,i) ;

end
orderomega
ordernatfreq

% Determine the Modal Masses of the original modes (Use of diag
here insures % that no off diagonal terms in modalmassmatrix are
negative which will cause % there sqrt to be complex below)
modalmass = diag(ordermodmat'*M*ordermodmat);
modalmassmatrix=diag(modalmass);
% Rescale the modeshapes so that all the modal masses equal one.
ordermodmat=ordermodmat*inv(sqrt(modalmassmatrix));
% Determine the Modal Masses of the "mass orthonormalized" mode
shapes
modalmass = ordermodmat'*M*ordermodmat;
% The modal masses are now all unity and the modalmass matrix is
the identity % matrix
% Plot 5 lowest modes
iplt=0
if iplt==1
plot(ordermodmat(1:N,1),height,'ok-',ordermodmat(1:N,2),
height,'xk-',...
ordermodmat(1:N,3),height,'+k-',ordermodmat(1:N,4),
height,'*k-',...
ordermodmat(1:N,5),height,'sk-')
grid on
xlabel('mode component (dim)');
ylabel('height in meters');
for i=1:1:5
msg=sprintf('<<<mode %2.f ',i);
gtext(msg)

end
pause
end % iplt
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% Form the orthogonal damping matrix in eqs.10 and 11
mu1 = 2*zetadesired(5)/orderomega(5) ;
dum=zeros(N,N);
for i=1:1:4
zeta = zetadesired(i)-zetadesired(5)*orderomega(i)/

orderomega(5);
dum = dum+2*zeta*orderomega(i)*ordermodmat(1:N,i)

*ordermodmat(1:N,i)' ;
end
Co = mu1*K + M*dum*M ;
% Check if Co is orthogonal and if the desired zetas are obtained
ZETACHECK = 0.5*ordermodmat'*Co*ordermodmat*inv(diag
(orderomega));

% Begin Direct Numerical Integration Solution With Matlab ODE45
Option
tfin = 10 ; % integrate response for 10 seconds
tspan=linspace(0,tfin,800); % Times for plotting
if iopt == 0 % Use Matlab ODE45 for direct integration of the EOM's
Qinitial = zeros(2*N,1); % Zero initial deflections and
velocities
[t,Q] = ode45('CodeE6_3_1sub',tspan,Qinitial);

else % Do Modal Based Solution
% Form the reduced modal matrix with only the lowest mmod modes as

columns
RedModMat=ordermodmat(1:N,1:mmod);
% Form the reduced 2*zeta*omega matrix
diag2zetom = RedModMat'*Co*RedModMat ;
% Form The omega^2 matrix
omsqmat = zeros(mmod,mmod);
for i=1:1:mmod
omsqmat(i,i) = orderomega(i)^2 ;

end
Qinitial = zeros(2*mmod,1); % Zero initial modal coordinate
deflections

% and velocities
[t,Q] = ode45('CodeE6_3_1sub',tspan,Qinitial);
% Determine the physical coordinate responses from the modal
coordinate

% responses
for i =1:1:800
Q(i,1:N)=Q(i,1:mmod)*RedModMat' ;

end

if iopt==2 % Use mode acceleration method
betac = inv(K) - RedModMat*inv(omsqmat)*RedModMat'
for i=1:1:800
f = zeros(N,1);
if i<81
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f(N/4,1) = 500 ;
end

Q(i,1:N) = Q(i,1:N) + f'*betac' ;
end

end
end % if iopt

maxresp= max(max(abs(1000*Q(1:800,1:N))))

subplot(4,1,1);
plot(t',1000*Q(1:800,1));
grid on
ylabel('q mm')
msg = sprintf('Mass 1 ');
gtext(msg);
if iopt>0
msg=sprintf('The maximum response= %2.f in mm',maxresp);
end
if iopt==0
msg=sprintf('The maximum response= %2.f in mm', maxresp);
end
gtext(msg);
pause
subplot(4,1,2);
plot(t',1000*Q(1:800,N/4));
grid on
ylabel('q mm')
msg = sprintf('Mass N/4 ');
gtext(msg);
pause
subplot(4,1,3);
plot(t',1000*Q(1:800,N/2));
grid on
ylabel('q mm')
msg = sprintf('Mass N/2 ');
gtext(msg);
pause
subplot(4,1,4);
plot(t',1000*Q(1:800,N));
grid on
ylabel('q mm')
msg = sprintf('Mass N ');
gtext(msg);xlabel('time in sec');
pause
close

% Plot maximum response values vs. tau
tauvec=[.05 .1 .125 .15 .2 .25 .3 .4 .5 .675 .75 .875 1.0 1.25 1.5
2.0 2.5];
mxresvec= [21 42 51 59 74 84 90 95 97 98 98 98.4 99 99 99 99 99 ];
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plot(tauvec,mxresvec,'k-') ;
grid on
xlabel('Impact duration tau in sec.') ;
ylabel(' Disp mm') ;

subfunction for Example 6.3.1
function Qdot = CodeE9_3_1sub(t,Q)
global N M K Co H height MINV mmod RedModMat diag2zetom omsqmat
iopt tau
f = zeros(N,1);
if t<tau

f(N/4,1) = 500 ;
end

if iopt == 0 % Directly integrate EOM's with Matlab ODE45
Qdot =zeros(2*N,1) ;
Qdot(1:N,1)=Q(N+1:2*N,1);
Qdot(N+1:2*N,1) = MINV*( f - Co*Q(N+1:2*N,1) - K*Q(1:N,1) ) ;
else % Integrate the modal EOM's
Qdot = zeros(2*mmod,1);
Qdot(1:mmod,1) = Q(mmod+1:2*mmod,1) ;
Qdot(mmod+1:2*mmod,1) = RedModMat'*f - diag2zetom*Q(mmod
+1:2*mmod,1) - ...
omsqmat*Q(1:mmod,1) ;

end

6.3.2 Unconstrained Structures

An unconstrained structure or machinery component such as an airplane, satellite, or rotat-
ing shaft can be displaced as a rigid body mode without applying external loads or reactions.
Therefore, from (5.4.54), (5.4.55), (5.4.57), and (5.4.58),

Kq
rig
= 0 N × 1 6 3 36

Mq
rig
= 0 N × 1 6 3 37

q
rig
=

nrig

l= 1

αrig0, lψ rig, l
+ αrig1, l ∗ t∗ψ rig, l

6 3 38

ωrig, l = 0 l= 1,2,…,nrig no of rigid body modes 6 3 39

The rigid body modes are obtained by solving (6.3.36) where K is singular. The ψ
rig, l

therefore are the basis vectors that span the null space of K (see Section 2.6). The αrig0,l and
αrig1,l in (6.3.38) are obtained by considering ICs as in ((5.4.60) and (5.4.61)). Partition the
modal matrix into two groups (rigid body and elastic body modes):

Ψ= ψ
R1

ψ
Rnrig

ψ
e1

ψ
ene = ΨR Ψe 6 3 40

where
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ψ
Rj
= jth rigid body mode, ψ

el
= lth elastic flexible body mode 6 3 41

Then by (2.6.31) and (6.3.36),

KΨR = Kψ
R1

Kψ
R2

Kψ
Rnrig

= 0 6 3 42

Consider an undamped system represented by the equilibrium equation

Mq +Kq = f t N × 1 6 3 43

Utilize (2.6.30) to transform coordinates according to

q t =
nrig

l= 1

ηRi t ψRi
+

ne

j= 1

ηej t ψ ej
= ΨR

N × nrig

∗ η
R
t

nrig × 1

+ Ψe
N × ne

∗ η
e
t

ne × 1

= q
R
t + q

e
t 6 3 44

where ηRi and ηej are the rigid and elastic body modal coordinates. Substitute (6.3.44)
into (6.3.43):

MΨRηR +MΨeηe +KΨRηR +KΨeηe = f t 6 3 45

The third term in (6.3.45) is zero by (6.3.42). Premultiply (6.3.45) byΨT
R and utilize the

orthogonality conditions (5.4.35) and (5.4.45)

ΨT
RMΨe = 0 6 3 46

ΨT
RKΨe = 0 6 3 47

which results since the elastic modes have distinct natural frequencies from the rigid body
modes to obtain

ΨT
RMΨRηR =Ψ

T
Rf t 6 3 48

η
R
=M

−1

R ΨT
R f t nrig × 1 6 3 49

where the rigid body mode modal mass matrix is

MR =Ψ
T
RMΨR =M

T

R nrig × nrig 6 3 50

Equation (6.3.49) may be solved for the rigid body modal coordinates ηRi(t), that is, the
first-order form

VηR =M
−1

R ΨT
R f t 6 3 51

η
R
=VηR 6 3 52

can be numerically integrated (Section 6.4). Multiply (6.3.45) by ΨT
e and utilize the trans-

posed form of the orthogonality conditions (6.3.46) and (6.3.47)

ΨT
eMΨR = 0

T = 0, ΨT
eKΨR = 0

T = 0 6 3 53

to obtain the governing equation for the elastic modal coordinates
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diag mei ηe + diag meiω
2
ei ηe =Ψ

T
e f t 6 3 54

where mei and ωei are the elastic mode modal masses and natural frequencies, respectively.
Equation (6.3.54) yields the following uncoupled ODEs for the elastic mode modal
coordinates

ηej +ω
2
ejηej =

1
mej

ψT
ej
f t =

f ej
mej

6 3 55

where

f ej =ψ
T
ej
f t = jth elastic mode’smodal force 6 3 56

mej =ψ
T
ej
M ψ

ej
= jth elastic mode’smodal force 6 3 57

6.3.2.1 Separation of Elastic Body Motion Component

Substitute (6.3.49) into (6.3.45)

MΨeηe +KΨeηe = f t −MΨRηR = I−MΨRM
−1

R ΨT
R f t 6 3 58

Define

H = I−ΨRM
−1

R ΨT
RM 6 3 59

or

HT = I−MTΨRM
−T

R ΨT
R = I−MΨRM

−1

R ΨT
R 6 3 60

since M andMR are symmetric. Then (6.3.58) may be written as

MΨeηe +KΨeηe =H
Tf t 6 3 61

Some special properties of theHmatrix are derived as follows. Multiply (6.3.61) byΨT
R

and employ orthogonality (6.3.46 and 6.3.47) to obtain

ΨT
RH

Tf t = 0 nrig × 1 6 3 62

which implies by (6.3.40) that

ψT
Rj
HTf t = 0 6 3 63

Thus, HTf t is orthogonal with respect to the rigid body modes ψT
Rj
, for all time t.

From (6.3.50) and (6.3.59),

HΨR =ΨR−ΨRM
−1

R ΨT
RMΨR =ΨR−ΨRM

−1

R MR = 0 6 3 64

From (6.3.46) and (6.3.59),

HΨe =Ψe−ΨeM
−1

R ΨT
RMΨe =Ψe 6 3 65
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The elastic body motion component of the total response vector q t may be separated

out from the total response by considering (6.3.44), (6.3.64), and (6.3.65):

Hq t =HΨRηR t +HΨe ηe t =Ψe ηe t = q
e
t

= elastic body component of the total response, by 6 3 44 6 3 66

Thus, the H may be viewed as a “filter” matrix which produces only the elastic com-
ponent of the response when it premultiplies the total (rigid + elastic) response vector.

EXAMPLE 6.3.2 Free Fall of a Crate with Flexibly Mounted Contents

Description: The crate shown in Figure E6.3.2(a) contains two instruments which are pack-
aged with a compliant material. The package is ejected out of the cargo hold of an aircraft.

Objective: Determine the relative motions of the packages with respect to the crate for a
short period of time (T), after ejection of the crate and prior to parachute deployment.

Assumptions:

(a) The crate does not rotate from 0 ≤ t ≤T .

(b) The wind force fw acts like a short ramp and then a step from 0 ≤ t ≤ T .

(c) The packages do not rotate in the crate.

Solution: The solution begins by considering the initial deflections of the masses in the crate
in the translating nonaccelerating frame attached to the plane (Figure E6.3.2(b)). These are
listed in the following table and may be calculated as follows:

kvΔ6 + kv Δ6−Δ4 =m2g, kvΔ4−kv Δ6−Δ4 =m1g 1

Δ4 =
2m1 +m2 g

3kv
, Δ6 =

2m2 +m1 g

3kv
2

q1 q2 q3 q4 q5 q6

Displacements 0 0 0 −Δ4 0 −Δ6

Velocities 0 0 0 0 0 0

The free body diagrams for the three masses are shown in Figure E6.3.2(c).
The spring forces are

fHc1 = 2kH q3−q1 , fHc2 = 2kH q5−q1 ,

fvc1 = kv q4−q2 , fvc2 = kv q2−q6 , f12 = kv q6−q4
3

Applying Newton’s law yields

mcq1 = fHc1 + fHc2 + fw = −4kHq1 + 2kHq3 + 2kHq5 + fw 4

mcq2 = fvc1− fvc2−mcg= −2kvq2 + kvq4 + kvq6−mcg 5

m1q3 = − fHc1 = −2kHq3 + 2kHq1 6

m1q4 = f12− fvc1−m1g= kv q6−q4 −kv q4−q2 −m1g 7
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Figure E6.3.2(a) Crate with elastically mounted components

Figure E6.3.2(b) Initial static deflections for packages

Figure E6.3.2(c) Free body diagrams for crate and packages
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m2q5 = − fHc2 = −2kHq5 + 2kHq1 8

m2q6 = fvc2− f12−m2g= kv q2−q6 −kv q6−q4 −m2g 9

The matrix–vector form of these equations is

Mq +Kq= f t 6 × 1 10

where

M
6 × 6

= diag mc mc m1 m1 m2 m2 11

K
6 × 6

=

4kH 0 −2kH 0 −2kH 0

0 2kv 0 −kv 0 −kv

−2kH 0 2kH 0 0 0

0 −kv 0 2kv 0 −kv

−2kH 0 0 0 2kH 0

0 −kv 0 −kv 0 2kv

12

f
6 × 1

= fw −mcg 0 −m1g 0 −m2g
T 13

The horizontal wind force has the form shown in Figure E6.3.2(d).
Therefore,

fw t =
1000∗ t, t < 0 5 second Newtons

500, 1 ≤ t ≤ 3 seconds
14

The mass and stiffness values are

mc = 100kg, m1 = 25kg, m2 = 20kg, kH = 1500N m, kv = 2000N m 15

The natural frequencies (ωi) and mode shapes ψ
i
are obtained by solving

ω2
i Mψ

i
=Kψ

i
16

λψ
i
=Aψ

i
, λ=ω2

i , A=M−1K 17

Modes 1 and 2 in Figure E6.3.2(e) are rigid body modes and are not unique since any
linear combination of these modes is also a valid rigid body mode. Rigid body modes may
also be selected by inspection. For example, both

Figure E6.3.2(d) Wind force time history
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ψ
rig horizontal

= 1 0 1 0 1 0 T, ψ
rig vertical

= 0 1 0 1 0 1 T 18

satisfy the rigid body mode condition

Kψ
rig
= 0 19

for K defined in (12). The rigid body modes are not orthogonal with respect to each other
(because ω= 0 is a repeated eigenvalue); however, the rigid body and elastic modes are
orthogonal, and the elastic modes are orthogonal with respect to each other. The transient
response may be obtained by numerically integrating (Section 6.4) Equation (10) in its first-
order form

V = −M−1Kq +M−1f t 6 × 1 20

q=V 6 × 1 21

or

X =AX+ f 12 × 1 22

X =
V

q
, A=

0 −M−1K

I 0
, f =

M−1f

0
23

The elastic displacements are then obtained by applying the “filter” equation (6.3.66)

q
e
t =Hq t 24

Figure E6.3.2(f) shows the total displacements, and Figure E6.3.2(g) shows the elastic
displacements obtained by this approach. The elastic part of the transient response may also
be obtained by integrating the elastic mode modal coordinate differential equations (6.3.54)

ηej +ω
2
ejηej =

1
mej

ΨT
ej f t 25

1 2 3 4 5 6
0

0.5

1

(1) 0.00

1 2 3 4 5 6
0

0.5

1
(2) 0.00

1 2 3 4 5 6
–0.2

0

0.2
(3) 1.80  

1 2 3 4 5 6
–0.2

0

0.2
(4)  1.82  

Dof no.

1 2 3 4 5 6
–0.2

0

0.2
(5)  2.24  

Dof no.

1 2 3 4 5 6
–0.2

0

0.2
(6)  2.63  

Dof no.

Figure E6.3.2(e) Natural frequencies (Hz) and mode shape components versus degree of freedom number for
the crate and packages
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with ICs obtained from

η
R
0

η
e
0

= ΨR Ψe
−1
q 0 ,

η
R
0

η
e
0

= ΨR Ψ e
−1
q 0 26

Another approach for obtaining the modal coordinate ICs utilizes orthogonality, that is,
from (6.3.44),

ψT
ek
Mq 0 = ηRi 0 ψT

ek
Mψ

Ri
+ ηej 0 ψT

ek
Mψ

ej
= ηek 0 mek 27

ηek 0 =
1
mek

ΨT
ekMq 0 28

Similarly,

ηek 0 =
1
mek

ΨT
ekMq 0 29

The elastic response is then obtained using (6.3.44)

q
e
t =Ψe ηe t 30

The numerical integration utility MATLAB ODE45 of Section 2.3 requires first-order
differential equations (Example 2.3.1) so (25) is written as
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Figure E6.3.2(f) Total displacements in meters for 0 ≤ t ≤ 2 seconds utilizing numerical integration of physical
coordinate
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Figure E6.3.2(g) Elastic displacements (mm) for 0 ≤ t ≤ 2 seconds by physical coordinate integration with
elastic response filter in Equation (24)
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vηej = −ω2
ejηej +

1
mej

ΨT
ej f t , ηej = vnej 31

where j= 1,2,3,4 for the four elastic modes. The state vector integrated by MATLAB
ODE45 (ref. Example 2.3.1) for this approach has the form

Xmodal = vηe1 vηe2 vηe3 vηe4 ηe1 ηe2 ηe3 ηe4
T 32

Figure E6.3.2(e) illustrates the two rigid body and four elastic mode shapes. The rigid
body modes (1 and 2) have zero (0) natural frequencies. Figure E6.3.2(f) shows the total
displacements for all six coordinates, where the maximum total displacement is shown to
be 20 m. Clearly, the rigid body modes dominate this response. There is an elastic mode
(vibration) component of the response as shown in Figure E6.3.2(g) for 0 ≤ t ≤ 2 seconds.
This plot is made utilizing the elastic response filter Equation (24) and MATLAB
ODE45 integration of the physical coordinate equations. Figure E6.3.2(h) shows the elastic
displacements for 0 ≤ t ≤ 2 seconds utilizing Equation (30) andMATLABODE45 numerical
integration of modal coordinates. Figure E6.3.2(i) shows the total displacements for
0 ≤ t ≤ 6 seconds with a maximum displacement of 180 m. Figure E6.3.2(j) was made with
the same conditions (elastic response filter, Eq. 24, approach) as Figure E6.3.2(g) however

0 0.5 1 1.5 2
0

5

10

Crate elastic—Xm
m

0 0.5 1 1.5 2
–50

0

50
Mass M1 elastic—X 

m
m

0 0.5 1 1.5 2
–20

0

20
Mass M2 elastic—X

SecondsSeconds

m
m

0 0.5 1 1.5 2
–50

0

50

Crate elastic—Ym
m

Seconds

Seconds

0 0.5 1 1.5 2
–100

0

100

Mass M1 elastic—Ym
m

Seconds
0 0.5 1 1.5 2

–100

0

100

Mass M2 elastic—Y

Seconds

m
m

Figure E6.3.2(h) Elastic displacements (mm) for 0 ≤ t ≤ 2 seconds by modal coordinate integration

0 2 4 6
0

50

100
Crate—X

0 2 4 6
0

50

100
Pkg. M1—X

0 2 4 6
0

50

100
Pkg. M2—X

0 2 4 6
–200

–100

0

Crate—Y

Seconds

0 2 4 6
–200

–100

0

Mass M1—Y

Seconds

0 2 4 6
–200

–100

0

Mass M2—Y

Seconds

Figure E6.3.2(i) Total displacements (m) for 0 ≤ t ≤ 6 seconds
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Figure E6.3.2(j) Elastic displacements for 0 ≤ t ≤ 6 seconds by physical coordinate integration
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for 0 ≤ t ≤ 6 seconds. Note the divergence in the Crate Elastic x amplitudes due to a numerical
instability. There is no physical reason for unstable response (Section 5.6), so it must be a
numerical integration-induced instability. This type of divergence may result when spring
forces are obtained using the difference between very large displacements to obtain the very
small relative displacements. Figure E6.3.2(k) has the same conditions as Figure E6.3.2(j);
however, the integration of the modal coordinates yields numerically stable results.

NI Tolerance
This example illustrates the limitations encountered when implementing some numerical
solutions. The numerical instability shown in the Crate Elastic x and m2 Elastic x plots in
Figure E6.3.2( j) renders the results unreliable. Fortunately, MATLAB is a very versatile
code and offers the user a quick fix simply by lowering an integration error tolerance.
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Figure E6.3.2(k) Elastic displacements for 0 ≤ t ≤ 6 seconds by modal coordinate integration
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Figure E6.3.2(l) Elastic displacements for 0 ≤ t ≤ 6 seconds by physical coordinate integration and using

RelTol = 10−4 in MATLAB ODE45 numerical integration
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The default absolute error tolerance is AbsTol = 10−6, and the default relative error tolerance
RelTol = 10−3. These tolerances may be lowered with the following MATLAB commands:

RELTOL=1.0e-04; ABSTOL = 1.0e-06;
options = odeset('RelTol',RELTOL,'AbsTol',ABSTOL);
[t,x] = ode45('CodeE_6_3_2_sub',tspan,InitialConditions,
options);

The displacement responses are shown in Figure E6.3.2(l). Clearly, by comparison with
Figure E6.3.2(j), the numerical instability has been removed by lowering the relative error
tolerance from 10−3 to 10−4.

6.3.3 Base Excitation

The analysis in Equations (6.2.62)–(6.2.75) provided a systematic approach for obtaining
the peak response of a single dof model to arbitrary base excitation, as a function of natural
frequency or damping ratio. This methodology can be extended to general N degree of free-
dom models by utilizing uncoupled modal coordinates. Consider a system subjected to base
excitation xB(t) only in the X direction as depicted in Figure 6.3.1. The frame-type model has
two translational and one rotational degree of freedom at each node.

The system displacement vector is expressed in terms of absolute and relative coordi-
nates as follows:

X=

x1

x2

x3

x4

x5

x6

xN−2

xN−1

xN

=

xB + xR1

xR2

xR3

xB + xR4

xR5

xR6

xB + xR,N−2

xR,N−1

xR,N

=

xR1

xR2

xR3

xR4

xR5

xR6

xR,N−2

xR,N−1

xR,N

+

1

0

0

1

0

0

1

0

0

∗xB t =XR +HxB t 6 3 67

Figure 6.3.1 Multidegree of freedom, two-
dimensional model with base excitation
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The equilibrium equation for the entire (linear) system has the standard form

MX +CXR +KXR =F t 6 3 68

where the stiffness-related forces are caused by the relative displacements and the damping-
related forces are caused by the relative velocities within the system. Substitution of (6.3.67)
into (6.3.68) yields

MXR +CXR +K XR = −MHxB t 6 3 69

Similar with (6.3.11), transform the relative displacement vector into modal coordinates

XR t
N × 1

= Ψ
N ×m

χ
m× 1

=
m

i= 1

χi t ψ i
6 3 70

where Ψ is the truncated modal matrix containing m undamped system mode shapes

Ψ= Ψ1 Ψ2 Ψm N ×M 6 3 71

and

ψ
i
= ith normal mode N × 1 6 3 72

where “normal” refers to an undamped, nongyroscopic, noncirculatory system. Substitute
(6.3.70) into (6.3.69), premultiply by ΨT, assume C is an orthogonal damping matrix,
and use the orthogonality relations (5.4.44), (5.4.46), and (5.4.121) to obtain

diag mi χ + diag 2ξiωimi χ + diag miω
2
i χ = r t,q ,q = −ΨTMHxB t 6 3 73

Considering this equation row-wise yields

χ i + 2ξiωiχ i +ω
2
i χi = −ΛixB t i= 1,2,…,m 6 3 74

where

Λi =
ψT
i
M H

mi
= ithmodal participation factor 6 3 75

and ξi,ωi, and mi are the ith mode damping ratio, undamped natural frequency, and modal
mass, respectively.

The only difference between the forms of (6.3.74) and the single degree of freedom
base-excited system described by (6.2.66) is that the source (RHS) term is multiplied by
the modal participation factor Λi in Equation (6.3.74). Thus, the ith modal coordinate
response may be written as

χi t =Λiwi t 6 3 76

where wi(t) is the response of the single degree of freedom system with damping ratio ξi,
natural frequency ωi, and mass mi to the base excitation xB(t), that is, from (6.2.67)

wi t =
−1
ωdi

t

0
xB t e−ξiωi t−τ sin ωdi t−τ dτ 6 3 77
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The total response of theN degree of freedommodel is given by (6.3.70) and (6.3.76) as

XR t
N × 1

= Ψ
N ×m

χ
m × 1

=
m

i= 1

χi t ψ i
=

m

i= 1

Λiwi t ψ i
6 3 78

This may be written as

XR t
N × 1

=
m

i= 1

XRi t 6 3 79

where

XRi t =Λiwi t ψ i
6 3 80

The maximum relative displacement response for the ith mode contribution is
expressed in terms of (6.3.80) and the displacement response spectrum (6.2.68)

max XRi t =Λiψ i
wSD
i ωi,ξi 6 3 81

wherewSD
i ωn,ξ is the single degree of freedom displacement response spectrumwhich, for

the sake of illustration, is given for the N–S component of the 1994 Northridge California
earthquake in Figure E6.2.6(c).

From (6.3.79) and (6.3.81), a very conservative estimate of the maximum total relative
displacements may be obtained from

max XR t ≈
m

i= 1

max XRi t ≈
m

i= 1

Λiψ i
wSD
i ωi,ξi 6 3 82

This assumes that all of the maximum modal contributions occur at the same time,
which is unlikely. More accurate (less conservative) estimates may be obtained by treating
the problem in a statistical sense which is discussed in earthquake engineering texts
(Tedesco et al., 1999; Villaverde, 2009).

6.3.4 Participation Factor and Modal Effective Mass

Imposed ground, support, or base motion excitation has wide-ranging applications including
earthquake excitation and satellite orientation control. Here, we are interested in determining
which modes dominate in the response of a flexible body to support excitation. This has the
practical use of selecting which modes to retain in a transient simulation utilizing a modal
condensation approach ((6.3.11) and (6.3.33)). The response is divided into rigid body dis-
placements that result from the support motion being applied quasistatically plus the elastic
response component representing the relative motions with respect to the support motions.
The relative importance of the individual modes in the relative motion of the structure with
respect to the imposed base motion is ranked by using the modal participation factor or
effective model mass as derived in the following analysis.

Let xRi, i= 1,2,…,NR be the imposed support displacements that cause the body being
modeled to move as a rigid body, if the xRi were imposed quasistatically. These are initially
identified with a mass matrix in the following analysis. This mass matrix is eventually
ignored since the xRi are imposed (known) so there is no need to solve for them. The xRi
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must be selected so that the body is constrained against all rigid body motions if the xRi are
held fixed xRi = 0, i= 1,2,…,NR. Setting xRi = 1 and xRj = 0 for j i causes the entire body to
undergo a rigid body motion in the xRi direction.

Let

xR = xR1 xR2 xRNR

T NR × 1 6 3 83

and

xe = vector of all remaining displacements Ne × 1 6 3 84

The total system displacement vector then becomes

X =
xR
xe

N × 1, N =NR +Ne 6 3 85

The equations of motion are

MX +K X=F 6 3 86

or in partitioned matrix form

MRR MRe

MeR Mee

xR
xe

+
KRR KRe

KeR Kee

xR
xe

=
FR

Fe

6 3 87

Suppose that the system is moved quasistatically through a rigid body motion by pre-
scribing displacements in xR while being in an external force-free state. In this case, (6.3.87)
becomes

KRR KRe

KeR Kee

xR
xe

=
0

0
6 3 88

The bottom row implies that

xe = −K−1
ee KeRxR 6 3 89

The inverse in (6.3.89) will exist if the xR are selected so that the body is constrained
against all rigid body motions if xR = 0. The xe in (6.3.88) then are the resulting rigid body
motions of all degrees of freedom, excluding those in xR. The total system motion in this
rigid body (base motion) mode is

X=
xR
xe

= T xR 6 3 90

where

T= T1 T2 TNR
=

I

−K−1
ee K eR

N ×NR 6 3 91
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The degrees of freedom in xe also undergo elastic motion which may be viewed as the
motion of the degrees of freedom relative to the imposed base motions. This component will
be represented as the sum of the flexible body mode shapes corresponding to a fixed xR = 0
boundary condition. The free vibration equation in this case is obtained from (6.3.87) as

Meexe +Keexe = 0 6 3 92

Let

xe =ψ l
eiωl t 6 3 93

−ω2
l Mee +Kee ψ

l
= 0 6 3 94

from which the fixed (xR) boundary modes ψ
l
and natural frequencies ωl are extracted.

Define the modal matrix as

Ψe = ψ
1

ψ
2

ψ
Ne

Ne ×Ne 6 3 95

The flexible (relative motion) component of the total system motion may then be
expressed by

X =
xR
xe

=Ψβ 6 3 96

where

Ψ= Ψ1 Ψ2 ΨNe
=

0

Ψ e

N ×Ne 6 3 97

and β is a Ne × 1 vector of modal coordinates. The complete motion of the system from

(6.3.90) and (6.3.96) may then be expressed as

X=
xR
xe

=Γ X N × 1 6 3 98

where

Γ = T Ψ N ×N 6 3 99

and

X =
xR
β

6 3 100

Substitute (6.3.98) into (6.3.86) to obtain

M X+K X =F 6 3 101
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where

M =ΓTM Γ =
TT

ΨT
M T Ψ =

TTMT TTMΨ
ΨTMT ΨTMΨ

=
MBB MBF

MFB MFF

6 3 102

and

K =ΓTK Γ =
TTK T TTKΨ
ΨTK T ΨTKΨ

=
KBB KBF

KFB KFF

6 3 103

Mass Matrix

Consider the individual terms in (6.3.102):

MBB ij = TTMT ij = T
T
i M Tj 6 3 104

and Ti is a vector containing the displacements of all degrees of freedom corresponding with

xR i
= 1 and all other xR j

= 0 6 3 105

For example, for a 2D truss (Figure 4.8.11), each node has an x and a y displacement, so
for this case,

T1 = 1 0 1 0 1 0 0 T 6 3 106

T2 = 0 1 0 1 0 1 1 T 6 3 107

NR = 2 6 3 108

For a lumped mass matrix,

M=

m1

m1 0

0 mN 2

mN 2

6 3 109

TT1MT1 = T
TMT=

N 2

i = 1

mi =mtotal 6 3 110

TT1MT2 =T
T
2MT1 = 0 6 3 111

Therefore, for this case,

MBB = T
TMT=

mtotal 0

0 mtotal
6 3 112

The diagonal entries inMBB are seen to be the total mass of the model. Thus, designate

Mtotal =MBB = T
TMT 6 3 113
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Next, consider the MFF term in (6.3.102), utilizing (6.3.87) and (6.3.99):

MFF =Ψ
TMΨ= 0 ΨT

e

MRR MRe

MeR Mee

0

Ψ e

=ΨT
eMeeΨe = diag mi 6 3 114

where mi are the fixed xR system modal masses.
Next, consider

Λ =MFB =Ψ
TMT=MT

BF 6 3 115

Thus,

Λij =ΨT
i M Tj 6 3 116

By comparison with (6.3.75), the Λij are modal participation factors between the ith
flexible mode and jth rigid body (base motion) mode, which relate the coupling of the rigid
base motion modes Γj to the elastic, fixed xR modes Ψi .

Collecting results in (6.3.102) yields

M =
MBB MBF

MFB MFF

=
Mtotal ΛT

Λ diag mi
6 3 117

Stiffness Matrix

Consider the following term in (6.3.103): KBB = T
TK T.

Note that

K T= K T1 K T2 K TNR
= 0 6 3 118

since Ti are rigid body motions that are the solutions to (6.3.88).
Next, consider the KFF term in (6.3.103):

KFF =Ψ
TKΨ = 0 ΨT

e

KRR KRe

KeR Kee

0

Ψ e

=ΨT
eKeeΨe = diag miω

2
i 6 3 119

Next, consider

KFB =Ψ
TK T=KT

BF 6 3 120

From (6.3.87), (6.3.91), and (6.3.97),

KFB = 0 ΨT
e

KRR KRe

KeR Kee

I

−K−1
ee K eR

=ΨT
e KeR−KeeK

−1
ee KeR = 0 6 3 121

Collecting results in (6.3.103),

K =
KBB KBF

KFB KFF

=
0 0

0 diag miω2
i

6 3 122
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Consider the case when there are no external forces and the input is the base or ground
motion xR t . Equation (6.3.101) becomes

M X+K X = 0 N × 1 6 3 123

Mtotal ΛT

Λ diag mi

xR

β
+

0 0

0 diag miω2
i

xR
β

=
0

0
6 3 124

The bottom row shows

diag mi β + diag miω
2
i β = −ΛxR 6 3 125

Or in scalar form using (6.3.97) and (6.3.115),

β i +ω
2
i βi = −

1
mi

ΛixR 6 3 126

where

Λi =Ψ
T
i M T 1 ×NR 6 3 127

Equation (6.3.126) may be further simplified by assuming themodes (ψ
l
in (6.3.94)) are

mass orthonormalized (5.4.40), that is, mi = 1. Then (6.3.126) becomes

β i +ω
2
i βi = −ΛixR = − Λi1 Λi2 ΛiNR

xR1

xR2

xRNR

6 3 128

Equation (6.3.128) shows that modes with large modal participation factors Λij will be
more strongly excited than modes with small Λij. There is a modal participation factor Λij

between mode ψ
i
,ωi and each imposed base motion xRj j= 1,2,…,NR . These factors

are obtained from (6.3.91) and (6.3.127) as

Λij =ΨT
i M Tj

= ith total system flexible mode × total system mass matrix

× jth total system rigid body base motion displacement vector

6 3 129

In application, the mass associated with the xR degrees of freedom is ignored since the
support motion xR t is the given excitation. Therefore, the modal participation vectors sim-
plify to the form (6.3.127)

Λe
i =Ψ

T
i MeeG 1 ×NR 6 3 130

where from (6.3.93), ψ
i
is the ith mass-orthonormalized mode of the boundary constrained

structure, that is, xR = 0 , and from (6.3.91),

G = −K−1
ee KeR Ne ×NR 6 3 131
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Define the ith mode’s “modal effective mass” matrix as

ME
i = Λe

i
TΛe

i NR ×NR 6 3 132

Consider the following sum:

NE

i= 1

ME
i =

NE

i= 1

Λe
i

TΛe
i =

NE

i= 1

GTMeeψ i
ψT
i
MeeG =GTMee

NE

i= 1

ψ
i
ψT
i

MeeG 6 3 133

From the identity in (2.6.35) and the definition in (6.3.95),

ψ
i
ψT
i
=ΨeΨ

T
e 6 3 134

Therefore,

NE

i= 1

ME
i =G

TMeeΨeΨ
T
eMeeG 6 3 135

Note from (6.3.114)

ΨT
eMeeΨe = I 6 3 136

since the modes are mass orthonormalized.
From (6.3.136),

Ψ−1
e M−1

ee ΨT
e

−1
= I

M−1
ee =ΨeΨ

T
e 6 3 137

Substitution of (6.3.137) into (6.3.135) yields

NE

i= 1

ME
i =G

TMeeG 6 3 138

The RHS of (6.3.138) has the same physical interpretation asMtotal in (6.3.113) with the
masses limited to just the masses associated with the degrees of freedom in xe (and not in xR).
LetMe

total be the matrix of sums of the physical masses for only the degrees of freedom in xe.
Therefore, from (6.3.132) and (6.3.138),

NE

i= 1

ME
i =

NE

i= 1

Λe
i

TΛe
i =G

TMeeG =Me
total NR ×NR 6 3 139

The larger the modal effective mass, the larger the modal participation vector Λe
i and

from the previous discussion the stronger the base excitation in mode i. Modes that have
large modal effective masses are typically retained for transient response simulations using
modal condensation (6.3.15). This is not the sole criteria though since modes with natural
frequencies near excitation frequencies should always be retained.
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EXAMPLE 6.3.3 Modal Effective Mass of a Building with Vertical Ground Motion

Description: Figure E6.3.3(a) illustrates a 20-story building model that is subjected to
ground motion x1(t). The floor masses are connected by springs which represent the inter-
floor beams. The masses and stiffnesses of the model are

m1 ground mass : ignored in model since x1 t is given

m2−m6 100000kg, m7−m11 75000kg, m12−m21 50000kg

Total mass 1375000kg

Stiffness k1−k8 = 1 0 × 108N m, k9−k20 = 0 5 × 108N m

Objective: Determine the mode participation factors Λe
i and modal effective masses

ME
i = Λe

i
TΛe

i and their corresponding percentages of the total system mass.

Solution: The mass Mee and stiffness Kee matrices for this problem are assembled in the
same manner as explained in Example 6.3.1. The dimensions for this problem are
Ne = 20 and NR = 1. The ground motion x1(t) is assumed fixed for determining the elastic
structure modes ψ

i
, i=1,2,…,20. The corresponding 20 natural frequencies are

fi = 0 4575 1 1200 1 8899 2 6481 3 3636 4 0543 4 7771

5 3340 6 0947 6 6006 7 0505 7 6655 8 1081 8 4747

9 0210 9 1496 9 6497 9 7303 9 9610 10 8607 Hz

1

Figure E6.3.3(a) Twenty-story building and spring mass model
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Figure E6.3.3(b) shows the five lowest mode shapes of the fixed x1 system.
The unconstrained system stiffness matrix is needed to form the submatrix

KeR = −k1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T,

Ne ×NR, 20 × 1
2

The rigid body displacement vector is calculated to be

G = −K−1
ee KeR = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T,

Ne ×NR, 20 × 1
3

where Kee is the system stiffness matrix with degree of freedom x1(t) fixed. All modes are
mass orthonormalized (mi = 1), and the modal participation factors are

Λ e
i =Ψ

T
i Mee G 1 ×NR, i = 1,Ne

987 5401 −499 6575 −240 4308 172 1812 147 9946 98 6365

−106 1830 66 2951 −58 7555 66 5341 −46 6226 20 0387 −54 3975

9 1615 35 9444 6 3925 −2 0853 22 7432 0 1481 −0 7252

4

whereMee is the systemmass matrix with degree of freedom x1(t) fixed. The modal effective
masses for the Ne = 20 modes are

ME
i = Λe

i
TΛe

i NR ×NR, i= 1,Ne

1 0e+ 005 ∗ 9 7524 2 4966 0 5781 0 2965 0 2190 0 0973 0 1127 0 0440

0 0345 0 0443 0 0217 0 0040 0 0296 0 0008 0 0129 0 0004

0 0000 0 0052 0 0000 0 0000 kg

5
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Figure E6.3.3(b) Five lowest mode shapes of the fixed x1 system
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The sum of the modal effective masses equals 1 375 000 kg which is the total physical
mass of the system. The percentages of total system mass for the modal effective masses are

70 9262 18 1569 4 2041 2 1561 1 5929 0 7076 0 8200 0 3196

0 2511 0 3219 0 1581 0 0292 0 2152 0 0061 0 0940 0 0030

0 0003 0 0376 0 0000 0 0000

6

The modal effective masses of the lowest five modes account for 97% of the total sys-
tem’s physical mass. Consider the transient response case when the vertical ground motion
has the time history shown in Figure E6.3.3(c).

The fixed boundary condition model may still be employed for the transient response
simulation with the inclusion of an upward force k1 ∗ x1(t) applied on m2. An orthogonal
damping matrix is included in the transient response model. From (5.4.140), (5.4.142), and
(5.4.146), the damping matrix may be written as

C0 = μ1K+
4

l= 1

2κlωl

ml
Mψ

l
ψT
l
M 7

where

μ1 =
2ξd5
ω5

and κl = ξ
d
l −ξ

d
5
ωl

ω5
, l= 1,2,3,4 8

ωl and ψ
l
are the lth natural frequency and mode shape of the undamped system.

Damping:

ξd1 = 0 02, ξd2 = 0 02, ξd3 = ξ
d
4 = 0 025, ξd5 = 0 03 9

Figure E6.3.3(d) shows the responses obtained from numerically integrating the phys-
ical coordinate differential equations for the entire system. The maximum displacement is
0.197 m.

Figure E6.3.3(e) shows the responses obtained from numerically integrating the modal
coordinate differential equations for the five lowest modes. The maximum displacement is
0.205 m, a 4% difference with the full system integration. Figure E6.3.3(f) shows the
responses obtained from numerically integrating the modal coordinate differential equations
for the five lowest modes with modal acceleration (6.3.33). The maximum displacement is
again 0.205 m, a 4% difference with the full system, physical coordinate integration.

The modal approach solutions using the 5 lowest modes are seen to provide response
predictions that are very close to the physical coordinate integration, excluding the motion of
m2, which requires about 13 modes to closely agree. The modal effective masses of the low-
est five modes account for 97% of the total system’s physical mass.

Figure E6.3.3(c) Imposed ground
motion x1(t)
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Figure E6.3.3(d) Response from direct numerical integration of entire system equations
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Figure E6.3.3(e) Response from numerical integration of lowest five modal differential equations
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6.3.5 General Nonsymmetric, Nonorthogonal Damping Models

The starting point for this system condensation is the first-order form of the EOMs, that is,
by (6.3.5) and (6.3.6)

E
2N × 2N

X
2N × 1

= H
2N × 2N

X
2N × 1

+ f
2N × 1

t,q,q 6 3 140

where

E=
0 M

M CT

, H=
M 0

0 −KT

, X=
V

q
6 3 141

f =
0

f+ g
, f = f t , g = g q,q, t 6 3 142

Recall from Equations (5.4.213)–(5.4.230) that the corresponding right and left eigen-
vectors had the form

Γj
2N × 1

=

λjΛj
N × 1

Λj
N × 1

, β
j

2N × 1

=

λjθj
N × 1

θj
N × 1

6 3 143

where

λjE Γj =HΓj, λjE
Tβ

j
=HTβ

j

λ2j M + λjCT +KT Λj = 0, λ2j M
T + λjC

T
T +K

T
T θ = 0 6 3 144

and the right and left modal matrices are

Γ = Γ1 Γ2 Γm , β = β
1

β
2

β
m
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m
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Figure E6.3.3(f) Response from numerical integration of lowest five modal differential equations and
usage of modal acceleration
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Consider the approximation

X t =
m

j= 1

wj t Γj = Γ
2N×m

W
m×1

6 3 145

where m < 2N. This approximation restricts the system response (state) vector X to the m-
dimensional subspace spanned by the modal basis vectors Γj, j = 1,…,m. This approxima-

tion is typically very good and provides a significant increase in computational efficiency for
m/N in the range 0.1–0.2. Premultiply (6.3.140) by βT and use the biorthogonality relations

in (5.4.229) and (5.4.230) to obtain

diag ej W −diag λjej W =R t,q,q 6 3 146

Considering this equation row-wise yields

wj−λjwj =
Rj t,q,q

ej
6 3 147

where the modal force is

Rj = β
T
j
f =

λsθj
θj

T
0

f+ g
= θTj f t + g t,q,q 6 3 148

and from (5.4.225), the generalized modal mass is

ej = β
T
j
EΓj =

λsθj
θj

T
0 M

M CT

λjΛj

Λj

= θTj 2λjM +CT Λj 6 3 149

The initial conditions on the wj(t) are obtained by premultiplying (6.3.145) evaluated

at t = 0, by βT
l
E , yielding

m

j= 1

wj 0 βT
l
E Γj = β

T
l
E X 0 6 3 150

The biorthogonality condition (5.4.223) simplifies this, yielding

wl 0 =
1
el
βT
l
E X 0 =

1
el

λlθl

θl

T 0 M

M CT

V 0

q 0

=
1
el

θTl λlM+CT q 0 + θTl M V 0 6 3 151

which relates the modal coordinate wl and physical coordinate ICs. Consider the following

two cases of contributions wj t Γj to X t in (6.3.145).

Case 1 (λj is real):
In this case, both Γj and β

j
are real vectors since λj, E, and H are real in
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λjE−H Γj = 0, λjE
T−HT β

j
= 0 6 3 152

It follows from (6.3.148), (6.3.149), and (6.3.151) that Rj, ej, and wj(0) are also real
numbers. Then the coefficients, RHS, and ICs of (6.3.147) are real, sowj(t) is a real variable.
The contribution, wj t Γj, of mode j to the total response X t in (6.3.145) is also real since

both wj(t) and Γj are real.

Case 2 (λj is complex):
Note that if λj, Γj are the eigensolutions of

λjEΓj =HΓj 6 3 153

and by conjugating this equation and noting that E and H are real matrices, it follows that

λjEΓj =HΓj 6 3 154

Comparison of (6.3.153) and (6.3.154) shows that λj and Γj also solve (6.3.153). In a

similar manner, if λj and β
j
satisfy

λjE
Tβ

j
=HTβ

j
6 3 155

then conjugating this equation

λjE
Tβ

j
=HTβ

j
6 3 156

shows that λj and β
j
also solve (6.3.155).

Hence, if λj is complex, the eigenvalues and eigenvectors can be arranged as follows:

j λj, Γj, β
j

j+ 1 λj, Γj, β
j

6 3 157

It follows from (6.3.149) and (6.3.157) that

ej+1 = β
T
j+1

EΓj+1 = β
T

j
EΓj = ej 6 3 158

Similarly, from (6.3.148) and (6.3.157),

Rj+1 = β
T
j+1

f = β
T

j
f =Rj 6 3 159

and from (6.3.151) and (6.3.157),

wj+1 0 =
1
ej+1

βT
j+1

EX 0 =
1
ej
β
T

j
E X 0 =wj 0 6 3 160

Therefore, the j+ 1 term for (λ, Γ, β, e, R, w(0)) is always the conjugate of the j term.

Consider the EOM for wj+1 for (6.3.147), that is,

wj+1−λj+1wj+1 =
Rj+1

ej+1
6 3 161
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Substitute the results of (6.3.157)–(6.3.159) into (6.3.161) to obtain

wj+1−λjwj+1 =
Rj

ej
6 3 162

Taking the conjugate of this equation yields

wj+1−λjwj+1 =
Rj

ej
6 3 163

with the accompanying IC from (6.3.160)

wj+1 0 =wj 0 6 3 164

Thus, by comparing (6.3.147) to (6.3.163), it is seen that wj+ 1 satisfies the same ODE
and IC as wj. Therefore,

wj+1 =wj wj+1 t =wj t for all time t 6 3 165

The contribution of the j and j+ 1 terms to the summation for obtaining X t in (6.3.145)
becomes

wj t Γj +wj+1 t Γj+1 =wj t Γj +wj t Γj = 2Real wj t Γj 6 3 166

which is a real vector. Consideration of the two cases (λ real and λ complex) has shown that
X t as determined by the modal summation in (6.3.145) is a real vector, as it should be since
it produces real physical displacements and velocities:

X t =
V t

q t
=

q t

q t
2N × 1 6 3 167

6.3.5.1 Real Variable Form of Modal Equations

Equation (6.3.147) is a differential equation that involves a complex response, a complex
source, and complex constants and therefore becomes difficult if not impossible to integrate
with some computer-aided math solvers. Thus, it is beneficial to convert this equation into
real variable form. Write (6.3.147) in terms of real and imaginary parts

d

dt
wjR + iwjI − λjR + iλjI wjR + iwjI = RjR + iRjI

ejR− iejI

ej
2 6 3 168

Separate the real and imaginary parts of Equation (6.3.168)

d

dt

wjR

wjI
=

λjR −λjI

λjI λjR

wjR

wjI
+

1

ej
2

RjR ejR +RjI ejI

RjI ejR−RjR ejI
6 3 169

It has been shown that if λj is real, then the following imaginary parts are zero:

λjI =RjI = ejI =wjI 0 = 0
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which simplifies Equation (6.3.169) to

wjI t = 0 6 3 170

and

wjR = λjwjR +
Rj

ej
6 3 171

where λj, ej, and Rj are real numbers. Next, consider the more general case where λj is com-
plex. The ICs on the real and imaginary parts of wj are obtained from (6.3.151) as follows:

wjR 0 + iwjI 0 =
ejR− iejI

ej
2 βT

jR
+ iβT

jI
E X 0

wjR 0 =
1

ej
2 ejR β

T

jR
+ ejI β

T
jI

E X 0

wjI 0 =
1

ej
2 ejR β

T

jI
−ejI β

T
jR

EX 0

6 3 172

Note that bothwjR(0) andwjI(0) are real variables as defined by (6.3.172). Thus, the real
variable differential equations in (6.3.169) have the real variable ICs given by (6.3.172). The
modal solution procedure for this general system type is summarized in the following.

Steps for Modal Condensation of EOMs for General System

1. Use Equations (6.3.144) and (6.3.149) to compute λi,Γi,βi, and ei for i= 1,2,…,m.

2. Use (6.3.148) to evaluate modal forces Rj.

3. Use (6.3.172) to evaluate the modal coordinate ICs

wjR 0 =
1

ej
2 ejR β

T

jR
+ ejI β

T
jI

EX 0

wjI 0 =
1

ej
2 ejR β

T

jI
−ejI β

T
jR

EX 0

4. Numerically or analytically integrate the real differential equations (6.3.169)

d

dt

wjR

wjI
=

λjR −λjI

λjI λjR

wjR

wjI
+

1

ej
2

RjR ejR +RjI ejI

RjI ejR−RjR ejI

5. Obtain the displacement and velocity state vector X t from (6.3.145)

X t =
m1

j= 1

wj t Γj + 2∗Real
m2

j= 1

wj t Γj

m =m1 +m2
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where the first sum extends over all modes with real eigenvalues λj and the second sum
includes all modes with complex eigenvalues λj. The second sum implicitly includes
the contributions of the conjugate eigensolutions, and therefore, they are not included
in the m2 terms.

6.4 NUMERICAL INTEGRATION OF NDOF TRANSIENT VIBRATION
RESPONSE

Some forms of the governing differential equations of equilibrium encountered thus far
include:

Form (a): Physical coordinates and second-order form (6.3.1)

Mq +CTq+KTq = f t + g q,q, t N × 1 6 4 1

Form (b): Physical coordinates and first-order form (6.3.6)

E
2N×2N

X
2N×1

= H
2N×2N

X
2N×1

+ f
2N×1

2N × 1 6 4 2

Form (c): Modal coordinates and orthogonally damped, nongyroscopic, noncirculatory
systems (6.3.15)

χ i + 2ξiωiχi +ω
2
i χi = ri t,q,q 1 × 1 6 4 3

Form (d): Modal coordinates and general systems (6.3.168)

d

dt
wjR + iwjI − λjR + iλJI wjR + iwjI = RjR + iRjI

ejR− i ejI

ej
2 6 4 4

or by considering real and imaginary parts of Equation (6.3.169):

d

dt

wjR

wjI
=

λjR −λjI

λjI λjR

wjR

wjI
+

1

ej
2

RjR ejR +RjI ejI

RjI ejR−RjR ejI
6 4 5

Section 6.3 showed that if λ was real, the following imaginary parts were zero:

λjI =RjI = ejI =wjI 0 = 0

which simplifies Equation (6.4.5) to

wjI t = 0 6 4 6

and

wjR = λjwjR +
Rj

ej
6 4 7

where λj, ej, and Rj are real numbers.
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Forms (a), (b), (c), and (d) of the governing EOMs may be numerically integrated given
the following ICs:

Form (a):

q 0 , q 0 6 4 8

Form (b):

X 0 =
q 0

q 0
6 4 9

Form (c): From (6.3.18) and (6.3.19),

χi 0 =
1
mi

ψT
i
Mq 0 , χi 0 =

1
mi

ψT
i
Mq 0 6 4 10

Form (d): From (6.3.172),

wjR 0 =
1

ej
2 ejR β

T

jR
+ ejI β

T
j I

EX 0

wjI 0 =
1

ej
2 ejR β

T

j I
−ejI β

T
jR

EX 0

6 4 11

All of the above forms of the system equilibrium conditions may be numerically inte-
grated forward in time to obtain the displacement and velocity responses to arbitrary forcing
functions.

The basic idea of NI is to divide the time domain into a series of discrete steps and to
impose simplifying approximations on the acceleration and velocity variations between
these times. In this manner, the NI algorithm carries the displacements, velocities, and accel-
erations forward from time ti to time ti+ 1 as depicted in Figure 6.4.1.

Although this figure depicts a constant Δt, an adaptive predictor–corrector approach
may adapt Δt with t to quicken the required computation (CPU) time and/or improve NI
accuracy. NI algorithms have been developed for both the first (Eqs. 6.4.2 and 6.4.5)
and second (Eqs. 6.4.1 and 6.4.3) order forms of the governing EOMs.

6.4.1 Second-Order System NI Algorithms

There are many NI approaches (Bathe, 1982) for second-order systems, and two are
presented in the following for illustration.

Figure 6.4.1 Discrete time axis for the application of NI algorithm
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6.4.1.1 Central Difference Method

Consider the two consecutive time steps shown in Figure 6.4.2.
Define

q−

i
=
q
i
−q

i−1

Δt
, q +

i
=
q
i+ 1

−q
i

Δt
6 4 12

Then make the approximation

q
i
=
q−

i
+ q+

i

2
=
q
i+ 1

−q
i−1

2Δt
6 4 13

Assume also that

q
i
=
q +
i
−q−

i

Δt
=
q
i+ 1

−2q
i
+ q

i−1

Δt2
6 4 14

The system equilibrium equation is given at time i by (6.4.1)

Mq
i
+CTqi +KTqi = fi + gi−1 6 4 15

Note that the nonlinear force term g is evaluated at the previous time step so that it is

assumed to be known at time ti

g
i−1

= g ti,qi−1,qi−1 6 4 16

The reason for this is that g is a function of q and q which are not yet known at time ti.

Substitute (6.4.13) and (6.4.14) into (6.4.15) to obtain

1
Δt2

M +
1

2Δt
CT q

i+ 1
= f

i
+ g

i−1
+

2
Δt2

M−K q
i
+

−1
Δt2

M +
1

2Δt
CT q

i−1
6 4 17

If Δt is a constant, the coefficient matrix 1 Δt2 M + 1 2Δt CT need only be trian-
gularized once, and therefore, each iteration only requires a back substitution procedure to
obtain q

i+ 1
from (6.4.17). Start the NI by solving for q

0
from (6.4.15), that is,

q
0
=M−1 f 0 + g 0,q

0
,q

0
−CTq0−Kq0 6 4 18

Figure 6.4.2 Discretized time and response variables for central difference NI
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where q
0
and q

0
are given. Consider (6.4.13) and (6.4.14) at t = 0:

q
0
=
q
1
−q

−1

2Δt
6 4 19

q
0
=
q
1
−2q

0
+ q

−1

Δt2
6 4 20

Solve (6.4.19) for q
1
:

q
1
= 2Δt q

0
+ q

−1
6 4 21

Substitute (6.4.21) into (6.4.20):

q
0
=
2q

−1
+ 2Δt q

0
−2q

0

Δt2
6 4 22

Solve this equation for q
−1
:

q
−1

=
Δt2

2
q
0
−Δt q

0
+ q

0
6 4 23

Summary of Central Difference NI Algorithm

Given the initial displacements and velocities q
0
and q

0
.

1. Determine the initial accelerations q
0
from (6.4.18).

2. Determine q
−1

from (6.4.23).

3. Use (6.4.17) to solve for q
i+ 1

, i= 0,1,2,…,m.

4. Note that, if desired, the velocities or accelerations may be obtained at any time step

from (6.4.13) and (6.4.14): q
i
= q

i+ 1
−q

i−1
2Δt , q

i
= q

i+ 1
−2q

i
+ q

i−1
Δt2.

5. Continue the NI process until the final simulation time is reached.

6.4.1.2 Newmark Beta Method

This method has gained considerable popularity among vibration analysts and assumes that
the acceleration is approximately constant within any time step (Figure 6.4.3).

A reasonable assumption for the variation of q between ti and ti+ 1 is that it is the con-

stant vector:

q t =
q
i
+ q

i+ 1

2
6 4 24

Newmark generalized this expression into the form

q = 1−δ q
i
+ δq

i+ 1
, ti < t < ti+ 1 6 4 25
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Note that (6.4.25) reduces to (6.4.24) if δ= 1 2. Integration of (6.4.25) yields

q
i+ 1

= q
i
+ 1−δ q

i
+ δq

i+ 1
Δt 6 4 26

Integrating again yields

q
i+ 1

= q
i
+ q

i
Δt +

Δt2

2
1−δ q

i
+ δq

i+ 1
6 4 27

Newmark generalized this result by replacing δ/2 by a constant α independent of δ.
Newmark’s approximations for q,q, and q within the Δt interval then become

q = 1−δ q
i
+ δq

i+ 1
, ti < t < ti+ 1

q
i+ 1

= q
i
+ 1−δ q

i
+ δq

i + 1
Δt

q
i+ 1

= q
i
+ q

i
Δt +

1
2
−α q

i
+ αq

i+ 1
Δt2

6 4 28

The recommended values for δ and α are

δ=
1
2
, α=

1
4

6 4 29

for which Equation (6.4.28) becomes

q
i+ 1

= q
i
+ q

i
+ q

i+ 1

Δt
2
, q

i+ 1
= q

i
+ q

i
Δt + q

i
+ q

i+ 1

Δt2

4
6 4 30

Consider the system equilibrium equation (6.4.1) at time ti+ 1, that is,

Mq
i+ 1

+CTqi + 1 +KTqi+ 1 = f ti+ 1 + g ti+ 1,qi,qi 6 4 31

This equation has three unknowns q
i+ 1

,q
i+ 1

,q
i+ 1

at time ti + 1. Assume that these

quantities are known at time ti and use (6.4.28) to eliminate q
i+ 1

and q
i+ 1

from

Equation (6.4.31). From the third equation in (6.4.28),

Figure 6.4.3 Discretized time and response variables for Newmark beta method
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q
i+1

=
1

αΔt2
q
i+1

−
1

αΔt2
q
i
−

1
αΔt

q
i
+ 1−

1
2α

q
i

6 4 32

Substitute this result into the second equation in (6.4.28):

q
i+1

= −
δ

αΔt
q
i
+ −

δΔt
2α

+Δt q
i
+

δ

αΔt
q
i+1

+ 1−
δ

α
q
i

6 4 33

Substitute (6.4.32) and (6.4.33) into (6.4.31) to eliminate the q
i+1

and q
i+1

terms and

solve for q
i+1

to obtain

1
αΔt2

M +
δ

αΔt
CT +KT q

i+1
= f ti+1 + g ti+1,qi,qi +M

1
αΔt2

q
i
+

1
αΔt

q
i
+

1
2α

−1 q
i

+CT

δ

αΔt
q
i
+

δ

α
−1 q

i
+

δΔt
2α

−Δt q
i

6 4 34

Some notable points about this formula are:

1. The coefficient matrix 1 αΔt2 M+ δ αΔt CT + kT of q
i+1

is triangularized only

once, unless M, CT , KT , or Δt changes during the duration of the NI. Thus, unless these
terms change, the solution for q

i+1
will only require a back substitution operation for each

iteration.

2. The velocity q
i+1

and acceleration q
i+1

vectors must be calculated for each iteration.

This is accomplished by substituting q
i+1

from the solution of (6.4.34) into (6.4.32) to

obtain q
i+1

. Then q
i+1

is substituted into the second of equation (6.4.28), that is, to obtain

q
i+1

.

Summary of the Newmark Beta Method

Given the initial displacements and velocities q
0
and q

0
:

1. Solve for the initial accelerations q
0
from (6.4.31):

q
0
=M−1 f 0 + g 0,q

0
,q

0
−CTq0−KTq0 6 4 35

2. Select δ and α values. Typically, δ = 1 2, α= 1 4.

3. Form the matrices

A =
1

αΔt2
M +

δ

αΔt
CT +KT , B =

1
αΔt

1
Δt

M+ δCT

D =
1

αΔt
M +

δ

α
−1 CT , E=

1
2α

−1 M +
δΔt
2α

−Δt CT 6 4 36

4. Triangularize (or invert) A and store.

5. Solve (6.4.34) for q
i+1

in the form

A q
i+1

= f
i+1

+ g ti+1,qi,qi +B q
i
+Dq

i
+E q

i
6 4 37
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This will require only a back substitution operation if A has been triangularized or a
multiplication by A−1 if A has been inverted.

6. Update the velocity and acceleration vectors, that is, from (6.4.32)

q
i+1

=
1

αΔt2
q
i+1

−
1

αΔt2
q
i
−

1
αΔt

q
i
+ 1−

1
2α

q
i

6 4 38

and from the second of Equation (6.4.28)

q
i+1

= q
i
+ 1−δ q

i
+ δq

i+1
Δt 6 4 39

7. Repeat (6) and (7) until the final time for the simulation is reached or untilΔt is changed, which
may occur if an adaptive time step algorithm is employed. Repeat step (5) whenever Δt or
M,KT , or CT change.

The Newmark beta algorithm can be applied directly to the uncoupled modal coordinate
differential equations in (6.3.15):

χ j + 2ξjωjχj +ω
2
j χ j =

rj
mj

6 4 40

where

rj =ψ
T
j
f t +ψT

j
g t,q,q j= 1,2,…,m number of modal coordinates χ

From (6.4.35)–(6.4.40), the Newmark beta algorithm becomes

1. χ j 0 =
rj 0
mj

−2ξjωjχj 0 +ω2
j χj 0 6 4 41

2. aj =
1

αΔt2
+

δ

αΔt
2ξjωj +ω

2
j , bj =

1
αΔt2

+
δ

αΔt
2ξjωj

dj =
1

αΔt
+

δ

α
−1 2ξjωj, ej =

1
2α

−1 +
δΔt
2α

−Δt 2ξjωj

6 4 42

3. χj i+1
=
1
aj

1
mj

rj i+1
+ bjχj i

+ djχj i
+ ejχ j i

where rj i+1
=ψ

T

j
f ti+1 + g ti+1,qi,qi

6 4 43

4. χ j i+1
=

1
αΔt2

χj i+1
−χj i

−
1

αΔt
χj i

+ 1−
1
2α

χ j i
6 4 44
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5. χj i+ 1
= χj i

+ 1−δ χ j i
+ δχ j i+ 1

Δt 6 4 45

To implement the algorithm for the jth modal coordinate:

(a) Obtain χj(0) and χj 0 from (6.3.18) and (6.3.19):

χj 0 =
1
mj

ψT
j
Mq 0 , χj 0 =

1
mj

ψT
j
Mq 0 6 4 46

and substitute the results into (1) to obtain χ j 0 .

(b) Evaluate aj, bj, dj, and ej from (6.4.42).

(c) Repeat steps (3)–(5) for i= 1,…,Nsteps whereNsteps is the total number of time steps. The

term g in (6.4.40) is a nonlinear function of the physical coordinate displacements q

and velocities q . Therefore, if g exist, the “physical coordinate” vectors q
i
and q

i
will

need to be evaluated at each time step, that is,

q
i
=Ψ χ

i
, q

i
=Ψ χ

i
6 4 47

6.4.2 First-Order System NI Algorithms

The first-order form for the governing equilibrium equations is given by (6.3.7)–(6.3.9)

X
2N × 1

= A
2N × 2N

X
2N × 1

+ F t
2N × 1

+ G t,q,q
2N × 1

6 4 48

where

X =
V

q
, A =

−M−1CT −M−1KT

IN 0
,

V= q, F t =
M−1f t

0
, G=

M−1g t,q,q

0
6 4 49

The force term G is a nonlinear function of positions and velocities to account for non-
linear forces in the model. Define the augmented state vector X and state matrix A as

X =

X
2N × 1

1
1 × 1

, A =

A
2N × 2N

F +G
2N × 1

0
1× 2N

0
1× 1

6 4 50

Note that the force terms now appear in the matrix term A of the equilibrium equation,

which implies that A in general varies with time. Then (6.4.48) may be written as
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X
2N+1 ×1

= A t,q,q
2N+1 × 2N+1

X
2N+1 ×1

6 4 51

Equation (6.4.51) will be used as the starting point to illustrate several first-order NI
algorithms. The matrix A varies with t because of F t and with q and q because of the non-

linear terms in G. This only affects the last column of A .

6.4.2.1 Euler Numerical Integration

The Euler numerical integration (ENI) algorithm utilizes a two-term Taylor series expansion
for X about t = ti, that is,

X
i+ 1

=X
i
+
d

dt
X

ti

Δt 6 4 52

Substitute (6.4.51) into (6.4.52) to obtain

X
i + 1

=X
i
+A

i
X

i
Δt = I +ΔtA

i
X

i
6 4 53

Assume that the integration begins at t = 0, that is, when

X
0
=

q
0

q
0

1

6 4 54

Then after nsteps time increments,

X
nsteps

=Bnsteps
X

0
6 4 55

where

Bnsteps
= bnstepsbnsteps −1 b0 =

nsteps

i= 1

bi

bi = I +ΔtA i
, A

i
=A

i
ti,qi,qi 6 4 56

The displacements and velocities can be obtained from X at any time step since by

(6.4.49) and (6.4.50),

X =

q

q

1

6 4 57

6.4.2.2 Improved ENI

Suppose that the ENI provided an estimate of X
i+ 1

according to (6.4.53). Let’s call this

“predictor step” estimate
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X
i+1

=X
i
+A

i
X

i
Δt 6 4 58

Then an estimate of X
i+1

is obtained from (6.4.51) and (6.4.55) as

X
i+1

=A
i+1

X
i+1

6 4 59

An average value of X
i
between ti and ti+ 1 is obtained from (6.4.58) and (6.4.59) as

X
i ave

=
1
2

A
i
X

i
+A

i+1
X

i+1
6 4 60

and therefore, a “corrector step” estimate of X
i+ 1

is

X
i+1

=X
i
+ΔtX

i ave
6 4 61

Insert (6.4.58) into (6.4.60) and the results into (6.4.61) to obtain

Xi+1 =X i
+
Δt
2

A
i
X

i
+A

i+1
X

i+1

=X
i
+
Δt
2

A
i
X

i
+A

i+ 1
X

i
+ΔtA

i+ 1
A

i
X

i

= I+
Δt
2

A
i
+A

i+ 1
+ΔtA

i+ 1
A

i
X

i

6 4 62

Then after nsteps time increments,

X
nsteps

=Bnsteps
X

0
6 4 63

where

Bnsteps
= bnstepsbnsteps −1 b0 =

nsteps

i=1

bi

bi = I +
Δt
2

A
i
+A

i+1
+ΔtA

i+1
A

i

A
i
=A ti,qi,qi , A

i+1
=A ti+1,qi+1,qi+1 6 4 64

The displacements and velocities can be obtained from X at any time step since by

(6.4.49) and (6.4.50),

X =

q

q

1

6 4 65

The estimated displacements q
i
and velocities q

i
in A

i+1
are obtained from X

i+1
in

(6.4.58), that is,

X
i+1

=

q
i+1

q
i+1

1

6 4 66
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6.4.2.3 Fourth-Order Runge–Kutta NI

A general discussion of the Runge–Kutta algorithm may be found in Isaacson and Keller
(1966) or Davis and Rabinowitz (1984). The following presents one approach for the imple-
mentation of fourth-order Runge–Kutta NI (RK4NI). From (6.4.51),

d

dt
X =A t,q,q X =L t, X 6 4 67

Let

A
i
=A ti , A

i+1
2

=A ti +
Δt
2

, A
i+1

=A ti +Δt

and define

(a) αi =ΔtL ti,X i
=ΔtA

i
X

i
= α

i
X

i
α

i
=ΔtA

i
6 4 68

(b) β
i
=ΔtL ti +

Δt
2
,X

i
+
αi
2

=ΔtA
i+1

2

∗ X
i
+
1
2
α

i
X

i
= β

i
X

i

β
i
=ΔtA

i+1
2

+
Δt
2
A

i+1
2

α
i

6 4 69

(c) γ
i
=ΔtL ti +

Δt
2
,X

i
+
β
i

2
=ΔtA

i+1
2

∗ X
i
+
1
2
β

i
X

i
= γ

i
X

i

γ
i
=ΔtA

i+1
2

+
Δt
2
A

i+1
2

β
i

6 4 70

(d) δ i =ΔtL ti+1,X i
+ γ

i
=ΔtA

i+1
X

i
+ γ

i
X

i
= δ

i
X

i

δ
i
=ΔtA

i+1
+ΔtA

i+1
γ

i
6 4 71

The transfer of X
i
to X

i+1
then becomes

X
i+1

=X
i
+
1
6

αi + 2βi + 2γi + δi =X
i
+
1
6

α
i
+ 2β

i
+ 2γ

i
+ δ

i
X

i
6 4 72

or

X
i+1

= biX i
6 4 73

where

bi = I+
1
6

α
i
+ 2β

i
+ 2γ

i
+ δ

i
6 4 74

Then

X
nsteps

=Bnsteps
X

0
6 4 75
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where

Bnsteps
= bnstepsbnsteps −1 b0 =

nsteps

i= 1

bi 6 4 76

The velocities and displacements can be obtained from X at any time step since by

(6.4.49) and (6.4.50),

X =

q

q

1

6 4 77

Examples

The following examples illustrate the use of NI algorithms to determine transient vibration
response.

EXAMPLE 6.4.1 Blade Loss in Rotating Machinery

Statement: Loss of a blade from a turbine, fan, or compressor wheel can lead to catastrophic
failure of a jet engine or turbine-generator set. This may cause injury, loss of life, and/or loss
of critical machinery. Mitigation of blade loss effects is an area of active R&D in both gov-
ernment and industry.

Objective: Determine the peak bearing force during a blade loss event for several bearing
stiffness values. This type of parametric study provides guidance in the design of the
machine to reduce the possibility of bearing failure during a blade loss event.

Assumptions:

(a) Small angle motion.

(b) Linear bearing forces.

(c) No internal rubs in the machine, that is, no blade rubs against seals.

(d) The mass of the disc is significantly larger than the mass of the shaft so the mass center
of the rotor plus disc is approximately at the mass center of the disc.

Solution: The model shown in Figure E6.4.1(a) may represent a single-stage turbine sup-
ported by flexibly mounted ball bearings. The x2−x3 plane is referred to as the
“radial” plane.

(a) Apply the gyroscopic moment analysis in ((5.3.92)–(5.3.95)) and Figures 5.3.1 and
5.3.2 to obtain the equations of motion:

Mq + CB +G q+ KB +Kf q =FBL t 1

where
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M = radial vibration mass matrix =

q2

q3

q4

q5

q2 q3 q4 q5

m 0 0 0

0 m 0 0

0 0 II 0

0 0 0 IT

2

CB = bearing damping matrix

=

q2

q3

q4

q5

q2 q3 q4 q5

cD22 + c
E
22 0 L1cD22−L2c

E
22 0

0 cD33 + c
E
33 0 −L1cD33 + L2c

E
33

L1cD22−L2c
E
22 0 L21c

D
22 + L

2
2c

E
22 0

0 −L1cD33 + L2c
E
33 0 L21c

D
33 + L

2
2c

E
33

3

Figure E6.4.1(a) (i) Rotor geometry and (ii) free body diagram of rotor-bearing system
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G= gyroscopic matrix =

q2

q3

q4

q5

q2 q3 q4 q5

0 0 0 0

0 0 0 0

0 0 0 − Ipω

0 0 Ipω 0

4

KB = bearing stiffness matrix

=

q2

q3

q4

q5

q2 q3 q4 q5

kD22 + k
E
22 0 L1kD22−L2k

E
22 0

0 kD33 + k
E
33 0 −L1kD33 + L2k

E
33

L1kD22−L2k
E
22 0 L21k

D
22 + L

2
2k

E
22 0

0 −L1kD33 + L2k
E
33 0 L21k

D
33 + L

2
2k

E
33

5

Kf = circulatory stiffness matrix due to seal leakage flow=

q2

q3

q4

q5

q2 q3 q4 q5

0 kf 0 0

−kf 0 0 0

0 0 0 0

0 0 0 0

6

q=

q2

q3

q4

q5

=

x2G

x3G

θn3

θn2

and FBL t =

meω2 cos t

meω2 sinωt

0

0

7

wherem equals the mass of the blade or portion of the blade which is lost, e is the radius
from the shaft center to the blade location, and ω is the constant spin speed of the rotor.
The destabilizing effect of the circulatory stiffness matrix was demonstrated in
Figure 5.3.4. Gas or liquid leakage through the thin annular passages of a shaft seal
is known to cause this type of stiffness. The bearing reaction forces are

FDn2 = −kD22x
D
2 −c

D
22x

D
2 , FDn3 = −kD33x

D
3 −c

D
33x

D
3 , FEn2 = −kE22x

E
2 −c

E
22x

E
2

FEn3 = −kE33x
E
3 −c

E
33x

E
3 , FDn = F2

Dn2 +F
2
Dn3, FEn = F2

En2 +F
2
En3

8

where

xD2 = q2 + L1q4, xD2 = q2 +L1q4, xD3 = q3−L1q5, xD3 = q3−L1q5
xE2 = q2−L2q4, xE2 = q2−L2q4, xE3 = q3 +L2q5, xE3 = q3 +L2q5

9
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(b) The numerical values utilized in the model are

L1 = 0 35m, L2 = 0 65m, e= 0 15m, m= 100kg, m= 0 2kg, Ip = 2 2kgm2,

IT = 2kgm
2, ω= 1570rad s 15000rpm , q

0
= q

0
= 0 0 0 0 T,

cD22 = c
E
22 = 6000Ns m, cD33 = c

E
33 = 10000Ns m, kD22 = k

E
22 = 20 × 10

6N m,

kD33 = k
E
33 = 25 × 10

6N m, kf = 1 × 10
6N m 10

(c) Newmark beta solution:
The Newmark beta NI solution for this problem follows the steps shown in

Equations (6.4.35)–(6.4.39) and is option 1 in the companionMATLAB code. The inte-
gration parameter values are

α=
1
4
, δ =

1
2

11

and the integration time step is Δt = 1× 10−5 seconds. Figure E6.4.1(b) shows the
responses for the mass center deflection in the x2 direction, bearing E deflection in
the x2 direction, and the resultant forces at bearings D and E. The figure shows
responses for the (i) full bearing stiffness and (ii) with the bearing stiffness reduced
by 50%. The results show a significant reduction in bearing forces with little change
in the overall vibration levels. Figure E6.4.1(c) shows the responses at the 50% stiffness
level and Δt = 10−4. Clearly, the time step is too large to yield accurate results.

(d) Runge–Kutta solution:
The coding for the Runge–Kutta solution is shown as option 2 in the companion

code. The coding follows Equations (6.4.67)–(6.4.77) with i+ 1 as the “current” time,
i+ 1 2 as Δt/2 earlier, and (i) as Δt earlier. Figure E6.4.1(d) shows the response with
the 50% stiffness model. Note that the RK solution shows accurate results at the time
step (i) Δt = 10−4 but not at the larger time step (ii) Δt = 10−3.

(e) MATLAB ODE45 solution:
TheMATLABODE45 numerical integration solution for the 50% reduced bearing

stiffness case is shown in Figure E6.4.1(e). As expected, MATLAB ODE45 executes
considerably faster than the other approaches, being a highly optimized algorithm
and code.

Summary: This example illustrated an approach for simulating a blade loss event of a shaft
with a rigid rotor model. The results show nearly identical predicted responses using the
Newmark beta algorithm Equations (6.4.35)–(6.4.39) or the Runge–Kutta algorithm
(6.4.67)–(6.4.77).

Reduction of the nominal bearing stiffnesses by 50% yielded a similar level of reduction
in bearing forces. This level is about 19.0% of the rigid bearing force level of approximately
1 2 meω2 = 37000N , which results from the force isolation effect of the soft bearing sup-
ports. The vibration level (0.3 mm peak at steady state) would be considered excessive in
most machinery so additional steps for mitigating the vibrations would be required. The
responses of this system could be quite different at other speeds depending on the proximity
of the speed with a natural frequency ( fn). Two of the four natural frequencies vary signif-
icantly with speed due to the gyroscopic moments as shown in the Campbell diagram in
Figure E6.4.1(f ), which corresponds to 50% bearing stiffness. Resonance may occur at spin
speeds near to the natural frequencies as indicated by triangles.
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Figure E6.4.1(b) Blade loss in rotating machinery—Newmark beta solution withΔt = 10−5 second for (i) full
and (ii) 50% reduced bearing stiffnesses
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Figure E6.4.1(c) Blade loss in rotating machinery—Newmark beta solution with large Δt
(10−4 second) value
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Figure E6.4.1(d) Blade loss in rotating machinery—Runge–Kutta with (i) (Δt = 10−4 second) and

with (ii) (Δt = 10−3 second)

508 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



The response would also be quite different if the circulatory force term kpwas large, that
is, if kp is increased to 107 lb/in. and with 50% bearing stiffness. The system eigenvalues
(5.4.220) become

λ1 = −180 + i457, λ2 = + 31 + i460, λ3 = −539 + i874, λ4 = −1652 + i2513

The second eigenvalue has a positive real part indicating an unstable system
(Section 5.6) so that the resulting response in Figure E6.4.1(g) diverges with increas-
ing time.
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Figure E6.4.1(e) Blade loss in rotating machinery—MATLAB ODE45
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Figure E6.4.1(f) Natural frequencies versus shaft speed for 50% bearing stiffness
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Example 6.4.1 MATLAB Code

Clear
global AMAT mbar e omega M
ioption = 1
% If ioption = 1(Newmark) , = 2(Runge Kutta) , = 3(Matlab ODE45)
L1 = .35; L2 = .65;
m = 100 ; IT = 2.0 ; IP = 2.2 ;
rpm = 15000 ; omega = 2*pi*rpm/60
C2 = 6000.0 ; C3 = 10000. ;
K2 = 20.e+06/2 ; K3 = 25.e+06/2; kf = 10000000.0 ;
mbar = 0.20 ; e = 0.15 ;
qzero = zeros(4,1) ; qdotzero = zeros(4,1);
delta = .50 ; alpha = .25 ; del = 1.0e-05;
M = zeros(4,4);
M(1,1) = m ; M(2,2) = m ; M(3,3) = IT ; M(4,4) = IT ;
C = zeros(4,4);
C(1,1)=2*C2 ; C(2,2)=2*C3 ; C(3,3)=C2*(L1^2+L2^2) ; C(4,4)=C3*
(L1^2+L2^2) ;
C(1,3)=C2*(L1-L2); C(3,1)=C2*(L1-L2); C(2,4)=C3*(L2-L1);
C(4,2)=C2*(L2-L1);
K = zeros(4,4);
K(1,1)=2*K2 ; K(2,2)=2*K3 ; K(3,3)=K2*(L1^2+L2^2) ; K(4,4)=K3*
(L1^2+L2^2) ;
K(1,3)=K2*(L1-L2); K(3,1)=K2*(L1-L2); K(2,4)=K3*(L2-L1); K
(4,2)=K2*(L2-L1);
G = zeros(4,4);
G(3,4) = -IP*omega ; G(4,3) = IP*omega ;
Kf = zeros(4,4);
Kf(1,2) = kf ; Kf(2,1) = - kf ;
KT = K + Kf ;
CT = C + G ;
AMAT(1:4,1:4)=-inv(M)*CT ;
AMAT(1:4,5:8)=-inv(M)*KT ;
AMAT(5:8,1:4)=eye(4,4);
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Figure E6.4.1(g) Blade loss in rotating machinery: kf = 1.0 × 107 N/m, Newmark beta,Δt = 1 0 × 10−5 second
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AMAT(5:8,5:8) = zeros(4,4);
%Compute System Eigenvalues
rpm
lamb = eig(AMAT)
natfreqcps = 60*imag(lamb)/2/pi
pause
% Determine the number of iterations
nrev = 20;
freq = omega/2/pi ;
period = 1/freq ;
Integration_time = nrev*period ;
number_iter = fix(Integration_time/del) ;% the fix command
rounds down
icount = 0 ; iplt = 0 ;

if ioption == 1 % Newmark Beta Method
FBL_at_t0 = [mbar*e*omega^2 0 0 0 ]' ;
% Determine the acceleration vector at t = 0 using eq. 6.4.35
qddi = inv(M)*( FBL_at_t0 - CT*qdotzero - KT*qzero )
% Initialize the velocity and displacement vectors
qdi = qdotzero
qi = qzero

% Form Newmark Beta matrices from eq. 6.4.36
A = M/alpha/del^2 + CT*delta/alpha/del + KT ;
B = M/alpha/del^2 + CT*delta/alpha/del ;
D = M/alpha/del + ( delta/alpha - 1 )*CT ;
E = (1/2/alpha -1)*M + (delta*del/2/alpha -del)*CT ;
Ainv = inv(A) ;

%Begin integrating
for i = 1:1:number_iter
t = i*del ;
fiplus1 = mbar*e*omega^2*[cos(omega*t) sin(omega*t) 0 0 ]';
%Update Displacements (eq. 6.4.37)
qiplus1 = Ainv*( fiplus1 + B*qi + D*qdi + E*qddi);
%Update Accelerations (eq.6.4.38)
qddiplus1=(qiplus1-qi)/alpha/del^2-qdi/alpha/del+(1-1/2/

alpha)*qddi ;
%Update Velocities (eq.6.4.39)
qdiplus1 = qdi + ((1-delta)*qddi + delta*qddiplus1)*del ;
qi = qiplus1; qdi = qdiplus1; qddi = qddiplus1 ;
icount = icount +1 ;
if icount == 10
icount = 0 ;
t
x2D = qi(1,1)+L1*qi(3,1) ; x2Ddot = qdi(1,1)+L1*qdi(3,1) ;
x3D = qi(2,1)-L1*qi(4,1) ; x3Ddot = qdi(2,1)-L1*qdi(4,1) ;
x2E = qi(1,1)-L2*qi(3,1) ; x2Edot = qdi(1,1)-L2*qdi(3,1) ;
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x3E = qi(2,1)+L2*qi(4,1) ; x3Edot = qdi(2,1)+L2*qdi(4,1) ;

F2D=-K2*x2D-C2*x2Ddot ; F3D=-K3*x3D-C3*x3Ddot ; FD=sqrt
(F2D^2+F3D^2) ;

F2E=-K2*x2E-C2*x2Edot ; F3E=-K3*x3E-C3*x3Edot ; FE=sqrt
(F2E^2+F3E^2) ;

iplt = iplt + 1 ;
tplot(1,iplt) = t ;
plotq2(1,iplt) = qi(1,1); plotx2E(1,iplt) = x2E ;
plotFD(1,iplt) = FD ; plotFE(1,iplt) = FE ;

end
end
end % End Newmark Option

if ioption==2 % Runge Kutta Option
AMATpr = zeros(9,9) ;
AMATpr(1:8,1:8) = AMAT ;
Xpri = zeros(9,1); % Initial Conditions on positions and

velocities
Xpri(9,1) =1 ;

%Begin integrating
for i = 1:1:number_iter
ti1 = i*del ; tionehalf = i*del-del/2; ti=i*del-del;

fi1=mbar*e*omega^2*[cos(omega*ti1) sin(omega*ti1) 0 0 ]';
fionehalf=mbar*e*omega^2*[cos(omega*tionehalf )
sin(omega*tionehalf ) 0 0 ]';
fi=mbar*e*omega^2*[cos(omega*ti) sin(omega*ti) 0 0 ]';
AMATpr(1:4,9) = inv(M)*fi1 ;
AMATpri1 = AMATpr;
AMATpr(1:4,9) = inv(M)*fionehalf ;
AMATprionehalf = AMATpr;
AMATpr(1:4,9) = inv(M)*fi ;
AMATpri = AMATpr;
alphapr = del*AMATpri;
betapr = del*AMATprionehalf +.5*del*AMATprionehalf*alphapr ;
gammapr = del*AMATprionehalf + .5*del*AMATprionehalf*betapr ;
deltapr = del*AMATpri1 + del*AMATpri1*gammapr ;
bi = eye(9,9) + (alphapr + 2*betapr + 2*gammapr + deltapr)/6 ;
Xpri = bi*Xpri ;
qi = Xpri(5:8,1); qdi = Xpri(1:4,1) ;

icount = icount +1 ;
if icount == 1
icount = 0 ;
ti1
x2D = qi(1,1)+L1*qi(3,1) ; x2Ddot = qdi(1,1)+L1*qdi(3,1) ;
x3D = qi(2,1)-L1*qi(4,1) ; x3Ddot = qdi(2,1)-L1*qdi(4,1) ;
x2E = qi(1,1)-L2*qi(3,1) ; x2Edot = qdi(1,1)-L2*qdi(3,1) ;
x3E = qi(2,1)+L2*qi(4,1) ; x3Edot = qdi(2,1)+L2*qdi(4,1) ;
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F2D=-K2*x2D-C2*x2Ddot ; F3D=-K3*x3D-C3*x3Ddot ; FD=sqrt
(F2D^2+F3D^2) ;

F2E=-K2*x2E-C2*x2Edot ; F3E=-K3*x3E-C3*x3Edot ; FE=sqrt
(F2E^2+F3E^2) ;

iplt = iplt + 1 ;
tplot(1,iplt) = ti1 ;
plotq2(1,iplt) = qi(1,1); plotx2E(1,iplt) = x2E ;
plotFD(1,iplt) = FD ; plotFE(1,iplt) = FE ;

end
end
end % End Runge

if ioption == 3 %(Matlab ODE 45 )
tfin = Integration_time;
tspan=linspace(0,tfin,400);
Qinitial = zeros(8,1);
%Use ODE45 (Runge Kutta) to numerically integrate the first
Order EOM's
[t,Q] = ode45('CodeE6_4_1_a_sub',tspan,Qinitial);

x2D = Q(1:400,5)'+L1*Q(1:400,7)' ; x2Ddot = Q(1:400,1)'+L1*Q
(1:400,3)' ;

x3D = Q(1:400,6)'-L1*Q(1:400,8)' ; x3Ddot = Q(1:400,2)'-
L1*Q(1:400,4)';
x2E = Q(1:400,5)'-L2*Q(1:400,7)' ; x2Edot = Q(1:400,1)'-L2*Q

(1:400,3)' ;
x3E = Q(1:400,6)'+L2*Q(1:400,8)' ; x3Edot = Q(1:400,2)'+L2*Q

(1:400,4)' ;
F2D=-K2*x2D-C2*x2Ddot;F3D=-K3*x3D-C3*x3Ddot;FD=sqrt(F2D.

*F2D+F3D.*F3D) ;
F2E=-K2*x2E-C2*x2Edot;F3E=-K3*x3E-C3*x3Edot;FE=sqrt(F2E.

*F2E+F3E.*F3E) ;
tplot = t';
plotq2 = Q(1:400,5)'; plotx2E = x2E ;
plotFD = FD ; plotFE = FE ;
whos
pause
end

subplot(4,1,1);
plot(tplot*1000,plotq2*1000);
ylabel('Disp mm');
msg=sprintf('Mass Center X2 Direction');
gtext(msg);
pause
subplot(4,1,2);
plot(tplot*1000,plotx2E*1000);
ylabel('Disp mm');
msg=sprintf('Bearing E X2 Direction');
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gtext(msg);
pause
subplot(4,1,3);
plot(tplot*1000,plotFD/1000);
ylabel('Force kN');
msg=sprintf('Resultant Force Bearing D');
gtext(msg);
pause
subplot(4,1,4)
plot(tplot*1000,plotFE/1000);
ylabel('Force kN');
msg=sprintf('Resultant Force Bearing E');
gtext(msg);
xlabel('time msec');
pause
close
%Plot Natural Frequencies vs. Speed at 50% Bearing
Stiffness Level
SPD = [0 1000 2000 4000 6000 8000 10000 12000 15000];
N1 = [4044 4044 4044 4044 4044 4044 4044 4044 4044 ];
N2 = [4513 4513 4513 4513 4513 4513 4513 4513 4513 ];
N3 = [11900 12000 12318 13812 15786 17615 19415 21230 24000];
N4 = [13725 13664 13464 12427 11173 10284 9598 9035 8340 ];
plot(SPD,N1,'k',SPD,N2,'k',SPD,N3,'k',SPD,N4,'k',SPD,
SPD,'k−−');
axis([0 15000 0 25000]);
xlabel('Shaft Speed in RPM');
ylabel('Frequency in CPM');
msg=sprintf('Speed = Natural Frequency Line −−−>>>');
gtext(msg);
grid on

subfunction file for Ex. 6.4.1
function Qdot = CodeE6_4_1_a_sub(t,Q)
global AMAT mbar e omega M
tee=t
Qdot =zeros(8,1) ;
F = zeros(8,1);
f = mbar*e*omega^2*[cos(omega*t) sin(omega*t) 0 0 ]' ;
F(1:4,1) = inv(M)*f;
Qdot = AMAT*Q + F ;

EXAMPLE 6.4.2 Instrumentation Tower Impact Investigation via the Runge–Kutta
and Newmark Beta Numerical Integration (Examples 5.4.4 and 6.3.1
Continued)

Statement: The description of the physical problem and the related parameter values are
identical to those given in Examples 5.4.4 and 6.3.1.
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Objective: The objective of this example is to illustrate the use of the Newmark beta (NB)
(6.4.35)–(6.4.39) and Runge–Kutta (RK) (6.4.67)–(6.4.77) numerical integration algo-
rithms as applied to the physical coordinate EOMs of Example 6.3.1. The simulation is
for a duration τ of impact equal to 1.0 seconds. The effects of varying time step size are
also investigated.

Results: Figure E6.4.2(a) shows the results for numerically integrating the physical
coordinate EOMs using the NB method with time steps Δt = del of 10−1, 10−2, and
10−3 second. The NB response results for Δt = 10−2 and 10−3 are very similar to those
obtained with MATLAB ODE45 from comparison with Figure E6.3.1(c).

Figure E6.4.2(b) shows the responses from the RK approach at the same locations. This
again illustrates the effect of setting Δt too small, which results in a numerical integration
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Figure E6.4.2(a) Tower deflections versus time (seconds) by NB integration with (i) Δt = 10−1,

(ii) Δt = 10−2, and (iii) Δt = 10−3 second
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instability (Bathe, 1982). From Figure E6.3.1(c), the responses for Δt = 10−2 or 10−3 are
very similar with those obtained by using MATLAB’s built-in RK integrator ODE45.

Table E6.4.2 shows a comparison of predicted peak response and wall clock compu-
tation times for the RK and NB methods. For this example, the adaptive time step approach
utilized in the MATLAB ODE45 RK solver is much faster than the fixed time step RK
approach presented and is moderately more efficient compared to the NB method. The
MATLAB’s ODE45 RK integrator is exceptionally fast as is to be expected considering
its highly mature and optimized coding and algorithms.
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Figure E6.4.2(b) Tower deflections versus time (seconds) by RK integration with (i) Δt = 10−1,

(ii) Δt = 10−2, and (iii) Δt = 10−3 second
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clear
% Parameter Values
% NOTE THAT N MUST BE A MULTIPLE OF 4 FOR PLOTTING PURPOSES AND
% IORDER MUST BE CHANGED IF N IS CHANGED
N=20 ; H = 20 ; k=50000 ; m=20 ; h = H/N ; ms = 50. ;
zetadesired = [.02 .02 .025 .025 .03 ]; %desired damping ratios
for modes 1-5
height = h*linspace(1,N,N)
ioption = 2
% If ioption = 1(Newmark) , = 2(Runge Kutta)
tau = 1.0 % impact duration
tfin = 10 ; % final time for simulation
qzero = zeros(N,1); qdotzero = zeros(N,1);% Initial positions
and velocities
delta = .50 ; alpha = .25 ; % Newmark Beta parameters
del = 1.0e-03; % Time step in seconds
number_iter =tfin/del ;
icount = 0 ; iplt = 0 ;

% Form mass matrix and its inverse
M= m*eye(N); M(N,N) = M(N,N) + ms ; MINV = inv(M) ;
% Form Stiffness Matrix
K= zeros(N,N);
kel = k*[1 -1 ; -1 1 ] ;
for i=1:1:N-1
K(i:i+1,i:i+1) = K(i:i+1,i:i+1) + kel ;

end
K(1,1) = K(1,1) + k ; KT = K ;
% Determine the undamped system's natural frequencies and mode
shapes
[modalmatrix, otemp] = eig(K,M) ;
omegasquared = diag(otemp);
omega =sqrt(omegasquared);
natfreq = omega/2/pi;
% Note that the natural frequencies are generally not arranged
% in ascending order in omegasquared , omega and natfreq . For
N=20 the mode

Table E6.4.2 Peak responses and wall clock elapsed times for the RK and NB approaches

Δt
(second)

Runge–Kutta (RK) Newmark beta (NB)

Peak
response (mm)

Computation time
(seconds)

Peak
response (mm)

Computation time
(seconds)

ODE45a 98.56 4.56 — —

0.1 10257 1.15 94.60 0.05
0.01 98.30 10.65 98.24 0.61
0.001 98.56 110.7 98.56 6.55

aΔt is variable (adaptive) in ODE45.
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% ordering is
iorder= [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ];
% Reorder mode shapes and natural frequencies in ascending order
as follows
for i=1:1:N

orderomega(iorder(i)) = omega(i) ;
ordernatfreq(iorder(i)) = natfreq(i) ;
ordermodmat(1:N,iorder(i)) = modalmatrix(1:N,i) ;

end
orderomega
ordernatfreq
% Determine the Modal Masses of the original modes (Use of diag
here insures % that no off diagonal terms in modalmassmatrix are
negative which will cause % there sqrt to be complex below)
modalmass = diag(ordermodmat'*M*ordermodmat);
modalmassmatrix=diag(modalmass);
% Rescale the modeshapes so that all the modal masses equal one.
ordermodmat=ordermodmat*inv(sqrt(modalmassmatrix));
% Form the orthogonal damping matrix in eqs.10 and 11 of Ex. 6.3.1
mu1 = 2*zetadesired(5)/orderomega(5) ;
dum=zeros(N,N);
for i=1:1:4
zeta = zetadesired(i)-zetadesired(5)*orderomega(i)/

orderomega(5);
dum = dum+2*zeta*orderomega(i)*ordermodmat(1:N,i)

*ordermodmat(1:N,i)' ;
end
Co = mu1*K + M*dum*M ; CT = Co ;

AMAT(1:N,1:N)=-inv(M)*CT ;
AMAT(1:N,N+1:2*N)=-inv(M)*KT ;
AMAT(N+1:2*N,1:N)=eye(N,N);
AMAT(N+1:2*N,N+1:2*N) = zeros(N,N);

% ************************************************
if ioption == 1 % Newmark Beta Method
% ************************************************

F_at_t0 = zeros(N,1); % Initial Force Vector
F_at_t0(N/4,1) = 500. ;
% Determine the acceleration vector at t = 0 using eq. 6.4.35
qddi = inv(M)*( F_at_t0 - CT*qdotzero - KT*qzero );
% Initialize the velocity and displacement vectors
qdi = qdotzero;
qi = qzero;

% Form Newmark Beta matrices from eq. 6.4.36
A = M/alpha/del^2 + CT*delta/alpha/del + KT ;
B = M/alpha/del^2 + CT*delta/alpha/del ;
D = M/alpha/del + ( delta/alpha - 1 )*CT ;
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E = (1/2/alpha -1)*M + (delta*del/2/alpha -del)*CT ;
Ainv = inv(A) ;

%Begin integrating
for i = 1:1:number_iter
t = i*del ;
fiplus1 = zeros(N,1) ;
if t<tau

fiplus1(N/4,1) = 500 ;
end
%Update Displacements (eq. 6.4.37)
qiplus1 = Ainv*( fiplus1 + B*qi + D*qdi + E*qddi);
%Update Accelerations (eq. 6.4.38)
qddiplus1=(qiplus1-qi)/alpha/del^2-qdi/alpha/del+(1-1/2/

alpha)*qddi ;
%Update Velocities (eq. 6.4.39)
qdiplus1 = qdi + ((1-delta)*qddi + delta*qddiplus1)*del ;
qi = qiplus1; qdi = qdiplus1; qddi = qddiplus1 ;
icount = icount +1 ; % Plot every 10th point in time
if icount == 10
icount = 0 ;
t;
iplt = iplt + 1 ;
x1(iplt,1) = qi(1,1);
xN4(iplt,1) = qi(N/4,1) ;
xN2(iplt,1) = qi(N/2,1) ;
xN(iplt,1) = qi(N,1) ;
tplot(iplt,1) = t ;

end
end
maxresp = max(abs(xN))*1000
end % End Newmark Option

% ********************************************************
if ioption==2 % Runge Kutta Option
% ********************************************************
% Form the A prime and initial X prime terms in (6.4.50)
AMATpr = zeros(2*N+1,2*N+1) ;
AMATpr(1:2*N,1:2*N) = AMAT ;
Xpri = zeros(2*N+1,1); % Initial Conditions on positions and

velocities
Xpri(2*N+1,1) =1 ;

%Begin integrating
for i = 1:1:number_iter
ti1 = i*del ; tionehalf = i*del-del/2; ti=i*del-del;
fi1 = zeros(N,1) ; fionehalf = zeros(N,1) ; fi = zeros(N,1) ;
if ti1<tau %
fi1(N/4,1) = 500; % evaluate force at time ti + deltat
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end
if tionehalf<tau %
fionehalf(N/4,1) = 500; % evaluate force at time ti + deltat/2

end
if ti<tau %
fi(N/4,1) = 500;% evaluate force at time ti

end

% Form A_prime in 6.4.50 at ti , ti+deltat/2 and ti+deltat
AMATpr(1:N,2*N+1) = inv(M)*fi1 ;
AMATpri1 = AMATpr;
AMATpr(1:N,2*N+1) = inv(M)*fionehalf ;
AMATprionehalf = AMATpr;
AMATpr(1:N,2*N+1) = inv(M)*fi ;
AMATpri = AMATpr;

alphapr = del*AMATpri; % alpha_i_prime 6.4.68
betapr = del*AMATprionehalf +.5*del*AMATprionehalf*alphapr ;
% beta_i_prime in 6.4.69
gammapr = del*AMATprionehalf + .5*del*AMATprionehalf*betapr ;
% gamma_i_prime in 6.4.70
deltapr = del*AMATpri1 + del*AMATpri1*gammapr ; % delta_i_prime
in 6.4.71
bi = eye(2*N+1,2*N+1) + (alphapr + 2*betapr + 2*gammapr +
deltapr)/6 ;% ref. eq . 6.4.74
Xpri = bi*Xpri ; % eq. 6.4.73
qi = Xpri(N+1:2*N,1); qdi = Xpri(1:N,1) ; % ref. 6.4.65

icount = icount +1 ; % Plot every 10th point in time
if icount == 10
icount = 0 ;
ti1
iplt = iplt + 1 ;
x1(iplt,1) = qi(1,1);
xN4(iplt,1) = qi(N/4,1) ;
xN2(iplt,1) = qi(N/2,1) ;
xN(iplt,1) = qi(N,1) ;
tplot(iplt,1) = ti1 ;

end
end
maxresp = max(abs(xN))*1000
end % End Runge

subplot(4,1,1);
plot(tplot,1000*x1);
grid on
ylabel('q mm')
msg = sprintf('Mass 1 ');
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gtext(msg);
msg=sprintf('Maximum response=%2.f in mm',maxresp);
gtext(msg);
pause
subplot(4,1,2);
plot(tplot,1000*xN4);
grid on
ylabel('q mm')
msg = sprintf('Mass N/4');
gtext(msg);
pause
subplot(4,1,3);
plot(tplot,1000*xN2);
grid on
ylabel('q mm')
msg = sprintf('Mass N/2');
gtext(msg);
pause
subplot(4,1,4);
plot(tplot,1000*xN);
grid on
ylabel('q mm')
msg = sprintf('Mass N ');
gtext(msg);xlabel('time in sec');
pause
close
whos

6.5 SUMMARY

The topics in Chapter 6 should provide the reader with an understanding and working
knowledge of:

(a) Transient response of 1 dof and N dof linear systems to step, ramp, sinusoidal, expo-
nential, and other types of disturbances

(b) Direct analytical, LT, convolution integral, and NI approaches for obtaining the tran-
sient response given ICs and force time histories

(c) Modal-based subspace condensation approaches for reducing problem size prior to tran-
sient response solution of undamped, orthogonally damped, and general systems

(d) Selecting of modes to employ in a modal condensation-based NI solution using modal
effective masses

(e) First derivative (state) and second derivative system NI techniques
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6.6 CHAPTER 6 EXERCISES

6.6.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website: www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding a significant cost savings for the college student, and is updated.

6.6.2 Exercise Goals

The goal of the Exercises in Chapter 6 is to strengthen the student’s understanding and
related engineering problem solving skills in the following areas:

(a) Obtaining closed-form solutions for time transient vibration responses when they exist

(b) Treatment of vibrating systems subjected to successive disturbances

(c) Usage of modal coordinates to accelerate the simulation time for transient vibration
response of large-order systems

(d) Methodology and implementation of numerical integration for obtaining transient
vibration response predictions

6.6.3 Sample Exercises: 6.18 and 6.21

Exercise 6.18 represents a simplified model of a moving vehicle with passenger, as sub-
jected to either a quick acceleration of the vehicle or the vehicle crashing into a fixed barrier.
The objective of the study is to determine the moment that is exerted on the passenger’s head
with the two loading scenarios. Exercise 6.21 represents a model of a bridge subjected to the
transient loading of a passing truck. The bridge is represented by 2D finite element truss
members, and the predicted responses must be determined by numerical integration of phys-
ical coordinates and also of modal coordinates.
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Chapter 7

Steady-State Vibration Response
to Periodic Loading

7.1 INTRODUCTION

Many vibrating systems are subjected to periodic forces and consequently exhibit periodic
responses. Some examples include gas forces in piston/cylinder applications, waves, inter-
nal vortex shedding in gas piping systems or external shedding on structures, imbalanced
spinning shafts, jack hammers, pile drivers, and so on. Although most of these forces are
not sinusoidal, they may be expressed in terms of sinusoids via their Fourier series
(Section 2.9) representation. Consequently, the majority of the chapter treats responses
due to sinusoidal input. Some common topics related to steady-state harmonic response
(SSHR) include resonance, damping, Q (amplification) factor, impedances, receptances,
and modal-based identification. The order of the chapter is as follows:

• Background

• Single dof systems

• 2 dof systems

• N dof systems

• Continuous systems

In mathematical terms, steady-state harmonic vibration represents the “particular part”
(Section 6.2) of the solution to the governing equations of motion (EOMs) with only sinus-
oidal forces. The homogeneous part is assumed to be damped out so the transient response
has diminished to zero. It is important to note that an unstable system (Section 5.6) does not
possess an SSHR so the homogeneous part of the solution must always be considered first.
For example, see Figure E6.4.1(g) for which the rotor system is harmonically forced with an
imbalance force but is also unstable, and consequently the homogeneous part of the response
diverges to infinity.

7.2 COMPLEX PHASOR APPROACH

Figure 1.2.1 illustrates the sinusoidal response of a structure or component. The peak pos-
itive or negative amplitudes or zero crossings for the different responses occur at different
times; hence, it is said that they differ in phase angle. The description of a time delay (lag) or
lead in terms of phase angle requires a forcing period Twhere T = 2π ω. Then phase lead or
lag represents time lead or lag since 360 of angle change

0 ≤ωt ≤ 360 =ωT 7 2 1
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represents one forcing period T. The phase angle of any response may be measured with
respect to a once per forcing cycle event marker that establishes ωt = 0,2π,4π, and so on.
This is indicated in Figure 1.2.1 as arrowheads and the accompanying discussion. Physical
events that correspond to this marker include a once per revolution mark on a shaft or the
“top dead center” position of a piston within a cylinder. Phase may also be expressed as the
relative phase angle between two responses, which is the difference in time between their
positive peak events multiplied by ω. Measurement of phase leads or lags is very useful in
identifying mode shapes or damping, for balancing shafts, and for diagnosing vibration pro-
blems. The sinusoidal forces in a structural simulation model may be written in a general
vector form as

f
N × 1

t =

Af 1 cos ωt +ϕf 1

Af 2 cos ωt +ϕf 2

AfN cos ωt +ϕfN

7 2 2

Euler’s identity (Example 2.4.3)

ei ωt+ϕ = cos ωt +ϕ + isin ωt +ϕ 7 2 3

is utilized to express f in complex variable form as

f t =Real Feiωt N × 1 7 2 4

where

F =

Af 1eiϕf1

Af 2eiϕf2

AfNeiϕfN

=

F1

F2

FN

7 2 5

where Fj is the jth force phasor representation (ref. Eq. (2.5.2)). This suggests replacing the
real form of the governing EOMs with a complex form since it is much easier to differentiate
an exponential than a cosine or sine. Consider the real equation of motion

Mq +CTq+KTq = f t 7 2 6

and its complex variable counterpart

MQ +CTQ+KTQ=Feiωt 7 2 7

where Q andF are, in general, complex vectors. Therefore,

M Q
R
+ iQ

I
+CT Q

R
+ iQ

I
+KT Q

R
+ iQ

I
=Re Feiωt + iIm Feiωt 7 2 8

Consider the real part of this equation

MQ
R
+CTQR

+KTQR
=Re Feiωt 7 2 9
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By comparing (7.2.6) and (7.2.9) and using (7.2.4), it is seen that the desired real
response q t has the same differential equation as Q

R
; thus,

q t =Q
R
=Real Q 7 2 10

This suggests using the following complex variable-based solution procedure:

(a) For any given sinusoidally forced structure, form the F vector in (7.2.5). Note that

sin ωt + α = cos ωt + α−90 7 2 11

Therefore, if a force has a sin ωt + α factor, the phase angle to use in (7.2.5) is

ϕ= α−90 7 2 12

It may also be more convenient to work with (7.2.5) in rectangular form as provided
by Euler’s identity, that is,

F =

Af 1 cosϕf 1 + iAf 1 sinϕf 1

Af 2 cosϕf 2 + iAf 2 sinϕf 2

AfN cosϕfN + iAfN sinϕfN

7 2 13

(b) Obtain the steady-state (particular) solution of the complex EOMs (7.2.7) for Q t with

the eiωt-type force term.

(c) Obtain the actual physical response vector from

q t =Q
R
t =Real Q t 7 2 14

This approach will be employed in the following sections.

7.3 SINGLE DEGREE OF FREEDOM MODELS

The single degree of freedom (SDOF) model provides a simple means to illustrate damping,
resonance, isolation, and force transmissibility and has many practical applications.
A resonance that most have enjoyed is the simple swing set as shown in Figure 7.3.1(a).
Figure 7.3.1(b) illustrates a means for attenuating forces transmitted from a machine to
the work environment.

Figure 7.3.2 shows a generic model of an SDOF system with a harmonic force. This
may represent a complex system of links that have a sufficient number of kinematic con-
straints to eliminate all but one dof, such as in Figure E3.3.1(a). In these cases,m, c, k, and f
may be regarded as being the “equivalent”mass, damping, stiffness, and force, respectively,
of the complex system.

Newton’s law (3.3.5) for this model is

mq = f t −FT t 7 3 1
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where

FT t = c q−y + k q−y 7 3 2

f t =Af cos ωt +ϕf 7 3 3

y t =Ay cos ωt +ϕy 7 3 4

mq + cq + kq = f t + ky + cy 7 3 5

The four application areas that will be modeled with (7.3.5) are summarized in
Table 7.3.1.

The complex variable solution of Equation (7.3.5) proceeds via Equations (7.2.1)–
(7.2.7). The real external forces are replaced by their complex counterparts as in (7.2.5):

f t =Af cos ωt +ϕf Af eiϕf eiωt

y t =Ay cos ωt +ϕy Ayeiϕy eiωt

y t Ayeiϕy iωeiωt

7 3 6

(a) (b)

Absorbers

Figure 7.3.1 (a) Resonant swing and (b) elastomeric absorbers for reducing transmitted forces

Figure 7.3.2 Equivalent system—SDOF model for steady-state harmonic response analysis
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The real response q(t) is replaced by its complex counterpart so (7.3.5) becomes

mQ + cQ+ kQ = Af e
iϕf +Aye

iϕy k + icω eiωt 7 3 7

As in (2.5.13), substitute

Q=Qeiωt 7 3 8

and solve for the displacement phasor Q (Section 2.5), yielding

Q=
Af eiϕf

k−mω2 + icω
+
Ayeiϕy k + icω
k−mω2 + icω

7 3 9

The conditions in Table 7.3.1 are divided into two cases as discussed next.

7.3.1 Class I f t 0, y t = 0 : No Support Excitation—Only External Forcing

Set Ay = 0 in (7.3.9) and express the complex constant Q in polar form

Q= Q eiϕQ 7 3 10

where using the identities in Section 2.5

Q =
Af eiϕf

k−mω2 + icω
=

Af

k−mω2 2 + cω 2

ϕQ =∠Af eiϕf −∠ k−mω2 + icω =ϕf − tan
−1 cω

k−mω2

7 3 11

Substitute

m

k
=

1
ω2
n

,
cω

k
=
2mωnξω

k
= 2ξ

ω

ωn
, r =

ω

ωn
7 3 12

to obtain

Q =
Af k

1−r2 2 + 2ξr 2
, ϕQ =ϕf − tan

−1 2ξr
1−r2

7 3 13

Table 7.3.1 Application areas for steady-state harmonic analysis

Condition Typical objective |f | |y|

Constant amplitude excitation Control resonance Af 0
Force transmission FT ≈0 Af 0
Vibration isolation q ≈0 0 Ay

Rotating imbalance Control resonance ω2Âf 0
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Recall from (7.2.10), (7.3.8), and (7.3.10) that

q t =Re Q t =Re Qeiωt =Re Q eiϕQeiωt =Re Q ei ωt +ϕQ = Q cos ωt +ϕQ

7 3 14

From (7.3.2), the transmitted force is

FT t = kq+ cq = kRe Q + c
d

dt
Re Q = kRe Q + cRe Q

=Re kQ + cQ =Re kQ+ ciωQ eiωt =Re k + icω Qeiωt
7 3 15

From (7.3.9), Equation (7.3.15) may be written as

FT t =Re G ω Af e
iϕf eiωt 7 3 16

where

G ω =
k + icω

k−mω2 + icω
=

1 + i2ξr
1−r2 + i2ξr

7 3 17

and with the identities of Section 2.5

G ω = G eiϕG , G =
1 + 2ξr 2

1−r2 2 + 2ξr 2

ϕG =∠ 1 + i2ξr −∠ 1−r2 + i2ξr = tan−1 2ξr − tan−1 2ξr
1−r2

7 3 18

Equation (7.3.16) becomes

FT t =Re G Af e
iϕGeiϕf eiωt =Af G cos ωt +ϕf +ϕG 7 3 19

Therefore,

FT =Af G 7 3 20

∠FT =ϕf +ϕG 7 3 21

Define the force transmissibility ratio (TR) magnitude as

TR=
FT

f
=

FT

Af
= G ω =

1 + 2ξr 2

1−r2 2 + 2ξr 2 7 3 22

which is the ratio of transmitted force to applied force. Figure 7.3.3 shows the TR’s
(a) amplitude and (b) phase angle versus frequency ratio (r) and damping ratio (ξ).
Figure 7.3.3 shows that the transmitted forces can become very large for values of r near
rmax. Avoiding this condition of “resonance” is commonly the reason for integrating vibra-
tion analysis into the design process for high-performance machinery and structures.

The TR magnitude in (7.3.22) equals 1 at r = 2, independent of the value of ξ.
Figure 7.3.3 and Equation (7.3.22) clearly show that the frequency ratio r =ω ωn must
exceed 2 to reduce the transmitted force FT. This suggests soft mounting a machine, which
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has the effect of making ωn small relative to the forcing frequency range. Light damping (ξ)
is also seen to be desirable for lowering |G| for r > 2. Some active damping approaches
increase damping as the forcing frequency passes through resonance and lower damping
when operating with r > 2.

Figure 7.3.3(b) shows the variation ofϕG in (7.3.18) versus frequency ratio (r) and damp-
ing ratio (ξ). The effect of increasing ξ is to decrease the phase lag of the response relative to
the force. Equation (7.3.18) shows that ϕG approaches −90 as r approaches ∞ for all ξ> 0.
The peaks in the |G| curves of Figure 7.3.3(a) occur at different values of r, depending on the
value of ξ, that is,

rmax = value of r at max G = rmax ξ 7 3 23

The value of rmax is determined by solving for the r that satisfies

d G

dr
= 0 7 3 24

The r that satisfies this equation is rmax and is substituted into |G(r)| to determine
the peak amplitude of G. The following Maple code performs these calculations with its
symbolic calculus capabilities:

> restart;
> f:= sqrt( (1+(2*zeta*r)^2 ) / ( (1-r^2)^2 + (2*zeta*r)^2 ) );
> y:= diff(f,r);
> rmaxv :=solve(y=0,r);
> rmax := rmaxv[2];
> plot(rmax,zeta=.01..3.0,title=“ ”,labels=[“Damping Ratio
(dim)”,“r at G Peak"],thickness=2);
>f:= sqrt( (1+(2*zeta*rmax)^2 ) / ( (1-rmax^2)^2 + (2*zeta*rmax)^2
) );
>plot(f,zeta=.05..1.0,title=“”,labels=[“DampingRatio
(dim)”,“G peak”],thickness=2);
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Figure 7.3.3 (a) Magnitude and (b) phase angle of G versus r =ω ωn and ξ
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This code provides the formula for the r value at the peak |G|:

rmax ξ =
1
2

−1 + 1 + 8ξ2

ξ
7 3 25

and the peak value of |G|:

G peak = G rmax =
1 + 8ξ2

1−
1
4
−1 + 1 + 8ξ2

ξ2

2

−1 + 1 + 8ξ2

7 3 26

Figure 7.3.4(a) and (b) shows plots of rmax versus ξ and max(|G|) versus ξ, respectively.
The displacement q(t) of the effective mass m in Figure 7.3.2 is given by

Equations (7.3.13) and (7.3.14) as

q t =
Af

k
Gf cos ωt +ϕf +ϕGf 7 3 27

where

Gf =
1

1−r2 2 + 2ξr 2
7 3 28

ϕGf = − tan−1 2ξr
1−r2

7 3 29

Figure 7.3.5 shows plots of |Gf | and ϕGf versus r and ξ.
The pronounced peak in the displacement versus frequency ratio curve represents a

resonance condition. Note that Gf 0 as r ∞ , which from (7.3.27) indicates that
the displacement amplitude will approach zero at frequencies well above the resonance fre-
quencies. Figure 7.3.6 shows the peak displacement values of r and the peak value of |Gf |
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Figure 7.3.4 (a) Frequency ratio r at peak |G| and (b) peak |G| versus ξ
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versus ξ. The amplitude must decrease to zero as r ∞ ; otherwise, the required input
power f ∗x = f ω x would become infinite.

The value of r at which the peak displacement in Figure 7.3.5 occurs is determined
utilizing a Maple code. The result is

rpeak = 1−2ξ2, 0 ≤ ξ ≤
1

2
= 0 707 7 3 30

In a similar manner, the peak value of |Gf | is determined to be

Gf peak
= Gf rpeak =

1
2ξ

1−ξ2, 0 ≤ ξ ≤
1

2
7 3 31
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Figure 7.3.6 Frequency ratio (r) for (a) Max |Gf | and (b) maximum amplitude of |Gf | versus ξ
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Chapter 7 Steady-State Vibration Response to Periodic Loading 533

www.konkur.in



The static displacement amplitude of q is given by setting r = 0 in (7.3.27) and (7.3.28)
yielding

qstatic =
Af

k
7 3 32

combining these results in (7.3.27) shows that the peak displacement amplitude is given by

qpeak =
Af

k
Gf peak

= qstatic ∗ 1
2ξ

1−ξ2, 0 ≤ ξ ≤
1

2
7 3 33

which illustrates the potentially dangerous risk of utilizing a static response estimate for a
dynamic system’s response, for lightly damped systems near resonance.

The following Maple code performs these calculations with its symbolic calculus
capabilities:

> restart;
> f:= sqrt( 1 / ( (1-r^2)^2 + (2*zeta*r)^2 ) );
> y:= diff(f,r);
> rmaxv :=solve(y=0,r);
> rmax := rmaxv[2];
> plot(rmax,zeta=.01..(.7071),title=“ ”,labels=[“Damping Ratio
(dim)”,“r at Gf Peak”],thickness=2);
> f:= sqrt( 1 / ( (1-rmax^2)^2 + (2*zeta*rmax)^2 ) );
> plot(f,zeta=.05..(.7071),title=“ ”,labels=[“Damping Ratio
(dim)”,“Gf peak”],thickness=2);

The fourth case in Table 7.3.1 corresponds with Af being proportional to ω2, that is,

Af =Afω
2 7 3 34

This form of the harmonic force amplitude always applies to rotating machines with
mass unbalance on the rotating component of the machine. The unbalance results from
the impossibility of originally machining or maintaining a rotating part that has its mass cen-
ter precisely on its spin axis. From (7.3.27) and (7.3.34),

q =
Af

k
Gf ω

2 =
Af

k ω2
n

Gfω =
Af

m
Gfω 7 3 35

where

Gfω = Gf r
2 =

r2

1−r2 2 + 2ξr 2
7 3 36

Figure 7.3.7 shows plots of the peak displacement values of r and the peak value of
|Gfω| versus ξ. The value of r at which the peak occurs is determined by a Maple
code to be

rpeak =
1

1−2ξ2
7 3 37
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The corresponding peak value is given by

qpeak =
Af

m
Gfω rpeak =

Af m

2ξ 1−ξ2
7 3 38

The Maple code employed to generate the results in Figure 7.3.7 is as follows:

> restart:
> f:= r^2 / sqrt( (1-r^2)^2 + (2*zeta*r)^2 );
> y:= diff(f,r);
> rmaxv :=solve(y=0,r);
> rmax := rmaxv[3];
> plot(rmax,zeta=.01..(.6),title=“ ”,labels=[“Damping Ratio
(dim)”,“r at Gf_omega Peak”],thickness=2);
> f:= rmax^2 / sqrt( (1-rmax^2)^2 + (2*zeta*rmax)^2 ) ;
> plot(f,zeta=.05..(.7071),title=“ ”,labels=[“Damping Ratio
(dim)”,“Gf_omega Peak”],thickness=2);

Figure 7.3.8 shows plots of |Gfω| versus r for various values of ξ. Note that the peaks of
|Gfω| increase in frequency as ξ increases in contrast to |Gf | in Figure 7.3.5.

7.3.2 Class II f t = 0, y t 0 : Only Support Excitation—No External Forcing

To analyze this case, set Af = 0 in (7.3.9) yielding

Q=
Ayeiϕy k + icω
k−mω2 + icω

=Aye
iϕyG ω 7 3 39

where G(ω) is defined in (7.3.17). Note that from (7.3.6),

y =Ay = amplitude of the support motion 7 3 40
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Figure 7.3.7 (a) Frequency ratio (r) for Max |Gfω| and (b) maximum amplitude of |Gfω| versus ξ
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so (7.3.39) implies that the isolation ratio (mass displacement/support displacement)
becomes

q

y
=

Q

Ay
= G ω 7 3 41

Thus, the force transmissibility (FT/f) and the displacement isolation (q/y) ratios
have identical dependences on ξ and r, as expressed by |G(ω)| in Equation (7.3.18). Thus,
Figures 7.3.3 and 7.3.4 are applicable either to the vibration isolation problem or to the
force transmissibility problem. Figure 7.3.3 shows that soft mounting an object
r = ω ωn >> 1 provides a good means to isolate its motion from the support motion. This
is the basis for soft mounting precision optical devices.

EXAMPLE 7.3.1 Microgravity Experiment on the International Space Station

Statement: The International Space Station (ISS) provides an excellent environment for
developing new and improved medicines, crystals, and manufacturing processes and for
performing unique fluid mechanics, biology, astrophysics and physiology experiments. This
results from the absence of the strong gravitational force present at the earth’s surface. The
micro-g environment can be compromised by ISS-borne vibration sources such as crew
movements, machinery, and space shuttle docking. Very effective and innovative approaches
have been developed by NASA scientists and their contractors to isolate the micro-g experi-
ments from support motion-induced disturbances. The two configurations for experiments
requiring micro-g environments include a multiple experiment rack, which is itself isolated
from the ISS, and a single experiment approach, which is housed in a glove box to prevent
contamination. One innovative method developed to isolate the experiment is to use elec-
tromagnetic forces to support its container. This “active suspension” directs position and
acceleration sensor outputs to a controller that adjusts currents in a set of electromagnetic
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actuators. The forces produced have the effect of providing “active” stiffness (k), mass (ms),
and damping (c) as depicted in Figure E7.3.1(a).

Objective: A crystal growth experiment weighs 50 N and is supported by a vibration
isolation system in a glove box. The deck of the station in the vicinity of the experiment
undergoes periodic vibration caused by an air-conditioning compressor located on the
ISS. The deck motion at the glove box is sinusoidal with the amplitude of 0.01 mm and
frequency 50 Hz. This is equivalent to about 0.1 g(o-peak) acceleration of the deck. Identify
the support design requirements for achieving micro-g (10−6g) isolation of the experiment.

Assumptions: Small unidirectional motions in the (y, q) dofs only.

Solution: As shown in Equations (7.3.18) and (7.3.35), the isolation ratio of the experiment
container motion amplitude to the glove box amplitude is

q

y
= G ω =

1 + 2ξr 2

1−r2 2 + 2ξr 2 1

Since it is assumed that y consists of only one frequency, it follows that

aE
aD

=
experiment acceleration

deck acceleration
=
ω2 q

ω2 y
= G ω 2

The design objective is to achieve

aE = aD G ω =ω2 y G ω = 10−6g 3

G ω =
10−6g
ω2 y

=
10−6 9 8m s2

2π50s−1 2 10−5m
= 10−5 4

From Figure 7.3.3, it is seen that a very high frequency ratio and very low damping ratio
are required to achieve (4). From (1) and (4),

10−10 1−r2
2
+ 2ξr 2 −1− 2ξr 2 = 0 5

Figure E7.3.1(a) (i) Micro-g experiment with support motion disturbance and (ii) the simulation model
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The solution of this equation is obtained from a MAPLE code as

r = 1 0 + 0 2 × 1011ξ2 + 105 1 0 + 4 0ξ2 + 0 4 × 1011ξ4 6

and is plotted versus ξ in Figure E7.3.1(b)-(i). Recall

r =
ω

ωn
=

ω

k m +ms

k =
ω2

r2
m +ms 7

The required stiffness is plotted versus ξ in Figure E7.3.1(b)-(ii) for ω= 2π∗50,
m= 5 10kg, and ms = 0.

7.3.3 Half Power Point Damping Identification

Let R represent the amplitude of the SSHR of an SDOF system. The velocity and acce-
leration are the first and second time derivatives of displacement q(t); therefore,
Equations (7.3.27), (7.3.28), (7.3.35), and (7.3.36) yield

R=
Cωn

1−r2 2 + 2ξr 2
7 3 42

where C and n are shown in Table 7.3.2.
The response amplitude R may be experimentally measured with a displacement,

velocity, or acceleration sensor. The frequency ω is specified (known) if a shaker is used
for “resonance testing” and is measured with a tachometer for rotating machinery imbal-
ance-induced vibration (ω= shaft spin rate). The quantity (R/ωn) may then be plotted versus
r =ω ωn . The value of ωn used to evaluate the r values for this plot may be approximated
by the frequency at the peak response. This practice is acceptable for damping ratios
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less than 0.20 as can be seen from Figures 7.3.3, 7.3.4, 7.3.5, 7.3.6, 7.3.7, and 7.3.8. The
theoretical value of (R/ωn) is given by Equations (7.3.28) and (7.3.42) as

R=
R

ωn
=

C

1−r2 2 + 2ξr 2
=C Gf 7 3 43

From Figure 7.3.5, the general shape of this plot will resemble Figure 7.3.9.
The peak in this figure is given by (7.3.43) as

Rpeak =
R

ωn
peak

≈
R

ωn
r = 1

=
C

2ξ
7 3 44

The frequency ratios r1 and r2 are determined experimentally as the two values of
r at which

R1 2 =
Rpeak

2
≈0 707Rpeak 7 3 45

These are referred to as the “half power point” frequency ratios. From (7.3.43)
and (7.3.44),

R1 2 =
1

2

C

2ξ
=

C

1−r2 2 + 2ξr 2
7 3 46

Table 7.3.2 Response amplitude parameters for Equation (7.3.42)

Response amplitude (R) Force amplitude C n

Displacement (q) Constant Af /k 0
Velocity (v) Constant Af /k 1
Acceleration (a) Constant Af /k 2
Displacement (q) Proportional to ω2 (rotating imbalance) Af mω2

n
2

Velocity (v) Proportional to ω2 (rotating imbalance) Af mω2
n

3

Acceleration (a) Proportional to ω2 (rotating imbalance) Af mω2
n

4

Figure 7.3.9 Plot of frequency normalized response amplitude versus frequency ratio
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The results shown below are applicable to all response and force types shown in
Table 7.3.2 since C cancels in (7.3.46). The values of r that satisfy (7.3.46) are shown
in Figure 7.3.9 to be r1 and r2. Equation (7.3.46) is rewritten as

1−r2
2
+ 4ξ2r2 = 8ξ2 7 3 47

or

r4 + 4ξ2−2 r2 + 1−8ξ2 = 0 7 3 48

The roots of this equation are

r21 = 1−2ξ2 −2ξ 1 + ξ2, r22 = 1−2ξ2 + 2ξ 1 + ξ2 7 3 49

Note that for ξ ≤ 0 2, the expressions 1−2ξ2 and 1 + ξ2 are both approximately
equal to 1. Therefore,

r21≈1−2ξ, r22≈1 + 2ξ 7 3 50

and then

ξ≈
r22 −r

2
1

4
7 3 51

A commonly used simplified version of (7.3.51) for the damping ratio is

ξ =
r2−r1 r2 + r1

4
≈

r2−r1 1 + 1
4

=
r2−r1
2

7 3 52

The damping ratio ξ may then be experimentally measured by measuring r1 and r2 as
shown in Figure 7.3.9 and then using Equation (7.3.52). The ratio of the peak value of R to
its value at ω= 0 is given by (7.3.43) and (7.3.44) as

Q= quality factor = amplification factor =
Rpeak

Rω= 0
=
C 2ξ
C

=
1
2ξ

7 3 53

which from Equation (7.3.52) becomes

Q=
1
2ξ

=
1

r2−r1
7 3 54

Measurement of Rpeak and Rω= 0 provides yet another means to estimate ξ via
Equation (7.3.53). For lightly damped systems, Figures 7.3.5 and 7.3.8 show that r2≈r1
so that Q becomes very large by (7.3.54). Some machinery acceptance standards are spe-
cified in terms of maximum allowable Q. Turbines and compressors in the petrochemical
industry must traverse a resonance to reach their operating speed range. Continuous
operation in this speed range may extend from days to months and even a year or longer.
Imbalance may accumulate on turbine or compressor wheels and blades from wear and
deposits over this period. This may cause excessive vibration and damage while traversing
the resonance frequency during spin-down of the machine if Q is too high. Consequently,
machinery designers carefully select bearings and seals to provide adequate damping.
Recommended allowable values of Q for general-purpose turbines are discussed in the
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American Petroleum Institute standard API Std 617 (R2009). The author’s experience
would indicate that Q should be between 3 and 5; however, the standards should be
consulted in an actual machinery application.

7.3.4 Phase Slope Damping Identification

Commercially available phase meters can accurately measure, store, and display phase
angle relative to some reference, that is, a once per revolution marker on a rotating shaft.
From Equations (7.3.27)–(7.3.29), the measured phase angles of the response quantities are:

Displacement:

∠q =ϕm f +ϕf − tan
−1 2ξr

1−r2
7 3 55

Velocity:

∠v =ϕm f +ϕf − tan
−1 2ξr

1−r2
+ 90 7 3 56

Acceleration:

∠a=ϕm f +ϕf − tan
−1 2ξr

1−r2
+ 180 7 3 57

where ϕm/f is the relative phase angle between the reference marker and the force. The phase
of any of the above responses may be measured and plotted versus r =ω ωn . The slope of
the phases of any of these responses at r = 1, that is, at ω=ωn, is

d

dr
∠q or∠vor∠a

r = 1

=
d

dr
− tan−1 2ξr

1−r2 r = 1

=
−1

1 + 2ξr 1−r2 2 ∗
2ξ 1−r2 −2ξr −2r

1−r2 2
r = 1

=
1
ξ

7 3 58

Thus, the damping ratio may also be estimated by

ξ=
1

slope of plot of ∠qor∠v or∠a vs r at r = 1
7 3 59

7.3.5 Accurate Measurement of ωn

The half power point and phase slope methods of determining ξ required a value of ωn to
determine the frequency ratio r =ω ωn . The undamped natural frequency was assumed
to equal the peak response frequency, that is, from (7.3.30),

ωn≈ωpeak =ωn 1−2ξ2 0 ≤ ξ ≤
1

2
7 3 60
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which is fairly accurate for ξ ≤ 0 2, at which value the above approximation becomes

ωpeak≈ωn 0 959 7 3 61

The response phasor is given for external force excitation by (7.3.8), (7.3.9), and
(7.3.12) as

Q =
Af k eiϕf

1−r2 + i2ξr
7 3 62

The phase angle of the response relative to the phase angle of the force becomes:

Displacement response:

∠qrf =ϕq−ϕf = tan
−1 −2ξr

1−r2
7 3 63

Velocity response:

∠vrf =ϕv−ϕf =∠iω+∠
eiϕf

1−r2 + i2ξr
−ϕf = 90 + tan−1 −2ξr

1−r2
7 3 64

Acceleration response:

∠arf =ϕa−ϕf =∠−1 +∠
eiϕf

1−r2 + i2ξr
−ϕf = 180 + tan−1 −2ξr

1−r2
7 3 65

The undamped natural frequency is then identified as the forcing frequency for which
the relative phase angles have the following values:

Displacement:

∠qrf =ϕq−ϕf = −90 7 3 66

Velocity response:

∠vrf =ϕv−ϕf = 0 7 3 67

Acceleration response:

∠arf =ϕa−ϕf = 90 7 3 68

These results are obtained by assigning r = 1, that is, ω=ωn, in Equations (7.3.63),
(7.3.64), and (7.3.65). An approach to resonance testing employs a feedback loop to vary
the forcing frequency until the relative phase angle has the value given by the appropriate
equation ((7.3.66), (7.3.67), or (7.3.68)). The resulting frequency ω is then assumed to equal
the undamped natural frequency ωn. Another approach utilizes a plot of the receptance (R),
that is, the ratio of the measured response phasor to the measured force phasor. For example,
for displacement response (7.3.62) and (7.3.63), the polar form of R is

R=
Q

F
=

Q

Af eiϕf
= R eiϕR =

1 k

1−r2 2 + 2ξr 2
∠tan−1 −2ξr

1−r2
7 3 69
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A polar plot of this quantity in the complex plane is shown in Figure 7.3.10 for various
values of damping ratio zeta ξ. The phase angle decreases from 0 to −90 to −180 as r
increases from 0 to ∞ . The forcing frequency ω equals the undamped natural frequency
ωnwhen the locus crosses from the right-hand to the left-hand planes (ϕ = −90). The positive
peak of the response lags the positive peak of the force by 90 at this frequency.

7.3.6 Experimental Parameter Identification: Receptances

From (7.3.12) and (7.3.69),

R
−1

= k 1−r2 + i2ξr = k−mω2 + i cω = dynamic stiffness 7 3 70

Plots of the real and imaginary parts of R
−1

are shown in Figure 7.3.11.

The upper plot shows Re R
−1

versus ω2 and from (7.3.70) provides the effective
mass m as the negative of its slope and effective stiffness k as its intercept. The lower plot

shows Im R
−1

versus ω and from (7.3.70) provides the effective damping as its slope.
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Figure 7.3.10 Polar plot of receptance
R versus frequency with damping of ξ = 0 1,
0 2,0 3,0 4,0 5,0 6, and 0 7

Figure 7.3.11 (a) Real and (b) imaginary parts of the dynamic stiffness
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EXAMPLE 7.3.2 Identification of Effective m, k, and c from Experimental Data

Objective: This example illustrates how to identify the effective mass, stiffness, and damp-
ing of an SDOF system givenmeasured response amplitude and phase angle. The term “effec-
tive” is used to indicate that the system may include many stiffnesses, masses, and dampers;
however, the system is kinematically constrained so that it behaves as an SDOF. This is
illustrated by the “Resonant Vibrator for Compound Potting” mechanism in Example 3.3.1.

Solution: Assume that a system is shaken by an excitation force with

Af = 100N, ϕf = 30 =
π

6
rad 1

Af e
iϕf = 100 cos

π

6
+ isin

π

6
= 86 6 + i50 2

The displacement response is given by

q t = Q cos ωt +∠Q 3

“Measured” response amplitudes and phase angles are given in Table E7.3.2(a). The
complex number (phasor) form of the response is given by

Q= Q ei∠Q = Q cos∠Q + isin∠Q 4

and is listed in Table E7.3.2(b). The dynamic stiffness is the inverse of the receptance and is
listed in Table E7.3.2(c).

This data is also plotted in Figure E7.3.2(a). By comparison of Figures 7.3.11 and
E7.3.2(a), the intercepts and slope in the upper plot yield

k = 5000N m, ω2
n = 2500 rad s 2, m= 2kg

and the slope in the lower plot yields c = 20Ns m.

Table E7.3.2(a) “Measured” amplitudes and phase
angles

ω (rad/s) Q (m) ∠Q (rad)

10 0.021 0.48
20 0.024 0.43
30 0.031 0.34
40 0.051 0.11
50 0.10 −1.05
60 0.04 −2.11
70 0.02 −2.33
80 0.013 −2.42
90 0.009 −2.46
100 0.007 −2.49

544 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



7.3.7 Steady-State Harmonic Response of a Jeffcott Rotor and Rotor Balancing

Figure 7.3.12 shows a spinning shaft/disk system with flexibility of the shaft or of the
supporting bearings. This is a simplified model of a class of rotating machines (turbines,
fans, motors, and so on), which in most cases have several disks, stepped or tapered shafts,
seals, and so on. Therefore, the model in Figure 7.3.12 is presented only to explain some
general aspects of rotating machinery vibration response and balancing.

Figure 7.3.12(a) depicts the rigid bearing–shaft bending case where for a uniform shaft
that is simply supported the midpoint transverse stiffness is

k =
48EI
L3

7 3 71

Table E7.3.2(c) Inverse receptances

ω(rad/s) Re R
−1

Im R
−1

ω(rad/s) Re R
−1

Im R
−1

10 4 800 200 60 −2 200 1 200
20 4 200 400 70 −4 800 1 400
30 3 200 600 80 −7 800 1 600
40 1 800 800 90 −11 200 1 800
50 0 1 000 100 −15 000 2 000

Table E7.3.2(b) “Measured” displacement phasors

ω(rad/s) Q ω(rad/s) Q

10 0.018 + i0.0096 60 −0.021 − i0.034
20 0.021 + i0.0099 70 −0.014 − i0.014
30 0.029 + i0.010 80 −0.009 − i0.008
40 0.051 + i0.005 90 −0.007 − i0.006
50 0.05 − i0.087 100 −0.005 − i0.004
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Figure E7.3.2(a) (i) Real and (ii) imaginary parts of the inverse receptance R
−1

versus ω2 and ω, respectively
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The cv term represents a damping force due to vibration of the disk in the surrounding
medium.

Figure 7.3.12(b) depicts the case when the bearing supports are considerably softer than
the shaft, in which case the rotating element behaves like a rigid body supported on springs
and dampers. Figure 7.3.13 shows a free body diagram of the disk for either case in
Figure 7.3.12. The spin frequency ω of the shaft is assumed to be constant. The mass
center G is shifted away from the spin (geometric) center C by the imbalance eccentricity
distance e.

By Newton’s law (3.3.5) applied to Figure 7.3.13,

m rOp + rGp =Fk +Fc 7 3 72

or

m xex + yey +
d2

dt2
ecos ωt ex + esin ωt ey = −krOp−crOp = −k xex + yey −c xex + yey

7 3 73

The component form of (7.3.73) is

mx + cx+ kx =meω2 cos ωt 7 3 74

Figure 7.3.13 Free body diagram of the rotor disk

Figure 7.3.12 Simplified “Jeffcott”model of rotating shaft/disk assembly. (a) Flexible shaft and rigid bearings.
(b) Flexible bearings and rigid shaft
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my + cy + ky=meω2 sin ωt 7 3 75

Both (7.3.74) and (7.3.75) have the standard form for an SDOF harmonically excited
system

mq + cq + kq =Af cos ωt +ϕf 7 3 76

where

Af =ω
2Af , Af =me, ϕf =

0, xmotion

−
π

2
, ymotion

7 3 77

Therefore, the solution in Equations (7.3.34)–(7.3.38) is applicable, that is,

x = y = e
r2

1−r2 2 + 2ξr 2
= e Gfω 7 3 78

∠x= − tan−1 2ξr
1−r2

=ϕGf 7 3 79

∠y =∠x−
π

2
=ϕGf −

π

2
7 3 80

where |Gfω| was defined in (7.3.36) and plotted versus ω for various ξs in Figure 7.3.8 and
ϕGf was defined in (7.3.29) and plotted versus ω for various ξs in Figure 7.3.5, and

r =
ω

ωn
, ωn =

k

m
, ξ =

c

2mωn
7 3 81

x = x cos ωt +∠x = e Gfω cos ωt +ϕGf 7 3 82

y = y cos ωt +∠y = e Gfω cos ωt +ϕGf −
π

2
7 3 83

Note from Figure 7.3.13 and Equations (7.3.82) and (7.3.83)

rOp = x2 + y2 = e Gfω cos2 ωt +ϕGf + sin2 ωt +ϕGf = e Gfω 7 3 84

which shows that the “whirl” or “orbit” radius of point p in Figure 7.3.13 is constant, so that
the orbit of p is a circle about its undeflected position O. The orbit radius is

rOp = imbalance eccentricity distance ∗ factor plotted in Figure 7 3 8 7 3 85

Asymptotic values of the amplitude and phase angle are given in Table 7.3.3 based
on (7.3.78)–(7.3.85).

The “amplification” or “quality” factor Q (7.3.54) may be experimentally measured
from (7.3.78) as

AF =Q=
1
2ξ

=
x ω =ωn

x ω= ∞
=

y ω =ωn

y ω= ∞
7 3 86
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API standards specify restrictions on AF in terms of separation margins between
operating speed ranges and natural frequencies (resonances). The whirl rate of point p along
its circular orbit is obtained from Figure 7.3.13 by

ϕ=
d

dt
tan−1 y

x
=

1

1 + y x 2

d

dt

y

x
=

1
1 + y2 x2

xy−yx

x2

=
1

x2 + y2
xy−yx =

1
r2Op

xy−yx

=
1

e2 Gfω
2 e

2 Gfω
2
cos ωt +ϕGf ωcos ωt +ϕGf

+ωsin ωt +ϕGf sin ωt +ϕGf

=ω 7 3 87

Therefore, the whirl direction is positive (ccw), and the whirl (vibration) frequency
is equal to the shaft spinning frequency. This type of vibration motion is referred to as
“forward, circular, synchronous” whirl of the shaft/disk assembly. Note from Figure 7.3.13
and Equations (7.3.82), (7.3.83), and (7.3.29)

β =ωt−ϕ =ωt− tan−1 y

x
=ωt− tan−1

e Gfω sin ωt +ϕGf

e Gfω cos ωt +ϕGf

=ωt− ωt +ϕGf = −ϕGf = tan
−1 2ξr

1−r2

7 3 88

The angle β is constant in time and is the angle that the heavy spot leads (in the
direction of rotation) the high spot in Figure 7.3.13. Limiting values of β are shown in
Table 7.3.4.

The high spot location can be identified (although for safety reasons this is not recom-
mended) by carefully advancing a piece of chalk into the spinning disk in the radial direc-
tion, so that it lightly contacts it. The resulting white mark is the high spot location.

Table 7.3.4 Asymptotic values of
heavy spot angle β

lim
ω 0

β

0 0
ωn 90
∞ 180

Table 7.3.3 Asymptotic values of rotor amplitude and phase angle

lim
ω |x|, |y|, |rOp| ∠x ∠y

0 0 0 −90
∞ e −180 −270
ωn e/(2ξ) −90 −180
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By Table 7.3.4 for ω<<ωn, the heavy spot will also be near the white mark so place a bal-
ance weight opposite the white chalk mark on the disk. By Table 7.3.4 for ω>>ωn, the
heavy spot will be opposite the white mark so place a balance weight on the white mark.
Note from (7.3.78)

e = x ω ∞ 7 3 89

The correction mass mC required to balance e perfectly in Figure 7.3.13 must satisfy

mCRC =me 7 3 90

where RC is its attachment point radius.

7.3.8 Single Plane Influence Coefficient Balancing

The preceding balancing method utilizes the knowledge of the asymptotic relations for the
angle between the high spot and heavy spot. A more effective approach that only assumes
linearity and does not require the knowledge of phase angle asymptotic relationships is
referred to in industry as “influence coefficient” balancing. As the name implies, the strategy
is to first determine the influence of attaching a known imbalance (trial weight) on the vibra-
tion and then to utilize that information to calculate “correction” weights that act to zero
or minimize the vibration at specific sensors and speeds. To analyze this approach, first
consider attaching a “trial” mass mT at an angle ψT from some arbitrary reference direction
on the disk, as shown in Figure 7.3.14.

The new location of the mass center is

rG,new =
mrGP +mTrTP

mT +m
+ rOp 7 3 91

Newton’s law (3.3.5) in the x direction is

mT +m
d2

dt2
x +

m

mT +m
ecos ωt +ψG +

mT

mT +m
RT cos ωt +ψG = −kx−cx 7 3 92

Figure 7.3.14 Disk with trial weight “T” attached
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Assume

mT <<m 7 3 93

Equation (7.3.92) then becomes

mx + cx + kx=meω2 cos ωt +ψG +mTRTω
2 cos ωt +ψT 7 3 94

Following the complex variable approach (Section 7.2), make the following
substitutions:

x xTe
iωt 7 3 95

cos ωt +ψ ei ωt +ψ = eiωteiψ 7 3 96

so that Equation (7.3.94) yields

xT = α meeiψG +mTRTe
iψT 7 3 97

where

α= “influence coefficient”=
ω2

k−mω2 + icω
7 3 98

The phasor response before the trial weight was attached is obtained by setting mT = 0
in (7.3.97):

xB = αmeeiψG 7 3 99

Then the influence coefficient can be experimentally measured from (7.3.97)
and (7.3.99):

α=
xT−xB

mTRTeiψT
7 3 100

The experimental procedure is to record the trial weight location (RT, ψT) and mass
mT and then to measure the amplitudes and phase angles before and after adding the trial
weight, that is,

xB = xB eiϕBX , xT = xT eiϕTX 7 3 101

Finally, α is calculated from (7.3.100). The complex response due to removing
the trial weight and adding the correction weight is obtained from (7.3.97) by replacing
“T” by “C”:

xC = α meeiψG +mCRCe
iψC 7 3 102

Substitution of (7.3.99) into (7.3.102) yields

xC = xB + αmCRCe
iψC 7 3 103

The balance condition is to make the vibration become zero due to the correction weight

xC = 0 7 3 104

550 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



from which the correction weight mass and angle are determined

mCRCe
iψC = −

xB
α

7 3 105

therefore,

mCRC =
xB
α

= correction imbalance magnitude

ψC =∠ −
xB
α

= correction imbalance phase angle

7 3 106

The influence coefficient balancing method does not require values for m, k, c or the
value of spin speed ω relative to ωn as in Table 7.3.4. The only requirements are that the
system acts linearly, the trial mass mT is relatively small, and the responses xB,xT need
to be measured. The interested reader will find an excellent discussion of influence coeffi-
cient and other rotor balancing methods in Barlow (1989).

7.3.9 Related American Petroleum Institute Standards for Balancing

The physics, math, and logic of vibration studies are intellectually rewarding and have very
practical applications. An example of the latter benefit is illustrated by vibration standards.
The following contains some examples related to balancing in the API standards. The latest
versions of the standards should always be consulted for use in actual applications, since
they are updated as related knowledge improves.

7.3.9.1 Allowable Imbalance

– All disks should be balanced as isolated components prior to assembly on the shaft.

– The fully assembled shaft should be multiplane balanced, and the maximum allowable
final correction weights should be less than

Umax = β∗W 7 3 107

whereW is journal bearing static weight in lb (typically the total weight of the rotor) and
β is a small number (specified in the standard) that decreases with rotor speed.

– During the shop test of the machine…the peak-to-peak amplitude of unfiltered vibration
in any plane, measured on the shaft adjacent and relative to each radial bearing, shall not
exceed the following value or 0.002 in. (2 mils), whichever is less

A=
12000
RPM

mils peak to peak 7 3 108

where one mil equals 25 4 × 10−6m.

7.3.9.2 Damped Imbalance Response Simulation

The API standards also provide recommendations for the amounts, locations, and relative
phase angles of unbalances included in dynamic response simulations of the rotor-bearing
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systems. These are conservative (large) values of unbalance for which the simulated
(predicted) responses must be less than specified requirements.

7.3.10 Response of an SDOF Oscillator to Nonsinusoidal, Periodic Excitation

Nature and industrial machinery provide many examples of vibrating system that are excited
periodically in a nonsinusoidal manner, such as:

• Α jack hammer pounding pavement

• Pile driver installing a pile rod

• Waves impinging on an offshore structure

• Α rotating turbine blade striking jets of gas or steam flowing through a row of stator vanes

• Discharge pressure from a reciprocating compressor impinging on elbows and valves
along the attached piping

• Α drum skin during a “roll”

• Equipment with indexing mechanisms

• Bearing reactions in a reciprocating internal combustion engine

• Flooring in an aerobics (exercise) room

• Α vehicle traversing expansion joint slats along a highway

• Gears meshing

• Αnd so on

The response of the related systems is obtained by expressing the nonsinusoidal, peri-
odic excitation as a sum of sinusoidal terms via the theory of Fourier series (Section 2.9).
This approach represents the periodic excitation as an infinite (in practice truncated with a
finite number of terms) sum of sinusoidal excitations with frequencies at integer harmonics
(multiples) of a fundamental frequency. Destructive resonance may occur if any harmonic
frequency coincides with a natural frequency, especially when the damping is low and if the
amplitude of the excitation harmonic is large. The Fourier series approach provides the
amplitude of each harmonic. The author is familiar from his industrial work experience
with an incident of repeated high-cycle fatigue failure of piping connected to a gas compres-
sor on an offshore platform. The fundamental frequency was the crankshaft rotation fre-
quency and resonance resulted from coincidence of the 32nd harmonic and a piping
system natural frequency. Pressure pulsations occurring in the piping system at this har-
monic were strong enough to eventually crack the piping, resulting in the very dangerous
situation of leaking high-pressure, explosive gas.

Consider an SDOF system that is subjected to a periodic, nonsinusoidal excitation:

mq + cq + kq=
∞

j= 1

fj t 7 3 109

where

f0 =
A0

2
7 3 110

fj =Cj cos jωt−ϕj , j= 1,2,…,∞ 7 3 111
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Let qj be the response to fj for j= 1,2,…,∞, that is,

mqj + cqj + kqj = fj 7 3 112

Sum equation (7.3.112) over all j

∞

j= 0

mqj + cqj + kqj =
∞

j= 0

fj 7 3 113

m
∞

j= 0

qj + c
∞

j= 0

qj + k
∞

j= 0

qj =
∞

j = 0

fj 7 3 114

Comparison of (7.3.109) and (7.3.114) shows that if qj is defined in (7.3.112), that is, if
qj is the response to fj, then the total response q equals

q =
∞

j= 0

qj t 7 3 115

since both q and
∞

j= 0
qj satisfy the same governing differential equation. This is known

as the superposition principle, and it applies to all linear systems. Substitute (7.3.111)
into (7.3.112):

mqj + cqj + kqj =Cj cos jωt−ϕj 7 3 116

where ω is the fundamental forcing frequency. It has been previously shown (7.3.11)–
(7.3.14) that the steady-state response for this equation is

qj t =
Cj k

1−r2j
2
+ 2ξrj

2
cos jωt−ϕj−βj 7 3 117

where

rj =
jω

ωn
, βj = tan

−1 2ξrj
1−r2j

, ωn =
k

m
, ξ =

c

2mωn
7 3 118

By (7.3.115), the total SSHR becomes

q t steady
state

=
A0

2k
+
1
k

∞

j= 1

Cj cos jωt−ϕj−βj

1−r2j
2
+ 2ξrj

2
7 3 119

Note from (7.3.119) that for lightly damped systems, resonance will occur if any
harmonic jω of the fundamental frequency ω equals ωn since

rj = 1 jω=ωn ω=
ωn

j
7 3 120
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EXAMPLE 7.3.3 Single Degree of Freedom Oscillator with Sawtooth Pattern Force

Objective: The objective of this example is to illustrate the use of Fourier series to derive
the response of a SDOF system to a periodic, nonsinusoidal excitation and then to show how
resonance can occur due to coincidence between the natural frequency and a higher har-
monic of the fundamental frequency. Figure E7.3.3(a) depicts an equivalentm−k−c system
with a periodic “sawtooth” excitation.

For this example, it is helpful to utilize the alternative form of the Fourier series
formulas

f t =
A0

2
+

∞

n = 1

An cos
n2πt
T

+Bn sin
n2πt
T

=
A0

2
+

∞

n= 1

Cn cos
n2πt
T

−ϕn 1

Cn = A2
n +B

2
n, ϕn = tan

−1 Bn

An
2

A0 =
2
T

T 2

−T 2
f t dt, An =

2
T

T 2

−T 2
f t cos

2nπt
T

dt, Bn =
2
T

T 2

−T 2
f t sin

2nπt
T

dt 3

For this example,

f t = 2F
t

T
, −

T

2
< t <

T

2
4

Consideration of the area under the curve for f(t) shows

A0 = 0 5

The remaining integrals become

An =
2
T

T 2

−T 2
2F

t

T
cos

2nπt
T

dt =
4F
T2

T

2nπ

2

cos
2nπt
T

+
T

2nπ
t sin

2nπt
T

T 2

−T 2

= 0

6

Figure E7.3.3(a) Damped single degree of freedom oscillator and external force f(t)
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Bn =
2
T

T 2

−T 2
2F

t

T
sin

2nπt
T

dt =
4F
T2

T

2nπ

2

sin
2nπt
T

− t
T

2nπ
cos

2nπt
T

T 2

−T 2

=
4F
T2

−T2

4nπ
cosnπ + sin −nπ =

−F

nπ
2cosnπ = −

2F
nπ

−1 n =
2F
nπ

−1 n+ 1

7

Substituting (7) into (1) yields

f t =
2F
π

∞

n= 1

−1 n+ 1

n
sin

2πnt
T

8

From (2), (6), and (7),

Cn = 02 +
2F
nπ

−1 n+ 1
2

=
2F
nπ

, ϕn = tan
−1

2F
nπ −1 n+ 1

0
=

90 , nodd

−90 , n even
, A0 = 0

9

The steady-state response as obtained from (7.3.119) and (9) is

q t steady
state

=
1
k
∗ 2F

π
∗

∞

j= 1

cos jωt−ϕj−βj

j∗ 1−r2j
2
+ 2ξrj

2
10

where

F

k
= δsT = static deflection, rj =

jω

ωn
= jr, ϕj =

90 , jodd

−90 , j even
, βj = tan

−1 2ξrj
1−r2j

11

and

ω=
2π
T

rj =
j2π
ωnT

and ωt =
2π
T
t 12

Consider plots of the response for the condition ξ = 0 05, F = 1, and k = 1.
The fundamental (first) harmonic frequency of the excitation is first set to 10 times the

natural frequency

ωnT =
2π
Tn

T = 0 2π T =
1
10

Tn ω= 10ωn, r = 10 13

Figure E7.3.3(b)-(i) shows that the mass motion is dominated by the first harmonic
response since ω is much higher than ωn. From (10), the first harmonic response amplitude is

First harmonic response =
2F kπ

1−r2 2 + 2ξr 2
= 0 0064 14

This amplitude is very small since ω>>ωn and the response in (10) is converged with
only eight harmonics. The fundamental (first) harmonic frequency of the excitation is next
set equal to the natural frequency
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ωnT = 2π T = Tn ω=ωn, r = 1 15

Referring to Figure E7.3.3(b)-(ii), the first harmonic, which has the largest force ampli-
tude by (9), is at resonance ω=ωn so the amplitude is very large and dominated by the first
harmonic. From (10) and (14), the first harmonic response amplitude is 6.36. The response
in (10) is converged with only eight harmonics. The fundamental (first) harmonic frequency
of the excitation is finally equal to 1/10 of the natural frequency

ωnT = 20π T = 10Tn ω=
ωn

10
, r =

1
10

16

From (10) and (14), the first harmonic response amplitude is 0.643. The response in
(10) is converged with only 16 harmonics. Referring to Figure E7.3.3(b)-(iii), the 10th har-
monic is at resonance 10∗ω=ωn so the 10th harmonic dominates the response.

7.3.11 Forced Harmonic Response with Elastomeric Stiffness and Damping

Elastomeric damping devices are typically inserted in machinery and structures to suppress
vibration under resonance conditions. For example, a spinning shaft may be supported by
ball bearings, which are themselves mounted on elastomeric O rings. Measured damping in
elastomerics is typically expressed in terms of a “loss factor,” γ, which is defined in the fol-
lowing manner.

Consider an SDOF oscillator with sinusoidal excitation

mq + cq+ kq=F0 cos ωt 7 3 121

The real part of

mz + cz + kz =F0e
iωt 7 3 122

is identical to Equation (7.3.121) with

z= q + iy 7 3 123
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Figure E7.3.3(b) Displacement of mass m versus t/T, utilizing 8 (top), 16 (middle), and 32 (bottom) harmonics
for (i) ω= 10ωn, (ii) ω=ωn, and (iii) ω=ωn 10
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so (7.3.121) may be solved by solving (7.3.122) for z and obtaining q(t) from

q t =Re z t 7 3 124

To solve (7.3.122), let

z= zeiωt 7 3 125

then (7.3.122) becomes

−ω2m+ iωc + k z =F0 7 3 126

or

−ω2m+ k 1 + iγ z=F0 7 3 127

where

γ =
ωc

k
7 3 128

is referred to as a loss factor. From (7.3.12),

ξ=
cωn

2k
=
γ

2
ωn

ω
7 3 129

This shows that the loss factor is proportional to the damping ratio, and at resonance

ξ=
γ

2
, forω=ωn 7 3 130

The response amplitude is obtained by substituting (7.3.128) into (7.3.11):

q =
F0

k−mω2 2 + kγ 2
7 3 131

The stiffness and loss factor are vibration frequency dependent as shown for a particular
O ring in Figure 7.3.15, which is obtained from Darlow et al. (1979). The particular O ring
has the following properties:

Material,Viton-70; cross-sectionaldiameter, 1/8 in. (0.353 cm); temperature, 25 C; stretch,
5%; amplitude of motion, 7 62 × 10−6 m; groove width, 135%; and squeeze, 15%.

The figure is a plot of the experimentally determined regression curve fits

kOring = a1 2πfhz
b1 N m

γOring = a2 2πfhz
b2 dim

7 3 132

where for the plots in Figure 7.3.15

a1 = 3 8 × 105, b1 = 0 400 7 3 133

a2 = 0 329, b2 = 0 144 7 3 134

For illustration, (7.3.132) yields the results in Table 7.3.5 at 100 and 800 Hz.
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EXAMPLE 7.3.4 Rigid Spinning Shaft Mounted on Two Ball Bearings with O Rings

Objective: Determine the resonance frequency with a frequency-dependentO ring stiffness
support.

Description: The shaft shown in Figure E7.3.4(a) has two bearings mounted on four elas-
tomericO rings. The shaft is assumed to be rigid and only to oscillate in a parallel (both ends
have same amplitude and phase) manner for the frequency range considered.

The equilibrium equation for translational motion is

mx + 4cx+ 4kx =meω2 cos ωt 1

where e is the eccentricity of the shaft’s mass center from its geometric (spin) center.
Resonance occurs when ω≈ωn, where

Table 7.3.5 O ring stiffness and loss factor at 10 and 800 Hz

f (Hz) k (N/m) γ ξ at resonance = γ 2

100 5 × 106 0.83 0.42

800 11 5 × 106 1.12 0.56

106

107

Hz

k 
(N

/m
)

102 103102 103 10–1

100

Hz

γ (
di

m
)

(a) (b)

Figure 7.3.15 (a) O ring stiffness in N/m and (b) loss factor (dim) versus excitation frequency (Hz)

Figure E7.3.4(a) Rigid rotor supported on O rings and executing parallel motion
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ω2
n =

4k ω

m
2

Therefore, from (7.3.132) and (2), resonance will occur if

ω2≈
4k ω

m
=
4
m
a1ω

b1 3

ω=
4a1
m

1
2−b1

4

The resonance rpm (critical speed) is approximately

ResonanceRPM≈60
ωres

2π
=
60
2π

4a1
m

1
2−b1

5

To illustrate, let

m= 200kg, a1 = 3 8 × 105, b1 = 0 40

ResonanceRPM=2500rpm = 42Hz
6

This resonance will be well damped since by (7.3.130)

ξ=
γ

2
=
1
2
a2 2πf b2 =

1
2
0 329 2π∗42 0 144 = 0 37 at resonance 7

which should provide a “smooth” traversal of the critical speed.

7.4 TWO DEGREE OF FREEDOM RESPONSE

Similar with free vibration response, analytic solutions are obtainable for 2 degree of free-
dom (2dof ), steady-state forced harmonic response problems. A generic 2dof harmonically
forced system is described by

Mq +CTq+KTq= f t 2 × 1 7 4 1

where

M=
m11 m12

m21 m22

, CT =
c11 c12

c21 c22
, KT =

k11 k12

k21 k22

q =
q1

q2
, f t =

Af 1 cos ωt +ϕf 1

Af 2 cos ωt +ϕf 2

7 4 2

The complex variable representation of this system is from (7.2.7):

MQ +CTQ+KTQ=Feiωt 7 4 3
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where from (7.2.5),

F =
Af 1eiϕf 1

Af 2eiϕf 2
7 4 4

Let

Q t =Qeiωt 7 4 5

to obtain

−ω2m11 + iωc11 + k11 −ω2m12 + iωc12 + k12

−ω2m21 + iωc21 + k21 −ω2m22 + iωc22 + k22

Q1

Q2

=
Af 1eiϕf 1

Af 2eiϕf 2
7 4 6

Define Δ(ω) as being the determinant of the coefficient matrix in (7.4.6), and then by
Cramer’s rule

Q1 =
Af 1eiϕf 1 −ω2m22 + iωc22 + k22 −Af 2eiϕf 2 −ω2m12 + iωc12 + k12

Δ

Q2 =
−Af 1eiϕf1 −ω2m21 + iωc21 + k21 +Af 2eiϕf 2 −ω2m11 + iωc11 + k11

Δ

7 4 7

The actual steady-state solution is given by (7.2.14) as

qj t = real Qj t = real Qj e
iϕqj eiωt = Qj cos ωt +ϕqj for j= 1,2 7 4 8

7.4.1 Vibration Absorber: Principles

Vibration absorbers employ an appendage mass to absorb the vibratory energy and thus
reduce the vibration of the primary mass, which is typically a machine or stationary, or rotat-
ing, structure. Suppose that a “vibration absorber”mass m22 is attached to the primary mass

m11 causing its motion q1(t) to become zero, which by (7.4.8) will occur if Q1 = 0. Since

there is no external force Af 2 = 0 on the absorber mass, Equation (7.4.7) simplifies to

Q1 =
Af 1 −ω2m22 + iωc22 + k22

Δ
= 0 7 4 9

Thus, Q1 = 0 if

k22−ω
2m22

2
+ ωc22

2 = 0 7 4 10

and then the upper row in (7.4.6) yields

Q2 =
Af 1eiϕf1

−ω2m12 + iωc12 + k12
7 4 11

or

Q2 =
Af 1

k12−ω2m12
2 + ωc12

2
7 4 12
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Equations (7.4.10) and (7.4.12) provide two equations to design the absorber’s mass
and stiffness based on (i) stopping the vibration of the primary mass and (ii) limiting the

vibration amplitude of the absorber mass to the value Q2 specified (7.4.12), at a specific
forcing frequency ω.

EXAMPLE 7.4.1 Pump Vibration Control via Vibration Absorber

Statement: The vibration level is measured on a bearing housing of a pump (m1) to be 2 mm/s
0-peak velocity. Further testing indicates that although the balance of the shaft is acceptable,
the shaft speed is near a natural frequency. This phenomenon is referred to as a critical speed
resonance and presents a significant challenge for designers of rotating machinery. It is
decided to weld a beam (k2) and end mass (m2) to the pump to act as a vibration absorber.
The imbalance force amplitude (Af1) equals 10 N at the pump spin rate of 3000 rpm.

Objective: Determine the beam stiffness (k2) and end mass (m2) values that will stop the
pump’s vibration and will limit the absorber’s amplitude to 0.05 mm when the pump oper-
ates at 3000 rpm.

Assumptions:

(a) The damping of the beam and mass is negligible.

(b) The pump housing undergoes only pure translational motion.

Solution:

(a) The model of the pump is shown in Figure E7.4.1(a).

(b) Newton’s law yields the following matrices for this model:

M=
m1 0

0 m2

, CT =
c1 0

0 0
, KT =

k1 + k2 −k2

−k2 k2

q =
q1

q2
, f t =

f1 t

f2 t
=

Af 1 cos ωt

0

1

comparison of (7.4.2) and (1) shows that

m11 =m1, m22 =m2, m12 = 0

k11 = k1 + k2, k12 = k21 = −k2, k22 = k2

c11 = c1, c12 = c21 = 0, c22 = 0

ϕf 1 =ϕf 2 = 0, Af 2 = 0

2

Figure E7.4.1(a) Pump with vibration
absorber (i) and equivalent system model (ii)
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(c) The equations for selecting m2 and k2, that is, (7.4.10) and (7.4.12), then become

k2−ω
2m2 = 0 3

and

q2 = Q2 =
Af 1

k2
4

The equations for determining m2 and k2 become

k2 =
Af 1

q2
, m2 =

k2
ω2

5

(d) The numerical values for this problem are as follows:

Af 1 = 10N , q2 = 0 05 × 10−3m, ω= 2πf = 2π
3000
60

= 314rad s 6

(e) Solving for the required beam stiffness and absorber mass from (5) yields

k2 =
10N

0 05 × 10−3m
= 200000N m, m2 =

200000N m

314s−1 2 = 2 03kg 7

(f) The vibration response versus pump speed is obtained from Equations (7.4.6) and
(7.4.7) as

Q1 =
Af 1 −Ω2m2 + k2 Ω ω 2

−Ω2m1 + iΩc1 + k1 + k2 −Ω2m2 + k2 −k22
8

whereΩ is the varying speed of the pump shaft andω is the shaft speed at 3000 rpm, that
is, ω= 314rad s . The “speed squared” dependence of the imbalance force is accounted
for in the term (Ω/ω)2. The pump mass and support stiffness are m1 = 100kg and
k1 = 11 5 × 106N m. Therefore, the natural frequency before adding the absorber is

ω11 = k1 m1 = 339 1rad s, f11 = 54Hz, and N11 = 3240cpm. The magnitude of the
pump’s vibration velocity before adding the absorber is given by (7.3.27) and
(7.3.28) as

v0 =
Af

k1

ω

1−r2 2 + 2ξ1r
2

9

where

r =
ω

ω11
=
3000
3240

= 0 93

Equation (9) is solved for ξ1 given the values

v0 = 0 002m s, Af = 10N, k1 = 11 5 × 106N m, ω= 314rad s, r = 0 93
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This yields ξ1 = 0 0106 and therefore

c1 = 2m1ω11ξ1 = 2 100kg 339 1s−1 0 0106 = 719Ns m

The response of the pump with the absorber mass attached is

q1 = Q1

where Q1 is obtained from (8) and plotted versus the spin speed in Figure E7.4.1(b).

Summary: This example has illustrated how to calculate the stiffness and mass properties of
an absorber to force the vibration of the primary mass (pump) to become zero at a single
frequency, that is, the constant operating speed of the pump (314 rad/s) in Figure E7.4.1(b).

7.4.2 Vibration Absorber: Mass Ratio Effect

Assume that damping is negligible, the mass matrix is diagonal, and the external force on the
absorber mass (m22) is zero:

c11 = c12 = c21 = c22 = 0, m12 =m21 = 0, Af2 = 0 7 4 13

Then (7.4.6)–(7.4.12) become

−ω2m11 + k11 k12

k12 −ω2m22 + k22

Q1

Q2

=
Af1e

iϕf 1

0
7 4 14

Setting the vibration amplitude of the primary mass to zero, Q1 = 0, at frequency ω0,
yields

k22−ω
2
0m22 = 0 7 4 15
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Figure E7.4.1(b) Pump vibration versus speed with the absorber attached
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and

Q2 =
Af1

k12
7 4 16

The coupled system has two resonant frequencies, as illustrated by Figure E7.4.1(b),
and is the roots of

Δ Ω = k11−Ω2m11 k22−Ω2m22 −k212 = 0 7 4 17

where Δ is the determinant of the coefficient matrix in (7.4.14). A simple spring–mass
model for this type of system is shown in Figure 7.4.1.

The stiffness and mass matrices for this model are

k11 k12

k12 k22
=

k1 + k2 −k2

−k2 k2
,

m11 m12

m21 m22
=

m1 0

0 m2
7 4 18

Substitute (7.4.18) into (7.4.17) to obtain the characteristic equation

k1 + k2−Ω2m1 k2−Ω2m2 −k22 = 0 7 4 19

which simplifies to

Ω4m1m2 +Ω2 −k2m1−k1m2−k2m2 + k1k2 = 0 7 4 20

Define

α=
ω0

ω11
=

zero amplitude frequency
primary system natural frequency

7 4 21

where

ω11 =
k1
m1

7 4 22

Figure 7.4.1 Primary mass with attached absorber mass
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Divide (7.4.20) by k1 ∗k2 and utilize (7.4.15), (7.4.21), and (7.4.22) to obtain

Ω4

ω2
0 α2 ω2

0

+Ω2 −
α2

ω2
0

−
1

ω2
0

−μ
α2

ω2
0

+ 1 = 0 7 4 23

where

μ =
m2

m1
=
absorber mass
primary mass

7 4 24

Define

β =
Ω
ω0

=
coupled system natural frequency

zero amplitude frequency
7 4 25

Then (7.4.23) becomes

β4 + β2 1−μ−
1
α2

+
1
α2

= 0 7 4 26

The roots of this equation are plotted versus μ and α in Figure 7.4.2. Assume thatω0 (the
zero amplitude frequency for the coupled system) is held constant. This requires that the
ratio k2/m2 be held constant, which implies that changes in m2 are accompanied by propor-
tional changes in k2 since by (7.4.15)

ω0 =
k2
m2

7 4 27

The figure shows that the natural frequencies diverge away from ω0 as m2 increases.
This is good since it will reduce the vibration amplitude for forcing frequencies near to,
but not exactly coincident with the zero vibration frequency ω0. Note that decreasing

α=
ω0

ω11
=ω0

m1

k1
7 4 28

also increases the separation between the two natural frequencies of the coupled system.
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Figure 7.4.2 Nondimensional natural frequencies β =Ω ω0 of the coupled system versus mass ratio
μ=m2 m1. Values of α=ω0 ω11 are shown on the curves
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7.5 N DEGREE OF FREEDOM STEADY-STATE HARMONIC RESPONSE

7.5.1 Direct Approach

Equations (7.2.6) and (7.2.7) are general forms for the Ndof equilibrium equation and its
complex variable counterpart

Mq +CTq +KTq= f t N × 1 7 5 1

and

MQ +CTQ +KTQ=Feiωt N × 1 7 5 2

where

f t
N × 1

=

Af 1 cos ωt +ϕf 1

Af 2 cos ωt +ϕf 2

AfN cos ωt +ϕfN

, F
N × 1

=

Af 1eiϕf 1

Af 2eiϕf 2

AfNeiϕfN

7 5 3

Substitute

Q=Qeiωt 7 5 4

into (7.5.2) to obtain

−ω2 M
N ×N

+ iω CT
N ×N

+ KT
N ×N

Q
N × 1

= F
N × 1

7 5 5

This set of N linear, complex, algebraic equations for the N unknown Qj may be easily
solved for any forcing frequency using available math software. The steady-state response is

obtained by converting Qj into polar form

Qj = Qj e
iϕQj 7 5 6

where

Qj = Re Qj

2
+ Im Qj

2
and ϕQj = tan

−1
Im Qj

Re Qj

7 5 7

and then from (7.2.10)

qj t =Re Qj t =Re Qje
iωt =Re Qj e

iϕQjeiωt

=Re Qj e
i ωt +ϕQj = Qj cos ωt +ϕQj j= 1,2,…,N

7 5 8
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EXAMPLE 7.5.1 Steady-State Imbalance Response of Rotating Machinery

Statement: The system formerly used to illustrate transient response methods in Example
6.4.1 here illustrates SSHR determination. The rotor-bearing system is shown in
Figure E6.4.1(a). The parameter values for this simulation are

L1 = 0 35m, L2 = 0 65m, e = 0 15m, m = 100kg, m= 0 2kg,

Ip = 2 2kgm2, IT = 2kgm2, ω= 1570rad s 15000rpm ,

q
0
= q

0
= 0 0 0 0 T, cD22 = c

E
22 = 6000N s m, cD33 = c

E
33 = 10000N s m,

kD22 = k
E
22 = 10 × 10

6N m, kD33 = k
E
33 = 12 50 × 106N m, kf = 1 0 × 106N m

Solution: From Example 6.4.1, Equation (1), the system equilibrium equation is (7.5.1) with

CT =CB +G, KT =KB +Kf , f t =FBL t 1

The mass, stiffness, circulatory stiffness, damping, and gyroscopic matrices are provided
in Example 6.4.1, Equations (2)–(6). The displacement and imbalance force vectors are

q =

q2

q3

q4

q5

=

x2G

x3G

θn3

θn2

, FBL t =

meω2 cosωt

meω2 sinωt

0

0

2

Comparison of (2) and (7.5.3) shows

F =

Af 1eiϕf 1

Af 2eiϕf 2

Af 3eiϕf 3

Af 4eiϕf 4

=

meω2ei0

meω2e− i90

0

0

=

meω2

− imeω2

0

0

3

Since G varies with spin speed ω, Equation (7.5.5) has the more general form

−ω2M + iω CB +G ω +KT Q=F ω 4

This equation is solved for each ω, and |qj| and ϕQj are determined via Equations (7.5.7)
and (7.5.8). The x2G amplitude and phase angle are plotted versus rotor speed from 0 to
20 000 rpm in Figure E7.5.1(a). The amplitude at 15000rpm ≈0 35mm, 0−p is in agree-
ment with the transient results as t ∞ in Figure E6.4.1(b).

The resonance peak in Figure E7.5.1(a) is called a “critical speed” and occurs at approxi-
mately 4200 rpm. This correspondswith the intersection of the spin speed and natural frequency
curves in Figure E6.4.1(f).

EXAMPLE 7.5.2 Wind Turbine Tower with Rotating Mass Imbalance

Statement: A frame/tower structure is used to support a wind turbine as shown along with
its simplified, transverse vibration model in Figure E7.5.2(a). Mass imbalance in the rotor
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blades has been found to cause excessive vibration of the tower and subsequent premature
wear of the bearings in several installed units. The model is developed to investigate mod-
ifications that will lower the sensitivity of the structure and bearings to blade imbalance.

Objective:

(a) Plot the SSHR amplitudes and phase angles of q2, q4, and q6 versus rotational frequency
ω over the range

0 ≤ f ≤ 100Hz where f =
ω

2π
1

(b) Compare steady-state and transient response amplitudes as t ∞ at f = 25Hz.

Parameter Values:

m1 = 50kg, m2 = 45kg, m3 = 40kg, m4 = 35kg, m5 = 30kg, m6 = 50kg, m= 0 05kg,

k1 = 106N m, k2 = 0 9 × 106N m, k3 = 0 80 × 106N m, k4 = 0 70 × 106N m,

k5 = 0 6 × 106N m, k6 = 0 5 × 106N m, ξd1 = 0 05, ξd2 = 0 07, ξd3 = 0 10, r = 1m

Assumptions:Use the orthogonal damping matrix formula (5.4.140) withm= 3 modes with
prescribed damping values.

Figure E7.5.2(a) Wind turbine tower and simplified model
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Figure E7.5.1(a) Amplitude and phase angle of displacement x2G at mass center
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Solution: The equations of motion may be obtained directly following the same procedure
as in Example 6.3.1. This yields

Mq +C0q+Kq = f t 6 × 1 2

K=

k1 + k2 −k2 0 0 0 0

k2 + k3 −k3 0 0 0

k3 + k4 −k4 0 0

k4 + k5 −k5 0

symmetric k5 + k6 −k6

k6

, M = diag mi 6 × 6 3

C0 = μ1K +
2

l= 1

2ξlωl

ml
Mψ

l
ψT
l
M, μ1 =

2ξd3
ω3

, ξl = ξ
d
l −ξ

d
3
ωl

ω3
l= 1,2 4

The quantities ωl and ψ
l
are the lth, undamped system natural frequency and mode

shape, respectively. The force vector is obtained from (4.5.52) in scalar or vector form as

fj =F t i
∂q6i

∂qj
=

0, j 6

F t , j= 6
5

f t =

0

0

0

0

0

F t

=

0

0

0

0

0

usin ωt

=

0

0

0

0

0

ucos ωt−90

=Re

0

0

0

0

0

uei ωt−90

=Re

0

0

0

0

0

− iu

eiωt

6

where u=mrω2 is the magnitude of the imbalance force. Comparison with Equation (7.5.3)
yields

F = 0 0 0 0 0 − iu T 7

The complex displacement phasors are then obtained from (7.5.5) as

Q= −ω2M+ iωC0 +K
−1
F 8

Finally, the steady-state displacements are obtained from (7.5.8) as

qj t = Qj cos ωt +ϕQj j= 1,…,6, whereϕQj =∠Qj 9

The natural frequencies and damping ratios of this model are (5.5, 14.2, 23.3, 31.6, 38.0
and 42.2) Hz and (0.05, 0.07, 0.1, 0.074, 0.045 and 0.018), respectively.

The amplitudes and phase angles at dofs 2, 4, and 6 are shown in Figure E7.5.2(b).
The asymptotic ω ∞ results in this figure agree with the asymptotic ω ∞

form of (8)

Chapter 7 Steady-State Vibration Response to Periodic Loading 569

www.konkur.in



Q=
−1
ω2

M−1F = 0 0 0 0 0
imr

m6

T

= 0 0 0 0 0
10−3

∠90

T

10

The transient response of dofs q2, q4, and q6 at a 25 Hz rotational frequency is shown in
Figure E7.5.2(c).

Table E7.5.2(a) compares the results of these figures using theMATLAB zoom plotting
feature at 25 Hz. The transient response amplitude is evaluated near t = 2seconds.

Summary: This example illustrated how to predict the SSHR of a six-level windmill tower
model with (7.5.5). A transient response simulation was utilized to confirm the accuracy of
the approach.

7.5.2 Modal Approach

The first-order form for the complex variable equilibrium was given in Equations (6.3.140)–
(6.3.142) as

E
2N × 2N

X
2N × 1

= H
2N × 2N

X
2N × 1

+ f
2N × 1

t 7 5 9

Table E7.5.2(a) Comparison of steady-state and transient response
predictions at 25 Hz

q2 amplitude q4 amplitude q6 amplitude

SSHR 0.598 1.06 1.37
Transient 0.582 1.01 1.34
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Figure E7.5.2(b) Amplitudes and phase angles of q2, q4, and q6 versus spin frequency
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Figure E7.5.2(c) Transient response of (i) q2, (ii) q4, and (iii) q6

570 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



where

E=
0 M

M CT

, H=
M 0

0 −KT

, X=
Q

Q
, f =

0

Feiωt
7 5 10

The corresponding right and left eigenvectors had the form (6.3.143)

Γj
2N × 1

=

λjΛ j
N × 1

Λ j
N × 1

, β
j

2N × 1

=

λjθ j
N × 1

θ j
N × 1

7 5 11

where by (6.3.144)

λjEΓ j =HΓ j, λjE
Tβ

j
=H

T
β
j

λ2j M+ λjCT +KT Λj = 0, λ2j M
T
+ λjC

T
T +K

T
T θ = 0

Γ = Γ1 Γ2 Γm , β = β
1

β
2

β
m

7 5 12

As in (6.3.145), let

X t =
m

j= 1

wj t Γ j = Γ
2N ×m

W
m× 1

7 5 13

premultiply (7.5.9) by βT and use the biorthogonality relations in (5.4.229) and (5.4.230)

to obtain

diag ej W −diag λjej W=R t 7 5 14

Considering this equation row-wise yields

wj−λjwj =
Rj t

ej
7 5 15

where the modal force is

Rj = β
T
j
f =

λjθ j

θ j

T
0

Feiωt
= θTj Fe

iωt 7 5 16

and from (5.4.225) the generalized modal mass is

ej = β
T
j
EΓ j =

λjθ j

θ j

T
0 M

M C T

λjΛ j

Λ j

= θTj 2λjM +CT Λ j 7 5 17

Substitute (7.5.16) into (7.5.15) to obtain the modal coordinate equation

wj−λjwj =
F
T
θ je

iωt

ej
7 5 18
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Assume the steady-state solution

wj t =wje
iωt 7 5 19

which transforms (7.5.18) into

wj =
F
T
θ j

ej iω−λj
7 5 20

Substitute (7.5.20) into (7.5.19) and the results into (7.5.13) to obtain

X t =
Q

Q
≈

m

j= 1

wj t Γ j =
m

j= 1

F
T
θ j

λjΛ j

Λ j

ej iω−λj
eiωt 7 5 21

The steady-state response becomes

q t =Re Q t ≈Re
m

j= 1

F
T
θ jΛ j

ej iω−λj
eiωt 7 5 22

or for the kth dof

qk t steady
study

≈Re
m

j= 1

F
T
θ jΛkj

ej iω−λj
eiωt 7 5 23

The jth eigenvalue has the general form

λj = −ξjωnj + iωdj 7 5 24

so that (7.5.23) becomes

qk t steady
study

≈Re F
T

m

j= 1

θ jΛkj

ej iω+ ξjωnj− iωdj
eiωt k = 1,2,…,N 7 5 25

The denominator of the jth term in (7.5.25) will be zero if both

ω=ωdj and damping ξj = 0 7 5 26

This yields an infinite response demonstrating that even the most general linear system
will experience resonance if the disturbance frequency ω is near to any natural frequency
and the modal damping associated with this natural frequency is low. Use of
Equation (7.5.25) circumvents the requirement to solve the N complex equations in
(7.5.5) for every value of ω, thus providing an efficient means to determine the SSHR.

7.5.3 Receptances

The complex variable responses may be obtained from (7.5.5) as

Q=R ω F N × 1 7 5 27
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where

R ω = receptance matrix = −ω2M + iωCT +KT
−1

N ×N 7 5 28

Note from (7.5.27) and (2.6.30)

Qk =
nF

l= 1

R
kjl

ω F
jl

N × 1 7 5 29

where j1 j2 jnF are nonzero rows of F. Thus, it can be seen that evaluation of Qk may
require only a small subset of the total number (N2) of receptances Rkjl . Obtaining these
receptances may be computationally demanding if Equation (7.5.28) is utilized for a large
number of ω’s or when N is large. Thus, it would be helpful to evaluate isolated Rkjl without
using the matrix inverse operation in (7.5.28). This may be accomplished if CT is zero or is
an orthogonal damping matrix (5.4.92), and KT is symmetric so that the modes and
undamped natural frequencies satisfy (5.4.63)

−ω2
l M +KT ψ

l
= 0 7 5 30

and from (5.4.72), (5.4.75), (5.4.76), (5.4.77), (5.4.93), and (5.4.121)

ψT
l
CTψ j

= δlj2ξlωlml, ψT
l
Mψ

j
= δljml, ψT

l
KTψ j

= δljmlω
2
l 7 5 31

The receptance matrix for an orthogonally damped system is

R ω = −ω2M + iωC0 +K
−1

7 5 32

It follows that

ΨTR
−1Ψ= diag −ω2mi + iω2miξiωi +miω2

i

Ψ−1RΨ−T
= diag

1
mi ω2

i −ω
2 + i2ξiωωi

7 5 33

Finally, using (2.6.38) yields

R=Ψdiag
1

mi ω2
i −ω

2 + i2ξiωωi
ΨT =

N

l= 1

ψ
l
ψT

l

ml ω2
l −ω

2 + i2ξlωωl
7 5 34

or in scalar form

Rij ω =
N

l= 1

ψ ilψ jl

ml ω2
l −ω

2 + i2ξlωωl
7 5 35

Equation (7.5.35) demonstrates that individual entries in R ω may be obtained without
performing the N ×N matrix inverse in (7.5.28) for each excitation frequency ω. Conver-
gence of the summations in (7.5.34) or (7.5.35) may be accelerated for a partial set of m
modes m <<N as follows. By (5.4.46),
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ΨT

m×N
K

N ×N
Ψ

N ×m
= diag

N ×N

miω
2
i

Ψ−1K−1Ψ−T = diag
1

miω2
i

∴ K−1 =Ψdiag
1

miω2
i

ΨT 7 5 36

Furthermore, note that

1

ω2
l −ω

2 + i2ξlωωl
=

1

ω2
l

+
ω2 1− i2ξl

ωl

ω
ω2
l ω2

l −ω
2 + i2ξlωωl

7 5 37

Substituting (7.5.36) and (7.5.37) into (7.5.34) yields

R ω ≈K−1 +ω2
m

l= 1

1− i2ξl
ωl

ω
ψ
l
ψT
l

mlω2
l ω2

l −ω
2 + i2ξlωωl

7 5 38

The scalar form of this equation is

Rkj ω = K−1
kj
+ω2

m

l= 1

1− i2ξl
ωl
ω ψ klψ jl

mlω2
l ω2

l −ω
2 + i2ξlωωl

7 5 39

The convergence of R ω is “accelerated” by using (7.5.38) in place of (7.5.34) if a
partial set of modes is utilized because of the attenuating effect of the ω2

l term in the denom-
inator of (7.5.38). Undamped system receptances are obtained from (7.5.34), (7.5.35),
(7.5.38), or (7.5.39) by setting all ξl = 0. Formulas (7.5.38) or (7.5.39) may only be used
ifK−1 exists, that is, only for models that are constrained to prevent rigid body motion. Once

the receptances required in (7.5.29) are obtained, the Qk may be determined and the SSHRs
become

qk t = Qk cos ωt +∠Qk 7 5 40

The receptances have an interesting physical interpretation derived from the form of
Equation (7.5.27):

Qk =
N

j= 1

RkjFj =
N

j= 1

Qkj 7 5 41

where

Qkj = the part of Qk caused by the forceFj, whereQkj =RkjFj 7 5 42

Thus, receptance Rkj is the ratio of the phasor displacement at dof k divided by the
phasor force at dof j, with all other forces set to zero

Rkj =
Qkj

Fj

7 5 43
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7.5.4 Receptance-Based Synthesis

The physical interpretation of receptances in (7.5.43) can be utilized to predict the response
of coupled structures or structural components, given receptances of the individual
uncoupled components as discussed in Beards (1981). To illustrate this, consider the two
components connected by a stiffness k as shown in Figure 7.5.1. The objective is to predict
the coupled system’s SSHR at point d on body II due to the harmonic forces at c on body I.
The given (available) quantities include the uncoupled system receptances, the forces at c,
and the interconnection stiffness k. Apply Equation (7.5.41) to point a on component I

treating f k,F1c, andF2c as harmonic forces that are “external” to body I. This yields

Q1a =R
I
1a,1cF1c +R

I
1a,2cF2c +R

I
1a,1a − f k 7 5 44

Apply (7.5.42) to component II treating f k as a harmonic force that is “external” to
body II. This yields

Q1b =R
II
1b,1bf k 7 5 45

Q1d =R
II
1d,1bf k 7 5 46

Finally, express f k in terms of the relative displacement of its end points

f k = k Q1a−Q1b 7 5 47

Insert (7.5.44) and (7.5.45) into (7.5.47)

f k = k RI
1a,1cF1c +RI

1a,2cF2c−RI
1a,1a f k −kRII

1b,1b f k

f k =
k RI

1a,1cF1c +RI
1a,2cF2c

1 + k RI
1a,1a +R

II
1b,1b

7 5 48

Substitute (7.5.48) into (7.5.46) to obtain

Q1d =
kRII

1d,1b RI
1a,1cF1c +RI

1a,2cF2c

1 + k RI
1a,1a +R

II
1b,1b

7 5 49

Figure 7.5.1 Two flexible structural components connected by stiffness k
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A business utility of (7.5.49) is that it requires that only receptance descriptions be dis-
closed by the manufacturers of the individual components. Thus, the separate manufacturers
of components I and II may protect proprietary, detailed information related to the design
and construction of their products and still allow the end user or packaging company to pre-
dict the combined system response. An example of this might be a gas turbine engine man-
ufacturer and an airplane manufacturer. The former manufactures the engine and the latter
manufactures the airplane structure on which the engine is attached.

EXAMPLE 7.5.3 Space Lab Microgravity Experiment Isolation

Statement: An orbiting space lab may be composed of modules that are manufactured not
only by different organizations but also in different countries. Receptance descriptions of the
internal dynamics of each component would be beneficial for obtaining coupled system
responses without disclosing proprietary design or manufacturing details. Consider a case
of a two-module space lab that is connected by a tubular structure of longitudinal stiffness k.
A heating, ventilation, and air-conditioning (HVAC) equipment skid in module I is isolated
from transmitting vertical forces, but its soft mount arrangement still transmits significant
longitudinal forces. Microgravity experiments (ME) are conducted in module II so it is
important to estimate its response due to the module I HVAC forces. The two-module, stiff-
ness-connected system model is illustrated in Figure E7.5.3(a).

Objective: To determine the SSHR at the ME location qII3 in module II due to the HVAC

force at position qI2 in module I using the isolated component receptances.

Assumptions: Linear components

Numerical Values: Interconnection stiffness k = 0 75 × 108N m
Module I:

mI
1 = 5000kg, mI

2 = 2000kg, mI
3 = 2000kg, mI

4 = 2000kg, mI
5 = 2000kg

kI1 = 2 × 10
8N m, kI2 = 1 × 10

8N m, kI3 = 1 × 10
8N m, kI4 = 1 × 10

8N m

cI1 = 75000Ns m, cI2 = 75000Ns m, cI3 = 75000Ns m, cI4 = 75000Ns m

fHVAC = 100N

Module II:

mII
1 = 1500kg, mII

2 = 1500kg, mII
3 = 1500kg, mII

4 = 1500kg

kII1 = 0 5 × 108N m, kII2 = 0 5 × 108N m, kII3 = 0 5 × 108N m

cII1 = 25000Ns m, cII2 = 25000Ns m, cII3 = 25000Ns m

Figure E7.5.3(a) Space station model with two flexible modules and an interconnection stiffness
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Solution:

(a) Form isolated module M,K, andC matrices.

(b) Form isolated module receptance matrices. By (7.5.28),

R I ω = −ω2M I + iωCTI +KTI
−1
, R II ω = −ω2M II + iωCTII +KTII

−1
1

Note that by comparison of Figure 7.5.1 and (1),

a= node 5of module I, b= node 1of module II
c = node 2 of module I, d = node 3 of module II

F1c = fHVAC, F2c = 0
2

Utilize the following receptances:

RI
1a,1a = R I 5,5, RI

1a,1c = R I 5,2

RII
1b,1b = R II 1,1, RII

1d,1b = R II 3,1

3

in (7.5.49) to solve for the amplitude and phase angle of motion at node 8 in the coupled
system

Q1d =Q8 =
k R II 3,1 R I 5,2 fHVAC

1 + k R I 5,5 + R II 1,1

4

q8 ω = Q8 ω , ∠q8 ω =∠Q8 ω 5

(c) The response at node 8 may also be obtained by solving the problem as a single coupled
system. The solution is then given by (7.5.27) and (7.5.28) as

Q
9 × 1

= R ω
9 × 9

F
9 × 1

6

where

R = −ω2M+ iωCT +KT
−1

F = 0 fHVAC 0 0 0 0 0 0 0 T

7

This implies

Q8 = R 8,2 fHVAC 8

Figure E7.5.3(b) shows that the q8 amplitude frequency response as determined uti-
lizing component receptances or by utilizing the coupled system receptances is identical.

Summary: This example has illustrated how to obtain the SSHR of a coupled system by
using the receptances of its isolated components.

7.5.5 Dominance of a Single Mode in the Steady-State Harmonic Response

Recall from (7.5.27)

Q=R ω F N × 1 7 5 50
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and from (7.5.34)

R=
N

l= 1

ψ
l
ψT

l

ml ω2
l −ω

2 + i2ξlωωl
7 5 51

Therefore,

Q=
N

l= 1

ψ T
l
F

ml ω2
l −ω

2 + i2ξlωωl
ψ

l
7 5 52

Suppose ω≈ωp, and ξp is very small, then the pth term in (7.5.52) may dominate the
response, yielding

Q≈
ψ T

p
F

mp ω2
p−ω

2 + i2ξpωωp

ψ
p
≈

ψ T
p
F

mp i2ξpωωp
ψ

p
7 5 53

This shows that the relative amplitudes and phase angles between responses at different
dofs will be approximately the same as the relative amplitudes and phase angles between the
corresponding components of mode shape p.

7.5.6 Receptance-Based Modal Parameter Identification: Method I

The experimental identification of mode shape components, modal frequencies, and damp-
ing ratios is a very useful technique for validating simulation models and for determining
structural modifications to increase modal, shift natural frequencies, or decrease sensitivity
to external forces. Two basic approaches are considered here, and more advanced techni-
ques may be found in books dedicated to that subject, such as Ewins (2001).

Consider an orthogonally damped system and assume that the undamped systemmodes
have been mass orthonormalized so that all modal masses are unity ml = 1=ψT

l
Mψ

l
. Then

the receptance formula in (7.5.35) is

Rkj ω =
N

l= 1

ψklψ jl

ω2
l −ω

2 + i2ξlωωl
7 5 54

Assume that the system is lightly damped and that the forcing frequency is nearly equal
to the pth natural frequency. The pth mode will predominate in (7.5.54) so that

0 10 20 30 40 50 60
10–5

100

10–5

100

Hz
(i)

m
m

, 0
-p

0 10 20 30 40 50 60
Hz
(ii)

m
m

, 0
-p

Figure E7.5.3(b) Displacement amplitude response at node 8 utilizing component (i) and system (ii) receptances
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Rkj ω ≈
ψ kpψ jp

ω2
p−ω

2 + i2ξpωωp
7 5 55

or

R−1
kj ω ≈

ω2
p−ω

2

ψ kpψ jp
+ i

2ξpωωp

ψ kpψ jp
7 5 56

Therefore, ωp may be identified as the value of ω where an experimentally determined

plot of Real R−1
kj ω becomes zero as depicted in Figure 7.5.2.

The phase angle of Rkj(ω) is given by (7.5.55) as

ϕkj =∠Rkj≈ tan−1 Im Rkj

Re Rkj
= tan−1 −2ξpωωp

ω2
p−ω

2
7 5 57

Following similar logic as in (7.3.58), the slope of the ϕkj versus ω curve is

dϕkj

dω
≈

1

1 + 2ξpωωp ω2
p−ω

2
2 ∗

ω2
p−ω

2 −2ξpωp + 2ξpωωp −2ω

ω2
p−ω

2
2

=
2ξp∗ωp −2ω2 +ω2−ω2

p

ω2
p−ω

2
2
+ 2ξpωωp

2

7 5 58

Evaluate this slope at ω=ωp:

dϕkj

dω ω=ωp

≈
−4ξpω

3
p

4ξ2pω
4
p

=
−1
ωpξp

ξp =
−1

ωp ∗dϕkj

dω ω=ωp

7 5 59

Therefore, approximate values of ξp and ωp may be obtained from Figure 7.5.2 and
(7.5.59) with receptances that are experimentally measured according to the definition in
(7.5.43). The damping ratio ξp can also be identified by the “half power point” method dis-
cussed for SDOF systems (ref. Figure 7.3.9), again assuming that the pth mode strongly
dominates the response.

Figure 7.5.2 Real part of inverse receptance versus excitation frequency formode p dominated response
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In order to experimentally estimate the mode shape components at selected locations,
assume that the receptances are measured at ω=ωp according with their definition (7.5.43)
and that the pth mode strongly dominates the response. Equation (7.5.55) becomes

Rkj ωp = phasor displacement at dof k divided by phasor force at dof j
with all other forces set to zero

≈
ψkpψ jp

i2ξpω2
p

ψkpψ jp≈ i2ξpω
2
pRkj ωp 7 5 60

Consider the special case when the displacement is measured at the force location
k = j . Then (7.5.60) yields

ψ jp = i2ξpω2
pRjj ωp 7 5 61

From (7.5.55), Rjj is theoretically negative pure imaginary when ω=ωp, so in practice
(7.5.61) is replaced by

ψ jp = 2ξpω2
p Rjj ωp 7 5 62

The selection of the positive root for ψ jp in (7.5.61) and (7.5.62) does not violate the
earlier condition that ψ

p
is mass orthonormalized since if

ψT
p
Mψ

p
= 1 7 6 63

it is also true that

−ψ
p

T
M −ψ

p
= 1 7 5 64

so either root may have been selected. To obtain the other components of the pth, mass-
orthonormalized mode shape ψ

p
, divide (7.5.60) by ψ2

jp where ψ jp is given by (7.5.62)

ψkp

ψ jp

i2ξpω
2
pRkj ωp

2ξpω2
p Rjj ωp

7 5 65

ψ kp =ψ jp ∗
iRkj ωp

Rjj ωp
7 5 66

The i in (7.5.66) will multiply the i in Rkj(ωp), which is theoretically pure imaginary
by (7.5.60). In practice, Rkj(ωp) may have a small real component so ψkp is determined
from

ψ kp≈ sgn∗ψ jp ∗
Rkj ωp

Rjj ωp
7 5 67

where

sgn =
1, if ∠Rkj ωp −∠Rjj ωp ≈0

−1, if ∠Rkj ωp −∠Rjj ωp ≈ ± 180
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This approach for identifying the mode shape ψ
p
may lose its accuracy for large ξp and

if other ωl are close to ωp.

EXAMPLE 7.5.4 Experimental Identification of Piping System Mode Shapes

Statement: A piping system is vibrating excessively and needs to be modified to reduce the
possibility of high-cycle fatigue failure (Figure E7.5.4(a)). As a first step, mode shapes of the
actual system are measured to verify the accuracy of the simulation model, which will be
used to determine structural modifications to the piping system. The piping system consists
of three branches and a common header, which is attached to a vessel through two bellows
for accommodating thermal expansion. The bellows have a very low stiffness relative to the
branch stiffness. The branches are connected by flanges at the opposite end to a second
vessel.

Objective: Estimate the four mode shapes of the system from the given “measured”
receptances.

The governing equations for the model are

Mq +Kq = f 1

where

q = q1 q2 q3 q4
T 2

M =

m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

, K=

k1 + k3 + k5 −k1 −k3 −k5

−k1 k1 + k2 0 0

−k3 0 k3 + k4 0

−k5 0 0 k5 + k6

3

The parameter values are provided in Table E7.5.4(a).

Figure E7.5.4(a) Piping system (i) and its simplified four-mass model (ii)

Table E7.5.4(a) Stiffness and mass values for the four-mass model

I 1 2 3 4 5 6

ki (N/m) 109 0 5 × 109 2 × 109 0 75 × 109 3 × 109 5 × 109

mi (kg) 500 200 300 150 — —
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The mass and stiffness properties are not required to identify the modal parameters and
are provided only to describe the system. The modal parameters are instead identified from
simulated “measured responses” to known input forces. For the sake of illustration, the sim-
ulated “measured responses” shown in Figure E7.5.4(b) were obtained by calculating the
SSHR due to an excitation force applied at dof 3, that is,

f= 0 0 100cos ωt 0 T N 4

In actual practice, these amplitude and phase responses would be experimentally meas-
ured and the sinusoidal force would be applied with a shaker or impact hammer to the
structure.

The undamped natural frequencies ωi in Table E7.5.4(b) are estimated from the fre-
quencies where peak amplitude occurs. The ξi are the damping ratios at the respective peaks
as obtained by inserting the phase slope results shown in Figure E7.5.4(b) and the natural
frequencies in Table E7.5.4(b) into Equation (7.5.59).

The “measured” receptances are determined from (7.5.50)

0 500 1000 1500
0

2

4
dof 1 amplitude

0 500 1000 1500
–5

0

5

dof 1 phase angle

0 500 1000 1500
–0.02

0

0.02
dof 1 phase slope

0 500 1000 1500
0
2
4

(i) (ii)

(iii) (iv)

dof 2 amplitude

0 500 1000 1500
–5
0
5 dof 2 phase angle

0 500 1000 1500
–0.02

0
0.02 dof 2 phase slope

0 500 1000 1500
0
2
4

×10–7 ×10–7

×10–7×10–7

m

dof 3 amplitude

0 500 1000 1500
–4
–2
0

R
ad

ia
ns

dof 3 phase angle

0 500 1000 1500
–0.02

0
0.02

Se
co

nd
s

m
R

ad
ia

ns
Se

co
nd

s
m

R
ad

ia
ns

Se
co

nd
s

m
R

ad
ia

ns
Se

co
nd

s

Hz Hz

HzHz

dof 3 phase slope

0 500 1000 1500
0
1
2

dof 4 amplitude

0 500 1000 1500
–5
0
5

dof 4 phase angle

0 500 1000 1500
–0.02

0
0.02

dof 4 phase slope

Figure E7.5.4(b) Displacement amplitude, phase angle ϕ, and phase slope (dϕ/dω) at (i) q1, (ii) q2, (iii) q3, and
(iv) q4, due to a 100 N amplitude force at q3
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Q =R ω F = phasor displacements 5

where from (4),

F = 0 0 100ei0 0
T
= 0 0 100 0 T 6

Thus,

Q=R3 ω ∗100 R3 ω = third column of R receptance matrix =
Q ω

100
7

where the vector Q ω contains the displacement phasors at all four masses due to the force

applied at mass q3.
The displacement phasor at dof k is

Qk = qk ∗ei∠qk 8

The entries in R3 ω are the receptances Rkj(ω) in (7.5.60), with j = 3, k = 1 through 4,
and ω equals a natural frequency ωp p = 1,2,3,4 . Utilize (7) at each of the four resonant
frequencies in Table E7.5.4(b) to obtain the receptances in Table E7.5.4(c).

These receptances and the ωi and ξi from Table E7.5.4(b) are employed in formulas
(7.5.62) and (7.5.67) to estimate the mass-orthonormal mode shapes in Table E7.5.4(d).
The actual mass-orthonormal modes for this model are listed in Table E7.5.4(e).

Table E7.5.4(b) Undamped natural frequencies and damping ratios

I 1 2 3 4

ωi (rad/s) 2π∗277 2π∗449 2π∗613 2π∗1192
ξi (dim) 0.05 0.0298 0.0211 0.0083

Table E7.5.4(c) Receptances determined from the amplitude and phase angle responses in
Figure E7.5.4(b).

R column 3 at ω1

1 0e−008∗
R column 3 at ω2

1 0e−008∗
R column 3 at ω3

1 0e−008∗
R column 3 at ω4

1 0e−008∗

−0.0042 − 0.3179i −0.0342 − 0.0374i −0.0264 + 0.1765i 0.00052 + 0.00186i
−0.0286 − 0.3536i −0.0244 + 0.3811i 0.0281 − 0.1179i −0.00005 − 0.00019i
0.0327 − 0.3468i 0.0050 − 0.2079i −0.0046 − 0.2083i −0.00717 − 0.00046i

−0.0024 − 0.1264i −0.0152 − 0.0163i −0.0122 + 0.0919i 0.00067 − 0.01321i

Table E7.5.4(d) Mass-orthonormal mode shapes estimated from responses with force at q3

ψ
1

ψ
2

ψ
3

ψ
4

0.0296 0.0077 −0.0309 −0.0022
0.0331 −0.0577 0.0210 0.0002
0.0325 0.0314 0.0361 0.0082
0.0118 0.0034 −0.0161 0.0151
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Comparison of these tables shows that modes 1, 2, and 3 have accurate estimates;
however, the mode 4 estimate is poor. This is not surprising since a mode 4 peak is absent
in the q1, q2, and q3 plots and appears only as a small bump in the q4 amplitude data in
Figure E7.5.4(b). In actual practice, the shaker force would be moved from dof 3 to another
location to try to more strongly excite mode 4. The mode 4 excitation is the corresponding

“modal force” ψ T
4
F in (7.5.52). Table E7.5.4(e) shows that mode 4 has a relatively large

component at q4 so the “shaker” is placed at q4, that is, (6) becomes

F = 0 0 0 100 T 9

The amplitude plots of q1 and q4 in Figure E7.5.4(c) confirm a strong mode 4 resonance
results. The receptances corresponding to the force phasor in (9) are obtained from this
figure using

R4 ω4 = fourth column of R receptance matrix =
Q ω4

100

which yields

R14 = −0 0028 + 0 0931i × 10−8

R24 = 0 0005−0 0096i × 10−8

R34 = 0 0007−0 0132i × 10−8

R44 = 0 0059−0 6728i × 10−8

10
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Figure E7.5.4(c) Displacement amplitude, phase angle ϕ, and phase slope (dϕ/dω) at (i) q1 and (ii) q4, due to a
100 N amplitude force at q4

Table E7.5.4(e) Exact mode shapes for the system model Figure E7.5.4(a)

ψ
1

ψ
2

ψ
3

ψ
4

0.0298 0.0056 −0.0310 −0.0110
0.0333 −0.0587 0.0210 0.0011
0.0323 0.0313 0.0361 0.0016
0.0118 0.0025 −0.0161 0.0791
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The force is located at j= 4 (q4), and the mode is p = 4, so the mode component at k = 4
(q4) is from (7.5.62):

ψ jp =ψ44 = 2ξ4ω
2
4 R44 ω4 11

The other components of mode 4 are obtained from (7.5.67) as

ψ kp =ψ k4 = sgn∗ψ44∗
Rk4 ω4

R44 ω4
12

where

sgn =
1, if ∠Rk4 ω4 −∠R44 ω4 ≈0

−1, if ∠Rk4 ω4 −∠R44 ω4 ≈ ± 180

Utilizing (10) in (11) and (12) yields the new estimate for mode 4

ψ
4
= −0 0110 0 0011 0 0016 0 0792 T 13

which, by comparison to Table E7.5.4(e), is highly accurate.

7.5.7 Receptance-Based Modal Parameter Identification: Method II

The proceeding approach to Receptance-Based Modal Parameter Identification (RBMPI)
requires taking measurements at near resonance conditions (ω≈ωl) and assumes that the
modes are lightly damped. In practice, this may cause potentially damaging vibration
and present a challenge of assuring that the measurements are very close to the resonances.
Another approach to RBMPI is to utilize receptances that are measured at excitation fre-
quencies (ω) well away from resonance frequencies (ωl). Assume that the modes are to
be measured in their mass-orthonormalized form (5.4.41) and that in an off-resonance
condition

2ξlωlω<<ω2
l −ω

2 = 1 ωl +ω ωl−ω 7 5 68

which is true if the system is lightly damped and if ω and ωl are well separated.
Then from Equation (7.5.35),

Rkj ω ≈
m

l= 1

ψ klψ jl

ω2
l −ω

2 + i2ξlωωl
≈

m

l= 1

ψ klψ jl

ω2
l −ω

2
=

m

l= 1

Λkj, l

ω2
l −Ω

2 7 5 69

where only the m lowest modes have been included in the receptance summation and where

Ω=ω= excitation frequency 7 5 70

Λkj, l =ψ klψ jl 7 5 71

The receptance Rkj is measured at m separate excitation frequencies

ω=Ω1,Ω2,…,Ωm 7 5 72
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Equation (7.5.69) is written for these m frequencies as

Rkj Ω1

Rkj Ω2

Rkj Ωm

=

ω2
1−Ω

2
1

−1
ω2
2−Ω

2
1

−1
ω2
m−Ω

2
1

−1

ω2
1−Ω

2
2

−1
ω2
2−Ω

2
2

−1
ω2
m−Ω

2
2

−1

ω2
1−Ω

2
m

−1
ω2
2−Ω

2
m

−1
ω2
m−Ω

2
m

−1

Λkj,1

Λkj,2

Λkj,m

7 5 73

and is solved for the Λkj,l, for l = 1,2,…,m. From (7.5.71), the solution of (7.5.53) provides

ψk1ψ j1, ψ k2ψ j2, …,ψkmψ jm 7 5 74

for a fixed excitation point j and fixed response measurement point k. Let the excitation
point ( j ) be fixed and measure the receptances at N response locations (k = 1,…,N). This
step could be reversed with one response point and N excitation points, yielding similar
results. Equation (7.5.73) is solved to obtain Λkj, l =ψ klψ jl for each response point k utilizing
the same (or different) excitation frequencies Ωi as employed for the other response points.
This yields numerical values for the following mode shape components:

k = 1

k = 2

k = j

k =N

ψ11ψ j1 ψ12ψ j2 ψ13ψ j3 ψ1mψ jm

ψ21ψ j1 ψ22ψ j2 ψ23ψ j3 ψ2mψ jm

ψ j1ψ j1 ψ j2ψ j2 ψ j3ψ j3 ψ jmψ jm

ψN1ψ j1 ψN2ψ j2 ψN3ψ j3 ψNmψ jm

7 5 75

Taking the square root of the entries in the jth row of this matrix yields the jth compo-
nent of all m mode shapes, that is,

ψ ji, i= 1,2,…,mmodes 7 5 76

where j is the fixed, excitation location. Dividing the ith column of the matrix in (7.5.75)
by ψ ji yields the ith mode shape

ψ
i
=

ψ1i

ψ2i

ψNi

, i= 1,2,…,m 7 5 77

Correct implementation of this method requires that the Rkj(ω) be nearly pure real num-
bers by (7.5.69). Thus, the excitation frequencies (Ωl) should be selected so that ∠Rkj is
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nearly 0 or π, that is, 0 or 180 . To insure that the calculations produce real modes, utilize
the approximation

Rkj Ωl ≈Real Rkj Ωl = Rkj Ωl ∗cos ∠Rkj Ωl 7 5 78

at these frequencies.

EXAMPLE 7.5.5 Experimental Identification of Piping System Mode Shapes by RBMPI:
Method II

Objective: Utilize the measurements of off-resonance receptances to estimate the lowest
two mode shapes, ψ

1
and ψ

2
, of the piping system studied in Example 7.5.4.

Assumption: The undamped natural frequencies, ω1 and ω2, were determined by the “peak
picking” or by the real (inverse receptance) crossover frequency (refer to Figure 7.5.2)
methods to be

ω1 = 2π∗277 = 1740rad s, ω2 = 2π∗449 = 2821rad s 1

For this example,

j= 2 excitation at dof 2

m= 2 modes to be identified

N = 4 number of components per mode shape

2

Figure E7.5.5(a) shows valid frequencies for applying the off-resonance approach
based on response phase angles that are near 0 or ± 180 , that is, π radians. These plots
were obtained by applying the following force phasor at dof 2, that is,

F = 0 100 0 0 T 3

Figure E7.5.5(a)-(i) shows the phase angle of q1 is near 0 with an amplitude of
2 88 × 10−8m at f1 = 100Hz and is near −π with an amplitude of 5 57 × 10−8m at
f2 = 395Hz. Figure E7.5.5(a)-(ii) shows the phase angle of q2 is near 0 with an amplitude
of 9 1 × 10−8m at f1 = 100Hz and is near zero with an amplitude of 1 3 × 10−7m at
f2 = 382Hz. Figure E7.5.5(a)-(iii) shows the phase angle of q3 is near 0 with an amplitude
of 2 2 × 10−8m at f1 = 100Hz and is near −π with an amplitude of 1 05 × 10−7m at
f2 = 364Hz. Figure E7.5.5(a)-(iv) shows the phase angle of q4 is near 0 with an amplitude
of 1 09 × 10−8m at f1 = 100Hz and is near −π with an amplitude of 2 36 × 10−8m at
f2 = 393Hz. Table E7.5.5(a) summarizes these results, where the receptance amplitudes
|R| listed equal the corresponding response amplitudes divided by 100 N, as in (7) of
Example 7.5.4.

From (1), ω1 = 1740rad s and ω2 = 2821rad s. Then row 1 of Table E7.5.5(a) yields
the following form for Equation (7.5.73):

R12 Ω1

R12 Ω2
=

2 876 × 10−10

−5 57 × 10−10
=

0 3798 × 10−6 0 1322 × 10−6

−0 3192 × 10−6 0 5563 × 10−6

Λ12,1

Λ12,2
4

Λ12,1

Λ12,2
= ψ11ψ21 ψ12ψ22

T = 0 9218 × 10−3 −0 4724 × 10−3 T
5
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Figure E7.5.5(a) Displacement amplitude, phase angle ϕ, and phase slope (dϕ/dω) at (i) q1, (ii) q2, (iii) q3, and
(iv) q4, due to a 100 N amplitude force at q2

Table E7.5.5(a) Receptances at two selected forcing frequencies with phase near 0 or π

Dof Ω1 = 2πf1 |R1| ∠R1

R1≈Re R1

= R1 cos ∠R1 Ω2 = 2πf2 |R2| ∠R2

R2≈Re R2

= R2 cos ∠R2

k = 1 628 2.88 × 10−10 −0.051 2.876 × 10−10 2482 5.53 × 10−10 3.14 −5.57 × 10−10

k = 2 628 9.06 × 10−10 −0.0265 9.057 × 10−10 2400 1.205 × 10−9 −0.285 1.156 × 10−9

k = 3 628 2.18 × 10−10 −0.064 2.176 × 10−10 2287 1.052 × 10−9 3.138 −1.052 × 10−9

k = 4 628 1.086 × 10−10 −0.053 1.085 × 10−10 2469 2.362 × 10−10 3.14 −2.362 × 10−10
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Similarly, rows 2, 3, and 4 of Table E7.5.5(a) yield

Λ22,1

Λ22,2

= ψ21ψ21 ψ22ψ22
T = 0 12 × 10−2 0 35 × 10−2 T

Λ32,1

Λ32,2

= ψ31ψ21 ψ32ψ22
T = 0 11 × 10−2 −0 15 × 10−2 T

Λ42,1

Λ42,2

= ψ41ψ21 ψ42ψ22
T = 0 362 × 10−3 −0 22 × 10−3 T

6

The matrix in Equation (7.5.75) becomes

ψ11ψ21 ψ12ψ22

ψ21ψ21 ψ22ψ22

ψ31ψ21 ψ32ψ22

ψ41ψ21 ψ42ψ22

=

0 9218 × 10−3 −0 4724 × 10−3

0 12 × 10−2 0 35 × 10−2

0 11 × 10−2 −0 15 × 10−2

0 362 × 10−3 −0 22 × 10−3

7

From the second row k = 2 of this equation,

ψ21 = 0 0012 = 0 0346, ψ22 = 0 0035 = 0 0592 8

Dividing the first column of (7) by ψ21 and the second column by ψ22 yields the first and
second mode estimates

ψ
1
=

ψ11

ψ21

ψ31

ψ41

=

0 0266

0 0346

0 0318

0 0105

, ψ
2
=

ψ12

ψ22

ψ32

ψ42

=

−0 0080

0 0591

−0 0253

−0 0037

9

The modal mass ψTMψ is unchanged if ψ is replaced by −ψ so mode 2 can also be

written as

ψ
2
= 0 0080 −0 0591 0 0253 0 0037 T 10

and remain mass orthonormalized. Table E7.5.5(b) summarizes the receptance-based mode
identification results for Examples 7.5.4 and 7.5.5. Both modes are mass orthonormalized.

Table E7.5.5(b) Comparison of modes 1 and 2 for receptance and exact methods

ψ
1

ψ
2

Exact
On-resonance
(method I)

Off-resonance
(method II) Exact

On-resonance
(method I)

Off-resonance
(method II)

ψ1 0.0298 0.0296 0.0266 0.0056 0.0077 0.0080
ψ2 0.0333 0.0331 0.0346 −0.0587 −0.0577 −0.0591
ψ3 0.0323 0.0325 0.0318 0.0313 0.0314 0.0253
ψ4 0.0118 0.0118 0.0105 0.0025 0.0034 0.0037
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7.5.8 Modal Assurance Criterion for Mode Shape Correlation

In practice, mode shape vectors must be compared for the following reasons: (i) comparing
various measurements of the same mode shape, (ii) aiding to distinguish two mode shapes,
and (iii) comparing the similarity between a measured mode shape and its model predicted
counterpart. It is difficult to compare similarities of two large-order vectors (mode shapes)
since each may possess many components. Consider the plotting of two mode shapes
ψ

a
and ψ

b
, which may be obtained by measurement, simulation (theory), or from both,

as shown in Figure 7.5.3.
The slope of the curve fit is

Mode scale factor =MSF=

N

i= 1
ψ iaψ ib

N

j= 1
ψ ia

2
=
ψT

a
ψ

b

ψT
a
ψ

a

7 5 79

Clearly, the mode scale factor (MSF) will equal 1.0 if ψ
a
=ψ

b
. A second parameter is

defined to represent the deviation (scatter) of the points away from the linear curve fit

Modal assurance criterion =MAC a,b =
ψT

a
ψ

b

2

ψT
a
ψ

a
ψT

b
ψ

b

7 5 80

For complex modes, this is generalized (Pandit, 1991) to the form

MAC a,b =
ψT

a
ψ

b

2

ψT
a
ψ

a
ψT

b
ψ

b

7 5 81

where the overbar indicates complex conjugate. Similar with the MSF, the modal assur-
ance criterion (MAC) equals 1.0 if the modes are identical or if they differ by a scale
factor. Two modes are considered to be strongly correlated if MAC > 0.9 and uncorrelated
if MAC < 0.05.

Figure 7.5.3 Plot of mode shape components ψ
b
versus ψ

a
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EXAMPLE 7.5.6 MAC Applied to Piping System Mode Shapes

Objective: To apply the MAC between the estimated and exact mode shapes for the piping
system of Examples 7.5.4 and 7.5.5.

Solution: The on-resonance, receptance-based estimates of the mode shapes for the 4 dof
piping model shown in Figure E7.5.4(a) are listed in Tables E7.5.4(d) and E7.5.4(e) and
repeated in Table E7.5.6(a).

The estimated modes were obtained with the excitation force at dof 3, which yielded a
poor estimate of mode 4. The MAC matrix for this case is given by

MAC ψe
1
,ψ

1
MAC ψ e

1
,ψ

2
MAC ψe

1
,ψ

4

MAC ψe
4
,ψ

1
… MAC ψe

4
,ψ

4

=

1 0000 0 0377 0 0616 0 0240

0 0292 0 9987 0 0106 0 0010

0 0605 0 0076 1 0000 0 0385

0 1546 0 0546 0 0176 0 7924

1

These results show that the exact mode ψ
i
and estimated mode ψ e

j
are strongly corre-

lated for i= j and weakly correlated if i j. The exception is mode 4 in which case
MAC ψ e

4
, ψ

4
= 0.7924, which is less than the 0.9 good correlation limit. This is expected

because of the poor estimate for mode 4. Swapping modes 3 and 4 in the estimated modal
matrix yields the following MAC matrix:

MAC=

1 0000 0 0377 0 0616 0 0240

0 0292 0 9987 0 0106 0 0010

0 1546 0 0546 0 0176 0 7924

0 0605 0 0076 1 0000 0 0385

2

The MAC(3,4) = 1.0 result demonstrates the ability of the MAC method to match modes
in two separate data sets, since the (3,4) corresponds to estimated and exact modes 3.

7.6 OTHER PHASOR RATIO MEASURES OF STEADY-STATE
HARMONIC RESPONSE

The vibration literature contains several phasor ratios of (motion phasor)/(force phasor) and
(force phasor)/(motion phasor), where phasor quantities are discussed in Section 2.5. It is
useful to be aware of the definitions of these phasor ratios when reading the literature:

Table E7.5.6(a) Estimated and exact mode shapes with a 100 N amplitude force at n

ψe
1
estimated ψ

1
exact ψe

2
estimated ψ

2
exact ψe

3
estimated ψ

3
exact ψ e

4
estimated ψ

4
exact

0.0296 0.0298 0.0077 0.0056 −0.0309 −0.0310 −0.0022 0.0110
0.0331 0.0333 −0.0577 −0.0587 0.0210 0.0210 0.0002 0.0011
0.0325 0.0323 0.0314 0.0313 0.0361 0.0361 0.0082 0.0016
0.0118 0.0118 0.0034 0.0025 −0.0161 −0.0161 0.0151 0.0791
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(a) This chapter made extensive use of the receptance phasor (7.5.41)–(7.5.43):

Rlj ω = displacement phasor at degree of freedom lper force phasor at

degree of freedom jwith all other forces set to zero

=
Ql

Fj

withFk = 0 for k j = l, j entry of −ω2M+ iωC +K
−1

7 6 1

The receptance Rlj is often referred to as a “dynamic flexibility.” This originates with
the familiar static “flexibility” or “influence coefficient” defined as

rlj ω = static displacement at degree of freedom lper static force

at degree of freedom jwith all other forces set to zero

=
ql

fj
with fk = 0 for k j = l, j entry of K

−1
7 6 2

The receptance Rlj is also referred to as “dynamic compliance” or “admittance.”

(b) The inverse of the receptance Rlj(ω) is referred to as the “dynamic stiffness” or
“dynamic modulus”:

KDlj ω = force phasor at degree of freedom lper displacement phasor at

degree of freedom jwith all other displacements set to zero

=
Fl

Qj

withQk = 0 for k j = l, j entry of −ω2M+ iωC+K

7 6 3

The dynamic stiffness equals the static stiffness whenω= 0. The receptance Rlj(ω) is not
the reciprocal of the dynamic stiffness KDlj(ω) except for SDOF systems.

(c) The “mobility” is similar to the receptance but utilizes velocity instead of displacement:

Mlj ω = velocity phasor at degree of freedom lper force phasor at

degree of freedom jwith all other forces set to zero

=
Vl

Fj

withFk = 0 for k j =
iωQl

Fj

= iωRlj ω

7 6 4

(d) The inverse quantity for Mlj(ω) is referred to as the “mechanical impedance”:

Zlj ω = force phasor at degree of freedom lper velocity phasor at

degree of freedom jwith all other velocities set to zero

=
Fl

Vj

withVk = 0 for k j

7 6 5

(e) The “inertance” of “accelerance” is similar to the receptance and mobility but utilizes
acceleration:

Alj ω = acceleration phasor at degree of freedom l per force phasor at

degree of freedom jwith all other forces set to zero

=
al

Fj

withFk = 0 for k j =
iωVl

Fj

=
−ω2Ql

Fj

= iωMlj ω = −ω2Rlj ω

7 6 6
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(f) The inverse quantity for Alj ω is referred to as the “apparent mass”:

Ilj ω = force phasor at degree of freedom lper acceleration phasor at

degree of freedom jwith all other accelerations set to zero

=
Fl

aj
with ak = 0 for k j

=
Fl

iωVj

=
Fl

−ω2Qj

=
1
iω

Zlj ω =
−1
ω2

KDlj ω

7 6 7

All of the preceding quantities (receptance, flexibility, compliance, admittance, stiff-
ness, modulus, mobility, impedance, inertance, accelerance, and apparent mass) are defined
for a specific force dof j and a response dof l. The quantity is referred to as “driving point” or
“point,” that is, point impedance, if l= j. The quantity is referred to as “transfer” if l j.
In addition, the quantity may be referred to as “direct” if the directions (x, y, z, θx, θy, θz)
of dofs l and j are the same and “cross” if they are different.

From a measurement standpoint, it is much easier to set all forces to zero except for a
single excitation force rather than to set all displacements equal to zero except for a single
excitation displacement. Hence, only measurements of receptance, mobility, and inertance
are typically performed. Harris (1988) provides a summary of impedance and mobility
expressions for a variety of 1 and 2 dof system configurations.

7.7 SUMMARY

The topics covered in this chapter should provide the reader with an understanding and
working knowledge of:

(a) SSHR solution methodologies for 1, 2, and N dof systems

(b) SSHR characteristics for constant amplitude, rotating imbalance, and ground motion
disturbances

(c) SSHR response amplitudes and phase angles

(d) SSHR damping and resonance

(e) Introductory rotor balancing methods

(f) Principles of isolation of transmitted force and support motion

(g) Analysis and design considerations for vibration absorber applications

(h) SSHR solutions that utilize a modal expansion method

(i) The use of receptances for predicting coupled system SSHR response of joined compo-
nents and mode shapes

(j) Introductory methods for modal parameter identification

7.8 CHAPTER 7 EXERCISES

7.8.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website: www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding a significant cost savings for the college student, and the exercises are updated.
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7.8.2 Exercise Goals

The goal of the Exercises in Chapter 7 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) Prediction of SSHR of vibrating systems to periodic forces. These periodic forces may
be pure tone/single-frequency or multitone complex.

(b) Determination of SSHR of both lumped and continuous mass systems, the latter being
modeled with finite elements or assumed modes.

(c) Implementation of vibration absorbers to translatory or rotational systems.

(d) Receptance-based synthesis of coupled systems joined by springs and dampers.

(e) Usage of receptances for parameter identification.

(f) Usage of the modal assurance criterion.

7.8.3 Sample Exercises: 7.9 and 7.23

Exercise 7.9 represents a large reciprocating compressor frame modeled as a continuous mass
Euler–Bernoulli beam and utilizing the assumed modes approach. The system is subjected to
periodic forces from crankshaft mass unbalance, resulting in SSHR. Exercise 7.23 treats two
buildings that are under consideration for being joined together with a catwalk. Receptance
synthesis must be utilized to determine if vibration caused by the punching operation in
one building will adversely affect the precision inspection operation in the other building.
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Chapter 8

Approximate Methods for
Large-Order Systems

8.1 INTRODUCTION

The size (number of degrees of freedom (dofs)) of models continues to rapidly increase as
machinery, structures, and other vibrating objects become more complex to increase per-
formance and efficiency. This is somewhat a result of the development of automated
finite element mesh generators that transform solid models into finely meshed finite ele-
ment models (Example 10.10.1). Consequently, reducing computation time remains an
important concern for many vibration simulation studies, especially for those that possess
a large number of parameters to be varied in an intuitive or automated optimal design
search.

Common approaches to reduce the computation time include:

(a) Kinematic constraints: Simplify the model by imposing dependency relations between
the dofs of a model as described in Section 2.11. This will reduce the model size and,
depending on the engineering intuition and experience of the analyst, still preserve a
sufficient level of prediction accuracy.

(b) Subspace condensation: Restrict the solution space to a subspace spanned by a reduced
set of basis vectors as described in Section 2.6. This step is typically applied to the
model resulting from approach (a). The mode shape vectors are the most common basis
vectors as illustrated in Chapters 5, 6, and 7. Other basis vector sets are also in wide-
spread use such as Guyan basis vectors, which are treated in the next section.

(c) Receptance condensation: Employ receptances to condense the number of dofs in the
governing equations to those where forces are applied, interconnections between sub-
structures are made, and local modifications are simulated. This approach is illustrated
by the receptance synthesis shown in Example 7.5.3. The efficiency of this approach is
enhanced by evaluating the receptances with truncated modal summation formulas such
as (7.5.35) and (7.5.39).

(d) Reanalysis: Utilize the solution to a “baseline model” to quickly obtain approximate
solutions to the modified baseline model, which results from highly localized changes
to the baseline model’s parameter values.

(e) Eigenproblem linearization: The determinants in (2.8.9) and (2.8.10) clearly illustrate
that eigenvalues, which provide mode natural frequencies and damping ratios, have
a nonlinear dependence on system parameters. Solution for the eigenvalues for a mul-
titude of parameter values can then become a computationally intensive task especially
for large-order models. Two-term Taylor series approximations can be employed to
obtain approximate, linearized relations between eigenvalues, eigenvectors (mode
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shapes), and the model’s parameters. These are particularly useful for obtaining an esti-
mate of how an eigenvalue changes as a design parameter changes.

Some related approaches are discussed in this chapter.

8.2 GUYAN REDUCTION: STATIC CONDENSATION

Some dofs of most structural models typically have relatively small damping, inertia, and
applied (external) forces associated with them. An example is bending rotation coordinates
in beam-type models (frames or rotors) that have no added rotational inertia, damping, or
external moments. The Guyan reduction method employs a special set of basis vectors (Sec-
tion 2.6) to condense these dofs out of the model, thereby reducing the model size. Assume
that the model dofs have been separated into two groups—retained (r) dofs and condensed
(c) dofs—by ordering the dofs in the position vector as

q =

q
r

nr × 1

q
c

nc × 1

N × 1 8 2 1

where

N = nr + nc 8 2 2

The equilibrium equations will then have the form

mrr
nr × nr

mrc
nr × nc

mcr
nc × nr

mcc
nc × nc

qr
nr × 1

qc
nc × 1

+

crr
nr × nr

crc
nr × nc

ccr
nc × nr

ccc
nc × nc

qr
nr × 1

qc
nc × 1

+

krr
nr × nr

krc
nr × nc

kcr
nc × nr

kcc
nc × nc

qr
nr × 1

qc
nc × 1

=

fr
nr × 1

fc
nc × 1

N × 1

8 2 3

or

Mq +Cq+Kq = f t 8 2 4

The reordering of the matrices may be accomplished by utilizing a Boolean reordering
matrix T, as illustrated by the following example. Let q2 and q4 be retained dofs and
q1, q3, and q5 the condensed dofs of a 5 dof system model. The original vector and reor-
dered vector are then related by

q1

q2

q3

q4

q5

=

qc1

qr1

qc2

qr2

qc3

=

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

qr1

qr2

qc1

qc2

qc3

=

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

qr
nr × 1

qc
nc × 1

=T

qr
nr × 1

qc
nc × 1

8 2 5

Let M,C,K , and F be the mass, damping, and stiffness matrices and force vector,

respectively, for the original unarranged dofs. The rearranged system’s matrices and force
vector, as shown in (8.2.3) or (8.2.4), are given by
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M= TTM T, C= TTC T, K =TTK T, F= TTF 8 2 6

The assumption that the condensed (c) dofs have negligible inertia, damping, and exter-
nal forces simplifies (8.2.3) to the form

mrr 0

0 0

q
r

q
c

+
crr 0

0 0

q
r

q
c

+
krr krc

kcr kcc

q
r

q
c

=
f
r

0
N × 1 8 2 7

Consider the bottom partition in this equation:

kcrqr + kccqc = 0 8 2 8

q
c
= −k−1cc kcrqr nc × 1 8 2 9

The inverse of matrix kcc in (8.2.9) will exist only if the retained dofs are selected such
that if all of the retained dofs are fixed

q
r
= 0 8 2 10

then the remaining portion of the model is fully constrained against any rigid body motion.
This is consistent with the notion from (8.2.9) that q

c
is dependent on q

r
since if q

r
is zero,

(8.2.8) becomes

kccqc = 0 8 2 11

which implies that q
c
= 0 if k−1cc exists. On the other hand, if kcc was singular, qc could assume

any value in the null space of kcc independent of q
r
. Thus, the dependency of q

c
on q

r

requires that k−1cc exists. The dependency relation in (8.2.9) can be written for the complete
system as

q =
q
r

q
c

=
q
r

−k−1cc kcrq r

=
Inr

−k−1cc kcr
q
r

8 2 12

or

q= TGqr 8 2 13

where the Guyan transformation matrix is given by

TG = TG1 TG2 TGnr =

Inr
nr × nr

−k−1cc kcr
nc × nr

8 2 14

Equations (8.2.12)–(8.2.14) have the general form of the coordinate transformation, or
change of basis, as shown in (2.6.9) and the related discussion. As discussed in Section 2.6,
the column vectors of TG are the basis vectors of the transformation. These basis vectors
have a physical interpretation as can be explained by expressing kcr column-wise as

kcr = kcr1 kcr2 kcrnr 8 2 15
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Assume that all retained dofs q
r
are held fixed except for dof j, which is given a unit

displacement so that

q
rj
=

0

1

0

row j 8 2 16

and then by (8.2.9)

q
cj
= −k−1cc kcrqrj = −k−1cc kcrj

= vector of all condensed degrees of freedom due to

imposing a unit displacement on the jth retained degree of freedom qrj
while holding all other retained degrees of freedom fixed

8 2 17

The total system’s deflection vector becomes

q
j
=

q
rj

q
cj

=
ej

−k−1cc k crj
8 2 18

where

ej =

0

1

0

row j 8 2 19

Collect all q
j
as columns of a matrix

q
r1

q
r2

q
rnr

q
c1

q
c2

q
cnr

=
e1 e2 enr

−k−1cc kcr1 −k−1cc kcr2 −k−1cc kcrnr

=

Inr

−k−1cc k cr1 kcr2 kcrnr

=
Inr

−k−1cc kcr

8 2 20a

Comparing (8.2.14) and (8.2.2) shows that the jth column of the Guyan transformation
matrix is

TGj = the total system deflection vector q for the case

when a unit displacement is imposed on the

jth retained degree of freedom qrj while all other

retained degrees of freedom are held fixed

8 2 20b
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The Guyan reduction method makes the approximation that the N × 1 total system
displacement vector q in (8.2.1) is restricted to the subspace spanned by the nr basis

vectors TG1, TG2, …, TGnr , that is,

q =TGqr =
Inr

−k−1cc kcr
q
r
=

nr

j= 1

qrj t TGj 8 2 21

This has the identical form with the general subspace condensation equation (2.6.9) and
the modal subspace condensation equations (6.3.11)–(6.3.13):

q =Ψ χ =
nm

j= 1

χj t ψ j
8 2 22

Substitute (8.2.21) into (8.2.4) and premultiply the results by TTG to obtain

M q
r
+C q

r
+K q

r
= f nr × 1 8 2 23

where

M = TTGMTG nr × nr , C =TTGC TG nr × nr , K =TTGK TG nr × nr 8 2 24

f = TTG f nr × 1 8 2 25

Thus, it is seen that the dimension of the equilibrium problem has been condensed from
N ×N in (8.2.4) to nr × nr in (8.2.23). The selection of which dofs are retained is some-
what based on experience but can be automated (Cook, 1989). A general rule is to retain dofs
with relatively large concentrated mass, damping, external force, or moment.

EXAMPLE 8.2.1 Power Generation, Machinery Shaft Train Torsional Vibration

Statement: Large turbine-generator sets consist of high-pressure (HP), intermediate-
pressure (IP), and low-pressure (LP) turbines and a generator and exciter. The exciter is
a generator that supplies power to the field windings of the main generator. These sets
may experience torsional vibration due to lack of damping (0.1% or lower) and electrical
disturbance torques originating in the active part of the generator (Huster and Eckert,
1998). This vibration may lead to premature failure of the turbine blades, with potentially
catastrophic consequences. The torque excitations are due to electromagnetic field distur-
bances in the air gap of the generator, and their effects propagate to all of the machinery
components since they are rigidly coupled together. The excitation frequency occurs at 1
or 2 times line frequency (60 or 50 Hz). The disturbances are caused by:

Short circuits in the electrical grid, transformer, or generator stator windings

Synchronization failure

The duration of the excitation may be as short as 0.2 seconds and may be several times
greater in magnitude than the nominal torque of the unit. Figure E8.2.1(a) depicts a large,
power generating, turbine-generator set, and Figure E8.2.1(b) shows its simplified torsional
vibration model. The lumped inertias represent rows of blade stages, coupling flanges, shaft
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runs, bearing locations, and so on. The torsional stiffness results from twisting of the shaft
and for a hollow circular shaft is kj = GjJAj Lj where Gj, JAj, and Lj are the jth shaft sec-

tion’s shear modulus, polar moment of inertia π D4
o−D

4
I 32 , and length, respectively.

Objective: Compare the Guyan reduction, modal condensation, and exact solution
approaches for predicting the transient, torsional response due to a sudden disturbance
torque in the generator.

Assumptions: Linear model, and the only damping in the model is discrete (concentrated)
damping at the bearings, that is, there is no orthogonal damping (5.4.93).

Parameter Values: The rotational inertias, torsional spring constants, and bearing torsional
damping (drag) constants are listed in Table E8.2.1(a). Each station in this table consists of a
lumped rotational inertia, rotational stiffness, and damping constant. This is illustrated in
Figure E8.2.1(c).

Figure E8.2.1(b) Simulation model for torsional vibration of machinery train

Figure E8.2.1(a) Turbine-generator set and typical machinery train layout. © Utilities & Energy Services |
Texas A&M University
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Table E8.2.1(a) Shaft and bearing model parameters

Machine Global station no. l Local station no. Jl (kg m
2) kl (N/m × 108) bl (N m s)

HPT 1 1 50 2.5 150
2 2 75 3.5 0
3 3 80 3.5 0
4 4 200 3.5 0
5 5 300 3.5 0
6 6 75 2.5 0
7 7 50 2.5 150
8 8 50 2.5 0
9 9 75 3.0 0

IP1T 10 1 50 2.5 0
11 2 50 2.5 0
12 3 50 2.5 200
13 4 100 4.5 0
14 5 105 5.0 0
15 6 300 5.0 0
16 7 400 5.0 0
17 8 105 5.0 0
18 9 100 4.5 0
19 10 50 2.5 200
20 11 50 2.5 0
21 12 75 3.0 0

IP2T 22 1 50 2.5 0
23 2 50 2.5 0
24 3 50 2.5 200
25 4 100 4.5 0
26 5 105 5.0 0
27 6 300 5.0 0
28 7 400 5.0 0
29 8 105 5.0 0
30 9 100 4.5 0
31 10 50 2.5 200
32 11 50 2.5 0
33 12 75 3.0 0

LPT 34 1 50 2.5 0
35 2 50 2.5 0
36 3 50 2.5 250
37 4 100 5.0 0
38 5 125 6.0 0
39 6 125 6.0 0
40 7 500 6.0 0
41 8 600 6.0 0
42 9 700 6.0 0
43 10 125 5.0 0
44 11 75 4.0 0
45 13 50 2.5 250

(continued overleaf )
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The transient load torque disturbance applied to generator stations 51 and 52 is given by

Γdist =

0, t < 0

0 5 × 106 sin ωLt + 0 25 × 106 sin 2ωLt , 0 ≤ t ≤ 0 2

0, t > 0 2 second

1

where

ωL = line frequency = 2π∗60 rad s 2

Solution: The system matrices may be derived utilizing the finite element approach as dis-
cussed in Section 4.7 or by direct application of Lagrange’s equation. The potential energy
(4.5.88) and the ∂U ∂θ term in Lagrange’s equation (4.5.106b) are

U=
1
2

N−1

l= 1

kl θl+ 1−θl
2,

∂U

∂θ
=K θ =

k1 −k1 0 0 0
k1 + k2 −k2 0 0

k2 + k3 0 0

symmetric kN−1 + kN−2 −kN−1
kN−1

θ1
θ2
θ3

θN−1
θN

3

Table E8.2.1(a) (continued)

Machine Global station no. l Local station no. Jl (kg m
2) kl (N/m × 108) bl (N m s)

46 13 50 2.5 0
47 14 75 3.0 0

GEN 48 1 50 2.5 0
49 2 50 2.5 150
50 3 75 3.0 0
51 4 250 3.0 0
52 5 250 3.0 0
53 6 75 3.0 0
54 7 50 2.5 150
55 8 50 2.5 0
56 9 75 3.0 0

EXC 57 1 25 1.5 0
58 2 25 1.5 75
59 3 100 2.5 0
60 4 100 2.5 0
61 5 25 2.5 0
62 6 25 0 75

Figure E8.2.1(c) Typical station in machinery train model
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The kinetic energy (4.2.14) and the d dt ∂T ∂θ term in Lagrange’s equation
(4.6.52) are

T =
1
2

N

l= 1

Jlθ
2
l ,

d

dt

∂T

∂θ
=M θ =

J1 0 0 0 0

J2 0 0 0

J3 0 0

symmetric JN−1 0

JN

θ1

θ2

θ3

θN−1

θN

4

The Rayleigh dissipation function (4.5.104) and the ∂ℑd ∂θ term in Lagrange’s
equation (4.6.52) are

ℑd =
1
2

N

l= 1

blθ
2
l ,

∂ℑd

∂θ
=C θ =

b1 0 0 0 0

b2 0 0 0

b3 0 0

symmetric bN−1 0

bN

θ1

θ2

θ3

θN−1

θN

5

where bl is zero except at the bearing stations as shown in Table E8.2.1(a). The disturbance
torques occur only at stations 51 and 52 and are defined by Equation (2). The generalized
torque (4.5.43) and the Q term in Lagrange’s equations (4.5.48) and (4.5.106b) are

QΓl =Γdistk
∂ω51k

∂θl
+Γdistk

∂ω52k

∂θl
, Q=

Q1

Q2

Q51

Q52

QN

=

0

0

Γdist t

Γdist t

0

6

The system Lagrange equation (4.5.106b) is

d

dt

∂T

∂θ
+
∂ℑd

∂θ
+
∂U

∂θ
=Q N × 1 7

or by substituting (3)–(6) into (7)

M θ +C θ +K θ =Q t 8

which has the first-order form

θ =ω, ω=M−1 Q t −Cω−K θ 9
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The matrices and vector are rearranged according to the order shown in (8.2.1) and
(8.2.3) with

q=

q
r

nr × 1

q
c

nc × 1

10

The rearrangement operation was checked by confirming that the original and rear-
ranged system’s undamped natural frequencies were identical.

Results: The twenty lowest natural frequencies of the system including all dofs as retained
are shown in Table E8.2.1(b). The undamped system’s mass-orthonormalized (5.4.39) rigid
body mode and five lowest flexible modes are shown in Figure E8.2.1(d).

The full, 62dof system’s transient responses at stations 5, 16, 28, 42, 52, and60are shown
in Figure E8.2.1(e). These are the stations with the largest inertias in the HPT, IP1T, IP2T,
LPT, GEN, and EXC machines, respectively. The numerical integration is performed using
MATLAB’sODE45 integrator, and themaximum angular vibration amplitude over all of the
stations in the model is 8.4 . The torsional excitation (1) is applied on the generator and takes
time to affect themotionof the high-pressure (HP) turbine inFigureE8.2.1(a). This timedelay
is (0.025 seconds) indicated by the top plot in Figure E8.2.1(e)-(i). The high-frequency
oscillation at stations 52 and 60 in Figure E8.2.1(e) is due to ringing of the lightly damped,-
fifth flexible body mode (66.46 Hz) in Table E8.2.1(b). This is evident in the expanded
plot of the angular displacement at station 60, as shown in Figure E8.2.1(e)-(ii). The

Table E8.2.1(b) Twenty lowest natural frequencies (Hz) of the full model

0 14.29 28.40 35.94 47.87 66.46 104.4 115.2 128.9 137.4
151.9 168.3 171.3 189.7 206.3 221.1 235.0 252.0 267.5 278.2

0 10 20 30 40 50 60 70
–0.03

–0.02

–0.01

0

0.01

0.02
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0.04

0.05

m
od

e 
(d

im
)

Station No.

<-Mode 1 
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<-Mode 3 

<-Mode 4 
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<-Mode 6 

Figure E8.2.1(d) Rigid body mode (#1) and 5 lowest flexible mode shapes (#2, #3, #4, #5, #6) of the 62 dof
system without Guyan reduction
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high-frequency oscillation is almost absent from the responses at stations 5, 16, 28, and 42 in
Figure E8.2.1(e)-(i) since their components in the sixthmode are relatively small, as shown in
Figure E8.2.1(d).

The following three cases illustrate the effect of varying the number of retained dofs on
accuracy and efficiency in the Guyan reduction method:

(I) Select the retained dofs as all major inertias, all dampings, and all external torques,
that is, stations (1 4 5 7 12 15 16 19 24 27 28 31 36 40 41 42 45 49 51 52 54 58
59 60 62). Therefore, nr = 25, nc = 37, and N = nr + nc = 62.

(II) Select the retained dofs with some major inertias, all dampings, and all external tor-
ques, that is, (1 5 7 12 16 19 24 28 31 36 42 45 49 51 52 54 58 60 62). Therefore,
nr = 19, nc = 43, and N = nr + nc = 62.

(III) Select the retained dofs with some major inertias and all external torques (5 16 28
42 51 52 60), that is, dofs with damping are not retained and nr = 7, nc = 55,
and N = nr + nc = 62.

The Guyan transformationmatrix TG in (8.2.14) and the Guyan condensed mass M ,

damping C , stiffness K , and force f terms in (8.2.24) and (8.2.25) are formed in

a MATLAB code. The Guyan basis vectors are columns of TG and are shown for case in
Figure E8.2.1(f). By comparison, it is noted that the basis vectors of the original system
are ei, that is,

θ =
N

i= 1

θiei 11

where

ei = 0 0 1 0 T

ith term
12
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Figure E8.2.1(e) Angular deflections in degrees at (i) stations 5, 16, 28, 42, 52, and 60 and (ii) zoom of station
60, for the full system model without Guyan reduction
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which are single vertical lines when plotted against dof number.
The condensed equations of motion in (8.2.23) are numerically integrated with

MATLAB’s ODE45 integrator. The angular deflections are shown for Guyan cases I, II,
and III in Figures E8.2.1(g) and E8.2.1(h). The stations (5, 16, 28, 42, 52, 60) with displayed
responses are the same as those for the “full system” response in Figure E8.2.1(e). The
agreement between the Guyan reduced and full model deflections is excellent, especially
as nr increases from 7 to 25.

Table E8.2.1(c) compares the seven lowest undamped natural frequencies and damping
ratios for the full system and the three Guyan reduced systems. The damping ratios are deter-
mined from the damped system eigenvalues utilizing (5.4.112) to obtain
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Figure E8.2.1(f) nr = 25 Guyan basis vectors for each retained degree of freedom in case I (nr = 25) versus
station number
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Figure E8.2.1(g) Angular deflections of degrees 5, 16, 28, 42, 52, and 60 for Guyan case (i) Model I (nr = 25)
and (ii) Model II (nr = 19)
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ξ = −100∗ Real λ
λ

13

The agreement is very good for the lowest six modes and improves as nr increases.
The seventh mode only has good agreement for nr = 25.
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Figure E8.2.1(h) Angular deflections of degrees 5, 16, 28, 42, 52, and 60 for Guyan case Model
III (nr = 7)

Table E8.2.1(c) Seven lowest undamped natural frequencies (Hz) and damping ratios (%)

Quantity
Entire 62 dof system

Guyan reduced system

Frequencies nr = 7 nr = 19 nr = 25

f1 0a 0 0 0
f2 14.29 14.36 14.32 14.30
f3 28.41 28.91 28.57 28.46
f4 35.94 36.99 36.46 36.02
f5 47.87 49.42 48.62 48.06
f6 66.46 68.29 67.26 66.67
f7 104.37 205.75 116.37 112.02
Damping
ξ1 100.0a 100.0 100.0 100.0
ξ2 0.161 0.159 0.162 0.161
ξ3 0.087 0.082 0.089 0.088
ξ4 0.052 0.047 0.053 0.052
ξ5 0.033 0.028 0.035 0.034
ξ6 0.040 0.034 0.040 0.040
ξ7 0.042 0.009 0.063 0.051

a Rigid body rotation mode.
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Table E8.2.1(d) compares wall clock times and peak responses for the full and Guyan
reduced system simulations. The Guyan approach produces significant time savings and
high accuracy.

8.3 SUBSTRUCTURES: SUPERELEMENTS

Figure 8.3.1 is an illustration that shows some major components of the space shuttle main
engine (SSME).

Each component will be typically modeled with finite elements including 1000s,
10,000s, or more dofs. A nonreduced model of the entire coupled system may be so large
as to exceed practical computation limits. This problem is typically remedied by restricting
the predicted response to a subspace spanned by a combination of modal and Guyan type
basis vectors (Section 2.6). One approach is to apply Guyan reduction to each isolated com-
ponent prior to assembling the model for the entire system. The retained dofs will include
those with significant mass and damping, or with external forces, and all dofs that lie on any
attachment interface(s) with the other components. For example, these interfaces are indi-
cated by dashed lines in Figure 8.3.1. Let the model of the jth component have mass, damp-
ing, and stiffness matrices and external force vector represented by Mj,C j,K j, and f j,

respectively, and the Guyan transformation matrix given by (8.2.14)

T j
G =

I jnr

− k j
cc

−1
k j
cr

Nj × nrj 8 3 1

Table E8.2.1(d) Wall clock computation time and maximum angular deflection

Item Entire 62 dof system

Guyan reduced system

nr = 7 nr = 19 nr = 25

Wall clock rime (seconds) 312.7 56.5 126.7 167.1
Maximum response angle (degrees) 8.41 7.92 8.77 8.55

Figure 8.3.1 Some major components of the SSME. HGM, hot gas manifold; HP, hydrogen pump;
MCC, main combustion chamber; Nozzle, exhaust nozzle; OP, oxygen pump. © NASA
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Then the “substructure” or “superelement” matrices for components j are by (8.2.24)
and (8.2.25):

M
j
= T j

G
T
MjT j

G, C
j
= T j

G
T
C jT j

G, K
j
= T j

G
T
K jT j

G, f
j
= T j

G
T
f j 8 3 2

These substructure matrices are combined into a total system model using “modal
synthesis.”

8.4 MODAL SYNTHESIS

The dictionary defines synthesis as “the composition or combination of parts or elements so
as to form a whole.” In the field of structural modeling, “component mode synthesis” or
simply “modal synthesis” describes the process of forming a system model from mode
shapes or Guyan basis vectors of the isolated components. The motivation for utilizing
modal synthesis is typically to reduce the number of dofs or to obtain a total system sim-
ulation model with component models that do not disclose design details of the components,
which may be supplied by different, and possibly competing, companies.

The following analysis and example illustrate one of the many modal synthesis
approaches. Consider the structure consisting of two components with a shared junction
(J), or interface, as depicted in Figure 8.4.1.

The motion of each component is defined by a combination of modal (6.3.11), Guyan
(8.2.21), and physical coordinates. These coordinates are summarized in the following list:

(a) χ1
ψF
: n1ψ × 1 vector of modal coordinates for the undamped system, free vibration modes

of component 1, with interface 1-2 fixed in space

(b) χ2
ψF
: n2ψ × 1 vector of modal coordinates for the undamped system, free vibration modes

of component 2, with interface 1-2 fixed in space

(c) q1
J
: nJ × 1 vector of Guyan retained dofs that are in component 1 and on interface

(junction) 1-2

(d) q2
J
: nJ × 1 vector of Guyan retained dofs that are in component 2 and on interface

(junction) 1-2

(e) q1
I
: n1I × 1 vector of interior dofs that are in component 1

(f) q2
I
: n2I × 1 vector of interior dofs that are in component 2

The total number of dofs in components 1 and 2 are

N1 = n1I + nJ , N2 = n2I + nJ 8 4 1

Figure 8.4.1 Two-component model of a structure showing junction (interface) forces and deflections
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The forces in the model are categorized in a similar manner:

(a) f 1
J
: nJ × 1 vector of reaction forces acting on body 1 at interface (junction) 1-2

(b) f 2
J
: nJ × 1 vector of reaction forces acting on body 2 at interface (junction) 1-2

(c) f 1
I
: n1I × 1 vector of external forces acting at interior dofs that are in component 1

(d) f 2
I
: n2I × 1 vector of external forces acting at interior dofs that are in component 2

8.4.1 Uncoupled System Equations

The structure depicted in Figure 8.4.1 can be viewed as consisting of two isolated
(uncoupled) substructures, each being subjected to the shared interface (junction) forces,
external forces acting on the individual substructures, and boundary conditions acting on
the individual substructures. The corresponding system equilibrium equation has stiffness,
mass, and damping matrices that are uncoupled between the component 1 and component 2
coordinates. The uncoupling is clearly shown by the following partitioned forms:

Mq +Cq+Kq = f t 8 4 2

or

M1 0

0 M2

q1

q2
+

C1 0

0 C2

q1

q2
+

K1 0

0 K2

q1

q2
=

f 1

f 2
8 4 3

where

q1 =
q1
I

q1
J

, q2 =
q2
I

q2
J

, f 1 =
f 1
I

f 1
J

, f 2 =
f 2
I

f 2
J

8 4 4

M1 =
M1

I, I M1
I,J

M1
J, I M1

J,J
, M2 =

M2
I,I M2

I,J

M2
J,I M2

J,J
8 4 5

C1 =
C1
I,I C1

I,J

C1
J, I C1

J,J
, C2 =

C2
I, I C2

I,J

C2
J, I C2

J,J
8 4 6

K1 =
K1
I,I K1

I,J

K1
J, I K1

J,J
, K2 =

K2
I, I K2

I,J

K2
J, I K2

J,J
8 4 7

The dimensions of these matrices are

nlI × n
l
I nlI × nJ

nJ × nlI nJ × nJ
8 4 8

where l= 1 (component 1) and l= 2 (component 2). The junction is considered to be free
(unconstrained) for forming the component matrices Ml,Cl,Kl, and f l. The (1,1) diagonal

blocks Ml
I, I , K

l
I, I , and Cl

I, I are property matrices corresponding to all junction dofs being
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fixed. This method of modal synthesis requires that the mass, stiffness, and damping matri-
ces for each component be available. The companies that manufacture the separate compo-
nents may be more agreeable to contribute this information rather than detailed solid models
and design details.

8.4.2 Coupled System Equations: Displacement Compatibility at Junction

The equations in (8.4.3) will become coupled by applying displacement compatibility and
force equilibrium at the junction (J). The compatibility condition expresses the equality of
displacements of the components at the junction when expressed in a common coordinate
system. This condition is expressed mathematically by

q2
J

nJ × 1

= TJ12
nJ × nJ

q1
J

nJ × 1

8 4 9

The TJ12 matrix is block diagonal structure with each block being a two- or three-
dimensional coordinate transformation matrix (2.7.1). This transforms the displacements
at the junction nodes from the coordinate convention employed in component 1 to the coor-
dinate convention employed in component 2. For example, the oxygen pump (OP) and hot
gas manifold (HGM) dynamic models in Figure 8.3.1 may be developed by separate orga-
nizations using different displacement coordinate conventions so that compatibility of dis-
placements at the junction requires the form in (8.4.9). Since TJ12 is a block diagonal matrix
with each block being an orthogonal matrix, it follows the

T−1
J12 = T

T
J12 8 4 10

8.4.3 Coupled System Equations: Subspace Condensation

Motions within the components are restricted to user specified subspaces (Section 2.6) in
order to reduce the number of dofs in each component model. The corresponding basis vec-
tors (Section 2.6) consist of free vibration mode shapes and Guyan vectors. The mode
shapes are computed with all junction (J) dofs fixed, since the junction motions are
accounted for using the actual physical coordinates at the junction. Note the similarity of
this with the fixed boundary node modes in the modal effective mass calculation
(6.3.94). The interior dofs in component 1 are assumed to move with contributions from
the undamped, junction fixed modes

q1
a
=

q1
I

q1
J a

=

Ψ1
I

n1I × n
1
ψ

0
n1J × n

1
ψ

χ1
ψF

n1ψ × 1

=Ψ1χ
1
ψF

8 4 11

where Ψ1 is the modal matrix for component 1 with the junction fixed. The interior dofs
in component 1 are assumed to also move with contributions from the Guyan constraint
vectors TGJ in (8.2.14) with retained dofs on the interface (junction). Use of (8.2.12)–
(8.2.14) shows
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q1
b
=

q1
I

q1
J b

=

− K1
I, I

−1
K1
I,J

n1I × nJ

I
nJ × nJ

q1
J

nJ × 1

= T1GIq
1
J

8 4 12

Therefore, the total deflections in component 1 are approximated by

q1 = q1
a
+ q1

b
=

q1
I

n1I × 1

q1
J

n1J × 1

=

Ψ1
I

n1I × n
1
ψ

G1
J

n1I × n
1
J

0
nJ × n1ψ

I
nJ × nJ

χ1
ψ F

n1ψ × 1

q1
J

n1J × 1

8 4 13

where

G1
J = − K1

I, I
−1
K1
I,J n1I × nJ 8 4 14

Similar definitions follow for component 2 so the uncoupled system displacements in
(8.4.2) and (8.4.3) are approximated by

q=

q1
I

q1
J

q2
I

q2
J

=

Ψ1
I G1

J 0 0

0 IJ 0 0

0 0 Ψ2
I G2

J

0 0 0 IJ

χ1
ψ F

q1
J

χ2
ψ F

q2
J

8 4 15

Insert the compatibility relation (8.4.9) into (8.4.15) to remove the redundancy of
including the same junction dofs for both components 1 and 2 in the vector on the RHS
of (8.4.15). This step yields

q=

q1
I

q1
J

q2
I

q2
J

=

Ψ1
I G1

J 0

0 IJ 0

0 G2
JTJ12 Ψ2

I

0 TJ12 0

χ1
ψ F

q1
J

χ2
ψ F

8 4 16

or

q
Ntot × 1

= T
Ntot ×N

χ
N × 1

8 4 17

where

Ntot = n
1
I + nJ + n

2
I + nJ , N = n1ψ + nJ + n

2
ψ 8 4 18

The relationship defined in (8.4.17) expresses the underlying assumption that
the motions of all physical coordinates of the coupled system will occur in a
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N-dimensional subspace of Ntot space and that the subspace is spanned by the following
basis vectors:

• Column 1 Partition of Equation (8.4.16)
These are the modes of the orthogonally damped, nongyroscopic, noncirculatory model
of component 1 with component 2 and the interface (junction) fixed in space.

• Column 2 Partition of Equation (8.4.16)
These are the Guyan constraint vectors (8.2.18) for all interface (junction) dofs acting as
“retained” dofs.

• Column 3 Partition of Equation (8.4.16)
These are the modes of the orthogonally damped, nongyroscopic, noncirculatory model
of component 2 with component 1 and the interface (junction) fixed in space.

These andother typesof basis vectors used formodal synthesis are described inWanget al.
(1983) and Craig (1981). The subspace condensation transformation in (8.4.17) is substituted
into the uncoupled model EOM of (8.4.2). The result is then premultiplied by TT to obtain

Mχ +Cχ +Kχ = f N × 1 8 4 19

where

M = TTMT, C = TTC T, K = TTK T, f = TTf 8 4 20

and from (8.4.3)

M =
M1 0

0 M2
, C=

C1 0

0 C2
, K =

K1 0

0 K2
, f=

f 1

f 2
8 4 21

and Ml,Cl,Kl, and f l are defined in (8.4.5)–(8.4.7) for l= 1,2. Since all terms in

T,M,C, andK are known, it follows that M,C,K are also known. From (8.4.3) and
(8.4.4), the force vector f in (8.4.20) contains the unknown junction forces, that is,

f=
f 1

f 2
=

f 1
I

f 1
J

f 2
I

f 2
J

8 4 22

The junction forces on the two components must obey Newton’s third law of equal and
opposite reactions when expressed in a common coordinate system, similar to displacement
compatibility in (8.4.9). Therefore,

f 2
J

nJ × 1

= − TJ12
nJ × nJ

f 1
J

nJ × 1

8 4 23

and by using (8.4.10)

f 1
J
= −TTJ12 f

2
J

8 4 24
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From (8.4.16), (8.4.20), and (8.4.22), the coupled system’s force vector becomes

f =TTf=

Ψ1
I

T
0 0 0

G1
J

T
IJ TTJ12 G2

J
T

TTJ12

0 0 Ψ2
I

T
0

f 1
I

f 1
J

f 2
I

f 2
J

=

Ψ1
I

T
f 1
I

G1
J

T
f 1
I
+ f 1

J
+ TTJ12 G2

J
T
f 2
I
+ TTJ12 f

2
J

Ψ2
I

T
f 2
I

8 4 25

Substitute (8.4.24) into (8.4.25) to obtain

f =

Ψ1
I

T
f 1
I

G1
J

T
f 1
I
+ G2

JTJ12
T
f 2
I

Ψ2
I

T
f 2
I

8 4 26

This step eliminates the unknown junction forces f 1
J
and f 2

J
from the coupled system

equations. Thus, all terms in (8.4.19) are known, so that it may then be solved for the gen-
eralized coordinates χ t . The physical coordinate responses may then be obtained via the

transformation equation (8.4.17).

EXAMPLE 8.4.1 Modal Synthesis Solution of Machinery Shaft Train Vibration

Statement: This example illustrates the usage of modal synthesis to predict torsional vibra-
tions of the turbine-generator machinery train subjected to a transient torque excitation as
presented in Example 8.2.1. As a hypothetical scenario, assume that the four turbines are
built by one vendor and modeled as train 1. The generator and exciter are built by a second
vendor and modeled as train 2. Modal synthesis is utilized to couple the models and predict
the transient response of the combined machinery shaft train.

Objective: Compare modal synthesis predicted responses to those presented in
Example 8.2.1.

Assumptions and Parameter Values: Same as Example 8.2.1.

Solution: With reference to Figures E8.2.1(a) and E8.2.1(b) and also Table E8.2.1(a), the
four-turbine model includes all global stations from 1 to 47, and the generator/
exciter includes all global stations from 47 to 62. Therefore, 47 is the sole junction (J)
dof and

nJ = 1, n1I = 46, n2I = 15, N1 = 47, N2 = 16 1

Ntot = 2nJ + n
1
I + n

2
I = 63 2

in Equations (8.4.1), (8.4.8), and (8.4.18). The train 1 and train 2 mass matrices (8.4.5) are
given, similar to Equation (4) of Example 8.2.1, as
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M1 =
M1

I, I M1
I,J

M1
J, I M1

J,J
=

J1 0 0 0 0

J2 0 0 0

J3 0 0

symmetric

J46 0

0 0 0 0 J47

3

M2 =
M2

I, I M2
I,J

M2
J, I M2

J,J
=

J48 0 0 0 0

J49 0 0 0

J50 0 0

symmetric

J62 0

0 0 0 0 J47

4

The train 1 and train 2 stiffness matrices (8.4.7) are given, similar to Equation (3) of
Example 8.2.1, as

K1 =
K1
I,I K1

I,J

K1
J, I K1

J,J
=

k1 −k1 0 0 0

k1 + k2 −k2 0 0

k2 + k3 0 0

symmetric

k45 + k46 −k46

0 0 0 −k46 k46

5

K2 =
K2
I, I K2

I,J

K2
J, I K2

J,J
=

k47 + k48 −k48 0 0 −k47

k48 + k49 −k49 0 0

k49 + k50 0 0

symmetric

k61 0

−k47 0 0 0 k47

6

The train 1 and train 2 damping matrices (8.4.6) are given, similar to Equation (5) of
Example 8.2.1, as

C1 =
C1
I, I C1

I,J

C1
J,I C1

J,J
=

b1 0 0 0 0

b2 0 0 0

b3 0 0

symmetric

b46 0

0 0 0 0 b47

7
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C2 =
C2
I, I C2

I,J

C2
J, I C2

J,J
=

b48 0 0 0 0

b49 0 0 0

b50 0 0

symmetric

b62 0

0 0 0 0 b47

8

The train 1 and train 2 force vectors (8.4.4) are given, similar to Equation (5) of
Example 8.2.1, as

f 1 =
f 2
I

f 2
J

=

0

0

0

f1
J

position 1

position 46

, f 2 =
f 2
I

f 2
J

=

0

0

0

Γdist t

Γdist t

0

f 2
J

position 1

position 4

position 5

position 15

9

where Γdist (t) is defined by Equation (1) in Example 8.2.1. By Equations (8.4.5) and (8.4.7),
the fixed junction component modes are obtained from

ω2
I1jM

1

I,Iψ I1j
=K1

I,Iψ
I1j

n1I × 1

ω2
I2jM

2

I,Iψ I2j
=K2

I,Iψ I2j
n2I × 1

10

The corresponding modal matrices are defined as

ΨI1
n1I × n

1
ψ

= ψ
I11

ψ
I12

ψ
I1n1ψ

ΨI2
n2I × n

2
ψ

= ψ
I21

ψ
I22

ψ
I2n2ψ

11

From (8.4.14),

G1
J = − K1

I, I
−1
K1
I,J n1I × nJ

G2
J = − K2

I, I
−1
K2
I,J n2I × nJ

12

The coordinate axes of each substructure in this example are parallel, so the coordinate
transformation matrix in (8.4.10) is
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TJ12 = I
nJ × nJ

= 1 13

Equations (10)–(13) yield the partitions in the system transformation matrix T
in (8.4.16):

T
ntot ×N

=

Ψ1
I G1

J 0

0 IJ 0

0 G2
JTJ12 Ψ2

I

0 TJ12 0

=

Ψ1
I G1

J 0

0 1 0

0 G2
J Ψ2

I

0 1 0

14

where

N = nJ + n
1
ψ + n

2
ψ = 1 + n

1
ψ + n

2
ψ 15

The coupled system’s mass, damping, and stiffness matrices are (8.4.20)

M = TTMT, C = TTC T, K = TTK T N ×N 16

where from (8.4.21)

M =
M1 0

0 M2
, C=

C1 0

0 C2
, K=

K1 0

0 K2
17

and from (8.4.26) the f vector becomes

f =

Ψ1
I

T
f 1
I

G1
J

T
f 1
I
+ G2

JTJ12
T
f 2
I

Ψ2
I

T
f 2
I

=

0

G2
J

T
f 2
I

Ψ2
I

T
f 2
I

18

Equations (8.4.17) and (8.4.19) are then utilized to obtain the following coupled system
response characteristics:

Undamped natural frequencies −ω2
l M +K β

l
= 0

ψ
l
= lth undamped systemmode vector =

ψ1
Il

ψ1
Jl

ψ2
Il

ψ2
Jl

= T
Ntot ×N

β
l

N × 1

Ntot × 1 19

Damped system modes:

λ2l Mγ
l
+ λlCγl +Kγl = 0 N × 1 20

The physical coordinate mode vectors Λl are obtained from the generalized coordinate
mode vectors γ

l
via (8.4.17) as
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Λl =

Λ1
Il

Λ1
Jl

Λ2
Il

Λ2
Jl

= T
Ntot ×N

γ
l

N × 1

Ntot × 1 21

Transient response:

M χ +C χ +K χ = f N × 1 22

or written in first-order form as

χ =Vχ and Vχ =M
−1

f −C Vχ −K χ N × 1 23

The physical coordinate displacements q are obtained from the generalized coordinate

displacements χ via (8.4.17) as

q t = =

q1
I

q1
J

q2
I

q2
J

= T
Ntot ×N

χ
N × 1

Ntot × 1 24

Figure E8.4.1(a) shows the lowest five, fixed junction θ47 = 0 , free vibration mode
shapes of components 1 and 2. The corresponding natural frequencies are listed in
Table E8.4.1(a).

The number of free vibration modes utilized in the synthesis example is n1ψ and n2ψ for
substructures 1 and 2, respectively. The number of Guyan modes utilized for the synthesis is
nJ = 1 for each substructure. The Guyan basis vectors are shown in Figure E8.4.1(b). This
shows that imposing a unit rotation on the junction node 47 causes all of the other nodes to
also move through a unit rotation. Equations (19) and (20) are utilized with n1ψ = n

2
ψ = 6 and

0 10 20 30 40 50
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Figure E8.4.1(a) Five lowest fixed junction mode shapes for (i) substructure 1 and (ii) substructure 2
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nJ = 1 to determine the undamped system modes of the coupled system as shown in
Figure E8.4.1(c)-(i). These agree well with the exact modes in Figure E8.2.1(d).

Figure E8.4.1(c)-(ii) shows the coupled system’s transient response predictions
obtained by solving (23) and (24) with MATLAB ODE45 (ref. Example 2.3.1) for

n1ψ ,n
2
ψ equal (6,6). Table E8.4.1(b) shows good agreement between the exact
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Figure E8.4.1(c) The n1ψ = n
2
ψ = 6 and nJ = 1 model results for (i) coupled, undamped system modes and

(ii) angular deflections in degrees at stations 5, 16, 28, 42, 52, and 60

Table E8.4.1(a) Component mode natural frequencies for substructures 1 and 2

No.
Substructure 1 natural
frequency (Hz)

Substructure 2 natural
frequency (Hz)

1 9.44 32.6
2 25.60 73.5
3 37.0 155.3
4 48.3 226.0
5 106.4 288.2
6 116.5 316.9
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Figure E8.4.1(b) Guyan basis vectors for components 1 and 2
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(Table E8.2.1(c)) and modal synthesis predicted coupled system’s natural frequencies and
damping ratios. These quantities are calculated according to (5.4.112) as

ωi = λi , ξi =
−Re λi

λi
25

8.5 EIGENVALUE/NATURAL FREQUENCY CHANGES FOR
PERTURBED SYSTEMS

The placement of natural frequencies to avoid resonance is a common objective for vibration
engineers. This may occur at the initial design stage or in the “field” to troubleshoot and
correct an existing resonance problem by shifting a natural frequency sufficiently away from
all excitation frequencies. This may require extensive parameter searches with large-order
simulation models utilizing much computer simulation time. There often is a need to quickly
approximate predicted natural frequencies, mode shapes, and damping ratios. This is espe-
cially true when conducting a statistical-based study that requires varying multiple para-
meters within a given probability distribution (Barrett et al., 1996). The perturbation
approach presented here provides a quick means for obtaining estimates of modal variables
as system parameters vary. The formulas utilize results from a baseline (original) model as
part of the approximate solution. This model’s results are obtained by a single, exact solution
step. The approximate approach provides modal variable estimates given model parameter
changes or may be used in the inverse sense to provide required model changes given
desired modal variables, such as natural frequencies.

8.5.1 Undamped, Nongyroscopic, Noncirculatory M and K Type Systems

Assume that the M and K matrices undergo changes

M M +ΔM, K K+ΔK 8 5 1

Table E8.4.1(b) Seven lowest undamped natural frequencies (Hz) and damping ratios (%) of the
coupled system

Item
Complete 62
dof system

Modal synthesis model

n1ψ = 3, n
2
ψ = 3 n1ψ = 5, n

2
ψ = 3 n1ψ = 6, n

2
ψ = 6

f1 0 0 0 0
f2 14.29 14.22 14.22 14.22
f3 28.41 28.38 28.38 28.38
f4 35.94 35.93 35.93 35.93
f5 47.87 — 47.86 47.86
f6 66.46 65.27 65.86 65.83
f7 104.37 116.41 103.88 103.61
ξ1 100.0 100.0 100.0 100.0
ξ2 0.161 0.16 0.16 0.16
ξ3 0.087 0.087 0.087 0.087
ξ4 0.052 0.052 0.052 0.052
ξ5 0.033 — 0.033 0.033
ξ6 0.040 0.041 0.039 0.040
ξ7 0.042 0.024 0.041 0.041

620 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



that cause the following natural frequency and mode shape changes

ωl ωl +Δωl, ψ
l

ψ
l
+Δψ

l
8 5 2

as a result of changes in the dynamic equilibrium equation

Original system −ωlM +K ψ
l
= 0 8 5 3

Modified system − ω2
l +Δ ω2

l M+ΔM + K+ΔK ψ
l
+Δψ

l
= 0 8 5 4

Multiplying and canceling second-order terms for small ΔM andΔK yields

−ω2
l M +K ψ

l
−ω2

lΔMψ
l
−Δ ω2

l Mψ
l
−ω2

l MΔψ
l
+KΔψ

l
+ΔKψ

l
≈0 8 5 5

Insert (8.5.3) and regroup terms

ΔK−ω2
l ΔM ψ

l
+ K−ω2

l M Δψ
l
−Δ ω2

l Mψ
l
≈0 8 5 6

Transpose (8.5.6) using symmetry of M,K,ΔM, and ΔK to obtain

Δ ω2
l ψT

l
M≈ΔψT

l
K−ω2

l M +ψT
l
ΔK−ω2

lΔM 8 5 7

Postmultiply this equation by ψ
l
and use (8.5.3) to obtain

Δ ω2
l ≈

ψT
l
ΔK−ω2

lΔM ψ
l

ml
8 5 8

where

ml =ψ
T
l
Mψ

l
8 5 9

Note that

Δ ω2
l ≈

∂ω2
l

∂ωl
Δωl = 2ωlΔωl 8 5 10

thus

Natural Frequency Perturbation Formula I

Δωl≈
1

2mlωl
ψT

l
ΔK−ω2

l ΔM ψ
l
l = 1,2,…,N 8 5 11

In order to determine Δψ
l
, let

Δψ
l
=

N

k = 1

clkψ k
8 5 12
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Substitute (8.5.12) into (8.5.7) and postmultiply the result by ψ
j

N

k=1

clkψ
T

k
K−ω2

l M ψ
j
≈Δ ω2

l ψT
l
Mψ

j
−ψT

l
ΔK−ω2

lΔM ψ
j

8 5 13

For j l, use orthogonality (5.4.41) and (5.4.45)

ψT
k
Mψ

j
= δkjmj, ψT

k
Kψ

j
= δkjmjω

2
j 8 5 14

to obtain

clj =
ψT
l
ΔK−ω2

l ΔM ψ
j

mj ω2
l −ω

2
j

8 5 15

For j= l, the coefficient of cll in (8.5.13) is zero by (8.5.3) so cll is arbitrary and it may be
set to zero. Substitution of (8.5.15) into (8.5.12) yields

Mode Shape Perturbation Formula I

Δψ
l
≈

N

k=1
k l

ψT
l
ΔK−ω2

l ΔM ψ
k

mk ω2
l −ω

2
k

ψ
k

8 5 16

EXAMPLE 8.5.1 Approximate Natural Frequencies and Mode Shape Changes
Due to Stiffness and Mass Change

Statement: Existing machinery and structures often experience resonance problems after
initial installation due to unmodeled effects such as attached piping, foundation flexibility,
and so on. Quite often, the remedy is to shift a natural frequency by attaching stiffness (brac-
ing) elements to ground or to add or subtract mass. The amount of stiffness or mass required
to produce a desired shift in a natural frequency may be estimated with the above perturba-
tion formulas.

Objective: Derive formulas for the approximate change in natural frequencies and mode
shapes that result from adding mass or “stiffness to ground” to an existing machine or
structure.

Assumptions: The mass and stiffness are small relative to their counterparts in the existing
structure. The added mass is attached at the j1, j2, and j3 dofs. The added stiffness is attached
to dof i.

Solution: The effect of attaching mass (mA) is to add mA to the (j1, j1), (j2, j2), and (j3, j3)
locations in the M matrix, so the increment in mass matrix is null except for three
positions
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ΔM =

0 0

mA

mA

mA

0 0

column j1 j2 j3

row j1

row j2

row j3

1

Similarly, the effect of adding a stiffness (kA) between ground and dof i is to add kA
to the (i, i) location of the K matrix, so the increment in stiffness matrix is null except
for one position

ΔK=

0 0

kA

0 0

row i

column i

2

Therefore,

ψT
l
ΔMψ

l
=mA ψ2

j1l
+ψ2

j2l
+ψ2

j3l
, ψT

l
ΔKψ

l
= kAψ

2
il 3

Insert (3) into (8.5.11) to obtain

Δωl≈
1

2mlωl
kAψ

2
il−ω

2
l mA ψ2

j1l
+ψ2

j2l
+ψ2

j3l
4

For a design application, the desired change in natural frequency is given and the
required kA or mA must be determined. For example, from (4)

Mass modification at dof j for given Δωl:

mA≈
−2ml

ψ2
j1l
+ψ2

j2l
+ψ2

j3l

Δωl

ωl
5

Stiffness modification at dof j for given Δωl:

kA≈
−2mlωlΔωl

ψ2
il

6

The mode shape changes due to kA and mA are obtained from (8.5.16) as

Δψ
l
≈

N

k=1

k l

ψ ilψ ikkA−ω
2
l mA ψ j1lψ j1k +ψ j2lψ j2k +ψ j3lψ j3k

mk ω2
l −ω

2
k

7
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Summary: This example has illustrated how the effect ofΔM and ΔK on theωl and ψ
l
may

be approximated. As expected, an increase in mass lowers the natural frequency so (5) has a
negative sign, and an increase in stiffness raises the natural frequencies so (6) has a plus sign.
Note from (5) and (6) that the amount of added mass and stiffness required to produce a
desired change in the natural frequency is lowered as the mode shape component at the
attachment point increases. The required added mass or stiffness becomes infinite if the
attachment point is a node of the corresponding mode shape. This results since attaching
amass or stiffness at a node point of a mode will not affect the natural frequency of the mode.

8.5.2 Orthogonally Damped Systems

The next approach for estimating changes in the eigenvalues due to system parameter
changes utilizes a two-term Taylor series expansion. Let di be the ith variable parameter
in the model. These parameters are those that may be adjusted either in a design or a field
troubleshooting type application:

ωl =ωl0 +
n

i= 1

∂ωl

∂di 0

Δdi 8 5 17

and

ξl = ξl0 +
n

i= 1

∂ξl
∂di 0

Δdi 8 5 18

where “0” indicates the original system, that is, before modifications. To illustrate this,
consider the orthogonally damped, nongyroscopic, noncirculatory force system (5.4.108)

λ2M + λC+K Λ= 0 N × 1 8 5 19

where by (5.4.44), (5.4.46), (5.4.93), (5.4.100), and (5.4.114)

Λ=ψ = an undamped nongyroscopic noncirculatory mode shape 8 5 20

ψT
j
Mψ

k
= δjkmj, ψT

j
Kψ

k
= δjkmjω

2
j , ψT

j
Cψ

k
= δjk2ξjωjmj 8 5 21

and by (5.4.112)

λj = −ξjωj ± iωj 1−ξ2j 8 5 22

Considering the partial derivative of (8.5.19) with respect to di yields

2λ
∂λ

∂di
M + λ2

∂M

∂di
+
∂λ

∂di
C+ λ

∂C

∂di
+
∂K

∂di
ψ + λ2M + λC +K

∂ψ

∂di
= 0 8 5 23

Transpose this equation for mode l and postmultiply this by ψ
l
to obtain

ψT
l

2λl
∂λl
∂di

M + λ2l
∂M

∂di
+
∂λl
∂di

C+ λl
∂C

∂di
+
∂K

∂di
ψ
l
+
∂ψ

l

∂di
λ2l M + λlC+K ψ

l
= 0 8 5 24
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Utilize (8.5.19) and (8.5.21) to simplify this to

∂λl
∂di

=
∂λRl
∂di

+ i
∂λIl
∂di

= −

ψT
l

λ2l
∂M
∂di

+ λl
∂C
∂di

+
∂K
∂di

ψ
l

ψT
l
2λlM+C ψ

l

=
−1

ml 2λl + 2ξlωl
ψT
l

λ2l
∂M

∂di
+ λl

∂C

∂di
+
∂K

∂di
ψ
l

8 5 25

For an undamped (both before and after modification) system,

ξl = 0, C= 0, λl = iωl 8 5 26

then (8.5.25) implies

∂ωl

∂di
=

1
i

−1
ml2iωl

ψT
l

−ω2
l

∂M

∂di
+
∂K

∂di
ψ
l
=
ψT
l

−ω2
l

∂M

∂di
+
∂K

∂di
ψ
l

2mlωl
8 5 27

For the damped case, the eigenvalues have the form of (8.5.22) so

∂ Real λl
∂di

=
∂

∂di
−ξlωl = −ωl

∂ξl
∂di

−ξl
∂ωl

∂di
=
∂λRl
∂di

8 5 28

and likewise

∂ Imag λl
∂di

=
∂

∂di
ωl 1−ξ2l =

∂ωl

∂di
1−ξ2l −

ωlξl

1−ξ2l

∂ξl
∂di

=
∂λIl
∂di

8 5 29

Equations (8.5.28) and (8.5.29) have the solutions
For ξl 0

∂ξl
∂di

=
− 1−ξ2l

∂λRl
∂di

+ ξl 1−ξ2l
∂λIl
∂di

ωl
,

∂ωl

∂di
=
− ωl

∂ξl
∂di

+
∂λRl
∂di

ξl
8 5 30

For ξl = 0

∂ξl
∂di

=
−1
ωl

∂λRl
∂di

,
∂ωl

∂di
=
∂λIl
∂di

8 5 31

The ∂λRl ∂di and ∂λIl ∂di terms in (8.5.30) and (8.5.31) are obtained from (8.5.25).
The modified system’s undamped natural frequencies and damping factors are

estimated from (8.5.17), (8.5.18), (8.5.30), and (8.5.25) as

ωl≈ωl0 +
n

i= 1

∂ωl

∂di 0

Δdi 8 5 32

ξl≈ξl0 +
n

i= 1

∂ξl
∂di 0

Δdi 8 5 33
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where

∂ωl

∂di
=
− ωl

∂ξl
∂di

+
∂λRl
∂di

ξl
,

∂ξl
∂di

=
− 1−ξ2l

∂λRl
∂di

+ ξl 1−ξ2l
∂λIl
∂di

ωl
8 5 34

and

∂λl
∂di

=
∂λRl
∂di

+ i
∂λIl
∂di

=
−ψT

l
λ2l
∂M
∂di

+ λl
∂C
∂di

+
∂K
∂di

ψ
l

ψT
l
2λlM+C ψ

l

=
−1

ml 2λl + 2ξlωl
ψT
l

λ2l
∂M

∂di
+ λl

∂C

∂di
+
∂K

∂di
ψ
l

8 5 35

These equations simplify for the case of an originally undamped system with modifica-
tions that include damping. For this case,

ξl = 0, λl = iωl 8 5 36

Therefore, (8.5.25) simplifies to

∂λl
∂di

=
∂λlR
∂di

+ i
∂λlI
∂di

=
−1

2iωlml
ψT
l

−ω2
l

∂M

∂di
+ iωl

∂C

∂di
+
∂K

∂di
ψ
l

8 5 37

yielding

∂λlR
∂di

=
−1
2ml

ψT
l

∂C

∂di
ψ
l
,

∂λlI
∂di

=
1

2ωlml
ψT
l

−ω2
l

∂M

∂di
+
∂K

∂di
ψ
l

8 5 38

where from (8.5.31)

∂ξl
∂di

=
−1
ωl

∂λRl
∂di

,
∂ωl

∂di
=
∂λIl
∂di

8 5 39

Substitute (8.5.38) into (8.5.39) to obtain

∂ξl
∂di

=
1

2mlωl
ψT
l

∂C

∂di
ψ
l
,

∂ωl

∂di
=

1
2ωlml

ψT
l

−ω2
l

∂M

∂di
+
∂K

∂di
ψ
l

8 5 40

Equation (8.5.40) may then be substituted into (8.5.32) and (8.5.33).

EXAMPLE 8.5.2 Approximate Natural Frequencies and Damping Ratios of a Truss

Statement: The truss shown in Figure E8.5.2(a) has experienced resonance problems at its
first mode (342 Hz). The excitation (forcing) frequency is fixed (unchangeable) so a deci-
sion is made to attach a stiffening element k or massm to shift the natural frequency or attach
a damper c to decrease the amplification factor (1/(2ξ)). The modifications are to be attached
at node 5.

The properties of all truss elements in the model are

A= 0 01m2, Ey = 2 0 × 1011N m2, ρ = 7000kg m3, L= 1 0m
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Objective: The objectives are to derive formulas for the approximate change in natural fre-
quencies and damping ratios that result from adding mass, damping, or stiffness to the truss
at node 5 and to plot the approximate and exact natural frequencies and damping ratios ver-
sus the modification variable values.

Assumptions: The modification mass and stiffness are small relative to their counterparts in
the existing structure.

Solution: The approach shown in Section 4.8 is employed to obtain the mass and stiffness
matrices for the free (nonfixed) dofs of the 2D truss model. The free dofs are

qf 1 = q7 = horizontal dof at node 4, qf 2 = q8 = vertical dof at node 4

qf 3 = q9 = horizontal dof at node 5, qf 4 = q10 = vertical dof at node 5
1

The equation of motion is (4.8.96)

Mf
Nf ×Nf

q
f

Nf × 1

+ Cf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

2

Similar to the example of Figure 4.8.13, the original system mass and stiffness matrices
are calculated to be

Ko
f = 10

9 ∗

2 8859 −0 3494 −0 0000 −0 0000

−0 3494 3 4227 −0 0000 −2 0000

−0 0000 −0 0000 2 0000 0 0000

−0 0000 −2 0000 0 0000 2 0000

, Mo
f =

155 2 0 23 3 0

0 155 2 0 23 3

23 3 0 70 0 0

0 23 3 0 70 0

3

The first natural frequency occurs at f1 = 342Hz, ω1 = 2149rad s . The original sys-
tem modes are shown in Figure E8.5.2(b). The first mode shape and its modal mass are

Figure E8.5.2(a) Truss with
attached mass, spring, and dashpot
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ψ
f 1
= 0 1285 0 7955 0 0083 1 0000 T, m1 = 207 9369, ω1 = 2149rad s 4

The modified system’s natural frequency is estimated from (8.5.32) and (8.5.33) as

ω1 modified≈ω10 +
∂ω1

∂m 0

m+
∂ω1

∂k 0

k +
∂ω1

∂c 0

c

ξ1 modified≈ξ10 +
∂ξ1
∂m 0

m +
∂ξ1
∂k 0

k +
∂ξ1
∂c 0

c

5

where from (8.5.40)

∂ξl
∂di

=
1

2mlωl
ψT
fl

∂Cf

∂di
ψ
fl
,

∂ωl

∂di
=

1
2ωlml

ψT
fl

−ω2
l

∂Mf

∂di
+
∂Kf

∂di
ψ
fl

6

The mass, damping, and stiffness matrices with the modifications added become

Mf =M
o
f +

0 0 0 0

0 0 0 0

0 0 m 0

0 0 0 m

, Kf =K
o
f +

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 k

, Cf =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 c

7

Therefore,

∂Mf

∂m
=

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

,
∂Mf

∂k
= 0,

∂Mf

∂c
= 0,

∂Kf

∂m
= 0,

∂Kf

∂k
=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

,
∂Kf

∂c
= 0

0 0.5 1 1.5
–3

–2

–1

0
Mode 1, 342.0 Hz

0 0.5 1 1.5
–4

–3

–2

–1

0
Mode 2, 663.3 Hz

0 0.5 1 1.5
–4

–3

–2

–1

0 Mode 3, 905.6 Hz

0 0.5 1 1.5
–4

–3

–2

–1

0
Mode  4,  1208.3 Hz

Figure E8.5.2(b) Modes of the original system
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∂Cf

∂m
= 0,

∂Cf

∂k
= 0,

∂Cf

∂c
=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

8

Substitution of (8) into (6) and then substituting values from (4) yield

∂ωl

∂m
=

1
2ωlml

ψT
fl

−ω2
l

∂Mf

∂m
+
∂Kf

∂m
ψ
fl
=
−ωl

2ml
ψ2
fl3 +ψ

2
fl4

∂ωl

∂k
=

1
2ωlml

ψT
fl

−ω2
l

∂Mf

∂k
+
∂Kf

∂k
ψ

fl
=

ψ2
fl4

2mlωl

∂ωl

∂c
=

1
2ωlml

ψT
fl

−ω2
l

∂Mf

∂c
+
∂Kf

∂c
ψ

fl
= 0 9

∂ξl
∂m

=
ψT
fl

∂Cf

∂m
ψ
fl

2mlωl
= 0,

∂ξl
∂k

= 0,
∂ξl
∂c

=
ψT
fl

∂Cf

∂c
ψ
fl

2mlωl
=

ψ2
fl4

2mlωl
10

For mode 1, Equations (9) and (10) yield

∂ωl

∂m
= −5 17

rad s
kg

,
∂ωl

∂k
= 1 12 × 10−6 rad s

N m
,

∂ωl

∂c
= 0,

∂ξl
∂m

= 0,
∂ξl
∂k

= 0,
∂ξl
∂c

= 1 12 × 10−6 rad s
Ns m

11

Substitute (11) into (5) to obtain

ω1 modified≈2149−5 17m + 1 12 × 10−6 k, ξ1 modified≈ 1 12 × 10−6 c 12

Figure E8.5.2(c) shows the variation of the first mode natural frequency versus the
added mass value utilizing (12) and by exact solution. Figure E8.5.2(d) shows the variation
of the first mode natural frequency versus the added stiffness value utilizing (12) and by
exact solution. Figure E8.5.2(e) shows the variation of the first mode damper ratio ξ versus
the added damping value utilizing (12) and by exact solution.

The exact damping ratios ξ in Figure E8.5.2(e) were obtained by solving the following
eigenvalue problem from (5.4.218) and (5.4.219):

λΓ=A Γ 2N × 1 13

A=E−1H =
−M−1C −M

−1
K

IN 0
2N × 2N 14

ξ=
−Re λ

λ
15

The final results in (9) and (10) are somewhat independent of the number of elements in
the system, which illustrates the simplified form of the results. These results also show that
the sensitivities increase as the square of the mode shape component at the modification
attachment point. Consequently, selecting the attachment point location with a large mode
component is a key step in a successful modification.
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Figure E8.5.2(d) First natural frequency of the truss versus the added stiffness value. Exact (dashed)
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Figure E8.5.2(c) First natural frequency of the truss versus the added mass value. Exact (dashed)
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8.5.3 Rayleigh’s Quotient

The Rayleigh quotient approach provides a means to estimate the lowest undamped natural
frequency given the M and K matrices and a guess y of the lowest mode shape ψ

1
. The

Rayleigh quotient is defined as

R=
yTK y

yTM y
8 5 41

The guess ymay be expressed in terms of the complete, linearly independent set of basis

vectors ψ
i
as

y = a1ψ1
+ a2ψ2

+ + aNψN
8 5 42

Assume that the error in y, as a guess of ψ
1
, is of order ε. Then y has the form

y = α ψ
1
+ ε2ψ2

+ + εNψN
8 5 43

where

εj << 1 8 5 44

It can be shown with the use of orthogonality ((5.4.75), (5.4.77)) that if the ψ
i
are mass

orthonormalized, then
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Figure E8.5.2(e) First mode damping ratio ξ versus the added damper value. Exact (dashed)
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R≈ω2
1 1 + ε22

ω2

ω1

2

−1 + + ε2N
ωN

ω1

2

−1 8 5 45

Equation (8.5.45) shows that:

• R is an upper bound on ω1.

• If the y guess of ψ
1
is of order ε, the Rayleigh quotient prediction of ω2

1 is of order ε
2

where

ε2 << ε 8 5 46

Therefore, for a good guess y “close” to ψ
1
, it results that

R ≈ ω2
1 8 5 47

EXAMPLE 8.5.3 Rayleigh’s Quotient Applied to a Simple Piping System

Description: A piping system is secured by flanges and bellows (expansion joints) and by
vertical pipe hangers (not shown). The piping network experiences high-frequency vibration
and resulting noise due to resonance between the pressure pulsations in the flowing gas and
the piping axial natural frequencies. It is decided to model the network in order to assist in
shifting the natural frequencies away from the pressure pulsation frequencies
(Figure E8.5.3(a)).

Objective: Demonstrate Rayleigh’s quotient estimation of the lowest natural frequency.

Assumptions:

• Bellows stiffness is negligible.

• Piping enclosed by dashed box behaves rigidly.

• Masses of piping runs are lumped at the 4 dofs shown.

• Flanges are rigidly connected to ground.

Solution: The equations of motion for this system are

Figure E8.5.3(a) Simple piping system and lumped mass model
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Mq +Kq = 0 1

q = q1 q2 q3 q4
T 2

M =

m1 0

m2

0 m3

m4

, K=

k1 + k3 + k5 −k1 −k3 −k5

−k1 k1 + k2 0 0

−k3 0 k3 + k4 0

−k5 0 0 k5 + k6

3

and the numerical values are

m1 = 500kg, m2 = 200kg, m3 = 300kg, m4 = 150kg 4

i 1 2 3 4 5 6

ki(N/m) 109 0 5 × 109 2 × 109 0 75 × 109 3 0 × 109 5 0 × 109

Utilize MATLAB to determine the exact mode shapes and natural frequencies by solving

A=M−1K, λjψ j
=Aψ

j
, λj =ω

2
j 5

The exact lowest natural frequency and mass-orthonormalized (5.4.40) mode shape are

ω1 = 1740 9rad s, ψ
1
= 0 0298 0 0333 0 0323 0 0118 6

Consider the following guesses for ψ
1
and their corresponding Rayleigh quotient

(Eq. (8.5.41)) estimates for ω1:

Guess y of ψ
1

R (rad/s)

y= 1 1 1 1 2331

y= 1 m1 1 m2 1 m3 1 m4 4345

k6 restrains q4 and k6 is large so assume y= 1 1 1 1 2 1770

Note all R are greater than ω1, that is, Rayleigh provides an upper bound, and the
use of some intuition in guess 3 results in an accurate estimate of the lowest natural
frequency.

8.6 SUMMARY

This chapter should provide the reader with an understanding and working knowledge of
some approximate methods in vibration analysis, specifically:

(a) Guyan reduction and static condensation (GRSC) for condensing large-order systems
by the use of constraint mode basis vectors
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(b) Modal synthesis-based modeling of large-order, multicomponent system using compo-
nent mode and joint dof Guyan basis vectors

(c) Eigenvalue perturbation estimates

(d) Rayleigh quotient-based natural frequency estimates

8.7 CHAPTER 8 EXERCISES

8.7.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website:
www.wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed
book, yielding a significant cost savings for the college student, and the exercises are
updated.

8.7.2 Exercise Goals

The goal of the Exercises in Chapter 8 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) Determine Guyan basis vectors for a multi-dof vibrating system model given a set of
retained dofs. The importance of Guyan reduction is increasing as more vibration-
related models are finite element based with 1000s of dofs.

(b) Model systems utilizing Guyan reduction.

(c) Obtain natural frequency estimates using perturbation or Rayleigh quotient methods.

8.7.3 Sample Exercises 8.4 and 8.13

Exercise 8.4 requires identification of Guyan basis vectors and conditions when a set of dofs
are inadmissible as being a valid set of retained dofs. Exercise (8.13) requires solution for
vibration responses due to a truck passing over a bridge, utilizing numerical integration with
all coordinates and with only Guyan retained coordinates.
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Chapter 9

Beam Finite Elements
for Vibration Analysis

9.1 INTRODUCTION

The finite element method (FEM) is utilized extensively in industry and research and devel-
opment applications. Acquiring a good grasp of the corresponding theory presented here
will provide the person utilizing commercial finite element software with a good under-
standing of its underlying assumptions and limitations. The FEM is utilized to model/
simulate the vibration-related behavior of structural and machinery components possessing
complex shapes, material property variations, boundary conditions, and loadings. This is
accomplished in a “building block” approach as explained in Section 4.7 and illustrated
for one-dimensional (1D) and two-dimensional (2D) truss structures in Section 4.8. The
structure is divided into a multitude of elements that are joined by enforcing interelement
equilibrium and displacement continuity. This “joining” or “assembling” yields the total
system mass, stiffness, and damping matrices and force vector and is executed with assem-
bly algorithms, as illustrated in Figures 4.8.5, 4.8.6, and 4.8.8, which utilize nodal or degree
of freedom (dof) connectivity arrays (4.8.21, 4.8.83) and boundary condition/constraint-
related arrays (4.8.30, 4.8.31). The element “building blocks” are the element matrices that
are formed in two steps. The first step utilizes “shape functions” (4.7.5) to interpolate the
displacements between user-located “node” points within each element. The node points
are typically arranged in a regular pattern within the element, or within its geometrically
transformed form. The second step is to apply Lagrange’s equations to the kinetic energy,
potential energy, dissipation function, interelement forces, and external forces that exist
within an individual element as shown by (4.7.60) and (4.7.61). The assembled total system
matrices and force vector may then be utilized with the approaches presented in Chapters 5,
6, and 7 to predict free, transient, and steady-state harmonic displacement responses. The
computed displacements may then be utilized for computing strains (4.7.22) and stresses
(A.4.3), to ultimately predict component fatigue life (Section 1.4).

9.2 MODELING 2D FRAME STRUCTURES WITH
EULER–BERNOULLI BEAM ELEMENTS

The 1D and 2D truss models, as depicted in Figure 4.8.11, assume ideal moment releases
(pins at all joints). This is an approximation for actual truss structures that typically employ
welded or riveted connections at the intersection of the truss structural members. The neglect
of internal bending moments becomes unacceptable in structures that possess bolted and
welded connections or experience in-span transverse force or bending moment loading.
The frame model improves on the truss model by including bending moment and shear

Vibration Theory and Applications with Finite Elements and Active Vibration Control, First Edition. Alan B. Palazzolo.
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force-induced deformation utilizing Euler–Bernoulli- or Timoshenko-type beam models.
Inclusion of bending deformation requires that a rotation angle be added as a third dof to
the 2-dof per node, 2D truss model depicted in Figure 4.8.12. Figure 9.2.1 depicts a generic
2D frame model including beam elements, forces, moments, boundary conditions, external
springs, dampers and masses, etc.

Figure 9.2.2 shows an isolated 2-node beam element with deflections referenced to its
own “local” coordinate system. Each node has 3 dofs, two mutually perpendicular transla-
tions and a bending rotation, totaling 6 dofs per element. Hence, following the development
in Chapter 4, one should expect 6 by 6 mass and stiffness matrices and a 6 by 1 element force
vector for this element.

The beam’s rotation θ is related to its transverse displacement u2 by

θ =
∂u2
∂x

9 2 1

which expresses the well-known Euler–Bernoulli beam kinematic assumption that

• plane cross sections remain plane and perpendicular to the neutral axis after deformation.

This assumption neglects warping and shear deformation effects. The other quantities in
Figure 9.2.2 include:

f 1, f 2,m: externally applied loads per unit length

qj: displacement and rotation dofs at nodes

ãj: actions at nodes, where actions are the internal forces and moments that act between
connected elements

Figure 9.2.2 2D beam element showing displacements, rotations, forces, and moments in a local
(element) coordinate system

Figure 9.2.1 General planar frame
model with 2D beam elements
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9.2.1 2D Frame Element Stiffness Matrix and Strain Energy:
Transverse Deflection

The transverse displacement of the beam element in Figure 9.2.2 is interpolated as

u2 x1, t =N2 x q2 t +N3 x q3 t +N5 x q5 t +N6 x q6 t =N2e q2e 9 2 2

where

N2e = N2 N3 N5 N6 and q
2e
= q2 q3 q5 q6

T 9 2 3

The shape functions ((2.11.36), (4.7.39)) in (9.2.2) are Hermite cubic polynomials

N2 x = 1−3
x2

L2
+ 2

x3

L3
, N3 x = L

x

L
−2

x2

L2
+
x3

L3

N5 x = 3
x2

L2
−2

x3

L3
, N6 x = L −

x2

L2
+
x3

L3

9 2 4

which satisfy the following consistency conditions (2.11.37):

N 0 N 0 N L N L

N2 1 0 0 0

N3 0 1 0 0

N5 0 0 1 0

N6 0 0 0 1

9 2 5

These conditions insure that the interpolations for u2 in (9.2.2) and for θ in

θ =
∂u2
∂x

=N2 x q2 t +N3 x q3 t +N5 x q5 t +N6 x q6 t 9 2 6

yield the nodal values if evaluated at the nodal coordinates (x = 0,L). From Figure 9.2.2,
these conditions are:

x= 0 x =L

u2 x q2 t q5 t

θ x q3 t q6 t

9 2 7

The Hermite polynomials also satisfy the rigid body displacement requirement that the
entire element moves with a rigid body displacement if the nodes move with motions con-
sistent with a rigid body displacement of the element. For example, let q2 = q5 = u2 and
q3 = q6 = 0 in Figure 9.2.2, then by (9.2.2)

u2 x, t =N2 x q2 +N3 x q3 +N5 x q5 +N6 x q6

=N2 x u2 +N3 x 0 +N5 x u2 +N6 x 0

= N2 x +N5 x u2 = u2

9 2 8

since by (9.2.4)

N2 x +N5 x = 1 9 2 9
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Thus, the entire element moves as a rigid body if its nodal coordinates move with rigid
body motion. The extensional and bending strains occurring in a beam element are depicted
in Figure 9.2.3. The bending strain–displacement relation for this element was given in
Example 4.6.3 as

εBx3 = −x2
∂2u2
∂x2

=D2 u2 where D2 = −x2
∂2

∂x2
9 2 10

Thus, the finite element B2e matrix in (4.7.56) is obtained from (9.2.2) and (9.2.10) as

B2e =D2N2e = −x2 N2 N3 N5 N6 9 2 11

This result is substituted in (4.7.55) to obtain the element stiffness matrix for transverse
deflection as

Kte =
V
BT
2eEB2edV =

V
BT
2eEB2edxdA

= x22 N2 N3 N5 N6
TE N2 N3 N5 N6 dAdx

=
L

0
E x I x

N2N2 N2N3 N2N5 N2N6

N3N3 N3N5 N3N6

symmetric N5N5 N5N6

N6N6

dx

9 2 12

where the element’s cross-sectional area moment of inertia is defined by

I =
A
x22dA 9 2 13

The strain energy in an element due to transverse deflections is given by (4.7.54) as

Ute =
1
2 Ve

εTEeεdVe =
1
2
qT
2e
Kteq2e 9 2 14

Figure 9.2.3 Strains acting on the cross section of a beam element
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Elements that have a dominant influence on a natural frequency are often those that
contribute the most strain energy for vibration in the respective mode shape. This fact is
often utilized for deciding how to modify a beam structure to place natural frequencies.

9.2.2 2D Frame Element Stiffness Matrix and Strain Energy: Axial Deflection

The axial (x) displacement of the beam element in Figure 9.2.2 is interpolated as

u1 x, t =N1 x q1 t +N4 x q4 t =N1e q1e 9 2 15

where the axial shape functions (2.11.37) are

N1 x = 1−
x

L
, N4 x =

x

L
9 2 16

and the corresponding arrays are

N1e = N1 N4 and q
1e
= q1 q4

T 9 2 17

The axial (extensional) strain in a beam element is depicted in Figure 9.2.3. The
strain–displacement relation is

εx1 =
∂u1
∂x

=D1 u1 where D1 =
∂

∂x
9 2 18

The finite element B1e matrix of (4.7.56) becomes

B1e =D1N1e = N1 N4 9 2 19

The element stiffness matrix for transverse deflection is obtained from (9.2.19) and
(4.7.55) as

Kae =
V
BT
1eE B1edV =

V
BT
1eE B1edxdA

= N1 N4
TE N1 N4 dAdx

=
L

0
E x A x

N1N1 N1N4

N1N4 N4N4

dx

9 2 20

where the element’s cross-sectional area is

A=
A
dA 9 2 21

Elements that have the most effect (influence) on natural frequency placement are often
those that have the most strain energy. The strain energy in an element due to axial deflec-
tions is given by (4.7.54) as

Uae =
1
2 Ve

εTEeεdVe =
1
2
qT
1e
Kaeq1e 9 2 22
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9.2.3 2D Frame Element Stiffness Matrix and Strain Energy

The quadratic forms in (9.2.14) and (9.2.22) are utilized to yield a combined axial–
transverse deflection stiffness matrix for the 6-dof beam element:

Ke =

ka11 0 0 ka12 0 0

kt11 kt12 0 kt13 kt14

kt22 0 kt23 kt24

ka22 0 0

symmetric kt33 kt34

kt44

9 2 23a

The integrals in these terms are performed for a uniform (constant E, I, A) beam element
to obtain

Ke =

ka 0 0 −ka 0 0

0 12kt 6Lkt 0 −12kt 6Lkt

0 6Lkt 4L2kt 0 −6Lkt 2L2kt

−ka 0 0 ka 0 0

0 −12kt −6Lkt 0 12kt −6Lkt

0 6Lkt 2L2kt 0 −6Lkt 4L2kt

9 2 23b

where

kt =
EI

L3
, ka =

EA

L
9 2 24

The corresponding strain energy in this element becomes

Ue
1×1

=
1
2
qT
e

1×6

Ke
6×6

q
e

6×1

9 2 25

where

q
e
= q1 q2 q3 q4 q5 q6

T 9 2 26

9.2.4 2D Frame Element Mass Matrix

The kinetic energy due to axial and transverse deflection and bending rotation is obtained
from (4.2.14) and (5.5.85) as

Te =
1
2

L

0
ρAdx u21 + u

2
2 + ρdxI θ

2
=
1
2

L

0
ρAu21dx +

1
2

L

0
ρAu22dx +

1
2

L

0
ρIθ

2
dx

9 2 27
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where I is the area moment of inertia about the x3 axis passing through the neutral axis of the
beam. Recall that

θ =
∂u2
∂x

9 2 28

and substitute (9.2.2) and (9.2.15) into (9.2.27) to obtain

Te =
1
2

L

0
ρA N1q1 +N4q4

2
dx+

1
2

L

0
ρA N2q2 +N3q3 +N5q5 +N6q6

2
dx

+
1
2

L

0
ρI N2q2 +N3q3 +N5q5 +N6q6

2
dx

9 2 29

Utilize (9.2.29) and the identity in (2.6.46) to obtain

Te =
1
2
q
T

1e
Maeq1e +

1
2
q
T

2e
Mteq2e +

1
2
q
T

2e
MReq2e 9 2 30

where the axial mass matrix is

Mae =
L

0
ρ x A x

N1N1 N1N4

N4N1 N4N4
dx 9 2 31

the transverse displacement mass matrix is

Mte =
L

0
ρ x A x

N2N2 N2N3 N2N5 N2N6

N3N3 N3N5 N3N6

symmetric N5N5 N5N6

N6N6

dx 9 2 32

and the transverse rotation (rotary inertia) mass matrix is

MRe =
L

0
ρ x I x

N2N2 N2N3 N2N5 N2N6

N3N3 N3N5 N3N6

symmetric N5N5 N5N6

N6N6

dx 9 2 33

The quadratic forms in (9.2.31)–(9.2.33) are combined to obtain the element mass matrix

Me =M
at
e +M

R
e 9 2 34

where the translational/axial and rotary inertia mass matrices are

M
at
e =

ma11 0 0 ma12 0 0

mt11 mt12 0 mt13 mt14

mt22 0 mt23 mt24

ma22 0 0

symmetric mt33 mt34

mt44

, M
R
e =

0 0 0 0 0 0

mR11 mR12 0 mR13 mR14

mR22 0 mR23 mR24

0 0 0

symmetric mR33 mR34

mR44

9 2 35
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The integrals in (9.2.31)–(9.2.33) are performed for the uniform (constant ρ, A, I) beam
case to obtain

M
at
e =mB

1
3

0 0
1
6

0 0

13
35

11
210

L 0
9
70

−
13
420

L

1
105

L2 0
13
420

L −
1

140
L2

1
3

0 0

symmetric
13
35

−
11
210

L

1
105

L2

9 2 36

M
R
e = IB

0 0 0 0 0 0
6
5L2

1
10L

0 −
6
5L2

−
1

10L
2
15

0 −
1

10L
−

1
30

0 0 0

symmetric
6
5L2

−
1

10L
2
15

9 2 37

where

mB = ρAL, IB = ρIL 9 2 38

9.2.5 2D Frame Element Force Vector

From Figure 9.2.2 and (4.5.52), the generalized forces are

Qj = a1e1
∂q1e1
∂qj

+ a2e2
∂q2e2
∂qj

+ a3e3
∂q3e3
∂qj

+ a4e1
∂q4e1
∂qj

+ a5e2
∂q5e2
∂qj

+ a6e3
∂q6e3
∂qj

+
L

0
f 1dxe1

∂u1e1
∂qj

+
L

0
f 2dxe2

∂u2e2
∂qj

+
L

0
mdxe3

∂θe3
∂qj

9 2 39

Evaluation of the dot products results in the simplification

Qj = a1
∂q1
∂qj

+ a2
∂q2
∂qj

+ a3
∂q3
∂qj

+ a4
∂q4
∂qj

+ a5
∂q5
∂qj

+ a6
∂q6
∂qj

+
L

0
f 1dx

∂u1
∂qj

+
L

0
f 2dx

∂u2
∂qj

+
L

0
mdx

∂θ

∂qj

9 2 40
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Note that

a1
∂q1
∂qj

+ a2
∂q2
∂qj

+ a3
∂q3
∂qj

+ a4
∂q4
∂qj

+ a5
∂q5
∂qj

+ a6
∂q6
∂qj

= aj 9 2 41

Substitution of (9.2.41) and the interpolations in (9.2.2), (9.2.6), and (9.2.15) into
(9.2.40) yield

Qj = aj +
L

0
f 1
∂ N1 x q1 t +N4 x q4 t

∂qj
dx

+
L

0
f 2
∂ N2 x q2 t +N3 x q3 t +N5 x q5 t +N6 x q6 t

∂qj
dx

+
L

0
m
∂ N2 x q2 t +N3 x q3 t +N5 x q5 t +N6 x q6 t

∂qj
dx

9 2 42

Evaluation of the derivatives in (9.2.42) yields

Q
e

6 × 1

= Q1 Q2 Q3 Q4 Q5 Q6
T
= ae + f e 9 2 43

where

ae = a1 a2 a3 a4 a5 a6
T 9 2 44

and

f
e
=

f e1

f e2

f e3

f e4

f e5

f e6

=
Le

0

N1 x f 1 x

N2 x f 2 x +N2 x m x

N3 x f 2 x +N3 x m x

N4 x f 1 x

N5 x f 2 x +N5 x m x

N6 x f 2 x +N6 x m x

dx 9 2 45

The external force and moment distributions in Figure 9.2.2 may contain concentrated
forces and moments. These are represented with Dirac delta functions as explained in
Section 2.12. For example, concentrated forces (F1 t ,F2 t ) and moment (M t ) in the
e1̃, e2̃, and e3̃ directions, respectively, at x= x contribute the following element force vector
from (9.2.45):

f
e
=

Le

0

N1 x F1 t δ x−x

N2 x F2 t δ x−x +N2 x M t δ x−x

N3 x F2 t δ x−x +N3 x M t δ x−x

N4 x F1 t δ x−x

N5 x F2 t δ x−x +N5 x M t δ x−x

N6 x F2 t δ x−x +N6 x M t δ x−x

dx=

N1 x F1 t

N2 x F2 t +N2 x M t

N3 x F2 t +N3 x M t

N4 x F1 t

N5 x F2 t +N5 x M t

N6 x F2 t +N6 x M t

9 2 46
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where (2.12.5) has been used to evaluate the integrals. Collection of these results yields the
final form of the element external force vector:

f
e
=

Le

0

N1 x f 1 x

N2 x f 2 x +N2 x m x

N3 x f 2 x +N3 x m x

N4 x f 1 x

N5 x f 2 x +N5 x m x

N6 x f 2 x +N6 x m x

dx +
β

i= 1

N1 xi F1i t

N2 xi F2i t +N2 xi Mi t

N3 xi F2i t +N3 xi Mi t

N4 xi F1i t

N5 xi F2i t +N5 xi Mi t

N6 xi F2i t +N6 xi Mi t

9 2 47

where β is the number of concentrated force locations on the element. From (4.7.61),
Lagrange’s equations yield the following dynamic equilibrium equations for element e:

Me
6 × 6

q
e

6 × 1

+ Ke
6 × 6

q
e

6 × 1

= ae
6 × 1

+ f
e

6 × 1

9 2 48

The element equilibrium equations are combined (assembled), while enforcing intere-
lement displacement compatibility and equilibrium, to form the system equations. This
process eliminates the interelement actions ae. The actions are often utilized for computing
beam stresses. The actions may be obtained by solving the total system equations for the
nodal motions and then substituting the respective motions into the element equation
(9.2.48) written as

ae =Meqe +Keqe− f e 9 2 49

9.2.6 2D Frame Element Stiffness and Mass Matrices and Force Vector:
Transformation to Global Coordinates

The element matrices and force vector must be expressed in global coordinate form prior to
being assembled into the total system matrices and force vector. Figure 9.2.4 shows a beam
element with both local and global coordinate nodal variables.

The global and local (overhead tilde symbol) coordinate vectors are

q
e
= q1 q2 q3 q4 q5 q6

T 9 2 50

Figure 9.2.4 Beam element (e) in local and global coordinates
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q
e
= q1 q2 q3 q4 q5 q6

T 9 2 51

ae = a1 a2 a3 a4 a5 a6
T 9 2 52

ae = a1 a2 a3 a4 a5 a6
T 9 2 53

f
e
= f 1 f 2 f 3 f 4 f 5 f 6

T
9 2 54

f
e
= f1 f2 f3 f4 f5 f6

T 9 2 55

The global and local coordinate vectors are related by

q
e
= TTe qe, ae = TTe ae, f

e
= TTe fe 9 2 56

where the coordinate transformation matrix is (2.7.1)

TTe
6 × 6

=

CTe
3 × 3

0
3 × 3

0
3× 3

CTe
3 × 3

, CTe =

cosδe sinδe 0

−sinδe cosδe 0

0 0 1

9 2 57

Substitute (9.2.56) into (9.2.25)

Ue =
1
2
qT
e
TTTeKeTTe q

e
9 2 58

The potential energy may also be expressed with the global coordinate, element stiff-
ness matrix as

Ue =
1
2
qT
e
Keq

e
9 2 59

Comparison of these two forms for the potential energy yields the global coordinate
form of the element stiffness matrix as

Ke = TTTeKeTTe 9 2 60

This matrix may be expressed as

Ke =TTTeKeTTe = T
T
Te K

a
e +K

t
e TTe =K

a
e +K

t
e 9 2 61

where “a” and “t” indicate axial and transverse contributions. The results of the multiplica-
tions in (9.2.61) are

Ka
e = ka

acc acs 0 −acc −acs 0

ass 0 −acs −ass 0

0 0 0 0

acc acs 0

symmetric ass 0

0

9 2 62
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where

ka =
EeAe

Le
, acc = cos

2δe, acs = cosδe sinδe, ass = sin
2δe 9 2 63

Kt
e = kt

12ass −12acs −6Las −12ass 12acs −6Las

12acc 6Lac 12acs −12acc 6Lac

4L2 6Las −6Lac 2L2

12ass −12acs 6Las

symmetric 12acc −6Lac

4L2

9 2 64

where

kt =
EeIe
L3e

, as = sinδe, ac = cosδe 9 2 65

Similar to (9.2.58), the kinetic energy is

Te =
1
2
q
T

e
Meqe =

1
2
qT
e
TTTeMeTTe q

e
9 2 66

The kinetic energy may also be expressed with the global coordinate, element mass
matrix as

Te =
1
2
qT
e
Meq

e
9 2 67

Comparison of these two forms for the kinetic energy yields the global coordinate form
of the element mass matrix as

Me = TTTeMeTTe 9 2 68

By (9.2.30), the global coordinate form of the element mass matrix is

Me = TTTeMeTTe = T
T
Te M

a
e +M

t
e +M

R
e TTe =M

a
e +M

t
e +M

R
e 9 2 69

where “a,” “t,” and “R” indicate the axial, transverse, and rotary inertia contributions as
identified in (9.2.36) and (9.2.37). The results of the multiplications in (9.2.69) are

Ma
e =

mB

3

acc acs 0
acc
2

acs
2

0

ass 0
acs
2

ass
2

0

0 0 0 0

acc acs 0

symmetric ass 0

0

9 2 70
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Mt
e =

mB

35

13ass −13acs −
11
6
Las

9
2
ass −

9
2
acs

13
12

Las

13acc
11
6
Lac −

9
2
acs

9
2
acc −

13
12

Lac

L2

3
−
13
12

Las
13
12

Lac −
L2

4

13ass −13acs
11
6
Las

symmetric 13acc −
11
6
Lac

L2

3

9 2 71

where

mB = ρeAeLe 9 2 72

and

MR
e =

IB
5L2

6ass −6acs −
1
2
Las −6ass 6acs −

1
2
Las

6acc
1
2
Lac 6acs −6acc

1
2
Lac

2
3
L2

1
2
Las −

1
2
Lac −

1
6
L2

6ass −6acs
1
2
Las

symmetric 6acc −
1
2
Lac

2
3
L2

9 2 73

where

IB = ρeIeLe 9 2 74

The transformation matrices CTE and TTE in (9.2.57) are orthogonal, that is,

C−1
TE =CT

TE, T−1
TE = TTTE 9 2 75

Therefore, from (9.2.56), the element force vector in global coordinates is

f e = TTTE f e 9 2 76

where f
e
is defined in (9.2.47).

EXAMPLE 9.2.1 Single Element Model of Inclined, Guided Cantilever Beam with In-Span
Concentrated Loading

Statement: Figure E9.2.1(a) depicts a simple, one beam element model with distributed and
concentrated loading. The beam is inclined from the horizontal direction by angle δe, fixed at
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its lower end and guided (zero slope) at its upper end. The applied loading consists of trans-
verse distributed load f 2 x, t and:

– A concentrated force f0 and moment m0 at the midspan.

– A concentrated force f1 at three-quarter span.

– A concentrated force f a at the upper node point (2).

– A concentrated mass, damper, and stiffness are attached at the upper end (node 2)
of the beam. The beam’s cross-sectional area and moment of inertia are A and I,
respectively, and its density is ρ.

Objective: Determine the equation of motion for the only unconstrained nodal
coordinate q4.

Assumptions: Utilize the Euler–Bernoulli beam theory model.
Solution: The element’s local coordinate directions and external loads are shown in
Figure E9.2.1(b).

Figure E9.2.1(b) Local coordinate directions and loading

Figure E9.2.1(a) Single beam model geometry and loading
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The element force vector (9.2.47) simplifies for this case to the form

f
e
=

Le

0

0

N2 x f 2 x, t

N3 x f 2 x, t

0

N5 x f 2 x, t

N6 x f 2 x, t

dx+

N1
3L
4

f1 t

−N2
L

2
f0 t +N2

L

2
m0 t

−N3
L

2
f0 t +N3

L

2
m0 t

N4
3L
4

f1 t

−N5
L

2
f0 t +N5

L

2
m0 t

−N6
L

2
f0 t +N6

L

2
m0 t

1

For the sake of illustration, let

f 2 x =F2
x

L
cos ωt 2

and note that from (9.2.4) and (9.2.16)

N2
L

2
=
1
2
, N2

L

2
=
−3
2L

, N3
L

2
=
L

8
, N3

L

2
=
−1
4
, N1

3L
4

=
1
4

N5
L

2
=
1
2
, N5

L

2
=

3
2L

, N6
L

2
=
−L

8
, N6

L

2
=
−1
4
, N4

3L
4

=
3
4

3

Substitute (9.2.4), (2), and (3) into (1) to obtain

f
e
=

Le

0

0

1−3
x2

L2
+ 2

x3

L3
∗F2

x

L
cos ωt

L
x

L
−2

x2

L2
+
x3

L3
∗F2

x

L
cos ωt

0

3
x2

L2
−2

x3

L3
∗F2

x

L
cos ωt

L −
x2

L2
+
x3

L3
∗F2

x

L
cos ωt

dx+

f1 t

4

−
f0 t

2
−

3
2L

m0 t

−
L

8
f0 t −

1
4
m0 t

3
4
f1 t

−
1
2
f0 t +

3
2L

m0 t

L

8
f0 t −

1
4
m0 t
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=

f1 t

4

−
f0 t

2
−

3
2L

m0 t +F2
3L
20

cos ωt

−
L

8
f0 t −

1
4
m0 t +F2

L2

30
cos ωt

3
4
f1 t

−
1
2
f0 t +

3
2L

m0 t +F2
7L
20

cos ωt

L

8
f0 t −

1
4
m0 t −F2

L2

20
cos ωt

4

The global coordinate form of the element force vector is obtained from (9.2.57)
and (9.2.76) as

f e =

f1e

f2e

f3e

f4e

f5e

f6e

=TTTe f e =

cos δe ∗ f1 t

4
+ sin δe ∗ −

f0 t

2
−

3
2L

m0 t +F2
3L
20

cos ωt

−sin δe ∗ f1 t

4
+ cos δe ∗ −

f0 t

2
−

3
2L

m0 t +F2
3L
20

cos ωt

−
L

8
f0 t −

1
4
m0 t +F2

L2

30
cos ωt

cos δe ∗ 3f1 t

4
+ sin δe ∗ −

f0 t

2
+

3
2L

m0 t +F2
7L
20

cos ωt

−sin δe ∗ 3f1 t

4
+ cos δe ∗ −

f0 t

2
+

3
2L

m0 t +F2
7L
20

cos ωt

L

8
f0 t −

1
4
m0 t −F2

L2

20
cos ωt

5

The global dofs are shown in Figure E9.2.1(c). Similar to (4.8.25) and (4.8.87), the
nodal and dof connectivity arrays for the model are

B= 1 2 , B= 1 2 3 4 5 6 6

Figure E9.2.1(c) Global degrees of freedom and nodes 1 and 2
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and similar to (4.8.35) or (4.8.94), the larray is

L= l1 l2 l3 l4 l5 l6 = 0 0 0 1 0 0 7

since only the q4 dof is not fixed. The assembly procedure is identical to that illustrated in

Figure 4.8.14. The free dof system matrix (Mf ,Kf ,Cf ) indices lBer
, lBes

in Figure 4.8.14

always contain at least 1 zero, unless r = s = 4, so most of the element matrix terms are
not assembled. Therefore, from (9.2.69) to (9.2.74) and Figure 4.8.14

Mf = Me
4,4 = Ma

e 4,4 + Mt
e 4,4 + MR

e 4,4

=mB
acc
3

+
13ass
35

+ IB
6
5
ass
L2

=mB
1
3
cos2δe +

13
35

sin2δe +
6
5
IB
L2

sin2δe
8

where

mB = ρAL and IB = ρIL 9

Similarly from (9.2.61) to (9.2.65) and the assembly procedure illustrated in
Figure 4.8.14

Kf = Ke
4,4 = Ka

e 4,4 + Kt
e 4,4 = kaacc + 12ktass = kacos

2δe + 12ktsin
2δe 10

where

ka =
EA

L
, kt =

EI

L3
11

Applying the assembly procedure of Figure 4.8.14 with (5) yields

f
f
= f e

4
= cos δe

3f1 t

4
+ sin δe −

f0 t

4
+

3
2L

m0 t +F2
7L
20

cos ωt 12

Next, consider the added mass, stiffness, damping, and force ma,ka,ca, fa shown in
Figure E9.2.1(a). The kinetic energy and additional term in Lagrange’s equation due to con-
centrated mass ma are

Ta =
ma

2
q24

d

dt

∂T

∂q4
=maq4 13

The potential energy and additional term in Lagrange’s equation due to concentrated
stiffness ka are

Ua =
ka
2
q24

∂Ua

∂q4
= kaq4 14

The dissipation function and additional term in Lagrange’s equation due to concen-
trated damping ca are

ℑd
a =

ca
2
q24

∂ℑd
a

∂q4
= caq4 15
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The generalized force in Lagrange’s equation due to the applied force f a is

Qa = f a ex
∂q4 ex
∂q4

= f a 16

Combining the results in (8)–(16) yields the equilibrium equations

mequivq4 + cequivq4 + kequivq4 =Fequiv t 17

where

mequiv =ma +
1
3
cos2δe +

13
35

sin2δe mB +
6
5
IB
L2

sin2δe, cequiv = ca

kequiv = ka + kacos2δe + 12ktsin
2δe, Fequiv = f a t −sinδe −

f0 t

2
+
3m0 t

2L

mB = ρAL, IB = ρIL, ka =
EA

L
, kt =

EI

L3

18

9.2.7 2D Frame: Beam Element Assembly Algorithm

The element mass Me and stiffness Ke matrices, as expressed in global coordinates, are
defined by (9.2.69)–(9.2.73) and (9.2.61)–(9.2.65), respectively. The element force vector
f e, as expressed in global coordinates, is defined by (9.2.47) and (9.2.76). Algorithms are

presented here for assembling these “building block” element matrices to form the system
mass and stiffness matrices and force vector, including zero deflection constraints imposed
on specified dofs. As depicted in Figure 9.2.5(a), the nodal connectivity array for element
e stores the global node numbers corresponding to local node numbers j = 1 and j = 2 and is
defined by

Bej =
g1e, j= 1

g2e, j= 2
9 2 77

Figure 9.2.5 (a) Global node and (b) global degree of freedom numbering approach
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As depicted in Figure 9.2.5(b), the dof connectivity array for element e stores the global
dof numbers corresponding to local dof numbers l = 1 through l = 6 and is defined by

Bel =

3g1e−2, l= 1

3g1e−1, l= 2

3g1e, l= 3

3g2e−2, l= 4

3g2e−1, l= 5

3g2e, l= 6

9 2 78

The dof array is not unique so (9.2.78) provides one illustrative approach. The pattern in
(9.2.78) enables automated generation of the dof connectivity array B utilizing the user-
defined nodal connectivity array B. This is demonstrated by the following coding segment:

for e = 1 1 E element index

for i= 1 1 2 local node index

for k = 1 1 3 dof index at a node

l = 3∗ i−1 + k

Bel = 3∗ Bei−1 + k

end

end

end

9 2 79

As in (4.8.35) or (4.8.94), the larray indicates the locations of each dof in the condensed
vector q

f
, which contains only free (unconstrained) dof displacements. The larray is again

represented by

L= l1 l2 lN
li = position of dof qi in the “free” dof vector qf
li = 0 if qi is constrained

9 2 80

Suppose that the user input to a code requires entry of the nodes and corresponding dofs
that are fixed to ground, that is, that have zero displacement. The user input instructions
might read, that is,

For all constrained dofs, enter the global node number ki and the corresponding dof di at global
node number ki which is fixed to ground, for i = 1, m, where m is the total number of fixed dofs
in the model. The direction of a fixed dof is di = 1 (x1 direction), di = 2 (x2 direction), and di = 3
(rotation direction) in Figure 9.2.5.

The code internally defines an array fixeddof containing all of the global dof numbers
that are fixed to ground, from

for i= 1 1 m

fixeddof i = 3∗ ki−1 + di
end

9 2 81
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Let Ndof be the total number of dofs in the entire model:

Ndof = 3∗ Number of nodes in entire model 9 2 82

Then the larray is generated from

ict = 0

for i= 1 1 Ndof

iflag = 0

for j= 1 1 m

if i= fixeddof j

iflag = 1

end

end

larray i = 0

if iflag= 0

ict = ict + 1

larray i = ict

end

end

9 2 83

The assembly of the system matrices for the free (unconstrained) dofs is illustrated in
Figure 9.2.6, which is identical to Figure 4.8.14.

Similar with (4.8.98) repeat the above “assembly” step for all E elements in the model
and for all six local dofs, that is,

e= 1,2,…,E, r = 1,…,6, s= 1,…,6 9 2 84

Figure 9.2.6 Assembly of free dof system matrices and force vector for a constrained system
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As in (4.8.36), imposing the zero-displacement constraint conditions yields the follow-
ing “condensed” dynamic equilibrium equation for the “free” (unconstrained) dofs of the
constrained structure:

Mf
Nf ×Nf

q
f

Nf × 1

+ Cf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

9 2 85

EXAMPLE 9.2.2 Three-Element Model of an Inclined Cantilever Beam

Statement: The simple cantilevered beam model in Figure E9.2.2(a) has E = 3 elements,
N = 4 nodes, and a total of 12 dofs, only 9 of which are “free” (unconstrained) since node
1 is fixed in translation and rotation.

Objectives: Demonstrate a software-based assembly and solution, and as a verification case,
show that the natural frequencies are the same for inclination angles of θ = 0 and θ = 30 .

Assumptions: Euler–Bernoulli beam theory is applicable.

Solution: The fixed global dof numbers stored in the array fixeddof(i) are:

i Global node ki Local dof di fixeddof(i)

1 1 1 1
2 1 2 2
3 1 3 3

The larray of (9.2.80) is

L= l1 l2 l12 = 0 0 0 1 2 3 4 5 6 7 8 9 1

The jarray of (4.8.34) contains the full system, dof numbers for the dof which appear in
the displacement vector q

f
of free dofs. For this example

J = j1 j2 j9 = 4 5 6 7 8 9 10 11 12 2

Figure E9.2.2(a) Inclined, cantilevered beam model
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This array is used to assemble the full system response vector from the free dof response
vector as demonstrated by the MATLAB code below. The B and B arrays are

B=

1 2

2 3

3 4

, B=

1 2 3 4 5 6

4 5 6 7 8 9

7 8 9 10 11 12

3

The MATLAB code below defines and assembles the matrix quantities and determines
the natural frequencies and mode shapes. The lowest three natural frequencies appear in
Table E9.2.2(a) and the corresponding mode shapes appear in Figure E9.2.2(b). The
δe = θ = 0 and δe = θ = 30 results are seen to be identical, as expected:

% Example 9.2.2 Inclined Cantilever Beam
clear
% INPUT NUMERICAL VALUES
N=4 ; % no. of nodes in model
B=[1 2; 2 3 ; 3 4]; % Nodal connectivity matrix
dp= [1 2 3] ; % dof's with prescribed (known) displacements (u=0)
Modeplots = [ 9 8 7]; % Mode numbers to be plotted
h=[0.5 0.5 0.5 ]; % element lengths
A=[.01 .01 .01]; % element cross sectional areas
Ey=210.0e+09*[1 1 1]; % element Young's Moduli

0 0.5 1 1.5
0

0.5

1

×
2

0 0.5 1 1.5
-0.5

0

0.5

×
2

0 0.5 1 1.5
-0.2

0

0.2

×1

×
2

0 0.5 1 1.5 2
0

0.5
1

×
2

0 0.5 1 1.5
0

0.5
1

×
2

0 0.5 1 1.5
0

0.5
1

×1

×
2

(i) (ii)

Figure E9.2.2(b) Mode shapes for the first (upper), second (middle), and third (bottom) modes for (i) θ = 0 and
(ii) θ = 30 . Dashed line indicates undeformed geometry

Table E9.2.2(a) Lowest three natural frequencies (rad/s)

FE δe = θ = 0 FE δe = θ = 30 Analytical (continuous model)

Mode 1 57.34 57.34 57.4
Mode 2 360.49 360.49 359
Mode 3 1018.6 1018.6 1006
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Ix2=[5 5 5 ]*1.0e-07; % Area moments of inertia about the local
x2 axis
rho=(7800)*[ 1 1 1 ]; % Mass density of the beam material
zeta= [0 0 0 ]*pi/180.; % element angles in radians
scalefactor = 0.75;

% DETERMINE DIMENSIONS AND NODAL COORDINATES
E=size(B,1); % number of elements in the model
Npd=size(dp,2) ; % number of dof's with prescribed u's
edof=6; % number of dof's per element
Nplots = size(Modeplots,2); % Number of modelplots to be made
xnode = [0 0.5*cos(zeta(1)) 1.0*cos(zeta(1)) 1.5*cos
(zeta(1))];
ynode = [0 0.5*sin(zeta(1)) 1.0*sin(zeta(1)) 1.5*sin
(zeta(1))];

% DEFINE INTEGER ARRAYS
Nd = 3*N ; % Total number of dof's in the model
% Degree of Connectivity Array ( global dof corresponding to
local dof in element e)
for e=1:1:E % element
for i=1:1:2 % nodes per element
for k=1:1:3 % dof per node
alpha=3*(i-1)+k; % element dof
Bhat(e,alpha)=3*(B(e,i)-1)+k ; % global dof

corresponding to
% element dof

end
end

end
% Define L array from the dof's with prescribed u's
Nnpd=0 ; % counter for number of non-prescribed dof's
for i = 1:1:Nd
flag=0;
for k=1:1:Npd
if i == dp(k)
flag = 1;

end
end
if flag == 0
Nnpd = Nnpd + 1;
jarray(Nnpd) = i;

end
end

% Note at this point Nnpd is the total number of non-prescribed
u's .
% These u's must be solved for.
larray=zeros(1,Nd);
for i=1:1:Nnpd
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istore = jarray(i);
larray(1,istore)=i;

end

% ASSEMBLE THE CONDENSED SYSTEM (GLOBAL) STIFFNESS AND MASS
MATRICES
% Initialize Kc and Mc to zero
Kc=zeros(Nnpd,Nnpd) ;
Mc=zeros(Nnpd,Nnpd) ;
for e =1:1:E
% Form element stiffness matrix for element e
a1=Ey(e)*A(e)/h(e); a4= 12*Ey(e)*Ix2(e)/h(e)^3;
a5= -6*Ey(e)*Ix2(e)/h(e)^2; a7= 4*Ey(e)*Ix2(e)/h(e);
a8=2*Ey(e)*Ix2(e)/h(e);
A1=a1*cos(zeta(e))^2 + a4*sin(zeta(e))^2;
A2=a4*cos(zeta(e))^2 + a1*sin(zeta(e))^2;
A3=a7;
A4=(a1-a4)*cos(zeta(e))*sin(zeta(e));
A5=-a5*sin(zeta(e));
A6=a5*cos(zeta(e));
Ke=[A1 A4 A5 -A1 -A4 A5 ; A4 A2 A6 -A4 -A2 A6;

A5 A6 A3 -A5 -A6 A3/2 ; -A1 -A4 -A5 A1 A4 -A5 ;
-A4 -A2 -A6 A4 A2 -A6 ; A5 A6 A3/2 -A5 -A6 A3 ];

% Mass Matrix for element e
me = rho(e)*A(e)*h(e) ; % element mass
Metilda=zeros(6,6);
Metilda(2,2)=156 ; Metilda(2,3)=-22*h(e); Metilda(2,5)=54 ;
Metilda(2,6)=13*h(e);
Metilda(3,3)=4*h(e)^2; Metilda(3,5)=-13*h(e); Metilda
(3,6)=-3*h(e)^2;
Metilda(5,5)=156; Metilda(5,6)=22*h(e) ;
Metilda(6,6)=4*h(e)^2;
for i=1:1:6
for j=i:1:6
Metilda(j,i)= Metilda(i,j) ;

end
end
Metilda=me/420*Metilda;
Metilda(1,1)=me/3; Metilda(1,4)=me/6; Metilda(4,1)=me/6 ;
Metilda(4,4)=me/3 ;

CC=[cos(zeta(e)) sin(zeta(e)) 0; . . .
-sin(zeta(e)) cos(zeta(e)) 0; . . .

0 0 1 ] ;
Te(1:3,1:3)=CC; Te(1:3,4:6)=zeros(3,3); Te(4:6,1:3)
=zeros(3,3);
Te(4:6,4:6)=CC;
Me=Te'*Metilda*Te ;
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% Assemble Kc and Mc
for r=1:1:6
for s=1:1:6
% form the condensed Kc and Mc matrices
lBhater=larray( Bhat(e,r) );
lBhates=larray( Bhat(e,s) );
if lBhater ~= 0
if lBhates ~= 0

% assemble Kc
Kc(lBhater,lBhates) = Kc(lBhater,lBhates) + Ke(r,s) ;

% assemble Mc
Mc(lBhater,lBhates) = Mc(lBhater,lBhates) + Me(r,s) ;
end

end
end % s loop
end % r loop
end % e loop

% SOLVE FOR THE CONDENSED SYSTEM NATURAL FREQUENCIES
format shortg
[Modes,Evalue]=eig(inv(Mc)*Kc);
natfreqhz=sqrt(diag(Evalue))/2/pi; % natural frequencies

in hz
natfreq_rad_sec= natfreqhz*2*pi
Modes
pause
% Use the jarray to determine the complete mode shapes including
% constrained and free dofs
FullMode = zeros(Nd, Nnpd);
for j=1:1:Nnpd

for i=1:1:Nnpd
FullMode(jarray(i),j)=Modes(i,j);

end
end
FullMode
% Normalize so that largest component in each mode shape
equals 1.0
for j=1:1:Nnpd
mmax=0.;
for i=1:1:Nd

tst=FullMode(i,j);
if abs(tst)>mmax

stortst=tst;
mmax=abs(tst);

end
end
FullMode(1:Nd,j) = FullMode(1:Nd,j)/stortst;

end
FullMode

Chapter 9 Beam Finite Elements for Vibration Analysis 661

www.konkur.in



% Store mode components for plotting
for j=1:1:Nnpd
for i=1:1:N
xplot(i,j) = xnode(i) + scalefactor*FullMode(3*(i-1)+1,j);
yplot(i,j) = ynode(i) + scalefactor*FullMode(3*(i-1)+2,j);

end
end
for i=1:1:Nplots % Make Mode Shape Plots

subplot(Nplots,1,i);
plot(xplot(:,Modeplots(i)), yplot(:,Modeplots(i)), xnode,
ynode,'b– –');
xlabel('x1')
ylabel('x2')
pause

end

EXAMPLE 9.2.3 Six-Element Model of a Portal Frame

Statement: The frame model in Figure E9.2.3(a) has E = 6 elements,N = 7 nodes, and a total
of 21 dofs, only 15 of which are “free” (unconstrained) since nodes 1 and 7 are fixed in
translation and rotation.

Objectives: Demonstrate calculation of natural frequencies and mode shapes of a frame.

Assumptions: Euler–Bernoulli beam theory is applicable.

Solution: The table below shows the fixed global dof numbers stored in the array
fixeddof(i):

i Global node ki Local dof di fixeddof(i)

1 1 1 1
2 1 2 2
3 1 3 3
4 7 1 19
5 7 2 20
6 7 3 21

The element orientation angles (ref. Figure 9.2.4) are

δ1 δ2 δ3 δ4 δ5 δ6 = 90 90 0 0 −90 −90 1

The larray of (9.2.80) is

L= l1 l2 l21

= 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 0
2

662 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



The “j array” of (4.8.34) contains the full system, dof numbers for the dof which appear
in the displacement vector q

f
of free dofs. For this example

J = j1 j2 j15 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3

This array is used to assemble the full system response vector from the free dof
response vector as demonstrated in Example 9.2.2. The nodal B and dof B connectivity
arrays are

B =

1 2

2 3

3 4

4 5

5 6

6 7

, B=

1 2 3 4 5 6

4 5 6 7 8 9

7 8 9 10 11 12

10 11 12 13 14 15

13 14 15 16 17 18

16 17 18 19 20 21

4

A MATLAB code defines and assembles the matrix quantities and determines the
natural frequencies and mode shapes. The lowest three natural frequencies appear in
Table E9.2.3(a) and the corresponding mode shapes appear in Figure E9.2.3(b).

Table E9.2.3(a) Lowest three natural frequencies

ωni (rad/s)

Mode 1 470.13
Mode 2 1860
Mode 3 3061

Figure E9.2.3(a) Portal frame beam model
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EXAMPLE 9.2.4 Finite Element Convergence Study for Ring Structure

Statement: The ring model in Figure E9.2.4(a) has E = n elements, N = n nodes, and a total
of 3∗n dofs, only 3∗ n−1 of which are “free” (unconstrained) since node 1 is fixed in
translation and rotation.

Objectives: Demonstrate element convergence and calculation of natural frequencies and
mode shapes of the ring.

Assumptions: Euler–Bernoulli beam theory is applicable.

Solution: The table below shows the fixed global dof numbers stored in the array
fixeddof(i):

i Global node ki Local dof di fixeddof(i)

1 1 1 1
2 1 2 2
3 1 3 3

The nodal coordinates, element lengths, and orientation angles (ref. Figures 9.2.4 and
E9.2.4(a)) are

x1i =R∗cos i−1 Δθ , x2i =R∗sin i−1 Δθ 1

Le = x1,e + 1−x1,e
2 + x2,e + 1−x2,e

2 e= 1,…,n−1 2

δe = tan
−1 x2,e+ 1−x2,e

x1,e+ 1−x1,e
e = 1,…,n−1 3

The larray of (9.2.80) is

L= l1 l2 l3∗n = 0 0 0 1 2 3 3∗ n−1 4

The jarray of (4.8.34) contains the full system, dof numbers for the dof which appear in
the displacement vector q

f
of free dofs. For this example

J = j1 j2 j3∗ n−1 = 4 5 6 7 8 9 3∗n 5

This array is used to assemble the full system response vector from the free dof response
vector as demonstrated in Example 9.2.2. The nodal B connectivity array is

0 0.2 0.4 0.6
0

0.2

0.4

0.6

×1

×
2

0 0.2 0.4 0.6
0

0.2

0.4

0.6

×1

×
2

0 0.2 0.4 0.6
0

0.2

0.4

0.6

×1

×2

Figure E9.2.3(b) Mode shapes for the first (left), second (middle), and third (right) modes. Dashed line indicates
undeformed geometry
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Be1 = e, Be2 =
e + 1, e n

1, e= n
6

The dof B connectivity array is obtained from (6) and (9.2.79). The geometric and
material properties of the uniform ring are

Ae = 0 01 m2, Ie =
0 14

12
= 8 333 × 10−6m4, E = 210 × 109 N m2, ρ= 7800 kg m3 7

A MATLAB code similar to that provided in Figure 9.2.2 defines and assembles the
matrix quantities and determines the natural frequencies and mode shapes. The lowest four
natural frequencies appear in Table E9.2.4(a) for various number (n) of elements. The results
show convergence of the lowest 4 modes with approximately 50 elements.

The corresponding mode shapes for the 10- and 100-element cases are shown in
Figures E9.2.4(b)-(i) and E9.2.4(b)-(ii), respectively.

Next, consider the ring with the same geometry and material properties however with
the three constraints removed so that the ring is free to move with rigid body motion. The six
lowest natural frequencies of a 100-element model are shown in Table E9.2.4(b).

Table E9.2.4(a) Lowest four natural frequencies in radian per second for node 1 fixed

E (no. of elements) ω1 ω2 ω3 ω4

4 109 276 1016 1715
10 89 250 530 900
20 86 241 512 869
50 85 239 507 860

100 85 239 506 859

Figure E9.2.4(a) Ring structure beam model with a variable number of elements
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9.2.8 Imposed Support Excitation Modeling

The preceding sections treated the case where all imposed displacements were zero. The
more general case is when some of the imposed displacements are nonzero, for example,
a piping system which is vibrated by support motion at some locations but fixed to ground
at other locations. The assembly procedure must be modified for this case to yield the
following system equations:

Mf
Nf ×Nf

q
f

Nf × 1

+ Cf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff t
Nf × 1

+ HM
Nf ×m

q
E
t

m× 1

+ HC
Nf ×m

q
E
t

m × 1

+ HK
Nf ×m

qE t
m × 1

9 2 86

where q
E
t is a m × 1 vector of nonzero, imposed (support) displacements and m is the

number of nonzero, imposed (support) displacements. The larray is defined in the same
manner as in (9.2.80):

L= l1 l2 lN
li = position of dof qi in the “free” dof vector qf
li = 0 if qi is constrained

9 2 87

Table E9.2.4(b) Lowest six natural frequencies of free (unconstrained) ring

i fi (Hz) finite elements fi (Hz) handbook
a

1 0b —

2 0 —

3 0 —

4 15.99 15.99
5 45.24 45.23
6 86.74 79.8

aHarris and Piersol (2002).
bRigid body modes.

(i)

(ii)

Figure E9.2.4(b) Mode shapes for the first through fourth modes (left to right) with a (i) 10-element
model and (ii) 100-element model. Dashed line indicates undeformed geometry
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The array of constrained (either zero or imposed) dofs fixeddof defined in (9.2.81)
includes all dofs with either zero or nonzero imposed displacements. The mass, damping,
and stiffness matrices and force vector in (9.2.86) are formed identically as previously as
shown in Figure 9.2.6. The larray has zeros at all dofs with (zero or nonzero) imposed dis-
placements. The remaining matrices HM, HC, HK are obtained by considering the
identity (2.6.30):

A
n×m

x
m× 1

= A 1 A2 Am x=
m

i= 1

xiAi n × 1 9 2 88

where A represents the mass, damping, or stiffness matrices and x represents the accelera-
tion, velocity, or displacement vectors. Suppose x(t) is given (imposed) at dof k. Then
(9.2.88) may be written

A
n × n−1

x
n−1 × 1

=
n−1

i= 1
i k

xi Ai = −xk t Ak n × 1 9 2 89

Thus, the term on the right-hand side of (9.2.89) becomes a pseudo forcing term with
a coefficient vector Ak. This is the basis for forming the right-hand side term in (9.2.86):

HM
Nf ×m

q
E
t

m× 1

+ HC
Nf ×m

q
E
t

m × 1

+ HK
Nf ×m

q
E
t

m × 1

9 2 90

Recognition of this leads to the following algorithm for determining HM ,HC,HK in
(9.2.86). With reference to Figure 9.2.6, allow r and s to range over all entries in the element
matrix (r = 1, 6 and s = 1, 6 for the 2D beam element). Let e range over all elements in the
model (e = 1, E). Denote the set of dofs with nonzero imposed displacements as members of
the integer array

i1 i2 ip im 9 2 91

This is a subset of ifixeddof defined in (9.2.81). Then add the following assembly step to
Figure 9.2.6:

if lBes
= 0 AND if lBer

0 AND if Bes = ip for some value of p p = 1,2,…,m

then

Add − Ke
rs
into HK lBer ,p

, Add − Ce
rs
into HC lBer ,p

,

Add − Me
rs
into HM lBer ,p

9 2 92

Equation (9.2.86) can be solved by using the numerical integration techniques pre-
sented in Section 6.4, or if steady-state vibrations due to harmonic loading are sought, then
by using the complex variable approach in (7.5.1)–(7.5.8). In the latter approach, make the
substitutions:

q
f
=Q

f
eiωt, Ff =Ff e

iωt, q
E
=Q

E
eiωt 9 2 93
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The phasor displacement response vector Q
f
is then obtained by solving the following

set of complex, linear algebraic equations:

−ω2Mf + iωCf +Kf Q
f
=Ff + −ω2HM + iωHC +HK Q

E
9 2 94

The amplitude and phase angle of the jth dof are then obtained from (7.5.7) as

Qfj = Re Qfj
2
+ Im Qfj

2
and ϕQfj = tan

−1 Im Qfj

Re Qfj

9 2 95

EXAMPLE 9.2.5 Piping System with Support Excitation

Statement: A run of piping is attached by flange to a large compressor mounted on an indus-
trial steel frame platform. Mass imbalance forces in the compressor cause the compressor to
vibrate in the vertical and fore and aft directions. The compressor vibration is treated as an
imposed motion on the bottom of the piping run at the discharge flange connection to the
compressor. The top end of the piping run is flanged connected and clamped to a concrete
foundation block which constrains the piping from vibrating. The piping run and its bound-
ary conditions are depicted in Figure E9.2.5(a). There are eight pipe elements of equal length
(2 m), and the remaining material and geometric data is

Ae = 0 0264m2, Ie = 5 83 × 10−4m4, E = 210 × 109N m2, ρ= 7800kg m3 1

The imposed displacements at node 1 are

Horiz q1 = 1cos ωt mm, Vert q2 = 0 5cos ωt mm, Rotation q3 = 0 2

Figure E9.2.5(a) Discharge piping
run of an industrial compressor with
imposed vibration displacements at
the compressor flange
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The amplitudes and phase angles of the external forces and imposed displacements are
expressed in phasor form as

Ff = 0, Q
E
=

0 001∠0
0 0005∠0

m 3

An orthogonal damping matrix is included in the model using the formula (5.4.120):

C0 = μmM+ μkK 4

with

μm = 0, μk = 0 002 5

Objectives: Determine the steady-state harmonic response at several locations on the piping
system versus frequency ω of the imposed deflections.

Assumptions: Euler–Bernoulli beam theory is applicable. Amplitudes and phase angles of
the imposed displacements are constant with frequency.

Solution: The theoretical equations (9.2.94) and (9.2.95) were programmed and solved for
the example. Figure E9.2.5(b) shows the mode shapes and natural frequencies for fixed con-
ditions at both ends of the run. Figure E9.2.5(c) shows the response amplitudes versus fre-
quency at nodes 2 and 5.
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0
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4

5

6
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8

9

×
2

Frequency = 13.7 Hz 

0 2 4 6 8
×1

Frequency = 33.3 Hz 

Figure E9.2.5(b) Lowest two mode shapes and natural frequencies for fixed end conditions
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9.3 THREE-DIMENSIONAL TIMOSHENKO BEAM ELEMENTS:
INTRODUCTION

Almost all actual frame-type structures are three-dimensional (3D) in geometry, boundary
conditions, or loading. Although 2D frames provide a good pedagogical tool to illustrate
the procedure for forming a frame model, 3D beams are typically required for most engineer-
ing applications. A second improvement presented in this section is the replacement of Euler
beam theory with Timoshenko beam (TB) theory. This provides higher accuracy by including
shear deformation effects, that is, removal of the kinematic assumption that plane cross sec-
tions remain perpendicular to the neutral axis after deformation. Removing this assumption
results in increased beam flexibility and reduced natural frequencies. Beam elements are com-
monly employed to model frame-type structures such as offshore and industrial equipment
platforms and buildings and for modeling piping systems and rotating machinery shafting.
Figure 9.3.1 represents the side view of a reciprocating compressor for natural gas transmis-
sion and its piping system. The cylinders and their support structures may be up to 2 m long
and extend from the side of the compressor frame. Vertical suction and discharge pipes are
connected to the cylinders and to large horizontal vessels. These vessels (bottles) contain spe-
cially designed baffles to attenuate dynamic pressure pulsations that originate in the piston/
cylinder valves and if not suppressed can cause severe vibration and failure of the attached
pipeline. Figure 9.3.2 shows a 3D beammodel for the cylinders, suction and discharge bottles,
and attached piping. Clamps and flanges are included in the model as spring attachments to
ground and localized added inertias. The model was used to develop modifications to prevent
repeated high-cycle fatigue failures in the attached high-pressure natural gas piping.

Figure 9.3.3 shows a photograph of the crankshaft of a large reciprocating compressor
and a drawing of its beam and “brick” (solid) element models. These models were utilized to

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Node 2 horiz solid, Node 5 horiz dash, Node 5 vert  dash-dot

Frequency (Hz)

D
is

p 
(m

m
)

Figure E9.2.5(c) Steady-state harmonic response amplitude at nodes 2 and 5 versus imposed motion shaking
frequency
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compare conventional crankshaft bearing alignment practice with related high-cycle
fatigue life.

Figure 9.3.4 is a model of the drilling deck of an offshore platform that consists of
scores of large I beams and pipes. This model was built to identify modifications to reduce
intolerable vibration of the crew quarters due to forces from a gas reinjection compressor
that was located on the deck. The figure illustrates a mode shape (solid line) of the deck
structure.

Figure 9.3.2 Frame – 3D beam model of the compressor and piping system

Figure 9.3.3 Reciprocating compressor crankshaft and its beam and brick element models

Figure 9.3.1 A three cylinder, natural gas transmission, reciprocating compressor
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9.4 3D TIMOSHENKO BEAM ELEMENTS: NODAL COORDINATES

Figure 9.4.1 shows a single 2-node, 3D beam element, with 6 dofs per node. The 12 dofs
are shown directed in the global (x1, x2, x3) directions. The local dofs and coordinate direc-
tions are shown by Figure 9.4.2 in 3D space and by Figure 9.4.3 as projections onto the
local dof x1−x2 and x1−x3 planes. The local coordinate twist dofs are illustrated in
Figure 9.4.4.

These figures indicate that the 12 × 1 vector of nodal displacements for this element can
be expressed in either local or global coordinates as follows:

Local:

q
e
= qe1 qe2 qe3 qe4 qe5 qe6 qe7 qe8 qe9 qe10 qe11 qe12

T 9 4 1

Global:

q
e
= qe1 qe2 qe3 qe4 qe5 qe6 qe7 qe8 qe9 qe10 qe11 qe12

T 9 4 2

Typically, both local and global displacements are utilized in a frame structure
vibration study, that is, local coordinate displacements are used to calculate reaction
force and stresses, and global coordinate displacements aid in visualizing the motion
of the overall structure. The coordinate transformation matrix between the two sets of
coordinates is used to derive element stiffness and mass matrices and force vectors
and for computing reaction forces and stresses. In order to derive an easily programma-
ble (software) form of this matrix, begin by considering displacement vector V in
Figure 9.4.5, where

V =V1e1 +V2e2 +V3e3 =V1e1 +V2e2 +V3e3 9 4 3

Figure 9.3.4 Frame model of an
offshore platform drilling deck
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Figure 9.4.4 Twist dofs in the local
coordinate system

Figure 9.4.3 Projections of local coordinate displacements and slopes

Figure 9.4.1 Nodal displacements for 3D beam element e in global coordinates

Figure 9.4.2 Nodal displacements of 3D beam
element e in local coordinates
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Equations (2.7.5) and (2.7.6) apply for transforming the components of any vector
between the two rotated coordinate systems in Figure 9.4.5, that is,

V1

V2

V3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

V1

V2

V3

, Cij = cos ∠ei,ej 9 4 4

Figure 9.4.6 shows the local and global coordinate rotations and translations at each
node on a 3D beam element. These are represented by displacement and small-angle rotation
vectors in Figure 9.4.7.

The vectors in Figure 9.4.7 are expressed in both local and global coordinates as

VT1 = q
e
1e1 + q

e
2e2 + q

e
3e3 = q

e
1e1 + q

e
2e2 + q

e
3e3 = translation vector at local node 1 9 4 5

Figure 9.4.6 The 12 local and 12 global displacements at nodes 1 and 2 of element

Figure 9.4.5 Vector V and the local and global coordinate system unit vectors
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VR1 = q
e
4e1 + q

e
5e2 + q

e
6e3 = q

e
4e1 + q

e
5e2 + q

e
6e3 = rotation vector at local node 1 9 4 6

VT2 = q
e
7e1 + q

e
8e2 + q

e
9e3 = q

e
7e1 + q

e
8e2 + q

e
9e3 = translation vector at local node 2 9 4 7

VR2 = q
e
10e1 + q

e
11e2 + q

e
12e3 = q

e
10e1 + q

e
11e2 + q

e
12e3 = rotation vector at local node 2 9 4 8

These vectors transform according to Equation (9.4.4)

V =CV 9 4 9

where rotations are treated as vectors since they are assumed to be infinitesimally small.
These vectors transform according to Equation (9.4.4). Thus, the nodal displacement vector
coordinate transformation for element e becomes

qe1
qe2
qe3
qe4
qe5
qe6
qe7
qe8
qe9
qe10
qe11
qe12

=

Ce
11 Ce

12 Ce
13

Ce
21 Ce

22 Ce
23

Ce
31 Ce

32 Ce
33

0 0 0

0

Ce
11 Ce

12 Ce
13

Ce
21 Ce

22 Ce
23

Ce
31 Ce

32 Ce
33

0 0

0 0

Ce
11 Ce

12 Ce
13

Ce
21 Ce

22 Ce
23

Ce
31 Ce

32 Ce
33

0

0 0 0

Ce
11 Ce

12 Ce
13

Ce
21 Ce

22 Ce
23

Ce
31 Ce

32 Ce
33

qe1
qe2
qe3
qe4
qe5
qe6
qe7
qe8
qe9
qe10
qe11
qe12

9 4 10

Figure 9.4.7 The two nodal translation and two nodal rotation vectors of element e
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or

q
e

nodal displacement

in local coordinates

= Te
transformation matrix

∗ q
e

nodal displacement

in global coordinates

9 4 11

The direction cosines Cij are expressed in terms of (Euler) angles through which the
beam element is successively rotated starting with the beam element’s local axes parallel
to the global axes and ending with the beam element in its actual orientation in the system
being modeled. The first two rotations (δ, ε) are depicted in Figure 9.4.8.

These rotation angles (δ, ε) are determined from the beam’s nodal coordinates as
follows. Let

Δ1 =X21−X11, Δ2 =X22−X12, Δ3 =X23−X13 9 4 12

L = Δ2
1 +Δ

2
2, L= Δ2

1 +Δ
2
2 +Δ

2
3 9 4 13

then

cosδ=Cδ=
Δ1

L
, sinδ= Sδ =

Δ2

L
9 4 14

Cε = cosε = cos −ε =
L

L
, Sε= sinε= −sin −ε = −

Δ3

L
9 4 15

The third (final) rotation γ is taken about the longitudinal axis of the beam and is usually
determined from inspection by the modeler as illustrated by the example in Figure 9.4.9. The
angle γ can be selected arbitrarily if the cross section is circular. In general, the beam will have
two distinct area moments of inertia about its local x2 and x3 axes. Defining the angle γ then
becomes an essential step for insuring the beam’s cross section is properly oriented in
the model.

The desired orientation is shown in Figure 9.4.9(a) and the local coordinates are shown
in Figure 9.4.9(b). Imagine that the beam is originally oriented with its local coordinates
x1,x2,x3 parallel to the global coordinates (x1, x2, x3) as shown in Figure 9.4.9(c). Com-
parison with Figure 9.4.8 shows that successive rotations of

δ= −90 , then ε= 0 , then γ = + 90 9 4 16

rotate the beam into its desired orientation in the frame model as shown in Figure 9.4.9(a).

Figure 9.4.8 Orientation of beam element (e) via angles δ and ε
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The consecutive orientation angles for the general case are illustrated in Figure 9.4.10.
Combining the rotations in Figure 9.4.10 yields

V1

V2

V3

=

1 0 0

0 cosγ sinγ

0 −sinγ cosγ

cosε 0 −sinε

0 1 0

sinε 0 cosε

cosδ sinδ 0

−sinδ cosδ 0

0 0 1

V1

V2

V3

9 4 17

or

V1

V2

V3

=

Cε Cδ Cε Sδ −Sε

Sγ Sε Cδ−Cγ Sδ Sγ Sε Sδ +Cδ Cγ Sγ Cε

Sε Cγ Cδ+ Sγ Sδ Sε Cγ Cδ−Sγ Cδ Cγ Cε

V1

V2

V3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

V1

V2

V3

Figure 9.4.9 Determination of orientation angle γ for an I beam. (a) Actual orientation of element in
assembled structure, (b) Starting orientation in sequence of rotations, and (c) Rotations between starting
and actual orientations
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where
C cos and S sin 9 4 18

Substitution of (9.4.14) and (9.4.15) into (9.4.18) yields

V1

V2

V3

=

Δ1

L

C11

Δ2

L

C12

Δ3

L

C13

−
Δ1Δ3

LL
sinγ−

Δ2

L
cosγ

C21

−
Δ2Δ3

LL
sinγ +

Δ1

L
cosγ

C22

L

L
sinγ

C23

−
Δ1Δ3

LL
cosγ +

Δ2

L
sinγ

C31

−
Δ2Δ3

LL
cosγ−

Δ1

L
sinγ

C32

L

L
cosγ

C33

×

V1

V2

V3

9 4 19

Figure 9.4.10 Orienting an element via three successive Euler angle rotations (δ, ε, γ)
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or

V =CV 9 4 20

For the special case when the element is pointed along the x3 axis

Δ1 =Δ2 = L = 0 9 4 21

which corresponds to

δ= 0 , ε = ± 90 , γ arbitrary 9 4 22

Note that the 1/L terms go to infinity in this case so Equation (9.4.19) should be
replaced by

V1

V2

V3

=

0

C11

0

C12

i1

C13

− i1sinγ

C21

cosγ

C22

0

C23

− i1cosγ

C31

−sinγ

C32

0

C33

V1

V2

V3

where i1 =
1, X13 <X23

−1, X13 >X23
9 4 23

Equation (9.4.23) is obtained by substituting (9.4.22) into (9.4.18). The above transfor-
mation equations are also applicable to nodal force and moment vectors.

9.5 3D TIMOSHENKO BEAM ELEMENTS: SHAPE FUNCTIONS,
ELEMENT STIFFNESS, AND MASS MATRICES

The Hermite cubic polynomial shape functions in (9.2.4) satisfy the static equilibrium equa-
tions and the consistency condition (9.2.5) for the unforced Euler–Bernoulli beam model.
The shape functions satisfying similar conditions for the TB are not commonly shown in the
literature and will be determined by solving the TB static equilibrium differential equations.
The solution of the statics problem will also provide the element stiffness matrix in
Lagrange’s equations (4.7.61) for the element, that is,

Meqe +Keqe =Q−
∂ ℑc +ℑd

∂q
9 5 1

The validity of obtaining the stiffness matrix by solving the static equilibrium equations
instead of using the finite element equation (4.7.58)

∂U

∂q
e

=Keqe t 9 5 2

follows by noting that for statics problems the Lagrange equation

nd

dt

∂T

∂q
e

−
∂T

∂q
e

=Q
e
−
∂U

∂q
e

−
∂ ℑc +ℑd

∂q
e

9 5 3
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reduces to

Q
e
=
∂U

∂q
e

9 5 4

Thus, derivation of the stiffness matrix by relating forces and displacements in the stat-
ics problem solution (9.5.4) or by using the direct finite element approach (9.5.2) will pro-
duce identical results. The same shape functions obtained from the statics problem solution
will also be used to derive the element mass matrix and force vector. So these terms may be
referred to as the “consistent mass matrix” and “consistent element force” vector for the TB
element. Related developments in the literature use the Euler–Bernoulli shape functions for
determining the Timoshenko element mass matrix. This approach effectively expresses
velocities in terms of shape functions that differ from those used for displacement interpo-
lation when evaluating the element’s kinetic energy for obtaining the element mass matrix.
The following development uses the same shape functions for deriving both the element
mass and stiffness matrices, thereby producing a truly “consistent” element mass matrix.

The equations of motion utilize the strain–displacement relations for the element which
differ from those used for Euler–Bernoulli beams. The Euler–Bernoulli beam kinematic
constraint conditions are:

(a) Plane sections remain plane.

(b) Plane sections remain perpendicular to the neutral axis before and after deformation.

These assumptions imply that

εBx3 = −x2
∂

∂x1

∂u2
∂x1

9 5 5

where the coordinates and displacement are shown in Figure 9.5.1 and ũ2 is the displacement
of the neutral axis in the x2 direction. This “beam curvature” formula previously appeared in
Equation (14) of the Lagrange equation Example 4.6.3 and in (5.5.91) for the beam natural
frequency derivation.

Constraint (b) was removed by (Timoshenko and Goodier, 1970) providing an addi-
tional deformation mode so that point a moves axially only to a instead of to a , where
b−a is perpendicular to the neutral axis.

Figure 9.5.1 Kinematics for beam deformation in the (a) x1−x2 and (b) x1−x3 planes
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9.5.1 Strain–Displacement Relations and Shear Form Factors

The neutral axis slope ∂u2 ∂x1 is replaced by the coordinate θ3 in (9.5.5) yielding

εBx3 = −x2
∂θ3
∂x1

9 5 6

Similarly for the x1−x3 plane

εBx2 = −x3
∂

∂x1
−θ2 = x3

∂θ2
∂x1

9 5 7

Shear strains are defined by Equation (A.3.16), that is,

γx1x2 =
∂u1
∂x2

+
∂u2
∂x1

, γx1x3 =
∂u1
∂x3

+
∂u3
∂x1

9 5 8

Note by Figure 9.5.1

θ3 = −
∂u1
∂x2

, θ2 =
∂u1
∂x3

9 5 9

so (9.5.8) may be written

γx1x2 = −θ3 +
∂u2
∂x1

, γx1x3 = θ2 +
∂u3
∂x1

9 5 10

which are consistent with Figure 9.5.1. Note if shear deformation is neglected

γx1x2 = γx1x3 = 0 9 5 11

(9.5.10) implies

θ3 =
∂u2
∂x1

, θ2 = −
∂u3
∂x1

9 5 12

Substitution of (9.5.12) into (9.5.6) yields (9.5.5) as expected for Euler–Bernoulli beam
theory.

Similar to shear strains, shear stresses vary over the cross section and with position
along the beam, that is, from the constitutive law (A.4.3)

τx1x2 =Gγx1x2 x1,x2,x3 , τx1x3 =Gγx1x3 x1,x2,x3 9 5 13

where G is the shear modulus of elasticity. The respective shear forces are

Vx2 =
A x1

τx1x2dA= τavex1x2
A, Vx2 =

A x1

τx1x3dA = τavex1x3
A 9 5 14

where ave indicates the average value over the cross section. The “plane sections remain
plane” assumption of Euler beam theory is retained by TB theory. Thus, from
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Figure 9.5.1, the shear strains vary only with axial position x1 . Define the “effective” shear
stresses

τx1x2 x1 =Gγx1x2 x1 and τx1x3 x1 =Gγx1x3 x1 9 5 15

which like the corresponding shear strains only vary with axial position x1 . These are
related to the average shear stresses by

τavex1x2
= k2τx1x2 x1 = k2Gγx1x2 x1 , τavex1x3

= k3τx1x3 x1 = k3Gγx1x3 x1 9 5 16

Therefore, from (9.5.14) to (9.5.16),

Vx2 = k2AGγx1x2 , Vx3 = k3AGγx1x3 9 5 17

The factor k that relates the effective shear stresses to the average shear stresses

τavex1x2 =
Vx2

A
, τavex1x3 =

Vx3

A
9 5 18

has been determined so that the effective shear stresses in (9.5.15)

τx1x2 =
τavex1x2

k2
=
Vx2

k2A
, τx1x3 =

τavex1x3

k3
=
Vx3

k3A
9 5 19

acting over the effective areas

As2 = k2A, As3 = k3A 9 5 20

produce the same strain energy as the actual shear stresses τx1x2 ,τx1x3 acting over the actual
cross section area A as discussed in Bathe (1982). Interesting discussions of kmay be found
in many references, such as Dym and Shames (1973) and Cowper (1966). Figure 9.5.2
shows the shear stress distribution on a rectangular cross section due to x2 direction loading.
The corresponding k value is from (Dym and Shames, 1973):

k =
10 1 + v
12 + 11v

9 5 21

where v is the Poisson’s ratio.
Shear form factors k from Cowper (1966) for other cross sections are provided

in Figure 9.5.3. Note that from (9.5.17) the “no-shear” case can be studied by setting
1/(k2AG) and 1/(k3AG) to zero.

Figure 9.5.2 Shear stress distribution over the cross section of a rectangular-shaped beam
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Other geometric properties of the beam’s cross section include the area, and the area
moments of inertia which are shown below:

Cross-Sectional Area:

Ae =
Ae

dx2dx3

Area Moments:

Iex2 =
Ae

x23dA and Iex3 =
Ae

x22dA 9 5 22

Torsion Constant:

J =
Ae

f 2T x2,x3 dA

where fT = torsion constant that depends on the shape of the cross section.

Figure 9.5.3 Shear form factors for some common cross sections (v= Poisson ratio)
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9.5.2 x1−x2 Plane, Translational Differential Equations, Shape Functions,
and Stiffness and Mass Matrices

The axial strain distribution due to an axial force Px1 and bending momentMx3 is illustrated
in Figure 9.5.4.

The strain and stress are obtained from this figure and (9.5.6) as

εx1x1 =
∂u1
∂x1

−x2
∂θ3
∂x1

σx1x1 =Eεx1x1 =E
∂u1
∂x1

−Ex2
∂θ3
∂x1

9 5 23

The bending moment Mx3 is the stress resultant

Mx3 =
A
x2 −σx1x1dA = −E

∂u1
∂x1 A

x2dA +E
∂θ3
∂x1 A

x22dA 9 5 24

The x2dA integral is zero if the cross section is symmetric about the neutral axis. There-
fore, substituting (9.5.22) into (9.5.24) yields

Mx3 =EIx3
∂θ3
∂x1

9 5 25

Consider equilibrium of the differential length beam with shear forces V and bending
moments M as shown in Figure 9.5.5.

Taking moments about the left-hand side of the beam yields

Mx3 +
∂Mx3

∂x1
dx1 + dx1 Vx2 +

∂Vx2

∂x1
dx1 −Mx3 = 0 9 5 26

Figure 9.5.5 Free-body diagram of a differential beam in the x1−x2 plane

Figure 9.5.4 Axial strain distribution for x1−x2 plane deformation
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and canceling second-order terms yields

∂Mx3

∂x1
+Vx2 = 0 9 5 27

Similarly, summing forces yields

−Vx2 +Vx2 +
∂Vx2

∂x1
dx1 = 0

∂Vx2

∂x1
= 0 9 5 28

Finally, recall from (9.5.10) and (9.5.17)

Vx2 = k2AGγx1x2 = k2AG −θ3 +
∂u2
∂x1

9 5 29

or

∂u2
∂x1

= θ3 +
Vx2

k2AG
9 5 30

Expressing Equations (9.5.25), (9.5.27), (9.5.28), and (9.5.30) in matrix form yields

Governing Equations for Static Beam Deformation in the x1−x2 Plane

dz12

dx1
=G12z12 4 × 1 9 5 31

where

z12 =

D12

2 × 1

F12

2 × 1

=

u2

θ3

Vx2

Mx3

, G12 =

0 1 a12 0

0 0 0 b12

0 0 0 0

0 0 −1 0

, a12 =
1

k2AG
, b12 =

1
EIx3

9 5 32

The Maple code in Appendix B provides a symbolic solution of the system of
ordinary differential equations in (9.5.31) and (9.5.32) for the state vector z12 x1 at an
arbitrary location x1 as shown in Figure 9.5.6 and with the initial conditions

z12 x1 = 0 = u20 θ30 Vx20 Mx30
T

9 5 33

Figure 9.5.6 Free-body diagram of a beam in the x1−x2 plane

Chapter 9 Beam Finite Elements for Vibration Analysis 685

www.konkur.in



The Appendix B Maple symbolic solution of (9.5.31) yields

z x1 =

D
2 × 1

F
2 × 1 x1

=

u2

θ3

Vx2

Mx3 x1

=

A11
2 × 2

A12
2 × 2

A21
2 × 2

A22
2 × 2

u20

θ30

−Vx20

−Mx30

9 5 34

where

A11
2 × 2

=
1 x1

0 1
, A12

2 × 2
=

−
b12
6
x31 + a12x1

b12
2
x21

−
b12
2
x21 b12x1

, A21
2 × 2

=
0 0

0 0
, A22

2 × 2
=

1 0

−x1 1

9 5 35

or

D

F
x1

=
A11 −A12

A21 −A22

D0

F0

where D0 =
u20

θ30
and F0 =

Vx20

Mx30
9 5 36

or

D x1 =A11 x1 D0−A12 x1 F0 and F x1 =A21 x1 D0−A22 x1 F0 9 5 37

Evaluating at x1 = L yields

DL =D L =A11 L D0−A12 L F0 and FL =F L =A21 L D0−A22 L F0 9 5 38

Solving for F0 yields

F0 =A
−1
12 L −D L +A11 L D0 9 5 39

Substitute (9.5.39) into D x1 in (9.5.37) to obtain

D x1
2 × 1

=
u2 x1

θ3 x1
= N12 x1

2 × 4

D0
2 × 1

DL
2 × 1

= N12 x1
2 × 4

u2 0

θ3 0

u2 L

θ3 L

9 5 40

where

N12 x1 =
N12
11 x1 N12

12 x1 N12
13 x1 N12

14 x1

N12
21 x1 N12

22 x1 N12
23 x1 N12

24 x1

= A11 x1 −A12 x1 A−1
12 L A11 L A12 x1 A−1

12 L

9 5 41
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The Maple code in Appendix B substitutes (9.5.35) into (9.5.41) to obtain the
Timoshenko shape functions

N12
11 = γ

12
1 L3 + 2x31−3x

2
1L + 12γ122 L−x1

N12
12 = γ

12
1 x1L3 + x31L−2x

2
1L

2 + 6γ122 x1 L−x1

N12
13 = −γ121 2x31−3x

2
1L + γ122 12x1

N12
14 = γ

12
1 x31L−x

2
1L

2 + 6γ122 x1 x1−L

N12
21 = 6γ

12
1 x1 x1−L

N12
22 = γ

12
1 L3 + 3x21L−4x1L

2 + 12γ122 L−x1

N12
23 = −6γ121 x1 x1−L

N12
24 = γ

12
1 x1 3x1L−2L2 + 12γ122 x1

9 5 42

where

Φ12 =
12EIx3
k2AGL2

=
24Ix3 1 + v

k2AL2
, γ121 =

1
L3 1 +Φ12

, γ122 =
1

12L 1 +Φ−1
12

9 5 43

and v is the beam material’s Poisson ratio. Note from (9.5.42)

N12 0 =
1 0 0 0

0 1 0 0
, N12 L =

0 0 1 0

0 0 0 1
9 5 44

which must be the case since the interpolations in (9.5.40) must yield nodal values when
evaluated at the node locations (consistency condition (2.11.37)). Shear deformation may
be neglected by setting 1/(k2A) equal to zero, which from (9.5.43) yields

Φ12 = 0, γ121 =
1
L3

, γ122 = 0 9 5 45

Substitution of (9.5.45) into (9.5.42) yields the Euler–Bernoulli beam, Hermite cubic
polynomial shape functions, and their derivatives in (9.2.4) and (9.2.6). Thus, the TB shape
functions differ from the Euler–Bernoulli shape functions.

From (9.5.38) and (9.5.39),

FL = A21 L −A22 L A−1
12 L A11 L D0 +A22 L A−1

12 L DL 9 5 46

Equations (9.5.39) and (9.5.46) may be combined to form the matrix equation

F12 =

F0
2 × 1

FL
2 × 1

=

K12
11

2 × 2
K12
12

2 × 2

K12
21

2 × 2
K12
22

2 × 2

D0
2 × 1

DL
2 × 1

=K
12
D12 9 5 47

where

K
12
11 =A

−1
12 L A11 L , K

12
12 = −A−1

12 L

K
12
21 =A21 L −A22 L A−1

12 L A11 L , K
12
22 =A22 L A−1

12 L 9 5 48
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D0 =
u20

θ30
, DL =

u2L

θ3L
, D12 =

D0
2 × 1

DL
2 × 1

= u20 θ30 u2L θ3L
T

9 5 49

F0 =
Vx20

Mx30
, FL =

Vx2L

Mx3L
9 5 50

The operations in (9.5.47) and (9.5.48) are performed symbolically in the Appendix B
Maple code using the Aij in (9.5.35) yielding the x1−x2 plane, bending plus shear, TB stiff-

ness matrix

K
12

4×4
=

12EIx3
L3 1 +Φ12

6EIx3
L2 1 +Φ12

−12EIx3
L3 1 +Φ12

6EIx3
L2 1 +Φ12

6EIx3
L2 1 +Φ12

EIx3 4 +Φ12

L 1 +Φ12

−6EIx3
L2 1 +Φ12

EIx3 2−Φ12

L 1 +Φ12

−12EIx3
L3 1 +Φ12

−6EIx3
L2 1 +Φ12

12EIx3
L3 1 +Φ12

−6EIx3
L2 1 +Φ12

6EIx3
L2 1 +Φ12

EIx3 2−Φ12

L 1 +Φ12

−6EIx3
L2 1 +Φ12

EIx3 4 +Φ12

L 1 +Φ12

2 6 8 12

2

6

8

12

9 5 51

The numbers above and to the right of the matrix result from a comparison of
Figures 9.4.3 and 9.5.6, which shows that the dofs for u20,θ30,u2L, and θ3L are q2,q6,q8,
and q12, respectively. Equation (9.5.45) may be substituted into (9.5.51) for the “no-shear
deformation” case. This yields the previously obtained Euler–Bernoulli stiffness matrix
(9.2.23b) (with rows and columns 1 and 4 deleted).

The elementmassmatrix is derived startingwith consideration of the kinetic energy of the
beam element. Figure 9.5.7 shows a differential slice of a uniform cross section beam element.

Generalization of (4.2.14) for small motions provides the kinetic energy of the differ-
ential length as

dT =
1
2
nVG

nVGdm +
1
2

ωb n
T
IB b
G ωb n

b

≈
dm

2
∂u1
∂t

2

+
∂u2
∂t

2

+
∂u3
∂t

2

+
I1
2

∂θ1
∂t

2

+
I2
2

∂θ2
∂t

2

+
I3
2

∂θ3
∂t

2 9 5 52

where

Figure 9.5.7 Differential length slice of
a uniform beam element
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I1 =
A
x22 + x

2
3 dm= ρdx1

A
x22 + x

2
3 dA = ρJpdx1

I2 =
A
dx21 + x

2
3 dm≈

A
x23ρdAdx1 = ρdx1Ix2

I3 =
A
dx21 + x

2
2 dm≈

A
x22ρdAdx1 = ρdx1Ix3

9 5 53

Ix2 =
A
x23dA = area moment of inertia about the x2 axis

Ix3 =
A
x22dA = area moment of inertia about the x3 axis

Jp =
A
x22 + x

2
3 dA= Ix2 + Ix3 = area polar moment of inertia

It then follows that the kinetic energy contributions from translation and rotation in the
x1−x2 plane are

Tx1x2 =
ρA

2

L

0

∂u2
∂t

2

dx1

translation term

+
ρIx3
2

L

0

∂θ3
∂t

2

dx1

rotary inertia term

9 5 54

Recall from (9.5.40) and (9.5.41)

u2 x, t =N12u x1 u12 t = N12
11 N12

12 N12
13 N12

14 ∗ u20 θ30 u2L θ3L
T

9 5 55

θ3 x, t =N12θ x1 u12 t = N12
21 N12

22 N12
23 N12

24 ∗ u20 θ30 u2L θ3L
T

9 5 56

where the shape functions N12
i j are defined in (9.5.42). Utilize (9.5.54)–(9.5.56) and the

identity in (2.6.46) to obtain

Tx1x2 =
1
2
u
T

12M12uu12 +
1
2
u
T

12M12θu12 9 5 57

where u12 = u20 θ30 u2L θ3L
T
and the translation and rotary inertia, consistent mass

matrices are (as in (4.7.47))

M12u = ρA
L

0
NT
12uN12udx1, M12θ = ρIx3

L

0
NT
12θN12θdx1 9 5 58

The fact that these are the mass matrices in the Newton’s law inertia force term follows
from the Lagrange’s equation expression (4.5.106b) and the quadratic form vector differen-
tiation identity ((2.6.41), (2.6.42a), (2.6.42b)):

f
iner

=
d

dt

∂T

∂q
=
d

dt
Meu =Meu 9 5 59

Chapter 9 Beam Finite Elements for Vibration Analysis 689

www.konkur.in



Comparison of Figures 9.4.3 and 9.5.6 shows that u20,θ30,u2L, and θ3L are dofs
q2,q6,q8, and q12, respectively. The integrations in (9.5.58) are performed in the Appendix B
Maple code yielding the results

M12u =
ρAL

420∗ b12L2 + 12a12
2

a12u1

a12u2 a12u5 symmetric

a12u3 −a12u4 a12u1

a12u4 a12u6 −a12u2 a12u5

2 6 8 12
2

6

8

12

9 5 60

where

a12u1 = 156b212L
4 + 3528a12b12L2 + 20160a212, a12u2 = 2L 11b212L

4 + 231a12b12L2 + 1260a212

a12u3 = 54b212L
4 + 1512a12b12L2 + 10080a212, a12u4 = −L 13b212L

4 + 378a12b12L2 + 2520a212

a12u5 = L2 4b212L
4 + 84a12b12L2 + 504a212 , a12u6 = −3L2 b212L

4 + 28a12b12L2 + 168a212
9 5 61

M12θ =
ρIx3L

30∗ b12L2 + 12a12
2

a12θ1

a12θ2 a12θ3 symmetric

−a12θ1 −a12θ2 a12θ1

a12θ2 a12θ4 −a12θ2 a12θ3

2 6 8 12
2

6

8

12

9 5 62

where

a12θ1 = 36b212L
2, a12θ2 = −3Lb12 −b12L2 + 60a12

a12θ3 = 4b212L
4 + 60a12b12L2 + 1440a212, a12θ4 = −b212L

4−60a12b12L2 + 720a212
9 5 63

where a12 and b12 are defined in (9.5.32). For the case of no-shear deformation a12 = 0 ,
these matrices become

M12u a12 = 0
=
ρAL

420

156

22L 4L2 symmetric

54 13L 156

−13L −3L2 −22L 4L2

2 6 8 12
2

6

8

12

9 5 64

M12θ a12 = 0
=
ρIx3
30L

36

3L 4L2 symmetric

−36 −3L 36

3L −L2 −3L 4L2

2 6 8 12
2

6

8

12

9 5 65

The translational, consistent mass matrix in (9.5.64) appears in some finite element and
vibration books, such as Cook et al. (1989).

690 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



9.5.3 x1−x3 Plane, Translational Differential Equations, Shape Functions, and
Stiffness and Mass Matrices

The axial strain distribution due to an axial force Px1 and bending moment Mx3 is shown in
Figure 9.5.8.

The strain and stress are obtained from this figure and Equation (9.5.7) as

εx1x1 =
∂u1
∂x1

+ x3
∂θ2
∂x1

σx1x1 =Eεx1x1 =E
∂u1
∂x1

+Ex3
∂θ2
∂x1

9 5 66

The bending moment Mx2 is the stress resultant

Mx2 =
A
x3 −σx1x1dA = −E

∂u1
∂x1 A

x3dA +E
∂θ2
∂x1 A

x23dA 9 5 67

The x3 dA integral is zero if the cross section is symmetric about the neutral axis. There-
fore, substituting (9.5.22) into (9.5.67) yields

Mx2 =EIx2
∂θ2
∂x1

9 5 68

Consider the equilibrium of the differential length beam with shear force V and bending
moment M, as shown in Figure 9.5.9.

Taking moments about the left-hand side of the beam yields

Mx2 +
∂Mx2

∂x1
dx1 − dx1 Vx3 +

∂Vx3

∂x1
dx1 −Mx2 = 0 9 5 69

Figure 9.5.9 Free-body diagram of a differential beam in the x1−x3 plane

Figure 9.5.8 Axial strain distribution for x1−x3 plane deformation
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and canceling second-order terms yields

∂Mx2

∂x1
−Vx3 = 0 9 5 70

Similarly, summing forces yields

−Vx3 +Vx3 +
∂Vx3

∂x1
dx1 = 0

∂Vx3

∂x1
= 0 9 5 71

Finally, recall from (9.5.10) and (9.5.17)

Vx3 = k3AGγx1x3 = k3AG θ2 +
∂u3
∂x1

9 5 72

or

∂u3
∂x1

= −θ2 +
Vx3

k3AG
9 5 73

Expressing Equations (9.5.68), (9.5.70), (9.5.71), and (9.5.73) in matrix form yields

Governing Equations for Static Beam Deformation in the x1−x3 Plane

dz13

dx1
=G13z13 4 × 1 9 5 74

where

z13 =

D13

2 × 1

F13

2 × 1

=

u3

θ2

Vx3

Mx2

, G13 =

0 −1 a13 0

0 0 0 b13

0 0 0 0

0 0 1 0

, a13 =
1

k3AG
, b13 =

1
EIx2

9 5 75

The Maple code in Appendix B provides a symbolic solution of the system of ordinary
differential equations in (9.5.74) and (9.5.75) yielding

z x1 =

D
2 × 1

F
2 × 1 x1

=

u3

θ2

Vx3

Mx2 x1

=

A11
2 × 2

A12
2 × 2

A21
2 × 2

A22
2 × 2

u30

θ20

−Vx30

−Mx20

9 5 76

where

A11
2 × 2

=
1 −x1

0 1
, A12

2 × 2
=

−
b13
6
x31 + a13x1 −

b13
2
x21

b13
2
x21 b13x1

, A21
2 × 2

=
0 0

0 0
, A22

2 × 2
=

1 0

x1 1

9 5 77
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Eq. (9.5.76) becomes

D

F
x1

=
A11 −A12

A21 −A22

D0

F0

9 5 78

where

D0 =
u30

θ20
, F0 =

Vx30

Mx20
9 5 79

For arbitrary x1, Equation (9.5.78) becomes

D x1 =A11 x1 D0−A12 x1 F0, F x1 =A21 x1 D0−A22 x1 F0 9 5 80

Evaluating at x1 = L yields

DL =D L =A11 L D0−A12 L F0, FL =F L =A21 L D0−A22 L F0 9 5 81

Solving for F0 yields

F0 =A
−1

12 L −D L +A11 L D0 9 5 82

Substitute (9.5.82) into D x1 in (9.5.80) to obtain

D x1
2 × 1

=
u3 x1

θ2 x1
= N13 x1

2 × 4

D0
2 × 1

DL
2 × 1

= N13 x1
2 × 4

u3 0

θ2 0

u3 L

θ2 L

9 5 83

where

N13 x1 =
N13
11 x1 N13

12 x1 N13
13 x1 N13

14 x1

N13
21 x1 N13

22 x1 N13
23 x1 N13

24 x1

= A11
x1 −A12 x1 A

−1

12 L A11 L A12 x1 A
−1

12 L

9 5 84

The manipulations indicated above are performed in the Maple code in Appendix B
yielding the following “TB” shape functions:

N13
11 = γ

13
1 L3 + 2x31−3x

2
1L + 12γ132 L−x1

N13
12 = −γ131 x1L3 + x

3
1L−2x

2
1L

2 −6γ132 x1 L−x1

N13
13 = −γ131 2x31−3x

2
1L + γ132 12x1

N13
14 = −γ131 x31L−x

2
1L

2 −6γ132 x1 x1−L

N13
21 = −6γ131 x1 x1−L

N13
22 = γ

13
1 L3 + 3x21L−4x1L

2 + 12γ132 L−x1

N13
23 = 6γ

13
1 x1 x1−L

N13
24 = γ

13
1 x1 3x1L−2L2 + 12γ132 x1

9 5 85
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where

Φ13 =
12EIx2
k13AGL2

=
24Ix2 1 + v
k13AL2

, γ131 =
1

L3 1 +Φ13
, γ132 =

Φ13

12L 1 +Φ13
=

1

12L 1 +Φ−1
13

9 5 86

where v is the beam material’s Poisson ratio.
Performing similar operations as in the x1−x2 plane case with the Ai j from (9.5.77)

yields the following result from the Maple code in Appendix B:

F13 =

F0
2 × 1

FL
2 × 1

=

K13
11

2 × 2
K13
12

2 × 2

K13
21

2 × 2
K13
22

2 × 2

D0
2 × 1

DL
2 × 1

=K
13
D13 9 5 87

where

D0 =
u30

θ20
, DL =

u3L

θ2L
, F0 =

Vx30

Mx20
, FL =

Vx3L

Mx2L
9 5 88

The x1−x3 plane, bending plus shear, TB stiffness matrix is

K
13
4 × 4 =

12EIx2
L3 1 +Φ13

−6EIx2
L2 1 +Φ13

−12EIx2
L3 1 +Φ13

−6EIx2
L2 1 +Φ13

−6EIx2
L2 1 +Φ13

EIx2 4 +Φ13

L 1 +Φ13

6EIx2
L2 1 +Φ13

EIx2 2−Φ13

L 1 +Φ13

−12EIx2
L3 1 +Φ13

6EIx2
L2 1 +Φ13

12EIx2
L3 1 +Φ13

6EIx2
L2 1 +Φ13

−6EIx2
L2 1 +Φ13

EIx2 2−Φ13

L 1 +Φ13

6EIx2
L2 1 +Φ13

EIx2 4 +Φ13

L 1 +Φ13

3 5 9 11

3

5

9

11

9 5 89

The numbers above and to the right of the matrix result from Figure 9.4.3 which shows
that the x1−x3 plane dofs are q3,q5,q9, and q11 in the 12-dof element. If shear effects are
neglected,

1
k3A

=Φ13 = 0 9 5 90

andK13 becomes the standard Euler–Bernoulli-type beam stiffness matrix (Cook et al., 1989):

K13 =
EIx2
L3

12 −6L −12 −6L

−6L 4L2 6L 2L2

−12 6L 12 6L

−6L 2L2 6L 4L2

9 5 91

The element mass matrix is derived starting with the consideration of the kinetic energy
of the beam element. Figure 9.5.7 shows a differential slice of a uniform cross section beam
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element. From (9.5.52), the kinetic energy contributions from translation and rotation in the
x1−x3 plane are

Tx1x3 =
ρA

2

L

0

∂u3
∂t

2

dx1

translation term

+
ρIx2
2

L

0

∂θ2
∂t

2

dx1

rotary inertia term

9 5 92

Recall from (9.5.83) and (9.5.84)

u3 x, t =N13u x1 u13 t = N13
11 N13

12 N13
13 N13

14 ∗ u30 θ20 u3L θ2L
T

9 5 93

θ2 x, t =N13θ x1 u13 t = N13
21 N13

22 N13
23 N13

24 ∗ u30 θ20 u3L θ2L
T

9 5 94

where N13
ij are defined in (9.5.85). Utilize (9.5.92)–(9.5.94) and the identity in (2.6.46) to

obtain

Tx1x3 =
1
2
u
T
13M13uu13 +

1
2
u
T
13M13θu13 9 5 95

where

u13 = u30 θ20 u3L θ2L
T

9 5 96

and the translation and rotary inertia, consistent mass matrices are (as in (4.7.47))

M13u = ρA
L

0
NT
13uN13udx1, M13θ = ρIx2

L

0
NT
13θN13θdx1 9 5 97

Figure 9.4.3 shows that u30,θ20,u3L, and θ2L are dofs q3,q5,q9, and q11, respectively.
The integrations in (9.5.97) are performed in the Appendix BMaple code yielding the results

M13u =
ρAL

420∗ b13L2 + 12a13
2

a13u1

a13u2 a13u5 symmetric

a13u3 −a13u4 a13u1

a13u4 a13u6 −a13u2 a13u5

3 5 9 11
3

5

9

11

9 5 98

where

a13u1 = 156b213L
4 + 3528a13b13L2 + 20160a213, a13u2 = −2L 11b213L

4 + 231a13b13L2 + 1260a213
a13u3 = 54b213L

4 + 1512a13b13L2 + 10080a213, a13u4 = L 13b213L
4 + 378a13b13L2 + 2520a213

a13u5 =L2 4b213L
4 + 84a13b13L2 + 504a213 , a13u6 = −3L2 b213L

4 + 28a13b13L2 + 168a213
9 5 99

and

M13θ =
ρIx2L

30∗ b13L2 + 12a13
2

a13θ1

a13θ2 a13θ3 symmetric

−a13θ1 −a13θ2 a13θ1

a13θ2 a13θ4 −a13θ2 a13θ3

3 5 9 11
3

5

9

11

9 5 100
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where

a13θ1 = 36b213L
2, a13θ2 = 3Lb13 −b13L2 + 60a13

a13θ3 = 4b213L
4 + 60a13b13L2 + 1440a213, a13θ4 = −b213L

4−60a13b13L2 + 720a213
9 5 101

and a13 and b13 are defined in (9.5.75). For the case of no-shear deformation a13 = 0 , these
matrices become

M13u a13 = 0
=
ρAL

420

156

−22L 4L2 symmetric

54 −13L 156

13L −3L2 22L 4L2

3 5 9 11
3

5

9

11

9 5 102

M13θ a13 = 0
=
ρIx2
30L

36

−3L 4L2 symmetric

−36 3L 36

−3L −L2 3L 4L2

3 5 9 11
3

5

9

11

9 5 103

The fact that these are the mass matrices in the Newton’s law inertia force term follows
from the Lagrange’s equation expression (4.5.106b) and the quadratic form vector differen-
tiation identity ((2.6.41), (2.6.42)):

f
iner

=
d

dt

∂T

∂q
=
d

dt
Meu =Meu 9 5 104

9.5.4 Axial (Longitudinal) x1 Differential Equation, Shape Functions,
and Stiffness and Mass Matrices

Figure 9.5.10 shows a normal stress acting on the cross section of a beam. Surface equilib-
rium (A.2.3) requires that

p1dA = σx1x1dA=E
∂u1
∂x1

+ bending strains dA 9 5 105

Integrating this equation over the symmetric cross section yields

EA
∂u1
∂x1

=F1 9 5 106

Figure 9.5.10 Axial stress acting on a
beam cross section
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since the bending strains are antisymmetric and thus integrate to zero. Assume that
E,A, andF1 are constant in the beam element and integrate (9.5.106)

u1 =
F1

EA
x1 + u10 9 5 107

Therefore, at x1 = L,

u1L =
F1L

EA
+ u10

F1

EA
=
u1L−u10

L
9 5 108

Insert (9.5.108) into (9.5.107) to obtain

u1 x1 =N11
1 x1 u10 +N

11
2 x1 u1L 9 5 109

where the axial shape functions are

N11
1 x1 = 1−

x1
L
, N11

2 x1 =
x1
L

9 5 110

Evaluation of (9.5.107) at x1 =L yields

u1L =
F1L

EA
+ u10 F1 =

EA

L
u1L−u10 9 5 111

From (9.5.111) and the static equilibrium condition in Figure 9.5.11, F10 = −F1L

F10

F1L

=

EA

L
−
EA

L

−
EA

L

EA

L

u10

u1L
9 5 112

The axial stiffness matrix is seen to be

K11 =

EA

L
−
EA

L

−
EA

L

EA

L

1 7

7

1

9 5 113

The numbers above and to the right of the matrix result from Figure 9.4.3 which shows
that the axial dofs are q1 and q7 in the 12-dof element.

The kinetic energy contribution from axial motion is given in (9.5.52) as

Tax =
1
2

∂u1
∂t

2

dm = ρ
A

2

L

0

∂u1
∂t

2

dx1 9 5 114

From (9.5.109) and (9.5.110)

Figure 9.5.11 Axial nodal forces on a beam element
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u1 x1 =Naxuax = N11
1 N11

2

u10

u1L
, N11

1 = 1−
x1
L
, N11

2 =
x1
L

9 5 115

Therefore,

∂Tax
∂u10
∂Tax
∂u1L

= ρA
L

0

∂ ∂u1 ∂t

∂u10
∗ ∂u1
∂t

∂ ∂u1 ∂t

∂u1L
∗ ∂u1
∂t

dx1 = ρA
L

0

N11
1 Naxuax

N11
2 Naxuax

dx1 =Maxuax 9 5 116

where, as in (4.7.47), the consistent mass matrix is

Max = ρA
L

0

N11
1 N11

1 N11
1 N11

2

N11
2 N11

1 N11
2 N11

2

dx1 = ρA
L

0
NT
axNaxdx1 9 5 117

The integrations in (9.5.117) are performed in the Appendix BMaple code. Figure 9.4.3
shows that the dofs for ũ10 and ũ1L are q1 and q7, respectively. The integration therefore
yields

Max = ρAL

1
3

1
6

1
6

1
3

1 7

7

1

9 5 118

9.5.5 Torsional θ1 Differential Equation, Shape Functions, and Stiffness
and Mass Matrices

The torque along the longitudinal axis of a straight beam is given by Timoshenko and
Goodier (1970):

M1 = 2
A

ϕdx2dx3 9 5 119

where ϕ is a stress potential function that satisfies the Poisson equation

∇2ϕ= −2G
dθ1
dx1

9 5 120

and where G is the shear modulus and dθ1 dx1 is the axial derivative of the twist angle.
Substitution of the solution of (9.5.120) into (9.5.119) yields the general form

M1 =GJ
dθ1
dx1

9 5 121

where J is called the torsion constant, which is found in structural handbooks (e.g., AISC,
1980) for many different cross-sectional shapes. Integration of (9.5.121) yields
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θ1 x1 =
M1x1
GJ

+ θ10 9 5 122

At x= L,

θ1L =
M1L

GJ
+ θ10

M1

GJ
=
θ1L−θ10

L
9 5 123

Insert (9.5.123) into (9.5.122) to obtain

θ1 x1 =Nθ1θ10 +NθLθ1L 9 5 124

where the shape functions are

Nθ1 x1 = 1−
x1
L
, Nθ2 x1 =

x1
L

9 5 125

From (9.5.123) and the static equilibrium condition from Figure 9.5.12, M1L = −M10

M10

M1L

=

GJ

L
−
GJ

L

−
GJ

L

GJ

L

4 10

10

4
θ10

θ1L
9 5 126

The matrix in (9.5.126) is the torsional stiffness matrix. The numbers above and to
the right of the matrix result from Figure 9.4.2 which shows that the torsional dofs are
q4 andq10 in the 12-dof element.

The kinetic energy contribution from torsional motion is given in (9.5.52) as

Ttor =
ρJp
2

L

0

∂θ1
∂t

2

dx1 9 5 127

Recall from (9.5.124) and (9.5.125) that

θ1 x1, t =Nθ1uθ1 = Nθ1 Nθ2
θ10

θ1L
, Nθ1 = 1−

x1
L
, Nθ2 =

x1
L

9 5 128

Therefore,

∂Ttor

∂θ10
∂Ttor

∂θ1L

= ρJp
L

0

∂ ∂θ1 ∂t

∂θ10
∗ ∂θ1
∂t

∂ ∂θ1 ∂t

∂θ1L
∗ ∂θ1
∂t

dx1 = ρJp
L

0

Nθ1Nθ1uθ1

Nθ2Nθ1uθ1
dx1 =Mtoruθ1

9 5 129

where, as in (4.7.47), the consistent mass matrix is

Figure 9.5.12 Twist torques at nodes of a beam
element
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Mtor = ρJp
L

0

Nθ1Nθ1 Nθ1Nθ2

Nθ2Nθ1 Nθ2Nθ2
dx1 = ρJp

L

0
NT
θ1Nθ1dx1 9 5 130

The integrations in (9.5.130) are performed in the Appendix BMaple code. Figure 9.4.2
shows that the dofs for θ10 and θ1L are q4 andq10, respectively. This yields

Mtor = ρJpL

1
3

1
6

1
6

1
3

4 10

10

4

9 5 131

9.5.6 Twelve-Dof Element Stiffness Matrix

Figure 9.5.13 shows all 12 nodal displacement and rotations and forces and moments in
local (element-based) coordinates. In the notation of this figure,

Equations (9.5.47) and (9.5.51) become

f 2

f 6

f 8

f 12

= K
12

4 × 4

q2

q6

q8

q12

4 × 1 9 5 132

Equations (9.5.87) and (9.5.89) become

f 3

f 5

f 9

f 11

= K
13

4 × 4

q3

q5

q9

q11

4 × 1 9 5 133

Figure 9.5.13 Nodal displacements and forces in local coordinates
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Equation (9.5.112) becomes

f 1

f 7
=
EA

L

1 −1

−1 1

q1

q7
2 × 1 9 5 134

and Equation (9.5.126) becomes

f 4

f 10
=
GJ

L

1 −1

−1 1

q4

q10
2 × 1 9 5 135

Collecting all of these terms into a single matrix equation yields

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

f 9

f 10

f 11

f 12

=

EA

L

0
12βa12
L3

0 0
12βa13
L3

symmetric

0 0 0
GJ

L

0 0
−6βa13
L2

0
βb13
L

0
6βa12
L2

0 0 0
βb12
L

−EA

L
0 0 0 0 0

EA

L

0
−12βa12
L3

0 0 0
−6βa12
L2

0
12βa12
L3

0 0
−12βa13
L3

0
6βa13
L2

0 0 0
12βa13
L3

0 0 0
−GJ

L
0 0 0 0 0

GJ

L

0 0
−6βa13
L2

0
βc13
L

0 0 0
6βa13
L2

0
βb13
L

0
6βa12
L2

0 0 0
βc12
L

0
−6βa12
L2

0 0 0
βb12
L

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

9 5 136

or

F =Ke ∗q
where

βa12 =
EIx3

1 +Φ12
,

βb12 = 4 +Φ12 βa12,

βc12 = 2−Φ12 βa12,

Φ12 =
12EIx3
k2AGL2

=
24Ix3 1 + v

k2AL2
,

βa13 =
EIx2

1 +Φ13
,

βb13 = 4 +Φ13 βa13,

βc13 = 2−Φ13 βa13,

Φ13 =
12EIx2
k3AGL2

=
24Ix2 1 + v

k3AL2

9 5 137
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The matrix in (9.5.136) is expressed in tabular form in Table 9.5.1.

The potential energy in a finite element has the form in (4.7.54), that is,

Ue =
1
2
qT
e
Keqe 9 5 138

whereKe is the element stiffness matrix in local coordinates as defined in (9.5.136), and q
e
is

the nodal displacement vector in local coordinates as defined in (9.4.1) and shown in
Figure 9.4.2. The potential energy is invariant with respect to the coordinate system utilized
to define displacements so that it must also be true that

Ue =
1
2
qT
e
Keqe 9 5 139

where Ke is the stiffness matrix in global coordinates, and q
e
is the nodal displacement

vector in global coordinates as defined in (9.4.2) and shown in Figure 9.4.1. Substitute
the coordinate transformation (9.4.11) into (9.5.138) to obtain

Ue =
1
2
qT
e
T
T
e KeTeqe 9 5 140

Equating (9.5.139) and (9.5.140) yields

Table 9.5.1 The local coordinate, 3D Timoshenko beam
symmetric stiffness matrix Ke

a

Entries Term

(1,1), (7,7), (−7,−1)
EA

L

(4,4), (10,10), (−10,−4)
GJ

L

(2,2), (8,8), (−8,−2)
12βa12
L3

(6,2), (−8,−6), (12,2), (−12,−8)
6βa12
L2

(6,6), (12,12)
βb12
L

(12,6)
βc12
L

(3,3), (9,9), (−9,−3)
12βa13
L3

(−5,−3), (9,5), (−11,−3), (11,9)
6βa13
L2

(5,5), (11,11)
βb13
L

(11,5)
βc13
L

a The matrix is symmetric K
T
e =Ke.

All undefined terms in the 12 × 12 matrix are zero.

βki j are defined in (9.5.137).

Negative entries (in parentheses) in the left column indicate to
use the negative of the term shown in the right column.
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Ue =
1
2
qT
e
Keqe =

1
2
qT
e
T
T
e KeTeqe 9 5 141

This relation holds for all possible vectors q
e
; therefore, it follows that the global coor-

dinate form of the element stiffness matrix may be determined from

Ke = T
T
e KeTe 9 5 142

where Te is defined in (9.4.10), (9.4.11), (9.4.19), and (9.4.23). The total systemmodel stiff-
ness matrix is formed by assembling the element stiffness matrices in their global coordinate
form (9.5.142).

9.5.7 Twelve-Dof Element Mass Matrix

The 12 × 12, local coordinate, element mass matrixMe is formed by combining x1−x2 bend-
ing/shear contributions (9.5.60)–(9.5.63), x1−x3 bending/shear contributions (9.5.98)–
(9.5.101), axial contributions (9.5.118), and torsional contributions (9.5.131). The result
is summarized in Table 9.5.2. The mass matrix Me simplifies to the form given in
Table 9.5.3 if shear deformation is neglected.

Table 9.5.2 The local coordinate, 3D Timoshenko beam, consistent inertia matrix Me including
rotary inertia and shear deformationa

Term Entry Term Entry

(4,4), (10,10)
ρJpL

3
(1,1), (7,7)

ρAL

3

(10,4)
ρJpL

6
(7,1)

ρAL

6

(2,2), (8,8) γm12
Aa12u1

420
+
Ix3a

12θ
1

30
(3,3), (9,9) γm13

Aa13u1

420
+
Ix2a

13θ
1

30

(6,2), (−12,−8) γm12
Aa12u2

420
+
Ix3a

12θ
2

30
(5,3), (−11,−9) γm13

Aa13u2

420
+
Ix2a

13θ
2

30

(8,2) γm12
Aa12u3

420
−
Ix3a

12θ
1

30
(9,3) γm13

Aa13u3

420
−
Ix2a

13θ
1

30

(12,2), (−8,−6) γm12
Aa12u4

420
+
Ix3a

12θ
2

30
(11,3), (−9,−5) γm13

Aa13u4

420
+
Ix2a

13θ
2

30

(6,6), (12,12) γm12
Aa12u5

420
+
Ix3a

12θ
3

30
(5,5), (11,11) γm13

Aa13u5

420
+
Ix2a

13θ
3

30

(12,6) γm12
Aa12u6

420
+
Ix3a

12θ
4

30
(11,5) γm13

Aa13u6

420
+
Ix2a

13θ
4

30

The matrix is symmetric M
T
e =Me.

a All undefined terms in the 12 × 12 matrix are zero

γm12 =
ρL

b12L2 + 12a12
2 , γm13 =

ρL

b13L2 + 12a13
2

a12, b12, a13, b13, and all a jkl
i are defined in (9.5.32), (9.5.61), (9.5.63), (9.5.75), (9.5.99), and (9.5.101).

Negative terms (in parentheses) indicate to use the negative of the entries shown.
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Similar to the derivation of (9.5.142), the invariance of the element’s kinetic energy
with respect to reference frame (coordinate system) yields the following formula for deter-
mining the element mass matrix in global coordinates:

Me = T
T
eMeTe 9 5 143

where Te is defined in (9.4.10), (9.4.11), (9.4.19), and (9.4.23). The total systemmodel mass
matrix is formed by assembling the element mass matrices in their global coordinate
form (9.5.143).

9.6 3D TIMOSHENKO BEAM ELEMENT FORCE VECTORS

Figure 9.6.1 shows distributed external forces andmoments acting on a 3D beam element. In
each case, it is assumed that the spatial force function is multiplied by a temporal function to
produce the actual, spatially, and time-varying loading

Table 9.5.3 The local coordinate, 3D Euler–Bernoulli beam,
consistent inertia matrix Me including rotary inertiaa

Term Entry

(1,1), (7,7)
ρAL

3

(7,1)
ρAL

6

(4,4), (10,10)
ρJpL

3

(10,4)
ρJpL

6
(2,2), (8,8) γum12 ∗156 + γθm12 ∗36
(6,2), (−12,−8) γum12 ∗22L+ γθm12 ∗3L
(6,6), (12,12) γum12 ∗4L2 + γθm12 ∗4L2
(8,2) γum12 ∗54 + γθm12 ∗ −36
(8,6), (−12,−2) γum12 ∗13L+ γθm12 ∗ −3L
(12,6) γum12 ∗ −3L2 + γθm12 ∗ −L2

(3,3), (9,9) γum13 ∗156 + γθm13 ∗36
(5,3), (−11,−9) γum13 ∗ −22L + γθm13 ∗ −3L
(5,5), (11,11) γum13 ∗4L2 + γθm13 ∗4L2
(9,3) γum13 ∗54 + γθm13 ∗ −36
(9,5), (−11,−3) γum13 ∗ −13L + γθm13 ∗3L
(11,5) γum13 ∗ −3L2 + γθm13 ∗ −L2

a The matrix is symmetric M
T
e =Me.

All undefined terms in the 12 × 12 matrix are zero

γum12 =
ρAL

420
, γθm12 =

ρIx3
30L

, γum13 =
ρAL

420
, γθm13 =

ρIx2
30L

Negative terms (in parentheses) indicate to use the negative of the
entries shown.
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F1, tot x1, t = αF1 t F1 x1 , F2, tot x1, t = αF2 t F2 x1 , F3, tot x1, t = αF3 t F3 x1

m1, tot x1, t = αm1 t m1 x1 , m2, tot x1, t = αm2 t m2 x1 , m3, tot x1, t = αm3 t m3 x1
9 6 1

The F and m in these formulas are forces and moments per unit length along x1. There-
fore, F may be interpreted as a pressure multiplied by the beam width to convert force
per area to force per length. The expression α(t) defines the time dependence of the respec-
tive loading. Three common load distributions will be treated here and are shown in
Figure 9.6.2.

Case A: Point Load
In this case, the load acts only at a point x1 = x

∗
1 , that is, from Section 2.12

F =F
∗
δ x1−x

∗
1 , m=m∗δ x1−x

∗
1 9 6 2

where δ is a Dirac delta function.

Case B: Spatially Uniform Load
For this case, the loads per unit length are constant, that is,

F =F 0 ≤ x1 ≤ L

m=m 0 ≤ x1 ≤ L
9 6 3

Figure 9.6.1 Applied force and moment functions in the element coordinate system

Figure 9.6.2 Various load distributions for a 3D beam element. (a) Point force, moment or torque at x∗1 .
(b) Uniform force, moment or torque. (c) Spatially linear varying force, moment or torque
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Case C: Spatially Linear Varying Load
For this case, the loads per unit length vary linearly with x1, that is,

F =F0 1−
x1
L

+FL
x1
L
= 1−

x1
L

x1
L

F0

FL

9 6 4

The element force vectors are defined by the general formulas in (4.7.38). These are
specialized for the different possible load directions in the following sections.

9.6.1 Axial Loads

From (4.7.38) and (9.6.1),

f ext,1

f ext,7
= αF1 t

L

0
F1 x1

N11
1 x1

N11
2 x1

dx1 9 6 5

and from (9.5.115),

N11
1 x1 = 1−

x1
L
, N11

2 x1 =
x1
L

9 6 6

Point loading: Substitute (9.6.2) and (9.6.6) into (9.6.5) to obtain

f ext,1

f ext,7
= αF1 t

L

0
F

∗
1 δ x1−x

∗
1

1−
x1
L

x1
L

dx1 = αF1 t F
∗
1

1−
x∗1
L

x∗1
L

9 6 7

Uniform loading: Substitute (9.6.3) and (9.6.6) into (9.6.5) to obtain

f ext,1

f ext,7
= αF1 t

L

0
F1

1−
x1
L

x1
L

dx1 = αF1 t F1
L

2

1

1
9 6 8

Linearly varying loading: Substitute (9.6.4) and (9.6.6) into (9.6.5) to obtain

f ext,1

f ext,7
= αF1 t

L

0

1−
x1
L

x1
L

1−
x1
L

x1
L

dx1
F10

F1L

= αF1 t
L

6

2F10 +F1L

F10 + 2F1L

9 6 9

9.6.2 Torsional Loads

From (4.7.38) and (9.6.1),

f ext,4

f ext,10
= αm1 t

L

0
m1 x1

Nθ1 x1

Nθ2 x1
dx1 9 6 10
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where from (9.5.128)

Nθ1 x1 = 1−
x1
L
, Nθ2 x1 =

x1
L

9 6 11

The nodal load vectors are identical in form to the axial load case since the shape func-
tions are identical.

Point loading:

f ext,4

f ext,10
= αm1 t m∗

1

1−
x∗1
L

x∗1
L

9 6 12

Uniform loading:

f ext,4

f ext,10
= αm1 t m1

L

2

1

1
9 6 13

Linearly varying loading:

f ext,4

f ext,10
= αm1 t

L

6

2m10 +m1L

m10 + 2m1L
9 6 14

9.6.3 x1−x2 Plane Loads

From (4.7.38) and (9.6.1),

f ext,2

f ext,6

f ext,8

f ext,12

= αF2 t
L

0
F2 x1

N12
11 x1

N12
12 x1

N12
13 x1

N12
14 x1

dx1 + αm3 t
L

0
m3 x1

N12
21 x1

N12
22 x1

N12
23 x1

N12
24 x1

dx1

9 6 15

where N12
i j x1 are defined in (9.5.42).

Point loading: Substitute (9.6.2) and (9.5.42) into (9.6.15) to obtain

f ext,2

f ext,6

f ext,8

f ext,12

= αF2 t F
∗
2

N12
11 x∗1

N12
12 x∗1

N12
13 x∗1

N12
14 x∗1

+ αm3 t m∗
3

N12
21 x∗1

N12
22 x∗1

N12
23 x∗1

N12
24 x∗1

9 6 16
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Uniform loading: Substitute (9.6.3) and (9.5.42) into (9.6.15) to obtain

f ext,2

f ext,6

f ext,8

f ext,12

= αF2 t F2

L

0

N12
11 x1

N12
12 x1

N12
13 x1

N12
14 x1

dx1 + αm3 t m3

L

0

N12
21 x1

N12
22 x1

N12
23 x1

N12
24 x1

dx1

= αF2 t F

L

2
L2

12

L

2
−L2

12

+
αm3 t m3

b12L2 + 12a12

−b12L2

6a12L

b12L2

6a12L

9 6 17

This simplifies for the no-shear deformation assumption to the form

f ext,2

f ext,6

f ext,8

f ext,12

= αF2 t F2

L

2

L2

12

L

2

−L2

12

+ αm3 t m3

−1

0

1

0

9 6 18

Linearly varying loading: Substitute (9.6.4) and (9.5.42) into (9.6.15) to obtain

f ext,2

f ext,6

f ext,8

f ext,12

= αF2 t
L

0

N12
11 x1

N12
12 x1

N12
13 x1

N12
14 x1

1−
x1
L

x1
L

dx1
F20

F2L

+ αm3 t
L

0

N12
21 x1

N12
22 x1

N12
23 x1

N12
24 x1

1−
x1
L

x1
L

dx1
m30

m3L
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=
αF2 t

60

3L 7b12L2 + 80a12 9b12L3 + 120a12L

3L2 b12L2 + 10a12 2b12L4 + 30a12L2

3L 3b12L2 + 40a12 21b12L3 + 240a12L

−2L2 b12L2 + 15a12 −3b12L4−30a12L2

F20

F2L

b12L2 + 12a12

+
αm3 t

12

−6b12L2 −6b12L2

L b12L2 + 48a12 −b12L3 + 24a12L

6b12L2 6b12L2

L −b12L2 + 24a12 b12L3 + 48a12L

m30

m3L

b12L2 + 12a12
9 6 19

This simplifies for the no-shear deformation assumption to the form

f ext,2

f ext,6

f ext,8

f ext,12

=
αF2 t L

60

21 9

3L 2L

9 21

−2L −3L

F20

F2L

+
αm3 t

12

−6 −6

L −L

6 6

−L L

m30

m3L
9 6 20

9.6.4 x1−x3 Plane Loads

From (4.7.38) and (9.6.1),

f ext,2

f ext,6

f ext,8

f ext,12

= αF3 t
L

0
F3 x1

N13
11 x1

N13
12 x1

N13
13 x1

N13
14 x1

dx1 + αm2 t
L

0
m2 x1

N13
21 x1

N13
22 x1

N13
23 x1

N13
24 x1

dx1

9 6 21

where N13
i j x1 are defined by (9.5.85).

Point loading: Substitute (9.6.2) and (9.5.85) into (9.6.21) to obtain

f ext,3

f ext,5

f ext,9

f ext,11

= αF3 t F
∗
3

N13
11 x∗1

N13
12 x∗1

N13
13 x∗1

N13
14 x∗1

+ αm2 t m∗
2

N13
21 x∗1

N13
22 x∗1

N13
23 x∗1

N13
24 x∗1

9 6 22
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Uniform loading: Substitute (9.6.3) and (9.5.85) into (9.6.21) to obtain

f ext,3

f ext,5

f ext,9

f ext,11

= αF3 t F3

L

0

N13
11 x1

N13
12 x1

N13
13 x1

N13
14 x1

dx1 + αm2 t m2

L

0

N13
21 x1

N13
22 x1

N13
23 x1

N13
24 x1

dx1

= αF3 t F3

L

2

−L2

12

L

2

L2

12

+
αm2 t m2

b13L2 + 12a13

b13L2

6a13L

−b13L2

6a13L

9 6 23

This simplifies for the no-shear deformation assumption to the form

f ext,3

f ext,5

f ext,9

f ext,11

= αF3 t F3

L

2

−L2

12

L

2

L2

12

+ αm2 t m2

1

0

−1

0

9 6 24

Linear loading: Substitute (9.6.4) and (9.5.85) into (9.6.21) to obtain

f ext,3

f ext,5

f ext,9

f ext,11

= αF3 t
L

0

N13
11 x1

N13
12 x1

N13
13 x1

N13
14 x1

1−
x1
L

x1
L

dx1
F30

F3L

+ αm2 t
L

0

N13
21 x1

N13
22 x1

N13
23 x1

N13
24 x1

1−
x1
L

x1
L

dx1
m20

m2L
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=
αF3 t

60

3L 7b13L2 + 80a13 9b13L3 + 120a13L

−3L2 b13L2 + 10a13 −2b13L4−30a13L2

3L 3b13L2 + 40a13 21b13L3 + 240a13L

2L2 b13L2 + 15a13 3b13L4 + 30a13L2

F30

F3L

b13L2 + 12a13

+
αm2 t

12

6b13L2 6b13L2

L b13L2 + 48a13 −b13L3 + 24a13L

−6b13L2 −6b13L2

−L b13L2−24a13 b13L3 + 48a13L

m20

m2L

b13L2 + 12a13
9 6 25

This simplifies for the no-shear deformation assumption a13 = 0 to the form

f ext,3

f ext,5

f ext,9

f ext,11

=
αF3 t L

60

21 9

−3L −2L

9 21

2L 3L

F30

F3L

+
αm2 t

12

6 6

L −L

−6 −6

−L L

m20

m2L
9 6 26

9.6.5 Element Load Vector

The element load vector results are summarized in Table 9.6.1.
The external work is also invariant with respect to the coordinates in which it is

expressed; therefore,

WE
e = f

T

e
q
e
= fT

e
q
e

9 6 27

Substitution of (9.4.11) into (9.6.27) yields

f
T

e
Teqe = f

T
e
q
e

9 6 28

which is true for all q
e
, if and only if

f
e
= T

T
e f e 9 6 29

where Te is defined in (9.4.10), (9.4.11), (9.4.19), and (9.4.23). The total system model
external force vector is formed by assembling the element force vectors in their global coor-
dinate form (9.6.29).
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9.7 3D FRAME: BEAM ELEMENT ASSEMBLY ALGORITHM

The global coordinate form of the element massMe and stiffness Ke matrices and force vec-
tor are defined by (9.5.142), (9.5.143), and (9.6.29), respectively. Algorithms are presented
here for assembling these “building block” element matrices to form the system mass and
stiffness matrices and force vector, including zero deflection constraints imposed on speci-
fied dofs. As depicted in Figure 9.7.1, the nodal connectivity array for element e stores the
global node numbers corresponding to local node numbers j = 1 and j = 2 and is defined by

Bej =
g1e, j= 1

g2e, j= 2
= global node number corresponding to local node jof element e 9 7 1

As depicted in Figure 9.7.1, the dof connectivity array for element e stores the global
dof numbers corresponding to local dof numbers l = 1 through l = 12, that is,

Bel = global degree of freedom number corresponding to local degree of freedom l of element e

9 7 2

and is defined in Table 9.7.1.
The pattern in Table 9.7.1 enables automated generation of the dof connectivity array

utilizing the user-defined nodal connectivity array. This is demonstrated in the following
coding segment:

for e = 1 1 E element index

for i= 1 1 2 local node index

for k = 1 1 6 dof index at a node

l = 6∗ i−1 + k

Bel = 6∗ Bei−1 + k

end

end

end

9 7 3

Figure 9.7.1 Local and global node and degree of freedom numbering convention
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This short list of commands generates the dof connectivity array B given the nodal con-
nectivity array B. As in (4.8.35) or (4.8.94), the larray indicates the locations of each “free”
(unconstrained) dof in the condensed vector q

f
of only free (unconstrained) dof displace-

ments. The larray is again represented by

L= l1 l2 lN

li = position of dof qi in the “free” dof vector q
f

li = 0 if qi is constrained

9 7 4

Suppose that the user input to a code requires entry of the nodes and corresponding dofs
that are fixed to ground, that is, that have zero displacement. This may be prompted as:

For all constrained dofs, enter the global node number ki and the corresponding dof di
at global node number ki that is fixed to ground, for i= 1,m, where m is the total number
of fixed dofs in the model. The direction of a fixed dof is di = 1 (x1 direction), di = 2 (x2 direc-
tion), di = 3 (x3 direction), di = 4 (θ1 direction), di = 5 (θ2 direction), and di = 6 (θ3 direction)
in Figure 9.7.1.

The code internally defines an array fixeddof containing all of the global dof numbers
that are fixed to ground:

for i= 1 1 m

fixeddof i = 6∗ ki−1 + di

end

9 7 5

Let Ndof be the total number of dofs in the entire model:

Ndof = 6∗ Number of nodes in entire model 9 7 6

Then the larray is determined from

ict = 0

for i= 1 1 Ndof

iflag = 0

for j= 1 1 m

if i= fixeddof j

iflag = 1

end

end

Table 9.7.1 3D beam element connectivity for element e

l 1 2 3 4 5 6 7 8 9 10 11 12

Bel 6g1e

−5

6g1e

−4

6g1e

−3

6g1e

−2

6g1e

−1

6g1e 6g2e

−5

6g2e

−4

6g2e

−3

6g2e

−2

6g2e

−1

6g2e
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larray i = 0

if iflag = 0

ict = ict + 1

larray i = ict

end

end 9 7 7

The assembly of the system matrices for the free (unconstrained) dofs is illustrated in
Figure 9.2.6. Similar with (9.2.84), repeat the above “assembly” step for all E elements in the
model and for all 12 local dofs, that is,

e = 1,2,…,E, r = 1,…,12, s= 1,…,12 9 7 8

As in (9.2.85), imposing the zero-displacement constraint conditions yields the follow-
ing “condensed” dynamic equilibrium equation for the “free” (unconstrained) dofs of the
constrained structure:

Mf
Nf ×Nf

q
f

Nf × 1

+ Cf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

9 7 9

EXAMPLE 9.7.1 Natural Frequencies and Mode Shapes for 3D Pipe Run and Valve
Support Stand

Statement: Excessive vibration of piping in petrochemical, utility, and processing plants
may lead to high-cycle fatigue failure (cracking), fastener looseness, and leakage. This is
especially menacing when the pipe is transporting volatile gases. Therefore, it is very impor-
tant to design piping systems with natural frequencies sufficiently displaced from source
frequencies (rotating and reciprocating machinery, internal vortex shedding sources, etc.).

Objective: Determine the natural frequencies and mode shapes of the piping and support
structure shown in Figure E9.7.1(a).

Assumptions:

(a) Small (linear) motions of all nodes in the model.

(b) Pipe clamps act as linear springs connecting nodes 11 and 17 and 21 and 30 to ground.

(c) The valve may be treated as a rigid, concentrated inertia.

(d) The structure is fixed to ground in all of its 6 dofs at nodes 1, 6, 16, 33, and 36.

(e) The pipe is connected to a furnace metallic seal which acts as a set of springs at node 44.

Coding: The MATLAB code for this example is in Appendix C.

Solution:

(a) Model Characteristics:

Nn = 44 nodes

Nd = 6Nn = 264 total degrees of freedom

E =Ne = 43 elements circled

1

Chapter 9 Beam Finite Elements for Vibration Analysis 715

www.konkur.in



The dof ordering convention follows Figure 9.7.1 and is shown in Table E9.7.1(a).
Many of the beam elements in Figure E9.7.1(a) have identical properties. This fact can
be utilized to reduce the amount of required input data for the code. This is facilitated by
defining element “types.”

(b) Element Types:

(i) Type 1: Main Pipe Run Extending from Wall to Furnace
Nominal diameter = 0.127 m, pipe schedule = 40, wall thickness = 6 45 × 10−3 m
OD = 0.141 m, ρ = 7834 kg/m3, E = 2 14 × 1011 N/m2, v = 0.3,

Table E9.7.1(a) Global degree of freedom ordering convention

Global dof no. Location Global dof no. Location

1 x1 dof at global node 1 259 x1 dof at global node 44
2 x2 dof at global node 1 260 x2 dof at global node 44
3 x3 dof at global node 1 261 x3 dof at global node 44
4 θ1 dof at global node 1 262 θ1 dof at global node 44
5 θ2 dof at global node 1 263 θ2 dof at global node 44
6 θ3 dof at global node 1 264 θ3 dof at global node 44

Figure E9.7.1(a) Beam model of pipe run and valve support stand (lengths in meters)
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Ix2 = Ix3 = π OD4− ID4 64 = 6 3 × 10−6m4,

J = π OD4− ID4 32 = 12 6 × 10−6m4,

A= π OD2− ID2 4 = 2 77 × 10−3m2

2

(ii) Type 2: Horizontal I Beams (Figures 9.4.8, 9.4.9, E9.7.1(a), and E9.7.1(b))
From AISC (1980)
Beam Type: W8 × 21

a = 0 21 m, b= 0 134 m, ρ = 7834 kg m3

tw = 6 35 × 10−3 m, tf = 1 02 × 10−2 m, v= 0 3

E = 2 14 × 1011 N m2

Ix2 = 4 07 × 10−6 m4, Ix3 = 3 12 × 10−5 m4,

J = 1 17 × 10−7 m4, A= 3 97 × 10−3 m2

3

(iii) Type 3: Vertical Support and Horizontal Support Stand Pipe
Nominal diameter = 0.102 m, pipe schedule = 40, wall thickness = 6 02 × 10−3 m
OD = 0.114 m, ρ = 7834 kg/m3, E = 2 14 × 1011 N/m2, v = 0.3

Ix2 = Ix3 =
π OD4− ID4

64
= 3 01 × 10−6 m4

J =
π OD4− ID4

32
= 6 02 × 10−6 m4, A=

π OD2− ID2

4
= 2 05 × 10−3 m2 4

(iv) Type 4: Pipe Clamps and Furnace Seal (Both Clamps Have the Same Stiffness)
Clamps:

kcx1x1 = 8 75 × 106 N m, kcθ1θ1 = 111Nm rad,

kcx2x2 = 17 5 × 106 N m, kcθ2θ2 = 111Nm rad,

kcx3x3 = 26 3 × 106 N m, kcθ3θ3 = 222Nm rad

5

Figure E9.7.1(b) Cross section of I beam for the valve support stand
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Furnace Seal:

kfx1x1 = 10 0 × 106 N m, kfθ1θ1 = 500Nm rad

kfx2x2 = 15 0 × 106 N m, kfθ2θ2 = 250Nm rad

kfx3x3 = 15 0 × 106 N m, kfθ3θ3 = 250Nm rad

6

(v) Type 5: Valve

m = 100 kg, Ix1x1 Ix2x2 Ix3x3 = 1 25 1 0 0 75 kg m2 7

where the inertias are referenced to the global x1, x2, x3 axes in Figure E9.7.1(a).

(c) Element Summary by Nodal Connectivity and Element Type
Table E9.7.1(b) summarizes the elements in Figure E9.7.1(a).
The nodal connectivity array is given in Table E9.7.1(b). The dof connectivity array is
automatically generated using the algorithm in (9.7.3).

Table E9.7.1(b) Element summary for Figure E9.7.1(a)

Element
number (e)

Nodal connectivity

Type
Element

number (e)

Nodal connectivity

Type
Local node 1
ICON (e,1)

Local node 2
ICON (e,2)

Local node 1
ICON (e,1)

Local node 2
ICON (e,2)

1 1 2 1 25 34 35 3
2 2 3 1 26 33 34 3
3 3 4 1 27 38 32 3
4 4 5 1 28 37 38 3
5 5 17 1 29 36 37 3
6 10 11 2 30 21 39 1
7 9 10 2 31 39 41 1
8 11 12 2 32 41 40 1
9 12 13 2 33 40 42 1
10 8 9 3 34 42 43 1
11 7 8 3 35 43 44 1
12 6 7 3 36 17 18 1
13 16 15 3 37 18 19 1
14 15 14 3 38 19 20 1
15 14 13 3 39 20 21 1
16 13 25 3 40 9 22 3
17 25 26 3 41 22 23 3
18 26 27 3 42 23 24 3
19 27 32 3 43 24 28 3
20 31 32 2 44 Clamp between nodes 11 and 17 4
21 30 31 2 45 Clamp between nodes 21 and 30 4
22 29 30 2 46 Furnace seal from node 44 to

ground
4

23 28 29 2 47 Valve at node 19 5
24 35 28 3
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(d) Fixed Degrees of Freedom and the “l” and “j” Arrays
Table E9.7.1(c) summarizes the fixed dofs in Figure E9.7.1(a).
Thus, it is seen that the total number of nonprescribed dofs is

Nnpd = total no of dofs − no of prescribed dofs

= Nd−Npd = 6∗no of nodes −30 = 6∗44−30 = 234
8

The last column in Table E9.7.1(c) is the “fixeddof” array in (9.7.7) which gener-
ates the larray in the system matrix assembly algorithm (Figure 9.2.6).

As in Example 9.2.3, a “j array” is formed to “expand” the response vectors into
their full dimension (Nd), which includes both fixed and free dofs. The jarray(ji) is

Table E9.7.1(c) Fixed degrees of freedom (dofs) in Figure E9.7.1(a)

Number l Node Direction Global dof no. ipdl

1 1 x1 1
2 1 x2 2
3 1 x3 3
4 1 θ1 4
5 1 θ2 5
6 1 θ3 6
7 6 x1 31
8 6 x2 32
9 6 x3 33
10 6 θ1 34
11 6 θ2 35
12 6 θ3 36
13 16 x1 91
14 16 x2 92
15 16 x3 93
16 16 θ1 94
17 16 θ2 95
18 16 θ3 96
19 33 x1 193
20 33 x2 194
21 33 x3 195
22 33 θ1 196
23 33 θ2 197
24 33 θ3 198
25 36 x1 211
26 36 x2 212
27 36 x3 213
28 36 θ1 214
29 36 θ2 215
30 36 θ3 216
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formed by utilizing the input array of fixed dofs (ipdl) from Table E9.7.1(c) as
shown below:

I = 0

for i = 1,Nd = 264

flag= 0

for l = 1,Npd = 30

if i= ipdl

flag = 1

end

end

if flag = 0

I = I + 1

JArray I = i

end

end

Nnpd = I 9

(e) Form the Condensed System Stiffness Matrix

The system stiffness matrix Kf with fixed constraints imposed is formed with

the assembly algorithm illustrated in Figure 9.2.6. Each entry of all element stiffness
matrices (9.5.142, which is the global coordinate form of 9.5.136) is added into the con-
densed form Kf of the system stiffness matrix for

e = 1,2,…,E, r = 1,…,12, s= 1,…,12 10

where E is the total number of beam elements, which is 43 for this example. The assem-
bly is described in the coding outline below, which is equivalent to Figure 9.2.6.

Initialize: Kf = 0

for e = 1,Ne = 43

form the coordinate transformation matrix Te utilizing Equations (9.4.10), (9.4.19), or (9.4.23)

form the eth element stiffness matrix Ke in local coordinates using Equation (9.5.136)

form the eth element stiffness matrix Ke in global coordinates using Equation (9.5.142)

Ke = T
T
e KeTe

for r = 1, 12

for s= 1, 12
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Ber = ICONDOF e,r

Bes = ICONDOF e,s

lBer
= larray Ber

lBes
= larray Bes

if lBer
0 and lBes

0

Kf lBer
, lBes

=Kf lBer
, lBes

+Ke r,s

end

end

end 11

end

where ICONDOF is a 2D (coding) array that stores the dof connectivities (9.7.3)
and LArray is a 1D (coding) array that stores the larray in (9.7.7). The above code
segment (10) accounts only for the stiffness of the beam elements in the model. The
stiffness of the clamps and furnace seal connecting nodes 11 and 17, 21 and 30, and
44 and 0 (ground) must still be assembled into the condensed form Kf of the system

stiffness matrix. These stiffness components and their locations are summarized in
Table E9.7.1(d).

The force displacement law for a stiffness k connected between 2 dofs d1 and d2
is given by

Fd1

Fd2
=

k −k

−k k

xd1

xd2
12

The force Fd1 and Fd2 will be added into the d1 and d2 rows of the full system equa-
tions, respectively. The termsmultiplying xd1 in (12) will be added into the d1 column of
the fullKmatrix and those multiplying xd2 will be added into the d2 column of the fullK

matrix. Therefore, assembly of the spring stiffness k into the full Kmatrix is performed
as follows:

K d1,d1 = K d1,d1 + k

K
d1,d2 = K

d1,d2−k

K
d2,d1 = K

d2,d1−k

K
d2,d2 = K

d2,d2 + k

13
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Assembly of k into the condensed system stiffness matrix is performed by using the
larray as follows:

Kf ld1, ld1
= Kf ld1, ld1

+ k

Kf ld1, ld2
= Kf ld1, ld2

−k

Kf ld2, ld1
= Kf ld2, ld1

−k

Kf ld2, ld2
= Kf ld2, ld2

+ k

14

This stiffness assembly procedure is utilized for all 18 stiffness terms in Table E9.7.1
(d). Note that if ld2 is zero, as is the case for node 44 in Table E9.7.1(d), the assembly
simplifies to

Kf ld1, ld1
= Kf ld1, ld1

+ k 15

Table E9.7.1(d) Pipe clamp and furnace seal stiffness connecting node I and J and their degrees of
freedom (dofs)

Number
m

Stiffness
ksm

Node
I

Local
dof

Global
dof

Global dof in
condensed
system

Node
J

Local
dof

Global
dof

Global dof in
condensed
system

1 kcx1x1 11 1 61 l61 = 49 17 1 97 l97 = 79

2 kcx2x2 11 2 62 l62 = 50 17 2 98 l98 = 80

3 kcx3x3 11 3 63 l63 = 51 17 3 99 l99 = 81

4 kcθ1θ1 11 4 64 l64 = 52 17 4 100 l100 = 82

5 kcθ2θ2 11 5 65 l65 = 53 17 5 101 l101 = 83

6 kcθ3θ3 11 6 66 l66 = 54 17 6 102 l102 = 84

7 kcx1x1 30 1 175 l175 = 157 21 1 121 l121 = 103

8 kcx2x2 30 2 176 l176 = 158 21 2 122 l122 = 104

9 kcx3x3 30 3 177 l177 = 159 21 3 123 l123 = 105

10 kcθ1θ1 30 4 178 l178 = 160 21 4 124 l124 = 106

11 kcθ2θ2 30 5 179 l179 = 161 21 5 125 l125 = 107

12 kcθ3θ3 30 6 180 l180 = 162 21 6 126 l126 = 108

13 kfx1x1 44 1 259 l259 = 229 0 — 0 —

14 kfx2x2 44 2 260 l260 = 230 0 — 0 —

15 kfx3x3 44 3 261 l261 = 231 0 — 0 —

16 kfθ1θ1
44 4 262 l262 = 232 0 — 0 —

17 kfθ2θ2
44 5 263 l263 = 233 0 — 0 —

18 kfθ3θ3
44 6 264 l264 = 234 0 — 0 —

Node 0 is ground (fixed point).
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The constraint condensed form Kf of the system stiffness matrix is completely

assembled when this is finished. Appendix C has the MATLAB code for this and
all steps in this example.

(f) Form the Condensed System Mass Matrix
The system mass matrix (Mf) with fixed constraints imposed is formed with the

assembly algorithm illustrated in Figure 9.2.6. Each entry of all element mass matrices
(9.5.143) is added into the condensed form Mf of the system mass matrix for

e = 1,2,…,E, r = 1,…,12, s= 1,…,12 16

where E is the total number of beam elements, which is 43 for this example. The assem-
bly is described in the coding outline below, which is equivalent to Figure 9.2.6, and
where ICONDOF is a 2D code array that stores the dof connectivities Bel (9.7.3),
and larray is a ID code array that stores the larray li in (9.7.4) and (9.7.7).

Initialize: Mf = 0

for e = 1,Ne = 43

form the coordinate transformation matrix Te utilizing (9.4.10), (9.4.19), or (9.4.23)

form the eth element mass matrix Me in local coordinates using Table 9.5.2

form the eth element mass matrix Me in global coordinates using Equation (9.5.143)

Me =T
T
e MeTe

for r = 1, 12

for s = 1, 12

Ber = ICONDOF e,r

Bes = ICONDOF e,s

lBer
= larray Ber

lBes
= larray Bes

if lBer
0 and lBes

0

Mf lBer
, lBes

=Mf lBer
, lBes

+Me r,s

end

end

end 17

end

The above code segment (17) accounts for only the mass of the beam elements in
the model.
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The valve inertia must still be assembled into the mass matrix. The valve is at node
19 in the system model, Figure E9.7.1(a), so its inertias assemble into the full system
mass matrix as

M 109,109 = M 109,109 +mvalve

M 110,110 = M 110,110 +mvalve

M 111,111 = M 111,111 +mvalve

M 112,112 = M 112,112 + I
valve
x1x1

M 113,113 = M 113,113 + I
valve
x2x2

M 114,114 = M 114,114 + I
valve
x3x3

18

The assembly into the condensed form Mf of the system mass matrix is facilitated

by using the larray to position the “added masses” into their appropriate constrained
system positions as

Mf l109, l109
= Mf l109, l109

+mvalve Mf 91,91
= Mf 91,91

+mvalve

Mf l110, l110
= Mf l110, l110

+mvalve Mf 92,92
= Mf 92,92

+mvalve

Mf l111, l111
= Mf l111, l111

+mvalve Mf 93,93
= Mf 93,93

+mvalve

Mf l112, l112
= Mf l112, l112

+ Ivalvex1x1
Mf 94,94

= Mf 94,94
+ Ivalvex1x1

Mf l113, l113
= Mf l113, l113

+ Ivalvex2x2
Mf 95,95

= Mf 95,95
+ Ivalvex2x2

Mf l114, l114
= Mf l114, l114

+ Ivalvex3x3 Mf 96,96
= Mf 96,96

+ Ivalvex3x3

19

At this point, the constraint condensed formMf of the system mass matrix is com-

plete. Appendix C has the MATLAB code for this and all steps in this example.

(g) Determine the Natural Frequencies and Mode Shapes

As in (4.8.32) or (9.2.85), imposing the zero-displacement constraint conditions
yields the following “condensed” dynamic equilibrium equation for the “free” (uncon-
strained) dofs of the constrained structure:

Mf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= 0 20

where Nf =Nnpd = number of free (nonfixed) dofs. Following Equations (5.4.3), (5.4.4),
and (5.4.11) insertion of

q
f
= eiωtψ

f
21
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into (20) yields

−ω2Mf +Kf ψ
f
= 0 22

The natural frequencies and mode shapes of the constrained, condensed system are
obtained as described in Section 5.4. For mode shape plotting purposes, it is convenient

to form the entire ψ vector, obtained from the free dof vector ψ
f

and the zeros at fixed

dofs. This is done with the jarray formed in (9) and the constrained dof index array ipdl
in Table E9.7.1(c). The coding outline is:

Recovery of the Full System Mode Shape Vector ψ Using the jarray

Initialize ψ = 0 (Nd × 1)a

for l = 1, Nnpd

k = jarray l

ψ
k
= ψ

f l

end

a Equation (1) shows Nd = 264 total number of free and fixed dofs.

Equation 8 showsNnpd = 234 free nonfixed dofs 23

The full mode shape ψ now contains zeros at fixed and the motions in ψ
f
at uncon-

strained dofs. TheMATLAB code in Appendix C solves for the natural frequencies and
mode shapes of the pipe run and valve support stand. Parameter values, nodal coordi-
nates, nodal connectivities, and constrained dofs are defined at the beginning of the
code. The shear form factors, polar area moments of inertia, dof connectivity array,
jarray, and larray are then determined. The constraint condensed forms of the mass

Mf and stiffness Kf matrices are formed from beam, clamp, furnace seal, and

valve contributions. Mode shapes and natural frequencies are then obtained by solving
Equation (22). Mode shapes 1–4 are shown in Figure E9.7.1(c).

9.8 2D FRAME MODELING WITH TIMOSHENKO BEAM ELEMENTS

Some machinery components, structures, or piping systems are constrained and loaded in a
manner that makes out-of-plane deflection negligible and are accurately modeled as 2D
frames. The 2D frame is a special case of the 3D model being constrained to move in
the x1−x2 plane. Imposing these constraints at the element level eliminates the requirement
for explicitly constraining every out-of-plane-related deflection or slope similar with the list
in Table E9.7.1(b). From Figures 9.4.2 and 9.4.3, it is seen that 2D motion allows freedom
for the dofs shown in Figure 9.8.1 while imposing the out-of-plane and torsional motion
constraints

q3 = q4 = q5 = q9 = q10 = q11 = 0 9 8 1
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For convenience of notation, the 2D dofs are renumbered as

Ve = v1 v2 v3v4v5v6
T = q1 q2 q6 q7 q8 q12

T 9 8 2

in the element-based (local) coordinate system or as

Ve = v1 v2 v3 v4 v5 v6
T = q1 q2 q6 q7 q8 q12

T 9 8 3

in the global coordinate system shown in Figure 9.8.2.

0

5

10 0
2

4
6

0
2
4
6 Mode 3, 11.1 Hz

0

5

10 0
2

4
6

0
2
4
6 Mode 4, 12.1 Hz

0

5

10 0
2

4
6

0

2

4

6 Mode 2, 10.6 Hz

0

5

10 0
2

4
6

0

2

4

6 Mode 1, 8.7 Hz

Figure E9.7.1(c) Mode shape 1–4 of piping system and support stand

Figure 9.8.1 Local coordinate degrees of freedom for a 2D frame model
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Imposing the constraints of (9.8.1) on (9.5.136) yields the local coordinate, 2D TB
element stiffness matrix shown in (9.8.4):

Ke =

v1 v2 v3 v4 v5 v6
v1

v2

v3

v4

v5

v6

EA

L

0
12βa12
L3

symmetric

0
6βa12
L2

βb12
L

−EA

L
0 0

EA

L

0
−12βa12
L3

−6βa12
L2

0
12βa12
L3

0
6βa12
L2

βc12
L

0
−6βa12
L2

βb12
L

9 8 4

where βa12 and β
b
12 are defined in (9.5.137). The 2D motion, local coordinate, element inertia

matrix is obtained by imposing similar constraints on the terms in Table 9.5.2, yielding

Me =

v1 v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6

ρAL

3

0
γm12Aa

12u
1

420
symmetric

0
γm12Aa

12u
2

420
γm12Aa

12u
5

420
ρAL

6
0 0

ρAL

3

0
γm12Aa

12u
3

420
−γm12Aa

12u
4

420
0

γm12Aa
12u
1

420

0
γm12Aa

12u
4

420
γm12Aa

12u
6

420
0

−γm12Aa
12u
2

420
γm12Aa

12u
5

420

Figure 9.8.2 Global coordinate degrees of freedom vei for a 2D frame model
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+
γm12 Ix3
30

0

0 a12θ1 symmetric

0 a12θ2 a12θ3

0 0 0 0

0 −a12θ1 −a12θ2 0 a12θ1

0 a12θ2 a12θ4 0 −a12θ2 a12θ3

9 8 5

where the a12uj and a12θj terms are defined in (9.5.61) and (9.5.63), and the γm12 is defined
in Table 9.5.2. The element force vector for the 2D case is obtained from its 3D counter-
part as

f
e,2D
6 × 1

=

v1

v2

v3

v4

v5

v6

f ext,1

f ext,2

f ext,6

f ext,7

f ext,8

f ext,12

9 8 6

where f ext, j are given in Table 9.6.1. The element stiffness and mass matrices and force vec-
tor transform to global coordinates similar to the 3D case as in (9.5.142, 9.5.143, and 9.6.29)

Ke = T
T
e KeTe 6 × 6, Me = T

T
eMeTe 6 × 6, f

e
= T

T
e f e 6 × 1 9 8 7

where the 2D coordinate transformation matrix is obtained from (9.4.10) using only the first
rotation in Figure 9.4.8:

Te =

cδe sδe 0 0 0 0

−sδe cδe 0 0 0 0

0 0 1 0 0 0

0 0 0 cδe sδe 0

0 0 0 −sδe cδe 0

0 0 0 0 0 1

9 8 8

The 6 × 6 element matrices and 6 × 1 element force vector are assembled to form
the constraint condensed system matrices using Figure 9.2.6, or (11) and (17) in Example
9.7.1, with

e= 1,2,…,E, r = 1,…,6, s= 1,…,6 9 8 9

where E is the total number of elements in the model. This will again yield the general form
of the equilibrium equations

Mf qf +Kf qf = ff 9 8 10

728 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



for the “free” (unconstrained) dofs q
f
. This equation may then be solved by the methods

of Chapter 5 for free vibration, Chapter 6 for transient responses, and Chapter 7 for forced
harmonic response.

EXAMPLE 9.8.1 Paint Station Frame Structure and Enclosure Vibrations

Statement: An automobile manufacturing plant utilizes an automated painting machine
housed in a portable enclosure and supported by a frame. The enclosure is transported trans-
versely to paint three parallel rows of automobiles, via an overhead crane. The lift hoists the
enclosure and then transports it to the adjacent automobile as shown in Figure E9.8.1(a). An
identical cable/hoist system is located on the other side of the I beam so that a total of four
cables lift the enclosure. A study is commissioned to determine if increasing the hoisting
speed, as characterized by a lifting time constant τL, will cause excessive vibration or
dynamic cable stresses. A sudden cable failure event is also simulated to determine the
resulting response of the crane’s support structure. The simulation model consists of the
TB elements shown in Figure E9.8.1(b). A 2D beam element modeling approach is
employed under the assumption that all disturbances and motions occur in the x1−x2 plane.

Figure E9.8.1(a) Painting enclosure, frame, and hoist

Figure E9.8.1(b) Node and element (boxed) numbering system
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Objectives: The objectives of this problem include:

(a) Determine the natural frequencies and mode shapes of the structure without the enclo-
sure attached and with the enclosure attached and raised to a height yT.

(b) Determine the transient response of the systemwith several lifting rates of the enclosure.

(c) Determine the transient response of the system to a sudden failure of the enclosure hoist-
ing cables when the enclosure is stationary at its fully raised position (yT).

(d) Perform (c) with the enclosure at the x1 =L 6 and the x1 = L 2 positions in
Figure E9.8.1(a)

(e) Demonstrate convergence of the natural frequencies by increasing the number of
elements in the I beam.

Assumptions:

(a) The hoist raises the enclosure by winding in the upper end of the cable a distance

ΔLc t = 2yT 1−e− t τL 1

relative to the trolley.

(b) The cable is initially taut and has length L0 prior to lifting.

(c) The trolley’s reaction forces against the I beam are concentrated at the point H, and the
trolley’s vertical displacement is q2H.

(d) The cable’s stiffness varies with its exposed length LE as

kc t =
EcAc

LE t
2

where

LE t =L0 + q2H −ye 3

and ye is the enclosure’s vertical displacement. The quantities Ec and Ac are the cable’s
Young’s modulus and cross-sectional area, respectively. The tension in the cable is

fc = kc t δc t 4

where δc is the stretch of the cable. This stretch is given by

δc = actual exposed length − exposed length without any loads or vibration

= L0 + q2H −ye − L0−
ΔLc t

2
=
ΔLc t

2
+ q2H −ye

5

where the 1/2 factor in ΔLc(t)/2 accounts for the pulley kinematics in Figure E9.8.1(a).
The total force exerted by the four cables (only two are shown in Figure E9.8.1(a)) on
the enclosure is

fce = 4fc = 4kcδc = 4kc
ΔLc t

2
+ q2H −ye = 4EcAc

ΔLc t 2 + q2H t −ye t

L0 + q2H t −ye t
6

(e) The cable is massless and remains tight at all times.
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(f) The frame’s translational and rotational dofs are fixed to ground at the four locations
indicated by triangles in Figure E9.8.1(b).

(g) The enclosure is treated as a rigid mass.

(h) The enclosure contacts the floor through two soft mounts with individual stiffness km.

(i) The structural damping is 5% for the lowest 10 modes with the enclosure detached and
follows equation (5.4.147) for the higher nodes.

Parameter Values:

(a) System Values:

L1 = 2 5 m, L2 = 3 0 m, L= 20 m, yT = 2 5 m, τL = 1 and 3 s

ξdl = 0 05 for l= 1,2,…,10 = desired damping ratios in 5 4 140 and 5 4 146

(b) Element Types:

(i) Overhead I Beam Element (Ref. Figures 9.4.2, 9.8.1, and E9.8.1(a)) and Equation
(9.5.22)). The cross section of this beam is illustrated in Figure E9.8.1(c).
From the AISC (1980): Beam Type: W16 × 67

a= 0 415m, b = 0 26m, tw = 0 01m, tf = 0 017m, v= 0 3

Ix3 = 3 97 × 10−4m4, A= 0 0127m2, E = 2 14 × 1011N m2, ρ= 7834 0 kg m3

(ii) Vertical Columns: Square Structural Tubing (Figure E9.8.1(d))
From the AISC (1980)
Beam Type: 8 × 8

Figure E9.8.1(d) Cross section of vertical column-square tubing

Figure E9.8.1(c) Cross section of overhead I beam
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a= 0 203m, t = 0 0095m, Ix3 = 4 4 × 10−5m4, A= 0 0072m2,

E = 2 14 × 1011N m2, v = 0 3, ρ = 7834 0kg m3

(iii) Sloped Column Braces (Figure E9.8.1(e))
Pipe (nominal diameter 5 (0.127 m) schedule 40), wall thickness
= 6 45 × 10−3m

OD= 0 141m, Ix3 = 6 3 × 10−6m4, A= 2 77 × 10−3m2, E = 2 14 × 1011N m2

v = 0 3, ρ= 7834 0 kg m3

(iv) Hoist Cable: L0 = 3 5m, Ac = 1 3 × 10−4m2, Ec = 2 14 × 1011N m2

(v) Enclosure: We = 9870 0N, me = 1000 0 kg, km = 200000 0N m

(c) Element Summary by Nodal Connectivity and Element Type
Table E9.8.1(a) provides a element summary. Figure E9.8.1(f) shows a model

geometry verification plot of the frame structure from the corresponding MATLAB
code in Appendix D.

Fixed Degrees of Freedom: Similar to Figure 9.2.5, the full system dofs at global node i are

x1 direction : 3∗ i−1 + 1, x2 direction : 3∗ i−1 + 2, θ3 direction : 3∗ i−1 + 3 7

Table E9.8.1(b) summarizes the fixed dofs in the model (Figure E9.8.1(b)) utilizing the
numbering convention in (7).

Figure E9.8.1(e) Cross section and angle of sloped pipe brace

0 5 10 15 20
–5

0

5

10

×1 (m)

×
2 

(m
)

Figure E9.8.1(f) Model geometry verification plot
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Thus, it is seen that the total number of “free” nonprescribed dofs is

nf =Nnpd = total no of dofs − no of prescribed dofs =Nd−Npd

= 3∗ no of nodes + 1 dof formassme −12 = 3 n + 19 + 1−12 = 3n + 46
8

Solution: The following describes the steps employed in the MATLAB code in Appendix D:

(a) Form Degree of Freedom (dof ) Connectivity Array
The dof connectivities are defined as in (9.2.79) as

for e = 1, n+ 18 elements

for j= 1, 2 nodes element

Table E9.8.1(b) Fixed degrees of freedom (dofs) in Figure E9.8.1(b)

Number
l Node Direction

Global dof
no. ipdl

Number
l Node Direction

Global dof
no. ipdl

1 n + 2 x1 3∗ n+ 1 + 1 7 n + 11 x1 3∗ n+ 10 + 1
2 n + 2 x2 3∗ n+ 1 + 2 8 n + 11 x2 3∗ n+ 10 + 2
3 n + 2 θ3 3∗ n+ 1 + 3 9 n + 11 θ3 3∗ n+ 10 + 3
4 n + 8 x1 3∗ n+ 7 + 1 10 n + 17 x1 3∗ n+ 16 + 1
5 n + 8 x2 3∗ n+ 7 + 2 11 n + 17 x2 3∗ n+ 16 + 2
6 n + 8 θ3 3∗ n+ 7 + 3 12 n + 17 θ3 3∗ n+ 16 + 3

Table E9.8.1(a) Element summary for Figure E9.8.1(a)

Element
number
(e)

Nodal connectivity

Type

Element
number
(e)

Nodal connectivity

Type

Local node 1
Be1

ICON (e,1)

Local node 2
Be2

ICON (e,2)

Local node 1
Be1

ICON (e,1)

Local node 2
Be2

ICON (e,2)

1 1 2 1 n + 9 n + 10 n + 5 3
2 2 3 1 n + 10 n + 11 n + 12 2
3 3 4 1 n + 11 n + 12 n + 13 2

n + 12 n + 13 n + 14 2
n − 1 n − 1 n 1 n + 13 n + 14 n + 15 2
n n n + 1 1 n + 14 n + 15 n + 16 2
n + 1 n + 2 n + 3 2 n + 15 n + 16 n + 1 2
n + 2 n + 3 n + 4 2 n + 16 n + 17 n + 18 3
n + 3 n + 4 n + 5 2 n + 17 n + 18 n + 19 3
n + 4 n + 5 n + 6 2 n + 18 n + 19 n + 14 3
n + 5 n + 6 n + 7 2

n + 19
Cable between nodes Ha and
n + 20

4n + 6 n + 7 1 2
n + 7 n + 8 n + 9 3
n + 8 n + 9 n + 10 3 n + 20 Enclosure mass at node n + 20 5

a Node H is node n 6 + 1 for the enclosure above auto 1 and is node n 2+ 1 for the enclosure above auto 2.
The integer n is selected to be some multiple of 6.
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for k= 1, 3 dof node

l= 3∗ j−1 + k

ICONDOF e l = 3∗ ICON e j −1 + k

end

end

end 9

where ICONDOF (e, l) is the dof connectivity array Bel, and ICON is the nodal connec-
tivity array Bel defined in Table E9.8.1(a). The coding logic in (9) only applies to the
beam elements (types 1, 2, 3), and not to the spring and mass in Figure E9.8.1(b). The
cable spring connects the x2 dof of node nH to the dof (ye) for vertical motion of the
enclosure mass (me). Therefore,

nH =
n

6
+ 1 if the enclosure is above auto 1

nH =
n

2
+ 1 if the enclosure is above auto 2

10

The cable spring is a 2-dof element (vertical displacement at each end of the spring)
and its dof connectivity is

Bn+19,1 = ICONDOF n+ 19, 1 = 3∗ nH −1 + 2 = x2 dof at node nH

Bn+19,2 = ICONDOF n+ 19, 2 = 3∗ n + 19 + 1 = ye displacement of enclosure
11

The enclosure mass element’s node is not shared by any other element; therefore,
its dof connectivity becomes

Bn+ 20,1 = ICONDOF n+ 20, 1 = 3∗ n + 19 + 1 = ye displacement of enclosure 12

(b) Form the jarray
The jarray contains the nonfixed (free) dof numbers in increasing order. As in

Example 9.2.3, a jarray is formed to “expand” the response vectors into their full
dimension (Nd), which includes both fixed and free dofs. The jarray(ji) is formed by
utilizing the input array of fixed dofs (ipdl) from Table E9.8.1(b) as

I = 0

for i= 1,Nd = 3∗ n+ 19 + 1 total no of dofs

flag = 0

for l = 1,Npd = 12 no of prescribed dofs

if i= ipdl see TableE9 8 1 b

flag= 1

end

end

if flag = 0
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I = I + 1

jarray I = i

end

end

Nnpd = I no of non-prescribed dofs 13

(c) Form the larray
The larray contains the locations of the full system dofs in the condensed dof vec-

tor xf in increasing order. All fixed dofs are assigned the number 0 in the larray. The

jarray(ji) is utilized to form the larray(li) as

for i= 1,Nd = 3∗ n+ 19 + 1 total no of dofs

larray i = 0

end

for I = 1,Nnpd from jarray coding Eq 13

ist = jarray I

larray ist = I

end 14

(d) Form the Constraint Condensed System Stiffness Matrix for the Frame
Consider the structure with the enclosure detached in Figures E9.8.1(a) or E9.8.1

(b). The system stiffness matrix Kf with fixed constraints imposed is formed accord-

ing to Figure 9.2.6 with indices r and s running from 1 to 6 and by using the dof con-
nectivity and L arrays:

Kf = 0 nf × nf initialize stiffness matrix to zero

for e = 1,E = n+ 18 beam elements only

– form the coordinate transformation matrix Te utilizing Equation (9.8.8)

– form the eth element stiffness matrix Ke in local coordinates using Equation (9.8.4)

– form the eth element stiffness matrix Ke in global coordinates using Equation (9.8.7)

Ke =T
T
e KeTe

for r= 1, 6

for s = 1, 6

Ber = ICONDOF e,r

Bes = ICONDOF e,s

lBer
= larray Ber

lBes
= larray Bes
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if lBer
0 and lBes

0

Kf lBer
, lBes

=Kf lBer
, lBes

+Ke r,s

end

end

end

end

15

(e) Form the Constraint Condensed System Mass Matrix for the Frame
Consider the structure with the enclosure detached in Figures E9.8.1(a) or E9.8.1

(b). The system mass matrix Mf with fixed constraints imposed is formed according

to Figure 9.2.6 with indices r and s running from 1 to 6 and by using the dof connectivity
and L arrays:

Mf = 0 nf × nf initialize mass matrix to zero

for e = 1,E = n+ 18 beam elements only

– form the coordinate transformation matrix Te utilizing Equation (9.8.8)

– form the eth element mass matrix Me in local coordinates using Equation (9.8.5)

– form the eth element mass matrix Me in global coordinates using Equation (9.8.7)

Me = T
T
e MeTe

for r= 1, 6

for s = 1, 6

Ber = ICONDOF e,r

Bes = ICONDOF e,s

lBer
= larray Ber

lBes
= larray Bes

if lBer
0 and lBes

0

Mf lBer
, lBes

=Mf lBer
, lBes

+Me r,s

end

end

end

end

16
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(f) Modes of the Frame-Only Model
The undamped equation of motion for the frame structure (i.e., no cable and

enclosure) is

Mf qf +Kf qf = 0 nf × 1 17

whereMf and Kf are the constraint condensed mass and stiffness matrices formed in (d)

and (e), nf is the number of nonfixed (free) dofs in the frame-only model

nf = 3 n + 19 −12 = 3n + 45 18

and q
f
is the nf × 1 vector of all “free” nonfixed displacements in the frame-only model.

The algebraic form of the undamped, free vibration equation is (5.4.12)

−ω2
fiMfψ fi

+Kfψ fi
= 0 nf × 1 19

Equation (19) is solved to obtain the natural frequencies and mode shapes of the
frame structure without the enclosure. The mode shapes ψ

fi
for the free dofs are

“expanded” into full system mode shapes ψ
l
by using the jarray (13) to include the

fixed dofs as follows:

for l = 1, Npd = 12

k = ipdl

ψ
k
= 0 fixed dof

end

for l = 1, Nnpd

k = jarray l

ψ
k
= ψ

f l

end

20

The full systemmode shapesψ
l
now contains zeros at all fixed dofs. Figure E9.8.1(g)

shows that the lowest 4 modes are nearly identical for n = 6 and n = 12, where n
is the mesh parameter defined in Figure E9.8.1(b). This demonstrates “mesh
convergence.”

The first (4.7 Hz), third (15.2 Hz), and fourth (30.5 Hz) modes resemble the lowest
three bending modes of a simply supported beam (SSB). The Euler–Bernoulli SSB
frequencies are

f EBj =
1
2π

jπ

L

2 EI

ρA
=

1
2π

jπ

20

2 2 14 × 1011 3 97 × 10−4

7834 0 0127

= 3 63j2 = 3 63, 14 52, 32 67 Hz

21

Chapter 9 Beam Finite Elements for Vibration Analysis 737

www.konkur.in



The Timoshenko SSB frequencies (without rotary inertia effects) are

f Tj =
f EBj

1 +
jπ

L

2 I

A

2 1 + v
k

=
3 63j2

1 +
jπ

20

2 3 97 × 10−4

0 0127
2 1 + 0 3
0 0819

=
3 63j2

1 + 0 0245j2

= 3 59, 13 86, 29 6 Hz

22
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Figure E9.8.1(g) Modes with enclosure detached for (i) n= 6 and (ii) n= 12 in Figure E9.8.1(b)
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The results in (21) and (22) are very similar to the finite element model results in
Figure E9.8.1(g), that is,

f FE1 , f FE2 , f FE4 = 4 7, 15 2, 30 5 Hz 23

The difference arises from the stiffer rotational constraints and the rotary inertia
effects (second matrix in 9.8.5) in the finite element model. The above discussion
is included to illustrate how formulas for simple models can be used to perform approx-
imate “reality” checks on a complex finite element model.

(g) The Constraint Condensed System Damping Matrix for the Frame-Only Model
The orthogonal damping matrix for the frame without the enclosure is by (5.4.140),

(5.4.142), and (5.4.146)

Cf 0 = μ1Kf +
m−1

l= 1

2κlωfl

mfl
Mfψ fl

ψT
fl
Mf 24

where

μ1 =
2ξdm
ωcm

and κl = ξ
d
l −ξ

d
m

ωfl

ωfm
25

and ξdl is the specified (desired) damping ratio of the lth mode in the frame-only struc-
ture. For this example, let

m= 10, ξd1 = ξ
d
2 = = ξdm = 0 05 26

The lowest 20 natural frequencies and damping ratios of the frame-only structure
with n = 12 are listed in Table E9.8.1(c).

(h) Equations of Motion for the Coupled Frame: Enclosure System
Parts (d)–(g) pertain to the frame-only model (no enclosure). The enclosure and

frame models are coupled in this section to form the entire systemmodel. The constraint
condensed displacement vector of the coupled system is

q
f
=

q
f

ye
nf × 1 27

Table E9.8.1(c) Natural frequencies and damping ratios for frame-only structure

Mode
Natural

frequency (Hz)
Damping
ratio Mode

Natural
frequency (Hz)

Damping
ratio

1 4.7 0.05 11 96.8 0.054
2 6.5 0.05 12 102.4 0.057
3 15.2 0.05 13 106.8 0.060
4 30.5 0.05 14 125.4 0.070
5 49.9 0.05 15 131.1 0.074
6 54.8 0.05 16 152.9 0.086
7 54.9 0.05 17 156.6 0.088
8 72.4 0.05 18 157.4 0.102
9 87.3 0.05 19 181.4 0.113
10 89.2 0.05 20 201.3 0.119
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where

nf = nf + 1 28

The cable that connects the enclosure and frame is attached in the x2 direction at
frame node nH in (10). This is the

3∗ nH −1 + 2 29

dof of the total system and the

l∗ = l
3∗ nH −1 + 2

= larray 3∗ nH −1 + 2 30

dof of the constraint condensed system. A free-body diagram of the isolated enclosure is
shown in Figure E9.8.1(h).

The sum of the cable forces fce(t) in Figure E9.8.1(h) is defined by (2), (3), and
(6) as

fce t =
4EcAc ΔLc t 2 + q2H t −ye t

L0 + q2H t −ye t
31

where

ΔLc t = 2yT 1−e− t τL 32

and q2H(t) is the vertical deflection of the frame at node nH in (10). The force in (31) may
be rewritten in terms of the components in the coupled system displacement vector
(27) as

fce t =
4EcAc ΔLc t 2 + q

f l∗
− q

f nf

L0 + q
f l∗

− q
f nf

33

which is clearly a nonlinear function of the enclosure and frame displacements. Soft
stiffness mounts km are attached to the bottom of the enclosure to reduce its impact force
on the concrete floor. The weight of the enclosure compresses the mounts by an amount

Δe =
We

2km
34

Figure E9.8.1(h) Free-body diagram of the enclosure
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The enclosure’s vertical displacement ye in Figures E9.8.1(a) and E9.8.1(h) is
referenced from the static equilibrium position of the enclosure with the cables slack.
The reaction force between the floor and enclosure becomes

Rf =
2km Δe−ye , ye ≤Δe

0, ye >Δe
=

2km Δe− q
f nf

, q
f nf

≤Δe

0, q
f nf

>Δe

35

The equation of motion for the enclosure is

meye = fce +Rf −We 36

and the equation of motion for the frame portion of the system is

Mf qf +Cf 0qf +Kf qf = ff nf × 1 37

where the constraint condensed force vector is

f
f

nf × 1

=

0

− fce

0

row l∗ 38

The frame node deflections are referenced to the statically deflected state with the
enclosure removed, so beam element weights are ignored in (38). The following first-
order (state) forms of (36) and (37) may be numerically integrated using the methods of
Section 6.4 to obtain the response at any node in the frame model and of the enclosure,
given the lift height yT and time constant τL in (32). The first-order forms are

ye = ve, ve =
1
me

fce +Rf −We 39

q
f
= vf nf × 1 , vf =M

−1
f f

f
−Cf vf −Kf qf nf × 1 40

with fce defined in (33), Rf defined in (35), and f
f
defined in (38).

A linearized model is also formed by considering the system with the enclosure in a
stationary state so that the cable has constant length and stiffness kc values. The
coupled, linear system equations have the form

Mf qf +Cf 0qf +Kf qf = f f nf × 1 41

The nf × nf Mf , Cf 0, and Kf matrices are formed by initializing each to a zero

matrix. The corresponding frame-only, nf × nf Mf , Cf 0, and Kf matrices are then

added into the upper nf rows and columns of Mf , Cf 0, and Kf , respectively. Finally,

the enclosure and cable-related terms are added, as described next. The cable stiffness
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kc connects the x2 dof of frame node nH to the x2 dof of the enclosure node n + 20 in
Figure E9.8.1(b). The corresponding full system dofs are

gH = 3∗ nH −1 + 2 and ge = 3∗ n + 19 + 1 42

and the corresponding dofs in the constraint condensed system are from (28) and (30) l ∗

and nf , respectively. The element stiffness matrix for the cable spring is

Kcable =

l∗ nf

4kc −4kc

−4kc 4kc

l∗

nf

43

where the bordering symbols show the rows and columns of the constraint condensed
matrix Kf into which the four entries in Kcable are added, for example,

Add 4kc into row l∗ , column l∗ of K f
, Add −4kc into row l∗ , column nf of Kf

Add −4kc into row nf , column l∗ of Kf , Add 4kc into row nf , column nf of Kf

44

The enclosure mount stiffness 2km (Figure E9.8.1(h)) is added into the nf ,nf
position of Kf only if the enclosure is in contact with the floor. Likewise, the enclosure

mass me is added into the nf ,nf position of Mf for all cases.

(i) Natural Frequencies andMode Shapes for the Coupled Frame–Cable–Enclosure System
The mesh parameter in Figure E9.8.1(b) is n= 12 for this study. The cable stiffness

(Eqs. 2 and 3) varies with length so consider the following two cases:

Case (a): Enclosure above auto 2, x1 = L
2 , and resting on floor (2km included) yT = 0

kc =
EcAc

L0
=

2 14 × 1011 1 3 × 10−4

3 5
= 7 95 × 106 N m 45

Case (b): Enclosure above auto 2, x1 = L
2 , and raised above floor yT = 2.5 m

kc =
EcAc

L0−yT
=

2 14 × 1011 1 3 × 10−4

1 0
= 27 8 × 106 N m 46

Figure E9.8.1(i) shows the lowest 4 mode shapes for both cases (a) and (b).
Table E9.8.1(d) shows the lowest 10 natural frequencies for both cases.

(j) Transient Response during an Enclosure Lift
Equations (39) and (40) are numerically integrated with MATLAB ODE45

(Appendix D) to simulate vibrations of the frame and enclosure due to raising the enclo-
sure according with (1). The ordering of the state variables in the ODE45 subfunction is

Q
c
=

q
f

nf × 1

vf
nf × 1

ye
1 × 1

ve
1 × 1

2nf + 2 × 1 47

742 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



The dimension of this vector is from (18)

2Nnpd = 2nf + 2= 2 3n+ 45 + 2 = 2 3n+ 46 48

Equation (1) shows that the time required for the enclosure to be raised to 87% of
its target value is approximately 2τL. Consider the case when the enclosure is above
auto 2 and the I beam is modeled with n = 12 elements. Figure E9.8.1(j) shows the dis-
placements of the frame and enclosure for τL = 1s and τL = 3 s. Figure E9.8.1(k) shows
the corresponding cable force (fc, Eq. 4), cable stress (fc/Ac), and enclosure mount force
(Rf, Eq. 35). These figures clearly show that (a) increasing the hoist time significantly
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Figure E9.8.1(i) Modes for (i) case (a), and for (ii) case (b)
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reduces vibrations and cable stress and force and (b) dynamic peak stresses are much
larger than their static load counterparts so it is essential to perform a vibration simu-
lation. For comparison purposes, the static cable force is one-fourth of the enclosure
weight, f staticcable =We 4 = 2468 N, and the corresponding static stress in the cable is
σstaticcable = f

static
cable Ac = 0 19 × 108 N m2. The peak dynamic displacement (41.0 mm) of

the I beam midspan is also much larger than its static response value 12.0 mm.

(k) Response of Frame to Sudden Failure of Cables

A worst-case scenario study is requested for considering simultaneous failure of all
four cables when the enclosure is stationary and raised off of the floor. The objective is
to predict the vibration of the frame and forces at reaction (fixed) points on the frame
(A and B in Figure E9.8.1(a)). Similar to the gravel truck loading Example 5.3.1, the

Table E9.8.1(d) Natural frequency summary with enclosure attached above auto 2

Mode

Natural frequencies (Hz)

Without enclosure
Case (a) Case (b)

Enclosure attached yT = 0 Enclosure attached at ye = 2 5 m

1 4.7 4.0 3.3
2 6.5 6.5 6.5
3 15.2 15.2 15.2
4 30.5 22.9 24.2
5 49.9 46.2 49.9
6 54.8 49.9 54.7
7 54.9 54.8 54.9
8 72.4 54.9 56.6
9 87.3 79.4 87.1
10 89.2 87.4 89.2
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Figure E9.8.1(j) Vertical displacement of the I beam at the locations indicated and of the enclosure for
(i) τL = 1 s and (ii) τL = 3 s
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frame is initially, statically deflected due to the weight of the suspended enclosure.
These deflections are obtained by solving the static form of Equation (41):

q
f static

=K
−1
f f

f
49

where similar to (38) the static load vector is

f
f
=

0

−We

0

row l∗ 50

We is the enclosure weight and

nH =

n

6
+ 1, enclosure above auto 1

n

2
+ 1, enclosure above auto 2

51

in (30). These static deflections are imposed as initial conditions for the sudden cable
failure model. Figure E9.8.1(l) shows the initial static deflection patterns just prior to the
cable failure, for the case of the enclosure positioned above auto 1 and above auto 2.

The frame static displacements become the initial conditions for solving the tran-
sient response condition (37)

Mf qf +Cf 0qf +Kf qf = ff nf × 1 52
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Figure E9.8.1(k) Forces and cable stress for the enclosure at midspan and (i) τL = 1 s and (ii) τL = 3 s
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with f
f
= 0. The state vector for the MATLAB ODE45 numerical integration solution is

Q
c
=

q
f

nf × 1

vf
nf × 1

2nf × 1 53

Figure E9.8.1(m) shows the predicted vibrations at selected locations along the
I beam after the cables fail.

The reaction forces at A and B in Figure E9.8.1(a) are obtained by considering the
dynamic equilibrium of the beam element that contains the fixed node at A or B. This
figure and Table E9.8.1(a) show that these elements and nodes are

A fixed noden + 8 is local node 1of element n + 7

B fixed noden + 2 is local node 1of element n + 1
54

The inertia and damping terms of the element equation are ignored as an approxi-
mation, which improves as the element size diminishes, yielding the condition

Fe =Ke Ve 55
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Figure E9.8.1(l) Deflection of frame due to enclosure weight prior to cable failure. Enclosure above (i) auto
1 and above (ii) auto 2
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Figure E9.8.1(m) Vertical displacement of the I beam at the locations indicated, for the enclosure above (i) auto
1 and above (ii) auto 2
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where

Fe = Fe
11 Fe

21 Me
1 Fe

12 Fe
22 Me

2
T 56

Ke = element stiffness matrix in Equation 9 8 7 57

Ve = ve1 ve2 ve3 ve4 ve5 ve6
T = ue11 ue21 θe1 ue12 ue22 θe2

T 58

Fe
ij = force in global xi direction at local node j of element e 59

Me
j = moment at local node jof element e 60

ueij = translational displacement in global xi direction at local node jof element e 61

θej = translational rotation at local node jof element e 62

Represent Ke in the partitioned matrix form

Ke =

Ke
11

3×3
Ke
12

3×3

Ke
21

3×3
Ke
22

3×3

63

The reaction forces at local node 1 are then obtained from (55) with zero displace-
ments at local node 1 as

Fe
11

Fe
21

Me
1

= Ke
12

3 × 3

ue12
ue22
θe2

64

Inspection of Figures E9.8.1(a) and E9.8.1(b) shows that the displacements
ue12, u

e
22, θ

e
2 in (64) are those at node n+ 9 for the reaction forces at A and

n + 3 for the reaction forces at B. Table E9.8.1(e) provides the positions of these

displacements in the solution vector q
f
t of (52).

Figure E9.8.1(n) shows the reaction forces versus time at the fixed point locations
A and B in Figure E9.8.1(a), following the simultaneous failure of the cables.

Table E9.8.1(e) Positions of the displacements in Equation (64)

Locations in q
f

ue12 ue22 θe2

A node n+ 9 larray(3(n + 8) + 1) larray(3(n + 8) + 2) larray(3(n + 8) + 3)
B node n+ 3 larray(3(n + 2) + 1) larray(3(n + 2) + 2) larray(3(n + 2) + 3)
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Summary: This example provides the following results and techniques:

• Mesh Convergence: The n= 6 and n= 12 modes and natural frequencies in Figure E9.8.1
(g) are nearly identical.

• Statics versus Dynamics Model: The dynamic (vibratory) displacements, forces, and
stresses were shown to be much higher (20 times for cable stress) than their static solution
counterparts for the enclosure lift simulation.

• Analysis Types: Transient-forced, mode and natural frequency, initial condition, and
static response analyses are presented.

• Special Features: Orthogonal damping, time-dependent stiffness, and nonlinear forces
(Eqs. 2, 24, and 33).

• Reaction Force Determination: The analysis in Equations (55)–(64) provided the reaction
forces at A and B in Figure E9.8.1(a), as shown in Figure E9.8.1(n) for the sudden cable
failure case.

9.9 SUMMARY

This chapter presented a thorough discussion and development of modeling beam-like
structures (frames) for vibration simulation studies. The math models required for pro-
gramming were developed for both 3D and 2D frames. The results were presented
with detailed algorithms for assembling the beam elements into system matrices
and subsequent solutions for modal data and time domain responses. The assembly
procedures were shown to be nearly identical to those given in Chapter 4 for truss-
type structures. The theory was demonstrated with complex 3D and 2D frame-type
structures.
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Figure E9.8.1(n) Reaction force time history at the constraint locations A and B in Figure E9.8.1(a) for the
enclosure above (i) auto 1 and above (ii) auto 2
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9.10 CHAPTER 9 EXERCISES

9.10.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website: www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding a significant cost savings for the college student, and the exercises are updated.

9.10.2 Exercise Goals

The goal of the Exercises in Chapter 9 is to strengthen the student’s understanding and
related engineering problem solving skills in the following areas:

(a) Understanding the underlying theory of beam element and frame models

(b) Ability to formulate a frame-type finite element model with arbitrary geometry, loading,
and boundary conditions

(c) Calculating the free and forced vibration responses of frames including natural frequen-
cies and mode shapes

9.10.3 Sample Exercises: 9.4 and 9.15a

The framein9.4 isconstrainedasshownand issubjected toasuddenuniformload.Theobjective
is to determine the resulting vibration at node 2 and the reaction forces,moments, and stresses at
node 3. The U-shaped frame in 9.15a represents the Skywalk that is perched over the edge of
theGrandCanyon.A vibration absorber is attached to its underside to aid in suppressing pedes-
trian-induced vibrations. The objective is to calculate its natural frequencies and mode shapes.
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Chapter 10

2D Planar Finite Elements
for Vibration Analysis

10.1 INTRODUCTION

Design optimization algorithms, such as genetic algorithms, often utilize lower fidelity
(detailed) models to narrow the range of prospective designs to a smaller set of candidate
designs. The model fidelity is then increased for screening the surviving designs for more
accurate predictions of stress, deflection, natural frequency, etc. The simplified models typ-
ically impose deflection or stress assumptions to reduce the dimensions of themodel resulting
in a reduction of modeling and simulation times. Excessive simulation time can be a serious
impediment to analyzinga requisite numberofdesign configurations evenwithmodern, ultra-
fast computers. This results from the extremely large numbers of degrees of freedom inmany
automated mesh finite element models. Imposing of deflection assumptions was previously
illustrated in Chapter 9 where the condition “plane sections remain plane” was imposed on
beamdeflections.Asimilar, but less restrictive, approach is used in this chapter for developing
plane stress, plane strain, and axisymmetric finite element models. These models are called
2D since finite element discretization (meshing) is applied only to a 2D area and not to a vol-
ume. The finite element method FEM is the approach of preference in most industrial and
research and development environments.Acquiring a goodgrasp of the corresponding theory
can assist commercial finite element software users in recognizing the limitations of the soft-
ware that result from the inherent assumptions of the theory that the codes are based on.

10.2 PLANE STRAIN (Pε)

The assumptions utilized for plane strain modeling are that the ratio of depth to width is very
large, and the loading and boundary conditions are only in the 2D plane and nonvarying in
the depth direction. Although the construction and loads on the object being modeled rarely
meet these assumptions to a high degree of precision, the results of the model are frequently
of sufficient accuracy to guide the initial design development, with the final candidate
designs employing more precise models. Figure 10.2.1 illustrates some possible applica-
tions where the plane strain assumption may be very accurate due to in-plane loading
and loading and boundary conditions that are approximately invariant in the depth direction.
Euler–Bernoulli and Timoshenko beams assume invariance of deflection and loading in the
depth direction and thus act similar to Pε models. The beam models also have additional
kinematic constraints, that is, “plane sections remain plane” which disregards warping
behavior of the beam’s cross section.

It is important to note that for dynamics, the Pεmodel is useful only for studying vibra-
tion mode shapes and response that are invariant in the depth direction. For example,
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twisting would invalidate Pε as an appropriate model for some turbomachinery blades. The
assumptions of plane strain may be mathematically expressed in terms of the notation of
Section A.3 as

u3 = 0, u1 = u1 x1,x2 , u2 = u2 x1,x2 10 2 1

Therefore, the normal and shear strains from (A.3.21) become

ε33 =
∂u3
∂x3

= 0, ε23 =
1
2

∂u2
∂x3

+
∂u3
∂x2

= 0, ε13 =
1
2

∂u1
∂x3

+
∂u3
∂x1

= 0 10 2 2

Substitution of these strains into the isotropic material law equation (A.4.3) yields

σ11 = αPε 1−v ε11 + vε22 10 2 3

σ22 = αPε vε11 + 1−v ε22 10 2 4

σ33 = αPε vε11 + vε22 10 2 5

where

αPε =
E

1 + v 1−2v
10 2 6

Sum (10.2.3) and (10.2.4) to obtain

v σ11 + σ22 = αPεv ε11 + ε22 10 2 7

Equations (10.2.5) and (10.2.7) then show that

σ33 = v σ11 + σ22 10 2 8

The shear stresses are obtained from (A.4.3) and (10.2.2) as

σ13 = σ23 = 0, σ12 = αPε 1−2v ε12 10 2 9

Since σ33 can be obtained from σ11 and σ22 in (10.2.8), the nonzero stresses become

σ11

σ22

σ12

= αPε

1−v v 0

v 1−v 0

0 0
1−2v
2

ε11

ε22

2ε12

10 2 10

Figure 10.2.1 Some structural dynamics systems appropriate for plane strain modeling
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or in matrix–vector notation,

σPε =EPεεPε 3 × 1 10 2 11

10.3 PLANE STRESS (Pσ)

In one aspect, the plane stress assumption is opposite from that of the plain strain assump-
tion. Plane stress structures must generally have very thin plate-like geometry. The assump-
tion of only in-plane loading is still required for the plane stress model. Figure 10.3.1
illustrates some possible applications of the plane stress modeling approach. Plane stress
assumptions are frequently imposed for formulating the in-plane deformation model of
plates, and plate theory is applied to the Kirchhoff out-of-plane bending and Mindlin shear
deformation of plates.

To better understand the plane stress approximation, assume that no external loading
exists on the x3 surface of the plate, that is, in-plane loads may be treated as internal loads.
Applying the equilibrium conditions on the top and bottom surfaces of the plate,
Equation (A.2.3), with

n1 = n2 = 0, n3 = 1 unit normal 10 3 1

and

Φ1 =Φ2 =Φ3 = 0 surface traction on ± x3 surface 10 3 2

yields the results

σ13 = σ23 = σ33 = 0 10 3 3

Assume that this conditions hold approximately in the interior, and thus from (10.3.3) and
the isotropic material law (A.4.3),

σ11 = αPε 1−v ε11 + vε22 + vε33 10 3 4

σ22 = αPε vε11 + 1−v ε22 + vε33 10 3 5

σ33 = αPε vε11 + vε22 + 1−v ε33 = 0 10 3 6

Figure 10.3.1 Some structural dynamics systems appropriate for plane stress modeling. (a) Furnace
wall mounted fan, (b) panel mounted ball bearing with cutouts and (c) floor plate with quick open hatch
and bumper stops
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where αPε =E 1 + v 1−2v . From (10.3.6),

ε33 =
−vε11−vε22

1−v
10 3 7

Substitute (10.3.7) into (10.3.4) and (10.3.5) to obtain

σ11 =
E

1−v2
ε11 + vε22 , σ22 =

E

1−v2
vε11 + ε22 10 3 8

and from (A.4.3),

σ12 =
E

1 + v
ε12 10 3 9

These relations are written in matrix form as

σ11

σ22

σ12

=
E

1−v2

1 v 0

v 1 0

0 0
1−v
2

ε11

ε22

2ε12

10 3 10

or

σPσ =EPσεPσ 10 3 11

It is interesting to note that the Pσ material matrix EPσ may be obtained from the Pε matrix
EPε (10.2.8) by making the substitutions

v
v

1 + v
, E

E 1 + 2v

1 + v 2 10 3 12

This simplifies coding since the ρε and ρσ models differ only by an “effective” Poisson ratio
v and Young’s Modulus E.

10.4 PLANE STRESS AND PLANE STRAIN: ELEMENT STIFFNESS
AND MASS MATRICES AND FORCE VECTOR

The area of the model in the x1−x2 plane may be meshed with various orders and types of
elements. The 4-node quadrilateral, isoparametric finite element shown in Figure 10.4.1 is
utilized here for sake of illustration. The element numbers are e = 1, 2, …, NE , and the
node numbers i= 1, 2, …, NN .

Figure 10.4.1 Plane stress/strain model
(a) without FE mesh and (b) with FE mesh
including Nn nodes and a degree of
freedom numbering convention
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Each element in the model has the general geometry description depicted in
Figure 10.4.2.

As discussed in Section 2.11 (2.11.36), the u1 and u2 displacements are interpolated
within the element according to

ui =
4

k=1

Nk ξ1,ξ2 u e
ik i= 1, 2 10 4 1

where the shape functions are defined in this case by the Lagrangian polynomials,

N1 =
1
4
1−ξ1 1−ξ2 , N2 =

1
4
1 + ξ1 1−ξ2

N3 =
1
4
1 + ξ1 1 + ξ2 , N4 =

1
4
1−ξ1 1 + ξ2

10 4 2

u e
ik = ui displacement of local node k of element e 10 4 3

The geometry of the element is mapped from its actual shape into a square as depicted in
Figure 10.4.2. This mapping is expressed by

xi =
4

k=1

Nk ξ1,ξ2 x e
ik i = 1, 2 10 4 4

where ξi are the “natural” or “parent” coordinates and

x e
ik = xi coordinate of local node k of element e 10 4 5

This is referred to as an “isoparametric” formulation since both the displacement inter-
polation and geometry mapping utilize the same shape functions Nk(ξ1, ξ2). The general
formulation of the finite element stiffness matrix, Equations (4.7.16)–(4.7.34), applied to
the 2D approximation case yields

ue =
u1

u2
=Nqe 10 4 6

qe = ue11 ue21 ue12 ue22 ue13 ue23 ue14 ue24
T 10 4 7

N=
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4
10 4 8

Figure 10.4.2 Four-node quadrilateral element in (a) actual coordinates and (b) natural (parent)
coordinates
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ε =

ε11

ε22

2ε12

=

∂

∂x1
0

0
∂

∂x2
∂

∂x2

∂

∂x1

u1

u2
=Du 10 4 9

εe

3×1
= Be

3×8
qe

8×1

10 4 10

and finally by (4.7.30),

Ke

8×8
=

Ve

BT
e EeBedV 10 4 11

Equation (10.4.11) is not in a form that is conducive to programming and numerical eval-
uation. The following steps convert the integrand and integration into a more easily pro-
grammable form. To begin, rewrite (10.4.9) as

ε=

1 0 0 0

0 0 0 1

0 1 1 0

∂u1
∂x1
∂u1
∂x2
∂u2
∂x1
∂u2
∂x2

10 4 12

The derivatives with respect to xj in (10.4.12) are not readily evaluated since the displacements
uj are interpolated with natural coordinates ξj. The differentiations are transformed to deriva-
tives taken with respect to the ξj coordinates as follows. By the chain rule of differentiation,

∂

∂ξ1
∂

∂ξ2

=

∂x1
∂ξ1

∂x2
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂

∂x1
∂

∂x2

10 4 13

or in matrix–vector symbols (2.6.42a),

∂

∂ξ
= J

∂

∂x
10 4 14

where the “Jacobian” matrix J is expressed with Equation (10.4.4) as

J =

4

k=1

∂Nk

∂ξ1
xe1k

4

k=1

∂Nk

∂ξ1
xe2k

4

k=1

∂Nk

∂ξ2
xe1k

4

k=1

∂Nk

∂ξ2
xe2k

=

∂N1

∂ξ1

∂N2

∂ξ1

∂N3

∂ξ1

∂N4

∂ξ1
∂N1

∂ξ2

∂N2

∂ξ2

∂N3

∂ξ2

∂N4

∂ξ2

xe11 xe21
xe12 xe22
xe13 xe23
xe14 xe24

=
J11 J12

J21 J22

10 4 15
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The second form of J in (10.4.15) provides an efficient manner for its evaluation. The shape
function derivatives will soon be shown to be evaluated at the same “Gauss points” in every
element, and so these matrices need be calculated (and stored) only once. These matrices
may then be multiplied by the matrix of nodal coordinates in (10.4.15), which does change
between elements, to obtain the matrix J evaluated at the Gauss points. Apply (10.4.14) to
the derivatives of u1 and u2 in (10.4.12),

∂u1
∂x1
∂u1
∂x2
∂u2
∂x1
∂u2
∂x2

=

J−1
2×2

0
2×2

0
2×2

J−1
2×2

∂u1
∂ξ1
∂u1
∂ξ2
∂u2
∂ξ1
∂u2
∂ξ2

10 4 16

Substitute (10.4.16) into (10.4.12) to obtain

ε
3×1

= Ae
1

3×4
r

4×1
10 4 17

where

r=

∂u1
∂ξ1
∂u1
∂ξ2
∂u2
∂ξ1
∂u2
∂ξ2

10 4 18

and

Ae
1 =

1 0 0 0

0 0 0 1

0 1 1 0

J−1
2×2

0
2×2

0
2×2

J−1
2×2

10 4 19

Substitute (10.4.6)–(10.4.8) into (10.4.18) to obtain

r =

∂u1
∂ξ1
∂u1
∂ξ2
∂u2
∂ξ1
∂u2
∂ξ2

=

∂N1

∂ξ1
0

∂N2

∂ξ1
0

∂N3

∂ξ1
0

∂N4

∂ξ1
0

∂N1

∂ξ2
0

∂N2

∂ξ2
0

∂N3

∂ξ2
0

∂N4

∂ξ2
0

0
∂N1

∂ξ1
0

∂N2

∂ξ1
0

∂N3

∂ξ1
0

∂N4

∂ξ1

0
∂N1

∂ξ2
0

∂N2

∂ξ2
0

∂N3

∂ξ2
0

∂N4

∂ξ2

ue11
ue21
ue12
ue22
ue13
ue23
ue14
ue24

10 4 20
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or in matrix–vector symbols,

r =Ae
2q

e 10 4 21

Note that as described above for evaluating the Jacobian matrix J, the matrix of shape func-
tion derivatives in (10.4.20) need be evaluated only once at each Gauss point in a single
element, since the Gauss points will be the same for every element in the mesh. Substitution
of (10.4.21) into (10.4.17) yields

ε=Ae
1A

e
2 q

e 10 4 22

Comparison of (10.4.10) and (10.4.22) shows that

Be

3×8
= Ae

1
3×4

Ae
2

4×8
10 4 23

The stiffness matrix integral in (10.4.11) can now be considered utilizing (10.4.23). The inte-
gration domain includes the x1 − x2 area of the element as shown in Figure 10.4.2 and a
finite thickness in the x3 direction. Let the thickness of an element in the x3 direction of
Figure 10.4.2 be represented by te. For plane strain models, all loads are considered per unit
depth, in which case te = 1. The stiffness matrix integral in (10.4.11) may then be written as

Ke

8×8
= te

ae
Be T

8×3

Ee

3×3
Be

3×8
dae 10 4 24

where ae is the area of element e in the x1−x2 plane. The differential area da
e transforms

between actual and natural coordinates as (Hildebrand, 1976)

dae = dx1dx2 = det Je dξ1dξ2 10 4 25

Equation (10.4.24) then becomes

Ke = te
1

−1

1

−1

Be T

8×3

Ee

3×3
Be

3×8
det Je dξ1dξ2 10 4 26

where the plane strain or plane stress, isotropic, material property matrix is given by
(10.2.10) or (10.3.10), respectively. Although the integration domain now assumes a very
simple unit square shape, the integrand terms in (10.4.26) are more complicated than pol-
ynomial expressions and generally have the form of rational functions of ξ1 and ξ2. The
denominator in the rational functions results from the J−1 term in (10.4.16). Consequently,
the double integral must be performed numerically and the usual method is by using “Gauss
Quadrature” (GQ), as implemented with the following steps:

(a) The integrand matrix Be T
EeBe det Je is evaluated at a set of discrete “Gauss integra-

tion point” locations (ξ1s, ξ2t) in the integration domain −1 ≤ ξ1 ≤ + 1, −1 ≤ ξ2 ≤ + 1 .
The indices s and t range between s= 1, 2, …, nG and t = 1, 2, …, nG yielding a set of
n2G Gauss integration point locations within −1 ≤ ξ1 ≤ + 1, −1 ≤ ξ2 ≤ + 1 . The param-
eter nG is referred to as the GQ order and typically equals 2 or 3 for the 4 node, quad-
rilateral element shown in Figure 10.4.2. The coordinates (ξ1s, ξ2t) of these special
locations are called “Gauss integration points.” Table 10.4.1 shows the Gauss integra-
tion points for various Gauss integration orders.
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(b) The set of n2G matrices in (a) are then multiplied by their respective weighting factors
wswt, which are shown in Table 10.4.1.

(c) The double integral in (10.4.26) is then replaced by a double sum over s = 1, 2, …, nG
and t = 1, 2, …, nG.

The net effect of applying these steps converts the integral in (10.4.26) into the sum

Ke≈ te
nG

s=1

nG

t=1

wswtB
T
e ξ1s,ξ2t EeBe ξ1s,ξ2t det Je ξ1s,ξ2t 10 4 27

Notably, GQ of order nG will provide the exact value for

1

−1
f ξ dξ 10 4 28

if f(ξ) is a polynomial in ξ of degree 2nG−1 or less. The general form of the element mass
matrix is given by (4.7.10) as

Me =
Ve

ρNTN dV 10 4 29

where N is defined in (10.4.8). The isoparametric transformation is applied to obtain

Me = te
1

−1

1

−1

ρNTNdet Je dξ1dξ2 10 4 30

and finally, applying GQ yields the formula

Me≈ te
nG

s=1

nG

t=1

wswt ρ ξ1s,ξ2t NT ξ1s,ξ2t N ξ1s,ξ2t det Je ξ1s,ξ2t 10 4 31

Table 10.4.1 Gauss Quadrature (GQ) points and weight factors for order 1–4

Order nG Point no. (i) Location of GQ point ξi Weight factor wi

1 1 0 2
2 1 −1 3 1

2 1 3 1

3 1 − 0 6 5/9

2 0 8/9
3 + 0 6 5/9

4 1 −
3 + 2r
7

where r = 1 2
1
2
−
1
6r

2 −
3−2r
7

1
2
+

1
6r

3 +
3−2r
7

1
2
+

1
6r

4 +
3+ 2r
7

1
2
−
1
6r
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10.4.1 External Forces

The external forces acting on the element may be distributed throughout its volume or
applied on one or more of its four edges. The volume force densities (force per unit volume)
are Fe

Vx1 andF
e
Vx2, and the surface (edge) force densities (force per unit area) are

Fe
Γx1 andF

e
Γx2. Examples of the former include gravity (weight) and imposed acceleration,

and examples of the latter include pressure and concentrated surface loads. The element
force vector may then be expressed by (4.7.59) as

f e

8×1

=

f e11
f e21
f e12
f e22
f e13
f e23
f e14
f e24

=
Γe
NT

Fe
Γx1

Fe
Γx2

dΓ+
V e

NT
Fe
Vx1

Fe
Vx2

dV 10 4 32

where Γe represents all edges of the element that lie on the surface of the structure being
modeled, and the shape function matrix N is defined in (10.4.8).

10.4.2 Concentrated Forces

Consider the general case where all nodes in an element are subjected to concentrated forces,
where in actual applications many of these loads will be zero. Let FA

ik t represent a concen-
trated external force acting at local node k in direction xi. This loading can be included in the
volume force integral of (10.4.32) by using Dirac delta functions as explained in
Section 2.12, that is,

f e
c
=

V
NT

4

k=1

FA
1k t δ x1−x1k,x2−x2k

FA
2k t δ x1−x1k,x2−x2k

dV =
V

4

k=1

FA
1k t N1δ x1−x1k,x2−x2k

4

k=1

FA
2k t N1δ x1−x1k,x2−x2k

4

k=1

FA
1k t N2δ x1−x1k,x2−x2k

4

k=1

FA
2k t N2δ x1−x1k,x2−x2k

4

k=1

FA
1k t N3δ x1−x1k,x2−x2k

4

k=1

FA
2k t N3δ x1−x1k,x2−x2k

4

k=1

FA
1k t N4δ x1−x1k,x2−x2k

4

k=1

FA
2k t N4δ x1−x1k,x2−x2k

dV =

FA
11 t

FA
21 t

FA
12 t

FA
22 t

FA
13 t

FA
23 t

FA
14 t

FA
24 t

10 4 33
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which follows from (2.12.4) and since the shape functions defined in (10.4.2) satisfy

Nk x1j,x2j =
0, j k

1, j = k
10 4 34

The concentrated load at a node should be included in only one element force vector to avoid
redundancy.

Alternatively, concentrated forces applied at nodes may be placed directly into the total
system force vector at the degrees of freedom where they are applied. This procedure permits
bypassing the step of assembling the element force vector into the total system force vector.

10.4.3 General Volumetric Loading

Next consider volumetric forces that are distributed within the domain of an element.
Consider the distributed volumetric load having components

Fv =
Fe
vx1

Fe
vx2

=
f evx1 x1,x2 αe

vx1 t

f evx2 x1,x2 αe
vx2 t

10 4 35

where the α(t) terms contain the temporal dependence of the loading. This may occur for
example when a deformable object is subjected to a time-varying acceleration field. The
element force vector is determined from (10.4.25) and (10.4.32) as

f e
v
t

8×1

= te
1

−1

1

−1

NT ξ1,ξ2
f evx1 ξ1,ξ2 αe

vx1 t

f evx2 ξ1,ξ2 αe
vx2 t

det Je dξ1dξ2 10 4 36

Substitution of (10.4.8) and use of GQ converts (10.4.36) into a form that may be readily
programmed and evaluated

f e
v
t

8×1

= te

αe
vx1 t

nG

r=1

nG

s=1

wrwsN1 ξ1r,ξ2s f
e
vx1 ξ1r ,ξ2s det Je ξ1r,ξ2s

αe
vx2 t

nG

r=1

nG

s=1

wrwsN1 ξ1r,ξ2s f
e
vx2 ξ1r ,ξ2s det Je ξ1r,ξ2s

αe
vx1 t

nG

r=1

nG

s=1

wrwsN2 ξ1r,ξ2s f
e
vx1 ξ1r ,ξ2s det Je ξ1r,ξ2s

αe
vx2 t

nG

r=1

nG

s=1

wrwsN2 ξ1r,ξ2s f
e
vx2 ξ1r ,ξ2s det Je ξ1r,ξ2s

αe
vx1 t

nG

r=1

nG

s=1

wrwsN3 ξ1r,ξ2s f
e
vx1 ξ1r ,ξ2s det Je ξ1r,ξ2s

αe
vx2 t

nG

r=1

nG

s=1

wrwsN3 ξ1r,ξ2s f
e
vx2 ξ1r ,ξ2s det Je ξ1r,ξ2s

αe
vx1 t

nG

r=1

nG

s=1

wrwsN4 ξ1r,ξ2s f
e
vx1 ξ1r ,ξ2s det Je ξ1r,ξ2s

αe
vx2 t

nG

r=1

nG

s=1

wrwsN4 ξ1r,ξ2s f
e
vx2 ξ1r ,ξ2s det Je ξ1r,ξ2s

10 4 37
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10.4.4 Edge Loads

Finally, consider the case of a time-varying, spatially uniform load acting on edge 1–2 of the
4-node, quadrilateral, isoparametric element shown in Figure 10.4.3. This may occur
for example when a deformable object is subjected to a time-varying acoustic or fluid
pressure-induced surface load. The natural coordinate ξ2 has the value (−1) on edge 1–2.
Therefore on this edge, the shape functions in (10.4.2) become

N1 =
1
2
1−ξ1 , N2 =

1
2
1 + ξ1 , N3 =N4 = 0 10 4 38

and the coordinate mapping Equations (10.4.4), (10.4.5) become

x1 =
1
2
1−ξ1 xe11 +

1
2
1 + ξ1 xe12, x2 =

1
2
1−ξ1 xe21 +

1
2
1 + ξ1 xe22 10 4 39

The differential surface area along edge 1–2 is

dΓe
12 = t

edl12 = te dx21 + dx
2
2 = t

e dx1
dξ1

2

+
dx2
dξ1

2

dξ1 10 4 40

Substitution of (10.4.39) into (10.4.40) yields

dΓe
12 =

te

2
xe12−x

e
11

2
+ xe22−x

e
21

2
dξ1 =

te

2
le12dξ1 10 4 41

where le12 is the length of edge 1–2. Substitute (10.4.38) and (10.4.41) and the time-varying,
spatially uniform surface load vector,

FΓ =
Fe
Γx1

Fe
Γx2

=
f
e
Γx1 α

e
Γx1 t

f
e
Γx2 α

e
Γx2 t

10 4 42

Figure 10.4.3 Uniform loads on edge 1–2 of 4-node isoparametric element. (a) actual coordinates and
(b) natural coordinates
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into the general expression for the element force vector (10.4.32) to obtain

f e
Γ12

t
8×1

=
tele12
2

αe
Γx1 t f

e
Γx1

1

−1
N1dξ

αe
Γx2 t f

e
Γx2

1

−1
N1dξ

αe
Γx1 t f

e
Γx1

1

−1
N2dξ

αe
Γx2 t f

e
Γx2

1

−1
N2dξ

αe
Γx1 t f

e
Γx1

1

−1
N3dξ

αe
Γx2 t f

e
Γx2

1

−1
N3dξ

αe
Γx1 t f

e
Γx1

1

−1
N4dξ

αe
Γx2 t f

e
Γx2

1

−1
N4dξ

=

αe
Γx1 t f eTΓx1

2

αe
Γx2 t f eTΓx2

2

αe
Γx1 t f eTΓx1

2

αe
Γx2 t f eTΓx2

2

0

0

0

0

10 4 43

where

f eTΓx1 = f
e
Γx1 t

e le12, f eTΓx2 = f
e
Γx2 t

e le12 10 4 44

are the resultant forces of the uniform load distributions in the x1 and x2 directions on
edge 1–2.

10.5 ASSEMBLY PROCEDURE FOR 2D, 4-NODE, QUADRILATERAL
ELEMENTS

The preceding section showed how the element force vector and element mass and stiffness
matrices may be evaluated in a numerical integration form that is conducive to program-
ming. These terms must be assembled to form counterparts for the entire system, thereby
providing a system mathematical model for obtaining the response of the system to initial
conditions, periodic loading, or transient loading. This section explains the detailed assem-
bly procedure needed to obtain the systemmatrices from the element matrices. Figure 10.4.1
shows a generic meshed cross-sectional area with Nn nodes. The system degrees of freedom
(dofs) are ordered according to the convention

Global system node i, x1 direction system dof u2∗ i−1 + 1

Global system node i, x2 direction system dof u2∗ i−1 + 2
10 5 1

which is also illustrated in Table 10.5.1.
The system has a combination of constrained (fixed) and free degrees of freedom.

“Global free” is utilized to describe the system that is free from constraints. The total number
of dofs in the global-free system is
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Nd =Nn number of nodes in the model ∗2 dofs node = 2Nn 10 5 2

The nodal connectivity array is defined by

Bej = ICON e, j = global node number for local node jof element e,

for j= 1, 2, 3, 4, and e= 1,…,Ne
10 5 3

where Ne is the total number of elements in the model. The local nodes are ordered CCW
starting at any of the 4 nodes in the element as shown in Figure 10.4.2. Table 10.5.2 shows
the ordering of the 8 local degrees of freedom (dofs) in the element displacement vector q

e
as

defined in (10.4.20) and (10.4.21).
A dof connectivity array may be defined similar to the nodal connectivity array in

(10.5.3) as

Bem = ICONDOF e,m = systemdof number for local dof numberm

of element e, form= 1,2,…,8, and e = 1,…,Ne

10 5 4

The conventions for global dof numbering (10.5.1) and element dof numbering
(Table 10.5.2) provide an easily programmable means to generate the dof connectivities
from the nodal connectivities as follows:

Bem = ICONDOF e,m = 2∗ ICON e, j −1 + k 10 5 5

Table 10.5.2 Plane stress/strain element local dof
ordering convention

Local dof (m) Local node Direction

1 1 x1
2 1 x2
3 2 x1
4 2 x2
5 3 x1
6 3 x2
7 4 x1
8 4 x2

Table 10.5.1 System degree of freedom ordering
convention

System node
number

Direction:
plane stress/strain

System dof
number

1 x1 1
1 x2 2
2 x1 3
2 x2 4

Nn x1 2∗ Nn−1 + 1
Nn x2 2∗ Nn−1 + 2
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where

k = 1,2 direction index x1,x2
j= 1,2,3,4

m= 2∗ j−1 + k

local node index

local dof index

10 5 6

Figure 10.5.1 and Table 10.5.3 provide an example illustrating how the dof connectivity
array is formed for a typical element.

Completion of the model requires explicitly imposing the displacement constraints
(zero-displacement degrees of freedom). The larray is defined for this purpose in an iden-
tical manner as with the beam element model in (9.2.83).

Assembly of the mass and stiffness matrices also follows the same procedure as for the
beam element (Figure 9.2.6) and is illustrated in Figure 10.5.2. Similar to (4.8.98), repeat the
Figure 10.5.2 “assembly” step for all Ne elements in the model and for all 8 local degrees of
freedom, that is,

e= 1,2,…,E, r = 1,…,8, s= 1,…,8 10 5 7

The element matrices and force vectors (Ke, Me, f e) in Figure 10.5.2 are obtained from

Table 10.5.3 System dofs for the 2D, 4-node, quadrilateral element in Figure 10.5.1

Element
(e)

Local
node (j)

xk direction
index (k)

Local dof
m= 2∗ j−1 + k

Global node number
ICON (e, j) Bej

Global dof number
Bem = 2∗ ICON e, j −1 + k

49 1 1 1 76 151
49 1 2 2 76 152
49 2 1 3 17 33
49 2 2 4 17 34
49 3 1 5 34 67
49 3 2 6 34 68
49 4 1 7 51 101
49 4 2 8 51 102

Figure 10.5.1 System degrees of freedom for a typical 2D element (element number e = 49)
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Plane Stress/Plane Strain: Element Stiffness Matrix: Equation (10.4.27)

Ke≈ te
nG

s=1

nG

t=1

wswtB
T
e ξ1s,ξ2t EeBe ξ1s,ξ2t det Je ξ1s,ξ2t 10 5 8

where from (10.4.19) through (10.4.23),

Be ξ1,ξ2 =Ae
1 ξ1,ξ2 Ae

2 ξ1,ξ2 10 5 9

Plane Stress/Plane Strain: Element Mass Matrix: Equation (10.4.31)

Me≈ te
nG

s=1

nG

t=1

wswtρ ξ1s,ξ2t N
T ξ1s,ξ2t N ξ1s,ξ2t det Je ξ1s,ξ2t 10 5 10

Plane Stress/Strain: Element Force Vectors: See Equations (10.4.33), (10.4.37),
(10.4.43)

Similar to the case of a 1D bar finite element in (4.8.36), imposing the zero-
displacement constraint conditions yields the following “condensed” dynamic equilibrium
equation for the “free” (unconstrained) degrees of freedom q

f
of the constrained structure.

Mf
Nf ×Nf

q
f

Nf ×1

+ Cf
Nf ×Nf

q
f

Nf ×1

+ Kf
Nf ×Nf

q
f

Nf ×1

= Ff
Nf ×1

10 5 11

Equation (10.5.11) is solved for all of the nonfixed (free) dofs in the system, which comprise
the q

f
vector. The entire system (fixed plus free dofs) displacement vector qmay be formed

from q
f
using the jarray as was defined (4.8.34). The jarray contains the complete system

degree of freedom numbers for all degrees of freedom which appear in the displacement
vector q

f
of free degrees of freedom. Let

ipdl = lth fixed dof number for l= 1,…,Npd 10 5 12

Figure 10.5.2 Assembly of constraint condensed system matrices and force vector from element
matrices and force vector
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Then the jarray is defined as follows:

I = 0

for i= 1,Nd total no of dofs

flag = 0

for l = 1,Npd no of fixed dofs

if i= ipdl

flag = 1 indicates that this dof is a fixed dof

end

end

if flag= 0

I = I + 1

jarray I = i

end

end

Nnpd = I no of free non-prescribed dofs 10 5 13

The entire system (fixed plus free dofs) displacement vector qmay then be formed utilizing

the jarray from q
f
as

for l= 1,Npd no of fixed dofs

k = ipdl

qk = 0 set prescribed displacements equal to zero in the system displacement vector

end

for l= 1,Nnpd no of non-fixed dofs

k = jarray l

qk = qf l load calculated displacements to the system diplacement vector

end

10 5 14

Conversely, the larray contains the locations of the full system (fixed plus free) degrees
of freedom in the condensed degree of freedom vector xf in increasing order, as illustrated in

(4.8.35). All fixed degrees of freedom are assigned the number 0 in the larray. The jarray(ji)
may be utilized to form the larray(li) as

for i= 1,Nd = 3∗ n+ 19 + 1 total no of dofs

larray i = 0 initialize array to zero null

end
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for I = 1,Nnpd

ist = jarray I from jarray coding

larray ist = I

end 10 5 15

10.6 COMPUTATION OF STRESSES IN 2D SOLID ELEMENTS

In many cases, vibration studies will include computation and examination of stresses to
evaluate the goodness of a design concept. This is illustrated in Figures 1.4.3 and 1.4.8
which shows that machinery or structural members may fail from high-cycle fatigue
(HCF) even with stress levels far below the ultimate/tensile strength Sut, while undergoing
cyclic stress due to vibrations. Therefore, it is often required to evaluate vibratory stresses
at interior locations in the elements and on the surface of the object being modeled. The
procedure for achieving this is provided in the following discussion.

10.6.1 Interior Stress Determination

It is generally accepted that the most accurate evaluation of stresses occurs at the GQ points
(Table 10.4.1) as discussed by Barlow (1976). Stresses at other points in an element are then
interpolated from the GQ point values. The stress in a plane strain model obeys (10.2.11)

σ =EPεε 3 × 1 10 6 1

and in a plane stress model (10.3.11),

σ =EPσε 3 × 1 10 6 2

where

σ = σ11 σ22 σ12
T, ε = ε11 ε22 2ε12

T

EPε =
E

1 + v 1−2v

1−v v 0

v 1−v 0

0 0
1−2v
2

, EPσ =
E

1−v2

1 v 0

v 1 0

0 0
1−v
2

10 6 3

Let E represent either EPε or EPσ , and then by (10.6.1), (10.6.2), (10.4.10),
and (10.4.23),

σe

3×1
= Ee

3×3
εe

3×1
= Ee

3×3
Be

3×8
qe

8×1

= Ee

3×3
Ae
1

3×4
Ae
2

4×8
qe

8×1

10 6 4

So that the stress at any integration point pair (ξ1i, ξ2k) is obtained from

σ ξ1i ,ξ2k , t
3×1

= Ee

3×3
Ae
1 ξ1i,ξ2k

3×4
Ae
2 ξ1i ,ξ2k

4×8
qe t
8×1

10 6 5

The displacements in the element displacement vector qe t (10.4.7) are obtained from the

total system displacement vector q t that results from solving (10.5.11) and using (10.5.14).
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The system dofs corresponding to the local dofs in qe t are obtained from the dof connec-

tivity array Bem (10.5.4). Therefore,

qe t
m
= q t

Bem

form= 1,…,8 10 6 6a

alternatively,

qe
m
=

q
f lBem

, lBem
0

0, lBem
= 0

, m = 1,…,8 10 6 6b

Summary of Steps to Obtain Stresses at Gauss Quadrature Point Locations (ξ1i, ξ2k)
within any Element “e”

(a) Solve for q t from (10.5.11) and (10.5.14) at some time t. This solution may correspond

to free (Chapter 5), transient forced (Chapter 6), or steady-state harmonic forced
(Chapter 7) vibrations.

(b) Obtain the element “e” nodal displacement vector q
e
t from (10.6.6a) and (10.6.6b).

(c) Evaluate the shape functions Nl(ξ1, ξ2) and their derivatives ∂Nl ∂ξ1 and ∂Nl ∂ξ2 from
(10.5.2) for l = 1, 2, 3, 4 at the integration point locations ξ1,ξ2 = ξ1i,ξ2k in
Table 10.4.1.

(d) Compute the locations of the integration point pairs (ξ1i, ξ2k) in the actual physical coor-
dinates (10.4.4),

x1 =
4

l= 1

Nl ξ1i,ξ2k xe1l, x2 =
4

l= 1

Nl ξ1i,ξ2k xe2l 10 6 7

(e) Compute the Jacobian matrix Je at ξ1i, ξ2k via (10.4.15).

(f) Form the Ae
1 andA

e
2 matrices at (ξ1i, ξ2k) via Equations (10.4.19)–(10.4.21), respectively.

(g) Compute the Be matrix (10.4.23),

Be =Ae
1A

e
2 10 6 8

(h) Compute the strains at (ξ1i, ξ2k) via (10.4.22), (10.4.23), and (10.6.8),

εe ξ1i,ξ2k, t =Be ξ1i,ξ2k qe t 10 6 9

(i) Compute the stresses at (ξ1i, ξ2k) at the given time t by (10.6.4)

σe ξ1i,ξ2k, t =Ee εe ξ1i,ξ2k, t 10 6 10

(j) Repeat steps (b)–(h) for all integration points in element “e.” Interpolate stresses within
element “e” given all integration point stresses σe ξ1i,ξ2k and their physical coordinate
locations xe1 ξ1i,ξ2k , xe2 ξ1i,ξ2k , in element “e.”

(k) Determine fatigue life utilizing computed stresses and the methods of Section 1.4
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10.6.2 Surface Stresses

Maximum stresses often occur on the surface of a vibrating member and are those that are
most likely to cause failure in a machine or structure. Surface stresses may be obtained by
extrapolating integration point stresses to the surface or by directly considering strains and
equilibrium on the surface. The former approach was explained above and the latter
approach is explained below.

Consider the plane stress/strain model shown in Figure 10.6.1. Suppose that element
(e) has its edge 1–2 on the surface of the member. A surface–tangent coordinate system
is defined for edge 1–2 with unit vectors e1 and e2. The global coordinate (ê1, ê2) and
surface–tangent coordinate e1,e2 unit vectors are related by

e2 = e12 e1 + e22 e2 =
xe1,2−x

e
1,1

le12
e1 +

xe2,2−x
e
2,1

le12
e2 10 6 11

The vector cross product of two vectors is perpendicular to the two vectors. Therefore,

e1 = e11 e1 + e21 e2 = −e3 × e2 =
xe2,2−x

e
2,1

le12
e1−

xe1,2−x
e
1,1

le12
e2 10 6 12

Clearly, e1 and e2 are perpendicular since from (10.6.11) and (10.6.12),

e1 e2 = 0 10 6 13

The nodal displacements at local node k may be expressed in the e1,e2 coordinate system
as (2.7.1)

ue1,k
ue2,k

=
cosθe sinθe

−sinθe cosθe
ue1,k
ue2,k

=
e11 e21

−e21 e11

ue1,k
ue2,k

10 6 14

where

uej,k = displacement in the surface coordinate direction ej at local node k of element e

uej,k = displacement in the physical coordinate direction êj at local node k of element e

Figure 10.6.1 Geometry for determining surface stresses on edge 1–2 of element “e”
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j= 1, 2, k = 1, 2 10 6 15

Edge 1–2 of element e is assumed to be subjected to the tractions shown in
Figure 10.6.2.

The tractions can be transformed between the surface–tangent and global coordinate
systems similar to the displacements in (10.6.14), that is,

FΓ1

FΓ2
=

e11 e21

−e21 e11

FΓ1

FΓ2
10 6 16

The Cauchy boundary formulas relate surface tractions and stresses at the surface according
to (Equation A.2.3)

FΓ1

FΓ2
=

ne1 0 ne2
0 ne2 ne1

σ11

σ22

σ12

10 6 17

These formulas apply in all coordinate systems so that in surface–tangent coordinates,

FΓ1

FΓ2
=

ne1 0 ne2
0 ne2 ne1

σ11

σ22

σ12

10 6 18

where ne1 and n
e
2 are the components of the unit normal vector to edge 1–2, as expressed in

the surface–tangent coordinate system. The tractions and stresses in this coordinate system
are shown in Figure 10.6.3.

Figure 10.6.2 Tractions on edge
1–2 expressed in the surface–
tangent and global coordinate
systems

Figure 10.6.3 Tractions and stresses in
the surface–tangent coordinate system

Chapter 10 2D Planar Finite Elements for Vibration Analysis 771

www.konkur.in



The surface–tangent coordinate system’s unit normal vector components are

ne1 = 1, ne2 = 0 10 6 19

Substitute (10.6.19) into (10.6.18) to obtain

σ11 =FΓ1, σ12 =FΓ2 10 6 20

This shows that two of the three stresses in the surface–tangent coordinate system are
obtained from the known applied surface tractions. The third is obtained from the sur-
face–tangent coordinate system strains as illustrated below. Figure 10.6.1 shows that ξ2
equals −1 on edge 1–2, therefore the shape functions (10.4.2) on this edge become

N1 =
1
2
1−ξ1 , N2 =

1
2
1 + ξ1 , N3 =N4 = 0 10 6 21

The x2 coordinate and u2 displacement on this edge may then be expressed with (10.4.1) and
(10.4.4) as

x2 =
4

k=1

Nk x
e
2,k =

1
2
1−ξ1 xe2,1 +

1
2
1 + ξ1 xe2,2

u2 =
4

k=1

Nk u
e
2,k =

1
2
1−ξ1 ue2,1 +

1
2
1 + ξ1 ue2,2

10 6 22

where from Figure 10.6.4,

xe2,1 = 0, xe2,2 = l
e
12 10 6 23

Substitution of (10.6.23) in (10.6.22) yields

x2 =
1
2
1 + ξ1 le12 10 6 24

Figure 10.6.4 shows that

x1 = 0 10 6 25

on edge 1–2, therefore

∂x1
∂ξ1

= 0 on edge 1−2 10 6 26

Figure 10.6.4 Interpolations of x2 on edge 1–2
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Utilize (10.6.24) and the chain rule of differentiation to obtain

∂

∂ξ1
=
∂x1
∂ξ1

∂

∂x1
+
∂x2
∂ξ1

∂

∂x2
= 0 +

le12
2

∂

∂x2
10 6 27

to obtain the 2-dimensional “surface” Jacobian expression

∂

∂x2
=

2
le12

∂

∂ξ1
10 6 28

Apply (10.6.28) to obtain the strain ε22 in the surface–tangent coordinate system as

ε22 =
∂u2
∂x2

=
2
le12

∂u2
∂ξ1

10 6 29

Substitute (10.6.22) into (10.6.29) to obtain

ε22 =
2
le12

−
ue2,1
2

+
ue2,2
2

=
1
le12

ue2,2−u
e
2,1 10 6 30

The third surface stress σ22 is obtained by substituting the strain in (10.6.30) into the iso-
tropic, plane stress/strain material law (10.2.10) or (10.3.10), which when expressed in
the surface–tangent coordinate system becomes

σ11

σ22

σ12

=
E

1 + v e2

e1 v 0

v e1 0

0 0 e3

ε11

ε22

2ε12

10 6 31

The terms ej are defined for plane strain in (10.2.10) and for plane stress in (10.3.10).
The first two equations in (10.6.31) are

σ11 =
E

1 + v e2
e1ε11 + vε22 10 6 32

and

σ22 =
E

1 + v e2
vε11 + e1ε22 10 6 33

Solving these equations for ε11 yields

ε11 =
1 + v e2

E
σ11−vε22

1
e1

10 6 34

Substitution of (10.6.34) into (10.6.32) yields

σ22 =
E

1 + v e2

v 1 + v e2
e1E

σ11−
v2

e1
ε22 +

Ee1
1 + v e2

ε22

=
E

1 + v e2
ε22 −

v2

e1
+ e1 +

v

e1
σ11

10 6 35
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Finally, substitution of (10.6.20) and (10.6.30) into (10.6.35) yields the following summary
of formulas for the surface stresses illustrated in Figure 10.6.5:

σ11 =FΓ1, σ12 =FΓ2, σ22 =
v

e1
FΓ1 +

E

1 + v e2
e1−

v2

e1

ue2,2−u
e
2,1

le12
10 6 36

where

ei e1 e2 e3

Plane stress 1 1−v 1−v
2

Plane strain 1−v 1−2v 1−2v
2

The surface–tangent coordinate displacements in (10.6.36) are obtained from the sys-
tem coordinate displacements utilizing the transformation in (10.6.14).

10.7 EXTRA SHAPE FUNCTIONS TO IMPROVE ACCURACY

The elements discussed in Section 10.4 work fine for modeling general 2D deformations but
may act overly “stiff” for some bending-type problems, thereby requiring a large number of
elements to obtain highly accurate results. This “excessively stiff in bending” behavior may
be mitigated by using a higher-order (quadratic) element or by adding two additional terms
in the interpolation of the displacements (10.4.1):

ui =
4

k = 1

Nku
e
i,k +

6

k = 5

Nku
e
i,k 10 7 1

where

N5 = 1−ξ
2
2, N6 = 1−ξ

2
1 10 7 2

Figure 10.6.5 Plane stress/plane strain surface stress summary diagram
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The k = 5 and k = 6 displacements are not associated with any particular nodal position
and are ultimately condensed out of the element by using a condensation similar with the
Guyan reduction procedure discussed in Chapter 8. The extra shape function approach still
utilizes only 4 nodes, which simplifies meshing compared with use of 8- or 9-node quadratic
elements.

The geometrical mapping from natural to physical coordinates, expressed by (10.4.4), is
unaffected by the N5 and N6 terms. Thus, the Jacobian matrix (10.4.15) and A1 matrix
(10.4.19) are similarly unaffected. The A2 matrix in (10.4.20) is altered only by appending
columns 9–12:

Ae
2 =

Ae
2

4×8

fromEq 10 4 20

andEq 10 4 21

∂N5

∂ξ1
0

∂N6

∂ξ1
0

∂N5

∂ξ2
0

∂N6

∂ξ2
0

0
∂N5

∂ξ1
0

∂N6

∂ξ1

0
∂N5

∂ξ2
0

∂N6

∂ξ2

10 7 3

The Be matrix of (10.4.23) now has the dimensions shown in

Be

3×12
= Ae

1
3×4

Ae
2

4 ×12
10 7 4

The element stiffness matrix in (10.4.24) now becomes the 12 × 12 matrix

Ke

12×12
= te

ae

Be T

12×3

Ee

3×3
Be

3 × 12
dae =

krr
8×8

krc
8×4

kcr
4×8

kcc
4×4

10 7 5

It is assumed that the extra nodes associated with N5 and N6 are not subjected to interele-
ment, external, inertial, or damping forces. This assumption allows the motions of these
nodes to be related to motions of nodes 1–4 in terms of the stiffness matrix in (10.7.5)
and is shown by considering equilibrium for a single element:

me
rr 0

0 0

qe
r

qe
c

+
cerr 0

0 0

qe
r

qe
c

+
kerr kerc
kecr kecc

qe
r

qe
c

=
f e
r

0
N × 1 10 7 6

The bottom row implies

qe
c
= − kecc

−1
kecrq

e
r

10 7 7

which is identical to (8.2.9) for Guyan reduction—static condensation. Substitute (10.7.7)
into the top row of (10.7.6) to obtain

me
rrq

e
r
+ cerrq

e
r
+ k

e
qe
r
= f e

r
10 7 8
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where

k
e
= kerr −krc kecc

−1
kecr 10 7 9

The dimensions of k
e
are 8 × 8, the same as the original 4-node element without extra

shape functions. The matrix k
e
is used as the element stiffness matrix Ke in the constraint

condensed stiffness matrix assembly procedure shown in Figure 10.5.2. The “extra” shape
functions N5 and N6 are employed only to soften the stiffness in bending and not to change
the element mass matrix in (10.4.31) nor the element force vector in (10.4.32). A further
discussion of this topic may be found in (Hughes, 1987).

In summary, this section has presented a modification of the bilinear interpolation,
quadrilateral element to include quadratic interpolation terms. This is accomplished without
increasing the number of nodes or degrees of freedom.

10.8 ILLUSTRATIVE EXAMPLE

EXAMPLE 10.8.1 Comparison Between 2D Solid and Beam Element Models for a Simply
Supported Beam

Statement: This example utilizes a simply supported beam to illustrate the use of plane
strain FE models for natural frequencies and forced response predictions.

Objectives: The objectives of this example include:

(a) Build a plane strain, 4-node, quadrilateral, isoparametric model of a simply sup-
ported beam.

(b) Determine the natural frequencies, mode shapes, and forced response.

(c) Repeat (a) and (b) with a Timoshenko beam element model (Section 9.8).

(d) Compare the results of the Timoshenko beam model with the plane strain model.

(e) Compare natural frequencies with and without the extra shape functions of Section 10.7.

Assumptions: The assumptions for this example are:

(a) Small motions, that is, small motion stress–strain and strain–displacement relations
(10.2.10), (10.3.10), (10.6.1), and (10.6.2) are valid.

(b) Motions, loads, and boundary conditions are invariant in the depth (z) directions. All
loads are given as per unit depth.

Coding: The MATLAB Code for this example is in Appendix E.

Parameter Values: The Young’s modulus, Poisson’s ratio, weight density, and lengths are

E = 2 1 × 1011 N m, v = 0 3, ρg = 7 69 × 104 N m3, L1 = 1 0 m, L2 = 0 1 m 1

The mass, stiffness, and force all increase linearly with depth for the plane strain structural
model, so the depth dimension cancels out of the equilibrium equation (10.5.11)

Mf
Nf ×Nf

q
f

Nf ×1

+ Cf
Nf ×Nf

q
f

Nf ×1

+ Kf
Nf ×Nf

q
f

Nf ×1

= Ff
Nf ×1

2
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Model Mesh: The beam model is meshed with the uniformly spaced grid shown in
Figure E10.8.1(a). The x1 and x2 lengths are divided into n1 and n2 sections with lengths

Δ1 =
L1
n1

, Δ2 =
L2
n2

3

where n2 must be even to locate the neutral axis at x2 = 0. Any element number or node num-
ber may be expressed in terms of the integer indices i1 and i2.

From this figure, the mesh integer parameters are

Nn = number of nodes = n1 + 1 ∗ n2 + 1 , Ne = number of elements = n1n2

Nd = number of dofs = 2∗Nn, Npd = number of fixed dofs = 3

Nnpd = number of free dofs =Nd−3

4

Integer Arrays for the Model: The node numbers for an arbitrary element e are shown in
Figure E10.8.1(b).

(a) Form the Nodal Connectivity Array
The nodal connectivity array (10.5.3) is evaluated from the following code logic:

for i1 = 1,n1 Horizontal intervals

for i2 = 1,n2 vertical intervals

e = i2 + n2∗ i1−1 element number

ICON e,1 = i1∗ n2 + 1 + i2 + 1 element connectivities

Figure E10.8.1(a) Simply supported beam model with 4-node Pε elements
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ICON e,2 = ICON e,1 − n2 + 1

ICON e,3 = ICON e,2 −1

ICON e,4 = ICON e,1 −1

end

end

where ICON e, j =Bej = element connectivity

= global node number for local node jof element e,

j= 1,…,4, e = 1,…,Ne

Appendix E has the MATLAB Code for this and all steps in this example.

(b) Form the Degree of Freedom dof Connectivity Array from the Nodal Connectiv-
ity Array

The dof connectivity array Bem (10.5.4) is evaluated from the following code logic:

for e= 1,Ne elements

for j= 1, 4 local nodes

for k = 1, 2 direction

l= 2∗ j−1 + k local dof number

ICONDOF e, l = 2∗ ICON e, j −1 + k

end

end

end

where ICONDOF e, l =Bel = dof connectivity

= global dof number for local dof lof element e, l = 1 8, e = 1 Ne

and k = 1 x1 and k = 2 x2 directions

Figure E10.8.1(b) Global node numbers for element e of the simply supported beam model
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(c) Form the jarray(ji)
The requirement that n2 is even and inspection of Figure E10.8.1(a) shows that the

fixed dofs for simply supported boundary conditions are

At x1 = x2 = 0 :

ipd1 =
n2
2
+ 1−1 ∗2 + 1 = n2 + 1, ipd2 = n2 + 2 5

At x1 = L1, x2 = 0 :

ipd3 = 2∗ n1 n2 + 1 +
n2
2
+ 1−1 + 1 = 2n1 n2 + 1 + n2 + 2 6

where

ipdl = dof number of the lth fixed dof, l = 1,…,Npd, Npd = 3 = total number of fixed dofs

7

Recall that the jarray is defined as (4.8.34)

ji = systemdof number of the ith non-fixed dof, where i= 1,…,Nnpd 8

and

Nnpd =Nd−Npd = total number of non-fixed dofs in the systemmodel

= 2∗Nn−3 = 2 n1 + 1 n2 + 1 −3
9

The jarray may be formed with (10.5.13) and (7).

(d) Form the larray(li)

The larray(li) (4.8.35) stores either the position of system dof i in the constraint
condensed system or a zero if i is fixed. The larray(li) is formed from the jarray(ji),
(4) and (9) as

for i= 1,Nd total no of dofs

larray i = 0

end

for I = 1,Nnpd

ist = jarray I

larray ist = I

end

Nodal Coordinate Arrays: The coordinates of the nodes in Figure E10.8.1(a) are deter-
mined from the following code logic:

Δ1 =
L1
n1

, Δ2 =
L2
n2

, nc= 0, p1 = −Δ1, p2 = −
L2
2
−Δ2

for i1 = 1, n1 + 1

p1 = p1 +Δ1
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for i2 = 1, n2 + 1

p2 = p2 +Δ2

nc= nc+ 1

x1 nc = p1

x2 nc = p2

end

p2 = −
L2
2
−Δ2

end

10

Mass and Stiffness Matrices and Force Vector: The constraint condensed stiffness Kf and

massMf matrices are assembled according to Figure 10.5.2. Simulation results are provided

for the vertical force shown in Figure E10.8.1(c).
The force is applied at the 1/4 span position on the top surface of the beam.

Figure E10.8.1(a) shows that this is at degree of freedom (dof ),

iF =
n1
4
+ 1 n2 + 1 ∗2 11

which requires that n1 be a multiple of 4. The corresponding constraint condensed dof is
obtained from the larray (9.2.83) as liF . The global-condensed system force vector therefore
has the form

Ff
Nf × 1

= 0 0 0 f t 0 0 T

row liF

12

2D Beam Model with Rotary Inertia and Shear Deformation Effects: Figure E10.8.1(d)
shows the beam finite element model corresponding to the plane strain model in
Figure E10.8.1(a).

From (9.8.4), (9.8.5), (9.5.61), (9.5.63), and Table 9.5.2, the properties of element e in
this figure include

Ee, Ae = L2∗1, Le =
L1
n1

, ρe, Ix3 =
L3y
12

∗1, k2, Ge, ve 13

Figure E10.8.1(c) External force f(t) for transient and harmonic response simulation

780 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



where L1 and L2 are shown in Figure E10.8.1(a), the multiplications by 1 indicate properties
per unit depth, and from Figure 9.5.3, the shear form factor formula for a rectangular cross
section is

k2 =
10 1 + v
12 + 11v

14

which is independent of the beam’s dimensions. The nodal coordinates, element connectiv-
ities, and fixed degrees of freedom for the beam model are

x1j = j−1 Δ1, x2j = 0 j= 1, 2, …, n1 + 1 15

ICON e,1 = e, ICON e,2 = e + 1 e = 1, 2, …, n1 16

ipd1 = 1, ipd2 = 2, ipd3 = 3n1 + 2 17

Natural Frequencies and Mode Shapes: The free vibration matrix equilibrium equation
for the undamped, constraint condensed system is given by (2) as

Mf qf +Kf qf = 0 Nnpd × 1 18

Similar to (5.4.3) and (5.4.12), insertion of

q
f
= eiωtψ

f
19

into (18) yields

−ω2Mf +Kf ψ
f
= 0 20

The natural frequencies and mode shapes of the constraint condensed system are obtained
via theMATLAB code in Appendix E. For mode shape plotting purposes, it is convenient to
form the entire ψ vector, which is the union of the fixed (zero displacement) dof and the

calculated free dof ψ
f

modal components. This is implemented by utilizing the jarray

(8) and the fixed dof index array ipdl (7). The coding is

for l = 1, Npd = 3

k = ipdl

ψ
k
= 0 fixed dof

Figure E10.8.1(d) Simply supported beam model with Timoshenko-type beam elements
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end

for l = 1, Nnpd

k = jarray l

ψ
k
= ψ

f l

end 21

The full ψ mode shape now contains zeros at fixed dofs and the motions in ψ
f
at the nonfixed

dofs. Figure E10.8.1(e) shows the 6 lowest modes of the plane strain model n1 = 20, n2 = 6
utilizing the extra shape functions (N5,N6) of Section 10.7, 3rd Order GQ from Table 10.4.1,
and the mesh parameters n1 = 20 and n2 = 6. The corresponding results with 4th Order GQ
are virtually identical.

Figure E10.8.1(f) shows the 6 lowest modes of the Timoshenko beam model with shear
deformation, rotary inertia, and n1 = 20.

The closed form, analytical formulas for the related frequencies fi are

• Lateral Vibration with Rotary Inertia and Shear Deformation

ω4
i

ρr2

kG
−ω2

i 1 +
i2π2r2

L2
1 +

E

kG
+
α2π4i4

L4
= 0 22

where

r2 =
I

A
, α2 =

EI

ρA
, fi =

ωi

2π

• f EBi Euler–Bernoulli: lateral vibration without shear deformation. Without rotary inertia
f Ti Timoshenko: lateral vibration with shear deformation. Without rotary inertia

f EBi =
1
2π

iπ

L

2 EI

ρA
, f Ti =

f EBi

1 +
iπ

L

2 I

A

2 1 + v
k

23

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 1   242.6 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 2   933.1 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 3   1194.2 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 4   1986.2 Hz

0 0.5 1
–0.2

0

0.2 No. 5   3312.4 Hz

0 0.5 1
–0.2

0

0.2 No. 6   3621.3 Hz

Figure E10.8.1(e) Six lowest modes of plane strain mode n1 = 20, n2 = 6
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(a) Axial Vibration

fi =
2i + 1
4πL

π∗C where C =
E

ρ
and i = 0, 1, 2, … 24

The analytical and finite element model results are summarized in Table E10.8.1(a).
Considering only the analytical results shows that shear deformation (9.5.5) has a soft-
ening effect (AT frequencies are lower than AEB frequencies), and similarly, rotary iner-
tia lowers the frequencies even further (ASRI vs. AT frequencies). The finite element
results are listed for various mesh density parameter values (n1 and n2 in
Figure E10.8.1(a)). The results indicate that the natural frequencies are nearly con-
verged with respect to mesh density even with the coarsest mesh densities shown
and that increasing mesh density slightly lowers the higher natural frequencies.

As expected, the Timoshenko beam finite element model B results are nearly iden-
tical with the analytical model which includes shear deformation and rotary inertia. The
plane strain model lateral results are within 5% of the beam and analytical models. The
differences result from the assumed boundary conditions on the finite element model
and the beam’s kinematic deformation assumptions (9.2.1) and (9.5.5). The two axial
mode frequencies of the plane strain (extra shape function) model have the following
values if all x1 dof’s are constrained at the left end x1 = 0 :

n1,n2 = 20, 6 f1, f2 axial = 1357, 4073 Hz

n1,n2 = 40, 6 f1, f2 axial = 1356, 4065 Hz
25

No.  1 230.9 Hz

No.  2 883.2 Hz

No.  3 1294.3 Hz

No.  4 1864.5 Hz

No.  5 3080.3 Hz
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Figure E10.8.1(f) Six lowest modes of the Timoshenko finite element FE beam model
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These results are also within 5% of the analytical beam model results which neglects
“Poisson contraction” effects. The results (PSESF2 vs. PS3) also show that the extra
shape functions (N5,N6) lower the natural frequencies and accelerate convergence.

Damped, Forced Response: The preceding discussion focused on comparison of free
vibration characteristics for various modeling approaches. The following results compare
plane strain and beam finite element model results for forced dynamic response. A time-
varying concentrated force is applied at the quarter-span location as shown in
Figure E10.8.1(c). The time history of this force (per meter of depth) is given by

f t =
5 0 × 105∗ t

0 01
N 0 ≤ t ≤ 0 01 s

5 0 × 105 N t > 0 01 s
26

The damping model employed is given by (5.4.140), (5.4.142), and (5.4.146) with
m= 6 prescribed damping ratios, that is, the orthogonal damping matrix is given by

Cof = μ1Kf +Mf

m−1

l= 1

2κlωl

ml
ψ
fl
ψT
fl

Mf 27

ξd1 = ξ
d
2 = 0 02, ξd3 = ξ

d
4 = 0 04, ξd5 = ξ

d
6 = 0 06, μ1 =

2ξdm
ωm

, and κl = ξ
d
l −ξ

d
m

ωl

ωm
28

The force is applied at the following degree of freedom (refer to Figures E10.8.1(a) and
E10.8.1(d)).

iF =

n1
4
+ 1 n2 + 1 ∗2, plane strain model

3∗ n1
4
+ 2, beammodel

29

Table E10.8.1(a) Natural frequency summary for L1 = 1 0 m and L2 = 0 1 m

Analytical A, plane
strain PSi, FE beam Bi n1 n2

Natural frequencies (Hz)

Lateral Axial

f1 f2 f3 f4 f1 f2

AAx — — — — — — 1294 3881
AEB — — 235 939 2112 3755 — —

AT — — 232 895 1907 3171 — —

ASRI — — 231 883 1862 3067 — —

B1 20 — 231 883 1864 3080 1294 3891
B2 40 — 231 883 1862 3070 1294 3884
PS1 20 6 253 973 2064 3433 1236 3728
PS2 20 10 253 971 2059 3423 1230 3710
PS3 40 6 245 935 1967 3236 1208
PS4 60 8 243 926 1943 3185 1186 3597
PSESF1 20 6 243 933 1986 3312 1194 3621
PSESF2 40 6 242 923 1942 3196 1188 3600
PSESF3 40 10 242 923 1942 3196 1188 3600

Subscripts: Ax, axial; EB, Euler–Bernoulli; ESF, include extra shape function (N5,N6); SRI, includes shear deformation and
rotary inertia effects; T, Timoshenko.
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The mesh index n1 must be a multiple of 4 to locate the force at the quarter-span loca-
tion, and the constraint condensed force vector Ff t is given by (12) and (26). The damped

dynamic equilibrium equation (2) is integrated with MATLAB’s ODE45 numerical integra-
tion routine (ref. Example 2.3.1) as shown in Appendix E. The first-order equations inte-
grated with ODE45 are

q
f
=Vf Nnpd × 1 , Vf =M

−1
f Ff t −CofVf −Kf qf Nnpd × 1 30

with zero displacement and velocity initial conditions,

q
f
0 =Vf 0 = 0 31

Figure E10.8.1(g) shows the x2 displacement on the top surface x2 =L2 2 at the quar-
ter, mid, and three-quarter-span locations for the plane strain model with extra shape func-
tions and (i) n1 = 20, n2 = 6, and (ii) n1 = 40, n2 = 6. The responses are seen to be nearly
unaffected by increasing the mesh density to n1 = 40, n2 = 6 which confirms that the mesh
has converged with respect to the n1 mesh parameter. The plane strain model’s static
responses, that is, from (2)

q
f ∞

=K−1
f Ff ∞ 32

to the steady-state force (5 0 × 105 N) in (26) are 0.317 mm at L1/4, 0.379 mm at L1/2, and
0.24 mm at 3L1/4. These agree with the steady-state results in Figure E10.8.1(g).

For comparison, the responses of the beam element model B1 with n1 = 20 elements,
shear deformation, and rotary inertia are shown in Figure E10.8.1(h). These represent
responses along the neutral axis of the beam (x2 = 0 in Figure E10.8.1(a)). The plane strain
PSESF1 model responses along the neutral axis are shown in the same figure for comparison.
The results of the two models are seen to be nearly identical. These examples show very
close results between the plane strain model and the beam model, which begs the question,
“So why not just use a beam model?”Well for beam-like structures, that is certainly a valid
point. However, in engineering applications, many, if not most, structures and structural
components do not possess the geometry, loading, or boundary conditions consistent with
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Figure E10.8.1(g) Top surface x2 direction displacements at x1 locations indicated for the plane strain model
with mesh parameters (i) n1 = 20, n2 = 6, and (ii) n1 = 40, n2 = 6
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the beam model’s assumptions. In those cases, a more general finite element model such as
plane strain or plane stress is required.

10.9 2D AXISYMMETRIC MODEL

An axisymmetric model is used for structures than can be generated by revolving a cross
section about the axis of longitudinal symmetry. Typical examples include pipes, vessels,
circular ducts, etc. Figure 10.9.1(a) illustrates an example where an internal dynamic pres-
sure p(t) results from vortex shedding within a pipeline due to internal flow past a branch
pipe. The dynamic pressure acts uniformly around the pipe creating an axisymmetric
dynamic pressure. The pipeline may be clamped to foundation blocks in a manner that con-
strains the pipe nearly around its entire circumference creating an axisymmetric boundary
condition. Thus, the conditions for utilizing an axisymmetric model, namely, axisymmetric
geometry, loads, and boundary conditions are satisfied. In practice, some assumptions must
be made to justify the use of an axisymmetric, or for that matter, any other finite element
modeling approach. The model is useful only for obtaining axisymmetric vibrations, modes,
deflections, and stresses. Figure 10.9.1(b) depicts a heat exchanger vessel with internal pres-
sure pulsation, which may be the result of an upstream reciprocating compressor.

10.9.1 Axisymmetric Model Stresses and Strains

Failure of a vibrating machinery component is typically caused by cyclic stresses exceeding
the fatigue life of its material. The accurate prediction of the stresses therefore becomes an
essential part of the simulation process. Figure 10.9.2 shows a differential volume element
and its strains and stresses in a cylindrical coordinate system.

The general strain–displacement relationship in cylindrical coordinates is given by
(Fung, 1965) as
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Figure E10.8.1(h) Neutral axis (x2 = 0) x2 direction displacements on the x1 locations indicated for the (i) plane
strain model PSESF1 and the (ii) beam model B1
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εr

εθ

ε33

γ3r

γrθ

γθ3

=

∂

∂r
0 0

1
r

1
r

∂

∂θ
0

0 0
∂

∂x3
∂

∂x3
0

∂

∂r

1
r

∂

∂θ

∂

∂r
−
1
r

0

0
∂

∂x3

1
r

∂

∂θ

ur

v

u3

10 9 1

or

ε
6×1

= D
6×1

U
3×1

10 9 2

The kinematic constraint assumptions for axisymmetric geometry and loading are

v= 0,
∂ur
∂θ

= 0,
∂u3
∂θ

= 0 10 9 3

where v, ur, and u3 are the circumferential, radial, and axial components of displacement,
respectively. Substitution of (10.9.3) into (10.9.1) yields

Figure 10.9.2 Axisymmetric ring region and differential volume in cylindrical coordinates

Figure 10.9.1 Structural dynamics examples for axisymmetric modeling. (a) Long natural gas pipeline with side
branch-induced vortex shedding and (b) heat exchanger vessel with internal pressure pulsation
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γrθ = 0, γθ3 = 0 10 9 4

and

εr

ε33

εθ

γ3r

=

∂

∂r
0

0
∂

∂x3
1
r

0

∂

∂x3

∂

∂r

ur

u3
10 9 5

or

ε
4×1

= D
4×2

U
2×1

10 9 6

The corresponding material law matrix for an axisymmetric geometry and loading with
an isotropic material is from (Cook et al., 1989)

σ =

σr

σ33

σθ

τr3

=Eax

εr

ε33

εθ

γ3r

=Eaxε 10 9 7

where

Eax
4×4

=
E

1 + v e2

e1 v v 0

v e1 v 0

v v e1 0

0 0 0 e3

10 9 8

e1 = 1−v, e2 = 1−2v, e3 =
e2
2

10 9 9

10.9.2 4-Node, Bilinear Axisymmetric Element

Figure 10.9.3 depicts a generic axisymmetric object and the corresponding 2D finite element
mesh of the cross section that generates the object when rotated about the x3 axis.

Figure 10.9.4 shows a typical element in the actual (physical) and natural coordinates.
The total element is a toroidal solid as shown in Figure 10.9.5; hence, the quadrilateral

shape shown in Figure 10.9.4 is only a slice through the full element in the r−x3 plane.
The displacement interpolations and geometry mapping for this 4-node element are

ur =
4

k=1

Nku
e
rk radial displacement , u3 =

4

k=1

Nku
e
3k axial displacement 10 9 10

r =
4

k=1

Nkr
e
k radial position , x3 =

4

k=1

Nkx
e
3k axial position 10 9 11
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Figure 10.9.5 Toroidal solid
axisymmetric, quadrilateral element

Figure 10.9.3 Axisymmetric model and meshed 2D section

Figure 10.9.4 Isoparametric, quadrilateral element for axisymmetric modeling. (a) actual coordinates
and (b) natural coordinates
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where ( e
k = value of at local node k of element e) and the Nk(ξ1, ξ2) are defined

in (10.4.2).
The strain–displacement relationship (10.9.5) may be written as

εr

ε33

εθ

γ3r

=

1 0 0 0 0

0 0 0 1 0

0 0 0 0
1
r

0 1 1 0 0

∂ur
∂r

∂ur
∂x3

∂u3
∂r

∂u3
∂x3
ur

10 9 12

Use of the Jacobian-derivative transformation yields

∂ur
∂r

∂ur
∂x3

∂u3
∂r

∂u3
∂x3
ur

=

J−1e
2×2

0
2×2

0
2×1

0
2×2

J−1e
2×2

0
2×1

0
1×2

0
1×2

1
1×1

∂ur
∂ξ1

∂ur
∂ξ2

∂u3
∂ξ1

∂u3
∂ξ2
ur

=

J−1e
2×2

0
2×2

0
2×1

0
2×2

J−1e
2×2

0
2×1

0
1×2

0
1×2

1
1×1

∗Re 10 9 13

where the Jacobian matrix is

Je =

∂r

∂ξ1

∂x3
∂ξ1

∂r

∂ξ2

∂x3
∂ξ2

=

∂N1

∂ξ1

∂N2

∂ξ1

∂N3

∂ξ1

∂N4

∂ξ1

∂N1

∂ξ2

∂N2

∂ξ2

∂N3

∂ξ2

∂N4

∂ξ2

re1 xe31
re2 xe32
re3 xe33
re4 xe34

10 9 14

Combining (10.9.12) and (10.9.13) yields

εr

ε33

εθ

γ3r

=

1 0 0 0 0

0 0 0 1 0

0 0 0 0
1
r

0 1 1 0 0

J−1e 0 0

0 J−1e 0

0 0 1

∂ur
∂ξ1

∂ur
∂ξ2

∂u3
∂ξ1

∂u3
∂ξ2
ur

=

1 0 0 0 0

0 0 0 1 0

0 0 0 0
1
r

0 1 1 0 0

J−1e 0 0

0 J−1e 0

0 0 1

∗Re

10 9 15
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or

εe

4×1
= Ae

1
4×5

ξ1,ξ2 Re

5×1
10 9 16

The Re vector (10.9.15) may be expressed in terms of the shape functions and nodal
displacements using (10.9.10)

Re =

∂ur
∂ξ1

∂ur
∂ξ2

∂u3
∂ξ1

∂u3
∂ξ2
ur

=

∂N1

∂ξ1
0

∂N2

∂ξ1
0

∂N3

∂ξ1
0

∂N4

∂ξ1
0

∂N1

∂ξ2
0

∂N2

∂ξ2
0

∂N3

∂ξ2
0

∂N4

∂ξ2
0

0
∂N1

∂ξ1
0

∂N2

∂ξ1
0

∂N3

∂ξ1
0

∂N4

∂ξ1

0
∂N1

∂ξ2
0

∂N2

∂ξ2
0

∂N3

∂ξ2
0

∂N4

∂ξ2

N1 0 N2 0 N3 0 N4 0

ur1

u31

ur2

u32

ur3

u33

ur4

u34

10 9 17

or

Re

5×1
= Ae

2
5×8

qe

8×1

10 9 18

Substitution of (10.9.18) into (10.9.16) yields

εe

4×1
= Ae

1
4×5

Ae
2

5×8
qe

8×1

4 × 1 10 9 19

Therefore, by (10.4.10),

Be ξ1,ξ2 =
4×8

Ae
1 ξ1,ξ2
4×5

Ae
2 ξ1,ξ2
5×8

10 9 20

The stiffness matrix is obtained from (10.4.11) as

Ke =
V
Be T

Ee
axB

edV =

ae

2π

0

Be T
Ee
axB

er dr dθ dz 10 9 21

The θ integral in (10.9.21) may be easily performed, since neither Be orEe depends on
θ in the axisymmetric model, yielding

Ke = 2π

ae

Be T
Ee
axB

er dr dz 10 9 22

This relation expressed in natural (ξ1, ξ2) coordinates becomes

Ke = 2π

1

−1

1

−1

Be ξ1,ξ2
T
Ee
ax B

e ξ1,ξ2 r ξ1,ξ2 det Je ξ1,ξ2 dξ1 dξ2 10 9 23
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The integral in (10.9.23) is performed with GQ:

Ke = 2π
nG

s=1

nG

t=1

wswt Be ξ1s,ξ2t
T
Ee
ax B

e ξ1s,ξ2t r ξ1s,ξ2t det Je ξ1s,ξ2t 10 9 24

Likewise, the general form of the element mass matrix is obtained from (10.4.29) as

Me =
V e

ρ NTNdV =

ae

2π

0

ρ NTN r dr dθ dz = 2π

1

−1

1

−1

ρ NTN rdet Je dξ1dξ2

≈2π
nG

s=1

nG

t=1

wswtρ NT ξ1s,ξ2t N ξ1s,ξ2t r ξ1s,ξ2t det Je ξ1s,ξ2t

10 9 25

The body forces (force/volume) and surface forces (force/area) acting on the axisym-
metric structure may act in either the r (radial) or x3 (axial) directions. The corresponding
element force vector is derived from the general form in (10.4.32), that is,

f e

8×1

=

f e11
f e21
f e12
f e22
f e13
f e23
f e14
f e24

=
Γe
NT

Fe
Γr

Fe
Γx3

dΓ+
V e

NT
Fe
Vr

Fe
Vx3

dV 10 9 26

where Γ represents all edges of the element that are subjected to surface loading.
In order to illustrate a load vector determination, consider the case of a spatially uniform

surface load acting on edge 2–3 of element e as depicted in Figure 10.9.6.
This is fairly general since the connectivity of the element may be defined so that edge

2–3 occurs on the desired surface of the model. The natural coordinate ξ1 = + 1 on edge 2–3,
thus the shape functions in (10.4.2) become

Figure 10.9.6 Uniform surface loading applied to edge 2–3 of an axisymmetric 4-node element e

792 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



N1 =N4 = 0, N2 =
1
2
1−ξ2 , N3 =

1
2
1 + ξ2 10 9 27

The geometry mapping (10.9.11) on edge 2–3 becomes

r =
1
2
1−ξ2 re2 +

1
2
1 + ξ2 re3, x3 =

1
2
1−ξ2 xe32 +

1
2
1 + ξ2 xe33 10 9 28

The differential surface area along edge 2–3 is

dΓ23 = 2π∗r∗dl23 = 2π∗r dr2 + dx23 = 2π∗r
∂r

∂ξ2

2

+
∂x3
∂ξ2

2

dξ2

= π∗r re3−r
e
2

2
+ xe33−x

e
32

2
dξ2 = πr l

e
23dξ2

10 9 29

where le23 is the length of edge 2–3 on element e. Substitute (10.4.8), (10.9.27), and (10.9.29)
into (10.9.26) and express the tractions (force/area) as the product of a constant, spatial
factor f , and a temporal factor (α(t)) to obtain

f eΓ23
8×1

=

f e11

f e21

f e12

f e22

f e13

f e23

f e14

f e24

=
Γe
23

NT
f
e
ΓrαΓr t

f
e
Γx3αΓx3 t

dΓ23 = π le23
1

−1

0 0

0 0

1−ξ2
2

0

0
1−ξ2
2

1 + ξ2
2

0

0
1 + ξ2
2

0 0

0 0

f
e
ΓrαΓr t

f
e
Γx3αΓx3 t

re2N2 + re3N3 dξ2

=
π

4
le23

1

−1

0

0

αΓr t f
e
Γr 1−ξ2 re2 1−ξ2 + re3 1+ ξ2

αΓx3 t f
e
Γx3 1−ξ2 re2 1−ξ2 + re3 1+ ξ2

αΓr t f
e
Γr 1+ ξ2 re2 1−ξ2 + re3 1+ ξ2

αΓx3 t f
e
Γx3 1+ ξ2 re2 1−ξ2 + re3 1+ ξ2

0

0

dξ2 =
π

3
le23

0

0

αΓr t f
e
Γr 2re2+ r

e
3

αΓx3 t f
e
Γx3 2re2+r

e
3

αΓr t f
e
Γr re2+ 2r

e
3

αΓx3 t f
e
Γx3 re2 +2r

e
3

0

0

10 9 30

Equation (10.9.30) is applicable for general loading and geometry. Let’s consider a very
special case to illustrate a physical interpretation of this element load vector. Consider an
element that has a vertical edge subjected to constant pressure,

re2 = r
e
3 = r

e
23, f Γx3 = 0, f

e
Γr = p pressure 10 9 31
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Then the total pressure force on edge 2–3 as

f TOTp = pressure∗area = p∗ 2π∗re23le23 10 9 32

In this case, (10.9.30) simplifies to

f eΓ23
8×1

=

f e11

f e21

f e12

f e22

f e13

f e23

f e14

f e24

=

0

0

αΓr t f TOTp 2

0

αΓr t f TOTp 2

0

0

0

10 9 33

which is depicted in Figure 10.9.7.
The element force vector in (10.9.33) contains one-half of the total pressure load acting

on edge 2–3, applied on the radial degrees of freedom at nodes 2 and 3. These results intu-
itively make sense and result from the linear interpolation and mappings employed. Higher-
order element formulations yields equivalent force vectors which are mathematically con-
sistent with the corresponding stiffness and mass matrices, yet are generally not intuitive.

Summarizing, the element matrices and force vectors in Figure 10.5.2 are:

Axisymmetric Element Stiffness Matrix: Equation (10.9.24)

Ke≈2π
nG

s=1

nG

t=1

wswt Be ξ1s,ξ2t
T
Ee
ax B

e ξ1s,ξ2t r ξ1s,ξ2t det Je ξ1s,ξ2t 10 9 34

where by (10.9.20),

Be ξ1,ξ2 =Ae
1 ξ1,ξ2 Ae

2 ξ1,ξ2 10 9 35

Figure 10.9.7 Time-varying, spatially uniform pressure on edge 2–3 and equivalent forces
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Axisymmetric Element Mass Matrix: Equation (10.9.25)

Me≈2π
nG

s=1

nG

t=1

wswtρ NT ξ1s,ξ2t N ξ1s,ξ2t r ξ1s,ξ2t det Je ξ1s,ξ2t 10 9 36

Axisymmetric Element: Assembly and Stress Evaluation

Assembly of the system matrices from the element matrices is facilitated by defining
degree of freedom ordering conventions. As illustrated in Figure 10.4.1, the system
degrees of freedom dofs are ordered according to the convention

Global system node i, r direction systemdof u2∗ i−1 + 1

Global system node i, x3 direction systemdof u2∗ i−1 + 2
10 9 37

This is illustrated in tabular form in Table 10.9.1.
Please note that the local nodes are ordered CCW starting at any of the 4 nodes in the

element as shown in Figure 10.9.4. Table 10.9.2 shows the ordering of 8 local degrees of
freedom dofs within the element q

e
vector as indicated in (10.9.17) and (10.9.18).

The system equations (10.5.11)

Mf
Nf ×Nf

q
f

Nf × 1

+ Cf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

10 9 38

Table 10.9.2 Plane stress/strain element local dof
ordering convention

Local dof (m) Local node Direction

1 1 r
2 1 x3
3 2 r
4 2 x3
5 3 r
6 3 x3
7 4 r
8 4 x3

Table 10.9.1 System degree of freedom ordering
convention

System
node number

Direction in
axisymmetric model

System
dof number

1 r 1
1 x3 2
2 r 3
2 x3 4

Nn r 2∗ Nn−1 + 1
Nn x3 2∗ Nn−1 + 2
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are assembled identically to the plane strain/stress mode, that is, by use of Figure 10.5.2 and
Equations (10.5.11)–(10.5.15). These equations may be solved for the free, transient force
and harmonic force cases as illustrated in Chapters 5, 6, and 7, respectively. The resulting
deflections can then be used in the post-processing stage to determine stresses.

The stresses in an axisymmetric model obey (10.9.7)

σ
4×1

= Eax
4×4

ε
4×1

10 9 39

where

σ = σr σ33 σθ τr3
T, ε = εr ε33 εθ γ3r

T 10 9 40

Eax
4×4

=
E

1 + v ea2

ea1 v v 0

v ea1 v 0

v v ea1 0

0 0 0 ea3

, ea1 = 1−v, ea2 = 1−2v, ea3 =
ea2
2

10 9 41

The following procedure may be used for determining axisymmetric solid model stres-
ses at any integration point pair (ξ1i, ξ2k) within element e.

GQ Point Stress Evaluation Procedure

(a) Solve (10.9.38) for q
f
t at some time t by numerical integration (Section 6.4) or other

means. The solution may correspond to zero (Chapter 5), arbitrary (Chapter 6), or
harmonic (Chapter 7) forces.

(b) Obtain the element e nodal displacements q
e
t from (10.6.6b)

qe
m
=

q
f lBem

, lBem
0

0, lBem
= 0

, m = 1,…,8 10 9 42

(c) Evaluate the shape functions Nl(ξ1, ξ2) and their derivatives ∂Nl ∂ξ1 and ∂Nl ∂ξ2 from
(10.4.2) for l = 1, 2, 3, 4 at the integration point locations ξ1,ξ2 = ξ1i,ξ2k in
Table 10.4.1.

(d) Compute the locations of the integration point pairs (ξ1i, ξ2k) in the actual coordi-
nates (10.9.11),

r =
4

l= 1

Nl ξ1i,ξ2k rel , x3 =
4

l= 1

Nl ξ1i,ξ2k xe3l 10 9 43

(e) Compute the Jacobian matrix Je at ξ1i, ξ2k via (10.9.14).

(f) Form the Ae
1 andA

e
2 matrices at (ξ1i, ξ2k) via Equations (10.9.16) through (10.9.18).

(g) Compute the Be matrix (10.9.20),

Be =Ae
1A

e
2 10 9 44

(h) Compute the strains at (ξ1i, ξ2k) via (10.9.19) and (10.9.20),

εe ξ1i,ξ2k, t =Be ξ1i,ξ2k qe t 10 9 45
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(i) Compute the stresses at (ξ1i, ξ2k) at the given time t by (10.9.39)

σe ξ1i,ξ2k, t =Ee
axε

e ξ1i,ξ2k, t 10 9 46

(j) Repeat steps (b)–(i) for all integration points in element e. Interpolate stresses within
element e given all integration point stresses σe ξ1i,ξ2k and their actual locations
re ξ1i,ξ2k , xe3 ξ1i,ξ2k in element e.

(k) Determine fatigue life utilizing computed stresses and the methods of Section 1.4.

EXAMPLE 10.9.1 Axisymmetric Modes and Natural Frequencies of a Steel Disk

Statement: This example illustrates the use of 4-node, bilinear isoparametric elements to
determine the axisymmetric modes of the disk illustrated in Figure E10.9.1(a). The results
are compared with usage of 9-node quadratic, isoparametric elements for the same model.
The disk has free boundary conditions and may be viewed as a rotor or similarly shaped
structural or machinery component. The material properties of the disk are

E = 2 0 × 1011 N m2, ν= 0 3, ρ = 8000 kg m3 1

Solution: The tapered, equally spaced parameterized mesh pattern for this problem is shown
in Figure E10.9.1(b). The mesh pattern and connectivities are the same as utilized in Fig-
ures E10.8.1(a) and E10.8.1(b), respectively. Figure E10.9.1(c) shows the 4 lowest mode
shapes. The zero-frequency mode corresponds to a rigid body motion along the x3 direction.
The other modes shown are radial (breathing) and bending modes.

9-Node Quadratic Element Model The axisymmetric model in the above example
illustrated the theory for the 4-node, bilinear quadrilateral element. The steps for employing
a higher-order 9-node, quadratic, quadrilateral, isoparametric element are identical to those
shown in (10.9.1)–(10.9.25). The main difference is that the interpolation and mapping will
have 9 terms instead of 4, that is,

ur =
9

k=1

Nku
e
rk radial displacement , u3 =

9

k=1

Nku
e
3k axial displacement 2

r =
9

k=1

Nkr
e
k radial position , x3 =

9

k=1

Nkx
e
3k axial position 3

Figure E10.9.1(a) Cross section of
the axisymmetric disk
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Figure E10.9.1(d) shows a typical 9-node element in both physical and natural coordi-
nates. The 9-node element shape functions are generated from one-dimensional Lagrange
polynomials:
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9 107 Hz
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Figure E10.9.1(c) The 4 lowest modes of the axisymmetric disk determined with 4-node bilinear,
isoparametric elements
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Figure E10.9.1(b) 4-node isoparametric element mesh for the axisymmetric disk

798 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



ψ i ξ =

n

j= 1
j i

ξj−ξ

n

j= 1
j i

ξj−ξi

= 1dimensional, nth order shape function for node i, where ξj is the natural

coordinate of local node j, j = 1 … n, and π denotes a series product

4

The 9-node, quadratic element shape functions are given by (Reddy, 2005)

N1 =
ξ2 ξ2−1

2
∗ ξ1 ξ1−1

2
, N2 = −

ξ2 ξ2−1
2

∗ ξ1 + 1 ξ1−1

N3 =
ξ2 ξ2−1

2
∗ ξ1 ξ1 + 1

2
, N4 = − ξ2 + 1 ξ2−1 ∗ ξ1 ξ1−1

2

N5 = ξ2 + 1 ξ2−1 ∗ ξ1 + 1 ξ1−1 , N6 = − ξ2 + 1 ξ2−1 ∗ ξ1 ξ1 + 1
2

N7 =
ξ2 ξ2 + 1

2
∗ ξ1 ξ1−1

2
, N8 = −

ξ2 ξ2 + 1
2

∗ ξ1 + 1 ξ1−1

N9 =
ξ2 ξ2 + 1

2
∗ ξ1 ξ1 + 1

2

5

These shape functions satisfy the consistency conditions of (2.11.37).
The 9-node quadratic element mesh is generated with the node and element patterns

depicted in Figure E10.9.1(e). In this figure, N = N−1
2

, m =m−1
2

and Ne = N m = number

of elements.

Figure E10.9.1(d) Typical 9-node, quadratic element in physical and natural coordinates
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The nodal connectivity array is defined in (10.5.3) as

Bej = ICON e, j = global node number for local node jof element e,

for j= 1, 2, … 9 and e= 1,…,Ne

6

whereNe is the total number of elements in the model. This array is defined by the following
coding logic for the 9-node elements:

for k = 1 1 N

for l= 1 1 m

e = k−1 m+ l element number

Be1 = 2l−1 + 2m k−1 ; Be2 =Be1 +m; Be3 =Be1 + 2m;

Be4 =Be1 + 1; Be5 =Be2 + 1; Be6 =Be3 + 1;

Be7 =Be4 + 1; Be8 =Be5 + 1; Be9 =Be6 + 1;

end

end

7

Figure E10.9.1(f) shows the 9-node, quadratic isoparametric element mesh for the
axisymmetric disk model. The total system dynamic equilibrium equations (10.9.38)
are assembled identically to the plane strain/stress mode, that is, by use of Figure 10.5.2
and Equations (10.5.11)–(10.5.15), with the indices r and s both ranging from 1 to 18.
Figure E10.9.1(g) shows the 4 lowest mode shapes and corresponding natural frequencies.
The zero-frequency mode corresponds to a rigid body motion along the x3 direction. The
other modes shown are radial (breathing) and bending modes. Comparison of
Figures E10.9.1(c) and E10.9.1(f) shows that the 4-node and 9-node element models yield
modes and frequencies in close agreement.

Figure E10.9.1(e) Node and element mesh patterns for 9-node quadratic element
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10.10 AUTOMATED MESH GENERATION: CONSTANT STRAIN
TRIANGLE ELEMENTS

Defining the nodal coordinates and element connectivities may be a very time consuming
and difficult task, especially for irregular-shaped model domains, and with the need to per-
form convergence studies with mesh refinement. Commercially available finite element
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–0.05
0

0.05
19 432 Hz

Figure E10.9.1(g) The 4 lowest modes of the axisymmetric disk determined with 9-node, quadratic,
isoparametric elements
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Figure E10.9.1(f) 9-node isoparametric element mesh for axisymmetric disk
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software presently has the capability to perform automated mesh generation over general 2D
and 3D domains. The domain may be defined by the user within the finite element code with
mesh generation features or may be defined directly from a solid model of the object. This
section shows examples using the MATLAB 2D triangular mesh generation codeMESH2D

http://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-
generation

MESH2D is a toolbox of 2D meshing routines written by Dr. Darren Engwirda, Mas-
sachusetts Institute of Technology, NASA Goddard Institute for Space Studies. The input
consists of the vertex (key) points of the domain being modeled and a mesh refinement
parameter hmax that maintains the maximum triangular element dimension less than this
upper limit. The outputs of MESH2D include the nodal connectivity B and nodal coordinate
arrays. A 3-node triangle element is presented in order to use with MESH2D to solve plane
stress/plane strain vibration problems. The element utilizes linear displacement interpolation
(shape) functions, which result in the strains and stresses being constants within each ele-
ment. Example 10.10.1 demonstrates the use of MESH2D for establishing and refining
meshes and obtaining natural frequencies and mode shapes.

Figure 10.10.1 shows a typical triangle element with its 3 local node numbers and 6 local
degree of freedom numbers. For sake of illustration, it is assumed that the density, Young’s
modulus, and Poisson’s ratio are constants within any given element.

The displacement interpolation relation within the element is

u1 x1,x2

u2 x1,x2
=

ψ1 x1,x2 0 ψ2 x1,x2 0 ψ3 x1,x2 0

0 ψ1 x1,x2 0 ψ2 x1,x2 0 ψ3 x1,x2

ue1
ue2
ue3
ue4
ue5
ue6

10 10 1

or

u x1, x2 =N x1, x2 qe 10 10 2

where the shape functions have the general form

ψ i x1,x2 =
1
2ae

αi + βi x1 + γi x2 10 10 3

Figure 10.10.1 Typical 3-node
triangle element with linear
displacement interpolation
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and ae is the element area,

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

=

x12x23−x13x22 x13x21−x11x23 x11x22−x12x21

x22−x23 x23−x21 x21−x22

x13−x12 x11−x13 x12−x11

10 10 4

and xik is the xi coordinate of local node k of element e.

10.10.1 Element Stiffness Matrix

Recall from (10.4.9), (10.4.10), and (10.10.2),

ε =

ε11

ε22

2ε12

=

∂

∂x1
0

0
∂

∂x2
∂

∂x2

∂

∂x1

u1

u2
=D u= DN qe =Beq

e 10 10 5

Substitution of (10.10.1)–(10.10.3) into (10.10.5) yields

Be =DN =

∂

∂x1
0

0
∂

∂x2
∂

∂x2

∂

∂x1

ψ1 0 ψ2 0 ψ3 0

0 ψ1 0 ψ2 0 ψ3

=
1
2ae

β1 0 β2 0 β3 0

0 γ1 0 γ2 0 γ3

γ1 β1 γ2 β2 γ3 β3

10 10 6

Finally, the element stiffness matrix is given by (10.4.11)

Ke

8×8
=

Ve

BT
e EeBedV = te aeBT

e EeBe 10 10 7

where te is the thickness of element e, which equals 1 for a plane strain model. The plane
strain Pε and plane stress Pσ constitutive matrices Ee are defined in (10.2.10) and
(10.3.10) as

Pε Ee =
E

1 + v 1−2v

1−v v 0

v 1−v 0

0 0
1−2v
2

, Pσ Ee =
E

1−v2

1 v 0

v 1 0

0 0
1−v
2

10 10 8

10.10.2 Element Mass Matrix

The element mass matrix is defined in (10.4.29) as

Me =
V e

ρNTNdV =
ae
ρNTNtdae 10 10 9
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Substitute (10.10.1) and (10.10.2) into (10.10.9), and assume the density and thickness
are constants within the element to obtain:

Me =
V e

ρNTNdV = ρt
ae

ψ2
1 0 ψ1ψ2 0 ψ1ψ3 0

0 ψ2
1 0 ψ1ψ2 0 ψ1ψ3

ψ1ψ2 0 ψ2
2 0 ψ2ψ3 0

0 ψ1ψ2 0 ψ2
2 0 ψ2ψ3

ψ1ψ3 0 ψ2ψ3 0 ψ2
3 0

0 ψ1ψ3 0 ψ2ψ3 0 ψ2
3

dae 10 10 10

A general integration formula for “simplex” shape functions (10.10.3) taken over the
triangular element area may be found in (Huebner et al., 1994)

ae
ψ i
1ψ

j
2ψ

k
3da

e =
i j k

i+ j+ k + 2
∗2ae 10 10 11

where ! indicates the factorial operation. Utilizing (10.10.11) to evaluate (10.10.10) yields

Me =
ρtae

12

2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0

0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2

10 10 12

An alternative lumped-mass approach consists simply of lumping one-third of the entire
mass of the element at each node, yielding

Me =
ρtae

3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

10 10 13

10.10.3 System Matrix Assembly

The element mass and stiffness matrices for the 3 node, 2 dof per node, triangle elements are
both 6 by 6. Therefore, the assembly procedure to obtainMf andKf is identical to that shown

in Figure 10.5.2 with the indices spanning the ranges

e = 1,2,…,E no of elements , r = 1,…,6, s= 1,…,6 10 10 14

The modes and natural frequencies are then obtained using the MATLAB eig
command:
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[modalmatrix, otemp] = eig(Kf,Mf ) ;
omegasquared = diag(otemp);
omega =real(sqrt(omegasquared));
natfreq = omega/2/pi;

EXAMPLE 10.10.1 Use of 3-Node Triangle, Plane Strain Elements to Obtain the Natural
Frequencies and Mode Shapes of a Simply Supported Beam

Statement: The system in Example 10.8.1 is resolved using 3-node triangle, plane strain
elements. The identical, simply supported boundary conditions are applied and the material
properties and dimensions are also the same as in Example 10.8.1. Natural frequencies and
mode shapes are obtained first by using an equally spaced mesh and then by using the
MATLAB MESH2D code to generate the mesh. The mass and stiffness matrices are
obtained as outlined in this section for both approaches.

Solution: The equally spaced parameterized mesh pattern for this problem is shown in
Figure E10.10.1(a).

The coding logic for defining the element connectivity matrix B is shown below.

for i = 1 1 N−1

for j= 1 1 M−1

e= 2∗ i−1 ∗ M−1 + 2∗ j−1 element number for odd elements

B e,1 =M ∗ i−1 + j

B e,2 =B e,1 +M

B e,3 =B e,1 + 1

e= e + 1 element number for even elements

B e,1 = i∗M + j

B e,2 =B e,1 + 1

B e,3 =B e,2 −M

end

end

1

Figure E10.10.1(a) Parametric mesh pattern for 3-node triangle meshed simply supply supported beam
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The fixed degrees of freedom dof for the simply supported boundary condition are

At x1 = 0, x2 = 0 1 2 = 0 05 dof M and dof M + 1

At x1 = 1, x2 = 0 1 2 = 0 05 dof 2∗ N−1 ∗M +M + 1
2

Figure E10.10.1(b) shows the mesh pattern for the case M = 5 and N = 6.
Table E10.10.1(a) provides a comparison of the four lowest natural frequencies as the

mesh density is increased, utilizing consistent mass (10.10.12) and lumped mass (10.10.13)
models.

The results show convergence of the natural frequencies as the mesh is further refined
and the close agreement between the lumped mass and consistent mass approaches. By com-
parison from Table E10.8.1(a), the 4-node isoparametric element prediction was (242, 923,
1188, 1942), and the Timoshenko beam model prediction was (231, 883, 1294, 1862) for
the 4 lowest modes. Figure E10.10.1(c) shows the corresponding mode shapes for the case
M = 21, N = 22. Mode 3 is clearly an axial mode.

Table E10.10.1(a) Natural frequency (in Hertz) versus mesh refinement parameters M and N

M N
Consistent mass model Lumped mass model

First Second Third Fourth First Second Third Fourth

5 6 560 1335 2152 4192 542 1325 1888 3450
11 12 333 1278 1297 2720 331 1244 1295 2559
21 22 269 1031 1259 2179 269 1024 1258 2142
31 32 255 973 1234 2049 255 970 1234 2034

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

x1

x 2

Figure E10.10.1(b) Mesh pattern for M = 5 and N = 6
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MESH2D provides a mesh refinement capability that keeps the max triangle dimension
below a user-defined upper limit hmax. Figure E10.10.1(d) shows the mesh produced by
MESH2D for hmax = 0 03 m. The keypoints input into MESH2D for this domain are the
corner points

KP1 = 0, 0 , KP2 = 1 0, 0 0 , KP3 = 1 0, 0 10 , KP4 = 0 0, 0 1 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

x1

x 2

Figure E10.10.1(d) MESH2D-generated mesh for hmax = 0 03 m

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 1 270.0 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 2 1032.0 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 3 1259.2 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No. 4 2178.9 Hz

Figure E10.10.1(c) Mode shapes for the 4 lowest modes
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The following domain boundary, keypoint connection pairs are also input:

KP1 toKP2, KP2 toKP3, KP3 toKP4, KP4 toKP1 4

The mesh generated consists of 198 elements with 136 nodes. The nodes with fixed
dofs are obtained by searching for those nearest to the actual simple support point locations:
(0, 0.05) and (1.0, 0.05). The former has x1 and x2 constraints, and the latter has an x2
constraint.

Figure E10.10.1(e) shows the mode shapes and natural frequencies for the mesh in
Figure E10.10.1(d).

Decreasing the mesh refinement parameter to hmax = 0 02 m yields the mesh shown in
Figure E10.10.1(f), with 772 elements, 459 nodes, and the 4 lowest natural frequencies:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

 x1

x 2

Figure E10.10.1(f) MESH2D-generated mesh for hmax = 0 02 m

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No.  1 266.5 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No.  2 1018.7 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No.  3 1255.0 Hz

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2 No.  4 2122.9 Hz

Figure E10.10.1(e) Modes and natural frequencies for mesh in Figure E10.10.1(d)
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(248, 944, 1226, 1980) Hz. These frequencies are very similar to those listed in
Table E10.10.1(a).

Figure E10.10.1(g) demonstrates the powerful capability of MESH2D for generating a
mesh for a more general domain with six vertices (keypoints) and hmax = 0 01 m. This plane
strain model has the same material properties as the previous simply supported beam.

The lower left vertex has both dofs fixed and the lower middle vertex has only its
vertical dof fixed. The lowest 2 mode shapes and natural frequencies are shown in
Figure E10.10.1(h).
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Figure E10.10.1(g) MESH2D-generated mesh for domain with 6 vertices and hmax = 0 01 m
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Figure E10.10.1(h) First mode at 4157 Hz (top) and second mode at 6816 Hz (bottom) for mesh in
Figure E10.10.1(g)
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10.11 MEMBRANES

Membranes are thin, drum skin-like members that are unable to resist bending moments
and in-plane shear force, and therefore only possess in-plane tensile, internal loads.
Figure 10.11.1(a) shows a membrane that has both free and fixed boundary conditions. The
free-body diagram of a differential piece of the membrane is shown in Figure 10.11.1(b),
with a cross-sectional cut through the piece shown in Figure 10.11.1(c). The two types of
boundary conditions for the membrane are:

1. Fixed edge: w x, t = 0 on some portion of the boundary Γ.

2. Free edge: T
∂w

∂n
= 0

∂w

∂n
= ∇ w n = 0 on some portion of the boundary Γ.

One may note that the membrane is a 2-dimensional form of the string problem as
shown in Figure 5.5.1.

The membrane is initially stretched to obtain the tensions per unit length, Tx and Ty,
which are assumed to be time invariant. The transverse deflection w(x , t) is assumed to be
very small relative to the overall dimensions of the membrane.

10.11.1 Kinetic Energy and Element Mass Matrix

The area density ρ of the membrane is defined by

ρ =mass per unit area =
mm

Am
=
ρVm

Am
=
ρAmd

Am
= ρd, dm = ρdxdy 10 11 1

where Am, ρ, and d are the area, density, and thickness of the membrane. The kinetic
energy of the membrane is

T =
1
2 Am

w2dm =
1
2 Am

w2ρdxdy =
E

e = 1

1
2 ae

w2ρe dxdy 10 11 2

where ae is the area of the eth element as depicted in Figure 10.4.2, and E is the total number
of elements in the model. For illustration, assume that the membrane area is meshed into
E 4-node, isoparametric, quadrilateral elements as shown in Figures 10.4.1 and 10.4.2.
The transverse displacement is interpolated as (10.4.1)

w=
4

k=1

Nk ξ1,ξ2 w e
k =N qe w=

4

k=1

Nk ξ1,ξ2 w e
k =N qe = qe

T
NT 10 11 3

Figure 10.11.1 (a) Stretched membrane and its (b) differential element and (c) free-body diagram
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where the element’s nodal displacement vector and shape function matrix are

qe = we
1 we

2 we
3 we

4
T, N= N1 N1 N1 N1 10 11 4

The individual shape functions are defined in (10.4.2). The kinetic energy of the eth
element may then be written as

Te =
1
2 ae

w2ρedxdy =
1
2 ae

ρe q
e

T
NTNq

e
dxdy =

1
2

q
e

T
Meqe 10 11 5

where the element mass matrix is given by

Me =
ae

ρeN
TNdxdy 10 11 6

or in scalar form

me
i j =

ae

ρeNiNjdxdy 10 11 7

Similar to (10.4.30) and (10.4.31), transforming the integral to natural coordinates and
use of GQ yields

Me =

1

−1

1

−1

ρeN
TNdet Je dξ1dξ2 10 11 8

Me≈
nG

s=1

nG

t=1

wswtρe ξ1s,ξ2t N
T ξ1s,ξ2t N ξ1s,ξ2t det Je ξ1s,ξ2t 10 11 9

where the sums extend over the Gauss points in Table 10.4.1.

10.11.2 Strain Potential Energy and Element Stiffness Matrix

Similar to Example 4.6.5, the second-order strains corresponding to transverse vibration of
the tensioned membranes are

εx =
1
2

dw

dx

2

, εy =
1
2

dw

dy

2

10 11 10

and the strain energy is

Ue =
Ve

σxεx + σyεy dV =
Ve

σxεx + σyεy dV =
ae

Fx

Ax
εx +

Fy

Ay
εy d∗dxdy

=
ae

Txdy

d∗dyεx +
Tydx

d∗dxεy d∗dxdy =
ae

Txεx + Tyεy dxdy

=
1
2 ae

Tx
dw

dx

2

+Ty
dw

dy

2

dxdy

10 11 11
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Substitution of the interpolated form ofw(x, y), Equation (10.11.3), into (10.11.11) yields

Ue =
1
2 ae

Tx q
e

T∂NT

∂x

∂N

∂x
q
e
+ Ty q

e

T∂NT

∂y

∂N

∂y
q
e

dxdy =
1
2

q
e

T
Keq

e
10 11 12

where the element stiffness matrix is identified as

Ke =
ae

Tx
∂NT

∂x

∂N

∂x
+ Ty

∂NT

∂y

∂N

∂y
dxdy 10 11 13

or in scalar form,

kei j =
ae

Tx
∂Ni

∂x

∂Nj

∂x
+Ty

∂Ni

∂y

∂Nj

∂y
dxdy 10 11 14

Note from (10.4.16),

∂N

∂x
∂N

∂y

=
J ∗
11 J ∗

12

J ∗
21 J ∗

22

∂N

∂ξ1
∂N

∂ξ2

, where
J ∗
11 J ∗

12

J ∗
21 J ∗

22

= J−1
2×2

10 11 15

Substitute (10.11.15) into (10.11.14) to obtain

kei j =

1

−1

1

−1

Tx J ∗
11
∂Ni

∂ξ1
+ J ∗

12
∂Ni

∂ξ2
J ∗
11
∂Nj

∂ξ1
+ J ∗

12
∂Nj

∂ξ2

+Ty J ∗
21
∂Ni

∂ξ1
+ J ∗

22
∂Ni

∂ξ2
J ∗
21
∂Nj

∂ξ1
+ J ∗

22
∂Nj

∂ξ2
det J dξ1dξ2

10 11 16

Application of GQ to perform the integrations yields

kei j =
nG

s=1

nG

t=1

wswt Tx J ∗
11 ξ1s,ξ2t

∂Ni

∂ξ1
ξ1s,ξ2t + J ∗

12 ξ1s,ξ2t
∂Ni

∂ξ2
ξ1s,ξ2t

∗ J ∗
11 ξ1s,ξ2t

∂Nj

∂ξ1
ξ1s,ξ2t + J ∗

12 ξ1s,ξ2t
∂Nj

∂ξ2
ξ1s,ξ2t

+Ty J ∗
21 ξ1s,ξ2t

∂Ni

∂ξ1
ξ1s,ξ2t + J ∗

22 ξ1s,ξ2t
∂Ni

∂ξ2
ξ1s,ξ2t

∗ J ∗
21 ξ1s,ξ2t

∂Nj

∂ξ1
ξ1s,ξ2t + J ∗

22 ξ1s,ξ2t
∂Nj

∂ξ2
ξ1s,ξ2t det J ξ1s,ξ2t

10 11 17

where the sums extend over the Gauss points in Table 10.4.1.

10.11.3 Matrix Assembly

The membrane has only one degree of freedom (dof ) per node, similar to the
one-dimensional truss element in Section 4.8. Thus, similar to Figure 4.8.8, assembly of
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the condensed form of the mass and stiffness matrices can be achieved with just the nodal
connectivity array B and the larray. This is depicted in Figure 10.11.2. Recall from (4.8.21)
the “nodal connectivity array” is defined as

Bej = “global” node number for local node jof element e

e= 1, 2,…, E, j= 1, 2, 3, 4
10 11 18

Recall from (4.8.35) the “l” array indicates the locations of each free (unconstrained)
node in the vector q

f
of only free (unconstrained) node displacements.

The forced response of the membrane is obtained by solving (4.8.36), which is repeated
here as

Mf
Nf ×Nf

q
f

Nf × 1

+ Cf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

10 11 19

EXAMPLE 10.11.1 Natural Frequencies and Mode Shapes of a Square Membrane

Objective: The objective is to utilize isoparametric, 4-node, quadrilateral elements to deter-
mine the 5 lowest natural frequencies and plot the corresponding mode shapes of the square
membrane with fixed edges shown in Figure E10.11.1(a). The finite element results will
then be compared with the results from an analytical approach (exact solution). The analyt-
ical approach is the solution of Exercise 5.44.

Figure 10.11.2 Assembly of the
condensed form of the system stiffness
and mass matrices

Figure E10.11.1(a) Square membrane with fixed edges of length “a”
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Parameter Values

ρ= 20 kg m3, d = 0 001 m, a = 0 25 m, Tx = Ty = 50 N m

Mesh Plot: Figure E10.11.1(b) shows the a 25 × 25 square element mesh for the
membrane model.
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Figure E10.11.1(b) Finite element model mesh for the square membrane

0 0.05 0.1 0.15 0.2 0.250

0.05

0.1

0.15

0.2

0.25
0

0.2

0.4

0.6

0.8

1

x

Frequency = 141.5 Hz

y

M
od

e

0 0.05 0.1 0.15 0.2 0.250

0.05

0.1

0.15

0.2

0.25
–1

–0.5

0

0.5

1

x

Frequency = 224.2 Hz

y

M
od

e

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25
–1

–0.5

0

0.5

1

x

Frequency = 283.7 Hz

y

M
od

e

0 0.05 0.1 0.15 0.2 0.250

0.05

0.1

0.15

0.2

0.25
–1

–0.5

0

0.5

1

x

Frequency = 318.1 Hz

y

M
od

e

Figure E10.11.1(c) Finite element model mode shapes for the 4 lowest modes
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Results: Figure E10.11.1(c) shows the modes and natural frequencies for the 4 lowest
modes. Table E10.11.1(a) shows that the natural frequencies are very close to their analyt-
ical counterparts for the two meshes examined.

10.12 BANDED STORAGE

The examples and results in this chapter demonstrate that the number of degrees of freedom
in a detailed, high-fidelity, finite element model may become very large and in some cases
10s, if not 100s, of thousands of degrees of freedom. Computation time reduction may
become a top priority, especially if design variables are being searched for an optimal
design, requiring many simulations with the model. In some models, judicious node num-
bering of a finite element mesh may result in the stiffness and mass matrices having a
“banded” structure as illustrated in (10.12.1). This matrix structure may facilitate a more
economical solution.

A =

X x x 0 0 0 0 0 0 0 0 0

x X x x 0 0 0 0 0 0 0 0

x x X x x 0 0 0 0 0 0 0

0 x x X x x 0 0 0 0 0 0

0 0 x x X x x 0 0 0 0 0

0 0 0 x x X x x 0 0 0 0

0 0 0 0 x x X x x 0 0 0

0 0 0 0 0 0 x x X x x 0

0 0 0 0 0 0 0 x x X x x

0 0 0 0 0 0 0 0 x x X x

0 0 0 0 0 0 0 0 0 x x X

10 12 1

The matrix A typically represents M or K but could also represent the complex coeffi-
cient matrix used to obtain steady-state harmonic response in (7.5.5)

−ω2 M
N ×N

+ iω CT
N ×N

+ KT
N ×N

Q
N × 1

= F
N × 1

10 12 2

The structure of only null diagonals above a certain upper or below a certain lower
diagonal in these matrices allows for a significantly faster solution for natural frequencies

Table E10.11.1(a) Comparison of finite element and analytical membrane natural frequencies

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Analytical 141.4 Hz 223.6 Hz 282.8 Hz 316.2 Hz 360.55 Hz
FE: 15 × 15 141.7 225.2 285.2 321.7 366.2
FE: 25 × 25 141.5 224.2 283.7 318.1 362.5
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(Chapter 5), transient response (Chapter 6), and steady-state harmonic response (Chapter 7).
The banded character of a Hermitian matrix (A = complex conjugate transpose of A) is
quantified by

h = semibandwidth of A

= highest nonnull upper diagonal of A including the main diagonal
10 12 3

Franklin (1968, p.211) shows that the total number of multiplications required to solve
an Nth order set of linear equations with a Hermitian coefficient matrix and semibandwidth
h is

μ=
1
6
h−1 3 h + 2 N−2h h + 1 + 2h−1 N−h h−1 10 12 4

with the number of additions and subtractions substantially the same. To illustrate, suppose
that N = 100, then the number of multiplications for several values of h become

h 10 20 40 100

μ 6880 21 760 66 920 175 600

This result illustrates that banded solvers may provide a significant reduction in opera-
tions and hence computation time. An easily programmable means to determine h is with the
equation

h= max j− i+ 1 for whichAij 0, i= 1,N, j= 1,N 10 12 5

Applying (10.12.5) to the matrix in (10.12.1) yields h = 3. The shortcoming of this for-
mula is it requires that the matrix A be assembled in full storage form as depicted in
(10.12.1). This may require significant computer memory for storage and further increase
computation time. Clearly from (10.12.1), there is only a need to store the main and upper
nonnull diagonals resulting in significantly less storage memory. Reflection on
Figure 10.12.1 (from Figure 10.5.2) reveals a means to determine h from the element con-
nectivities and the larray prior to assembly.

The required formulas are

Unconstrained structure h= max Bes−Ber + 1 , e = 1,…,E, r = 1,…,Nde, s= 1,…,Nde

10 12 6

Figure 10.12.1 System matrix assembly
from element matrices
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Constrained structure hf = max lBes
− lBer

+ 1 , e = 1,…,E, r = 1,…,Nde, s= 1,…,Nde

do not include terms in the maximum search for which either

lBer
or lBes

are zero 10 12 7

where E is the total number of elements in the model, Nde is the number of degrees of
freedom in element e, l represents the larray in (10.5.15), and B is the dof connectivity array
in (10.5.4).

These formulas permit the semibandwidth to be determined at the element level prior to
assembly of the system matrices. This is required to assemble the element matrices directly
into the banded storage form of the system matrices, as will be shown below.

The example in (10.12.8) and (10.12.9) illustrates a common approach for the banded
storage form.

Full storage:

A=

A11 A12 A13 0 0 0

A22 A23 A24 0 0

A33 A34 A35 0

A44 A45 A46

symmetric A55 A56

A66

10 12 8

Banded storage:

AB =

AB11 AB12 AB13

AB21 AB22 AB23

AB31 AB32 AB33

AB41 AB42 AB43

AB51 AB52 AB53

AB61 AB62 AB63

=

A11 A12 A13

A22 A23 A24

A33 A34 A35

A44 A45 A46

A55 A56 0

A66 0 0

10 12 9

In this approach, the main diagonal of the N by N matrix A is stored as the first column
of the N by hf matrix AB, the first upper diagonal of A is stored as the second column of AB,
the second upper diagonal of A is stored as the third column of AB, and so on. The entries in
matrix A may be transferred into the banded storage matrix AB with the following rules:

a AB m, n−m+1 =Amn m= 1,2,…,N n = 1,2,…,N

b If n<m, do not addAmn intoAB only store upper triangle and main diagonal

sinceA is symmetric

c If n > m + h−1 , do not addAmn intoAB do not store zeros outside of the bandwidth

10 12 10

Combining these rules with the procedure shown in Figure 10.12.1 yields the means to
assemble the banded storage form of the constraint condensed, system mass or stiffness
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matrix (Kf or Mf ) directly from the element matrices (Ke or Me) according to the follow-

ing rules:

Kf lBer , lBes− lBer+1

= Kf lBer , lBes − lBer+ 1

+ Ke
rs

Mf lBer , lBes− lBer +1

= Mf lBer , lBes− lBer+ 1

+ Me
rs

10 12 11

Perform the sums in (10.12.11) if all of the following conditions are satisfied:

lBer
0, lBes

0, lBes
≥ lBer

, lBes
≤ lBer

+ hf −1 10 12 12

where the semibandwidth hf of the constraint condensed system matrices is obtained in
(10.12.7). The indices in these equations range as follows: e varies from 1 to the total number
of elements in the model, and r and s range from 1 to the number of degrees of freedom dof in
element e.

EXAMPLE 10.12.1 Steady-State Harmonic Response of the Simply Supported Beam
in Example 10.8.1 Utilizing Banded Storage and Solver

Statement: This example utilizes the simply supported beam in Example 10.8.1 to illustrate
the use of plane strain FE models for steady-state forced harmonic response prediction and
to illustrate programming of the above algorithms for banded storage.

Parameter Values: The Young’s modulus, Poisson’s ratio, and weight density and lengths
are given in (1) of Example 10.8.1.

Excitation: The grid pattern shown in Figure E10.8.1(a) is employed with n1 = 40 and n2 = 6
for this example. The force is applied at the 1/4 span position on the top surface of the beam.
Figure E10.8.1(a) shows that this is at degree of freedom (dof),

iF =
n1
4
+ 1 n2 + 1 ∗2 1

The corresponding constraint condensed dof is obtained from the larray (9.2.83) as liF .
The global-condensed system force vector therefore has the form

Ff
Nf × 1

= 0 0 0 f t 0 0 T

row liF

2

The sinusoidal force has the same amplitude as the peak transient force in Example
10.8.1; however, the force is applied sinusoidally, that is,

f t = 500,000 cos ωt N 3

Solution: Recall from Chapter 7 that the steady-state harmonic response phasors are deter-
mined by solving (7.5.5)

−ω2Mf + iωCf +Kf Q
f
=R ω Q

f
=Ff Nnpd × 1 4
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The amplitude and phase angle at degree of freedom j are then obtained from (7.5.7)

Qfj = Re Qfj

2
+ Im Qfj

2
and ϕQfj = tan

−1
Im Qfj

Re Qfj

5

From (2), (3), and (7.5.3), the phasor force vector for this system is

Ff
Nf × 1

= 0 0 0 500,000 0 0 T

row liF

6

The damping model is obtained from (5.4.120)

Cf = μmMf + μkKf 7

Figure E10.12.1(a) Flow diagram for obtaining steady-state, harmonic response utilizing a banded solver
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The damping is prescribed to be 15% (ξ= 0 15) at 250 Hz which is nearly identical with
the first bending mode (245 Hz) in Table E10.8.1(a) and Figure E10.8.1(e). This is achieved
by setting μm = 0 in (7) and determining μk from (5.4.122) as

μk =
2ξ
ω

=
2∗0 15
2∗π∗250 = 1 9 × 10−4 8

By (7), all matrices in (4), that is,Mf , Cf , Kf , and R ω have the same semibandwidth.

Applying (10.12.7) to the mesh pattern in Figure E10.8.1(a) with n1 = 40 and n2 = 6 yields a
semibandwidth of hf = 18. Figure E10.12.1(a) shows a flow diagram for obtaining the
steady-state, harmonic response of the simply supported beam model to a sinusoidal exci-
tation. The corresponding code is listed in Appendix E.

Figure E10.12.1(b) shows the vibration displacement amplitude versus forcing fre-
quency at three locations on the top surface of the beam model. The dimensional character-
istics of this example are 574 degrees of freedom, 571 nonprescribed degrees of freedom,
240 elements, constrained system semibandwidth = 18, number of excitation frequencies =
500, and total execution time = 33 seconds (wall clock time) on a 2.67 GHz, 64-bit laptop.

10.13 CHAPTER 10 EXERCISES

10.13.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website:
www.wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed
book, yielding a significant cost savings for the college student, and is updated.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

m
m

Figure E10.12.1(b) Vibration displacement amplitude on the top surface of the beam at
x1 =L1 4 solid , x1 =L1 2 dashed , and x1 = 3L1 4 dash-dot
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10.13.2 Exercise Goals

The goal of the Exercises in Chapter 10 is to strengthen the student’s understanding and
related engineering problem solving skills in the following areas:

(a) Develop a skill for meshing a 2D solid element model for plane stress/strain analyses.

(b) Determining natural frequencies of plane stress/strain models and visualizing accompa-
nying modes

(c) Evaluating benefit of utilizing extra shape functions to accelerate convergence of
predicted natural frequencies versus mesh refinement.

10.13.3 Sample Exercises: 10.5 and 10.8

The component in Exercise 10.5 is a plane stress/strain model that is cantilevered at its left
end and constrained by a spring at its lower right end. The half ellipse-shaped component in
Exercise 10.8 is represented with a plane stress/strain model. Its bottom surface is totally
constrained. Suggestions for node/element patterns are provided. The student must calculate
the natural frequencies and mode shapes. Solutions may be obtained by modifying a given
MATLAB code.
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Chapter 11

3D Solid Elements for Vibration
Analysis

11.1 INTRODUCTION

Powerful automated meshing codes and solvers presently make 3D solid finite element
modeling the preferred approach for vibration simulations of many structures and machines.
The mesh generators can quickly fill an arbitrarily shaped solid model of a machine, vehicle,
or structural component with 3D solid elements. These codes even refine mesh densities in
an automated manner to improve the predictions. The 3D solid elements have the potential
to yield more accurate results, being free from the kinematic constraints imposed on beam,
plane strain/stress, axisymmetric, plate, or truss elements as discussed in Chapters 4, 9, and
10. A disadvantage of these large degree of freedom (dof ) models is the added computa-
tional time, which may be reduced by using the approximate methods discussed in
Chapter 8, or by the judicious use of the lower-fidelity models in Chapters 9 and 10 for pre-
liminary design studies. Table 11.1.1 summarizes some of the kinematic assumptions of the
elements in these generally lower-fidelity models.

Figure 11.1.1 shows some 3D solid element shapes that appear in the literature and/or in
the element menus of commercially available finite element software.

For the sake of illustration, the 3D solid element presented in detail in this chapter is an
8-node hexahedron “brick” as shown with actual (x1, x2, x3) and natural (ξ1, ξ2, ξ3) coordi-

nates in Figure 11.1.2. The 8 local node numbers (k), nodal coordinates xe1,k,x
e
2,k,x

e
3,k , and

nodal displacements ue1,k,u
e
2,k,u

e
3,k are shown in this figure. The displacements and coor-

dinates are directed along the axes of the same global coordinate system (x1, x2, x3) utilized
by all elements in the model. The element has six faces, any of which could possibly be on
the surface of the modeled system and acted on by external forces in the form of a pressure or
more general surface traction. Surface stresses may be evaluated directly on these faces or
extrapolated from interior points out to the surfaces. Interior stresses are typically evaluated
at the Gauss points (GP) to improve their accuracy. The interior of the element possesses
mass and could be subjected to a body force such as centrifugal or gravity loading. The irreg-
ular shape of the element precludes analytical evaluation of the integrals associated with the
stiffness and mass matrices and force vector. These integrals must first be transformed to a
parent coordinate system and then performed with Gauss integration. The 8-node solid ele-
ment has a 6-node (degenerate) pentahedral shape counterpart formed by coalescing two
pairs of nodes as shown in Figure 11.1.3.

Figure 11.1.4 shows a reciprocating compressor crankshaft and axial air compressor
blade comprised of 8- and 6-node brick elements. These are relatively coarse meshes.
The intended purpose of these models was to determine the fatigue life of these components
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Figure 11.1.2 Hexahedral, 8-node, isoparametric 3D solid element in (a) actual and (b) parent (natural)
coordinates

Table 11.1.1 Summary of FE model assumptions

Element type Kinematic or kinetic assumption

Plane strain Depth-to-width and depth-to-height ratios large. All strains, stresses, displacements, and loads
are independent of depth coordinate. Strain ε33 = 0. All motion occurs only in the x1−x2
plane (Figure 10.2.1)

Plane stress Depth-to-width and height ratios small. In plane loading only. All motion occurs only in the
x1−x2 plane (Figure 10.3.1)

Beams Plane sections remain plane. Symmetric geometry about the neutral axis at x2 = x3 = 0
(Figure 9.5.1)

Axisymmetric All strains, stresses, displacements, and loads are independent of θ (Figures 10.9.2 and 10.9.3)

Figure 11.1.1 Shapes utilized for 3D solid modeling with FE
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as subjected to cyclic loading. Vibratory stresses were predicted for this purpose and were of
greater use than the vibratory displacements.

11.2 ELEMENT STIFFNESS MATRIX

11.2.1 Shape Functions

Figure 11.1.2 shows that each of the 8 nodes in the hexahedral element has three coordinates

xe1,k,x
e
2,k,x

e
3,k and three displacements ue1,k,u

e
2,k,u

e
3,k in the global coordinate system

(x1, x2, x3). The global displacement functions (u1, u2, u3) are interpolated throughout the
element utilizing natural coordinates, shape functions, and nodal displacements. The

Figure 11.1.4 Axial air compressor blade and reciprocating compressor crankshaft finite element models
composed of 8-node brick element

Figure 11.1.3 Degenerate, 6-node form of 8-node
brick element
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element geometry (x1, x2, x3) is mapped into natural coordinates using the isoparametric
approach, where the same shape functions as the displacement interpolations are utilized.
The natural coordinates vary within the limits

−1 ≤ ξ1 ≤ 1, −1 ≤ ξ2 ≤ 1, −1 ≤ ξ3 ≤ 1 11 2 1

The eight trilinear Lagrange-type shape functions for the hexahedral solid element are
given by

N1 =
1−ξ1 1−ξ2 1−ξ3

8
, N2 =

1−ξ1 1 + ξ2 1−ξ3
8

N3 =
1−ξ1 1 + ξ2 1 + ξ3

8
, N4 =

1−ξ1 1−ξ2 1 + ξ3
8

N5 =
1 + ξ1 1−ξ2 1−ξ3

8
, N6 =

1 + ξ1 1 + ξ2 1−ξ3
8

N7 =
1 + ξ1 1 + ξ2 1 + ξ3

8
, N8 =

1 + ξ1 1−ξ2 1 + ξ3
8

11 2 2

The locations of the 8 nodes in the natural coordinate system are shown in Table 11.2.1.
Utilizing these nodal coordinates, it can be easily verified that the shape functions in

(11.2.2) satisfy the consistency conditions (2.11.37)

Nj ξ1r,ξ2s,ξ3t =
0, r j or s j or t j

1, r = s = t = j
11 2 3

where ξkl = value of ξk at local node l, k = 1, 3, and l = 1, 8.
This condition insures that the node locations in the natural coordinates map onto the

node locations in the actual coordinates and likewise that the nodal displacements are recov-
ered from the interpolation expressions when they are evaluated at the nodal coordinates in
the natural coordinate system. This was previously explained in (2.11.37).

The element geometry is mapped from natural to actual coordinates with the isopara-
metric transformation

xi =
8

k = 1

Nkx
e
i,k, i = 1,2,3 11 2 4

where xei,k = xi coordinate of local node k of element e.

Table 11.2.1 Nodal natural coordinates for 8-node hexahedral
solid element

Local node no. ξ1 ξ2 ξ3

1 −1 −1 −1
2 −1 1 −1
3 −1 1 1
4 −1 −1 1
5 1 −1 −1
6 1 1 −1
7 1 1 1
8 1 −1 1
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The displacements throughout the element are interpolated with the shape functions and
nodal displacements as

ui =
8

k = 1

Nku
e
i,k, i = 1,2,3 11 2 5

where uei,k = ui displacement of local node k of element e.
Similar to the 2Dmodels in Chapter 10, improvement of the hexahedral element’s accu-

racy in bending problems may be obtained by adding extra shape functions to its displace-
ment interpolation as per Cook et al. (1989):

ui =
8

k = 1

Nku
e
i,k +

11

k = 9

Nku
e
i,k 11 2 6

where nodes 9, 10, and 11 are not assigned any specific locations within the element.
The three additional shape functions are

N9 = 1−ξ
2
2, N10 = 1−ξ

2
3, N11 = 1−ξ

2
1 11 2 7

The addition of the three extra shape functions causes the interpolated displacements to
be different on the shared face of two joined elements, when evaluated with the interpolation
expressions in the two elements. Hence, the elements with the three extra shape functions are
referred to as “incompatible” elements. Including the extra shape functions is most effective
for rectangular-shaped elements as described in Hughes (1987). Nodes 9, 10, and 11 will be
reduced out in the final form of the element stiffness matrix yielding a 24 × 24 Ke matrix
instead of a 33 × 33 matrix.

A pentahedral-shaped “degenerate” element may be formed by coalescing node 3 with
node 4 and node 7 with node 8. The resulting element is shown in Figure 11.1.3. The shape
functions for this element are easily obtained by setting

xe1,3 = x
e
1,4, xe1,7 = x

e
1,8 11 2 8

Equation (11.2.4) becomes

xi =N1xei,1 +N2xei,2 + N3 +N4 xei,3 +N5xei,5 +N6xei,6 + N7 +N8 xei,7

=N1x
e
i,1 +N2x

e
i,2 +N3x

e
i,3 +N4x

e
i,4 +N5x

e
i,5 +N6x

e
i,6

11 2 9

where ^ indicates local node number in the pentahedral element shown in Figure 11.2.1.

Figure 11.2.1 Pentahedral element node numbers
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Comparison of Figures 11.1.3 and 11.2.1 and consideration of (11.2.9) yield the pen-
tahedral shape functions and nodal coordinates as

N1 =N1, N2 =N2, N3 =N3 +N4, N4 =N5, N5 =N6, N6 =N7 +N8

xei,1 = x
e
i,1, xei,2 = x

e
i,2, xei,3 = x

e
i,3, xei,4 = x

e
i,5, xei,5 = x

e
i,6, xei,6 = x

e
i,7

11 2 10

11.2.2 Element Stiffness Matrix Integral and Summation Forms

The following linear strain–displacement relation for an elastic solid is derived in (A.3.18)

ε11

ε22

ε33

2ε12

2ε23

2ε13

=

∂ ∂x1 0 0

0 ∂ ∂x2 0

0 0 ∂ ∂x3

∂ ∂x2 ∂ ∂x1 0

0 ∂ ∂x3 ∂ ∂x2

∂ ∂x3 0 ∂ ∂x1

u1

u2

u3

=

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

∂u1 ∂x1

∂u1 ∂x2

∂u1 ∂x3

∂u2 ∂x1

∂u2 ∂x2

∂u2 ∂x3

∂u3 ∂x1

∂u3 ∂x2

∂u3 ∂x3

11 2 11

The displacement derivatives with respect to xi in (11.2.1) cannot be evaluated directly
since the displacement field is expressed in terms of natural coordinates ξj by (11.2.5) or
(11.2.6). The derivatives with respect to physical coordinates xi in (11.2.11) must be trans-
formed to derivatives with respect to the natural coordinates. This transformation of deriva-
tives is obtained by applying the chain rule of differentiation

∂

∂ξ1

∂

∂ξ2

∂

∂ξ3

=

∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3

∂

∂x1

∂

∂x2

∂

∂x3

= J

∂

∂x1

∂

∂x2

∂

∂x3

11 2 12

where J is the 3D Jacobian matrix. Note that from (11.2.4)

∂xi
∂ξm

=
8

k = 1

∂Nk

∂ξm
xei,k i = 1,3 m = 1,3 11 2 13
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Substitute (11.2.13) into (11.2.12) to obtain

J =

∂N1

∂ξ1

∂N2

∂ξ1

∂N3

∂ξ1

∂N4

∂ξ1

∂N5

∂ξ1

∂N6

∂ξ1

∂N7

∂ξ1

∂N8

∂ξ1

∂N1

∂ξ2

∂N2

∂ξ2

∂N3

∂ξ2

∂N4

∂ξ2

∂N5

∂ξ2

∂N6

∂ξ2

∂N7

∂ξ2

∂N8

∂ξ2

∂N1

∂ξ3

∂N2

∂ξ3

∂N3

∂ξ3

∂N4

∂ξ3

∂N5

∂ξ3

∂N6

∂ξ3

∂N7

∂ξ3

∂N8

∂ξ3

xe1,1 xe2,1 xe3,1

xe1,2 xe2,2 xe3,2

xe1,3 xe2,3 xe3,3

xe1,4 xe2,4 xe3,4

xe1,5 xe2,5 xe3,5

xe1,6 xe2,6 xe3,6

xe1,7 xe2,7 xe3,7

xe1,8 xe2,8 xe3,8

11 2 14

The secondmatrix in (11.2.14) contains the nodal coordinates which are different for all
elements. The first matrix may be evaluated at each Gauss integration point (Table 10.4.1) in
any element, stored, and then reused for all other elements in the mesh. The derivatives of
the shape functions in (11.2.2) and (11.2.7) are expressed in terms of the natural coordinates

ξ1, ξ2, ξ3 in Table 11.2.2. The nodal coordinates xe1,k,x
e
2,k,x

e
3,k are user defined or may be

code generated.
Application of the derivative transformation in (11.2.12) to the three displacement

functions u1, u2, and u3 yields

Table 11.2.2 Shape function derivatives for the 8-node incompatible hexahedral element
where Nk,e = ∂Nk ∂ξe

N1,1 = −
1
8
1−ξ2 1−ξ3 N1,2 = −

1
8
1−ξ1 1−ξ3 N1,3 = −

1
8
1−ξ1 1−ξ2

N2,1 = −
1
8
1 + ξ2 1−ξ3 N2,2 =

1
8
1−ξ1 1−ξ3 N2,3 = −

1
8
1−ξ1 1 + ξ2

N3,1 = −
1
8
1 + ξ2 1 + ξ3 N3,2 =

1
8
1−ξ1 1 + ξ3 N3,3 =

1
8
1−ξ1 1 + ξ2

N4,1 = −
1
8
1−ξ2 1 + ξ3 N4,2 = −

1
8
1−ξ1 1 + ξ3 N4,3 =

1
8
1−ξ1 1−ξ2

N5,1 =
1
8
1−ξ2 1−ξ3 N5,2 = −

1
8
1 + ξ1 1−ξ3 N5,3 = −

1
8
1 + ξ1 1−ξ2

N6,1 =
1
8
1 + ξ2 1−ξ3 N6,2 =

1
8
1 + ξ1 1−ξ3 N6,3 = −

1
8
1 + ξ1 1 + ξ2

N7,1 =
1
8
1 + ξ2 1 + ξ3 N7,2 =

1
8
1 + ξ1 1 + ξ3 N7,3 =

1
8
1 + ξ1 1 + ξ2

N8,1 =
1
8
1−ξ2 1 + ξ3 N8,2 = −

1
8
1 + ξ1 1 + ξ3 N8,3 =

1
8
1 + ξ1 1−ξ2

N9,1 = 0 N9,2 = −2ξ2 N9,3 = 0
N10,1 = 0 N10,2 = 0 N10,3 = −2ξ3
N11,1 = −2ξ1 N11,2 = 0 N11,3 = 0
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∂u1 ∂x1

∂u1 ∂x2

∂u1 ∂x3
− − − − −
∂u2 ∂x1

∂u2 ∂x2

∂u2 ∂x3
− − − − −
∂u3 ∂x1

∂u3 ∂x2

∂u3 ∂x3

=

J−1 0 0

0 J−1 0

0 0 J−1

∂u1 ∂ξ1

∂u1 ∂ξ2

∂u1 ∂ξ3− − − − −
∂u2 ∂ξ1

∂u2 ∂ξ2

∂u2 ∂ξ3− − − − −
∂u3 ∂ξ1

∂u3 ∂ξ2

∂u3 ∂ξ3

11 2 15

Substitution of (11.2.15) into the strain–displacement relation (11.2.11) yields

ε=

ε11

ε22

ε33

2ε12

2ε23

2ε13

=

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

J−1 0
3×3

0
3×3

0
3×3

J−1 0
3×3

0
3×3

0
3×3

J−1

∂u1 ∂ξ1

∂u1 ∂ξ2

∂u1 ∂ξ3
∂u2 ∂ξ1

∂u2 ∂ξ2

∂u2 ∂ξ3
∂u3 ∂ξ1

∂u3 ∂ξ2

∂u3 ∂ξ3

11 2 16

The Jacobianmatrix is evaluated in (11.2.14) and its inverse is represented in scalar formby

J−1 =

J ∗
11 J ∗

12 J ∗
13

J ∗
21 J ∗

22 J ∗
23

J ∗
31 J ∗

32 J ∗
33

11 2 17

Substitution of (11.2.17) into (11.2.16) yields

ε =

J ∗
11 J ∗

12 J ∗
13 0 0 0 0 0 0

0 0 0 J ∗
21 J ∗

22 J ∗
23 0 0 0

0 0 0 0 0 0 J ∗
31 J ∗

32 J ∗
33

J ∗
21 J ∗

22 J ∗
23 J ∗

11 J ∗
12 J ∗

13 0 0 0

0 0 0 J ∗
31 J ∗

32 J ∗
33 J ∗

21 J ∗
22 J ∗

23

J ∗
31 J ∗

32 J ∗
33 0 0 0 J ∗

11 J ∗
12 J ∗

13

∂u1 ∂ξ1

∂u1 ∂ξ2

∂u1 ∂ξ3
∂u2 ∂ξ1

∂u2 ∂ξ2

∂u2 ∂ξ3
∂u3 ∂ξ1

∂u3 ∂ξ2

∂u3 ∂ξ3

11 2 18
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which may be expressed more succinctly as

ε
6 × 1

= A1
6 × 9

q
9 × 1

11 2 19

The A1 matrix may be programmed and evaluated quite easily since it only depends on
the Jacobian matrix, which is evaluated by (11.2.14). The vector q in (11.2.19) will next

be expressed in terms of the nodal displacement vector ueN . Differentiating the xi direction
displacement ui, Equation (11.2.6), with respect to the lth natural coordinate ξl yields

∂ui
∂ξl

=
11

k=1

Nk, lu
e
i,k 11 2 20

where, as in Table 11.2.2, the “comma” notation implies

Nk, l =
∂Nk

∂ξl
11 2 21

Equation (11.2.20) generates nine equations, since i = 1,2, and 3 and l= 1,2, and 3,
which may be written in matrix form as

q
9 × 1

= A2
9 × 33

ueN
33 × 1

11 2 22

where

q
9 × 1

=

∂u1 ∂ξ1

∂u1 ∂ξ2

∂u1 ∂ξ3
− − − − −
∂u2 ∂ξ1

∂u2 ∂ξ2

∂u2 ∂ξ3
− − − − −
∂u3 ∂ξ1

∂u3 ∂ξ2

∂u3 ∂ξ3

, A2
9 × 33

=

N1,1 0 0 N2,1 0 0 N11,1 0 0

N1,2 0 0 N2,2 0 0 N11,2 0 0

N1,3 0 0 N2,3 0 0 N11,3 0 0

0 N1,1 0 0 N2,1 0 0 N11,1 0

0 N1,2 0 0 N2,2 0 0 N11,2 0

0 N1,3 0 0 N2,3 0 0 N11,3 0

0 0 N1,1 0 0 N2,1 0 0 N11,1

0 0 N1,2 0 0 N2,2 0 0 N11,2

0 0 N1,3 0 0 N2,3 0 0 N11,3

11 2 23

ueN
33 × 1

= ue1,1 ue2,1 ue3,1 ue1,2 ue2,2 ue3,2 ue1,11 ue2,11 ue3,11
T 11 2 24

Note that the matrix A2 may be easily programmed and evaluated at any point ξ1, ξ2, ξ3
within the element by utilizing Table 11.2.2 and (11.2.23). This matrix may be evaluated at
each Gauss integration point (Table 10.4.1) in any element, stored, and then reused for all
other elements in the mesh. Combine the two relations (11.2.19) and (11.2.22) to obtain

ε
6 × 1

= A1
6 × 9

q
9 × 1

= A1
6 × 9

A2
9 × 33

ueN
33 × 1

11 2 25
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Comparison of (11.2.25) with (4.7.22)

ε=BeueN 11 2 26

shows that

Be
6 × 33

= A1
6 × 9

A2
9 × 33

11 2 27

Recall that by (4.7.30) the stiffness matrix is

Ke

33 × 33
=

Ve

BT
e

33 × 6
Ee
6 × 6

Be
6 × 33

dV 11 2 28

The constitutive relation matrix Ee is defined for a general isotropic material in
(A.4.3) as

Table 11.2.3 Gauss integration points and weight factors for a 3 × 3 × 3 mesh

α β γ ξ1α ξ2β ξ3γ Wα Wβ Wγ

1 1 1 −ε −ε −ε 5/9 5/9 5/9
| | 2 | | 0 | | 8/9
| 3 | ε | 5/9
| 2 1 | 0 −ε | 8/9 5/9
| | 2 | | 0 | | 8/9
| 3 | ε | 5/9
| 3 1 | ε −ε | 5/9 5/9
| | 2 | | 0 | | 8/9

3 ε 5/9
2 1 1 0 −ε −ε 8/9 5/9 5/9
| | 2 | | 0 | | 8/9
| 3 | ε | 5/9
| 2 1 | 0 −ε | 8/9 5/9
| | 2 | | 0 | | 8/9
| 3 | ε | 5/9
| 3 1 | ε −ε | 5/9 5/9
| | 2 | | 0 | | 8/9

3 ε 5/9
3 1 1 ε −ε −ε 5/9 5/9 5/9
| | 2 | | 0 | | 8/9
| 3 | ε | 5/9
| 2 1 | 0 −ε | 8/9 5/9
| | 2 | | 0 | | 8/9
| 3 | ε | 5/9
| 3 1 | ε −ε | 5/9 5/9
| | 2 | | 0 | | 8/9

3 ε | 5/9

Note: nG = 3and ε= 0 6.
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Ee =
E

1 + v 1−2v

1−v v v 0 0 0

v 1−v v 0 0 0

v v 1−v 0 0 0

0 0 0
1−2v
2

0 0

0 0 0 0
1−2v
2

0

0 0 0 0 0
1−2v
2

11 2 29

where E and v are the element’s Young’s modulus and Poisson’s ratio, respectively.
The integral in (11.2.28) is over the element volume depicted in Figure 11.1.2(a). In gen-

eral, the integration domain is very complex so a closed form solution is unobtainable. This
obstacle is removed by utilizing the isoparametric mapping in (11.2.4) to transform the ele-
ment geometry into the cube-shaped, natural coordinate domain shown in Figure 11.1.2(b).
Gauss quadrature may be easily applied to evaluate Ke in the cube-shaped domain.
The differential volume in (11.2.28) transforms according to (10.4.25) as

dV = detJ dξ1 dξ2 dξ3 11 2 30

where the Jacobian matrix J is defined in (11.2.14), and its determinant becomes

det J = J11 J22J33−J32J23 −J12 J21J33−J23J31 + J13 J21J32−J22J31 11 2 31

Substitute (11.2.30) into (11.2.28) and change the integration limits to those of the cube
geometry to obtain

Ke =

1

−1

1

−1

1

−1

BT
e ξ1,ξ2,ξ3 E Be ξ1,ξ2,ξ3 ∗det J ξ1,ξ2,ξ3 dξ1dξ2dξ3 11 2 32

Similar to (10.4.27), the stiffness matrix in (11.2.32) is evaluated with the following
3D Gauss quadrature formula:

1

−1

1

−1

1

−1

f ξ1,ξ2,ξ3 dξ1dξ2dξ3 =
nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγf ξ1α,ξ2β,ξ3γ 11 2 33

where ξ1α, ξ2β, ξ3γ are Gauss quadrature (integration) points and wα,wβ,wγ are the corre-
sponding weight factors. Applying (11.2.33) to (11.2.32) yields

Ke

33 × 33
=

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγ BT
e

33 × 6
ξ1α,ξ2β,ξ3γ ∗ E

6 × 6
Be

6 × 33
ξ1α,ξ2β,ξ3γ det J ξ1α,ξ2β,ξ3γ

11 2 34

This form of the element stiffness matrix may be easily programmed to evaluate it in a
numerical form. The 3 × 3 × 3 grid of integration points in Table 11.2.3 is recommended for
evaluating (11.2.34).

Nine additional dofs result from including the three extra shape functions in the dis-
placement interpolation (11.2.6) and (11.2.7). Setting the internal forces on these nodes
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to zero provides the condition to eliminate the corresponding dof at the element level, utiliz-
ing a Guyan reduction (Section 8.2) type approach.

Consider a single, isolated element from a structural model’s mesh as shown in
Figure 11.2.2.

The equilibrium equation for the single element is

Ke

33 × 33
ueN
33 × 1

= f e

33 × 1

+ f e
A

33 × 1

11 2 35

where f e is the element external load vector and f e
A
represents reaction forces between this

element and its neighbor’s nodes. Let nodes 1–8 be retained (r) nodes and nodes 9–11 con-
densed (c) nodes, and then equation (11.2.34) may be written in partitioned matrix form,
similar to (8.2.3) as

Ke
G1,1 Ke

G1,2 Ke
G1,24

Ke
G24,1 Ke

G24,2 Ke
G24,24

Ke
G1,25 Ke

G1,33

Ke
G24,25 Ke

G24,33

Ke
G25,1 Ke

G25,2 Ke
G25,24

Ke
G33,1 Ke

G33,2 Ke
G33,24

Ke
G25,25 Ke

G25,33

Ke
G33,25 Ke

G33,33

ue1,1

ue2,1

ue3,1

ue1,8

ue2,8

ue3,8

ue1,9

ue2,9

ue3,9

ue1,11

ue2,11

ue3,11

=

f e1,1

f e2,1

f e3,1

f e1,8

f e2,8

f e3,8

f e1,9

f e2,9

f e3,9

f e1,11

f e2,11

f e3,11

+

f eA1,1

f eA2,1

f eA3,1

f eA1,8

f eA2,8

f eA3,8

f eA1,9

f eA2,9

f eA3,9

f eA1,11

f eA2,11

f eA3,11

11 2 36

Figure 11.2.2 An 11-node, incompatible solid brick element isolated from a finite element model

834 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



or

Ke
rr

24 × 24
Ke
rc

24 × 9

Ke
cr

9 × 24
Ke
cc

9 × 9

uer
24 × 1

uec
9 × 1

=

f e
r

24 × 1

f e
c

9 × 1

+

f e
Ar

24 × 1

f e
Ac

9 × 1

11 2 37

The 9 × 1 vector f e
Ac
is set to zero since the condensed nodes (9, 10, 11) in one element

are not coincident with or connected to the nodes in any adjacent element, that is, there
are no reaction forces between neighboring elements at the condensed nodes.
Equation (11.2.37) becomes

Ke
rru

e
r +K

e
rcu

e
c = f

e
r
+ f e

Ar
11 2 38

Ke
cru

e
r +K

e
ccu

e
c = f

e
c

11 2 39

Solving (11.2.39) for uec yields

uec = Ke
cc

−1
f e
c
− Ke

cc
−1
Ke
cru

e
r 11 2 40

Substituting (11.2.40) into (11.2.38) yields

Ke
rr

24 × 24
− Ke

rc
24 × 9

Ke
cc

9 × 9

−1

Ke
cr

9 × 24
uer

24 × 1
= − Ke

rc
24 × 9

Ke
cc

9 × 9

−1

f e
c

9 × 1

+ f e
r

24 × 1

+ f e
Ar

24 × 1

11 2 41

Equation (11.2.41) represents the equilibrium equation for a single element. The system
equilibrium equation is formed by adding (assembling) Equation (11.2.41) into a system
stiffness matrix and force vector, for e = 1,Ne (total number of elements). By Newton’s third
law, the adjacent elements to any particular element would contribute equal and opposite
actions to their shared nodes, and consequently, all f e

Ar
terms will cancel. For this reason,

f e
Ar
can be ignored in (11.2.41), and it can be concluded that the element stiffness matrix for

an 8-node, incompatible solid element with three extra shape functions is

K
e

24 × 24
= Ke

rr
24 × 24

− Ke
rc

24 × 9
Ke
cc

9 × 9

−1

Ke
cr

9 × 24
11 2 42

Note that this matrix has the same dimension (24 × 24) and dofs as an 8-node element
with no extra shape functions; therefore, it is treated in the same manner as an 8-node brick
for assembly into the system matrix.

11.3 THE ELEMENT MASS MATRIX AND FORCE VECTOR

Books on statics would limit the discussion to only the stiffness matrix, but of course in
vibrations, the inertia (mass) matrix is equally important. In addition, the requirement to
model forced vibrations makes it necessary to discuss the element and system force vectors.
The extra “incompatible” shape functions in (11.2.7) are utilized to “soften” the bending
stiffness of the elements. Consequently, from Hughes (1987), they are not employed to

Chapter 11 3D Solid Elements for Vibration Analysis 835

www.konkur.in



modify the mass matrix or force vector formulations, which will only use shape functions
N1−N8 in Equation (11.2.2).

11.3.1 Element Mass Matrix

The general form of the element mass matrix is given by (4.7.47) as

Me =
V e

ρNTNdV 11 3 1

where for the 8-node solid brick element

N
3 × 24

=

N1 0 0

0 N1 0

0 0 N1

N2 0 0

0 N2 0

0 0 N2

N8 0 0

0 N8 0

0 0 N8

11 3 2

Substitution of (11.2.30) into (11.3.1) yields

Me =

1

−1

1

−1

1

−1

ρNTNdet Je dξ1dξ2dξ3 11 3 3

Apply Gauss quadrature (11.2.33) for evaluating (11.3.3) to obtain

Me≈
nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγρ ξ1α,ξ2β,ξ3γ NT ξ1α,ξ2β,ξ3γ N ξ1α,ξ2β,ξ3γ det J ξ1α,ξ2β,ξ3γ

11 3 4

11.3.2 Element External Force Vector

The external forces acting on an element may be divided into two categories: (i) internal or
volume based and (ii) surface forces that are applied on one or more of the element’s six
faces. The volume force densities (force per unit volume) are Fe

Vx1,F
e
Vx2, andF

e
Vx3 and are

typically associated with gravity or imposed acceleration such as centrifugal acceleration.
The surface (edge) force densities (force per unit area) are Fe

Γx1,F
e
Γx2, andF

e
Γx3 and are typ-

ically associated with pressure, friction, point or distributed surface loads, and so on. The
total element force vector is given by (4.7.59) as

f e

24 × 1

=

f e1,1

f e2,1

f e3,1

f e1,8

f e2,8

f e3,8

=
Γe
NT

Fe
Γx1

Fe
Γx2

Fe
Γx3

dΓ+
V e

NT

Fe
Vx1

Fe
Vx2

Fe
Vx3

dV 11 3 5
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where Γe represents all faces of the element that lie on the surface of the structure being
modeled.

11.3.3 Force Vector: Concentrated Nodal Forces

It is common practice to apply concentrated loads at specified nodal locations and direc-
tions in finite element modeling. A simplified element force vector and assembly proc-
ess result for this case. Let FA

ik t be a concentrated external force acting at local node k in
direction xi. Then from Section 2.12 and Equations (11.3.2) and (11.3.5)

f e
C

24 × 1

=
V
NT

FA
1k t δ x1−x1k,x2−x2k,x3−x3k

FA
2k t δ x1−x1k,x2−x2k,x3−x3k

FA
3k t δ x1−x1k,x2−x2k,x3−x3k

dV

=
V

FA
1k t N1δ x1−x1k,x2−x2k,x3−x3k

FA
2k t N1δ x1−x1k,x2−x2k,x3−x3k

FA
3k t N1δ x1−x1k,x2−x2k,x3−x3k

FA
1k t N8δ x1−x1k,x2−x2k,x3−x3k

FA
2k t N8δ x1−x1k,x2−x2k,x3−x3k

FA
3k t N8δ x1−x1k,x2−x2k,x3−x3k

dV =

0

0

0

FA
1k t

FA
2k t

FA
3k t

0

0

0

11 3 6

where δ is the Kronecker delta and the shape functions defined in (11.2.2) satisfy

Nk x1j,x2j,x3j =
0, j k

1, j= k
11 3 7

The concentrated force at a node should be included in only one element force vector to
avoid redundancy.

Alternatively, consideration of the assembly procedure shows that a concentrated
force applied at a node may be added directly into the total system force vector at the
location corresponding to the global dof that the force is applied on. This avoids forming
and assembling element force vectors (11.3.6) for concentrated nodal forces.

Chapter 11 3D Solid Elements for Vibration Analysis 837

www.konkur.in



11.3.4 Force Vector: Volumetric Loads

Next, consider forces that act throughout the volume of a component of the system model.
This type of force is referred to as a distributed volumetric load (force per unit volume) and
may be mathematically represented by

Fv =

Fe
Vx1

Fe
Vx2

Fe
Vx3

=

f eVx1 x1,x2,x3 αe
Vx1 t

f eVx2 x1,x2,x3 αe
Vx2 t

f eVx3 x1,x2,x3 αe
Vx3 t

11 3 8

where the α(t) terms represent the temporal dependence of the loading. This may occur, for
example, when a deformable object is subjected to a time-varying imposed acceleration.

The corresponding element force vector is determined from (11.2.30) and (11.3.5) as

f e
V
t

8 × 1

=

1

−1

1

−1

1

−1

NT ξ1,ξ2,ξ3

f eVx1 ξ1,ξ2,ξ3 αe
Vx1 t

f eVx2 ξ1,ξ2,ξ3 αe
Vx2 t

f eVx3 ξ1,ξ2,ξ3 αe
Vx3 t

det Je dξ1dξ2dξ3 11 3 9

Substitution of (11.3.2) and use of Gauss quadrature yield the result in 11.3.10, which
may be readily programmed:

f e
V
t

24 × 1

=

αe
Vx1 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN1 ξ1α,ξ2β,ξ3γ f eVx1 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx2 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN1 ξ1α,ξ2β,ξ3γ f eVx2 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx3 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN1 ξ1α,ξ2β,ξ3γ f eVx3 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx1 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN2 ξ1α,ξ2β,ξ3γ f eVx1 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx2 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN2 ξ1α,ξ2β,ξ3γ f eVx2 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx3 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN2 ξ1α,ξ2β,ξ3γ f eVx3 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx1 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN8 ξ1α,ξ2β,ξ3γ f eVx1 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx2 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN8 ξ1α,ξ2β,ξ3γ f eVx2 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

αe
Vx3 t

nG

α= 1

nG

β = 1

nG

γ = 1

wαwβwγN8 ξ1α,ξ2β,ξ3γ f eVx3 ξ1α,ξ2β,ξ3γ det Je ξ1α,ξ2β,ξ3γ

11 3 10

838 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



11.3.5 Force Vector: Face Loading

This type of loading characterizes applied, time-varying surface loads such as pressure, wind
gusts, contact loading, distributed friction forces, magnetic fields, and so on. The general
mathematical expression for surface loading is obtained from (11.3.5) as

f e

24 × 1

=
Γe
NT

Fe
Γx1

Fe
Γx2

Fe
Γx3

dΓ 11 3 11

For the sake of illustration, assume that a traction (surface force per area) is applied to
face 1 of the element shown in Figure 11.3.1. The analysis developed below also applies to
loading on the other faces with the appropriate change in indices.

Since ξ1 = −1 on face 1, it follows from (11.2.2) that

N5 =N6 =N7 =N8 = 0 11 3 12

on face 1. Substituting (11.3.12) into the Nmatrix of (11.3.2) and then into (11.3.11) shows
that f e has zero entries in rows 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24. In other
words, f e has zero entries for every dof not on face 1. The remaining entries in f e are
obtained by transforming the surface integral in (11.3.11) into 2D natural coordinates
and then applying Gauss quadrature as discussed below. Figure 11.3.2 shows face 1 in actual
and natural coordinates.

Figure 11.3.2 Face 1 ξ1 = −1 of the hexahedral 8-node brick element

Figure 11.3.1 Face 1 as defined by local nodes 1, 2, 3, and 4
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From Figure 11.3.2,

d R

dξ2
= lim

Δξ2 0

ΔR2

Δξ2
,

d R

dξ3
= lim

Δξ3 0

ΔR3

Δξ3
11 3 13

where dR dξ2 is along a line of constant ξ3 and dR dξ3 is along a line of constant ξ2.

A differential of surface area on face 1 of the element is shown in Figure 11.3.3.
From vector geometry, the area of the parallelogram in Figure 11.3.3 can be calculated

from the formula

dΓ=
d R

dξ3
dξ3 ×

d R

dξ2
dξ2 =

d R

dξ3
×
d R

dξ2
dξ2dξ3 = Jdξ2dξ3 11 3 14

The “surface” Jacobian is defined as (Hildebrand, 1976)

J =
dR

dξ3
ξ1 = −1 ×

d R

dξ2
ξ1 = −1 11 3 15

where R is defined in Figure 11.3.2 as

R = x1e1 + x2e2 + x3e3 11 3 16

therefore,

∂ R

∂ξ3
×
∂ R

∂ξ2
= det

e1 e2 e3

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

= g1e1 + g2e2 + g3e3 11 3 17

where

g1 =
∂x2
∂ξ3

∂x3
∂ξ2

−
∂x2
∂ξ2

∂x3
∂ξ3

, g2 =
∂x1
∂ξ2

∂x3
∂ξ3

−
∂x1
∂ξ3

∂x3
∂ξ2

, g3 =
∂x1
∂ξ3

∂x2
∂ξ2

−
∂x2
∂ξ3

∂x1
∂ξ2

11 3 18

Figure 11.3.3 Differential of surface area on face 1
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From (11.3.14) and (11.3.17), the surface Jacobian may be expressed as

J = g21 + g
2
2 + g

2
3 11 3 19

Recall from (11.2.4)

xi =
8

k = 1

Nkx
e
i,k i= 1,2,3 11 3 20

Therefore, it follows that

∂xi
∂ξm

=
8

k = 1

∂Nk

∂ξm
xei,k i= 1,2,3 m = 2,3 11 3 21

Table 11.2.2 shows that

∂Nk

∂ξm ξ1 = −1

= 0 for k = 5,6,7,8 m= 2,3 11 3 22

therefore,

∂xi
∂ξm ξ1 = −1

=
4

k = 1

∂Nk

∂ξm
ξ1 = −1

xi,k i= 1,2,3 m= 2,3 11 3 23

The ∂Nk ∂ξm terms in (11.3.23) `are obtained from the shape function derivative for-
mulas in Table 11.2.2 and are evaluated at all integration point pairs (ξ2, ξ3) on face 1. The
resulting ∂xi ∂ξm terms may then be inserted into (11.3.18) to obtain g1, g2, and g3.
Finally, from (11.3.15) and (11.3.17), the surface Jacobian determinant is evaluated from

J =
∂R

∂ξ3
×
∂R

∂ξ2
ξ1 = −1

= g21 + g
2
2 + g

2
3

1 2

ξ1 = −1

11 3 24

Substitution of (11.3.14) into (11.3.11) yields

f e

24 × 1

=

1

−1

1

−1

NT
e F

e
Γ J dξ2dξ3

=

1

−1

1

−1

NT
e ξ1,ξ2,ξ3 Fe

Γ x1 ξ1,ξ2,ξ3 ,x2 ξ1,ξ2,ξ3 ,x3 ξ1,ξ2,ξ3

ξ1 = −1

∗ J ξ2,ξ3 dξ2dξ3

11 3 25

Equation (11.3.25) is in a form suitable for Gauss quadrature, as expressed by

f e

24 × 1

=
nG

β = 1

nG

γ = 1

wβwγ ∗ NT
e ξ1,ξ2β,ξ3γ Fe

Γ xi ξ1,ξ2β,ξ3γ J ξ2β,ξ3γ ξ1 = −1 11 3 26
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A final point of interest is that both dR dξ2
ξ1 = −1

and dR dξ3
ξ1 = −1

are parallel

to the surface in Figure 11.3.2; therefore, the cross product

g1e1 + g2e2 + g3e3 =
∂R

∂ξ3
ξ1 = −1

×
∂R

∂ξ2
ξ1 = −1

11 3 27

is normal to the surface. This outward normal vector will be employed in Section 11.5 for
computing the surface stresses with Cauchy’s surface equilibrium boundary formula (A.2.6)

Φj = niσij 11 3 28

11.4 ASSEMBLY PROCEDURE FOR THE 3D, 8-NODE, HEXAHEDRAL
ELEMENT MODEL

As indicated in the discussion of truss, beam, and planar solid elements, the total systemmodel
consists of all dofs including both free and fixed. The fixed dofs are zero and need not be
solved for so a constraint condensed model is formed consisting of only free (nonfixed) dofs.
This follows the same approach used for truss elements in Chapter 4, beam elements in
Chapter 9, and plane strain/stress and axisymmetric elements in Chapter 10. The global dofs
are ordered in the global-free system displacement vector as shown in Table 11.4.1.

The total number of dofs in the system is

Nd =Nn ∗ 3dofsnode
= 3Nn 11 4 1

where Nn is the number of nodes in the model.
The nodal connectivity array for the 8-node elements is

Bej = ICON e, j = global node number for local node j of element e,

for j= 1,8 and e = 1,…,Ne
11 4 2

Table 11.4.1 Degree of freedom (dof ) ordering
convention in the total system
displacement vector

System node
number Direction

System dof
number

1 x1 1
1 x2 2
1 x3 3
2 x1 4
2 x2 5
2 x3 6

Nn x1 3∗ Nn−1 + 1
Nn x2 3∗ Nn−1 + 2
Nn x3 3∗ Nn−1 + 3
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where Ne is the number of elements in the model. The local nodes are ordered as shown in
Figure 11.1.2. The ordering of local dofs within an element is shown in the uer vector
in (11.2.36)

uer = ue1,1 u
e
2,1 u

e
3,1 u

e
1,2 u

e
2,2 u

e
3,2 ue1,8 u

e
2,8 u

e
3,8

T
24 × 1 11 4 3

and is also shown in Table 11.4.2. Similar with the nodal connectivity array, a dof connec-
tivity array is defined by

Bel = ICONDOF e, l = systemdof number for local dof number lof element e,

for l = 1,…,24 and e = 1,…,Ne

11 4 4

and is evaluated using the nodal connectivities and the formula

Bel = ICONDOF e, l = 3∗ ICON e, j −1 + k 11 4 5

where

k = 1,2,3 direction index x1,x2,x3 ,

j= 1,8 local node index ,

l= 3∗ j−1 + k local dof index

11 4 6

Figure 11.4.1 and Table 11.4.3 illustrate the dof connectivity array for an example 3D
solid element.

Similar to (10.5.12) for planar solids, let

ipdl = lth fixed dof number for l= 1,…,Npd

be an array defined by the modeler to store the dofs that are fixed (constrained). The jarray
(ji) contains the system dof numbers that are free (not fixed) and is determined via the algo-
rithm defined in (10.5.13) for models with any type of elements (truss, beam, 2D solid, 3D
solid, and so on). The counterpart larray(li) stores either the location of system dof i in the
constraint condensed vector xf or a zero if system dof i is fixed. The algorithm for forming

Table 11.4.2 Local degrees of freedom (dofs) in a 3D hexahedral solid element

Local dof (l) Local node Direction Local dof (l) Local node Direction

1 1 x1 13 5 x1
2 1 x2 14 5 x2
3 1 x3 15 5 x3
4 2 x1 16 6 x1
5 2 x2 17 6 x2
6 2 x3 18 6 x3
7 3 x1 19 7 x1
8 3 x2 20 7 x2
9 3 x3 21 7 x3
10 4 x1 22 8 x1
11 4 x2 23 8 x2
12 4 x3 24 8 x3
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Figure 11.4.1 System dofs example for a hypothetical 8-node solid element with element number e = 76

Table 11.4.3 System degrees of freedom (dofs) for the 3D element shown in Figure 11.4.1

Element (e)
Local
node (j)

Direction
index (k)

Local dof
l= 3∗ j−1 + k

Global node number
Bej = ICON(e,j)

Global dof number
Bel = ICONDOF e, l
= 3∗ ICON e, j −1 + k

76 1 1 1 102 304
76 1 2 2 102 305
76 1 3 3 102 306
76 2 1 4 27 79
76 2 2 5 27 80
76 2 3 6 27 81
76 3 1 7 13 37
76 3 2 8 13 38
76 3 3 9 13 39
76 4 1 10 11 31
76 4 2 11 11 32
76 4 3 12 11 33
76 5 1 13 31 91
76 5 2 14 31 92
76 5 3 15 31 93
76 6 1 16 42 124
76 6 2 17 42 125
76 6 3 18 42 126
76 7 1 19 19 55
76 7 2 20 19 56
76 7 3 21 19 57
76 8 1 22 79 235
76 8 2 23 79 236
76 8 3 24 79 237

www.konkur.in



the larray is given in (10.5.13)–(10.5.15) for models with any type of elements (truss, beam,
2D, 3D, and so on). The local dof numbers within an element are defined in Table 11.4.2 and
transform into global system and constraint condensed system dof numbers according with
Table 11.4.4.

From these results, it follows that the constraint condensed system mass and stiffness
matrices and force vector may be formed directly from the corresponding element matrices
as shown in Figure 11.4.2.

As in (9.2.85), imposing the zero-displacement constraint conditions yields the follow-
ing “condensed” dynamic equilibrium equation for the “free” (unconstrained) dofs of the
constrained structure:

Mf
Nf ×Nf

q
f

Nf × 1

+ Cf
Nf ×Nf

q
f

Nf × 1

+ Kf
Nf ×Nf

q
f

Nf × 1

= Ff
Nf × 1

11 4 7

Equation (11.4.7) is solved for all of the nonfixed dofs in the system, that is, the q
f
vec-

tor. The entire system (fixed and free dofs) displacement vector q may be formed from q
f

using the jarray as demonstrated in Example 9.2.2 or (10.5.14):

Figure 11.4.2 Assembly of constraint
condensed system matrices and force vector
from the element matrices and force vector

Table 11.4.4 Degree of freedom (dof) conventions for element matrices,
full system, and constraint condensed dof system

Element e local dofs
= 1,…,24

System dofs
= 1,2,…,Nd

Constraint condensed dofsa

= 1,2,…,Nnpd

m Bem lBem

n Ben lBen

a lBem
or lBen

will be zero if the dof is fixed, that is, it will not appear in the constraint

condensed system vector q
f
.
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for l= 1,Npd no of fixed dofs

k = ipdl

qk = 0

end

for l= 1,Nnpd no of nonfixed dofs

k = jarray l

q k = qf l

end

11 4 8

The element stiffness matrix Ke in Figure 11.4.2 is obtained from (11.2.42) if extra
shape functions are included or directly from the 24 × 24 version of (11.2.34) if the 8-node
element is used. The element mass matrixMe in Figure 11.4.2 is obtained from (11.3.4). The
element force vector f e in Figure 11.4.2 is obtained from (11.3.6) for concentrated nodal
forces, from (11.3.10) for distributed volume loads, and from (11.3.26) for face loading.

11.5 COMPUTATION OF STRESSES FOR A 3D HEXAHEDRAL
SOLID ELEMENT

The prediction of dynamic stresses is an essential step in most vibration studies, since vibra-
tory stresses may lead to high-cycle fatigue-induced fracture failure as discussed in
Section 1.4. Stresses may be evaluated at locations inside of an element or on an element
face that lies on the surface of the object being modeled.

11.5.1 Computation of Interior Stress

A general practice is to evaluate the stresses at the Gauss integration points since for certain
element geometries, this yields the most accurate stress predictions (Cook et al., 1989).
Stress at other locations in an element may then be interpolated or extrapolated from the
GQ point values. The stress in a 3D solid element model of a structure with isotropic mate-
rial properties is given by (A.4.3)

σ11

σ22

σ33

σ23

σ13

σ12

=
E

1 + v 1−2v

1−v v v 0 0 0

v 1−v v 0 0 0

v v 1−v 0 0 0

0 0 0
1−2v
2

0 0

0 0 0 0
1−2v
2

0

0 0 0 0 0
1−2v
2

ε11

ε22

ε33

2ε23

2ε13

2ε12

11 5 1

or

σ =Eε 11 5 2

where v = Poisson’s ratio and E = Young’s modulus.
Substitution of (11.2.25) and (11.2.27) into (11.5.2) yields
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σe

6 × 1
= Ee

6 × 6
εe

6 × 1
= Ee

6 × 6
Be

6 × 33
ueN
33 × 1

= Ee

6 × 6
Ae
1

6 × 9
Ae
2

9 × 33
ueN
33 × 1

11 5 3

The stress at any integration point (ξ1α, ξ2β, ξ3γ) is obtained from

σe ξ1α,ξ2β ,ξ3γ
6 × 1

= Ee

6 × 6
Be ξ1α,ξ2β ,ξ3γ

6 × 33

ueN
33 × 1

11 5 4

The element displacements ueN in (11.5.4) may be obtained from the constraint con-
densed displacement vector q

f
in (11.4.7) at any time t using the dof connectivity array

Bem from (11.4.4) and the larray (10.5.15). Recall that m= 1,…,24 indicates the 24 local
dofs in ueN as shown in Table 11.4.2. Therefore,

ueN m =
q
f lBem

, lBem
0

0, lBem
= 0

, form = 1,…,24 11 5 5

The ueN in (11.5.5) only include the 24 retained dofs (nodes 1–8) in element e. The
remaining 9 dofs, that is, 25–33, are obtained via (11.2.40) with f e

c
= 0, as recommended

in Cook et al. (1989), if extra shape functions are employed, that is, N9,N10, and N11,
in (11.2.7).

Steps to obtain stresses at Gauss integration point ξ1α, ξ2β, ξ3γ within element e:

(a) At some time t, obtain the element e nodal displacements ueN t from the displacement
vector q

f
t via (11.5.5). Treat these as the retained dofs ue

r in (11.2.40) and solve for

uec by setting f e
c
equal to zero. Finally, set ueN m

equal to ue
c for m= 25,…,33.

(b) Compute the shape functions Nl(ξ1, ξ2, ξ3) and their derivatives ∂Nl ∂ξ1, ∂Nl ∂ξ2, and
∂Nl ∂ξ3 from (11.2.2), (11.2.7), and Table 11.2.2 for l = 1,11, at the GP locations,
ξ1,ξ2,ξ3 = ξ1α,ξ2β,ξ3γ , in Table 11.2.3.

(c) Compute the locations of the GP integration point (ξ1α, ξ2β, ξ3γ) in the actual coordi-
nates (11.2.4)

xi =
8

l= 1

Nl ξ1α,ξ2β,ξ3γ xeil i= 1,2,3 11 5 6

(d) Compute the Jacobian matrix Je at ξ1α, ξ2β, ξ3γ via (11.2.14).

(e) Form the Ae
1 andA

e
2 matrices at (ξ1α, ξ2β, ξ3γ) via Equations (11.2.18), (11.2.19), and

(11.2.23), respectively.

(f) Compute the Be matrix (11.2.27)

Be =Ae
1A

e
2 11 5 7

Note that Be is 6 × 33 if the three extra nodes (9, 10, 11) are included and is 6 × 24 if
only 8 nodes per element are utilized.

(g) Compute the strains at (ξ1α, ξ2β, ξ3γ) via (11.2.26)

εe ξ1α,ξ2β,ξ3γ , t =Be ξ1α,ξ2β,ξ3γ ueN t 11 5 8
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(h) Compute the stresses at (ξ1α, ξ2β, ξ3γ) at the given time t by (11.5.4)

σe ξ1α,ξ2β,ξ3γ , t =Eeεe ξ1α,ξ2β,ξ3γ , t =EeBe ξ1α,ξ2β,ξ3γ ueN 11 5 9

(i) Repeat steps (b)–(h) for all integration points in element e. Interpolate/extrapolate stres-
ses within element e given all integration point stresses σe ξ1α,ξ2β,ξ3γ and their actual

locations xe1 ξ1α,ξ2β,ξ3γ ,xe2 ξ1α,ξ2β,ξ3γ ,xe3 ξ1α,ξ2β,ξ3γ in element e.

The above procedure yields the six component stresses at any location within an
element. Ductile material failure methods typically employ the von Mises or equivalent
stresses, defined using the above component stresses, as given in (1.4.15)–(1.4.17).

11.5.2 Computation of Surface Stresses

This section explains how to obtain surface stresses directly without extrapolation of inte-
gration point stresses to the surface. Surface stress evaluation is very important since failures
often initiate on the surface of a component (Figure 11.5.1).

Strain is typically measured by cementing a strain gage to the surface, which provides
strains in a coordinate system that is tangent to the surface at the location where the gage is
attached. Assume that face 6 of an element is located on the surface of the object being mod-
eled. Figure 11.5.2 shows the face 6 surface and a local (surface) coordinate system attached
to it. This face is selected arbitrarily and the surface stresses may be obtained in a similar
manner on any of the other five faces.

Figure 11.5.2 Transformation of face 6 to natural coordinates

Figure 11.5.1 Surface stress computation on face 6 of element e
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For simplicity, assume that nodes 5, 6, 7, and 8 are coplanar. This will insure that the
x1,x2 axes are tangent to the surface throughout Γe. If the surface is warped due to non-
coplanar nodes or interpolation of quadratic or higher orders, one must define a different
“surface” coordinate system at each point of interest on face 6. This may be accomplished

by utilizing the tangent vector dR dξ2
ξ1 =1

and normal vector

n =

∂ R

∂ξ2
×
∂ R

∂ξ3

∂ R

∂ξ2
×
∂ R

∂ξ3

11 5 10

as discussed in the derivation of (11.3.27). In order to compute surface stress, all quantities
(displacements, strains, tractions, and so on) need to be expressed in the local x1,x2,x3 coor-
dinates, which requires a coordinate transformation matrix between the global axes (x1, x2,
x3) and surface tangent axes x1,x2,x3 .

11.5.3 Coordinate Transformation

Consider the following analysis used to obtain the coordinate transformationmatrix between
the (x1, x2, x3) and x1,x2,x3 orthogonal triads. The local unit vector e3 is normal to the sur-
face; therefore,

e3 = e31e1 + e32e2 + e33e3 = n = n1e1 + n2e2 + n3e3 =
R6 5 ×R8 5

R6 5 ×R8 5

11 5 11

by the assumption that face 6 is planar. Note that R6 5 and R8 5 are vectors that start at node 5
and end at nodes 6 and 8, respectively. The local unit vector e1 is obtained from

e1 = e11e1 + e12e2 + e13e3 =
R6 5

R6 5

11 5 12

The remaining local unit vector e2 is obtained from the condition of orthogonal unit
vectors:

e2 = e21e1 + e22e2 + e23e3 = e3 × e1 = det

e1 e2 e3

e31 e32 e33

e11 e12 e13
= e1 e32e13−e33e12 + e2 e33e11−e31e13 + e3 e31e12−e32e11

11 5 13

Figure 11.5.3 shows both the global and surface tangent coordinate systems.

The components Ãi of any vector A expressed in the x1,x2,x3 coordinates can
be obtained from the components Ai of the same vector expressed in the global axes
(x1, x2, x3) utilizing (2.7.5)

Chapter 11 3D Solid Elements for Vibration Analysis 849

www.konkur.in



A1

A2

A3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

A1

A2

A3

11 5 14

where the direction cosine is defined in (2.7.6) as

Cij = cos xi,xj = cosine of the angle between the xi direction and the xj direction 11 5 15

The Cij are obtained by noting

ei ej = ei ej cos ei,ej = 1 1 cos xi,xj =Cij 11 5 16

Inspection of Equations (11.5.11)–(11.5.13) shows that

ei ej = eij 11 5 17

Therefore,

Cij = eij 11 5 18

where eij are obtained from the nodal coordinates via Equations (11.5.11)–(11.5.13).

11.5.4 Geometry Mapping in Surface Tangent Coordinates

The relative position vector from node 5 to any other node (k) is expressed in system
coordinates as

rk 5 =

x1,k −x1,5
x2,k −x2,5
x3,k −x3,5

=

xrel1,k
xrel2,k
xrel3,k

k = 5,6,7,8 11 5 19

These relative position vectors may be expressed in surface tangent coordinates via
(11.5.14)–(11.5.18) as

xrel1,k
xrel2,k
xrel3,k

=

e11 e12 e13
e21 e22 e23
e31 e32 e33

xrel1,k
xrel2,k
xrel3,k

k = 5,6,7,8 11 5 20

Figure 11.5.3 The global and surface tangent (local)
coordinate systems
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Equation (11.5.20) provides the nodal coordinates of all 4 nodes as measured in the
surface tangent coordinate system. To obtain the coordinates of other points on Γe (as meas-
ured in the surface tangent coordinates), apply the standard isoparametric mapping formula

xi =
8

k = 5

Nk ξ2,ξ3 ξ1 = 1
xreli,k i= 1,2,3 11 5 21

where from (11.2.2)

N5 ξ1 = 1
=
1
4
1−ξ2 1−ξ3 , N6 ξ1 = 1

=
1
4
1 + ξ2 1−ξ3

N7 ξ1 = 1
=
1
4
1 + ξ2 1 + ξ3 , N8 ξ1 = 1

=
1
4
1−ξ2 1 + ξ3

11 5 22

11.5.5 Displacements in the Surface Tangent Coordinate System

Let ui,k represent the global coordinate displacement of node k in the ith direction. The nodal
displacements measured in the surface tangent coordinate system are then obtained from
(11.5.14)–(11.5.18) as

u1,k

u2,k

u3,k

=

e11 e12 e13

e21 e22 e23

e31 e32 e33

u1,k

u2,k

u3,k

k = 5,6,7,8 11 5 23

The displacements are interpolated in the surface coordinate system via

ui =
8

k = 5

Nk ξ2,ξ3 ui,k 11 5 24

where ui,k is the ith direction displacement, at node k, as measured in the surface tangent
coordinate system.

11.5.6 Strains in the Surface Tangent Coordinate System

The three strains that are required for determining the surface stresses are (A.3.21)

ε11 =
∂u1
∂x1

, ε12 =
1
2

∂u1
∂x2

+
∂u2
∂x1

, ε22 =
∂u2
∂x2

11 5 25

To obtain these strains, consider the following analysis. The ui are differentiated with
respect to xi in (11.5.25) but are instead functions of ξj as expressed in (11.5.24). Use the
chain rule to show

∂

∂ξ2

∂

∂ξ3

=

∂x1
∂ξ2

∂x2
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂

∂x1

∂

∂x2

= J

∂

∂x1

∂

∂x2

=
J11 J12

J21 J22

∂

∂x1

∂

∂x2

11 5 26
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This is rewritten as

∂

∂x1
∂

∂x2

=
1

∂x1
∂ξ2

∂x2
∂ξ3

−
∂x2
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

−
∂x2
∂ξ2

−
∂x1
∂ξ3

∂x1
∂ξ2

∂

∂ξ2
∂

∂ξ3

11 5 27

where from (11.5.21)

∂xi
∂ξm

=
8

k = 5

∂Nk

∂ξm
ξ1 = 1

xreli,k m= 2,3 11 5 28

Application of (11.5.27) to the surface tangent displacements yields

∂u1
∂x1

∂u1
∂x2

∂u2
∂x1
∂u2
∂x2

=
1

det J

∂x2
∂ξ3

−
∂x2
∂ξ2

0 0

−
∂x1
∂ξ3

∂x1
∂ξ2

0 0

0 0
∂x2
∂ξ3

−
∂x2
∂ξ2

0 0 −
∂x1
∂ξ3

∂x1
∂ξ2

∂u1
∂ξ2

∂u1
∂ξ3

∂u2
∂ξ2
∂u2
∂ξ3

11 5 29

where

detJ =
∂x1
∂ξ2

∂x2
∂ξ3

−
∂x2
∂ξ2

∂x1
∂ξ3

11 5 30

from (11.5.24)

∂ui
∂ξm

=
8

k = 5

∂Nk

∂ξm
ξ2,ξ3 ξ1 = 1

ui,k 11 5 31

and ∂xi ∂ξm are determined from (11.5.28). Note that given any parent coordinate pair
(ξ2, ξ3), all terms like ∂ui ∂xj may be computed from (11.5.29) to (11.5.31); therefore,
the required strains in (11.5.25) may also be computed.

11.5.7 Surface Stresses Obtained from Cauchy’s Boundary Formula

The next step is to require that the surface stresses satisfy Cauchy’s formula (A.2.3), as
applied in the surface tangent coordinate system shown in Figure 11.5.4.

From this figure,

n = n1e1 + n2e2 + n3e3 = e3 11 5 32

Therefore,

n1 = 0, n2 = 0, n3 = 1 11 5 33
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The Cauchy boundary formula (A.2.3) applied in the surface tangent coordinates is

FΓx1

FΓx2

FΓx3

=

n1 0 0 n2 0 n3

0 n2 0 n1 n3 0

0 0 n3 0 n2 n1

σ11

σ22

σ33

σ12

σ23

σ13

11 5 34

where the overhead “~” indicates evaluation in the surface tangent coordinate system.
Substitution of (11.5.33) into (11.5.34) yields

σ13 =FΓx1, σ23 =FΓx2, σ33 =FΓx3 11 5 35

where the three stresses are shown in Figure 11.5.4. Since the surface tractions FΓxi are
known, Equation (11.5.35) shows that three of the six surface stresses may easily be
obtained from the prescribed surface tractions (zero or nonzero) as expressed in the surface
tangent coordinate system. The remaining three must be obtained utilizing the material law
and the strain–displacement relations.

11.5.8 Surface Stresses Obtained from the Constitutive Law and Surface Strains

From (A.4.3), the isotropic material law in the surface tangent coordinate system is

σ11

σ22

σ33

σ23

σ13

σ12

=
E

1 + v 1−2v

1−v v v 0 0 0

v 1−v v 0 0 0

v v 1−v 0 0 0

0 0 0
1−2v
2

0 0

0 0 0 0
1−2v
2

0

0 0 0 0 0
1−2v
2

ε11

ε22

ε33

2ε23

2ε13

2ε12

11 5 36

Figure 11.5.4 Applied tractions in the surface
tangent coordinate system
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Solve the third equation in (11.5.36) for ε33:

ε33 =
σ33−γvε11−γvε22

γ 1−v
11 5 37

where

γ =
E

1 + v 1−2v
=

2G
1−2v

11 5 38

Substitute (11.5.37) into the first and second rows of (11.5.36) and note the last row of
(11.5.36) to obtain

σ11 =
vσ33 + 2G ε11 + vε22

1−v
, σ22 =

vσ33 + 2G vε11 + ε22
1−v

, σ12 = 2Gε12 11 5 39

11.5.9 Summary of Surface Stress Computation

The geometry and prescribed surface tractions of face 6 are shown in Figure 11.5.5.
The following steps summarize the procedure for determining surface stresses:

(a) Compute unit vectors along the surface tangent coordinate system’s axes

e1 = e11e1 + e12e2 + e13e3 =
R6 5

R6 5

,

e2 = e21e1 + e22e2 + e23e3 = e3 × e1,

e3 = e31e1 + e32e2 + e33e3 =
R6 5 ×R8 5

R6 5 ×R8 5

11 5 40

Figure 11.5.5 Hexahedral solid element surface stress calculation
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(b) Obtain nodal coordinates in the surface tangent coordinate system

xrel1,k

xrel2,k

xrel3,k

=

e11 e12 e13

e21 e22 e23

e31 e32 e33

x1,k −x1,5

x2,k −x2,5

x3,k −x3,5

k = 5,6,7,8 11 5 41

(c) Interpolate element geometry in the surface tangent coordinate system

xi =
8

k = 5

Nk ξ2,ξ3
ξ1=1

xreli,k i = 1,2,3 11 5 42

where, at ξ1 = 1,

N5 =
1
4
1−ξ2 1−ξ3 , N6 =

1
4
1 + ξ2 1−ξ3

N7 =
1
4
1 + ξ2 1 + ξ3 , N8 =

1
4
1−ξ2 1 + ξ3

11 5 43

(d) Obtain nodal displacements in the surface coordinate system

u1,k

u2,k

u3,k

=

e11 e12 e13

e21 e22 e23

e31 e32 e33

u1,k

u2,k

u3,k

k = 5,6,7,8 11 5 44

where ui,k is the local node k displacement in direction xi, for i = 1, 2, 3, as obtained from
(11.4.7) at any time t.

(e) Interpolate displacements in the surface tangent coordinate system

ui =
8

k = 5

Nk ξ2,ξ3
ξ1=1

ui,k i = 1,2,3 11 5 45

(f) Compute strains in the surface tangent coordinate system

ε11 =
∂u1
∂x1

, ε12 =
1
2

∂u1
∂x2

+
∂u2
∂x1

, ε22 =
∂u2
∂x2

11 5 46

∂u1
∂x1

∂u1
∂x2

∂u2
∂x1
∂u2
∂x2

=
1

det J

∂x2
∂ξ3

−
∂x2
∂ξ2

0 0

−
∂x1
∂ξ3

∂x1
∂ξ2

0 0

0 0
∂x2
∂ξ3

−
∂x2
∂ξ2

0 0 −
∂x1
∂ξ3

∂x1
∂ξ2

∂u1
∂ξ2

∂u1
∂ξ3

∂u2
∂ξ2
∂u2
∂ξ3

11 5 47

detJ =
∂x1
∂ξ2

∂x2
∂ξ3

−
∂x2
∂ξ2

∂x1
∂ξ3

11 5 48
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∂xi
∂ξm

=
8

k = 5

∂Nk

∂ξm
ξ1=1

xreli,k m = 2,3 11 5 49

∂ui
∂ξm

=
8

k = 5

∂Nk

∂ξm
ξ1=1

ui,k m= 2,3 11 5 50

Let ∂Nk ∂ξm ξ1=1
be represented by Nk,m, and then from (11.5.43)

N5,2 = −
1
4
1−ξ3 , N5,3 = −

1
4
1−ξ2

N6,2 =
1
4
1−ξ3 , N6,3 = −

1
4
1 + ξ2

N7,2 =
1
4
1 + ξ3 , N7,3 =

1
4
1 + ξ2

N8,2 = −
1
4
1 + ξ3 , N8,3 =

1
4
1−ξ2

11 5 51

(g) Obtain three surface stresses in the surface tangent coordinate system directly from the
prescribed tractions

σ13 =FΓx1, σ23 =FΓx2, σ33 =FΓx3 11 5 52

where FΓxi is the component of the prescribed surface traction on face 6 in the ei direc-
tion. Note for pure pressure loading FΓx1 =FΓx2 = 0 andFΓx3 = −P.

(h) Obtain three surface stresses in the surface tangent coordinate system from the consti-
tutive law

σ11 =
vσ33 + 2G ε11 + vε22

1−v
, σ22 =

vσ33 + 2G vε11 + ε22
1−v

, σ12 = 2Gε12 11 5 53

where σ33 is obtained from (11.5.52) and ε11,ε22, and ε33 are obtained from (11.5.46).

11.6 3D SOLID ELEMENT MODEL EXAMPLE

EXAMPLE 11.6.1 Correlation Study for a Simply Supported Beam Model with Beam,
2D Solid, and 3D Solid Elements

Statement: This example utilizes a simply supported beam to illustrate the use of 8-node
solid elements and to compare results with Timoshenko beam and 2D solid element models.

Objectives: The objectives of this example are:

(a) Build a 3D, 8-node hexahedral element model of a simply supported beam with
arbitrary aspect ratio and mesh density.

(b) Determine natural frequencies, mode shapes, and transient responses.

(c) Compare response to those obtained with the beam and 2D solid element models in
Example 10.8.1.
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Assumptions: The assumptions for this example are:
Small motions, that is, small-motion strain–displacement and stress–strain relations

(A.3.21) and (A.4.4), are valid.

Material Properties: The Young’s modulus, Poisson’s ratio, and weight density are

E = 2 0 × 1011N m2, v = 0 3, ρg= 7 69 × 104N m3

Model Mesh: The beam model is meshed with the uniformly spaced grid shown in
Figure E11.6.1(a). The x1, x2, and x3 dimensions are divided into n1, n2, and n3 sections, respec-
tively; thus,

Δi =
Li
ni

1

where ni are all even numbers to symmetrically locate the boundary conditions and

L1 = 1 0m, L2 = 0 1m, L3 = 0 1m 2

From this figure, it is seen that the plane i3 node numbers are obtained from their plane 1
counterparts by adding i3−1 ∗n12 and the layer i3 element numbers are obtained from their
layer i3 = 1 counterparts by adding i3−1 ∗n1n2. In addition,

Nn = number of system nodes = n1 + 1 n2 + 1 n3 + 1 ,

Ne = number of system elements = n1n2n3,

Nd = number of system dofs = 3∗Nn,

Npd = number of fixed dofs = 3∗ n3 + 1 + 1,

Nnpd = number of nonfixed dofs =Nd −Npd

3

Figure E11.6.1(a) Simply supported beam model with 8-node hexahedral elements
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The expression for Npd is the sum of n3 + 1 “u2” constraints at x1 =L1, 2 n3 + 1 “uy”
and “u1” constraints at x = 0, and one “u3” constraint at node 1 to prevent rigid body motion
in the x3 direction.

Integer Arrays: The node numbers for a typical element are shown in Figure E11.6.1(b).

(a) Form Node Connectivity Array ICON. The nodal connectivity array is defined below:

for i1 = 1,n1 horizontal intervals

for i2 = 1,n2 vertical intervals

for i3 = 1,n3 depth intervals

e= n1∗n2 i3−1 + n2 i1−1 + i2

i= n1 + 1 n2 + 1 i3 + n2 + 1 i1−1 + i2

ICON e,1 = i

ICON e,2 = i−n12

ICON e,3 = i−n12 + n2 + 1

ICON e,4 = i+ n2 + 1

ICON e,5 = i+ 1

ICON e,6 = i+ 1−n12

ICON e,7 = i+ 1 + n2 + 1−n12

ICON e,8 = i+ 1 + n2 + 1

end

end

end

where ICON e, j =Bej = global node number for local node jof element e,

j= 1,…, 8, e = 1,…,Ne

4

Figure E11.6.1(b) Global node numbers for element e of the simply supported beam model
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(b) Form DOF Connectivity Array.

The dof connectivity array Bel is then determined based on (11.4.4):

for e= 1,Ne elements

for j= 1,8 local nodes

for k = 1,3 directions

l= 3∗ j−1 + k local dof numbers

ICONDOF e, l = 3∗ ICON e, j −1 + k

end

end

end

where ICONDOF e, l =Bel = global dof number for local dof lof element e,

j = 1,…,24, e= 1,…,Ne, and k = 1 x1 ,k = 2 x2 ,k = 3 x3

5

(c) Form the jarray(ji).
The requirement that n2 is even and inspection of Figure E11.6.1(a) shows that

the fixed dofs for the simply supported boundary conditions are stored in the array
ipdl below:

l= 0

for i= 1,n3 + 1

l1 = 3∗ n2
2
+ 1 + i−1 ∗3∗n12 u1 direction at x1 = 0

l2 = l1 + 1 u2 direction at x1 = 0

l3 = l2 + n1 n2 + 1 ∗3 u2 direction at x =L1

l= l+ 1

ipdl = l1

l= l+ 1

ipdl = l2

l= l+ 1

ipdl = l3

end

l= l+ 1

ipdl = 3 restrict rigid bodyu3 motion at global node 1

Npd = 3∗ n3 + 1 + 1 total number of prescribed dofs

6

The jarray is defined in (10.5.12) and (10.5.13) utilizing the array ipdl of fixed dofs
from (6):

ji = systemdof number of the ith nonfixed dof

where

i= l,…,Nnpd and Nnpd =Nd −Npd = total number of fixed dofs in the system model

= 3∗Nd −Npd = 3 n1 + 1 n2 + 1 n3 + 1 −3 n3 + 1 −1

7
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(d) Form the larray(li).
The larray(li) stores either the position of system dof i in the condensed system or

zero if i is fixed. The larray is formed from the jarray(ji) as described in (10.5.15) with
Nd, Nnpd from (2).

(e) Nodal Coordinates. The coordinates of the model nodes in Figure E11.6.1(a) are deter-
mined as follows:

Δ1 =
L1
n1

, Δ2 =
L2
n2

, Δ3 =
L3
n3

nc= 0, p1 = −Δ1, p2 = −
L2
2
−Δ2, p3 =

L3
2
+Δ3

for j3 = 1,n3 + 1

p3 = p3−Δ3

for j1 = 1, n1 + 1

p1 = p1 +Δ1

for j2 = 1, n2 + 1

p2 = p2 +Δ2

nc = nc + 1

x1 nc = p1

x2 nc = p2

x3 nc = p3

end

p2 = −
L2
2
−Δ2

end

p1 = −Δ1

end

8

Mass and Stiffness Matrices and Force Vector: The stiffness and mass matrices for the
system with fixed dofs removed are assembled from the element stiffness and mass matrices
following the algorithm illustrated in Figure 11.4.2.

Natural Frequencies and Mode Shapes: The simply supported beam of Example 10.8.1
with dimensions L1 = 1 0m, L2 = 0 1m, and L3 = 0 1m is modeled here with 8-node brick-
type solid elements. The related MATLAB code is shown in Appendix F. From (6), the con-
strained dofs for the n1 = 12, n2 = 4, and n3 = 4 case are

7 8 188 202 203 383 397 398 578 592 593 773 787 788 968 3 9

Third-order Gauss quadrature is employed in obtaining the element mass and stiffness
matrices in (11.2.34) and (11.3.4). The two lowest x1−x2 plane bending modes and an axial
mode for this case using extra shape functions (11.2.7) are shown in Figure E11.6.1(c). The
corresponding natural frequencies are 233.1, 915.6, and 1173.1 Hz with extra shape func-
tions (11.2.7) and 262.7, 1024.5, and 1215 without extra shape functions.

Figure E11.6.1(d) shows a mode of the n1 = 12, n2 = 4, and n3 = 4 with extra shape func-
tions, model that occurs at 1441.9 Hz. This is a combined expansion (breathing)–torsion
mode that cannot be predicted by a beam or plane stress/strain model. Table E11.6.1(a)
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shows these mode frequencies for different mesh densities. The trends shown include con-
vergence to the natural frequencies from above as the number of elements increase and
quicker convergence when extra shape functions (11.2.7) are included. As expected, the
results are very close to those of the plane strain and beam models in Table E10.8.1(a).

Tripling the x3 direction length yields nearly identical x1−x2 plane bending mode fre-
quencies since the mass and stiffness characteristics both increase proportionately. More
general, nonbeam, nonplane strain-type modes also result as shown in Figure E11.6.1(e).

Damped, Forced Response: The objective here is to predict the transient vibration response
(Chapter 6) of the beam to a suddenly applied force. The damped dynamic equilibrium
equation

q
f
=Vf Nnpd × 1 , V f =M

−1
f f

f
t −Cof Vf −Kf qf

10

Table E11.6.1(a) Natural frequencies for various mesh densities

Case n1 n2 n3 Extra shape function f bend,x1 −x21 Hz f bend,x1 −x22 Hz faxial Hz

1 12 4 4 No 262.7 1024.5 1215
2 12 4 4 Yes 233.1 915.6 1173.1
3 12 6 6 Yes 233.1 914.7 1154
4 16 6 6 Yes 232 900.6 1151
5 16 6 6 No 249.1 962.9 1197.2
6 18 8 8 Yes 232 896.4 1136

233.1 Hz

No.  2

915.6 Hz

No.  4

1173.1 Hz

No.  6

Figure E11.6.1(c) The two lowest x1–x2 bending and lowest axial modes for n1 = 12, n2 = 4, and n3 = 4 with
extra shape functions

1441.9 Hz

No.  7

Figure E11.6.1(d) A combined expansion
(breathing)–torsionmode of the n1 = 12, n2 = 4, and
n3 = 4 with extra shape functions model
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with zero initial conditions

q
f
0 =Vf 0 = 0 11

is numerically integrated with MATLAB’s ODE45 numerical integration routine as shown
in Appendix F. As in Example 10.8.1, a set of external concentrated forces are applied as
shown in Figure E10.8.1(c). The time history of these forces is given by

f t =

0 1
n3 + 1

∗5 0 × 105 ∗ t

0 01
N, 0 ≤ t ≤ 0 01s

0 1
n3 + 1

∗5 0 × 105N, t > 0 01s
12

where the factor of 0.1 is applied since the beam depth is only L3 = 0 1m, that is, not 1 m, and
the factor of 1 n3 + 1 appears since the forces are applied at n3 + 1 nodes occurring along
the x3 direction at the quarter span location. The forces are applied in the x2 direction on the
top of the beam in Figure E11.6.1(a) at x1 = (L1/4):

Forced nodes NFi =
n1
4
+ 1 ∗ n2 + 1 + i−1 ∗n12 for i = 1,2,…,n3 + 1

Forced dofs ki = NFi−1 ∗3 + 2 for i= 1,2,…,n3 + 1
13

The forces are input into rows of the constraint condensed force vector f
f
t at positions

defined using the larray ((6) and (10.5.12), (10.5.13), (10.5.15)) by

for i= 1, n3 + 1

ifnode = i−1 n12 + n2 + 1 ∗ n1
4
+ 1

ifdof = 3∗ ifnode−1 + 2

ifdofc = l ifdof

end

14

1890.5 Hz

No.  8

Figure E11.6.1(e) A combined bending plus torsion mode of the n1 = 12, n2 = 4, and n3 = 4 with extra
shape functions and L3 = 0 3m model
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where n12 = n1 + 1 ∗ n2 + 1 and the mesh index n1 must be selected to be a multiple of 4.
Thus, the constraint condensed force vector f

f
t has the following form:

f
f

Nnpd × 1

= 0 0 0 f t

row i 1fdofc

0 0 f t

row i 2fdofc

0 0 f t

row i
n3 + 1
fdofc

0 0 T 15

where the nonzero row numbers are defined in (14). The dampingmodel employed in Exam-
ple 10.8.1 imposed prescribed values of modal damping for the six lowest modes of the
plane strain model, which according to Figure E10.8.1(e) and Equation (29) of Example
10.8.1 were

ξd = 0 02 for the two lowest x1−x2 plane bending modes

ξd = 0 04 for the lowest axial mode and the third x1−x2 plane bending mode

ξd = 0 06 for the fourth x1−x2 plane bending mode and the second axial mode

16

The two lowest x1−x2 plane bending modes of the 3D solid element model are modes 2
and 4, so the damping is specified as ξd = 0 02 for modes 1–4. The lowest axial mode and the
third x1−x2 plane bending mode are modes 6 and 9, respectively, of the 3D solid element
model, so the damping is specified as ξd = 0 04 for modes 5–9. The second axial mode and
the fourth x1−x2 plane bending mode are modes 13 and 12, respectively, of the 3D solid
element model, so the damping is specified as ξd = 0 06 for modes 10–13. The damping
matrix is given by (5.4.140), (5.4.142), and (5.4.146) as

Cof = μ1Kf +Mf

m−1

l= 1

2κlωl

ml
ψ
fl
ψT
fl

Mf 17

with m = 13, ξd = 0 02 for modes 1–4, ξd = 0 04 for modes 5–9, ξd = 0 06 for modes
10–13, and

μ1 =
2ξdm
ωm

, κl = ξ
d
l −ξ

d
m

ωl

ωm
18

The resulting x2 direction displacements are plotted at the quarter, half, and three-quarter
span locations at the center of the beam in the x3 direction. These dofs must be located in the q

f

vector in order to be plotted. The corresponding dofs in the constraint condensed displace-
ment vector q

f
are given using the larray ((6) and (10.5.12), (10.5.13), (10.5.15)). Recall

that l(w) provides the row number in q
f
that contains the displacement of dofw in the uncon-

densed (total system) model. Therefore, the x2 direction dofs at the 1/4, 1/2, and 3/4
locations are

on top surface x2 = L2 2

dof in q
f
= l n2 + 1 α∗ n1

4
+ 1 +

n3
2
∗n12 −1 ∗3 + 2 19

on midplane (neutral axis) x2 = 0

dof inq
f
= l n2 + 1 α∗ n1

4
+
n2
2
+ 1 +

n3
2
∗n12 −1 ∗3 + 2 20
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where α= 1 at the quarter span x1 = L1 4, α= 2 at the half span x1 =L1 2, α= 3 at the three-
quarter span x1 = 3L1 4, and l( ) is the larray value of ( ). Figure E11.6.1(f) shows the x2
displacement on the top x2 = L2 2 and neutral x2 = 0 surfaces, at the quarter, mid, and
three-quarter span locations for the 8-node solid element model with extra shape functions
and with mesh parameters n1 = 12, n2 = 6, and n3 = 6.

The displacements are seen to be nearly identical to the plane strain and beam model
predictions in Figures E10.8.1(g) and E10.8.1(h).

11.7 3D SOLID ELEMENT SUMMARY

Powerful commercial automated meshing codes and solvers now make 3D solid finite
elements the element of preference for the modeling of many structures and machines
for vibration response prediction. The use of solid elements removes the kinematic deforma-
tion assumptions inherent in more approximate elements such as beams, plates, and so on
as summarized in Table 11.1.1. This reveals coupled modes involving breathing, torsion,
extension, and so on as illustrated in Figures E11.6.1(d) and E11.6.1(e). The use of extra
shape functions as illustrated in this chapter and Chapter 10 accelerates convergence, in par-
ticular when bending deformation is significant. This benefit is achieved while maintaining
the simpler meshing task of linear elements, as compared with quadratic elements. Failures
frequently initiate on the surface of a component where stresses peak and defects and dam-
age may occur. The text provides a detailed derivation for surface stress evaluation and for
determining stresses at Gauss integration points which may then be extrapolated for obtain-
ing surface stresses. A detailed example is provided comparing results of the 3D hexahedral
element with a plane strain example presented in Chapter 10.

Some key topics covered include 3D solid element related:

(a) Stiffness and mass matrices, including the extra shape function stiffness matrix

(b) Element force vectors for interior and surface applied loads

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

L1/4m
m

0 0.005 0.01 0.015 0.02 0.025 0.03
–0.5

0

0.5

L1/2

m
m

0 0.005 0.01 0.015 0.02 0.025 0.03
–0.5

0

0.5

3*L1/4

Seconds 

m
m

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

L1/4m
m

0 0.005 0.01 0.015 0.02 0.025 0.03
–0.5

0

0.5

L1/2

m
m

0 0.005 0.01 0.015 0.02 0.025 0.03
–0.5

0

0.5

3*L1/4

Seconds

m
m

(i) (ii)

Figure E11.6.1(f) x2 Displacements on the (i) top surface x2 =L2 2 and (ii) mid surface (x2 = 0) locations
at the x1 locations indicated
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(c) Assembly procedure for system matrices

(d) Interior and surface stress calculation

(e) Determination of mode shapes, natural frequencies, and forced transient response

11.8 CHAPTER 11 EXERCISES

11.8.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website:
www.wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed
book, yielding a significant cost savings for the college student, and is updated.

11.8.2 Exercise Goals

The goal of the Exercises in Chapter 11 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) Developing a skill for meshing a 3D solid element model

(b) Determining natural frequencies of 3D solid element models and visualizing accompa-
nying mode shapes

(c) Evaluating benefit of utilizing extra shape functions to accelerate convergence of
predicted natural frequencies versus mesh refinement

11.8.3 Sample Exercises: 11.2 and 11.3

The component in Exercise 11.2 is a semicircular arch that is cantilevered on its left end.
The component in Exercise 11.3 is a one-eighth hollow sphere with its bottom edge
fixed to ground. Suggestions for node/element patterns are provided. The student must
calculate the natural frequencies and mode shapes. The models in both exercises are com-
prised of 8-node, 3D solid elements. Solutions may be obtained by modifying a given
MATLAB code.
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Chapter 12

Active Vibration Control

12.1 INTRODUCTION

Common goals of vibration control include reduction of dynamic stress (fatigue) or dis-
placement (interference/wear), machining imperfections, optical alignment errors, fastener
looseness, human discomfort, and so on. Passive vibration control seeks to achieve these
goals via structural modification and installation of devices such as absorber masses, spring,
and dampers to reduce the system sensitivity to external disturbances and to self-excitation
forces, that is, instability (Section 5.6). Limitations of passive control devices include the
following:

(a) The force–motion relationships are generally simple in form, that is,

F = kx, F = cx 12 1 1

Passive device forces are generally determined solely by the motions at the points of
attachment of the passive force device. Often, for example, in the case of gyroscopic
spinning systems, a more effective control requires force distributions that are deter-
mined by combinations of motions at various locations on the body.

(b) It may be impractical for the passive control device to adapt to various operating con-
ditions such as rotational speeds, pressures, temperatures, amplitudes of disturbances,
and so on.

(c) Active vibration control (AVC) devices may be programmed to adapt to variations in the
plant (structure, vehicle, or machine) that is vibrating, for example, a vehicle that experi-
ences a large mass change between loaded and unloaded states.

(d) Passive force devices that typically utilize oil or elastomers may have limited temper-
ature ranges that would preclude operation in extremely cold or hot environments.

AVC devices can replicate the behavior of a passive device as described by (12.1.1) and
also produce forces with a more general dependence on motion variables. AVC devices may
also adapt to changing operating condition variables and function well even in extreme tem-
perature and pressure environments, including vacuum conditions. Figure 12.1.1 illustrates
the major components of an AVC system. The plant (structure, machine, etc.) is subjected to
dynamic external forces that cause vibrations. These vibrations are measured with motion
sensors such as accelerometers, noncontact displacement sensors, and other transducers.
The vibration signals are treated as deviations, or errors, relative to the desired target posi-
tions, which are typically zero. The errors are routed through a control law, having the phys-
ical realization as a digital or analog controller. The controller’s input and output signals are
typically low voltage, current, and power and thus unable to deliver the required power to
operate force/moment actuation devices. Consequently, they are routed into a servo power
amplifier (SPA) that outputs power sufficient to operate actuation devices. The control
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forces that are produced exert forces that are of appropriate amplitude, phase, and frequency
to counter the effect of the external “natural” loads. The net effect is reduced vibration
and sound.

The “core”AVC approach in Figure 12.1.1 may be nested within a supervisory or hier-
archical control architecture as shown in Figure 12.1.2. The higher-level control updates
control parameters such as feedback gains in response to operating condition changes.
The higher-order control may utilize a neural network to provide real-time parameter iden-
tification which in turn is used to update control gains or a fuzzy logic expert system which
utilizes preprogrammed rules to determine how control parameters must change as operating
conditions change (Lei and Palazzolo, 2000).

Although AVC has an obvious advantage in versatility over passive means, trade-offs
occur in complexity, cost, and reliability. Widespread implementation has been impeded by
these trade-offs; however, the rapid pace of technology advancements will enhance accept-
ance of this new technology as illustrated by the following examples.

A research team at the Center for Electromechanics at the University of Texas (Buckner
et al., 2001) were successful in reducing vehicle body accelerations from over 8g’s to under
0.3g’s on an off-road vehicle by developing an AVC suspension system. Electromechanical
actuators are attached in parallel with soft springs between the wheel (unsprung) and body

Figure 12.1.1 Feedback control loop diagram for “core” AVC implementation

Figure 12.1.2 Hierarchical (adaptive) implementation of AVC
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(sprung) masses. Sensors measure body acceleration and wheel–body relative displace-
ments and velocities which are sampled at 1000 times/s and routed to a digital controller.
The control law develops commands to simultaneously cancel nonlinear forces in the pas-
sive suspension and to produce forces on the body which are proportional to its absolute
velocity and to its relative displacement, with respect to the wheel. This produces a desired
suspension stiffness and “skyhook” damping between the body and inertial space. A neural
network-based supervisory controller updated the core controller parameters (Figure 12.1.2)
in response to terrain changes.

Dohner et al. (2002) successfully developed an AVC system to increase the chatter-free
depth of cut of a milling machine by one order of magnitude. Chatter is a violent vibration
that results from the tool bits reaction to the cutting pattern it encounters from previous cuts.
This limits the depth of cut and slows down completion of a milling task. The R&D team
mounted the rotating spindle on an electrorestrictive actuator (EA) that can dynamically
move (vibrate) its centerline in response to commands of a controller. The EA can expand
or contract in response to an applied voltage across it. The sensed motion quantities in
Figure 12.1.1 were strain gages that are cemented onto the root of the spinning cutting tool.
Strain signals are transmitted from the spindle to the nonrotating frame via telemetry. Mini-
mizing the dynamic, time-varying strain was the objective for the AVC system.

Researchers at Texas A&M University and NASA Glenn also used feedback-based
AVC on a spinning shaft to avoid or dampen resonances, suppress instabilities
(Section 5.6), and attenuate transient vibrations due to sudden imbalance (ref. Example
6.4.1) in Palazzolo et al. (1989, 1991) and Manchala et al. (1997). The ball bearings that
support the shaft were retained in housings supported by soft springs to allow lateral motion
but prevent rotation of the outer race. A piezoelectric stack actuator acted in parallel with the
soft antirotating spring to support the bearing house and impart AVC forces to it. The stacks
had a 400 N dynamic load capacity and 0.08 mm stroke for a 100 V input. These actuators
only push so a pair of out-of-phase actuators acts on diametrically opposite sides of the hous-
ing in both the horizontal and vertical directions. The sensors utilized were noncontacting
eddy-current relative displacement probes that have a gain of 8.0 V/mm and a bandwidth of
10 kHz. The analog and digital controller components implemented various types of filter-
ing and proportional-integral-derivative (PID) control, and the digital components were uti-
lized to implement feedforward cancellation of rotor imbalance response. Feedforward
command voltages were determined by minimizing residual synchronous vibrations in
Manchala et al. (1997). Actuator force limitations were accounted for by using a constrained
quadratic programming approach to determine the control voltages. The feedforward control
represents another type of supervisory control (Figure 12.1.2) in the sense that the control
law was automatically adapted to the amplitude and phase angles of the system vibrations.

The International Space Station (ISS) provides an ideal platform for protein crystal
growth, semiconductor fabrication, and experimentation in combustion and fluid mechanics
due to the extremely low-gravitation environment. This environment can be degraded
through by disturbances which occur in three frequency ranges:

(a) Gravity gradients and atmospheric drag (10−5–10−3 Hz)

(b) Crew motion and low-frequency components of thruster firings (10−3–1 Hz)

(c) Machinery (pumps, compressors, electric motors, fans) impact and high-frequency
components of thruster firings (1–1000 Hz)

These sources may produce accelerations three orders of magnitude larger than allow-
able levels for microgravity experiments (ME) and manufacturing. Thus, isolation of these
experiments on soft mounts is essential (ref. Figure 7.3.3 and Example 7.3.1). There are no
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known passive soft mounts with the required extremely low stiffness, so researchers at
NASAMarshall andMcDonnell Douglas Aerospace developed an active suspension system
(Edberg et al., 1996). This yielded a 30-fold level of isolation in test conducted on the US
Space Shuttle. The ME is free to float in space except for its umbilical cord which carries
power and sensor signals. The AVC system imparts isolation forces to the ME via an elec-
tromagnetic noncontacting Lorentz force actuator over a ± 1cm “rattle space.” Feedback
sensors consist of accelerometers for ME acceleration attenuation and laser-based optical
sensors for relative position control. The accelerometers have a submicro-g noise floor,
which determines the bound on the isolation system performance since motions that produce
a smaller signal than the noise floor cannot be distinguished from noise. The power required
for this AVC application is 100W, and the controller hardware was a digital signal processor
(DSP) for the position control and radiation-hardened analog components for the acceler-
ation control.

A second space application of the AVC is the strut support structure for a Hubble-class,
102 diameter telescope structure, reported in Henderson (1996). Piezoelectric stack actua-
tors were implemented along with collocated force sensors to provide a high static stiffness
plus good isolation of higher-frequency disturbances. The actuators expand or contract
25 × 10−6m when ± 100V is applied across them. A digital controller was utilized at a sam-
pling rate of 20 kHz to implement both single input–single output (SISO) and multiple
input–multiple output (MIMO) core control laws (Figure 12.1.1). The AVC system pro-
vided a means to shift the fundamental mode of the telescope on the struts from 29 Hz down
to 5 Hz. This softening effect provided a 20 dB decrease in telescope motions.

The Dowa Kasai Phoenix Tower is a 50-story building in Osaka, Japan, that employs
AVC to reduce building sway due to strong wind gusts. A motion reduction of 50% for wind
velocities up to 15 m/s resulted from the AVC as reported in Culshaw (1996). The actuators
in this application consist of two 6 ton (5000 kg) masses that are translated via a motor/ball
screw arrangement producing inertial forces that are designed to counter building sway.
Two- to threefold reductions in the feedback acceleration sensor signals typically result
by employing AVC.

Piezo actuators are available in a stack form and also in a thin “patch” or “wafer” form
that is cemented onto thin-walled structural panels. Electrically induced deflections of the
piezo are adjusted to cancel the forced vibration of the panels due to natural disturbances. An
interesting application is the piezoelectric patch-equipped vertical tails on the 1/6 scale F-18
airplane wind tunnel model described in Moses (1997). The objective of this effort at NASA
Langley was to demonstrate reduction of the dynamic stresses at the root of the vertical tail
due to buffeting by the wake from the wing/fuselage leading-edge extensions. These stresses
could lead to high-cycle fatigue cracking at the root of the tail. Mock tails made of aluminum
with modes (14 Hz bending and 62 Hz torsion) similar to actual tails were equipped with
piezoelectric patch actuators at the root and elsewhere. The wind tunnel air speed was main-
tained at 40 m/s, while the angle of attack was varied from 20 to 34 . A frequency domain
control law (Figure 12.1.1) was implemented utilizing a digital controller with a bandwidth
of about 75 Hz. Accelerometer signals were time delayed to produce control signals propor-
tional to velocity at the first mode frequency, that is, to produce damping of the bending
mode. Results showed a 60% reduction of root strains utilizing AVC.

One of the earlier descriptions (Palazzolo et al., 1991) discussed the successful appli-
cation of AVC to attenuate rotating shaft vibrations utilizing diametrically opposed, pie-
zoelectric stack pairs to dynamically push the shaft center toward a target position and
(zero) velocity. Magnetic bearings (MB) provide a similar role for combined shaft support
plus AVC. In contrast to piezo stacks which can only push the shaft through its bearings,
the EM actuators can only pull the shaft. Hence, the EMs are also arranged in diametrically
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opposite pairs. An important application of MB is for suspending high-speed energy stor-
age flywheels that will be used for electrochemical battery replacements on the ISS and on
satellites. The R&D efforts in Palazzolo et al. (2001a) and Lei and Palazzolo (2008)
describe the steps that led to stable and low-vibration operation of a 12 kg–350 watt-hr
flywheel at 60 000 rpm. The position of the spinning shaft’s centerline was sensed with
a noncontacting eddy-current-based sensor. Its signal was routed to a digital controller
sampling at a rate of 8000/s. A MIMO control law (Palazzolo et al., 2001) especially
designed to provide damping and cancel gyro torque perturbations was implemented to
control nutation and precession modes that vary dramatically with speed. The high-
frequency nutation mode required a controller bandwidth out to nearly 1500 Hz. The con-
troller outputs are routed to power amplifiers which supply current to the electromagnetic
actuator control coils. The control coils drive flux through the stationary and rotating parts
of the actuator which are separated by a 0.5 mm air gap. The flux produces a control force
which pulls the shaft toward its target position and zero vibration velocity.

The objective of this chapter is to introduce the reader to some important aspects of
AVC that are directly related to the areas of vibration discussed in the prior chapters. These
include active stiffness and damping, vibratory stability and forced harmonic response,
vibration measurement, actuator control forces, and mode shape. In addition, this chapter
illustrates the beneficial effects of AVC for providing stiffness and damping in an easily
adjustable, yet bounded manner. The technical literature abounds with papers that have
incorporated advanced control topics into AVC. The reader is referred to the vast literature
on AVC to pursue a more in-depth knowledge including such areas as LQR, H-infinity, and
sliding mode (Minihan et al., 2003) control approaches, MIMO control systems, magnetos-
trictive and shape memory alloy actuators, fuzzy logic (Lei et al., 2000) and neural network-
based adaptive control schemes, genetic algorithm-based controller design (Zhong and
Palazzolo, 2014), and so on.

12.2 AVC SYSTEM MODELING

Nearly all AVC systems share major common traits; therefore, much can be learned about
AVC by treating a single type of AVC with significant detail. This is the present approach
which utilizes a flexible structure with an electromagnetic actuator for AVC. Piezoelectric
actuator-based AVC is also presented utilizing much of the methodology of the electromag-
netic actuator example. The following electromagnetic actuator-based example includes key
areas that appear in nearly all AVC applications:

(a) AVC systems are generally composed of the following major parts:

• The plant, a flexible body such as a machine, structure, and so on with vibration
caused by external disturbances.

• Disturbances (forces, imposed support motions) that cause the plant to vibrate.

• Sensors that measure the instantaneous vibrations.

• Controllers that receive the sensor outputs and process these to form an effective con-
trol signal to reduce the vibration level.

• Power amplifiers or SPAs that increase the power of the control signals and convert
them into an appropriate form (electric current or voltage, pressure, and so on) for the
actuation (forcing) devices to operate. “Servo” indicates the device has an internal
feedback loop that senses its output and regulates it to obtain the targeted output
(typically current or voltage to the actuator).
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• Actuators (magnetic, magnetostrictive, piezoelectric, hydraulic, pneumatic, and
others) then apply the vibration control (suppression) forces to the plant.

The above components are generally arranged in series (cascaded) in the order
listed above.

(b) The input/output characteristics of all isolated components in a feedback loop vary with
the frequency of their inputs. This is indicated by the significant variation of the output
amplitude and phase angle of a feedback component as its input frequency changes
while holding the input amplitude and phase angle constant. The output amplitude rolls
off (reduces) and the output phase lag angle increases as the input frequency increases.
This property is characterized by “bandwidth” which is generally defined as the fre-
quency at which the output amplitude is reduced to −3dB= 1 2 = 0 707 of its static
(frequency = 0) value. The increase in phase lag is a source of instability in AVC sys-
tems and is generally compensated for by including lead or derivative stages in the con-
troller. Wider bandwidth translates to higher cost for most feedback components.

(c) Modeling the frequency response characteristics of the feedback components requires
the use of additional control states which are coupled with the structural states (positions
and velocities) to form the complete coupled system model. The natural frequency,
modal damping, mode shape, stability, transient response, and steady-state harmonic
response characteristics of the AVC system depend on both the structural states and
the control states. Ignoring control states by assuming “infinite bandwidth” behavior
of the feedback components can provide useful first approximations of the system
response but may also fail to accurately predict stability or vibration levels in the as-built
system. The frequency response characteristics of an isolated feedback component are
typically measured. In most cases, this is the only practical approach for modeling the
component which may consists of 100s of circuit elements as seen in Figure 12.2.1(a)
for an SPA. The corresponding output/input frequency response amplitude and phase
angle response of this SPA are shown in Figure 12.2.1(b). These responses can be
adjusted on commercial units by potentiometer or circuit component adjustments.

(d) The major feedback components—sensors, controllers, power amplifiers, and
actuators—all have output saturation limits related to power limitations or protection
measures installed to prevent damage to the parts of the components. The input/output
behavior of these components may also become highly nonlinear beyond their specified
“linear” operating ranges, yielding ineffective feedback control. AVC system designs
that neglect limitations of the feedback components in linear range and frequency
responsemay lead to overoptimistic simulation results and ultimate failure of the as-built
system. The most common approach to incorporating saturation limits is to include a
limiter in the component model that sets the quantity, such as voltage, current, flux
density, etc., to its saturation value if the predicted value exceeds its saturation
limits. The saturation limits are typically specified by themanufacturer ormay be readily
measured.

(e) Accurate dynamic response modeling of all components in the feedback loop and the
plant is imperative to develop an accurate system dynamic response model. Actuators
are custom designed for many AVC applications, so they must receive special attention
in the component modeling process. AVC actuators may share with passive components
or bear the full static as well as dynamic loads. Comprehensive AVC design must there-
fore consider static load bearing performance of the actuators along with their perfor-
mance in mitigating vibration. In addition, installation of an AVC actuator typically
results in addition of passive forces as well as active forces. The passive forces may
result from the structural stiffness of the actuator, that is, piezoelectric patch or stack
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stiffness, or in the case of a magnetic actuator the field due to the bias flux to which the
control (active) flux is added or subtracted. Detailed models of electromagnetic and pie-
zoelectric actuators are presented in this chapter.

(f) Vibratory instability (Section 5.6) of an AVC system results mainly from two phenom-
ena: phase lag and noncollocated sensor and actuator pairs. Phase lag results from time
delay in the feedback loop which causes a delay between when the target error is sensed
and when the corresponding corrective force is applied by the actuator. The error
changes during the delay which can result in the force amplifying the motion instead
of suppressing the motion. The measured target error may be measured at a location dis-
placed away from where the corrective force is applied in some applications. This may
result from the size of the actuator or from a maintenance or operating temperature-
related consideration. This is referred to as a noncollocated sensor/actuator pair. The
motions at the sensor and actuator may be out of phase in certain vibration modes,
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Figure 12.2.1 (a) Servo power amplifier SPA with surface mount electronics populated printed circuit board.
(b) Output/input frequency response amplitude and phase angle response for the servo power amplifier in
Figure 12.2.1(a)
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so the corrective force is applied with the wrong phase, inducing vibratory instabilities in
these modes.

Sections 12.3–12.7 utilize the example of an imbalanced rotor supported on MB to
illustrate AVCmodeling, simulation, and response. The development begins with an infinite
bandwidth model and progresses to a model that includes the finite bandwidths of the feed-
back path components. The latter model may result in closed-loop instability which is shown
to be alleviated by using lead compensation. The development presented is for a “Jeffcott”
rigid rotor model which provides a simplified representation of an actual rotor-bearing sys-
tem. Tilt motion of the rotor is neglected in this pure translation model. The Jeffcott rotor
was previously discussed in Section 7.3 (ref. Figures 7.3.12, 7.3.13, and 7.3.14). The tech-
niques presented in Sections 12.4. to 12.7 may be readily extended to more complex multi-
degree-of-freedom vibrating systems.

12.3 AVC ACTUATOR MODELING

Successful modeling of AVC systems typically requires an accurate model of the actuator
and an understanding of its saturation limits. The following discussion illustrates this by
providing an analysis of an electromagnetic actuator for MB. Figure 12.3.1 shows a photo
and diagram of a simplified MB. The two opposing C-cores in a four-pole arrangement pro-
vide a bidirectional force in the vertical “y” direction. The C-core pair in the horizontal “x”
direction is not shown for clarity. A coil is removed in the photo to display the lami-
nated pole.

The magnetic actuator model parameters include:

LJ = flux path length in journal,

LS = flux path length in stator,

Lg = air gap with journal centered,

μ0 = permeability in free space,

μJ = relative permeability of journal material,

μS = relative permeability of stator material,

Ag = flux cross-sectional area in air gap per pole ,

AJ = flux cross-sectional area in journal,

AS = flux cross-sectional area in stator,

IB = bias current in pole pair q,

iCq = control current in pole pair q,

q = displacement of the shaft away from its centered

position in the q direction,

N = number of wire turns in coil

12 3 1

The magnetic actuator in Figure 12.3.1 operates in accordance with Ampere’s law,
Gauss’s law, Faraday’s law, and constitutive relations (Ohm’s law, B–H curves, and so
on). Ampere’s law may be stated as

H d l =NI 12 3 2
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where H is the magnetic field intensity, d l is a differential of path length along the closed
magnetic circuit (dashed lines in Figure 12.3.1), andN is the number of turns of the enclosed

current I. One-dimensional (1D) magnetic circuit analysis makes the assumption that H is
parallel to the path and is constant in a given material. Application of (12.3.2) to the upper
pole flux path in Figure 12.3.1 yields

HSLS +HJLJ + 2Hg Lg−q =NI 12 3 3

The magnetic intensity and flux density for a linear material are related by the consti-
tutive law

B= μH 12 3 4

where μ is the magnetic permeability. Leakage is ignored so that magnetic flux is conserved
(Gauss’s law for magnetism) around the loop, yielding

ϕ=BSAS =BJAJ =BgAg 12 3 5

where A represents the cross-sectional area of the flux path. The flux is obtained by substi-
tuting (12.3.4) and (12.3.5) into (12.3.3) to obtain

RS +RJ + 2Rg ϕ =NI 12 3 6

where the reluctances are defined by

RS =
LS

μSAS
, RJ =

LJ
μJAJ

, Rg =
Lg−q

μ0Ag
12 3 7

From (12.3.5) and (12.3.6), the air gap flux density becomes

Bg = dB
NI

Ag RS +RJ + 2Rg
12 3 8

Figure 12.3.1 Opposing C-core pair in a heteropolar magnetic bearing actuator
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where the flux derate factor dB accounts for leakage and fringing effects and is typically
taken as about 0.8–0.9. The Maxwell stress tensor formula determines the force exerted
by the magnetic field across the air gap at a pole and has the one dimensional form

F =
B2
gAg

2μ0
12 3 9

From this formula, the maximum possible magnetic pressure is limited to

Pmax =
Fmax

A
=
B2
max

2μ0
, Fmax =

B2
maxA

2μ0
12 3 10

where B has units of Tesla (1 T = 1 N/Am), A has the unit of square meter, and
μ0 = 4π × 10

−7N A2. The best magnetic conducting medium (iron–cobalt alloy) has a sat-
uration flux density of about 2.3 T, which from (12.3.10) yields a maximum magnetic pres-
sure of 2.1MPa (294 lb/in.2). This is an example of “saturation,” where the output of a
feedback component in an AVC system is limited.

The total force on the journal (length of shaft in the bearing) in Figure 12.3.1 is obtained
by applying (12.3.8) and (12.3.9) to the top and bottom pole pairs as

Fq =
d2BN

2

μ0Ag

IB + iCq
2

RS +RJ + 2
Lg −q
μ0Ag

2 −
IB− iCq

2

RS +RJ + 2
Lg + q
μ0Ag

2 12 3 11

Linearization (Section 2.4) of (12.3.11) about the centered position q = 0 and iCq = 0
yields

Fq = k
q
i iCq−k

q
Pq 12 3 12

where

kqi =
d2BN

2

μ0Ag

4IB

RS +RJ + 2
Lg

μ0Ag

2 and kqP = −
dBN

μ0Ag

2 8I2B

RS +RJ + 2
Lg

μ0Ag

3 12 3 13

which are the current and position stiffness coefficients for a single opposing C-core pair
aligned along direction q. The position stiffness force kqP q is a passive term and is unaf-
fected by the feedback control. This must be included in the system model similar with any
other passive force acting in the system. A passive force termwill be present with all types of
AVC actuators including piezoelectric, magnetostrictive, hydraulic, and so on.

At first glance, equations (12.3.11) and (12.3.12) would appear to imply that the C-core
pair actuator system could produce an infinitely large force if the electrical current was
increased to an infinitely large value. The flaw in this view lies in the limit of the linearized
approximation (12.3.4) of the C-core material’s B–H curve. In reality, the B curve departs
from linearity, bends, and gradually flattens asH is continually increased. All materials have
a saturation limit on flux density Bwhich is represented by Bmax in (12.3.10). The max force
per pole is then given in (12.3.10) as Fmax = B2

maxA 2μ0 . Thus, if the flux density is near
its maximum value, the force can be increased only by increasing the pole area.

A more extensive treatment of magnetic actuators including permanent magnet bias
may be found in Palazzolo et al. (2012).
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EXAMPLE 12.3.1 Force and Stiffness of a C-Core Pair

Statement: This numerical example provides familiarization with magnetic units and
typical values for reluctances, flux density, magnetic pressure, and force and stiffness of
the opposing C-core pair actuator.

Parameter Values

LJ = flux path length in journal = 0 1m,

LS = flux path length in stator = 0 2m,

Lg = air gap with journal centered = 0 0005m,

μ0 = permeability in free space = 4 × 10−7N A2,

μJ = relative permeability of journal material = 5000,

μS = relative permeability of stator material = 5000,

Ag = flux cross-sectional area in air gap per pole = 0 0025m2,

AJ = flux cross-sectional area in journal = 0 0025m2,

AS = flux cross-sectional area in stator = 0 0025m2,

dB = flux derate factor = 1

IB = bias current in pole pair q= 10A,

iCq = control current in pole pair q= 0A,

N = number of wire turns in coil = 100

1

Calculated Values
Reluctances:

RS =
LS

μSAS
= 12732, RJ =

LJ
μJAJ

= 6366, Rg =
Lg
μ0Ag

= 160000 2

Note Rg >>RJ and Rg >>RS; therefore, RJ and RS are typically neglected.
Flux:

ϕ =
NI

RS +RJ + 2Rg
= 0 0029Wb m2 3

Flux Densities:

Bg =
ϕ

Ag
= 1 18T, BS =

ϕ

AS
= 1 18T, BJ =

ϕ

AJ
= 1 18T 4

Air gap magnetic pressure neglecting leakage and fringing =
B2
g

2μ0
= 0 56MPa 75psi

5

Air gap magnetic force per pole neglecting leakage and fringing =
B2
gAg

2μ0
= 1398N 308lb

6
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Current Stiffness:

ki = 1184N A 246lb A 7

reference (12.3.13)
Position Stiffness:

kP = −21 1 × 106N m −118050lb in 8

reference (12.3.13)

12.4 SYSTEM MODEL WITH AN INFINITE BANDWIDTH
FEEDBACK APPROXIMATION

Ideally, the feedback path would operate free from electrical noise, and the output of any
component in the feedback path would be invariant with respect to the frequency of its input.
This is never the case with real physical systems as shown in Figure 12.2.1. However, the
study of the ideal case can provide some initial design guidance. Figure 12.4.1 illustrates a
Jeffcott rotor supported on MB. The MB support the weight and other static loads on the
rotor and provide the AVC actuator function in Figure 12.1.1.

The damper ce represents damping due to vibration of the rotor in the surrounding gas or
liquid medium. Manufacturing limitations result in the mass center G of the rotor being off-
set from its geometric (spin) centerO by the “mass eccentricity” distance e. The offset causes
unbalanced forces (7.3.74) and (7.3.75) that shake the rotor at its spinning frequency ω.
Forces produced by the MB actuators are represented by the symbol FM. The symbols
f xdist and f ydist represent nonimbalance forces that may also act on the rotor. Applying
Newton’s law to this system yields

m
d2 x+ ecos ωt

dt2
= 2FMX t −cex, m

d2 y+ esin ωt

dt2
= 2FMY t −cey−mg 12 4 1

Both x and y sensors are shown and provide instantaneous location of the shaft center
for comparison to its desired target values, xT, yT, as depicted in Figure 12.4.1. An actual

Figure 12.4.1 Front and end views of the Jeffcott rotor model (JRM) with magnetic bearings (MB)
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noncontacting eddy-current position sensor is shown in Figure 12.4.2. The threaded
portion is fastened into the stationary housing of the machine. The brown ceramic tip
contains a coil of fine wire that emits a high-frequency (1 MHz) magnetic field in the
air gap between the tip and the spinning shaft’s surface. The field and resulting inductance
change with air gap. The output of the sensor is a voltage that is approximately propor-
tional to the air gap distance.

For a perfectly round rotating shaft, the position sensors will produce 0 volts when the
shaft center O is at the bearing center and in general produce voltages proportional to the
distance of the shaft center from the center of the bearingOB (origin of the x–y coordinates):

VSX =GSx, VSY =GSy 12 4 2

The constant GS is the sensor sensitivity, which is typically about 8 V/mm. The
relations in (12.4.2) do not vary with frequency, so they represent an infinite bandwidth
idealization. In general due to the rotation of the shaft, surface imperfections such as
out-of-roundness and nonuniform magnetic, optical, and electrical properties produce a
repeatable sensor output pattern called “runout,” even if the shaft and bearing centers are
coincident (x= y = 0). The shaft runout at a sensor location is depicted in Figure 12.4.3
and is typically very difficult to measure. This phenomenon is also a controls challenge
in compensating for the repeatable runout patterns in hard disk drives. Shaft runout typically
lies within the range 0.01–0.1 mm.

The total sensor output voltages become

VSX =GSx +V
RO
X t , VSY =GSy+V

RO
Y t 12 4 3

The sensor voltages corresponding to the target location OT = xT,yT in the absence of
runout are

VSXT =GSxT, VSYT =GSyT 12 4 4

Figure 12.4.2 Noncontacting sensor to measure position of
the spinning shaft
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The feedback control is assumed to be uncoupled between the x and y directions. The y
direction feedback control is illustrated in Figure 12.4.4. The shaft is seen to be loaded in the
−y direction by the weight W.

The sensor outputs a voltage VSY due to the shaft displacement y combined with the
runout. The target voltage VSYT is subtracted from the sensor voltage to form the “error”
voltage:

VeY =VSY −VSYT 12 4 5

The error voltage is acted on by the compensation stages in the controller producing a
controller output voltage VCOY. This signal is inverted and routed to a servo power amplifier.
The SPA is itself a feedback control system that varies its switched output voltage’s duty
cycle in order to produce a control current iCY that is proportional to the SPA input voltage
VCOY. This is an important point since the internal feedback on current may allow the
modeler to ignore the electrical subsystem model that converts voltage to current, that is,
coil inductance and resistance and so on. The magnetic force is a nonlinear function of both

Figure 12.4.3 Highly magnified runout pattern and target
position

Figure 12.4.4 Feedback path for the y direction magnetic suspension control
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iCY and y but is linearized as shown in Example 2.4.2. The control current, current stiffness,
displacement y, and position stiffness produce the magnetic force FMY.

Mathematical descriptions of the major feedback components
Sensors (ref. Figure 12.4.2):
From (12.4.3),

VSX =GSx +V
RO
X t , VSY =GSy+V

RO
Y t 12 4 6

which neglects the gradual roll-off of the sensor output voltage as frequency increases.
Controller:
For the sake of illustration, assume that the controller is an ideal proportional-derivative

(PD) type. Therefore,

VCOX =GPXex +GDXex, VCOY =GPYey +GDYey 12 4 7

where the control errors are defined by

ex =VSX −VSXT, ey =VSY −VSYT 12 4 8

and

GPX ,GDX ,GPY , andGDY 12 4 9

are the tunable proportional and derivative gains. This model has an infinite bandwidth
unlike an actual controller which would “roll off” the derivative gain at high frequencies
to reduce noise amplification. The model also lacks an output voltage limiter which is pres-
ent on all analog and digital controllers.

Servo Power Amplifiers (ref. Figure 12.2.1):
The SPA current output equations are

iCX = −GPAVCOX , iCY = −GPAVCOY 12 4 10

where GPA is the DC gain of the SPA. This is an idealized model lacking roll-off of the
output at very high frequencies and current and voltage output limiters. The operational
characteristic in (12.4.10) is enabled by the internal servo control of SPA output current.

Magnetic Force Actuators (ref. Figure 12.3.1):
The control forces are nonlinear functions of current and gap as explained in Example

2.4.2 and (12.3.13). The linearized force models were shown in these to be

FMX = −kPx+ kiiCX , FMY = −kPy + kiiCY 12 4 11

where kP and ki are the position and current stiffness, respectively. In actuality, actuators
have maximum output force limits due to flux saturation of the actuator steel and have finite
bandwidth due to eddy currents.
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12.4.1 Closed-Loop Feedback Controlled System Model

Substituting (12.4.6)–(12.4.10) into (12.4.11) yields

FMX = −kPx+ kiiCX = −kPx + ki −GPAVCOX

= −kPx−kiGPA GPXex +GDXex = −kPx−kiGPAGPXex−kiGPAGDXex

= −kPx−kiGPAGPX VSX −VSXT −kiGPAGDX VSX −VSXT

= −kPx−kiGPAGPXVSX + kiGPAGPXVSXT−kiGPAGDXVSX

= −kPx−kiGPAGPX GSx+VRO
X t + kiGPAGPXVSXT−kiGPAGDX GSx+V

RO
X t

= −kPx−kiGPAGPXGSx−kiGPAGPXVRO
X t + kiGPAGPXVSXT−kiGPAGDXGSx

−kiGPAGDXV
RO
X t 12 4 12

Note from (12.4.4) that VSXT =GSxT allows (12.4.12) to be written as

FMX = −kPx−kactXx−cactXx−kiGPAGPXV
RO
X t + kactXxT−kiGPAGDXV

RO
X t 12 4 13

where

kactX = active stiffness in the xdirection = kiGPAGPXGS

cactX = active damping in the xdirection = kiGPAGDXGS

12 4 14

Likewise, in the y direction,

FMY = −kPy−kactYy−cactYy−kiGPAGPYV
RO
Y t + kactYyT−kiGPAGDYV

RO
Y t 12 4 15

where

kactY = active stiffness in the y direction = kiGPAGPYGS

cactY = active damping in the y direction = kiGPAGDYGS

12 4 16

Thus, it is seen that the closed-loop MB force has a negative (destabilizing) position
stiffness component, positive active stiffness and damping components, a constant compo-
nent due to the target, and a shaking component due to runout. This last component acts as an
undesirable disturbance on the rotor. Substitution of these magnetic force expressions into
Newton’s law (Equation (12.4.1)) yields the following:

m
d2 x + ecos ωt

dt2
= 2FMX t −cex

= 2 −kPx−kactXx−cactXx−kiGPAGPXVRO
X t

+ kactXxT−kiGPAGDXV
RO
X t −cex

mx + ce + 2cactX x + 2 kP + kactX x

= 2 −kiGPAGPXVRO
X t −kiGPAGDXV

RO
X t +meω2 cos ωt + 2kactXxT

12 4 17
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m
d2 y + esin ωt

dt2
= 2FMY t −cey−mg

= 2 −kPy−kactYy−cactYy−kiGPAGPYVRO
Y t

+ kactYyT−kiGPAGDYV
RO
Y t −cey−mg

my + ce + 2cactY y + 2 kP + kactY y

= 2 −kiGPAGPYVRO
Y t −kiGPAGDYV

RO
Y t +meω2 sin ωt + 2kactYyT−mg

12 4 18

Consider the special case with no runout and no imbalance. The above equations
simplify as:

mx + ce + 2cactX x+ 2 kP + kactX x = 2kactXxT 12 4 19

my + ce + 2cactY y + 2 kP + kactY y = 2kactYyT−mg 12 4 20

Equations (12.4.16), (12.4.19), and (12.4.20) clearly show how the MB’s active stiff-
ness and damping may be adjusted by changing the proportional GPY and derivative GDY

feedback gains in the controller. The ability to control the stiffness and damping allows them
to be adapted to varying operating or environmental conditions and is a clear advantage of
active over passive vibration control.

Equations (12.4.19) and (12.4.20) simplify to the following forms at steady
state (x = x= 0):

2 kP + kactX xSS = 2kactXxT 12 4 21

2 kP + kactY ySS = 2kactYyT−mg 12 4 22

Therefore, at steady state,

xSS =
kactX

kP + kactX
xT, ySS =

kactYyT− mg 2
kP + kactY

12 4 23

Note that the shaft’s x position coordinate will not attain its target position with PD
control and static loading, unless the target position is at the center of the bearing
xSS = xT = 0. The steady-state error in the x direction shaft position is

eSSX = xSS−xT =
kactX

kP + kactX
xT−xT =

kP
kP + kactX

xT 12 4 24

which is zero only if xT = 0 or kP = 0 or kactX ∞ . Thus, high proportional gain GPX in
Equation (12.4.14) will reduce the positioning error since kactX = kiGPAGPXGS. Alterna-
tively, lag or integral compensation could be used for this purpose. The corresponding
control current is obtained from as

iCXSS = −GPAVCOX _ SS = −GPAGPXex

= −GPAGPXGS xSS−xT = −GPAGPXGS
kP

kP + kactX
xT

12 4 25

The required control current is zero if the x direction target is set at the center of the
bearing xT = 0. This is an unstable equilibrium point though because the position stiffness
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is negative. Increasing the proportional gain to reduce the steady-state positioning error
yields the following asymptotic limit as GPX ∞ :

iCXSS GPX ∞ = −GPAGPXGS
kP

kP + kactX
xT = −GPAGPXGS

kP
kP + kiGPAGPXGS

xT

= −
kP
ki
xT

12 4 26

which is nonzero and increases with xT. The steady-state y position ySS of the shaft is
(12.4.23) which will not attain its target position yT even if yT = 0, or if kP = 0, but will reach
it if kactY ∞ . An interesting and useful case is if the target position is selected in a manner
that results in the position stiffness effect cancelling the weight effect, that is,

2kPyT = −mg yT =
−mg

2kP
12 4 27

Substitution of (12.4.27) into (12.4.23) yields

ySS =
kactYyT−

mg

2
kP + kactY

=
kactY

−mg

2kP
−
mg

2
kP + kactY

=
−mg

2
∗
kactY
kP

+ 1

kP + kactY
=
−mg

2kP
= yT 12 4 28

Thus, it is seen that setting the y target at the position defined in (12.4.27) yields a zero
steady-state position error in the y direction. The benefit of this is that the required y direction
control current iCY becomes zero at steady state. The position stiffness is seen to support the
weight with the aid of very little control current. Thus, if permanent magnets are employed
to supply the bias flux density (which provides the position stiffness kP), the weight, or any
other constant side load for that matter, can be reacted solely by the permanent magnets, with
only a very small cost for electric power.

The vibration stability (Section 5.6) of this system is determined by considering the free
vibration for either (12.4.19) or (12.4.20):

mx + ce + 2cactX x + 2 kP + kactX x = 0 12 4 29

Substitution of the assumed form for the solution of x

x t = xeλt 12 4 30

yields

mλ2 + ce + 2cactX λ + 2 kP + kactX x= 0 12 4 31

The term x cannot be zero or the vibration would be zero for all time t (by 12.4.30);
therefore, the bracketed term must be zero, yielding the “characteristic equation”

mλ2 + ce + 2cactX λ+ 2 kP + kactX = 0 12 4 32

The roots of this equation may be real or complex numbers, having the general form

λ1 = a− iωd and λ2 = a + iωd 12 4 33

Equation (12.4.30) may be written as

x t = xe a ± iωd t = xeat cos ωdt ± isin ωdt 12 4 34
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Clearly, the response x(t) will diverge to ∞ if a > 0 or converge to 0 if a < 0. Thus, the
sign of the real part of the eigenvalue determines stability of the system. The roots of
(12.4.32) may be written as

λ1 = −
ceff
2m

−
ceff
2m

2
−
keff
m

, λ2 = −
ceff
2m

+
ceff
2m

2
−
keff
m

12 4 35

where

keff = 2 kP + kactX and ceff = ce + 2cactX 12 4 36

Note that λ1 will be a negative real number and λ2 will be a positive real number if keff is
negative, in which case the system will be unstable. Thus, the total stiffness in (12.4.19) and
(12.4.20) must be positive for stable levitation; therefore,

keff = 2 kP + kactX > 0 12 4 37

where by (12.4.14)

kactX = active stiffness in the x direction = kiGPAGPXGS 12 4 38

Therefore, the proportional feedback gains GPX and GPY must satisfy

GPX >
−kP

kiGPAGS
and GPY >

−kP
kiGPAGS

12 4 39

for stable control. Next, consider the case when keff is positive. Dividing (12.4.19) and
(12.4.20) by the mass m yields

x + 2ξωnx+ω
2
nx =

2kactX ∗xT
m

12 4 40

y + 2ξωny +ω
2
ny=

2kactX ∗yT
m

−g 12 4 41

where

ωn =
2 kP + kactX

m
=

2 kP + kiGPAGPXGS

m
12 4 42

is the closed-loop system’s undamped natural frequency. Likewise, the closed-loop sys-
tem’s damping ratio and amplification factor ((7.3.52), (7.3.53)) are

ξ=
ce + 2cactX
2mωn

AF=
1
2ξ

=
mωn

ce + 2cactX
=

m∗2 kP + kactX
ce + 2cactX

=
m∗2 kP + kiGPAGPXGS

ce + 2kiGPAGDXGS
12 4 43

Thus, within the assumptions of the infinite bandwidth model, the natural frequency
and amplification factors can be varied by changing the controller’s proportional GPX

and derivative GDX feedback gains. Conversely, the desired natural frequency and amplifi-
cation factor can be prescribed and the proportional and derivative feedback gains solved for
by using (12.4.42) and (12.4.43), that is,
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GP =
mω2

n−2kP
2kiGPAGS

, GD =
2ξmωn−ce
2kiGPAGS

12 4 44

Equation (12.4.44) provides initial values for these gains, which may be further
improved by tuning or by using a more refined model. The eigenvalues of (12.4.40) and
(12.4.41) are obtained from the characteristic equation

λ2 + 2ξωnλ +ω
2
n = 0 12 4 45

yielding

λ1 = −ξωn− iωd and λ2 = −ξωn + iωd 12 4 46

where

ωd =ωn 1−ξ2 = damped natural frequency 12 4 47

Figure 12.4.5 provides a geometric interpretation of the locations of these poles in the
complex plane. Clearly, increased damping ratio moves the poles farther into the left-hand
plane yielding increased stability.

12.5 SYSTEM MODEL WITH FINITE BANDWIDTH FEEDBACK

The output displacement amplitude of a simple spring–mass–damper oscillator excited by a
constant amplitude input force will vary with input frequency and ultimately decrease as the
frequency of the input becomes very large as shown in Figure 7.3.5(a). Figure 7.3.5(b)
shows that the phase lag of the output behind the input also varies with frequency. In like
manner, all physical systems exhibit frequency response characteristics. This includes elec-
trical, electromagnetic, piezoelectric, pneumatic, hydraulic, and other systems and for the
present purpose sensors, controllers, power amplifiers, and actuators. These systems must
be represented by dynamic models, with corresponding dynamic states, unless their required
operating frequency range is well below their respective bandwidths. All components in the
feedback path (Figure 12.4.4) generally possess low-pass filters (LPF) to suppress high-
frequency noise amplification and prevent control signal aliasing in digital controllers by
reducing output amplitudes at high frequencies. A similar filtering behavior also occurs
in the electromagnetic actuator due to the presence of eddy currents that strengthen with
increased frequency and cancels the actuator’s magnetic flux. The filtering action, whether
by intent or by nature, is detrimental due to the increased phase lag that it introduces along

Figure 12.4.5 Closed-loop system poles
when keff > 0
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with the amplitude roll-off. The phase lag results in a loss of phase margin and correspond-
ing loss in stability.

For the sake of illustration, a second-order LPF is employed in the following analysis to
explain the effect of filtering and roll-off on the stability and forced response of the Jeffcott
rotor. Figure 12.5.1 shows the closed-loop feedback controlled Jeffcott rotor with MB
model. The filter block is shown in series with the power amplifier although it could be
located anywhere in the closed-loop shown in Figure 12.4.4 and have the same effect on
the system, since the model does not include saturation effects. A lead compensation stage
will be included in subsequent analysis but is treated as a simple gain = 1 at this point in the
development. Figure 12.5.2 depicts the isolated filter stage.

The amplitude and phase angle frequency response of the filter are shown in
Figure 12.5.3. Resonance is avoided by using large ξ. The transfer function and correspond-
ing differential equation for the filter are given by

Tf s =
Vout s

Vin s
=

ω2
f

s2 + 2ξfωfs +ω2
f

12 5 1

and

V out + 2ξfωfVout +ω
2
fVout =ω

2
fVin 12 5 2

where ωf is the corner frequency and ξf is the damping ratio of the filter, and r =ω ωf .

Figure 12.5.1 Closed-loop feedback controlled Jeffcott rotor with magnetic bearing model

Figure 12.5.2 Low-pass filter block
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The amplitude and phase angle of the output are obtained from (7.3.28) and (7.3.29) as

Vout

Vin
=

1

1−r2 2 + 2ξr 2
12 5 3

∠Vout−∠Vin = − tan−1 2ξr
1−r2

12 5 4

Equation (12.5.2) may also be obtained from the transfer function Tf(s) in (12.5.1) with
the “control canonical form” approach. This approach is generally applicable for converting
an experimentally or analytically derived transfer function into a set of first-order state dif-
ferential equations for the purpose of coupling with the governing dynamic differential
equations of the flexible structure model. This provides the basis for forming the total feed-
back controlled system model. Given the general transfer function,

T s =
out s
in s

=
b1sn−1 + b2sn−2 + + bn
sn + a1sn−1 + + an

12 5 5

The equivalent state space differential equation in control canonical form is

W =AW +B∗ in t 12 5 6

and the output is obtained from

out t =CW t 12 5 7

where W = w1 w2 wn
T,

A=

−a1 −a2 −an−1 −an

1 0 0 0

0 0 0 0

0 0 1 0

, B=

1

0

0

0

, C= b1 b2 bn 12 5 8
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Figure 12.5.3 Amplitude and phase angle responses of a second-order filter for 0.1 < ξ < 1.0
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TheMATLAB utility TF2SS will provide the A, B, and Cmatrices in (12.5.8) given the
numerator and denominator coefficients in the transfer function (12.5.5):

TF2SS transfer function to state space conversion:

[A,B,C,D] = TF2SS(NUM,DEN) calculates the state space representation

The ideal (infinite bandwidth) power amplifier transfer function was given by
(12.4.10) as

iCY
VCOY

= −GPA 12 5 9

An improved model with a second-order filter is derived from (12.5.2) and (12.5.9) as

d2iCY
dt2

+ 2ξfωf
d iCY
dt

+ω2
f iCY = −GPAω

2
fVCOY 12 5 10

For this analysis, the other components in the MB feedback loop for the Jeffcott rotor
will retain their ideal infinite bandwidth models.

Sensor:
VSY =GSy +V

RO
Y t , VSYT =GSyT 12 5 11

Controller:

VCOY =GPYey +GDYey 12 5 12

where the error is defined as

ey =VSY −VSYT 12 5 13

Actuator:
FMY = −kPy + kiiCY 12 5 14

System Equation of Motion:

m
d2y

dt2
= 2FMY t −cey−mg+meω

2 sin ωt 12 5 15

Consider the case of zero runout. Equations (12.5.10)–(12.5.15) combine to yield

d2iCY
dt2

+ 2ξfωf
d iCY
dt

+ω2
f iCY = −GPAω

2
fVCOY = −GPAω

2
f GPYey +GDYey

= −GPAω2
fGPYey−GPAω2

fGDYey

= −GPAω2
fGPY VSY −VSYT −GPAω2

fGDY VSY −VSYT

= −GPAω2
fGPYGS y−yT −GPAω2

fGDYGSy

12 5 16

and

m
d2y

dt2
= 2FMY t −cey−mg +meω

2 sin ωt

= 2 −kPy+ kiiCY −cey−mg+meω2 sin ωt

12 5 17
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Consider the zero-imbalance steady-state case d2iCY dt2 = diCY dt = y = y = 0 .
Equations (12.5.16) and (12.5.17) become

iCYSS = −GPAGPYGS ySS−yT , 0 = 2 −kPySS + kiiCYSS −mg 12 5 18

Solving these equations for iCYSS and ySS yields

ySS =
kactYyT− mg 2

kP + kactY
, iCYSS =

kactY ∗ kPyT + mg 2
ki kP + kactX

12 5 19

where from (12.4.16)

kactY = active stiffness in the ydirection = kiGPAGPYGS

cactY = active damping in the ydirection = kiGPAGDYGS
12 5 20

Comparison of (12.5.19) with (12.4.23) shows that the filter does not affect the steady-
state position error. The same result holds also for the steady-state current. Consider the
homogenous forms of (12.5.16) and (12.5.17) by setting

−mg =me= yT = 0 12 5 21

yielding

d2iCY
dt2

+ 2ξfωf
diCY
dt

+ω2
f iCY = −GPAω

2
fGPYGSy−GPAω

2
fGDYGSy

= −
kactY
ki

ω2
f y−

cactY
ki

ω2
f y

12 5 22

m
d2y

dt2
= 2 −kPy+ kiiCY −cey 12 5 23

The matrix–vector form of these equations is

AY +BY +C Y= 0 12 5 24

where

Y=
iCY

y
, A=

1 0

0 m
, B=

2ξfωf
cactY
ki

ω2
f

0 ce
, C =

ω2
f

kactY
ki

ω2
f

−2ki 2kP

12 5 25

Substitute the following form for the solution of Y

Y= Yeλt 12 5 26

into (12.5.24) to obtain

λ2A+ λB+C Y = 0 12 5 27

The determinant of the coefficient matrix in (12.5.27) must be zero if vibrations are to

exist, that is, Y 0. Therefore,
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det
λ2 + 2ξfωfλ+ω2

f
cactY
ki

ω2
f λ+

kactY
ki

ω2
f

−2ki mλ2 + ceλ+ 2kP

= 0 12 5 28

Expanding this determinant yields

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0 12 5 29

where

a1 = 2ξfωf +
ce
m
,

a2 =
2ξfωfce + 2kP

m
+ω2

f ,

a3 =
4ξfωfkP +ω2

f ce + 2cactYω
2
f

m
,

a4 =
2ω2

f kP + kactY
m

12 5 30

EXAMPLE 12.5.1 Closed-Loop Stability of Magnetic Bearing Supported
Jeffcott Rotor

Statement: This example demonstrates the effect of the low-pass filter corner frequency ωf

on closed-loop system stability. While lowering the low-pass filter corner frequency always
increases noise suppression, the closed-loop stability may be diminished in the process as
shown by this example.

Parameter Values
A Jeffcott rotor model with magnetic bearings and a finite bandwidth power amplifier has
the following values:

m = 10 kg; ξf = 0.5, low-pass filter corner frequency ωf = variable,

kactY = 10 000 000 N/m; cactY = 2000 N s/m; ce = 100 N s/m,

kP = −1 000 000 N/m.

Results: The corresponding undamped natural frequency, damping ratio, and damped nat-
ural frequency of the ideal (infinite bandwidth) system are:

Equation (12.4.42)

ωny =
2 kP + kactY

m
fny =

ωny

2π
= 213Hz 1

Equation (12.4.43)

ξy =
ce + 2cactY
2mωny

= 0 15 2

Equation (12.4.47)

ωdy =ωny 1−ξ2y fdy =
ωdy

2π
= 211Hz 3
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Figure E12.5.1(a) shows a plot of the closed-loop system damping ratios versus the
filter corner frequency ff =ωf 2π in Hz for the Jeffcott rotor model with magnetic bearings
including a finite bandwidth power amplifier (with second-order filter). Note that the lower
damping ratio is negative (system is unstable) for ff less than approximately 835 Hz. This
damping ratio approaches the ideal (infinite bandwidth) system value 0.15 as ff ∞ . The
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negative damping ratio clearly shows that although a filter is beneficial in reducing noise in
the feedback loop, it may cause the system to become unstable if the filter’s corner frequency
is set too low. This is an engineering example of too much of a good thing!

Figure E12.5.1(b) shows a plot of the damped natural frequencies versus filter corner
frequency ff =ωf 2π for the Jeffcott rotor model with magnetic bearings including a finite
bandwidth power amplifier. The lower damped natural frequency approaches the ideal (infi-
nite bandwidth) system value 211 Hz as ff ∞ . Note that a second vibratory mode occurs
due to the filter dynamics.

12.6 SYSTEM MODEL WITH FINITE BANDWIDTH FEEDBACK
AND LEAD COMPENSATION

Lead compensation is a standard approach for improving the stability of the closed-loop
feedback controlled system with far less penalty of excessive noise amplification at high
frequencies, as may result when using a high-gain differentiator stage (derivative feedback).
Lead compensators are typically cascaded in series with other control stages and may be
easily realized by analog or digital means. Figure 12.5.1 shows the lead compensation stage
located just before the power amplifier.

12.6.1 Transfer Function Approach

The transfer functions across the power amplifier (with filter) are obtained from (12.5.10) as

iCY s

VLS
COY s

= TPA s =
−GPAω2

f

s2 + 2ξfωfs+ω2
f

12 6 1

The transfer functions across the lead stage are

VLS
COY s

VCOY s
=Tlead s =

p

z

s + z
s + p

12 6 2

where p and z are the pole and zero of the lead stage, respectively. The zero and infinite
frequency gains of the lead stage are seen to be 1 and p/z, respectively. The combined trans-
fer function from the PD control output to the control current is the product of the transfer
functions in (12.6.1) and (12.6.2):

iCY s

VCOY s
=TPA s ∗Tlead s =

−GPAω2
f

s2 + 2ξfωfs+ω2
f

∗ p
z
∗ s + z
s + p

12 6 3

The y equilibrium equation is still (12.5.23)

m
d2y

dt2
= 2 −kPy+ kiiCY −cey 12 6 4

with transfer function form

y s

iCY s
= TM s =

2ki
ms2 + ces + 2kP

12 6 5
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Combining this with (12.6.3) yields

y s

VCOY s
= TPA s ∗Tlead s ∗TM s =

−GPAω2
f

s2 + 2ξfωfs +ω2
f

∗ p
z
∗ s + z
s + p

∗ 2ki
ms2 + ces + 2kP

12 6 6

Rewrite (12.5.11)–(12.5.13) with the target voltage and runout omitted since they do
not affect stability to obtain

VCOY s =GPYVSY +GDY sVSY = GPY +GDY s GSy s 12 6 7

Substitution of (12.6.7) into (12.6.6) yields

1−
−GPAω2

f

s2 + 2ξfωfs+ω2
f

∗ p
z
∗ s+ z
s+ p

∗ 2ki
ms2 + ces+ 2kP

∗ GPY +GDY s GS y s = 0 12 6 8

Motion is impossible if y(s) is zero; hence, Equation (12.6.8) implies

1−
−GPAω2

f

s2 + 2ξfωfs +ω2
f

∗ p
z
∗ s+ z
s+ p

∗ 2ki
ms2 + ces+ 2kP

∗ GPY +GDY s GS = 0 12 6 9

Setting the numerator of (12.6.9) to zero yields

s2+2ξfωfs+ω
2
f ∗ s+ p ∗ ms2+ces+2kP +GPAω

2
f ∗

p

z
∗ s + z ∗2ki∗ GPY +GDY s GS = 0

12 6 10

Recall from (12.4.14) for the ideal infinite bandwidth system that

kactY = active stiffness in the ydirection = kiGPAGPYGS

cactY = active damping in the ydirection = kiGPAGDYGS
12 6 11

Thus, (12.6.10) becomes

s2 + 2ξfωfs+ω
2
f ∗ s+ p ∗ ms2 + ces + 2kP +ω2

f ∗
p

z
∗ s+ z ∗2 kactY + cactYs = 0

12 6 12

s5 + a1s
4 + a2s

3 + a3s
2 + a4s

1 + a5 = 0 12 6 13

where

a1 =
ce
m

+ 2ξfωf + p,

a2 =ω2
f + 2ξfωfp + 2ξfωf + p ∗ ce

m
+ 2

kP
m
,

a3 =
2ω2

f pcactY z+ω2
f pm + ω2

f + 2ξfωfp ce + 2 2ξfωf + p kP
m

,

a4 =
ω2
f pce + 2 ω2

f + 2ξfωfp kP + 2ω2
f pcactY + 2ω

2
f pkactY z

m

a5 =
2ω2

f p kP + kactY
m

12 6 14
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Note that the gains ki,GPA,GPY, and GS do not appear in this expression, since they are
collected in a group as either kactY or cactY. The closed-loop system poles, frequencies, and
damping ratios are obtained by solving for the roots of (12.6.13).

EXAMPLE 12.6.1 Closed-Loop Stability of Magnetic Bearing Supported Jeffcott Rotor
Including Lead Compensation

Statement: This example demonstrates the beneficial effect of lead compensation for
improving closed-loop system vibration stability.

Parameter Values: A Jeffcott rotor model with magnetic bearings, a finite bandwidth
power amplifier, and a lead compensation stage has the following values:

m = 10 kg, ξf = 0.5, ωf = 2π∗700 rad/s, kactY = 10 000 000 N/m,

cactY = 2000 N s/m, ce = 100 N s/m, kP = −1000000N m

These values are identical to those used for Example 12.5.1. The filter corner frequency
(700 Hz) is selected to produce an unstable closed-loop system response for the case of no
lead compensation as shown in Figure E12.5.1(a). One may ask, “Why not just raise the
filter frequency to stabilize the system, instead of using a lead compensation stage?” The
filter in Example 12.5.1 may not be adjustable since it may be embedded in a power ampli-
fier or other device containing 100s of miniaturized soldered components that are surface
mounted on a printed circuit board (Figure 12.2.1). Alternatively, the “filter” may not be
a filter in the electrical sense but instead represents the experimentally measured frequency
response (transfer function) of an actuator with an output that naturally “rolls off” due to
eddy-current effects, capacitance effects, and so on.

Results: The infinite bandwidth damping ratio and damped natural frequency were given in
(2) and (3) of Example 12.5.1 as

ξy =
ce + 2cactY
2mωny

= 0 15 1

ωdy =ωny 1−ξ2y fdy =
ωdy

2π
= 211Hz 2

The eigenvalues, damping ratios, and damped natural frequencies of this system with
the power amplifier filter (ξf = 0.5; ωf = 2π700) before adding a lead compensation stage are
shown in Table E12.6.1(a), where the damping ratios and damped natural frequencies are
defined by

Table E12.6.1(a) Eigenvalues, natural frequencies, and damping ratios for the system without lead
compensation

Eigenvalue no. Eigenvalue Damped natural frequency (Hz) Damping ratio (dim)

1 52 + i1402 223 −0.037
2 52 − i1402 223 −0.037
3 −2260 + i3550 565 0.54
4 −2260 − i3550 565 0.54
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ξ = −
Real λ

λ
, ωdy = Imaginary λ 3

Clearly, this system is unstable (negative damping ratio) with the filter corner frequency
set at ωf = 700 Hz which is consistent with Figure E12.5.1(a). A properly designed phase
lead compensation stage will help stabilize this system. A phase lead compensation stage
is typically designed using the following approach. The transfer function of the lead com-
pensation stage is given by (12.6.2)

TFlead s =
p

z
∗ s+ z
s+ p

4

Define the following terms:

Infinite frequency gain =GL∞ =
p

z
5

Desired maximum phase lead in radians of the lead stage =ϕpeak 6

Desired frequency inHz where maximumϕpeak should occur = fpeak 7

Then the pole p and zero z in (4) may be determined from

GL∞ =
1+ sin ϕpeak

1−sin ϕpeak
, z =

2π

GL∞
fpeak, p = z∗GL∞ 8

A design objective is to determine the values of ϕpeak and fpeak that yield the maximum
value of the minimum damping ratio, considered over all five eigenvalues of the closed-loop
system. A search over ϕpeak and fpeak was conducted. Each set of these parameters produces
five eigenvalues that are the roots of (12.6.13). A fine grid (100 × 100) was searched over the
ranges

0 <ϕpeak < 60 and 200 < fpeak < 700Hz 9

The results for maximizing the minimum value of the closed-loop eigenvalue damping
ratio were

ϕpeak = 30 6 , fpeak = 320Hz, max of ξmin = 0 49, p = 3525, z = 1147 10

The eigenvalues, damped natural frequencies, and damping ratios for this case are
shown in Table E12.6.1(b). The addition of the optimal phase lead compensation stage
is seen to increase the damping much above the ideal (infinite bandwidth) model (see
Eq. (1) ξy = 0 15).

Table E12.6.1(b) Eigenvalues, natural frequencies, and damping ratios for the system with the
optimized lead compensator (p= 3525, z= 1147)

Eigenvalue no. Eigenvalue Damped natural frequency (Hz) Damping ratio (dim)

1 −2720 0 1.0
2 −1499 ± i2550 406 0.51
3 −1108 ± i1982 315.5 0.49
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Figure E12.6.1(a) shows the variation of the minimum value of closed-loop eigenvalue
damping ratio versus ϕpeak.

12.6.2 State Space Approach

A transfer function approach was utilized to obtain the characteristic polynomial in
(12.6.13), which was solved to obtain the closed-loop system eigenvalues, damped natural
frequencies, and damping ratios. This approach is effective in this case but is not feasible for
large-order vibrating structure models. In that case, it is best to utilize the state space
approach as outlined for the same example below. The transfer function across the lead stage
and power amplifier was given in (12.6.3) as

iCY s

VCOY s
= TPA s ∗Tlead s =

−GPAω2
f p z ∗ s + z

s3 + p + 2ξfωf s2 + 2ξfωfp+ω2
f s +ω2

f p
12 6 15

The general control canonical form transformation for any transfer function was pro-
vided in (12.5.5)–(12.5.8). Applying the transformation to (12.6.15) yields

in =VCOY , out = iCY =CW, W =AW +B∗ in t 12 6 16

C= 0 −GPAω2
f

p

z
−GPAω2

f p , W = w1 w2 w3
T 12 6 17

A=

− p + 2ξfωf − 2ξfωfp +ω2
f −ω2

f p

1 0 0

0 1 0

, B=

1

0

0

12 6 18
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Figure E12.6.1(a) Plot of minimum damping ratio ξmin versus ϕpeak, for fpeak (200, 250, 300, …,
650) Hz

Chapter 12 Active Vibration Control 897

www.konkur.in



where from (12.5.11) to (12.5.13)

VCOY =GPYey +GDYey =GPY VSY −VSYT +GDY VSY −VSYT

=GPY GSy+VRO
Y t −GSyT +GDY GSy +V

RO
Y t −GSyT

12 6 19

Thus, the complete set of differential equations for the combined lead stage and power
amplifier become

w1

w2

w3

=

− p+ 2ξfωf − 2ξfωfp+ω2
f −ω2

f p

1 0 0

0 1 0

w1

w2

w3

+

GPY GSy +VRO
Y t −GSyT +GDY GSy+V

RO
Y t −GSyT

0

0

12 6 20

Newton’s law for the rotor mass is still (12.5.17)

m
d2y

dt2
= 2 −kPy + kiiCY −cey−mg +meω

2 sin ωt 12 6 21

Note from (12.6.16) to (12.6.17)

out = iCY =CW= 0 −GPAω2
f

p

z
−GPAω2

f p

w1

w2

w3

= −GPAω
2
f p∗

w2

z
+w3

12 6 22

Substitute (12.6.22) into (12.6.21) to obtain

m
d2y

dt2
= 2 −kPy + kiiCY −cey−mg+meω

2 sin ωt

= −2kPy−2kiGPAω2
f p

w2

z
+w3 −cey−mg +meω2 sin ωt

12 6 23

The state (first-order) form of this differential equation is

y= vY 12 6 24

vY = −
2kPy
m

−
2kiGPAω2

f p w2 z +w3

m
−
cevY
m

−g + eω2 sin ωt 12 6 25

Similar equations can be derived for an arbitrary number of degree-of-freedom struc-
tural system and coupled with feedback-related state equations like (12.6.16), but of arbi-
trary order. This is the advantage of the state space approach over the previously discussed
transfer function approach. Equations (12.6.20), (12.6.24), and (12.6.25) can be combined
into a single set of closed-loop system equations as
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Xsys =AsysXsys +F
F
sys +F

RO
sys +F

T
sys, Xsys = w1 w2 w3 y vY

T 12 6 26

where the system matrix is

Asys =

− p + 2ξfωf − 2ξfωfp +ω2
f −ω2

f p GPYGS GDYGS

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0
−2kiGPAω2

f p z

m

−2kiGPAω2
f p

m

−2∗kP
m

−ce
m

12 6 27

and the excitation vectors are

FF
sys = system force vector = 0 0 0 0 −g + eω2 sin ωt

T
12 6 28

FRO
sys = system runout vector = GPYVRO

Y t +GDYV
RO
Y t 0 0 0 0

T
12 6 29

FT
sys = system target vector = −GPYGSyT−GDYGSyT 0 0 0 0 T 12 6 30

The homogenous form of (12.6.26)

Xsys =AsysXsys 12 6 31

may be solved for the eigenvalues of the closed-loop system similar with (5.4.183):

λψ
sys

=Asysψ sys
12 6 32

The results are identical to those obtained from the transfer function approach (12.6.13).
The steady-state harmonic response of the closed-loop system may also be obtained

using the methods of Chapter 7, that is, (7.5.1)–(7.5.5). For the sake of illustration, consider
the case when gravity, runout, and target position terms are omitted (set to zero). Then,
(12.6.26) becomes

Xsys =AsysXsys +F
F
sys t 12 6 33

where FF
sys t is the sinusoidal function of t:

FF
sys = system force vector = 0 0 0 0 eω2 sin ωt

T
12 6 34

Similar to (7.5.3), equation FF
sys t may be written in complex variable form as

FF
sys = Real F

F

sys∗eiωt 12 6 35

where

F
F

sys = 0 0 0 0 − ieω2 T
12 6 36
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Thus, (12.6.33) becomes

Xsys =AsysXsys +F
F

sys∗eiωt 12 6 37

Assume a solution to (12.6.37) of the form

Xsys =Xsyse
iωt 12 6 38

Therefore,

iωXsys =AsysXsys +F
F

sys,

Asys− iωI Xsys = −F
F

sys,

Xsys = − Asys− iωI
−1
F
F

sys

12 6 39

EXAMPLE 12.6.2 Steady-State Harmonic Imbalance Response of the Closed-Loop Feedback
Controlled Magnetic Bearing Supported Jeffcott Rotor, with Lead
Compensator

Statement: This example demonstrates the effect of low-pass filter corner frequency on the
steady-state vibration amplitude of a Jeffcott rotor supported by magnetic bearings.

Parameter Values: Consider the optimal phase lead case examined in Example 12.6.1
where the Jeffcott rotor on magnetic bearings has a finite bandwidth power amplifier, a
phase lead compensation stage, and the following values:

m = 10 kg, ξf = 0.5, ωf = 2π∗700 rad/s, ce = 100 N s/m, kP = −1000000N m,

GS = 8000, GPA = 1.0, ki = 125, GPY = 10, GDY = 0.002

kactY = 10 000 000 N/m, cactY = 2000 N s/m, e = 0.0001 m

ϕpeak = 30 6 , fpeak = 320Hz, max of ξmin = 0 49, p= 3525, z= 1147 1

where from (12.4.14)

kact = active stiffness = kiGPAGPGS, cact = active damping = kiGPAGDGS 2

Results: From (12.6.26), the amplitude and phase angle of y are given by

y = Xsys 4
and ϕy =∠ Xsys 4

3

where Xsys is obtained by solving (12.6.39). Figure E12.6.2(a) shows the amplitude and

phase angle of the y vibration versus rotational speed frequency for five values of filter cor-
ner frequency. The amplification factor increases as the filter corner frequency is decreased
which is consistent with the loss of stability with decreased corner frequency shown in
Figure E12.5.1(a).
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12.7 SENSOR/ACTUATOR NONCOLLOCATION EFFECT ON
VIBRATION STABILITY

The preceding sections demonstrated that time delay (phase lag) in the feedback loop can
contribute to vibratory instability. A second source of closed-loop control instability is non-
collocation of sensor/actuator pairs. Locating the sensor away from the point of application
of the actuator force will result in somemodes having in-phase components at the sensor and
actuator locations and other modes having out-of-phase components. The modes with
out-of-phase components may be driven unstable by the feedback control depending on
the control gains and the tare passive damping in the modes. This is demonstrated by again
considering the Jeffcott rotor supported by MB. Figure 12.7.1 depicts a Jeffcott-type rotor
model with MB represented by the linearized forces (12.3.12):

FM = −kPy + kii 12 7 1

The sensor and actuator are positioned at different locations, a so-called noncollocated
arrangement.

Similar with the assumed modes approach in Section 4.6, the total motion of the rotor
may be viewed as the superposition of vibration modes ϕi(x), as expressed mathemati-
cally by

y x, t = qi t ϕi x 12 7 2

A more rigorous analysis of the rotor-bearing system would include coupling between
the modes which accounts for the effect that motion in certain modes cause in the response of

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

Y
 A

m
pl

itu
de

 (
m

m
)

 600
 700

 800

 900
1000

0 100 200 300 400 500 600 700 800 900 1000
–200

–100

0

100

200

Spin speed (Hz)

Y
 P

ha
se

 a
ng

le
 (

de
gr

ee
s)

Figure E12.6.2(a) Amplitude and phase angle of y versus spin speed for five values of the filter corner
frequency ff =ωf 2π in Hz
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the other modes. This coupling diminishes for the higher-order modes. The objective of the
present analysis is to illustrate the qualitative effects of positioning the sensors and actuators
at different positions, an assembly constraint that is typically dictated by available space in
the machine and its operating temperature limits. The spatial separation of the sensor and its
actuator pair may destabilize some higher-order modes while having little effect on
lower-order modes. This may result when utilizing derivative gain to increase the active
damping ((12.4.14) and (12.4.16)) of a lower mode, resulting in the destabilization of a
higher mode.

To illustrate these points, consider the single symmetric vibration mode shown in
Equation (12.7.3) and Figure 12.7.2:

y x, t = q t ϕ x = q t cos
2πx
L

12 7 3

The kinetic energy stored in the rotor has contributions from the shaft and the
central disk:

T =
m

2
∗ dy

dt

2

x = 0

+
L 2

−L 2

dy

dt

2dm

2
12 7 4

Figure 12.7.1 Jeffcott-type rotor model with noncollocated magnetic bearings

Figure 12.7.2 Vibration mode for illustrating noncollocation effect on closed-loop stability
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Substitution of (12.7.3) yields

T =
m

2
q2 +

ρA

2

L 2

−L 2
qϕ x 2dx=

1
2

m+ ρA
L

2
q2 12 7 5

The strain energy has contributions from the position stiffness and the strain energy in
the shaft (9.2.10, 9.2.14):

U = 2
kP
2

y2 x = dB +
EI

2

L 2

−L 2

d2y

dx2

2

dx 12 7 6

Substitution of (12.7.3) into (12.7.6) yields

U = kPq2 t ϕ2 x= dB +
EI

2
∗ 16π

4

L4
∗q2 t ∗

L 2

−L 2
cos

2πx
L

2

dx

=
q2 t

2
2kPϕ

2 x = dB +EI ∗ 16π
4

L3

12 7 7

The Rayleigh dissipation function (4.5.78) for the disk damping is

ℑ =
ce
2
∗ dy

dt

2

x= 0

=
ce
2
∗q2ϕ2 x = 0 12 7 8

Note that the effective damping, ceϕ
2 x = 0 , becomes zero if the mode has a node at the

location of ce. The MB forces due to the control currents (FM_ i = kii) are treated as external
forces and create the following effective control force based on assumed modes theory
(4.6.86 and Example 4.6.4, Eq. 44):

Feff,M _ i = 2kiiϕ x = dB 12 7 9

Note that the effective control force will become zero if the mode has a node at the
location of the MB. The feedback control current is obtained by assuming an ideal (infinite
bandwidth) feedback control loop (12.4.2, 12.4.7, 12.4.10) and utilizing (12.7.3)

i = −GPAVCOY = −GPA GPVY +GDVY

= −GPA GPGSy x= dS +GDGSy x = dS

= −GPAGS GPϕ x = dS q t +GDϕ x= dS q t

12 7 10

Combining (12.7.9) and (12.7.10) yields

Feff,M _ i = −2ki ∗ϕ x = dB ∗GPAGS ∗ GPϕ x= dS q t +GDϕ x = dS q t 12 7 11

The equilibrium-Lagrange equation (4.6.52) for this system is

d

dt

∂T

∂q
+
∂U

∂q
+
∂ℑ
∂q

=Feff,M _ i 12 7 12
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Substitution of (12.7.5), (12.7.7), (12.7.8), and (12.7.11) into (12.7.12) yields

m + ρA
L

2
q + q t 2kP ∗ϕ2 x= dB +EI ∗ 16π

4

L3
+ ceqϕ

2 0

=Feff,M _ i = −2ki ∗ϕ dB ∗GPAGS ∗ GP ∗ϕ dS ∗q t +GD ∗ϕ dS ∗q t

12 7 13

or

meffq + ceffq + keffq = 0 12 7 14

where

meff = m + ρA
L

2

ceff = ce ∗ϕ2 x = 0 + 2kiGPAGSGD∗ϕ x = dB ∗ϕ x = dS

keff = 2kP ∗ϕ2 x = dB +EI ∗ 16π
4

L3
+ 2kiGPAGSGP ∗ϕ x = dB ∗ϕ x = dS

12 7 15

Divide (12.7.14) by meff and define

ωn =
keff
meff

= undamped natural frequency,

ξ=
ceff

2meffωn
= damping ratio,

ωd =ωn 1−ξ2 = damped natural frequency

12 7 16

to obtain

q + 2ξeffωnq +ω
2
nq = 0 12 7 17

which has the solution

q t = e−ξωnt Acos ωdt +Bsin ωdt

y x, t = q t ϕ x = e−ξωnt Acos ωdt +Bsin ωdt ϕ x
12 7 18

Equation (12.7.16) shows that the damping ratio ξ in (12.7.18) is in direct proportion to
and has the same sign as ceff. Damping ratio is inversely proportional to amplification factor:

Af =
1
2ξ

=
meffωn

ceff
12 7 19

Thus, decreasing the effective dampingwill increase the amplification factorAf, which is
anundesirable result according toAPI 617 (Section 1.4). Equations (12.7.15)–(12.7.18) show
that mode ϕ will become unstable (negative damping ceff and damping ratio ξ) if

ϕ x = dB andϕ x = dS have opposite signs 12 7 20

and

2kiGPAGSGD ∗ϕ x = dB ∗ϕ x= dS > ce∗ϕ2 x = 0 12 7 21

which implies
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GD >
ceϕ

2 x = 0
2kiGPAGSϕ x = dB ϕ x = dS

12 7 22

From (12.7.15), the effect of increasing the derivative gain GD will be to increase the
damping in amode ϕ(x) if bothϕ(dB) andϕ(dS) have the same sign. This is typically the case
for the lower modes that have few nodes or antinodes. However, the likelihood of the mode
shape having opposite signs at the sensor and actuator locations increases for the higher-
order modes. Thus, a high derivative gainGD may be beneficial for stabilizing a lower-order
mode, but destabilizing for a higher-order mode according with (12.7.21). This is a very
important result for the designer of an MB to consider since it reveals that there are inherent
upper bounds on the value ofGD that can be utilized at the design stage even if other bounds
related to saturation are neglected. In addition, a rigid rotor model will not indicate desta-
bilization of flexible modes due to noncollocation, since the rigid rotor model does not
include flexible modes. From (12.7.21), the tare, or passive, damping ce∗ϕ2 0 in a mode
is the only term that prevents the mode from becoming unstable if ϕ x = dB andϕ x= dS
have opposite signs. Thus, experimental measurement of higher-order modal damping
(5.4.105) provides critical information for accurate design of a control law. As was previ-
ously demonstrated, the presence of a filter in the feedback loop will diminish the positive
damping and exacerbate the destabilizing effect of the uncollocated sensor. Increasing the
external passive damping ce will allow GD and therefore the active damping (12.4.16)

cactY = active damping in the y direction = kiGPAGDYGS 12 7 23

to be increased before encountering instability.
The static (levitation) stability of the rotor may also be affected by noncollocation since

by (12.7.15) the effective modal stiffness will become negative if

keff = 2kPϕ
2 x = dB +EI

16π4

L3
+ 2kiGPAGSGPϕ x = dB ϕ x= dS < 0 12 7 24

This will occur if

ϕ x = dB andϕ x = dS have opposite signs

and

16π4
EI

L3
< 2kP ∗ϕ2 x = dB + 2kiGPAGSGPϕ x= dB ϕ x= dS 12 7 25

This establishes an upper bound on stable proportional gain, since the instability con-
dition (12.7.15) may be written as

ϕ x = dB andϕ x = dS have opposite signs

and

GP >
16π4 EIL3 + 2kP ∗ϕ2 x = dB

2kiGPAGS∗ ϕ x= dB ϕ x= dS
12 7 26

Recall from (12.4.16) that the active stiffness of the bearing for an infinite bandwidth
model is

kactY = active stiffness in the y direction = kiGPAGPYGS 12 7 27
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Therefore, by (12.7.26) and (12.7.27), the stable level of active stiffness becomes
bounded due to a noncollocated sensor/actuator pair. This is detrimental to an application
requiring ultrahigh MB stiffness such as for milling machines or lathes that need high bear-
ing stiffness to produce a high-quality surface finish onmachined parts. The sensor and actu-
ator pairs should be nearly collocated in these applications.

EXAMPLE 12.7.1 Noncollocation Effect on Proportional and Derivative Gain and Active
Stiffness and Damping Upper Bounds

Statement: The following numerical example elucidates the above analysis for determining
the maximum active stiffness and maximum active damping for a mode that has an out-of-
phase noncollocated actuator/sensor pair.

Parameter Values: The example mode shape is

ϕ x = cos
2πx
L

1

and the parameter values are

L= 0 762m, dB =
5
16

L ϕ dB = cos
2π∗5
16

= −0 383, GS = 7874V m, GPA = 1A V,

dS =
3
16

L ϕ dS = cos
2π∗3
16

= 0 383, D = 0 0254m, A= π
D2

4
= 5 07 × 10−4m2,

I = π
D4

64
= 2 043 × 10−8m4, E = 2 07 × 1011N m2, ρ = 7786kg m3, ce = 1752Ns m,

mshaft = ρAL = 3kg, m= 2mshaft = 6kg, ki = 89N A, kP = −350393N m

2

Results: By (12.7.15),

meff = m+ ρA
L

2
= 7 5 kg 3

The condition for instability (12.7.20), or the first condition in (12.7.26), is satisfied by
(2) since ϕ dS = 0 383 and ϕ dB = −0 383 have opposite signs. The maximum stable
derivative gain is obtained from (12.7.22) as

GD,max =
ceϕ

2 x = 0
2kiGPAGSϕ x = dB ϕ x = dS

= 0 0085 4

The maximum stable proportional gain is obtained from (12.7.26) as

GP =
16π4 EIL3 + 2kP∗ϕ2 x = dB

2kiGPAGS∗ ϕ x = dB ϕ x= dS
= 72 1 5

The corresponding ideal active stiffness and damping values are obtained from
(12.4.16) as

kactY = active stiffness in the y direction = kiGPAGPYGS = 5 × 10
7N m 6

cactY = active damping in the y direction = kiGPAGDYGS = 5981Ns m 7
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12.8 PIEZOELECTRIC ACTUATORS

The author and his graduate students and colleagues at NASA Glenn performed extensive
studies on the usage of piezoelectric actuator stacks for vibration control of a rotating shaft
(Palazzolo et al., 1989, 1991; Tang et al., 1995). The results of this research were
experimental demonstrations of the AVC suppression of unstable (Chapter 5), transient
(Chapter 6), and steady-state harmonic (Chapter 7) vibrations of the spinning shaft.
The piezoelectric actuator supports the ball bearings which in turn supports the rotating
shaft. The control forces are transmitted from the piezoelectric actuators through the ball
bearings to the rotating shaft and are caused by expansion and contraction of the piezo-
electric actuator material in response to applied voltages. The piezoelectric actuators
mainly act in a push mode since the stacks are brittle in tension. This is accounted for
by internal preload springs in the actuators and in some applications by installing
the actuators in opposing pairs so that one actuator produces a (+) direction force on
one side of the bearing and the other actuator provides a force in the opposing (−) direction
on the opposite side of the bearing.

Unlike the SPA shown in Figure 12.2.1(a) for magnetic bearing usage, which acts in
current control mode, the power amplifier for piezoelectric actuators acts in a voltage con-
trol mode outputting voltages proportional to the control voltages. The output voltages
range up to 150 V for low-voltage applications and 1000 V for high-voltage applications.
Expansion factors vary with piezoelectric stack vendor and model, but a typical value for a
10 cm long stack is 10−6m V with a peak expansion of 0.1 mm. The forces generated by
commercially available stacks can exceed 3000 N depending on the stiffness of the internal
preload spring and the stiffness of the surface in contact with the tip of the actuator. Thus, for
a high-performance stack of net internal stiffness of 40 N/μm and a peak expansion of
90 μm, the load capacity in compression is approximately 40 N/μm ∗ 90 μm= 3600 N.
The piezoelectric actuator stacks are composed of 100s of thin piezoelectric wafers sepa-
rated by conducting electrodes that are held at the impressed voltage to the stack. The many
wafers then expand in series, yielding the maximum expansion and force possible for the
given length of the actuator.

The electrical response of a piezo stack is dominated by its capacitance, so its bandwidth
maybecome limited by themaximumavailable current for a constant level of expansion, since
i ≈ C∗ dV dt =Cω V . Typical capacitance values range from 5 to 50 μF. Stack
resonance frequencies typically range from 5 to 10 kHz which is usually ideal for high-
frequency AVC applications.

Figure 12.8.1 depicts a thin piezo layer sandwiched by two electrodes with differential
voltage V(t). The electrodes are cemented to the top and bottom faces in this figure. The free

Figure 12.8.1 Piezoelectric cube with applied voltage V(t) and resulting strains
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unconstrained layer experiences strains in all three directions due to application of the volt-
age, as expressed by

ε33f = d33
V t

h
, ε11f = d31

V t

h
, ε22f = d32

V t

h
12 8 1

The piezoelectric material is classified according to the level of difficulty in polarizing
the material, that is, soft material is easily polarized and hard material is significantly more
difficult to polarize. Typical values of the piezoelectric charge constants (moduli) are as
follows:

Soft Piezo Material:

d33 = 250 × 10
−12m V or C N , d31 = d32 = −125 × 10−12m V

Hard Piezo Material:

d33 = 600 × 10
−12m V or C N , d31 = d32 = −250 × 10−12m V 12 8 2

By (12.8.1), the free expansion/contraction of the layer in the x3 direction is

δ3 = hε33f = d33V t 12 8 3a

12.8.1 Piezoelectric Stack Actuator

The piezoelectric stack actuator is typically arranged in a stack of np layers, each separated
by an extremely thin electrically conducting foil electrode. The total length of the stack is
H = nph, so the total expansion contraction becomes

Δ3 =Hε33f = npd33V t 12 8 3b

Figure 12.8.2 depicts the internal operation of a piezoelectric stack-type actuator
neglecting piezo material inertial effects. The latter effects are treated in Tang et al. (1995).

The stiffness kp is an internal preload spring that maintains the piezo stack in compres-
sion to prevent tensile failure. The stiffness kE is a stiffness inserted between the piezo stack
and the object being actuated for the purpose of maintaining a preload between the actuator
and the object. The stack stiffness is (4.8.17):

kS =
ApEp

H
12 8 4

Figure 12.8.2 Static model of piezoelectric stack actuator
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Equilibrium of the piezo actuator tip requires

EpAp

Lp
Δ3−w −kpw−kE w−u3 = 0 12 8 5

The MATLAB symbolic code (Section 2.2) below solves (12.8.3a)–(12.8.5) to obtain

w= α1u3 + α2V t 12 8 6

where

α1 =
kE

kE + kp + kS
, α2 =

kSd33np
kE + kp + kS

12 8 7

The force applied to the object being controlled becomes

Fp = kE w−u3 12 8 8

Equation (12.8.6) is substituted into (12.8.8) in the symbolic MATLAB code below to
obtain

Fp = −kE
kp + kS

kE + kp + kS
u3 +

kEkSd33np
kE + kp + kS

V t 12 8 9

MATLAB Symbolic Code (Section 2.2)

clear all

syms Ep Ap Lp np d33 V Kp Ke u3 H Ks FP FPa FPb FPc

a1 = Ks+Kp+Ke; a2 = Ks*np*d33

w = (a2*V + Ke*u3)/a1

w1 = collect(w,u3)

w2 = collect(w1,V)

FP = Ke*(w-u3)

FPa = collect(FP,V)

FPb = collect(FPa, u3)

FPc = simplify(FPb)

EXAMPLE 12.8.1 Active Vibration Control of a Cantilevered Beam Mounted Mass
with Piezoelectric Stack Actuator AVC

Statement: An enclosure containing a motor and sensitive electronic instrumentation is
mounted on a cantilevered beam-type rail as shown inFigureE12.8.1(a). The vibration is con-
sidered excessive, so it is decided to install a piezoelectric stack actuator-based AVC system.
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Objective:Derive the state equations for the closed-loop system which includes a lead com-
pensation stage, PD stage, and a second-order representation of the power amplifier that
supplies the voltage to the piezoelectric actuator.

Solution: Figure E12.8.1(b) shows the complete AVC feedback loop. Unlike the magnetic
bearing control in Figure 12.5.1, the input to the piezoelectric actuator is a voltage that is
internally controlled in a voltage feedback loop.

The transfer function between the controller output and the voltage across the piezoe-
lectric actuator stack is obtained from (12.6.15) as

V s

VCOY s
= TPA s ∗Tlead s =

−GPAω2
f p z s + z

s3 + p + 2ξfωf s2 + 2ξfωfp +ω2
f s+ω2

f p
1

Figure E12.8.1(a) Cantilevered rail mounted instrumentation enclosure with piezoelectric stack AVC

Figure E12.8.1(b) Closed feedback control model with piezoelectric stack AVC
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The control canonical form of this relation is obtained from (12.6.16) to
(12.6.18) as

in =VCOY , out =V =CW, W =AW +B∗ in t 2

C= 0 −GPAω2
f

p

z
−GPAω2

f p , W= w1 w2 w3
T 3

A=

− p+ 2ξfωf − 2ξfωfp+ω2
f −ω2

f p

1 0 0

0 1 0

, B=

1

0

0

4

Equation (12.6.19) relates the controller output voltage to the deflection y as

VCOY =GPYey +GDYey =GPY VSY −VSYT +GDY VSY −VSYT

=GPY GSy +VRO
Y t −GSyT +GDY GSy+V

RO
Y t −GSyT

5

Substitution of (5) into (2)–(4) yields the state equations in the form

w1

w2

w3

=

− p + 2ξfωf − 2ξfωfp +ω2
f −ω2

f p

1 0 0

0 1 0

w1

w2

w3

+

GPY GSy +VRO
Y t −GSyT +GDY GSy +V

RO
Y t −GSyT

0

0

6

The equation of motion for m is obtained utilizing (12.8.9) as

my = −kBy−cy+Fp + f t = −kBy−cy−kE
kp + kS

kE + kp + kS
y+

kEkSd33np
kE + kp + kS

V t + f t 7

Therefore,

my = −cy−
kB kE + kp + kS + kE kp + kS

kE + kp + kS
y+

kEkSd33np
kE + kp + kS

V t + f t 8

As in (12.6.22), the piezo stack voltage V in (8) may be obtained from (2) and (3) as

V t =C W = 0 −GPAω2
f

p

z
−GPAω2

f p

w1

w2

w3

= −GPAω
2
f p∗

w2 t

z
+w3 t 9

Substitute (9) into (8) to obtain

my = −cy−αky−αw ∗ w2 t

z
+w3 t + f t 10
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where

keff = kB +
kE kp + kS
kE + kp + kS

, αw =
kEkSd33np
kE + kp + kS

GPAω
2
f p 11

The state (first-order) form of (10) is

y= vY 12

vY = −
c

m
vY −

αk
m
y−

αw
m

∗ w2 t

z
+w3 t +

1
m
f t 13

Equations (6), (12), and (13) can be combined into a single set of closed-loop system
equations as

Xsys =AsysXsys +F
F
sys, Xsys = w1 w2 w3 y vY

T 14

where the system matrix is

Asys =

− p + 2ξfωf − 2ξfωfp +ω2
f −ω2

f p GPYGS GDYGS

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0
αw
m∗z

−αw
m

−keff
m

−c

m

15

and the excitation vector is

FF
sys = system force vector = 0 0 0 0

f t

m

T

16

The homogenous form of (14)

Xsys =AsysXsys 17

may be solved for the eigenvalues of the closed-loop system similar with (5.4.183):

λψ
sys

=Asysψ sys
18

The preceding analysis accounts for the finite bandwidth of the feedback loop. It may
also be helpful for selecting gains to consider the ideal infinite bandwidth case, without lead
compensation. Recall from (12.8.9) that

Fp = −kE
kp + kS

kE + kp + kS
u3 +

kEkSd33np
kE + kp + kS

V t 19

In Figure E12.8.1(b), the actuator voltage for the ideal infinite bandwidth case, without
lead compensation, is

V t = − GPAGPYGSy +GPAGDYGSy 20
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Substitute (20) into (19) to obtain

Fp, ideal = −kE
kp + kS

kE + kp + kS
u3−

kEkSd33np
kE + kp + kS

GPAGPYGSy +GPAGDYGSy 21

Thus, the ideal active stiffness and damping become

kact =
kEkSd33np
kE + kp + kS

GPAGPYGS, cact =
kEkSd33np
kE + kp + kS

GPAGDYGS 22

The ideal case natural frequency and damping ratios become

fn, ideal =
1
2π

keff + kact
m

, ξideal =
c+ cact

2m 2πfn, ideal
23

If given fn, ideal and ξideal the required GPY and GDY are from (22) and (23)

GPY =
m 2πfn, ideal

2−keff
kEkSd33np
kE + kp + kS

GPAGS

, GDY =
2m 2πfn, ideal ξideal−c

kEkSd33np
kE + kp + kS

GPAGS

24

Numerical Example:

Structure : Original without piezo attached natural frequency = fn0 = 100Hz,

and damping ratio = ξ0 = 0 02,

m = 10kg, kB =m 2π∗100 2≈4 × 106N m,

c = 2m 2π∗100 ∗0 02≈250Ns m

Power amplifier ωf = 2π∗400rad s, ξf = 0 5, GPA = 20V V

Sensor GS = 8000V m

Piezoelectric stack kS = 5 × 107N m, kp = 5 × 106N m,

d33 = 250 × 10−12m V, np = 800 layers

External preload stiffness between beam and piezo kE = 3 × 106N m

25

From the above data, the natural frequency and damping ratio of the structure without
the piezo stack attached are fn0 and ξ0, respectively. One objective of the AVC is to increase
the damping ratio of the vibration mode. Installing the piezo stack increases the effective
stiffness supporting the mass to be

keff = kB +
kE kS + kp
kS + kp + kE

= 4 × 106 + 3 × 106∗ 5 × 107 + 5 × 106

5 × 107 + 5 × 106 + 3 × 106
= 6 8 × 106N m

26

The corresponding natural frequency and damping ratio are

fnp =
1
2π

keff
m

=
1
2π

6 86 × 106

10
= 132Hz, ξp =

c

2m 2πfnp
= 0 015 27
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Therefore, attaching the passive piezo stack has increased the natural frequency by 32%
and lowered the damping by 25%. The feedback control is seen to be required to improve the
damping ratio.

The equation in (24) may be used to obtain initial values of the PD gains GPY and GDY.
For this purpose, select

fn, ideal = 100Hz, ξideal = 0 1 28

This will lower the support stiffness and raise the damping to a higher level without
depending excessively on derivative gain. Too much derivative gain may cause the power
amplifier to become saturated if significant high-frequency electrical noise is present in the
feedback loop. Solving (24) for GPY and GDY yields

GPY = −34 375, GDY = 0 0121 29

As in Example 12.6.1, the pole p and zero z of the lead stage are determined from

GL∞ =
1 + sin ϕpeak

1−sin ϕpeak
, z =

2π

GL∞
fpeak, p = zGL∞ 30

A design objective is to determine the values of ϕpeak and fpeak that yield the maximum
value of the minimum damping ratio, considered over all five eigenvalues of the closed-loop
system matrix Asys in (15). The closed-loop system damping ratios and damped natural fre-

quencies are determined from the eigenvalues λ of Asys in (15) as

ξi =
−Real λ

λ
, fdi =

1
2π

Imag λ 31

A search over ϕpeak and fpeak was conducted. A fine grid (100 × 100) was searched over
the ranges

0 <ϕpeak < 60 and 10 < fpeak < 410Hz 32

The results for maximizing the minimum value of the closed-loop eigenvalue damping
ratio were

ϕpeak = 37 8 , fpeak = 282Hz, max of ξmin = 0 65, p = 3618, z= 868 33

The eigenvalues, damped natural frequencies, and damping ratios for this case are
shown in Table E12.8.1(a). The addition of the optimal phase lead compensation stage is
seen to increase the damping much above the ideal (infinite bandwidth) PD control model
(see Eq. (28) ξideal = 0 1).

Table E12.8.1(a) Eigenvalues, natural frequencies, and damping ratios for the system with the
optimized lead compensator (p= 3618, z = 868)

Eigenvalue no. Eigenvalue Damped natural frequency (Hz) Damping ratio (dim)

1 −2551 0 1.0
2 −817 ± i944 150 0.65
3 −985 ± i1139 180 0.65
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12.8.2 Piezoelectric Layer (Patch) Actuator

The piezoelectric layer actuator (PLA) utilizes the cross expansion property constant d31 in
(12.8.1) and Figure 12.8.1 to stretch or compress outer fibers of a thin beam or plate, thereby
inducing bending moments to actuate the AVC. Seminal work in this approach was per-
formed by Crawley and deLuis (1987) and has since been expanded by many researchers
for active vibration and noise control and for energy harvesting, notably Bilgen et al. (2011),
Morgan and Wang (1998), and Wang (2009).

The PLA is bonded to the outer surface(s) and induces strains in the structural component
with AVC. The strains in turn produce moments and forces in the component which provide
actuation for the AVC approach. The outcome of the following derivation is relations between
voltages applied to theAVC and the forces andmoments that result and are applied to the com-
ponent. The structural component is assumed to act linearly so that only the strains and stresses
due to the PLA are considered in deriving the forces and moments due to the PLA. Strains
and stresses due to external or inertial loading may be temporarily ignored for the purpose
of identifying the PLA forces and added later by superposition. Figure 12.8.3 illustrates a pair
of identical PLAsbonded to opposing sides of a thin elastic beamwhich is assumed to bend in a
manner consistent with Euler–Bernoulli beam theory (Example 4.6.3 and Section 9.2). The
voltages applied to the opposing PLAs are assumed to be of opposite polarity, inducing tensile
strains on the top surface and compressive strains on the bottom surface, or vice versa.

The moment mp(x1) impressed on the beam by the PLA is equal and opposite to the
moment mb(x1); it induces internally in the beam, which may be expressed by

mb x1 +mp x1 = 0 12 8 10

This may be expressed in terms of stresses and by noting symmetry of the stresses about
the neutral axis to obtain

2
d

0
x3σ11bdA+ 2

d + h

d
x3σ11pdA= 0 12 8 11

where σ11b and σ11p are the x1 normal stresses in the beam and piezo layer, respectively. In
terms of strain, (12.8.11) becomes

d

0
x3Ebε11bdA+

d + h

d
x3Epε11pdA= 0 12 8 12

Figure 12.8.3 Model of piezoelectric stack actuator and equivalent end moments
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The strains are assumed to vary linearly through the thickness so

ε11b =
x3
d
ε11d 12 8 13

where ε11d is the x1 normal strain at the interface of the beam and the piezo layer, x3 = d. The
piezo layer strain field is a superposition of the bending strain plus the compressive strain

resulting from the piezo crosswise expansion term ε11f = d31
V t
h in (12.8.1). Thus,

ε11p =
x3
d
ε11d−εp,free =

x3
d
ε11d−

d31
h
V t 12 8 14

The strain εp,free is the free expansion strain of the piezo layer due to voltage V(t) which
is impressed across the piezo layer in the x3 direction. The symbolic MATLAB code pro-
vided below substitutes (12.8.13) and (12.8.14) into (12.8.12) and solves for ε11d to obtain

ε11d = βεp, free

where β =
3Epdh 2d + h

2 Ebd3 + 3Epd2h + 3Epdh2 +Eph3

and εp, free =
d31
h
V t

12 8 15

From (12.8.10) to (12.8.13), the total moment applied on the beam by the piezo patch
becomes

mb =
d

−d
x3σ11bdA=

d

−d
x3Ebε11bdA =

d

−d
x3Eb

x3
d
ε11ddA

=
d

−d
x3Eb

x3
d
βεp,freedA= βεp, free

EbI

d

where I = area moment of inertia =
d

−d
x23dA

12 8 16

Figure 12.8.3 shows that the piezoelectric patch (layer) extends from x1 = a to x1 = b.
Therefore,

mb x1 = βεp,free
EbI

d
H x1−a −H x1−b 12 8 17

where the Heaviside function H is discussed in Section 2.12 and (6.2.42). Recall from
(5.5.90) that

ρA
∂2u3
∂t2

= ρI
∂4u3
∂x21dt

2
−
∂2M

∂x21
−
∂Γ
∂x1

+ f 12 8 18

The term Γ x1 is an applied moment per unit length. Thus, in the present case from
(12.8.17) and Section 2.12,

Γ x1 =
∂ −mb

∂x1
= −βεp,free

∂

∂x1

EbI

d
H x1−a −H x1−b

= −βεp,free
EbI

d
δ x1−a −δ x1−b

12 8 19
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As explained in the derivation in (9.2.46), the Dirac delta terms in (12.8.19) represent
concentrated line moments applied at the two ends of the piezo patch. Therefore, within the
approximations of the present derivation, the excitation imposed by the piezo patch may be
represented by a pair of equivalent opposing moments applied at the ends of the piezo patch
and of value

Mequiv = βεp,free
EbI

d
in units of Nm where εp, free =

d31
h
V t 12 8 20

This is illustrated in Figure 12.8.3. A second means for applying the piezoelectric patch
excitation may be derived as follows. Recall from (5.5.84) that

f x, t =Applied load per unit length 12 8 21

From (12.8.18), f can be interpreted as an equivalent ∂Γ ∂x1 term, where
from (12.8.19)

f =
∂Γ x1
∂x1

=
∂2 −mb

∂x21
= −βεp,free

EbI

d
δ x−a −δ x−b 12 8 22

Similar with the Dirac delta function, its derivative also has integration properties
in Section 2.12 that enables the force density in (12.8.22) to be included in the model as
illustrated by Example 12.8.2.

MATLAB Symbolic Code (for obtaining the result in (12.8.14))

clear all

syms Eb Ep d h x3 t eps_p_free eps11d sol_eps11d WW a x b c
sol_eps11d sol_eps11d_collect sol_eps11d_collect_simplify
ER K P

check abc

% Section 12.8 Piezoelectric Patch Actuator

% Perform Integrations:
WW = int(x3*Eb*x3/d*eps11d*t,x3,0,d) + int(x3*Ep*(x3/
d*eps11d-eps_p_free)*t,x3,d,d+h)

eqn = WW == 0

sol_eps11d =solve(eqn,eps11d)

sol_eps11d_collect = collect(sol_eps11d, eps_p_free)

sol_eps11d_collect_simplify =simplify(sol_eps11d_collect)

ER = Ep/Eb;
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K = -3*h*d*(d+2*h)/(2*(h^3 + ER*d^3)+3*ER*h*d^2);

P=K*ER;

check = sol_eps11d_collect_simplify + P/(1-P)

abc = simplify(check)

Code Output

>> PiezoAnalysisCh12_Patch_bbb
WW = (Eb*d^2*eps11d*t)/3 + (Ep*h*t*(2*d*eps11d -
2*d*eps_p_free + 2*eps11d*h - eps_p_free*h))/2 +
(Ep*eps11d*h^3*t)/(3*d)
eqn = (Eb*d^2*eps11d*t)/3 + (Ep*h*t*(2*d*eps11d -
2*d*eps_p_free + 2*eps11d*h - eps_p_free*h))/2 +
(Ep*eps11d*h^3*t)/(3*d) == 0

sol_eps11d = (Ep*h*t*(2*d*eps_p_free + eps_p_free*h))/(2*
((Eb*d^2*t)/3 + (Ep*h*t*(2*d + 2*h))/2 + (Ep*h^3*t)/(3*d)))

sol_eps11d_collect = ((Ep*h*t*(2*d + h))/(2*((Eb*d^2*t)/3 +
(Ep*h*t*(2*d + 2*h))/2 + (Ep*h^3*t)/(3*d))))*eps_p_free

sol_eps11d_collect_simplify = (3*Ep*d*eps_p_free*h*(2*d +
h))/(2*Eb*d^3 + 6*Ep*d^2*h + 6*Ep*d*h^2 + 2*Ep*h^3)

check = (3*Ep*d*eps_p_free*h*(2*d + h))/(2*Eb*d^3 + 6*Ep*d^2*h
+ 6*Ep*d*h^2 + 2*Ep*h^3) - (3*Ep*d*h*(d + 2*h))/(Eb*((3*Ep*d*h*
(d + 2*h))/(Eb*((2*Ep*d^3)/Eb + (3*Ep*d^2*h)/Eb + 2*h^3)) + 1)*
((2*Ep*d^3)/Eb + (3*Ep*d^2*h)/Eb + 2*h^3))

abc = (3*Ep*d*eps_p_free*h*(2*d + h))/(2*Eb*d^3 + 6*Ep*d^2*h +
6*Ep*d*h^2 + 2*Ep*h^3) - (3*Ep*d*h*(d + 2*h))/(2*Ep*d^3 +
6*Ep*d^2*h + 6*Ep*d*h^2 + 2*Eb*h^3)

EXAMPLE 12.8.2 Assumed Modes Model of a Cantilevered Beam Mounted Mass
with a Piezoelectric Patch Actuator

Statement: The mass m shown in Figure E12.8.2(a) is a miniature container holding a solu-
tion to be shaken as part of a biological experiment. The assumed modes approach Fp dis-
cussed in Section 4.6 is utilized to model transverse vibrations of the beam and mass m with
piezoelectric patch actuators as shown in Figure E12.8.2(a).
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Objective: Determine the equations of motion for the open-loop system where V(t) is the
input and u3(x, t) is the output.

Solution: As in Example 4.6.3, utilize the two term assumed modes expansion

u x, t = q1 t ϕ1 x + q2 t ϕ2 x 1

where

ϕ1 x =
3x2

L2
−
2x3

L3
, ϕ2 x =

−x2

L2
+
x3

L3
2

The stiffness matrix is determined from (20) of Example 4.6.3 as

K=
V
BTEBdV =

V
E

ϕ1

ϕ2

ϕ1 ϕ2 y2dAdx 3

which for the present example yields

kij =
a

0
EbIbϕi ϕj dx+

b

a
EbIϕi ϕj dx +

L

b
EbIbϕi ϕj dx

where

I =
EbIb + 2EpIp

Eb
, Ib =

d

−d
y2dA, Ip =

d + h

d
y2dA

4

The mass matrix is determined from (6–11) of Example 4.6.3 as

mij =
a

0
ρbAbϕiϕjdx+

b

a
ρbA ϕiϕjdx +

L

b
ρbAbϕiϕjdx

where

A=
ρbAb + 2ρpAp

ρb
, Ab =

d

−d
dA, Ap =

d + h

d
dA

5

As shown in Example 4.6.4, the mass matrix resulting from the tip mass m is given by

Mm =m
ϕ1ϕ1 ϕ1ϕ2

ϕ2ϕ1 ϕ2ϕ2 x1 = L

=m
1 0

0 0
6

Figure E12.8.2(a) Cantilevered rail
mounted instrumentation enclosure with
piezoelectric patch AVC
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The integrals in (4) and (5) are evaluated with the following MATLAB symbolic code:

clear all

syms x L phi phidd k m Eb I Ibar a b rhob A Abar K M

% Example 12.8.2 Piezoelectric Patch ( Layer ) Actuator

phi(1) = 3*x^2/L^2 - 2*x^3/L^3;
phi(2) = -x^2/L^2 + x^3/L^3;
phi

for i=1:1:2
phidd(i) = diff(phi(i),x,2);

end
phidd

for i=1:1:2
for j=1:1:2
k(i,j) = int(phidd(i)*phidd(j)*Eb*I,x,0,a) +

int(phidd(i)*phidd(j)*Eb*Ibar,x,a,b) +
int(phidd(i)*phidd(j)*Eb*I,x,b,L);

m(i,j) = int(phi(i)*phi(j)*rhob*A,x,0,a) +
int(phi(i)*phi(j)*rhob*Abar,x,a,b) +
int(phi(i)*phi(j)*rhob*A,x,b,L);

end
end

K = simplify(k)

M = simplify(m)

The results are listed below:

m11 = (A∗rhob∗(13∗L^7-63∗L^2∗b^5+70∗L∗b^6-20∗b^7))/(35∗L^6)-
(L^2∗((9∗Abar∗rhob∗a^5)/5 - (9∗Abar∗b^5∗rhob)/5) - L∗
(2∗Abar∗rhob∗a^6 - 2∗Abar∗rhob∗b^6) + (4∗Abar∗a^7∗rhob)/7 -
(4∗Abar∗b^7∗rhob)/7)/L^6 + (A∗a^5∗rhob∗(63∗L^2 - 70∗L∗a +
20∗a^2))/(35∗L^6)

m12 = m21 = - (rhob∗(11∗A∗L^7 + 60∗A∗a^7 - 60∗Abar∗a^7 -
60∗A∗b^7 + 60∗Abar∗b^7 + 126∗A∗L^2∗a^5 - 126∗Abar∗L^2∗a^5 -
126∗A∗L^2∗b^5 + 126∗Abar∗L^2∗b^5 - 175∗A∗L∗a^6 +
175∗Abar∗L∗a^6 + 175∗A∗L∗b^6 - 175∗Abar∗L∗b^6))/(210∗L^6)

m22 = (rhob∗(A∗L^7 + 15∗A∗a^7 - 15∗Abar∗a^7 - 15∗A∗b^7 +
15∗Abar∗b^7+21∗A∗L^2∗a^5-21∗Abar∗L^2∗a^5-21∗A∗L^2∗b^5+
21∗Abar∗L^2∗b^5 - 35∗A∗L∗a^6 + 35∗Abar∗L∗a^6 + 35∗A∗L∗b^6 -
35∗Abar∗L∗b^6))/(105∗L^6)]
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k11 = (12∗Eb∗I∗(L^3 - 3∗L^2∗b + 6∗L∗b^2 - 4∗b^3))/L^6 -
(12∗Eb∗Ibar∗(a - b)∗(3∗L^2 - 6∗L∗a - 6∗L∗b + 4∗a^2 + 4∗a∗b +
4∗b^2))/L^6 + (12∗Eb∗I∗a∗(3∗L^2 - 6∗L∗a + 4∗a^2))/L^6

k12 = k21 = (6∗Eb∗Ibar∗(a - b)∗(2∗L^2 - 5∗L∗a - 5∗L∗b + 4∗a^2 +
4∗a∗b + 4∗b^2))/L^6 - (6∗Eb∗I∗(L^3 - 2∗L^2∗b + 5∗L∗b^2 -
4∗b^3))/L^6 - (6∗Eb∗I∗a∗(2∗L^2 - 5∗L∗a + 4∗a^2))/L^6

k22 = (4∗Eb∗I∗(L^3 - L^2∗b + 3∗L∗b^2 - 3∗b^3))/L^6 + (4∗Eb∗I∗a∗
(L^2 - 3∗L∗a + 3∗a^2))/L^6 - (4∗Eb∗Ibar∗(a - b)∗(L^2 - 3∗L∗a -
3∗L∗b + 3∗a^2 + 3∗a∗b + 3∗b^2))/L^6

The generalized forces resulting from the piezo patch are obtained from (25) of
Example 4.6.3 as

Q1

Q2
=

L

0
f x, t ϕ1 x dx

L

0
f x, t ϕ2 x dx

7

where the applied force density is obtained from (12.8.22) as

f = −βεp,free
EbIb
d

δ x−a −δ x−b 8

As discussed in Section 2.12,

f x δ x−c dx = − f c 9

Apply this to (7) and (8) and utilize (12.8.20) to obtain

Q1

Q2

= −β
d31
h
V t

EbIb
d

L

0
δ x−a −δ x−b ϕ1 x dx

L

0
δ x−a −δ x−b ϕ2 x dx

= −β
d31
h
V t

EbIb
d

ϕ1 b −ϕ1 a

ϕ2 b −ϕ2 a

= −β
d31
h
V t

EbIb
d

6b
L2

−
6b2

L3
−
6a
L2

+
6a2

L3

−2b
L2

+
3b2

L3
+
2a
L2

−
3a2

L3

10
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The system differential equation becomes

m11 +m m12

m21 m22

q1

q2
+

k11 k12

k21 k22

q1

q2
=

Q1

Q2

= −β
d31
h
V t

EbIb
d

6b
L2

−
6b2

L3
−
6a
L2

+
6a2

L3

−2b
L2

+
3b2

L3
+
2a
L2

−
3a2

L3

11

The physical coordinate displacements are then obtained from

u x, t = q1 t ϕ1 x + q2 t ϕ2 x 12

The coefficients in (11) are obtained from the MATLAB symbolic code above as

m11 =
Abρb 13L7−63L2b5 + 70Lb6−20b7

35L6

−
L2 9Aρba

5 5− 9Ab5ρb 5 −L 2Aρba
6−2Aρbb

6 + 4Aa7ρb 7− 4Ab7ρb 7

L6

+
Aba5ρb 63L2−70La + 20a2

35L6

13

m12 =m21 =

− ρb

11AbL7 + 60Aba7−60Aa7−60Abb7 + 60Ab7

+ 126AbL2a5−126AL2a5−126AbL2b5 + 126AL2b5

−175AbLa6 + 175ALa6 + 175AbLb6−175ALb6

210L6
14

m22 =

ρb

AbL7 + 15Aba7−15Aa7−15Abb7 + 15Ab7

+ 21AbL2a5−21AL2a5−21AbL2b5 + 21AL2b5

−35AbLa6 + 35ALa6 + 35AbLb6−35ALb6

105L6
15

k11 =
12EbIb L3−3L2b+ 6Lb7−4b3

L6

−
12EbI a−b 3L2−6La−6Lb+ 4a2 + 4ab+ 4b2

L6
+

12EbIba 3L2−6La + 4a2

L6

16

k12 = k21 =
6EbI a−b 2L2−5La−5Lb+ 4a2 + 4ab+ 4b2

L6

−
6EbIb L3−2L2b + 5Lb2−4b3

L6
−

6EbIba 2L2−5La+ 4a2

L6

17
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k22 =
4EbIb L3−L2b−3Lb2−3b3

L6
+
4EbIba L2−3Lb+ 3a2

L6

−
4EbI a−b L2−3La−3Lb+ 3a2 + 3ab+ 3b2

L6

18

12.9 SUMMARY

AVC is increasingly implemented for applications where the vibration control system
must adapt to a changing plant, environment, or operating conditions. They are also
used in extreme environments that are not conducive to passive damper materials. The pres-
ence of filters to suppress electrical noise and finite bandwidth feedback components
degrade closed-loop system stability. Likewise, an inability to collocate all sensor and actu-
ator pairs for flexible structure AVC also may contribute to closed-loop feedback system
instability. Lead compensation is discussed as a means to improve stability. An infinite
bandwidth, linearized, saturation-free AVC system model was presented. Although limited
in predicting control instability, this simple model still provides initial approximations for
feedback gain values (12.4.44) to achieve a desired natural frequency and damping ratio.

This chapter provides modeling methods to include feedback component frequency
response characteristics, stabilizing control stages such as a lead compensator, and noncol-
location of sensor/actuator pairs. Also included is an example of detailed modeling of actua-
tors, which is an essential step for successful AVC implementation. Actuator modeling is an
important step for all AVC applications whether using piezoelectric, magnetostrictive, shape
memory alloy, hydraulic, pneumatic, or electromagnetic actuators. The state modeling
approach presented can be easily extended to AVCmodels including flexible structures with
many degrees of freedom.

Examples are provided for determining closed-loop feedback AVC system natural
frequencies, modal damping, stability, and forced harmonic response.

12.10 CHAPTER 12 EXERCISES

12.10.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website: www.
wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed book,
yielding a significant cost savings for the college student, and is updated.

12.10.2 Exercise Goals

The goal of the exercises in Chapter 12 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following area:

(a) Modeling of closed-loop feedback AVC systems

12.10.3 Sample Exercise: 12.1

The building model has an absorber mass on its top floor to suppress sway induced by wind
gusts. The AVC hydraulic actuator applies an actuation force horizontally in equal and
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opposite directions on the top floor and absorber mass. The feedback loop consists of (i) a
sensor that outputs a voltage proportional to the relative displacement between the absorber
mass and the top floor, VS =GS xabs mass−xtop floor ; (ii) a PD controller with input VS, output
VCO, and adjustable proportional and derivative feedback gains GP and GD, respectively
(Ref. Figure 12.5.1); (iii) a lead compensation stage with input VCO, output VLS

CO, and adjust-
able pole p and zero z (Ref. Figure 12.5.1); and (iv) an actuator consisting of pressure control
valves and hydraulic cylinders that produce an actuation force with the following transfer
function (12.5.1):

Tf s =
FA s

VLS
CO s

=
GAω2

f

s2 + 2ξfωfs+ω2
f

, ξf = 0 9, ωf = 2π∗20, GA = 50000 N V

The passive stiffness of the actuator is kp = 5 × 107 N m.

(a) For the entire feedback controlled model, identify the following terms in (12.6.26):
Asys andF

F
sys. Utilize the state vector

Xsys = x1 x2 x3 x4 x5 xA v1 v2 v3 v4 v5 vA w1 w2 w3
T

(b) Use any integration method in Section 6.4 or MATLAB (see Example 2.3.1), MAPLE,
MATHCAD, and so on to determine the top floor peak displacement without mA

attached.

(c) Adjust the feedback parameters—pole p, zero z, GP, and GD—to identify values that
maximize the minimum value of the damping ratios ξj = −Real λj λj for the
closed-loop feedback controlled system.

(d) Repeat (b) for the controlled system using the values from (c). Compare results.

REFERENCES

BILGEN, O., KARAMI, M., INMAN, D., and FRISWELL, M., “The Actuation Characterization of Cantilev-
ered Unimorph Beams with Single Crystal Piezoelectric Materials,” Smart Materials and Struc-
tures, 2011, Vol. 20, Article No. 055024.

BUCKNER, G. D., SCHUETZE, K. T., and BENO, J. H., “Intelligent Feedback Linearization for Active Vehi-
cle Suspension Control,” Journal of Dynamic Systems, Measurement, and Control, 2001,
Vol. 123, pp. 727–733.

CRAWLEY, E. and DELUIS, J., “Use of Piezoelectric Actuators as Elements of Intelligent Structures,”
AIAA Journal, 1987, Vol. 25, No. 10, pp. 1373–1385.

924 Vibration Theory and Applications with Finite Elements and Active Vibration Control

www.konkur.in



CULSHAW, B., Smart Structures and Materials, Artech House, Inc., Boston, MA, 1996.
DOHNER, J. L., LAUFFER, J. P., HINNERICHS, T. D., SHANKAR, N., REGELBRUGGE, M. E., KWAN, C.-M., XU,

R., WINTERBAUER, W., and BRIDGER, K., “On the Use of Active Structural Control to Enhance the
Cutting Performance of a Milling Machine,” Smart Structures and Materials 2002, Proceedings
of the SPIE, 2002, Vol. 4698, pp. 519–527.

EDBERG, D., BOUCHER, R., SCHENCK, D., NURRE, G.,WHORTON,M., KIM, Y., and ALHORN, D., “Results of
the Stable Microgravity Vibration Isolation Flight Experiment,” Proceedings of the Guidance
and Control, American Astronautical Society, 1996, Vol. 92 (Advances in the Astronautical
Sciences), pp. 567–581.

HENDERSON, T. C., “Design and Testing of a Broadband Active Vibration Isolation System Using Stiff
Actuators,” Proceedings of the Guidance and Control, American Astronautical Society, 1996,
Vol. 92 (Advances in the Astronautical Sciences), pp. 481–500.

LEI, S. and PALAZZOLO, A., “Control of Flexible Rotor Systems with Active Magnetic Bearings,” Jour-
nal of Sound and Vibrations, 2008, Vol. 314, pp. 19–38.

LEI, S., PALAZZOLO, A., and KASCAK, A., “Nonlinear Fuzzy Logic Control for Forced Large Motions of
Spinning Shafts,” Journal of Sound and Vibrations, 2000, Vol. 235, No. 3, pp. 435–449.

MANCHALA, D., PALAZZOLO, A., KASCAK, A., MONTAGUE, G., and BROWN, G., “Constrained Quadratic
Programming, Active Control of Rotating Mass Imbalance,” Journal of Sound and Vibration,
1997, Vol. 205, No. 5, pp. 561–580.

MINIHAN, T., LEI, S., SUN, G., and PALAZZOLO, A., “LargeMotion Tracking Control for ThrustMagnetic
Bearings with Fuzzy Logic, Sliding Mode, and Direct Linearization,” Journal of Sound and
Vibration, 2003, Vol. 263, pp. 549–567.

MORGAN, R. and WANG, K.-W., “An Integrated Active-Parametric Control Approach for Active-
Passive Hybrid Piezoelectric Network with Variable Resistance,” Journal of Intelligent Material
Systems and Structures, 1998, Vol. 9, No. 7, pp. 564–573.

MOSES, R. W., “Vertical Tail Buffeting Alleviation Using Piezoelectric Actuators—Some Results of
the Actively Controlled Response of Buffet—Affected Tails (ACROBAT) Program,” Proceed-
ings of SPIE—Smart Structures and Materials 1997, 4–6 March 1997, pp. 87–98.

PALAZZOLO, A., LIN, R., ALEXANDER, R., KASCAK, A., and MONTAGUE, G., “Piezoelectric Pushers for
Active Vibration Control of Rotating Machinery,” Journal of Vibration, Acoustics, Stress,
and Reliability in Design, 1989, Vol. 111, pp. 298–305.

PALAZZOLO, A., LIN, R., ALEXANDER, R., KASCAK, A., and MONTAGUE, G., “Test and Theory for Piezo-
electric Actuator—Active Vibration Control of Rotating Machinery,” Journal of Vibration and
Acoustics, 1991, Vol. 113, pp. 167–175.

PALAZZOLO, A., KIM, Y., KENNY, A., NA, U., LEI, S., THOMAS, T., BEACH, R., KASCAK, A., and MONTA-

GUE, G., “Magnetic Suspensions for Flywheel Batteries,” Proceedings of IECEC’01, 36th Inter-
society Energy conversion Engineering Conference, July 29–August 2, 2001a, Paper No.
IECEC2001-AT-81, pp. 97–103.

PALAZZOLO, A., LI, M., JOO NA, U., and THOMAS, E., “System and Method for Controlling Suspension
Using a Magnetic Field,” US Patent: (US 6,323,614B1); Date of Patent: November 27, 2001b.

PALAZZOLO, A. B., WANG, Z., LEE, J.-G., KASCAK, A., and PROVENZA, A., “Magnetic Bearings,” a chap-
ter section (Section 4.6),Handbook of Lubrication and Tribology, Volume II: Theory and Design,
Second Edition, ed. R. Bruce, CRC Press, Boca Raton, FL, 2012.

TANG, P., PALAZZOLO, A., et al., “Combined Piezoelectric-Hydraulic Actuator Based Active Vibration
Control for Rotordynamic System,” Journal of Vibration and Acoustics, 1995, Vol. 117,
pp. 285–293.

WANG, K.-W., Adaptive Structural Systems with Piezoelectric Transducer Circuitry, Springer,
New York, 2009.

ZHONG, W. and PALAZZOLO, A., “Magnetic Bearing Rotordynamic System Optimization Using Multi-
Objective Genetic Algorithms,” Journal of Dynamic Systems, Measurement, and Control, 2014,
Vol. 137, No. 2, Article No. 021012.

Chapter 12 Active Vibration Control 925

www.konkur.in



www.konkur.in



Appendix A

Fundamental Equations
of Elasticity

This appendix provides a background of the fundamental equations of elasticity to under-
stand the internal strain energy expressions for deformable bodies utilized in the Lagrange
equations and the derivations for the finite element stiffness matrices.

A.1 EQUILIBRIUM

The equilibrium equations are expressions of Newton’s second law at a point in a structure.
Figure A.1.1 shows a general structure and a differential volume element in its interior.

The variation of stresses on the differential element is shown in Figure A.1.2. Newton’s
second law can be written in the x1 direction as

σ11 +
∂σ11
∂x1

dx1 dx2dx3−σ11dx2dx3 + σ31 +
∂σ31
∂x3

dx3 dx1dx2−σ31dx1dx2

+ σ21 +
∂σ21
∂x2

dx2 dx1dx3−σ21dx1dx3 +Fv1dx1dx2dx3−ρdx1dx2dx3x1 = 0

A 1 1

The acceleration term may be viewed as an equivalent body force by D’Alembert’s
principle, so (A.1.1) simplifies, after cancelations, to the form

∂σ11
∂x1

+
∂σ21
∂x2

+
∂σ31
∂x3

+Fv1 = 0 A 1 2

The analogous equations for the x2 and x3 directions may be written in a similar fashion.
Next, consider Newton’s rotational equations (sum of the moments equals zero) as applied
about line A-A in Figure A.1.2:

σ11 +
∂σ11
∂x1

dx1 dx2dx3 −
dx2
2

+ σ11dx2dx3
dx2
2

+ σ12 +
∂σ12
∂x1

dx1 dx2dx3 dx1

+ σ22 +
∂σ22
∂x2

dx2 dx1dx3
dx1
2

+ σ22dx1dx3 −
dx1
2

+ σ21 +
∂σ1
∂x2

dx2 dx1dx3 −dx2

+ σ31dx1dx2
dx2
2

+ σ32dx1dx2 −
dx1
2

+ σ32 +
∂σ32
∂x3

dx3 dx1dx2
dx1
2

+ σ31 +
∂σ31
∂x3

dx3 dx1dx2 −
dx2
2

+Fv1dx1dx2dx3 −
dx2
2

+Fv2dx1dx2dx3
dx1
2

= 0

A 1 3
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Divide this equation by dx1dx2dx3 and cancel terms to obtain

−
∂σ11
∂x1

dx2
2

+ σ12 +
∂σ12
∂x1

dx1 +
∂σ22
∂x2

dx1
2

−σ21−
∂σ21
∂x2

dx2−
∂σ31
∂x3

dx2 +Fv1
−dx2
2

+Fv2
dx1
2

= 0

A 1 4

Finally, allowing dx1,dx2 and dx3 to go to zero yields the moment equilibrium equation

σ12 = σ21 A 1 5

Similar relations between σ13 and σ31 and σ23 and σ32 can be obtained in the same
fashion, proving that the stress tensor is symmetric:

σij = σji i= 1,3 j= 1,3 A 1 6

The translational and rotational equilibrium equations may now be written as

∂x1 0 0 0 ∂x3 ∂x2
0 ∂x2 0 ∂x3 0 ∂x1
0 0 ∂x3 ∂x2 ∂x1 0

σ11
σ22
σ33
σ23
σ13
σ12

+
Fv1

Fv2

Fv3

=
0
0
0

A 1 7

Figure A.1.1 General state of stress of a differential volume element. Fvx, Fvy, Fvz are forces per unit volume
acting at point P

Figure A.1.2 Stress distribution on a differential element
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where

∂xi =
∂

∂xi
A 1 8

or in the x = x1, y= x2, z = x3 notation

∂x 0 0 0 ∂z ∂y
0 ∂y 0 ∂z 0 ∂x
0 0 ∂z ∂y ∂x 0

σx
σy
σz
τyz
τxz
τxy

+
Fvx

Fvy

Fvz

=
0
0
0

A 1 9

This may be expressed in matrix–vector notation as

DTσ +Fv = 0 3 × 1 A 1 10

whereDT, σ and Fv can be easily identified by comparison with Equation (A.1.7) or (A.1.9).
The Einstein summation convention follows the simple rule that repeated indices imply
summation over those indices, that is,

bkaik = b1ai1 + b2ai2 + b3ai3 =
3

k = 1

bkaik A 1 11

It can be easily verified that (A.1.7) may be expressed with the Einstein summation
conventions as

σij, j +Fvi = 0 A 1 12

where the comma denotes partial differentiation. For example, if i= 1, Equation (A.1.12)
becomes

∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

+Fv1 = 0 A 1 13

which is identical to the first of Equation (A.1.7).

A.2 TRACTION BOUNDARY CONDITIONS (CAUCHY’S FORMULA)

The tractions (force/area) applied to an object must equilibrate with its stresses at the surface
according to Cauchy’s formula (Fung, 1965). This formula is derived in the following anal-
ysis. Consider the pyramid-shaped differential element shown in Figure A.2.1. Face ABC
lies on the surface of the object.

The following definitions pertain to this figure:

ni = cos ∠xi,n = cosine of the angle between xi and n

dSi = nidS

Φi = surface traction in xi direction force per unit area

Fvi = body force in xi direction force per unit volume

Volume = 2
n1n2n3

3
dS3 2

n21 + n
2
2 + n

2
3 = 1

A 2 1
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The equilibrium condition in the x1 direction is

Φ1dS−σ31dS3−σ21dS2−σ11dS1 +Fv1 2
n1n2n3

3
dS3 2 = 0

or

Φ1dS−σ31n3dS−σ21n2dS−σ11n1dS+Fv1 2
n1n2n3

3
dS3 2 = 0

Canceling dS yields

Φ1−σ31n3−σ21n2−σ11n1 +Fv1 2
n1n2n3

3
dS1 2 = 0

Then, as dS approaches zero,

Φ1 = n1σ11 + n2σ21 + n3σ31 A 2 2

Consideration of x2 and x3 equilibrium equations yields

Φ1

Φ2

Φ3

=
n1 0 0 0 n3 n2
0 n2 0 n3 0 n1
0 0 n3 n2 n1 0

σ11
σ22
σ33
σ23
σ13
σ12

A 2 3

or in the x = x1, y= x2, z = x3, l= n1,m= n2, n = n3 notation

Φx

Φy

Φz

=
l 0 0 0 n m
0 m 0 n 0 l
0 0 n m l 0

σx
σy
σz
τyz
τxz
τxy

A 2 4

Figure A.2.1 Surface equilibrium diagram
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These relationships may be written in matrix–vector notation as

Φ=NTσ 3 × 1 A 2 5

where Φ, NT and σ are easily identified by comparison to Equation (A.2.3).
In tensor notation, Cauchy’s formulae are written as

Φj = niσji = niσij A 2 6

since

σij = σji A 2 7

A.3 THE STRAIN–DISPLACEMENT RELATIONS (KINEMATICS
OF DEFORMATION)

A body is said to undergo a rigid body motion if the distance between any two points in the
body remains unchanged. Thus, a measure of the deformation (i.e., change in geometry) in a
body is provided by the change in the distance between points in the body. This is quantified
by the difference

dL 2
− dL 2 A 3 1

where dL and dL are the distances between A and B in Figure A.3.1, before and after defor-
mation. This measure of deformation (A.3.1) can be related to strains.

The coordinates of A,B,A and B are

A x,y,z , B x + dx,y+ dy,z + dz
A x+ u,y + v,z+w , B x + u + dx ,y + v+ dy ,z+w+ dz

A 3 2

Therefore,

dL2 = dx2 + dy2 + dz2 A 3 3

dL 2 = dx 2 + dy 2 + dz 2 A 3 4

The displacements of points A and B can be expressed in terms of their position changes
as shown in Figure A.3.2 and the following analysis.

The coordinates of A are x,y,z and the coordinates of A are x ,y ,z . Therefore,

u = x −x v= y −y w= z −z A 3 5

Note

dL2 = dx2 + dy2 + dz2, dL 2 = dx 2 + dy 2 + dz 2 A 3 6

Figure A.3.1 Generic structure
before and after deformation
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The displacement of point A is given by

uA = ui+ vj+wk A 3 7

The displacement of point B is given by

uB = u + du i + v + dv j+ w+ dw k A 3 8

where by the chain rule of differentiation

du=
∂u

∂x
dx+

∂u

∂y
dy+

∂u

∂z
dz

dv =
∂v

∂x
dx +

∂v

∂y
dy+

∂v

∂z
dz

dw=
∂w

∂x
dx +

∂w

∂y
dy+

∂w

∂z
dz

A 3 9

Equation (A.3.5) implies

dx = du+ dx dy = dv + dy dz = dw+ dz A 3 10

Substituting (A.3.10) into (A.3.6) yields

dL 2 = dx2 + dy2 + dz2 + 2dudx+ 2dvdy + 2dwdz+ du2 + dv2 + dw2 A 3 11

Substituting dL2 from (A.3.6) and (A.3.11) into (A.3.1) yields

dL 2
− dL 2 = 2 dudx+ dvdy + dwdz + du2 + dv2 + dw2 A 3 12

Substituting (A.3.9) into (A.3.12) yields

dL 2− dL 2 = 2
∂u

∂x
+
1
2

∂u

∂x

2

+
∂v

∂x

2

+
∂w

∂x

2

dx2

+ 2
∂v

∂y
+
1
2

∂u

∂y

2

+
∂v

∂y

2

+
∂w

∂y

2

dy2

+ 2
∂w

∂z
+
1
2

∂u

∂z

2

+
∂v

∂z

2

+
∂w

∂z

2

dz2

+ 2
∂u

∂y
+
∂v

∂x
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
+
∂w

∂x

∂w

∂y
dxdy

+ 2
∂u

∂z
+
∂w

∂x
+
∂u

∂x

∂u

∂z
+
∂v

∂x

∂v

∂z
+
∂w

∂x

∂w

∂z
dxdz

+ 2
∂v

∂z
+
∂w

∂y
+
∂u

∂y

∂u

∂z
+
∂v

∂y

∂v

∂z
+
∂w

∂y

∂w

∂z
dydz

A 3 13

Figure A.3.2 Displacements of A and B
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Note that if dL 2 = dL 2 for all A and B on the body, the body is unstrained and it is

said to have undergone a rigid body displacement. Therefore, dL 2− dL 2 provides an
appropriate measure of deformation of the solid. To define the strains, write (A.3.13) as

dL 2
− dL 2 = 2εxdx

2 + 2εydy
2 + 2εzdz

2 + 2γxydxdy+ 2γxzdxdz + 2γyzdydz A 3 14

where the normal strain is defined by

εx =
∂u

∂x
+
1
2

∂u

∂x

2

+
∂v

∂x

2

+
∂w

∂x

2

εy =
∂v

∂y
+
1
2

∂u

∂y

2

+
∂v

∂y

2

+
∂w

∂y

2

εz =
∂w

∂z
+
1
2

∂u

∂z

2

+
∂v

∂z

2

+
∂w

∂z

2

and the engineering shear strains by

γxy =
∂u

∂y
+
∂v

∂x
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
+
∂w

∂x

∂w

∂y

γxz =
∂u

∂z
+
∂w

∂x
+
∂u

∂x

∂u

∂z
+
∂v

∂x

∂v

∂z
+
∂w

∂x

∂w

∂z

γyz =
∂v

∂z
+
∂w

∂y
+
∂u

∂y

∂u

∂z
+
∂v

∂y

∂v

∂z
+
∂w

∂y

∂w

∂z

A 3 15

Equation (A.3.15) is the nonlinear “large deflection” or finite strain–displacement rela-
tions. In many cases of practical importance, the deformations in a structure are sufficiently
small, so that the quadratic terms in (A.3.15) are insignificant. In this case, the “linearized”
strain–displacement relations become

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z

γxy =
∂u

∂y
+
∂v

∂x
, γxz =

∂u

∂z
+
∂w

∂x
, γyz =

∂v

∂z
+
∂w

∂y

A 3 16

The strains γxy,γxz,γyz are the “engineering strains” that are typically discussed in
strength of materials books. A convenient shear strain definition for tensor notation is
given by

εyz =
1
2

∂v

∂z
+
∂w

∂y
=
1
2
γyz, εxz =

1
2

∂u

∂z
+
∂w

∂x
=
1
2
γxz, εxy =

1
2

∂u

∂y
+
∂v

∂x
=
1
2
γxy

A 3 17

Combining (A.3.16) and (A.3.17) yields the relationship

εx
εy
εz
γyz
γxz
γxy

=

∂x 0 0
0 ∂y 0
0 0 ∂z
0 ∂z ∂y
∂z 0 ∂x
∂y ∂x 0

u
v
w

A 3 18

or in matrix–vector notation

ε =DU A 3 19
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By defining

ε11
ε22
ε33
2ε23
2ε13
2ε12

=

εx
εy
εx
2εyz
2εxz
2εxy

=

εx
εy
εz
γyz
γxz
γxy

A 3 20

Equation (A.3.18) implies

εij =
1
2

ui, j + uj, i A 3 21

which shows that

εij = εji A 3 22

A.4 MATERIAL LAW (CONSTITUTIVE RELATIONS)

The relations between the kinetic (i.e., force, stress) and kinematic (i.e., displacement,
strains) variables depend upon the constitution (physical properties) of the material and
are thus called “constitutive equations.” For a linear, isotropic solid, these become

ε11
ε22
ε33
2ε23
2ε13
2ε12

=
1
E

1 −v −v 0 0 0
−v 1 −v 0 0 0
−v −v 1 0 0 0
0 0 0 2 1 + v 0 0
0 0 0 0 2 1 + v 0
0 0 0 0 0 2 1 + v

σ11
σ22
σ33
σ23
σ13
σ12

A 4 1

or

ε =E−1σ A 4 2

and

σ11
σ22
σ33
σ23
σ13
σ12

=
E

1 + v 1−2v

1−v v v 0 0 0
v 1−v v 0 0 0
v v 1−v 0 0 0

0 0 0
1−2v
2

0 0

0 0 0 0
1−2v
2

0

0 0 0 0 0
1−2v
2

ε11
ε22
ε33
2ε23
2ε13
2ε12

A 4 3

or

σ =E ε A 4 4

where v= Poisson’s ratio and E = Young’s modulus. To account for the thermal strains,
consider an element of an elastic solid subjected to a temperature change ΔT . If an element
of length dx is not constrained, it expands to a new length of dx+ dx αΔT where α is the
coefficient of thermal expansion which may depend on temperature. In an isotropic body,
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the thermal expansion is the same in all direction, so that an unrestrained 3D element experi-
ences a uniform expansion but no angular distortions. Thus, in the unrestrained isotropic
body, the temperature change leads to thermal normal strains while not producing thermal
shear strains:

ε0x = ε
0
y = ε

0
z = αΔT , γ0xy = γ

0
xz = γ

0
yz = 0 A 4 5

The material law in this case becomes

ε =E−1σ + ε0 A 4 6

or

σ =E ε−E ε0 A 4 7

where E,ε,σ are defined in Equations (A.4.1)–(A.4.4) and

ε0 = αΔT 1 1 1 0 0 0 T A 4 8

Utilizing (A.4.3) and (A.4.8), it can be shown that (A.4.7) may be written as

σ =E ε + σ0 6 × 1 A 4 9

where

σ0 =
−EαΔT
1−2v

1 1 1 0 0 0 T A 4 10

In these equations, it should be noted that ΔT is the difference between the actual tem-
perature and a reference (strain-free) temperature at the point where stresses and strains are
under consideration. The coefficient of thermal expansion is around 6 × 10−6 cm cm F
for various types of steel and may range as high as 5 × 10−4 cm cm F for some elastomers.
For an orthotropic material (Cook, 1989),

ε =E−1σ + ε0 A 4 11

where

E−1 =

1
Ex

−
vxy
Ey

−
vxz
Ez

0 0 0

−
vyx
Ex

1
Ey

−
vyz
Ez

0 0 0

−
vzx
Ex

−
vzy
Ey

1
Ez

0 0 0

0 0 0
1
Gyz

0 0

0 0 0 0
1
Gxz

0

0 0 0 0 0
1
Gxy

A 4 12

This matrix must be symmetric by the Betti–Maxwell theorem:

vyx
Ex

=
vxy
Ey

,
vzx
Ex

=
vxz
Ez

,
vzy
Ey

=
vyz
Ez

A 4 13
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The ε0 term for the orthotropic case is

ε0 = αxΔT αyΔT αzΔT 0 0 0 T A 4 14

A.5 COMPATIBILITY RELATIONSHIPS

It can be shown that the strains are not independent, that is, from (A.3.16):

∂2

∂x∂y
γxy −

∂2

∂y2
εx −

∂2

∂x2
εy =

∂2

∂x∂y

∂u

∂y
+
∂v

∂x
−
∂2

∂y2
∂u

∂x
−
∂2

∂y2
∂v

∂y
= 0

The full set of compatibility relations is

0 ∂z2 ∂y2 −∂y∂z 0 0

∂z2 0 ∂x2 0 −∂z∂x 0

∂y2 ∂x2 0 0 0 −∂x∂y

−∂y∂z 0 0 −
1
2
∂x2

1
2
∂x∂y

1
2
∂x∂z

0 −∂z∂x 0 1
2
∂y∂x −

1
2
∂y2

1
2
∂y∂z

0 0 −∂x∂y
1
2
∂z∂x

1
2
∂z∂y −

1
2
∂z2

εx

εy

εz

γyz
γxz
γxy

=

0

0

0

0

0

0

A 5 1

or

D1ε = 0 A 5 2

A.6 WORK AND POTENTIAL ENERGY

A.6.1 Internal Work and Potential Energy

From elementary physics, the work performed by a force F on a particle equals

Wab =
b

a
F ds A 6 1

where ds is the differential displacement vector of the particle. The internal work performed
in deforming a body is defined in a similar manner. Figure A.6.1 shows the stresses that act
on a differential volume contained in the body as discussed in (Reddy, 1984). The dashed
lines indicate the undeformed differential volume and the solid lines indicate the deformed.
The internal forces that resist the deformation shown in Figure A.6.1 are

F11 = −σ11dx2dx3, F21 = −σ21dx1dx3 A 6 2

Recall that work is performed throughout the entire strain cycle during the deformation
of a spring, that is,

Wab =
b

a
dW =

b

a
Fdx=

b

a
−kxdx= −

k

2
x2

b

a

A 6 3

where the minus sign indicates work performed by the internal force of the spring in resisting
deformation.
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Likewise, the work performed by the forces in (A.6.2) must be evaluated by considering
all contributions from the original to the deformed state. The differential work contributed
by the normal internal forces in Figure A.6.1 is

dW11 =F11d u1 +
∂u1
∂x1

dx1 −F11du1 =F11dε11dx1 = −σ11dε11dV A 6 4

where from (A.3.21)

ε11 =
du1
dx1

A 6 5

Similarly, for the shear forces,

dW21 = −F21du1 +F21d u1 + γ21dx2 =F21dγ21dx2 = −σ21dγ21dV A 6 6

Similar results hold for the remaining normal σ22,σ33 and shear σ23,σ13 stresses,
yielding

dW = − σ11dε11 + σ22dε22 + σ33dε33 + σ12dγ12 + σ23dγ23 + σ13dγ13 dV

= − σT

1 × 6
dε
6 × 1

dV A 6 7

The total internal work performed is then given by

WI = −
V

ε

0
σTdεdV A 6 8

Substitution of the material law for a linear, elastic solid (A.4.4) into (A.6.8) yields

WI = −
V

ε

0
εTE dεdV A 6 9

Figure A.6.1 Original and deformed states of differential volume for (a) normal and (b) shear stresses
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The inner integral may be performed if E is symmetric, yielding the strain energy den-
sity function

Uρ =
ε

0
εTEdε =

1
2
εTE ε A 6 10

The total internal strain energy becomes

UI = −WI =
1
2 V

Uρ dV =
1
2 V

εTE ε dV A 6 11

A.6.2 Work of External Forces Acting on a Deformable Body

Externally applied forces perform work on a deformable body with surface S and volume V
according to the equation

WE =
V

u

0
F
T
EVdu dV +

S

u

0
F
T
ESdu dS A 6 12

where

FEV =
FEV1 x1,x2,x3
FEV2 x1,x2,x3
FEV3 x1,x2,x3

= the applied distributed body forces acting inside the body

force per unit volume A 6 13

FES =
FES1 x1,x2,x3
FES2 x1,x2,x3
FES3 x1,x2,x3

= the applied surface tractions force per unit area

acting on the body's surface A 6 14

u =
u1 x1,x2,x3
u2 x1,x2,x3
u3 x1,x2,x3

= displacement field in or on the body whereFEV orFES are applied

A 6 15

Figure A.6.2 illustrates a body force such as gravity, that is,

FEV gravity =

0

0

−
dm∗g
dV

=

0

0

−
ρdV∗g
dV

=

0

0

−ρg

A 6 16

The pressure p is an example of a surface traction, that is,

FES pressure =
0
0
−p

A 6 17

If the forces are independent of displacements, the inner integral of (A.6.12) may be
performed, yielding

WE =
V
F
T
EV u dV +

S
F
T
ES u dS A 6 18
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Index

absorber, 560, 563
accelerance, 592
acceleration vector formula, 90
active vibration control, 37, 867
actuator, 868, 871, 872, 889
magnetic, 874–878, 881

admittance, 592
Ampere’s law, 874
amplification factor see Quality factor

Q under damping
API Standards, 22, 29, 548, 551
apparent mass, 593
assumed modes, 96
active vibration control, 919
damping matrix, 241, 249, 263
examples, 214, 222, 229, 235, 245, 254, 261
external forces, 222, 228, 234, 242, 247, 264
global shape functions, 97, 219, 226
kinematically admissible function, 97
kinetic energy, 223
Lagrange equation, 212, 219
mass matrix, 212, 225, 237, 246, 259, 262, 357
natural frequencies and mode shapes, 355, 359
potential energy, 226
rotating structures, 215
stiffness matrix, 220, 227, 233, 239,

258, 263, 357
atomic clock, 6
atomic force microscope AFM, 28
AVC see active vibration control

backward mode, 340, 385
balancing rotating machinery, 24, 545, 549
banded storage, 817
bandwidth of matrices, 815
bandwidth of response, 872, 886
bar finite elements, 275–307
assembly of matrices, 281–285, 288, 299

constrained system jarray, 287, 298
constrained system larray, 287,

298, 301
degree of freedom dof connectivity array,

296, 300
nodal connectivity array, 279

one dimensional (1D), 275–289
damping matrix, 277
force vector, 278

mass matrix, 277
stiffness matrix, 277

two dimensional (2D), 289–307
coordinate transform, 291
damping matrix, 294
element actions, 296
embedded rigid sections, 303, 362
external force vector, 295
mass matrix, 293, 302
mode shapes, 363
natural frequency, 332, 362
stiffness matrix, 292, 302

base excitation, 445, 475
basis vector, Guyan, 69
basis vectors, 65
beam finite elements

Euler, 637–670
assembly of matrices, 656

constrained system jarray, 657,
663, 664

constrained system larray, 653, 656, 657,
662, 664, 666

degree of freedom dof connectivity array,
654, 655, 658, 663

nodal connectivity array, 654, 658, 663
coordinates, 639
damping matrix, 669
force vector, 644–646, 651, 669
global coordinates, 646–648, 652
harmonic response, 669
imposed support motion, 666
mass matrix, 642–644, 648
mode shapes, 658, 664, 666, 669
natural frequency, 658, 664, 666, 669
shape function, 639
stiffness matrix, 639–642, 647
strain energy, 639–642, 647
strains, 640
three dimensional (3D), 680, 688, 694

Timoshenko
two dimensional (2D), 725–750

assembly of matrices
constrained system jarray, 734, 737
constrained system larray, 735
degree of freedom dof connectivity

array, 733
nodal connectivity array, 713, 718, 733
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beam finite elements (cont’d)
coordinates, 726
coordinate transformation, 728
damping matrix, 739
force vector, 728, 741
mass matrix, 727, 728, 736
mode shapes, 737, 743
natural frequency, 737, 743
shape function, 639
stiffness matrix, 727, 728, 735
strain energy, 639–642
strains, 640
transient response, 746

three dimensional (3D), 670–726
assembly of matrices, 281–285, 288, 299,

656, 766, 812–813, 816, 845
constrained system jarray, 719,
720, 725

constrained system larray, 714,
719, 721

degree of freedom dof connectivity
array, 713

nodal connectivity array, 713, 718
coordinate transform, 673–679,

703, 711
coordinates, 672, 685, 700, 713, 716
external force vector, 704–712
mass matrix, 688–690, 695–700, 703, 723
mode shapes, 726
moment of inertia, 683
natural frequency, 726
shape function, 687, 693, 697, 699
shear form factor, 682, 683
stiffness matrix, 688, 694, 697, 701, 702,

703, 720
strain energy, 682, 702, 703
strains, 680, 681, 691, 696

beam strain, 232
bearing instability, 411–413
beat vibrations, 331
Belleville washer, 56
bi-orthogonality see orthogonality
boundary condition, essential, 99

C-core, 876
cable constraint, 93
cable vibrations, 390
Campbell diagram, 254
canonical form, 85
Cauchy’s formula see traction boundary

condition
central difference see numerical integration

algorithms
change of basis, 67
characteristic equation, 80
single degree of freedom (dof ), 311
two degrees of freedom (dof ), 320

Cholesky factorization, 348
circulatory matrix, 19, 344, 506
collocation see noncollocation

complex variables, 60
differential equation solution, 62, 526,

528, 566
compliance, 592
compressor, 552
constitutive relation see material law
continuous distributed mass systems, 390

Euler Bernoulli beam, 400
longitudinal bars, 394
strings and cables, 390
Timoshenko beam, 404
torsion bars, 396

control see feedback control
control canonical form, 888, 911
convolution integral, 434
coordinate transformation, 67, 75
corner frequency, 887
current stiffness, 876, 878

damping, 3, 29
active, 882, 890, 896, 906, 913
elastomeric, 556
half power point measurement, 538, 579
log decrement, 313
measurement, 313, 538, 541, 543, 579, 582
orthogonal damping matrix, 364, 367–377,

457, 486, 569, 669, 739, 863
phase slope measurement, 541
proportional see orthogonal damping matrix

under damping
Quality factor Q, 540, 547, 885, 904
ratio, 309, 540

active, 891
derivative, 624
multi degree of freedom system (dof ), 364
single degree of freedom system (dof ), 311

in a rotating frame, 343
degrees of freedom, 63

independent, 97
differential equations, 50
Dirac delta, 86, 100, 434, 917, 921
distributed mass, continuous systems, 390

earthquake, 8, 446, 475
effective mass see modal effective mass
eigenvalue, 79

circulatory system, 343
conjugate, 311
derivative, 595, 620, 624
gyroscopic system, 334, 339, 380
linearization, 595
orthogonally damped system, 365, 374–377
perturbation, 621
reanalysis, 595
single degree of freedom (dof ), 310

eigenvector, 79
derivatives, 595
gyroscopic system, 334, 339, 380
non-uniqueness, 80
perturbation, 621
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elastomer, 556
electrorestrictive actuator, 869
endurance limit, 13
energy methods, advantages, 143
equilibrium(general equations for a solid),

927
equilibrium position, 30
equivalent stress, 17
Euler angles, 77
Euler numerical integration see numerical

integration algorithms
Euler’s identity, 60, 527

fatigue
damage, 18
failure, 11

feedback control, 868, 878
compensation, 880
control law, 869, 871, 881, 882
error, 880

steady state, 883
gains, 881, 883, 906, 914
lead compensation, 893, 896. 914
piezoelectric stack actuator, 907
poles, 886
sensors, 868–869, 871, 879, 881, 889
stability, 873, 884, 885, 891, 895,

905, 906
filter of elastic modes, 468
finite elements see individual element types: bars,

beams-2DEuler, beams-
2DTimoshenko, beams-
3DTimoshenko, solid-2D,
membrane, solid-3D

finite elements, 211 see also Lagrange equation
“J” array see individual element types
“L” array see individual element types
assembly of matrices see individual

element types
automated mesh, 801
banded storage, 815
degree of freedom connectivity array see

individual element types
external forces, 272, 275
Gauss integration points, 757–759
ground excitation, 666
introduction, 35
isoparametric, 755, 826
kinematic constraint, 98, 99
kinetic energy, 267, 272
Lagrange equation, 275
mass matrix, 267, 269, 272
nodal connectivity array see individual

element types
nodal displacements, 268, 272
potential energy, 274
shape function consistency condition, 99, 276,

639, 679, 687, 826
shape function interpolation, 99, 268, 272
stiffness matrix, 269, 271, 274

strain-displacement relation, 271
support excitation, 666

flexibility, 592
flexible modes, 68
force transmissibility see transmissibility
force types

base excitation, 445, 446, 475
exponential, 422, 429, 432
impulse, 435
modal, 453, 489
periodic, 525, 552
pulse, 437, 440, 442
ramp, 422, 429
rotating imbalance, 504, 525, 529, 538–540,

546, 549, 551, 561, 567, 900
step, 422, 429
successive, 438

forward mode shape, 340, 385, 548
Fourier series, 4, 80, 552, 554
free vibration, 3 see also initial condition

response, natural frequency,
mode shape

frequency, 2
frequency response function (FRF), 83, 872

gains see feedback control
Gauss quadrature, 759
generalized coordinates, 67
Goodman diagram, 14
good vibrations, 9
Green’s function, 435
Guyan reduction

basis vectors, 596, 599, 606, 619
reordering of matrices, 596
selection of retained degrees of

freedom, 597
transformation matrix, 597

gyroscopic system, 319, 335
bi-orthogonality, 387
matrix, 319, 332, 338, 506
mode shapes, 335, 339
natural frequencies, 334, 339, 380

half power point see half power point
measurement under damping

harmonic response, 525
active controlled system, 899
modal approach, 570
N degrees of freedom, 566, 567, 815, 818
receptances see receptances
single degree of freedom, 527–559

force input, 529
support motion input, 535

two (2) degrees of freedom, 559–565
harmonics, 4
Heaviside function, 86, 100, 435, 439, 440
heavy spot, 548
Hertzian contact, 56
high spot, 548
human body vibrations, 6, 9
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identification of parameters, 543
imbalance see force types rotating imbalance
impedance, 592
impulse function, 86
incompatible elements, 774
inertance, 592
inertia, 29, 32, 33
influence coefficient
definition, 592
balancing, 549

initial condition response
continuous, distributed mass systems, 394,

395, 399
gyroscopic system, 335, 340
modal distribution initial conditions, 363
N degrees of freedom (dof ) , 351, 354, 359
orthogonally damped systems, 366, 372
rigid body modes, 354
single degree of freedom (dof ), 312, 317
Two (2) degrees of freedom (dof ), 324, 327,

330, 335
inner product, 70
instability, 344, 408–418, 510
instability see stability under feedback control
international space station, 869
ISO standards, 9, 29
isolation of support motion input, 536, 537
isoparametric, 35

Jeffcott rotor, 55, 874, 878, 891, 900

kinematic constraints, 86, 92
kinetic energy
flexible body

assumed modes see assumed modes
finite elements see finite elements

particle, 144
rigid body, 145, 146, 155

examples, 156, 185, 188, 191, 201, 206

Lagrange equation, 35
assumed modes see assumed modes
compared with Newton’s law, 207
finite elements see finite elements
flexible bodies, 211, 223
generalized force, 166

flexible bodies
internal force, 218, 220
external force, 221, 222, 228

rigid bodies
forces, 166, 184

examples, 186, 191, 193, 201, 207
torques, 166, 186

examples, 185, 186, 191, 193
potential energy, 168

flexible body, 216, 225
rotational stiffness, 176

examples, 185, 191
translational stiffness symmetric

matrix, 169

examples, 185, 188, 191, 193
translational stiffness unsymmetric

matrix, 171
weight, 168

examples, 188, 191, 201, 207
Rayleigh dissipation

rotational damping, 180
example, 185, 188, 191, 206

translational damping, 174
examples, 188, 191, 201

rigid bodies, 162, 164, 166, 182
static equilibrium position reference,

196–199
symbolic math code automation, 201
system of particles, 157, 162

Laplace transforms, 83, 428, 440
lead compensation see feedback control
linear dependent, 67
linear independent, 67
linearization, 56, 118, 207, 876
log decrement, 313
loss factor, 557
low pass filter (LPF), 886, 889

MAC see assurance criterion under modal
magnetic

bearing actuator, 871, 874, 875
circuit, 875
field intensity, 875
flux density, 875, 877

magnetic force, 58
MAPLE

3D plot, 260
determinant, 320
differential equation solution, 53, 426
differentiation, 426, 531
eigenvalues, 47, 358
function integration or differentiation, 215,

232, 252, 260
Laplace transform, 430, 434
matrix, 253, 260
numerical integration, 50, 54
plot, 531
simplify, 253
solve algebraic equation–find roots, 311,

342, 531
square root, 531
substitution (subs), 434
symbolic, 45, 122
Taylor series, 57

material law (general equations for a solid),
934

MATLAB, 42
eigenvalues, 43, 462, 511, 805, 661
format, 661
global command, 51, 510
mode shapes, 462, 805, 661
numerical integration, 50, 54, 463, 507,

513, 516
error tolerance, 474
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plots, 450, 455, 514, 521, 662
symbolic

collect, 907, 917
diff (differentiation), 920
differential equation solution, 428
int (integration), 917, 920
Laplace transform, 431
simplify, 907, 917, 920
solve (solve equations), 917
syms, 45, 428, 431, 907, 917

transfer function to state space, 889
matrix
circulatory, 70, 319, 342, 344
direction cosine, 76
gyroscopic, 70, 319, 332, 338
lower triangular, 348
orthogonal, 70, 77
orthogonal damping, 367, 373, 377
partitioned, 73
positive definite, 70, 346
rank, 352
skew symmetric, 70, 344, 338

Maxwell stress tensor, 876
membrane finite elements, 810–820
assembly of matrices, 812–813, 816
mass matrix, 810–811
mode shape, 813, 814
natural frequencies, 813
potential energy, 811–812
shape functions, 811
stiffness matrix, 811–812
strains, 811–812

MESH2D, 802
microgravity vibration isolation, 169
MIL Military standards, 27, 29
Miner–Palmgren Rule, 18
mobility, 592
modal
acceleration method, 453, 455
analysis, 79
assurance criterion, 590, 591
condensation, 451, 492
coordinates, 452, 466, 479, 489, 491
dominance, 577, 578
effective mass, 477, 484
force, 453, 489
mass, 349
parameter identification, 578, 580, 581
participation factor, 477
synthesis, 609

basis vectors, 609
junction degrees of freedom, 611
subspace condensation, 611

mode shape, 36, 64, 68, 80, 309
comparison, 590
continuous distributed mass systems, 392,

395, 398, 402, 407
gyroscopic system, 339, 380
measurement, 580, 581, 585, 587
N degrees of freedom, 347, 362

orthogonally damped system, 364,
366, 375

orthonormal, 350
perturbation, 621
scale factor, 590
Two (2) degrees of freedom, 324, 326,

330, 339
momentum and impulse method

angular, 134
linear, 129

music, 6

natural frequency, 3, 6, 36, 79, 309
active, 891, 896, 913
continuous distributed mass systems, 393,

395, 398, 402, 407
damped, 311, 364
derivative, 624
gyroscopic system, 334, 339, 380
measurement, 541, 543, 579, 584
N degrees of freedom (dof ), 347, 353, 355

orthogonal damped system, 362,
372, 377

1 degree of freedom (dof ), 309, 311, 317
perturbation, 621, 624
rigid body mode, 352
Two (2) degrees of freedom (dof ), 323, 326,

330, 332, 339
Newmark Beta see numerical integration

algorithms
Newton’s law, 34

compared with Lagrange’s equation, 207
examples, 104, 105, 112, 117, 121, 122,

138, 207
rotational, 110, 111,
static equilibrium position reference, 120
symbolic math code automation, 122
translational, 108

node (of finite element model), 35, 99
node (of mode shape), 65
noncollocation, 873, 901, 906
numerical integration, 51, 54, 494
numerical integration algorithms, 494

central difference, 495
Euler, 501
Euler–Improved, 501
Newmark Beta, 496, 507, 518
Runge–Kutta, 503, 507, 519
time step, 508, 515

Nyquist plot see polar plot

O ring, 558
orbit, 547
orthogonality, 68

bi-orthogonality
general M, K, C systems, 388–390, 489
gyroscopic modes, 385, 387

continuous distributed mass systems, 393
orthogonally damped system mode shapes,

364, 373
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orthogonality (cont’d)
symmetric mass, stiffness and damping

systems, 377
trigonometric, 82
undamped system mode shapes, 349, 353,

354, 358

parameter identification see modal parameter
identification

participation factor seemodal participation factor
particle motion, 103
periodic excitation, 552
permeability, 875, 877
phase angle, 2
phasors, 60, 525, 557, 566
piezoelectric, 6
piezoelectric actuator
capacitance, 907
expansion factors, 907, 913
internal preload, 907
patch or layer (PLA), 870, 915

cantilever, 918, 919
force, 917, 921
moment, 916, 917

polarization, 907
preload, 907, 913
resonance, 907
soft and hard materials, 907
stack, 869, 908, 910, 913
voltage requirement, 907

polar plot, 543
potential energy, 151
assumed modes see assumed modes
finite elements see finite elements
general equations for a solid, 936
Lagrange equation see Lagrange equation

power, 35
power and work, 151, 155, 156
power amplifier, 84, 867
power conservation principle, 153, 155, 156
pressure pulsation, 552
proportional damping see orthogonal damping

matrix under damping
pulley system, 95
pulse disturbances, 440, 442

quadratic form, 73
quality factor Q see Quality factor Q under

damping

rainflow cycle counting, 18
Rayleigh’s quotient, 631
reanalysis, 595
receptances, 572, 574, 592
measurement, 580, 581, 584, 587, 592
modal formula with accelerated

convergence, 574
mode dominance, 577
of orthogonally damped system, 573
synthesis of substructures, 575, 576, 595

reluctance (magnetic), 875, 877
resonance, 3, 79, 531, 540, 556, 559, 560, 572,

584, 820
response spectrum, 444
rigid body motions (modes), 63, 465, 471, 485
rms root mean square, 4
rolling contact, 93
rotating machinery standards, 22
rotating structures assumed modes, 215, 245
rotordynamic instability, 413
RungeKutta see numerical integration algorithms
runout, 879, 882

sand pattern, 64
saturation, 872, 876
sawtooth, 554
seismic, 8
self excited vibrations see instability
separation margin (resonance), 22
servo power amplifier (SPA), 867, 871, 873,

881, 907
shaker, 538, 582, 584
S-N curve, 13, 21
solid finite elements

two dimensional (2D), 751–821
assembly of matrices, 766
assembly of matrices

constrained system jarray, 766,
767, 779

constrained system larray, 765, 766,
767, 779

degree of freedom dof connectivity array,
764, 778

nodal connectivity array, 764, 777, 800
axisymmetric, 786–801
coordinates, 754, 755, 763, 764
external force vector, 760–763, 780,

792–794
extra shape functions, 774
Gauss integration points, 757, 759
harmonic response, 820
incompatible, 774
isoparametric, 755
Jacobian, 756, 790
mass matrix, 759, 766, 795, 803
mesh, 777, 801, 805–809
mode shapes, 781–786, 797, 806
natural frequency, 781–786, 797, 806
plane strain, 751
plane stress, 753
shape functions, 755, 775, 788, 799, 802
stiffness matrix, 756, 758, 759, 766, 775,

791, 792, 794, 803
strains, 752, 756, 787
stress calculation, 768–774, 796
triangular elements, 801–809

three dimensional (3D)
assembly of matrices, 845

constrained system jarray, 845, 859
constrained system larray, 845, 860
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degree of freedom dof connectivity array,
843, 844, 859

nodal connectivity array, 842, 858
coordinates, 824, 842–844
degenerate (6 node), 827
external force vector, 834, 836–842, 863
extra shape functions, 827, 834
Gauss integration points, 832, 860
incompatible, 827, 834
isoparametric, 824, 826
Jacobian, 828, 830
mass matrix, 835
mesh, 857
mode shapes, 861
natural frequency, 861
shape functions, 826, 829
stiffness matrix, 832–835
strains, 828
stress calculation, 846–856
transient response, 861

span a subspace, 65
spectrum (response), 444, 446, 475
state space model, 897, 898, 912
static condensation see Guyan reduction
Static Equilibrium Position SEP reference, 120
steady state harmonic response see harmonic

response
stiffness, 29, 31
dynamic, 543, 592
measurement, 543

stiffness (active), 882, 890, 906, 913
stiffness (position), 876, 878, 882
stiffness matrix assumed modes, 220,

227, 248
strain
beam, 232
general equations for a solid, 931
plate, 256

stress
stiffening, 247
calculation, 768–774
concentration factor, 18
general equations for a solid, 929

strings, 390
subspace, 63, 67
subspace condensation, 69, 453, 489, 491, 492,

595, 611
substructures, 608 see also synthesis of

substructures

successive disturbances, 438
superelements, 608
support excitation see base excitation
Symbolic Math Code solution, 122, 201
synthesis see modal synthesis
synthesis of substructures, 575, 576, 608, 609

Taylor series, 56
tesla, 876
Timoshenko beam theory, continuous distributed

mass model, 404
traction boundary condition (general equations

for a solid), 929
transfer function, 84, 431, 872, 888, 893, 910

convert to canonical form, 888, 898, 911
rolloff, 883

transient response, 421
N degrees of freedom, 451
N degrees of freedom unconstrained

system, 465
1 degree of freedom, 421

Analytical solution, 422
convolution integral, 434
Laplace Transform solution, 428

transmissibility ratio, 530
transport theorem, 90
trial weight, 549

unbalance see force types rotating imbalance
uncollocation see noncollocation
uncoupling of equations of motion see

orthogonality
units, 5
unstable vibrations see instability

valve instability, 408
variable mass systems, 138
velocity vector formula, 90
vibration absorber see absorber
viscoelastic material, 261
von Mises stress, 17

whirl, 547
work

and potential energy, 147, 150
energy principle, 153, 154, 155
forces that do not perform work, 149
general equations for a solid, 936
rotational, 148
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