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Preface 
The word "tears" is found in mathematical titles surprisingly 
often. One reads of "mathematics without tears," "geometry 
without tears ," "to pology without tears," "statistics without 
tears," and, of course, "calculus without tears," among oth
ers. Compare these juxtapositions of tears and mathematics 
with what the late Fields Medalist and member of Bour
baki, Laurent Schwartz, once famously wrote,"11 n'y a pas 
de mathematiques sans larmes ... " [There is no mathematics 
without tears .... ] It seems that there has been much weeping 
over mathematics, as well as disagreement over whether the 
weeping is necessary or not. Perhaps people have carried the 
tear metaphor too far, but the underlying sentiment behind 
tearlessness has also been long expressed in other ways too. 
Over the twentieth century we have had all manner of mathe
matics titles using words like , "o utline ," "nutshell," "simple," 
or "dummies ." 

For example, S. P. Thompson published Calculus Made 
Easy in 1910. It retains enough of a following today, more 
than a century later, that you can still buy fresh printings of 
the 1914 seco nd edition on Amazon. Not even a more recent 
edition rewritten by Martin Gardener , no less, has been able 
to push the second edition into oblivion. Mathematics texts 
are like that. At the beginning of the twentieth century, 
some students were still taught from Euclid's Elements, in 
the original ancient Greek. In mathematics the basics last. 
This makes the modern mathematics instructor a bit nihilistic 
about choosing which textbook to use in teaching calculus. 
"Does it really matter which text I use? " they ask. At some 
level it indeed does not, so they just employ whatever text 
was used last year. "More of the same " becomes the standard 
operating procedure. But this cannot always hold true or we 
might be using Thompson today instead of any number of 
modern texts. 

One reason more-of-the-same doesn't always hold is that 
the audience changes even when the basics don't. We ex
plained in the seventh edition that modern students, with a 
lifelong exposure to modern graphical computer interfaces, 
cannot help but look at mathematics differently than previous 
generations. It is all too easy for them to have the impression 
that mathematics is an application of computer science, ex
isting as a mere icon on desktop s. Why learn mathematics, 
they reason, when it seems we can have it all at a "cl ick? " 
Learning that computer science, not mathematics, is actually 
the application is a good first step. Learning that comput
ers are not something to be believed , except in a conditional 
manner, is the definitive lesson for the computer age . That 
alone is reason enough to learn mathematic s. The seventh 
edition dealt with this through a new thematic topic called 
"N ume rical Monsters" (marked by A. in this new edition). 
These represent a form of anti-numerical analysis-"anti" 
because the topic aims to make computer errors as large as 
possible instead of minimizing them. They provide natural, 
self-contained mathematical applications that play off the 

finite representation of number s within all computers. What 
is learned is fundamental, and qualitatively independent of 
code or platform. All of this was inconceivable to Euclid , 
Newton , or S. P. Thompson. 

There is another reason why more-of-the-same is prob
lematic . Much of the basic mathematics used in mathemati
cally based fields was set about a century and half ago. At the 
time of Thompson , one hundred years ago, there was a gap 
between the application fields and the calculus exposition of 
that time . More-of-the-same has preserved that gap over all 
the subsequent years. When students move from calculus to 
the mathematic s of one of these fields, they enter a strange 
world with mathematical customs that may even contradict 
what they have been taught in their calculus courses. For ex
ample, what are physics , chemistry, or engineering students 
supposed to make of the famous equation, d E = JW + JQ? 
It depicts a differential equalling the sum of two things that 
are not actually differentials . Puzzling to say the least. But 
what are these thing s on the right side? Students are told not 
to be alarmed in their field-specific texts because E is not 
actually a function of W or Q . Well, since JW and bQ are 
not actually differentials anyway, maybe that is okay then , 
or is it? Sometimes the J's are replaced by d's with little 
bars through them to emphasize that some kind of unique
to-thermodynamics "mat hem atics" is in play. This represen
tation is an anachronism datin g from the nineteenth century, 
recalling dubious attempts to depict everything, in addition 
to functions, in terms of differentials alone . Calc ulu s texts 
have simply not ventured to show how to proceed without 
the nineteenth century awkwardness still in play today. 

Thi s is not the only example of this phenomenon by 
any means . Such things have generated more confusion and 
"tears" than any mathematics course ever has. A good in
troductory applied calculus textbook ought to lead the reader 
to where the calculus properly connects to actual fields that 
calculus students may actually encounter in their subsequent 
training. Thi s not only help s to stave off unnecessary "tears" 
but ultimately can lead to a more lucid standard of exposition 
for the fields in question. We described these connections 
with the thematic title "Gateway Applications" in the sev
enth edition . We have marked them by the symbol O in 
the eighth edition. They should not be confused with "appli
cations" that appear as tamed examples and staged problems 
typical in alJ textbooks. Instead, they take the reader from a 
calculus topic at hand directly to a mathematical tool often 
overlooked in calculus texts but crucial to an actual field, 
or they take the reader to an insight on how calculus sets 
the structure of an entire field, without actually pursuing the 
field. Now that's application! 

In the seventh edition we introduced a number of these 
gateway applications, from Liapunov functions to thermo
dynamics and Legendre transformations . We also sketched 
out why these things are important and how they are actually 
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used. In the eighth edition we have added a calculus-based 
explanation of entropy as a gateway application, showing 
how it naturally arises from simple calculus properties and 
how it fits both into statistical mechanics in physics and infor
mation theory. Gateway applications are not meant to replace 
those traditional "applications." They are meant to enhance 
the possibilities within a calculus course, either as source ma
terial for independent projects, or as enrichment for a course 
that an instructor may choose to explore to make a point to 
a class. Moreover , they are value-added when viewing the 
book as a future reference work. When students encounter 
the gaps between their calculus training and their subsequent 
courses , chance s are they will find answers on how to bridge 
the gaps not available any place else. The eighth edition is 
no crib sheet to be discarded after the course is done. 

There is yet one more reason why more-of-the-same is 
problematic. Over long enough timescales our best under
standing of mathematics and how it is used does actually 
change. Unanswered questions linger even in conventional 
calculus that are not answered by more-of-the- same . These 
questions bother students, impeding their learning , and may 
even have bothered instructors when they were students. A 
relatively straightforward example is how we know that a 
minimization in a Lagrange multiplier problem reaJly pro
vides a minimum. Does the famous maximum entropy prin
ciple really provide a maximum? How does one know ? An 
answer to this cannot be found in other mainstream calculus 
textbooks, oddly enough, but you can find it in the eighth 
edition. A subtler question on the minds of students is what 
is the difference between a differential of a function and the 
differential appearing in a multiple integral (i.e., think of 
dy = f' (x) dx versus, say, d V = dx dy d z)? If you read 
Thompson, or nearly any other textbook, you may be forgiven 
for concluding that they are really just the same. But they are 
not the same. In fact, the differences turn out to have great 
significance, revealing structures that simplify and unify ad
vanced calculus while having stunning implications for the 
fundamental differential equations governing many fields of 
science. All of this is found within the subject of Exterior 
Calculus. 

Despite the power of exterior calculus it is not part of 
the normal more-of-the-same approach, at least in part be
cause some of its development was after, or contemporary 
with , works like Thompson . But that still makes its current 
form nearly a hundred years old-just like yesterday from 
the perspective of mathematics pedagogy. Until now, a basic 
textbook-style treatment of the subject has been unavailable 
because it has been frozen out by more-of-the-same, causing 
it to be thought of as strictly an advanced topic . Technical 
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monographs only reinforce this idea, but the structures while 
not low level, are not that high level in principle either. Vec
tors, linear algebra, basic calculus, some abstract imagina
tion, and some clarifications about terminological customs is 
pretty much all that is needed . Maybe at some future date, the 
advanced calculus curriculum will be structured differently , 
but for now we offer an answer to the student 's question about 
differentials in the form of the new Chapter 17 of the eighth 
edition. This is consistent with being innovative and living 
up to the subtitle: A Complete Course, while maintaining 
continuity and respecting tradition as much as is practical. 

But , as with other value-added features of this volume, 
an instructor can simply ignore the material and teach a con
ventional program. There are few treatments of that tradi
tional material more straightforward or succinct. But if the 
instructor wants to go a little further or a lot further; if the in
structor wants to make a simple pedagogical point or identify 
a project for students; if the instructor just wants to point to a 
place where a student 's questions can be answered, the eighth 
edition can help accomplish all of these things. Chapter 17 
has been tried out in an advanced calculus course at the Uni
versity of Briti sh Columbia , with positive results. But what 
is really intriguing to us is how many colleagues expressed 
interest in reading a textbook-style treatment of something 
that they always wanted to learn about themselves. 

There is nothing wrong with books like Calculus Made 
Easy. We encourage readers to look at some, not only be
cause alternative treatments can be helpful at times, but also 
to disabuse readers of any impression that they contain any 
sort of special educational magic beyond the usual protocol 
of diagram s, explanations, statements, derivations , defini
tions , worked examples , and exercises. There is also nothing 
wrong with modern interactive computer treatments of math
ematics either. There are many advantages, such as hauling 
around software rather than paper, but even here the false 
allure of a mythical magic road to learning mathematics is 
tempting. Programmed learning still boils down to the same 
protocol as in a textbook: diagrams, explanations, etc. Add 
an instructor and answers in the back of the book, then you 
span the same pedagogical space. No matter how it is de
livered, learning mathematic s that is new to a student takes 
work and maybe enduring some hopefully temporary tears. 
There is no magic road. Therefore, instructors should call for 
fearlessness from students rather than worrying about their 
tearlessness. Challenge marks the path of greatest gain, par
ticularly in a textbook where the path is fully known and 
clearly marked. Fearless rather than tearle ss student s learn 
quickly what S. P. Thompson meant when he began his text, 
"What one fool can do, another can." 
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To the Student 
You are holding what has become known as a "hig h-end " 
calculus text in the book trade. You are lucky. Think of it as 
having a high-end touring car instead of a compact economy 
car. But it is not high end in the material sense. It does 
not have scratch-and-sniff pages, sparkling radioactive ink , 
or anything else like that. It's the contents that set it apart. 
Unlike the car business, "high-end" book content is not priced 
any higher than any other books . It is one of the few consumer 
items where anyone can afford to buy into the high end. But 
there is a catch. Unlike cars, you have to do the work to 
achieve the promise of the book. So in that sense "high end" 
is more like a form of "secre t" martial arts for your mind that 
the economy version cannot deliver. If you practise, your 
mind will become stronger. You will become more confident 
and disciplined. Secrets of the ages will become open to you. 
You will become fearless, as your mind longs to tackle any 
new mathematical challenge. 

But hard work is the watchword. Practise , practise, 
practise. Think of how bees work busily to get their honey. 
There is a sort of "honey" in calculus. It is sweet when 
you finally get a new idea that you did not under stand before. 
There are few experiences as great as figuring things out. That 
is one of the reasons why there has always been a booming 
world puzzle industry. In a high-end book there is more 
honey to be had than in recreational puzzles or lesser calculus 
texts . Doing exercises and checking against solution s in the 
back of the book are how you practise mathematic s with a 
text. You can do essentially the same thing on a computer 
interface : you still do the problems and check the answers. 
However you do it, more exercises mean more practice and 
better performance . 

There are numerou s exercises in this text-too many for 
you to try them all perhaps , but be ambitious. Some are 
"drill" exercises to help you develop your skills in calcula
tion . More important , however , are the problems that develop 
reasoning skiUs and your ability to apply the technique s you 
have learned to concrete situations. In some cases you will 
have to plan your way through a problem that requires sev
eral different "steps" before you can get to the answer. Other 
exercises are designed to extend the theory developed in the 
text and therefore enhance your understanding of the con
cepts of calculus. Think of the problem s as a tool to help you 
correctly wire your mind. You may have a lot of great com
ponents in your head, but if you don ' t wire the components 
together properly , your "home theatre " won't work. 

The exercises vary greatly in difficulty. Usually, the 
more difficult ones occur toward the end of exercise sets, but 
these sets are not strictly graded in this way because exer
cises on a specific topic tend to be grouped together. Also, 

"difficulty " can be subjective. For some students, exercises 
designated difficult may seem easy, while exercises desig
nated easy may seem difficult. Nonetheless, some exercises 
in the regular sets are marked with the symbols D , which 
indicates that the exercise is somewhat more difficult than 
most , or 8 , which indicates a more theoretical exercise. 
The theoretical ones need not be difficult ; sometimes they 
are quite easy. Most of the problems in the Challenging 
Problems section forming part of the Chapter Review at the 
end of most chapters are also on the difficult side. 

It is not a bad idea to review the background material 
in Chapter P (Preliminarie s), even if your instructor does not 
refer to it in class. 

If you find some of the concepts in the book difficult 
to under stand, re-read the material slowly, if necessary sev
eral time s; think about it ; formulate questions to ask fellow 
students , your TA, or your instructor. Don ' t delay. It is 
important to resolve your problems as soon as possible. If 
you don 't understand today's topic , you may not understand 
how it applies to tomorrow's either. Mathematics build s from 
one idea to the next. Testing your under standing of the later 
topics also tests your understanding of the earlier ones. Do 
not be discouraged if you can't do all the exercises. Some 
are very difficult indeed. The range of exercises ensures that 
nearly all students can find a comfortable level to practise at, 
while allowing for greater challenges as skill grows. 

Answers for most of the odd-numbered exercises are 
provided at the back of the book. Exceptions are exercises 
that don 't have short answers: for example, "Prove that ... " 
or "Show that ... " problem s where the answer is the whole 
solution. A Student Solution s Manual that contains detailed 
solutions to even-numbered exercises is available. 

Besides D and 8 used to mark more difficult and 
theoretical problems, the following symbols are used to mark 
exercises of special type s: 

E:3 Exercise s pertaining to differential equations and initial
value problems . (It is not used in sections that are wholly 
concerned with DEs .) 

~~ Problems requiring the use of a calculator. Often a sci
entific calculator is needed. Some such problems may 
require a programmable calculator. 

H Problems requiring the use of either a graphing calcu
lator or mathematical graphing software on a personal 
computer. 

ii Problems requiring the use of a computer. Typically , 
these will require either computer algebra software ( e.g., 
Maple, Mathematica) or a spreadsheet program such as 
Micro soft Excel. 
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To the Instructor 
This book covers the material usually encountered in a three
or four-semester real-variable calculus program, involving 
real-valued functions of a single real variable (differential 
calculus in Chapters 1-4 and integral calculus in Chapters 
5-8), as well as vector-valued function s of a single real vari
able (covered in Chapter 11), real-valued functions of several 
real variables (in Chapters 12-14), and vector-valued func
tions of several real variables (in Chapters 15 and 16). Chap
ter 9 concerns sequences and series, and its position is rather 
arbitrary. 

Chapter 10 contains necessary background on vectors 
and geometry in 3-space as well as a bit of linear algebra 
that is useful , although not absolutely essential, for the un
derstanding of subsequent multivariable material. Most of 
the material requires only a reasonable background in high 
school algebra and analytic geometry. (See Chapter P
Preliminaries for a review of this material.) However, some 
optional material is more subtle and/or theoretical and is in
tended for stronger students, special topics, and reference 
purposes . It also allows instructor s considerable flexibility 
in making points, answering questions, and selective enrich
ment of a course . Chapter 18, for example, is a compact 
treatment of linear ordinary differential equations which may 
provide supplementary material or become a major topic in 
a multi-topic course . 

Changes in the eighth edition include numerous im
provements and clarifications throughout , including nota
tional adjustments and corrections. Major additions include 
Taylor's formula in terms of function s of n variables (Section 
12.9); the classification of extrema for function s with con
straints (Section 13.4); the gateway application, entropy in 
statistical mechanics, and information theory (Section 13.9); 
and Chapter 17, "Differential Forms and Exterior Calculus." 

There is a wealth of material here-too much to include 
in any course. It was never intended to be otherwise . You 
must select what material to include and what to omit, taking 
into account the background and needs of your students. At 
the University of British Columbia , where one author taught 
for 34 years, and at the University of Western Ontario , where 
the other author continues to teach, calculus is divided into 
four semesters, the first two covering single-variable calcu
lus, the third covering function s of several variables , and the 
fourth covering vector calculus . In none of these courses 
was there enough time to cover all the material in the appro
priate chapters; some sections are always omitted. The text 
is designed to allow students and instructors to conveniently 
find their own level while enhancing any course from gen
eral calculus to courses focused on science and engineering 
students. 

Several supplements are available for use with Calculus: 
A Complete Course, 8th Edition. Available to students is the 
Student Solutions Manual (ISBN: 9780321862938): This 
manual contains detailed solutions to all the even-numbered 

exercises, prepared by the authors. There are also such Man
uals for the split volumes, Single Variable Calculus (ISBN : 
9780321877468), and Calculus of Several Variables (ISBN : 
9780321877475). 

Available to instructors is an Instructor 's Resource CD
ROM (IRCD), (ISBN: 9780321874733), including the fol
lowing: 

• Instructor's Solutions Manual, 

• Text Solutions in online-publishable form, 

• Pearson TestGen . TestGen is testing software that en
ables instructors to view and edit the existing questions, 
(over 1,500 test questions are provided), and add ques
tions, generate tests , and distribute the tests in a variety 
of forrnats. 

• Image Library , which contains all of the figures in the 
text provided as individual enlarged .pdf files suitable 
for printing to transparencies. 

These supplements are available for download from a 
password-protected section of Pearson Education Canada's 
online catalogue (catalogue.pearsoned.ca). Navigate to this 
book 's catalogue page to view a list of those supplement s that 
are available . See your local sales representative for details 
and access. 

Also available to qualified instructors areMyMathLab ® 
and MathXL ® Online Courses for which access codes are 
required . 

MyMathLab helps improve individual students' perfor
mance. It has a consistently positive impact on the quality 
of learning in higher-education math instruction . MyMath
Lab 's comprehen ive online gradebook automatically tracks 
your students' results on tests, quizzes, homework, and in the 
study plan. MyMathLab provides engaging experiences that 
personalize, stimulate, and measure learning for each student. 
The homework and practice exercises in MyMathLab are cor
related to the exercises in the textbook. The software offers 
immediate, helpful feedback when students enter incorrect 
answers. Exercises include guided solutions, sample prob
lems , animations, and eText clips for extra help. MyMathLab 
comes from an experienced partner with educational exper
tise and an eye on the future . Knowing that you are using a 
Pearson product means knowing that you are using quality 
content. That means that our eTexts are accurate and our as
sessment tools work. To learn more about how MyMathLab 
combines proven learning applications with powerful assess
ment, visit www.mymathlab.com or contact your Pearson 
representative. 

MathXL is the homework and assessment engine that 
runs MyMathLab. (MyMathLab is MathXL plus a learn
ing management system.) MathXL is available to quali
fied adopters. For more information , visit our website at 
www.mathxl.com, or contact your Pearson representative. 
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What Is Calculus? 
Early in the seventeenth century, the German mathematician Johannes Kepler analyzed 
a vast number of astronomical observations made by Danish astronomer Tycho Brahe 
and concluded that the planets must move around the sun in elliptical orbits. He didn't 
know why. Fifty years later, the English mathematician and physicist Isaac Newton 
answered that question. 

Why do the planets move in elliptical orbits around the sun? Why do hurricane 
winds spiral counterclockwise in the northern hemisphere? How can one predict the 
effects of interest rate changes on economies and stock markets? When will radioactive 
material be sufficiently decayed to enable safe handling? How do warm ocean currents 
in the equatorial Pacific affect the climate of eastern North America? How long will 
the concentration of a drug in the bloodstream remain at effective levels? How do 
radio waves propagate through space? Why does an epidemic spread faster and faster 
and then slow down? How can I be sure the bridge I designed won' t be destroyed in a 
windstorm? 

These and many other questions of interest and importance in our world relate 
directly to our ability to analyze motion and how quantities change with respect to 
time or each other. Algebra and geometry are useful tools for describing relationships 
between static quantities , but they do not involve concepts appropriate for describing 
how a quantity changes. For this we need new mathematical operations that go beyond 
the algebraic operations of addition, subtraction, multiplication, division, and the taking 
of powers and roots. We require operations that measure the way related quantities 
change. 

Calculus provides the tools for describing motion quantitatively. It introduces 
two new operations called differentiation and integration , which, like addition and 
subtraction, are opposites of one another ; what differentiation does, integration undoes. 

For example, consider the motion of a falling rock. The height (in metres) of the 
rock t seconds after it is dropped from a height of ho mis a function h(t) given by 

h(t) = ho - 4.9t 2
. 

The graph of y = h(t) is shown in the figure below: 

y 

y = h(t) 

The process of differentiation enables us to find a new function, which we denote h' (t) 
and call the derivative of h with respect tot, that represents the rate of change of the 
height of the rock, that is, its velocity in metres/second: 

h'(t) = -9 .8t. 

Converse! y, if we know the velocity of the falling rock as a function of time, integration 
enables us to find the height function h(t). 

Calculus was invented independently and in somewhat different ways by two 
seventeenth-century mathematicians: Isaac Newton and Gottfried Wilhelm Leibniz. 
Newton's motivation was a desire to analyze the motion of moving objects. Using his 
calculus, he was able to formulate his laws of motion and gravitation and to conclude 
from them that the planets must move around the sun in elliptical orbits. 
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Many of the most fundamental and important "laws of nature " are conveniently 
expressed as equations involving rates of change of quantities . Such equations are 
called differential equations, and techniques for their study and solution are at the heart 
of calculus. In the falling rock example, the appropriate law is Newton's Second Law 
of Motion: 

force = mas s x acceleration. 

The acceleration, -9.8 m/s2, is the rate of change (the derivative) of the velocity, 
which is in tum the rate of change (the derivative) of the height function. 

Much of mathematics is related indirectly to the study of motion. We regard 
lines, or curves, as geometric objects , but the ancient Greek s thought of them as path s 
traced out by moving point s. Nevertheless, the study of curves also involves geometric 
concepts such as tang ency and area. The proc ess of differe ntiation is closely tied to 
the geometric problem of finding tangent lines; similarl y, integration is related to the 
geometric problem of finding areas of region s with curved boundaries. 

Both differentiation and integration are defined in terms of a new mathematical 
operation called a limit. The conc ept of the limit of a function will be developed in 
Chapt er I. That will be the real beginnin g of our study of calculus. In the chapter called 
"Preliminarie s" we will review some of the background from algebra and geometry 
needed for the development of calculus. 
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Preliminaries 
, , 'Reeling and Writhing, of course, to begin with,' 

the Mock Turtle replied, 'and the different branches 
of Arithmetic -Ambition, Distraction, Uglification, 
and Derision.' 

'' Lewis Carroll (Charles Lutwidge Dodgson) 1832-1898 
from Alice's Adventures in Wonderland 

3 

I n trod LI Ct '1 Q n This preliminary chapter reviews the most important 
things you should know before beginning calculus. Top

ics include the real number system, Cartesian coordinates in the plane, equations 
representing straight lines, circles, and parabolas, functions and their graphs, and, in 
particular, polynomial s and trigonometric functions. 

Depending on your precalculus background , you may or may not be familiar with 
these topics. If you are, you may want to skim over this material to refresh your 
understanding of the terms used; if not, you should study this chapter in detail. 

. _ R_e_al_N_u_m_b_er_s _an_d_t_he_Re_a_l L_i_ne ___________ _ 
Calculus depends on properties of the real number system. Real numbers are numbers 
that can be expressed as decimals , for example, 

Figure P.1 The real line 

5 = 5.00000 .. . 

-¾ = -0.750000 . . . 

1 = 0.3333 . . . 

J2 = 1.4142 . . . 

1r = 3.14159 .. . 

In each case the three dots ( ... ) indicate that the sequence of decimal digits goes on 
forever. For the first three numbers above, the patterns of the digits are obvious; we 
know what all the subsequent digits are. For J2 and 1r there are no obvious patterns. 

The real numbers can be represented geometrically as points on a number line, 
which we call the real line , shown in Figure P. l. The symbol JR is used to denote either 
the real number system or, eqwvalently, the real line. 

- 2 -1 _} 
4 

Q I 
3 

,v'2 2 3 7r: 4 

The properties of the real number system fall into three categories: algebraic 
properties, order properties , and completeness. You are already familiar with the 
algebraic properties; roughly speaking, they assert that real numbers can be added, 
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4 PRELIMINARIES 

The symbol ===> means 
"implies." 

subtracted, multiplied, and divided (except by zero) to produce more real numbers and 
that the usual rules of arithmetic are valid. 

The order properties of the real numbers refer to the order in which the numbers 
appear on the real line. If x lies to the left of y, then we say that "x is less than y" or 
"y is greater than x." These statements are written symbolically as x < y and y > x, 
respectively. The inequality x S y means that either x < y or x = y . The order 
properties of the real numbers are summarized in the following rules for inequalities: 

Rules for inequalities 

If a, b, and care real number s, then : 

l.a < b ==> a+ c < b+ c 

2. a < b ==> a- c < b- c 

3. a < band c > 0 ==> ac < be 

4. a < band c < 0 ==> ac > be; in particular , -a > 

5. a > 0 ==> 
1 
- > 0 
a 

1 1 
6. 0 < a < b ==> - < -

b a 

-b 

Rules 1-4 and 6 (for a > 0) also hold if < and > are replaced by S and 2:. 

Note especially the rules for multiplying ( or dividing) an inequality by a number. If the 
number is positive , the inequality is preserved; if the number is negative, the inequality 
is reversed. 

The completeness property of the real number system is more subtle and difficult 
to understand. One way to state it is as follows: if A is any set of real numbers having 
at least one number in it, and if there exists a real number y with the property that x S y 
for every x in A (such a number y is called an upper bound for A), then there exists a 
small est such number, called the least upper bound or supremum of A, and denoted 
sup(A) . Roughly speaking, this says that there can be no holes or gaps on the real 
line-every point corresponds to a real number. We will not need to deal much with 
completeness in our study of calculus. It is typically used to prove certain important 
results-in particular , Theorems 8 and 9 in Chapter 1. (These proofs are given in 
Appendix III but are not usually included in elementary calculus courses; they are 
studied in more advanced courses in mathematical analysis.) However, when we study 
infinite sequences and series in Chapter 9, we will make direct use of completeness . 

The set of real numbers has some important special subsets: 

(i) the natural numbers or positive integers, namely, the numbers 1, 2, 3, 4, 

(ii) the integers, namely, the numbers 0, ± 1, ±2 , ±3, . . . 

(iii) the rational numbers, that is, numbers that can be expressed in the form of a 
fraction m / n, where m and n are integers, and n =fa 0. 

The rational numbers are precisely those real numbers with decimal expansions 
that are either: 

(a) terminating , that is, ending with an infinite string of zeros, for example, 
3/ 4 = 0 .750000 . . . , or 

(b) repeating, that is, ending with a string of digits that repeats over and over, for ex
ample , 23/ 11 = 2.090909 .. . = 2.09. (The bar indicates the pattern of repeating 
digits .) 

Real numbers that are not rational are called irrational numbers. 
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a open interval (a, b) b 

- -4 .... -------• -
a closed interv al [a, b] b 

- - --------0 ---+ 
a b 
half-open interv al [a , b) 

---0 • 
a b 
half-open interva l (a, b] 

Figure P.2 Finite interval s 

a 
the interval (a, oo) 

a 
the interval (-oo, a] 

interval (-oo, oo) is the real line 

Figure P.J Infinite intervals 

SECTION P. I: Real Numbers and the Real Line 5 

EXAMPLE 1 Show that each of the numbers (a) l.323232 · · · = 1.32 and 
(b) 0.3405405405 . .. = 0.3405 is a rational number by expressing 

it as a quotient of two integers. 

Solution 
(a) Let x = 1.323232. . . Then x - 1 = 0.323232 ... and 

lOOx = 132.323232 ... = 132 + 0.323232 ... = 132 + x - I. 

Therefore, 99x = 131 and x = 131/ 99. 

(b) Let y = 0 .3405405405 ... Then lOy = 3.405405405... and 
lOy - 3 = 0.405405405 . . . Also, 

10, OOOy = 3, 405.405405405 ... = 3, 405 + lOy - 3. 

Therefore ,, 9990y = 3,402 and y = 3, 402 / 9, 990 = 63/ 185. 

The set of rational number s possesses all the algebraic and order properties of the real 
number s but not the completeness property. There is, for example , no rational number 
whose square is 2. Hence, there is a "hole" on the "rational line" where .,/2 should 
be. 1 Becau se the real line has no such "holes," it is the appropriate setting for studying 
limit s and therefore calculus. 

Intervals 
A subset of the real line is called an interval if it contains at least two numbers and 
also contains all real number s between any two of its elements. For example , the set 
of real number s x such that x > 6 is an interval, but the set of real numbers y such that 
y ::/= 0 is not an interv al. (Why? ) It consists of two intervals. 

If a and b are real numbers and a < b, we often refer to 

(i) the open interval from a to b, denoted by (a , b), consisting of all real numbers x 
satisfying a < x < b. 

(ii) the closed interval from a to b, denoted by [a , b ], consisting of all real numbers 
x satisfying a ::: x ::: b. 

(iii) the half-open interval [a , b ), consisting of all real numbers x satisfying the 
inequalities a ::: x < b. 

(iv) the half-open interval (a, b], consisting of all real numbers x satisfying the 
inequalities a < x ::: b. 

These are illustrated in Figure P.2. Note the use of hollow dots to indicate endpoints 
of intervals that are not included in the intervals, and solid dots to indicate endpoints 
that are included. The endpoints of an interval are also called boundary points . 

The intervals in Figure P.2 are finite intervals ; each of them ha finite length b-a. 
Interval s can also have infinite length , in which case they are called infinite intervals. 
Figure P.3 shows some examples of infinite intervals. Note that the whole real line JR 
is an interval, denot ed by (-oo, oo ). The symbol oo ("infinity") does not denote a real 
number , so we never allow oo to belong to an interval . 

1 How do we know that .}2 is an irrational number? Suppose , to the contrary, that .,/2 is rational. 

Then .,/2 = m / n, where m and n are integers and n ::/= 0. We can assume that the fraction m / n 
has been "reduced to lowest terms" ; any common factors have been cancelled out. Now m 2 / n2 = 2, 
so m 2 = 2n2, which is an even integer. Hence m must also be even. (The square of an odd integer is 

always odd.) Since m is even, we can write m = 2k , where k is an integer. Thus 4k 2 = 2n2 and 

n 2 = 2k2, which is even. Thus n is also even. This contradicts the assumption that .,/2 could be 

written as a fraction m / n in lowest terms ; m and n cannot both be even. Accordingly , there can be no 

rational number whose square is 2. 
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6 PRELIMINARIES 

The symbol {=} means "if 
and only if" or "is equivalent 
to." If A and B are two 
statements, then A {=} B 
means that the truth of either 
statement implies the truth of 
the other, so either botb must be 
true or both must be false. 

__ _ ____._? __ --<s ... 
(4, oo) 

• 0 3/ 7 • (- oo, 3/ 7] 

0 I 7/ 5 2 

( I, 7 / 5] 

Figure P.4 The intervals for Example 2 

EXAMPLE 2 Solve the following inequalities. Express the solution sets in terms 
of intervals and graph them . 

(a) 2x - 1 > x + 3 

Solution 
(a) 2x - 1 > x + 3 

2x > X +4 
x > 4 

X 
(b) - 3 2::2x-l 

X :'.:: -6x + 3 

7x::: 3 

3 
x<-

- 7 

(b) 
X 

--> 2x - l 
3 -

Add 1 to both sides. 

Subtract x from both sides. 

The solution set is the interval ( 4 , oo). 

Multiply both sides by - 3. 

Add 6x to both sides. 

Divide both sides by 7. 

The solution set is the interval (-oo, 3/ 7]. 

(c) 
2 

--> 5 
X - I -

(c) We transpose the 5 to the left side and simplify to rewrite the given inequality in 
an equivalent form : 

2 
-- -5 > 0 
x -1 -

2 - 5(x - 1) 
----->O 

X - I -
7-5x 
-- > O. 
X - 1 -

7 - 5x 
The fraction --- is undefined at x = I and is O at x = 7 / 5. Between these 

x- 1 
number s it is positive if the numerator and denominator have the same sign, and 
negative if they have opposite sign. It is easiest to organize this sign information 
in a chart: 

X 7/ 5 

7 - 5x + + + 0 

X - I 0 + + + 
(7 - 5x) / (x - 1) undef + 0 

Thus the solution set of the given inequality is the interval (1, 7 / 5). 

See Figure P.4 for graphs of the solutions. 

Sometime s we will need to solve syste ms of two or more inequalities that must 
be satisfied simultaneously. We still solve the inequalitie s individually and look for 
numbers in the intersection of the solution sets. 

EXAMPLE 3 Solve the systems of inequalities: 
(a) 3 ::: 2x + 1 ::: 5 (b) 3x - 1 < 5x + 3 ::: 2x + 15. 

Solution 
(a) Using the technique of Example 2, we can solve the inequality 3 ::: 2x + 1 to get 

2 ::: 2x, so x 2'.: 1. Similarly , the inequality 2x + 1 ::: 5 leads to 2x ::: 4 , so x ::, 2. 
The solution set of system (a) is therefore the closed interval [l , 2). 

(b) We solve both inequalitie s as follows: 

3x - 1 < 5x + 31 
-1 - 3 < 5x - 3x 

-4 < 2x 

-2 < X 

and I 
5x + 3 ::: 2x + 15 

5x - 2x ::: 15 - 3 

3x ::: 12 

X :'.:: 4 
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O 2/ 5 

the union (-oo , 0) U (2/ 5, 1) 

Figure P.5 The solution set for 

Example 5 

SECTION P. l : Real Numbers and the Real Line 7 

The solution set is the interval (-2 , 4]. 

Solving quadratic inequalities depend s on olving the corresponding quadratic equa
tions. 

Quadratic inequalities EXAMPLE 4 
Solve: (a) x 2 - 5x + 6 < 0 (b) 2x2 + 1 > 4x. 

Solution 
(a) The trinornial x2 - 5x + 6 factors into the product (x - 2)(x - 3), which is negative 

if and only if exactly one of the factors is negative . Since x - 3 < x - 2, this 
happen s when x - 3 < 0 and x - 2 > 0. Thus we need x < 3 and x > 2; the 
solution set is the open interval (2, 3). 

(b) The inequality 2x 2 + 1 > 4x is equivalent to 2x 2 -4x + I > 0. The corresponding 
quadratic equation 2x 2 - 4x + 1 = 0, which is of the form Ax 2 + Bx + C = 0, 
can be solved by the quadratic formula (see Section P.6): 

-B ± .J B2 - 4AC 4 ± ,J'I6"=8 .J2 
x=------ = ----=l± -

2A 4 2 ' 
so the given inequality can be expressed in the form 

(x - 1 + ½.J2) (x - 1 - ½.J2) > 0. 

This is satisfied if both factors on the left side are positive or if both are negative . 
Therefore , we require that either x < 1 - ½.J2 or x > I+ ½.J2. The solution set 

is the union of intervals ( - oo, 1 - ½ .J2) U ( 1 + ½ .J2, oo). 

Note the use of the symbol U to denote the union of intervals . A real number is in 
the union of intervals if it is in at least one of the intervals. We will also need to 
consider the intersection of intervals from time to time. A real number belongs to the 
intersection of intervals if it belongs to every one of the intervals . We will use n to 
denote intersection . For example , 

[1, 3) n [2, 4] = [2, 3) while [l, 3) u [2, 4] = [l , 4] . 

3 2 
EXAMPLE 5 Solve the inequality -- < -- and graph the solution set. 

X - 1 X 

Solution We would like to multiply by x(x - 1) to clear the inequality of fractions , 
but this would require considering three cases separately . (What are they?) Instead , 
we will transpose and combine the two fractions into a single one : 

3 2 3 2 5x - 2 
-- < - - {::::::} -- + - < 0 {::::::} --- < 0. 
x - l x x - I x x(x - 1) 

We examine the signs of the three factors in the left fraction to determine where that 
fraction is negative : 

X 0 2/ 5 1 

5x -2 0 + + + 
X 0 + + + + + 

X - 1 0 + 
5x -2 

x(x - 1) 
undef + 0 undef + 

The solution set of the given inequality is the union of these two intervals, namely, 
(-oo, 0) U (2/ 5, 1). See Figure P.5. 
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8 PRELIMlNARIES 

It is important to remember that 

N = lal. Do not write 
N = a unless you already 
know that a ::: 0 . 

Figure P.6 
Ix - YI= distance from x to y 

The Absolute Value 
The absolute value, or magnitude, of a number x, denoted lxl (read "the absolute 
value of x"), is defined by the formula 

Ix I = { x !f x :::. 0 
-X If X < 0 

The vertical lines in the symbol Ix I are called absolute value bars. 

EXAMPLE 6 131 = 3, 101 = 0, I - SI= 5. 

Note that Ix I :::. 0 for every real number x , and Ix I = 0 only if x = 0. People sometimes 
find it confusing to say that Ix I = - x when x is negative, but this is correc t since -x 
is positive in that case. The symbol fa always denotes the nonnegative square root 

of a, so an alternative definition of lxl is lxl = R. 
Geometrically, Ix I represents the (nonnegative) distance from x to O on the real 

line. More generally, Ix - yl represents the (nonnegative) distance between the points 
x and y on the real line, since this distance is the same as that from the point x - y to 
0 (see Figure P.6): 

Ix - YI = { x - Y, 
y- x, 

l+------
1 

I 

0 

Ix -y l 

if X :::_ y 
if X < y . 

_1 
I 
I 

x-y 

l+----
1 

I 

y 

The absolute value function has the following properties: 

Properties of absolute values 

Ix - yl 
__ 1 

I 
I 

X 

1. I - al = la!. A number and its negative have the same absolute value. 

2. labl = lal lbl and 1 ~ 1 = ~- The absolute value of a product(orquotient) 
b lbl 

of two numbers is the product ( or quotient) of their absolute values. 

3. la± bl :S lal + lbl (the triangle inequality) . The absolute value of a 
sum of or difference between numbers is less than or equal to the sum of 
their absolute values. 

The first two of these properties can be checked by considering the cases where either 
of a or b is either positive or negative. The third property follows from the first two 
because ±2ab :S 12abl = 21a I lbl. Therefore, we have 

la± bl2 =(a± b)2 = a2 ± 2ab + b2 

:S lal2 + 21allbl + lbl2 = (lal + lbl)2, 

and taking the (positive) square roots of both sides , we obtain la± bl :S la I + lbl. This 
result is called the "triangle inequality" because it follows from the geometric fact that 
the length of any side of a triangle cannot exceed the sum of the lengths of the other 
two sides . For instance, if we regard the points 0, a, and b on the number line as the 
vertices of a degenerate "triangle," then the sides of the triangle have lengths lal, lbl, 
and la - bl. The triangle is degenerate since all three of its vertices lie on a straight 
line. 
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I I 
3 3 

~ 
0 I 2 

3 3 

Figure P.7 The solution set for 
Example 7(b) 

X 

SECTION P. l : Real Numbers and the Real Line 9 

Equations and Inequalities Involving Absolute Values 
The equation lxl = D (where D > 0) has two solution s, x = D and x = - D : 
the two points on the real line that lie at distance D from the origin. Equations and 
inequalities involving absolute values can be solved algebraically by breakin g them 
into cases according to the definition of ab olute value , but often they can also be solved 
geometrically by interpreting absolute values as distances. For example, the inequality 
Ix - al < D says that the distance from x to a is less than D, so x must lie between 
a - D and a+ D . (Or, equivalently, a must lie between x - D and x + D.) If Dis a 
positive number , then 

lxl = D 

lxl < D 

lxl SD 

lxl > D 

More generally, 

Ix -al= D 

Ix-al < D 

Ix-al SD 

Ix -al > D 

EXAMPLE 7 

Solution 

{:::::::} either x = - D or x = D 

{:::::::} -D < X < D 

{:::::::} -D s X s D 

{:::::::} either x < - D or x > D 

{:::::::} either x = a - D or x = a + D 

{:::::::} a - D < x < a+D 

{:::::::} a-Dsxsa+D 

{:::::::} either x < a - D or x > a + D 

Solve: (a) 12x + 51 = 3 (b) 13x - 21 S 1. 

(a) j2x + 51 = 3 {:::::::} 2x + 5 = ±3. Thus, either 2x = -3 - 5 = -8 or 
2x = 3 - 5 = -2. The solution s are x = -4 and x = -1. 

(b) j3x - 21 S 1 {:::::::} - 1 S 3x - 2 S 1. We solve this pair of inequalities: 

l - 1 S 3x - 21 
-1 + 2 S 3x 

1/ 3 S X 

and l 3x - 2 S 1 l 
3x S 1 + 2 . 

XS 1 

Thus the solutions lie in the interval (1/ 3, l]. 

Remark Here is how part (b) of Example 7 could have been solved geometrically, 
by interpreting the absolute value as a distance: 

Thus, the given inequalit y says that 

or Ix - ~1 < ~-3 - 3 

This says that the distance from x to 2/ 3 does not exceed 1/ 3. The solutions for x 
therefore lie between 1/ 3 and 1, including both of these endpoints. (See Figure P.7.) 
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10 PRELIMINARIES 

EXAMPLE 8 Solve theeq uatio n lx+ l l =l x-31. 

Solution The equation says that x is equidistant from - 1 and 3. Therefore, x is 
the point halfw ay betw een -1 and 3; x = (-1 + 3) / 2 = l. Alternatively, the given 
equat ion says that either x + 1 = x - 3 or x + 1 = -(x - 3). The first of these 
equation s ha s no solution s; the seco nd has the so lution x = l. 

EXAMPLE 9 What values of x satisfy the inequalit y 15 - ~ I < 3? 

Solution We have 

2 
{=} -3 < 5 - - < 3 

X 

2 
-8 < -- < -2 

X 

1 
4 > - > 1 

X 

1 
4 < x < l. 

Subtract 5 from each member. 

Divide each member by - 2. 

Take reciprocals. 

In this ca lculation we manipulated a syste m of two inequaliti es simultaneously , rather 
than split it up into separ ate inequalities as we have don e in previous examples . Not e 
how the various rules for inequalities were used here. Multiplying an inequality by a 

negative number reverses the inequality. So doe s takin g reciprocals of an inequality in 
which both sides are positive. The give n inequality holds for all x in the ope n interval 

(1/ 4, I). 

EXERCISES P.1 
In Exercises 1-2, express the given rational number as a 
repeating decimal. Use a bar to indicate the repeating digits. 

1 ~ • 9 2. ~ 
11 

In Exercises 3-4, express the given repeating decimal as a 
quotient of integers in lowest terms. 

3. 0.12 4. 3.27 

gg 5. Express the rational numbers 1/ 7, 2/ 7, 3/ 7, and 4/ 7 as 
repeating decimals. (Use a calculator to give as many 
decimal digits as possible .) Do you see a pattern? Guess the 
decimal expansions of 5/ 7 and 6/ 7 and check your guesses. 

8 6. Can two different decimals represent the same number? 
What number is represented by 0.999 . . . = 0 .9? 

In Exercises 7-12, express the set of all real numbers x satisfying 
the given conditions as an interval or a union of intervals . 

7. x 2:: 0 and x ::: 5 

9. x > -5 or x < -6 

11. X > -2 

8. x < 2 and x 2:: - 3 

10. X :'.:: -J 

12. x < 4 or x ::::: 2 

In Exercises 13-26 , solve the given inequality, giving the solution 
set as an interval or union of intervals. 

13. - 2x > 4 14. 3x + 5::: 8 

15. 16. 
6-x 3x -4 

5x - 3::: 7 - 3x -- > --
4 2 

17. 3(2 - x) < 2(3 + x) 18. x 2 < 9 

19. 
I 

20. 
x+ I 

-- < 3 --:::::2 
2-x X 

21. x 2 
- 2x::: 0 22. 6x2 -5x::: -1 

23. x 3 > 4x 24. x 2 
- X :'.:: 2 

25. 
X 4 

26. 
3 2 

- > l +- --<--
2 - X x- 1 x+ I 

Solve the equations in Exercises 27-32 . 

27. lxl = 3 

29. 12t + 51 = 4 

31. 18 - 3sl = 9 

28. Ix - 31 = 7 

30. 11 - ti = 1 

32. Ii - 11 = 1 
In Exercises 33-4 0, write the interval defined by the given 
inequality. 

33. lxl < 2 34. lxl::: 2 
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SECTION P.2: Cartesian Coordinates in the Plane 11 

35. ls- 11::,2 

37. 13x - 71 < 2 

36. It+ 21 < 1 

38. 12x + 51 < 1 

8 43. Do not fall into the trap I - al = a. For what real numbers a 
is this equation true? For what numbers is it false? 

44. Solve the equation Ix - 11 = 1 - x . 

39. I~ - 11 s 1 40. 12 - ~I < ~ 8 45. Show that the inequality 

In Exercises 41-42, solve the given inequality by interpreting it 
as a statement about distances on the real line. 

41. lx+ l l > lx-31 42. Ix - 31 < 21xl holds for all real numbers a and b . 

• _ C_a_rt_e_si_a_n _Co_o_rd_i_na_te_s_i_n _th_e_P_la_n_e __________ _ 
The positions of all points in a plane can be measured with respect to two perpendicular 
real lines in the plane intersecting at the 0-point of each. These lines are called 
coordinate axes in the plane . Usually (but not always) we call one of these axes the 
x -axis and draw it horizontally with number s x on it increasing to the right ; then we 
call the other the y-axis, and draw it vertically with number s y on it increa sing upward. 
The point of intersection of the coordin ate axes (the point where x and y are both zero ) 

y 

3 
bi ......... ·········r P(a, b) 

- 4 - 3 - 2 - I O 2 t 3 
a 

4 X 

- I 

- 2 

- 3 

Figure P.8 The coordinate axes and the 
point P with coordinates (a, b) 

y 

. (2,3) 

. (- 2,2) 2 
. co.s,1.s) 

. (3, l) 

- 2.3 0 
-3 -2 - I 2 3 4 

. (-3 ,- 1) - I . (2,- 1) 
- 1.5 

-2 

Figure P.9 Some points with their 
coordinates 

y 

II 
X 

Ill IV 

Figure P.1 O The four quadrants 

X 

is called the origin and is often denoted by the letter O. 

If P is any point in the plane, we can draw a line through P perpendicular to 
the x -axis. If a is the value of x where that line inter sects the x -axis, we call a the 
x-coordinate of P . Similarly , the y-coordinate of P is the value of y where a line 
through P perpendicular to the y-axis meets the y-axis. The ordered pair (a, b) is 
called the coordinate pair , or the Cartesian coordinates , of the point P . We refer 
to the point as P(a , b) to indicate both the name P of the point and its coordinate s 
(a, b). (See Figure P.8.) Note that the x -coordinate appear s first in a coordinat e 
pair. Coordinate pair are in one-to-one correspondence with points in the plane ; 
each point has a unique coordinate pair, and each coordinate pair determines a unique 
point. We call such a set of coordinate axes and the coordinate pairs they determine a 
Cartesian coordinate system in the plane , after the seventeenth-century philo sopher 
Rene Descartes , who created analyti c (coordinate ) geometry. When equipped with 
such a coordinate system, a plane is called a Cartesian plane. Note that we are using 
the same notation (a, b) for the Cartesian coordinate s of a point in the plane as we use 
for an open interval on the real line . However, this should not cause any confusion 
because the intended meaning will be clear from the context. 

Figure P.9 shows the coordinate s of some point s in the plane. Note that all point s 
on the x-axis have y-coordinate 0. We usually ju st write the x -coordinate s to label 
such points. Similarly , point s on the y-axis have x = 0, and we can label such point s 
using their y-coordinates only. 

The coordinate axes divide the plane into four regions called quadrants . The se 
quadrants are numbered I to IV, as shown in Figure P. l 0. The first quadrant is the 
upper right one; both coordinate s of any point in that quadr ant are positive number s. 
Both coordinates are negative in quadrant ill ; only y is positive in quadrant 11; only x 
is positive in quadrant IV. 

Axis Scales 
When we plot data in the coordin ate plane or graph formula s whose variable s have 
different units of measure, we do not need to use the same scale on the two axes. If , for 
example , we plot height versus time for a falling rock , there is no reason to place the 
mark that shows 1 m on the height axis the same distance from the origin as the mark 
that shows 1 s on the time axis. 

When we graph functions whose variables do not represent physical measurements 
and when we draw figures in the coordinate plane to study their geometry or trigonom-
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12 PREUMINARIES 

y 

B(- 1, 2) 

t;.y = Si X 

A(3 , - 3) 

Figure P.11 Increments in x and y 

y 

---+---------- -+ X 

Figure P.12 The distance from P to Q is 

D = J (x2 - x 1)2 + (y2 - Y1)2 

etry, we usua lly make the scales identical. A vertical unit of distance then looks the 
same as a horizontal unit. As on a surveyor's map or a scale drawing, line segments 
that are supposed to have the same length will look as if they do, and angles that are 
supposed to be equal will look equal. Some of the geometric results we obtain later , 
such as the relationship between the slopes of perpendicular lines, are valid only if 
equal scales are used on the two axes. 

Comp uter and calculator displays are another matter. The vertical and horizontal 
scales on machine-generated grap hs usually differ , with resulting distortions in dis
tances , slopes, and angles. Circles may appear ellipti cal, and square s may appear 
rectangular or even as parallelograms. Right angles may appear as acute or obtuse. 
Circumstances like these require us to take extra care in interpreting what we see. 
High-quality comp uter software for drawing Cartesian grap hs usually allows the user 
to compensate for such scale problems by adjusting the aspect ratio (the ratio of vertical 
to horizontal scale). Some computer scree ns also allow adjustment within a narrow 
range. When using graphing software, try to adjust your particular software/hardware 
config uratio n so that the horizontal and vertical diameter s of a drawn circle appear to 
be equal. 

Increments and Distances 
When a particle moves from one point to another, the net changes in its coordinates are 
called increments. They are calc ulated by subtractin g the coordi nates of the startin g 
point from the coordinate s of the ending point. An increment in a variable is the net 
change in the value of the variable. If x changes from x1 to x 2, then the increment in 
x is t.x = x2 - x1. 

EXAMPLE 1 Find the increments in the coordi nates of a particle that moves 
from A(3 , - 3) to B(-1, 2) . 

Solution The increments (see Figure P.11) are: 

t. x = -1 - 3 = -4 and t. y = 2 - (-3) = 5. 

If P(x1, y1) and Q(x2 , y2) are two points in the plane, the straight line segment P Q is 
the hypotenuse of a right triangle PCQ , as shown in Figure P.12. The sides PC and 
C Q of the triangle have lengths 

and lt.yl = IY2 - yJI. 

These are the horizantal distance and vertical distance between P and Q. By the 
Pythagorean Theorem , the length of P Q is the square root of the sum of the squares 
of these lengths. 

Distance formula for points in the plane 

The dista nce D between P (x 1, yt) and Q (x2, Y2) is 

EXAM p LE 2 The distance between A(3 , -3) and B(-1, 2) in Figure P.11 is 

J(-1 - 3)2 + (2 - (-3)) 2 = J(-4) 2 + 52 = .J4T units. 
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Figure P.13 

(a) The circle x 2 + y 2 = 4 

(b) The disk x 2 + y2 s 4 

(-2, 4) (2, 4) 

Figure P.14 The parabola y = x2 

SECTION P.2: Cartesian Coordinates in the Plane 13 

EXAM p LE 3 The distance from the origin O (0, 0) to a point P (x, y) is 

J (x - 0)2 + (y - 0)2 = J x2 + y2 . 

Graphs 
The graph of an equation (or inequality ) involving the variables x and y is the set of 
all points P(x, y) whose coordinates satisfy the equation (or inequality). 

y y 

2 2 

-2 2 -2 2 
0 X 0 X 

- 2 -2 

(a) (b) 

EXAMPLE 4 The equation x 2 + y2 = 4 represents all points P (x,y) whose 
distance from the origin is J x 2 + y 2 = .J4 = 2. These points lie 

on the circle of radius 2 centred at the origin. This circle is the graph of the equation 
x 2 + y2 = 4. (See Figure P.13(a).) 

EXAM p LE 5 Points (x, y) whose coordinates satisfy the inequality x 2 + y2 ~ 4 
all have distance ~ 2 from the origin. The graph of the inequality 

is therefore the disk of radius 2 centred at the origin. (See Figure P.13(b ).) 

EXAMPLE 6 Consider the equation y = x 2 . Some points whose coordinate s 
satisfy this equation are (0, 0), (I, 1), (-1, 1), (2, 4) , and (-2, 4). 

These points (and all others satisfying the equation) lie on a smooth curve called a 
parabola . (See Figure P.14.) 

Straight Lines 
Given two points P1 (x1, YI) and P2(x2, y2) in the plane, we call the increments !ix = 
x2 - x 1 and !iy = Y2 - Y1, respectively, the run and the rise between P1 and P2. 
Two such points always determine a unique straight line (usually called simply a line) 
passing through them both. We call the line P1 P2. 

Any nonvertical line in the plane has the property that the ratio 

rise !iy Y2 - YI 
m=-=-=---

run /',.x x2 - x 1 

has the same value for every choice of two distinct points P1 (x1, y1) and P2(x2, y2) 
on the line. (See Figure P.15.) The constant m = !',. y / /',.x is called the slope of the 
nonvertical line. 
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Figure P.15 !J.y / !J.x = !J.y' / !J.x' because 
triangles Pi QP2 and P{ Q' Pf are similar 

y 

X 

Figure P.16 Line L has inclination cp 

y 

Figure P.17 6 ABD is similar to 6 CAD 

y 

!J.x' 

I 
I !J.y 
I 

Q 

X 

EXAMPLE 7 The slope of the line joining A (3, -3) and B ( -1 , 2) is 

L1y 2 - (-3) 
m=-=----

L1x -1-3 

5 

-4 
5 

4 

The slope tells us the direction and steepness of a line. A line with positive slope rises 
uphill to the right; one with negative slope falls downhill to the right. The greater the 
absolute value of the slope, the steeper the rise or fall. Since the run L1x is zero for a 
vertical line, we cannot form the ratio m ; the slope of a vertical line is undefined. 

The direction of a line can also be measured by an angle. The inclination of a line 
is the smallest counterclockwise angle from the positive direction of the x-axis to the 
line. In Figure P.l 6 the angle cp (the Greek letter "phi") is the inclination of the line L . 
The inclination ¢ of any line satisfies 0° ::: ¢ < 180° . The inclination of a horizontal 
line is 0° and that of a vertical line is 90°. 

Provided equal scales are used on the coordinate axes, the relationship between 
the slope m of a nonvertical line and its inclination cp is shown in Figure P.16: 

L1y 
m=-=tan ¢. 

L1x 

(The trigonometric function tan is defined in Section P.7.) 

Parallel lines have the same inclination. If they are not vertical , they must therefore 
have the same slope. Conversely , lines with equal slopes have the same inclination and 
so are parallel. 

If two nonvertical lines , LI and L 2, are perpendicular , their slopes m I and m2 

satisfy m I m 2 = -1 , so each slope is the negative reciprocal of the other: 

and 

(This result also assumes equal scales on the two coord inate axes.) To see this, observe 
in Figure P.17 that 

AD 

BD 
and 

AD 
m2 = ---. 

DC 

AD DC 
Since LABD is similar to L.CAD, we have - =- ,a nd so 

BD AD 
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y 

linex = 3 

line y = I (3, 1) 

3 X 

Figure P.18 The lines y = I and x = 3 

y 

Figure P.19 Line L has x-intercept a and 
y-intercept b 

SECTION P.2: Cartesian Coordinates in the Plane 15 

Equations of Lines 
Straight lines are particularly simple graphs , and their corresponding equatio ns are 
also simple. All points on the vertical line through the point a on the x-axis have their 
x-coordinates equal to a. Thus x = a is the equation of the line. Similarly , y = b is 
the equation of the horizontal line meeting the y-axis at b. 

EXAMPLE 8 The horizontal and vertical lines passing through the point (3, 1) 
(Figure P.18) have equations y = land x = 3, respectively. 

To write an equation for a nonverti cal straight line L, it is enough to know its slope m 

and the coordinates of one point Pi (xi , yi ) on it. If P(x , y ) is any other point on L, 
then 

y -y, 
--==m , 
X -Xi 

so that 

y - y ,=m( x-x,) 

The equation 

or y = m(x - xi)+ YI· 

y = m(x - xi)+ YI 

is the point-slope equation of the line that passes through the point (x,, y,) 
and has slope m. 

EXAMPLE 9 Find an equation of the line that has slope -2 and passes through 
the point (1 , 4) . 

Solution We substitute x 1 = 1, y 1 = 4, and m = -2 into the point-slope form of the 
equation and obtain 

y = -2(x - I)+ 4 or y = -2x + 6. 

EXAMPLE 10 Find an equation of the line through the points (1 , -1) and (3, 5). 

. 5-(-1) 
So/ut,on The slope of the line is m = --- = 3. We can use this slope with 

3 - 1 
either of the two point s to write an equation of the line . If we use (1, - 1) we get 

y=3(x- l )-1 , 

If we use (3, 5) we get 

y = 3(x - 3) + 5, 

which simplifie s to y = 3x - 4. 

which also simplifies to y = 3x - 4 . 

Either way, y = 3x - 4 is an equation of the line . 

They-coordinate of the point where a nonvertical line intersects the y-axis is called the 
y-intercept of the line. (See Figure P.19 .) Similarly, the x-intercept of a nonhorizontal 
line is the x-coordinate of the point where it crosse s the x -axis. A line with slope m 

and y-intercept b passes through the point (0, b), so its equation is 

y = m(x - 0) + b or, more simply, y = mx + b . 
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EX E R C I S ES P.2 

A line with slope m and x-i ntercept a passes through (a, 0), and so its equation is 

y =m(x-a) . 

The equation y = mx + b is cal led the slope-y-int ercept equation of the 
line with slope m and y-intercept b. 

The equation y = m(x - a) is called the slope- x -intercept equation of the 
line with slope m and x -intercept a. 

EXAMPLE 11 Find the slope and the two intercepts of the line with equation 
8x +S y = 20. 

Solution Solving the equation for y we get 

20- 8x 8 
y=- -- =--x+4 . 

5 5 

Comparing this with the general form y = mx + b of the slope-y-intercept equation, 
we see that the slope of the line ism = -8 / 5, and the y- intercept is b = 4. To find the 
x-intercept, put y = 0 and solve for x, obtaining 8x = 20, or x = 5/ 2. The x-intercept 
is a= 5/ 2. 

The equation Ax + By = C (where A and B are not both zero) is called the general 
linear equation in x and y because its graph always represents a straight line, and 
every line has an equation in this form. 

Many important quantities are related by linear equations. Once we know that 
a relationship between two variables is linear , we can find it from any two pairs of 
corresponding values, just as we find the equation of a line from the coordinates of two 
points. 

EXAM p LE 12 The relation ship between Fahrenheit temperature (F) and Celsi us 
temperature (C) is given by a linear equation of the form F = 

mC + b. The freezing point of water is F = 32° or C = 0°, while the boiling point is 
F = 212° or C = 100° . Thus 

32 =Om+ b and 212 = 100m + b, 

sob= 32 and m = (212 - 32) / 100 = 9/ 5. The relationship is given by the linear 
equation 

9 
F = - C +32 

5 
or 

5 
C = -(F - 32). 

9 

In Exercises 1-4, a particle moves from A to 8. Find the net 
increments tu and l:i.y in the particle's coordinates. Also find the 
distance from A to 8. 

6. A particle arrives at the point (-2, -2) after its coordinates 
experience increments !1x = -5 and !1y = l. From where 
did it start? 

1. A(O, 3), 8(4 , 0) 

3. A(3, 2), 8(-1 , -2) 

2. A(-1, 2), 8(4 , -1 0) 

4. A(0.5, 3), 8(2 , 3) 

5. A particle starts at A(-2, 3) and its coordinates change by 
tu = 4 and !1y = - 7. Find its new position. 

Describe the graphs of the equations and inequalities in Exercises 
7-12. 

7. x 2 + y2 = I 

9. x 2 + y2.::: I 

8. x 2 + y2 = 2 

10. x 2 + y2 = 0 
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11. y;::: x 2 12. y < x 2 

In Exercises 13-14, find an equation for (a) the vertical line and 
(b) the horizontal ljne through the given point. 

13. (-2,5 / 3) 14. ( h, - 1.3) 

In Exercises 15- 18, write an equation for the Line through P with 
slope m. 

15. P(-1, 1), m = l 
17. P(O, b), m = 2 

16. P(-2, 2), m = 1/ 2 

18. P(a, 0), m = -2 

In Exercises 19-20 , does tbe given point P lie on, above, or 
below the given line? 

19. ?(2, 1), 2x + 3y = 6 20. ?(3 , -1), x - 4y = 7 

In Exercises 21-24, write an equation for the line through the two 
points. 

21. (0, 0), (2, 3) 

23. (4, 1), (-2, 3) 

22. (-2, 1), (2, -2) 

24. (-2,0), (0,2) 

In Exercises 25-26, write an equation for the line with slope m 

and y-intercept b. 

25. m = -2 , b = Ji 26. m = -1 / 2, b = - 3 

In Exercises 27-30, determine the x- and y- intercept s and the 
slope of the given lines, and sketch their grap hs. 

27. 3x +4y = 12 

29 . ./2.x - ./3y = 2 

28, X +2y = -4 

30. l.5 x - 2y = -3 

In Exercises 31-32, find equations for the lines through P that 
are (a) parallel to and (b) perpendi cular to the given line. 

31. P(2, 1), y = x + 2 32. P(-2,2) , 2x +y=4 

33. Find the point of intersection of the ljnes 3x + 4 y = - 6 and 
2x - 3y = 13. 

34. Find the point of intersection of the lines 2x + y = 8 and 
5x -7y = 1. 

35. (Two-i ntercept equations) If a bne is neither horizontal 
nor vertical and does not pass through the origin, show that 
.. b .. h" X y 1 h its equation can e wntten m t e 1orm - + - = , w ere a 

a b 
is its x-intercept and b is its y- intercept. 

36. Determine the intercepts and sketch the graph of the line 
X y 
2-3=1. 

37. Find the y- intercept of the line through the points (2, 1) and 
(3, -1) . 

SECTION P.3: Graphs of Quadratic Equations 17 

38. A line passes through (-2 , 5) and (k, 1) and has x- intercept 
3. Find k. 

39. The cost of printing x copies of a pamphlet is $C , where 
C = Ax + 8 for certain constants A and 8. If it costs 
$5,000 to print 10,000 copies and $6,000 to print 15,000 
copies, how much will it cost to print 100,000 copies ? 

40. (Fahrenheit versus Celsius) In the PC-plane, sketch the 
5 

graph of the equation C = 9 (F - 32) linking Fahrenheit 

and Celsius temperatures found in Example 12. On the same 
graph sketch the line with equation C = F . Is there a 
temperature at which a Celsius thermometer gives the same 
numerical reading as a Fahrenheit thermometer? If so, find 
that temperature. 

Geometry 

41. By calculating the lengths of its three sides, show that the 
triangle with vertices at the points A(2 , 1), 8(6, 4), and 
C(5 , -3) is isosceles. 

42. Show that the triangle with vertices A (0, 0), 8(1, ./3), and 
C(2 , 0) is equ ilateral. 

43. Show that the points A(2, - 1), 8(1, 3), and C(-3, 2) are 
three vertices of a quare and find the fourth vertex. 

44. Find the coordinates of the midpoint on the line segment 
P, P2 joining the points P1 (x, , Yt) and P2 (x2, y2). 

45. Find the coordinates of the point of the ljne segment joining 
the points P1 (x 1, Yt) and P2 (x2, y2) that is two-thirds of the 
way from P1 to P2. 

46. The point P lies on the x -axi and the point Q lies on the 
line y = - 2x. The point (2, I) is the midpoint of PQ . Find 
the coordinates of P. 

In Exercises 47-48 , interpret the equation as a statement about 
distances, and hence deterrrune the graph of the equation . 

47. j (x - 2)2 + y2 = 4 

48. j (x - 2)2 + y2 = j x 2 + (y - 2)2 

49. For what value of k is the line 2x + ky = 3 perpendicular to 
the line 4x + y = l? For what value of k are the lines 
parallel? 

50. Find the ]jne that pas es through the point (1, 2) and through 
the point of intersection of the two lines x + 2y = 3 and 
2x-3 y =-l. 

. _ G_r_a p_h_s_of_Q_u_a_dr_at_ic_E_q_u_at_io_n_s ___________ _ 
This section reviews circles, parabolas , ellipses, and hyperbolas, the graphs that are 
represented by quadratic equations in two variables. 

Circles and Disks 
The circle having centre C and radius a is the set of all points in the plane that are at 
distance a from the point C. 

The distance from P(x, y) to the point C(h, k) is J(x - h) 2 + (y - k) 2 , so that 
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18 PRELIMINARIES 

y 

( I, 3) • 

~-~---+--~-~-~- - x 

Figure P.20 Circle 
(x - 1)2 + (y - 3)2 = 4 

(-2, 1). 

Figure P.21 Circle 

I 
I 

I 
I 

/~ 

(x + 2)2 + (y - 1)2 = 7 

y 

exterior 

y 

Figure P.22 The interior of a circle 
(darkly shaded) and the exterior (lightly 
shaded) 

the equation of the circle of radius a > 0 with centre at C(h, k) is 

Jex - h)2 + (y - k)2 = a. 

A simpl er form of this equation is obtained by squarin g both sides. 

Standard equation of a circle 

The circle with centr e (h, k) and radiu s a 2:: 0 has equation 

(x - h) 2 + (y - k) 2 = a2. 

In particular, the circl e with centre at the origin (O, 0) and radi us a has equatio n 

x2 + y2 = a2. 

EXAMPLE 1 

EXAMPLE 2 

The circle with radius 2 and centr e (1 , 3) (Figure P.20) has 
equatio n (x - 1)2 + (y - 3)2 = 4. 

The circle having eq uation (x + 2) 2 + (y - 1)2 = 7 has centre at 
the point (-2, 1) and radius .,/7. (See Figure P.21.) 

If the squar es in the sta ndard equatio n (x - h)2 + (y - k) 2 = a2 are multiplied out , 
and all constant term s co llec ted on the rig ht-h and side , the eq uatio n beco me s 

x 2 - 2hx + y2 - 2ky = a2 - h2 - k2. 

A quadratic eq uation of the form 

x 2 + y2 + 2ax + 2by = c 

must repre sent a circle, which can be a single point if the radius is 0, or no points at all. 
To identify the gra ph , we comp lete the squares on the left side of the equation. Since 
x 2 + 2ax are the first two terms of the square (x + a)2 = x 2 + 2ax + a 2, we add a2 to 
both sides to comp lete the square of the x terms . (Note that a 2 is the squa re of half the 
coefficient of x .) Similarly , add b2 to both sides to complete the square of the y term s. 
The equatio n then becomes 

(x + a) 2 + (y + b) 2 = c + a2 + b2. 

If c + a2 + b2 > 0, the graph is a circ le with centre (-a , -b) and radiu s.Jc + a2 + b2. 
If c + a2 + b2 = 0, the gra ph consists of the single point (-a, -b ) . If c + a 2 + b2 < 0 , 
no points lie on the gra ph . 

EXAMPLE 3 Find the centre and rad ius of the circl e x 2 + y2 - 4x + 6y = 3. 

Solution Observe that x 2 - 4x are the first two terms of the binomial square (x-2) 2 = 
x 2 - 4x + 4 , and y 2 + 6y are the first two terms of the square (y + 3) 2 = y 2 + 6y + 9. 
Henc e we add 4 + 9 to both sides of the given equation and obtain 

x 2 - 4x + 4 + y2 + 6y + 9 = 3 + 4 + 9 or (x - 2) 2 + (y + 3)2 = 16. 

Thi s is the eq uation of a circle with centre (2, -3) and radi us 4. 

The set of all points inside a circle is called the interior of the circle; it is also called 
an open disk. The set of all points outsid e the circle is called the exterior of the circl e . 
(See Figure P.22.) The interior of a circle together with the circle itself is called a 
closed disk, or simply a disk . The inequa lity 

(x - h) 2 + (y - k)2 ~ a2 

represents the disk of radius lal centred at (h, k). 
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y 

-1 

Figure P.23 The disk x 2 + y2 + 2x :::: 8 

X 

y = -p L 

Figure P.24 The parabola 4p y = x 2 with 
focus F(O, p) and directrix y = - p 

y=- 4x 2 

Figure P.25 Some parabolas y = ax 2 

X 

SECTION P.3: Graphs of Quadratic Equations 19 

EXAM p LE 4 Identify the graph of: 

(a) x 2 + 2x + y2 ::S 8 (b) x 2 + 2x + y2 < 8 (c) x 2 + 2x + y2 > 8. 

Solution We can complete the square in the equation x 2 + y2 + 2x = 8 as follows : 

x
2 + 2x + 1 + y2 = 8 + 1 

(x + 1)2 + y 2 = 9. 

Thus the equation represents the circle of radius 3 with centre at (-1, 0). Ineq uality 
(a) represents the (closed) disk with the same radius and centre. (See Figure P.23.) 
Inequality (b) represents the interior of the circle (or the open disk). Inequality (c) 
represents the exterior of the circle. 

Equations of Parabolas 

A parabola is a plane curve whose points are equidistant from a fixed point 
F and a fixed straight line L that does not pass through F. The point F is the 
focus of the parabola; the line L is the parabola's directrix. The line through 
F perpendicular to Lis the parabola's axis. The point V where the axis meets 
the parabola is the parabola 's vertex . 

Observe that the vertex V of a parabola is halfway between the focus F and the point 
on the directrix L that is close t to F . If the directrix is either horizontal or vertical, and 
the vertex is at the origin, then the parabola will have a partic ularly simple equation. 

EXAMPLE 5 Find an equation of the parabola having the point F (0, p) as focus 
and the line L with equation y = - p as directrix . 

Solution If P(x , y) is any point on the parabola, then (see Figure P.24) the distances 
from P to F and to (the closest point Q on) the line L are given by 

p F = J (x - 0)2 + (y - p )2 = J x2 + y2 - 2 PY + p2 

PQ = j(x -x)2 + (y _ (-p))2 = Jy2 + 2py + p2. 

Since P is on the parabola, PF = P Q and so the squares of these distances are also 
equal: 

x 2 + y2 - 2py + P2 = y2 + 2py + P2, 

or, after simplifying, 

x 2 = 4p y or 
x 2 

y =-
4p 

(called standard forms). 

Figure P.24 shows the situation for p > O; the parabola opens upward and is symmetric 
about its axis, the y -axis. If p < 0, the focus (O p) will lie below the origin and the 
directrix y = - p will lie above the origin. In this case the parabola will open downward 
instead of upward. 

Figure P.25 shows several parabolas with equations of the form y = ax 2 for positive 
and negative values of a. 

EXAMPLE 6 An equation for the parabo la with focus (O, 1) and directrix y = - l 
is y = x 2 / 4, or x 2 = 4y. (We took p = l in the standard equation.) 
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axis 
F 

Figure P.26 Reflection by a parabola 

Figure P.27 Horizontal scaling: 
(a) the graph y = 1 - x 2 

(b) graph of (a) compressed horizontally 
(c) graph of (a) expanded horizontally 

y 

Figure P.28 The two parabolas are 
similar. Compare the parts inside the 
rectangles 

EXAMPLE 7 Find the focus and directrix of the parabola y = -x 2 . 

Solution The given equation matche s the standard form y = x 2 / (4p) provided 
4p = - 1. Thus p = - 1/ 4. The focus is (0, -1 / 4) , and the directrix is the line 
y = 1/ 4. 

Interchanging the roles of x and y in the derivation of the standard equation above 
shows that the equation 

y2 = 4p x or 
y2 

x=-
4p 

(standard equation) 

represents a parabola with focus at (p, 0) and vertical directrix x = - p. The axis is 
the x-axis. 

Reflective Properties of Parabolas 
One of the chief applications of parabolas is their use as reflectors of light and radio 
waves . Rays originating from the focus of a parabola will be reflected in a beam 
parall el to the axis, as shown in Figure P.26 . Similarly , all the rays in a beam striking 
a parabola parallel to its axis will reflect throu gh the focus. This property is the 
rea son why telescopes and spotlights use parabolic mirrors and radio telescopes and 
microwave antenn as are parabolic in shape. We will exa mine this property of parabola s 
more carefu lly in Section 8.1. 

y y (a) (b) Y (c) 

y = 1 - (2x)2 
y = 1 - (x/ 2)2 

- I 

Scaling a Graph 

I 
2 

X X 

The graph of an equation can be compressed or expanded horizo ntally by replacing 
x with a multiple of x. If a is a positive number , replacing x with ax in an equation 
multiplies horizontal distances in the graph of the equation by a factor 1/ a. (See 
Figure P.27.) Replacin g y with ay will multiply vertica l distance s in a similar way. 

You may find it surpri sing that , like circles, all parabolas are similar geometric 
figures; they may have different sizes, but they all have the same shape. We can change 
the size while preserving the shape of a curve represented by an equation in x and y by 
scaling both the coor dinates by the same amount. If we scale the equation 4p y = x 2 

by rep lacing x and y with 4px and 4p y, respectively , we get 4p(4py) = (4px) 2, 

or y = x 2 . Thu s the genera l parabola 4p y = x 2 has the same shape as the specific 
parabola y = x 2, as shown in Figure P.28. 

Shifting a Graph 
The grap h of an equatio n (or ineq uality) can be shifted c unit s hori zontally by replacing 
x with x - c or vertically by replacing y with y - c. 

Shifts 

To shift a graph c units to the right, replace x in its equation or inequal ity with 
x - c. (If c < 0, the shift will be to the left.) 

To shift a graph c units upward, replace y in its equation or inequality with 
y - c. (If c < 0, the shift will be downward .) 
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Figure P.29 

(a) Horizontal shifts of y = x 2 

(b) Vertical shifts of y = x 2 

y 

Figure P.30 The parabola 

y = x 2 -4x + 3 

SECTION P.3: Graphs of Quadratic Equations 21 

EXAM p LE 8 The graph of y = (x - 3)2 is the parabola y = x 2 shifted 3 units 
to the right. The graph of y = (x + 1)2 is the parabola y = x 2 

shifted 1 unit to the left. (See Figure P.29(a).) 

- 1 3 

(a) 

X 

-3 

(b) 

X 

EXAMPLE 9 The graph of y = x 2 + 1 (or y - 1 = x 2) is the parabola y = x 2 

shifted upward 1 unit. Thegraphof y = x 2 -3 (or y -(-3) = x 2), 

is the parabola y = x 2 shifted downward 3 units. (See Figure P.29(b) .) 

EXAM p LE 10 The circle with equation (x - h )2 + (y - k )2 = a2 having centre 
(h , k) and radius a can be obtained by shifting the circle x 2 + y2 = 

a2 of radius a centred at the origin h units to the right and k units upward . These shifts 
correspond to replacing x with x - h and y with y - k. 

The graph of y = ax 2 + bx + c is a parabola whose axis is parallel to the y-axis. 
The parabola opens upward if a > 0 and downward if a < 0. We can complete the 
square and write the equation in the form y = a(x - h) 2 + k to find the vertex (h, k) . 

EXAMPLE 11 Describe the graph of y = x 2 - 4x + 3. 

Solution The equation y = x 2 
- 4x + 3 represent s a parabola, opening upward. To 

find its vertex and axis we can complete the square : 

y = x 2 - 4x + 4 - 1 = (x - 2)2 
- 1, so y - (-l)=(x-2)2 . 

This curve is the parabola y = x 2 shifted to the right 2 units and down 1 unit. Therefore , 
its vertex is (2, -1), and its axis is the line x = 2. Since y = x 2 has focus (0, 1/ 4) , 
the focus of this parabola is (0 + 2, (1/ 4) - 1), or (2, -3 / 4) . (See Figure P.30.) 

Ellipses and Hyperbolas 
If a and b are positive numbers , the equation 

x2 y2 
-+-=1 
a2 b2 

represents a curve called an ellipse that lies wholly within the rectangle -a S x S a , 
- b S y S b. (Why?) If a = b, the ellipse is just the circle of radius a centred at the 
origin. If a =f. b, the ellipse is a circle that has been squashed by scaling it by different 
amounts in the two coordinate directions . 
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y 
b 

The ellipse has centre at the origin, and it passes through the four points (a, 0) , 
(0, b ), (-a, 0), and (0, -b ). (See Figure P.31.) The line segments from (-a, 0) to 
(a, 0) and from (0, -b) to (0, b) are called the principal axes of the ellipse; the longer 
of the two is the major axis , and the shorter is the minor axis. 

EXAMPLE 12 Th . x
2 

y
2 

1 II" . h . . e equation 9 + 4 = represents an e 1pse wit maJor axis 

from (-3 , 0) to (3, 0) and minor axis from (0, -2) to (0, 2). 

y 

minor axis 

major axis a 
- ---ll---''---- -----+-----'------- -+ "----+ X 

:_!=o 
a b 

x2 y2 
Figure P.31 

- b 

x2 y2 
The ellipse a2 + b2 = 1 Figure P.32 

asymptotes 

The hyperbola 2 - 2 = I and its 
a b 

The equation 

x2 y2 
--- =l 
a2 b2 

represents a curve called a hyperbola that has centre at the origin and passes through 
the points (-a, 0) and (a, 0). (See Figure P.32.) The curve is in two parts (called 
branches). Each branch approaches two straight lines ( called asymptotes) as it recedes 
far away from the origin. The asymptotes have equations 

X y 
---=0 
a b 

and 
X y - + - = 0. 
a b 

Figure P.33 Two rectangular hyperbolas 

The equation xy = 1 also represents a hyperbola. This one passes through 
the points (-1, -1) and (1, 1) and has the coordinate axes as its asymptotes. It is, 
in fact, the hyperbola x 2 - y2 = 2 rotated 45° counterclockwise about the origin. 
(See Figure P.33.) These hyperbolas are called rectangular hyperbolas , since their 
asymptotes intersect at right angles. 

We will study ellipses and hyperbolas in more detail in Chapter 8. 

EX E R C I S ES P.3 
In Exercises 1-4, write an equation for the circle with centre C 
and radi us r. 

1. C(O, 0), r = 4 

3.C(-2 , 0), r=3 

2. C(O, 2), r = 2 

4. C(3 , -4), r = 5 

In Exercises 5-8 , find the centre and radius of the circle having 
the given equation. 

S. x 2 + y2 - 2x = 3 6. x 2 + y2 + 4y = 0 

7. x 2 + y2 - 2x + 4y = 4 8. x 2 + y2 - 2x - y + l = 0 

Describe the regions defined by the inequalities and pairs of 
inequalities in Exercises 9-16. 

9. x 2 + y2 > 1 10. x 2 + y2 < 4 

11. (x + I )2 + y2 ::: 4 12. x2 + (y - 2)2 ::: 4 

13. x 2 + y2 > 1, x 2 + y2 < 4 

14. x 2 + y2 ::: 4, (x + 2)2 + y2 ::: 4 

15. x2 + y2 < 2x , x 2 + y2 < 2y 

16. x 2 + y2 - 4x + 2y > 4, x + y > 1 
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17. Write an inequ ality that descri bes the interior of the circle 
with centre ( - 1, 2) and radius ./6. 

18. Write an inequality that describes the exterior of the circle 
with centre (2, -3) and radius 4. 

19. Write a pair of inequalities that describe that part of the 
interior of the circle with centre (0, 0) and radius .../2 lying 
on or to the right of the vertica l line through (1, 0). 

20. Write a pair of inequalities that descr ibe the point s that lie 
outside the circle with centre (0, 0) and radiu s 2, and inside 
the circle with centre (1, 3) that passes through the origin. 

In Exerc ises 21-2 4, write an equation of the parabola having the 
given focus and directri x. 

21. Focus: (0, 4) 

22. Focus: (0, -1 / 2) 

23. Focus: (2, 0) 

24. Focus: (-1 , 0) 

Directrix : y = -4 

Direc trix: y = 1/ 2 

Directrix: x = -2 

Directrix: x = l 

In Exercises 25-28 , find the parabola' s focus and directrix , and 
make a sketc h showing the parabola , focus, and directrix . 

25. y = x 2 / 2 26. y = -x 2 

27, X = -y2/ 4 28. X = y2j l 6 

29. Figure P.34 shows the graph y = x 2 and four shifted versions 
of it. Write equations for the shifted versions. 

y 

Figure P.34 
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30. What equati ons result from shifting the line y = mx 
(a) horizontally to make it pass through the point (a, b) 
(b) vertica lly to make it pass through (a, b)? 

In Exercises 31-34, the graph of y = .Jx+T is to be scaled in 
the indicated way. Give the equation of the graph that results 
from the scaling. 

31. horizontal distances multipli ed by 3 

32 . vertical distances divided by 4 

33 . horizontal dis tances multiplied by 2/3 

34. horizo ntal distances divided by 4 and vertica l distances 
multiplied by 2 

In Exercises 35-38, write an equation for the graph obtained by 
shifting the graph of the given equation as indicated. 

35. y = l - x 2 down 1, left 1 

36. x 2 + y 2 = 5 up 2, left 4 

37. y = (x - 1)2 - 1 down 1, right 1 

38. y = Jx down 2, left 4 

Find the points of intersection of the pair s of curves in Exercises 
39-42. 

39. y = x2 + 3, y = 3x + 1 

40. y = x 2 - 6, y = 4x - x 2 

41. x2 + y2 = 25, 3x + 4y = 0 

42. 2x2 +2/ = 5, xy = l 
In Exerc ises 43-50, identify and sketch the curve represen ted by 
the given equation . 

43. 

45. 

x2 
- +l=l 
4 

(x - 3)2 (y +2)2 
--9- + --4- = l 

x2 
47. - -l = l 

4 

44. 9x2 + 16y2 = 144 

46. (x - 1)2 + (y + l )
2 

= 4 
4 

48. x 2 - y2 = -1 

49. xy = -4 SO. (x - l)( y + 2) = l 

51. What is the effec t on the graph of an equatio n in x and y of 

(a) replacin g x with -x? 

(b) replacing y with -y? 

52. What is the effect on the graph of an equation in x and y of 
replacing x with - x and y with -y simult aneously? 

53. Sketch the graph of lxl + IYI = 1. 

. _ F_u_nc_ti_on_s_a_nd_Th_e_ir_G_ra_ph_s ____________ _ 
The area of a circle depend s on its radius. The temperature at whic h water boil s depend s 

on the altitude above sea level. Th e interest paid on a cash inve stment depend s on the 

length of time for which the inve stm ent is made. 

Wh enever one qu antity depend s on another qu antity , we say th at the former quan

tity is a function of the latter. For instance , the area A of a circle depends on the ra diu s 

r according to the formu la 

A= nr 2
, 
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DEFINITION 

II 
Domain :D(f) 

f 

Figure P.35 A function machine 

so we say that the area is a function of the radius. The formula is a rule that tells us 
how to calculate a unique (single) output value of the area A for each possible input 
value of the radius r. 

The set of all possible input values for the radius is called the domain of the 
function. The set of all output values of the area is the range of the function. Since 
circles cannot have negative radii or areas, the domain and range of the circular area 
function are both the interval [O, oo) consisti ng of all nonnegative real numbers . 

The domain and range of a mathematical function can be any sets of objects; 
they do not have to consist of numbers. Throughout much of this book, however , the 
domains and ranges of functions we consider will be sets of real numbers. 

In calculus we often want to refer to a generic function without having any partic
ular formula in mind. To denote that y is a function of x we write 

Y = f (x) , 

which we read as "y equals f of x ." In this notation , due to the eighteenth-century 
mathematician Leonhard Euler, the function is represented by the symbol f. Also, 
x , called the independent variable, represents an input value from the domain off, 
and y, the dependent variable, represents the corresponding output value f(x) in the 
range off. 

A function f on a set D into a set Sis a rule that assigns a unique element f(x) 
in S to each element x in D. 

In this definition D = :D(f) (read " D of f ") is the domain of the function f. The 
range :R(f) off is the subset of S consisting of all values f (x) of the function. Think 
of a function fas a kind of machine (Figure P.35) that produces an output value f(x) 

in its range whenever we feed it an input value x from its domain. 

There are several ways to represent a function symbol ically. The squaring function 
that converts any input real number x into its square x 2 can be denoted: 

(a) by a formula such as y = x 2 , which uses a dependent variable y to denote the 
value of the function; 

(b) by a formula such as J(x) = x 2 , which defines a function symbol f to name the 
function; or 

(c) by a mapping rule such as x - x 2 . (Read this as "x goes to x 2.") 

In this book we will usually use either (a) or (b) to define functions. Strictly speaking, we 
should call a function f and not f (x) , since the latter denotes the value of the function 
at the point x. However , as is common usage, we will often refer to the function as 
f(x) in order to name the variable on which f depends. Sometimes it is convenient 
to use the same letter to denote both a dependent variable and a function symbol; the 
circular area function can be written A = f(r) = nr 2 or as A = A(r) = nr 2 . In 
the latter case we are using A to denote both the dependent variable and the name of 
the function. 

EXAMPLE 1 

4 
V(r) = 3 nr 3 

The volume of a ball of radius r is given by the function 

for r ==:: 0. Thus the volume of a ball of radius 3 ft is 

4 
V(3) = - 11:(3)3 = 3611: ft3 . 

3 

Note how the variable r is replaced by the specia l value 3 in the formula defining the 
function to obtain the value of the function at r = 3. 
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EXAM p LE 2 A function F is defined for all real numbers t by 

F(t) = 2t + 3. 

Find the output values of F that correspond to the input values 0, 2, x + 2, and F(2). 

Solution In each case we substitute the given input fort in the definition of F: 

F (0) = 2(0) + 3 = 0 + 3 = 3 

F (2) = 2(2) + 3 = 4 + 3 = 7 

F (x + 2) = 2(x + 2) + 3 = 2x + 7 

F(F(2)) = F(7) = 2(7) + 3 = 17. 

The Domain Convention 
A function is not properly defined until its domain is specified . For instance , the 
function f (x) = x 2 defined for all real numbers x 2:: 0 is different from the function 
g(x) = x 2 defined for all real x because they have different domains, even though 
they have the same values at every point where both are defined. In Chapters 1-9 we 
will be dealing with real functions (functions whose input and output values are real 
numbers). When the domain of such a function is not specified explicitly, we will 
assume that the domain is the largest set of real numbers to which the function assigns 
real values. Thus, if we talk about the function x 2 without specifying a domain, we 
mean the function g(x) above. 

The domain convention 

When a function f is defined without specifying its domain, we assume that 
the domain consists of all real numbers x for which the value f(x) of the 
function is a real number. 

In practice, it is often easy to determine the domain of a function f (x) given by an 
explicit formula. We just have to exclude those values of x that would result in dividing 
by O or taking even roots of negative numbers . 

EXAM p LE 3 The square root function. The domain of f (x) = ,Jx is the 
interval (0, oo), since negative numbers do not have real square 

roots. We have /(0) = 0, /(4) = 2, /(10) ~ 3.16228. Note that, although there are 
two numbers whose square is 4, namely, -2 and 2, only one of these numbers, 2, is the 
square root of 4. (Remember that a function assigns a unique value to each element in 
its domain; it cannot assign two different values to the same input.) The square root 
function ,Jx always denotes the nonnegative square root of x. The two solutions of 
the equation x 2 = 4 are x = .J4 = 2 and x =--A= -2. 

EXAMPLE 4 

intervals , 

X . 
The domain of the function h(x) = -

2
-- consists of all real 

X -4 
numbers except x = -2 and x = 2. Expressed in terms of 

:D(h) = (-oo, -2) U (-2, 2) U (2, oo). 

Most of the functions we encounter will have domains that are either intervals or unions 
of intervals. 
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Table 1. 

X y = f(x) 

-2 4 
-1 1 

0 0 
1 1 
2 4 

Figure P.36 

(a) Correct graph off (x) = x2 

(b) Incorrect graph off (x) = x 2 

EXAM p LE 5 The domain of S(t) = JT=r2 consists of all real numbers t for 
which 1 - t 2 2: 0. Thus we require that t 2 :::: 1, or -1 :::: t ::: 1. 

The domain is the closed interval [-1, l] . 

Graphs of Functions 
An old maxim states that "a picture is worth a thousand words." This is certa inly true 
in mathematics; the behaviour of a function is best described by drawing its graph . 

The graph of a function f is just the graph of the equation y = f (x) . It consists 
of those points in the Cartesian plane whose coordinates (x, y) are pairs of input-output 
values for f. Thus (x, y) lies on the graph of f provided x is in the domain of f and 
Y = f(x). 

Drawing the graph of a function f sometimes involves making a table of coordinate 
pairs (x, f (x)) for various values of x in the domain of f, then plotting these points 
and connecting them with a "smooth curve." 

EXAMPLE 6 Graph the function f (x) = x2 . 

Solution Make a table of (x, y) pairs that satisfy y = x2 . (See Table 1.) Now plot 
the points and join them with a smooth curve . (See Figure P.36(a).) 

y y 

(-2, 4) (2, 4) (-2, 4) (2, 4) 

(a) (b) 

How do we know the graph is smooth and doesn ' t do weird things between the 
points we have calculated , for example, as shown in Figure P.36(b)? We could, of 
course, plot more points , spaced more closely together , but how do we know how the 
graph behaves between the points we have plotted ? In Chapter 4, calculus will provide 
useful tools for answering these questions . 

Some functions occur often enough in applications that you should be familiar 
with their graphs. Some of these are shown in Figures P.37-P.46 . Study them for a 
while; they are worth remembering . Note, in particular, the graph of the absolute 
value function, f (x) = lxl, shown in Figure P.46. It is made up of the two half-lines 
y = -x for x < 0 and y = x for x 2::. 0. 

If you know the effects of vertical and horizontal shifts on the equations repre
senting graphs (see Section P.3), you can easily sketch some graphs that are shifted 
versions of the ones in Figures P.37-P.46. 

EXAMPLE 7 Sketch the graph of y = 1 + .Jx - 4. 

Solution This is just the graph of y = .Ji in Figure P.40 shifted to the right 4 units 
(because xis replaced by x - 4) and up 1 unit. See Figure P.47. 
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y 

C y=c 

Figure P.37 The graph of a 
constant function f (x) = c 

y 

Figure P.40 The graph of 
f(x) = Jx 

y 

1 
y = -

X 

Figure P.43 The graph of 

f (x) = 1/x 

y 

Figure P.46 The graph of 

f(x) = lxl 

X 

X 

X 

X 

Figure P.38 The graph of 
f(x) = X 

y 

Figure P .41 The graph of 
f (x) = x3 

y 

1 
y =

x2 

Figure P.44 The graph of 

f (x) = 1/x 2 

y 

y=l+ ~ 

C_c~,2) 
(4, 1) 

Figure P.47 The graph of y = Jx 
shifted right 4 units and up 1 unit 

X 

X 

X 
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Figure P.39 The graph of 
f (x) = x 2 

y 

Figure P.42 The graph of 
f(x) = xl / 3 

y 

-1 

Figure P.45 The graph of 
f(x)=v1f=x1 

y 

' 
' 

2-x 
y= -

x- 1 

X 

X 

X 
- --- ---- - -- - -- -- - --..l- -- - -- - -- - - - - -- - -- - - -

Figure P.48 

' ' ' ' 
' 

y = - 1 

:x = 1 
' 
' 

2-x 
The graph of -

x - l 
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I 

' ' ' ' ' ', 
', 

y 

y =/17 _..,.._..: 

..... __ , __ .,., 
, , 

I 
I 

I 
I , 

y = -fi7 

Figure P.49 The circle x 2 + y 2 = 1 is not 
the graph of a function 

DEFINITION 

I 

EXAMPLE 8 
2- x 

Sketch the graph of the function f (x ) = -- . 
x -1 

Solution It is not immediately obvious that this graph is a shifted version of a known 
graph. To see that it is, we can divide x - 1 into 2 - x to get a quotient of -1 and a 
remainder of 1: 

2-x - x +l+l -( x -1)+1 1 
-- - ----- ------1+--
x - l - x-1 - x -1 - x -1° 

Thus , the graph is that of 1/ x from Figure P.43 shifted to the right I unit and down 1 
unit. See Figure P.48. 

Not every curve you can draw is the graph of a function . A function f can have 
only one value f (x) for each x in its domain, so no vertical line can intersect the graph 
of a function at more than one point. If a is in the domain of function f, then the 
vertical line x = a will intersect the graph off at the single point (a, f (a)). The circle 
x 2 + y2 = 1 in Figure P.49 cannot be the graph of a function since some vertical lines 
intersect it twice. It is, however, the union of the graphs of two functions, name ly, 

y =~ and y =-~ , 

which are, respectively , the upper and lower halves (semicircles) of the given circle . 

Even and Odd Functions; Symmetry and Reflections 
It often happens that the graph of a function will have certain kinds of symmetry . The 
simplest kinds of symmetry relate the values of a function at x and - x . 

Even and odd functions 

Suppose that -x belong s to the domain off whenever x does. We say that f is 
an even function if 

f(-x) = f(x) for every x in the domain of f. 

We say that f is an odd function if 

f(-x) = -f(x) for every x in the domain of f. 

The names even and odd come from the fact that even powers such as x 0 = 1, x2 , x4, 
... , x- 2, x - 4, . .. are even function s, and odd powers such asx 1 = x , x 3, ... , x - 1, x-3, 
.. . are odd functions . Observe , for example, that (- x )4 = x 4 and (-x) - 3 = -x - 3 . 

Since (-x )2 = x 2, any function that depends only on x 2 is even. For instance, the 
absolute value function y = lx l = R is even . 

The graph of an even function is symmetric about the y -axis. A horizontal straight 
line drawn from a point on the graph to the y-axis will, if continued an equal distance on 
the other side of the y-axis , come to another point on the graph. (See Fig ure P.50(a).) 

The graph of an odd function is symmetric about the origin. A straight line drawn 
from a point on the graph to the origin will , if continued an equal distance on the other 
side of the origin , come to another point on the graph. If an odd function f is defined 
at x = 0, then its value must be zero there: J(O) = 0. (See Figure P.50(b) .) 

If f(x) is even (or odd) , then so is any constant multiple of f( x ) such as 2f(x) 
or -5 f (x) . Sums (and difference s) of even function s are even; sums (and differences) 
of odd functions are odd . For example , f( x ) = 3x4 - Sx 2 - 1 is even, since it is the 
sum of three even functions : 3x 4, -5x 2, and - 1 = -x 0 . Similarly, 4x 3 - (2/ x) is an 
odd function. The function g(x) = x 2 - 2x is the sum of an even functio n and an odd 
function and is itself neither even nor odd. 
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Figure P.50 

(a) The graph of an even function is 
symmetric about the y-axis 

(b) The graph of an odd function is 
symmetric about the origin 

Figure P.51 

(a) The graph of g(x) = x 2 - 2x is 
symmetric about x = l 

(b) The graph of y = h(x) = x 3 + I is 
symmetric about (0, l) 

SECTION P.4: Functions and Their Graphs 29 

y y = f(x) 

X X 

(a) (b) 

Other kinds of symmetry are also possible . For example, the function 
g(x) = x 2 - 2x can be written in the form g(x) = (x - 1)2 - 1. This shows 
that the values of g(l ± u) are equal, so the graph (Figure P.51(a)) is symmetric about 
the vertical line x = l ; it is the parabol a y = x 2 shifted 1 unit to the right and 1 
unit down. Similarly , the graph of h(x) = x 3 + 1 is symmetric about the point (0, 1) 
(Figure P.Sl(b)). 

y y 

(a) 

Reflections in Straight Lines 

(b) 

The image of an object reflected in a plane mirror appears to be as far behind the mirror 
as the object is in front of it. Thu s, the mirror bisects at right angles the line from a 
point in the object to the corresponding point in the image. Given a line L and a point 
P not on L, we call a point Q the reflection, or the mirror image, of P in L if L is 
the right bisector of the line segment P Q. The reflection of any graph G in L is the 
graph consisting of the reflection s of all the point s of G. 

Certain reflection s of graphs are easily described in terms of the equations of the 
graphs : 

Reflections in special lines 

1. Substituting -x in place of x in an equation in x and y correspond s to 
reflecting the graph of the equation in the y-axis. 

2. Substituting -y in place of y in an equation in x and y corre sponds to 
reflecting the graph of the equation in the x-axi s. 

3. Substituting a - x in place of x in an equation in x and y corre sponds to 
reflecting the graph of the equation in the line x = a/ 2. 

4. Substituting b - y in place of y in an equation in x and y correspond s to 
reflecting the graph of the equation in the line y = b / 2. 

5. Interchanging x and y in an equation in x and y corresponds to reflecting 
the graph of the equation in the line y = x . 

EXAMPLE 9 Describe and sketch the graph of y = ,,/2=x, - 3. 

Solution The graph of y = ,,/2 - x is the reflection of the graph of y ..jx, 
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Figure P.52 

(a) Constructing the graph of 
y = .J2="x - 3 

(b) Transforming y = lxl to produce the 
coloured graph 

(Figure P.40) in the vertical line x = 1. The grap h of y = ,Jl=x - 3 is the result of 
lowering this reflection by 3 units. See Figure P.52(a). 

y 

.!_ = v'2 - X ,x = I •••. 
: .... ------

-- ____ :_ ••• -·· y =,,/x 
.... ~ ...... 

,' I 'I>' 
' ' 

(a) 

X 

EXAMPLE 10 Express the equation of the coloured grap h in Figure P.52(b) in 
terms of the absolute value function Ix 1-

Solution We can get the coloured graph by first reflecting the graph of Ix I (Figure P.46) 
in the x-axi s and then shifting the reflection left 3 unit s and up 2 units. The reflection 
of y = lx l in the x -axis has equation -y = !xi, or y = - Ix!. Shifting this left 3 unit s 
gives y = -Ix+ 31. Finally , shifting up 2 units gives y = 2 - Ix+ 31, which is the 
desired equation. 

Defining and Graphing Functions with Maple 
Many of the calculation s and graphs encountered in studyin g calculus can be produced 
using a comp uter algebra system such as Maple or Mathematica . Here and there , 
througho ut this book, we will include examp les illustrating how to get Maple to perfo rm 
such tasks. (The examp les were done with Maple 10, but most of them will work with 
earlier or later versions of Maple as well.) 

We begin with an example showing how to define a function in Maple and then 
plot its graph. We show in colour the input you type into Maple and in black Maple 's 
response . Let us define the function f(x) = x 3 - 2x 2 - 12x + 1. 

> f : = x -> xA3-2*xA2-12*x+l; <enter> 

f := x --+ x3 - 2x 2 
- 12x + 1 

Note the use of : = to indicate the symbol to the left is being defined and the use of- > 
to indicate the rule for the cons truction off (x ) from x . Also note that Maple uses the 
asteri sk * to indicate multiplication and the caret A to indicate an expo nent. A Mapl e 
instruction should end with a semico lon ; (or a colon : if no output is desire d) befor e 
the Enter key is pressed . Hereafter we will not show the <enter> in our input. 

We can now use f as an ordinary function: 

> f(t)+f(l) ; 

t 3 - 2t 2 - 12t - 11 

The following command results in a plot of the graph of f on the interval [-4 , 5] 
shown in Figure P.53. 

> plot(f(x) , x =-4 .. 5) ; 

We could have specified the expression x A 3-2 * x A 2- 12 * x + 1 directly in the plot 
command instead of first defining the function f( x ). Note the use of two dots .. to 
separate the left and right endpoint s of the plot interval. Other options can be included 
in the plot command; all such option s are separa ted with commas . You can specify the 
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Figure P.53 A Maple plot 

2 
1.8 
1.6 
1.4 
1.2 

0.8 
0 .6 
0.4 
0.2 

-o .4 -0 .2 ° 
Figure P.54 The graph of 
y = g(x) on the interval 
[-0.5, 0.5] 
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range of values of y in addition to that for x (which is required), and you can specify 
s c alin g=CONSTRAI NED if you want equal unit distances on both axes . (This would 
be a bad idea for the graph of our f(x). Why?) 

A. When using a graphing calculator or computer graphing software things can go horribly 
wrong in some circumstances . The following example illustrates the catastrophic 
effects that round-off error can have. 

o.2x oA 

EXAM p L E l 1 Consider the function g (x) = I l + x I - 1 . 
X 

If x > -1 , then 11 + x i= 1 +x , so the formula for g(x) simplifies to g(x) 
(l+x)-1 X ---- = - = 1, at least provided x f= 0. Thus the graph of g on an interval 

X X 
lying to the right of x = -1 should be the horizontal line y = 1, possibly with a hole 
in it at x = 0. The Maple commands 

> g : = x -> (abs(l+x)-1)/x : plot(g(x) , x=-0 . 5 .. 0 . 5) ; 

lead, as expected, to the graph in Figure P.54. But plotting the same function on a very 
tiny interval near x = 0 leads to quite a different graph . The command 

> plot( [g(x) , 1] , x=-7*10"(-16) .. 5*10"(-16) , 

style=[point , line] , numpoints=4000) ; 

produces the graph in Figure P.55. 

-6e-16 -4e-16 -2e-16 

2 

1.5 

0.5 

2e-1~ 4e-16 

Figure P.55 The graphs of y = g(x) (colour) and y = 1 (black) on the 
interval [-7 x 10- 16, 5 x 10- 16] 

The coloured arcs and short line through the origin are the graph of y = g(x) plotted as 
4,000 individual points over the interval from - 7 x 1o- 16 to 5 x 10- 16. For comparison 
sake, the black horizontal line y = 1 is also plotted . What makes the graph of g so 
strange on this interval is the fact that Maple can only represent finitely many real 
numbers in its finite memory . If the number x is too close to zero, Maple cannot tell 
the difference between 1 + x and 1, so it calculates 1 - 1 = 0 for the numerator , 
and uses g(x) = 0 in the plot. This seems to happen between about -0.5 x 10- 16 
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EX E R C I S ES P.4 

and 0.8 x 10- 16 (the coloured horizontal line) . As we move further away from the 
origin, Maple can tell the difference between 1 + x and 1, but loses most of the 
significa nt figures in the representation of x when it adds 1, and these remain lost when 
it subtracts 1 again. Thus the numerator remains constant over short intervals while the 
denominator increases as x moves away from 0. In those intervals the fraction behaves 
like constant / x so the arcs are hyperbolas , sloping downward away from the origin. 
The effect diminishes the farther x moves away from 0, as more of its significant figures 
are retained by Maple. It should be noted that the reason we used the absolute value 
of 1 + x instead of just 1 + x is that this forced Maple to add the x to the 1 before 
subtracting the second l. (If we had used (1 + x) - 1 as the numerator for g(x), Maple 
would have simplified it algebraically and obtained g(x) = 1 before using any values 
of x for plotting.) 

In later chapters we will encounter more such strange behaviour (which we call 
numerical monsters and denote by the symbox A ) in the context of calculator and 
computer calculations with floating point (i.e., real) numbers. They are a necessary 
consequence of the limitations of such hardware and software, and are not restricted 
to Maple, though they may show up somew hat differently with other software. It is 
necessary to be aware of how calculators and computers do arithmetic in order to be 
able to use them effectively without falling into errors that you do not recognize as 
such. 

One final comment about Figure P.55: the graph of y = g(x) was plotted as 
individual points, rather than a line as was y = 1, in order to make the jumps between 
consecutive arcs more obvious. Had we omitted the style= [point , line] option 
in the plot comma nd, the default line style would have been used for both graphs and 
the arcs in the graph of g would have been connected with vertical line segments. Note 
how the comma nd called for the plotting of two different functions by listing them 
within square brackets, and how the corresponding styles were correspondingly listed. 

In Exercises 1-6, find the domain and range of each function. 
y 

graph (a) 
y 

graph (b) 

1. f(x) = 1 +x 2 

3. G(x) = .Jg - 2x 

2. f (x) = l - .fi 

4. F(x) = 1/ (x - 1) 

t I 
5. h(t) = ~ 6. g(x) = 

,v2-t l-.Jx-2 
7. Which of the graphs in Figure P.56 are graphs of functions 

y = f (x)? Why? 
y graph (a) y 

graph (b) 

C 
-+------+X -+------+X 

y graph (c) y graph (d) 

-+------+x -+------ + X 

Figure P.56 

X 

y y 
graph (c) graph (d) 

X X 

Figure P.57 
8. Figure P.57 shows the graphs of the functions: (i) x - x 4 , 

(ii) x 3 - x4, (iii) x( l - x)1, (iv) x 2 - x3. Which graph 
corresponds to which function? 

In Exercises 9-10, sketch the graph of the function f by first 
making a table of values off (x) at x = 0, x = ±1 / 2, x = ±1, 
x = ±3 / 2, and x = ±2. 

9. f(x) = x 4 10. f (x) = x1/3 
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In Exercises 11-22 , what (if any) symmetry doe s the graph of f 
possess? In parti cular, is f even or odd? 

41. f(x + 2) 

43. - f(x) 

45. f(4 -x) 

42. f (x - 1) 

44 . f(-x) 
11. f (x) = x 2 + I 

X 

13. f (x) = x2 - 1 

1 
15. f(x) = --

x -2 

17. f (x) = x 2 
- 6x 

19. f(x) = lx31 

21. f(x) = 5x 

12. f (x) = x 3 + x 

1 
14. f (x) = x 2 _ 

1 

l 
16. f(x) = - -

x +4 
18. f(x) = x 3 - 2 

20. f(x) =I x+ 11 

22. f(x) = J(x - 1)2 

46 . 1 - f(l -x) 
y 

(1, 1) 

2 

Sketch the graphs of the functions in Exercises 23-38. Figure P.58 

23. f (x) = -x 2 24. f (x) = I - x 2 
It is often quite difficult to determine the range of a function 
exactly . In Exercises 47--48, use a graphing utility (calculator or 
com puter ) to graph the function f, and by zooming in on the 
graph determine the range off with accuracy of 2 decimal place s. 

25. f (x) = (x - 1)2 26. f (x) = (x - 1)2 + 1 

27. f (x) = 1 - x 3 28. f (x) = (x + 2) 3 

29. f (x) = .Jx + 1 30. f (x) = .Jx"+I ... 
4 

x + 2 ,.,. x - I 
•:!I 7. f (x) = x2 + 2x + 3 a:!I 48. f (x) = x2 + x 

31. f (x) = - lxl 

33. f (x) = Ix - 21 
2 

35. f(x) = -
x+2 

X 
37. f(x) = -

x+ l 

32. f (x) = lxl - l 

34. f (x) = I+ Ix - 21 
l 

36. f(x) = -
2-x 

X 
38 . f(x) = -

1- x 

In Exercises 49-52 , use a gra phing utility to plot the graph of the 
given function. Examine the grap h (zoomi ng in or out as 
necessary) for symmetries . About what lines and/or point s are the 
graphs symmetric? Try to verify your conclusions algebrai cal ly. 

i~ 49 . f (x) = x 4 
- 6x 3 + 9x2 - I 

3 -2x +x 2 

In Exercises 39--46, f refers to the function with domain [O, 2) 
and range [0, I], whose grap h is shown in Figure P.58. Sketch the 
graphs of the indicated functions and specify their domain s and 
ranges. 

i~ SO. f (x) = 2 - 2x + x2 

ii 51. f (x) = x -
1 ii 52. f (x) = 2

x
2 
+ 3x 

x -2 x 2 +4x +5 
8 53. What function f (x) , defined on the real line JR, is both even 

and odd? 39. f(x) + 2 40. f (x) - 1 

Combining Functions to Make New Functions 

DEFINITION 

I 

Functions can be combined in a variety of ways to produce new functions. We begin 
by examining algebraic means of combining function s, that is, addition, subtraction , 
multiplication , and division. 

Sums, Differences, Products, Quotients, and Multiples 
Like numbers , function s can be added, subtracted , multiplied, and divided (except 
where the denominator is zero) to produce new function s. 

If f and g are functions, then for every x that belongs to the domain s of both f 
and g we define functions f + g, f - g, f g, and f / g by the formulas: 

(f + g)(x) = f(x) + g(x) 

(f - g)(x) = f(x) - g(x) 

(fg)(x) = f(x)g(x) 

(£) (x) = f(x), where g(x) =/= 0. 
g g(x) 
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Figure P.59 

(a) (f + g)(x) = f(x) + g(x) 

(b) g(x) = (O.S)f (x) 

A special case of the rule for multiplying function s shows how functions can be 
multiplied by constant s. If c is a real number, then the function cf is defined for all x 
in the domain of f by 

(cf)( x ) = c · f(x). 

EXAMPLE 1 FigureP.59(a) shows the graphs of f(x) = x 2
, g(x) = x -1, 

and their sum (f + g)(x) = x 2 + x - l. Observe that the height 
of the graph off + g at any point x is the sum of the heights of the graphs off and g 
at that point. 

y 

(a) (b) 

EXAM p LE 2 Figure P.59(b) shows the graphs off (x) = 2 - x 2 and the multiple 
g(x) = (0.5)f(x) . Note how the height of the graph of g at any 

point x is half the height of the graph of f there. 

EXAM p LE 3 The function s f and g are defined by the formulas 

f(x) = ,Jx and g(x) = Ji"=x. 

Find formulas for the values of 3f, f + g, f - g, f g, f / g, and g/ fat x, and specify 
the domains of each of these function s. 

Solution The information is collected in Table 2: 

Table 2. Combination s of f and g and their domain s 

Function Formula Domain 

f f(x) = ./x [O, oo) 
g g(x)=~ (-oo, I] 

3f (3f)(x) = 3,J'x [O, oo) 

f+g (f + g)(x) = f(x) + g(x) = ./x + ~ [0, 1] 

f-g (f - g) (x) = f (x) - g (x) = ./x -~ [O, 1] 

Jg (fg)(x) = f(x)g(x) = Jx( l - x) [0, 1] 

fig Lex)= f(x) = J X 
g g(x) 1 - X 

[0, 1) 

g/f !(x)= g(x) =Jl- x 
f f(x) X 

(0, 1] 

Note that most of the combinations off and g have domains 

[0,oo) n (- oo,1]=[0,1], 
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DEFINITION 

I 

g 

f 

Figure P.60 f o g(x) = J(g(x)) 

SECTION P.5: Combining Functions to Make New Functions 35 

the intersection of the domains off and g. However , the domains of the two quotients 
f / g and g / f had to be restricted further to remove points where the denominator was 
zero. 

Composite Functions 
There is another method , called composition , by which two functions can be combined 
to form a new function. 

Composite functions 

If f and g are two functions, the composite function f o g is defined by 

f o g(x) = f(g(x)). 

The domain off o g consists of those numbers x in the domain of g for which 
g(x) is in the domain off. In particular , if the range of g is contained in the 
domain off, then the domain off o g is just the domain of g. 

As shown in Figure P.60, forming fog is equivalent to arranging "fu nction machines" 
g and f in an "assembly line" so that the output of g becomes the input of f. 

In calculating f o g (x) = f (g (x)), we first calculate g (x) and then calculate f of 
the result. We call g the inner function and f the outer function of the compo ition. 
We can, of course, also calculate the composition g o f (x) = g(f (x)), where f is 
the inner function, the one that gets calculated first, and g is the outer function, which 
gets calculated last. The functions f o g and g o f are usually quite different, as the 
following example shows. 

EXAM p LE 4 Given f (x) = .jx and g (x) = x + 1, calculate the four composite 
functions f o g(x), go f(x), f o f(x), and go g(x), and specify 

the domain of each. 

Solution Again, we collect the results in a table. (See Table 3.) 

Table 3. Composites of f and g and their domains 

Function 

f 
g 

fog 
gof 

Formula 

f (x) = .Jx 
g(x)=x+l 

f o g(x) = f(g(x)) = f(x + 1) = JxTI 
go f(x) = g(f(x)) = g(.jx) = .jx + 1 

f o f(x) = f(f(x)) = J(.jx) = J:Tx = x 114 

Domain 

fof 
gog go g(x) = g(g(x)) = g(x + 1) = (x + 1) + l = x + 2 

[0, oo) 
JR 

[-1 , oo) 
[O, oo) 

[0, oo) 
JR 

To see why, for example, the domain off o g is [-1, oo), observe that g(x) = x + I 
is defined for all real x but belong s to the domain of f only if x + 1 '.::'.: 0, that is, if 
X ::'.: - 1. 

EXAMPLE 5 
1- x 

If G(x) = -- , calculate Go G(x) and specify its domain. 
l+x 

Solution We calculate 

) 

1-~ 
1 - X ] X 

Go G(x) = G(G(x)) = G (-- = l + 
l +x -x 

l+-
l+x 

l+x-l+ x 
-----=x . 
l+x+l-x 
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y 

y = H (x) 

y =I 

y=O 
X 

Figure P.61 The Heaviside function 

y 

y= I 

X 

y=- 1 
------o - [ 

y = sgn (x) 

Figure P.62 The signum function 

Becau se the resultin g function, x, is defined for all real x, we might be tempted to say 
that the dom ain of Go G is JR. This is wrong! To belon g to the domain of G o G, x 

must satisfy two conditions: 

(i) x must belon g to the domain of G, and 

(ii) G (x) must belong to the domain of G. 

The dom ain of G consists of all real numbers except x = - l. If we exclude 
x = - I from the domain of G o G, condition (i) wilJ be satisfied. Now ob
serve that the equation G (x) = - L has no solution x, since it is equivalent to 
1 - x = -(1 + x) or 1 = -1. Therefore, all number s G(x) belong to the do
main of G, and condition (ii) is satisfied with no further restrictions on x . The dom ain 
of Go G is (-oo, - 1) U (- 1, oo), that is, all real numbers except -1. 

Piecewise Defined Functions 
Somet imes it is neces sary to define a function by using different formulas on different 
parts of its domain . One example is the abso lute value function 

lxl = { X 
-x 

if X 2: 0 
if X < 0. 

Another would be the tax rates applied to various levels of income. Here are some 
other example s. (Note how we use solid and hollow dot s in their graphs to indicate , 
respectively, which endpoint s do or do not lie on various parts of the grap h.) 

EXAMPLE 6 The Heaviside function. The Heaviside function (or unit step 
function) (Figure P.61) is defined by 

H (x) = { OL if x 2: 0 
if X < 0. 

For instance , if t repre sents time , the function 6H(t) can model the voltage applied to 
an electric circuit by a 6-volt battery if a switch in the circuit is turned on at time t = 0. 

EXAMPLE 7 The signum function. The signum function (Figure P.62) is de
fined as follows: 

X 11 sgn( x) = - = - I 
lxl undefined 

if X > 0, 
if X < 0, 
if X = 0. 

The name signum is the Latin word meaning "s ign." The value of the sgn(x) tell s 
whether x is positive or negative. Since O is neither posit ive nor negative, sgn (0) is 
not defined . The signum functio n is an odd function. 

EXAMPLE 8 The function 

l (x + 1)2 
f(x) = -x 

v1x=-T 

if X < - L, 
if - 1 :S X < 1, 
if X 2: ] , 

is defined on the whole real line but has values given by three different formulas 
depending on the position of x. Its graph is shown in Figure P.63(a). 
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Figure P.63 Piecewise defined functions 

Figure P.64 

(a) The greatest integer function LxJ 
(b) The least integer function r x 1 
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y 

X 

(- ! , - 1) 

(a) (b) 

EXAM p LE 9 Find a formula for function g (x ) graphed in Figure P.63(b ). 

Solution The graph consists of parts of three lines. For the part x < - l, the line has 
slope -1 and x-intercept -2 , so its equation is y = -(x + 2). The middle section is 
the line y = x for -1 S x S 2. The right section is y = 2 for x > 2. Combining 
these formulas , we write 

[

-( x + 2) 
g(x) = X 

2 

if X < - 1 
if -1 S XS 2 
if X > 2. 

Unlike the previous example, it does not matter here which of the two possible formula s 
we use to define g(-1), since both give the same value . The same is true for g(2). 

The following two functions could be defined by different formula s on every interval 
between consecutive integer s, but we will use an easier way to define them. 

EX A M p L E 1 0 The greatest integer function. The function whose value at any 
number x is the greatest integer less than or equal to x is called 

the greatest integer function, or the integer floor function . It is denoted Lx J, or, in 
some books , [x] or [[x]]. The graph of y = LxJ is given in Figure P.64(a). Observe 
that 

L2.4J = 2, Ll.9J = 1, LOJ = 0, L-l.2J = -2, 

L2J = 2, L0.2J = o, L-0.3 J = -1 , L-2J = -2. 

y y 

y = LxJ --..0 y = rxl a--. 

--..0 a--. 

--..0 a--. 

--..0 

X X 

a--. 

--..0 a--. 

--..0 a--. - o---e 

(a) (b) 
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EXAM p LE l 1 The least integer function. The function whose value at any num-
ber x is the smallest integer greater than or equal to x is called the 

least integer function , or the integer ceiling function. It is denoted Ix 1- Its graph 
is given in Figure P.64(b). For positive values of x, this function might represent, for 
example, the cost of parking x hours in a parking lot that charges $1 for each hour or 
part of an hour . 

EXERCISES P.5 
In Exercises 1-2, find the domains of the functions f + g, f - g, 
f g, f / g, and g / f, and give formulas for their values. 

1. f(x) = x, g(x) = J:x=I 
2. f (x) = ~. g(x) = .Jf+x 

Sketch the graphs of the functions in Exercises 3-6 by combining 
the graphs of simpler functions from which they are built up. 

4. x 3 - X 3. X -x 2 

5. X + !xi 6. Ix I + Ix - 21 
7. If f(x) = x + 5 and g(x) = x 2 - 3, find the following: 

(a) f o g(O) (b) g(f (O)) 
(c) f (g(x)) (d) go f (x) 
(e) f o f(-5) (f) g(g(2)) 
(g) f (f (x)) (h) go g(x) 

In Exercises 8-10, construct the following composite functions 
and specify the domain of each. 

(a) f of (x) (b) f o g(x) 
(c) go f (x) (d) go g(x) 

8. f(x) = 2/ x, g(x) = x/ (1 - x) 

9. f (x) = 1/ (1 - x), g(x) = J:x=I 
10. f (x) = (x + 1)/ (x - 1), g(x) = sgn (x) 

Find the missing entries in Table 4 (Exercises 11-16). 

Table 4. 

f(x) g(x) f o g(x) 

11. x2 x+l 
12. x+4 X 

13. .jx lxl 
14. X 1/3 2x +3 
15. (x + 1)/ x X 

16. x-1 l / x2 

:;: 17. Use a graphing utility to examine in order the graphs of the 
functions 

y = .fi, y = 2 + .fi, 
y =2+-J3+x , y = 1/ (2 + -J3+x). 

Describe the effect on the graph of the change made in the 
function at each stage. 

:;: 18. Repeat the previous exercise for the functions 

y = 2x, 

y = ~. 

y = 2x - 1, 

l 
y =~ , 

y = l - 2x, 

1 
y=----1. 

.JI - 2x 

In Exercises 19-24, f refers to the function with domain [0, 2] 
and range [0, l], whose graph is shown in Figure P.65. Sketch the 
graphs of the indicated functions , and specify their domains and 
ranges. 

19. 2/ (x) 

21. f (2x) 

20. -(1 / 2)/(x) 

22. f (x / 3) 

23. I + f(-x / 2) 24. 2f ((x - 1)/ 2) 
y 

2 

Figure P.65 

In Exercises 25-26, sketch the graphs of the given functions. 

{ 
x if O::: x ::: 1 

25 • f (x) = 2 - X if 1 < X :5: 2 

26. g(x) = ,YA { 
1x ifO :::: X:::: 1 

2-x ifl < x:::2 

27. Find all real values of the constants A and B for which the 
function F(x) = Ax+ B satisfies: 

(a) F o F(x) = F(x) for all x. 

(b) F o F(x) = x for all x. 

Greatest and least integer functions 

28. For what values of x is (a) LxJ = O? (b) 1xl = O? 

29. What real numbers x satisfy the equation LxJ = rxl? 

30. True or false: r -xl = -LxJ for all real x? 

31. Sketch the graph of y = x - LxJ. 

32. Sketch the graph of the function 

{ 
LxJ if x 2: 0 

f(x)= 1xl if x<O. 

Why is f (x) called the integer part of x? 
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Even and odd functions 

8 33. Assume that f is an even function, g is an odd function, and 
both f and g are defined on the whole real line IR. Is each of 
the following functions even, odd, or neither? 

(a) Show that f is the sum of an even function and an odd 
function: 

f(x) = E(x) + O (x), 

f + g , Jg , f / g, g / f, ! 2 = ff, g2 = gg where E is an even function and O is an odd function. 
Hint: Let E(x) = (f(x) + f(-x)) / 2. Show that 
E(-x) = E(x), so that Eis even. Then show that 
O (x) = f (x) - E(x) is odd. f O g , g Of , f Of, g O g 

8 34. If f is both an even and an odd function, show that f (x) = 0 
at every point of its domain. 

(b) Show that there is only one way to write fas the sum of 
an even and an odd function. Hint : One way is given in 
part (a). If also f (x) = E, (x ) + 01 (x), where £ 1 is 
even and 0 1 is odd, show that E - E 1 = 0 1 - 0 and 
then use Exercise 34 to show that E = E, and O = 0 1 • 8 35. Let f be a function whose domain is symmetric about the 

origin, that is, - x belongs to the domain whenever x does. 

Polynomials and Rational Functions 

DEFINITION 

I 

Among the easiest functions to deal with in calculus are polynomial s. These are sums 
of terms each of which is a constant multiple of a nonnegative integer power of the 
variable of the function . 

A polynomial is a function P who se value at x is 

where an, an- I , .. . , a2, a 1, and ao, called the coefficients of the polynomial, are 
constants and, if n > 0, then an f::. 0. The number n, the degree of the highest 
power of x in the polynomial , is called the degree of the polynomial. (The degree 
of the zero polynomial is not defined.) 

For example , 

3 

2- x 

2x3 -I7x+l 

is a polynomial of degree 0. 

is a polynomial of degree 1. 

is a polynomial of degree 3. 

Generally, we assume that the polynomial s we deal with are real polynomia ls; that is, 
their coefficients are real numbers rather than more general complex number s. Often 
the coefficients will be integer s or rational number s. Polynomial s play a role in the 
study of functions somewhat analogous to the role played by integers in the study of 
numbers. For instance , just as we alway s get an integer result if we add, subtract, 
or multiply two integers , we always get a polynomial result if we add , subtract, or 
multiply two polynomials . Adding or subtracting polynomials produces a polynomial 
whose degree does not exceed the larger of the two degrees of the polynomial s being 
combined . Multiplying two polynomial s of degree s m and n produces a product 
polynomial of degree m + n. For instance , for the product 

(x 2 + l)(x 3 - x - 2) = x 5 - 2x2 - x - 2, 

the two factors have degrees 2 and 3, so the result has degree 5. 

The following definition is analogous to the definition of a rational number as the 
quotient of two integers. 
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DEFINITION 

I 
If P(x) and Q(x) are two polynomial s and Q( x) is not the zero polynomial, then 
the function 

R( x) = P( x) 
Q(x) 

is called a rational function. By the domain convention, the domain of R(x) 
consists of all real numbers x except those for which Q(x) = 0. 

Two examples of rational function s and their domains are 

( 
2x 3 - 3x 2 + 3x + 4 

R x) - ------- with domain IR, all real numbers. 
- x 2 + 1 

1 
S(x) = ~

4 
with domain all real numbers except ±2 . 

X -

Remark If the numerator and denominator of a rational function have a common 
factor, that factor can be cancelled out ju st as with integers . However, the resulting 
simpler rational function may not have the same domain as the original one, so it should 
be regarded as a different rational function even though it is equal to the original one 
at all points of the original domain. For instance, 

x 2 -x 

x 2 - 1 

x(x - 1) X 

x+ l 
only if x =I= ±l, 

(x + l )(x - l) 

even though x = 1 is in the domain of x / (x + 1). 

When we divide a positive integer a by a smaller positive integer b, we can obtain 
an integer quotient q and an integer remainder r satisfying O ::S r < b and hence write 
the frac tion a/ b (in a unique way) as the sum of the integer q and another fraction 
whose numerator (the remainder r ) is smaller than its denominator b. For instance , 

7 l 
- = 2+ -· 
3 3 ' 

the quotient is 2, the remainder is 1. 

Similarly, if Am and Bn are polynomials having degree s m and n, respectively, and if 
m > n, then we can express the ration al function Am/ Bn (in a unique way) as the sum 
of a quotient polynomial Qm-n of degree m - n and another rational function Rk/ Bn 
where the numerator polynomial Rk (the remainder in the division) is either zero or 
has degree k < n: 

(The Division Algorithm) 

We calcu late the quotient and remainder polynomial s by using long division or an 
equivalent method. 

EXAMPLE 1 
2x 3 - 3x 2 + 3x + 4 

Write the division algorithm for ---x- 2-+-
1
---

Solution METHOD I. Use long division : 

2x 3 

x2 + 1 I 2x3 3x 2 + 3x + 4 

2x3 + 2x 

-3x 2 + X + 4 

-3x 2 3 
X + 7 
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Thus, 

2x 3 - 3x 2 + 3x + 4 x + 7 ------- = 2x - 3 + -- . 
x 2 + 1 x 2 + 1 

The quotient is 2x - 3, and the remainder is x + 7. 

METHOD II. Use short division; add appropriate lower-degree terms to the terms of 
the numerator that have degrees not less than the degree of the denominator to enable 
factoring out the denominator, and then subtract those terms off again. 

2x3 
- 3x 2 + 3x + 4 

2x3 + 2x - 3x 2 
- 3 + 3x + 4 - 2x + 3 

2x(x 2 + 1) - 3(x2 + 1) + x + 7, 

from which it follows at once that 

2x 3 - 3x 2 + 3x + 4 x + 7 --~---- = 2x - 3 + -- . 
x 2 + 1 x 2 + 1 

Roots, Zeros, and Factors 
A number r is called a root or zero of the polynomial P if P(r) = 0. For example, 
P(x) = x3 - 4x has three roots: 0, 2, and -2; substituting any of these numbers 
for x makes P(x) = 0. In this context the terms "root" and "zero" are often used 
interchangeably . It is technically more correct to call a number r satisfying P (r) = 0 a 
zero of the polynomial.fun ction P and a root of the equation P (x) = 0, and later in this 
book we will follow this convention more closely. But for now, to avoid confusion with 
the number zero, we will prefer to use "root" rather than "zero" even when referrin g to 
the polynomial Prather than the equation P(x) = 0. 

The Fundamental Theorem of Algebra (see Appendix II) states that every poly
nomial of degree at least 1 has a root (although the root might be a complex num
ber). For example , the linear (degree 1) polynomial ax + b has the root -b / a since 
a(-b / a) + b = 0. A constant polynomial (one of degree zero) cannot have any roots 
unless it is the zero polynomial , in which case every number is a root. 

Real polynomials need not always have real roots; the polynomial x 2 + 4 is never 
zero for any real number x, but it is zero if x is either of the two complex numbers 2i and 
-2i, where i is the so-called imaginary unit satisfying i2 = -1. (See Appendix I for 
a discussion of complex numbers.) The numbers 2i and -2i are complex conju gates 
of each other . Any complex roots of a real polynomial must occur in conjugate pairs. 
(See Appendix II for a proof of this fact.) 

In our study of calculus we will often find it useful to factor polynomials into 
products of polynomials of lower degree, especially degree l or 2 (linear or quadratic 
polynomials) . The following theorem shows the connection between linear factors and 
roots. 

The Factor Theorem 

The number r is a root of the polynomi al P of degree not Jess than 1 if and only if 
x - r is a factor of P(x) . 

PROOF By the division algorithm there exists a quotient polynomial Q having degree 
one less than that of Panda remainder polynomial of degree O (i.e., a constant c) such 
that 

P(x) c 
-=Q(x)+-. 
x-r x-r 
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Thus P(x) = (x - r)Q(x) + c, and P(r) = 0 if and only if c = 0, in which case 
P(x) = (x - r)Q( x) and x - r is a factor of P(x). 

It follows from Theorem 1 and the Fundamental Theorem of Algebra that every 
polynomial of degree n ::: I has n roots . (If P has degree n ::: 2, then P has a zero 
rand P( x) = (x - r)Q( x), where Q is a polynomial of degree n - I ::: 1, which in 
turn has a root, etc.) Of course, the roots of a polynomial need not all be different. The 
4th degree polynomial P (x) = x 4 - 3x3 + 3x2 - x = x(x - 1)3 has four roots; one 
is O and the other three are each equal to 1. We say that the root 1 has multipli city 3 
because we can divide P (x) by (x - l )3 and still get zero remainder . 

If P is a real polynomial having a complex root r, = u +iv , where u and v are real 
and v -/= 0, then , as asserted above, the complex conjugate of r1, namely , r2 = u - iv, 
will also be a root of P . (Moreove r, r, and r2 will have the same multiplicity .) Thu s, 
both x - u - iv and x - u + iv are factors of P (x), and so, therefore, is their product 

(x - u - iv)( x - u +i v) = (x - u)2 + v2 = x2 - 2ux + u2 + v2, 

which is a quadrati c polynomial having no real roots. It follows that every real 
polynomial can be factored into a product of real (possibly repeated) linear factors and 
real (also possibly repeat ed) quadratic factors having no real zeros. 

EXAMPLE 2 What is the degree of P (x) = x 3(x 2 + 2x + 5)2? What are the 
roots of P and, what is the multipli city of each root? 

Solution If P is expanded, the highest power of x present in the expansion is 
x3(x 2)2 = x 7, so P has degree 7. The factor x 3 = (x - 0)3 indicates that O is a 
root of P having multiplicit y 3. The remaining four roots will be the two roots of 
x2 + 2x + 5, each having multiplicity 2. Now 

[x2 + 2x + 5)
2 = [(x + 1)2 + 4]2 

= [ (x + 1 + 2i) (x + 1 - 2i) J2. 

Hence the seven roots of P are: 

I 
0, 0, 0 
- I - 2i, - 1 - 2i 
- 1 + 2i, -1 + 2i 

0 has multipli city 3, 
-1 - 2i has multiplicity 2, 
-1 + 2i has multipli city 2. 

Roots and Factors of Quadratic Polynomials 
There is a well-known formula for finding the roots of a quadratic polynomial. 

The Quadratic Formula 

The two solutions of the quadratic equation 

Ax 2 + Bx + C = 0, 

where A, B , and C are constants and A -/= 0, are given by 

-B ± ,./B2 -4AC 
x=-------

2A 
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To see this, just divide the equation by A and complete the square for the terms in x : 

2 B C 
X +- x + - =0 

A A 
2s B2 s 2 c 

x
2 
+ 2A x + 4A 2 = 4A 2 - A 

( 
B )

2 
B2 

- 4AC x+-
2A 4A 2 

B .JB 2 -4AC 
x + 2A = ± 2A . 

The quantity D = B2 -4AC that appears under the square root in the quadratic formula 
is called the discriminant of the quadratic equation or polynomial. The nature of the 
roots of the quadratic depends on the sign of this discriminant. 

(a) If D > 0, then D = k2 for some real constant k, and the quadratic has two distinct 
roots, (-B + k)/ (2A) and (-B - k) / (2A). 

(b) If D = 0, then the quadratic has only the root - B/ (2A) , and this root ha 
multiplicity 2. (It is called a double root.) 

(c) If D < 0, then D = -k 2 for some real constant k, and the quadratic has two 
complex conjugate root s, (-B + ki) / (2A) and (-B - ki) / (2A). 

EXAMPLE 3 Find the roots of these quadratic polynomials and thereby factor 
the polynomials into linear factor s: 

(a) x 2 + x - I (b) 9x 2 - 6x + 1 (c) 2x 2 + x + 1. 

Solution We use the quadratic formula to solve the corresponding quadratic equation s 
to find the roots of the three polynomials. 

(a) A= I, B = I , C = -1 

-1±.JI+4 1 ,,/5 
X= -----=--±-

2 2 2 

x2 +x - 1 = (x + ~ - ~) (x + ~ + ~). 

(b) A = 9, B = -6 , 

6 ± .J36 - 36 
x=-----

18 

C = 1 

1 

3 
(double root) 

9x 2 -6x + 1 = 9 (x -~r = (3x -1) 2
. 

(c) A = 2, B = 1, C = 1 

-1 ± .Jf=8 1 -./7. 
X= -----=--±-! 

4 4 4 

2x
2 + X + 1 = 2 ( X + i -:1 ) ( X + i + :1 ) · 

Remark There exist formulas for calculating exact roots of cubic (degree 3) and 
quartic (degree 4) polynomials , but, unlike the quadratic formula above, they are 
very complicated and almost never used. Instead, calculus will provide us with very 
powerful and easily used tools for approximating roots of polynomials (and solutions 
of much more general equations) to any desired degree of accuracy. 
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Miscellaneous Factorings 
Some quadratic and higher-degree polynomials can be (at least partially) factored by 
inspection. Some simple examples include: 

(a) Common Factor: ax 2 + bx = x(ax + b) . 

(b) Difference of Squares: x 2 - a2 = (x - a)(x + a). 

(c) Difference of Cubes: x 3 - a 3 = (x - a)(x 2 +a x+ a2). 

(d) More generally, a difference of nth powers for any positive integer n: 

Note that x - a is a factor of x 11 
- a11 for any positive integer n. 

(e) It is also true that if n is an odd positive integer, then x + a is a factor of x 11 + a11
• 

For example, 

x 3 + a 3 = (x + a)(x 2 
- ax+ a 2

) 

xs +as= (x + a)(x 4 
- ax 3 + a2x 2 

- a3x + a4
). 

Finally, we mention a trial-and -error method of factoring quadratic polynomials some
times called trinomialfactoring . Since 

(x + p)(x + q) = x 2 + (p + q)x + pq , 

(x - p)(x - q) = x 2 
- (p + q)x + pq , and 

(x + p) (x - q) = x 2 + (p - q )x - pq, 

we can sometimes spot the factors of x 2 +Bx+ C by looking for fac tors of ICI for 
which the sum or differenc e is B. More genera lly, we can somet imes factor 

Ax 2 +Bx+ C =(ax+ b)(cx + d) 

by looking for factors a and c of A and factors b and d of C for which ad + be = B . 
Of course, if this fails you can always resort to the quadratic form ula to find the roots 
and, therefore, the factors, of the quadratic polynomial. 

EXAMPLE 4 

x 2 
- Sx + 6 = (x - 3)(x - 2) 

x 2 + 7x + 6 = (x + 6)(x + 1) 

x 2 + x - 6 = (x + 3)(x - 2) 

2x 2 + x - 10 = (2x + S)(x - 2) 

p = 3, q = 2, pq = 6, p + q = 5 

p = 6, q = I , pq = 6, p + q = 7 

p = 3, q = -2, pq = -6, p + q = l 
a= 2, b = 5, C = 1, d = -2 

ac = 2, bd = -10, ad+ be = 1. 

EXAM p LE 5 Find the roots of the following polynomials: 

(a) x 3 - x 2 - 4x + 4, (b) x 4 + 3x 2 - 4, (c)xs -x 4 -x 2 +x. 

Solution (a) There is an obvious common factor: 

x3 - x 2 - 4x + 4 = (x - l)( x2 - 4) = (x - l)(x - 2)(x + 2). 

The roots are 1, 2, and - 2. 
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(b) This is a trinomial in x 2 for which there is an easy factoring: 

x4 + 3x2 
- 4 = (x2 + 4)(x 2 

- 1) = (x + 2i)(x - 2i)(x + l)(x - 1). 

The roots are 1, -1, 2i, and -2i. 

(c) We start with some obvious factorings: 

x 5 -x 4 -x 2 +x = x(x 4 -x 3 -x +I)= x(x - l)(x 3 -1) 

= x(x - 1)2 (x2 +x + 1). 

Thus O is a root, and 1 is a double root. The remaining two roots must come from 
the quadratic factor x 2 + x + l, which cannot be factored easily by inspection so 
we use the formula: 

-1±~ 1 .J3. 
X = ----- =--±-t. 

2 2 2 

EXAM p LE 6 For what values of the real constant b will the product of the real 
polynomials x 2 - bx + a2 and x 2 +bx+ a2 be equal to x 4 + a 4 ? 

Use your answer to express x4 + I as a product of two real quadratic polynomials each 
having no real roots. 

Solution We have 

(x2 
- bx+ a2)(x 2 +bx+ a2

) = (x2 + a2)2 - b2x 2 

= x 4 + 2a2x 2 + a4 
- b2x 2 = x 4 + a4 

provided that b2 = 2a2 , that is, b = ±.J2a. 

If a= 1, then b = ±.J2 and we have 

x4 + 1 = (x2 
- hx + l)(x 2 + hx + 1). 

Find the roots of the polynomials in Exercises 1-12. If a root is 
repeated, give its multiplicity. Also, write each polynomial as a 
product of linear factors. 

4 
15. x3 + x2 

x3 + 3x2 + 6 
16. ---,2--

x +x- 1 
In Exercises 17-20, express the given rational function as the sum 
of a polynomial and another rational function whose numerator is 
either zero or has smaller degree than the denominator. 1. x2 + 7x + 10 2. x2 - 3x - 10 

3. x2 +2x + 2 4. x2 - 6x + 13 

5. I6x4 -8x 2 + l 6. x4 + 6x3 + 9x 2 

7. x3 + l 8. x4 
- 1 

9. x 6 - 3x4 + 3x2 - 1 10. xs - x 4 - 16x + 16 

11. xs + x3 + 8x2 + 8 12. x 9 - 4x 7 
- x 6 + 4x 4 

In Exercises 13-16, determine the domains of the given rational 
functions. 

l3. 3x + 2 
x2 + 2x +2 

x2 -9 
14. 

3 X -X 

17. 
x3 - 1 

18. 
x2 

x2 -2 x2 + 5x +3 

19. 
x3 

20. 
x4 +x2 

x2 +2x + 3 x3 +x 2 + I 
In Exercises 21-22 express the given polynomial as a product of 
real quadratic polynomials with no real roots. 

21. P(x) = x 4 +4 22. P(x) = x 4 +x 2 + 1 

8 23. Show that x - l is a factor of a polynomial P of positive 
degree if and only if the sum of the coefficients of P is zero. 
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9 24. What condition should the coefficients of a polynomi al 
satsify to ensure that x + 1 is a factor of that polynomial? 

then its conjugate z is also a root of P. 

9 26. Continuing the previous exercise, show that if z = u + iv 
(where u and v are real numbers) is a complex root of a 
polynomial P with real coefficient s, then P must have the 
real quadratic factor x 2 - 2ux + u2 + v2 . 

9 25. The complex conjugate of a complex number z = u + iv 
(where u and v are real numbers) is the complex number 
z = u - iv . It is shown in Appendix I that the complex 
conjugate of a sum (or product) of complex numbers is the 
sum (or product) of the complex conjugates of those 
numbers. Use this fact to verify that if z = u + iv is a 
complex root of a polynomial P having real coefficients, 

9 27. Use the result of Exercise 26 to show that if z = u + iv 
(where u and v are real numbers) is a complex root of a 
polynomial P with real coefficients, then z and z are roots of 
P having the same multiplicity . 

• _ T_h_e_Tr_ig_o_no_m_e_t_ric_F_u_n_ct_io_n_s ____________ _ 
Most people first encounter the quantities cost and sin t as ratios of sides in a right
angled triangle having t as one of the acute angles. If the sides of the triangle are 
labelled "hyp" for hypotenuse, "adj" for the side adjacent to angle t, and "opp" for the 
side opposite angle t (see Figure P.66), then 

opp 

adj 
Figure P.66 cost = adj/ hyp 

sin t = opp/ hyp 

Figure P.67 If the length of arc AP 1 is t 
units, then angle AO P1 = t radian s 

adj 
cos t= -

hyp 
and 

. opp 
Slllt = - . 

hyp 

These ratios depend only on the angle t , not on the particular triangle, since all right
angled triangles having an acute angle t are similar. 

In calculus we need more general definitions of cos t and sin t as functions defined 
for all real numb ers t , not ju st acute angles. Such definitions are phrased in terms of a 
circle rather than a triangle. 

Let C be the circle with centre at the origin O and radius 1; its equation is 
x 2 + y 2 = l. Let A be the point (1, 0) on C. For any real number t, let Pi be the 
point on Cat distance ltl from A, measured along C in the counterclockwise direction 
if t > 0, and the clockwise direction if t < 0. For example, since C has circumference 
2n , the point P,r;2 is one-quarter of the way counterclockwise around C from A ; it is 
the point (0, 1). 

We will use the arc length t as a measure of the size of the angle AO Pi. See 
Figure P.67. 

y 

P1r; 2 

A = (1, 0) 
-- -+--- - - - - -.,._ ~----- -- ---- - x 

0 

P -,, / 2 
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Figure P.68 Arc length s = rt 
Sector area A = r 2 t / 2 

DEFINITION 

I 
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The radian measure of angle AO P1 is t radians: 

LAO P1 = t radians. 

We are more used to measuring angles in degrees. Since P" is the point (-1 , 0), 
halfway (11: units of distance) around C from A, we have 

11: radians = 180° . 

To convert degrees to radians, multiply by 11:/ 180; to convert radians to degree s, 
multiply by 180/ 11:. 

Angle convention 

In calculus it is assumed that all angles are measured in radians unless degrees 
or other units are stated explicitly. When we talk about the angle 11: / 3, we 
mean 11: / 3 radians (which is 60°), not 11: / 3 degrees. 

EXAM p LE l Arc length and sector area. An arc of a circle of radius r subtends 
an angle t at the centre of the circle. Find the length s of the arc 

and the area A of the sector lying between the arc and the centre of the circle. 

Solution The length s of the arc is the same fraction of the circumference 211: r of the 
circle that the angle tis of a complete revolution 211: radians (or 360°). Thus, 

t . 
s = - (211:r) = rt uruts. 

211: 

Similarly, the area A of the circular sector (Figure P.68) is the same fraction of the area 
11: r 2 of the whole circle: 

t r 2t 
A= - (11:r2) = - unit s2

. 
211: 2 

(We will show that the area of a circle of radius r is 11: r 2 in Section 1. 1.) 

Using the procedure described above, we can find the point P1 corresponding to any 
real number t, positive or negative. We define cost and sin t to be the coordinates of 
P1• (See Figure P.69.) 

Cosine and sine 

For any real t, the cosine oft (abbreviated cost) and the sine oft (abbreviated 
sin t) are the x- and y-coordinates of the point P1 . 

cost = the x-coordinate of P1 

sin t = the y-coordinate of P1 

Because they are defined this way, cosine and sine are often called the circular func
tions . Note that these definition s agree with the ones given earlier for an acute angle. 
(See formulas ( *) at the beginning of this section .) The triangle involved is P1 0 Q 1 in 
Figure P.69. 
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Figure P.69 The coordinates of P, are 
(cost , sin t) 

Figure P,70 Some special angles 

y 

A= (l, 0) x 

y 

P,=(- 1,0) Po=A= (l ,O) X 

Examining the coordinates of Po= A, Prr;2, Prr, and EXAMPLE 2 
P-rr/2 = P 3rr/ 2 in Figure P.70, we obtain the following values: 

cosO = 1 
7C 

cos-= 
2 

0 cos 7C = -1 ( 7C) 37C cos - 2 = cos 2 = 0 

sinO = 0 
7C 

sin-= 
2 

1 sin 1e = 0 sin ( - ~) = sin 
3
; = - 1 

Some Useful Identities 
Many important properties of cost and sin t follow from the fact that they are coordi
nates of the point P1 on the circle C with equation x 2 + y2 = l, 

The range of cosine and sine. For every real number t , 

- 1 :S cos t :S 1 and - I :S sin t :s 1. 

The Pythagorean identity. The coordinates x = cost and y = sin t of P1 must 
satisfy the equation of the circle. Therefore , for every real number t , 

cos 2 t + sin2 t = l. 

(Note that cos 2 t mean s (cos t) 2 , not cos(cos t) . This is an unfortunate nota tion, but it 
is used everywhere in technical literature , so you have to get used to it!) 

Periodicity. Since C has circumference 21e, adding 21e to t causes the point P1 to 
go one extra complete revolution around C and end up in the same place : P1+2rr = P1 • 

Thus , for every t , 
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cos(t + 2n) = cost and sin(t + 2n) = sint. 

This says that cosine and sine are periodic with period 2n. 

Cosine is an even function. Sine is an odd function. Since the circle x 2 + y 2 = 1 
is symmetric about the x-axis , the points P _ 1 and P1 have the same x-coordi nates and 
opposite y-coordinates (Figure P.71). 

cos{-t) = cost and sin(-t) = - sin t . 

Complementary angle identities. Two angles are complementary if their sum is 
n / 2 (or 90°). The points P(1r/ 2)-r and P1 are reflections of each other in the line y = x 

(Figure P.72), so the x-coordinate of one is they-coordinate of the other and vice versa. 
Thus, 

cos ( ~ - t) = sin t and sin ( ~ - t) = cos t. 

Supplementary angle identities. Two angles are supplementary if their sum is n 
(or 180°). Since the circle is symmetric about the y-axis, P1r-t and P1 have the same 
y-coo rdinates and opposite x-coordinates. (See Figure P.73.) Thus, 

cos(n - t) = - cost and sin(n - t) = sint. 

y 

X 

P _1 = (cos(-t) , sin(-t)) 

Figure P.71 cos(-t) = cost 

sin(-t) = - sin t 

y 

Figure P.74 
. n n I 

Sill- =COS-= -
4 4 .,/2. 

X 

Figure P.72 cos((n / 2) - t) = sint 

sin((n / 2) - t) =cost 

Figure P.73 cos(n - t) = - cost 

sin(n - t) = sin t 

Some Special Angles 

EXAM p LE 3 Find the sine and cosine of n / 4 (i.e., 45°). 

Solution The point P1r;4 lies in the first quadrant on the line x = y. To find its 
coordinates, substitute y = x into the equation x 2 + y 2 = 1 of the circle , obtaining 
2x 2 = 1. Thus x = y = 1/ ~ (see Figure P.74), and 

n 1 
cos(45 °) = cos - = r;;' 

4 v2 
. . n I 

sm(45°) = sm - = r;, · 
4 v2 

EXAMPLE 4 Find the values of sine and cosine of the angles n / 3 (or 60°) and 
n / 6 (or 30°). 

X 
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y 

0 I 
2 

I 
2 

Figure P.75 cos1r/ 3 = 1/ 2 

sin 1r / 3 = ../3 / 2 

y 

I 

../2 

X 

X 

X 

Figure P.76 Using suitably placed 
triangles to find trigonometric functions of 
special angles 

Figure P.77 The graph of cos x 

Solution The point Pn/3 and the points 0(0 , 0) and A(l, 0) are the vertices of an 
equilateral triangle with edge length 1 (see Figure P.75). Thus Pn/ 3 has x-coordinate 

1/2 and y-coordinate JI - (1/ 2)2 = ./3 / 2, and 

7r I 
cos(60 °) = cos 3 = 2, 

7[ 7[ 7[ 

. . 7[ .J3 
sm(60 °) = sm - = -. 

3 2 

Since - = - - -, the complementary angle identities now tell us that 
6 2 3 

7[ 7[ .J3 
cos(30°) = cos 6 = sin 3 = 2 , 7[ 7[ 1 

sin(30 °) = sin 6 = cos 3 = 2. 

Table 5 summarizes the values of cosine and sine at multiples of 30° and 45° between 
0° and 180°. The values for 120°, 135°, and 150° were determined by using the 
supplementary angle identities; for example, 

cos(l20 °) = cos (
2
;) = cos ( 7r - i) = - cos (i) = - cos(60 °) = -~-

Table 5. Cosines and sines of special angles 

Degrees oo 30° 45° 60° 90° 120° 135° 150° 180° 

7[ 7[ 7[ 7[ 27r 37r 57C 
Radians 0 7[ 

6 4 3 2 3 4 6 

./3 1 1 1 1 ./3 
Cosine 1 

./2 
0 

./2 
-1 

2 2 2 2 

1 ./3 ./3 1 1 
Sine 0 - 1 - 0 

2 ./2 2 2 ./2 2 

EXAMPLE 5 Find: (a) sin(37r / 4) and (b) cos(47r / 3) . 

Solution We can draw appropriate triangles in the quadrants where the angles lie to 
determine the required values. See Figure P.76. 

(a) sin(37r/4) = sin(7r - (7r/ 4)) = 1/ ./2 . 
1 

(b) cos(47r/ 3) = cos(7r + (7r/ 3)) = - 2. 

While decimal approximations to the values of sine and cosine can be found using a 
scientific calculator or mathematical tables , it is useful to remember the exact values in 
the table for angles 0, 7r / 6, 7r / 4, 7r / 3, and 7r / 2. They occur frequently in applications. 

When we treat sine and cosine as functions , we can call the variable they depend on 
anything we want (e.g. , x, as we do with other functions) , rather than t. The graphs of 
cos x and sin x are shown in Figures P. 77 and P. 78. In both graphs the pattern between 
x = 0 and x = 27r repeat s over and over to the left and right. Observe that the graph 
of sin x is the graph of cos x shifted to the right a distance 7r / 2. 

y 
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Figure P.78 The graph of sin x 

THEOREM 

I 

Figure P.79 Ps P1 = Ps-,A 
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y 

Remember this! 

When using a scientific calculator to calculate any trigonometric functions, 
be sure you have selected the proper angular mode: degrees or radians. 

The Addition Formulas 
The following formulas enable us to determine the cosine and sine of a sum or difference 
of two angles in terms of the cosines and sines of those angles . 

Addition Formula s for Cosine and Sine 

cos(s + t) = cos s cost - sins sin t 

sin(s + t) = sins cost+ coss sint 

cos(s - t) = coss cost+ sins sin t 

sin(s - t) = sins cost - cos s sin t 

y 

0 

A 

X 

PROOF We prove the third of these formulas as follows : Lets and t be real numbers 
and consider the points 

P1 = (cost , sint) 

Ps = ( cos s, sin s) 

as shown in Figure P.79. 

Ps-1 = (cos(s - t), sin(s - t)) 

A= (1, 0) , 

The angle P1 0 Ps = s - t radians = angle AO Ps-t, so the distance Ps P1 is equal 
to the distance p5 _ 1A. Therefore, (P5 P1)

2 = (P5 _ 1A)2. We express these squared 
distances in terms of coordinates and expand the resulting squares of binomials: 

(cos s - cos t)2 +(sins - sin t) 2 = (cos(s - t) - 1)2 + sin2 (s - t), 

cos2 s - 2 cos s cost + cos2 t + sin2 s - 2 sins sin t + sin2 t 

= cos2(s - t) - 2cos(s - t) + 1 + sin2 (s - t) . 
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Since cos2 x + sin2 x = l for every x, this reduce s to 

cos(s - t) = cos s cost + sins sin t. 

Replacing t with -t in the formula above, and recalling that cos( -t ) = cost and 
sin(-t) = -s int, we have 

cos(s + t) = cos s cost - sins sin t. 

The complementary angle formulas can be used to obtain either of the addition formulas 
for sine: 

sin(s + t) =cos(~ - (s + t)) 

= cos ( ( ~ - s) - t) 
= cos ( ~ - s) cos t + sin ( ~ - s) sin t 

= sins cos t + cos s sin t, 

and the other formula again follows if we replace t with -t. 

EXAMPLE 6 Find the value of cos(1r / 12) = cos 15° . 

Solution 
7[ (7[ 7[) 7[ 7[ 7[ 7[ 

cos 
12 

= cos 3 - 4 = cos 3 cos 4 + sin 3 sin 4 

= (~) (-1 ) + ( v'3) (-1 ) = 1 + y'3 
2 v'2 2 v'2 2v'2 

From the addition formulas, we obtain as special cases certain useful formulas called 
double-angle formulas . Puts = tin the addition formulas for sin(s + t) and cos(s + t) 
to get 

sin 2t = 2 sin t cos t and 

cos 2t = cos2 t - sin2 t 

= 2cos 2 t - 1 (using sin2 t + cos2 t = 1) 

= 1 - 2 sin2 t 

Solving the last two formulas for cos2 t and sin2 t, we obtain 

cos2 t = _l_+_co_s_2_t 
2 

and 
1 - cos 2t 

sin2 t = ----
2 

which are sometimes called half-angle formulas because they are used to express 
trigonometric functions of half of the angle 2t. Later we will find these formulas useful 
when we have to integrate powers of cos x and sin x. 

Other Trigonometric Functions 
There are four other trigonometric functions-tangent (tan), cotangent (cot), secant 
(sec), and cosecant (csc)-each defined in terms of cosine and sine . Their graphs are 
shown in Figures P.80-P.83. 
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DEFINITION Tangent, cotangent, secant, and cosecant 

I 
y 

sin t 
tant = -

cos t 
cos t l 

cott = -- = --
sin t tan t 

y = tanx 

X 

1 
sect= -

cos t 
1 

csc t = -.
sm t 

y 

Figure P.80 The graph of tan x 

y 

Figure P.81 The graph of cot x 

y 

-,r " ,r 

2 2 

I 
I - - ----- -r-- -- -- - - - ---- - - - --r ----- - -

I - I 
I 
I 
I 
I 
I 
I 

,r 

1 y = secx 
I 
I 
I 

- ,r " 
X 

" 
X 

2 

y = csc x 

Figure P .82 The graph of sec x Figure P .83 The graph of csc x 

Observe that each of these function s is undefined (and its graph approache s vertical 
asymptotes) at point s where the function in the denominator of its defining fraction 
has value 0. Observe also that tangent , cotangent , and cosecant are odd function s and 
secant is an even function . Since I sin x I S 1 and I cos x I S 1 for all x, I csc x I :::: 1 and 
I sec x I :::: 1 for all x where they are defined . 

The three functions sine , cosine , and tangent are called the primary trigonomet
ric functions , while their reciprocals cosecant, secant , and cotangent are called the 
secondary trigonometric functions . Scientific calculators usually just implement the 
primary functions; you can use the reciprocal key to find values of the corresponding 
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y 

s A 
X 

T C 

Figure P.84 The CAST rule 

secondary functions. Figure P.84 shows a useful pattern called the "CAST rule" to 
help you remember where the primary functions are positive . All three are positive in 
the first quadrant, marked A. Of the three , only sine is positive in the second quadrant 
S, only tangent in the third quadrant T, and only cosine in the fourth quadrant C. 

EXAM PL E 7 Find the sine and tangent of the angle 0 in [ n, 
3
; J for which we 

1 
have cos0 = - 3. 

Solution From the Pythagorean identity sin2 0 + cos2 0 = 1, we get 

. 2 1 8 
Sill 0 = 1- - = -

9 9' 
so 

(8 2./2 
sin0 = ±y 9 = ±-

3
-. 

The requirement that 0 should lie in [n, 3n / 2) makes 0 a third quadrant angle. Its sine 
is therefore negative . We have 

. 2./2 
sm0 = ---

3 
and 

sin 0 -2./2 / 3 ~ 
tan0 = -- = --- = 2v2 . 

cos0 -1 / 3 

Like their reciprocals cosine and sine, the functions secant and cosecant are periodic 
with period 2n. Tangent and cotangent, however , have period n because 

( 
sin(x + n) sinx cos n + cosx sin n - sinx 

tan x + n) = ---- = --------- = --- = tan x. 
cos(x + n) cos x cos n - sin x sin n - cos x 

Dividing the Pythagorean identity sin2 x+cos 2 x = l by cos2 x and sin2 x, respectively, 
leads to two useful alternative versions of that identity : 

1 + tan2 x = sec2 x and 1 + cot2 x = csc2 x. 

Addition formulas for tangent and cotangent can be obtained from those for sine and 
cosine. For example, 

sin(s + t) 
tan(s + t) = ---

cos(s + t) 

sins cos t + cos s sin t 

cos s cos t - sins sin t 

Now divide the numerator and denominator of the fraction on the right by cos s cost 
to get 

tans+ tan t 
tan(s + t) = -----

1 - tans tan t 

Replacing t by -t leads to 

( 
tans - tan t 

tan s - t) = -----
1 +tans tan t 

Maple Calculations 
Maple knows all six trigonometric functions and can calculate their values and manip
ulate them in other ways. It assumes the arguments of the trigonometric functions are 
in radians. 

> evalf(sin(30)) ; evalf(sin(Pi / 6)) ; 

-.9880316241 

.5000000000 
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Figure P.85 

Figure P.86 

SECTION P.7: The Trigonometric Functions 55 

Note that the constant Pi (with an uppercase P) is known to Maple. The e va lf () 
function converts its argument to a number expressed as a floating point decimal with 
10 significant digits . (This precision can be changed by defining a new value for the 
variable Digi ts. ) Without it, the sine of30 radians would have been left unexpanded 
because it is not an integer. 

> Digits : = 20 ; evalf(lOO*Pi) ; sin(30) ; 

Digits := 20 

314.15926535897932385 

sin(30) 

It is often useful to expand trigonometric functions of multiple angles to powers 
of sine and cosine, and vice versa. 

> expand(sin(S*x)) ; 

16 sin(x) cos(x)4 - 12 sin(x) cos(x) 2 + sin(x) 

> combine((cos(x)) AS , trig) ; 

1 5 5 

16 
cos(5x) + 

16 
cos(3x) + 8 cos(x) 

Other trigonometric functions can be converted to expressions involving sine and 
cosine. 

> convert(tan(4*x)*(sec(4*x) ) A2 , sincos) ; combine( %, trig) ; 

sin(4x) 

cos(4x)3 

4 
sin(4x) 

cos(l2x) + 3cos(4x) 

The % in the last command refers to the result of the previous calculation. 

Trigonometry Review 
The trigonometric functions are so called because they are often used to express the 
relationships between the sides and angles of a triangle . As we observed at the 
beginning of this section , if 0 is one of the acute angles in a right-angled triangle , we 
can refer to the three sides of the triangle as adj (side adjacent 0), opp (side opposite 0), 
and hyp (hypotenuse) . (See Figure P.85.) The trigonometric functions of 0 can then 
be expressed as ratios of these sides , in particular: 

. opp 
sm0= -, 

hyp 

adj 
cos0 = -, 

hyp 
tan0 = opp. 

adj 

EXAM p LE 8 Find the unknown sides x and y of the triangle in Figure P.86. 

Solution Here, x is the side opposite and y is the side adjacent the 30° angle . The 
hypotenuse of the triangle is 5 units. Thus , 

X l 
- = sin30 ° = -
5 2 

and 

5 5,)3 
so x = - units and y = -- units. 

2 2 

y ,J3 
- = cos30 ° = -
5 2 ' 
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Figure P.87 

THEOREM 
A I C 

B 

Figure P.88 In this triangle the sides are 
named to correspond to the opposite 
angles 

A 

A 

Figure P.89 

EXAMPLE 9 For the triangle in Figure P.87, express sides x and y in terms of 
side a and angle 0. 

Solution The side x is opposite the angle 0, and y is the hypotenuse. The side 
adjacent 0 is a. Thus, 

X 
- = tan0 
a 

and 
a 
- = cos 0. 
y 

a 
Hence, x = a tan0 and y = -- = a sec 0. 

cos0 

When dealing with general (not necessarily right-angled) triangles , it is often convenient 
to label the vertices with capital letters, which also denote the angles at those vertices, 
and refer to the sides opposite those vertices by the corresponding lowercase letters . 
See Figure P.88. Relationships between the sides a, b, and c and opposite angles A, 
B , and C of an arbitrary triangle ABC are given by the following formulas, called the 
Sine Law and the Cosine Law. 

Sine Law: 
sin A 

a 

sin B 

b 

sinC 

C 

Cosine Law: a2 = b2 + c2 
- 2bc cos A 

b2 = a2 + c2 
- 2ac cos B 

c2 = a2 + b2 
- 2ab cos C 

PROOF See Figure P.89. Let h be the length of the perpendicular from A to the 
side BC. From right-angled triangles (and using sin(ir - t) = sin t if required), we 
get c sin B = h = b sin C. Thus (sin B) / b = (sin C) / c. By the symmetry of the 
formulas (or by dropping a perpendicular to another side), both fractions must be equal 
to (sin A)/a, so the Sine Law is proved. For the Cosine Law, observe that 

c2 -

. 7r 
1fC < -

- 2 l h
2 + (a - b cos C) 2 

7r 
h2 +(a+ bcos(1r - C)) 2 if C > -

2 

= h2 + (a - b cos C)2 (since cos(ir - C) = - cos C) 

= b2 sin2 C + a2 
- 2ab cos C + b2 cos2 C 

= a2 + b2 
- 2ab cos C. 

The other versions of the Cosine Law can be proved in a similar way. 

EXAMPLE 10 A triangle has sides a = 2 and b = 3 and angle C = 40°. Find 
side c and the sine of angle B. 

Solution From the third version of the Cosine Law: 

c2 = a2 + b2 
- 2ab cos C = 4 + 9 - 12cos40 ° ~ 13 - 12 x 0.766 = 3.808. 

Side c is about J3.808 = 1.951 units in length . Now using Sine Law we get 

sin C sin 40° 3 x 0.6428 
sinB = b-- ~ 3 x -- ~ ---- ~ 0.988 . 

C 1.951 1.951 
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Figure P.90 Two triangles with b = 2, 
C = 3, B = 30° 

EXERCISES P.7 

SECTION P.7: The Trigonometric Functions 57 

A triangle is uniquely determined by any one of the following sets of data (which 
correspond to the known cases of congruency of triangles in classical geometry): 

1. two sides and the angle contained between them (e.g., Example 10); 

2. three sides, no one of which exceeds the sum of the other two in length ; 

3. two angles and one side ; or 

4. the hypotenuse and one other side of a right-angled triangle. 

In such case s you can always find the unknown sides and angles by using the Pythagorean 
Theorem or the Sine and Cosine Laws, and the fact that the sum of the three angles of 
a triangle is 180° ( or 7r: radians). 

A triangle is not determined uniquely by two sides and a noncontained angle ; there 
may exist no triangle , one right-angled triangle, or two triangles having such data . 

EXAM p L E 11 In triangle ABC, angle B = 30°, b = 2, and c = 3. Find a. 

Solution This is one of the ambiguou s cases. By the Cosine Law, 

b2 = a 2 + c2 
- 2ac cos B 

4 = a 2 + 9 - 6a(.J3 / 2) . 

Therefore , a must satisfy the equati on a2 - 3-v'3a + 5 = 0. Solving this equation using 
the quadratic formula, we obtain 

3J3 ± ../27 -20 
a=-------

2 
~ 1.275 or 3.921 

There are two triangle s with the given data , as shown in Figure P.90. 

A A 

B a ~ 1.275 C B a ~ 3.921 C 

Find the values of the quantities in Exercises 1-6 using various 
formulas presented in this section. Do not use tables or a 
calculator. 

10. cos (
3
; + x ) 11. tanx + cot x 12. 

In Exercises 13- 16, prove the given identities. 

13. cos4 x - sin4 x = cos(2x) 

tanx - cotx 

tanx + cotx 

1. 
37r 

2. 
37r 

3. 
27r 

cos- tan -- sin-
4 4 3 

77r 
5. 

Sn: 11 n: 
4. sin 12 cos- 6. sin-

12 12 
In Exercises 7-12 , express the given quantity in terms of sin x 

and cosx. 

7. cos(7r: + x) 8. sin(2n: - x) 9. sin (3; -x) 

14. 
1 - cosx sinx X = tan-

sin x 1 + cosx 2 

15. 
1 - COSX = tan2 ::_ 
1 + cos x 2 

16. 
cosx - sinx 

cosx + sinx 
= sec2x - tan2x 

17. Express sin 3x in terms of sin x and cos x . 

18. Express cos 3x in terms of sin x and cos x. 
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In Exercises 19-22, sketch the graph of the given function. What 
is the period of the function ? 

19. f(x) = cos2x 

21. f (x) = sin irx 

. X 
20. f (x) = sm -

2 
7rX 

22. f(x) = cos 2 
23. Sketch the graph of y = 2 cos ( x - i). 
24. Sketch the graph of y = 1 + sin (x + ~ ). 
In Exercises 25-30, one of sin B, cos B, and tan B is given. Find 
the other two if B lies in the specified interval. 

25. 
. 3 

smB = 5, Bin [i , 1r] 

26. tanB = 2, 0 in [ o, i J 

27. 
1 

cosB = 3, Bin [-~,o] 
28. 

5 
0in[i,1r] cosB = --

13 ' 

29. 
-1 

sinB = 2 , 0 in [ 1r, 
3
; J 

30. 
1 

tanB = 2, Bin [ 1r, 
3
;] 

Trigonometry Review 

In Exercises 31-42, A BC is a triangle with a right angle at C. 
The sides opposite angles A, B, and Care a, b, and c, 
respectively. (See Figure P.91.) 

A 

~b 

B a C 

Figure P.91 

31. 
7[ 

Find a and b if c = 2, B = 3. 

32. 
7[ 

Find a and c if b = 2, B = 3 . 

33. 
7[ 

Find band c if a = 5, B = 6. 

34. Express a in terms of A and c . 

35. Express a in terms of A and b . 

36. Express a in terms of B and c. 

37. Express a in terms of B and b. 

38. Express c in terms of A and a . 

39. Express c in terms of A and b. 

40. Express sin A in terms of a and c . 

41. Express sin A in terms of band c. 

42. Express sin A in terms of a and b. 

In Exercises 43-50, A BC is an arbitrary triangle with sides a, b, 

and c, opposite to angles A, B, and C, respectively. (See 
Figure P.92.) Find the indicated quantities. Use tables or a 
scientific calculator if necessary. 

A 

z::\ 
B a C 

Figure P.92 

7[ 

43. Find sin B if a = 4, b = 3, A = 4. 
44. Find cos A if a = 2, b = 2, c = 3. 

45. Find sin B if a = 2, b = 3, c = 4. 
7[ 

46. Find c if a = 2, b = 3, C = - . 
4 

47. Find a if c = 3, A=~ ' B = i· 
48. Find c if a = 2, b = 3, C = 35°. 

49. Find b if a = 4, B = 40°, C = 70°. 

50 . Find c if a= 1, b = ../2, A= 30°. (There are two possible 
answers.) 

51. Two guy wires stretch from the top T of a vertical pole to 
points B and C on the ground, where C is 10 m closer to the 
base of the pole than is B. If wire BT makes an angle of 35° 
with the horizontal , and wire CT makes an angle of 50° with 
the horizontal , how high is the pole? 

52. Observers at positions A and B 2 km apart simultaneously 
measure the angle of elevation of a weather balloon to be 40° 
and 70°, respective ly. If the balloon is directly above a point 
on the line segment between A and B, find the height of the 
balloon . 

53. Show that the area of triangle ABC is given by 
(1 / 2)ab sin C = ( 1 / 2)bc sin A = (1 / 2)ca sin B. 

D 54. Show that the area of triangle ABC is given by 
.Js(s - a)(s - b)(s - c), wheres = (a+ b + c)/2 is the 
semi-perimeter of the triangle. 

D This symbol is used throughout the book to indicate an exercise 
that is somewhat more difficult than most exercises. 

8 This symbol is used throughout the book to indicate an exercise 
that is somewhat theoretical in nature. It does not imply 
difficulty. 
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Limits and 
Continuity 

'' 

59 

Every body continues in its state of rest, or of uniform motion in a right 
line, unless it is compelled to change that state by forces impressed 
upon it. 

'' Isaac Newton 1642-1727 
from Principia Mathematica, 1687 

, , It was not until Leibniz and Newton, by the discovery of the differential 
calculus, had dispelled the ancient darkness which enveloped the 
conception of the infinite, and had clearly established the conception 
of the continuous and continuous change, that a full productive 
application of the newly found mechanical conceptions made any 
progress. 

'' Hermann von Helmholtz 1821-1894 

I n trod LI Ct I.On Calculus W~S created to describe how q~antities change . It 
has two basic procedures that are opposites of one another : 

• differentiation, for finding the rate of change of a given function, and 

• integration, for finding a function having a given rate of change. 

Both of these procedures are based on the fundamental concept of the limit of a 
function. It is this idea of limit that distinguishes calculus from algebra , geometry, and 
trigonometry, which are useful for describing static situations . 

In this chapter we will introduce the limit concept and develop ome of its prop
erties . We begin by considering how limits arise in some basic problems. 

Examples of Velocity, Growth Rate, and Area 
In this section we consider some examples of phenomena where limits arise in a natural 
way. 

Average Velocity and Instantaneous Velocity 
The position of a moving object is a function of time. The average velocity of the 
object over a time interval is found by dividing the change in the object's position by 
the length of the time interval . 
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Table 1. Average velocity over 
[l , 1 + h] 

h i1y/ M 

1 14.7000 
0.1 10.2900 
0.01 9.8490 
0.001 9.8049 
0.0001 9 .8005 

Table 2. Average velocity over 
[2, 2 + h] 

h L1y/ M 

1 24.5000 
0.1 20.0900 
O.Ql 19.6490 
0.001 19.6049 
0.0001 19.6005 

EX A M p L E 1 (The average velocity of a falling rock) Physical experiments 
show that if a rock is dropped from rest near the surface of the 

earth, in the first t s it will fall a distance 

y = 4.9t2 m. 

(a) What is the average velocity of the falling rock during the first 2 s? 

(b) What is its average velocity from t = 1 tot = 2? 

Solution The average velocity of the falling rock over any time interval [t1, t2] is the 
change L1y in the distance fallen divided by the length L1t of the time interval: 

L1y 4.9t 2 - 4.9t 2 
average velocity over [t1, t2] = - = 2 1 

M t2 - t1 

(a) In the first 2 s (time interval [O, 2]), the average velocity is 

L1y 4.9(2 2) - 4.9(0 2) - = ------ = 9.8 mis. 
L1t 2 - 0 

(b) In the time interval [l , 2], the average velocity is 

L1y 4.9(2 2) - 4.9(1 2) 
- = ------ = 14.7 mis . 
L1t 2 - 1 

EXAMPLE 2 How fast is the rock in Example 1 falling (a) at time t = l? 
(b) at time t = 2? 

Solution We can calculate the average velocity over any time interval, but this ques
tion asks for the instantaneous velocity at a given time. If the falling rock had a 
speedometer , what would it show at time t = l? To answer this, we first write the 
average velocity over the time interval [l , 1 + h] starting at t = land having length h: 

L1y 4 .9( 1 + h )2 - 4.9(1 2) 
Average velocity over [l, 1 + h] = - = --------. 

L1t h 
We can ' t calculate the instantaneous velocity at t = l by substituting h = 0 in 
this expression, because we can't divide by zero. But we can calculate the average 
velocities over shorter and shorter time intervals and see whether they seem to get 
close to a particular number. Table 1 shows the values of L1y / L1t for some values of h 
approaching zero. Indeed , it appears that these average velocities get closer and closer 
to 9.8 mis as the length of the time interval gets closer and closer to zero. This suggests 
that the rock is falling at a rate of 9.8 mis one second after it is dropped . 

Similarly, Table 2 shows values of the average velocities over shorter and shorter 
time intervals [2, 2 + h] starting at t = 2. The values suggest that the rock is falling at 
19.6 mis two seconds after it is dropped. 

In Example 2 the average velocity of the falling rock over the time interval [t, t + h] is 

L1y 4.9(t + h)2 - 4.9t 2 

L1t h 
To find the instantaneou s velocity (usually ju st called the velocity) at the instants t = l 
and t = 2, we examined the values of this average velocity for time intervals whose 
length s h became smaller and smaller. We were, in fact, finding the limit of the average 
velocity as h approaches zero. This is expressed symbolically in the form 

. . . L1y . 4.9(t + h) 2 - 4.9t 2 

velocity at time t = hm - = hm -------
h---->0 L1t h---->0 h 

Read "limh---->O . .. "as "the limit ash approaches zero of ... " We can't find the limit 
of the fraction by just substituting h = 0 because that would involve dividing by zero . 
However , we can calculate the limit by first performing some algebraic simplifications 
on the expression for the average velocity. 
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Figure 1.1 The biomass m of an algal 
culture after t days 

SECTION 1.1 : Example s of Velocity, Growth Rate, and Area 61 

EXAM p LE 3 Simplify the expression for the average velocity of the rock over 
[t, t + h] by first expanding (t + h)2. Hence, find the velocity v(t) 

of the falling rock at time t directly, without making a table of values. 

Solution The average velocity of the rock over time interval [t, t + h] is 

4.9(t + h)2 - 4.9t 2 

h 

4.9(t 2 + 2th + h2 
- t2

) 

h 

4 .9(2th + h2) 

h 
= 9.8t + 4.9h. 

The final form of the expression no longer involves division by h. It approaches 
9.8t + 4.9(0) = 9.8t ash approaches 0. Thus, ts after the rock is dropped, its velocity 
is v(t) = 9.8t mis. In particular, at t = 1 and t = 2 the velocities are v(l) = 9.8 mis 
and v(2) = 19.6 mis, respectively. 

The Growth of an Algal Culture 
In a laboratory experiment, the biomass of an algal culture was measured over a 
74-day period by measuring the area in square millimetres occupied by the culture on 
a microscope slide. These measurement s m were plotted against the time t in days and 
the points joined by a smooth curve m = f(t) , as shown in Figure 1.1. 

10 20 30 40 50 60 70 

Observe that the biomass was about 0.1 mm2 on day 10 and had grown to about 
1.7 mm2 on day 40, an increase of 1.7 - 0.1 = 1.6 mm2 in a time interval of 
40 - 10 = 30 days. The average rate of growth over the time interval from day 10 to 
day 40 was therefore 

1.7-0.1 1.6 2 
O O = -

0 
~ 0.053 mm Id. 

4 -1 3 

This average rate is just the slope of the line joining the points on the graph of m = f (t) 
corresponding to t = 10 and t = 40. Similarly, the average rate of growth of the algal 
biomass over any time interval can be determined by measuring the slope of the line 
joining the points on the curve corresponding to that time interval. Such lines are called 
secant lines to the curve. 

EXAM p LE 4 How fast is the biomass growing on day 60? 
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Figure 1.2 A regular polygon of n sides 
inscribed in a circle 

Solution To answer this question, we could measure the average rates of change 
over shorter and shorter times around day 60. The corresponding secant lines become 
shorter and shorter, but their slopes approach a limit, namely, the slope of the tangent 
line to the graph of m = f (t) at the point where t = 60. This tangent line is sketched 
in Figure 1.1; it seems to go through the points (2, 0) and (69, 5) , so that its slope is 

5-0 
-- ~ 0.0746 mm2/d. 
69-2 

This is the rate at which the biomass was growing on day 60. 

The Area of a Circle 
All circles are similar geometric figures; they all have the same shape and differ only 
in size. The ratio of the circumference C to the diameter 2r (twice the radius) has the 
same value for all circles. The number n: is defined to be this common ratio: 

C 
- = 7C or C = 2n:r. 
2r 

In school we are taught that the area A of a circle is this same number n: times the 
square of the radius: 

A= n:r2
. 

How can we deduce this area formula from the formula for the circumference that is 
the definition of n:? 

The answer to this question lies in regarding the circle as a "limit" of regular 
polygons , which are in turn made up of triangles , figures about whose geometry we 
know a great deal. 

Suppose a regular polygon having n sides is inscribed in a circle of radius r . (See 
Figure 1.2.) The perimeter Pn and the area An of the polygon are, respectively, less 
than the circumference C and the area A of the circle , but if n is large , Pn is close to 
C and An is close to A. (In fact, the "circle" in Figure 1.2 was drawn by a computer 
as a regular polygon having 180 sides, each subtending a 2° angle at the centre of the 
circle. It is very difficult to distinguish this 180-sided polygon from a real circle .) We 
would expect Pn to approach the limit C and An to approach the limit A as n grows 
larger and larger and approaches infinity. 
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V = 9.8t 

A 

1 
Figure 1.3 A = 2 t (9.8t) = 4.9t 2 

EXERCISES 1.1 

SECTION 1.1: Examples of Velocity, Growth Rate , and Area 63 

A regular polygon of n sides is the union of n nonoverlapping, congruent, isosceles 
triangles having a common vertex at O , the centre of the polygon. One of these 
triangles, !:::. 0 AB, is shown in Figure 1.2. Since the total angle around the point O is 
211: radians ( we are assuming that a circle of radius 1 has circumference 211: ), the angle 
AO B is 211: / n radians . If M is the midpoint of AB , then OM bisects angle AO B. 
Using elementary trigonometry, we can write the length of AB and the area of triangle 
0 AB in terms of the radius r of the circle : 

• 71: 
IABI = 2IAMI = 2r sm -

n 

area O AB = ~ I AB 11 0 MI = ~ ( 2r sin ~) (rcos ~) 

2 . 71: 71: = r Slll - COS - . 
n n 

The perimeter Pn and area An of the polygon are n times these expressions: 

• 71: 
Pn = 2rnsm

n 
2 71: 71: 

An = r n sin - cos - . 
n n 

Solving the first equation for rn sin(n: / n) 
equation, we get 

(P,,) n: 
A,,= 2 rco s -;;. 

Pn /2 and substituting into the second 

Now the angle AO M = 11: / n approaches O as n grows large , so its cosine , cos(n: / n) = 
I OM I/ I O A I, approaches 1. Since P11 approaches C = 211: r as n grows large , the 
expression for A,, approache s (2n: r / 2)r (1) = 11: r 2, which must therefore be the area 
of the circle. 

Remark There is a fundamental relationship between the problem of finding the area 
under the graph of a function f and the problem of finding another function g whose 
rate of change is f. It will be explored fully beginning in Chapter 5. As an example , 
for the falling rock of Example !-Example 3, the area A under the graph of the velocity 
function v = 9.8t mis and above the interval [O, t] on the t-axis is the area of a triangle 
of base length ts and height 9.8 mis, and so is (see Figure 1.3) 

1 
A= 2(t)(9.8t) = 4.9t 2 m, 

which is exactly the distance y that the rock fall s during the first t seconds . The rate 
of change of the area function A (t) (that is, of the distance function y) is the velocity 
function v (t). 

Exercises 1-4 refer to an object moving along the x-axis in such 
a way that at time t s its position is x = t 2 m to the right of the 
ongm. 

0.0001 s. 

3. Use the results from Exercise 2 to guess the instantaneous 
velocity of the object at t = 2 s. 

1. Find the average velocity of the object over the time interval 
[t , t + h]. 

2. Make a table giving the average velocities of the object over 
time intervals [2, 2 + h] , for h = 1, 0.1, 0.01 , 0.001, and 

4. Confirm your guess in Exercise 3 by calculating the limit of 
the average velocity over [2, 2 + h] as h approaches zero, 
using the method of Example 3. 
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Exercises 5-8 refer to the motion of a particle moving along the 
x-axis so that at time t sit is at position x = 3t2 - 12t + l m. 

5. Find the average velocity of the particle over the time 
intervals [l, 2], (2, 3], and [l, 3]. 

6. Use the method of Example 3 to find the velocity of the 
particle at t = l, t = 2, and t = 3. 

7. In what direction is the particle moving at t = l ? t = 2? 
t = 3? 

8. Show that for any positive number k, the average velocity of 
the particle over the time interval [t - k, t + k] is equal to its 
velocity at time t . 

In Exercise s 9- 11, a weight that is suspended by a spring bobs up 
and down so that its height above the floor at time t s is y ft, where 

1 
y = 2 + - sin(irt). 

7r 

9. Sketch the graph of y as a function oft. How high is the 
weight at t = 1 s? In what direction is it moving at that time? 

i8 10. What is the average velocity of the weight over the time 
intervals [l , 2], [l , 1.1], [l , 1.01], and [l , 1.001]? 

11. Using the results of Exercise JO, estimate the velocity of the 
weight at time t = I . What is the significance of the sign of 
your answer? 

Exercises 12- l 3 refer to the algal biomass graphed in Figure 1. 1. 

12. Approximately how fast is the biomass growing on day 20? 

13. On about what day is the biomass growing fastest? 

14. The profits of a small company for each of the first five years 
of its operation are given in Table 3. 

Table 3. 

Year Profit ($1,000s) 

2008 6 
2009 27 
2010 62 
2011 Ill 
2012 174 

(a) Plot points representing the profit as a function of year 
on graph paper, and join them by a smooth curve. 

(b) What is the average rate of increase in the profits 
between 2010 and 2012? 

(c) Use your graph to estimate the rate of increase in the 
profits in 2010. 

. _ L_im_its_o_f_F_u_nc_ti_o_ns _______________ _ 
In order to speak meaningfully about rates of change , tangent lines, and areas bounded 
by curves , we have to investigate the process of finding limits. Indeed, the concept of 
limit is the cornerstone on which the development of calculus rests. Before we try to 
give a definition of a limit, let us look at more examples. 

Figure 1.4 

X 

x 2 - l 
The graph of f (x) = -

x - l 

EXAMPLE 1 
x 2 -1 

Describe the behaviour of the function f (x) = -- near x = 1. 
X - I 

Solution Note that f(x) is defined for all real numbers x except x = 1. (We can't 
divide by zero .) For any x i= I we can simplify the expression for f(x) by factoring 
the numerator and cancelling common factors: 

( ) 
(x - l)(x + 1) 

f X = --- - - =x +l 
x - 1 

for X y= l. 

The graph off is the line y = x + 1 with one point removed , namely, the point (1, 2). 
This removed point is shown as a "hole " in the graph in Figure 1.4. Even though f (1) 
is not defined, it is clear that we can make the value off (x) as close as we want to 2 by 
choosing x close enough to 1. Therefore , we say that f (x ) approaches arbitrarily close 
to 2 as x approaches 1, or, more simply , f(x) approaches the limit 2 as x approaches 
1. We write this as 

lim f(x) = 2 
X--+ I 

or 
x 2 - 1 

Jim -- =2 . 
x --+ I X - 1 
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Table 4. 

X g(x) 

±1.0 2.0000 00000 
±0 .1 2.7048 13829 
±0.01 2.7181 45927 
±0 .001 2.7182 80469 
±0 .0001 2.7182 81815 
±0.00001 1. 0000 00000 

3 

2.5 

2 

Y1 .5 

0.5 

-1 -0 .5 0 Ox.5 
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EXAMPLE 2 What happens to the function g(x) = (1 +x 2) L/ x
2 

as x approaches 
zero? 

Solution Note that g(x) is not defined at x = 0. In fact, for the moment it does not 
appear to be defined for any x whose square x 2 is not a rational number. (Recall that 
if r = m/n, where m and n are integers and n > 0, then x' means the nth root of xm .) 
Let us ignore for now the prob lem of deciding what g(x) means if x 2 is irrational and 
consider only rational values of x. There is no obvious way to simp]jfy the express ion 
for g (x) as we did in Example 1. However , we can use a scientific calculator to obtain 
approximate values of g(x) for some rational values of x approaching 0. (The values 
in Table 4 were obtained with such a calculator.) 

Except for the last value in the table , the values of g (x) seem to be approaching a 
certain number, 2.71828 ... , as x gets closer and closer to 0. We will show in Section 
3.4 that 

lim g(x) = lim(l + x 2
) 11x

2 
= e = 2.7 1828 1828 45 90 45 .... 

x-+ 0 x-+0 

The number e turns out to be very important in mathematics. 

A Observe that the last entry in the table appears to be wrong. This is import ant. It is 
because the calculator can only represent a finite number of number s. The calculator 
was unable to distingui sh 1 + (0.00001)2 = 1.0000000001 from 1, and it therefo re 
calculated 1 to,ooo,ooo,ooo = 1. While for many calculations on computers this reality 
can be minimized , it cannot be eliminated. The wrong value warns us of somethi ng 
called round-off error. We can explore with computer grap hics what this means for 
g near 0. As was the case for the numerical monster encountered in Section P.4, the 
computer can produce rich and beautiful behaviour in its failed attempt to represent g, 
which is very different from what g actually does. While it is possible to get computer 
algebra software like Maple to evaluate limit s correctly (as we will see in the next 
section), we cannot use computer graphics or floating-point arithmetic to study many 
mathematical notions such as limits. In fact , we will need mathematic s to understand 
what the computer actually does so that we can be the master of our tools. 

7 

5 

-2e-08 2e-q/3 

7 

5 
y 

3 

1e-08 x 2e-08 

Figure 1.5 The graph of y = g (x) 
on the interval [ - 1, l] 

Figure 1.6 The graphs of y = g (x) 
(colour) and y = e ~ 2.718 (black) on 
the interval [- 5 x 10- 8, 5 x 10- 8] 

Figure 1.7 The graphs of y = g (x) 
(colour) and y = (I + 2 x 10- 16) I/ x

2 

(black) on the interval 
[lo - 9, 2.5 x 10- 8] 

Figures 1.5-1.7 illustrate this fascinating behaviour of g with three plots made with 
Maple using its default IO-significant-figure precision in representing floating-point 
(i.e., real) numbers. Figure 1.5 is a plot of the graph of g on the interval [ -1 , 1). The 
graph starts out at height 2 at either endpoint x = ±1 and rises to height approximately 
2. 718 · · · as x decreases in absolute value, as we would expect from Table 4. Figure 1.6 
shows the graph of g restricted to the tiny interval [ -5 x 1 o-8, 5 x 1 o-8] . It consists 
of many short arcs decreasing in height as Ix I increases , and clustering around the 
line y = 2.718 · · ·,and a horizontal part at height 1 between approximately -10- 8 

and 10- 8 . Figure 1. 7 zooms in on the part of the graph to the right of the origin 
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DEFINITION 

I 

up to x = 2.5 x 10- 8 . Note how the arc closest to O coincides with the graph of 

y = (1 + 2 x 10- 16) l/x
2 

(shown in black) , indicating that 1 + 2 x 10- 16 may be 
the smallest number greater than 1 that Maple can distinguish from 1. Both figures 
show that the breakdown in the graph of g is not sudden, but becomes more and more 
pronounced as lxl decreases until the breakdown is complete near ±10- 8. 

The examples above and those in Section 1.1 suggest the following informal definition 
of limit. 

An informal definition of limit 

If f (x) is defined for all x near a, except possibly at a itself, and if we can ensure 
that f(x) is as close as we want to L by taking x close enough to a, but not equal 
to a, we say that the function f approaches the limit L as x approaches a, and 
we write 

lim f(x) = L . 
x---+a 

This definition is informal because phra ses such as close as we want and close enough 
are imprecise; their meaning depends on the context. To a machinist manufacturing a 
piston , close enough may mean within a few thousandths of an inch. To an astronomer 
studying distant galaxies , close enough may mean within a few thousand light-years . 
The definition should be clear enough, however , to enable us to recognize and evaluate 
limits of specific functions . A more precise "fo rmal " definition , given in Section 1.5, 
is needed if we want to prove theorems about limits like Theorems 2-4, stated later in 
this section. 

EXAMPLE 3 Find (a) lim x and (b) lim c (where c is a constant). 
x---+a x---+a 

Solution In words, part (a) asks: "What does x approach as x approaches a?" The 
answer is surely a. 

Jim x = a. 
X---+Q 

Similarly, part (b) asks: "What does c approach as x approaches a?" The answer here 
is that c approaches c; you can't get any closer to c than by being c. 

lim C = C. 
x-;.a 

Example 3 shows that lim x-;.a f (x) can sometimes be evaluated by just calculating 
f (a). This will be the case if f (x) is defined in an open interval containing x = a 
and the graph off passe s unbroken through the point (a, f (a)). The next example 
show s various ways algebraic manipulations can be used to evaluate limx-;.a f (x) in 
situations where f(a) is undefined. This usually happens when f(x) is a fraction with 
denominator equal to Oat x = a . 

EXAMPLE 4 Evaluate: 

1 
x 2 + X - 2 

(a) lim ---- , 
x-;.-2 x 2 + 5x + 6 

(b) lim £__!!:._, 
x-;.a X - a 

and 
,Ix - 2 

(c) Jim 
2 

. 
x-;.4 X - 16 

Solution Each of these limits involves a fraction whose numerator and denominator 
are both O at the point where the limit is taken. 
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Figure 1.8 

1 
(a) lim - does not exist 

x-+0 X 

(b) lim g (x) = 2, but g( 2) = 1 
x-+2 

BEWARE! Always be aware 
that the existence of 
limx -+a f (x) does not require 
that f (a) exist and does not 
depend on f (a) even if f (a) 
does exist. It depends only on 
the values of f (x) for x near 
but not equal to a. 

(a) 
x 2 +x -2 

lim 
x---->-2 x 2 + 5x + 6 

. (x + 2)(x - 1) = hm 
x---->-2 (x + 2)(x + 3) 

x- 1 
= lim --

x---->- 2 X + 3 

-2-1 
-----3 - -2+3 - . 

1 
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fraction undefined at x = - 2 

Factor numerator and denominator. 

(See Section P.6.) 

Cancel common factors. 

Evaluate this limit by 

substituting x = -2. 

(b) lim £_Q_ fraction undefined at x = a 

Simplify the numerator. 

(c) 

x---->a X - a 

a-x 

= lim __Q£__ 
x---->a x - a 

. -(x - a) 
= lim ---

x---->a ax(x - a) 
-1 1 

= lim - = --. 
x---->a ax a2 

Jx-2 
lim--

x---->4 x 2 - 16 

. (Jx - 2)(./x + 2) 
=hm-------

x---->4 (x 2 - 16)(./x + 2) 
x-4 

= lim --------
x---->4 (x - 4)(x + 4)( ./x + 2) 

Cancel the common factor. 

fraction undefined at x = 4 

Multiply numerator and denominator 

by the conjugate of the expression 

in the numerator . 

1 1 1 
= lim ------ = ----- = -

x ---->4 (x + 4)(./x + 2) (4 + 4)(2 + 2) 32 

y 

(a) 

I 
y = 

x y 

X 

(b) 

A function f may be defined on both sides of x = a but still not have a limit at x = a. 
For example, the function f(x) = l / x has no limit as x approaches 0. As can be seen 
in Figure l.8(a) , the values 1/ x grow ever larger in absolute value as x approache s O; 
there is no single number L that they approach. 

The following example shows that even if f(x) is defined at x = a, the limit of 
f(x) as x approaches a may not be equal to f(a). 

EXAMPLE 5 Letg( x) = {x ~xi- 2 (See Figure l.8(b).) Then 
1 If X = 2. 

lim g(x) = Jim x = 2, 
x---->2 x---->2 

although g(2) = 1. 
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DEFINITION 

negative side of a , 
= left-hand side of a : 

X a 

I 
x ----> a - means x approaches a from the left 

; positive side of a 
: = right-hand side of a 

a X 

x ----> a+ means x approaches a from the right 

Figure 1.9 One- sided approach 

y 

y =I 

X 

y = -I 

y = sgn (x) 

Figure 1.10 
lim sgn (x ) does not exist , because 
x--->0 

Jim sgn (x) = - 1, lim sgn (x) = 1 
x--->0- x--->0+ 

THEOREM 

I 

One-Sided Limits 
Limits are unique; if limx-+a f(x) = Land limx---+a f (x) = M, then L = M. (See 
Exercise 31 in Section 1.5.) Although a function f can only have one limit at any 
particular point, it is, nevertheless, useful to be able to describe the behaviour of 
functions that approach different numbers as x approaches a from one side or the other. 
(See Figure 1.9.) 

Informal definition of left and right limits 

If f(x) is defined on some interval (b, a) extending to the left of x = a, and if 
we can ensure that f (x) is as close as we want to L by taking x to the left of a 
and close enough to a, then we say f (x) has left limit L at x = a, and we write 

lim f(x) = L. 
x ~ a -

If f (x) is defined on some interval (a , b) extending to the right of x = a, and if 
we can ensure that f (x ) is as close as we want to L by taking x to the right of 
a and close enough to a, then we say f(x) has right limit Lat x = a, and we 
write 

lim f(x) = L. 
x--->a+ 

Note the use of the suffix+ to denote approach from the right (the positive side) and 
the suffix - to denote approach from the left (the negative side). 

EXAMPLE 6 The signum function sgn (x) = x/ lxl (see Figure 1.10) has left 
limit - l and right limit l at x = 0: 

lim sgn (x) = -1 
x---+0-

and lim sgn (x) = 1 
x --->0+ 

because the values of sgn (x) approach -1 (they are -1) if xis negative and approaches 
0, and they approach 1 if x is positive and approaches 0. Since these left and right 
limits are not equal, limx---+0 sgn (x) does not exist . 

As suggested in Example 6, the relationship between ordinary (two-sided) limits and 
one-sided limits can be stated as follows: 

Relationship between one-sided and two-sided limits 

A function f (x) has limit L at x = a if and only if it has both left and right limits there 
and these one-sided limits are both equal to L: 

Jim f(x) = L <===> Jim f( x ) = lim f( x ) = L. 
x-+ a x->a- x->a+ 

EXAMPLE 7 
Ix -21 

If f( x ) = 2 , find: lim f(x), lim f (x), and lim f(x). 
X + X - 6 x->2+ x-+2- x->2 

Solution Observe that Ix - 21 = x - 2 if x > 2, and Ix - 21 = -(x - 2) if x < 2. 
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y 

-] 1 X 

Figure 1. 11 .Jf=? has right limit O at 
-1 and left limit O at 1 

THEOREM 

I 

SECTION l.2: Limits of Functions 69 

Therefore, 

x-2 
Jim f(x) = lim 

x-+2+ x-+2+ x 2 + x - 6 

-(x - 2) 
lim f (x) = lim 

x-+2- x-+2- x 2 + x - 6 
x-2 

= lim 
. -(x - 2) 

= hm 
x---->2+ (x - 2)(x + 3) x---->2-(x - 2)(x + 3) 

1 1 -1 1 = lim -- = -
x-+2+x+3 5 ' 

= lim -- = --. 
x---->2- X + 3 5 

Since limx-.2- f(x) =fa limx---->2+ f (x) , the limit limx---->2 f(x) does not exist. 

EXAMPLE 8 What one-sided limits does g (x) = ~ have at x = -1 and 
X = l ? 

Solution The domain of g is [-1 , l] , so g(x) is defined only to the right of x = -1 
and only to the left of x = 1. As can be seen in Figure 1.11, 

lim g(x) = 0 
x-+- 1+ 

and lim g(x) = 0. 
x-+ 1-

g (x) has no left limit or limit at x = - l and no right limit or limit at x = l . 

Rules for Calculating Limits 
The following theorem s make it easy to calculate limit s and one-sided limits of many 
kinds of functions when we know some elementary limit s. We will not prove the 
theorems here. (See Section 1.5.) 

Limit Rules 

If limx-.a f (x) = L , limx-.a g (x) = M , and k is a constant, then 
1. Limit of a sum: lim [f (x) + g(x)] = L + M 

x-+a 
2. Limit of a difference: lim [/ (x) - g (x) ] = L - M 

x-+a 
3. Limit of a product: lim f(x)g(x) = LM 

x---->a 
4. Limit of a multiple : lim kf (x ) = kL 

x-+a 

5. Limit of a quotient: lim f(x) = .!:____ if M =fa 0. 
x-+a g(x) M ' 

If m is an integer and n is a positive integer , then 

6. Limit of a power: lim[/ (x)r / n = Lm/ n, provided L > 0 if n is 
x-+a even, and L =fa O if m < 0. 

If f (x) S g (x) on an interval containing a in its interior , then 

7. Order is preserved: 

Rules 1-6 are also valid for right limit s and left limit s. So is Rule 7, under the 
assumption that f (x) S g(x) on an open interval extending in the appropriate direction 
from a. 

In words , rule 1 of Theore m 2 says that the limit of a sum of functions is the sum of 
their limits . Similarly , rule 5 says that the limit of a quotient of two function s is the 
quotient of their limit s, provided that the limit of the denominator is not zero. Try to 
state the other rules in words . 

We can make use of the limit s (a) lim x-. a c = c (where c is a constant) and (b) 
limx---->a x = a, from Example 3, together with part s of Theorem 2 to calculate limits 
of many combinations of functions . 
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THEOREM 

I 

Figure 1.12 The graph of g is squeezed 
between those of f and h 

EXAMPLE 9 Find: 

Solution 

x 2 +x +4 
(a) Jim ~-~-

x---+a x 3 - 2x 2 + 7 
and (b) Jim -J2x + l. 

x---+2 

( Th . X
2 
+ X + 4 . " d b b" . b . f . d a) e express10n x 3 _ 

2
x2 + 

7 
1s 1orme y com mmg the as1c unct10ns x an 

c (constant) using addition , subtraction, multiplication, and division. Theorem 2 
assures us that the limit of such a combination is the same combination of the 
limits a and c of the basic functions, provided the denominator does not have limit 
zero. Thus, 

. x 2 + x + 4 a2 + a + 4 
hm-----

x ---+a x 3 - 2x 2 + 7 a 3 - 2a 2 + 7 
provided a3 - 2a 2 + 7 -::f. 0. 

(b) The same argument as in (a) shows that limx---+2 (2x + 1) = 2(2) + 1 = 5. Then 
the Power Rule (rule 6 of Theorem 2) assures us that 

lim -J2x + 1 = .Js. 
x---+2 

The following result is an immediate corollary of Theorem 2. (See Section P.6 for a 
discussion of polynomials and rational functions.) 

Limits of Polynomia ls and Rational Functions 

1. If P( x ) is a polynomial and a is any real number, then 

lim P(x) = P(a) . 
x---+a 

2. If P(x) and Q(x) are polynomials and Q(a) -::f. 0, then 

. P(x) P(a) 
hm--=--. 

x---+a Q(x) Q(a) 

The Squeeze Theorem 
The following theorem will enable us to calculate some very important limits in sub
sequent chapters . It is called the Squeeze Theorem because it refers to a function g 
whose values are squeezed between the values of two other functions f and h that have 
the same limit Lat a point a. Being trapped between the values of two functions that 
approach L, the values of g must also approach L. (See Figure 1.12.) 

y 

L 

: y = f(x) 
I 
I 
I 

___________ I __________ __. X 

a 
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THEOREM The Squeeze Theorem 

I Suppose that f(x) _:::: g(x) _:::: h (x) holds for all x in some open interval containing a, 
except possibly at x = a itself. Suppose also that 

Jim f (x) = Jim h (x) = L. 
x-ta x-t a 

Then Jim g(x) = L also. Similar statements hold for left and right limits. 
X-+O 

EXAMPLE 10 Given that 3 - x 2 _:::: u (x) _:::: 3 + x 2 for all x -f. 0, find limx-+0 u (x). 

Solution Since limx-+o(3 - x2
) = 3 and limx-+o(3 + x 2) = 3, the Squeeze Theorem 

implies that limx-+0 u (x) = 3. 

EXAM p LE 11 Show that if lim x -+a If (x)I = 0, then limx-+a f (x) = 0. 

Solution Since - lf(x)I .:::: f(x) .:::: lf(x)I, and - lf( x)I and lf(x) I both have limit 
0 as x approach es a, so does f( x ) by the Squeeze Theorem. 

EX E R C I S ES 1.2 
1. Find: (a) lim f (x) , (b) Jim f (x), and (c) Jim f (x ) , for 

x->- I x-> 0 x-> I 
the functi on f who se graph is shown in Figure 1.13. 

y 

Figure 1.13 

2. For the function y = g (x) graphed in Figure 1.14, find each 
of the followin g limit s or explain why it does not exist. 
(a) lim g(x) , (b) lim g(x), (c) lim g(x) 

x -> i x ->2 x-> 3 

y 

Figure 1.14 

In Exercises 3- 6, find the ind icated one-sided limit of the 
function g who se graph is given in Figure 1.14. 

3. Jim g(x) 
X-> I -

4. lim g(x ) 
x-> i+ 

5. lim g (x ) 
x -> 3+ 

6. Jim g (x ) 
x->3-

In Exercises 7-36 , evalu ate the limit or explain why it doe s not 
exist. 

7. lim (x 2 
- 4x + 1) 

x-> 4 

x+3 
9. lim - 

x->3 X + 6 

11. lim x2 - l 
X-> I X + I 

lim 
x 2 - 6x + 9 

13. -~ 2~--
x->3 X - 9 

15. 
. I 

lim --
h->2 4 - h2 

17. 
Jx-3 

lim -- -
x->9 X - 9 

19. lim 
(x- ir )2 

21. lim Ix - 21 
x-+ 0 X - 2 

12 - l 
23. Jim~ - -

r-> I 12 - 21 + l 
. t 25. Jim - - -- - -

1->0 .J4+t - ,fa"=t 

27 
. 12 + 3t 

• lun 2 2 
t->O (t + 2) - (t - 2) 

29 
. y - 4Jy +3 

• lim -~
2

-'--- -
y-> I y - I 

x4 - 16 
31. lim --

x-> 2 x3 - 8 

8. Jim 3(1 - x)(2 - x) 
x--+2 

10. 
t 2 

lim -
t ->-4 4-t 

x 2 - I 
12. lim -

x->- I x+I 

lim 
x 2 + 2x 

14. 
2 X->- 2 X - 4 

3h + 4h2 
16. lim ----,,---c-

h->O h2 - h3 

18 
. ,J4 + h - 2 

. bm ----
h-> O h 

20. lim Ix - 21 
x->-2 

. lx -21 
22. hm --

x->2 X - 2 

.J4 - 4x + x 2 
24. Jim ---- -

x->2 X - 2 

x 2 - 1 
26. lim---

x-> I ,Jx+"'3 - 2 

28. Jim (s + 1)2 - (s - 1)2 

s-> 0 S 

x 3 + l 
30. lim - 

x ->- 1 X + l 
x 2/3 - 4 

32. Jim ~~ 
x->8 x 1/ 3 - 2 
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33. Jim ( -
1

- - -
4
- ) 

x___.2 x - 2 x2 - 4 
34. lim ( -

1
- - -

1
- ) 

x ___.2 x - 2 x2 - 4 

,./2 + x2 - ,./2 - x2 

36 
. 13x - 11 - 13x + 11 

35. lim 
2 

• hm --- - ---
x___.o X x___.0 X 

f (x + h) - f (x ) 
The limit lim ------ occurs freq uently in the study of 

1, .... 0 h 
calc ulus. (Can you guess why?) Evaluate this limit for the 
functions f in Exerc ises 37-42 . 

37. f(x) = x 2 

1 
39. f(x) = -

X 

41. f (x) = .Jx 

38. f( x ) = x 3 

l 
40. f( x ) = 2 X 

42. f( x ) = 1/ .Jx 
Examine the graph s of sin x and cos x in Section P. 7 to determine 
the limits in Exercises 43-4 6. 

43. lim sin x 
X-Hr / 2 

45. lim COS X 
X___.1'/3 

44. Jim COSX 
X___.1'/4 

46. lim sinx 
x._..21'/3 

81 47. Make a table of values of f (x ) = (sin x) / x for a sequence of 
values of x approaching 0, say ± 1.0, ± 0. l , ± 0.0 1, ±0.00 1, 
± 0.000 1, and ± 0.0000 1. Make sure your calculator is set in 
radian mode rather than degree mode. Guess the value of 
Jim f (x). 

x .... o 
l - cosx 81 48. Repeat Exercise 47 for f (x) = 

2 
. 

X 

In Exercises 49- 60, find the indicated one-sided limit or explain 
why it does not exist. 

49. lim ~ 50. lim ,./2- x 
x._..2- x___.2+ 

51. lim ~ 52. lim ~ 
x._..- 2- X->- 2+ 

53. lim Jx 3 -x 54. lim ) x 3 -x 
x->0 x->0-

55. lim Jx 3 - x 56. lim J x2 - x4 
x .... o+ x .... o+ 

57. 
Ix - al 

58. 
Ix -al 

lim - -- lim ---
x___.a-x2 - a2 x___.a+ x 2 - a2 

59. 
x 2 - 4 

60. 
x 2 - 4 

lim --- lim -- -
x ._..2- Ix+ 21 x___.2+ Ix + 21 

Exercises 61-6 4 refer to the funct ion 

f(x) = x 2 + 1 r-1 

(x + 7r )2 

Find the indicated limit s. 

61. lim f (x) 
x ._..-1 -

if X :'.:: - 1 
if - J < X :'.:: 0 
if X > 0. 

62. lim f( x ) 
x._..-1+ 

63. lim f (x) 64. lim f (x) 
x .... o+ x .... o-

65. Suppose limx___.4 f (x) = 2 and limx___.4 g (x) = -3. Find: 

(a) lim (g(x) + 3) (b) lim xf (x ) 
x___.4 x___.4 

(c) lim ( g (x ))
2 

x ___.4 
(d) Jim g (x) 

x___.4 f (x) - 1 

66. Suppose limx___.a f (x) = 4 and limx___.a g(x ) = - 2. Find : 

(a);~ (!ex)+ g (x ) ) (b) lim f (x ) · g(x) 
x~ a 

(c) lim 4g (x ) 
x----::,.a 

(d) Jim f(x) / g (x). x___.a 

67. If lim f (x ) -
5 = 3, find lim J(x). 

x___.2 X - 2 x___.2 

68. If lim f c;) = - 2, find lim f (x ) and lim f (x) . 
x___.O X x->0 x->0 X 

Using Graphing Utilities to Find Limits 

Graphing calculators or computer software can be used to 
evaluate limits at least approximately. Simply "zoom" the plot 
window to show smaller and smaller parts of the graph near the 
point where the limit is to be found . Find the following limits by 
graphical technique s. Where you think it ju stified, give an exact 
answer. Otherwise, give the answe r correct to 4 decimal places. 
Remember to ensure that your calculator or software is set for 
radian mode when using trigonometric functions. 

ii 69. 
sin x 

11 70. 
sin(21r x) 

lim -- lim 
x->0 X x .... o sin( 31r x ) 

ii 71. Jim 
sin -vT=x" ii 72. Jim 

X - ..jx 
x ._..1- ~ x .... o+ ,Jsm.x 

ii 73. On the same graph plot the three functions y = x sin(l / x ), 
y = x, and y = - x for - 0.2 ::: x ::: 0.2, -0 .2 ::: y ::: 0.2 . 
Describe the behaviour off (x ) = x sin(I / x) near x = 0. 
Does limx___.o J(x) exist, and if so, what is its value? Could 
you have predicted this before drawing the graph? Why? 

Using the Squeeze Theorem 

74. If ,Js - 2x2 ::: J (x) ::: ,Js - x2 for - 1 ::: x :s 1, find 
lim J(x) . 
x .... o 

75. If2 - x2 ::: g(x) :::2cosx for all x, find lim g(x ) . 
x .... o 

76. (a) Sketch the curves y = x 2 and y = x 4 on the same graph . 
Where do they intersect? 

(b) The function J (x ) satisfies: 

{ 
x 2 ::: J(x) ::: x 4 

x 4 ::: f (x ) ::: x 2 
if x < - 1 or x > 
if - 1 :'.:: X :'.": 1 

Find (i) lim f (x ) , (ii) Jim f (x) , (iii) lim f (x) . 
x._..- 1 x___.O x->I 

77. On what intervals is x 113 < x 3? On what intervals is 
x 113 > x 3? If the graph of y = h(x) always lies between the 
graphs of y = x 1 / 3 and y = x 3 , for what rea l numbers a can 
you determine the value of limx___.a h (x)? Find the limit for 
each of these values of a. 

1 1 
D 78. What is the domain of x sin - ? Evaluate lim x sin - . 

X x___.0 X 

0 79. Suppose IJ(x) I ::: g(x ) for all x . What can you conclud e 
about limx->a f (x) if limx___.0 g(x) = O? What if 
limx___.a g (x) = 3? 
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Limits at Infinity and Infinite Limits 

Figure 1.15 The graph of x / .JxT+i 

Table 5. 

X f(x) = x / .Jx 2 + 1 

-1,000 -0.9999995 
-100 -0.9999500 
-10 -0.9950372 
-1 -0.7071068 

0 0.0000000 
1 0.7071068 

10 0.9950372 
100 0.9999500 

1,000 0.9999995 

DEFINITION 

I 

In this section we will extend the concept of limit to allow for two situations not covered 
by the definitions of limit and one-sided limit in the previous section: 

(i) limits at infinity, where x becomes arbitrarily large, positive or negative; 

(ii) infinite limits, which are not really limits at all but provide useful symbolism 
for describing the behaviour of functions whose values become arbitrarily large, 
positive or negative. 

y 

Limits at Infinity 
Consider the function 

X 

f(x) = v'x2+i 

whose graph is shown in Figure 1.15 and for which some values (rounded to 7 decimal 
places) are given in Table 5. The values of f(x) seem to approach 1 as x takes on 
larger and larger positive values, and -1 as x takes on negative values that get larger 
and larger in absolute value. (See Example 2 below for confirmation.) We express this 
behaviour by writing 

lim f (x) = 1 "f (x) approaches l as x approaches infinity." 
X--+00 

Jim f (x) = -1 "f (x) approaches -1 as x approaches negative infinity." 
x--+-oo 

The graph of f conveys this limiting behaviour by approaching the horizontal lines 
y = 1 as x moves far to the right and y = -1 as x moves far to the left. These lines are 
called horizontal asymptotes of the graph. In general, if a curve approaches a straight 
line as it recedes very far away from the origin, that line is called an asymptote of the 
curve. 

Limits at infinity and negative infinity (informal definition) 

If the function f is defined on an interval (a, oo) and if we can ensure that f (x) 
is as close as we want to the number L by taking x large enough, then we say that 
f (x) approaches the limit Las x approaches infinity, and we write 

lim f(x) = L. 
X--+00 

If f is defined on an interval ( -oo, b) and if we can ensure that f (x) is as close 
as we want to the number M by taking x negative and large enough in absolute 
value, then we say that f (x) approaches the limit Mas x approaches negative 
infinity, and we write 

Jim f(x) = M. 
X-*-00 

Recall that the symbol oo, called infinity, does not represent a real number. We cannot 
use oo in arithmetic in the usual way, but we can use the phrase "approaches oo" to 
mean "becomes arbitrarily large positive" and the phrase "approaches -oo" to mean 
"becomes arbitrarily large negative." 
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Figure 1.16 

y 

I 
y= -

X 

1 
lim -=0 

x--+±oo X 

X 

EXAMPLE 1 In Figure 1.16, we can see that Iim x--, 00 1 / x = Iim x--> -oo 1 / x = 0. 
The x -axis is a horizontal asymptote of the graph y = 1/x. 

The theorems of Section 1.2 have suitable counterparts for limits at infinity or 
negative infinity. In particular , it follows from the example above and from the Product 
Rule for limits that limx-->±oo 1/ xn = 0 for any positive integer n. We will use this fact 
in the following examples. Example 2 shows how to obtain the limit s at ±oo for the 
function x / .J x 2 + 1 by algebraic means , without resorting to making a table of values 
or drawing a graph, as we did above. 

X 

EXAMPLE 2 Evaluate Jim f(x) and Jim f(x) for f(x) = ,vlx2+I 
x-->oo x-->-oo x2 + 1 

Solution Rewrite the expression for f (x) as follows: 

f(x) = 
X X 

x2 ( 1 + x\ ) R/1 + x12 

Remember R = Ix 1-

X 

lx ljl+ x
1
2 

sgn x 

R, ' 
X {] if X > 0 where sgnx = - = 

1 lxl - if X < 0. 
- 2 

The factor JI+ (l /x 2) approaches 1 as x approache s oo or - oo, so f(x) must have 
the same limits as x ~ ±oo as does sgn (x). Therefore (see Figure 1.15), 

lim f (x) = l and lim f(x) = -1. 
X-->00 x---+-oo 

Limits at Infinity for Rational Functions 
The only polynomials that have limits at ± oo are constant ones, P(x) = c. The 
situation is more interesting for ratio nal functions. Recall that a rational function is 
a quotient of two polynomial s. The follow ing examp les show how to render such a 
function in a form where its limits at infinity and negative infinity (if they exist) are 
apparent. The way to do this is to divide the numerator and denominator by the highest 
power of x appearing in the denominator. The limits of a ratio nal function at infinity 
and negative infinity either both fail to exist or both exist and are equal. 

EXAMPLE 3 (Numerator and denominator of the same degree) Evaluate 
2x 2 - X + 3 

lim x--> ±oo -3-x ....,2_+_5_ 

Solution Divide the numerator and the denominator by x2, the highest power of x 
appearing in the denomin ator: 

2x 2 - x + 3 2 - (l / x) + (3/ x 2) 
lim ---- - = lim 

x--+±oo 3x 2 + 5 x--+±oo 3 + (5 / x 2) 

2 -0+0 2 

3 +o 3 

EXAMPLE 4 (Degree of numerator less than degree of denominator) Eval-
5x +2 

uate limx--+±oo 
2

x 3 _ 
1

. 
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Summar y of limits at ±oo 
for ration al functions 

Let Pm(x) = amx"' + · · · + ao 
and Q11(x) = b,,x 11 + · · · + bo 
be polynomials of degree m and 
n, respectively, so that am =/= 0 
and b,, =/= 0. Then 

(a) equals zero if m < n, 
am 

(b) equals - if m = n, 
bn 

(c) does not exist if m > n. 

y 

l 
y = 

x2 

X 

Figure 1.17 Thegraphof y = l / x2 

(not to scale) 

SECTION 1.3: Limits at Infinity and Infinite Limits 7 5 

Solution Divide the numerator and the denominator by the largest power of x in the 
denominator, namely , x 3 . 

Jim 5x + 2 = Jim (5/ x
2

) + (2/ x
3
) = 0 + 0 = O. 

x--+±oo 2x3 - 1 x--+±oo 2 - (1/ x3) 2 - 0 

The limiting behaviour of rational function s at infinity and negative infinity is summa
rized at the left. 

The technique used in the previou s examples can also be applied to more general 
kinds of function s. The function in the following example is not rational, and the limit 
seems to produce a meanin gless oo - oo until we resolve matters by rationalizing the 
numerator. 

EXAMPLE 5 Find limx--+oo ( .J x 2 + x - x ) . 

Solution We are trying to find the limit of the difference of two functions , each 
of which becomes arbitrarily large as x increases to infinity. We ratio nalize the 
expression by multiplying the numerator and the denominator (which is 1) by the 
conjugate expression ,J x 2 + x + x : 

. ( ~ ) . ( ,J x2 + x - x) ( .j x 2 + x + x ) 
Jim v x 2 + x - x = hm 

X--+00 X--+00 .J x2 + X + X 

x 2 +x -x 2 

=)~~ ~l) yx2 \1 + -;;; + X 

. X . 1 1 = hm ----- = hm ----- = 
x--+oo xJ I + ~ +x x--+oo J1 + ~ + 1 2 

(Here, .J7I. = x because x > 0 as x -+ oo.) 

Remark The limit limx--+-oo(.Jx 2 + X - x) is not nearly so subtle . Since - x > 0 
as x -+ -oo , we have .J x 2 + x - x > .J x 2 + x, which grows arbitrarily large as 
x -+ - oo. The limit does not exist. 

Infinite Limits 
A func tion whose values grow arbitrarily large can sometime s be said to have an 
infinite limit. Since infinity is not a number, infinite limit s are not really limits at all, 
but they provide a way of describing the behaviour of functions that grow arbitrarily 
large positive or negative . A few examples will make the terminology clear. 

EXAMPLE 6 (A two-s ided infinite limit) Describe the behaviour of the function 
f(x) = l / x 2 near x = 0. 

Solution As x approaches O from either side, the values of f(x) are positive and 
grow larger and larger (see Figure 1.17), so the limit of f (x) as x approaches O does 
not exist. It is neverthele ss convenient to descri be the behaviour off near O by saying 
that f(x) approaches oo as x approaches zero. We write 

1 
Jim f (x) = Jim 2 = oo. 
x--+0 x--+0 X 

Note that in writing this we are not saying that lim x--+0 l / x 2 exists. Rather, we are 
saying that that limit does not exist because I / x 2 becomes arbitrarily large near x = 0. 
Observe how the graph of f approaches the y-a xis as x approaches 0. The y-axis is a 
vertical asymptote of the graph. 
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y 

l 
y= 

x 

X 

Figure 1. 18 limx---,O-1 / x = -oo , 

lim x--->0+ 1/ x = oo 

EXAMPLE 7 (One-sided infinite limits) Describe the behaviour of the function 
f(x) = 1/ x near x = 0. (See Figure 1.18.) 

Solution As x approaches O from the right, the values of f (x) become larger and 
larger positive numbers, and we say that f has right-h and limit infinity at x = 0: 

Jim f(x) = oo. 
x--->0+ 

Similarly, the values off (x) become larger and larger negative numbers as x approaches 
0 from the left, so f has left-hand limit -oo at x = 0: 

lim f (x) = -oo . 
x--->0-

These statements do not say that the one-sided limit s exist; they do not exist because 
oo and -oo are not numbers . Since the one-sided limits are not equal even as infinite 
symbols, all we can say about the two-sided lim x--->0 f (x) is that it does not exist. 

EX A M p L E B (Polynomial behaviour at infinity) 

(a) limx--+oo (3x 3 - x 2 + 2) = oo 

(c) limx--+oo (x 4 - Sx 3 - x) = oo 

(b) limx--->-oo (3x 3 - x 2 + 2) = -oo 

( d) limx--->-oo (x 4 - Sx 3 - x) = oo 

The highe st-degree term of a polynomial dominate s the other terms as lx l grows large, 
so the limits of this term at oo and -oo determine the limits of the whole polynomial . 
For the polynomial in parts (a) and (b) we have 

3x - x + 2 = 3x l - - + - . 3 2 3( I 2) 
3x 3x 3 

The factor in the large parenthe ses approache s 1 as x approaches ±oo, so the behaviour 
of the polynomial is just that of its highest-degree term 3x3 . 

We can now say a bit more about the limits at infinity and negative infinity of a rational 
function whose numerator has higher degree than the denominator. Earlier in this 
section we said that such a limit does not exist. This is true , but we can assign oo or 
-oo to such limit s, as the following example shows. 

EXAMPLE 9 (Rational functions with numerator of higher degree) Evaluate 
x3 + I 

Jim --. 
X--->00 x 2 +} 

Solution Divide the numerator and the denominator by x 2 , the largest power of x in 
the denominator: 

l 
x 3 + 1 X + 2 

Jim -- = Jim x 
x--+oo x 2 + 1 x--->oo 1 

l+
x2 

limx--->oo (x + ~ ) 
= 00. 

1 

A polynomial Q(x) of degree n > 0 can have at most n zeros; that is, there are at 
most n different real numbers r for which Q(r) = 0. If Q(x) is the denominator of 
a rational function R( x) = P(x) / Q(x), that function will be defined for all x except 
those finitely many zeros of Q. At each of those zeros , R (x) may have limits, infinite 
limits, or one-sided infinite limits. Here are some examples. 
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EXAMPLE 10 

(x - 2)2 (x - 2)2 x - 2 
(a) Jim 2 = lim ----- = Jim -- = 0. 

x--->2 X - 4 x--->2 (x - 2)(x + 2) x--->2 X + 2 
x-2 x-2 1 l 

(b) l~x2_4 =~(x-2)(x+2)=l~ 2x+2=4· 

x-3 x-3 
( c) lim -- = lim ------ = -oo. (The values are negative for 

x--->2+ x 2 - 4 x--->2+ (x - 2)(x + 2) x > 2, x near 2.) 
x-3 x-3 

(d) lim -- = Jim ----- = oo. 
x--->2- x2 - 4 x--->2- (x - 2)(x + 2) 

(The values are positive for 
x < 2, x near 2.) 

x-3 x-3 
(e) lim -- = lim ------ does not exist. 

x--->2 x 2 - 4 x--->2 (x - 2)(x + 2) 
2 - X -(x - 2) -1 

(f) lim --- = lim --- = lim --- = -oo. 
x--->2 (x - 2)3 x--->2 (x - 2) 3 x--->2 (x - 2)2 

In parts (a) and (b) the effect of the zero in the denominator at x = 2 is cancelled 
because the numerator is zero there also. Thus a finite limit exists. This is not true 
in part (f) because the numerator only vanishes once at x = 2, while the denominator 
vanishes three times there. 

Using Maple to Calculate Limits 
Maple 's limit procedure can be easily used to calculate limits , one-sided limits , 
limits at infinity , and infinite limit s. Here is the yntax for calculating 

x 2 -4 
Jim 2 , 

x--->2 x - Sx + 6 

x sin x 
lim ----, 

x--->0 } - COSX 

X 

lim ~' 
x--->-oo -vx2 + 1 

X 
Jim~ , 

X--->00 y X2 +] 

1 
Jim-, 

x--->0 X 

. 1 x2 -a2 
lim --- , 

x--->a- Ix - al 
x2 - a 2 

hm -
x--->0- x' 

and lim 

> limit((xA2-4)/(xA2-5*x+6) , x=2) ; 

-4 

> limit(x*sin(x)/(1-cos(x)) , x=O) ; 

2 

x--->a+ Ix - al 

> limit(x/sqrt(xA2+1) , x=-infinity) ; 

-1 

> limit(x/sqrt(xA2+1) , x=infinity) ; 

1 

> limit(l/x , x=O) ; limit(l/x , x=O, left) ; 

undefined 

-00 

> limit((xA2-aA2)/(abs(x-a)) , x=a , left) ; 

-2a 

> limit((xA2-aA2)/(abs(x - a)) , x=a , right) ; 
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2a 

Fi nally we use Maple to confirm the limit di sc usse d in Example 2 in Section 1.2 

> lirnit((l+xA2)A(l/xA2), x = O); evalf(%); 

e 

2.718281828 

We will learn a great deal about this very important number in Chapter 3. 

EXE RC IS ES 1.3 
Find the limits in Exercises 1-10 . 

1. Jim _x_ 2. lim _ x_ 
x--+oo x2 - 4 X--+00 2X - 3 

3. 
3x 3 - 5x 2 + 7 

4. 
x 2 - 2 

lim 
8 + 2x - 5x 3 lim --

x~oo x--->-oo x - x 2 

5. 
x 2 +3 

6. Jim 
x 2 +si n x 

lim --
X-->-00 x 3 + 2 X--->00 X2 + COSX 

7. 
3x + 2.jx 

8. 
2x - J 

Jim lim 
X--->00 1- x X--->OO .J3x 2 + X + 1 

9. 
2x - l 

10. 
2x - 5 

Jim Jim ---
x--->-00 .J3x 2 + x + I x--->-oo 13x + 21 

In Exercises 11- 34 evaluate the indi cated limit. If it does not 
exist, is the limit oo, -oo, or neither ? 

11. 
1 

lim--
x-->3 3 - X 

13. lim 
1 

--
x--->3-3 - X 

15. lim 
2x + 5 
--

x-+-5 /2 5x + 2 

17. Jim 
2x +5 

x--->-(2/ 5)- 5x + 2 

19. 
X 

Jim 
X--->2+ (2 - X)3 

21. 
1 

lim --
x--->l+lx -11 

23. 
x-3 

Jim 
x-->2 x 2 - 4x + 4 

25. 
. X + x3 + x 5 

hm 
x-+oo l +x 2 +x3 

12. 
1 

Lim 
x--->3 (3 - x )2 

14. lim 
x--->3+ 3 - X 

16. Jim 
2x +5 
--

x--->-2/5 5x + 2 

18. Jim 
2x + 5 

x---> -(2 / 5)+ 5x + 2 

20. 
X 

Jim 
x--->1-~ 

22. 
l 

lim --
.H J-Ix- (I 

24. 
.Jx 2 - X 

lim 
X - x 2 x--->I+ 

x 3 + 3 
26. lim -

x--->oo x 2 + 2 

D 27. Jim x.J.x+-l(l-v'2x+3) 
x--->oo 7 - 6x + 4x 2 

28. lim (~ - ~) 
X-+00 X + I X - 1 

D 29. x2~oo ( J x 2 + 2x - J x2 - 2x) 

D 30. Jim ()x 2 + 2x - Jx 2 - 2x) 
X--->00 

l 
31. lim ~==~- 32. lim 

x--->oo .Jx 2 - 2x - x x--->-oo .Jx 2 + 2x - x 

. 1 
33. What are the honzo ntal asy mptotes of y = ~ ? 

x 2 - 2x - x 
What are its vert ical asy mptot es? 

34. Wh at are the horizonta l and vert ical asy mptote s of 
2x - 5 

y = 13x +21? 

: ......... ll . y= Jµ) 
' ' ' ' ' ' ' ' 

--------- • ---------

-1 -------------------------------- ,----------------------

Figure 1.19 

6 X 

The functio n f who se graph is shown in Figure 1.19 has domain 
[O, oo ). Find the limit s off indic ated in Exercises 35-45. 

35. lim f(x) 
x--->0+ 

36. lim f(x) 
X---> I 

37. Jim f(x) 
x-+2+ 

38. lim f(x) 
x--->2-

39. lim f(x) 
x--->3-

40. Jim f(x) 
x--->3+ 

41. Jim f (x) 
x--->4+ 

42. Jim f(x) 
x~4-

43. Jim f(x) 
x-+5-

44. lim f(x) 
x--->5+ 

45, lim f (x) 
X-HX) 

46. What asymptotes doe s the graph in Figure 1.19 have? 

Exercises 47-52 refer to the greatest integer function LxJ 
grap hed in Figure 1.20. Find the indicated limit or explain why it 
does not exist. 
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y 
47. lim LxJ 48. lim LxJ 

y = LxJ --..0 x-->3+ x-->3-

--..0 

X 

-
Figure 1.20 

49. lim LxJ 
x-->3 

50. lim LxJ 
x-->2.5 

51. lim L2 - xJ 52. Jim LxJ 
x-> 0+ x-->-3-

53. Parking in a certain parking lot costs $1.50 for each hour or 
part of an hour. Sketch the graph of the function C (t) 
representing the cost of parking fort hours. At what values 
oft does C(t) have a limit? Evaluate limHro- C(t) and 
lim H ro+ C(t) for an arbitrary number to > 0. 

54. If limx-->0+ f (x) = L , find limx-->0- f (x) if (a) f is even , 
(b) f is odd. 

55. Iflim x-->0+ f(x) = A and limx-->0- f(x) = B , find 

(a) lim f (x 3 - x ) 
x-->0+ 

(c) Lim f (x 2 - x 4) 
x-->0-

(b) 

(d) 

lim f (x 3 - x) 
x-->0-

Jim f (x 2 - x 4). 
x-->0+ 

• 
Continuity 

-----

DEFINITION 

I 

When a car is driven along a highway, its distance from its starting point depends on 
time in a continuous way, changing by small amounts over short intervals of time. But 
not all quantities change in this way. When the car is parked in a parking Jot where 
the rate is quoted as "$2 .00 per hour or portion," the parking charges remain at $2.00 
for the first hour and then suddenly jump to $4.00 as soon as the first hour has passed. 
The function relating parking charges to parking time will be called discontinuous at 
each hour. In this section we will define continuity and show how to tell whether a 
function is continuous. We will also examine some important properties possessed by 
continuous functions. 

Continuity at a Point 
Most function s that we encounter have domains that are intervals , or unions of separate 
intervals . A point P in the domain of such a function is called an interior point of 
the domain if it belongs to some open interval contained in the domain . If it is not an 
interior point , then P is called an endpoint of the domain. For example, the domain of 
the function f (x) = .J 4 - x 2 is the closed interval [ -2 , 2), which consists of interior 
points in the interval (-2 , 2) , a left endpoint -2, and a right endpoint 2. The domain of 
the function g(x) = 1 / x is the union of open intervals ( -oo , 0) U (O, oo) and consists 
entirely of interior points. Note that although O is an endpoint of each of those intervals, 
it does not belong to the domain of g and so is not an endpoint of that domain. 

Continuity at an interior point 

We say that a function f is continuous at an interior point c of its domain if 

lim f(x) = f(c). 
X-> C 

If either lim x-+c f (x) fails to exist or it exists but is not equal to f (c), then we 
will say that f is discontinuous at c. 

In graphical terms, f is continuous at an interior point c of its domain if its graph has 
no break in it at the point (c, f (c)) ; in other words, if you can draw the graph through 
that point without lifting your pen from the paper. Consider Figure 1.21. In (a), f is 
continuous at c. In (b), f is discontinuous at c because limx-+c f (x) i= f (c). In (c), f 
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Figure 1.21 

(a) f is continuous at c 

(b) Jim f (x) =If (c) 
x-+c 

(c) lim f (x) does not exist 
x~c 

DEFINITION 

y I 
y=l 1--'-------

y = H( x) 

X 

Figure 1.22 The Heaviside function 

THEOREM 

I 
DEFINITION 

I 
Y y = f(x) 

2 X 

Figure 1.23 f (x) = .J4 - x 2 is 
continuous at every point of its domain 

is discontinuous at c becau se lim x---+c f(x) does not exist. In both (b) and (c) the graph 
of f has a break at x = c. 

y (a) y 
(b) 

y (c) 

y = f(x) 
y = f(x) ~ 

_::;/ _j/ I 
I 
I 

~ I I 
I 

C X C X C X 

Although a function cannot have a limit at an endpoint of its domain, it can still 
have a one-sided limit there. We extend the definition of continuity to provide for such 
situations . 

Right and left continuity 

We say that f is right continuous at c if lim f(x) = f(c). 
x---+c+ 

We say that f is left continuous at c if Jim f (x) = f(c). 
x~c-

EXAM p LE 1 The Heaviside function H (x ), whose graph is shown in Figure 1.22, 
is continuous at every number x except 0. It is right continuous at 

0 but is not left continuous or continuous there. 

The rela tionship between continuity and one-sided continuity is summarized in the 
following theorem. 

Function f is continuous at c if and only if it is both right continuous and left continuous 
at c. 

Continuity at an endpoint 

We say that f is continuous at a left endpoint c of its domain if it is right 
continuous there. 
We say that f is continuous at a right endpoint c of its domain if it is left 
continuous there . 

EXAM p LE 2 The function f (x) = J4 - x 2 has domain [-2 , 2]. It is contin-
uous at the right endpoint 2 because it is left continuo us there, 

that is, because limx-->2- f (x) = 0 = f (2). It is continuous at the left endpoint 
- 2 because it is right continuous there: limx-->-2+ f(x) = 0 = f(-2). Of course, 
f is also continuous at every interior point of its domain. If -2 < c < 2, then 
limx---+c f(x) = .J4 - c2 = f(c). (See Figure 1.23.) 

Continuity on an Interval 
We have defined the concept of continuity at a point. Of greater importance is the 
concep t of continuity on an interval. 
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DEFINITION 

l 
y =

x 
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X 

Figure 1.24 1/ x is continuous on its 
domain 

THEOREM 

I 
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Continuity on an interval 

We say that function f is continuous on the interval / if it is continuous at each 
point of /. In particular, we will say that f is a continuous function if f is 
continuous at every point of its domain. 

EXAMPLE 3 The function f(x) =.,/xis a continuous function. Its domain is 
[O, oo). It is continuous at the left endpoint O because it is right 

continuous there. Also, f is continuous at every number c > 0 since limx -->c .,/x = ,Jc. 

EXAM p L E 4 The function g (x) = 1 / x is also a continuous function. This may 
seem wrong to you at first glance because its graph is broken at 

x = 0. (See Figure 1.24.) However, the number O is not in the domain of g, so we will 
prefer to say that g is undefined rather than discontinuous there. (Some authors would 
say that g is discontinuous at x = 0.) If we were to define g(O) to be some number, 
say 0, then we would say that g(x) is discontinuous at 0. There is no way of defining 
g(O) so that g becomes continuous at 0. 

EXAMPLE 5 The greatest integer function LxJ (see Figure 1.20) is continuous 
on every interval [n , n + 1), where n is an integer. It is right 

continuous at each integer n but is not left continuous there, so it is discontinuous at 
the integers . 

Jim LxJ = n = LnJ, 
x-->n+ 

Jim LxJ =n-1 =fan= LnJ. 
x---+n-

There Are Lots of Continuous Functions 
The following functions are continuous wherever they are defined: 

(a) all polynomials; 

(b) all rational functions; 

(c) all rational powers xmf n = y1xm; 

( d) the sine, cosine, tangent, secant , cosecant, and cotangent functions defined in 
Section P. 7; and 

(e) the absolute value function !xi. 
Theorem 3 of Section 1.2 assures us that every polynomial is continuous everywhere 
on the real line, and every rational function is continuous everywhere on its domain 
(which consists of all real numbers except the finitely many where its denominator is 
zero). If m and n are integers and n =fa 0, the rational power function xmf n is defined 
for all positive numbers x , and also for all negative numbers x if n is odd. The domain 
includes O if and only if m / n 2:: 0. 

The following theorems show that if we combine continuous functions in various 
ways, the results will be continuous. 

Combining continuous functions 

If the functions f and g are both defined on an interval containing c and both are 
continuous at c, then the following functions are also continuous at c: 

1. the sum f + g and the difference f - g; 

2. the product f g; 

3. the constant multiple kf, where k is any number; 

4. the quotient f / g (provided g(c) =/. 0); and 
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THEOREM 

I 

x2 -x : y 
y ' 

i 

' - -- - --- -- - - - - -- -..1---- - --- -- - - -- - -- --- - -- -
' ' 1, 1 2) 

Figure 1.25 This function has a 
continuous extension to x = 1 

X 

5. the nth root (f(x)) 1111
, provided f(c) > 0 ifn is even . 

The proof involves using the various limit rules in Theorem 2 of Section 1.2. For 
example , 

Jim (f(x) + g(x)) = lim f(x) + lim g (x ) = f( c) + g (c) , 
x~c x~ c x~c 

so f + g is continuous. 

Composites of continuous functions are continuous 

If f(g(x)) is defined on an interval containing c, and if f is continuous at L and 
lim x~ c g(x) = L , then 

lim f(g(x)) = f(L) = f (lim g(x)) . 
x~c x~c 

In particular, if g is continuous at c (so L = g(c)), then the composition f o g is 
continuous at c: 

lim f(g(x)) = f (g(c)). 
x~c 

(See Exercise 37 in Section 1.5.) 

EXAMPLE 6 The following functions are continuous everywhere on their re
spective domains: 

(a) 3x 2 - 2x 

(d) Jx 

x -2 
(b) -

x2 - 4 

(e) Jx 2 - 2x - 5 

(c) lx 2 -11 

lx l 
(f) v'/x+2T 

Continuous Extensions and Removable Discontinuities 
As we have seen in Section 1.2, a rational function may have a limit even at a point 
where its denominator is zero . If f( c) is not defined , but limx~c f(x) = L exists , we 
can define a new function F(x) by 

F(x) = { f (x) ~f xis in the domain off 
L 1f X = C. 

F (x) is continuous at x = c. It is called the continuous extension off (x) to x = c. For 
rational functions f, continuous extensions are usually found by cancelling common 
factors. 

EXAMPLE 7 
x 2 -x 

Show that f (x ) = -
2
-- has a continuous extension to x = l, 

X - 1 
and find that extension . 

Solution Although f (l) is not defined , if x f= 1 we have 

x 2 - x x (x - l) x 
f(x) = x 2 - 1 = (x + l)( x - I) x + 1 

The function 
X 

F( x ) = --
x + 1 

is equal to f( x ) for x-/= 1 but is also continuous at x = 1, having there the value 1/ 2. 
The graph off is shown in Figure 1.25. The continuous extension of f(x) to x = 1 is 
F( x ). It has the same graph as f( x ) except with no hole at (1 , 1/ 2). 

If a function f is undefined or discontinuous at a point a but can be (re )defined at that 
single point so that it becomes continuous there , then we say that f has a removable 
discontinuity at a. The function fin the above example has a removable discontinuity 
at x = 1. To remove it, define f (1) = 1 / 2. 
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Figure 1.26 g has a removable 
discontinuity at 2 

THEOREM 

y 

X 

Figure 1.27 Rectangular field: 
perimeter = 2x + 2y, area = xy 

I 
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EXAM p LE 8 The function g (x) = { ; :; ; : ; has a removable discontinuity 

at x = 2. To remove it, redefine g(2) = 2. (See Figure 1.26.) 

Continuous Functions on Closed, Finite Intervals 
Continuous function s that are defined on closed, finite intervals have spec ial propertie s 
that make them parti cularly useful in mathematics and its applications. We will discuss 
two of these propertie s here. Although they may appear obvious, these propertie s are 
much more subtle than the results about limits stated earlier in this chapter; their proof s 
(see Appendix III) require a carefu l study of the implication s of the completene ss 
property of the real number s. 

The first of the propertie s states that a function f (x) that is continuou s on a 
closed, finite interval [a , b] must have an absolute maximum value and an absolute 
minimum value. This mean s that the values of f(x) at all points of the interval lie 
between the values of f (x) at two particular point s in the interval ; the graph of f has 
a highe st point and a lowest point. 

The Max-Min Theorem 

If f( x) is continuous on the closed, finite interval [a, b], then there exist number s p 
and q in [a , b] such that for all x in [a, b], 

f(p) S f(x) S f(q). 

Thus f has the absolute minimum value m = J(p), taken on at the point p, and the 
absolute maximum value M = f (q ), taken on at the point q . 

Many important problem s in mathematic s and its applications come down to having to 
find maximum and minimum values of functions. Calculus provides some very useful 
tools for solving such problem . Observe, however , that the theorem above merely 
asserts that minimum and maximum values exist; it doesn' t tell us how to find them . In 
Chapter 4 we will develop technique s for calculating maximum and minimum values of 
functions . For now, we can solve some simple maximum and minimum value problem s 
involving quadratic function s by completing the square without using any calculu s. 

EXAMPLE 9 What is the largest possible area of a rectangular field that can be 
enclosed by 200 m of fencing? 

Solution If the sides of the field are x m and y m (Figure 1.27), then its perimet er 
is P = 2x + 2y m, and its area is A = xy m2 . We are given that P = 200, so 
x + y = 100, and y = 100 - x. Neither side can be negative, so x must belong to the 
closed interval [O, 100]. The area of the field can be expressed as a function of x by 
substitut ing 100 - x for y: 

A = x (IOO - x) = lOOx - x 2 . 

We want to find the maximum value of the quadratic function A(x) = lOOx - x 2 on 
the interva l [O, 100]. Theorem 8 assures us that such a maximum exists. 

To find the maximum , we complete the square of the function A (x ). Note that 
x 2 - 1 OOx are the first two term s of the square (x - 50)2 = x 2 - lOOx + 2,500. Thu s, 

A(x) = 2,500 - (x - 50)2 . 

Observe that A(SO) = 2,500 and A(x) < 2,500 if x f= 50, because we are subtracting 
a positive number (x - 50)2 from 2,500 in this case. Therefore , the maximum value 
of A (x) is 2,500. The largest field has area 2,500 m2 and is actually a square with 
dimensions x = y = 50 m. 
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Figure 1.28 f(x) = 1/ x is 
continuous on the open 
interval (0, l). It is not 
bounded and has neither a 
maximum nor a minimum 
value 

X 

y 

Theorem 8 implies that a function that is continuous on a closed , finite interval is 
bounded. This means that it cannot take on arbitrarily large positive or negative 
values; there must exist a number K such that 

[f(x)[ S K ; that is, - K S f(x) S K . 

In fact, for K we can use the larger of the number s [f(p) [ and If (q) [ in the theorem. 

The conclusions of Theorem 8 may fail if the function f is not continuous or if 
the interval is not clo sed . See Figures 1.28-1.31 for examples of how such failure can 
occur. 

X 

y 

-'----------- x 

y 

y = J(x) 

X 

Figure 1.29 f (x) =xis 
continuous on the open 
interval (0, I ). It is bounded 
but has neither a maximum 
nor a minimum value 

Figure 1.30 This function is 
defined on the closed interval 
[0, I] but is discontinuous at 
the endpoint x = 1. It has a 
minimum value but no 
maximum value 

Figure 1.31 This function is 
discontinuous at an interior 
point of its domain, the 
closed interval [0, 1]. It is 
bounded but has neither 
maximum nor Irummum 
values 

Finding Maxima and Minima Graphically 
Remark Graphing utilitie s can be used to find maximum and minimum values of 
functions on intervals where they are continuo us. In particular, the "zoom box " and 
"trace " facilities of graphing calculators are helpful. Figure l.32(a) shows the graph 
of the function 

x+l 
y = f(x) = x2 + l 

on the window - 5 S x S 5, - 2 S y S 2. Observe that f appears to have a maximum 
value near x = 0.5 and a minimum value near x = -2 .5. Figure l.32(b) shows 
the result of expanding the part of the graph in (a) enclosed in the small rectangle 
(zoo m box) to fill the whole screen . Tracing the curve to its highest point gives a 
more acc urate estimate of the maximum value, showin g that f (x) has maximum value 
1.2071 at x = 0.4149, each to 4 sig nificant figures . Further zooming enab les us to get 
even greater accuracy . 

y 

Figure 1.32 Using a "zoom box" to zoom 
part of a curve (a) near a maximum value 
to fill the screen (b) without allowing the 
curve to become flattened 

X = 0.4150 Y = 1.207 J 

(a) 

The second propert y of a continuous function defined on a closed , finite interval is 
that the function takes on all real values between any two of its values . This property 
is called the intermediate- value property . 
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f(b) 

f (a) ----

a 

Figure 1.33 
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I 

y = f(x) 

C X 

The continuous function f 
takes on the values at some point c 

between a and b 
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The Intermediate-Value Theorem 

If f (x) is continuous on the interval [a, b] and if s is a number between f (a) and f (b ), 
then there exists a number c in [a, b] such that f(c) = s. 

In particular, a continuous function defined on a closed interval takes on all values 
between its minimum value m and its maximum value M, so its range is also a closed 
interval , [m, M] . 

Figure 1.33 shows a typical situation . The points (a , f (a)) and (b, f (b)) are on 
opposite sides of the horizontal line y = s. Being unbroken, the graph y = f (x) must 
cross this line in order to go from one point to the other. In the figure, it crosses the 
line only once , at x = c. If the line y = s were somewhat higher , there might have 
been three crossings and three possible values for c. 

Theorem 9 is the reason why the graph of a function that is continuous on an 
interval / cannot have any breaks. It must be connected , a single, unbroken curve with 
no jumps. 

EXAMPLE 10 Determine the intervals on which f (x) = x3 - 4x is positi ve and 
negative. 

Solution Since f (x) = x(x 2 - 4) = x(x - 2)(x + 2), f(x) = 0 only at x = 0, 2, 
and -2 . Beca use f is continuous on the whole real line, it must have constant sign 
on each of the interval s (-oo, -2 ), (-2 , 0), (0, 2), and (2, oo). (If there were points 
a and bin one of those intervals, say in (0, 2), such that f (a) < 0 and f(b) > 0, then 
by the Intermediate-Value Theorem there would exist c between a and b, and therefore 
between O and 2, such that f (c) = 0. But we know f has no such zero in (0, 2).) 

To find whether f (x) is positive or negative throughout each interval , pick a point 
in the interval and evaluate f at that point. 

Since f(-3) = -15 < 0, f(x) is negative on (- oo, - 2). 
Since f(-1) = 3 > 0, f(x) is positive on (-2 , 0) . 
Since f(l) = -3 < 0, f (x) is negative on (O, 2). 
Since f(3) = 15 > 0, f(x) is positive on (2, oo) . 

Finding Roots of Equations 
Among the many useful tools that calculus will provide are ones that enable us to 
calculate solutions to equations of the form f (x) = 0 to any desired degree of accuracy. 
Such a solution is called a root of the equation , or a zero of the function f. Using these 
tools usually require s previous knowledge that the equation has a solution in some 
interval. The Intermediate-Valu e Theorem can provide this information. 

EXAMPLE 11 Show that the equation x 3 -x - 1 = 0 has a solution in the interval 
[1, 2]. 

Solution The function f (x) = x 3 - x - 1 is a polynomial and is therefore continuous 
everywhere. Now f (l) = -1 and f (2) = 5. Since O lies between -1 and 5, the 
Intermediate -Value Theorem assures us that there must be a number c in [1, 2] such 
that f (c) = 0. 

One method for finding a zero of a function that is continuous and changes sign on an 
interval involves bisecting the interval many times , each time determining which half 
of the previous interval must contain the root, because the function has opposite signs 
at the two ends of that half. This method is slow. For example, if the original interval 
has length 1, it will take 11 bisections to cut down to an interval of length less than 
0.0005 (because 211 > 2,000 = 1/ (0.0005)) , and thus to ensure that we have found 
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Figure 1.34 The function graphed in the 
upper window has a root between 11 and 
12. The small rectangle (zoom box) is 
zoomed to fill the screen in the lower 
window, enabling us to estimate that the 
root is about 11.4. Successive zooms can 
provide greater precision 

the root correct to 3 decimal places. But this method requires no graphics hardware 
and is easily implemented with a calculator , preferably one into which the formula for 
the function can be programmed . 

EXAMPLE 12 (The Bisection Method) Solve the equation x 3 - x - I = 0 of 
Example 11 correct to 3 decimal places by successive bisections. 

Solution We start out knowing that there is a root in [l, 2]. Table 6 shows the results 
of the bisections. 

Table 6. The Bisection Method for f( x ) = x 3 - x - l = 0 

Bisection 
f(x) 

Root in 
Midpoint Number X Interval 

1 -1 
2 5 [l , 2] 1.5 

1 1.5 0.8750 [l, 1.5] 1.25 
2 1.25 -0.2969 [1.25, 1.5] 1.375 
3 1.375 0.2246 [1.25, 1.375] 1.3125 
4 1.3125 -0.0515 [1.3125, 1.375] 1.3438 
5 1.3438 0.0826 [1.3125, 1.3438] 1.3282 
6 1.3282 0.0147 [1.3125, 1.3282] 1.3204 
7 1.3204 -0.0186 [1.3204 , 1.3282] 1.3243 
8 1.3243 -0.0018 [1.3243 , 1.3282] 1.3263 
9 1.3263 0.0065 [1.3243, 1.3263] 1.3253 

10 1.3253 0.0025 [ 1.3243, 1.3253] 1.3248 
11 1.3248 0.0003 [ 1.3243, 1.3248] 1.3246 
12 1.3246 -0 .0007 [1.3246 , 1.3248] 

The root is 1.325, rounded to 3 decimal places. In Section 4.2, calculus will 
provide us with much faster methods of solving equations such as the one above. 

You can use a graphing utility to solve an equation f(x) = 0. Just graph the function 
f (x) over a large enough interval so that you can see roughly where its zeros are. Then 
select one zero at a time, and zoom in on it by successively expanding the part of the 
viewing window near the zero to fill the whole viewing window. (See Figure 1.34.) 
Keep zooming until you can estimate the zero to as many decimal places as you want 
(or as the calculator or computer will allow). 

Many programmable calculators and computer algebra software packages have 
built-in routines for solving equations. For example, Maple's f s o lve routine can be 
used to find the real solution of x 3 - x - l = 0 in [1, 2]. (See Example 11.) 

> fsolve (xA3-x-1=0 , x=l . . 2) ; 

1.324717957 

Remark The Max-Min Theorem and the Intermediate-Value Theorem are examples 
of what mathematician s call existence theorems . Such theorems assert that something 
exists without telling you how to find it. Students sometimes complain that mathemati
cians worry too much about proving that a problem has a solution and not enough about 
how to find that solution. They argue: "If I can calculate a solution to a problem, then 
surely I do not need to worry about whether a solution exists." This is, however, false 
logic. Suppose we pose the problem: "Find the largest positive integer." Of course, 
this problem has no solution ; there is no largest positive integer because we can add 1 
to any integer and get a larger integer. Suppose , however, that we forget this and try to 
calculate a solution . We could proceed as follows: 

Let N be the largest positive integer. 
Since 1 is a positive integer, we must have N :::: 1. 
Since N 2 is a positive integer , it cannot exceed the largest positive integer. 
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Therefore, N 2 :S N and so N 2 - N :S 0. 

Thus, N(N - 1) :SO and we must have N - l :S 0. 
Therefore, N :S 1. Since also N ~ I, we have N = l. 
Therefore, 1 is the largest positive integer. 

The only error we have made here is in the assumption (in the first line) that the problem 
has a solution. It is partly to avoid logical pitfalls like this that mathematicians prove 
existence theorems. 

EX E R C I S ES 1.4 
Exercises 1-3 refer to the function g defined on [-2, 2], whose 
graph is shown in Figure 1.35. 

-2 -1 

y 
2 

Figure 1.35 

• 

X 

1. State whether g is (a) continuous, (b) left continuous, 
(c) right continuous , and (d) discontinuous at each of the 
points -2, -1, 0, l , and 2. 

2. At what points in its domain does g have a removable 
discontinuity, and how should g be redefined at each of those 
points so as to be continuous there? 

3. Does g have an absolute maximum value on [-2, 2]? an 
absolute minimum value? 

: ......... ll • y~f(x) 

-·--·--- .. --·---·--· 

2 6 

-] ------·-------------------------,·--·----·-------·---· 

Figure 1.36 

X 

4. At what points is the function f , whose graph is shown in 
Figure 1.36, discontinuous? At which of those points is it 
left continuous? right continuous? 

5. Can the function f graphed in Figure 1.36 be redefined at the 
single point x = l so that it becomes continuous there? 

6. The function sgn (x) = x / Ix I is neither continuous nor 
discontinuous at x = 0. How is this possible? 

In Exercises 7-12, state where in its domain the given function is 
continuous, where it is left or right continuous, and where it is 
just discontinuous. 

7. J(x) = { ;2 if X < 0 
if X ~ 0 8. f (x) = { ;2 ifx < -1 

if X ~ -I 

9. f (x) = { ~/x
2 

if x IO 10. f (x) = { x2 
if x ~ 1 

if X = 0 0.987 if X > 1 
11. The least integer function 1xl ofExample 11 inSectionP.5. 

12. The cost function C (t) of Exercise 53 in Section 1.3. 

In Exercises 13-16, how should the given function be defined at 
the given point to be continuous there? Give a formula for the 
continuous extension to that point. 

x2 -4 
13. --at X =2 

x-2 
l + t 3 

14. -- at t = -1 
1 - t2 

15. 

17. 

18. 

19. 

20. 

t2 - St+ 6 
----at 3 
t2 - t - 6 

x 2 -2 
16. --at .J2 

x 4 -4 

Find k so that f (x) = { {_ x2 

function. 

Find m so that g(x) = { xi - m 
-mx 

alJ X. 

if x ~ 2 is a continuous 
ifx > 2 

ifx < 3 . . f 
.f 

3 
1s contmuous or 

IX~ 

Does the function x2 have a maximum value on the open 
interval -1 < x < l? a minimum value? Explain. 

The Heaviside function of Example l has both absolute 
maximum and minimum values on the interval [ -1, I], but it 
is not continuous on that interval. Does this violate the 
Max-Min Theorem? Why? 

Exercises 21-24 ask for maximum and minimum values of 
functions. They can all be done by the method of Example 9. 

21. The sum of two nonnegative numbers is 8. What is the 
largest possible value of their product? 

22. The sum of two nonnegative numbers is 8. What is (a) the 
smallest and (b) the largest possible value for the sum of 
their squares? 

23. A software company estimates that if it assigns x 

programmers to work on the project, it can develop a new 
product in T days , where 

T = 100 - 30x + 3x2
. 

How many programmers should the company assign in order 
to complete the development as quickly as possible? 

24. It costs a desk manufacturer $(245x - 30x 2 + x 3) to send a 
shipment of x desks to its warehouse. How many desks 
should it include in each shipment to minimize the average 
shipping cost per desk? 

Find the intervals on which the functions f (x) in Exercises 
25-28 are positive and negative. 

x 2 - 1 
25. f(x) = --

x 
26. f(x)=x 2 +4x+3 
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x 2 - 1 x 2 +x- 2 
27. f (x) = 2 _ 

4 
28. f (x) = 3 X X 

29. Show that f (x) = x 3 + x - l has a zero between x = 0 and 
X = l. 

30. Show that the equation x 3 - 15x + 1 = 0 has three solutions 
in the interval [- 4, 4). 

31. Show that the function F(x) = (x - a)2 (x - b)2 + x has the 
value (a+ b)/ 2 at some point x . 

8 32. (A fixed-point theorem) Suppose that f is continuous on 
the closed interval [O, 1] and that O :'.S f (x) :'.:: 1 for every x 

in [0, 1]. Show that there must exist a number c in [0, 1) such 
that f(c) = c. (c is called a fixed point oftbe function f.) 
Hint: If f (0) = 0 or f (1) = 1, you are done. If not, apply 
the Intermediate-Value Theorem to g (x) = f (x) - x. 

8 33. If an even function f is right continuous at x = 0, show that 
it is continuous at x = 0. 

8 34. If an odd function f is right continuous at x = 0, show that it 
is continuous at x = 0 and that it satisfies f (0) = 0. 

Use a graphing utility to find maximum and minimum values of 
the functions in Exercises 35-38 and the points x where they 
occur. Obtain 3 decimal place accuracy for all answers. 

:;: 35. 
x 2 - 2x 

f(x)= --
x 4 + I 

on [- 5, 5] 

:;: 36. ( ) sin x f X =--
6+x 

on [-ir , ir] 

:;~ 37. 
4 

f(x) = x 2 + - on [1, 3) 
X 

H 38. f (x) = sin(irx) + x(cos(irx) + l) on [O, l] 

Use a graphing utility or a programmable calculator and the 
Bisection Method to solve the equations in Exercises 39-40 to 3 
decimal places. As a first step, try to guess a small interval that 
you can be sure contains a root. 

;~ 39. x 3 + X - l = 0 ;I 40. cos x - x = 0 

Use Maple 's f solve routine to solve the equations in Exercises 
41-42. 

ii 41. sin x + l - x 2 = 0 (two roots) 

ii 42. x 4 
- x - 1 = 0 (two roots) 

ii 43. Investigate the difference between the Maple routines 
fsolve(f , x),solve(f , x), and 
evalf (solve (f, x)), where 
f : = x"3-x-1=0 . 
Note that no interval is specified for x here. 

• 
The Formal Definition of Limit 

- - ---

The material in this section is 
optional. 

y 

L+ E>-- ----

L .......................... . 

Figure 1.37 If x f. a and Ix - al < b, 
then lf(x) - LI < E 

The informal definition of limit given in Section 1.2 is not precise enough to enable 
us to prove results about limit s such as those given in Theorems 2-4 of Section 1.2. 
A more precise formal definition is based on the idea of controlling the input x of a 
function f so that the output f (x) will lie in a specific interval. 

EXAMPLE 1 The area of a circular disk of radius r cm is A = n: r 2 cm2 . A 
machinist is required to manufacture a circular metal disk having 

area 400n: cm2 within an error tolerance of ±5 cm 2 . How close to 20 cm must the 
machinist control the radius of the disk to achieve this? 

Solution The machinist want s Jn: r 2 - 400n: J < 5, that is , 

400n: - 5 < n:r2 < 400ir + 5, 

or, equivalently, 

) 400 - (5/n:) < r < ) 400 + (5/ n:) 

19.96017 < r < 20.03975. 

Thus , the machinist needs Jr - 201 < 0.03975 ; she must ensure that the radius of the 
disk differs from 20 cm by less than 0.4 mm so that the area of the disk will lie within 
the required error tolerance . 

When we say that f(x) has limit La s x approaches a, we are really saying that we 
can ensure that the error lf(x) - LI will be less than any allowed tolerance, no matter 
how small, by taking x close enough to a (but not equal to a). It is traditional to use 
E, the Greek letter "epsilon, " for the size of the allowable error and b, the Greek letter 
"delta, " for the difference x - a that measures how close x must be to a to ensure that 
the error is within that tolerance . These are the letters that Cauchy and Weierstrass 
used in their pioneering work on limits and continuity in the nineteenth century. 

www.konkur.in



DEFINITION 

I 

SECTION 1.5: The Formal Definition of Limit 89 

If E is any positive number, no matter how small, we must be able to ensure that 
lf(x) - LI < Eby restricting x to be close enough to (but not equal to) a. How close 
is close enough? It is sufficient that the distance Ix - al from x to a be less than a 
positive number '5 that depends on E. (See Figure 1.37.) If we can find such a '5 for any 
positive E, we are entitled to conclude that Jim f(x) = L. 

x~a 

A formal definition of limit 

We say that f(x) approaches the limit La s x approaches a, and we write 

lim f(x) = L , 
x -+ a 

if the following condition is satisfied: 
for every number E > 0 there exists a number '5 > 0, possibly depending on E, 
such that if O < Ix - a I < '5, then x belongs to the domain of f and 

If (x) - LI < E . 

The formal definition of limit does not tell you how to find the limit of a function , but 
it does enable you to verify that a suspected limit is correct. The following examples 
show how it can be used to verify limit statements for specific functions. The first of 
these gives a formal verification of the two limits found in Example 3 of Section 1.2. 

EXAMPLE 2 (Tuo important limits) Verify that: 
(a) Jim x = a and (b) Jim k = k (k = constant). 

x-+a x-+a 

Solution 
(a) Let E > 0 be given. We must find '5 > 0 so that 

0 < Ix - al < '5 implies Ix - al < E. 

Clearly, we can take '5 = E and the implication above will be true. This proves 
that lim x = a. 

x-+a 

(b) Let E > 0 be given. We must find '5 > 0 so that 

0 < Ix - al < '5 implies lk - kl < E. 

Since k - k = 0, we can use any positive number for '5 and the implication above 
will be true. This proves that Jim k = k. 

EXAMPLE 3 

x~a 

Verify that lim x 2 = 4. 
x-+ 2 

Solution Here a = 2 and L = 4. Let E be a given positive number. We want to find 
'5 > 0 so that ifO < Ix - 21 < '5, then lf( x ) - 41 < E. Now 

lf(x) - 41 = lx2 
- 41 = l(x + 2)(x - 2)1 =I x + 21 Ix - 21. 

We want the expression above to be less than E. We can make the factor Ix - 21 as 
small as we wish by choosing '5 properly, but we need to control the factor fx + 21 so 
that it does not become too large . If we first assume '5 S 1 and require that fx - 21 < '5, 
then we have 

Ix - 21 < 1 1 < X < 3 

:::} Ix+ 21 < s. 
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Hence, 

lf(x) - 41 < Six - 21 if Ix - 21 < 6 S 1. 

But Six -21 < E if Ix -21 < E/ 5. Therefore , ifwe take 6 = min{l, E/ 5}, the minimum 
(the smaller) of the two numbers 1 and E / 5, then 

E 
lf(x) - 41 < Six - 21 < 5 x 5 = E if Ix - 21 < 6. 

This proves that lim f(x) = 4. 
x ->2 

Using the Definition of Limit to Prove Theorems 
We do not usually rely on the formal definition of limit to verify specific limit s such 
as those in the two examples above. Rather, we appeal to general theorem s about 
limits, in particular Theorems 2-4 of Section 1.2. The definition is used to prove these 
theorems. As an example, we prove part 1 of Theorem 2, the Sum Rule. 

EXAMPLE 4 (Proving the rule for the limit of a sum) If lim f (x) = L and 
x---+a 

lim g(x ) = M, prove that lim (f (x) + g(x)) = L + M. 
x ->a x-> a 

Solution Let€ > 0 be given . We want to find a positive number 6 such that 

0 < 1x-al < 6 ::::} J(f(x)+g(x))-(L+M)J < E. 

Observe that 

J(f(x)+g(x)) - (L + M) J 

= J(f(x) - L) + (g(x) - M) I 

S lf(x) - LI+ lg(x) - Ml. 

Regroup terms. 

(Use the triangle inequality: 

la+ bl S lal + ibl). 

Since Jim f (x) = L and E / 2 is a positive number , there exists a number 61 > 0 such 
x->a 

that 

0 < Ix - al < 61 ::::} If (x) - LI < E/ 2. 

Similarly , since lim g(x) = M , there exists a number 62 > 0 such that 
x---+a 

0 < Ix - a l < 62 ::::} lg(x) - Ml < E/ 2 . 

Let 6 = min{61, 62}, the smaller of 61 and h If O < Ix - al < 6, then Ix - al < 61, 
so lf( x) - LI < E/ 2, and Ix - al < oi, so lg(x) - Ml < E/ 2. Therefore, 

E E 
J(f(x) + g(x)) - (L + M)J < 2 + 2 = E. 

This shows that lim (f(x) + g(x)) = L + M. 
x---+a 

Other Kinds of Limits 
The formal definition of limit can be modified to give precise definitions of one-sided 
limits, limits at infinity, and infinite limits. We give some of the definitions here and 
leave you to suppl y the others. 
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Figure 1.38 If a < x < a + b, 
then If (x) - LI < E 
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Right limits 

We say that f(x) has right limit Lat a, and we write 

lim f(x) = L , 
x~ a+ 

if the following condition is satisfied: 
for every number E > 0 there exists a number b > 0, possibly depending on E, 

such that if a < x < a + b, then x belongs to the domain off and 

lf(x) - LI < E. 

Notice how the condition O < Ix - al < bin the definition of limit becomes a < x < 
a +bin the right limit case (Figure 1.38). The definition for a left limit is formulated 
in a similar way. 

EXAMPLE 5 Show that lim Jx = 0. 
x~ o+ 

Solution Let E > 0 be given. If x > 0, then IJx - 01 = Jx. We can ensure that 
Jx < E by requiring x < E2 . Thus we can take b = E2 and the condition of the 
definition will be satisfied: 

implies 

Therefore , lim Jx = 0. 

lv'i-01 < E. 

x~ o+ 

To claim that a function f has a limit L at infinity, we must be able to ensure that 
the error If (x) - LI is Jess than any given positive number E by restricting x to be 
sufficiently large, that is, by requiring x > R for some positive number R depending 
on E . 

Limit at infinity 

We say that f (x) approaches the limit L as x approaches infinity, and we write 

lim f (x) = L, 
X ~OO 

if the following condition is satisfied: 
for every number E > 0 there exists a number R, possibly depending on E, such 
that if x > R, then x belongs to the domain of f and 

lf(x) - LI < E. 

You are invited to formulate a version of the definition of a limit at negative infinity. 

EXAMPLE 6 
. 1 

Show that hm - = 0. 
X~(X) X 

Solution Let E be a given positive number. For x > 0 we have 

provided 
1 

X > -. 
E 

Therefore, the condition of the definition is satisfied with R = 1 / E. We have shown 
that lim 1/x = 0. 

X~OO 
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DEFINITION 

Ill 

EX E R C I S ES 1.5 

To show that f (x) has an infinite limit at a, we must ensure that f (x) is larger than any 
given positive number (say B) by restricting x to a sufficiently small interval centred 
at a, and requiring that x i= a. 

Infinite limits 

We say that f (x) approaches infinity as x approaches a and write 

lim f (x ) = oo, 
x ~ a 

if for every positive number B we can find a positive number o, possibly depending 
on B, such that if O < Ix - al < o, then x belongs to the domain off and 
f(x) > B. 

Try to formulate the corresponding definition for the concept limx-+a f (x) = -oo. 
Then try to modify both definitions to cover the case of infinite one-sided limits and 
infinite limits at infinity. 

EXAMPLE 7 
1 

Verify that lim 2 = oo. 
x-+ 0 X 

Solution Let B be any positive number. We have 

1 
- > B 
x2 

provided that 
l 

x 2 < -

If o = l / ../B, then 

0 < lxl < o => 
l 

x 2 < 02 = -
B 

Therefore lim 1/ x 2 = oo. 
x -+ 0 

B 

=> 
l 

2 > B. 
X 

1. The length L of a metal rod is given in terms of the 
temperature T ( °C) by L = 39.6 + 0.025T cm. Within what 
range of temperature must the rod be kept if its length must 
be maintained within ±1 mm of 40 cm? 

In Exercises 11-20, use the formal definition of limit to verify the 
indicated limit. 

11. lim (3x + 1) = 4 12. lim(5 - 2x) = 1 
x-+ I x-> 2 

2. What is the largest tolerable enw in the 20 cm edge length of 
a cubical cardboard box if the volume of the box must be 
within ±1.2 % of 8,000 cm3? 

In Exercises 3- 6, in what interval must x be confined if f (x) 
must be within the given distance E of the number L? 

3. f (x) = 2x - l , 

4. f( x ) = x 2, 

5. f (x) = .fi, 
6. f (x) = 1/x, 

L = 3, E = 0.02 

L=4 , E=O.l 

L=l, E=O.l 

L = - 2, E = 0.01 

In Exercises 7- 10, find a number o > 0 such that if Ix - al < o, 
then If (x) - LI will be less than the given number E. 

7. f(x) = 3x + I , a= 2, L = 7, E = 0.03 

8. f(x) = ./2x + 3, a= 3, L = 3, E = 0.01 

9. f(x) = x 3, a= 2, L = 8, E = 0.2 

10. f (x) = 1/ (x + 1), a= 0, L = 1, E = 0.05 

13. Jim x 2 = 0 14. 
x - 2 

lim --=0 
x-> 0 x->2 1 + x 2 

15. 
1 - 4x2 

16. 
x 2 +2x 

Jim --=2 Lim --=-2 
X-> 1/ 2 l - 2x X---?-2 x +2 

17. 
I 1 

18. 
x+l 1 

Jim - - = - lim -- - -
x-> I X+ ] 2 X->- 1 X 2 -1 2 

19. lim../x= l 20. lim x 3 = 8 
x----+ I x->2 

Give formal definitions of the limit statements in Exercises 
21- 26. 

21. lim f (x) = L 22. lim f (x) = L 
x~a- X '"""?-00 

23. lim f (x) = - oo 24. lim f (x) = oo 
x->a X ->CXJ 

25. lim f (x) = -oo 
x~a+ 

26. lim f (x) = oo 
x~ a -

Use formal definitions of the various kinds of limits to prove the 
statements in Exercises 27-30 . 
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27. 
l 

Lim --=oo 
x-> I+ X - l 

28. lim -- = -oo 
X-> I - X - l 

1 
29. Lim --- = 0 30. lim .Jx = oo 

X->00 .JxTTI X-> 

Proving Theorems with the Definition of Limit 

D 31. Prove that limits are unique; that is, if limx->a f (x) = L and 
limx->a f(x) = M , prove that L = M. Hint: Suppose 
L-:/= Mand let€= IL - Ml / 3. 

8 32. If limx->a g(x) = M , show that there exists a number o > 0 
such that 

o < Ix - al < o =} lg(x)I < l + IMI. 

(Hint: Take€ = l in the definition of limit.) This says that 
the values of g(x) are bounded near a point where g bas a 
limit. 

D 33. If limx->a f (x) = L and limx->a g (x) = M , prove that 
limx->a f (x)g(x) = LM (the Product Rule part of 
Theorem 2). Hint: Reread Examp le 4. Let€ > 0 and write 

If (x)g(x) - LM I = If (x)g(x) - Lg(x) + Lg(x) - LMI 

= l(f(x) - L)g(x) + L(g(x) - M)I 
:':: l(f(x) - L)g(x)I + IL( g(x) - M)I 
= lg(x)llf(x) - LI+ ILllg(x) - Ml 

Now try to make each term in the last line less than €/ 2 by 
taking x close enough to a. You will need the result of 
Exercise 32. 

8 34. If lim x->a g (x) = M, where M -:/= 0, show that there exists a 
number o > 0 such that 

0 < Ix - al < o =} lg(x)I > IMl/2. 

CHAPTER REVIEW 
Key Ideas 

• What do the following statements and phrases mean? 

o the average rate of change of f(x) on [a, b] 

o the instantaneou s rate of change of f (x) at x = a 

O limx->a f (x) = L 

O limx->a+ f (x) = L , limx->a- f (x ) = L 

o limx->oo f (x) = L , limx->-oo f (x) = L 

O limx->a f (x) = 00, limx->a+ f (x) = -00 

o f is continuous at c. 

o f is left (or right) continuo us at c. 

o f has a continuous extension to c. 

o f is a continuous function. 

o f takes on maximum and minimum values on interval/. 

o f is bounded on interval / . 

CHAPTER REVJEW 93 

8 35. If limx->a g(x) = M , where M -:/= 0, show that 

I l 
lim--= -. 

x-+a g(x) M 

Hint: You will need the result of Exercise 34. 

8 36. Use the facts proved in Exerci ses 33 and 35 to prove the 
Quotient Rule (part 5 of Theorem 2): if limx->a f(x) = L 
and limx->a g(x) = M , where M-:/= 0, then 

lim f(x) = .£. 
x->a g(x) M 

D 37. Use the definition of limit twice to prove Theorem 7 of 
Section 1.4; that is, if f is continuous at L and if 
limx->c g(x) = L , then 

lim f (g(x)) = f(L) = f ( lim g(x)). 
x~c \.:~ c 

D 38. Prove the Squeeze Theorem (Theorem 4 in Section 1.2). 
Hin t: If f(x) :':: g(x) :':: h(x) , then 

lg(x) - LI = lg(x) - f (x) + f (x) - LI 
:':: lg(x) - f (x)I + If (x) - LI 
:':: lh(x) - f (x)I + lf(x) - LI 
= lh(x) - L - (f(x) - L)I + lf(x) - LI 
:':: lh(x) - LI+ If (x) - LI + If (x) - LI 

Now you can make each term in the last expression less than 
€ / 3 and so complete the proof. 

o f ha the intermediate-v alue property on interval I . 

• State as many "laws of limits " as you can. 

• What properties must a function have if it is continuous 
and its domain is a closed, finite interval? 

• How can you find zeros (roots) of a continuous func
tion? 

Review Exercises 
1. Find the average rate of change of x 3 over [1, 3). 

2. Find the average rate of change of l / x over [ -2 , -1] . 

3. Find the rate of change of x3 at x = 2. 

4. Find the rate of change of 1 / x at x = - 3 / 2. 

Evaluate the limits in Exercises 5-30 or explain why they do not 
exist. 

5. lim (x 2 
- 4x + 7) 

X-> I 

x2 
6. lim --

2 x->2 ] - X 
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7. 
x2 

lim--
X---> I l - x 2 

9. 
x 2 - 4 

lim 
x--->2 x 2 - 4x +4 

11. 
x 2 -4 

lim 
x--->-2+ x 2 + 4x + 4 

13. 
x 2 - 9 

lim 
x-->3.jx-../3 

15. Jim Jx-x 2 

x--->0+ 

17. lim Jx -x 2 
x--->1 

19. 
l - x 2 

lim 
x--->oo 3x 2 - x - 1 

21. 
x 3 - l 

lim --
x--->-oo x 2 + 4 

23. 
1 

lim 
x--->0+ ./x - x 2 

25. lim sinx 
X--->00 

l 
27. lim x sin -

x--->0 X 

29. lim [x+Jx 2 - 4x+I] 
x---+-oo 

30. lim [x+)x 2 -4x+1] 
X--->00 

8. 

10. 

12. 

14. 

16. 

18. 

20. 

22. 

24. 

26. 

28. 

x 2 -4 
lim 
x--->2 x 2 - 5x + 6 

x 2 -4 
lim 

x--->2-x 2 - 4x + 4 

2-../x 
Jim ---

x---+4 x-4 

h 
lim 
h--->O ./x + 3h - ft 

lim Jx -x 2 
x--->0 

Jim Jx -x 2 
x--->1-

lim 
2x + 100 

x---+-oo x 2 +3 

x4 
Jim --

X--->00 x 2 - 4 

1 
Jim 

x--->1/2 .Jx -x2 

lim 
cosx 
--

X--->00 X 

1 
Jim sin 2 x--->0 X 

At what, if any, points in its domain is the function f in Exer
cises 31-38 discontinuous? Is f left or right continuous at these 
points? In Exercises 35 and 36, H refer s to the Heaviside function: 
H~)=lifx ~Omd H~)=Oifx < O. 

31. f (x) = x 3 
- 4x 2 + 1 

33. f(x) = {x2 ifx > 2 

X 
32. f(x) = -

x+l 

X ilX.'.'c2 
34. f(x) = {x2 ifx > 1 

X tf X .'.'cl 

35. f (x) = H(x - 1) 36. f(x) = H(9 - x 2) 

37. J(x) = fxf +Ix+ 11 

38, f(x) = { [
1
xl/lx + 11 if x f=. -1 

if X = -1 

Challenging Problems 
1. Show that the average rate of change of the function x 3 over the 

interval [a, b], where O < a < b, is equal to the instantaneous 

rate of change of x 3 at x = J (a2 + ab + b2) / 3. Is this point 
to the left or to the right of the midpoint (a + b)/2 of the 
interval [a , b ]? 

2. Evaluate lim ___ x __ _ 
x--->0 fx - I I - fx + l I 

3. Evaluate lim IS - 2xf - fx - 21. 
x--->3 fx - Sf - f3x - 71 

xl /3 - 4 
4. Evaluate Jim 112 . 

x--->64 X - 8 

./3+x -2 
5. Evaluate lim 

3 
~ . 

x--->1 v7 +x - 2 

6. The equation ax 2 + 2x - l = 0, where a is a constant, has 
two roots if a > -1 and a f=. 0: 

8 7. 

-1 + y1l+a - 1 -v1l+a 
r+(a) =-----and r_ (a) = -----. 

a a 

(a) What happens to the root r _(a) when a ---+ 0 ? 

(b) Investigate numerically what happens to the root 
r +(a) when a ---+ 0 by trying the values a = l , ±0 .1, 
±0.01, . . .. For values such as a = 10- 8, the limited 
precision of your calculator may produce some interesting 
results. What happens , md why? 

(c) Evaluate lima--->0 r +(a) mathematically by using the iden
tity 

" r;; A-B 
vfi-vB= " 1n· 

vA+vB 

TRUE or FALSE? If TRUE, give reasons; if FALSE, give a 
counterexample. 

(a) If limx--->a f (x) exists but limx--->a g(x) does not exist, 
then limx--->a (f (x) + g(x)) does not exist. 

(b) If neither limx--->a f (x) nor limx--->a g(x) exists, then 
limx--->a (f (x) + g(x)) does not exist. 

(c) If f is continuous at a, then so is If J. 

(d) If If I is continuous at a, then so is f. 

(e) If f (x) < g(x) for all x in m interval around a, and if 
limx--->a f (x) md limx--->a g(x) both exist, then 
limx--->a f (x) < limx--->a g(x). 

8 8. (a) If f is a continuous function defined on a closed interval 
[a, b ], show that R(f) is a closed interval. 

(b) What are the possibilities for R(f) if D(f) is an open 
interval (a, b)? 

9. Consider the function f (x) = 
1

:: = ~ 
1

. Find all points where 

f is not continuous. Does f have one-sided limits at those 
points, and if so, what are they? 

8 10. Find the minimum value off (x) = 1/ (x -x 2) on the interval 
(0 , 1). Explain how you know such a minimum value must 
exist. 

D 11. (a) Suppose f is a continuous function on the interval [0, l], 

and f(O) = f(l) . Show that f(a) = f (a+ D for 

some a E [o, ~J 
Hint: Let g(x) = f (x + ~) - f (x), and use the 

Intermediate-Value Theorem . 

(b) If n is an integer larger than 2, show that 

f(a) = f (a+ D for some a E [o, 1- ~J 
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, , 'All right,' said Deep Thought. 'The Answer to the Great Question .. .' 
'Yes ... !' 
'Of Life, the Universe and Everything .. .' said Deep Thought. 
'Yes ... !' 
'Is .. .' said Deep Thought, and paused. 
'Yes ... ! ... ?' 
'Forty-two,' said Deep Thought, with infinite majesty and calm. 

'Forty-two!' yelled Loonquawl. 'Is that all you've got to show for seven 
and a half million years' work?' 

95 

'I checked it very thoroughly,' said the computer, 'and that quite 
definitely is the answer. I think the problem, to be quite honest with 
you, is that you've never actually known what the question is.' 

'' Douglas Adams 1952- 2001 
from The Hitchhiker's Guide to the Galaxy 

I n trod U Ct I. Q n Two fundamental proble~s are consider~d in c~lculus. 
The problem of slopes 1s concerned with findmg the 

slope of (the tangent line to) a given curve at a given point on the curve. The problem 
of areas is concerned with finding the area of a plane region bounded by curves 
and straight lines. The solution of the problem of slopes is the subject of differential 
calculus. As we will see, it has many appbcations in mathematics and other discipbnes. 
The problem of areas is the subject of integral calculus , which we begin in Chapter 5 . 

• _ T_a_ng_e_nt_L_in_e_s_a_nd_T_h_e_ir_S_lo_pe_s ___________ _ 
This section deals with the problem of finding a straight line L that is tangent to a curve 
C at a point P. As is often the case in mathematics , the most important step in the 

y 

X 

Figure 2.1 L is tangent to C at P 

solution of such a fundamental problem is making a suitable definition . 

For simplic ity, and to avoid certain problems best postponed until later, we will 
not deal with the most general kinds of curves now, but only with those that are the 
graphs of continuous functions. Let C be the graph of y = f( x ) and let P be the 
point (xo, Yo) on C, so that YO = f(xo). We assume that Pis not an endpoint of C. 
Therefore , C extends some distance on both sides of P. (See Figure 2.1.) 

What do we mean when we say that the line Lis tangent to Cat P? Past experience 
with tangent lines to circles does not help us to define tangency for more general curves . 
A tangent line to a circle has the following properties (see Figure 2.2): 

(i) It meets the circle at only one point. 
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96 CHAPTER 2 Differenti ation 

Figure 2.2 L is tangent to C at P 

Figure 2.3 

(a) L meets C only at P but is not 
tangent to C 

(b) L meets C at several points but is 
tangent to C at P 

(c) L is tangent to C at P but crosses C 
at P 

(d) Many lines meet Conly at P but 
none of them is tangent to C at P 

Figure 2.4 Secant lines P Q approach 
tangent line L as Q approaches P along 
the curve C 

(ii) The circle lies on only one side of the line. 

(iii) The tangent is perpendicular to the line joining the centre of the circle to the point 
of contact. 

Most curves do not have obvious centres, so (iii) is useless for characterizing tangents 
to them . The curves in Figure 2.3 show that (i) and (ii) cannot be used to define 
tangency either. In particular , Figure 2.3(d) is not "smooth " at P so that curve should 
not have any tangent line there . A tangent line should have the "same direction" as the 
curve does at the point of tangency. 

y (a) y (b) 

L 

X X 

y (c) y (d) 

C 

C 

X X 

A reasonable definition of tangency can be stated in terms of limits . If Q is a point 
on C different from P , then the line through P and Q is called a secant line to the 
curve. This line rotates around P as Q moves along the curve. If L is a line through 
P whose slope is the limit of the slopes of these secant lines P Q as Q approaches P 
along C (Figure 2.4), then we will say that L is tangent to C at P. 

y 

L 

xo xo + h X 

Since C is the graph of the function y = f( x ), then vertical lines can meet Conly 
once . Since P = (xo , f (xo)), a different point Q on the graph must have a different 
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X 

Figure 2.5 The tangent to y = x 2 at (1, 1) 

y 

X 

Figure 2.6 The y-axis is tangent to 
y = x '13 at the origin 

SECTION 2.1: Tangent Lines and Their Slopes 97 

x-coordinate, say xo + h, where h =fa 0. Thus Q = (xo + h, f(xo + h)), and the slope 
of the line P Q is 

f(xo + h) - f(xo) 

h 

This expression is called the Newton quotient or difference quotient for f at xo. 
Note that h can be positive or negative , depending on whether Q is to the right or left 
of P. 

Nonvertical tangent lines 

Suppose that the function f is continuou s at x = xo and that 

. f(xo + h) - f(xo) 
hm ------- = m 
h--+0 h 

exists. Then the straight line having slope m and passing through the point 
P = (xo, f (xo)) is called the tangent line (or simply the tangent) to the graph 
of y = f (x) at P. An equation of this tangent is 

y = m(x - xo) + YO· 

EXAMPLE 1 Find an equation of the tangent line to the curve y = x 2 at the 
point (1, 1). 

Solution Here f(x) = x 2 , xo = 1, and YO = f(l) = 1. The slope of the required 
tangent is: 

. f(l + h) - f(l) . (1 + h)2 - 1 
m = lim ------ = hm -----

h--+O h h--+0 h 

. 1 + 2h + h2 - 1 
=hm ------

h--+O h 

2h+h 2 

= lim --- = lim (2 + h) = 2. 
h--+0 h h--+0 

Accordingly, the equation of the tangent line at ( 1, 1) is y = 2(x -1) + 1, or y = 2x -1 . 
See Figure 2.5. 

Definition 1 deals only with tangent s that have finite slopes and are, therefore , not 
vertical. It is also possible for the graph of a continuous function to have a vertical 
tangent line. 

EXAM p LE 2 Consider the graph of the function f (x) = $ = x 1 
/
3

, which is 
shown in Figure 2.6. The graph is a smooth curve, and it seems 

evident that the y-ax is is tangent to this curve at the origin. Let us try to calculate the 
limit of the Newton quotient for f at x = 0: 

. f(O+h)-f(O) . h 113 . 1 
hm ------ = lim -- = hm -- = oo. 
h--+0 h h--+0 h h--+Oh~3 

Although the limit does not exist , the slope of the secant line joining the origin to 
another point Q on the curve approaches infinity as Q approaches the origin from 
either side. 
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Figure 2.7 
the origin 

y 

. X 
This graph has no tangent at 

DEFINITION 

I 

y 

X 

Figure 2.8 y = Ix I has no tangent at the 
origin 

DEFINITION 

I 

EXAM p LE J On the other hand, the function f (x) = x 213
, whose graph is shown 

in Figure 2.7 , does not have a tangent line at the origin because it 
is not "s mooth" there. In this case the Newton quotient is 

f (O + h) - f (0) 

h 

Ji2/3 

h h 1/ 3' 

which has no limit as h approaches zero. (The right limit is oo; the left limit is -oo.) 
We say this curve has a cusp at the origin. A cusp is an infinitely sharp point; if you 
were travelling along the curve , you would have to stop and turn 180° at the origin. 

In the light of the two preceding examples, we extend the definition of tangent line to 
allow for vertical tangents as follows: 

Vertical tangents 

If f is continuous at P = (xo, yo), where yo = f (xo) , and if either 

I
. f (xo + h) - J(xo) 
1m ------- = oo or 

h-+ 0 h 
lim f (xo + h) - f (xo) = -oo, 
h-+0 h 

then the vertical line x = xo is tangent to the graph y = f (x) at P. If the limit 
of the Newton quotient fails to exist in any other way than by being oo or -oo, 
the graph y = f (x) has no tangent Ii ne at P. 

EXAM p LE 4 Doe s the grap h of y = Ix I have a tangent line at x = O? 

Solution The Newton quotient here is 

10 + hi - 101 = l!:_l = sgn h = { 1, 
h h -1, 

if h > 0 
if h < 0. 

Since sgn h has different right and left limits at O (namely, 1 and - 1), the Newton 
quotient has no limit as h -+ 0, so y = Ix I has no tangent line at (0 , 0) . (See 
Figure 2.8.) The graph doe s not have a cusp at the origin, but it is kinked at that 
point ; it suddenly changes direction and is not smooth . Curves have tangents only at 
points where they are smooth . The graphs of y = x 213 and y = Ix I have tangent lines 
everywhere except at the origin , where they are not smooth. 

The slope of a curve 

The slope of a curve C at a point P is the slope of the tangent line to C at P if 
such a tangent line exists. In particular, the slope of the graph of y = f (x) at the 
point xo is 

1
. f(xo + h) - f(xo) 
Im------- . 

h-+0 h 
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y 

Figure 2.9 The tangent and normal to 
y = Jx at (4, 2) 

SECTION 2.1: Tangent Lines and Their Slopes 99 

EXAMPLE 5 Find the slope of the curve y = x / (3x + 2) at the point x = -2. 

Solution If x = -2, then y = 1/ 2, so the required slope is 

-2+h 1 

m = lim 3 ( - 2 + h) + 2 2 
h-+0 h 
. -4+2h-(-6+3h+2) = hm ---------

IHO 2(-6 + 3h + 2)h 
-h -1 1 

= lim ----- = lim ---- = -. 
h-+0 2h(-4 + 3h) h-+ 0 2(-4 + 3h) 8 

Normals 
If a curve C has a tangent line L at point P, then the straight line N through P 
perpe ndicular to L is called the normal to C at P. If L is horizontal, then N is vertical; 
if L is vertica l, then N is horizontal. If L is neither horizontal nor vertical, then, as 
shown in Section P.2, the slope of N is the negative reciprocal of the slope of L; that is, 

slope of the normal 
-1 

slope of the tangent 

EXAMPLE 6 Find an equation of the normal to y = x 2 at (1, 1). 

Solution By Example 1, the tangent to y = x2 at (1, 1) has slope 2. Hence, the 
normal has slope -1 / 2, and its equation is 

1 
y=--(x-1)+1 

2 
or 

X 3 
y = -- + -. 

2 2 

EXAMPLE 7 Find equations of the straight lines that are tangent and normal to 
the curve y = .Jx at the point (4, 2). 

Solution The slope of the tangent at (4, 2) (Figure 2.9) is 

. ,J4 + h - 2 . (.)4 + h - 2)(,J4 + h + 2) 
m = hm ---- = lim ----------

h-+ 0 h h-+ 0 h(,J4 + h + 2) 
4+h-4 

=lim-----
h-+ O h(,J4 + h + 2) 

1 1 
= lim ---- = - . 

IH O ,J4 + h + 2 4 

The tangent line has equation 

1 
y = -(x - 4) + 2 

4 
or X - 4y + 4 = 0, 

and the normal has slope -4 and, therefore, equation 

y = -4(x - 4) + 2 or y = -4x + 18. 
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EX E R C I S ES 2.1 

In Exercises 1-12 , find an equation of the straight line tangent to 
the given curve at the point indicated. 

1. y = 3x - l at (1, 2) 

3. y = 2x 2 
- 5 at (2, 3) 

5. y = x3 + 8 at x = -2 

7. y = .JxTI at X = 3 

2x 
9. y = -- at X = 2 

x+2 

11. y = x 2 at x = xo 

2. y = x / 2 at (a, a/2) 

4. y = 6 - x - x 2 at x = -2 

1 
6. y = x 2 + 

1 
at (0, l) 

1 
8. y = - atx = 9 

.ft 

10. y = J 5 - x 2 at x = 1 

Do the graphs of the functions f in Exercises 13-17 have tangent 
lines at the given points ? If yes , what is the tangent line? 

13. f(x) = M atx = 0 14. f(x) = (x - 1)4/ 3 atx = 1 

15. f (x) = (x + 2)3/ 5 at x = -2 

16. f(x) = lx2
- l l atx = 1 

17. f (x) = { .ft r-:; if x ::: O at x = 0 
-v-x 1fx < 0 

18. Find the slope of the curve y = x 2 - 1 at the point x = xa. 

What is the equation of the tangent line to y = x 2 - l that 
has slope -3? 

19. (a) Find the slope of y = x 3 at the point x = a. 

(b) Find the equation s of the straight lines having slope 3 
that are tangent to y = x 3 . 

20. Find all point s on the curve y = x 3 - 3x where the tangent 
line is parallel to the x-axis. 

21. Find all points on the curve y = x 3 - x + 1 where the 
tangent line is parallel to the line y = 2x + 5. 

22. Find all points on the curve y = l / x where the tangent Line 
is perpendicular to the line y = 4x - 3. 

23. For what value of the constant k is the line x + y = k normal 
to the curve y = x 2? 

24. For what value of the constant k do the curves y = kx 2 and 
y = k(x - 2)2 intersect at right angles? Hint: Where do the 
curves intersect? What are their slopes there? 

Use a graph ics utility to plot the following curves . Where does 
the curve have a horizontal tangent? Does the curve fail to have a 
tangent line anywhere ? 

11 25. y =x 3 (S-x)2 

:: 27, y = lx2 - 11 - X 

H 29. y = (x 2 -1) 113 

ii 26. y = 2x 3 - 3x 2 
- l2x + 1 

i: 28. y = Ix + 11 - Ix - 11 

:: 30. y = ((x2 _ 1)2)1/3 

8 31. If line L is tangent to curve C at point P, then the smaller 
angle between L and the secant line P Q joining P to another 
point Q on C approaches Oas Q approaches P along C . Is 
the converse true: if the angle between P Q and line L ( which 
pas ses through P) approaches 0, must L be tangent to C? 

D 32. Let P( x) be a polynomial. If a is a real number, then P(x) 
can be expressed in the form 

P(x) = ao +a,(x -a) +a2 (x -a)2 + · · · +a 11(x -a )" 

for some n ::: 0. If t(x) = m( x - a)+ b, show that the 
straight line y = e(x) is tangent to the graph of y = P(x) at 
x = a provided P (x) - t(x) = (x - a)2Q(x), where Q(x) 
is a polynomial. 

. _ T_h_e_D_er_iv_at_iv_e ________________ _ 
A straight line has the property that its slope is the same at all points. For any other 

graph, however , the slope may vary from point to point. Thus the slope of the graph 

of y = f (x) at the point x is itself a function of x. At any point x where the graph has 

a finite slope, we say that f is differentiable , and we call the slope the derivative off. 
The derivative is therefore the limit of the Newton quotient. 

DEFINITION 

I 
The derivative of a function f is anot her function J' defined by 

J'(x) = Jim f(x + h) - J(x) 
h--+0 h 

at all points x for which the limit exists (i.e., is a firute real number). If J' (x) 
exists, we say that f is differentiable at x. 

The domain of the derivative J' (read "f prime ") is the set of number s x in the domain 

of f where the graph of f has a nonvertical tangent line, and the value f' (xo) off' at 

such a point xo is the slope of the tangent line to y = f (x) there. Thus, the equation 

of the tangent line toy= J(x) at (xo, f(xo)) is 
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Figure 2.10 Graphical differentiation 

SECTION 2.2: The Derivative 101 

y = f(xo) + f ' (xo)(x - xo) . 

The domain !D(f ') off ' may be smaller than the domain !D(f) off because it contains 
only those points in !D(f) at which f is differentiable . Values of x in !D(f) where f 
is not differentiable and that are not endpoints of !D(f) are singular points off. 

Remark The value of the derivative of .f at a particular point xo can be expres sed as 
a limit in either of two ways: 

f'(xo) = lim f(xo + h) - f( xo) = Jim f( x ) - f(xo). 
h-'>0 h X-'>XQ X - XQ 

In the second limit xo + h is replaced by x , so that h = x - xo and h -+ 0 is equivalent 
to X-+ XQ. 

The process of calculating the derivative .f' of a given function f is called differ
entiation. The graph off ' can often be sketched directly from that off by visualizing 
slopes, a procedure called graphical differentiation . In Figure 2.10 the graphs of f ' 
and g' were obtained by measuring the slope s at the corresponding points in the graphs 
of f and g lying above them . The height of the graph y = f ' (x ) at x is the slope of 
the graph of y = f (x) at x. Note that -1 and 1 are singular points of f. Although 
f ( -1) and f (1) are defined , f ' ( -1) and f' (1) are not defined; the graph off has no 
tangent at -1 or at 1. 

(-1, -1) 

(-1, 1) 

----0 

(- 1, - 1) 

y 

y 

(I , I) 

(1, 1) 

(I, - 1) 
0---

y = f'(x) 

X 

y 
y = g(x ) 

y 

y = g' (x ) 

X 

slope m 

X 

height m 

A function is differentiable on a set S if it is differentiable at every point x in S. 
Typically, the functions we encounter are defined on intervals or unions of interval s. If 
f is defined on a closed interval [a , b ], Definition 4 does not allow for the existence 
of a derivative at the endpoints x = a or x = b. (Why ?) As we did for continuity in 
Section 1.4, we extend the definition to allow for a right derivative at x = a and a left 
derivative at x = b: 

!
' ( ) -

1
. f(a+h)-f(a) 

+ a - 1m , 
h-'>0+ h 

J!..(b) = Jim f(b + h) - f(b) . 
h-'>0- h 

We now say that f is differentiable on [a, b] if f ' (x) exists for all x in (a, b) and 
f~(a) and J!..(b) both exist. 
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y 

y = f (x) =ax+ b 

X 

y 

y = f ' (x) = a 

X 

Figure 2.11 The derivative of the linear 
function f (x) = ax + b is the constant 
function J' (x) = a 

y 

Some Important Derivatives 
We now give several examples of the calculation of derivative s algebraically from the 
definition of derivative. Some of these are the basic building blocks from which more 
complicated derivatives can be calculated later. They are collected in Table 1 later in 
this section and should be memorized . 

EXAMPLE 1 (The derivative of a linear function) Show that if f (x) = ax +b , 
then f'(x) = a. 

Solution The result is apparent from the graph off (Figure 2.11 ), but we will do the 
calculation using the definition : 

J'(x) = Jim f(x + h) - f(x) 
h-+0 h 

. a(x+h)+b-(ax+b) = hm ---------
h-+O h 

ah 
= lim - = a. 

h-+0 h 

An important special case of Example 1 says that the derivative of a constant function 
is the zero function: 

If g(x) = c (constant), then g'(x) = 0 . 

EXAMPLE 2 Use the definition of the derivative to calculate the derivatives of 
the functions : 

l 
(a) f(x) = x 2 , (b) g(x) = - , and (c) k(x) = ,Jx. 

X 

Solution Figures 2.12-2.14 show the graphs of these functions and their derivatives. 

y 

c= 
y 

X 

y=f(x)=x2 y 
X 

X 

y = f ' (x) = 2x 

Figure 2.12 The derivative of 
f(x) = x 2 is J ' (x) = 2x 

X 

y 

X 

I [ 
y = g (x) = -

x2 

Figure 2.13 The derivative of 
g(x) = 1/ x is g ' (x) = -l / x2 

' I y= k (x)= -
2,,/x 

Figure 2.14 The derivative of 
k( x) =,,/xis k '(x) = 1/ (2,,/x) 

X 
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(a) J'(x) = lim f(x + h) - f(x) 
h-'>0 h 

. (x +h)2- x 2 
= hm-----

1i ..... o h 

. 2hx + h2 
. 

= hm --- = hm(2x+h) =2x. 
h-'>0 h 11 ..... 0 

(b) ' () I' g(x+h)-g(x) 
g X = h~O h 

1 

I. X + h X = 1m----
h ..... o h 

. X - (x + h) . l 
= hm ---- = hm ----

h ..... o h(x+h)x 1, ..... 0 (x+h)x 

(c) k'(x) = Jim k(x + h) - k(x) 
1, ..... 0 h 

. Fx+Ti-Jx 
=hm-----

h ..... o h 

. .Jx +h-Jx Jx+h+Jx = hm ----- X -----
h-'>0 h .Jx+h+Jx 

SECTION 2.2: The Derivative 103 

1 

X 
2. 

x+h-x 1 1 
= lim ------ = Jim ----===--- = -- . 

1, ..... 0 h(Jx + h + Jx) IH O .Jx + h + Jx 2Jx 
Note that k is not differentiable at the endpoint x = 0. 

The three derivative formulas calculated in Example 2 are special cases of the following 
General Power Rule: 

Iff(x)=x', then f ' (x)=rx'- 1• 

This formula, which we will verify in Section 3.3, is valid for all values of r and x for 
which xr - I makes sense as a real number. 

EXAM p LE J (Differentiati ng powers) 
5 5 

If f (x) = x 513, then f ' (x) = 
3x<5!3)-I = 

3
x 213 for all real x. 

1 1 1 
If g(t) = ,Jt = t - 112, then g' (t) = - 2t-<112) - I = - 2t - 312 fort > 0. 

Eventually, we will prove all appropriate cases of the General Power Rule . For the 
time being, here is a proof of the case r = n, a positive integer, based on the factoring 
of a difference of nth powers: 

a11 
- b11 = (a - b)(an-l + a11

-
2b + a11

-
3b2 + · · · + ab11

-
2 + b11

-'). 

(Check that this formula is correct by multiplying the two factors on the right-hand 
side.) If f(x) = x'1, a= x + h, and b = x, then a - b =hand 

(x + hY - x " 
f'(x) = lim -----

1z ..... o h 
11 terms 

. h [(x + h)"- 1 + (x + h)"- 2x + (x + ht - 3x 2 + · · · + x" - 1
] 

=hm--- ---- --------------
1z ..... o h 

=nx"- 1• 

www.konkur.in



104 CHAPTER 2 Differentiation 

X 

y = f ' (x ) = sgn x 

-- r-1 
Figure 2.15 The derivative of Ix I is 

sgnx = x/ lxl 

X 

An alternative proof based on the product rule and mathem atical induction will be given 
in Section 2.3. The factorization method used above can also be used to demon strate 
the General Power Rule for negative integers , r = -n , and reciprocals of integers, 
r = I/ n. (See Exercises 52 and 54 at the end of this sec tion .) 

EXAMPLE 4 (Differentiating the absolute value function) Verify that: 

If f(x) = lxl, then 
I X 

f (x) = - = sgn x. 

Solution We have 

f(x) = { ~x, 
if X 2: 0 
if X < 0. 

lxl 

Thus , from Example 1 above, f ' (x) = 1 if x > 0 and f' (x) = -1 if x < 0. Also, 
Example 4 of Section 2.1 show s that f is not differentiabl e at x = 0, which is a singular 
point off. Therefore (see Figure 2. 15), 

J'(x ) = { 1, 
if X > 0 X 

-1, if x < 0 = ~ = sgn x · 

Table 1 lists the eleme ntary deriva tives calculated above. Beginning in Section 2.3 

we will deve lop general rule s for calculating the derivative s of functions obtained by 
combining simp ler functi ons. Thereafter, we will seldom have to revert to the definition 
of the derivat ive and to the calculation of limjt s to evaluate derivatives. It is import ant, 
therefore, to remember the derivat ives of some elementary functions. Memor ize those 
in Table 1. 

Table 1. Some elementary functions and their derivatives 

f(x) 

c (constant) 
X 

x2 

X 

r 
X 

Leibniz Notation 

f ' (x) 

0 

2x 

1 

x2 
(x f. 0) 

I 

2,Jx 
(x > 0) 

r xr - I (xr - I real) 
X 
- = sgn x 
lxl 

Becau se functio ns can be written in differe nt ways, it is usefu l to have more than one 
notation for derivatives. If y = f (x ), we can use the dependent variable y to represent 
the function, and we can denot e the deriv ative of the function with respect to x in any 
of the following ways: 

. I dy d I 
Dxy = y = - = - f(x) = f (x) = Dxf(x) = Df(x). 

dx dx 
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Do not confuse the expressions 

d d I 
dx f (x) and dx f (x) x=xo . 

The first expression represents a 
function, J'(x). The second 
represents a number, f' (xo) . 

SECTION 2.2: The Derivative 105 

(In the forms using" Dx," we can omit the subscript x if the variable of differentiation 
is obvious.) Often the most convenient way of referring to the derivative of a function 
given explicitly as an expression in the variable x is to write J~ in front of that 

expression. The symbol fx is a differential operator and should be read "the derivative 
with respect to x of ... " For example, 

d 
-x

2 = 2x (the derivative with respect to x of x 2 is 2x) 
dx 
d 1 
-./x=
dx 2,,/x 

!!_t100 = 100t99 
dt 

· 3 dy 2 
1f y = u , then - = 3u . 

du 

The value of the derivative of a function at a particular number xo in its domain 
can also be expressed in several ways: 

I 'I d y I d I I DxY = Y = - = - f( x ) = f (xo) = Dx f(xo) . 
x=xo x=xo dx x=xo dx x=xo 

The symbol lx=xo is called an evaluation symbol. It signjfies that the expression 

preceding it should be evaluated at x = xo. Thus, 

.!!:_x4I = 4x31 = 4(-1) 3 = -4. 
dx x= - 1 x = - 1 

Here is another example in wruch a derivative is computed from the definition, this 
time for a somewhat more complicated function. 

EXAMPLE 5 Use the definition of derivative to calculate .!!:._ (-+-) I . 
dx X + 1 x= 2 

Solution We could calculate.!!:._ (-
2

x ) and then substitute x = 2, but it is easier 
dx X + 1 

to put x = 2 in the expression for the Newton quotient before taking the limit: 

2+h 2 
--------

.!!:_ (-x-) I - lim (2 + h)2 + l 
dx x2 + l x= 2 - h-+0 h 

22 + 1 

2+h 2 

= Jim _5_+~4h~+_h_2 
__ 5_ 

h-+ 0 h 

. 5(2 + h) - 2(5 + 4h + h2
) =Jim-------,,---

h -+ O 5(5 + 4h + h2)h 

-3h - 2h2 

= lim---------,
h-+ O 5(5 + 4h + h2)h 

-3 - 2h 3 = lim ------ = -- . 
h -+ 0 5(5 + 4h + h2) 25 

The notations dy / dx and fx f (x) are called Leibniz notations for the derivative, after 
Gottfried Wilhelm Leibniz (1646-1716), one of the creators of calculus, who used such 
notations. The main ideas of calculus were developed independently by Leibniz and 
Isaac Newton (1642-1727); Newton used notations similar to the prime (y') notations 
we use here. 
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Figure 2.16 
dy 

dx 

t':,.y 
lim -

lu -> 0 l':,.x 

The Leibniz notation is suggested by the definition of derivative. The Newton 
quotient [f(x + h) - f(x)] / h , whose limit we take to find the derivative dy/dx, can 
be written in the form !iy / !ix, where !iy = f(x + h) - f(x) is the increment in y, 
and !ix = (x + h) - x = h is the corresponding increment in x as we pass from the 
point (x , f(x)) to the point (x + h, f(x + h)) on the graph off. (See Figure 2.16.) 
/'1 is the uppercase Greek letter Delta . Using symbols: 

dy 

dx 

y 

. !iy 
hm -

Lix-+0 !ix 

Differentials 

X 

dy 
slope -

dx 

I 

I 
I Liy 
I __________ ) 

l':,.x = h I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

x + h 

t':,.y 
slope -

l':,.x 

X 

The Newton quotient !iy / !ix is actually the quotient of two quantities, !iy and !ix. 
It is not at all clear , however, that the derivative dy / dx , the limit of !iy/ !ix as !ix 
approaches zero , can be regarded as a quotient. If y is a continuous function of x, then 
!iy approaches zero when !ix approaches zero, so dy / dx appears to be the meaningless 
quantity 0/ 0. Nevertheless, it is sometimes useful to be able to refer to quantities dy 
and dx in such a way that their quotient is the derivative dy / dx. We can justify this by 
regarding dx as a new independent variable ( called the differential of x) and defining 
a new dependent variable dy (the differential of y) as a function of x and dx by 

dy I 
dy = -dx = f (x)dx. 

dx 

For example , if y = x 2 , we can write dy = 2x dx to mean the same thing as 
dy / dx = 2x. Similarly, if f( x ) = 1/ x , we can write df(x) = -(1/x 2) dx as 
the equivalent differential form of the assertion that (d / dx)f(x) = f ' (x) = -l / x2 . 

This differential notation is useful in applications (see Sections 2.7 and 12.6), and 
especially for the interpretation and manipulation of integrals beginning in Chapter 5. 

Note that, defined as above , differentials are merely variables that may or may not 
be small in absolute value. The differentials dy and dx were originally regarded (by 
Leibniz and his successor s) as "infinitesimals " (infinitely small but nonzero) quantities 
whose quotient dy / dx gave the slope of the tangent line (a secant line meeting the 
graph of y = f(x) at two point s infinitely close together). It can be shown that such 
"infinitesimal" quantities cannot exist (as real numbers). It is possible to extend the 
number system to contain infinitesimals and use these to develop calculus, but we will 
not consider this approach here. 

Derivatives Have the Intermediate-Value Property 
Is a function f defined on an interval / necessarily the derivative of some other 
function defined on I? The answer is no; some functions are derivatives and some 
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y 

y = H(x) 

y=I 

y=O 

X 

are not. Although a derivative need not be a continuous function (see Exercise 28 in 
Section 2.8), it must , like a continuous function , have the intermediate-value property: 
on an interval [a, b], a derivative f'(x) takes on every value between f'(a) and f'(b). 
(See Exercise 29 in Section 2.8 for a proof of this fact.) An everyw here-defined step 

function suc h as the Heaviside function H (x) considered in Example 1 in Section 1.4 

(see Figure 2.17) does not have this property on, say, the interval [-1, l] , so cannot 
be the derivative of a function on that interval. This arg ument does not apply to the 
signum function, which is the derivative of the absolute value function on any interval 
where it is defined. (See Example 4.) Such an interval cannot contain the origin as 
sgn (x) is not defined at x = 0. 

Figure 2.17 This function is not a 

derivative on [-1, l]; it does not have the 
intermediate-value property. 

If g (x) is continuous on an interval I , then g (x) = f' (x) for some function f that 

is differentiable on I. We will discuss this fact further in Chapter 5 and prove it in 
Appendix IV. 

EXE RC IS ES 2.2 
Make rough sketches of the graphs of the derivatives of the 
functions in Exercises 1-4. 

1. The function f graphed in Figure 2. I 8(a). 

2. The function g graphed in Figure 2.J 8(b). 

3. The function h graphed in Figure 2.18(c). 

4. The function k graphed in Figure 2. l 8(d). 

5. Where is the function f graphed in Figure 2. J 8(a) 
differentiable? 

6. Where is the function g graphed in Figure 2. l 8(b) 
differentiable ? 

y (a) y (b) 

y = f(x) 
y = g(x) 

X 

y 
(c) 

y 
(d) 

X 

y = k(x) 

X 

X 

Figure 2.18 

Use a graphics utility with differentiation capabi lities to plot the 
graphs of the following functions and their derivatives. Observe 
the relationships between the graph of y and that of y' in each 
case. What features of the graph of y can you infer from the 
graph of y'? 

i= 7. y = 3x - x
2 

- l 

i= 9. y = lx3 
- xi 

i= 8. y = x3 
- 3x2 + 2x + 1 

i= 10. y = lx2 
- 11 - lx2 

- 41 

In Exercises J 1-24, (a) calculate the derivative of the given 
function directly from the definition of derivative, and (b) express 
the result of (a) using differentials. 

11. y = x 2 
- 3x 12. f (x) = I + 4x - 5x 2 

14. s=--
3 +4t 

13. f(x) = x3 

2-x 
15. g(x) = --

2 +x 
l 3 16. y= 3x -X 

17. F(t) = v'2t+1 3 
18. f (x) = 4.J2=x 

I 
19. y = X + -

X 

s 
20. z = --

1 +s 
I I 

21. F(x) = ~ 22. y = -
I +x 2 x2 

1 t 2 -3 
23. y = ~ 24. f(t) = -2-

v l + x t +3 
25. How should the function f (x) = x sgn x be defined at x = 0 

so that it is continuous there ? Is it then differentiable there? 

26. How should the function g(x) = x 2sgnx be defined at x = 0 
so that it is continuous there? Is it then differentiable there? 

27. Where does h(x) = lx2 + 3x + 21 fail to be differentiable ? 

gg 28. 

gg 29. 

Using a calculator, find the slope of the secant line to 
y = x 3 - 2x passing through the points corresponding to 
x = I and x = l + !:,.x, for severa l values of !:,.x of 
decreasing size, say l:,.x = ±0.l, ±0.0 l , ±0.001, ±0.0001. 

(Make a table.) Also, ca lculate !!:_ ( x 3 - 2x) I using the 
dx x= I 

definition of derivative. 
l 

Repeat Exercise 28 for the function f (x) = - and the points 
X 

x = 2 and x = 2 + !:,.x. 

Using the definition of derivative , find equations for the tangent 
lines to the curves in Exercises 30-33 at the points inilicated. 

30. y = 5 + 4x - x 2 at the point where x = 2 

31. y = .Jx+6 at the point (3, 3) 
t 

32. y = t2 _ 
2 

at the point where t = -2 
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2 
33. y = -2-- at the point where t = a 

I + I 
Calculate the derivatives of the functions in Exercises 34-39 
using the Genera l Power Rule . Where is each derivative valid? 

34. f(x) = x - 17 35. g( t) = 122 

36. y = x' l3 37. y = x - 1/3 

38. 1-2.25 39. 5
119/ 4 

In Exercises 40-50, you may use the formulas for derivatives 
established in this section. 

40. Calculate !!:_-Isl . 
ds s=9 

l 
41. Find F'(¾) if F(x) = -. 

X 

42. Find J ' (8) if J(x) = x- 213 . 

43. Find dy / dtl if y = t 114
. 

t=4 

44. Find an equation of the straight line tangent to the curve 
y = .jx at X = XQ. 

45. Find an equation of the straight line normal to the curve 
y = 1/ x at the point where x = a. 

46. Show that the curve y = x 2 and the straight line x + 4y = 18 
intersect at right angles at one of their two intersection 
point s. Hint: Find the product of their slopes at their 
intersection point s. 

47. There are two distinct straight lines that pass through the 
point ( I , -3) and are tangent to the curve y = x 2 . Find their 
equations. Hint : Draw a sketch. The points of tangency are 
not given; let them be denoted (a , a2). 

48. Find equations of two straight lines that have slope - 2 and 
are tangent to the graph of y = 1/ x . 

49. Find the slope of a straight line that passes through the point 
(-2 , 0) and is tangent to the curve y = ./x. 

9 50. Show that there are two distinct tangent lines to the curve 
y = x 2 passing through the point (a, b) provided b < a2 . 

How many tangent lines to y = x 2 pass through (a, b) if 
b = a2? if b > a2? 

9 51. Show that the derivative of an odd differentiable function is 
even and that the derivative of an even differentiable function 
is odd. 

D 52. Prove the case r = - n (n is a positive integer) of the General 
Power Rule ; that is, prove that 

d 
-x - " = -nx - 11- 1 
dx 

Use the factorization of a difference of nth powers given in 
this sect ion. 

D 53. Use the factoring of a difference of cubes: 

a3 - b3 = (a - b)(a 2 +ab+ b2) , 

to help you calculate the derivative off (x) = x 113 directly 
from the definition of derivative. 

D 54. Prove the General Power Rule for fx x ,-, where r = 1 / n, n 
being a positive integer. (Hint: 

d (x + h) 1111 -x 1111 

-x 1111 = lim -- --- --
dx h ->O h 

. (x+h)' l "-xl f n 
= hm ---~--~~-. 

h->O ((x + h)' I")" _ (xl / 11)11 

Apply the factorization of the difference of nth powers to the 
denominator of the latter quotient. ) 

55. Give a proof of the power rule fx x" = nx 11
-

1 for positive 
integers 11 using the Binomial Theorem: 

(x + hyt = x" + '!:.x11- I h + n(n - 1) x"-2 h2 
I I x 2 
n(n. - l)(n - 2) n-3 3 n 

+-----x h + .. ·+h . 
] X 2 X 3 

0 56. Use right and left derivative s, Jt (a) and J!_(a), to define the 
concept of a half-line starting at (a, J(a)) being a right or 
left tangent to the graph off at x = a. Show that the graph 
has a tangent line at x = a if and only if it has right and left 
tangents that are opposite halves of the same straight line . 
What are the left and right tangents to the graphs of 
y = x 113, y = x 213, and y = lxl atx = O? 

• 
Differentiation Rules 

- -- --
If every derivative had to be calcu lated directly from the definition of derivative as in the 

examples of Section 2 .2, calculus would indeed be a painful subject. Fortunate ly, there 

is an easier way. We will dev e lop seve ral genera l differentiation rules that enable us to 
calculate the derivative s of complicated combinations of functions easily if we already 
know the derivative s of the elementary functions from which they are constructed. For 

x 2 
instance , we will be able to find the derivative of ~ if we know the derivatives 

vx 2 + 1 
of x 2 and .Ji.. The rule s we develop in this section tell us how to differe ntiate sums, 

constant multiples , product s, and quotients of functions whose derivatives we already 

know . In Section 2.4 we will learn how to differentiate composite functions. 

Before developing these differentiation rules we need to establish one obvious 
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but very important theorem which states, roughly, that the graph of a function cannot 
possibly have a break at a point where it is smooth. 

Differentiability implies continuity 

If f is differentiable at x, then f is continuous at x. 

PROOF Since f is differentiab le at x , we know that 

Jim f(x + h) - f(x) = J ' (x) 
h-+0 h 

exists . Using the limit rules (Theorem 2 of Section 1.2), we have 

lim (f(x + h) - f(x)) = lim (f(x + h) - J(x)) (h) = (f ' (x))(O) = 0. 
h-+0 h-+ 0 h 

This is equivalent to lim1i-. o f (x + h) = f(x), which says that f is continuou s at x. 

Sums and Constant Multiples 
The derivative of a sum (or difference) of functions is the sum (or differen ce) of the 
derivatives of those functions . The derivative of a constant multiple of a function is the 
same constant multiple of the derivative of the function . 

Differentiation rules for sums, differences, and constant multiples 

If functions f and g are differentiable at x, and if C is a constant, then the functions 
f + g, f - g, and Cf are all differentiable at x and 

(f + g)'(x) = f'(x) + g' (x) , 

(f - g)'(x) = J'(x) - g'(x), 

(Cf)' (x) = CJ' (x) . 

PROOF The proofs of all three assertions are straightforward, using the corresponding 
limit rules from Theorem 2 of Section 1.2. For the sum, we have 

(f + g)'(x) = lim (f + g)( x + h) - (f + g)(x) 
h-+ 0 h 

= Jim _(f_(x_+_h_) +_g_(x_+_h_)_) _-_(f_(_x)_+_g(_x_)) 
h-+ 0 h 

= lim ------ + ------. (f( x + h) - f( x ) g(x + h) - g(x )) 
h-+ 0 h h 

= J'(x) + g' (x), 

because the limit of a sum is the sum of the limits. The proof for the differen ce f - g 
is similar. For the consta nt multiple , we have 

(Cf)'(x) = lim Cf(x + h) - Cf( x ) 
h-+ 0 h 

=Clim f(x + h) - f(x) = Cj'(x). 
h-+ 0 h 

The rule for differentiating sums extends to sums of any finite number of terms: 

U1 + h + · · · + fn)' = !{ + !~ + · · · + !~. C *) 
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Mathematical Induction 
Mathematical induction is a 
technique for proving that a 
statement about an integer n is 
true for every integer n greater 
than or equal to some starting 
integer no. The proof requires 
us to carry out two steps: 

STEP 1. Prove that the 
statement is true for n = no. 

STEP 2. Prove that if the 
statement is true for some 
integer n = k, where k 2'. no, 
then it is also true for the next 
larger integer, n = k + I . 

Step 2 prevents there from being 
a smallest integer greater than 
no for which the stateme nt is 
false . Being true for no, the 
statement must therefore be true 
for all larger integers. 

THEOREM 

I 

To see this we can use a technique called mathematical induction. (See the note in 
the margin.) Theorem 2 shows that the case n = 2 is true ; this is STEP l. For STEP 2, 
we must show that if the formula( *) hold s for some integer n = k ::: 2, then it must 
also hold for n = k + 1. Therefore , assume that 

(! 1 + h + · · · + !k)1 = ! ( + !~ + · · · + !£ · 

Then we have 

(! 1 + h + ... + ! k + f k+ l )' 

= (U1 + h + · · · + !k),+f k+1)
1 

Let this function be f 

= (f + f k+1)1 (Now use the known case n = 2.) 

= ! ' + !£+1 
= f { + f ~ + ... + f £ + f £+ I · 

With both steps verified , we can claim that( *) holds for any n ::: 2 by induction. In 
par ticular, therefore , the derivative of any polynomial is the sum of the derivatives of 
its terms. 

EXAMPLE 1 Calculat e the derivatives of the functions : 

(a) 2x 3 
- Sx 2 + 4x + 7, 

3 
(b) f( x ) = S,jx + - - 18, 

X 

1 
(c) y = -t 4 

- 3t 713 . 
7 

Solution Each of these function s is a sum of constant multiples of functions that we 
already know how to differenti ate. 

d 
(a) -(2x 3 - Sx 2 + 4x + 7) = 2(3x 2) - 5(2x) + 4(1) + 0 = 6x 2 - lOx + 4. 

dx 

(b) J'(x) = s ( - 1
-) + 3 (-2-)-o = _s_ - 2-. 

2,jx x 2 2,jx x 2 

(c) dy = !(4 t3) - 3 (~ t 413) = ~t 3 - 7t413 . 
dt 7 3 7 

EXAMPLE 2 
3x 3 -4 

Find an equation of the tangent to the curve y = --- at the 
X 

point on the curve where x = -2 . 

Solution If x = -2, then y = 14. The slope of the curve at (-2 , 14) is 

- = - 3x - - = 6x + - = - 11 dy I d ( 2 4) I ( 4 ) I 
dx x=- 2 dx X x=- 2 x2 x=- 2 . 

An equati on of the tangent line is y = 14 - 11 (x + 2) , or y = - l lx - 8. 

The Product Rule 
The rule for differentiatin g a product of function s is a little more complicated than that 
for sums. It is not true that the derivative of a product is the product of the derivative s. 

The Product Rule 

If functions f and g are differentiable at x , then their product f g is also differentiable 
at x, and 

(fg)'(x) = J'(x)g(x) + f(x)g ' (x ). 
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u ti.v 
I I ,. 

V UV .... V L'i.u 

Lt ti.u 
Figure 2.19 

A graphical proof of the Product 
Rule 

Here u = f (x) and v = g(x), so that the 
rectan gular area uv represents f (x)g(x). 
If x changes by an amount ti.x, the 
corresponding increments in u and v are 
/':,. u and /':,. v . The change in the area of the 
rectangle is 

L'i(uv) 

= (u + L'iu)(v + L'iv) - uv 

= (L'iu)v + u(L'iv) + (L'iu)(L'iv), 

the sum of the three shaded areas . 
Dividing by L'ix and taking the limit as 
L'ix ~ 0, we get 

!!_(uv) = (du) v + u (dv) , 
dx dx dx 

since 
L'iu du 

Jim - L'iv = - x O = 0. 
t..x-->0 L'ix dx 

SECTION 2.3 : Differentiation Rules 111 

PROOF We set up the Newton quotient for f g and then add O to the numerator in a 
way that enables us to involve the Newton quotient s for f and g separate ly: 

(fg)'(x) = lim f(x + h)g(x + h) - f(x)g(x) 
h->0 h 

= Jim _f_(x_+_h )_g_(x_· _+_h_) _-_f_(_x )_g_(x_+_h_) +_f_(x_)_g_(x_+_h )_-_f_(x_)_g (_x) 
h->0 h 

= lim (f( x + h) - f(x) g(x + h) + f(x) g(x + h) - g(x) ) 
h->0 h h 

= J ' (x)g(x) + f(x)g'(x). 

To get the last line , we have used the fact that f and g are differentia ble and the fact 
that g is therefore continuous (Theorem 1), as well as limit rule s from Theorem 2 of 
Section 1.2. A graphical proof of the Product Rule is suggested by Figure 2.19. 

EXAMPLE 3 Find the derivative of (x 2 + l ) (x 3 + 4) using and without using 
the Produ ct Rule. 

Solution Using the Product Rule with f (x) = x 2 + I and g(x) = x 3 +4, we calc ulate 

d 
-((x 2 + l)(x 3 + 4)) = 2x(x 3 + 4) + (x 2 + 1)(3x2

) = 5x4 + 3x2 + 8x. 
dx 

On the other hand, we can calculate the derivative by first multiplyin g the two binomial s 
and then differentiatin g the resulting polynomi al: 

d d 
-((x 2 + l)( x 3 + 4)) = -(x 5 + x 3 + 4x 2 + 4) = 5x 4 + 3x2 + 8x. 
dx dx 

EXAM P LE 4 Find ~; if y = ( 2./x + ~) ( 3./x - ~ ) . 

Solution Applying the Product Rule with f and g being the two functions enclosed 
in the large parenthe ses, we obtain 

dy = (-1 _ ~) (3./i _ ~) + (2v1x + ~) (-3 + 2-) 
dx Jx x 2 x x 2./x x 2 

5 12 
= 6 - ~ /2 + 3 · 2x X 

EXAMPLE 5 Let y = uv be the product of the functions u and v. Find y'(2) if 
u(2) = 2, u'(2) = -5, v(2) = 1, and v'(2) = 3. 

Solution From the Product Rule we have 

y' = (uv)' = u'v + uv '. 

Therefore , 

y' (2) = u' (2)v(2) + u(2)v ' (2) = (-5)( 1) + (2)(3) = -5 + 6 = 1. 

EXAMPLE 6 
d 

Use mathematical induction to verify the formula -xn = n xn-l 
dx 

for all positive integers n. 
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Solution For n = 1 the formula says that fxx 1 = 1 = lx 0, so the formu la is true in 
this case. We must show that if the formula is true for n = k 2:. I , then it is also true 
for n = k + 1. Therefore , assume that 

.!!:_x k =kxk - 1_ 
dx 

Using the Product Rule we calcu late 

Thu s, the formula is true for n = k + l also. The formula is true for all integers n 2:. 1 
by induction. 

The Product Rule can be extended to prod ucts of any number of factors; for instance, 

(fgh)'(x) = J'(x)(gh)(x) + f(x)(gh) ' (x) 

= J'(x)g( x )h(x) + f(x)g ' (x)h(x) + f(x)g(x)h'(x). 

In general, the derivative of a product of n functions will have n terms; each term will 
be the same product but with one of the factors replaced by its derivative: 

U1h h · · · fn) ' = f( hh · · · f n + fif ~h · · · fn + · · · + fihh · · · f~ . 

Thi s can be proved by mathematical induction. See Exercise 54 at the end of this 
section . 

The Reciprocal Rule 

The Reciproca l Rule 

If f is differentiable at x and f (x ) -:/= 0, then 1 / f is differentiable at x, and 

( 
1 ) ' - f ' (x) 
f (x) = (f( x )) 2 . 

PROOF Using the definition of the derivative, we calculate 

l 

.!!:_ _l_ = lim f (x + h) f (x) 
dx f(x) h-+0 h 

. f (x ) - f( x + h) 
= ltm------

h-+ 0 hf(x + h)f(x) 

= Jim ( -I ) f(x+h)-f(x) 
h-+ 0 f(x + h)f(x) h 

-l 
(f(x)) 2 J'(x) . 

Again we have to use the continuity off (from Theorem 1) and the limit rules from 
Section 1.2. 

EXAMPLE 7 Differentiate the functions 

1 1 
(a) x 2 + 

1 
and (b) f (t) = --

1 
. 

t + -
t 
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Solution Using the Reciprocal Rule: 

d ( I ) -2x 
(a) dx x 2 + 1 = (x 2 + 1)2 · 

(b) 1 - l ( I ) -t
2 

t
2 

- 1 L - t
2 

f (t) = ( I ) 2 I - (2 = (t2 + 1)2 -t 2- = (t2 + 1)2 . 
t + -

t 

We can use the Reciprocal Rule to confirm the General Power Rule for negative integers: 

d - 11 -11- l -x = -nx 
dx ' 

since we have already proved the rule for positive integers. We have 

d _
11 

d I 
-x 
dx dx x'' 

-nxn - l --- = -nx _,,_ , 
(x")2 

EXAM p LE 8 (Differentiating sums of reciprocals) 

!:_ (x
2 
+ x + L) = !:_ (2-+ ~ + ~) 

dx x 3 dx x x 2 x 3 

= !:_(x - ' + x - 2 + x - 3) 
dx 

-2 - 3 - 4 I 2 3 = -x - 2x - 3x = - - - - - - . 
x2 x3 x4 

The Quotient Rule 
The Product Rule and the Reciprocal Rule can be combined to provide a rule for 
differentiating a quotient of two functions. Observe that 

d ( f (x)) d ( l ) 1 l ( g' (x) ) 
dx g(x) = dx f(x) g(x) = f (x) g(x) + f(x) - (g(x))2 

g(x)J'(x) - J(x)g ' (x) 

(g(x))2 

Thus we have proved the following Quotient Rule. 

The Quotient Rule 

If f and g are differentiable at x, and if g (x) =fa 0, then the quotient f / g is differentiable 
at x and 

(£)' (x) = g (x) f ' (x) - f(x )g'( x). 

g (g (x ))2 

Sometimes students have trouble remembering this rule. (Getting the order of the terms 
in the numerator wrong will reverse the sign.) Try to remember (and use) the Quotient 
Rule in the following form : 

( quotient) ' 

(denominator) x (numerator) ' - (numerator) x (denominator)' 

( denominator)2 
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EXAMPLE 9 Find the derivatives of 

I - x 2 ,Jt 
(a) y = 1 + x 2 ' (b) 3 - St' 

a +b0 
and (c) f(0) = --. 

m+n0 

Solution We use the Quotient Rule in each case. 

dy (1 + x2)(-2x) - (1 - x 2)(2x) 4x 
(a) dx (I + x 2)2 (1 + x 2)2 · 

d ( ,Jt ) (3 - St) ~ - 0(-5) 3 + St 

(b) dt 3 -tSt = (: -t5t) 2 2,Jt(3 - St) 2 . 

(c) f'(B) = (m + n0)(b) - (a+ b0)(n) = mb - na . 
(m + n0) 2 (m + n0) 2 

In all three parts of Example 9, the Quotient Rule yielded fractions with numerators 
that were complicated but could be simplified algebraically. It is advisable to at
tempt such simplifications when calculating derivative s; the usefulness of derivatives 
in applications of calculus often depends on such simplifications. 

EXAMPLE 10 Find equations of any lines that pass through the point (-1, 0) and 
are tangent to the curve y = (x - 1)/ (x + 1). 

Solution The point ( -1, 0) does not lie on the curve, so it is not the point of tangency. 
Suppose a line is tangent to the curve at x = a, so the point of tangency is (a, (a -
1)/ (a + 1)). Note that a cannot be -1. The slope of the line must be 

2 d y I = (x + l) (I) - (x - l) ( l) I 
dx x=a (x + 1)2 x=a (a+ 1)2 · 

If the line also passes through ( -1 , 0), its slope must also be given by 

a-1 
---0 
a+l 
a - (-1) 

a-1 

(a+l)2· 

Equating these two expressions for the slope, we get an equation to solve for a: 

a-I 

(a+ 1)2 

2 

(a+ 1)2 
a - 1 = 2. 

Thus a = 3, and the slope of the line is 2/ 42 = 1/ 8. There is only one line through 
(-1, 0) tangent to the given curve, and its equation is 

1 
y = 0 + 8(x + 1) or x - 8y +I= 0. 

Remark Derivatives of quotients of functions where the denominator is a monomial, 
such as in Example 8, are usually easier to do by breaking the quotient into a sum of 
several fractions (as was done in that example) rather than by using the Quotient Rule. 
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EXE RC IS ES 2.3 
In Exercises l-32, calculate the derivatives of the given 
functions . Simplify your answers whenever possib le. 

5 
1. y=3x 2 -5x-7 2. y=4x 112

--

3. f (x) = Ax 2 +Bx+ C 

S5 - S3 
5. z = _ 1_5_ 

7. g(t) = t I/ 3 + 2t I/4 + 3t I / S 

8. y = 301- _2__ 
# 

10. F(x) = (3x - 2)(1 - Sx) 

11. y = .Jx (s - X - X32) 

I 
13. y=-

x2 +sx 

7r 
15. f(t) = --

2 - 1r: t 

I -4x 2 

17. f(x) = --
3 

-
X 

2 + t + t 2 

19. y = .Jt 

3-4x 
21. f(x) = --

3 +4x 

23 - l + .Jt . s-
1 - .Jt 

x 

6 2 
4. f (x) = - + - - 2 

x3 x2 

6. y = x45 _ x-45 

9 u = Ixs /3 _ ~x-3 /5 
. 5 3 

l 
12. g(t) = --

2t - 3 

4 
14. y= --

3-x 

2 
16. g(y) = 1 - y2 

u./u-3 
18. g(u) = 

2 

x-l 
20. z = x2/3 

u 

t2 + 2t 
22. z=~ 

x 3 -4 
24. f(x) = -

x+ l 

25 ( _ ax + b 26 ( _ t 2 + ?t - 8 
• f x) - . F t) - --=---

ex+ d t2 - t + l 
27. f (x) = (1 + x)(l + 2x)(l + 3x)(l + 4x) 

28. f (r) = (r- 2 + r - 3 - 4)(r 2 + r3 + 1) 

29. y = (x 2 + 4)(.Jx + l)(Sx 213 - 2) 

30 - (x2 + l)(x 3 + 2) 
• y - (x2 +2)(x 3 + 1) 

D 31. y- x 
- 1 

2x+--
3x + l 

D 32. f(x) = (.Jx - 1)(2 - x)( l - x2) 
.Jx(3 + 2x) 

Calculate the derivatives in Exercises 33-36, given that f (2) = 2 
and f' (2) = 3. 

33
• :X (f~:Jlx=2 34• :X ( f;:)) lx=2 

35. :x (x2 f(x))lx=2 36 .!!.._ ( f(x) )I 
· dx x2 + J(x) x=2 

37. Find.!!.._ (x
2 

-
4

) I 38. Find 
dx x2+4 x=-2· !!:_(t(l+.Jt))I . 

dt 5 - t 1=4 
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39. If f (x) = .Jx , find !'(2). 
x+ l 

40. Find!!:_ (c1 + t)(l + 2t)(l + 3t)( l + 4t)) I . 
dt 1=0 

2 
41. Find an equation of the tangent line toy = r.: at the 

3 - 4-vx 
point (I, -2). 

x+l 
42. Find equations of the tangent and normal to y = -- at 

x-1 
X =2. 

43. Find the points on the curve y = x + I/ x where the tangent 
line is horizontal. 

44. Find the equations of all horizontal lines that are tangent to 
the curve y = x 2 (4 - x2). 

45. Find the coordinates of all points where the curve 
I 

y = 
2 

has a horizontal tangent line. 
X +x + l 

46 F. h . f . th x + I h • md t e coordmates o pomts on e curve y = -- w ere 
x+2 

the tangent line is parallel to the line y = 4x. 

47. Find the equation of the straight line that passes through the 
point (0, b) and is tangent to the curve y = 1/ x. As ume 
bi:-0. 

D 48. Show that the curve y = x2 intersects the curve y = 1/ .Jx at 
right angles. 

49. Find two straight Lines that are tangent to y = x 3 and pass 
through the point (2, 8). 

50. Find two straight lines that are tangent to y= x 2 / (x - l) 
and pass through the point (2, 0) . 

8 51. (A Square Root Rule) Show that if f is differentiable at x 
and f (x) > 0, then 

d J'(x) 
dx ..JTw = 2,JJ[xj · 

Use this Square Root Rule to find the derivative of R+!. 

8 52. Show that f (x) = lx3 I is differentiable at every real number 
x, and find its derivative. 

Mathematical Induction 
8 53. Use mathematical induction to prove that 

.!!.._x,,12 = '.:x<1112)- I for every positive integern. Then use 
dx 2 
the Reciprocal Rule to get the same result for negative 
integers n. 

8 54. Use mathematical induction to prove the formula for the 
derivative of a product of n functions given earlier in this 
section. 
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• 
The Chain Rule 

-----

THEOREM 

I 

Although we can differentiate ,.jx and x 2 + 1, we cannot yet differentiate JxZ+l. To 
do this, we need a rule that tells us how to differentiate composites of functions whose 
derivatives we already know. This rule is known as the Chain Rule and is the most 
often used of all the differentiation rules . 

EXAMPLE 1 

-1 
J'(u) = 2 

u 

1 l 
The function -

2
-- is the composite f (g(x)) of f(u) = - and 

X -4 U 

g(x) = x 2 - 4, which have derivatives 

and g'(x) = 2x . 

According to the Reciprocal Rule (which is a special case of the Chain Rule), 

d d ( 1 ) -2x -1 
dx f (g(x)) = dx x 2 - 4 = (x 2 - 4)2 = (x2 - 4)2 (2x) 

= J'(g(x))g'(x) . 

This example suggests that the derivative of a composite function f(g(x)) is the 
derivative off evaluated at g(x) multiplied by the derivative of g evaluated at x. This 
is the Chain Rule: 

d 
dx f(g(x)) = J ' (g(x)) g ' (x). 

The Chain Rule 

If f (u) is differentiable at u = g(x ), and g(x) is differentiable at x, then the composite 
function f o g(x) = f(g( x)) is differenti able at x, and 

(f o g)'(x ) = J'(g(x))g'(x). 

In terms of Leibniz notation, if y = f(u) where u = g(x), then y = f(g(x)) and: 

. h . dy . f . h . at u, y JS c angrng - times as ast as u JS c angmg; 
du 
du 

at x, u is changing - times as fast as xis changing. 
dx 

Th f f ( ) !( ( )) . h . dy du . f . 
ere ore, at x, y = u = g x JS c angrng - x - times as ast as x 1s 

du dx 
changing. That is, 

dy dy du 
= dx du dx' 

dy . 
where - 1s evaluated at u = g(x). 

du 

It appears as though the symbol du cancels from the numerator and denominator, but 
this is not meaningful because dy / du was not defined as the quotient of two quantities, 
but rather as a single quantity , the derivative of y with respect to u. 

We would like to prove Theorem 6 by writing 

tly tly tlu 

tlx tlu tlx 

and taking the limit as tlx -+ 0. Such a proof is valid for most composite functions but 
not all. (See Exercise 46 at the end of this section .) A correct proof will be given later 
in this section, but first we do more examples to give a better idea of how the Chain 
Rule works. 
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Outside and Inside 
Functions 

In the composite f (g(x)), the 
function f is "outside," and the 
function g is "inside." The 
Chain Rule says that the 
derivative of the composite is 
the derivative J' of the outside 
function evaluated at the inside 
function g(x), multiplied by the 
derivative g' (x) of the inside 
function: 
d / I 

dx J(g(x)) = f (g(x)) x g (x). 
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EXAMPLE 2 Find the derivative of y = J:x"2+I. 

Solution Here y = f( g (x)) , where f(u) = .,fa and g(x) = x 2 + 1. Since the 
derivatives off and g are 

I 1 
f (u) = 

2
.,/u and g' (x) = 2x, 

the Chain Rule gives 

dy = .!!:_ f(g(x)) = J ' (g( x )) · g' (x ) 
dx dx 

1 1 1 X 
--·g(x)= ---·(2x)=--. 
2-Jgw 2J:x"2+1 .J x 2 + 1 

Usually, when applying the Chain Rule, we do not introduce symbols to represent 
the functions being composed, but rather just proceed to calculate the derivative of the 
"outside" function and then multiply by the derivative of whatever is "inside ." You can 
say to yourself: "the derivative off of something is J' of that thing, multiplied by the 
derivative of that thing." 

EXAM p LE 3 Find derivatives of the following functions : 

(a) (7x - 3) 10
, (b) f(t) = lt2 - 11, and (c) (3x + (

2
x ~ l) 3 ) 

114 

Solution 
(a) Here, the outside function is the 10th power; it must be differentiated first and the 

result multiplied by the derivative of the expression 7x - 3: 

.!!:_(7x - 3) 10 = 10(7x - 3)9(7) = 70(7x - 3)9 . 
dx 

(b) Here, we are differentiating the absolute value of something. The derivative is 
signum of that thing , multiplied by the derivative of that thing: 

2t(t 2 -l) [2t ift < -lort > l 
J'(t)=(sgn(t 2 -1))(2t)= 2 = -2t if-l < t < l 

It - l I undefined if t = ±1. 
(c) Here, we will need to use the Chain Rule twice. We begin by differentiating the 

1/ 4 power of something , but the something involves the -3rd power of 2x + 1, 
and the derivative of that will also require the Chain Rule : 

.!!:_ (3x + __ l __ ) 1/4 = ~ (3 x + __ l __ ) -3 /4 .!!:_ (3x + __ 1 __ ) 
dx (2x + 1)3 4 (2x + 1)3 dx (2x + 1)3 

= i (3x + (2x ~ 1)3 ) -

314 

( 3 - (2x : 1)4 : x (2x + l)) 
- ~ (1 - _2 ~) (3x + 1 ) -3 /4 
-4 (2x+l) 4 (2x +l) 3 

When you start to feel comfortable with the Chain Rule, you may want to save a 
line or two by carrying out the whole differentiation in one step: 

:x (3x + (2x: 1)3) 

114 

= ~ ( 3x + (2x: 1)3 ) -

3

/

4 

( 3 - (2x: 1)4 (
2)) 

- ~ (1 -_2 -) (3x + _1 -)-3 /4 
- 4 (2x + 1 )4 (2x + 1 )3 
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Use of the Chain Rule produces products of factors that do not usually come out in the 
order you would naturally write them. Often you will want to rewrite the result with the 
factors in a different order. This is obvious in parts (a) and (c) of the examp le above. In 
monomials (expressions that are products of factors), it is common to write the factors 
in order of increasing complexity from left to right , with numerical factors coming 
first. One time when you would not waste time doing this , or trying to make any other 
simplification, is when you are going to evaluate the derivative at a particular number . 
In this case, substitute the number as soon as you have calculated the derivative, before 
doing any simplification: 

~(x 2 - 3) 10
1 = 10(x2 - 3)9 (2x) I = (10)(1 9)(4) = 40. 

~ x~ x~ 

EXAM p LE 4 Suppose that f is a differentiable function on the real line. In terms 
of the derivative f ' of f, express the derivatives of: 

(a) f(3x), (b) f(x 2), (c) f(nf(x)), and (d) [!(3 - 2f(x))] 4. 

Solution 

(a) ~ f(3x) = (f'(3x))(3) = 3j'(3x). 
dx 

(b) ~ f(x 2
) = (f ' (x2))(2x) = 2xf ' (x 2

) . 
dx 

(c) ~ f(nf(x)) = (f ' (nf(x)))(nj'(x)) = nf ' (x)J'(nf(x)). 
dx 

(d) :x [f(3 - 2.f(x))]
4 

= 4[.f(3 - 2.f(x))J3.f'(3 - 2f(x))(-2.f'(x)) 

= -8f ' (x)J'(3 - 2f(x))[J(3 - 2f(x))]3. 

As a final example, we illustrate combinations of the Chain Rule with the Product and 
Quotient Rules . 

EXAMPLE 5 Find and simplify the following derivatives: 

t 2 + 1 
(a) f'(t)iff(t)= ~ , and (b)g ' (-l)ifg(x) =( x 2 +3x+4)

5
.J3-2x. 

t2 + 2 

Solution 
2t 

.Jt 2 + 2(2t) - (t 2 + 1) .Jt2+2 
(a) J' (t) = 2 t2 + 2 

t 2 + 2 

(b) 

2t t 3 + t t 3 + 3t 

,Ji2 + 2 (t2 + 2) 3/2 (t2 + 2)3/2. 

4 5 -2 
g'(x) = 5(x 2 + 3x + 4) (2x + 3)-J3 - 2x + (x 2 + 3x + 4) ../3=2.x 

2 3 - 2x 

g'(- 1) = (5)(24)(l)(v's) - ~ = 80v's- 32 Js = 368-Js_ 
,Js s s 

Finding Derivatives with Maple 
i Computer algebra systems know the derivatives of elementary functions and can cal 

culate the derivatives of combinations of these functions symbolically, using differ
entiation rules. Maple 's D operator can be used to find the derivative function D ( f) 
of a function f of one variable. Alternatively, you can use diff to differentiate an 
expression with respect to a variable and then use the substitution routine subs to 
evaluate the result at a particular number. 
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> f . - x -> sqrt(1+2*xA2); 

f := X ---+ JJ + 2x 2 

> fprime . - D(f) ; 

X 
fprime := x ---+ 2---;::==:;: 

JI+ 2x 2 

> fprime(2) ; 

> diff(tA2*sin(3*t) , t) ; 

4 

3 

2 t sin(3 t) + 3 t 2 cos(3 t) 

> simplify(subs(t=Pi/12 , %)) ; 

l r,:; 1 2 r,:; 
-ir-v2+ -n- -v2 
12 96 

Building the Chain Rule into Differentiation Formulas 
If u is a differentiable function of x and y = u'', then the Cha in Rule gives 

d 
II 

dy dy du 
11

_ 1 du 
-u = - = - - = nu -
dx dx du dx dx 

The formula 

d " n - 1 du -u =n u -
dx dx 

is just the formula fx x " = nx 11
-

1 with an application of the Chain Rule built in, so 
that it applies to functions of x rather than just to x . Some other differentiation rules 
with built-in Chain Rule application s are: 

d ( 1) -1 du 
dx ; = ~ dx 

!:_.Ju= _1_ du 
dx 2./u dx 

d ,. , - I du 
-u =ru -
dx dx 
d du u du 

-lul = sgnu- = - -
dx dx lul dx 

(the Reciprocal Rule) 

(the Square Root Rule) 

(the Gene ral Power Rule) 

(the Abso lute Value Rule) 

Proof of the Chain Rule (Theorem 6) 
Suppose that f is differentiab le at the point u = g (x) and that g is differentiab le at x . 
Let the function E(k) be defined by 

E(O) = 0, 

E(k) = f(u + kl - f(u) _ J ' (u) , if k ,j:. 0. 

By the definition of derivative, limk-+o E(k) = J ' (u) - J ' (u) = 0 = E(O), so E(k) is 
continuo us at k = 0. Also , whether k = 0 or not , we have 

f(u + k) - f(u) = (f ' (u) + E(k))k. 
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Now put u = g(x) and k = g(x + h) - g(x), so that u + k = g(x + h), and obtain 

f(g(x + h)) - f(g(x)) = (f'(g(x)) + E(k))(g(x + h) - g(x)). 

Since g is differentiable at x, lim1,-o [g(x + h) - g(x) ]/ h = g' (x) . Also, g is 
continuous at x by The ore m I , so lim1,- o k = lim,Ho(g (x + h) - g(x)) = 0 . Since 
Eis continuous at 0, lim1,-o E(k) = limk-o E(k) = E(O) = 0. Hence , 

!!:_ f(g( x)) = lim f(g(x + h)) - f(g(x)) 
dx 1,-0 h 

= lim (f '(g(x)) + E(k)) g(x + h) - g(x) 
1,-0 h 

= (f '(g(x) ) + O)g'(x) = J'(g(x))g'(x), 

which was to be proved . 

EXERCISES 2.4 

Find the derivative s of the functions in Exercises 1-16. 

1. y = (2x + 3)6 

3. f(x) = (4 - x2) 10 

( 
3 ) - 10 

5. F(t) = 2+, 

7. _3_ 
5 -4x 

0 9. y = 11 - x 2 1 

11. y = 4x + 14x - 11 

1 
13. y = ------,,= 

2 + ,J3x + 4 

( 
l )-5/3 

15. z = u+-
u - 1 

2. y = (1 -; )99 

4. y = J 1 - 3x 2 

6. ( 1 + x2/3)3/2 

0 10. f(t) = 12+t 31 

12. y = (2+ lxl3)
113 

14. f(x)= (1+ Jx ;
2r 

x 5.J3 +x 6 

16. y = ( 2 3 4+x) 

17. Sketch the graph of the function in Exercise lO. 

18. Sketch the graph of the function in Exercise 11. 

Verify that the General Power Rule holds for the function s in 
Exercises 19-2 1. 

19. x l/4 = fJx 
21. x 312 = N) 

20. x314 = j x.,/x 

In Exercises 22-29 , express the derivative of the given function 
in terms of the derivative f' of the differentiable function f. 

22. f (2t + 3) 23. f (Sx - x 2) 

24. [1 (~) r 25. J3 + 2f (x) 

26. f ( .J3 + 2r) 27. f (3 + 2.,/x) 

28. !(2f(3f(x))) 29. t(2 - 3/(4 - st)) 

d(R-=-i)I 30. Find - 2 . 
dx x + I x=- 2 

31. Find !.._~1 . 
dt t=3 

32. If f(x) = ~, find J'( 4). 
2x + l 

33. If y = (x
3 

+ 9)
17

1
2

, find y'lx=-
2

. 

34. Find F ' (O) if F(x) = (1 + x)(2 + x)2 (3 + x)3( 4 + x) 4 . 

0 35. Calculate y' if y = (x + ((3x) 5 - 2) - 112) - 6 . Try to do it all 
in one step. 

In Exercises 36-39, find an equation of the tangent line to the 
given curve at the given point. 

36. y = .Ji + 2x2 at x = 2 

37. y = (1 + x 213) 312 at x = -1 

38. y = (ax+ b)8 at x = b/ a 

39. y = l / (x2 - x + 3)312 atx = -2 

40. Show that the derivative of f(x) = (x - aY,(x - bt 
vanishes at some point between a and b if m and n are 
positive integers. 

Use Maple or another computer algebra system to evaluate and 
simplify the derivatives of the function s in Exercises 41-44. 

i 41. y = ~ + ( 2 1 3/ 2 
X + 1) 

.. 
42 

(x2 - I)( x2 - 4)( x2 -9) 
• • y = 6 

X 

• 43. dy I if y = (t + l)(t 2 + 2)(t 3 + 3)(t 4 + 4)(t 5 + 5) 
dt 1=2 

(x2 + 3)1f2(x3 + ?)1/3 
i 44. J'( l) if f(x) = (x4 + lS)' /4 
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8 45. Does the Chain Rule enable you to calculate the derivatives 
of Ix 12 and lx2 I at x = O? Do these functions have 
derivatives at x = O? Why? 

I
. f (g (x + h)) - f (g (x )) 
1m-- -- -- --

h->O h 
. f (g (x + h)) - f (g(x)) g(x + h) - g(x) = hm ----- - - - -- ----

D 46. What is wrong with the following "proof" of the Chain 
Rule? Let k = g (x + h) - g (x ). Then lim1, ..... o k = 0. Thus, 

h->O g (x + h) - g (x) h 

. f (g (x ) + k) - f (g (x)) g(x + h) - g( x ) = ltm -------- -- ----
h->O k h 

= J' (g (x )) g' (x ). 

Derivatives of Trigonometric Functions 

THEOREM 

I 
sin0 

~~-- ~ " 0 
- ,--.......!....- ""----!:..--' ... 

½ 0 

Figure 2.20 It appears that 
lim(sin0) / 0 = 1 
0-> 0 

THEOREM 

I 
y 

T=( l ,tan 0) 

A=( l ,O) 

Figure 2.21 Area f::.. 0 AP 

< Area sector OAP 
< Area f::.. OAT 

X 

The trigonometric functions , especially sine and cosine, play a very important role in the 
mathematical modelling of real-world phenomena . In particular, they arise whenever 
quantities fluctuate in a periodic way. Elastic motions , vibrations, and waves of all 
kinds naturally involve the trigonometric functions, and many physical and mechanical 
laws are formulated as differential equations having these functions as solution s. 

In this section we will calculate the derivative s of the six trigonometric function s. 
We only have to work hard for one of them , sine ; the others then follow from known 
identities and the differentiation rules of Section 2.3 . 

Some Special Limits 
First , we have to establi sh some trigonometric limits that we will need to calculate the 
derivative of sine. It is assumed throughout that the arguments of the trigonometric 
functions are measured in radians. 

The functions sin 0 and cos 0 are continuou s at every value of 0. In particular, at 0 = 0 
we have: 

lim sin0 = sinO = 0 
0->0 

and lim cos0 = cos O = 1. 
0-> 0 

This result is obvious from the graphs of sine and cosine , so we will not prove it here. A 
proof can be based on the Squeeze Theorem (Theorem 4 of Section 1.2). The method 
is suggested in Exercise 62 at the end of this section . 

The graph of the function y = (sin 0) / 0 is shown in Figure 2.20. Although it is 
not defined at 0 = 0, this function appear s to have limit 1 as 0 approaches 0. 

An important trigonometric limit 

sin 0 
Jim -

0
- = 1 

0-> 0 
(where 0 is in radian s). 

PROOF Let O < 0 < n: / 2, and represent 0 as shown in Figure 2.21. Point s A (I , 0) 
and P(cos0, sin0) lie on the unit circle x 2 + y2 = J. The area of the circular sector 
0 AP lies between the areas of triangle s OAP and OAT: 

Area I:::. OAP < Area sector OAP < Area I:::. OAT. 

As shown in Section P.7, the area of a circular sector having central angle 0 (radian s) 
and radius 1 is 0 / 2. The area of a triangle is (1/ 2) x base x height , so 

1 sin0 
Area I:::. OAP= 2 (1) (sin0) = -

2
-, 

1 sin0 
Area I:::. OAT= 2 (1) (tan0) = 

2
cos

0
. 
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THEOREM 

I 

Thus , 

sin0 0 sin0 
< - < --

2 2 2cos0' 

or, upon multiplication by the positive number 2/ sin 0, 

0 
l < -- < --. 

sin0 cos0 

Now take reciprocals , thereby reversing the inequalities: 

sin0 
1 > B > cos0 . 

Since lim0--,o+ cos0 = 1 by Theorem 7, the Squeeze Theorem gives 

sin0 
lim -- = 1. 

0--+0+ 0 

Finally, note that sin 0 and 0 are odd functions. Therefore , f (0) = (sin 0)/0 is an even 
fun ction: f(-0) = f(0), as shown in Figure 2.20. This symmetry implies that the 
left limit at O must have the same value as the right limit: 

sin 0 sin 0 
Jim -- = 1 = Jim 

0--+0- 0 0--+0+ 0 ' 

so lim0--,o(sin0)/0 = 1 by Theorem 1 of Section 1.2. 

Theorem 8 can be combined with limit rules and known trigonometric identities to 
yield other trigonometric limits. 

EXAMPLE 1 
cos h - l 

Show that lim --- = 0. 
h--+0 h 

Solution Using the half-angle formula cos h = 1 - 2 sin2 (h / 2) , we calculate 

cos h - I . 2 sin2 (h/ 2) 
lim --- = hm - ---- Let 0 = h/ 2. 
h--+0 h h--+0 h 

sin0 
= - lim - sin0 = - (1)(0 ) = 0 . 

0--+0 0 

The Derivatives of Sine and Cosine 
To calcu late the derivative of sin x, we need the addition formul a for sine (see Section 
P.7): 

sin(x +h) = sinx cosh +cosx sinh. 

The derivative of the sine function is the cosine function. 

d 
- sinx = cosx 
dx 
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Figure 2.22 The sine and cosine plotted 
together. The slope of the sine curve at x 

is cos x ; the slope of the cosine curve at x 

is - sinx 

SECTION 2.5: Derivatives of Trigonometric Functions 123 

PROOF We use the definition of derivative, the addition formula for sine, the rules 
for combining limits, Theorem 8, and the result of Examp le I: 

d . . sin(x+h)-si nx 
- sm x = hm -------
dx h-+O h 

sin x cos h + cos x sin h - sin x 
= lim --------- - -

h-+O h 
. sin x ( cos h - 1) + cos x sin h = lim -------- - - -

h-+0 h 
cos h - I sin h 

= lim sin x · Jim --- + Jim cos x · lim --
h-+0 h-+0 h h-+0 h-+0 h 

= (sinx) · (0) + (cosx) ·(I)= cosx. 

The derivative of the cosine function is the negative of the sine function. 

d 
- cosx = - sin x 
dx 

PROOF We could mimic the proof for sine above, using the addition rule for cosine, 
cos(x + h) = cos x cos h - sin x sin h. An easier way is to make use of the comple
mentary angle identities, sin((n / 2) - x) = cosx and cos((n / 2) - x) = sinx, and the 
Chain Rule from Section 2.4: 

!!:_ cosx =!!:_si n (?:. -x) = (- 1) cos(?:. - x) = -sinx. 
dx dx 2 2 

Notice the minus sign in the derivative of cosine. The derivative of the sine is the 
cosine, but the derivative of the cosine is minus the sine. This is shown graphically in 
Figure 2.22. 

y 

y = sinx 

EXAM p LE 2 Evaluate the derivatives of the following functions: 

(a) sin(n x) +c os(3x), (b)x 2 sin .fi, 

Solution 
(a) By the Sum Rule and the Chain Rule: 

cosx 
and (c) . 

1 - sm x 

d 
-(s in(nx)+cos(3x)) = cos(nx)(;rr)-sin(3x)(3) = ;rr cos(nx)-3 sin(3x). 
dx 

(b) By the Product and Chain Rules: 

d . . 1 . 1 
-(x 2 sm .Jx) = 2xs m .Jx+x 2 (cos.Jx) r:; = 2xs m .Jx+-x 312 cos.Jx. 
dx 2-vx 2 
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Figure 2.23 sin(x 0
) oscillates 

much more slowly than sinx. 

Its maxim um slope is lf/ 180 

Continuity 

The six trigonometric functions 
are differentiable and, therefore , 
continuous (by Theorem 1) 
everywhere on their domains . 
This means that we can calculate 
the limits of most trigonometric 
functions as x ---+ a by 
evaluating them at x = a. 

(c) By the Quotient Rule: 

!!_ ( cosx ) = (1 - sin x)(- sinx) - (cosx)(O - cosx) 
dx 1 - sin x (1 - sinx) 2 

- sin x + sin2 x + cos2 x 

(L - sin x)2 
l - sin x 

(1 - sin x) 2 l - sinx 

We used the identity sin2 x + cos2 x = 1 to simplify the middle line. 

Using trigonometric identities can sometimes change the way a derivative is calculated. 
Carrying out a differentiation in different ways can lead to different-looking answers, 
but they should be equal if no errors have been made. 

EXAMPLE 3 Use two different methods to find the derivative of the function 
f(t) = sintco st. 

Solution By the Product Rule : 

J' (t) = (cos t)(cos t) + (sin t)(- sin t) = cos2 t - sin2 t . 

On the other hand, since sin(2t) = 2 sin t cost , we have 

!' (t) = :t ( ~ sin(2t) ) = ( ~) (2) cos(2t) = cos(2t). 

The two answers are really the same, since cos(2t) = cos2 t - sin2 t. 

It is very important to remember that the formulas for the derivatives of sin x and cos x 
were obtained under the assumption that x is measured in radians. Since we know that 
180° = 7f radians, x 0 = 7f x / 180 radians. By the Chain Rule, 

d . 0 d . (lf X ) 7f (7fX) 7f 0 -sm(x) = -sm - = -cos - = -cos( x ). 
dx dx 180 180 180 180 

(See Figure 2.23.) Similarly, the derivative of cos(x 0
) is -(7r / 180) sin(x 0

). 

y = sin(x0
) = sin(ll'x/ 180) 

I 

y = sinx 

The Derivatives of the Other Trigonometric Functions 
Because sin x and cos x are differentiable everywhere, the functions 

sinx 
tanx = -

cosx 

COSX 
cotx = -.

smx 

secx = -
cosx 

l 
CSCX = -.

SlOX 

180 

are differentiable at every value of x at which they are defined (i.e., where their 
denominators are not zero). Their derivatives can be calculated by the Quotient and 
Reciprocal Rules and are as follows: 
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The three "co-" functions 
(cosine, cotangent, and 
co ecant) have explicit minus 
signs in their derivatives. 

EXE RC IS ES 2.5 

SECTION 2.5: Derivatives of Trigonometric Functions 125 

d 
- tan x = sec2 x 
dx 

d 
- secx = secx tanx 
dx 

d !I:_ cotx = - csc2 x 
dx 

- csc X = - csc X cot X. 
dx 

EXAM p LE 4 Verify the derivative formulas for tan x and sec x. 

Solution We use the Quotient Rule for tangent and the Reciprocal Rule for secant: 

d d 
d d (sinx) cosx-(sinx) - sinx-(cosx) 

- tan x = - -- = dx dx 
dx dx cos x cos2 x 

cosx cosx - sinx(- sinx) cos2 x + sin2 x 

cos2 x 
1 2 

= -- =sec x. 
cos2 x 

-secx = - -- = -- -(cosx) d d ( 1 ) -1 d 
dx dx cos x cos2 x dx 

- 1 1 sinx 
= --(-sin x) = -- · --

cos2 x cos x cos x 
= secx tanx . 

cos2 x 

EXAMPLE 5 (a) :x [ 3x + cot ( ~) J = 3 + [- csc
2 

( ~) J ~ = 3 - ~ csc
2 

( ~) 

EXAMPLE 6 

(b) !I:_ (--=----c
3 

) = !!:_(3 csc(2x)) 
dx sin 2x) dx 

= 3 ( - csc(2x) cot(2x)) (2) = -6 csc(2x) cot(2x). 

Find the tangent and normal lines to the curve y = tan ( n x / 4) at 
the point (1, 1). 

Solution The slope of the tangent toy = tan(n x / 4) at (1, I) is: 

dy I n 2 I n 2 (n) n ( ~)
2 

n - = -sec (nx / 4) = -sec - = - -v2 = -. 
dx x=I 4 x= I 4 4 4 2 

The tangent is the line 

n 
y = I + 2 (x - 1), or 

7r X 7r 
y=---+ l. 

2 2 

The normal has slope m = -2/n, so its point -slope equation is 

2 
y = 1 - - (x - 1), 

n 
or 

2x 2 
y = -- +- + 1. 

n n 

1. Verify the formula for the derivative of csc x = 1 /(si n x). 2. Verify the formula for the derivative of 
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cotx = (cosx) / (sinx). 

Find the derivatives of the functions in Exercises 3-36. Simplify 
your answers whenever possible. Also be on the lookout for ways 
you might simplify the given expression before differentiating it. 

3. y = cos 3x 4. 
X 

y = sin 5 
5. y = tann x 6. y = sec ax 

7. y = cot(4 - 3x) 8. y = sin((n - x)/3) 

9. f (x) = cos(s - rx) 10. y = sin(Ax + 8) 

11. sin(n x2
) 12. cos(.fi) 

13. y =.JI+ cosx 14. sin(2 cos x) 

15. f(x) = cos(x + sinx) 16. g(0) = tan(0 sin 0) 

17. u = sin3(nx / 2) 18. y = sec(l / x) 

19. F(t) = sin at cos at 20. G( 0) = sina0 
cosb0 

21. sin(2x) - cos(2x) 22. cos2 x - sin2 x 

23. tan x + cotx 24. secx - cscx 

25. tanx -x 26. tan(3x) cot(3x) 

27. t cost - sin t 28. t sin t +cost 

29. 
sinx 

30. 
cosx 

l + cosx I + sinx 

31. x 2 cos(3x) 32. g(t) = .j(s in t) / t 

33. v = sec(x 2
) tan(x 2

) 34 
_ sin.,/i 

• z -
I + cos.Jx 

35. sin(cos(tan t)) 

36. f(s) = cos(s + cos(s + coss)) 

37. Given that sin 2x = 2 sin x cos x, deduce that 
cos2x = cos2 x - sin2 x. 

38. Given that cos 2x = cos2 x - sin2 x, deduce that 
sin 2x = 2 sin x cos x. 

In Exercises 39-42, find equations for the lines that are tangent 
and normal to the curve y = f (x) at the given point. 

39. y = sinx , (n, 0) 40. y = tan(2x), (O, 0) 

41. y=-v12cos(x / 4), (n,l) 42. y =cos 2 x, (~,D 
43. Find an equation of the line tangent to the curve y = sin(x 0

) 

at the point where x = 45. 

44. Find an equation of the straight line normal to y = sec(x 0
) at 

the point where x = 60. 

45. Find the points on the curve y = tan x, -n / 2 < x < n /2, 
where the tangent is parallel to the line y = 2x. 

46. Find the points on the curve y = tan(2x), -n / 4 < x < n /4, 
where the normal is parallel to the line y = -x / 8. 

47. Show that the graphs of y = sinx , y = cosx, y = secx, and 
y = csc x have horizontal tangents . 

48. Show that the graphs of y = tan x and y = cot x never have 
horizontal tangents . 

Do the graphs of the functions in Exercises 49-52 have any 
horizontal tangents in the interval O _::::: x _::::: 2n? If so, where? If 
not, why not? 

49. y = x + sin x 

51. y = x + 2 sin x 

50. y = 2x + sin x 

52. y = X + 2 COS X 

Find the limits in Exercises 53-56. 

. tan(2x) 
53. ltm -- 54. lim sec(!+ cosx) 

X-4 0 X x -nr 

55. lim(x 2 cscxcotx) 
X-4 0 

. ( n - n. cos
2 

x ) 56. hm cos 2 X-4 0 X 

57. 
l - cosh 

Use the method of Example I to evaluate Jim 2 h-40 h 

58. Find values of a and b that make 

{
ax+ b, 

f(x) = 2sinx + 3cosx, 

differentiable at x = 0. 

X < 0 
x::::0 

ii 59. How many straight lines that pass through the origin are 
tangent to y = cos x? Find (to 6 decimal places) the slopes 
of the two such lines that have the largest positive slopes . 

Use Maple or another computer algebra system to evaluate and 
simplify the derivatives of the functions in Exercises 60-61. 

i 60. d xcos(xs in x) I 
dx x + cos(x cos x) x=O 

i 61. d ( ~ . ( 2 (2x
2 

+ 3)
3
1
2 

cos(x
2

)) I - v2x~+3srn x )- -------
dx x x=./ic 

)' 

A=(l ,O) 

Q X 

Figure 2.24 

8 62. (The continuity of sine and cosine) 

(a) Prove that 

Jim sin0 = 0 and lim cos0 = l 
0- 0 0-0 

as follows : Use the fact that the length of chord AP is 
less than the length of arc AP in Figure 2.24 to show that 

sin2 0 + ( I - cos 0)2 < 02 . 

Then deduce that O _::::: I sin 0 I < 10 I and 
0 _::::: 11 - cos 0 I < 10 I. Then use the Squeeze Theorem 
from Section 1.2. 

(b) Part (a) says that sin 0 and cos 0 are continuous at 0 = 0. 
Use the addition formulas to prove that they are 
therefore continuous at every 0. 
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• 
Higher-Order Derivatives 

-----
If the derivative y' = f' (x) of a function y = f (x) is itself differentiable at x, we 
can calculate its derivative, which we call the second derivative of f and denote by 
y 11 = f 11 (x ). As is the case for first derivatives, seco nd derivatives can be denoted by 
various notation s depending on the context. Some of the more common ones are 

II II d2y d d d2 2 2 
Y = f (x) = - 2 = - - f(x) = - 2 f(x) = Dxy = Dxf(x). 

dx dx dx dx 

Similarly, you can consider third- , fourth-, and in general nth-order derivative s. The 
prime notation is inconvenient for derivatives of high order, so we denote the order by 
a superscript in parentheses (to distingui sh it from an exponent): the nth derivative of 
y = f(x) is 

dn dn 
yCn) = /n)(x) = --1'.. = -f(x) = D"y = D" f(x), 

dx" dx" x x 

and it is defined to be the derivative of the (n - 1 )st derivative. For n = I, 2, 
and 3, primes are still normally used: j( 2)(x) = f"(x), j( 3)(x) = f"'(x). It is 
sometimes convenient to denote j(O) (x) = f (x ), that is, to regard a function as its own 
zeroth-order derivative . 

EXAM p LE 1 The velocity of a moving object is the (instantaneou s) rate of 
change of the position of the object with respect to time; if the 

object move s along the x-ax is and is at position x = f(t) at time t, then its velocity at 
that time is 

d x I 
V = - = f (t). 

dt 

Similarly, the acceleration of the object is the rate of change of the velocity. Thus , the 
acceleration is the second derivativ e of the position: 

dv d2x 11 a = - = - = f (t). 
dt dt 2 

We will investigate the relation ships betwe en position , velocity, and acceleration further 
in Section 2.11. 

EXAMPLE 2 If y = x3, then y' = 3x 2, y 11 = 6x, y"' = 6, / 4l = 0, and all 
higher derivative s are zero. 

In general, if f(x) = x" (where n is a positive integer), then 

/kl(x) = n(n - l)(n - 2) · · · (n - (k - I)) x"-k 

I n! n-k 

= t-k)! X 

if k > n, 

where n ! ( called n factorial) is defined by : 
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O! = l 

1 ! = O! x 1 = 1 x 1 = l 
2! = 1! x 2 = I x 2 = 2 

3! = 2! X 3 = 1 X 2 X 3 = 6 

4! = 3! X 4 = I X 2 X 3 X 4 = 24 

n! = (n - I)! x n = 1 x 2 x 3 x · · · x (n - 1) x n . 

It follows that if P is a polynomial of degree n, 

P(x) = a,,x" + a,,_,xn- l + · · · + a,x + ao, 

where a11, a11_1, ... , a1, ao are constants, then p (kl(x) = 0 fork > n. Fork Sn, 
p(k) is a polynomial of degree n -k; in particular , p(n ) (x) = n ! a,,, a constant function. 

EXAM p LE 3 Show that if A , B , and k are constants, then the function 
y = A cos(kt) + B sin(kt) is a solution of the second-order 

differential equation of simple harmonic motion (see Section 3.7): 

d2y 2 
- 2 +k y=O. 
dt 

Solution To be a solution, the function y (t) must satisfy the differential equation 
identically; that is, 

d2 

2 y(t) + k2y(t) = 0 
dt 

must hold for every real number t. We verify this by calculating the first two derivatives 
of the given function y(t) = A cos(kt) + B sin(kt) and observing that the second 
derivative plus k2 y(t) is, in fact, zero everywhere: 

dy . 
- = -Ak sm(kt) + Bk cos(kt) 
dt 

d2y 
-

2 
= -Ak 2 cos(kt) - Bk 2 sin(kt) = -k 2y(t) , 

dt 

d2y 2 
-2 +k y(t) = 0. 
dt 

EXAMPLE 4 
1 

Find the nth derivative , y<11
), of y = -- = (1 + x) - 1

• 
l+x 

Solution Begin by calculating the first few derivatives: 

y' = -(1 + x)-2 

y" = -(-2)(1 +x) - 3 = 2(1 +x) - 3 

y'" = 2(-3)(1 + x) - 4 = -3!(1 + x)- 4 

yC4l = -3!(-4)(1 + x)- 5 = 4!(1 + x) - 5 

The pattern here is becoming obvious. It see ms that 

yCn) = (-l)"n!(l +x)_,, _ ,_ 
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Note the u e of (- l)" to denote 
a positive sign if n is even and a 
negative sign if n is odd. 
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We have not yet actually proved that the above formula is correct for every n, although 
it is clearly correct for n = 1, 2, 3, and 4. To complete the proof we use mathematical 
induction (Section 2.3). Suppose that the formula is valid for n = k, where k is some 
positive integer. Consider y Ck+I) : 

yCk+I) = .!!-__ y(k) = .!!-__ ((-llk!(l +x) - k- 1) 
dx dx 

= (-llk!(-k - 1)(1 +x) - k- 2 = (-1l + 1(k + l)!(l +x) - (k+l)-L_ 

This is what the formula predicts for the (k + l)st derivative. Therefore, if the formula 
for yCn) is correct for n = k, then it i also correct for n = k + l. Since the formula 
is known to be true for n = I , it must therefore be true for every integer n ::: 1 by 
induction. 

EXAMPLE 5 Find a formula for J C11>(x) , given that f (x) sin(ax + b). 

Solution Begin by calculating several derivatives: 

J'(x) = a cos(ax + b) 

J " (x) = -a 2 sin(a x +b) = - a2 f( x ) 

J" ' (x) = -a 3 cos(ax + b) = -a 2 J' (x) 

J(4)(x) = a4 sin(ax + b) = a4 f(x) 

JC5>(x) = a5 cos(ax + b) = a4 J'(x) 

The pattern is pretty obvious here . Each new derivative is -a 2 times the second 
previous one. A formula that gives all the derivatives is 

/''>(x) = { (-l)k a11 sin(ax + b) if n = 2k 
(-ll a11 cos(a x + b) if n = 2k + 1 

which can also be verified by induction on k . 

(k = 0, 1, 2, ... ) , 

Our final example shows that it is not always easy to obtain a formula for the nth 
derivative of a function. 

EXAMPLE 6 Calculate f ', f 11, and f 1
11 for f (x) 

enough of a pattern to predict JC4) 7 

Solution Since f(x) = (x 2 + 1)112, we have 

J'(x) = ½(x2 + l)- 112(2x) = x(x 2 + 1)- 1
/
2, 

J"(x) = (x 2 + 1)- 112 + x (-½) (x 2 + l) - 312(2x) 

= (x2 + I) -3 /2(x2 + 1 _ x 2) = (x2 + 1)-3 /2, 

J"'(x) = -~(x 2 + l)- 512 (2x) = -3x(x 2 + 1)- 5/ 2 . 

.Jxz+T. Can you see 

Although the expression obtained from each differentiation simplified somewhat, the 
pattern of these derivatives is not (yet) obvious enough to enab le us to predict the 
formula for JC4) (x) without having to calculate it. In fact, 

/ 4>(x) = 3(4x 2 - l)(x 2 + 1)- 712, 

so the pattern (if there is one) doesn't become any clearer at this stage. 
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EXERCISES 2.6 

i Remark Computing higher-order derivatives may be useful in applications involving 
Taylor polynomials (see Section 4.10). As taking derivatives can be automated with 
a known algorithm, it makes sense to use a computer to calculate higher-order ones. 
However, depending on the function , the amount of memory and processor time needed 
may severe ly restrict the order of derivatives calculated in this way . Higher-order 
derivatives can be indicated in Maple by repeating the variable of differentiation or 
indicating the order by using the $ operator: 

> diff(xA5 , x , x) + diff(sin(2*x) , x$3) ; 

20x 3 - 8 cos(2x) 

The D operator can also be used for higher-order derivatives of a function (as 
distinct from an expression) by composing it explicitly or using the @@ operator: 

> f : = x -> xA5 ; fpp : = D(D(f)) ; (D@@3) (f) (a) ; 

f := X--+ XS 

fpp := X --+ 20x 3 

60a 2 

Find y ', y " , and y '" for the functions in Exercises 1- 12. I 
17. f(x) = -

a +bx 
18. f (x) = x 2f3 

1. y = (3 - 2x)7 

6 
3. Y = (x - t) 2 

5. y =xl f 3_x- Jf 3 

1. y = (x 2 + 3) -v'x 

9. y=tanx 

2 I 2. y = X - -
X 

4. y = -../ax+ b 

6. y = X JO+ 2x 8 

x- 1 
8• y = x + I 

10. y = secx 

19. f (x) = cos(ax ) 

21. f (x ) = x sin(ax) 

20. f (x ) = X CO SX 

l 
0 22. f(x) = - 0 23. f(x) = v1f=3x 

lxl 
24. If y = tan kx , show that y" = 2k 2y (l + y2). 
25. If y = sec kx , show that y" = k2 y(2 y 2 - I). 

sinx 
11. y = cos(x 2

) 12. y = -

9 26. Use mathematical induction to prove that the nth derivative 
of y = sin(ax + b) is given by the formula asserted at the 
end of Example 5. 

8 27. Use mathematical induction to prove that the nth derivative 
of y = tan x is of the form P11+1 (tan x) , where Pn+ I is a 
polynomial of degree n + I. 

X 

In Exercises 13-23 , calculate enough derivatives of the given 
function to enable you to guess the general formula for j<"\x). 
Then verify your guess using mathematical induction. 8 28. If f and g are twice-differentiable functions, show that 

(Jg) " = f"g + 2f 'g' + J g". 1 
13. f(x) = -

X 

l 
15. f(x) = -

2-x 

l 
14. f( x ) = ? 

x -

16. f (x ) = Jx 

0 29. State and prove the results analogous to that of Exercise 28 
but for (f g )<3) and (f g )<4) . Can you guess the formula for 
(f g)<11)7 

. _ U_s_in_g_D_if_fe_re_n_ti_al_s_a_nd_D_e_r"_1va_t_iv_es __________ _ 
In this section we will look at some example s of way s in which derivatives are used 
to represent and interpret changes and rates of change in the world around us. It is 
natural to think of change in terms of dependence on time, such as the velocity of 
a moving object, but there is no need to be so restrictive. Change with respect to 
variables other than time can be treated in the same way. For example, a physician 
may want to know how small changes in dosage can affect the body's response to a 
drug. An economist may want to study how foreign investment changes with respect to 
variations in a country's interest rates. These questions can all be formulated in terms 
of rate of change of a function with respect to a variable . 
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Figure 2.25 dy, the change in height to 
the tangent line, approximates t..y, the 
change in height to the graph of f 

SECTION 2.7: Using Differential s and Derivatives 131 

Approximating Small Changes 
If one quantity , say y , is a function of another quantity x , that is, 

Y = f (x) , 

we sometimes want to know how a change in the value of x by an amount ~ x will 
affect the value of y . The exact change ~ y in y is given by 

~y = f (x + ~ x ) - f (x ) , 

but if the change ~x is small , then we can get a good approximation to ~Y by using 
the fact that ~y / ~xis approximately the derivative dy / dx. Thus, 

~y dy I 
~y = - t..x ~ - t..x = f (x ) t..x . 

t..x dx 

It is often convenient to represent this approximation in terms of differentials ; if we 
denote the change in x by dx instead of ~ x , then the change ~ y in y is approximated 
by the differential dy, that is (see Figure 2.25), 

~ y ~ dy = J ' (x) dx. 

y 

X 

dx = /';.x 

Y = f (x) 

X +d x X 

EXAM p LE 1 Without using a scientific calculator , determine by approximatel y 
how much the value of sin x increase s as x increase s from 1r / 3 to 

(1r / 3) + 0.006 . To 3 decimal places, what is the value of sin( (1r / 3) + 0.006) ? 

Solution If y = sin x, x = 1r / 3 ~ l .0472 , and dx = 0.006 , then 

dy = cos(x) dx = cos (i) dx = ~ (0.006) = 0.003. 

Thus the change in the value of sin x is approximately 0.003 , and 

(

7[ ) 7[ ../3 sin 3 + 0.006 ~ sin 3 + 0.003 = 2 + 0.003 = 0.869 

rounded to 3 decimal places . 

Whenever one makes an approximation it is wise to try and estimate how big the error 
might be. We will have more to say about such approximations and their error estimates 
in Section 4.9. 
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DEFINITION 

I 

Sometimes changes in a quantity are measured with respect to the size of the 
quantity . The relative change in x is the ratio dx / x if x changes by amount dx. The 
percentage change in x is the relative change expressed as a percentage: 

. . dx 
relative change tn x = -

X 

. 00 dx percentage change m x = l - . 
X 

EXAMPLE 2 By approximately what percentage does the area of a circle increase 
if the radius increases by 2%? 

Solution The area A of a circle is given in te1ms of the radius r by A = n r 2 . Thus, 

dA 
L'lA~dA=-dr=2nrdr. 

dr 

We divide this approximation by A 
relative changes in A and r: 

L'lA dA 2nrdr dr 
-~-=---=2-

A A nr 2 r · 

If r increases by 2%, then dr = i6o r, so 

L'lA 2 4 
-~2x -=- . 
A 100 100 

Thus , A increases by approximately 4%. 

n r 2 to get an approximation that links the 

Average and Instantaneous Rates of Change 
Recall the concept of average rate of change of a function over an interval, introduced 
in Section 1.1. The derivative of the function is the limit of this average rate as the 
length of the interval goes to zero, and so represents the rate of change of the function 
at a given value of its variable. 

The average rate of change of a function f (x) with respect to x over the interval 
from a to a + h is 

f (a+ h) - f(a) 

h 

The (instantaneous) rate of change of f with respect to x at x = a is the 
derivative 

f'(a) = Jim f(a + h) - f(a), 
h-+0 h 

provided the limit exists. 

It is conventional to use the word instantaneous even when x does not represent time, 
although the word is frequently omitted. When we say rate of change, we mean 
instantaneous rate of change. 

EXAMPLE 3 How fast is area A of a circle increasing with respect to its radius 
when the radius is 5 m? 
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Solution The rate of change of the area with respect to the radius is 

dA d 2 -=-(7rr )=27rr. 
dr dr 

When r = 5 m, the area is changing at the rate 27r x 5 = l07r m2/m. This means that 
a small change llr min the radius when the radius is 5 m would result in a change of 
about l07r llr m2 in the area of the circle. 

The above example suggests that the appropriate units for the rate of change of a 
quantity y with respect to another quantity x are units of y per unit of x. 

If f 1 (xo) = 0, we say that f is stationary at xo and call xo a critical point of f. 
The corresponding point (xo, f (xo)) on the graph off is also called a critical point 
of the graph. The graph has a horizontal tangent at a critical point, and f may or may 
not have a maximum or minimum value there. (See Figure 2.26.) It is still possible for 
f to be increasing or decreasing on an open interval containing a critical point. (See 
point a in Figure 2.26.) We will revisit these ideas in the next section. 

y 

a b C 
X 

EXAMPLE 4 Suppose the temperature at a certain location t hours after noon on 
a certain day is T °C (T degrees Celsius), where 

1 
T = 3 t

3 
- 3t 2 + 8t + 10 (for O :St :S 5). 

How fast is the temperature rising or falling at 1 :00 p.m.? at 3:00 p.m.? At what 
instants is the temperature stationary? 

Solution The rate of change of the temperature is given by 

dT 2 - = t - 6t + 8 = (t - 2)(t - 4). 
dt 

dT 
If t = 1, then - = 3, so the temperature is rising at rate 3 °C/h at l :00 p.m. 

dt 
dT 

If t = 3, then - = -1, so the temperature is falling at a rate of 1 °C/h at 3:00 p.m. 
dt 

The temperature is stationary when dT = 0, that is, at 2:00 p.m. and 4:00 p.m. 
dt 

Sensitivity to Change 
When a small change in x produces a large change in the value of a function f (x), 
we say that the function is very sensitive to changes in x. The derivative f' (x) is a 
measure of the sensitivity of the dependence off on x. 
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C 

~---~~----- ----+ X 
x x+ I 

Figure 2.27 The marginal cost dC / dx is 
approximately the extra cost 1'::,.C of 
producing l'::,.x = 1 more unit 

EXAM p LE 5 (Dosage of a medicine) A pharmacologist studying a drug that has 
been developed to lower blood pressure determines experimentally 

that the average reduction R in blood pressure resulting from a daily dosage of x mg 
of the drug is 

R=24.2(1+ x-l
3 

) mmHg . 
.Jx 2 - 26x + 529 

(The units are millimetres of mercury (Hg).) Determine the sensitivity of R to dosage 
x at dosage levels of 5 mg, 15 mg , and 35 mg. At which of these dosage levels would 
an increase in the dosage have the greatest effect? 

Solution The sensitivity of R to xis dR / dx. We have 

__!!_ = 24.2 .Jx 2 
- 26x + 529 

d (.Jx 2 
- 26x + 529(1) - (x - 13) x -

13 
) 

dx x 2 - 26x + 529 

(
x 2 

- 26x + 529 - (x2 
- 26x + 169)) 

-242 
- · (x2 - 26x + 529)3/ 2 

8,712 
(x 2 - 26x + 529)312 · 

At dosages x = 5 mg, 15 mg, and 35 mg , we have sensitivities of 

dR I = 0.998 mm Hg/mg , 
dx x=5 

dR I - = 1.254 mm Hg/mg, 
dx x= l5 

d R I . = 0.355 mm Hg/mg . 
dx x=35 

Among these three levels, the greatest sensitivity is at 15 mg. Increasing the dosage 
from 15 to 16 mg/day could be expected to further reduce average blood pressure by 
about 1.25 mm Hg. 

Derivatives in Economics 
Just as physicists use terms such as velocity and acceleration to refer to derivatives of 
certain quantities, economists also have their own specialized vocabulary for deriva
tives. They call them marginals. In economics the term marginal denotes the rate of 
change of a quantity with respect to a variable on which it depends. For example, the 
cost of production C (x) in a manufacturing operation is a function of x, the number 
of units of product produced . The marginal cost of production is the rate of change 
of C with respect to x, so it is d C / dx . Sometimes the marginal cost of production is 
loosely defined to be the extra cost of producing one more unit; that is , 

!}.C = C(x + 1) - C(x). 

To see why this is approximately conect, observe from Figure 2.27 that if the slope of 
C = C(x) does not change quickly near x , then the difference quotient !}.C/ !}.x will 
be close to its limit, the derivative dC / dx, even if !}.x = 1. 

EXAM p LE 6 (Marginal tax rates) If your marginal income tax rate is 35% and 
your income increases by $1,000, you can expect to have to pay 

an extra $350 in income taxes . This does not mean that you pay 35% of your entire 
income in taxes . It just means that at your cunent income level I, the rate of increase 
of taxes T with respect to income is dT / di = 0.35. You will pay $0.35 out of every 
extra dollar you earn in taxes. Of course , if your income increases greatly, you may 
land in a higher tax bracket and your marginal rate will increase. 
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EXAMPLE 7 (Marginal cost of production) The cost of producing x tons of 
coal per day in a mine is $C(x), where 

C(x) = 4,200 + 5.40x - 0.00lx 2 + 0.000 002x3
. 

(a) What is the average cost of producing each ton if the daily production level is 
1,000 tons? 2,000 tons? 

(b) Find the marginal cost of production if the daily production level is 1,000 tons. 
2,000 tons. 

(c) If the production level increases slightly from 1,000 tons or from 2,000 tons, what 
will happen to the average cost per ton? 

Solution 
(a) The average cost per ton of coal is 

C(x) 4,200 2 
-- = -- + 5.40 - O.OOlx + 0.000 002x . 

X X 

If x = 1,000, the average cost per ton is C(l ,000)/ 1,000 = $10.6 /ton. If 
x = 2,000, the average cost per ton is C(2 ,000)/ 2,000 = $13.5 /ton. 

(b) The marginal cost of production is 

C' (x) = 5.40 - 0.002x + 0.000 006x2
. 

lf x = 1,000, the marginal cost is C' (l ,000) = $9.4 /ton. If x = 2,000, the 
marginal cost is C' (2,000) = $25.4 /ton . 

(c) If the production level x is increased slightly from x = 1,000, then the average 
cost per ton will drop because the cost is increasing at a rate lower than the average 
cost. At x = 2,000 the opposite is true; an increase in production will increase 
the average cost per ton. 

Economists sometimes prefer to measure relative rates of change that do not depend 
on the units used to measure the quantities involved. They use the term elasticity for 
such relative rates. 

EXAM p LE 8 (Elasticity of demand) The demand y for a certain product (i.e., 
the amount that can be sold) typically depends on the price p 

charged for the product: y = f(p). The marginal demand dy / dp = f'(p) (which is 
typically negative) depends on the units used to measure y and p. The elasticity of the 
demand is the quantity 

p dy 

y dp 
(the "-" sign ensures elasticity is positive), 

which is independent of units and provides a good measure of the sensitivity of demand 
to changes in price. To see this, suppose that new units of demand and price are 
introduced, which are multiples of the old units. In terms of the new units the demand 
and price are now Y and P, where 

and 

Thus, Y = kif (P / k2) and dY / dP = (kt / k2)f ' (P / k2) = (k1 / k2)f ' (p) by the Chain 
Rule. It follows that the elasticity has the same value: 

_ P dY = _ k2p ~ J'(p) = _!!_ dy . 
Y d p k1y k2 y dp 
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EXE RC IS ES 2.7 

In Exercises 1-4 , use differentials to determine the approximate 
change in the value of the given function as its argument changes 
from the given value by the given amount. What is the 
approximate value of the function after the change? 

1. y = I/ x, as x increases from 2 to 2.0 l. 

2. f (x) = J3x + 1, as x increases from 1 to 1.08. 

3. h(t) = cos(n t / 4), as t increases from 2 to 2 + (1/lOn ). 

4. u = tan(s / 4) ass decreases from n ton - 0.04 . 

In Exercises 5-10, find the approximate percentage changes in 
the given function y = f (x) that will result from an increase of 
2% in the value of x. 

5. y = x 2 

7. y = l /x 2 

6. y = 1/ x 

8. y = x 3 

9. Y = Fx 10. y = x- 213 

11. By approximately what percentage will the volume 
(V = 1n r 3) of a ball of radius r increase if the radius 
increases by 2%? 

12. By about what percentage will the edge length of an ice cube 
decrease if the cube loses 6% of its volume by melting? 

13. Find the rate of change of the area of a square with respect to 
the length of its side when the side is 4 ft. 

14. Find the rate of change of the side of a square with respect to 
the area of the square when the area is 16 m2. 

15. Find the rate of change of the diameter of a circle with 
respect to its area. 

16. Find the rate of change of the area of a circle with respect to 
its diameter. 

17. Find the rate of change of the volume of a sphere (given by 
V = 1 n r 3) with respect to its radius r when the radius is 
2m. 

18. What is the ra te of change of the area A of a square with 
respect to the length L of the diagonal of the square? 

19. What is the rate of change of the circumference C of a circle 
with respect to the area A of the circle? 

20. Find the rate of change of the sides of a cube with respect to 
the volume V of the cube. 

21. The volume of water in a tank t min after it starts draining is 

V(t) = 350(20 - t/ L. 

(a) How fast is the water draining out after 5 min? after 15 
min? 

(b) What is the average rate at which water is draining out 
during the time interval from 5 to 15 min? 

22. (Poiseuille's Law) The flow rate F (in litres per minute) of 
a liquid through a pipe is propo1tional to the fourt h power of 
the radius of the pipe: 

F = kr 4
. 

Approximately what percentage increase is needed in the 
radius of the pipe to increase the flow rate by 10%? 

23. (Gravitational force ) The gravitational force F with 
wh ich the earth attrac ts an object in space is given by 
F = k/ r2 , where k is a constant and r is the distance from 
the object to the centre of the earth. If F decreases with 
respect tor at rate !pound / mile when r = 4,000 mi , how 
fast does F change with respect tor when r = 8,000 mi? 

24. (Sensitivity of revenue to price ) The sales revenue $R 
from a software product depends on the price $ p charged by 
the distributor according to the formu la 

R = 4,000p - 10p 2 . 

(a) How sensi tive is R top when p = $100? p = $200? 
p = $300? 

(b) Which of these three is the most reasonable price for the 
distributor to charge? Why? 

25. (Marginal cost) The cost of manufacturing x refrigerators 
is $C(x), where 

C(x) = 8,000 + 400x - 0.5x 2
. 

(a) Find the marginal cost if 100 refrigerators are 
manufactured. 

(b) Show that the marginal cost is approximately the 
difference in cost of manufacturing 101 refrigerators 
instead of 100. 

26. (Marginal profit) If a plywood factory produces x sheets 
of plywood per day, its profit per day will be $P(x), where 

P( x) = 8x - 0 .005x 2 - 1,000. 

(a) Find the marginal profit. For what values of x is the 
marginal profit positive ? negative ? 

(b) How many sheets should be produced each day to 
generate maximum profits ? 

27. The cost C (in dollars) of producing n widgets per month in 
a widget factory is given by 

80 ,000 n2 

C=--+4n+-. 
n 100 

Find the marginal cost of production if the number of 
widgets manufactured each month is (a) 100 and (b) 300. 

D 28. In a mining operat ion the cost C (in dollars) of extracting 
each ton ne of ore is given by 

20 X 
C = 10+-+--

x 1,000' 

where x is the number of tonnes extracted each day. (For 
sma ll x, C decrea ses as x increases because of economies of 
scale, but for large x , C increases with x because of 
over loaded equ ipment and labour overtime.) If each tonne of 
ore can be sold for $13, how many tonnes should be extracted 
each day to maximize the daily profit of the mine? 

D 29. (Average cost and marginal cost) If it costs a 
manufacturer C(x) dollars to produce x items, then his 
average cost of production is C(x) / x dollars per item. 
Typically the average cost is a decreasing function of x for 
small x and an increasing function of x for large x. (Why?) 

Show that the value of x that minimizes the average cost 
makes the average cost equa l to the marginal cost. 
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30. (Constant elasticity) Show that if demand y is related to 
price p by the equation y = Cp _,., where C and rare 

positive constants, then the elasticity of demand (see 
Example 8) is the constant r . 

• _ T_h_e _M_ea_n_-V_a_lu_e _Th_e_or_em _____________ _ 
If you set out in a car at 1 :00 p.m . and arrive in a town 150 km away from your starting 
point at 3:00 p.m ., then you have travelled at an average speed of 
150/ 2 = 75 km/h . Although you may not have travelled at constant speed, you 
must have been going 75 km/h at at least one instant during your journey , for if your 
speed was always less than 75 km/h you would have gone less than 150 km in 2 h, 
and if your speed was alway s more than 75 km/h, you would have gone more than 
150 km in 2 h. In order to get from a value less than 75 km/h to a value greater than 
75 km/h, your speed, which is a continuous function oftime, must pass th.rough the value 
75 km/h at some intermediate time. 

Figure 2.28 There is a point C on the 
curve where the tangent is parallel to the 
chord AB 

THEOREM 

Ill 

The conclusion that the average speed over a time interval must be equal to 

the instantaneous speed at so me time in that interval is an instance of an import ant 
mathematical principle . In geometric term s it says that if A and B are two point s on a 
smoot h curve , then there is at lea st one point C on the curve between A and B where 
the tangent line is parallel to the chord line AB. See Figure 2.28. 

y 

a C b 

This principle is stated more precisely in the following theorem. 

The Mean-Value Theorem 

X 

Suppose that the function f is continuous on the clo sed, finite interval [a, b] and that 
it is differentiable on the open interval (a, b) . Then there exists a point c in the open 
interval (a, b) such that 

f(b) - f(a) = J'(c). 
b-a 

This says that the s lope of the chord line joining the point s (a, f (a)) and (b, f (b )) is 
eq ual to the slope of the tang ent line to the curve y = f(x) at the point (c, f(c)), so 
the two line s are parallel. 

We will prove the Mean-Value Theorem later in thi s sec tion. For now we make severa l 
observations . 

1. The hypothe ses of the Mean-Value Theorem are all necessary for the conclusion; 
if f fails to be continuous at even one point of [a, b] or fails to be differentiable 
at even one point of (a, b), then there may be no point where the tangent line is 
parallel to the secant line AB. (See Figure 2.29 .) 
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Figure 2.29 Functions that fail to satisfy 
the hypotheses of the Mean-Value 
Theorem and for which the conclusion is 
false: 

(a) f is discontinuous at endpoint b 

(b) f is discontinuous at p 

( c) f is not differentiable at p 

Figure 2.30 For this curve there are three 
points C where the tangent is parallel to 
the chord AB 

2. The Mean-Value Theorem gives no indication of how many points C there may 
be on the curve between A and B where the tangent is parallel to AB. If the curve 
is itself the straight line AB, then every point on the line between A and B has the 
required property. In general, there may be more than one point (see Figure 2.30); 
the Mean-Value Theorem asserts only that there must be at least one. 

y (a) y (b) y (c) 

ik f(x) 
I I 

I 

~ (x) 

I I I 
I I 

a b X a p b X a p b X 

y 

a C3 b X 

3. The Mean-Value Theorem gives us no information on how to find the point c, 
which it says must exist. For some simple functions it is possible to calculate 
c (see the following example), but doing so is usually of no practical value . As 
we shall see, the importance of the Mean-Value Theorem lies in its use as a 
theoretical tool. It belongs to a class of theorems called existence theorems, as do 
the Max-Min Theorem and the Intermediate-Value Theorem (Theorems 8 and 9 of 
Section 1.4) . 

EXAMPLE 1 Verify the conclusion of the Mean-Value Theorem for f(x) = Jx 
on the interval [a , b] , where O::; a < b. 

Solution The theorem says that there must be a number c in the interval (a, b) such 
that 

J'(c) = J(b) - f(a) 
b-a 

I 

2,./c 

.j[j - Ja 
b-a ( .j[j - Ja) ( .j[j + y'a) 

./b+Ja . 
( )

2 

Thus, 2,./c = Ja + ./b and c = 
2 

. Smee a 

so c lies in the interval (a, b). 

l 

< b, we have 

The following two examples are more representative of how the Mean-Value Theorem 
is actually used. 
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EXAMPLE 2 Show that sin x < x for all x > 0. 

Solution If x > 2n:, then sin x s 1 < 2n: < x . If O < x s 2n:, then , by the 
Mean-Value Theorem , there exists c in the open interval (0, 2n:) such that 

-- = ----- = - sin x = cosc < l . 
sinx sinx - sinO d I 

x x - 0 d x x =c 

Thus , sin x < x in this case too . 

X 
EXAM p LE 3 Show that -v'1+x < 1 + 2 for x > 0 and for -1 s x < 0. 

Solution If x > 0, apply the Mean-Value Theorem to f (x) = y'1+x on the interval 
[O, x]. There exists c in (O, x) such that 

y'1+x - 1 = f(x) - f(O) = J'( c) = 1 < ~ . 
X X - 0 2.J"[+c 2 

The last inequality holds because c > 0. Multiplying by the positive number x and 
X 

transposing the -1 gives .Jf+x < l + 2. 
If -1 S x < 0, we apply the Mean- Value Theorem to f (x ) = y'1+x on the 

interval [x, O]. There exist s c in (x, 0) such that 

.Jf+x-1 

X 

l - .Jf+x = f(O) - f( x ) = J ' (c) = 1 > _ 
- X O - X 2.J"[+c 2 

(because O < 1 + c < 1). Now we must multiply by the negative number x, which 
X 

reverses the inequality, .Jf+x - l < 2, and the required inequality again follows by 

transposing the -1. 

Increasing and Decreasing Functions 
Intervals on which the graph of a function f has positive or negative slope provide 
useful information about the behaviour off . The Mean-Value Theorem enable s us to 
determine such intervals by considering the sign of the derivative f '. 

Increasing and decreasing functions 

Suppose that the function f is defined on an interval / and that x 1 and x2 are two 
points of I. 
(a) If f( x2) > f( x ,) whenever x2 > x, , we say f is increasing on/. 
(b) If f (x2) < f (x,) whenever x 2 > x , , we say f is decreasing on / . 
( c) If f (x2) 2::. f (x ,) whenever x2 > x , , we say f is nondecreasing on / . 
(d) If f(x2) S f(x,) whenever x2 > x , , we say f is nonincreasing on/. 

Figure 2.31 illustrates these terms. Note the distinction between increasing and non
decreasing . If a function is increasing (or decreasing) on an interval , it must take 
different values at different points . (Such a function is called one-to-one.) A non
decreasing function ( or a nonincreasing function) may be constant on a subinterval of its 
domain, and may therefore not be one-to-one. An increasing function is nondecreasing, 
but a nondecreasing function is not necessarily increasing . 
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Figure 2.31 

(a) Function f is increasing 

(b) Function g is decreasing 

(c) Function h is nondecreasing 

(d) Function k is nonincreasing 

THEOREM 

I 

(-2 , 17) 
y 

(2,- 15) 

Figure 2.32 

y (a) y (b) 

X X 

y (c) y (d) 

~ 
~ y =k( x) 

~ 
X X 

Let J be an open interval, and let I be an interval consisting of all the points in J and 
possibly one or both of the endpoint s of J . Suppose that f is continuous on I and 
differenti able on J . 

(a) If f' (x) > 0 for all x in J , then f is increasing on / . 

(b) If f ' (x) < 0 for all x in J , then f is decreasing on /. 

( c) If f' (x) =:,: 0 for all x in J , then f is nondecrea sing on /. 

( d) If f' (x) .::: 0 for all x in J , then f is nonincreasing on /. 

PROOF Let x, and x2 be point s in I with x2 > x , . By the Mean-Value Theorem 
there exists a point c in (x,, x2) (and therefore in J) such that 

f(x2) - f(x1) = J'(c) ; 
x2 -x , 

hence, f(x2)- f(x,) = (x2-x1) f'(c). Sincex 2-x1 > 0, the difference f(x2)- f(xi) 
has the same sign as f '(c) and may be zero if f ' (c) is zero. Thus, all four conclu sions 
follow from the corresponding parts of Definition 6. 

Remark Despite Theorem 12, f ' (xo) > 0 at a single point xo does not imply that f 
is increasing on any interval containing xo. See Exercise 30 at the end of this section 
for a counterexample. 

EXAMPLE 4 On what interval s is the function f (x) = x 3 - l 2x + 1 increasing ? 
On what interval s is it decreasing ? 

Solution We have f'(x) = 3x 2 - 12 = 3(x - 2)(x + 2). Observe that f '(x) > 0 
if x < - 2 or x > 2 and f ' (x) < 0 if - 2 < x < 2. Therefore , f is increasing 
on the intervals (-oo, -2) and (2, oo) and is decreasing on the interval (- 2, 2). See 
Figure 2.32. 

A function f whose derivative satisfies f ' (x) 2: 0 on an interval can still be increasing 
there , rather than just nondecreasing as assured by Theorem 12(c). This will happen if 
f' (x) = 0 only at isolated point s, so that f is assured to be increasing on intervals to 
the left and right of these point s. 

EXAMPLE 5 Show that f (x) = x3 is increasing on any interval. 
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Solution Let x i and x2 be any two real number s satsifying x 1 < x2. Since J ' (x) = 
3x2 > 0 except at x = 0, Theorem 12(a) tells us that f(x 1) < J(x2) if either 
x1 < x2 S O or O S x 1 < x2. If x 1 < 0 < x2, then f(x 1) < 0 < J(x2). Thu s, J is 
increasing on every interval. 

If a function is constant on an interval , then its derivative is zero on that interv al. 
The Mean-V alue Theorem provide s a converse of this fact. 

If f is continuous on an interval / , and f ' (x) = 0 at every interior point of / (i.e., at 
every point of / that is not an endpoint of / ), then f (x) = C, a constant, on /. 

PROOF Pick a point xo in/ and let C = f (xo). If xis any other point of/ , then the 
Mean-Value Theorem says that there exists a point c between xo and x such that 

f(x) - f(xo) = J ' (c). 
X -xo 

The point c must belong to / because an interval contains all point s between any two of 
its points, and c cannot be an endpoint of/ since c =I=-xo and c =I=-x. Since J ' (c) = 0 
for all such point s c, we have f (x) - f (xo) = 0 for all x in / , and f (x) = f (xo) = C 
as claimed . 

We will see how Theorem 13 can be used to establish identitie s for new functions 
encountered in later chapters . We will also use it when finding antiderivatives in 
Section 2.10. 

Proof of the Mean-Value Theorem 
The Mean-Value Theorem is one of those deep results that is based on the completeness 
of the real number system via the fact that a continuou s function on a clo sed, finite 
interv al takes on a maximum and minimum value (Theorem 8 of Section 1.4). Befor e 
giving the proof we establish two preliminary results. 

If f is defined on an open interval (a, b) and achieves a maximum (or minjmum ) 
value at the point c in (a, b) , and if f ' (c) exists , then J ' (c) = 0. (Values of x where 
f' (x) = 0 are called critical points of the function f .) 

PROOF Suppose that f has a maximum value at c. Then f (x) - f(c) S O whenever 
xis in (a, b). If c < x < b, then 

f(x) - f(c) S 0, so J'(c) = Jim J(x) - f(c) S 0. 
X - C x -+ c + X - C 

Similarly, if a < x < c, then 

J(x) - J(c) 
----- ::: 0, 

x-c 
so J ' (c) = Jim f(x) - f(c) ::: 0. 

X-+C- X - C 

Thus J'(c) = 0. The proof for a mjnjmum value at c is similar . 

Rolle's Theorem 

Suppose that the function g is continuous on the closed, finjte interval [a, b] and that 
it is differentiable on the open interval (a, b). If g(a) = g(b), then there exists a point 
c in the open interv al (a, b) such that g' (c) = 0. 

PROOF If g(x) = g(a) for every x in [a , b ] , then g is a constant function , so g' (c) = 0 
for every c in (a , b ). Therefore , suppose there exists x in (a, b) such that g(x) =I=-g (a). 
Let us assume that g(x) > g( a). (If g(x) < g(a), the proof is similar.) By the 
Max-Min Theorem (Theorem 8 of Section 1.4), being continuous on [a , b], g must 
have a maximum value at some point c in [a , b ] . Since g(c) ::: g(x) > g(a) = g(b ), c 
cannot be either a orb . Therefore , c is in the open interval (a, b ), so g is differentiable 
at c. By Theorem 14, c must be a critical point of g: g ' (c) = 0. 
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Figure 2.33 g(x) is the vertical distance 
between the graph of f and the chord line 

THEOREM 

I 

Remark Rolle 's Theorem is a special case of the Mean-Value Theorem in which the 
chord line has slope 0, so the corresponding parall el tangent line must also have slope 
0. We can deduce the Mean-Value Theorem from this special case. 

Proof of the Mean-Value Theorem Suppose f satisfies the conditions of the Mean
Value Theorem. Let 

( 
f(b) - f(a) ) 

g(x) = f(x) - f(a) + ---- (x - a) . 
b-a 

(For a _:::: x _:::: b, g(x) is the vertical displacement between the curve y = f(x) and the 
chord line 

y = f (a)+ f(b) - f(a) (x - a) 
b-a 

joining (a , f(a)) and (b, f(b)). See Figure 2.33.) 

y 

/: 
(a, /(a)) y = f (a)+ f(b) - f (a) (x - a) : 

b-a I 

a 

I 
I 
I 

X b X 

The function g is also continuous on [a, b] and differentiable on (a, b) because 
f has these properties . In addition, g(a) = g(b) = 0. By Rolle 's Theorem, there is 
some point c in (a, b) such that g'(c) = 0. Since 

g'(x) = J'(x) _ f(b) - f(a), 
b-a 

it follows that 

J'(c) = f(b) - f(a) . 
b -a 

Many of the applications we will make of the Mean-Value Theorem in later chapters 
will actually use the following generalized version of it. 

The Generalized Mean-Value Theorem 

If functions f and g are both continuous on [a , b] and differentiabl e on (a, b) , and if 
g' (x) -=I= 0 for every x in (a, b ), then there exists a number c in (a, b) such that 

f( b) - f(a) f'(c) 
= g(b) - g (a) g'(c) · 
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PROOF Note that g(b) =I= g(a); otherwise, there would be some number in (a, b) 

where g' = 0. Hence , neither denominator above can be zero. Apply the Mean-Value 

Theorem to 

h(x) = (f (b) - f(a) )( g(x) - g(a)) - (g(b) - g(a))(f(x) - f(a)) . 

Since h(a) = h(b) = 0, there exists c in (a, b) such that h' (c) = 0. Thu s, 

(f(b) - f(a))g '(c ) - (g(b) - g(a))f'(c) = 0, 

and the result follows on divi sio n by the g factors. 

EXERCISES 2.8 

In Exercises 1-3 , illustrate the Mean-Value Theorem by finding 
any points in the open interv al (a, b) where the tangent line to 
y = f(x) is parall e l to the chord line joinin g (a, f (a)) and 
(b, f (b)). 

1. f(x)=x 2 on[ a,b ] 
1 

2. f(x) = - on [l , 2) 
X 

3. f (x) = x 3 - 3x + 1 on [-2, 2) 

D 4. 
x2 

By applying the Mean-Value Theorem to f(x) = cosx + -
2 

on the interval [0, x], and using the result of Example 2, 
show that 

x2 
cosx > 1- -

2 

for x > 0. This ineq uality is also true for x < 0. Why ? 

5. Show that tan x > x for O < x < TC / 2. 

6. Let r > 1. If x > 0 or - I S x < 0, show that 
(l+xY > l +rx. 

7. Let O < r < 1. If x > 0 or - 1 S x < 0, show that 
(1 + xY < 1 + rx. 

Find the intervals of increa se and decre ase of the functions in 
Exercises 8-19. 

8. f (x) = x 3 - 12x + 1 

10. y = ] - X - x 5 

12. f(x)=x 2 +2x+2 

14. f (x) = x 3 + 4x + 1 

1 
16. f (x) = x 2 + 

1 

18. f(x) =x - 2sinx 

9. f (x) = x2 
- 4 

11. y = x 3 + 6x 2 

13. f(x) =x 3 -4 x + 1 

15. f (x) = (x 2 - 4) 2 

17. f (x) = x3cs - x) 2 

19. f(x) = x + sinx 

20. On what interva ls is f (x) = x + 2 sin x increa sing? 

21. Show that f (x) = x 3 is increas ing on the whole real line 
even though f ' (x) is not positive at every point. 

8 22. What is wrong with the followin g "proof " of the Generali zed 
Mean-Value Theorem? By the Mean-Value Theorem , 
f(b) - f(a) = (b - a)f'(c) for some c between a and b 
and, similarly, g(b) - g(a) = (b - a)g'(c) for some such c. 
Hence , (f(b) - f(a)) / (g(b) - g(a)) = f ' (c) / g'(c), as 
required . 

Use a grap hing utility or a com puter algebra system to find the 
critical points of the function s in Exercises 23-26 correct to 6 
decimal places. 

H 23. f (x) = x
2 

- x 
x 2 -4 

2x + l 
ii 24. f(x) = x 2 +x 

i~ 25. f (x) = x - sin ( 2 x ) 
X +x + 1 

i~ 26. f(x) = ~ 
cos(x + 0.1) 

8 27. If J(x) is differentiable on an interval/ and vanishes at 
n ::: 2 distinct point s of / , prove that J' (x) must vanish at at 
leas t n - I points in /. 

8 28. Let f(x) = x 2 sin( l / x) if x f=. 0 and /(0) = 0. Show that 
J' (x) exists at every x but J' is not continuou s at x = 0. 
This proves the asse rtion (made at the end of Section 2.2) 
that a deri vative, defined on an interv al, need not be 
continuous there . 

D 29. Pro ve the assertion (made at the end of Section 2.2) that a 
derivati ve, defined on an interval, must have the 
intermediate-v alue property. (Hint: Assume that J' exists on 
[a, b] and J'(a) f=. f'(b). If k ]jes between J'(a) and J'(b), 
show that the functio n g defined by g(x) = J (x) - kx must 
have either a maximum value or a minimum value on [a, b] 
occurring at an interior point c in (a, b). Dedu ce that 
J'(c) = k.) 

D 30. Let f (x) = { x + 2x
2 

sin(l / x) if x :/= 0, 
0 If X = 0. 

(a) Show that J' (0) = 1. (Hint: Use the definition of 
derivative.) 

(b) Show that any interva l containin g x = 0 also contains 
points where J'(x) < 0, so J cannot be increas ing on 
such an interval. 

8 31. If J"(x) exists on an interval / and if f vanishes at at least 
three distinct points of I , prove that f" must vanish at some 
point in / . 

8 32. Generaliz e Exercise 31 to a function for which t<n) exists on 
/ and for which f vanishes at at lea st n + l distinct points 
in/. 

D 33. Suppose J is twice differentiable on an interval / (i.e. , f " 
exists on !). Suppose that the point s O and 2 belong to / and 
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that f(O) = f(l) = 0 and f(2) = I. Prove that: I 
(b) J"(b) > 2 forsomepointb in/. 

I 
(a) f' (a) = 2 for some point a in I. l 

(c) f' (c) = - for some point c in I . 
7 

. _ l_m_p_lic_it_D_if_fe_re_n_ti_at_io_n _____________ _ 
We know how to find the slope of a curve that is the graph of a function y = f(x) by 
calculating the derivative off. But not all curves are the graphs of such functions. To 
be the graph of a function f (x ), the curve must not intersect any vertical lines at more 
than one point. 

I 
Slope= - = ---

2Y2 2./x 

Figure 2.34 The equation y2 = x defines 
two differentiable functions of x on the 
interval x :::: 0 

Curves are generally the graphs of equations in two variables. Such equations can 
be written in the form 

F(x, y) = 0, 

where F(x, y) denotes an expression involving the two variables x and y. For example, 
a circle with centre at the origin and radius 5 has equation 

x 2 + y2- 25 = 0, 

so F(x, y) = x 2 + y 2 - 25 for that circle. 

Sometimes we can solve an equation F(x, y) = 0 for y and so find explicit 
formulas for one or more functions y = f (x) defined by the equation. Usually, 
however, we are not able to solve the equation. However , we can still regard it as 
defining y as one or more functions of x implicitly, even it we cannot solve for these 
functions explicitly. Moreover , we still find the derivative dy / dx of these implicit 
solutions by a technique called implicit differentiation. The idea is to differentiate 
the given equation with respect to x, regarding y as a function of x having derivative 
dy / dx, or y'. 

EXAMPLE 1 Find dy / dx if y2 = x. 

Solution The equation y 2 = x defines two differentiable functions of x; in this case 
we know them explicitly . They are Yt = ../x and Y2 = -../x (See Figure 2.34), having 
derivatives defined for x > 0 by 

dy1 1 d y2 
and 

dx 2.J'x dx 2:Jx · 

However, we can find the slope of the curve y 2 = x at any point (x, y) satisfying that 
equation without first solving the equation for y. To find dy / dx we simply differentiate 
both sides of the equation y 2 = x with respect to x, treating y as a differentiable function 
of x and using the Chain Rule to differentiate y2: 

d 2 d 
-(y) = -(x) 
dx dx 

dy 
2y-= I 

d.x 
dy 

dx 2y 

( 
. . d 2 dy) The Cham Rule gives - y = 2y-. 

d x dx 

Observe that this agrees with the derivatives we calculated above for both of the explicit 
solutions YI = ../x and y2 = -../x: 

dy1 I I 

dx 2y1 2.J'x 
and 

dx 2(-../x) 

1 
- 2..;x· 
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y 

YI= / 25 -x 2 

-- _- 5--- ---+--- ----4.-5- -x 

Y2 = -/25 - x 2 
7 (3, -4) 

slope= 3/4 

Figure 2.35 The circle combines the 
graphs of two functions. The graph of yz 
is the lower semicircle and passes through 
(3, -4) 

To find dy / dx by implicit 
differentiation: 

1 . Differentiate both sides of the 
equation with respect to x , 
regarding y as a function of x 

and using the Chain Rule to 
differentiate functions of y. 

2. Collect terms with dy / dx on 
one side of the equation and 
solve for dy / dx by dividing 
by its coefficient. 
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EXAMPLE 2 Find the slope of circle x2 + y2 25 at the point (3, -4). 

Solution The circle is not the graph of a single function of x . Again, it combines 
the graphs of two function s, y 1 = .J2s - x2 and Y2 = -.J2s - x 2 (Figure 2.35) . The 
point (3, -4) lies on the graph of Y2, so we can find the slope by calculating explicitly: 

dy2 I -2 x I 
-;f; x= 3 = - 2.J2s - x2 x=3 

-6 

2.J25 - 9 

3 
-
4 

But we can also solve the problem more easily by differentiating the given equation of 
the circle implicitly with respect to x : 

d 2 d 2 d 
dx (x ) + dx (y ) = dx (25) 

dy 
2x +2y- = 0 

dx 
dy X 

dx y 

x I 3 3 The slope at (3, -4) is - - = - - = - . 
y (3,- 4) -4 4 

EXAMPLE 3 F. d dy .f . 3 m - 1 y srn x = x + cos y . 
dx 

Solution This time we cannot solve the equation for y as an explicit function of x, 
so we must use implicit differentiation: 

d d d 
-(ysinx) = -(x 3

) + -(cos y) 
dx dx dx 

dy 2 dy 
(sinx)- + ycosx = 3x - (sin y)-

dx dx 

(sinx + sin y /Y = 3x 2 - y cosx 
dx 
dy 3x2 - y cosx 

dx sin x + sin y 

(
Use the Product Rule) 

on the left side . 

In the examples above, the derivatives dy / dx calculated by implicit differentiation 
depend on y, or on both y and x , rather than just on x. This is to be expected because 
an equation in x and y can define more than one function of x, and the implicitly 
calculated derivative must apply to each of the solutions. For example, in Example 2, 
the derivative dy / dx = - x / y also gives the slope -3 / 4 at the point (3, 4) on the 
circle. When you use implicit differentiation to find the slope of a curve at a point, you 
will usually have to know both coordinates of the point. 

There are subtle dangers involved in calculating derivatives implicitly . When you 
use the Chain Rule to differentiate an equation involving y with respect to x , you are 
automatically assuming that the equation defines y as a differentiable function of x . 
This need not be the case . To see what can happen , consider the problem of finding 
y' = dy / dx from the equation 

x
2 +/=K , (*) 

where K is a constant. As in Example 2 (where K = 25), implicit differentiation gives 

2x + 2yy ' = 0 or 
I X 

y =--. 
y 
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A useful strategy 

When you use implicit 
differentiation to find the value 
of a derivative at a particular 
point, it is best to substitute the 
coordinates of the point 
immediately after you carry out 
the differentiation and before 
you solve for the derivative 
dy / dx . It is easier to solve an 
equation involving numbers than 
one with algebraic expressions. 

Figure 2.36 Some hyperbolas in the 
family x 2 - y2 = a (colour) intersecting 
some hyperbolas in the family xy = b 
(black) at right angles 

This formula will give the slope of the curve ( *) at any point on the curve where 
y I= 0. For K > 0, ( *) represents a circle centred at the origin and having radius 
./K. This circle has a f,njte slope, except at the two points where it crosses the x-axis 
(where y = 0). If K = 0, the equation represents only a single point, the origin . The 
concept of slope of a point is meaningless. For K < 0, there are no rea l points whose 
coordinates satisfy equation (*),soy' is meaningless here too. The point of this is that 
being able to calculate y' from a given equation by implicit differentiation does not 
guarantee that y' actually represents the slope of anything. 

If (xo, Yo) is a point on the graph of the equation F(x, y) = 0, there is a theorem 
that can justify our use of implicit differentiation to find the slope of the graph there. 
We cannot give a careful statement or proof of this implicit function theorem yet (see 
Section 12.8), but roughly speaking, it says that part of the graph of F (x, y) = 0 near 
(xo, Yo) is the graph of a function of x that is differentiable at xo, provided that F(x, y) 
is a "smoot h" function, and that the de1ivative 

!!:_F(xo, y)I I= 0. 
dy y=yo 

For the circle x 2 + y2 - K = 0 (where K > 0) this condition says that 2yo I= 0, which 
is the condition that the derivative y' = -x / y should exist at (xo, yo) . 

EXAMPLE 4 Find an equation of the tangent to x 2 + xy + 2y 3 = 4 at (-2, 1). 

Solution Note that (-2, l) does lie on the given curve . To find the slope of the tangent 
we differentiate the given equation implicitly with respect to x. Use the Product Rule 
to differentiate the xy term: 

2x + y + xy' + 6y2y' = 0. 

Substitute the coordinates x = -2, y = l, and solve the resulting eq uation for y': 

-4 + 1 - 2y' + 6y' = 0 => 
I 3 

y = -. 
4 

The slope of the tangent at ( -2 , I) is 3 / 4, and its equa tion is 

3 
y = -(x + 2) + 1 

4 
or 3x -4y = -10. 

EXAM p LE 5 Show that for any constants a and b, the curves x 2 
- y 2 = a and 

xy = b intersect at right angles, that is, at any poi nt where they 
intersect their tangents are perpendicular. 

Solution The slope at any point on x 2 - y2 = a is given by 2x - 2yy' = 0, or 
y' = x/y. The slope at any point on xy =bis given by y +xy' = 0, or y' = -y/x. If 
the two curves (they are both hyperbolas if a I= 0 and b I= 0) intersect at (xo, Yo), then 
their slopes at that point are xo / Yo and -yo / xo, respectively. Clear ly, these slopes are 
negative reciprocals, so the tangent line to one curve is the normal line to the other at 
that point. Hence, the curves intersect at right angles . (See Figure 2.36 .) 

Higher-Order Derivatives 

EXAMPLE 6 
d2y 

Find y" = -
2 

if xy + y2 = 2x . 
dx 

www.konkur.in



Note that Maple uses the symbol 
a instead of d when expressing 
the derivative in Leibniz form. 
Thi is because the expression it 
is differentiating can involve 
more than one variable; (B/Bx)y 
denotes the derivative of y with 
respect to the specific variable x 

rather than any other variables 
on which y may depend. It is 
called a partial derivative . 
We will study partial derivatives 
in Chapter 12. For the time 
being, just regard a as a d. 
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Solution Twice differentiate both sides of the given equation with respect to x: 

y + xy' + 2yy' = 2 

y' + y' + xy" + 2(y') 2 + 2yy" = 0. 

Now solve these equation s for y' and y". 

y' 
2-y 

X +2 y 
2-y 

2 l+--
y" = _ 2y

1 + 2( y') = _2 2 - y X + 2y 

X + 2y X + 2y X + 2y 

= _
2 

(2 - y )(x + y + 2) 

(x + 2y)3 

2x - xy + 2y - y 2 + 4 - 2y = -2 ------~----
(x + 2y)3 

8 

(x+2y) 3 . 

(We used the given equation to simplify the numerator in the last line.) 

i Remark We can use Maple to calculate derivatives implicitly provided we show 
explicitly which variable depend s on which. For example, we can calculate the value 
of y" for the curve xy + y 3 = 3 at the point (2, 1) as follows. First, we differentiate 
the equation with respect to x, writing y(x) for y to indicate to Maple that it depends 
on x. 

> deq : = diff(x*y(x)+(y(x)) A3=3 , x) ; 

deq := y(x) + x ( :x y(x) ) + 3y(x)2 ( :x y(x) ) = 0 

Now we solve the resulting equation for y': 

> yp : = solve(deq , diff(y(x) , x)) ; 

y(x) 
yp := - ---~ 

X + 3y(x) 2 

We can now differentiate yp with respect to x to get y": 

> ypp : = diff(yp,x); 

ypp := _ f y (x) + y(x) ( 1 + 6y(x) ( f y (x))) 

x + 3y(x) 2 (x + 3y(x)2) 2 

To get an expression depending only on x and y, we need to substitute the expression 
obtained for the first derivative into this result. Since the result of this substitution will 
involve compound fraction s, let us simplify the result as well. 

> ypp : = simplify(subs(diff(y(x) , x)=yp , ypp) ; 

·= 2 xy(x) 
ypp · (x + 3y(x) 2) 3 

This is y" expressed as a function of x and y. Now we want to substitute the coordinate s 
x = 2, y(x) = 1 to get the value of y" at (2, 1 ). However , the order of the substitutions 
is important. First we must replace y(x) with 1 and then replace x with 2. (If we 
replace x first, we would have to then replace y(2) rather than y (x) with 1.) Maple 's 
subs command makes the substitutions in the order they are written. 

> subs(y(x)=l , x=2 , ypp) ; 

4 

125 
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EXE RC IS ES 2.9 

The General Power Rule 
Until now, we have only proven the General Power Rule 

for integer exponents r and a few spec ial rational exponents such as r = l / 2 . Using 

implicit differentiation, we can give the proof for any rational exponent r = m/ n , 
where m and n are integer s, and n -=f. 0. 

If y = xml 11
, then y 11 = xm. Differentiating implicitly with respect to x, we obtain 

n yn -1 dy = m xm-1 
dx ' 

so 

dy = m xm-l yl-n = ~ xm-1 x(m / n)( l -n) = m xm- l+(m / 11)-m = m x(m/n)-1 _ 
dx n n n n 

In Exercises 1-8, find dy / dx in terms of x and y. a2 
21. For x 2 + y2 = a2 show that y" = - 3 . 

y 
1. xy - x + 2y = I 2. x 3 + y3 = 1 

3. x 2 +xy = y3 4. x 3 y + xy 5 = 2 

5. x 2y3 = 2x - y 6. x 2 + 4(y - 1)2 = 4 

X - y x2 

7. --=-+ l 
X +y y 

8. xJx + y = 8 -xy 

In Exercises 9-16, find an equation of the tangent to the given 
curve at the given point. 

9. 2x 2 + 3y 2 = 5 at (1, 1) 

10. x 2y3 - x 3y2 = 12 at (- 1, 2) 

11. ~ + (~)3 = 2 at (-1, -1) 

y2 
12. x + 2y + 1 = -- at (2, -1) 

x- I 

13. 2x+y-.J2sin(xy)=ir / 2at (~,1) 

14. tan(xy2) = 
2:Y at ( -ir, ~) 

15. x sin(xy - y2) = x 1 - lat (1, 1) 

( 
ir y) x 2 17 16. cos - = - - - at (3, 1) 
X y 2 

In Exercises 17-20, find y" in terms of x and y. 

17. xy=x+y 

D 19. x 3 - y1 + y3 = x 

18. x 2 +4y2 = 4 

D 20. x 3 -3xy+y3 =1 

? 2 AC 22. For Ax-+ By = C show that y" = - --. 
B2y3 

Use Maple or another computer algebra program to find the 
values requested in Exercises 23-26. 

ii 23. Find the slope of x + y2 + y sin x = y3 + ir at (ir, 1). 

••• 24. x+.Jy 3y-9x 
Find the slope of-----;=;; = --- at the point (I, 4). 

Y+vx x+y 

ii 25. If x + y5 + I = y + x 4 + xy 2 , find d2y/dx 2 at (1, 1). 

ii 26. If x 3y + xy 3 = 11, find d3y / dx 3 at (1, 2). 

D 27. Show that the ellipse x 2 + 2y 2 = 2 and the hyperbola 
2x 2 - 2y 2 = 1 intersect at right angles. 

D 28. Show that the ellipse x 2 / a 2 + y2 / b2 = l and the hyperbola 
x 2 / A2 - y2 / 8 2 = l intersect at right angles if A2 ~ a 2 and 
a2 - b2 = A 2 + 8 2 . (Thi s says that the ellipse and the 
hyperbola have the same foci.) 

D 29. 

D 30. 

X 
If z = tan 2, show that 

dx 2 . 2z 1 - z2 
- = -- sm x = -- andc osx = -
d z 1 + z2 ' I + z2 ' I + z2 · 

Use implicit differentiation to find y' if y is defined by 
(x - y) / (x + y) = x / y + I. Now show that there are, in 
fact, no point s on that curve, so the derivative you calculated 
is meaningless . This is another example that demonstrat es 
the dangers of calculating something when you don 't know 
whether or not it exists. 

Antiderivatives and Initial-Value Problems 
Throughout this chapter we have been concerned with the problem of finding the 

derivative f' of a given function f . The reverse problem-given the derivative /', 
find /-is also interesting and important. It is the problem studied in integral calculus 
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and is generally more difficult to solve than the problem of finding a derivative. We 
wi ll take a prelim inary look at this problem in this section and will return to it in more 
detail in Chapter 5. 

Anti derivatives 
We begin by defining an antiderivative of a function f to be a function F whose 
derivative is f. It is appropriate to require that F ' (x) = f(x) on an interval. 

An antiderivative of a function f on an interval / is another function F satisfying 

F'(x) = f(x) for x in/. 

EXAMPLE 1 

(a) F(x) = x is an antiderivative of the function f(x) = I on any interval because 
F' (x) = 1 = f (x) everywhere. 

(b) G(x) = ½ x 2 is an antiderivative of the function g(x) = x on any interval because 

G'(x) = ½(2x) = x = g(x) everywhere. 

(c) R(x) = -½ cos(3x) is an antiderivative of r(x) = sin(3x) on any interval because 

R'(x) = -½(-3sin(3x)) = sin(3x) = r(x) everywhere. 

(d) F(x) = -1 / x is an antiderivative of f(x) = l / x 2 on any interval not containing 
x = 0 because F' (x) = 1 / x 2 = f (x) everywhere except at x = 0. 

Antiderivatives are not unique; since a constant has derivative zero, you can always 
add any constant to an antiderivative F of a function f on an interval and get another 
antiderivative of f on that interval. More importantly, all antiderivatives of f on an 
interval can be obtained by adding constants to any particular one . If F and G are both 
antiderivatives off on an interval /, then 

d 
dx (G(x) - F(x)) = f(x) - f(x) = O 

on/, so G(x) - F(x) = C (a constant) on/ by Theorem 13 of Section 2.8. Thus, 
G(x) = F(x) +Con/. 

Note that neither this conclusion nor Theorem 13 is valid over a set that is not an 
interva l. For example, the derivative of 

{
-1 

sgnx = 
1 

if X < 0 
if X > 0 

is O for all x =I= 0, but sgn x is not constant for all x =I= 0. sgn x has different constant 
values on the two intervals (-oo, 0) and (0, oo) comprising its domain. 

The Indefinite Integral 
The general antiderivative of a function f(x) on an interval / is F(x) + C, where 
F(x) is any particular antiderivative of f(x) on / and C is a constant. This general 
antiderivative is called the indefinite integral of f(x) on I and is denoted f f(x) dx. 

The indefinite integral of f (x) on interval / is 

f f (x) dx = F (x) + C on / , 

provided F' (x) = f (x) for all x in /. 
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C = - 3 

Figure 2.37 Graph s of variou s 

antiderivative s of the same function 

The symbol J is called an integral sign. It is shaped like an elongated "S" for reasons 
that will only become apparent when we study the definite integral in Chapter 5. Just as 
you regard dy / dx as a single symbol representing the derivative of y with respect to x , 
so you should regard J f(x) dx as a single symbol representing the indefinite integral 
(general antiderivative) off with respect to x. The constant C is called a constant of 
integration. 

EXAMPLE 2 

(a) / x dx = ~ x 2 + C on any interval. 

(b) / (x 3 
- 5x 2 + 7) dx = ix 4 

- ~x 3 + 7x +Con any interval. 

(c) / (x\ + .Jx) dx = -~ + 4.Jx +Con any interval to the right of x = O. 

All three formulas above can be checked by differentiating the right-hand sides. 

Finding antiderivatives is generally more difficult than finding derivatives; many func
tions do not have antiderivatives that can be expressed as combinations of finitely many 
elementary functions. However , every formula for a derivative can be rephrased as a 
formula for an antiderivati ve . For instance , 

d 
- sinx = cos x ; 
dx 

therefore , / cos x dx = sin x + C. 

We will develop several technique s for finding antiderivatives in later chapters. Until 
then , we must content ourselves with being able to write a few simple antiderivatives 
based on the known derivatives of elementary function s: 

(a) / dx = f 1 dx = x + C 

(c) f x2 dx = x33 + C 

(e) / ~ dx = 2.Jx + C 

(g) f sin x dx = - cos x + C 

(i) / sec2 x dx = tan x + C 

(b) / x dx = x
2

2 

+ C 

( d) j _!_ dx = f dx = _ ! + C 
x 2 x 2 x 

I 
xr+l 

(f) x,. dx = -- + C (r I -1) 
r + 1 

(h) / cosx dx = sinx + C 

G) f csc2 xdx = -cotx + C 

(k) / secx tanx dx = secx + C (1) / cscx cotx dx = -cscx + C 

Observe that formulas (a)- (e) are special cases of formula (f) . For the moment, r must 
be rational in (f), but this restriction will be removed later. 

The rule for differentiating sums and con stant multiples of functions translates into 
a similar rule for antiderivative s, as reflected in parts (b) and (c) of Example 2 above. 

The graphs of the different antiderivatives of the same function on the same interval 
are vertically displaced version s of the same curve, as shown in Figure 2.37. In general, 
only one of these curves will pass through any given point , so we can obtain a unique 
antiderivative of a given function on an interval by requiring the antiderivative to take 
a prescribed value at a particular point x. 

EXAMPLE 3 Find the function f(x) whose derivative is f ' (x) = 6x 2 - 1 for all 
real x and for which f (2) = 10. 
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Solution Since f'(x) = 6x 2 - 1, we have 

f(x)= f(6 x 2 -l )dx=2x 3 -x+C 

for some constant C. Since f (2) = 10, we have 

10 = f (2) = 16 - 2 + C. 

Thus C = -4 and f(x) = 2x 3 - x - 4. (By direct calculation we can verify that 
J'(x) = 6x 2 - 1 and f(2) = 10.) 

EXAMPLE 4 Find the function g(t) whose derivative is \~ 2

5 
and whose graph 

passes through the point (4, 1). 

Solution We have 

f t+S 
g(t) = t3/ 2 dt 

= f (t - 112 + si- 3/2) dt 

= 2t1 ; 2 - lOt - 1; 2 + C 

Since the graph of y = g(t) must pass through (4, 1), we require that 

1 = g(4) = 4 - 5 + C. 

Hence, C = 2 and 

g(t) = 2t 112 - 10i- 112 + 2 fort > 0. 

Differential Equations and Initial-Value Problems 
A differential equation (DE) is an equation involving one or more derivatives of an 
unknown function. Any function whose derivatives satisfy the differential equation 
identically on an interval is called a solution of the equation on that interval. For 
instance, the function y = x 3 - x is a solution of the differential equation 

dy 2 - = 3x -1 
dx 

on the whole real line. This differential equation has more than one solution ; in fact, 
y = x 3 - x + C is a solution for any value of the constant C. 

EXAM p LE 5 Show that for any constants A and B, the function y = Ax 3 + B / x 
is a solution of the differential equation x 2y" - xy' - 3y = 0 on 

any interval not containing 0. 

Solution If y = Ax 3 + B/ x, then for x -:fa Owe have 

y' = 3Ax 2 
- B /x 2 and y" = 6Ax + 2B / x 3

. 

Therefore, 

2 I/ I 3 2B 3 B 3 3B 
x y - xy - 3y = 6Ax + - - 3Ax + - - 3Ax - - = 0, 

X X X 
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provided x f=. 0. This is what had to be proved. 

The order of a differential equation is the order of the highest-order derivative appearing 
in the equation. The DE in Example 5 is a second-order DE since it involves y" and 
no higher derivatives of y. Note that the solution verified in Example 5 involves two 
arbitrary constants, A and B . Thi s solution is called a general solution to the equation, 
since it can be shown that every solution is of this form for some choice of the constants 
A and B. A particular solution of the equation is obtained by assigning specific values 
to these constants. The general solution of an nth-order differential equation typically 
involves n arbitrary constants. 

An initial-value problem (IVP) is a problem that consists of: 

(i) a differential equation (to be solved for an unknown function) and 

(ii) prescribed values for the solution and enough of its derivatives at a particular point 
(the initial point) to determine values for all the arbitrary constants in the general 
solution of the DE and so yield a particular solution. 

Remark It is common to use the same symbol, say y, to denote both the dependent 
variable and the function that is the solution to a DE or an IVP; that is, we call the 
solution function y = y(x) rather than y = f (x). 

Remark The solution of an IVP is valid in the largest interval containing the initial 
point where the solution function is defined. 

EXAMPLE 6 Use the result of Example 5 to solve the following initial -value 
problem. 

I x 2y" - xy' - 3y = 0 
y(I) = 2 
y'(l) = -6 

(x > 0) 

Solution As shown in Example 5, the DE x 2 y" - xy' - 3y = 0 has solution y = 
Ax 3 + B/x, which has derivative y' = 3A x 2 - B / x 2 . At x = l we must have y = 2 
and y' = -6. Therefore , 

A+B = 2 

3A- B = -6. 

Solving these two linear equations for A and B, we get A = -1 and B = 3. Hence, 
y = -x 3 + 3/x for x > 0 is the solution of the IVP. 

One of the simplest kinds of differential equation is the equation 

dy 
dx = f(x), 

which is to be solved for y as a function of x . Evidently the solution is 

y = f f(x) dx. 

Our ability to find the unknown function y(x) depends on our ability to find an 
antiderivative off. 

EXAM p LE 7 Solve the initial-value problem 

I y' = 3 + 2x
2 

x2 

y(- 2) = 1. 

Where is the solution valid ? 
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Solution 

y = f ( :2 + 2) dx = - ~ + 2x + C 
3 

1 = y(-2) = - - 4 + C 
2 

Therefore , C = ~ and 

3 7 
y = -- +2x +-. 

X 2 

Although the solution function appears to be defined for all x except 0, it is only a 
solution of the given IVP for x < 0. This is because (-oo , 0) is the largest interval that 
contains the initial point -2 but not the point x = 0, where the solution y is undefined. 

EXAMPLE 8 

! y " = sinx 
y (n-) = 2 
y ' (n-) = -1. 

Solve the second-order IVP 

Solution Since (y') ' = y" = sin x, we have 

y ' (x) = f sinx dx = -cos x + C 1• 

The initial condition for y' gives 

-1 = y'(n-) = -COS7r + c, = 1 + C1, 

so that C1 = -2 and y ' (x) = -(cos x + 2) . Thus, 

y(x)=-f(cos x +2)dx 

= - sinx - 2x + C2. 

The initial condition for y now gives 

2 = y(n-) = -sinn- -2n- + C2 = -2n- + C2, 

so that C2 = 2 + 2n-. The solution to the given IVP is 

y = 2 + 2n- - sin x - 2x 

and is valid for all x . 

Differential equations and initial-value problems are of great importance in applications 
of calculus, especially for expre ssing in mathematical form certain laws of nature 
that involve rates of change of quantities . A large portion of the total mathematical 
endeavour of the last two hundred years has been devoted to their study. They are 
usually treated in separate courses on differential equations, but we will discuss them 
from time to time in this book when appropriate. Throughout this book, except in 
sections devoted entirely to differential equations , we will use the symbol E:3 to mark 
exercises about differential equations and initial-value problems. 
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EX E R C I S ES 2.10 
In Exercises 1-14 , find the given indefinite integrals. 

1. f 5dx 2. f x 2
dx 

3. f ,/xdx 4. J x 12
dx 

5. f x 3
dx 6. f (x + cosx)dx 

7. J tan x cos x dx 8. J l + cos
3 

x 
cos2 x 

dx 

9. f (a2 - x 2) dx 10. f (A + Bx + Cx2
) dx 

11. f (2x 112 + 3x 113
) dx 12. f 6(: 47/) dx 

13. J c: -X: + X - l) dx 

14. I 05 / (1 + t2 + t4 + t 6
) dt 

In Exercises 15-22, find the given indefinite integrals. This may 
requir e guessing the form of an antiderivative and then checking 
by differentiation. For instance , you might suspect that 
J cos(5x - 2) dx = k sin(5x - 2) + C for some k . 
Differentiating the answer shows that k must be l / 5. 

15. J cos(2x) dx 16. J sin G) dx 

0 17. J dx 
(J + x)2 

0 18. J sec(l - x) tan(l - x) dx 

0 19. J ,J2x + 3dx 0 20. ---dx J 4 
,Jx+T 

21. f 2x sin(x 2
) dx 0 22. f 2x 

Jx2+l 
dx 

Use known trigonometric identities such as 
sec2 x = I + tan2 x, cos(2x) = 2 cos2 x - l = 1 - 2 sin2 x, 
and sin (2x) = 2 sin x cos x to help you evaluate the indefinite 
integrals in Exercises 23-26. 

0 23. f tan2 x dx 

0 25. J cos2 xdx 

Differential equations 

0 24. f sin x cosx dx 

0 26. J sin2 xdx 

In Exercises 27-42, find the solution y = y(x) to the given 
initial-value problem. On what interval is the solution valid? 
(Note that exercises involvin g differential equations are prefixed 

with the symbol E:3 .) 

E:327. 

E:329. 

E:331. 

E:333. 

E::335. 

E] 37. 

E:339. 

E:341. 

~ 43. 

{ y' =x-2 { I -2 -3 
E:328. 

y =X - X 

y(O) = 3 y (-1)=0 

{ y' = 3,/x E:330. 
{ y' = xl /3 

y(4) = l y(O) = 5 

{ y' = Ax
2 + Bx + C E:332. 

{ y' = x-9 /7 

y(l) = 1 y( l) = -4 

{ y' = COSX E:334. { y' = sin(2x) 

y(n / 6)=2 y(n / 2) = 1 

{ y' = sec
2 

x E:336. { y ' = sec
2 

x 

y(O) = 1 y(n) = l 

r-2 r-x-• y'( O) = 5 E:338. y'(l) = 2 

y(O) = -3 y(I) = 1 

['" -x3 

- I 
I y" - 5x' - 3x- '1' 

y'( O) = 0 ~ 40. y'( 1)=2 

y (O) = 8 y(l) = 0 

I'" -cosx I'" -x +s;ox 
y(O) = 0 E:342. y(O) = 2 

y' (0) = 1 y'(O) = 0 

Show that for any constants A and B the function 
y = y (x) =Ax+ B/ x satisfies the second -order 
differential equation x 2y" + xy' - y = 0 for x =I= 0. 
Find a function y satisfying the initial-value problem: 

I x
2y" + xy' - y = 0 

y(I) = 2 
y'(l) =4. 

(x > 0) 

E:3 44. Show that for any constants A and B the function 
y = Ax'' + Bx' 2 satisfies , for x > 0, the differential 
equatio n ax 2y" + bxy ' + cy = 0, provided that r 1 and r2 
are two distinct rational roots of the quadratic equation 
ar(r - I)+ hr+ c = 0. 

Use the result of Exercise 44 to solve the initial-value problems 
in Exercises 45-46 on the interval x > 0. 

I 
4x 2y" + 4xy' - y 

E:345. = O 
y(4) = 2 
y' (4) = -2 I x 2y" - 6y = 0 

E:346. y( l) = I 

y'(l) = l 

• 
Velocity and Acceleration 

-----

Velocity and Speed 
Suppose that an object is moving along a straight line (say the x -axis) so that its position 
xis a function of time t, say x = x(t). (We are using x to represent both the dependent 
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variable and the function.) Suppose we are measuring x in metres and t in seconds. 
The average velocity of the object over the time interval [t, t + h] is the change in 
position divided by the change in time, that is, the Newton quotient 

!ix x(t + h) - x(t) 
Vaverage = - = ------ mis. 

Lit h 

The velocity v (t) of the object at time t is the limit of this average velocity ash --+ 0. 
Thus, it is the rate of change (the derivative) of position with respect to time: 

Velocity: 
dx I 

v(t) = - = X (t). 
dt 

Besides telling us how fast the object is moving, the velocity also tells us in which 
direction it is moving . If v (t) > 0, then x is increasing, so the object is moving to the 
right; if v (t) < 0, then x is decreasing, so the object is moving to the left. At a critical 
point of x, that is, a time t when v (t) = 0, the object is instantaneously at rest-at that 
instant it is not moving in either direction. 

We distinguish between the term velocity (which involves direction of motion as 
well as the rate) and speed, which only involves the rate and not the direction. The 
speed is the absolute value of the velocity: 

Speed: s(t) = lv(t)I = I~ I · 
A speedometer gives us the speed a vehkle is moving ; it does not give the velocity. 
The speedometer does not start to show negative values if the vehicle turns around and 
heads in the opposite direction . 

EXAMPLE 1 

(a) Determine the velocity v(t) at time t of an object moving along the x-axis so that 
at time t its position is given by 

1 2 
x =vat+ 2at , 

where vo and a are constants. 

(b) Draw the graph of v(t), and show that the area under the graph and above the 
t-axis, over [t1 , t2], is equal to the distance the object travels in that time interval. 

Solution The velocity is given by 

dx 
v(t) = - =vo+at . 

dt 

Its graph is a straight line with slope a and intercept vo on the vertical (velocity) axis. 
The area under the graph (shaded in Figure 2.38) is the sum of the areas of a rectangle 
and a triangle . Each has base t2 - t1. The rectangle has height v(t1) = vo + at1, and 
the triangle has height a(t2 - t1). (Why?) Thus, the shaded area is equal to 

1 
Area= (t2 - t1)(vo + at1) + 2(t2 - t1)[a(t2 - t1)] 

= (t2 - t1) [vo + at1 + ~(t2 - t1) J 

= (t2 - t1) [ VO + ~ (t2 + t1) J 
a 2 2 = vo(t2 - t1) + 2(t2 - t1) 

= x(t2) - x(t1), 
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which is the distance travelled by the object between times t1 and t2. 

Remark In Example 1 we differentiated the position x to get the velocity v and then 
used the area under the velocity graph to recover information about the position. It 
appears that there is a connection between finding areas and finding functions that have 
given derivatives (i.e ., finding antiderivative s). This connection , which we will explore 
in Chapter 5, is perhaps the most impo1tant idea in calculus! 

Acceleration 
The derivative of the velocity also has a useful interpretation. The rate of change of the 
velocity with respect to time is the acceleration of the moving object. It is measured 
in units of distance/time 2 . The value of the acce leration at time t is 

Acce leratio n: 1 dv d 2x 
a(t) = V (t) = - = - 2 . 

dt dt 

The accelera tion is the second derivative of the position . If a(t) > 0, the velocit y is 
increasing. This does not necessarily mean that the speed is increasing; if the object is 
moving to the left (v (t) < 0) and accelerating to the right (a(t) > 0), then it is actually 
slowing down. The object is speeding up only whe n the velocity and acceleration have 
the same sign . (See Table 2.) 

Table 2. Velocity , acceleration , and speed 

If velocity is and acceleration is then object is and its speed is 

positive positive moving right increasing 
positive negative moving right decreasing 
negative positive moving left decreasing 
negative negative moving left increasing 

If a(to) = 0, then the velocity and the speed are stationary at to. If a(t) = 0 during 
an interval of time, then the velocity is unchanging and , therefore, constan t over that 
interval. 

EXAM p LE 2 A point P moves along the x -axis in such a way that its position 
at time t s is given by 

X = 2t 3 
- l5t 2 + 24t ft. 

(a) Find the velocity and acceleration of P at time t . 

(b) In which direction and how fast is P moving at t = 2 s? Is it speeding up or 
slowing down at that time? 

(c) When is P instantaneously at rest? When is its speed instantaneously not chang -
ing? 

(d) When is P moving to the left? to the right ? 

(e) When is P speeding up? slowing down ? 

Solution 
(a) The velocity and acceleration of P at time t are 

dx 
v = - = 6t 2 - 30t + 24 = 6(t - I)(t - 4) ft/s and 

dt 
dv 2 

a = dt = l2t - 30 = 6(2t - 5) ft/s . 

(b) At t = 2 we have v = -12 and a = -6. Thus , P is moving to the left with 
speed 12 ft/s, and, since the velocity and accelerat ion are both negative, its speed 
is increasing. 
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(c) P is at rest when v = 0, that is, whe n t = l sort = 4 s. Its speed is unchanging 
when a = 0, that is, at t = 5/ 2 s. 

(d) The velocity is continuous for all t so, by the Interm ediate-Value Theorem, has a 
constant sign on the interval s between the point s where it is 0. By examining the 
values of v (t) at t = 0, 2, and 5 ( or by analyzing the signs of the factors (t - 1) and 
(t - 4) in the expression for v(t)), we conclude that v(t) < 0 (and Pi s moving to 
the left) on time interval (1, 4) . v(t) > 0 (and P is movin g to the right) on time 
intervals (-oo, 1) and (4, oo) . 

(e) The acceleration a is negative fort < 5/ 2 and positive fort > 5/ 2. Table 3 
combines this information with information about v to show where P is speeding 
up and slowing down. 

Table 3. Data for Example 2 

Interval V (t) is a(t) is Pis 

(-oo, 1) positive negative slowing down 
(1 , 5/ 2) negative negative speeding up 
(5/ 2, 4) negative positive slowing down 
(4,oo) po sitive po sitive speeding up 

The motion of P is shown in Figure 2.39. 

I= 5/ 2 

1=4-----------------~ ____________________ _,. t=I 

- 20 - 15 - 10 - 5 0 10 15 20 X 

EXAMPLE 3 An object is hurled upward from the roof of a building 10 m high. 
It rises and then falls back; its height above ground t s after it is 

thrown is 

y = -4 .9 t 2 + 8t + 10 m, 

until it strikes the ground. What is the grea test height above the ground that the object 
attains? With what speed does the object strike the ground? 

Solution Refer to Figure 2.40. The vertical velocity at time t during flight is 

v(t) = -2(4.9) t + 8 = -9.8 t + 8 mis. 

The object is rising when v > 0, that is, when O < t < 8/ 9.8, and is falling for 
t > 8/ 9.8. Thu s, the object is at its maximum height at time t = 8/ 9.8 ~ 0.8163 s, 
and this maximum height is 

Ymax = -4.9 (_!_)2 

+ 8 (_!_) + 10 ~ 13.27 m. 
9.8 9.8 

The time t at which the object strike s the ground is the positive root of the quadratic 
equation obtained by setting y = 0, 

-4.9t 2 + 8t + 10 = 0, 

namely, 

-8 - .J64 + 196 
t = ------ ~ 2.462 s. 

-9.8 

The velocity at this time is v = -(9.8)(2.462) + 8 ~ -16 .12. Thus, the object strikes 
the ground with a speed of about 16.12 mis. 
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Falling Under Gravity 
According to Newton's Second Law of Motion, a rock of mass m acted on by an 
unbalanced force F will experience an accelerat ion a proportional to and in the same 
direction as F; with appropriate units of force , F = ma. If the rock is sitting on the 
ground , it is acted on by two forces: the force of gravi ty acting downward and the 
reaction of the ground acting upward. These forces balance, so there is no resulting 
acceleration . On the other hand, if the rock is up in the air and is unsupported, the 
gravitational force on it will be unbalanc ed and the rock will experience downward 
acceleration. It will faJI. 

According to Newton 's Universal Law of Gravitation, the force by which the earth 
attracts the rock is proportional to the mass m of the rock and inversely proportional 
to the square of its distance r from the centre of the earth: F = km / r 2 . If the relative 
change !:i.r / r is small, as will be the case if the rock remains near the surface of the 
earth, then F = mg, where g = k / r2 is approximately constant. It follows that 
ma = F = mg, and the rock experiences constant downward acceleration g. Since g 
does not depend on m, all objects experience the same acceleration when falling near 
the surface of the earth, provided we ignore air resistance and any other forces that may 
be acting on them. Newton's laws therefore imply that if the height of such an object 
at time tis y(t) , then 

The negative sign is needed because the gravitation al acce leration is downward , the 
opposite direction to that of increasing y . Physical experiments give the following 
approximate values for g at the surface of the earth: 

g = 32 ft/s 2 or g = 9.8 m/s2 . 

EXAM p LE 4 A rock falling freely near the surface of the earth is subject to a 
constant downward acce leration g, if the effect of air resistance is 

neglected. If the height and velocity of the rock are yo and vo at time t = 0, find the 
height y(t) of the rock at any later time t until the rock strikes the ground . 

Solution This exam ple asks for a solution y(t) to the second-order initial-value 
problem : 

I 
y"(t) = -g 

y(O) = Yo 
y ' (0) = vo. 

We have 

y'(t)=- I gdt=-gt+C1 

vo = y'(O) = 0+ C1. 

Thus C1 = vo . 

y'(t) =-gt+ vo 

I l 2 
y(t) = (-gt+ vo)dt = - 2gt + vot + C2 

Yo= y(O) = 0 + 0 + C2. 

Thus C2 = yo. Finally, therefore , 
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L 2 
y(t) = - 2gt + vot + YO· 

EXAM p LE 5 A ball is thrown down with an initial speed of 20 ft/s from the top 
of a cliff, and it strikes the ground at the bottom of the cliff after 

5 s. How high is the cliff? 

Solution We will apply the result of Example 4. Here we have g = 32 ft/s2 , 

vo = - 20 ft/s, and YO is the unknown height of the cliff. The height of the ball t s after 
it is thrown down is 

y(t) = -16t 2 
- 20t + YO ft. 

At t = 5 the ball reache s the ground, so y(5) = 0: 

0 = -16(25) - 20(5) + YO YO= 500. 

The cliff is 500 ft high. 

EXAM p LE 6 (Stopping distance) A car is travelling at 72 km/h . At a certain 
instant its brake s are applied to produce a constant deceleration of 

0.8 m/s2 . How far does the car travel before coming to a stop? 

Solution Let s(t) be the distance the car travel s in the t seco nds after the brake s are 
applied. Then s"(t) = -0 .8 (m/s2), so the velocity at time tis given by 

s'(t) = f -0.8dt = -0.8t + C1 mis. 

Since s'(O) = 72 km/h= 72 x 1, 000/ 3, 600 = 20 mis, we have C1 = 20. Thu s, 

s' (t) = 20 - 0.8t 

and 

s(t) = f (20 - 0.8t) dt = 20t - 0.4t 2 + C2. 

Since s(O) = 0, we have C2 = 0 and s(t) = 20t - 0.4t 2 . When the car has stopped , 
its velocity will be 0. Hence , the stopping time is the solution t of the equation 

0 = s'(t) = 20 - 0.8t , 

that is, t = 25 s. The distance travelled during deceleration is s(25) = 250 m. 
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EX E R C I S ES 2.11 

In Exercises 1-4, a point moves alon g the x-ax is so that its 
position x at time I is specified by the given function. In each 
case determine the following: 

(a) the time intervals on which the point is moving to the right 
and (b) to the left ; 

(c) the time intervals on which the point is acce lerating to the 
right and ( d) to the left ; 

(e) the time interval s when the particle is speeding up and 
(f) slowing down ; 

(g) the acceleration at time s when the velocity is zero; 

(h) the average velocity over the time interval [O, 4]. 

1. X = t2 
- 4t + 3 2. X = 4 + St - t 2 

3. X = t 3 
- 4t + 1 

t 
4. X = -

t2 + I 
5. A ball is thrown upward from gro und level with an initial 

speed of 9.8 mis so that its height in metres afte r t sis given 
by y = 9. 8t - 4. 9t 2 . Wh at is the acceleration of the ball at 
any time t? How high does the ball go? How fast is it 
moving when it strikes the gro und? 

6. A ball is thrown downward from the top of a 100-metre-high 
tower with an initial speed of 2 mis. Its height in metres 
above the gro und t s later is y = 100 - 2t - 4 .9t 2. How long 
does it take to reach the gro und ? What is its average velocity 
durin g the fall? At what instant is its velocity equa l to its 
average veloc ity? 

D 7. (Takeoff distance ) The distance an aircraft travels along a 
runw ay before takeoff is given by D = t2, where Dis 
measur ed in metres from the startin g point , and t is measured 
in seconds from the time the brake is released. If the aircraft 
will become airborne when its speed reaches 200 km/h , how 
long will it take to become airborne, and what distance will it 
travel in that time? 

8. (Projectiles on Mars) A projectile fired upward from the 
surface of the earth falls back to the ground after 10 s. How 
long would it take to fall back to the surface if it is fired 
upward on Mars with the same initial veloc ity? g Mars = 3.72 
m/s2. 

9. A ball is thrown upward with initial velocity vo mis and 
reac hes a maximum height of h m. How high would it have 
gone if its initial veloc ity was 2vo? How fast must it be 
thrown upward to achieve a maximum height of 2h m? 

10. How fast would the ball in the Exercise 9 have to be thrown 
upward on Mars in order to achieve a maximum height of 
3h m? 

11. A rock falls from the top of a cliff and hits the gro und at the 
base of the cliff at a speed of 160 ft/s. How high is the cliff? 

12. A rock is thrown down from the top of a cliff with the initial 
speed of 32 ft/s and hits the ground at the base of the cliff at a 

speed of 160 ft/s. How high is the cliff? 

13. (Distance travelled while braking ) With full brakes 
app lied, a fre ight train can decelerat e at a constant rate of 
1/ 6 m/s2. How far will the train travel while braking to a full 
stop fro m an initial speed of 60 km/h ? 

8 14. Show that if the position x of a moving point is given by a 
quadratic function oft, x = At 2 + Bt + C, then the average 
velocity over any time interval [t1 , t2] is equa l to the 
instantaneous velocity at the midpoint of that time interval. 

D 15. (Piecewise motion) The positio n of an object movin g 
along the s -axis is given at time t by 

I t 2 

s = 4t -4 
-68 + 20t - t2 

if O :S I :S 2 
if 2 < t < 8 
if8 :S t :S 10. 

Determine the velocity and acce leration at any time t. Is the 
velocity cont inuous? Is the acce lerat ion co ntinuous? What is 
the maximum velocity and when is it attained ? 

(Rocket flight with limited fuel) Figure 2.41 shows the 
velocity v in feet per seco nd of a small rocket that was fired from 
the top of a tower at time t = 0 (t in seco nds), acce lerated with 
constant upward acce leratio n unti l its fuel was used up, then fell 
back to the ground at the foot of the tower. The whole flight 
lasted 14 s. Exerc ises 16- 19 refer to this rocket. 

V 

(14, -22 4) 

Figure 2.41 

16. What was the acce lera tion of the rocket while its fuel lasted? 

17. How long was the rocket rising? 

D 18. What is the maximum height above ground that the rocket 
reached ? 

D 19. How high was the tower from which the rocket was fired? 

20. Redo Exam ple 6 using instead a nonconstant deceleration , 
s" (t) = -t m!s2 . 
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CHAPTER REVIEW 
Key Ideas 
• What do the following statements and phrases mean? 

o Line L is tangent to curve C at point P. 

o the Newton quotient off (x) at x = a 

o the derivative J' (x) of the function f (x) 

o f is differentiable at x = a. 

o the slope of the graph y = f (x) at x = a 

o f is increasing (or decreasing) on interval /. 

o f is nondecreasing ( or nonincreasing) on interval /. 

o the average rate of change off (x) on [a, b] 

o the rate of change of f (x) at x = a 

o c is a critical point of J(x). 

o the second derivative of f (x) at x = a 

o an antiderivative of f on interval / 

o the indefinite integral off on interval / 

o differential equation o initial-value problem 

o velocity o speed o acceleration 

• State the following differentiation rules: 

o the rule for differenti ating a sum of function s 

o the rule for differenti ating a constant multiple of a function 

o the Product Rule o the Reciprocal Rule 

o the Quotient Rule o the Chain Rule 

• State the Mean-Value Theorem. 
• State the Generalized Mean- Value Theorem. 
• State the derivatives of the following functions: 

ox ox 2 o l / x oft 

ox" o lxl 
o tanx o cot x 

o sinx 

o secx 

0 COSX 

0 cscx 

• What is a proof by mathematical induction? 

Review Exercises 
Use the definition of derivative to calculate the derivatives in 
Exerci ses 1-4 . 

dy. 2 
1. - 1f y = (3x + l) 

dx 

3 ' 4 . f (2) if f (x) = 2 X 

cl r;---:; 
2. -vi -x 2 

dx 
t - 5 

4. g' (9) if g (t) = ----y; 
l + yt 

5. Find the tangent to y = cos(1rx) at x = 1/ 6. 

6. Find the normal to y= tan(x / 4) at x = Jr. 

Calculate the derivatives of the functi ons in Exercises 7- 12. 

7. 
x - sinx 

11. tan0 - 0 sec2 0 

l +x +x 2 +x 3 

8. 
x4 

10. J2 + cos2 x 

v'l+t2- 1 
12. 

v'l+t2 + 1 
Evaluate the limits in Exercises 13-16 by interpreting each as a 
derivative . 

. (x+h)2o_x20 
13. llm ------

h-+0 h 
14 

. J4x + 1 - 3 
. hm-----

x-+2 X - 2 
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. cos(2x)-(J / 2) . (l / x 2)-(J / a 2) 
15. hm -- -- -- 16. hm 

x-Hr / 6 x-1r / 6 x-+-a x+a 

In Exe rcises 17-24, express the derivative s of the given function s 
in term s of the derivative s J' and g' of the differentiabl e function s 
f and g. 

17. f (3 - x 2) 18. [f(.Jx)J2 

19. f(2x) Jg(x / 2) 20. 
f (x) - g(x) 

f(x) + g(x) 

21. f (x + (g(x))2) 22. 1 ( g~2) ) 

23. f(sinx)g(cosx) 24. 
cos f (x) 

sin g(x) 

25. Find the tangent to the curve x 3y + 2xy3 = l2 at the point 
(2, 1) . 

26. Find the slope of the curve 3.Jlx sin(1r y) + 8y cos(1r x) = 2 
at the point(½ , ¼). 

Find the indefinite integrals in Exercises 27-3 0 . 

f l +x 4 

27. ~dx 28. f 1-;/ dx 

f 2 + 3s in x f 4 29. 
2 

dx 30. (2x + 1) dx 
COS X 

31. Find f(x) give n that J'(x) = 12x 2 + 12x 3 and f(l) = 0. 

32. Find g(x) if g' (x) = sin(x / 3) + cos(x / 6) and the graph of g 
passes through the point (1r, 2). 

33. Differentiat e x sin x + cos x and x cos x - sin x, and use the 
results to find the indefinite integral s 

/1 = f xc osx dx and Ii= f xsinxdx. 

34. Suppo se that J'(x) = f (x) for every x. Let g(x) = x f (x) . 
Calculate the first several derivatives of g and guess a formula 
for the nth-order derivati ve g(,z)(x). Verify your guess by 
induction. 

35. Find an equation of the straig ht line that passes through the 
origin and is tangent to the curve y = x 3 + 2. 

36. Find an equation of the straight lines that pass through the 
point (0, I ) and are tangent to the curve y = J2 + x 2. 

37. Show that :x ( sin" x sin (nx) ) = n sin"- 1 x sin((n + l)x ). 

Atwhatpoint sx in [0, 1r] doest he gra phof y = sin" x sin(nx) 
have a horizontal tangent. Assume that n ~ 2. 

38. Find differentiation formulas for y = sin" x cos(nx), 
y = cos" x sin(n x), and y = cos" x cos(nx) analogous to the 
one given for y = sin" x sin(n x) in Exercise 37. 

39. Let Q be the point (0, 1). Find all points P on the curve 
y = x 2 such that the line P Q is normal to y = x 2 at P. What 
is the shortest distance from Q to the curve y = x 2? 
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40. (Average and marginal profit) Figure 2.42 shows the 
graph of the profit $P(x) realized by a grain exporter from its 
sale of x tonnes of wheat. Thus , the average profit per tonne 
is $P(x) /x . Show that the maximum average profit occurs 
when the average profit equals the marginal profit. What is 
the geometric significance of this fact in the figure ? 

P(x ) 

X 

Figure 2.42 

41. (Gravitational attraction) The gravitational attraction of 
the earth on a mass m at distance r from the centre of the earth 
is a continuous function F(r) given for r ::: 0 by 

I mg R2 

F(r) = --;:'z 
mkr 

if r ::: R 

ifO ::c r < R 

where R is the radius of the earth , and g is the acce leration 
due to gravity at the surface of the earth. 

(a) Find the constant k in terms of g and R. 

(b) F decreases as m moves away from the surface of the 
earth , either upward or downward . Show that F de
creases as r increases from R at twice the rate at which 
F decreases as r decreases from R. 

42. (Compressibility of a gas) The isothermal compressibility 
of a gas is the relative rate of change of the volume V with 
respect to the pressure P, at a constant temperature T, that is, 
(1 / V) d V / d P. For a sample of an ideal gas, the temperature , 
pressure, and volume satisfy the equation P V = k T , where k 

is a constant related to the number of molecules of gas present 
in the sample . Show that the isothermal compressibil ity of 
such a gas is the negative reciprocal of the pressure: 

1 dV 

V dP p 

43. A ball is thrown upward with an initial speed of 10 m/s from 
the top of a building . A second ball is thrown upward with an 
initial speed of 20 mis from the ground. Both balls ach ieve 
the same maximum height above the ground . How tall is the 
building? 

44. A ball is dropped from the top of a 60 m high tower at the 
same instant that a second ball is thrown upward from the 
ground at the base of the tower. The balls collide at a height 
of 30 m above the ground. With what initial velocity was the 
second ball thrown? How fast is each ball moving when they 
collide? 

45. (Braking distance) A car's brakes can decelerate the car at 
20 ft/s2 . How fast can the car travel if it must be able to stop 
in a distance of 160 ft? 

46. (Measuring variations in g) The period P of a pendu
lum of length L is given by P = 2n: .j[Jg , where g is the 
acceleratio n of grav ity. 

(a) Assuming that L remains fixed, show that a 1 % increa se 
in g results in approximately a l/2 % decrease in the period 
P. (Variations in the period of a pendulum can be used 
to detect small variations in g from place to place on the 
earth 's surface. ) 

(b) For fixed g, what percentage change in L will produce a 
1 % increase in P? 

Challenging Problems 
1. Rene Descartes , the inventor of analytic geometry, calculated 

the tangent to a parabola (or a circle or other quadratic curve) 
at a given point (xo, Yo) on the curve by looking for a straight 
line through (xo, yo) having only one intersection with the 
given curve. Illustrate his method by writing the equation of a 
line through (a , a2) , having arbitrary slope m, and then finding 
the value of m for which the line has only one intersection with 
the parabola y = x 2 . Why does the method not work for more 
general curves ? 

2. Given that f ' (x ) = 1/ x and f(2) = 9, find: 

3. 

4. 

(a) lim f (x2 + 5) - f (9) (b) lim 
.Jn.x5 - 3 

x-->2 X - 2 X-->2 x - 2 
Suppose that f ' (4) = 3, g' (4) = 7, g (4) = 4, and g(x) f. 4 
for x f. 4. Find : 

(a) lim (!e x ) - f (4)) (b) 
. f (x) - f (4) 

hm 
x-->4 x-->4 x 2 - 16 

(c) lim 
f (x) - f (4) 

(d) 
. f (x) - f (4) 

./x-2 
hm 

x-->4 X-->4 (1/ x) - (1/ 4) 

(e) lim 
f (x) - f (4) 

(f) lim 
f (g(x)) - f (4) 

x-->4 g(x) - 4 x-->4 x-4 

{X if X = l, 1/ 2, 1/ 3, 1/ 4, . .. 
Let f (x) = x2 otherwise. 
(a) Find all points at which f is continuous. In particular, is 

it continuo us at x = O? 

(b) Is the following statement true or false? Justify your 
answer . For any two real numbers a and b, there is some 
x between a and b such that f (x) = (f (a)+ f (b)) / 2. 

(c) Find all points at which f is differentiable . In particular, 
is it differentiable at x = O? 

5. Suppose f (0) = 0 and If (x)I > .JTxT for all x . Show that 
f ' (0) does not exist. 

6. Suppose that f is a function satisfying the following condi
tions: f ' (O) = k, f(O) f. 0, and f(x + y) = f(x)f(y) for 
all x and y . Show that f(O) = 1 and that f'(x) = k f(x) 
for every x . (We will study functions with these properties in 
Chapter 3.) 

7. Suppose the function g satisfies the conditions: g' (0) = k, 
and g (x + y ) = g(x) + g( y ) for all x and y. Show that: 

(a) g (O) = 0, (b) g' (x) = k for all x, and 

(c) g(x) = kx for all x. Hint: Let h(x) = g(x) - g'(O)x . 

8. (a) If f is differentiable at x, show that 

(i) lim f(x) - f(x - h) = J'(x) 
h-->0 h 
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( .. ) 1. f (x + h) - f (x - h) ! '( ) 
11 1m -------- = X 

h->0 2h 
(b) Show that the existence of the Jjmjt in (i) guarantees that 

f is differentiable at x. 

(c) Show that the existence of the limit in (ii) does not guar
antee that f is differentiable at x . Hint: Consider the 
function f(x) = lxl atx = 0. 

9. Show that there is a line through (a, 0) that is tangent to the 
curve y = x 3 at x = 3a/ 2. If a f= 0, is there any other 
line through (a, 0) that is tangent to the curve? If (xo, yo) 
is an arbitrary point , what is the maximum number of lines 
through (xo, yo) that can be tangent toy = x 3? the rrunimum 
number? 

10. Make a sketch showing that there are two strmght lines, each 
of which is tangent to both of the parabolas y = x 2 + 4x + 1 
and y = -x 2 + 4x - 1. Find equations of the two lines. 

11. Show that if b > 1/ 2, there are three straight lines through 
(0, b ), each of which is normal to the curve y = x 2 . How 
many such lines are there if b = l / 2? if b < 1/ 2? 

12. (Distance from a point to a curve) Find the point on the 
curve y = x 2 that is closest to the point (3 , 0). Hint: The line 
from (3, 0) to the closest point Q on the parabola is normal to 
the parabola at Q. 

D 13. (Envelope of a family of lines) Show that for each value 
of the parameter m, the line y = mx - (m2 / 4) is tangent to 
the parabola y = x 2. (The parabola is called the envelope 
of the famjly of lines y = mx-(m 2 / 4).) Find f(m) such that 
the farruly of lines y = mx + f (m) has envelope the parabola 
y = Ax 2 +Bx+ C. 

D 14. (Common tangents) Consider the two parabolas with equa
tions y = x 2 and y = Ax 2 +Bx+ C . We assume that A f= 0, 
and if A = l, then either B f= 0 or C f= 0, so that the two 
equations do represent different parabolas. Show that: 

(a) the two parabolas are tangent to each other if 
B 2 = 4C(A - l) ; 

(b) the parabolas have two common tangent lines if and only 

if A f= 1 andA(B 2 -4C(A- 1)) > O; 

(c) the parabolas have exactly one common tangent line if 
either A = I and B f= 0, or A f= 1 and B 2 = 4C(A - I); 

(d) the parabolas have no common tangent lines if either 

A = l and B = 0, or A f= 1 and A ( B 2 -4C (A- 1)) < 0. 

Make sketches illustrating each of the above possibilities. 

15. Let C be the graph of y = x 3 . 

(a) Show that if a f= 0, then the tangent to C at x = a also 
intersects Cat a second point x = b. 

(b) Show that the slope of C at x = b is four times its slope 
atx = a. 

(c) Can any line be tangent to C at more than one point? 

(d) Can any line be tangent to the graph of 
y = Ax 3 + Bx 2 + Cx + D at more than one point? 

D 16. Let C be the graph of y = x 4 - 2x 2 . 

(a) Find all horizontal lines that are tangent to C. 

(b) One of the lines found in (a) is tangent to C at two dif
ferent points. Show that there are no other lines with this 
property. 

(c) Find an equation of a straight line that is tangent to the 
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graph of y = x 4 - 2x 2 + x at two different points. Can 
there exist more than one such hne? Why? 

i 17. (Double tangents) A line tangent to the quartic (fourth
degree polynomial) curve C with equation y = ax 4 + bx 3 + 
cx 2 + dx + e at x = p may intersect C at zero , one , or two 
other points. If it meets C at only one other point x = q, it 
must be tangent to C at that point also, and it is thus a "double 
tangent." 

(a) Find the condition that must be atisfied by the coefficients 
of the quartic to ensure that there does exist such a double 
tangent , and show that there cannot be more than one such 
double tangent. Illustrate this by applying your results to 

y = x 4 - 2x 2 + x - 1. 

(b) If the line P Q is tangent to C at two distinct points x = p 
and x = q , show that P Q is parallel to the line tangent to 
Catx=(p+q) / 2. 

( c) If the line P Q is tangent to C at two distinct points x = p 
and x = q, show that C has two distinct inflection points 
R and S and that RS is parallel to P Q. 

18. Verify the following formulas for every positive integer n : 

(a) ~ cos(ax) = a11 cos (ax + mr:) 
dx 11 2 

(b) ~ sin(a x ) = a11 sin (ax+ mr:) 
dx " 2 

(c) ~ (cos 4 x + sin4 x) = 411
-

1 cos (4x + mr:) 
dx " 2 

v (mis) 

--fL.._--+---+--+ ->t- --+----+----+---+- --.- -++ t (s) 
(15, -1) 

-40 

Figure 2.43 

19. (Rocket with a parachute) A rocket is fired from the top 
of a tower at time t = 0. It experiences constant upward 
acceleration until its fuel is used up. Thereafter its acceleration 
is the constant downward acceleration of gravity until, during 
its fall , it deploys a parachute that gives it a constant upward 
acceleration again to slow it down. The rocket hits the ground 
near the base of the tower . The upward velocity v (in metres 
per second) is graphed agmnst time in Figure 2.43. From 
information in the figure answer the following questions: 

(a) How long did the fuel last? 

(b) When was the rocket's height maximum? 

(c) When was the parachute deployed? 

(d) What was the rocket 's upward acceleration while its motor 
was firing? 

(e) What was the maximum height achieved by the rocket? 

(f) How high was the tower from which the rocket was fired? 
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Transcendental 
Functions 

'' It is well known that the central problem of the whole of modern 
mathematics is the study of the transcendental functions defined by 
differential equations. 

'' Felix Klein 1849-1925 
Lectures on Mathematics (1911) 

I n trod LI Ct I, 0 n With _the exception of the trigonometric functions, all the 
functions we have encountered so far have been of three 

main types: polynomials , rational functions (quotients of polynomials), and algebraic 
functions (fractional powers of rational functions). On an interval in its domain, each 
of these functions can be constructed from real numbers and a single real variable x 

by using finitely many arithmetic operations (addition, subtraction, multiplication, and 
division) and by taking finitely many roots (fractional powers). Functions that cannot 
be so constructed are called transcendental functions. The only examples of these 
that we have seen so far are the trigonometric functions. 

Much of the importance of calculus and many of its most useful applications 
result from its ability to illuminate the behaviour of transcendental functions that arise 
naturally when we try to model concrete problems in mathematical terms. This chapter 
is devoted to developing other transcendental functions, including exponential and 
logarithmic functions and the inverse trigonometric functions. 

Some of these functions "undo" what other ones "do" and vice versa. When a pair 
of functions behaves this way, we call each one the inverse of the other. We begin the 
chapter by studying inverse functions in genera l. 

• __ ln_ve_r_se_F_u_n_ct_io_n_s ________________ _ 
Consider the function f(x) = x 3 whose graph is shown in Figure 3.1. Like any 
function , f (x) has only one value for each x in its domain (for x 3 this is the whole real 
line JR). In geometric terms, this means that any vertical line meets the graph of f at 
only one point. However, for this function f, any horizantal line also meets the graph 
at only one point. This means that different values of x always give different values 
f (x). Such a function is said to be one-to-one. 
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DEFINITION 

I 
y 

Figure 3.1 The graph of I (x) = x3 

Do not confuse the -1 in 1- 1 

with an exponent. The inverse 
1- 1 is not the reciprocal 1/I- If 
we want to denote the reciprocal 
1/ l(x) with an exponent we can 

write it as (tcx) )-I. 

Figure 3.2 

X 

(a) I is one-to-one and has an inverse. 
y = I (x) means the same thing as 
X = r 1(y) 

(b) g is not one-to-one 

DEFINITION 

I 

SECTION 3. L: Inverse Functions 165 

A function l is one-to-one if l (x 1) =fa l (x2) whenever x I and x2 belong to the 
domain of l and x 1 =fa x2, or, equivalently, if 

f (x1) = f (x2) ===} x1 = x2 . 

A function is one-to-one if any horizontal line that intersects its graph doe s so at only 
one point. If a function defined on a single interval is increasing (or decrea sing), then 
it is one-to-one. (See Section 2.6 for more discussion of this.) 

Reconsider the one-to-one function l (x) = x 3 (Figure 3.1). Since the equation 

y = x3 

has a unique solution x for every given value of y in the range of f, l is one-to-one. 
Specifically , this solution is given by 

it defines x as a function of y. We call this new funct ion the inverse off and denote it 
1- 1. Thu s, 

In general, if a function l is one-to-one, then for any number y in its range there 
will always exist a single numb er x in its dom ain such that y = l(x). Since x is 
determined uniquely by y, it is a function of y . We write x = 1- 1 (y) and call 1 - 1 the 
inver se off. The function f whose grap h is shown in Figure 3.2(a) is one-to-one and 
has an inverse. The function g who se graph is shown in Figure 3.2(b) is not one-to-one 
(some horizontal line s meet the graph twice) and so does not have an inverse. 

y y 

y = g(x) 

X X 

(a) (b) 

We usually like to write functions with the dom ain variable called x rather than y, so 
we reverse the role s of x and y and refor mul ate the above definition as follows. 

If f is one-to-one , then it has an inverse function 1- 1• The value of 1- 1 (x) is 
the unique number y in the domain off for which f(y) = x. Thus , 

y = 1 - 1(x) {::::=} X = l(y). 

As seen above , y = f (x) = x 3 is equivalent to x = 1 - 1(y) = y 113, or, reversing the 
roles of x and y, y = 1 - 1 (x) = x t/ 3 is equivalent to x = f (y) = y 3 . 

EXAMPLE 1 Show that l (x) = 2x-1 is one-to-one, and find its inverse 1- 1 (x). 
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Solution Since l' (x) = 2 > 0 on IR, l is increasing and therefore one-to-one there. 
Lety = 1 - '(x). Then 

X = l(y) = 2y - J. 

x+ l x+l 
Solving this equation for y gives y = -

2
-. Thus , 1- 1 (x) = -

2
- . 

There are several things you should remember about the relationship between a function 
l and its inverse 1- 1. The most important one is that the two equations 

and X = l (y) 

say the same thing. They are equivalent just as, for example , y = x +land x = y - 1 
are equivalent. Either of the equations can be replaced by the other. This implies that 
the domain of 1- 1 is the range of l and vice versa. 

The inverse of a one-to-one function is itself one-to-one and so also has an inverse. 
Not surprisingly , the inverse of 1- 1 isl: 

Y = u-1r 1(x) <==> X = 1 - l(y) <==> Y = l(x). 

We can substitute either of the equations y = 1- 1 (x) or x = l (y) into the other and 
obtain the cancellation identities: 

The first of these identities holds for all x in the domain of 1- 1 and the second for 
all y in the domain of l. If S is any set of real numbers and / s denotes the identity 
function on S, defined by 

l s(x) = x for all x in S, 

then the cancellation identities say that if :D(f) is the domain of l, then 

and 1- 1 0 l = f .'D(J ), 

where lo g(x) denotes the composition l(g(x)) . 

If the coordinates of a point P = (a, b) are exchanged to give those of a new point 
Q = (b, a), then each point is the reflection of the other in the line x = y. (To see this, 
note that the line P Q has slope -1 , so it is perpendicular to y = x. Also, the midpoint 
of P Q is ( a!b, b!a), which lies on y = x .) It follows that the graphs of the equations 
x = l (y) and y = l (x) are reflections of each other in the line x = y. Since the 
equation x = l (y) is equivalent toy = 1- 1 (x), the graphs of the functions 1- 1 and 
l are reflections of each other in y = x. See Figure 3.3. 
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Figure 3.3 The graph of y = 1- 1 (x) is 
the reflection of the graph of y = f (x) in 

the line y = x 

SECTION 3. l: Inverse Function s 167 

y 

y = x 

or x = f (y ) 

X 

Here is a summary of the propertie s of inverse functions discussed above: 

Propertie s of inverse functions 

l. )' = 1-l (x) {::::::} X = l(y). 

2. The domain of 1- 1 is the range of 1-
3. The range of 1- 1 is the domain of I. 
4. 1- 1(/(x)) = x for all x in the domain of 1-
5. 1(!-I (x)) = X for aJl X in the domain Of 1- 1• 

6. u-J)-l(X) = l(x) for all X in the domain Of 1. 

7. The graph of 1- 1 is the reflection of the graph of I in the line x = y. 

EXAMPLE 2 Show that g(x) = J2 x + 1 is invertible, and find its inverse. 

Solution If g(x 1) = g(x 2), then J2 x 1 + 1 = J2 x2 + 1. Squaring both sides we get 
2x1 + I = 2x2 + 1, which implies that XJ = x2. Thus, g is one-to-one and invertible. 
Let y = g- 1 (x); then 

X = g(y) = y'2y+l. 

x2 - 1 
It follows that x ::: 0 and x2 = 2y + I. Therefore , y = -

2
- and 

- I ( ) X2 - 1 
g X =--

2 
for X :°". 0. 

(The restriction x ::: 0 applies since the range of g is [0, oo ).) See Figure 3.4(a) for the 
graphs of g and g- 1. 
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Figure 3.4 

(a) The graphs of g(x) = ./2x + 1 and 
its inverse 

(b) The graph of the self-inverse function 
f (x) = 1/ x 

\Y == x2 . . . . . . . . . . . . . . . . . . 

DEFINITION 

I 

y 

'• 
X 

Figure 3.5 The restriction F of x 2 to 
[O, oo) and its inverse F- 1 

y 

(a) 

(1+h , 1+h) 

x 2 - I 
y=g - l(x)=--

2 

X 
, , 

, , , , , , , 

, 
, , , 

y 

(b) 

y = X /// 
, , , , , , 

/ 1 
/ Y = f(x) = -

X 

X 

A function l is self-inverse if 1 - 1 = l, that is, if l(f(x)) = x for every x in 
the domain of l. 

EXAMPLE 3 The function l(x) = 1/ x is self-inverse. If y = 1- 1(x), then 
1 

x = l(y) = 1/ y. Therefore, y = 1/ x, so 1 - 1 (x) = - = l( x). 
X 

See Figure 3.4(b). The graph of any self-inver se function must be its own reflection in 
the line x = y and must therefore be symmetric about that line. 

Inverting Non- One-to-One Functions 
Many important functions such as the trigonometric functions are not one -to-one on 
their whole domains. It is still possible to define an inverse for such a function , but we 
have to restrict the domain of the function artificially so that the restricted function is 
one-to-one. 

As an example, consider the function l(x) = x 2 . Unrestricted , its domain is the 
whole real line and it is not one-to-one since l (-a) = l (a) for any a. Let us define a 
new function F(x) equal to l (x) but having a smaller domain , so that it is one-to-one . 
We can use the interval [O, oo) as the domain of F: 

F(x) = x 2 for O .:::= x < oo . 

The graph of Fis shown in Figure 3.5; it is the right half of the parabola y = x 2 , the 
graph of l. Evidently F is one-to-one, so it has an inverse F- 1 which we calculate as 
follows: 

Let y = F - 1 (x), then x = F(y) = y2 and y :::= 0. Thus y = ,Jx. Hence 
F - 1 (x) = ,Jx. 

This method of restricting the domain of a non-o ne-to-one function to make it 
invertible will be used when we invert the trigonometric functions in Section 3.5. 

Derivatives of Inverse Functions 
Suppose that the function l is differentiable on an interval (a, b) and that either 
l'(x) > 0 for a < x < b, so that l is increa sing on (a , b) , or l'(x) < 0 for 
a < x < b, so that l is decrea sing on (a, b) . In either case l is one-to-one on (a, b) 
and has an inverse, 1- 1 there. Differentiating the cancellation identity 

1(!- l(x)) = X 

with respect to x, using the Chain Rule , we obtain 

l'(f-1 (x)) .:!._ 1-l(x) = .:!._ x = l. 
dx dx 

www.konkur.in



Figure 3.6 Tangents to the graphs of l 
and 1- 1 

EXERCISES 3.1 

Thu s, 

d -1 1 
dx l (x) = f' u-1 (x))" 

In Leibniz notation, if y = 1- 1 (x), we have dy I 
dX X 

SECTION 3. 1: Inverse Functions 169 

dxl 
dy y=J - l(x) 

The slope of the graph of 1- 1 at (x , y) is the reciprocal of the slope of the graph of l 
at (y, x). (See Figure 3.6.) 

EXAMPLE 4 Show that l (x) = x 3 + x is one-to-one on the whole real line , and , 
noting that 1(2) = 10, find u-1

) ' (10) . 

Solution Since l ' (x) = 3x 2 + 1 > 0 for all real numbers x, l is increasing and 
therefore one-to-one and invertible. If y = 1- 1 (x ) , then 

X = l (y) = y3 + y ==> 1 = (3 y2 + 1) y1 

==> 
I } 

y = 3 y 2 + 1 · 

Now x = 1(2) = 10 implje s y = 1- 1 (JO)= 2. Thu s, 

v-1)' (JO)= 1 I 
3y2 + 1 y=2 

y 

graph of l 

l 

13 

y =x 

X 

Show that the function s l in Exercises 1-12 are one-to-one, and 
calculate the inverse functions 1- 1• Specify the domains and 
ranges off and 1- 1• 

1. l(x) = X - l 

3. f(x) =~ 

2. f (x) = 2x - 1 

4. f(x)=-~ 
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5. f (x) = x 3 

7. f(x) = x 2
, X :':: Q 

I 
9. f(x) = -

x+ I 

1 - 2x 
11. f(x) = --

1 +x 

6. f (x) = l + VX 
8. f (x) = (1 - 2x) 3 

X 
10. f(x) = -

l +x 

X 

12. f (x) = .Jx2+I 
x2 + I 

In Exercises 13-2 0, f is a one-to-one function with inverse 1- 1• 

Calculate the inverses of the given functions in terms of .r-1
• 

13. g(x) = f (x ) - 2 

15. k( x) = -3/(x) 

1 
17. p( x) = ---

1 + f(x) 

19. r(x) = l - 2.f (3 - 4x) 

14. h(x) = .f (2x) 

16. m(x) = f (x - 2) 

f (x) - 3 
18. q(x) = 

2 

20. s(x) = 1 + .f (x) 
1 - .f (x) 

In Exercise s 21-23, show that the given function is one -to-one 
and find its inverse. 

21. f (x) = { x2 + 1 ~f x :::C: 0 
x+ l 1fx < O 

22. g(x) = { x31/ 3 if x c': 0 
x ifx < O 

23. h( x) = xlxl + 1 

24. Find .r-1 (2) if f (x) = x 3 + x. 

25. Find g- 1 (1) if g(x) = x 3 + x - 9. 

26. Find 1i- 1 (-3) if h (x) = xlxl + 1. 

1 
27. Assume that the function f(x) satisfies f ' (x) = - and that 

X 

.f is one-to-o ne. If y = .r-1 (x), show that dy / dx = y. 

28. Find (.f- 1)
1 

(x) if f(x) = 1 + 2x3. 

29. 
4x 3 

Show that .f (x) = -?-- has an inverse and find 
x - + 1 

u - 1)' c2). 

0 30. Find (.f- 1
) ' (-2) if f(x) = x.J3 + x2 . 

gg 31. If f(x) = x2 / (1 + .Ji), find .r-1 (2) correctto 5 decimal 
places. 

gg 32. If g (x) = 2x + sin x, show that g is invertible, and find 
g- 1 (2) and (g - 1 )'(2) correct to 5 decimal places. 

33. Show that .f (x) = x sec x is one-to-one on (-1r / 2, 1r /2). 
What is the domain of f - 1(x)? Find (.f- 1)'(0). 

34. If functions f and g have respective inverses .r-1 and g- 1, 

show that the composite function f o g has inverse 
(f og)- 1 =g - 1 or \ . 

D 35. For what values of the constants a, b, and c is the function 
.f (x) = (x - a) / (bx - c) self-inverse? 

8 36. Can an even function be self-inverse ? an odd function? 

8 37. In this section it was claimed that an increasing (or 
decre asing) function defined on a single interval is 
necessar ily one-to-one. Is the converse of this statement 
true ? Explain . 

D 38. Repeat Exerc ise 37 with the added assumption that .f is 
conti nuous on the interval where it is defined. 

Exponential and Logarithmic Functions 
To be gi n we review exponential and logarithmic functions as you may have encountered 

them in your previous mathematical studies. In the following sections we will approach 

these functions from a different point of view and learn how to find their derivatives. 

Exponentials 
An exponential function is a function of the form f (x) = ax, where the base a is a 

positive constant and the exponent x is the variable . Do not confuse such functions 

with power functions such as f (x) = xa, where the base is variable and the exponent is 

constant. The exponential function ax can be defined for integer and rational exponents 

x as follows: 
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······ 

DEFINITION 

. • 
.. ··· .. 

I 

X 

Figure 3.7 y = 2x for rational x 

Exponential functions 

If a > 0, then 

a0 = 1 

an= a· a· a·· -a 
'-v--' 

n factors 

SECTION 3.2: Exponential and Logarithmic Functions 171 

if n = l , 2, 3, . .. 

- n 1 
a =

a" 
ifn=l , 2,3 , ... 

amf n = :;Jam if n = 1, 2, 3,... and m = ±1, ±2, ±3 , .... 

In this definition , Va is the number b > 0 that satisfies b" = a. 

How should we define ax if x is not rational? For example, what does 21r mean? In 
order to calculate a derivative of ax, we will want the function to be defined for all real 
numbers x, not just rational ones . 

In Figure 3.7 we plot points with coordinates (x, 2x) for many closely spaced 
rational values of x. They appear to lie on a smooth curve. The definition of ax can be 
extended to irrational x in such a way that ax becomes a differentiable function of x on 
the whole real line. We will do so in the next section. For the moment , if x is irrational 
we can regard ax as being the limit of values a' for rational numbers r approaching x: 

ax= lim a'. 
r-->x 

r ralional 

EXAMPLE 1 Since the irrational number n: = 3.14 1592653 59 ... is the limit 
of the sequence of rational numbers 

r1 = 3, r 2 = 3.1, r 3 = 3.14, r4 = 3.141, rs= 3.1415, 

we can calculate 21r as the limit of the corresponding sequence 

23 = 8, 23·1 = 8.574187 7 ... , 23·14 = 8.815 240 9 .. . 

This gives 21r = lim n-->oo 2' 11 = 8.824 977 827 .... 

Exponential function s satisfy several identities called laws of exponents: 

Laws of exponents 

If a > 0 and b > 0, and x and y are any real number s, then 

(i) a0 = L (ii) ax+y = ax aY 

(iii) 

(v) 

L -x a =-
ax 

(iv) 

(vi) 

X 
x-y a 

a =-aY 

(abY = ax bx 

These identities can be proved for rational exponents using the definitions above. They 
remain true for irrational exponents, but we can't show that until the next section. 

If a = l, then ax = l x = l for every x. If a > l , then ax is an increasing function 
of x; if O < a < l , then ax is decreasing . The graphs of some typical exponential 
functions are shown in Figure 3.8(a). They all pass through the point (0, 1) since a0 = l 
for every a > 0. Observe that ax > 0 for all a > 0 and all real x and that 
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Figure 3.8 

(a) Graphs of some exponential functions 

(b) Graphs of some logarithmic functions 

DEFINITION 

I 

······ 

If 

If 

I y 
, a= m 

I 
a= IO, I 

I 
I 

(a) 

a > l, then 

0 < a < I , then 

y 

········· y = loga x 

X 

(b) 

Jim ax = 0 and lim ax= 00. 
X""""?'-00 X-+00 

lim ax = 00 and lim ax = 0. 
x-+-oo X-+00 

The graph of y = ax has the x-axi s as a horizonta l asymptote if a -/= 1. It is asymptotic 
on the left (as x-+ -oo) if a > 1 and on the right (as x -+ oo) ifO < a < l. 

Logarithms 
The function f (x) = ax is a one-to-one function provided that a > 0 and a -/= l . 
Therefore, f has an inverse which we call a logarithmi c fun ction. 

If a > 0 and a -/= 1, the function log" x, called the logarithm of x to the base a, 
is the inverse of the one-to-one function ax : 

y = loga x {=::} x = a Y, (a > 0, a -/= 1). 

Since ax has domain (-00 , 00) , loga x has range (-00,00) . Since ax has range 
(0, oo), log" x has domain (O, oo). Since ax and log" x are inverse functions , the 
following cancellation identities hold : 

and a10gax = x for all x > 0. 

The graphs of some typical logarit hmic functions are shown in Figure 3.8(b) . They 
all pass through the point (1, 0) . Each graph is the reflection in the line y = x of the 
corresponding expo nential graph in Figure 3.8(a). 

From the laws of exponents we can derive the following laws of logarithms: 

Laws of logarithms 

If x > 0, y > 0, a > 0, b > 0, a-/= 1, and b-/= 1, then 

(i) log0 1 = 0 (ii) log" (x y ) = log" x + log0 y 

(iii) log" (~) = - loga x (iv) loga ( ~ ) = log" x - loga y 

(vi) 
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EXAMPLE 2 If a > 0, x > 0, and y > 0, verify that loga (xy) = log a x + loga y, 
using laws of exponents. 

Solution Let u = log a x and v = loga y . By the defining property of inverse 
functions, x = a" and y = av. Thus xy = auav = au+v. Inverting again , we get 
loga(xy) = u + v = loga x + log0 y. 

Logarithm law (vi) presented above shows that if you know logarithms to a particular 
base b, you can calculate logarithm s to any other base a. Scientific calculators usually 
have built-in programs for calculating logarithms to base 10 and to base e, a special 
number that we will discover in Section 3.3 . Logarithms to any base can be calculated 
using either of these functions. For example, computer scientists sometimes need to 
use logarithms to base 2. Using a scientific calculator, you can readily calculate 

loglO 13 
log2 13 = --'-'--

log10 2 

1.11394335231 .. . 
-------- == 3.70043971814 ... . 
0.301029995 664 . . . 

The laws of logarithm s can sometimes be used to simplify complicated expressions. 

EXAMPLE 3 Simplify 
(a) log2 10 + log2 12 - log2 15, (b) loga2 a 3, and (c) 3log94_ 

Solution 
10 X 12 

(a) log2 10 + log2 12 - log2 15 = log2 
15 

(Jaws (ii) and (iv)) 

(b) loga2 a3 = 3 loga2 a 

3 2 = 2 Joga2 a 

3 
-
2 

( C) 3log9 4 = 3 (iog3 4)/ (iog3 9) 

= (31og3 4)1/ log3 9 

= log2 8 

= log2 2
3 = 3. (cancellat ion identity) 

(law (v)) 

(law (v) again) 

( cancellation identity) 

(Jaw (vi)) 

= 41; 1og332 = 41/2 = 2. (cancellation identity) 

EXAMPLE 4 Solve the equation 3x- l = 2x. 

Solution We can take logarithms of both sides of the equation to any base a and get 

(x - l) loga 3 = x log a 2 

(loga 3 - loga 2)x = loga 3 

log a 3 x =--....::..:::.. __ 
loga 3 - loga 2 

loga 3 

loga(3/2) · 

The numerical value of x can be found using the "log" function on a scientific calculator. 
(This function is log 10.) The value is x = 2.7095 .... 

Corresponding to the asymptotic behaviour of the exponential functions, the logarith
mic functions also exhibit asymptotic behaviour. Their graphs are all asymptotic to the 
y -axis as x --+ 0 from the right: 
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EXE RC IS ES 3.2 

If a > 1, then lim log a x = - oo and lim log a x = oo. 
X~ 0+ X~(X) 

If O < a < 1, then lim lo ga x = oo and 
x~o+ 

Jim loga x = -oo . 
X~(X) 

Simplify the expressions in Exercises 1-18 . Use the laws of exponents to prove the laws of logarithms in 
Exercises 25-28. 

33 
2. i /231/2 

1. # 35 
25. log a (D = - log a x 

3. (x-3 ) -2 4. or 4x/2 
26. log a ( ~ ) = log a x - log a y 

27. log0 (xY) = y log 0 x 

5. log5 125 6. 

7. log 32x 1/3 8. 

9. 10- log10(1/x) 10. 

11. (l oga b) (l ogb a) 12. 

13. (log4 I 6) (log4 2) 14. 

log4 G) 
21og4 8 

X 1/ (loga x) 

logx (x(log y y 2)) 

log 15 75 + log 15 3 

28. loga x = (log b x) / (logb a) 

1 
29. Solve log4(x + 4) - 2 log4(x + 1) = 2 for x. 

30. Solve 2 log3 x + log9 x = 10 for x. 

Evaluate the limits in Exercises 31-3 4. 

31. Jim logx 2 
X -H XJ 

33. lim logx 2 
x--+ 1+ 

32. lim logx(l / 2) 
x--+ 0+ 

34. Jim logx 2 
x--+ 1-

15. log6 9 + log6 4 16. 2 log3 12 - 4 log3 6 8 35. Suppose that f (x) = ax is differentiable at x = 0 and that 
J' (0) = k, where k =I= 0. Prove that f is differentiable at any 
real number x and that 17. log0 (x4 + 3x 2 + 2) + log0 (x 4 + 5x2 + 6) 

- 4 loga ,J x 2 + 2 

18. log,. (1 - cosx) + log,. (I+ cosx) - 2 log,, sin x J'(x) = kax = k f(x) . 

Use the base 10 exponential and logarithm function s !OX and 
log x ( = log 10 x) on a scientific calculator to evaluate the 
expressions or solve the equations in Exercises 19-24. 8 36. Continuing Exercise 35, prove that 1- 1 (x) = log

0 
x is 

differentiable at any x > 0 and that 
f:li 19. 3J2 ii 20. 

f:li 21. 22x = 5x+ l ii 22. 

f:li 23. log x 3 = 5 ii 24. 

log3 5 

XJ2 = 3 

Jog3 X = 5 

cr') ' (x) = ~ 
kx 

. _ T_h_e _Na_t_ur_a_l L_og_a_ri_th_m_a_n_d_E_xp_on_e_nt_ia_l ________ _ 
In this section we are going to define a function ln x, called the natural lo garithm 

Regard this paragraph as 
describing a game we are going 
to play in this section . The 
result of the game will be that 
we will acquire two new classes 
of functions , logarithms , and 
exponentials , to which the rules 
of calculus will apply. 

of x, in a way that doe s not at first see m to have anything to do with the logarithms 
considered in Section 3 .2. We will show, however , that it ha s the same properties as 

those logarithms , and in the end we will see that 1n x = log e x, the logarithm of x 

to a certain specific base e. We will show that In x is a one-to-o ne function, defined 

for all positive real numbers . It must therefore have an inverse, ex, that we will call 

the exponentia l function. Our final goal is to arrive at a definition of the exponential 
functions ax (for any a > 0) that is valid for any real number x instead of just rational 
numbers, and that is known to be continuous and even differentiable without our having 
to assume those properties as we did in Section 3 .2 . 
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Table 1. Derivative s of integer 
power s 

f(x) f ' (x) 

x4 4x 3 

x3 3x2 

x2 2x 
x i lx 0 = 1 
XO 0 

x- 1 -x -2 

x-2 -2x- 3 

x-3 3 -4 - X 

DEFINITION 

I 

Figure 3.9 

(a) ln x = -area Ax ifO < x < l 

(b) ln x=areaAx if x 2'._l 

THEOREM 

I 

SECTION 3.3: The Natural Logarithm and Exponential 175 

The Natural Logarithm 
Table l lists the derivatives of integer power s of x. Tho se derivatives are multiples of 
integer powers of x, but one integer power , x - 1, is conspicuously absent from the list 
of derivatives ; we do not yet know a function whose derivative is x - 1 = 1/ x. We are 
going to remedy thi s situation by defining a function In x in such a way that it will have 
derivative l / x . 

To get a hint as to how thi s can be done , review Example 1 of Section 2.11. In that 
example we showed that the area under the graph of the velocity of a moving object in a 
time interval is equal to the distance travelled by the object in that time interval . Since 
the derivative of distance is velocity, mea suring the area provided a way of finding 
a function (the distance ) that had a given derivative (the velocity) . This relationship 
between area and derivative s is one of the most important idea s in calculus. It is called 
the Fundamental Theorem of Calculus. We will explore it fully in Chapter 5, but we 
will make use of the idea now to define lnx , which we want to have derivative 1/ x. 

y 

The natural logarithm 

For x > 0, let Ax be the area of the plane region bounded by the curve y = 1 / t, 
the t-axis, and the vertical line s t = 1 and t = x . The function In x is defined by 

lnx = { -1: if X ::': 1, 
if O < x < I, 

as shown in Figure 3.9. 

y 

X X 

(a) (b) 

The definition implie s that ln I = 0, that ln x > 0 if x > l , that ln x < 0 if O < x < I , 
and that In is a one-to-one function. We now show that if y = In x, then y' = 1/ x. The 
proof of this result is sinular to the proof we will give for the Fundamental Theorem 
of Calculus in Section 5.5. 

If x > 0, then 

d l 
- Inx = - . 
dx X 

PROOF For x > 0 and h > 0, ln(x + h) - In x is the area of the plane region bounded 
by y = 1/ t , y = 0, and the vertica l lines t = x and t = x + h; it is the shaded area in 
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y 

l 
y =

t 

X 

Figure 3.1 O 

y 

THEOREM 

I 

Figure 3.11 The graph of In x 

Figure 3.10. Comparing this area with that of two rectangles, we see that 

h h 
- - < shaded area= ln(x + h) - lnx < - . 
x +h X 

Hence , the Newton quotient for In x satisfies 

1 ln(x+h)-ln x 1 
-- < ---- -- < - . 
X +h h X 

Letting h approach O from the right, we obtain (by the Squeeze Theorem applied to 
one-sided limits) 

. ln(x+h)-ln x 1 
hm ------ = -. 

h--+0+ h X 

A similar argument shows that if O < x + h < x , then 

1 ln(x+h)-ln x l 
- < - ----- < --
x h X +h ' 

so that 

ln(x + h) - ln x 
Jim 

h--+0- h X 

Combining these two one-sided limits we get the desired result: 

d . ln(x + h) - In x 1 
- ln x = hm ----- - = -. 
dx h--+0 h X 

The two properties (d / dx) ln x = 1/ x and In I = 0 are sufficient to determine the 
function ln x completely . (This follows from Theorem 13 in Section 2.8.) We can 
deduce from these two properties that In x satisfies the appropriate laws of logarithm s: 

Properties of the natural logarithm 

(i) ln(xy)=lnx+lny 

(iii) ln(~)=lnx-lny 

(ii) 1n(~)=-lnx 

(iv) ln (x') = r ln x 

Because we do not want to assume that exponentials are continuous (as we did in 
Section 3.2), we should regard (iv) for the moment as only valid for exponents r that 
are rational numbers. 

PROOF We will only prove part (i) because the other parts are proved by the same 
method . If y > 0 is a constant , then by the Chain Rule, 

d y I 
-(ln(xy)- ln x) = - - - = 0 for all x > 0. 
dx xy x 

Theorem 13 of Section 2.8 now tells us that ln(xy ) - ln x = C (a constant) for x > 0. 
Putting x = l we get C = ln y and identity (i) follows. 

Part (iv) of Theorem 2 shows that ln(2n) = n ln 2 -+ oo as n -+ oo. Therefore , we 
also have ln(l / 2t = -n ln 2-+ -oo as n -+ oo. Since (d / dx) ln x = 1/x > 0 for 
x > 0, it follows that ln xis increasing , so we must have (see Figure 3.11) 

lim lnx = oo, 
X--+00 

lim lnx = -oo. 
x--+0+ 
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EXAMPLE 1 d 1 / 1 Show that - In !xi = - for any x =fa 0. Hence find - dx. 
b X X 

Solution If x > o, then 

d d 1 
- ln lxl = - ln x = -
dx dx x 

by Theorem 1. If x < 0, then , using the Chain Rule, 

d d 1 1 
- lnlxl = - ln(-x) = - (-1 ) = -. 
dx dx - x x 

d I 
Therefore, - In lxl = -, and on any interval not containjng x = 0, 

dx X 

f ~ dx = ln Ix I + C. 

EXAMPLE 2 Find the derivatives of (a) In I cos xi and (b) In( x + .Jx2+1). 
Simplify your answers as much as possible. 

Solution 
(a) Using the result of Example 1 and the Chain Rule , we have 

d 1 
-lnjcosxl = --(-sinx) = -tanx. 
dx cosx 

(b) .!!._ ln(x + v1x2+J) = 1 (1 + 
2
x ) 

dx X + -Fx2+T 2-v?+l 
1 -h2+T +x 

X + -Fx2+T -Fx2+T 
1 

The Exponential Function 
The function In x is one-to-one on its domain , the interval (0, oo ), so it has an inver e 
there. For the moment, let us call thjs inverse exp x. Thu s, 

y = expx <==> x = ln y (y > 0). 

Since In 1 = 0, we have exp O = 1. The domain of exp is (-oo, oo ), the range of in. 
The range of exp is (O, oo ), the domain of In. We have cancellation identities 

ln(exp x) = x for all real x and exp(lnx) =x forx > 0. 

We can deduce various properties of exp from corresponding properties of In. Not 
surprisingly, they are properties we would expect an exponential function to have . 
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y 

1 e 

Figure 3. 12 The definition of e 

, , , , , , , , 
// y = X 

, , , , 

, 

y 

, , , X 

Figure 3.13 The graphs of ex and In x 

Properties of the exponential function 

(i) 

(iii) 

(expx)' = exp(rx) 
1 

exp(-x) = -
exp(x) 

(ii) exp(x+y) = (expx)(exp y) 

(iv) exp(x - y) = expx 
expy 

For the moment , identity (i) is asserted only for rational numbers r. 

PROOF We prove only identity (i); the rest are done similarly . If u = (expx)', then, 
by Theorem 2(iv), lnu = r ln(expx) = rx. Therefore, u = exp(rx). 

Now we make an important definition! 

Let e = exp(l). 

The number e satisfies ln e = I, so the area bounded by the curve y = l / t, the t-axis, 
and the vertical lines t = 1 and t = e must be equal to 1 square unit. See Figure 3.12. 
The number e is one of the most important numbers in mathematics . Like ;r, it is 
irrational and not a zero of any polynomial with rational coefficients. (Such numbers 
are called transcendental.) Its value is between 2 and 3 and begins 

e = 2.7 1828 1828 45 90 45 . . .. 

Later on we will learn that 

1 1 1 1 
e= l+-+-+-+-+··· 

1 ! 2! 3! 4! ' 

a formula from which the value of e can be calculated to any desired precision. 

Theorem 3(i) shows that exp r = exp(lr) = (exp 1)' = e' holds for any rational 
number r. Now here is a crucial observation. We only know what e' means if r is a 
rational number (if r = m/ n, then e' = :Jein). But expx is defined for all real x, 
rational or not. Since e' = exp r when r is rational , we can use exp x as a definition of 
what ex means for any real number x, and there will be no contradiction if x happens 
to be rational. 

ex = expx for all real x. 

Theorem 3 can now be restated in terms of ex: 

(i) (ex)Y = exy (ii) ex+y = ex eY 

- x l 
X 

(iii) (iv) x- y e 
e = - e =-

ex eY 

The graph of ex is the reflection of the graph of its inverse , In x, in the line y = x. 
Both graphs are shown for comparison in Figure 3.13. Observe that the x-axis is a 
horizontal asymptote of the graph of y = ex as x -+ -oo. We have 

Jim ex = 0, 
x -+-00 

lim ex= oo. 
x~ oo 

Since exp x = ex actually is an exponential function, its inverse must actually be a 
logarithm: 
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The derivative of y = ex is calculated by implicit differentiation: 

X = ln y 

1 dy 
l=--

y dx 
dy X 

- = y =e 
dx 

Thus, the exponential function has the remarkable property that it is its own derivative 
and, therefore, also its own antiderivative: 

EXAMPLE 3 Find the derivative s of 

(a) ex
2

- 3x, (b) .JI+ e2x, and 

Solution 
d 2 3 .2 3 x2 3x (a) - ex - x = eA - x (2x - 3) = (2x - 3)e - . 

dx 
d -- - l e2x 

(b) -JI+ e2x = ------:== (e2x(2)) = -=== 
dx 2.Jl + e2x .JI+ e2x 

ex - e-x 
(c) ex+ e-x. 

(c) 
d ex - e-x (ex + e-x )(e x - (-e -x )) - (ex - e-x )(e x + (- e-x)) 

dx ex + e-x (ex + e-x )2 

EXAMPLE 4 

(ex)2 + 2ex e- x + (e-x )2 - [(ex)2 - 2ex e-x + (e-x )2] 

(ex + e-x )2 

4ex-x 4 

= (ex + e- x)2 = (ex + e-x )2 · 

Letf(t) =e at_ Find (a)j< 11\ t) and (b)f f(t)dt . 

Solution (a) We have J' (t) = a eat 

J" (t) = a 2 eat 

! 111 (t) = a 3 eat 

/n )(t) = a" eat. 

(b) Also, / f (t) dt = f eat dt = ~ eat + C , since !!:_ ~ eat = eat . 
a dt a 

General Exponentials and Logarithms 
We can use the fact that ex is now defined for all real x to define the arbitrary exponential 
ax (where a > 0) for all real x. If r is rational, then ln(ar) = rln a; therefore 
a' = e' In a. However, ex In a is defined for all real x , so we can use it as a definition of 
ax with no possibility of contrad iction arising if x is rational. 
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DEFINITION 

I 

Do not confuse xir, which is a 
power function of x, and 1rx, 

which is an exponential function 
of X . 

The general exponential ax 

ax = ex Ina ' (a > 0, x real). 

EXAMPLE 5 Evaluate 2"', using the natural logarithm (ln) and exponential (exp 
or ex) keys on a scientific calculator, but not using the yx or ~ keys. 

Solution 2"' = e,r ln 2 = 8.824977 8 .... If your calculator has a ~ key, or an xY or 
yx key, the chances are that it is implemented in terms of the exp and ln functions . 

The laws of exponents for ax as presented in Section 3.2 can now be obtained from 
those for ex, as can the derivative : 

.!!:_ ax = .!!:_ ex In a = ex In a 1n a = ax ln a. 
dx dx 

We can also verify the General Power Rule for x 0
, where a is any real number, provided 

X > 0: 

d a d a lnx a lnx a ax a a- l 
-x =- e =e - =--=a x 
dx dx x x 

EXAM p LE 6 Show that the graph of f (x) = x"' - n x has a negative slope at 
X = 71:. 

Solution J'(x) = n x"'- 1 
- 1r x In1r 

J'(n) = n nn - l - 1r"' Inn= n"'(l -lnn). 

Since 1r > 3 > e, we have Inn > ln e = 1, so l - Inn < 0. Since n"' = e"' Inn > 0, 
we have f' (1r) < 0. Thus, the graph y = f (x) has negative slope at x = n. 

EXAM p LE 7 Find the critical point of y = xx. 

Solution We can't differentiate xx by treating it as a power (like x 0
) because the 

exponent varies. We can ' t treat it as an exponential (like ax) because the base varies . We 
can differentiate it if we first write it in term s of the exponential function , xx = ex lnx, 

and then use the Chain Rule and the Product Rule: 

dy = .!!:_ ex lnx = ex lnx (1n x +x (~)) = xx(l + lnx). 
dx dx x 

Now xx is defined only for x > 0, and is itself never 0. (Why?) Therefore, the critical 
point occurs where 1 + ln x = O; that is, In x = -1, or x = 1/ e. 

Finally, observe that (d / dx )a x = ax In a is negative for all x if O < a < 1 and is 
positive for all x if a > I. Thus , ax is one-to-one and has an inverse function, loga x, 
provided a > 0 and a =fa 1. Its properties follow in the same way as in Section 3.2. If 
y = log

0 
x, then x = aY and, differentiating implicitly with respect to x, we get 

dy dy 
1 = aY ln a - = x In a - . 

dx dx 

Thus, the derivative of log0 x is given by 

d 1 
- logax = -- . 
dx x lna 
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Since log0 x can be expressed in terms of logarithms to any other base, say e, 

In x 
log0 x = -, 

Ina 

we normally use only natural logarithms . Exceptions are found in chemistry, acoustics, 
and other sciences where "logarithmic scales" are used to measure quantities for which 
a one-unit increase in the measure correspond s to a tenfold increase in the quantity. 
Logarithms to base 10 are used in defining such scales. In computer science , where 
powers of 2 play a central role, logarithms to base 2 are often encountered. 

Logarithmic Differentiation 
Suppose we want to differentiate a function of the form 

y = (f(x)) g(x) (for f(x) > 0). 

Since the variable appears in both the base and the exponent, neither the general power 
rule, (d / dx )x 0 = axa- I, nor the exponential rule, (d / dx )ax = ax ln a, can be directly 
applied. One method for finding the derivative of such a function is to express it in the 
form 

y = eg(x) ln f(x ) 

and then differentiate , using the Product Rule to handle the exponent. This is the 
method used in Example 7. 

The derivative in Examp le 7 can also be obtained by taking natural logarithms of 
both sides of the equation y = xx and differentiating implicitly : 

In y = x ln x 

I dy X 
- - = ln x + - = I + ln x 
y dx X 

dy 
- = y(l + ln x) = xx(l + ln x). 
dx 

This latter technique is called logarithmic differentiation . 

EXAMPLE 8 Find dy / dt if y = (sin t)
101

, where O < t < n:. 

Solution We have ln y =Int In sin t. Thus , 

I dy I . cost 
-- = - ln smt + lnt--
y dt t sin t 

dy (ln sint ) (lnsint ) dt=y -t- +lntcott =(sint)1n 1 -t-+ lnt cott. 

Logarithmic differentiation is also useful for finding the derivatives of functions ex
pressed as product s and quotient s of many factors. Taking logarithms reduces these 
product s and quotient s to sums and difference s. This usually makes the calculation 
easier than it would be using the Product and Quotient Rules, especially if the derivative 
is to be evaluated at a specific point. 

EXAMPLE 9 Differentiate y = [(x + l)( x +2)( x + 3)] /(x +4). 
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Solution In IYI = In Ix+ 11 + In Ix + 21 + In Ix+ 31 - In Ix+ 41. Thus , 

l I I I 1 1 
-y =--+-- +--- -
y x+ l x+2 x+3 x+4 

y' = (x + l) (x + 2)(x + 3) (-1- + _l_ + _l ___ l_) 
x+4 x+l x+2 x+3 x+4 

(x + 2)(x + 3) (x + l)(x + 3) (x + l)( x + 2) 
= ----- +-----+ -----

x+4 x+4 x+4 
(x + l)(x + 2)( x + 3) 

(x + 4)2 

EXAMPLE 10 Find du I if u = J(x + l)(x 2 + l)(x3 + 1). 
dx x= l 

Solution 

At x = 1 we have u = .Js = 2.../2. Hence, 

du I = ,Ji (~ + 1 + ~) = 3.Ji. 
dx x= l 2 2 

EXERCISES 3.3 
Simplify the expressions given in Exercises 1- 10. 

1. e3//;s 2. ln( e l/2e2/3) 

3. e5 lnx 4. /3 1n9)/2 

5. 
l 6. e2 lncosx + (in esinx) 

2 
In -e3x 

7. 3 ln4 - 4ln3 8. 4 ln ./x + 6 ln(x t/ 3) 

9. 2 In x + 5 ln(x - 2) 10. ln(x2 + 6x + 9) 

Solve the equations in Exercises 11-14 for x. 

11. 2x+I = 3x 12. 3x = 9l -x 

13. ~ = _5_ 14. 2x2_3 = 4x 
2x 8x+3 

Find the domains of the functions in Exercises 15- 16. 

15. ln- x-
2-x 

16. ln(x2 - x - 2) 

Solve the inequalities in Exercises 17- 18. 

17. ln(2x - 5) > ln(7 - 2x) 18. ln(x2 - 2) :S ln x 

In Exercises 19-48 , differentiate the given functions . If possible, 
simplify your answers. 

19. y = e5x 20. y = xex - x 

X 

23. y = ln(3x - 2) 

25. y = ln(l + ex) 

27. 
ex+ e-x 

y= 
2 

29. Y = /e x) 

31. y = ex sinx 

33. y = lnlnx 

35. 
? x2 

y = x- lnx - -
2 

37. Y = 52x+l 

39. g(x) = tx x 1 

41. f(s) = log0 (bs + c) 

43. y = x.fi 

45. y = In I secx + tan xi 

47. y = In( J x2 + a2 - x) 

24. y = In 13x - 21 

26. f (x) = /x 2
) 

28. x = e31 In t 

30. 
ex 

y =l +ex 

32. y = e-x COS X 

34. y = x lnx -x 

36. y = ln ls inxl 

38. Y = 2(x2 -3x+8) 

40. h( t) = tx - x 1 

42. g(x) = logx(2x + 3) 

44. y = (l /x )lnx 

46. y =lnl x+Jx 2 -a 2
1 

48. y = (cosxt -xco sx 

21. Y = e2x 22. y = x2ex/2 
49. Find the nth derivative off (x) = xeax 
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50. Show that the nth derivative of (ax 2 + bx + c)ex is a 
function of the same form but with different constants. 

51. Find the first four derivatives of ex
2

. 

52. Find the nth derivative of ln(2x + 1). 

53. Differenti ate (a) f (x ) = (xxy and (b) g (x) = x <x-'). Which 
function grows more rapid ly as x grows large? 

D 54. Solve the equation x x' · = a, where a > 0. The expone nt 
tower goes on forever. 

Use logarithmic differentiation to find the required derivatives in 
Exercise s 55- 57. 

55. f(x) = (x - l)( x - 2)(x - 3)(x - 4) . Find f ' (x) . 

.JI+'x(l - X)J/3 . I 

56. F(x) = (l + 
5
x) 415 . Fmd F (O). 

(x 2 - l)(x 2 - 2)(x 2 - 3) . , 
57. f (x) = (x 2 + l)(x 2 + 2)(x 2 + 3). Fmd f (2) . Also find 

f ' ( l) . 

58. At what points does the graph y = x 2e- x
2 

have a horizontal 
tangent line? 

59. Let f( x ) = xe-x . Determine where f is increasing and 
where it is decreasing. Sketch the graph off. 

60. Find the equation of a straight line of slope 4 that is tangent 
to the graph of y = ln x. 

61. Find an equation of the straight line tangent to the curve 
y = ex and passing through the origin. 

62. Find an equation of the straig ht line tangent to the curve 
y = In x and passing through the origin. 

63. Find an equat ion of the straight line that is tangent to y = 2x 
and that passes through the point (I , 0) . 

64. For what values of a > 0 does the curve y = ax intersect the 
straight line y = x? 

X 1 
65. Find the slope of the curve exy 1n - = x + - at (e, l / e). 

y y 

66. Find an equation of the straight line tangent to the curve 
xe Y + y - 2x = In 2 at the point (1, In 2). 

67. Find the derivative of f(x) = Ax cos Lnx + Bx sin ln x. Use 
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the result to help you find the indefinite integrals 

J cos ln x dx and J sinln x dx. 

0 68. Let FA,s (x ) = Aex co x + Bex sin x. Show that 
(d / dx )F A,s( x ) = FA+B,8-A (x ). 

D 69. Using the results of Exerci se 68, find 
(a) (d2 / dx 2)FA ,n(x) and (b) (d3 / dx 3)ex cosx. 

0 70. Find .:!__(Aeax cos bx+ Beax sin bx ) and use the answer to 
dx 

help you evaluat e 

(a) J eax cos bx dx and (b) J eax sin bx dx . 

8 71. Prove identity (ii) of Theorem 2 by examini ng the derivative 
of the left side minus the right side as was done in the proof 
of identity (i). 

8 72. Deduce identity (iii) of Theorem 2 from identities (i) and (ii). 

8 73. Prove identity (iv) of Theorem 2 for rational expone nts r by 
the same method used for Exercise 71. 

D 7 4. Let x > 0, and Jet F (x) be the area bounded by the curve 
y = t 2, the t-axi s, and the vertical I ines t = 0 and t = x. 
Using the method of the proof of Theorem 1, show that 
F ' (x) = x 2 . Hence , find an explicit formula for F( x ) . What 
is the area of the region bounded by y = t 2 , y = 0, t = 0, 
and t = 2? 

D 75. Carry out the following step to show that 2 < e < 3. Let 
f(t) = l / t fort > 0. 

(a) Show that the area under y = f (t) , above y = 0, and 
between t = l and r = 2 is less than l square unit. 
Deduce that e > 2. 

(b) Show that all tangent lines to the graph off Lie below 
the graph . Hint : f" (t) = 2/ t 3 > 0. 

(c) Find the lines T2 and T3 that are tangent to y = f (t) at 
t = 2 and t = 3, respectively . 

(d) Find the area A2 under T2, above y = 0, and between 
t = 1 and t = 2. Also find the area A3 under T3, above 
y = 0, and between t = 2 and t = 3. 

(e) Show that A2 + A3 > 1 square unit. Deduce that e < 3. 

• 
Growth and Decay 

-----

Figure 3.14 lnx::: x - l for x > 0 

In this section we will study the use of exponential functions to model the growth 

rates of quantities whose rate of growth is directly related to their size . The growth of 

such quantities is typically governed by differential equations whose sol ution s involve 
expo nential functions. Before delving into this topic, we prepare the way by examining 

the growt h behaviour of exponential and logarithmic functions. 

The Growth of Exponentials and Logarithms 
In Section 3 .3 we showed that both ex and lnx grow large (approach infinity) as x 

grows large . However, ex increases very rapidly as x increases, and In x increases very 

slowly . In fact, ex increases faster than any positive power of x (no matter how large 

the power), while lnx increases more slowly than any positive power of x (no matter 

how sma ll the power) . To verify this behaviour we start with an inequality sa tisfied by 

In x. The straight lin e y = x - l is tangent to the curve y = In x at the point (1, 0). 

The following theorem asserts that the curve li es below that line. (See Figure 3.14 .) 
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THEOREM 

I 

THEOREM 

I 

If x > 0, then In x S x - 1. 

PROOF Let g(x) = ln x - (x - 1) for x > 0. Then g(l) = 0 and 

g' (x) = ! _ ] { > 0 if O < X < ] 
X < 0 if X > 1. 

As observed in Section 2.8, these inequalities imply that g is increasing on (O, 1) and 
decreasing on (1, oo). Thu s, g(x) ::: g(l) = 0 for all x > 0 and ln x S x - 1 for all 
such x . 

The growth proper ties of exp and In 

If a > 0, then 

xa 
(a) Jim - = 0, 

x---Hxi ex 

(c) lim lx la ex = 0, 
x->-oo 

lnx 
(b) Jim - = 0, 

X->00 Xa 

(d) Jim xa lnx = 0. 
x->0+ 

Each of these limits makes a statement about who "wi ns" in a contest between an 
exponential or logarithm and a power . For example, in part (a), the denominator ex 

grows large as x - oo, so it tries to make the fraction xa /ex approach 0. On the 
other hand, if a is a large positive number , the numerator xa also grows large and 
tries to make the fraction approach infinity . The assertion of (a) is that in this contest 
between the exponential and the power , the exponential is stronger and win s; the 
fraction approaches 0. The content of Theorem 5 can be paraphrased as follows: 

In a struggle between a power and an exponential, the exponential wins. 
In a struggle between a power and a logarithm, the power wins. 

PROOF First, we prove part (b). Let x > l , a > 0, and let s 
ln(x s) = s ln x, we have , using Theorem 4, 

0 < s In x = ln(xs) S xs - 1 < x s. 

1 
Thus, 0 < 1n x < - xs and , dividing by xa = x 2s, 

s 

lnx 1 xs l 
0 < - < --=-

xa s x 2s s xs 

a/2. Since 

Now 1/ (s xs) ~ 0 as x ~ oo (since s > O); therefore , by the Squeeze Theorem , 

ln x 
Jim - =0. 

x->oo xa 

Next, we deduce part (d) from part (b) by substituting x = 1/ t. As x ~ 0+ , we have 

t - 00, so 

a ln(l / t) - Int 
Jim x In x = lim --- = Jim -- = -0 = 0. 

x-> 0+ 1->00 t a t ->oo t a 

Now we deduce (a) from (b) . If x = Int , then t - oo as x - oo, so 

Jim - = Jim -- = Jim - = oa = 0. xa (lntt ( Int ) a 
x->oo ex t->oo t t->oo tl f a 

Finally, (c) follows from (a) via the substitution x = -t: 

ta 
lim lxla ex = Jim I - tla e- 1 = lim - = 0. 

x->-00 1->00 1-> 00 e1 
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Figure 3.15 Solutions of the initial-value 

problem dy / dt = ky , y (O) = yo, for 
k > 0, k = 0, and k < 0 
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Exponential Growth and Decay Models 
Many natural processes involve quantities that increase or decrease at a rate proportional 
to their size. For example , the mass of a culture of bacteria growing in a medium 
supplyin g adequat e nourishment will increase at a rate proportional to that mass. The 
value of an investment bearing interest that is continuously compo unding increa ses at a 
rate proportional to that value . The mass of undecayed radioactive material in a sample 
decreases at a rate proportional to that mass . 

All of these phenomena , and others exhibiting similar behaviour, can be modelled 
mathematically in the same way. If y = y (t) denotes the value of a quantity y at time 
t, and if y changes at a rate proportional to its size, then 

dy 
-=ky 
dt ' 

where k is the constant of proportionality. The above equation is called the differential 
equation of exponential growth or decay because, for any value of the constant C, 
the function y = C ek1 satis fies the equation. In fact, if y (t) is any solution of the 
differential equation y' = ky , then 

d ( y(t) ) ek1y ' (t)-kek 1y (t) y' (t)-k y (t) 
- -k- = 2k = k = 0 for all t. 
dt e I e I e 1 

Thus y(t) / ek1 = C, a constant , and y (t) = Cekr. Since y (O) = Ce0 = C, 

The initial-value problem dt = ky has unique solution y = yoekr. ! 
dy 

y( O) = Yo 

If Yo > 0, then y (t) is an increasi ng function oft if k > 0 and a decreasing function 
oft if k < 0. We say that the quantity y exhibits exponential growth if k > 0 and 
exponential decay if k < 0. (See Figure 3.15.) 

EXAM p LE 1 (Growth of a cell culture) A certain cell culture grows at a rate 
proportional to the number of cells present. If the culture contain s 

500 cells initially and 800 after 24 h, how many cells will there be after a further 12 h? 

Solution Let y(t) be the number of cells present t hours after there were 500 cells . 
Thus y( O) = 500 and y(24) = 800. Because dy / dt = ky, we have 

y(t) = y(O)ekt = 500ek1
. 

Therefore , 800 = y(24) = 500e24k, so 24k 
k = (1/ 24) ln( l.6 ) and 

y(t) = 500/t / 24) ln( l.6 ) = 500(1.6)/ / 24. 

I 800 
n soo ln(l.6) . It follows that 

We want to know y when t = 36: y (36) = 500eC36/ 24) ln( l.6) = 500(1.6) 312 :=:::: 1012. 
The cell count grew to about 1,012 in the 12 h after it was 800. 

Exponential growth is characterize d by a fixed doubling time. If T is the time at 
which y has doubled from its size at t = 0, then 2y (O) = y (T) = y (O)ekT. Therefor e, 
ekT = 2. Since y(t) = y (O)ek1

, we have 

y(t + T) = y (O)ek(r+T) = ekT y (O)ekr = 2y (t) ; 

that is, T unit s of time are required for y to double from any value. Similarly, 
exponential decay involves a fixed halving time (usually called the half-life). If 
y(T) = ½y(O), then ekT = ½ and 

y( t + T) = y( O)ek(r+r) = ~y(t). 
2 
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EXAM p LE 2 (Radioactive decay) A radioactive material has a half-life of 1,200 
years . What percentage of the original radioactivity of a sample is 

left after IO years? How many years are required to reduce the radioact ivity by 10%? 

Solution Let p(t) be the percentage of the original radioactivity left after t years. 
Thus p(O) = 100 and p(l ,200) = 50. Since the radioactivity decreases at a rate 
proportional to itself, dp / dt = kp and 

p(t) = lOOekr. 

Now 50 = p(l,200) = lOOe 1,200k, so 

1 50 In 2 
k = -- In-=--- . 

1,200 100 1,200 

The percentage left after 10 years is 

p(lO) = I00e 10k = 100e- JO(Jn2)/ l ,2oo ~ 99.424 . 

If after t years 90% of the radioactivity is left, then 

90 = IOOekr, 

90 
kt= In- , 

100 
l 1,200 

t = k ln(0.9) = -~ ln(0.9) ~ 182.4, 

so it will take a little over 182 years to reduce the radioactivity by 10%. 

Sometimes an exponential growth or decay problem will involve a quantity that changes 
at a rate proportional to the difference between itself and a fixed value: 

dy 
-=k(y-a). 
dt 

In this case, the change of dependent variable u(t) = y (t) -a should be used to convert 
the differential equation to the standard form. Observe that u(t) changes at the same 
rate as y(t) (i.e., du / dt = dy / dt), so it satisfies 

du 
-=ku . 
dt 

EXAM p LE 3 (Newton's law of cooling) A hot object introduced into a cooler 
environment will cool at a rate proportional to the excess of its 

temperature above that of its environment. If a cup of coffee sitting in a room maintained 
at a temperature of 20 °C cools from 80 °C to 50 °C in 5 minutes , how much longer 
will it take to cool to 40 °C? 

Solution Let y(t) be the temperature of the coffee t min after it was 80 °C. Thus , 
y (O) = 80 and y(5) = 50. Newton 's law says that dy / dt = k(y - 20) in this case, so 
let u(t) = y(t) - 20. Thus, u(O) = 60 and u(5) = 30. We have 

du dy 
- = - = k( y - 20) = ku . 
dt dt 

Thus, 

u(t) = 60ek1
, 

30 = u(5) = 60e5k, 

5k = In ½ = - In 2. 
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We want to know t such that y(t) = 40, that is, u(t) = 20: 

20 = u(t) = 60e-(t /5)ln 2 

t 20 
-- In 2 = In - = - In 3 

5 60 ' 
In 3 

t=S- ~ 7.92 . 
In 2 

The coffee will take about 7.92 - 5 = 2.92 min to cool from 50 °C to 40 °C. 

Interest on Investments 
Suppose that $10,000 is invested at an annual rate of interest of 8%. Thus, the value of 
the investment at the end of 1 year will be $10,000(1.08) = $10,800. If this amount 
remains invested for a second year at the same rate, it will grow to $10,000(1.08)2 = 
$11,664; in general, n years after the original investment was made, it will be worth 
$10,000(1 .08t. 

Now suppose that the 8% rate is compounded semiannually so that the interest is 
actually paid at a rate of 4% per 6-month period. After 1 year (2 interest periods) the 
$10,000 will grow to $10,000(1.04) 2 = $10,816. This is $16 more than was obtained 
when the 8% was compounded only once per year. The extra $16 is the interest paid 
in the second 6-month period on the $400 interest earned in the first 6-month period. 
Continuing in this way, if the 8% interest is compounded monthly (12 periods per year 
and ~ % paid per period) or daily (365 periods per year and 3: 5 % paid per period), 

then the original $10,000 would grow in l year to $10,000(1 + 1J00)1
2 

= $10,830 

( 
8 ) 365 . or $10,000 1 + 36,500 = $10,832.78, respectively. 

For any given nominal interest rate , the investment grows more if the compounding 
period is shorter. In general, an original investment of $A invested at ro/o per annum 
compounded n times per year grows in one year to 

$Al+-( 
T )II 

lOOn 

It is natural to ask how well we can do with our investment if we let the number of 
periods in a year approach infinity, that is, we compound the interest continuously. The 
answer is that in l year the $A will grow to 

$A lim I+ -- = $Aer/ lOO_ ( 
T )II 

,,_, oo IOOn 

For example, at 8% per annum compounded continuously, our $10,000 will grow in 
one year to $10,000e 0·08 ~ $10,832.87. (Note that this is just a few cents more than 
we get compounding daily.) To j ustify this result we need the following theorem. 

For every real number x, 

ex = Iim (1 + ::.)
11 

n->oo n 

PROOF If x = 0, there is nothing to prove; both sides of the identity are 1. If x -j. 0, 
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Table 2. 

n 

1 
10 

100 
1,000 

10,000 
100,000 

2 
2.593 74 · · · 
2.704 81 · · · 
2.71692 · · · 
2 .71815· · · 
2.718 27 · · · 

let h = x / n. As n tend s to infinity , h approaches 0. Thu s, 

lim In (1 + ::".)
11 

= Jim n In (1 + ::".) 
11-+oo n 11-+oo n 

ln (I+::°.) 
= lim x n 

X 11~00 

n 
. ln(l+h) 

= x hm --- (where h = x / n) 
h-+0 h 

. ln(l+h)-lnl 
= x hm ------ (since In 1 = 0) 

h-+0 h 

= x (!!:_ ln t) I (by the definition of derivative) 
dt ' t=l 

= X ~1 =X 
t t=l 

Since In is differentiable, it is continuous . Hence, by Theorem 7 of Section 1.4, 

In ( Jim (1 + ::".)
11

) = lim In (1 + ::".)" = x. 
n-+oo n 11-+oo n 

Taking exponentials of both sides gives the required formula . 

In the case x = I the formula given in Theorem 6 takes the following form: 

e = lim (1 + .!.)
11 

n~oo n 

We can use this formul a to compute approximations to e, as shown in Table 2. In a 
sense we have cheated in obtaining the numbers in this table; they were produced using 
the yx function on a scientific calculator. However, this function is actuaJly computed 
as ex In Y . In any event , the formula in this table is not a very efficient way to calculate 
e to any great accuracy. Only 4 decimal places are correct for n = 100,000. A much 
better way is to use the series 

1 1 1 1 1 1 1 
e =l+-+-+-+- +· · · = l+l+- +- + - + ··· 

1 ! 2! 3 ! 4! 2 6 24 ' 

which we will establish in Section 4.8 . 

A final word about interest rates. Financial institutions sometimes quote effective 

rates of interest rather than nominal rates . The effective rate tells you what the actual 
effect of the interest rate will be after one year. Thus , $10 ,000 invested at an effective 
rate of 8% will grow to $ 10,800.00 in one year regardles s of the compounding period . 
A nominal rate of 8% per annum compounded daily is equivalent to an effective rate 
of about 8.3278 %. 

Logistic Growth 
Few quantities in nature can sustain exponential growth over extended periods of time; 
the growth is usually limited by external constraints. For example, suppose a small 
number of rabbits (of both sexes) is introduced to a small island where there were 
no rabbits previously , and where there are no predators who eat rabbits . By virtue of 
natural fertility , the number of rabbit s might be expected to grow exponentially , but this 
growth will eventually be limited by the food supply available to the rabbits. Suppose 
the island can grow enou gh food to supply a population of L rabbits indefinitely. If 
there are y(t) rabbits in the population at time t , we would expect y (t) to grow at a 
rate proportional to y(t) provided y (t) is quite small (much less than L). But as the 
numbers increase, it will be harder for the rabbits to find enough food, and we would 
expect the rate of increase to approach O as y (t) gets closer and closer to L. One 
possible model for such behaviour is the differential equation 
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Figure 3. 16 Some logistic curves 

EXERCISES 3.4 
Evaluate the limits in Exercises 1-8. 

1. lim x3 e-x 2. 
X-->00 

3. bm 
2ex - 3 

4. ---
X-->00 eX + 5 

5. lim x lnx 6. 
x-->0+ 
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d y = ky (1 - I) 
dt L ' 

which is called the logistic equation since it model s growth that is limited by the 
supply of necessary resources . Observe that dy / dt > 0 if O < y < L and that this rate 
is small if y is small (there are few rabbits to reproduce) or if y is close to L (there 
are almost as many rabbits as the avai lable resources can feed) . Observe also that 
dy / dt < 0 if y > L ; there being more anima ls than the resources can feed , the rabbits 
die at a greater rate than they are born. Of course, the steady-s tate populations y = 0 
and y = L are solutions of the logi stic eq uation ; for both of these dy / dt = 0. We 
will examine technique s for solving differential equations like the logistic equation in 
Section 7.9. For now, we invite the reader to verify by differentiation that the solution 
satisfying y(O) = YO is 

Lyo 
y-

- Yo + (L - Yo)e-k r . 

Observe that, as expected, if O < yo < L , then 

lim y(t) = L, 
t --HX> 

lim y(t) = 0. 
f ->-00 

The solution given above also holds for YO > L. However, the solution does not 
approach O as t approaches -oo in this case. It has a vertical asymptote at a certain 
negative value oft. (See Exercise 30 below.) The grap hs of solution s of the logi stic 
equation for various positive values of Yo are given in Figure 3.16. 

8. Jim (lnx)3 

lim x - 3 ex 
7. Jim x (ln lx1)

2 

x-->0 X-->00 Jx 
X400 

Jim 
x - 2e-x 

X-->00 X + 3e- X 

Jim 
Lnx 
-

x-->0+ X 

9. (Bacterial growth) Bacteria grow in a certain culture at a 
rate proportional to the amount present. If there are 100 
bacteria present initially and the amount doubles in 1 h, how 
many will there be after a further 1 ½ h? 
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10. (Dissolving sugar) Sugar dissolves in water at a rate 
proportional to the amount still undissolved. If there were 
50 kg of sugar present initially, and at the end of 5 h only 
20 kg are left , how much longer will it take until 90% of the 
sugar is disssolved? 

11. (Radioactive decay) A radioactive substance decays at a 
rate proportional to the amount present. If 30% of such a 
substance decays in 15 years, what is the half-life of the 
substance? 

12. (Half-life of radium) If the half-life of radium is 1,690 
years , what percentage of the amount present now will be 
remaining after (a) 100 years, (b) 1,000 years? 

13. Find the half-life of a radioactive substance if after I year 
99.57% of an initial amount still remains. 

14. (Bacterial growth) In a certain culture where the rate of 
growth of bacteria is proportional to the number present , the 
number triples in 3 days . If at the end of 7 days there are 
10 million bacteria present in the culture, how many were 
present initially ? 

15. (Weight of a newborn) In the first few weeks after birth , 
babies gain weight at a rate proportional to their weight. A 
baby weighing 4 kg at birth weighs 4.4 kg after 2 weeks. 
How much did the baby weigh 5 days after birth? 

16. (Electric current) When a simple electrical circuit 
containing inductance and resistance but no capacitance has 
the electromotive force removed , the rate of decrease of the 
current is proportional to the current. If the current is / (t) 
amperes t s after cutoff , and if / = 40 when t = 0, and 
I = 15 when t = 0.0 I , find a formula for/ (t). 

17. (Continuously compounding interest) How much 
money needs to be invested today at a nominal rate of 4% 
compounded continuously, in order that it should grow to 
$10,000 in 7 years? 

18. (Continuously compounding interest) Money invested 
at compound interest (with instantaneous compounding) 
accumulates at a rate proportional to the amount present. If 
an initial investment of $ 1,000 grows to $1,500 in exactly 
5 years , find (a) the doubling time for the investment and (b) 
the effective annual rate of interest being paid. 

19. (Purchasing power) If the purchasing power of the dollar 
is decreasing at an effective rate of 9% annually , how long 
will it take for the purchasing power to be reduced to 25 
cents? 

D 20. (Effective interest rate) A bank claims to pay interest at 
an effective rate of 9.5% on an investment account. If the 
interest is actually being compounded monthly, what is the 
nominal rate of interest being paid on the account? 

D 21. Suppose that 1,000 rabbits are introduced onto an island 
where they have no natural predator s. During the next five 
years the rabbit population grows exponentially. After the 
first two years the population grew to 3,500 rabbits. After the 
first five years a rabbit virus is sprayed on the island and after 
that the rabbit population decays exponentially. Two years 
after the virus was introduced (so seven years after rabbits 
were introduced to the island) the rabbit population dropped 
to 3,000 rabbits. How many rabbits will there be on the 
island 10 years after they were introduced? 

22. Lab rats are to be used in experiments on an isolated island. 
Initially R rats are brought to the island and released. Having 

a plentiful food supply and no natural predators on the 
island, the rat population grows exponentially and doubles in 
three months. At the end of the fifth month , and at the end of 
every five months thereafter, 1,000 of the rats are captured 
and killed. What is the minimum value of R that ensures that 
the scientists will never run out of rats? 

Differential equations of the form y' = a + by 

E::3 23. Suppose that f (x) satisfies the differential equation 

J'(x) =a+ bf(x) , 

where a and b are constants. 

(a) Solve the differential equation by substituting 
u(x) =a + bf (x) and solving the simpler differential 
equation that results for u(x) . 

(b) Solve the initial-value problem: 

I 
dy 
- =a+by 
dx 

y( O) = Yo 

E::3 24. (Drug concentrations in the blood) A drug is introduced 
into the bloodstream intravenously at a constant rate and 
breaks down and is eliminated from the body at a rate 
proportional to its concentration in the blood. The 
concentration x (t) of the drug in the blood satisfies the 
differential equation 

dx 
- = a-bx dt , 

where a and b are positive constants. 

(a) What is the limiting concentration lim1-, 00 x(t) of the 
drug in the blood? 

(b) Find the concentration of the drug in the blood at time t , 
given that the concentration was zero at t = 0. 

(c) How long after t = 0 will it take for the concentration to 
rise to half its limiting value? 

E::3 25. (Cooling) Use Newton's law of cooling to determine the 
reading on a thermometer 5 min after it is taken from an oven 
at 72 °C to the outdoors where the temperature is 20 °C, if 
the reading dropped to 48 °C after one min. 

E::3 26. (Cooling) An object is placed in a freezer maintained at a 
temperature of - 5 °C. If the object cools from 45 °C to 20 °C 
in 40 min, how many more minutes will it take to cool to 
0 °C? 

E::3 27. (Warming) If an object in a room warms up from 5 °C to 
IO °C in 4 min, and if the room is being maintained at 20 °C, 
how much longer will the object take to warm up to 15 °C? 
Assume the object warms at a rate proportional to the 
difference between its temperature and room temperature . 

The logistic equation 

D 28. Suppose the quantity y (t) exhibits logistic growth . If the 
values of y (t) at times t = 0, t = 1, and t = 2 are YO, YI , and 
Y2, respectively, find an equation satisfied by the limiting 
value L of y(t), and solve it for L. If Yo = 3, YI = 5, and 
Y2 = 6, find L . 

E::3 29. Show that a solution y(t) of the logistic equation having 
0 < y( O) < L is increasing most rapidly when its value is 
L / 2. (Hint: You do not need to use the formula for the 
solution to see this.) 
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D 30. If yo > L, find the interval on which the given solution of the 
logistic equation is valid. What happe ns to the solution as t 
approaches the left endpoint of this interval? 

where t is measured in months from the time the outbreak 
was discovered. At that time there were 200 infected 
persons, and the number grew to 1,000 after I month. 
Eventually, the number levelled out at 10,000. Find the 
values of the parameters L , M , and k of the model. 

D 31. If yo < 0, find the interval on which the given solution of the 
logistic equation is valid. What happen s to the solution as t 
approaches the right endpoint of this interval? 33. Continuing Exercise 32, how many people were infected 

3 months after the outbreak was discovered , and how fast 
was the number growing at that time? 

32. (Modelling an epidemic) The number y of persons 
infected by a highly contagious virus is modelled by a 
logistic curve 

L 
y = 1 +Me-kt' 

• 
The Inverse Trigonometric Functions 

-----
The six trigonometric functions are periodic and, hence, not one-to-one. However , as 
we did with the function x2 in Section 3.1, we can restrict their domains in such a way 

DEFINITION 

I 

Figure 3.17 The graph of Sin x forms part 

of the graph of sin x 

DEFINITION 

I 

that the restricted functions are one-to-one and invertible. 

The Inverse Sine (or Arcsine) Function 
Let us define a function Sinx (note the capital letter) to be sinx, restricted so that its 
domain is the interval - I :S x :S I: 

The restricted function Sin x 

Sinx = sinx 
7C 7C 

if - - < X < -. 2 - - 2 

Since its derivative cos x is positive on the interval ( - I, I), the function Sin x is 
increasing on its domain , so it is a one-to-one function . It has domain [- 1, I] and 
range [-1, l] . (See Figure 3.17.) 

........... 
·····,,, __ _ ,, y=sinx 

' X 

', '• ...... --

Being one-to-one, Sin has an inverse function which is denoted sin- 1 (or, in some 
books and computer programs, by arcsin , Arcsin, or asin) and which is called the 
inverse sine or arcsine function. 

The inverse sine function sin- 1 x or arcsin x 
y = sin- 1 x {==:} x = Sin y 

x = siny and 
7C 7C 

-- < y < -2 - - 2 

The graph of sin- 1 is shown in Figure 3.18; it is the reflection of the graph of Sin in the 
line y = x. The domain of sin- 1 is [ - I , 1] (the range of Sin), and the range of sin- 1 

is [ - I, I] (the domain of Sin) . The cancellation identities for Sin and sin- 1 are 
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y (l , n / 2) 

X 

(- 1, - n / 2) 

Figure 3.18 The arcsine function 

sin- 1(Sinx) = arcsin(Sinx) =x 

Sin(sin - 1 x) = Sin(arcsinx) = x 

7r 7r 
for - - < X < -2 - - 2 

for - 1 :':: X .:':: } 

Since the intervals where they apply are specified, Sin can be replaced by sin in both 
identities above. 

Remark As for the general inverse function 1- 1, be aware that sin- 1 x does not 
represent the reciprocal 1/ sin x . (We already have a perfectly good name for the 
reciprocal of sin x; we call it csc x .) We should think of sin- 1 x as "the angle between 
- 1 and I whose sine is x ." 

EXAMPLE 1 

( ) · - 1 ( l) " (b · ,c 1 d " " ") a sm 2 = 6 ecause sm 6 = 2 an - 2 < 6 < 2 . 

(b) sin- 1 
(- Jz) =-¼(because sin(-¼) = - Jz and-½ < -¼ < I). 

(c) sin- 1(-1) = -½ (because sin(- ½) = -1). 

(d) sin- 1 2 is not defined. (2 is not in the range of sine.) 

EXAMPLE 2 

Solution 

Find (a) sin (sin- 1 0.7) , (b) sin- 1 (sin0.3) , (c) sin- 1 (sin 4;), 

and (d) cos (sin- 1 0.6). 

(a) sin (sin- 1 0.7) = 0.7 (cancellation identity). 

0.6 (b) sin- L (sin0 .3) = 0.3 (cancellation identity). 

0 

0.8 

Figure 3.19 

X 

Figure 3.20 

(c) The number 4
; does not lie in [-½,I ] , so we can't apply the cancellation 

identity directly. However, sin 4; = sin (rr - 3) = sin 3 by the supplementary 

angle identity. Therefore , sin- 1 ( sin 4;) = sin- 1 ( sin 3) = 3 (by cancellation) . 

(d) Let 0 = sin- 1 0.6, as shown in the right triangle in Figure 3.19, which has hy
potenuse 1 and side opposite 0 equal to 0.6. By the Pythagorean Theorem , the 
side adjacent0 is Ji - (0.6)2 = 0.8. Thus , cos (sin- 1 0.6) = cos0 = 0.8. 

EXAMPLE 3 Simplify the expression tan(sin - 1 x). 

Solution We want the tangent of an angle whose sine is x. Suppose first that 
0 .::: x < 1. As in Example 2, we draw a right triangle (Figure 3.20) with one angle 0, 
and label the sides so that 0 = sin- 1 x . The side opposite 0 is x , and the hypotenuse 
is l. The remaining side is .JT°=x2, and we have 

tan(sin - 1 x) = tan0 = ~ -
1 -x 2 

Because both sides of the above equation are odd functions of x , the same result holds 
for-1 < X < 0. 

Now Jet us use implicit differentiation to find the derivative of the inverse sine function. 
If y = sin- 1 x , then x = sin y and - I .::: y .:S I . Differentiating with respect to x , we 
obtain 

dy 
1 = (cosy)-. 

dx 
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Since -f ::: y::: f, we know that cosy 2: 0. Therefore, 

cosy = J l - sin2 y = ~ , 

anddy/dx = 1/ cosy = 1/ ~; 

d d l 
- sin- 1 x = - arcsinx = ~-
dx dx 1 -x2 

Note that the inverse sine function is differentiable only on the open interval 
( -1, 1); the slope of its graph approaches infinity as x ---+ -1 + or as 
x---+ 1-. (SeeFigure3.18.) 

EXAMPLE 4 Find the derivative of sin- 1 (~) and hence evaluate/ dx , 
a .Ja2 _ x2 

where a > 0. 

Solution By the Chain Rule, 

d . - IX 
- Sill -
dx a 

Hence, 

~a 

y~ 

/
-;::=

1
=:;;:dx = sin- 1 ~ + C 

.Ja2-x2 a 
(a > 0) . 

.Ja2-x2 
if a > 0. 

EXAM p LE 5 Find the solution y of the following initial-value problem: 

I / 4 
y = .J2 - x2 

y(l) = 27!. 

(--v12 < X < -v12) 

Solution Using the integral from the previous example, we have 

y= f ~dx=4sin -
1 (~)+c 

for some constant C. Also 27! = y (l) = 4 sin- 1 (l / .J2) + C = 4 (¼) + C = 1C + C. 

Thus, C = 1C and y = 4 sin- 1 (x/ .J2) + 1C. 

EXAMPLE 6 (A sawtooth curve) Let f (x) 
numbers x. 

(a) Calculate and simplify f ' (x ). 

(b) Where is f differentiable? Where is f continuous? 

sin- 1 (sinx) for all real 

(c) Use your results from (a) and (b) to sketch the graph off. 

Solution (a) Using the Chain Rule and the Pythagorean identity we calculate 

/ 1 
f (x) = --;======;:(cosx) 

JI - (sinx) 2 

cosx cosx { 1 
= .J cos2 x = I cos x I = -1 

if cosx > 0 
if COSX < 0. 
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Figure 3.21 A sawtooth graph 

DEFINITION 

I 
DEFINITION 

Figure 3.22 

(a) The graph of Tan x 

(b) The graph of tan- 1 x 

II 

(b) f is differentiable at all point s where cos x i=-0, that is, everywhere except at odd 
multiples oflr / 2, namely, ± ½, ± 3; , ± 5;, .... 

Since sin is continuou s everywhere and has values in [-1, l], and since sin- 1 is 
continuous on [-1 , I] , we have that f is continuous on the whole real line. 

(c) Since f is continuou s, its graph has no breaks. The graph consists of straight line 
segments of slopes alternating between I and -1 on intervals between consecutive 
odd multiples of 1r / 2. Since f ' (x ) = 1 on the interval [ - ½, ½] (where cos x :::: 0) , 
the graph must be as shown in Figure 3.21. 

y 

" 2 y = sin- 1(sinx) 

The Inverse Tangent (or Arctangent) Function 
The inverse tangent function is defined in a manner similar to the inverse sine. We 
begin by restricting the tangent function to an interval where it is one-to-one; in this 
case we use the open interval (- ½, f ). See Figure 3.22(a). 

The restricted function Tan x 

Tanx = tanx 
. 7[ 7[ 

If - - < X < -. 
2 2 

The inverse of the function Tan is called the inverse tangent function and is denoted 
tan- 1 ( or arctan, Arc tan, or atan). The domain of tan- 1 is the whole real line (the range 
of Tan). Its range is the open interval ( -½, ½) . 

The inverse tangent function tan- 1 x or arctanx 

y = tan - 1 x <==> x = Tan y 

<==> x = tan y and 
7[ 7[ 

< y < -
2 2 

The graph of tan- 1 is shown in Figure 3.22(b) ; it is the reflection of the graph of Tan 
in the line y = x. 

, I 
: I 
: I 

: I 
: I 

y 

(a) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I ' 

.......i.... : 
, y = Tanx/ 

" 2 

! y = tan x 

y 

" 2 ----- - ---------

X X 

(b) 
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Figure 3.23 
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The cancellation identitie s for Tan and tan- 1 are 

tan- 1 (Tanx) = arctan (Tanx) = x 

Tan (tan- 1 x) = Tan (arctanx) = x 

7r: 7r: 
for - - < X < -

2 2 
for - 00 < X < 00 

Again, we can replace Tan with tan above since the interval s are specified. 

EXAMPLE 7 Evaluate : (a) tan(tan - 1 3), (b) tan - 1 (tan 
3
;), 

and (c) cos(tan- 1 2). 

Solution 
(a) tan(tan - 1 3) = 3 by cancellation. 

(b) tan - 1 ( tan 3; ) = tan - 1 ( - 1) = - f . 
(c) cos(tan - 1 2) = cos 0 = Js via the triangle in Figure 3.23. Alternatively , we have 

tan(tan - 1 2) = 2, so sec2 (tan- 1 2) = 1 + 22 = 5. Thus cos2(tan- 1 2) = { Since 

cosine is positive on the range of tan- 1, we have cos(tan- 1 2) = Js · 
The derivative of the inverse tangent function is also found by implicit differentiation: 
if y = tan- 1 x, then x = tan y and 

2 dy 2 dy 2 dy 
I= (secy)-= (1 +tan y)- = (1 + x )-. 

dx dx dx 

Thus , 

d - l 1 
-tan x=-- . 
dx 1 +x 2 

EXAMPLE 8 Find ~tan- 1 (~) , and hence evaluate/ 
2 

1 
2 dx. 

dx a x + a 

Solution We have 

d - I (X) ) 1 a 
dx tan ; = ~ -;; = a 2 + x2; 

1+-
a2 

hence , 

I dx 1 _ 1 (x) 
2 2 = - tan - + C. 

a +x a a 

EXAMPLE 9 (

X - 1) 7r: Prove that tan- 1 -- = tan- 1 x - - for x > -1. 
X +) 4 

Solut/On Let f(x) = tan- 1 -- - tan- 1 x. On the interval (-1, oo) we . (X - 1) 
x+ l 
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y 

Figure 3.24 

01 = tan- I (y1/ x 1) 

= atan(y1 / x1) 

= atan2(x1, y 1) 

= arctan(yJ/x 1) (Maple) 

= arctan(y1, x1) (Maple) 

02 = atan2(x2, Y2) 

= arctan(y2, x2) (Maple) 

X 

DEFINITION 

I 

have , by the Chain Rule and the Quotient Rule , 

, (x _ l (x + 1) - (x - 1) 

f ) - (x - I ) 2 (x + 1)2 - 1 + x2 
1+ --

x+l 

1 

(x + 1)2 2 
---

(x2 + 2x + 1) + (x 2 - 2x + I) (x + 1)2 1 +x2 

2 I 
-------0 
2 + 2x 2 1 + x 2 - · 

Hence, f(x) = C (constant) on that interval. We can find C by finding f(O): 

C = f(O) = tan - 1(-1) - tan- 1 0 = -~. 
4 

Hence, the given identity holds on ( -1 , oo). 

Remark Some computer programs , espec ially spreadsheets, implement two versions 
of the arctangent function , usu ally called "atan" and "ata n2." The function atan is just 
the function tan- 1 that we have defined ; atan(y / x) gives the angle in radians, between 
the line from the origin to the point (x , y) and the positive x-axis , provided (x, y) lies 
in quadrants I or IV of the plan e. The function atan2 is a function of two variables: 
atan2(x, y) gives that angle for any point (x , y) not on the y -axis. See Figure 3.24. 
Some program s, for instance MATLAB, reverse the order of the variables x and y in 
their atan2 function . Maple uses arctan ( x) and arc ta n ( y , x) for the one- and 
two-variable vers ions of arctangent. 

Other Inverse Trigonometric Functions 
The function cos x is one-to-one on the interval [O, 7r: ] , so we cou ld define the inverse 
cosine function , cos - 1 x (or arccosx, or Arccosx, or acosx), so that 

y = cos - 1 x {==} x = cos y and O S y S 7r:. 

However , cos y = sin ( ½ - y) (the complementary angle identity), and ½ - y is in the 

interva l [ - ½, ½] when O S y S 7r:. Thus , the definition above would lead to 

It is easier to use this result to define cos - 1 x directly: 

The inverse cosine function cos- 1 x or arccos x 

cos - 1 x = ~ - sin - 1 x for - 1 .'.:: X .'.:: 1. 

The cancellation identities for cos- 1 x are 

cos - 1 ( cos x) = arccos ( cos x) = x 

cos(cos- 1 x) = cos(arccosx) = x 

for O .'.:: X .'.:: 7r: 

for - 1 .'.:: X .'.:: 1 

The derivative of cos- 1 xis the negative of that of sin - 1 x (why?): 

d -1 1 
-COS X = - --- . 
dx ~ 

The graph of cos- 1 is shown in Figure 3.25(a) . 
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Figure 3.25 The graphs of cos- 1 and 
sec- 1 

DEFINITION 

I 

Some authors prefer to define 
sec- 1 as the inverse of the 
restriction of sec x to the 
separated intervals [0, n / 2) and 
[n, 3-n: / 2) because this prevents 
the absolute value from 
appearing in the formula for the 
derivative. However, it is much 
harder to calculate values with 
that definition. Our definition 
makes it easy to obtain a value 
such as sec 1 ( - 3) from a 
calculator. Scientific calculators 
usually have just the inverses of 
sine, cosine , and tangent built in. 
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y 

X 

X 

(a) (b) 

Scientific calculators usually implement only the primary trigonometric functions
sine, cosine, and tangent-and the inverses of these three. The secondary functions
secant, cosecant, and cotangent-are calculated using the reciprocal key; to calculate 
sec x you calculate cos x and take the reciprocal of the answer. The inverses of the 
secondary trigonometric functions are also easily expressed in terms of those of their 
reciprocal functions. For example, we define: 

The inverse secant function sec- 1 x (or arcsecx) 

sec - 1 x = cos- 1 
( ~) for lxl :::: 1. 

The domain of sec- 1 is the union of intervals (-oo , -1] U [l , oo), and its range is 
[O, ½) U (½, n]. The graph of y = sec 1x is shown in Figure 3.25(b). It is the 
reflection in the line y = x of that part of the graph of sec x for x between O and n. 
Observe that 

sec(sec- 1 x) = sec (cos - 1 
(~)) 

1 

sec- 1(secx) = cos- 1 
(-

1
-) 

secx 

= COS - l ( COS X) = X 

1 
=-1-=X for lxl :::: 1, 

X 

• 7C 
for x m (0, n], xi= 2 . 

We calculate the derivative of sec- 1 from that of cos- 1: 

:x se,- ' X = :x eo,-, m = R (-~') 
x2 

1 /x2 1 lxl 1 
= x2 Y ~ = x2 -h2=l = lxl-h2=1. 

Note that we had to use#= Ix I in the last line. There are negative values of x in the 
domain of sec- 1• Observe in Figure 3.25(b) that the slope of y = sec- 1 (x) is always 
positive. 

d -1 1 
-sec x = ----
dx 1x1-h2=1· 
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The co rre spondin g integra tion formula take s different forms on intervals where x ~ 1 
or x.::: -1: 

/ 
1 d { sec- 1 x + C 

X = I x.JxT=I -sec - x + C 
on intervals where x ~ 1 
on intervals where x .::: -1 

Finally, not e that csc - 1 and cot - 1 are defi ned simil ar ly to sec- 1• They are seldom 

enco unter ed. 

DEFINITION The inverse cosecant and inverse cotangent functions 

I csc - 1 x = sin - 1 
(~) , (lxl ~ I); coc 1 x = tan - 1 

(~) , (x -::fa 0) 

EXE RC IS ES 3.5 
In Exercises 1-1 2, evaluate the given express ion. 

1. sin- 1 ./3 2 2. cos- 1 C21) 

3. tan- 1 (- 1) 4. sec- 1 ,,/2 

5. sin(sin- 1 0.7) 6. cos(sin - 1 0.7) 

7. tan- I (tan 2;) 8. sin - I ( cos 40°) 

9. cos- 1 (sin(-0.2)) 10. sin( cos - 1 C31)) 

11. cos (tan - 1 !) 12. tan(tan- 1 200) 

In Exercises 13-18, simplify the given expressio n. 

13. sin(cos - 1 x) 

15. cos(tan - 1 x) 

17. tan(cos - 1 x) 

14. cos(s in- 1 x) 

16. sin(ta n- 1 x) 

18. tan(sec - 1 x) 

In Exercises 19-32 , differentiate the given function and simplify 
the answer whenever possible . 

e x - l) 19. y = sin- 1 -
3
- 20. y = tan- 1 (ax+ b) 

21. c-b) y = cos- 1 -a- 22. f(x) = x sin- 1 x 

23. f(t) = ttan - 1 t 24. u = z2 sec- 1 (1 + z2) 

25. F(x) = (1 + x 2
) tan- 1 x 26. 

a 
y = sin- 1 -

X 

27. 
sin- 1 x 

28. 
sin- 1 t 

G(x) = 
sin- 1 2x 

H(t) = - . -
sm t 

29. f(x) = (sin- I x2) 1;2 30. y = cos - 1 a 

-./a2+x2 

31. y=Ja 2 -x 2 +as in- 1 :: (a > O) 
a 

32. y = acos- 1 (1 - ~)-J2ax -x 2 (a> 0) 

33. Findthe slopeofthecurveta n- 1 (
2
; ) =: ;a t the point 

(1, 2) . 

34. Find equation s of two straight lines tangent to the graph of 
y = sin- 1 x and having slope 2. 

8 35. Show that, on their respect ive domain s, sin- 1 and tan- 1 are 
increasing functions and cos - 1 is a decreas ing function . 

8 36. The derivative of sec- 1 x is positive for every x in the 
doma in of sec- 1. Does this imply that sec- 1 is increasing on 
its domain ? Why? 

37. Sketch the graph of csc - 1 x and find its derivative. 

38. Sketch the graph of cot- 1 x and find its derivative. 

39. Show that tan- 1 x + cot- 1 x = 1 for x > 0. What is the 
sum if x < O? 

40. Find the derivative of g(x) = tan(tan - 1 x) and sketch the 
graph of g . 

In Exercises 41-44 , plot the graphs of the given functions by first 
calculating and simplifyin g the derivative of the function . Where 
is each function continuous ? Where is it differentiable ? 

D 41. cos- 1(cosx) D 42. sin- 1(cosx ) 

D 43. tan- 1 (tan x) D 44. tan- 1 (cotx) 

45. Show that sin- 1 x = tan- 1 ( r:--,,) if lx l < 1. 
v 1 -x 2 

46. Show that sec- 1 x = { tan- I -./x
2

1 
-~ if x c:".. l 

7f - tan- vx 2 - 1 if x::: - 1 

47. Show that tan- 1 x = sin- 1 ( ~) for all x . 
v 1 +x 2 

48. Show that sec- 1 x = 1,;,-' ~ -
1 

7f - sin- 1 --
x 

if X c:'.. [ 

if x::: -I 

8 49. Show that the function f (x) of Exam ple 9 is also constant on 
the interval (-oo, - 1 ) . Find the value of the constant. Hint : 
Find lim x--->-oo f (x). 

8 50. Find the derivative of f(x) = x - tan- 1 (tanx). What does 
your answer imply about f (x)? Calculate f (0) and f (1f ). Is 
there a contradiction here? 

D 51. Find the derivative off (x) = x - sin- 1 (sin x) for 
- 7f :::= x ::: 7f and sketch the graph off on that interval. 
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In Exercises 52-55 , solve the initial-value problems. y -
E:354. - Ji-=-? 

1
1 1 y ----

E:3 55. - .J25 - x 2 I 
I 4 

1
1 J 

E:352. y = 1 +xz 
y(O) = 1 I I 

I 
E:3 53. y = 9 + x 2 

y(3) = 2 

y( l / 2) = I y(O) = 0 

• 
Hyperbolic Functions 

-----
Any function defined on the real line can be expressed (in a unique way) as the sum of 
an even function and an odd function. (See Exercise 35 of Section P.5.) The hyperbolic 

DEFINITION 

I 

functions cosh x and sinh x are, respectively, the even and odd functions whose sum 
is the exponential function ex. 

The hyperbolic cosine and hyperbolic sine functions 

For any real x the hyperbolic cosine, cosh x, and the hyperbolic sine, sinh x, are 
defined by 

ex+ e-x 
coshx = ---

2 

ex - e-x 
sinh x = ---

2 

(The symbol "sinh" is somewhat hard to pronounce as written. Some people say 
"shine," and others say "sinch .") Recall that cosine and sine are called circular 
functions because , for any t , the point (cost , sin t) lies on the circle with equation 
x 2 + y2 = l. Similarly , cosh and sinh are called hyperbo lic functions because the point 
(cosh t, sinh t) lies on the rectangular hyperbola with equation x 2 - y2 = 1, 

cosh2 t - sinh2 t = 1 for any real t. 

To see this, observe that 

( 

I+ -I )2 ( I -I )2 
cosh2 t - sinh2 t = e 

2 
e - e ~ e 

= i (e21 + 2 + e-21 _ (e21 _ 2 + e-21)) 

1 
= -(2 + 2) = 1 4 . 

There is no interpretation of t as an arc length or angle as there was in the circular 
case; however, the area of the hyperbolic sector bounded by y = 0, the hyperbola 
x 2 - y 2 = 1, and the ray from the origin to (cosh t, sinh t) is t / 2 square units (see 
Exercise 21 of Section 8.4), just as is the area of the circular sector bounded by y = 0, 
the circle x 2 + y2 = 1, and the ray from the origin to (cost, sin t). (See Figure 3.26.) 

Observe that, similar to the corresponding values of cos x and sin x , we have 

coshO = 1 and sinhO = 0, 

and cosh x, like cos x, is an even function, and sinh x, like sin x, is an odd function: 

cosh(-x) = coshx, sinh(-x) = -sinhx. 

The graphs of cosh and sinh are shown in Figure 3.27. The graph y = cosh xis called 
a catenary . A chain hanging by its ends will assume the shape of a catenary. 
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200 CHAPTER 3 Transcendental Functions 

Figure 3.26 Both shaded areas are t /2 
square units 

Figure 3.27 The graphs of cosh and sinh 
and some exponential graphs to which 
they are asymptotic 

Many other properties of the hyperbolic function s resemble those of the corre
sponding circular functi ons, sometim es with signs changed. 

y y 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

(a) 

EXAMPLE 1 Show that 

d 
- cosh x = sinh x and 
dx 

Solution We have 

d d ex + e-x 
- coshx = - --- -
dx dx 2 
d d ex - e-x 

- sinhx = - ----
dx dx 2 

d 
- sinhx = coshx. 
dx 

ex+ e-x( -1) 
-- --- - = sinh x 

2 
ex - e-x( -1) 
------ = cosh x. 

2 

X 

(b) 

X 

The following addition formulas and double-an gle formulas can be checked alge 
braically by using the definition of cosh and sinh and the laws of exponents : 

cosh(x + y) = coshx cosh y + sinhx sinh y, 

sinh(x + y) = sinh x cosh y + cosh x sinh y, 
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I 

Figure 3.28 The graph of tanh x 
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cosh(2x) = cosh2 x + sinh2 x =I+ 2sinh 2 x = 2cosh 2 x - 1, 

sinh (2x) = 2 sinh x cosh x. 

By analogy with the trigonometric functions, four other hyperbolic functions can 
be defined in terms of cosh and sinh. 

Other hyperbolic functions 

1 2 sinh x ex - e-x 
tanhx = -- = ---- sech x = -- = ----

cosh x ex+ e- x coshx ex+ e-x 
1 2 cosh x ex + e-x 

cothx = - - = ---- csch x = -- = ----
sinh x ex - e-x sinh x ex - e-x 

Multiplying the numerator and denominator of the fraction defining tanh x by e-x and 
ex, respectively, we obtain 

1 - e-2x 
Jim tanh x = lim 2 = 1 and 

X-+00 X-+00 ] + e- X 

e2x - 1 
lim tanhx = lim -

2
-- = -1, 

x-+-oo x-+-oo e x + l 

so that the graph of y = tanh x has two horizontal asymptotes . The graph of tanh x 
(Figure 3.28) resembles those of x / JI + x2 and (2/ n )tan- 1 x in shape , but, of course , 
they are not identical. 

y 

----------- ~-~----- --

X 

- -- -""'-'""-~--=-------- -- -1 

The derivatives of the remaining hyperbolic functions 

!__ tanh x = sech 2 x 
dx 
d 

- cothx = -csch 2x 
dx 

d 
- sechx = -sechx tanhx 
dx 
d 

- csch x = -csch x coth x 
dx 

are easily calculated from those of cosh x and sinh x using the Reciprocal and Quotient 
Rules. For example, 

d d sinh x (coshx)(coshx) - (sinhx)(sinhx) 
- tanh x = - -- = ------'---- -- '-------'-
dx dx cosh x cosh2 x 

1 2 = --- = sech x. 
cosh2 x 

Remark The distinction between trigonometric and hyperbolic functions largely dis
appears if we allow complex number s instead of just real numbers as variables. If i is 
the imaginary unit (so that i2 = -1) , then 

eix = cosx + i sinx and e-ix = cos x - i sinx. 
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(See Appendix I.) Therefore , 

eix + e- ix 
cosh(ix) = 

2 
= cosx, 

eix _ e-ix 
sinh(ix)= 

2 
=isinx, 

cos(ix) = cosh(-x) = coshx, 

1 
sin(ix) =-;- sinh(-x) = i sinhx. 

l 

Inverse Hyperbolic Functions 
The functions sinh and tanh are increasing and therefore one-to-one and invertible on 
the whole real line. Their inverses are denoted sinh- 1 and tanh- 1, respectively: 

y = sinh- 1 x {:::=} x = sinh y, 

y = tanh- 1 x {:::=} x = tanh y. 

Since the hyperbolic functions are defined in terms of exponentials, it is not surprising 
that their inverses can be expressed in terms of logarithm s. 

EXAMPLE 2 Express the functions sinh- 1 x and tanh- 1 x in terms of natural 
logarithm s. 

Solution Let y = sinh- 1 x. Then 

eY - e-Y 
x = sinhy = ---

2 

(eY)2 - 1 
2eY 

(We multiplied the numerator and denominator of the first fraction by eY to get the 
second fraction.) Therefore , 

(eY)2 - 2xe Y - 1 = 0. 

This is a quadratic equation in eY, and it can be solved by the quadratic formula : 

Y 2x ± ,J 4x2 + 4 ~ 
e = ----- - = x ± v' x~ + 1. 

2 

Note that Jx2+l > x. Since eY cannot be negative, we need to use the positive sign: 

eY = x + J x 2 + 1. 

Hence, y = In ( x + Jx2+1), and we have 

sinh- 1 x = In (x +&+I). 

Now let y = tanh- 1 x. Then 

eY - e-Y 
x = tanh y = --

eY + e-Y 

Thus, 

xe 2Y +x = e2Y - I , 

e2y = 1 + X , 

1-x 

e2Y - 1 

e2Y + 1 
(-1 < X < 1), 

1 (1 +x) y = -ln -- . 
2 1-x 

tanh- x = - In -- , I 1 (l+ x ) 
2 1- x 

(-] <x < 1). 
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Since cosh is not one-to-one, its domain must be restricted before an inverse can be 
defined. Let us define the principal value of cosb to be 

Cosh x = cosh x (x 2: 0). 

The inverse , cosh- 1, is then defined by 

y = cosh- 1 x {==} x = Cosh y 

{==} x = cos h y (y 2: 0). 

As we did for sinh - 1, we can obtain the formula 

cosh- 1 x = In (x +~), (x 2: 1). 

As was the case for the inverses of the reciprocal trigonometric functions, the 
inverses of the remaining three hyperbolic functions , coth, sech, and csch, are best 
defined using the inverses of their reciprocals. 

for J~I < l 

= ~In(~) for x > I or x < I 
2 x - I 

sech - Ix= cosh -
1 

(~) = In ( ~ + J x
1
2 - l) 

(1+.JI=x2) = In 
X 

csch -
1 
x = sinh-

1 
(~)=In(~+~) 

_ ,1n(1 +~) 

- ln(1 -~ ) 

for 
1 
-> 
X 

for O < X _'.:: 1 

if X > 0 

if X < 0. 

The derivative s of all six inverse hyperbolic functions are left as exercises for the reader . 
See Exercise 5 and Exercises 8-10 below. 

1. Verify the formulas for the derivative s of sech x, csch x, and 
cothx given in this section. 

terms of exponentials . Find similar formulas for cosh(x - y ) 
and sinh(x - y) . 

2. Verify the addition formulas 

cosh(x + y ) = coshx cosh y + sinh x sinh y, 

sinh(x + y) = sinh x cosh y + coshx sinhy. 

Proceed by expand ing the right-hand side of each identity in 

3. Obtain addition formulas for tanh(x + y ) and tanh(x - y) 
from those for sinh and cosh. 

4. Sketch the graphs of y = coth x, y = sechx , and y = cschx , 
showing any asymptotes. 
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5. Calculate the derivatives of sinh- 1 x , cosh- 1 x , and 
tanh- 1 x . Hence, express each of the indefinite integrals 

10. Find the domain, range, and derivative of csch - I x, and 
sketch the graph of y = csch - I x . 

f ~' f ~, f , ~x 2 
E:311. Show that the functions fA ,a(x) = Aekx + B e- kx and 

gc ,o(x) = C coshkx + D sinh kx are both solutions of the 
differential equation y" - k 2y = 0. (They are both general 
solutions.) Express !A ,B in terms of gc ,D, and express gc ,D 
in terms off A,B · 

in terms of inverse hyperbolic functions. 

6. Calculate the derivatives of the functions sinh- 1 (x / a), 
cosh- 1 (x / a), and tanh- 1 (x /a) (where a > 0), and use your 
answers to provide formulas for certain indefinite integrals. E:312. Show thathL ,M(x) = Lco shk( x - a)+ M sinhk (x -a) is 

also a solution of the differential equation in the previous 
exercise. Express hL ,M in terms of the function f A,B above. 

7. Simplify the following expressions: (a) sinh In x , 

(b) cosh In x, (c) tanhlnx , 
cosh In x + sinh In x 

(d) -----. 
cosh In x - sinh ln x 

8. Find the domain, range, and derivative of coth- 1 x and 
sketch the graph of y = coth- 1 x. 

E:313. Solve the initial-value problem y" - k2 y = 0, y(a) = yo, 
y' (a) = vo. Express the solution in terms of the function 
hL ,M of Exercise 12. 

9. Find the domain, range, and derivative of sech - I x and 
sketch the graph of y = sech _ , x. 

Second-Order Linear DEs with Constant Coefficients 
A differ ential equation of the form 

a y" + by' + cy = 0, 

where a, b, and c are constants and a f. 0, is called a second -order, linear, homoge
neous differential equation with constant coefficients. The second-o rder refer s to the 
highest order derivativ e prese nt; the terms linear and homogeneous refer to the fact that 
if y , (t) and Y2 (t) are two solution s of the equation, then so is y(t) = Ay 1 (t) + By2 (t) 
for any constants A and B: 

If ay;' (t) + by; (t) + cy, (t) = 0 and ayf (t) + by~(t) + cy2(t) = 0, 

and if y( t) = Ay, (t) + By2(t), then ay"(t) + by'(t) + cy(t) = 0. 

(See Section 18.1 for more det ails on this terminology .) Throughout this section we 
will ass ume that the independent variable in our function s is t rather than x, so the 
prime(') refers to the derivativ e d / dt. Thjs is because in mo st applications of such 
equations the independent variable is time . 

Equations of type ( *) arise in many applications of mathematics . In particular , 
they can model mech anjcal vibrations such as the motion of a mass suspended from an 
elastic spr ing or the current in certa in electr ical circuits . In most such applications the 
three constants a, b, and care positive, although sometim es we may have b = 0. 

Recipe for Solving ay" + by'+ cy = 0 
In Section 3.4 we observed that the first-order, constant-coefficient equation y' = ky 
has solution y = C ek 1

• Let us try to find a solution of equation (*) having the form 
y = er1

. Substituting trus expressio n into equation ( * ), we obtain 

Since er1 is never zero, y = en will be a solution of the differential equation ( *) if and 
only if r satisfies the quadrati c auxiliary equation 

ar 2 + br + c = 0, 
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which has roots given by the quadratic formula : 

-b ± ,Jb 2 - 4ac b ,JY5 
r= ------ =--±--

2a 2a 2a' 

where D = b2 - 4ac is called the discriminant of the auxiliary equat ion (**). 

There are three cases to consider, depending on whether the discriminant D is 
positive, zero , or negative. 

CASE I Suppose D = b2 - 4ac > 0. Then the auxiliary equation has two different 
real roots, r1 and r2, given by 

-b - ,JY5 
r1 = ----

2a 

-b + ,JY5 
2a 

(Sometimes these roots can be found easily by factoring the left side of the auxiliary 
equation .) In this case bothy = YI (t) = e' 11 and y = y2(t) = e'2 1 are solutions of 
the differential equation (*),and neither is a multiple of the other. As noted above, the 
function 

is also a solution for any choice of the constants A and B. Since the differential equation 
is of second order and this solution involves two arbitrary constants, we suspect it is the 
general solution , that is, that every solution of the differential equation can be written 
in this form. Exercise 18 at the end of this section outlines a way to prove this. 

CASE II Suppose D = b2 - 4ac = 0. Then the auxiliary equation has two equal 
roots, r 1 = r2 = -b / (2a) = r , say. Certainly , y = e' 1 is a solution of(*) . We can 
find the general solution by letting y = e' 1 u(t) and calculating: 

y' = en (u ' (t) + ru(t)) , 

y" = e' 1 (u " (t) + 2ru ' (t) + r2u(t)) . 

Substituting these expressions into ( * ) , we obtain 

e' 1 (au"(t) + (2ar +b)u ' (t) + (ar 2 +br +c)u(t)) = 0. 

Since e' 1 'I 0, 2ar + b = 0 and r satisfies(**), this equation reduces to u"(t) = 0, 
which has general solution u(t) = A+ Bt for arbitrary constants A and B. Thus, the 
general solution of ( *) in this case is 

y = A e' 1 + Bt e' 1
• 

CASE III Suppose D = b2 - 4ac < 0. Then the auxiliary equation (**) has 
complex conjugate roots given by 

-b ± Jb 2 -4ac 
r = ------ =k±iw 

2a ' 

where k = -b / (2a) , w = J4ac - b2 / (2a) , and i is the imaginary unit (i 2 = -1 ; see 
Appendix I). As in Case I, the functions yf (t) = e(k+iw) t and y2(t) = e<k-i w)r are two 
independent solutions of( *), but they are not real-valued . However, since 

ei x = cosx + i sinx and e - ix = cosx - i sinx 

(as noted in the previous section and in Appendix II), we can find two real-valued 
functions that are solutions of(*) by suitably combining yf and Yi: 

1 1 
YI (t) = 2y[(t) + 2y2(t) = i 1 cos(wt) , 

1 * 1 * kt Y2(t) = 
2

i Yi (t) -
2

i y2 (t) = e sin(wt). 
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Therefore, the general solution of ( *) in this case is 

y = A ekt cos(cot) +Bi' sin(cot) . 

The following examples illustra te the recipe for solving ( *) in each of the three cases. 

EXAMPLE 1 Find the general solution of 
y" + y' - 2y = 0. 

Solution The auxiliary equation is r 2 + r - 2 = 0, or (r + 2)(r - 1) = 0. The 
auxiliary roots are r1 = -2 and r2 = 1, which are real and unequal. According to 
Case I, the general solution of the differential equation is 

EXAM p LE 2 Find the general solution of y" + 6y' + 9y = O. 

Solution The auxiliary equation is r 2 + 6r + 9 = 0, or (r + 3)2 = 0, which has equal 
roots r = -3. According to Case II, the general solution of the differential equation is 

y = Ae - 31 + Bt e- 31. 

EXAM p LE 3 Find the general solution of y" + 4y' + 13y = O. 

Solution The auxiliary equation is r 2 + 4r + 13 = 0, which has solutions 

-4± ~16-52 -4± .J=36 
r = ------ = ----- = -2 ± 3i. 

2 2 

Thu s, k = -2 and co = 3. According to Case III , the general solution of the given 
differential equation is 

y = A e- 21 cos(3t) + B e- 21 sin(3t). 

Initial-value problems fora y " +by'+ cy = 0 specify values for y and y' at an initial 
point. These values can be used to determine the values of the constants A and B in 
the general solution, so the initial -value problem has a unique solution. 

EXAM p LE 4 Solve the initial-value probl em 

! 
y" + 2y' + 2y = 0 

y(O) = 2 

y'( O) = -3. 

Solution The auxiliary equation is r 2 + 2r + 2 = 0, which has roots 

-2±~ 
r = ----- = -1 ± i. 

2 

Thus Case III applies, k = - I and co = I . Thu s, the differenti al equation has the 
general solution 

y = A e- 1 cost+ B e- 1 sint. 
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Also , 

y' = e - l ( - A cos t - B sin t - A sin t + B cos t) 
= (B -A)e - 1 cost - (A+ B)e - 1 sint . 

Applying the initial conctitions y(O) = 2 and y' (0) = -3, we obtain A = 2 and 
B - A = -3 . Hence, B = -1 and the injtial-value problem has the solution 

y = 2 e - r cos t - e - r sin t. 

Simple Harmonic Motion 
Many natural phenomena exhibit perioctic behaviour. The swinging of a clock pen
dulum, the vibrating of a guitar string or drum membrane , the altitude of a rider on 
a rotating ferris wheel, the motion of an object floating in wavy seas, and the voltage 
produced by an alternating current generator are but a few examples where quantities 
depend on time in a periodic way. Being periodic, the circular functions sine and cosine 
provide a useful model for such behaviour. 

It often happens that a quantity displaced from an equilibrium value experiences 
a restoring force that tends to move it back in the direction of its equilibrium. Besides 
the obvious examples of elastic motions in physics , one can imagine such a model 
applying , say, to a biological population in equilibrium with its food supply or the 
price of a commodity in an elastic economy where increasing price causes decreasing 
demand and hence decreasing price. In the simplest models, the restoring force is 
proportional to the amount of displacement from equilibrium. Such a force causes the 
quantity to oscillate sinusoidally; we say that it executes simple harmonic motion. 

As a specific example , suppose a mass m is suspended by an elastic spring so that 
it hangs unmoving in its equilibrium position with the upward spring tension force 
balancing the downward gravitational force on the mass. If the mass is displaced 
vertically by an amount y from this position, the spring tension changes; the extra force 
exerted by the spring is directed to restore the mass to its equilibrium position. (See 
Figure 3.29.) This extra force is proportional to the displacement (Hooke's Law); its 
magnitude is -ky, where k is a positive constant called the spring constant. Assuming 
the spring is weightless, this force imparts to the mass m an acceleration d2 y / d t 2 that 
satisfies , by Newton's Second Law, m(d 2y / dt 2) = -k y (mass x acceleration= force) . 
Dividing this equation by m , we obtain the equation 

d2y k 
- 2 + w2y = 0, where w2 = -
dt m 

The second-order differential equation 

d2y 
-2 +w2y = 0 
dt 

is called the equation of simple harmonic motion. Its auxiliary equation, 
r2 + w2 = 0, has complex roots r = ±iw , so it has general solution 

y = A cos wt + B sin wt , 

where A and B are arbitrary constants. 

For any values of the constants R and to, the function 

y = Rcos(w(t - to)) 

is also a general solution of the differential equation of simple harmonic motion. If we 
expand this formula using the addition formula for cosine, we get 

y = R cos wto cos wt + R sin wto sin wt 

= A cos wt + B sin wt, 

where 
A = R cos(wto), 

R2=A2+B2, 

B = R sin(wto), 

tan(wto) = B/ A. 
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Figure 3.30 Simple harmonic motion 

y 

R 

y = R cos( w(t - to)) 

The constants A and B are related to the position yo and the velocity vo of the mass m 

at time t = 0: 

Yo = y (0) = A cos O + B sin O = A , 

vo = y'(O) = -AwsinO+ BwcosO = Bev. 

The constant R = J A 2 + B2 is called the amplitude of the motion. Because cos x 
oscillates between -1 and 1, the displacement y varies between - R and R. Note 
in Figure 3.30 that the graph of the displacement as a function of time is the curve 
y = R cos wt shifted to units to the right. The number to is called the time-shift. (The 
related quantity wto is called a phase-shift.) The period of this curve is T = 2n / w; it 
is the time interval between consecutive instants when the mass is at the same height 
moving in the same direction. The reciprocal l / T of the period is called the frequency 
of the motion. It is usually measured in Hertz (Hz), that is, cycles per second . The 
quantity w = 2n / T is called the circular frequency. It is measured in radians per 
second since 1 cycle= l revolution = 2n radians. 

EXAM p LE 5 Solve the initial-value problem 

! y" + l6y = 0 
y(O) = -6 
y'(O) = 32. 

Find the amplitude, frequency, and period of the solution. 

Solution Here , w2 = 16 sow = 4. The solution is of the form 

y = A cos(4t) + B sin(4t) . 

Since y(O) = -6, we have A = - 6. Also, y ' (t) = -4A sin(4t) + 4B cos(4t) . Since 
y' (O) = 32, we have 4B = 32, or B = 8. Thus, the solution is 

y = - 6 cos(4t) + 8 sin(4t). 

The amplitude is J (-6) 2 + 82 = 10, the frequency is w/ (2n) ~ 0.637 Hz, and the 
period is 2n /w ~ 1.57 s. 

EXAM p LE 6 (Spring-mass problem) Suppose that a 100 g mass is suspended 
from a spring and that a force of 3 x 104 dynes (3 x 104 g-cm/s2) 

is required to produce a displacement from equilibrium of 1/3 cm. At time t = 0 the 
mass is pulled down 2 cm below equilibrium and flicked upward with a velocity of 
60 emfs. Find its subsequent displacement at any time t > 0. Find the frequency, 
period, amplitude, and time-shift of the motion . Express the position of the mass at 
time t in terms of the amplitude and the time-shift. 
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Undamped oscillator (b = 0) 

Damped oscillator (b > 0, b2 < 4ac) 

Critically damped case (b > 0, b2 = 4ac) 

Overdamped case (b > 0, b2 > 4ac) 
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Solution The spring constant k is determined from Hooke 's Law, F = -ky. Here 
F = -3 x 104 g-cm/s2 is the force of the spring on the mass displaced 1/3 cm: 

4 1 
-3 X 10 = --k 

3 ' 

so k = 9 x 104 g/s2 . Hence, the circular frequency is w = ,Jklm = 30 rad/s, the 
frequency is w/ 2n: = 15/ n: ~ 4.77 Hz, and the period is 2n:/ w ~ 0.209 s. 

Since the displacement at time t = 0 is yo = -2 and the velocity at that time 
is vo = 60, the subsequent displacement is y = A cos(30t) + B sin(30t) , where 
A = yo = -2 and B = vo/ w = 60/ 30 = 2. Thus, 

y = -2cos(30t) +2sin(30t) , (y in cm, t in seconds). 

The amplitude of the motion is R = J (-2) 2 + 22 = 2-v'2 ~ 2.83 cm. The time-shift 
to must satisfy 

- 2 = A = R cos(wto) = 2.J2cos(30to) , 

2 = B = R sin(wto) = 2../2 sin(30to), 

so sin(30to) = 1/ -v'2 = - cos(30to) . Hence the phase-shift is 30to = 3n: / 4 radians, 
and the time-shift is to = n: / 40 ~ 0.0785 s. The position of the mass at time t > 0 is 
also given by 

y = 2-hcos [3o (r - ;
0

) J. 
y 

undamped 
y 

damped oscillator 

y 
critically damped overdamped 

www.konkur.in



210 CHAPTER 3 Transcendental Functions 

Damped Harmonic Motion 
If a and c are positive and b = 0, then equation 

ay" + by' + cy = 0 

is the differential equation of simple harmonic motion and has oscillatory solutions 
of fixed amplitude as shown above. If a > 0, b > 0, and c > 0, then the roots 
of the auxiliary equation are either negative real numbers or, if b2 < 4ac, complex 
numbers k ± iw with negative real parts k = -b / (2a) (Case III). In this latter case the 
solutions still oscillate, but the amplitude diminishes exponentially as t -+ oo because 
of the factor / 1 = e- (b/Za)r. (See Exercise 17 below.) A system whose behaviour 

is modelled by such an equation is said to exhibit damped harmonic motion. If 
b2 = 4ac (Case II) , the system is said to be critically damped, and if b2 > 4ac 
(Case I), it is overdamped. In these cases the behaviour is no longer oscillatory. (See 
Figure 3.31. Imagine a mass suspended by a spring in a jar of oil.) 

EX E R C I S ES 3.7 
In Exercises 1-12, find the general solutions for the given 
equations. Since this entire section is concerned with differential 

equations no special symbols E:3 need be used here. 

1. y" + 7y' + lOy = 0 2. y" - 2y' - 3y = 0 

3. y" + 2y' = 0 4. 4 y" - 4 y' - 3 y = 0 

5. y" + 8y' + l6 y = 0 6. y" - 2y' + y = 0 

7. y" - 6y' + !Oy = 0 8. 9y" + 6y' + y = 0 

9. y" + 2 y' + 5 y = 0 10. y" - 4 y' + 5 y = 0 

11. y" + 2y' + 3y = 0 12. y" + y' + y = 0 

In Exercises 13-15, solve the given initial-value problems. 

I 
2y" + Sy' - 3y = 0 

13. y(O) = 1 

y'(O) = 0. I 
y" + lOy' + 25y = 0 

14. y( l) = 0 

y'(l) =2 . 

I 
y" + 4y' +Sy= 0 

15. y(O) = 2 

y'(0)=2. 

8 16. 

D 17. 

D 1s. 

e(i+f)t _ et 
Show that if€ =fa 0, the function yf(t) = ----

€ 
satisfies the equation y" - (2 + €)y' + (1 + «')y = 0. 
Caclulate y(t) = limf-+0 yf (t) and verify that, as expected , it 
is a solution of y" - 2y' + y = 0. 

If a > 0, b > 0, and c > 0, prove that all solutions of the 
differential equation ay" + by' + cy = 0 satisfy 
limHoo y(t) = 0. 

Prove that the solution given in the discussion of Case I, 
namely, y = A e' 11 + B er21

, is the general solution for that 
case as follows: First, let y = er11 u and show that u satisfies 
the equation 

u" - (r2 - r1)u1 = 0. 

Then let v = u', so that v must satisfy v' = (r2 - r1 )v. The 
general solution of this equation is v = C eCri-r,)t, as shown 
in the discussion of the equation y' = ky in Section 3.4. 
Hence find u and y. 

Simple harmonic motion 

Exercises 19-22 all refer to the differential equation of simple 
harmonic motion: 

d2y 2 
- 2 +w y=O, 
dt 

(w cf-0). Ct) 

Together they show that y = A cos wt + B sin wt is a general 
solut ion of this equation , that is, every solution is of this form for 
some choice of the constants A and B . 

19. Show that y = A cos wt + B sin wt is a solution of (t). 

8 20. If f(t) is any solution of Ct), show that w2 (f(t)) 2 + (f'(t))2 
is constant. 

8 21. If g(t) is a solution of (t) satisfying g(O) = g' (0) = 0, show 
that g(t) = 0 for all t . 

8 22. Suppose that f (t) is any solution of the differential equation 
(t). Show that f(t) = A cos wt+ B sin wt, where A= f(O) 
and Bw = J'(O). 
(Hint: Let g(t) = f (t) - A cos wt - B sin wt.) 

D 23. If b2 - 4ac < 0, show that the substitution y = ek1 u(t), 
where k = -b / (2a), transforms ay" +by'+ cy = 0 into the 
equation u" + w2u = 0, where w2 = (4ac - b2)/( 4a 2). 

Together with the result of Exercise 22, this confirms the 
recipe for Case ill , in case you didn ' t feel comfortable with 
the complex number argument given in the text. 

In Exercises 24-25 , solve the given initial-value problems. For 
each problem dete1mine the circular frequency, the frequency, the 
period, and the amplitude of the solution. 

I y" + 4 y = 0 I y" + lOOy = 0 
24. y(O) = 2 25. y(O) = 0 

y'(O) = -5. y'( O) = 3. 

D 26. Show that y = o. cos(w(t - c)) + /3 sin(w(t - c)) is a 
solution of the differential equation y'' + w2y = 0, and that it 
satisfies y(c) = o. and y'(c) = /Jw. Express the solution in 
the form y = A cos (wt) + B sin (wt) for certain values of the 
constants A and B depending on o., /3, c, and w. 

www.konkur.in



I y" + y = o I y" + oi y = o 
27. Solve y(2) = 3 28. Solve y(a) = A 

y'(2) = -4. y'(a) = B. 

29. What mass should be suspended from the spring in 
Examp le 6 to provide a system whose natural frequency of 
osci llation is 10 Hz? Find the displacement of such a mass 
from its equilibrium position t s after it is pulled down l cm 
from equ ilibrium and flicked upward with a speed of 2 emfs. 
What is the amplitud e of this motion ? 

30. A mass of 400 g suspended from a certain elastic spring will 
oscillate with a frequency of 24 Hz. What would be the 
frequency if the 400 g mass were replaced with a 900 g 
mass? a 100 g mass? 

8 31. Show that if to, A, and B are constant s and k = -b / (2a) and 
w = v'4ac - b2/ (2a) , then 

y = ekt [ A cos (w(t - to))+ B sin (w(t - to))] 

is an alternative to the general solution of the equation 
ay" + by' + cy = O for Case ill (b2 - 4ac < 0). This form 
of the general solution is useful for solving initial-value 
problems where y( to) and y' (to) are specified. 

8 32. Show that if to, A, and Bare constants and k = -b / (2a) and 
w = v'b 2 - 4ac / (2a), then 

y = it [ A cosh (w(t - to))+ B sinh (w(t - to))] 

is an alternat ive to the general solution of the equation 
ay " +by'+ cy = 0 for Case I (b2 - 4ac > 0). This for m of 
the general solution is useful for solving initial-v alue 
problems where y(to) and y' (to) are spec ified. 

Use the forms of solution provided by the previous two exercises 
to solve the initial-value problems in Exercises 33-3 4. 

I y" + 2 y' + 5 y = 0 
33. y( 3) = 2 

y'( 3) = 0. I y
11 + 4y' + 3y = 0 

34. y(3) = 1 
y' (3) = 0. 

CHAPTER REVIEW 
Key Ideas 
• State the laws of exponents. 
• State the laws of logarithms. 
• What is the significance of the number e? 
• What do the following statements and phrases mean? 

o l is one-to-o ne. o l is invertible . 

o Function 1- 1 is the inverse of function l. 
o ab = c o loga b = c 

o the natural logarithm of x 

o logari thmic differentiation 

o the half-life of a varying quantity 

o The quantit y y exhibits exponential growth. 

o The quantity y exhibits logistic growth . 

CHAPTER REVIEW 211 

35. By using the change of dependent variable 
u(x) = c - k2y (x) , solve the initia l-value problem 

1 

y" (x ) = c - k2y (x) 

y(O) = a 

y ' (O) = b. 

D 36. A mass is attached to a spring mounted horizontally so the 
mass can slide along the top of a table . With a suitable 
choice of unit s, the position x(t) of the mass at time tis 
governed by the differenti al equation 

x" = - x + F, 

where the - x term is due to the elasticity of the spring, and 
the F is due to the friction of the mass with the table. The 
frictional force should be constant in magnitude and directed 
opposite to the velocity of the mass when the mass is 
moving. When the mass is stopped, the frictio n should be 
constant and oppo sed to the spring force unless the spring 
force has the smaller magnitude , in which case the frictio n 
force shouJd ju st cancel the spring force and the mass should 
remain at rest thereafter. For this problem , let the magnitude 
of the friction force be 1/5. Accordi ngly, 

F= 

5 
I 

5 

1 
if x' > 0 or if x' = 0 and x < - 5 

1 
if x' < 0 or if x ' = 0 and x > 5 

l 
x if x ' = 0 and Ix I .'.S 5. 

Find the position x(t) of the mass at all times t > 0 if 
x( O) = 1 and x'( O) = 0. 

o y =sin - 1x oy =tan - 1x 

o The quantity y exh ibits simple harmo nic motion. 

o The quantity y exhibits damp ed harmonic motion. 

• Define the functions sinh x, cosh x, and tanh x. 

• What kinds of functions satisfy second-order differen
tial equations with constant coefficients? 

Review Exercises 
1. lf l (x) = 3x + x 3, show that l has an inverse and find the 

slope of y = 1- 1 (x) at x = 0. 

2. Let l (x) = sec2 x tan x . Show that l is increasing on the 
interval (-11: / 2, 11: / 2) and , hence, one-to-one and invertible 
there. What is the domain of 1- 17 Find (f- 1) ' (2). Hint : 
1(11:/ 4) = 2. 
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Exercises 3-5 refer to the function f (x) = x e-x
2

• 

3. Find limx---+oo f (x) and lim x ---+-oo f (x). 

4. On what intervals is f increasing? decreasing? 

5. What are the maximum and minimum values off (x)? 

6. Find the points on the graph of y = e-x sin x, (0 ~ x ~ 2ir ) , 
where the graph has a horizontal tangent line. 

7. Suppose that a function f(x) satisfies J ' (x) = x f(x) for all 

real x, and f(2) = 3. Calculate the derivative of f(x) / ex
2

/ 2, 

and use the result to help you find f (x) exp licitly. 

8. A lump of modelling clay is being rolled out so that it main
tains the shape of a circular cy Linder. If the length is increasing 
at a rate proportional to itself, show that the radius is decreas
ing at a rate proportional to itself. 

9. (a) What nominal intere st rate, compounded continuously , 
will cause an investment to double in 5 years? 

(b) By about how many days will the doubling time in part 
(a) increase if the nominal interest rate drops by 0.5%? 

gi 10. (A poor man's natural logarithm) 

(a) Show that if a > 0, then 

a" - 1 
lim --- = Ina. 
h--->0 h 

Hence, show that 

lim n(a 1111 
- 1) = Ina . 

n--->OO 

(b) Most calculators , even nonscientific ones , have a square 
root key. If n is a power of 2, say n = 2k, then a 1 / " can 
be calc ulated by entering a and hitting the square root key 
k times: 

(k square roots). 

Then you can subtract 1 and multiply by n to get an 
approximation for Ina. Use n = 210 = 1024 and 
n = 2 11 = 2048 to find approximations for In 2. Based on 
the agreement of these two approximations, quote a value 
of In 2 to as many decimal places as you feel justified. 

11. A nonconstant function f satisfies 

for all x. If f(O) = 1, find f(x). 

12. If f(x) = (lnx) / x , show that J ' (x) > 0 for O < x < e and 
f'(x) < 0 for x > e, so that f(x) has a maximum value at 
x = e. Use this to show that e1t > ir e . 

13. Find an equat ion of a straight line that passes through the 
origin and is tangent to the curve y = xx . 

ln x ln2 
14. (a) Find x -I= 2 such that - = - . 

X 2 
(b) Find b > l such that there is no x -I= b with 

lnx lnb 

X b 

gi 15. Investment account A bears simple interest at a certain rate. 
Investment account B bears interest at the same nominal rate 
but compounded instantaneously. If $1,000 is invested in each 
account, B produces $10 more in interest after one year than 
does A. Find the nominal rate both accounts use. 

16. Express each of the function s cos - 1 x , cot - 1 x, and csc - 1 x 
in terms of tan - 1. 

17. Express each of the functions cos- 1 x , coC 1 x , and csc - 1 x 
in terms of sin - 1• 

E:3 18. (A warming problem) A bottle of milk at 5 °C is removed 
from a refrigerator into a room maintained at 20 °C. After 12 
min the temperature of the milk is 12 °C. How much longer 
will it take for the milk to warm up to 18 °C? 

E:319. (A cooling problem) A kettle of hot water at 96 °C is al
lowed to sit in an air-conditioned room. The water cools to 
60 °C in IO min and then to 40 °C in another 10 min. What is 
the temperature of the room ? 

8 20. Show that ex > 1 + x if x -/= 0. 

8 21. Use mathematical induction to show that 

x 2 x 11 

ex> l+x + - + · · ·+-
2! n! 

if x > 0 and n is any positive integer. 

Challenging Problems 
D 1. (a) Show that the function f (x) = xx is strictly increasing 

on [e- 1, oo) . 

(b) If g is the inverse function to f of part (a), show that 

. g (y ) ln(In y) 
lim -- - -=] 

y---+oo In y 

Hint: Start with the equati on y = xx and take the ln of 
both sides twice. 

Two models for incorporating air resistance into the 
analysis of the motion of a falling body 

E:3 2. (Air resistance proportional to speed) An object falls 
under gravity near the surface of the earth, and its motion 
is impeded by air resistance proportional to its speed. Its 
velocity v therefore satisfies the equation 

dv - = -g-kv , 
dt 

(*) 

where k is a positive constant depending on such factors as 
the shape and density of the object and the density of the air. 

(a) Find the velocity of the object as a function of time t , 
given that it was vo at t = 0. 

(b) Find the limiting velocity limHoo v (t). Observe that this 
can be done either directly from(*) or from the solution 
found in (a). 

(c) If the object was at height YO at time t = 0, find its height 
y (t) at any time during its fall. 

D 3. (Air resistance proportional to the square of speed) 
Under certain conditions a better model for the effect of air 
resistance on a moving object is one where the resistance is 
proportional to the square of the speed. For an object falling 
under constant gravitat ional acceleration g, the equation of 
motion is 

dv 
- = -g - kvlv l, 
dt 
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where k > 0. Note that v Iv I is used instead of v2 to ensure 
that the resistance is always in the opposite direction to the 
velocity. For an object falling from rest at time t = 0, we have 
v(O) = 0 and v (t) < 0 fort > 0, so the equation of motion 
become s 

dv 2 - = -g+ kv 
dt 

We are not (yet) in a position to solve this equation. However , 
we can verify its solution. 

(a) Verify that the velocity is given fort 2:: 0 by 

If 1-e 21# 
v(t)= ---. 

1 + e21# 

(b) What is the limiting velocity limHoo v(t)? 

( c) Also verify that if the falling object was at height Yo at 
time t = 0, then its height at subsequent times during its 
fall is given by 

{i l ( 1 + e
2'#) y (t) = Yo+ V 7/ - k In 2 . 

CHAPTER REVIEW 213 

E] 4. (A model for the spread of a new technology) When a 
new and superior technology is introduced, the percentage p 
of potential clients that adopt it might be expected to increase 
logistically with time. However , even newer technologies are 
continual ly being introduced , so adoption of a particular one 
wiJI fall off exponentially over time. The following model 
exhibits this behaviour: 

dp - k (1 - _P_) 
dt - p e-b 1 M . 

This DE suggests that the growth in p is logistic but that the 
asymptotic limit is not a constant but rather e-br M, which 
decreases exponentially with time. 

(a) Show thatthe change of variable p = e-br y(t) transforms 
the equation above into a standard logistic equation, and 
hence find an explicit formula for p(t) given that p(O) = 
PO· It will be necessary to assume that M < lOOk/ (b+k) 
to ensure that p(t) < 100. 

(b) If k = 10, b = I , M = 90, and po = 1, how large will 
p(t) become before it starts to decrease? 
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More Applications 
of Differentiation 

'' In the fall of 1972 President Nixon announced that the rate of increase 
of inflat ion was decreasing. This was the first time a sitting president 
used the third derivative to advance his case for reelection. 

'' Hugo Rossi 
Mathematics Is an Edifice, Not a Toolbox, Notices of the AMS, v. 43, Oct. 1996 

I n trod U Ct '10 n Differential calculus can be used to analyze many kinds of 
problems and situations that arise in applied disciplines . 

Calculus has made and will continue to make signjficant contributions to every field 
of human endeavour that uses quantitative measurement to further its aims . From 
economics to physics and from biology to sociology, problem s can be found whose 
solutions can be aided by the use of some calculus . 

In trus chapter we will examine several kinds of problems to which the techniques 
we have already learned can be applied. These problems arise both outside and within 
mathematics . We will deal with the following kinds of problems: 

1. Related rates problems , where the rates of change of related quantities are analyzed . 

2. Root finding methods, where we try to find numerical solutions of equations. 

3. Evaluation of limits. 

4. Optimization problems , where a quantity is to be maximized or minimized. 

5. Graphing problems, where derivatives are used to illuminate the behaviour of 
functions . 

6. Approximation problems, where complicated functions are approximated by poly-
nomials. 

Do not assume that most of the problems we present here are "real-world" problems . 
Such problems are usually too complex to be treated in a general calculus course. 
However, the problems we consider , while sometimes artificial , do show how calculus 
can be applied in concrete situations . 

• _ R_e_la_te_d_R_a_te_s ________________ _ 
When two or more quantities that change with time are linked by an equation, that 
equation can be differentiated with respect to time to produce an equation linking the 
rates of change of the quantities. Any one of these rates may then be determined when 
the others, and the values of the quantities themselves , are known. We will consider 
a couple of examples before formulating a list of procedures for dealing with such 
problems. 
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EXAM p LE 1 An aircraft is flying horizontally at a speed of 600 km/h. How fast 
is the distance between the aircraft and a radio beacon increasing 

I min after the aircraft passes 5 km directly above the beacon? 

Solution A diagram is useful here; see Figure 4.1. Let C be the point on the 
aircraft 's path directly above the beacon B. Let A be the position of the aircraft 
t min after it is at C, and let x and s be the distance s CA and BA , respective ly. Fro m 
the right triangle BC A we have 

s2 = x2 + 52_ 

We differentiate this equa tion implicitly with respect tot to obtain 

ds dx 
2s- =2x-. 

dt dt 

We are given that dx / dt = 600 km/h = 10 km/min . Therefore , x = 10 km at time t = I 
min. At that times= .Jl0 2 + 52 = 5.Js km and is increasing at the rate 

ds x dx 10 1, 200 
- = - - = -(600) = -- ~ 536 .7 km/h . 
dt s dt 5.Js .Js 

One minute after the aircraft passes over the beacon , its distance from the beacon is 
increasing at about 537 km/h. 

EXAM p L E 2 How fast is the area of a rectangle changing if one side is IO cm 
long and is increasing at a rate of 2 emfs and the other side is 8 cm 

long and is decreasing at a rate of 3 emfs? 

Solution Let the lengths of the sides of the rectangle at time t be x cm and y cm, 
respectively. Thus the area at time ti s A = xy cm2 . (See Figure 4.2.) We want to know 
the value of dA / dt when x = 10 and y = 8, given that dx / dt = 2 and dy / dt = -3. 
(Note the negative sign to indicate that y is decreasing .) Since all the quantities in the 
equation A = xy are functions of time , we can differentiate that equation implicitly 
with respect to time and obtain 

dA I (d x dy ) I - = - y + x - =2(8)+10(-3)=-14 . 
dt x = IO dt dt x= IO ,~ ,~ 

Figure 4.2 Rectangle with sides changing At the time in question , the area of the rectangle is decreasing at a rate of 14 cm2/s. 

Procedures for Related-Rates Problems 
In view of these examples we can formulate a few general procedures for dealing with 
related-rates problems. 
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How to solve related-rates problems 

1. Read the problem very carefully. Try to understand the relationships 
between the variable quantities. What is given? What is to be found? 

2. Make a sketch if appropriate . 

3. Define any symbols you want to use that are not defined in the statement 
of the problem. Express given and required quantities and rates in terms 
of these symbols. 

4. From a careful reading of the problem or consideration of the sketch, 
identify one or more equations linking the variable quantities. (You will 
need as many equations as quantities or rates to be found in the problem.) 

5. Differentiate the equation(s) implicitly with respect to time, regarding all 
variable quantities as functions of time. You can manipulate the equa
tion(s) algebraically before the differentiation is performed (for instance, 
you could solve for the quantities whose rates are to be found), but it is 
usually easier to differentiate the equations as they are originally obtained 
and solve for the desired items later. 

6. Substitute any given values for the quantities and their rates, then solve 
the resulting equation(s) for the unknown quantities and rates. 

7. Make a concluding statement answering the question asked. Is your 
answer reasonable? If not, check back through your solution to see what 
went wrong. 

EXAM p LE 3 A lighthouse L is located on a small island 2 km from the nearest 
point A on a long, straight shoreline . If the lighthouse lamp rotates 

at 3 revolutions per minute , how fast is the illuminated spot P on the shoreline moving 
along the shoreline when it is 4 km from A? 

Solution Referring to Figure 4.3, Jet x be the distance AP , and let 0 be the angle 
PLA. Thenx = 2tan0 and 

Now 

dx 2 d0 - = 2 sec 0-. 
dt dt 

dO = (3 rev/min)(21r radians/rev) = fa radians/min . 
dt 

When x = 4, we have tan 0 = 2 and sec2 0 = I + tan2 0 = 5. Thus, 

dx - = (2)(5)(67r) = 607r ~ 188.5. 
dt 

The spot of light is moving along the shoreline at a rate of about 189 km/min when it 
is 4 km from A. 

(Note that it was essential to convert the rate of change of 0 from revolutions per 
minute to radians per minute. If 0 were not measured in radians we could not assert 
that (d / d0)tan0 = sec2 0.) 

EXAM p LE 4 A leaky water tank is in the shape of an inverted right circular cone 
with depth 5 m and top radius 2 m. When the water in the tank is 

4 m deep, it is leaking out at a rate of 1 / 12 m3 /min. How fast is the water level in the 
tank dropping at that time? 
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Solution Let rand h denote the surface radius and depth of water in the tank at time 
t (both measured in metres). Thus, the volume V (in cubic metres) of water in the tank 
at time t is 

l 2 
V = 3 ir r h. 

Using similar triangles (see Figure 4.4) , we can find a relationship between rand h: 

r 

h 

2 

s· 
2h 

so r = - and 
5 

Differentiating this equation with respect to t we obtain 

dV 4ir 2 dh 
-=-h -
dt 25 dt 

Since dV / dt = -1 / 12 when h = 4, we have 

-1 4ir 2 dh 
12 = 25(4 )dt , so 

dh 

dt 

25 

7681r 

When the water in the tank is 4 m deep , its level is dropping at a rate of 
25/ (768ir) rn/min, or about 1.036 cm/min . 

5 

j 

A 
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' 
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Figure 4.4 The conical tank of Example 4 Figure 4.5 Aircraft and car paths in Example 5 

EXAM p LE 5 At a certain instant an aircraft flying due east at 400 km/h passes 
directly over a car travelling due southeast at 100 km/h on a straight , 

level road. If the aircraft is flying at an altitude of 1 km, how fast is the distance between 
the aircraft and the car increasing 36 s after the aircraft passes directly over the car? 

Solution A good diagram is essential here. See Figure 4.5. Let time t be measured in 
hours from the time the aircraft was at position A directly above the car at position C . 
Let X and Y be the positions of the aircraft and the car, respectively , at time t. Let x be 
the distance AX , y the distance CY , and s the distance X Y, all measured in kilometre s. 
Let Z be the point 1 km above Y. Since angle X AZ = 45°, the Pythagorean Theorem 
and Cosine Law yield 

s2 = 1 + (ZX) 2 = 1 +x 2 + y2-2xycos45 ° 

=l+x 2 +y2-hxy. 
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Thus, 

ds dx dy ~ dx ~ dy 
2s - = 2x - + 2y - - v 2 - y - v 2 x -

dt dt dt dt dt 

= 400(2x - -Ji y ) + 100(2 y - h x ), 

since dx / dt = 400 and dy / dt = 100. When t = 1/ 100 (i.e. , 36 s after t = 0) , we 
have x = 4 and y = 1. Hence, 

s 2 = 1 + 16 + 1 - 4v'2 = 18 - 4v'2 

s ~ 3.5133. 

ds = ~ (400(8 - v'2) + 100(2 - 4v'2)) ~ 322.86. 
dt 2s 

The aircraft and the car are separating at a rate of about 323 km/h after 36 s. (Note that 
it was necessary to convert 36 s to hours in the solution. In general, all measurements 
should be in compatible units.) 

EX E R C I S ES 4.1 

1. Find the rate of change of the area of a square whose side is 
8 cm long, if the side length is increasing at 2 cm/min. 

2. The area of a square is decreasing at 2 ft2/s . How fast is the 
side length changing when it is 8 ft? 

3. A pebble dropped into a pond causes a circular ripple to 
expand outward from the point of impact. How fast is the 
area enclosed by the ripple increasing when the radius is 
20 cm and is increasing at a rate of 4 emfs? 

4. The area of a circle is decreasing at a rate of 2 cm2/min. 
How fast is the radius of the circle changing when the area is 
100 cm2 ? 

5. The area of a circle is increasing at 1/ 3 km2/h . Express the 
rate of change of the radius of the circle as a function of 
(a) the radius r and (b) the area A of the circle . 

6. At a certain instant the length of a rectangle is 16 m and the 
width is 12 m. The width is increasing at 3 mis. How fast is 
the length changing if the area of the rectangle is not 
changing? 

7. Air is being pumped into a spherical balloon. The volume of 
the balloon is increasing at a rate of 20 cm3 /s when the 
radius is 30 cm. How fast is the radius increasing at that 
time? (The volume of a ball of radius r units is V = 11r r3 

cubic units.) 

8. When the diameter of a ball of ice is 6 cm, it is decreasing at 
a rate of 0.5 cm/h due to melting of the ice. How fast is the 
volume of the ice ball decreasing at that time? 

9. How fast is the surface area of a cube changing when the 
volume of the cube is 64 cm3 and is increasing at 2 cm3 /s? 

10. The volume of a right circular cylinder is 60 cm3 and is 
increasing at 2 cm3/min at a time when the radius is 5 cm 
and is increasing at 1 cm/min. How fast is the height of the 
cylinder changing at that time? 

11. How fast is the volume of a rectangular box changing when 
the length is 6 cm, the width is 5 cm, and the depth is 4 cm, if 

the length and depth are both increasing at a rate of 1 emfs 
and the width is decreasing at a rate of 2 emfs? 

12. The area of a rectangle is increasing at a rate of 5 m2/s while 
the length is increasing at a rate of 10 mis. If the length is 
20 m and the width is 16 m, how fast is the width changin g? 

13. A point moves on the curve y = x 2 . How fast is y changing 
when x = - 2 and x is decreasing at a rate of 3? 

14. A point is moving to the right along the first-quadrant portion 
of the curve x 2 y3 = 72. When the point has coordinates 

15. 

16. 

17. 

(3, 2) , its horizontal velocity is 2 units/s. What is its vertical 
velocity ? 

The point P moves so that at time t it is at the intersection of 
the curves xy = t and y = tx 2 . How fast is the distance of P 

from the origin changing at time t = 2? 

(Radar guns) A police officer is standing near a highway 
using a radar gun to catch speeders . (See Figure 4.6 .) He 
aims the gun at a car that has just passed his position and, 
when the gun is pointing at an angle of 45° to the direction of 
the highway, notes that the distance between the car and the 
gun is increasing at a rate of LOO km/h . How fast is the car 
travelling? 

A 

,' , .. 
,., .... " 

:' k _,'s 

l ----' 
p 

Figure 4.6 

If the radar gun of Exercise 16 is aimed at a car travelling at 
90 km/h along a straight road, what will its reading be when 
it is aimed making an angle of 30° with the road? 
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18. The top of a ladder 5 m long rests against a vertical wall. If 
the base of the ladder is being pulled away from the base of 
the wall at a rate of 1/3 mis, how fast is the top of the ladder 
slipping down the wall when it is 3 m above the base of the 
wall? 

19. A man 2 m tall walks toward a lamppost on level ground at a 
rate of 0.5 mis. If the lamp is 5 m high on the post, how fast 
is the length of the man 's shadow decreasing when he is 3 m 
from the post? How fast is the shadow of his head moving at 
that time? 

20. A woman 6 ft tall is walking at 2 ft/s along a straight path on 
level ground. There is a lamppost 5 ft to the side of the path. 
A light 15 ft high on the lamppost casts the woman's shadow 
on the ground. How fast is the length of her shadow 
changing when the woman is 12 feet from the point on the 
path closest to the lamppost? 

21. (Cost of production) It costs a coal mine owner $C each 
day to maintain a production of x tons of coal, where 
C = I 0,000 + 3x + x 2 / 8,000. At what rate is the 
production increasing when it is 12,000 tons and the daily 
cost is increasing at $600 per day? 

22. (Distance between ships) At 1:00 p.m. ship A is 25 km 
due north of ship B. If ship A is sailing west at a rate of 
16 km/h and ship Bis sailing south at 20 km/h, at what rate 
is the distance between the two ships changing at 1 :30 p.m? 

23. What is the first time after 3:00 p.m. that the hands of a clock 
are together? 

24. (Tracking a balloon) A balloon released at point A rises 
vertically with a constant speed of 5 mis. Point B is level 
with and 100 m distant from point A . How fast is the angle 
of elevation of the balloon at B changing when the balloon is 
200 m above A? 

25. Sawdust is falling onto a pile at a rate of 1/2 m3 /min. If the 
pile maintains the shape of a right circular cone with height 
equal to half the diameter of its base, how fast is the height of 
the pile increasing when the pile is 3 m high ? 

26. (Conical tank) A water tank is in the shape of an inverted 
right circular cone with top radius 10 m and depth 8 m. Water 
is flowing in at a rate of 1/10 m3/min. How fast is the depth 
of water in the tank increasing when the water is 4 m deep? 

27. (Leaky tank) Repeat Exercise 26 with the added 
assumption that water is leaking out of the bottom of the tank 
at a rate of h 3 / 1,000 m3/min when the depth of water in the 
tank is h m. How full can the tank get in this case? 

28. (Another leaky tank) Water is pouring into a leaky tank at 
a rate of 10 m3/h. The tank is a cone with vertex down, 9 m 
in depth and 6 m in diameter at the top. The su1face of water 
in the tank is rising at a rate of 20 cm/ h when the depth is 
6 m. How fast is the water leaking out at that time? 

29. (Kite flying) How fast must you let out line if the kite you 
are flying is 30 m high , 40 m horizontally away from you, 
and moving horizontally away from you at a rate of 
10 m/min? 

30. (Ferris wheel) You are on a Ferris wheel of diameter 20 m. 
It is rotating at 1 revolution per minute. How fast are you 
rising or falling when you are 6 m horizontally away from 
the vertical line passing through the centre of the wheel? 

31. (Distance between aircraft) An aircraft is 144 km east of 
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an airport and is travelling west at 200 km/h. At the same 
time, a second aircraft at the same altitude is 60 km north of 
the airport and travelling north at 150 km/h . How fast is the 
distance between the two aircraft changing? 

32. (Production rate) If a truck factory employs x workers 
and has daily operating expenses of $y, it can produce 
P = (l / 3)x 0·6y0.4 trucks per year. How fast are the daily 
expenses decreasing when they are $10,000 and the number 
of workers is 40, if the number of workers is increasing at 
I per day and production is remaining constant? 

33. A lamp is located at point (3, 0) in the xy-plane. An ant is 
crawling in the first quadrant of the plane and the lamp casts 
its shadow onto the y-ax is . How fast is the ant's shadow 
moving along the y-axis when the ant is at position (1, 2) 
and moving so that its x-coo rdinate is increasing at rate 
1/3 un.its/s and its y-coo rdinate is decreasing at 1/4 units/s ? 

34. A straight highway and a straight canal intersect at right 
angles, the highway crossing over the canal on a bridge 20 m 
above the water. A boat travelling at 20 km/h passes under 
the bridge just as a car travelling at 80 km/h passes over it. 
How fast are the boat and car separating after one minute? 

35. (Filling a trough) The cross section of a water trough is an 
equilateral triangle with top edge horizontal. If the trough is 
10 m long and 30 cm deep, and if water is flowing in at a rate 
of 1/4 m3/min, how fast is the water level rising when the 
water is 20 cm deep at the deepest? 

36. (Draining a pool) A rectangular swimming pool is 8 m 
wide and 20 m long. (See Figure 4.7.) Its bottom is a sloping 
plane, the depth increasing from l mat the shallow end to 
3 m at the deep end . Water is draining out of the pool at a 
rate of l m3 /min. How fast is the surface of the water falling 
when the depth of water at the deep end is (a) 2.5 m? (b) 1 m? 

~ 3 m lm 

Figure 4.7 

! 

X -
I /5 m/s 

Figure 4.8 

D 37. One end of a 10 m long ladder is on the ground and the 
ladder is supported partway along its length by resting on top 
of a 3 m high fence. (See Figure 4.8.) If the bottom of the 
ladder is 4 m from the base of the fence and is being dragged 
along the ground away from the fence at a rate of 1/5 mis, 
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how fast is the free top end of the ladder moving (a) 
vertically and (b) horizontally? 

stretched tight and pulled over a pulley P that is attached to a 
rafter 4 m above a point Q on the floor directly between the 
two crates. (See Figure 4.9.) If crate A is 3 m from Q and is 
being pulled directly away from Q at a rate of 1/2 m/s, how 
fast is crate B moving toward Q? 

Q ------+ 
1/2 mis 

Figure 4.9 

39. (Tracking a rocket) Shortly after launch, a rocket is 
I 00 km high and 50 km downrange. If it is travelling at 
4 km/s at an angle of 30° above the horizontal, how fast is its 
angle of elevation, as measured at the launch site, changing? 

40. (Shadow of a falling ball) A lamp is 20 m high on a pole. 
At time t = 0 a ball is dropped from a point level with the 
lamp and IO m away from it. The ball falls under gravity 
(acceleration 9.8 m/s2) until it hits the ground. How fast is 
the shadow of the ball moving along the ground (a) l s after 
it is dropped? (b) just as the ball hits the ground? 

D 38. Two crates, A and B, are on the floor of a warehouse. The 
crates are joined by a rope 15 m long, each crate being 
hooked at floor level to an end of the rope. The rope is 

41. (Tracking a rocket) A rocket blasts off at time t = 0 and 
climbs vertically with acceleration 10 m/s2 . The progress of 
the rocket is monitored by a tracking station located 2 km 
horizontally away from the launch pad. How fast is the 
tracking station antenna rotating upward 10 s after launch? 

. _ F_i_nd_i_ng_R_o_o_ts_o_f_E_q_ua_t_io_ns _____________ _ 
Finding solutions (roots) of equations is an important mathematical problem to which 

calculus can make significa nt contributions. There are only a few general classes of 

equations of the form f (x) = 0 that we can solve exactly. These include linear 
equations: 

ax + b = 0, (a I 0) 

and quadratic equations: 

ax 2 + bx + c = 0, (a I 0) 

b 
x=-

a 

-b ± v'b 2 - 4ac 
x =-------

2a 

Cubic and quartic (3rd- and 4th-degree polynomial) equations can also be solved, but 
the formulas are very comp licated. We usuall y solve these and most other equations 
approximately by using num erical methods , often with the aid of a calculator or 
computer. 

In Section 1.4 we discussed the Bisection Method for approximating a root of an 
equation f (x) = 0. That method uses the Intermediate-Value Theorem and depends 
only on the continuity off and our ab ility to find an interval [x1, x2] that must contain 
the root because f(x1) and f(x2) have opposite signs. The method is rat her slow; it 
requires between three and four iterations to gain one significant figure of precision in 
the root being approximated. 

If we know that f is more than just continuous, we can devise better (i.e., faster) 
methods for finding roots of f(x) = 0. We study two such methods in this section: 

(a) Fixed-Point Iteration , which looks for solu tion s of an equation of the form 
x = f (x). Such solutions are called fixed points of the function f. 

(b) Newton's Method , which looks for solutions of the equation f(x) = 0 as fixed 

points of the function g(x) = x - f((x), i.e ., points x such that x = g(x). This 
f' x) 

method is usually very efficient, but it requires that f be differentiable. 
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Table 1. 

n Xn 

0 0.2 
1 0 .196 013 32 
2 0.196 170 16 
3 0.196 164 05 
4 0.196 164 29 
5 0.196 164 28 
6 0.196 164 28 

SECTION 4.2: Finding Roots of Equations 22 1 

Like the Bisection Method , both of these methods require that we have at the outset a 
rough idea of where a root can be found, and they generate sequence s of approximations 
that get closer and closer to the root. 

Discrete Maps and Fixed-Point Iteration 
A discrete map is an equation of the form 

Xn+l = f (x,,) , for n = 0, 1, 2, ... , 

whjch generates a sequence of values x,, x2, x3, ... , from a given starting value xo. In 
certain circumstances trus sequence of number s will converge to a limjt , 
r = limn-+ooXn, in WlliCh case tlliS limit will be a fixed point Off: r = f(r). 
(A thorough discussion of convergence of sequences can be found in Section 9 .1. For 
our purposes here, an intuitive understanding will suffice: lim11-+oo x,, = r if lx11 - r I 
approaches Oas n ~ oo.) 

For certain kjnds of function s f, we can solve the equation f(r) = r by starting 
with an initial guess xo and calculating subsequent values of the discrete map until 
sufficient accuracy is achieved. Thjs is the Method of Fixed-Point Iteration. Let us 
begin by investigating a simple example: 

EXAM p LE 1 Find a root of the equation cos x = Sx. 

Solution This equation is of the form f (x) = x, where f (x) = ½ cos x. Since cos x 

is close to l for x near 0, we see that ½ cos x will be close to ½ when x = { Trus 

suggests that a reasonable first guess at the fixed point is xo = ½ = 0.2. The values of 
subsequent approximations 

1 1 1 x, = 5 cos xo, X2 = S COSX[ , x3 = 5 cosx2, ... 

are presented in Table 1. The root is 0.196 164 28 to 8 decimal places. 

Why did the method used in Example l work? Will it work for any function f? 
In order to answer these questions, examine the polygonal line in Figure 4.10 . Starting 
at xo it goes vertically to the curve y = f (x), the height there being x 1• Then it goes 
horizontally to the line y = x, meeting that line at a point whose x-coor dinate must 
therefore also be x, . Then the process repeats; the line goes vertically to the curve 
y = f (x) and horizontally toy = x, arriving at x = x2. The line continues in this 
way, "spiralling " closer and closer to the intersection of y = J(x) and y = x . Each 
value of x11 is closer to the fixed point r than the previou s value. 

Now consider the function f whose graph appears in Figure 4.11 (a). If we try the 
same method there, starting with xo, the polygonal line spirals outward, away from the 
root, and the resulting values x 11 will not "co nverge" to the root as they did in Example 
I . To see why the method works for the function in Figure 4.10 but not for the function 
in Figure 4. ll(a), observe the slopes of the two graphs y = f (x ), near the fixed point 
r. Both slopes are negative, but in Figure 4.10 the absolute value of the slope is less 
than 1 while the absolute value of the slope of f in Figure 4 .1 l(a) is greater than 1. 
Close consideration of the graphs should convince you that it is this fact that caused 
the points x 11 to get closer to r in Figure 4.10 and farther from r in Figure 4. ll(a) . 
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Figure 4.10 Iterations of Xn+J = J (xn) 

"spiral" toward the fixed point 

Figure 4.11 

(a) A function f for which the iterations 
Xn+I = J(xn) do not converge 

(b) "Staircase" convergence to the fixed 
point 
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A third example , Figure 4.1 l(b), shows that the method can be expected to work 
for functions whose graphs have positive slope near the fixed point r, provided that the 
slope is less than 1. In this case the polygonal line forms a "staircase" rather than a 
"spiral," and the successive approximat ions Xn increase toward the root if xo < r and 
decrease toward it if xo > r. 

Remark Note that if If ' (x ) I > 1 near a fixed point r off , you may still be able to 
find that fixed point by applying fixed-point iteration to 1- 1 (x ). Evidently 1- 1 (r) = r 
if and only if r = f(r) . 

The following theorem guarantees that the method of fixed-point iteration will 
work for a particular clas s of functions. 

A fixed-point theorem 

Suppose that f is defined on an interval / = [a , b] and satisfies the following two 
conditions : 

(i) f (x) belongs to I whenever x belongs to / and 

(ii) there exists a constant K with O < K < 1 such that for every u and v in I, 

lf(u) - f(v)I :S Klu - vi. 

Then f has a unique fixed point r in I , that is , f (r) = r , and starting with any number 
xo in I, the iterates 

x, = f(xo) , x2 = f(x1) , 
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converge to r. 

You are invited to prove this theorem by a method outlined in Exerci ses 26 and 27 at 
the end of this section. 

EXAM p L E 2 Show that if O < k < I , then f (x) = k cos x satisfies the con-
ditions of Theorem 1 on the interval / = [0, l]. Observe that if 

k = l / 5, the fixed point is that calculated in Example 1 above. 

Solution Since O < k < l, f maps I into / . If u and v are in / , then the Mean-Value 
Theorem says there exists c between u and v such that 

lf(u) - f(v)I = l(u - v)J'(c)I = klu - vi sine S klu - vi. 

Thus, the conditions of Theorem 1 are satisfied and f has a fixed point r in [O, l] . Of 
course, even if k ::::: 1, f may still have a fixed point in / locatable by iteration, provided 
the slope off near that point is less than 1. 

Newton's Method 
We want to find a root of the equation f (x) = 0, that is, a number r such that f (r) = 0. 
Such a number is also called a zero of the function J. If f is differentiable near the root , 
then tangent lines can be used to produce a sequence of approx imations to the root that 
approaches the root quite quickly. The idea is as follows. (See Figure 4.12.) Make an 
initial guess at the root, say x = xo. Draw the tangent line to y= f (x) at (xo, f(xo)), 

and find x,, the x-intercept of this tangent line. Under certain circumstances x, will 
be closer to the root than xo was. The process can be repeated over and over to get 
numbers x2, x3, . . . , getting closer and closer to the root r. The number Xn+I is the 
x-intercept of the tangent line toy= f(x) at (xn, f(x,,)). 

y 

The tangent line to y = f (x) at x = xo has equation 

y = f(xo) + J'(xo)(x - xo). 

X 

Since the point (x1, 0) lies on this line, we have O = f(xo) + f'(xo)(x1 - xo). Hence, 

f(xo) 
x1 = xo- -- . 

f'(xo) 
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X 

Figure 4.13 The graphs of x 3 and x + l 
meet only once to the right of x = 0, and 
that meeting is between 1 and 2 

Similar formulas produ ce x2 from x 1, then x3 from x2, and so on. The formula 

produ cing Xn+L from Xn is the discrete map Xn+l = g(x 11), where g(x) = x - f((x). 
f' x) 

That is, 

f(xn) 
Xn+l = Xn - f'( x ,z), 

which is known as the Newton's Method formula. If r is a fixed point of g then 
f(r) = 0 and r is a zero off . We usually use a calculator or computer to calculate the 
successive approximations x 1, x2, x3, .. . , and observe whether these numbers appear 
to converge to a limit. Convergence will not occur if the graph of f has a horizontal 
or vertical tangent at any of the number s in the sequence . However , if limn---->oo Xn = r 
exists , and if fl f ' is continuous near r , then r must be a zero of f. This method 
is known as Newton's Method or The Newton-Raphson Method . Since Newton' s 
Method is just a special case of fixed-point iteration applied to the function g(x) defined 
above , the general propertie s of fixed-point iteration apply to Newton 's Method as well. 

EXAMPLE 3 Use Newton 's Method to find the only real root of the equation 
x 3 - x - I = 0 correct to 10 decim al place s. 

Solution We have f (x) = x 3 - x - I and f ' (x) = 3x2 - 1. Since f is continuous 
and since f(l) = - 1 and f(2) = 5, the equati on has a root in the interval [l , 2]. 
Figure 4 .13 shows that the equation has only one root to the right of x = 0. Let us 
make the initial guess xo = 1.5. The Newton 's Method form ula here is 

x,~ -x 11 - 1 
X l -x -n+ - n 3 2 - 1 xn 

2x,~ + 1 

3x,~ - 1' 

so that , for example, the approxima tion x 1 is given by 

2(1 .5) 3 + 1 
Xl = 3(1.5)2 _ l ~ 1.347 826 .... 

The values of x ,, x2, x3, .. . are given in Table 2. 

Table 2. 

n Xn f(xn) 

0 1.5 0.875 000 000 000 · · · 
1 1.347 826 086 96 · · · 0 .100 682 173 091 · · · 
2 1.325 200 398 95 · · · 0.002 058 361 917 · · · 
3 1.324 718 174 00 .. · 0.000 000 924 378 · · · 
4 l.32471795724 , .. 0.000 000 000 000 · · · 
5 1.324 717 957 24 · · · 

The values in Table 2 were obtained with a scientific calculator. Evidently r 
1.324 717 957 2 correctly rounded to 10 decimal places. 

Observe the behaviour of the number s x,,. By the third iteratio n, x3, we have apparently 
achieved a preci sion of 6 decimal place s, and by x4 over 10 decimal places. It is 
characteristic of Newton 's Method that when you begin to get close to the root the 
convergence can be very rapid. Compare these results with those obtained for the same 
equation by the Bisection Metho d in Example 12 of Section 1.4; there we achieved 
only 3 decimal place precision after 11 iterat ions. 

EXAMPLE 4 Solve the equatio n x 3 = cos x to 11 decimal places . 
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Figure 4.14 Solving x 3 = cos x 

y 

X 

Figure 4.15 Here the Newton's Method 
iterations do not converge to the root 
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Solution We are looking for the x-coordinate r of the intersection of the curves 
y = x3 and y = cos x. From Figure 4.14 it appears that the curves intersect slightly 
to the left of x = l. Let us start with the guess xo = 0.8. If f(x) = x3 - cosx, then 
f' (x) = 3x2 + sin x. The Newton's Method formula for this function is 

3 X
11

-COSX 11 

Xn+I = Xn - 2 . 
3x11 + smx 11 

2x~ + x11 sin Xn + cos Xn 

3x,f + sinx 11 

The approximations x1, x2, . .. are given in Table 3: 
Table 3. 

n Xn f(xn) 

0 0.8 -0.184 706 709 347 · · · 
1 0.870 034 801 135 · · · 0.013 782 078 762 · · · 
2 0.865 494 102 425 · · · 0.000 006 038 051 · · · 
3 0.865 474 033 493 · · · 0.000 000 001 176 · · · 
4 0.865 474 033 102 · · · 0.000 000 000 000 · · · 
5 0.865 474 033 102 · · · 

The two curves intersect at x = 0.865 474 033 10, rounded to 11 decimal places. 

Remark Example 4 shows how useful a sketch can be for determining an initial guess 
xo. Even a rough sketch of the graph of y = f(x) can show you how many roots 
the equation f (x) = 0 has and approximately where they are. Usually, the closer the 
initial approximation is to the actual root , the smaller the number of iterations needed 
to achieve the desired precision. Similarly, for an equation of the form g(x) = h(x) , 
making a sketch of the graphs of g and h (on the same set of axes) can suggest starting 
approximations for any intersection points. In either case, you can then apply Newton's 
Method to improve the approximations . 

Remark When using Newton's Method to solve an equation that is of the form 
g(x) = h(x) (such as the one in Example 4), we must rewrite the equation in the form 
f(x) = 0 and apply Newton's Method to f . Usually we just use f(x) = g(x) - h(x) , 
although f (x) = (g (x) / h (x)) - 1 is also a possibility. 

Remark If your calculator is programmable, you should learn how to program the 
Newton's Method formula for a given equation so that generating new iterations requires 
pressing only a few buttons. If your calculator has graphing capabilities, you can use 
them to locate a good initial guess. 

Newton's Method does not always work as well as it does in the preceding exam
ples . If the first derivative f ' is very small near the root, or if the second derivative 
f" is very large near the root, a single iteration of the formula can take us from quite 
close to the root to quite far away. Figure 4.15 illustrates this possibility. (Also see 
Exercises 21 and 22 at the end of this section.) 

Before you try to use Newton's Method to find a real root of a funcion f, you should 
make sure that a real root actually exists. If you use the method starting with a real 
initial guess, but the function has no real root nearby, the successive "approximations" 
can exhibit strange behaviour. The following example illustrates this for a very simple 
function. 

EXAMPLE 5 

formula for f is 

Consider the function f(x) = 1 + x2. Clearly f has no real roots 
though it does have complex roots x = ±i. The Newton's Method 

1 + x 2 x2 - l n n 
Xn+l =Xn - -- = --. 

2x11 2x11 
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Figure 4.16 Plot of 20,000 points (n, x,,) 

for Example 5 

If we start with a real guess xo = 2, iterate this formula 20,000 times, and plot 
the resulting points (n, x 11), we obtain Figure 4.16, which was done using a Maple 
procedure. It is clear from this plot that not only do the iterations not converge (as 
one might otherwise expect), but they do not diverge to oo or -oo, and they are not 
periodic either. This phenomenon is known as chaos . 
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A definitive characteristic of this phenomenon is sensitivity to initial conditions. 
To demonstrate this sensitivity in the case at hand we make a change of variables. Let 

1 
Yn = 1 +xr 

then the Newton 's Method formula for f becomes 

Yn+I = 4y,, (1 - Yn), 

(see Exercise 24), which is a special case of a discrete map called the logistic map. 
It represents one of the best-known and simplest examples of chaos. If , for example, 
y11 = sin2 (u11), for n = 0, I , 2, . . . , then it follows (see Exercise 25 below) that 
Un = 2nuo. Unless uo is a rational multiple of n , it follows that two different choice s 
of uo will lead to differences in the resulting values of Un that grow exponentially with 
n. In Exercise 25 it is shown that this sensitivity is carried through to the first order in 
Xn. 

Remark The above example does not imply that Newton 's Method cannot be used to 
find complex roots; the formula simply cannot escape from the real line if a real initial 
guess is used. To accomodate a complex initial guess, zo = ao + ibo, we can substitute, 

z2 1 
Zn = an + ibn into the complex version of Newton 's Method formula Zn+! = ~ 

2zn 
(see Appendix I for a discussion of complex arithmetic) to get the following coupled 
equations, 

a~ +an(b ;- 1) 
an+I = 2(a;f + b;f) 

b~ +bn(a ~ + 1) 
b +i- -- --- -

11 - 2(a;f + b~) 

With initial guess zo = I+ i the next six members of the sequenc e of complex number s 
(in 14 figure precision) become 

Z I = 0.250 000 000 000 00 + i 0.750 000 000 000 00 

Z2 = -0.075 000 000 000 00 + i 0.975 000 000 000 00 

Z3 = 0.001 715 686 274 51+i0.997303 92156863 

Z4 = -0.000 004 641 846 27 + i 1.000 002 160 490 67 

Z5 = -0 .000 000 000 010 03 + i 0.999 999 999 991 56 

Z6 = 0.000 000 000 000 00 + i 1.000 000 000 000 00 

converging to the root +i . For an initial guess, 1 - i , the resulting sequence converges 
as rapidly to the root -i . Note that for the real initial guess zo = 0 + iO, neither a1 
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nor bi is defined , so the proces s fail s. Thi s corresponds to the fact that 1 + x 2 has a 
horizontal tangent y = I at (O, 1), and this tangent has no finite x -intercept. 

The following theorem gives sufficient condition s for the Newton approximations 
to converge to a root r of the equation f(x) = 0 if the initi al guess xo is sufficientl y 
close to that root. 

Error bounds for Newton's Method 

Suppose that f, f', and f 11 are continuous on an interval/ containi ng Xn, x11+1, and 
a root x = r off (x) = 0. Suppo se also that there exist constants K > 0 and L > 0 
such that for all x in / we have 

(i) lf"(x)I S K and 

(ii) lf ' (x)I 2: L. 

Then 
K 2 

(a) lxn+l - rl S 
2

L lxn+1 - x,, I and 

Conditions (i) and (ii) assert that near r the slope of y = f (x) is not too small in size 
and does not change too rapidly. If K / (2L) < 1, the theorem shows that x11 converges 
quickly to r once n beco mes large enough that jx11 - r I < 1. 

The proof of Theorem 2 depend s on the Mean-Value Theorem. We will not give 
it since the theorem is of little practical use. In practice, we calc ulate successive 
approximations using Newton 's formula and observe whether they seem to converge 
to a lirnit. If they do , and if the values off at these approximations approa ch 0, we 
can be confident that we have located a root. 

"Solve" Routines 
DC! .. 
f:la • Many of the more advanced mod els of scie ntific calculators and most computer-based 

EXERCISES 4.2 

math ematics software have built -in routines for solving genera l equation s num erically 
or, in a few cases , symbolically . These "Solve " routines assume continuity of the left 
and right sides of the given equations and often require the user to specify an interval 
in which to search for the root or an initial guess at the value of the root, or both. 
Typically the calculator or computer software also ha s graphing capabilitie s, and you 
are expected to use them to get an idea of how man y roots the equation has and roughly 
where they are locat ed before invokin g the solving routines. It may also be possible to 
specify a tolerance on the differen ce of the two sides of the equation. For instance, if 
we want a solution to the equation f (x) = 0, it may be more important to us to be sure 
that an approximate solution x satisfies lf(.x)I < 0.0001 than it is to be sure that xis 
within any particular dist ance of the actual root. 

The methods used by the solve routin es vary from one calc ulator or software 
package to another and are frequ ently very sophisticated , making use of num erical 
differentiation and other techniques to find roots very quickly, even when the search 
interval is large . If you have an advanced scientific calculator and/or computer software 
with similar capabilitie s, it is well worth your whil e to read the manuals that descr ibe 
how to make effective use of your hardw are/sof twar e for solv ing eq uation s. Appli
cations of mathematic s to solving "real-world" problems frequently require finding 
approximate solutions of equations that are intractable by exact methods. 

Use fixed-point iteration to solve the equations in Exercises 1-6. 
Obtain 5 decimal place precision. 

g: 1. 2x = e-x, start with xo = 0.3 

1111 2 l I • 
l:lll , + 4 Sill X = X g1 3. X 

COS '.3 = X 
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gg 4. (x + 9) 1/ 3 = X ii 5. _ L_ = x 
2 +x 2 

gg 6. Solve x 3 + I Ox - 10 = 0 by rewriting it in the form 
I -Thx3 =x. 

In Exercises 7- 16, use Newton's Method to solve the given 
equations to the precision permitted by your calculator. 

gg 7. Find ../2 by solving x2 - 2 = 0. 

gg 8. Find .J3 by solving x2 - 3 = 0. 

gg 9. Find the root of x 3 + 2x - l = 0 between O and l. 

gg 10. Find the root of x 3 + 2x2 - 2 = 0 between O and l. 

gg 11. Find the two roots of x4 - 8x2 - x + 16 = 0 in [l , 3]. 

gg 12. Find the three roots of x 3 + 3x 2 - 1 = 0 in [-3, l]. 

gg 13. Solve sin x = l -x. A sketch can help you make a guess xo . 

gg 14. Solve cosx = x2 . How many roots are there? 

gg 15. How many roots does the equation tan x = x have? Find the 
one between TC / 2 and 3 TC / 2. 

l gg 16. Solve - -
2 

= .Jx by rewriting it (I + x 2).Jx - l = 0. 
L+x 

gg 17. If your ca lculator has a built-in Solve routine, or if you use 
computer software with such a routine, use it to solve the 
equations in Exercises 7- 16. 

Find the maximum and minimum values of the functions in 
Exercises 18- 19. 

gg 18. 

20. 

sin x ii 19. cos x 
l + x2 I +x 2 

Let f(x) = x 2 . The equation f(x) = 0 clearly has solution 
x = 0. Find the Newton's Method itera tions x 1, x2, and x3, 

starting with xo = l. 

(a) What is x,,? 

(b) How many iterations are needed to find the root with 
error less than 0.0001 in absolute value? 

(c) How many itera tions are needed to get an approximation 
x 11 for which If (x,,)I < 0 .0001 ? 

(d) Why do the Newton 's Method iteration s converge more 
slowly here than in the examples done in this section ? 

21. (Oscillation) Apply Newton's Method to 

f (x) = { .Jx 
~ ifx < 0 , 

if X 2: 0, 

starting with the initial guess xo = a > 0. Calcul ate x 1 and 
x2. What happens? (Make a sketch.) If you ever observed 
this behaviour when you were using Newton's Method to 
find a root of an equation, what would you do next? 

22. (Divergent oscillations) Apply Newton's Method to 
f (x) = x l/ 3 with xo = l. Calculate x 1, x2 , x3, and x4 . What 
is happening? Find a formula for x,,. 

23. (Convergent oscillations) Apply Newton 's Method to find 
f (x) = x 213 with xo = l. Calculate x 1, x2 , x3, and x4. What 
is happening? Find a formula for x,, . 

24. Verify that the Newton 's Method map for 1 + x 2 , namely 
1 +x 2 

x 11+ 1 = x,, - - -" , transforms into the logistic map 
2x 11 

1 
Yn+I = 4y,,( 1 - y,,) under the transformation y,, = - - 2 . 

1 +x,, 
0 25. Sensitivity to initial condition s is regarded as a definitive 

property of chaos . If the initial values of two sequence s 
differ, and the differenc es between the two sequence s tends 
to grow exponentially, the map is said to be sensitive to 
initial values . Growing exponentially in this sense does not 
require that each sequence grow exponentiall y on its own. In 
fact, for chaos the growth should only be exponential in the 
differential. Moreover, the growth only needs to be 
exponential for large n . 

a) Show that the logistic map is sensitive to initial 
conditions by making the substitution Yj = sin2 Uj and 
taking the differential, given that uo is not an integral 
multiple of TC. 

b) Use part (a) to show that the Newton' s Method map for 
1 + x 2 is also sensitive to initial conditions. Make the 
reasonable assumption, based on Figure 4 .16, that the 
iterates neither converge nor diverge. 

Exercises 26-27 constitute a proof of Theorem 1. 

0 26. Condition (ii) of Theorem 1 implies that f is continuou s on 
I = [a, b ]. Use condition (i) to show that f has a unique 
fixed point r on / . Hint: Apply the Intermediate-Value 
Theorem to g (x) = f( x ) - x on [a, b]. 

0 27. Use condition (ii) of Theorem 1 and mathematical induction 
to show that Ix,, - r l ::: K 11 lxo - r l. Since O < K < 1, we 
know that K 11 -* 0 as n -* oo. This shows that 
lim,,-, 00 x,, = r . 

• 
Indeterminate Forms 

-----
In Sec tion 2.5 we showed that 

sin x 
Jim -- = 1. 

x->0 X 

We co uld not readily see thi s by sub stitutin g x = 0 into the function (sin x ) / x bec ause 

both sin x and x are zero at x = 0. We call (s in x ) / x an indeterminate form of type 

[0/ 0) at x = 0: The limit of such an indeterminate form can be any number. For 

instance, each of the quotient s kx / x, x / x 3, and x 3 / x 2 is an indeterminate form of type 

[0/ 0) at x = 0, but 

kx 
lim-=k, 
x-> 0 X 

. X 
hm 3 = oo, 
x-> 0 X 

x3 
lim 2 = 0. 

x-> 0 X 
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There are other types of indeterminate forms . Table 4 lists them together with an 
example of each type . 

Table 4. Types of indeterminate forms 

Type 

[0/ 0] 

[00/ 00] 

[0 · oo] 

[oo - oo] 

[00] 

[ooo] 

Example 

sin x 
Jim -
x--->0 X 

lirn ln(l / x
2
) 

x--->0 cot(x 2) 

1 
lim xln-

x--->O+ X 

Jim (tan x - --
1
-) 

x--->(,r/2)- 7r - 2x 

Jim x x 
x--->0+ 

Jim (tan x /o sx 
x--->(,r/2)-

lirn (1 + ~)x 
X->00 X 

Indeterminate forms of type [0/ 0] are the most common. You can evaluate many 
indeterminate forms of type [0/ 0] with simple algebra, typically by cancelling common 
factors. Examples can be found in Section s 1.2 and 1.3. We will now develop another 
method called l'Hopital 's Rules 1 for evaluating limits of indeterminate forms of the 
types [0 / 0] and [ oo / oo]. The other types of indeterminate forms can usually be reduced 
to one of these two by algebraic manipulation and the taking of logarithms. In Section 
4.10 we will discover yet another method for evaluating limits of type [0/ 0]. 

l'Hopital's Rules 

The first l'Hopital Rule 

Suppose the functions f and g are differentiable on the interval (a, b ), and g' (x) f= 0 
there. Suppose also that 

(i) Jim f(x) = lim g(x) = 0 and 
x --->a+ x --->a+ 

( .. ) li f ' (x) L ( h L. fi . ) 11 m -(- = w ere 1s mte or oo or -oo . 
x --->a+ g' x) 

Then 

lim f(x) = L . 
x--->a+ g(x) 

Similar results hold if every occurrence of lim x--->a+ is replaced by lim x--->b- or even 
limx--->c where a < c < b. The cases a = -oo and b = oo are also allowed . 

PROOF We prove the case involving limx--->a+ for finite a. Define 

F(x) = { f(x) ~fa < x < b and G(x) = {g(x) !fa < x < b 
0 if x = a O If x = a 

Then F and G are continuous on the interval [a, x] and differentiable on the interval 
(a, x) for every x in (a, b). By the Generalized Mean-Value Theorem (Theorem 16 of 
Section 2.8) there exists a number c in (a , x) such that 

f(x) F(x) F(x) - F(a) F ' (c) f ' (c) 
-- -- -- --
g(x) G(x) G(x) - G(a) G' (c) g' (c) · 

The Marquis de l'Hopital (1661-1704), for whom these rules are named, published the 
first textbook on calculus. The circumflex ( ' ) did not come into use in the French language 
until after the French Revolution. The Marquis would have written his name "]'Hospital." 
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BEWARE! Note that in 
applying l'Ho pital's Rule we 
calculate the quotient of the 
derivative s, not the derivative of 
the quotient. 

Since a < c < x, if x-+ a+, then necessarily c-+ a+, so we have 

Um f(x) = Jim f'( c) = L. 
x""""*a+ g(x) C""""*a+ g'(c) 

The case involving lim x""""*b-for finite bis proved similarly. The cases where a = -oo 
orb = oo follow from the cases already considered via the change of variable x = I/ t: 

EXAMPLE 1 

Solution We have 

lnx 
Evaluate Jim 

X""""* I x 2 - ] . 

ln x 
lim-
X""""* I x 2 - 1 

1/ x . 1 1 
= Jim - = hm - = -

X""""*I 2x X""""*I 2x 2 2 

= Jim f'(x) = L. 
X""""*OO g'(X) 

This example illustrates how calculations based on l'Hopital 's Rule are carried out. 
Having identified the limit as that of a [0/ 0] indeterminate form, we replace it by 
the limit of the quotient of derivatives; the existence of this latter limit will justify 
the equality. It is possible that the limit of the quotient of derivatives may still be 
indeterminate, in which case a second application of I'Hopital's Rule can be made. 
Such applications may be strung out until a limit can finally be extracted, which then 
justifies all the previous applications of the rule. 

EXAMPLE 2 
2sinx - sin(2x) 

Evaluate lim 
2 

. 
x""""*O 2ex - 2 - 2x - x 

Solution We have (using I'Hopital's Rule three times) 

. 2sinx - sin(2x) 
hm------...,,. 
x""""*O 2ex - 2 - 2x - x 2 [~] 

. 2cosx - 2cos(2x) 
= hm------- cancel the 2s 

x""""*O 2ex - 2 - 2x 

. cosx - cos(2x) 
=hm ------

x""""*o ex - l - x 

. - sin x + 2 sin(2x) 
=hm----- --

x""""*O ex - l 

still [-oo] 

still [-oo] 
. - cosx +4cos(2x) -1 +4 

= hm ------- = --- = 3. 
x""""*O ex 1 

2x - 7C 

EXAMPLE 3 Evaluate (a) Jim --
x""""*(n/ 2)- cos2 x 

Solution 

(a) lim --2x - 7C [-oo] 
x""""*(n/2)- cos2 x 

2 
lim ----- = -oo 

x""""*(n/ 2)- -2 sin x cos x 

and 
. X 

(b) hm -. 
x""""* 1+ lnx 
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(b) l'H6pital 's Rule cannot be used to evaluate limx4 1+ x / (In x) because this is not an 
indeterminate form. The denominator approaches Oas x -+ I+, but the numerator 
does not approach 0. Since ln x > 0 for x > 1, we have , directly , 

. X 
hm - =oo. 

x4 l+lnx 

(Had we tried to apply l'H6pital's Rule , we would have been led to the erroneous 
answer limx41+(1 / (1/x )) = 1.) 

EXAMPLE 4 Evaluate lim (~ - -.-
1
-) . 

x4 0+ x smx 

Solution The indeterminate form here is of type [oo - oo] to which l'H6pital's Rule 
cannot be applied . However, it becomes [0/ 0] after we combine the fractions into one 
fraction. 

lim (! --1 
) 

x40+ x sinx 
[oo - oo] 

sinx - x = lim 
x 4 0+ x sinx 

= lim 
cos x - 1 

x40 + sinx +xcos x 
- sinx -0 

= lim ---------0 
x 40 + 2cos x - x sinx - 2 - · 

A version of l'H6pital's Rule also holds for indeterminate forms of the type [00/ 00]. 

The second l'Hopital Rule 

Suppose that f and g are differentiable on the interval (a, b) and that g' (x) -:/= 0 there. 
Suppose also that 

(i) lim g(x) = ±oo and 
X4 a+ 

( .. ) 1· f'(x) L ( h L. fi . ) 11 Im -- = w ere IS mte, or oo or -oo . 
x4a+ g' (x) 

Then 

lim f(x) = L. 
x4a + g(x) 

Again, similar results hold for lim x4b- and for limx4c , and the cases a = -oo and 
b = oo are allowed . 

The proof of the second l'H6pital Rule is technically rather more difficult than that 
of the first Rule and we will not give it here. A sketch of the proof is outlined in 
Exercise 35 at the end of this section . 

Remark Do not try to use l'H6pital' s Rules to evaluate limits that are not indetermi
nate of type [0/ 0] or [00/ 00]; such attempts will almost always lead to false conclusions 
as observed in Example 3(b) above. (Strictly speaking, the second l'H6pital Rule can 
be applied to the form [a / oo], but there is no point to doing so if a is not infinite, since 
the limit is obviously O in that case.) 

Remark No conclusion about limf(x) / g(x) can be made using either l'H6pital 
Rule if lim f ' (x) / g' (x) does not exist. Other techniques might still be used. For 
example, limx4 o (x2 sin(l / x)) / sin(x) = 0 by the Squeeze Theorem even though 
limx4 o (2x sin(l / x) - cos(l / x)) / cos(x) does not exist. 
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EXAMPLE 5 
x2 

Evaluate (a) Jim - and (b) Jim xa In x, where a > 0. 
x-->oo ex x--> 0+ 

Solution Both of these limits are covered by Theorem 5 in Section 3.4 . We do them 
here by l'H6pital's Rule. 

x2 [ oooo] (a) lim -
x-->oo ex 

2x = Jim -
x-->oo ex 

. 2 
= hm - =0. 

X-->00 eX 

still [0000] 

Similarly , one can show that limx--> 00 x" / ex = 0 for any positive integer n by repeated 
applications of l'H6pital's Rule. 

(b) limxalnx (a > O) [0 · (-oo)] 
x--> 0+ 

lnx 
= lim -

x--> 0+ x -a [-:J 
1/x xa 

= lim ---~ = Jim - = 0. 
x--> 0+ -ax-a- I x--> 0+ -a 

The easiest way to deal with indeterminate forms of types [0°], [oo0], and [l 00
] is 

to take logarithms of the expressions involved. The next two examples illustrate the 
technique . 

EXAMPLE 6 Evaluate Jim xx. 
x--> 0+ 

Solution This indeterminate form is of type [0°]. Let y = xx . Then 

lim ln y = Jim x ln x = 0, 
x--> 0+ x-->0+ 

by Examp le S(b). Hence Jim xx = Jim y = e0 = l. 
x-->0 x--> 0+ 

EXAMPLE 7 Evaluate Jim (1+sin~)x 
X-->00 X 

Solution This indeterminate form is of type 100
. Let y 

taking In of both sides, 

( 1 + sin ~) x Then , 

Jim In y = Jim x Ln (1 + sin ~) 
x-->00 X-->00 X 

. ln(l+ sin~) 
= llm 

X-->00 \ 

X 

[oo · OJ 

3 
3cos -

= lim --~x~---,------ = lim x 
X-->00 X---->00 3 

Hence lim (1 + sin ~)x = e3. 
X---->00 X 

x2 
l + sin -

X 

= 3. 
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EXE RC IS ES 4.3 

Evaluate the limits in Exercises 1-32 . 0 31. 
In sin ir x 

0 32. lim (I+ tanx)l /x lim 
3x ln(2x - 3) x-+ I - C C 1l'X x->0 

1. Jim-- 2. lim 33. (A Newton quotient for the second derivative) 
x-+0 tan 4x x->2 x 2 - 4 . f (x + h) - 2f (x) + f (x - h) . . . 

sin ax I - cos ax Evaluate hm1, ..... o 2 1f f is a 
3. Lim-- 4. lim h 

x-+0 sin bx x-+0 l - cos bx twice differentiable function . 

sin- 1 x X 1/ 3 - 1 34. If f has a continuou s third derivative , evaluate 
5. Jim--- 6. lim 

x-+0 tan- 1 x x-+ I x 213 - 1 J( x + 3h) - 3/(x + h) + 3/(x - h) - f( x - 3h) 
1 - cosx Jim 

h3 7. Jim x cotx 8. Lim h-+0 
x-+0 x-+0 ln(l + x 2) 

9. 
sin2 t 

Jim-- 10. lim 
HY -e x 0 35. (Proof of the second l'Hopital Rule) Fill in the details of 

1->1' t -1!' x-+0 X the following outline of a proof of the second l'H6pital Rule 

11. 
cos3x 

12. 
ln(ex) - l (Theorem 4) for the case where a and L are both finite. Let 

Jim --- lim a < x < t < band show that there exists c in (x, t) such that x -+ rr/ 2 1l' - 2x X-+ I sin ir x 

13. 14. 
x - sin x J( x ) - J(t) J1(c) lim x sin - Jim 

x3 X->00 X x-+0 g(x) - g (t) g' (c) . 

15. 
x - sin x 

16. 
2 - x 2 - 2cosx 

lim lim 
x4 Now juggle the above equation algebraically into the form x-+0 x - tanx x-+0 

17. 
sin2 x 

18. 
In sin r 

J( x ) J ' (c) I ( J' (c) ) lim lim 
x-+0+ tanx - x r->JC/2 COS r - - L = - - L + - f (t) - g (t) - . 

g(x) g' (c) g (x ) g' (c) 

19. 
sin t 

20. 
arccosx 

lim -- lim 
t-> rr/ 2 t x-> I - X - l It fo llows that 

21. I im x (2 tan - 1 x - ir) 22. lim (sect - tan t) I /(x) - LI x-+oo 1->( rr/ 2)-
g (x ) 

23. (1 1 ) 24. Jim x ./x I J ' (c) I 1 
( I J ' (c) I) Jim ---

t-+0 t teat x-+0+ '.':: g' (c) - L + lg( x) I 1/ (t) I + lg(t) I g' (c) . 

0 25. 
. 2 

0 26. ( X 1 ) lim (cscx)sin x Jim ----
x->0+ x->I+ x - l ln x Now show that the right ide of the above inequality can be 

3 sin t - sin 3t . cin X) 1/ x
2 made as small as you wish (say less than a positive number 

0 27. lim 0 28. hm -- e:) by choosing first t and then x close enough to a . 
1->0 3 tan t - tan 3t x-+0 X 

Remember , you are given that limc->a+ (!' (c)/ g' (c)) = L 

0 29. lim(cos 2t) 11
12 0 30. 

CSCX 
lim and limx->a+ lg(x)I = oo. 

t->0 x->0+ ln x 

• __ E_x_t_r_e_m_ e_V_a_l u_e_s __ T_h_e _fi-rs_t_d_e_n_' v-a-tiv_e_ o_f _a_f_u_n-ct-io- n- is_ a_ s_ou_r_c_e_o_f_m_uc_h_u_se-f-ul-in_fo_1_·m_a_t1_' o_n_a_b_o_u_t -th-e 

behaviour of the function. As we have a lready seen, the sign of f ' tells u whether f 
is increasing or decreasing. In this section we use thi s information to find maximum 
and minim um values of functions. In Section 4.8 we will put the techniques developed 
here to use solvin g problems that require finding maximum and minim um values. 

Maximum and Minimum Values 
Rec all (from Section 1.4) that a function has a maximum value at xo if f(x) S f(xo) 
for all x in the domain off. The maximum value is f(xo). To be more precise , we 
should call such a maxi mum value an absolute or global maximum because it is the 
largest value that f attains anywhere on its entire domain. 
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DEFINITION 
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Figure 4.17 Local extreme values 

Absolute extreme values 

Function f has an absolute maximum value f (xo) at the point xo in its domain 
if f (x) ~ f (xo) holds for every x in the domain off. 
Similarly, f has an absolute minimum value f(x,) at the pointx, in its domain 
if f (x) ::: f (x 1) holds for every x in the domain of f. 

A function can have at most one absolute maximum or minimum value, although 
this value can be assumed at many points. For example , f (x) = sin x has absolute 
maximum value l occurring at every point of the form x = (1r / 2) + 2n1r, where 
n is an integer, and an absolute minimum value -1 at every point of the form x = 
-(1r / 2) + 2n1r. A function need not have any absolute extreme values. The function 
f(x) = 1/ x becomes arbitrarily large as x approaches O from the right, so has no finite 
absolute maximum. (Remember, oo is not a number , and is not a value off.) It doesn't 
have an absolute minimum either. Even a bounded function may not have an absolute 
maximum or minimum value. The function g (x) = x with domain specified to be the 
open interval (0, 1) has neither; the range of g is also the interval (0, 1), and there is no 
largest or smallest number in this interval. Of course , if the domain of g (and therefore 
also its range) were extended to be the closed interval [0, l], then g would have both a 
maximum value, l , and a minimum value, 0. 

Maximum and minimum values of a function are collectively referred to as extreme 
values . The following theorem is a restatement (and slight generalization) of Theorem 
8 of Section 1.4. It will prove very useful in some circumstances when we want to find 
extreme values. 

Existence of extreme values 

If the domain of the function f is a closed , finite interval or a union of finitely many 
such intervals, and if f is continuous on that domain , then f must have an absolute 
maximum value and an absolute minimum value. 

y 

a XJ x3 X5 b X 

Consider the graph y = f(x) shown in Figure 4.17. Evidently the absolute 
maximum value off is f (x2), and the absolute minimum value is f (x3). In addition 
to these extreme values, f has several other "local" maximum and minimum values 
corresponding to points on the graph that are higher or lower than neighbouring points. 
Observe that f has local maximum values at a , x2, x4, and X6 and local minimum 
values at x1, x3, x 5, and b. The absolute maximum is the highest of the local maxima; 
the absolute minimum is the lowest of the local minima . 
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y 

XO Xi X 

Figure 4.18 A function need not have 
extreme values at a critical point or a 
singular point 
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Local extreme values 

Function f has a local maximum value (Joe max) f (xo) at the point xo in its 
domain provided there exists a number h > 0 such that f (x) :=:: f (xo) whenever 
xis in the domain off and Ix - xol < h. 
Similarly , f has a local minimum value (loc min) f (x,) at the point xi in its 
domain provided there exists a number h > 0 such that f (x) ::::. f (x 1) whenever 
x is in the domain off and Ix - x1 I < h. 

Thus , f has a local maximum (or minimum) value at x ifit has an absolute maximum 
(or minimum) value at x when its domain is restricted to point s sufficiently near x. 
Geometrically , the graph off is at least as high (or low) at x as it is at nearby point s. 

Critical Points, Singular Points, and Endpoints 
Figure 4.17 suggests that a function f (x) can have local extreme values only at point s 
x of three special types: 

(i) critical points off (points x in :D(f) where f ' (x) = 0), 

(ii) singular points off (points x in :D(f) where f' (x) is not defined), and 

(iii) endpoints of the domain of f (points in :D(f) that do not belong to any open 
interval contained in :JJ(f) ) . 

In Figure 4.17, x i, x3, x4, and X6 are critical point s, x2 and x5 are singular points , and 
a and b are endpoints. 

Locating extreme values 

If the function f is defined on an interval / and has a local maximum ( or local minimum ) 
value at point x = xo in / , then xo must be either a critical point off, a singular point 
of f, or an endpoint of /. 

PROOF Suppose that f has a local maximum value at xo and that xo is neither an 
endpoint of the domain of f nor a singular point of f. Then for some h > 0, f (x) is 
defined on the open interval (xo - h, xo + h) and has an absolute maximum (for that 
interval) at xo. Also , f'(xo) exists . By Theorem 14 of Section 2.8, f'(xo) = 0. The 
proof for the case where f has a local minimum value at xo is similar. 

Although a function cannot have extreme values anywhere other than at endpoints, 
critical points, and singular points , it need not have extreme values at such point s. 
Figure 4.18 shows the graph of a function with a critical point xo and a singular point 
x I at neither of which it has an extreme value. It is more difficult to draw the graph of a 
function whose domain has an endpoint at which the function fails to have an extreme 
value. See Exerci se 49 at the end of this section for an example of such a function . 

Finding Absolute Extreme Values 
If a function f is defined on a closed interval or a union of finitely many closed 
intervals, Theorem 5 assures us that f must have an absolute maximum value and an 
absolute minimum value. Theorem 6 tells us how to find them. We need only check 
the values off at any critical points , singular points, and endpoints . 

EXAMPLE 1 Find the maximum and minimum values of the function 
g(x) = x 3 - 3x 2 - 9x + 2 on the interval -2 :=:: x :=:: 2. 

Solution Since g is a polynomial , it can have no singular points. For critical points, 
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= x 3 - 3x 2 
- 9x + 2 

X 

(2, - 20) 

Figure 4.19 g has maximum and 
minimum values 7 and -20 , respectively 

y = h(x) 

= 3x 213 - 2x 

X 

Figure 4.20 h has absolute minimum 
value O at a singular point 

THEOREM 

I 

we calculate 

g' (x) = 3x 2 
- 6x - 9 = 3(x 2 

- 2x - 3) 

= 3(x + l)(x - 3) 

= 0 if x = -1 or x = 3. 

However, x = 3 is not in the domain of g, so we can ignore it. We need to consider 
only the values of g at the critical point x = -1 and at the endpoints x = -2 and 
X = 2: 

g(-2) = 0, g(- 1)=7 , g(2) = -2 0. 

The maximum value of g (x) on -2 S x S 2 is 7, at the critical point x = -1, and the 
minimum value is -20, at the endpoint x = 2. See Figure 4.19. 

EXAMPLE 2 Find the maximum and minimum values of h(x) = 3x 213 - 2x on 
the interval [ -1 , 1]. 

Solution The derivative of h is 

h'(x ) = 3 (~) x- t/3 - 2 = 2(x-t /3 - 1). 

Note that x- 113 is not defin ed at the point x = 0 in :JJ(h), so x = 0 is a singular point 
of h. Also, h has a critical point where x - 113 = 1, that is, at x = 1, which also happens 
to be an endpoint of the domain of h. We must therefore examine the values of h at the 
point s x = 0 and x = l, as well as at the other endpoi nt x = -1. We have 

h (- 1)=5, h(O) = 0, h(l ) = l. 

The function h has maximum value 5 at the endpoint -1 and minimum value Oat the 
singular point x = 0. See Figure 4.20. 

The First Derivative Test 
Most functions you will encounter in elementary calculus have nonzero derivative s 
everywhere on their domain s except possibly at a finite number of critical point s, 
singular points, and endpoints of their domains . On intervals between these points the 
derivative exists and is not zero, so the function is either increasing or decreasing there . 
If f is continuous and increases to the left of xo and decreases to the right , then it must 
have a local maximum value at xo. The following theorem collects several results of 
this type together. 

The First Derivative Test 

PART I. Testing interior critical points and singular points. 

Suppose that f is continuous at xo, and xo is not an endpoint of the domain off. 

(a) If there exists an open interval (a, b) containing xo such that f' (x) > 0 on (a, xo) 
and f' (x) < 0 on (xo, b ), then f has a local maximum value at xo. 

(b) If there exists an open interval (a , b) containing xo such that f' (x) < 0 on (a, xo) 
and f'(x) > 0 on (xo , b), then f has a local minimum value at xo. 

PART II. Testing endpoints of the domain. 

Suppose a is a left endpoint of the domain off and f is right contin uous at a . 

(c) If f'(x) > 0 on some inte rval (a , b), then f has a local minimum value at a. 

(d) If f'(x) < 0 on some interval (a, b), then f has a local maximum value at a. 

Suppose bis a right endpoint of the domain off and f is left continuo us at b. 

(e) If f'(x) > 0 on some interval (a, b), then f has a local maximum value at b. 

(f) If f'(x) < 0 on some interval (a, b) , then f has a local minimum value at b. 
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(-2 , 5) 
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(2, 5) 

X 

(- 1, -4) (I, - 4) 
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Remark If f ' is positive (or negative) on both sides of a critical or singular point , 
then f has neither a maximum nor a minimum value at that point. 

EXAMPLE 3 Find the local and absolute extreme values off (x) = x 4 - 2x 2 - 3 
on the interval [- 2, 2]. Sketch the graph off. 

Solution We begin by calculating and factoring the derivative J'(x) : 

J'(x) = 4x 3 - 4x = 4x(x 2 - 1) = 4x(x - l )(x + 1). 

The critical point s are 0, -1, and 1. The corresponding values are f (O) = -3 , 
f (-1) = f (l) = -4. There are no singular points. The values off at the endpoint s 
-2 and 2 are f(-2) = /(2) = 5. The factored form of f'(x) is also convenient for 
determining the sign off' (x) on intervals between these endpoints and critical points. 
Where an odd number of the factors off' (x) are negative, f ' (x) will itself be negative; 
where an even number of factors are negative, f ' (x) will be positive. We summarize the 
positive/negative properties of f ' (x) and the implied increasing/decreasing behaviour 
of f(x) in chart form: 

X 

! ' 
f 

EP 

-2 

max ~ 

CP 

-1 

0 + 
min / 

CP 

0 

0 

max ~ 

CP 

0 + 
min / 

EP 

2 

max 

Figure 4.21 The graph y = x 4 - 2x 2 - 3 Note how the sloping arrows indicate visually the appropriate classification of the 
endpoints (EP) and critical points (CP) as determined by the First Derivative Test. We 
will make extensive use of such charts in future sections. The graph of f is shown 
in Figure 4.21. Since the domain is a closed, finjte interval , f must have absolute 
maximum and minimum values. These are 5 (at ±2) and -4 (at ±1). 

y 

(2, 2 - 2213) 

X 

(- 1,-2) 

Figure 4.22 The graph for Example 4 

EXAMPLE 4 

off . 

Find and classify the local and absolute extreme values of the 
function f (x) = x - x 213 with domain [ -1 , 2]. Sketch the graph 

Solution J'(x) = l - ix- 113 = (x 113 - i) /x 113 . There is a singular point , 
x = 0, and a critical point , x = 8/ 27. The endpoints are x = -1 and x = 2. The 
values off at these points are f(-1) = -2 ,f( O) = O,f(8/27) = -4 / 27, and 
f (2) = 2 - 2213 ~ 0.4126 (see Figure 4.22). Another interesting point on the graph 
is the x-intercept at x = 1. Information from f ' is summarized in the chart: 

X 

! ' 

f 

EP 

-1 

mm 

+ 

SP 

0 

undef 

max 

CP 

8/ 27 

0 

min 

+ 

EP 

2 

max 

There are two local minima and two local maxima. The absolute maxjmum of f is 
2 - 2213 at x = 2; the absolute minimum is -2 at x = -1. 

Functions Not Defined on Closed, Finite Intervals 
If the function f is not defined on a closed, finite interval , then Theorem 5 cannot be 
used to guarantee the existence of maximum and minimum values for f. Of course, 
f may still have such extreme values. In many applied situations we will want to find 
extreme values of functions defined on infinite and/or open intervals. The following 
theorem adapts Theorem 5 to cover some such situations. 
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Figure 4.23 

Existence of extreme values on open intervals 

If f is continuous on the open interval (a , b) , and if 

lim f (x) = L 
x-> a+ 

and lim f(x) = M , 
x-> b-

then the following conclusions hold: 

(i) Iff(u) > Landf(u) > Mforsomeuin(a , b) , thenfhasanabsolutemaximum 
value on (a, b). 

(ii) Iff(v) < Landf(v) < Mforsomevin(a , b) , thenfhasanabsoluteminimum 
value on (a, b). 

In this theorem a may be -oo , in which case limx->a+ should be replaced with 
limx->-oo, and b may be oo, in which case Iimx ->b- should be replaced with limx->oo· 
Also, either or both of L and M may be either oo or -oo. 

PROOF We prove part (i); the proof of (ii) is similar. We are given that there is a 
number u in (a , b) such that f(u) > Land f(u) > M. Here, Land M may be finite 
numbers or -oo. Since limx->a+ f(x) = L, there must exist a number x1 in (a , u) 
such that 

f(x) < f(u) whenever a < x < x,. 

Similarly, there must exist a number x2 in (u, b) such that 

f(x) < f(u) whenever x2 < x < b . 

(See Figure 4.23.) Thus, f(x) < f (u) at all points of (a , b) that are not in the closed, 
finite subinterval [x1, x2]. By Theorem 5, the function f, being continuous on [x 1, x2], 
must have an absolute maximum value on that interval, say at the point w. Since u 
belongs to [x1,x2], we must have f(w):::: f(u), so f(w) is the maximum value of 
f(x) for all of (a, b) . 

y 

f (u) 
I 
I 

I I I 

M 
_i _____ _ __________ i ______ i_ 

I I I 
I I I 
I I I 
I I I 

L -- I I I 
I I 
I I 
I I 
I I 
I I 

a XJ u x2 b X 

Theorem 6 still tells us where to look for extreme values. There are no endpoints to 
consider in an open interval , but we must still look at the values of the function at any 
critical points or singular points in the interval. 

EXAMPLE 5 Show that f(x) = x + (4/ x) has an absolute minimum value on 
the interval (0, oo), and find that minimum value. 
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y 

4 
Y = f(x) = X + -

X 

(2, 4) 
X 

Figure 4.24 f has minimum value 4 at 

x=2 

y 

(-1 -I) 
h ' Jie 

Figure 4.25 The graph for Example 6 

EXE R C I S ES 4.4 

Solution We have 

Jim f(x) = oo 
x -->0+ 

and 
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lim f(x) = oo. 
x~oo 

Since f (1) = 5 < oo, Theorem 8 guarantees that f must have an absolute minimum 
value at some point in (0, oo). To find the minimum value we must check the values 
off at any critical points or singular points in the interval. We have 

J'(x) = 1 _ ~ = x
2 

- 4 = (x - 2)(x + 2) 
x 2 x 2 x 2 

which equals O only at x = 2 and x = -2 . Since f has domain (0, oo), it has no 
singular points and only one critical point, namely , x = 2, where f has the value 
f(2) = 4. This must be the minimum value off on (0, oo). (See Figure 4.24.) 

EXAMPLE 6 

the graph of f. 

Let f(x) = x e- x
2 

Find and classify the critical points off , 
evaluate limx-->±oo f (x), and use these results to help you sketch 

Solution f'(x) = e-x 2c1 - 2x 2) = 0 only if 1 - 2x 2 = 0 since the exponential is 

always positive. Thus, the c1itical points are± h. We have f ( ± }i) = ± 5e· f ' 
is positive (or negative) when 1 - 2x 2 is positive (or negative) . We summarize the 
intervals where f is increasing and decreasing in chart form: 

X 

! ' 
f 

CP 

-1 /v'l 

0 

min 

+ 

CP 

l/v'l 
0 

max 

Note that f(O) = 0 and that f is an odd function (f(-x) = - f(x)), so the graph is 
symmetric about the origin. Also, 

lim x e-x = 1im - lim - = 0 x O = 0 2 ( 1) ( x
2

) 
x-->±oo x-->±oo x x -->±oo ex2 

because limx-->±oo x 2 e -x
2 = limu-->oo u e - u = 0 by Theorem 5 of Section 3.4. Since 

f(x) is positive at x = 1/v'l and is negative at x = -1 /v'l , f must have absolute 
maximum and minimum values by Theorem 8. These values can only be the value s 
±1 / ,Jle at the two critical points. The graph is shown in Figure 4.25. The x -axi s is 
an asymptote as x -+ ±oo. 

In Exercises 1-17, determine whether the given function has any 
local or absolute extreme values, and find those values if possible. 

8. f( x )=x 3 + x -4on(a , b) 

9. f(x)=x 5 + x 3 +2xon(a , b] 

1. f(x)=x+2on[-l , l] 

3. f(x)=x+2on[-l , l) 

5. f(x) = x 2 - 1 on [-2 , 3] 

7. f(x)=x 3 +x-4on[a , b] 

2. f(x) = x + 2 on (-oo , OJ 

4. f (x) = x 2 
- l 

6. f(x) =x 2 -1 on (2,3) 

I 
10. f(x) = -

x-1 

1 
12. f(x) = -- on [2, 3] 

x-1 

1 
11. f (x) = -- on (0, 1) 

x-1 

13. f(x)=lx-llon[-2 , 2] 
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14. lx2 
- x - 21 on (-3, 3) 

16. f (x) = (x + 2)213 

1 
15. f(x) = -

2
-

x + I 
17. f(x) = (x - 2) 113 

In Exercises 41-46, determine whether the given function has 
absolute maximum or absolute minjmum values. Justify your 
answers. Find the extreme values if you can. 

In Exercises 18-40 , locate and classify all local extreme values of 
the given function. Determine whether any of these extreme 
values are absolute. Sketch the graph of the function. 

41. 
X 

Jx2+i 
42. 

X 

.J x 4 + 1 

x2 

18. f (x) = x 2 + 2x 

20. f (x) = (x2 - 4)2 

22. f (x) = x 2(x - 1)2 

X 
24. f (x) = x 2 + 

1 
X 

26. f (x) = ~ 
-v'X 4 + ] 

28. f (x) = x + sin x 

30. f (x) = x - 2 tan- 1 x 

32. f(x) = e-x2 ;2 

34. f (x) = x 2 e-x
2 

36. f(x) =I x+ 11 

19. f (x) = x 3 - 3x - 2 

21. f (x) = x3(x - 1)2 

23. f (x) = x(x 2 - 1)2 

x2 
25. f (x) = x 2 + 

1 

27. f(x) = x J2 - x2 

29. f(x)=x-2sinx 

31. f(x) = 2x - sin- 1 x 

33. f (x) = X rx 
ln x 

35. f(x) = -
X 

37. f(x) = lx2 
- 11 

43. xJ 4 - x 2 44. 
.J4- x 2 

1 
0 45. -. - 0 11 (0, ir) 0 46. 

sinx 

X S111 X X 

8 47. If a function has an absolute maximum value, must it have 
any local maximum values? If a function has a local 
maximum value, must it have an absolute maximum value? 
Give reasons for your answers. 

8 48. If the function f has an absolute maximum value and 
g(x) = If (x) I, must g have an absolute maximum value? 
Justify your answer. 

8 49. (A function with no max or min at an endpoint) Let 

f (x) = { ~ sin ~ if X > 0 

if X = 0. 

38. f(x) = sin lxl 39. f(x) = I sin x i 
Show that f is continuous on (0, oo) and differentiable on 
(0, oo) but that it has neither a local maximum nor a local 
minimum value at the endpoint x = 0. 0 40. f(x) = (x - L)2/ 3 - (x + 1)213 

• 
Concavity and Inflections 

-----
Like the first derivative , the seco nd derivative of a function also provides useful infor
mation about the behaviour of the function and the shape of its graph: it determines 

DEFINITION 

I 

whether the graph is bending upward (i.e., ha s increasing slope) or bending downward 
(i.e., has decreasing slope) as we move along the graph toward the right. 

We say that the function f is concave up on an open interval / if it is differentiable 
there and the derivative J' is an increa sing function on/ . Similarly , f is concave 
down on / if f ' exists and is decrea sing on / . 

The terms "concave up" and "co ncave down " are used to describe the graph of the 
fun ction as well as the function itself. 

Note that concavity is defined only for differenti able fun ction s, and even for those, 
only on intervals on which their derivative s are not constant. According to the above 
definition, a function is neither concave up nor concave down on an interval where 
its grap h is a straight line segment. We say the function has no concavity on such an 
interval. We also say a function has opposite concavity on two intervals if it is concave 
up on one interval and concave down on the other. 

The function f whose graph is shown in Figure 4.26 is concave up on the interval 
(a, b) and concave down on the interval (b, c) . 

Some geometric observations can be made about concavity: 

(i) If f is concave up on an interval , then , on that interval , the graph of f lies above 
its tangents, and chords join ing points on the graph lie above the graph. 
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Figure 4.26 f is concave up on (a, b) and 
concave down on (b, c) 

DEFINITION 

I 
y 

SECTION 4.5: Concavity and Inflections 241 

(ii) If f is concave down on an interval, then, on that interval, the graph of f lies 
below its tangents, and chords to the graph lie below the graph. 

(iii) If the graph off has a tangent at a point, and if the concavity off is opposite on 
opposite sides of that point, then the graph crosses its tangent at that point. (This 
occurs at the point (b, f (b)) in Figure 4.26. Such a point is called an inflection 
point of the graph off.) 

y 

a b C X 

Inflection points 

We say that the point (xo, f (xo)) is an inflection point of the curve y = f (x) ( or 
that the function f has an inflection point at xo) if the following two conditions 
are satisfied: 

(a) the graph of y = f (x) has a tangent line at x = xo, and 

(b) the concavity off is opposite on opposite sides of xo. 

y 

y 

y = h(x) = x 113 

X X 

y=f(x)=x 3 

Figure 4.27 x = 0 is a critical point of 

f (x) = x3, and f has an inflection 
point there 

a 

Figure 4.28 The concavity of g is 
opposite on opposite sides of the 
singular point a, but its graph has no 
tangent and therefore no inflection 
point there 

X 

Figure 4.29 This graph of h has an 
inflection point at the origin even 
though x = 0 is a singular point of h 

Note that (a) implies that either f is differentiable at xo or its graph has a vertical 
tangent line there, and (b) implies that the graph crosses its tangent line at xo. An 
inflection point of a function f is a point on the graph of a function, rather than a 
point in its domain like a critical point or a singular point. A function may or may 
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THEOREM 

I 
y 

y = f(x) x 4 

X 

Figure 4.30 f" (0) = 0, but f does not 
have an inflection point at 0 

y 

y = f (x) 

- 2 

Figure 4.31 The graph of 
f (x) = x6 - 10x4 

X 

not have an inflection point at a critical point or singular point. In general, a point P 
is an inflection point (or simply an inflection) of a curve C (which is not necessarily 
the graph of a function) if C has a tangent at P and arcs of C extending in opposite 
directions from P are on opposite sides of that tangent line. 

Figures 4.27-4 .29 illustrate some situations involving critical and singular points 
and inflections. 

If a function f has a second derivative f ", the sign of that second derivative tells 
us whether the first derivative f I is increasing or decreasing and hence determines the 
concavity of f. 

Concavity and the second derivative 

(a) If f 11 (x) > 0 on interval I , then f is concave up on /. 

(b) If f 11 (x) < 0 on interval I , then f is concave down on I. 

( c) If f has an inflection point at xo and f" (xo) exists, then f " (xo) = 0. 

PROOF Parts (a) and (b) follow from applying Theorem 12 of Section 2.8 to the 
derivative f I off . If f has an inflection point at xo and f 11 (xo) exists, then f must be 
differentiable in an open interval containing xo. Since f' is increasing on one side of 
xo and decreasing on the other side , it must have a local maximum or minimum value 
at xo . By Theorem 6, f"(xo) = 0. 

Theorem 9 tells us that to find (the x-coo rdinate s of) inflection points of a twice 
differentiable function f , we need only look at points where f 11 (x) = 0. However , 
not every such point has to be an inflection point. For example , f(x) = x4, whose 
graph is shown in Figure 4.30 , does not have an inflection point at x = 0 even though 
J "(O) = I2x 2 lx=0 = 0. In fact, x 4 is concave up on every interval. 

EXAMPLE 1 Determine the intervals of concavity of f(x) = x 6 - 10x 4 and the 
inflection points of its graph. 

Solution We have 

J'(x) = 6x 5 
- 40x 3

, 

f 11(x) = 30x 4 - 120x2 = 30x 2(x - 2)(x + 2). 

Having factored f" (x) in this manner, we can see that it vanishes only at x = -2, 
x = 0, and x = 2. On the intervals (-oo, -2) and (2, oo), f " (x) > 0 so f is concave 
up. On (-2, 0) and (0, 2) , J"(x) < 0 so f is concave down. f"(x) changes sign as 
we pass through -2 and 2. Since f (±2) = -96, the graph off has inflection points 
at (±2, -96). However, f " (x ) does not change sign at x = 0, since x 2 > 0 for both 
positive and negative x. Thus there is no inflection point at 0. As was the case for the 
first derivative, information about the sign of f 11 (x ) and the conseq uent concavity of 
f can be convenient ly conveyed in a chart: 

X -2 0 2 

! " + 0 0 0 + 
f infl infl 

The graph of f is sketched in Figure 4.31. 

EXAM p LE 2 Determine the intervals of increase and decrease, the local extreme 
values , and the concavity of f(x) = x 4 - 2x 3 + 1. Use the 

information to sketch the graph of f . 
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y 

y = x 4 - 2x 3 + 1 

X 

(3 II) 2,- TI, 

Figure 4.32 The function of Example 2 

THEOREM 

I 

SECTION 4.5 : Concavity and Inflections 243 

Solution 

J '(x ) = 4x 3 
- 6x 2 = 2x 2 (2x - 3) = 0 at x = 0 and x = 3/ 2, 

J"(x) = 12x 2 - l2x = l2x(x - 1) = 0 atx = 0 and x = 1. 

The behaviour of f is summarized in the following chart: 

CP CP 

X 0 l 3/ 2 

! ' 0 0 + 
!" + 0 0 + + 
f ",; ",; ",; min ? 

.._, infl ,.--_ infl .._, 

Note that f has an inflection at the critical point x = 0. We calculate the values off 
at the "interesting values of x" in the charts : 

f( O) = 1, f(l) = 0, 1 G) = -{¾. 

The graph of f is sketched in Figure 4.32. 

The Second Derivative Test 
A function f will have a local maximum (or minimum) value at a critical point if its 
graph is concave down (or up) in an interval containing that point. In fact, we can 
often use the value of the second derivative at the critical point to determine whether 
the function has a local maximum or a local minimum value there . 

The Second Derivative Test 

(a) If f ' (xo) = 0 and f " (xo) < 0, then f has a local maximum value at xo. 

(b) If f'(xo) = 0 and f " (xo) > 0, then f has a local minimum value at xo. 

(c) If f'(xo) = 0 and f " (xo) = 0, no conclusion can be drawn; f may have a local 
maximum at xo or a local minimum , or it may have an inflection point instead. 

PROOF Suppose that f ' (xo) = 0 and f"(xo) < 0. Since 

1
. f'(xo+h) Ii f ' (xo+h)-f ' (xo) !"( ) 

0 1m - --- = m ------- = xo < 
h~ O h h~ O h ' 

it follows that f ' (xo + h) < 0 for all sufficiently small positive h, and f' (xo + h) > 0 
for all sufficiently small negative h. By the first derivative test (Theorem 7), f must 
have a local maximum value at xo. The proof of the local minimum case is similar. 

The functions f(x) = x 4 (Figure 4.30), f(x) = -x4, and f( x ) = x3 (Figure 4.27) 
all satisfy J'(O) = 0 and f"(O) = 0. But x 4 has a minimum value at x = 0, - x 4 has 
a maximum value at x = 0, and x 3 has neither a maximum nor a minimum value at 
x = 0 but bas an inflection there. Therefore, we cannot make any conclusion about the 
nature of a critical point based on knowing that f" (x) = 0 there. 

EXAMPLE 3 Find and classify the critical points of f (x) = x 2e-x . 
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y Solution We begin by calculating the first two derivatives of f: 

X 

J'(x) = (2x -x 2)e-x = x(2-x)e-x = 0 atx = 0 andx = 2, 

J" (x) = (2 - 4x + x 2)e-x 

f"(O) = 2 > 0, f"(2) = -2e- 2 < 0. 

Figure 4.33 The critical points of 
f (x) = x2e -x 

Thus, f has a local minimum value at x = 0 and a local maximum value at x = 2. See 
Figure 4.33. 

For many functions the second derivative is more complicated to calculate than the first 

derivative, so the First Derivative Test is likely to be of more use in classifying critical 

points than is the Second Derivative Test. Also note that the First Derivative Test can 

classify local extreme values that occur at endpoints and singular points as well as at 
critical points. 

It is possible to generalize the Second Derivative Test to obtain a higher derivative 
test to deal with some situations where the second derivative is zero at a critical point. 

(See Exercise 40 at the end of this section.) 

EXERCISES 4.5 

In Exercises 1-22, determine the intervals of constant concavity 
of the given function, and locate any inflection points. 

1. f(x) = .Jx 2. f(x) = 2x -x 2 

3. f(x)=x 2 +2x+3 4. f(x) = x - x 3 

5. f (x) = 10x3 - 3x 5 6. f (x) = 10x3 + 3x 5 

7. f (x) = (3 - x 2)2 8. f(x) = (2+2x-x 2)2 

9. f (x) = (x2 - 4) 3 X 
10. f (x) = -

2
-

X +3 

11. f(x) = sinx 12. f (x) = cos 3x 

13. f(x) = x + sin2x 14. f(x) = x - 2sinx 

15. f(x) = tan- 1 x 16. f (x) = x ex 

17. f (x) = e-x 
2 18. f (x) = ln(x2) 

X 

19. f (x) = ln(l + x 2) 20. f(x) = (lnx) 2 

x 3 25 
21. f (x) = - - 4x 2 + l 2x - -

3 3 
22. f(x) = (x - 1)113 + (x + 1) 113 

23. Discuss the concavity of the linear function 
f (x) =ax+ b. Does it have any inflections ? 

Classify the critical points of the functions in Exercises 24-35 
using the Second Derivative Test whenever possible. 

24. f (x) = 3x3 - 36x - 3 

4 
26. f (x) = X + -

X 

X 
28. f(x) = -

2x 

30. f (x) = xex 

32. f (x) = (x2 - 4)2 

34. J(x) = (x2 - 3)ex 

25. f (x) = x (x - 2)2 + 1 

l 
27. f (x) = x 3 + -

X 

X 
29. f (x) = 

1 
+ x 2 

31. f(x) = x 1nx 

33. f (x) = (x 2 - 4)3 

35. f (x) = x2e-2x2 

36. Let f (x) = x 2 if x ~ 0 and f (x) = -x 2 if x < 0. Is O a 

D 37. 

D 38. 

39. 

D 40. 

critical point off? Does f have an inflection point there? Is 
J" (0) = O? If a function has a nonvertical tangent line at an 
inflection point , does the second derivative of the function 
necessarily vanish at that point? 

Verify that if f is concave up on an interval, then its graph 
lies above its tangent lines on that interval. Hint: Suppose f 
is concave up on an open interval containing xo. Let 
h(x) = f(x) - f(xo) - J'(xo)(x - xo). Show that h has a 
local minimum value at xo and hence that h (x) ~ 0 on the 
interval. Show that h(x) > 0 if x -::/= xo. 

Verify that the graph y = f (x) crosses its tangent line at an 
inflection point. Hint: Consider separately the cases where 
the tangent line is vertical and nonvertical. 

Let fn(x) = x 11 and g,,(x) = -x 11
, (n = 2, 3, 4, ... ) . 

Determine whether each function has a local maximum, a 
local minimum , or an inflection point at x = 0. 

(Higher Derivative Test) Use your conclusions from 
Exercise 39 to suggest a genera lization of the Second 
Derivative Test that applies when 

J' (xo) = J" (xo) = ... = J<k-1\xo) = 0, j<k) (xo) -::/= 0, 

for some k ~ 2. 

D 41. This problem shows that no test based solely on the signs of 
derivatives at xo can determine whether every function with a 
critical point at xo has a local maximum or minimum or an 
inflection point there. Let 

f(x) = { ~- 1/x
2 

Prove the following: 

if X -::j= 0 
if X = 0. 

(a) limx-->0 x-n f (x) = 0 for n = 0, l , 2, 3, .... 

(b) lirn x-->0 P(l / x)f (x) = 0 for every polynomial P. 
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(c) For x =p 0, f(kl(x) = Pk( l / x)f (x)(k = 1, 2, 3, ... ), 
where Pk is a polynomjaJ. 

(d) f(k)(O) exists and equals O fork= 1, 2, 3, ... . 

(e) f has a loca l minimum at x = O; - f has a local 
maximum at x = 0. 

(f) If g(x) = xf(x), then g<k)(O) = 0 for every positive 
integer k and g has an inflection point at x = 0. 

D 42. A function may have neither a local maximum nor a local 
minimum nor an inflection at a critical point. Show this by 

SECTION 4.6: Sketching the Graph of a Function 245 

considering the following function : 

f (x) = { ~
2 

sin~ ifx=pO 

i fx = 0. 

Show that f ' (0) = f (0) = 0, so the x -axi s is tangent to the 
graph off at x = O; but f ' (x) is not continuou s at x = 0, so 
f " (0) does not exist. Show that the concavity off is not 
constant on any interval with endpoint 0 . 

• _ S_k_et_c_hi_ng_t_h_e_G_ra_p_h _of_a_F_u_n_ct_io_n __________ _ 
When sketcrung the graph y = f (x) of a function f, we have three sources of useful 
information: 

(i) the function f itself , from which we deterrrune the coordinates of some point s on 
the graph , the symmetry of the graph, and any asymptotes; 

(ii) the first derivative , J', from which we determine the intervals of increa se and 
decrease and the location of any local extreme values; and 

(iii ) the second derivative, f 11
, from which we determin e the concavity and inflection 

points, and sometimes extreme values. 

Items (ii) and (iii) were explored in the previou s two sections. In this section we 
consider what we can learn from the function itself about the shape of its graph, and 
then we illustrate the entire sketching procedure with several examples using all three 
sources of information. 

We could sketch a graph by plotting the coordinates of many points on it and 
joirnng them by a suitably smooth curve. This is what computer software and graphics 
calculators do . When carried out by hand (without a computer or calculator), this 
simplistic approach is at best tediou s and at worst can fail to reveal the most intere sting 
aspects of the graph (singular points , extreme values, and so on). We could also 
compute the slope at each of the plotted points and , by drawing short line segments 
through these point s with the appropriate slopes, ensure that the sketched graph passes 
through each plotted point with the correct slope . A more efficient procedure is to 
obtain the coordinates of only a few point s and use qualitative information from the 
function and its first and second derivatives to deterrrune the shape of the graph between 
these points. 

Besides critical and singular point s and inflection s, a graph may have other "in
teresting " points . The intercepts (point s at wruch the graph intersects the coordinate 
axes) are usually among these . When sketcrung any graph it is wise to try to find 
all such intercepts , that is, all points with coord inates (x , 0) and (0, y) that lie on the 
graph. Of course , not every graph will have such point s, and even when they do exist 
it may not always be possible to compute them exactl y. Whenever a grap h is made 
up of several disconnect ed pieces (called components) , the coordinates of at least one 
point on each component must be obtained. It can sometime s be useful to determin e 
the slope s at those point s too . Vertical asymptotes (discussed below) usually break the 
grap h of a function into components. 

Realizing that a given function possesses some symmetry can aid greatly in obtain
ing a good sketch of its graph. In Section P.4 we discu ssed odd and even function s and 
observed that odd functions have graphs that are symmetric about the origin, wrule even 
functions have graphs that are symmetric about the y-a xis , as shown in Figure 4.34 . 
These are the symmetries you are most likely to notice , but functions can have other 
symmetries. For example , the graph of 2 + (x - 1 )2 will certainly be symmetric about 
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Figure 4.34 

(a) The graph of an even function is 
symmetric about the y-axis 

(b) The graph of an odd function is 
symmetric about the origin 

DEFINITION 

I 
y 

X 

Figure 4.35 

DEFINITION 

I 

the line x = I, and the graph of 2 + (x - 3)3 is symmetric about the point (3, 2). 

y y = f(x) y 

X X 

(a) (b) 

Asymptotes 
Some of the curves we have sketched in previous sections have had asymptotes, that is, 
straig ht lines to which the curve draw s arbitrarily close as it recedes to infinite distance 
from the origin . Asymptotes are of three types: vertical , horizont al, and oblique. 

The graph of y = f(x) has a vertical asymptote at x = a if 

e ither Jim f (x) = ±oo 
x~a-

or lim f (x) = ±oo, 
x->a+ 

or both . 

This situation tends to arise when f(x) is a quotient of two expressions and the 

denominator is zero at x = a. 

EXAMPLE 1 Find the vert ical asy mptotes of f (x) 

graph appro ach these asy mptot es? 

How doe s the 
x 2 -x· 

Solution The denomin ator x 2 - x = x(x - 1) approaches Oa s x approaches O or 
1, so f has vertical asymptotes at x = 0 and x = l (Figure 4.35). Since x(x - l) is 
positive on (-oo, 0) and on (l, oo) and is negative on (0, l ), we have 

1 
lim --- = oo, 

x-> 0- x 2 - x 
1 

lim --- = -oo, 
x->0+ x 2 - x 

1 
Jim --- = -oo 

x-> l -x 2 - x ' 

1 
Jim --- = OO. 

X-> I+ x 2 - X 

The graph of y = f(x) ha a horizontal asymptote y = L if 

either lim f (x) = L or lim f(x) = L , 
X->00 x ->-oo 

Find the hor izontal asy mptote s of 

or both . 

EXAMPLE 2 
I x 4 + x 2 

(a) f(x) = x 2 -x and (b)g(x) = x 4 + 
1

. 

Solution 
(a) The function f has hori zontal asym ptote y = 0 (Figure 4.35) since 

1 1/x 2 0 
lim --- = lim ---- = - = 0. 

x-> ±oo x 2 - x x->±oo l - (1/ x) 1 
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y 

Figure 4.36 

x4 +x2 

y = x 4 + l 

X 

Figure 4.37 One-sided horizontal 
asymptotes 

DEFINITION 

I 

Figure 4.38 

(a) The graph of y = f(x) has a 
two-sided oblique asymptote, y = x 

(b) This graph has a horizontal 
asymptote at the left and an oblique 
asymptote at the right 

SECTION 4.6: Sketching the Graph of a Function 24 7 

(b) The function g bas horizontal asymptote y = 1 (Figure 4.36) since 

. x 4 + x 2 . l + (l / x2
) 1 

hm --- = hm ----= - = 1. 
x-->±oo x 4 + 1 x-->±oo 1 + (l / x4) 1 

Observe that the graph of g crosses its asymptote twice. (There is a popular 
misconception among student s that curves cannot cross their asymptotes. Exercise 
41 below gives an examp le of a curve that crosses its asymptote infinitely often.) 

The horizontal asymptotes of both functions f and g in Example 2 are two-sided , 
which means that the graphs appro ach the asymptotes as x approaches both infinity 
and negative infinity. The function tan - l x has two one-sided asymptotes, y = 1C /2 
(as x ~ oo) and y = -(1C/ 2) (as x ~ -oo). See Figure 4.37. 

y 

X 

2 

It can also happen that the graph of a function f approache s a nonhori zontal 
straight line as x approaches oo or -oo (or both). Such a line is called an oblique 
asymptote of the graph. 

The straight line y = ax+ b (where a =I 0) is an oblique asymptote of the graph 
of y = f(x) if 

either lim (f (x) - (ax+ b)) = 0 or lim (f(x) - (ax+ b)) = 0, 
X-->-00 X-->00 

or both. 

x 2 + 1 1 EXAM P LE 3 Consider the function f (x) = -- = x + - , whose graph is 
X X 

shown in Figure 4.38(a ). The straight line y = x is a two-sided 
oblique asymptote of the graph of f becau se 

1 
Jim (f (x) - x) = lim - = 0. 

x-->±oo x-->±oo x 

l 
y y=x+- y 

x 

,,····'y =X 

--~-'.}···· 
X 

X 

(a) (b) 
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EXAMPLE 4 
x ex 

The graph of y = -- , shown in Figure 4.38(b ), has a horizontal 
I +e x 

asymptote y = 0 at the left and an oblique asymptote y = x at the 
right: 

x ex 0 
Lim -- = - = 0 and 

x-->-oo l+e x l 

( 
x ex ) x( ex - 1 - ex) -x 

lim -- - x = Jim ------ = Jim -- = 0. 
x -->oo 1 + ex x-->oo l + ex x-->oo I + ex 

Recall that a rational function is a function of the form f(x) = P(x) / Q(x), where 
P and Q are polynomials. Following observations made in Sections P.6, 1.2, and 1.3, 
we can be quite specific about the asymptotes of a rational function. 

Asymptotes of a rational function 

Pm(x) . 
Suppose that f(x) = --(-, where Pm and Qn are polynormals of degree 

Qn x) 
m and n, respectively. Suppose also that Pm and Qn have no common linear 
factors. Then 

(a) The graph off has a vertical asymptote at every position x such that 
Qn(x) = 0. 

(b) The graph off has a two-sided horizontal asymptote y = 0 if m < n . 

(c) The graph off has a two-sided horizontal asymptote y = L , (L f=-0) if 
m = n. L is the quotient of the coefficients of the highest degree terms 
in Pm and Qn, 

(d) The graph off has a two-sided oblique asymptote if m = n + 1. This 
asymptote can be found by dividing Q,, into P111 to obtain a linear quotient, 
ax+ b, and remainder, R, a polynomial of degree at most n - 1. That is, 

R(x) 
f(x)=ax+b+-(-. 

Qn x) 

The oblique asymptote is y = ax + b. 

( e) The graph of f has no horizontal or oblique asymptotes if m > n + 1. 

x3 
EXAMPLE 5 Find the oblique asymptote of y = 

2 
. 

X +x + 1 

Solution 

x 2 + X + 

We can either obtain the quotient by long division: 
x 3 

X -

1 I x 3 

x 3 + x 2 + x 
2 

- X - X 

- x 2 - X -

x 2 + x + 1 
X - 1 + 

or we can obtain the same result by short division: 

x3 

x 2 +x + 1 

x 2 + x + 1 

x 3 + x 2 + x - x 2 
- x - 1 + 1 1 

-----------=x-1+----. 
x 2 + x + I x 2 + x + I 

In any event, we see that the oblique asymptote has equation y = x - 1. 
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Examples of Formal Curve Sketching 
Here is a checklist of things to consider when you are asked to make a careful sketch 
of the graph of y = J(x). It will , of course , not always be possible to obtain every 
item of information mentioned in the list. 

Checklist for curve sketching 

l. Calculate f'(x) and f"(x), and express the results in factored form. 

2. Examine f(x) to determine its domain and the following items: 

(a) Any vertical asymptotes. (Look for zeros of denominators .) 

(b) Any horizontal or oblique asymptotes. (Consider limx-.±oo f(x).) 

(c) Any obvious symmetry . (Is f even or odd?) 

(d) Any easily calculated intercepts (points with coordinates (x, 0) or 
(0, y )) or endpoints or other "obvious" points. You will add to this 
list when you know any critical points, singular points, and inflection 
points. Eventually you should make sure you know the coordinates 
of at least one point on every component of the graph. 

3. Examine J' (x) for the following: 

(a) Any critical points . 

(b) Any points where f ' is not defined . (These will include singular 
points , endpoints of the domain off , and vertical asymptotes.) 

(c) Intervals on which f ' is positive or negative. It's a good idea to 
convey this information in the form of a chart such as those used in the 
examples. Conclusions about where f is increasing and decreasing 
and classification of some critical and singular points as local maxima 
and minima can also be indicated on the chart. 

4. Examine f"( x ) for the following : 

(a) Point s where f"( x) = 0. 

(b) Points where f" (x) is undefined. (These will include singular points , 
endpoint s, vertical asymptotes, and possibly other points as well, 
where f ' is defined but f " isn ' t.) 

(c) Intervals where f " is positive or negative and where f is therefore 
concave up or down . Use a chart. 

( d) Any inflection points . 

When you have obtained as much of this information as possible , make a careful sketch 
that reflects everything you have learned about the function. Consider where best to 
place the axes and what scale to use on each so the "interesting features" of the graph 
show up most clearly . Be alert for seeming inconsistencies in the information-that is 
a strong suggestion you may have made an error somewhere . For example, if you have 
determined that f (x) -+ oo as x approaches the vertical asymptote x = a from the 
right, and also that f is decreasing and concave down on the interval (a, b), then you 
have very likely made an error. (Try to sketch such a situa tion to see why.) 

EXAMPLE 6 
x2 +2x +4 

Sketch the graph of y = ----
2x 

Solution It is useful to rewrite the function y in the form 

X 2 
y = 2 + 1 + ~· 

since this form not only shows clearly that y = (x / 2) + 1 is an oblique asymptote, but 
also makes it easier to calculate the derivatives 

y' 
2 

2 x 2 - 4 4 
y" 

x2 2x 2 ' 3· 
X 
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(-2 ,- 1) 

Figure 4.39 

From y: Domain: all x except 0. Vertical asymptote: x = 0, 

Oblique asymptote: y = 1 + 1, y - ( 1 + 1) = ~ --+ 0 as x --+ ±oo . 

Symmetry: none obvious (y is neither odd nor even). 
Intercepts : none. x 2 + 2x + 4 = (x + 1)2 + 3 2:: 3 for all x , and y is not 
defined at x = 0. 

From y': Critical points: x = ±2; points (-2 , -1) and (2, 3). 
y' not defined at x = 0 (vertical asymptote). 

From y": y" = 0 nowhere; y" undefined at x = 0. 

CP ASY CP 

X - 2 0 2 

y' + 0 undef 0 

y" undef + 
y ? max \. undef \. mm 

,--.. 

The graph is shown in Figure 4.39 . 

EXAMPLE 7 
x 2 - 1 

Sketch the graph off (x) = - 2--. X - 4 

Solution We have 

-6x 
J'(x) = (x2-4) 2' 

J"(x) = 6(3x
2 + 4) 

(x2 - 4) 3 

+ 
+ 
? 

From f: Domain: all x except ±2 . Vertical asymptotes: x = -2 and x = 2. 
Horizontal asymptote: y = I (as x --+ ±oo). 
Symmetry: about the y-axis (y is even) . 
Intercepts: (0, 1/ 4) , (-1, 0), and (1, 0) . 
Other points: ( - 3, 8 / 5), (3, 8 / 5). (The two vertical asymptotes divide 
the graph into three components ; we need points on each. The outer 
components require points with Ix I > 2.) 

y y 

x 2 + 2x + 4 
y=--2 x--

(2,3) 

X 
y= - + I 

2 

X 

X = - 2 
x=2 

- -- - - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - - --

' 1/ 4 

Figure 4.40 

x 2 - I 
y = x 2 - 4 

y=I 

X 
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(- 1,- , - 1/2) 

Figure 4.41 

SECTION 4 .6: Sketching the Graph of a Function 25 1 

From J ': Critical point: x = O; f ' not defined at x = 2 or x = -2 . 

From f ": f " (x ) = 0 nowhere ; f " not defined at x = 2 or x = - 2. 

ASY CP ASY 

X -2 0 2 

!' + undef + 0 undef 

!" + undef undef + 
f ? undef ? max ~ undef ~ 

'-../ ,.----, ,.----, '-../ 

The graph is shown in Figure 4.40. 

EXAMPLE 8 Sketch the graph of y = xe -x
2
12 . 

Solution We have y' = (1 - x2)e- x
2

/ 2 , y" = x (x 2 - 3)e- x
2
12 , 

From y: Domain : all x . 
Horizontal asymptote: y = 0. Note that if t = x2 / 2, then 

Jxe- x
2

/
2

1 = ,J2i e- 1 --+ 0 as t--+ oo (hence as x --+ ± oo). 
Symmetry: about the origin (y is odd). Intercept s: (0, 0) . 

From y': Critical point s: x = ±1; points (±1, ±1 / ,Je ) ~ (±1 , ±0 .61). 

From y" : y" = 0 at x = 0 and x = ±,J3; 
points (0, 0) , (±-J3 , ±,J3e- 312) ~ (±1.7 3, ±0.39). 

CP CP 

X --J3 -1 0 ,J3 

y' 0 + + 0 

y" 0 + + 0 0 

y ~ ~ min ? ? max ~ 

/"""', inti '-../ inti ,.----, ,.----, infl 

The graph is shown in Figure 4.41. 

y y 

y = (x2 _ l )2/3 
( 1,e- 1/2) 

- I 

Figure 4.42 

+ 
~ 

'-../ 

X 
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EXAMPLE 9 Sketch the graph off (x) = (x 2 - 1)213 . (See Figure 4.42.) 

S I t. I 4 X 
0 U ,on f (x) = - 2 l / 3 , 

3 (x - 1) 

II 4 X 2 - 3 
f (x) = 9 (x2 -1)4 /3" 

From f: Domain: all x. 
Asymptotes: none. (f (x) grows like x 4/ 3 as x ---+ ±oo.) 
Symmetry: about the y-axis (f is an even function). 
Intercepts: (±1, 0), (0, 1). 

From f': Critical points: x = O; singular points: x = ±1. 
From f": J"(x) = 0 at x = ±.J3; points (±.J3 , 2213) ~ (±1.73, 1.59); 

f"(x) not defined at x = ±1. 

X 

!' 

!" + 
f 

"'" 
'--" 

EXE RC IS ES 4.6 
1. Figure 4.43 shows the graphs of a function f , its two 

derivatives f' and f ", and another function g. Which graph 
corresponds to each function? 

2. List, for each function graphed in Figure 4.43, such 
information that you can determine (approximately) by 
inspecting the graph (e.g., symmetry, asymptotes, intercepts, 
intervals of increase and decrease , critical and singular 
points, local maxima and minima, intervals of constant 
concavity, inflection points) . 

(a) y4 (b) 
>:i 

3 

4 X 

-4 
- 5 

(c) (d) 

-3 -3 
- 4 -4 
-5 -5 

Figure 4.43 

-.J3 

0 

inti 

SP CP SP 

-] 0 .J3 
undef + 0 undef + 
undef undef 0 

"'" 
mrn ? max 

"'" 
min ? 

"' "' "' inti 

3. Figure 4.44 shows the graphs of four functions: 

X 

f(x) = -1 - 2, 
-x 

x 3 - x 
h(x)= ~' 

,,;x6+ I 

x3 
g(x) = -1--4, 

-x 
x3 

k(x)= ~
ylx4 - II 

Which graph corresponds to each function? 

4. Repeat Exercise 2 for the graphs in Figure 4.44. 

(a) y 
3 

2 

-4 

I 2 3 4 X 

(d) 

Figure 4.44 

-4 

y 
3 

-3 
- 4 

+ 
+ 
? 
'--" 

4 X 
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In Exercises 5-6 , sketch the graph of a function that has the given 
properties. Identify any critical points, singular points, local 
maxima and minima, and inflection points. Assume that f is 
continuous and its derivatives exist everywhere unless the 
contrary is implied or explicitly stated . 

x 2 -4 
19. y = X + J 

x 3 -4x 
21. y = x2 - 1 

20. 

22. 

x 2 - 2 
y = x2 - 1 

x 2 - 1 
y=--

x2 

5. f(O) = l , f(±l) = 0, f(2) = 1, liffix--+oo f(x) = 2, 
liffix--+-oo f (x) = -1 , f' (x) > 0 on (-oo , 0) and on 

x5 

23. y = (x2 - 1)2 24. 
(2-x)2 

y = x3 
(1, oo), f'(x) < 0 on (O, 1), f"(x) > 0 on (-oo, 0) and on 
(0, 2), and f"(x) < 0 on (2, oo). 1 

26. 
X 

6. f(-1) = 0, f(O) = 2, f(l) = I , f(2) = 0, f(3) = 1, 
limx--+±oo<f(x) + 1 - x) = 0, f ' (x) > 0 on (-oo , - 1), 
(-1 , 0) and (2, oo), f'(x) < 0 on (0, 2), 

25. y =-
x3 -4x 

x 3 - 3x 2 + 1 
27. y =--- -

x 3 

y = 
x 2 +x - 2 

28. y = x + sinx 
limx--+-l f ' (x ) = oo, f" (x) > 0 on (-oo, -1) and on 
(1, 3), and f"(x) < 0 on (-1 , 1) and on (3, oo). 29. y=x+2s in x 30. y = e-x 

2 

In Exercises 7-39 , sketch the graphs of the given functions , 
making use of any suitable information you can obtain from the 
function and its first and second derivatives. 

31. y = xe x 32. - .;r . y = e smx , (x:::: 0) 

y = x2ex 
7. y = (x2 _ 1)3 8. y = x(x2 - 1)2 

9. 
2-x 

10. 
x- l 

y =-- y=x+l X 

11. 
x 3 

12. 
1 

y= l +x y = 4 +x 2 

13. 
1 

14. 
X 

y = 2-x 2 y = x 2 - 1 

15. 
x2 

16. 
x3 

y = x 2 - 1 y =--
x 2 - l 

17. 
x3 

18. 
x2 

y = x 2 + 1 Y = x 2 + 1 

ln x 
35. y = - , (x > 0) 

X 

1 
37. y = ~ 

39. y =(x 2 - I) 113 

34. 

36. 

38. 

ln x 
(x > 0) y = ~, 

X 
y = 

.Jx 2 + 1 

0 40. Whati s limx--+O+x lnx? limx--+oxlnl xl? If f(x) =xlnlxl 
for x f= 0, is it possible to define f (0) in such a way that f is 
continuous on the whole real line? Sketch the graph off. 

sinx 
41. What straight line is an asymptote of the curve y = 

1 
+ x 2 ? 

At what points does the curve cross this asymptote? 

. _ G_ra_p_h_in_g_w_it_h _Co_m_p_u_te_rs ____________ _ 
The techniques for sketching, developed in the pre vious sec tion , are useful for graphs of 
functions that are simple enough to allow you to calculate and analyze their derivative s . 
They are also essential for testing the validity of graphs produced by computer s or 
calculators , which can be inaccurate or misleading for a variety of reasons, including 
the case of numerical monsters introduced in pre vio us chapters. In practice , it is often 
easiest to first produce a graph using a computer or gra phing calculator, but man y 
times this will not turn out to be the last ste p. (We will use the term "co mputer " for 
both computers and calculators .) For many simple functions thi s can be a quick and 
painles s activity , but sometim es functions hav e propertie s that complicate the proce ss. 
Knowledge of the function , from techniqu es like those above , is important to guide 
you on what the next ste ps mu st be. 

The Maple command 1 for viewing the gra ph of the function from Example 6 
of Section 4 .6 , toge ther with its oblique asymp tote, is a strai ghtforward example of 
plotting ; we ask Maple to plot both (x 2 + 2x + 4) / (2x) and 1 + (x / 2). 

> plot( {( xA2+2*x+4)/(2*x) , l+(x/2) }, x=-6 .. 6 , y=-7 .. 7) ; 

Thi s command sets the window -6 :S x :S 6 and - 7 :s y :s 7 . Why that window ? To 
get a plot that characterizes the function , knowledge of its vertical asymptote at x = 0 
is essential. (If x - 10 were substituted for x in the expression, the given window 

1 Although we focus on Maple to illustrate the issues of graphing with computers, the issues 
presented are general ones, pertaining to all software and computers. 

www.konkur.in



254 CHAPTER 4 More Applications of Differentiation 

would no longer produce a reasonable graph of the key features of the function. The 
new function would be better viewed on the interval 4 ::: x ::: 16.) If the range [- 7, 7] 
were not specified, the computer would plot all of the points where it evaluates the 
function, including those very close to the vertical asymptote where the function is 
very large . The resulting plot would compress all of the features of the graph onto the 
x -axis. Even the asymptote would look like a horizontal line in that scaling . You might 
even miss the vertical asympto te which is squeezed into the y-ax is. 

Getting Maple to plot the curve in Example 9 of Section 4.6 is a bit trickier . 
Because Maple doesn't deal well with fractional powers of negative numbers , even 
when they have positive real values, we must actually plot lx2 - 112/ 3 or ((x 2 - 1)2) 1/ 3 . 

Otherwise , the part of the graph between -1 and 1 will be missing. Either of the plot 
commands 

> plot((abs(xA2-l))A(2/3) , x=-4 .. 4 , y=-1 . . 5) ; 

> plot(((xA2-l)A2)A(l/3) , x=-4 .. 4 , y=-1. .5); 

will produce the desired graph. In order to ensure a complete plot with all of the 
features of the function present , the graph of the simple expression should be viewed 
critically, and not taken at face value . 

~ Numerical Monsters and Computer Graphing 

Figure 4.45 A faulty computer plot of 
y = ex ln(l + e-x) 

The next obvious problem is that of false features and false behaviours . Functions that 
are mathematically well-behaved can still be computationally poorly behaved , leading 
to false features on graphs , as we have already seen. 

EXAMPLE 1 Consider the function f(x) = ex ln(l + e-x) which has suitably 
simplified derivative 

J' (x) = ex g(x) , where 
I 

g(x) = ln(l + e- x) - -- . . 
ex + I 

In tum , the derivative of g (x) simplifies to 

I 1 
g (x) = - (ex + 1)2' 

which is negative for all x, so g is decreasing. Since g(O) = ln 2 - 1/ 2 > 0 and 
limx--+oo g(x) = 0, it follows that g(x) > 0 and decreasing for all x. Thus J'(x) is 
positive, and f(x) is an increasing function for all x. Furthermore, l 'H6pital's Rules 
show that 

lim f(x) = 1 and Jim f(x) = 0. 
X--+00 x~ -oo 

This gives us a pretty full picture of how the function f behaves. It grows with increas
ing x from Oat -oo, crosses the y-axis at ln 2, and finally approaches 1 asymptotically 
from below as x increases toward oo. 

Now let' s plot the graph off using the Maple command 

> plot(exp(x)*ln(l+(l / exp(x))) , x=-20 .. 45 , style =point , 
symbol =point , numpoints = l500); 

2 

1.5 

----------41 '1 
1/ 

-20 -10 10 30 40 
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The result is shown in Figure 4.45. Clearly something is wrong. From x = -20 
to about x = 30, the graph behaves in accordance with the mathematical analysis. 
However, for larger values of x, peculiarities emerge that sharply disagree with the 
analysis. The calculus of this chapter tells us that the function is increasing with no 
horizontal tangents, but the computer suggests that it decreases in some places. The 
calculus tells us that the function rises asymptotically to 1, but the computer suggests 
that the function starts to oscillate and ultimately becomes O at about x = 36. 

This is another numerical monster. What a computer does can simply be wrong. 
In this case, it is significantly so. In practical applications an erroneous value of 
0 instead of 1 could, for example, be a factor in a product, and that would change 
everything dramatically . If the mathematics were not known in this case, how could 
we even know that the computer is wrong? Another computer cannot be used to check 
it, as the problem is one that all computers share. Another program cannot be used 
because all software must use the special floating-point arithmetic that is subject to the 
roundoff errors responsible for the problem. Figure 4.45 is not particular to Maple . 
This monster, or one much like it, can be created in nearly any software package. 

Floating-Point Representation of Numbers in Computers 
It is necessary that you know mathematics in order to use computers correctly and 
effectively. It is equally necessary to understand why all computers fail to fully capture 
the mathematics. As indicated previously, the reason is that no computer can represent 
all numbers. Computer designers artfully attempt to minimize the effects of this by 
making the number of representable numbers as large as possible. But, speaking in 
terms of physics, a finite-sized machine can only represent a finite number of numbers. 
Having only a finite number of numbers leads to numbers sufficiently small, compared 
to 1, that the computer simply discards them in a sum. When digits are lost in this 
manner, the resulting error is known as roundoff error. 

In many cases the finiteness shows up in the use of floating-point numbers and 
a set of corresponding arithmetic rules that approximate correct arithmetic. These 
approximate rules and approximate representations are not unique by any means. For 
example, the software package Derive uses so-called slash arithmetic, which works 
with a representation of numbers as continued fractions instead of decimals. This has 
certain advantages and disadvantages, but, in the end, finiteness forces truncation just 
the same. 

The term "roundoff" implies that there is some kind of mitigation procedure or 
rounding done to reduce error once the smallest digits have been discarded. There are 
a number of different kinds of rounding practices. The various options can be quite 
intricate, but they all begin with the aim to slightly reduce error as a result of truncation. 
The truncation is the source of error, not the rounding, despite the terminology that 
seems to suggest otherwise. The entire process of truncation and rounding have come 
to be termed "roundoff," although the details of the error mitigation are immaterial for 
the purposes of this discussion. Rounding is beyond the scope of this section and will 
not be considered further. 

Historically, the term "decimal" implies base ten, but the idea works the same 
in any base. In particular, in any base, multiplying by the base to an integral power 
simply shifts the position of the "decimal point." Thus, multiplying or dividing by the 
base is known as a shift operation. The term "floating-point" signifies this shifting 
of the point to the left or right. The general technical term for the decimal point is 
radix point. Specifically for base two, the point is sometimes called the binary point. 
However, we will use the term decimal point or just decimal for all bases, as the 
etymological purity is not worth having several names for one small symbol. 

While computers, for the most part, work in base two, they can be and have been 
built in other bases. For example, there have been base-three computers, and many 
computers group numbers so that they work as if they were built in base eight ( octal) 
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or base sixteen (hexadecimal). (If you are feeling old, quote your age in hexadecimal. 
For example , 48 = 3 x 16 or 30 in hexadecimal. If you are feeling too young , use 
octal.) 

In a normal binary computer, floating-point numbers approximate the mathematical 
real numbers. Several bytes of memory (frequently 8 bytes) are allocated for each 
floating-point number. Each byte consists of eight bits, each of which has two (physical) 
states and can thus store one of the two base-two digits "O" or " 1," as it is the equivalent 
of a switch being either off or on. 

Thus , an eight-byte allocation for a floating-point number can store 64 bits of 
data. The computer uses something similar to scientific notation , which is often used 
to express numbers in base ten . However , the convention is to place the decimal 
immediately to the left of all significant figures . For example, the comp uter convention 
would call for the base-ten number 284,070,000 to be represented as 0.28407 x 109 . 

Here 0.28407 is called the mantissa , and it has 5 significant base-ten digits following 
the decimal point, the 2 being the most significant and the 7 the least significa nt digit. 
The 9 in the factor 109 is called the exponent , which defines the number of shift 
operations needed to locate the correct position of the decimal point of the actual 
number. 

The computer only needs to represent the mantissa and the expone nt, each with its 
appropriate sign . The base is set by the architecture and so is not stored . Neither is the 
decimal point nor the leading zero in the mantissa stored . These are all just implied . 
If the floating-point number has 64 bits, two are used for the two signs , leaving 62 bits 
for significant digits in the mantissa and the exponent. 

As an example of base two (i.e., binary) representation , the number 

101.011 = 1 x 22 + 0 x 2 1 + 1 x 2° + 0 x r 1 + 1 x r 2 + 1 x r 3 

stands for the base-ten number 4 + 1 + (1/4) + (1/8) = 43/8 . On a computer the stored 
bits would be+ 101011 for the mantissa and + 11 for the exponent. Thus, the base-two 
floating-point form is 0.101011 x 23 , with mantissa 0.101011 and exponent 3. Note 
that we are representing the exponent in base ten (3), and not base two (11), because 
that is more convenient for counting shift operations . 

While the base-two representation of two is 10, we will continue , for convenience, 
to write two as 2 when using it as the base for base-two representations. After all, any 
base b is represented by 10 with respect to itself as base. So, if we chose to write the 
number above as 0.101011 x 1011, the numeral could as well denote a number in any 
base. However, for us people normally thinking in base ten, 0.101011 x 23 clearly 
indicates that the base is two and the decimal point is shifted 3 digits to the right of the 
most significant digit in the mantissa. 

Now consider x = 0.101 x 2- 10 = 0.0000000000101 , the base-two floating
point number whose value as a base ten fraction is x = 5/ 8192. The only significant 
base-two digits are the 101 in the mantissa. Now add x to l; the result is 

1 + X = 0.10000000000101 X 2 I , 

which has mantissa 0.10000000000101 and expo nent 1. The mantissa now has 14 
significa nt base-two digits; all the zeroe s between the first and last ls are significant. 
If your comp uter or calculator software only allocates, say, 12 bits for mantissas, then 
it would be unable to represent 1 + x . It would have to throw away the two least 
significa nt base-two digits and save the number as 

1 + X = 0.100000000001 X 2
1 = ~:~:: , 

thus creating a roundoff error of 1/8, 192. Even worse, if only ten base-two digits were 
used to store mantissas, the comp uter would store 1 + x = 0.1000000000 x 2 1, (i.e ., 
it would not be able to distinguish 1 + x from 1.) Of course, calculators and comp uter 
software use many more than ten or twelve base-two digits to represent mantissas of 
floating -point numbers, but the number of digits used is certainly finite, and so the 
problem of roundoff will always occur for sufficiently small floating-point numbers x . 
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Figure 4.46 Part of the graph of f from 
Example 1 over the interval [33, 38] 

SECTION 4.7: Graphing with Computers 257 

Machine Epsilon and Its Effect on Figure 4.45 
The smallest number x for which the computer recognizes that 1 + x is greater than 1 
is called machine epsilon (denoted E) for that computer. The computer does not return 
I when evaluating 1 + E, but for all positive numbers x smaller than E, the computer 
simply returns 1 when asked to evaluate 1 + x , because the computer only keeps a 
finite number of (normally base 2) digits . 

When using computer algebra packages like Maple , the number of digits can 
be increased in the software. Thus , the number of numbers that the computer can 
represent can be extended beyond what is native to the processor 's hardware , by 
stringing together bits to make available larger numbers of digits for a single number. 
The Maple command for this is "Di gits," which defaults to 10 (decimal digits). 
However, the computer remains finite in size, so there will always be an effective value 
for E, no matter how the software is set. A hardware value for E is not uniform for 
all devices either. Thus , for any device you may be using (calculator or computer), 
the value of machine epsilon may not be immediately obvious. To anticipate where 
a computer may be wrong, you need the value of machine epsilon, and you need to 
understand where the function may run afoul of it. We will outline a simple way to 
determine this below. 

In the case of the function fin Example 1, it is clear where the computer discards 
digits in a sum. The factor ln(l + e- x) decreases as x increases , but for sufficiently 
large x a computer must discard the exponential in the sum because it is too small to 
show up in the digit s allotted for 1. When the exponential term decrease below the 
value of E, the computer will return 1 for the argument of the natural logarithm, and 
the factor will be determined by the computer to be 0. Thus, f will be represented as 
0 instead of nearly 1. 

Of course, pathological behaviour begins to happen before the exponential e-x 
decreases to below E. When the exponential is small enough , all change with x happens 
in the smaller digits. The sum forces them to be discarded by the computer, so the 
change is discarded with it. That mean s for finite intervals the larger digits from 
the decreasing exponential term do not change until the smal ler changes accrue . In 
the case of f, this means it behaves like an increasing exponential times a constant 
between corrections of the larger digits . This is confirmed in Figure 4.46, which is a 
close-up of the pathological region given by adjusting the interval of the plot command. 

1.: / 
1 W/////////////// / / 

0.5 

O 33 34 35 X 36 37 38 

Determining Machine Epsilon 
A small alteration in the function f of Example 1 provides an easy way to determine 
the value of machine epsilon . As computers store and process data in base-two form, 
it is useful to use instead off the function h(x) = 2x ln(l + r x). The Maple plot 
command 

> plot (2Ax*ln(l+l/2Ax) , x=50 .. 55 , style=line , 

thickness=S , xtickmarks=[S0 , 51 , 52 , 53 , 54] ); 

produces the graph in Figure 4.47 . The graph drops to O at x = 53. Thus, 2- 53 is 
the next number below E that the computer can represent. Because the first nonzero 
digit in a base-two number is 1, the next largest number must be up to twice as large . 
But because all higher digits are discarded, the effect is to have simply a change in the 
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2 

1.5 

0.5 

0 50 51 52 X 53 54 55 

Figure 4.47 This indicates that machine 
epsilon is E = 2- 52 

Figure 4.48 Illusions of computation 

EXERCISES 4.7 

exponent of the number, a shift operation. A single shift operation larger than 2- 53 is 
2- 52, so E = 2- 52 in the settings for this plot. 

From this we can predict when f will drop to zero in Figure 4.45 and Figure 4.46. 
It will be when E/ 2 = 2- 53 = e-x or approximately x = 36.74. While this seems 
to give us a complete command of the effect for most computers , there is much more 
going on with computer error that depends on specific algorithms. While significant 
error erupts when E is reached in a sum with l, other sources of error are in play well 
before that for smaller values of x. 

It is interesting to look at some of the complex and structured patterns of error in 
a close-up of what should be a single curve well before the catastrophic drop to zero. 
Figure 4.48 is produced by the plot instruction 

> plot(exp(x)*ln(l+l/exp(x)) , x = 29.5 .. 30 , 
style= point, symbol = point, numpoints = 3000); 

1t,L,.,1,,;,,..,1i,,11i;ii,:iil,, 

29.5 29.6 29.7 X 29.8 29.9 30 

In that figure there are many fascinating and beautiful patterns created , which are 
completely spurious. In this region the exponential curves are collapsed together, 
forming what seems like a single region contained within an expanding envelope. The 
beautiful patterns make it easy to forget that the mathematically correct curve would 
appear as a single horizontal line at height 1. The patterns here are created by Maple 's 
selection of points at which to evaluate the function and their placement in the plot. If 
you change the plot window, try to zoom in on them , or change the numbers of points 
or the interval; they will change too , or disappear. They are completely illusive and 
spurious features. Computers can ' t be trusted blindly. You can trust mathematics. 

1. Use Maple to get a plot instruction that plots an exponential 
function through one of the stripes in Figure 4.46. You can 
use the cursor position in the Maple display to read off the 
approximate coordinates of the lower left endpoint on one of 
the stripes. 

will behave differently. Assume machine epsilon is 
E = 2-52_ 

10 

2. Why should the expression h(x ) - J h(x )2 not be expected 
to be exactly zero, especially for large h(x) , when evaluated 
on a computer? 

3. Consider Figure 4.49. It is the result of the plot instruction: 
> plot([ln(2Ax-sqrt(2A(2*x)-1)), 
-ln(2Ax+sqrt(2A(2*x)-1))), x=O .. 50, 
y=-30 .. 10 , style=line , symbol=point, 
thickness=[l , 4) , color=[blue , grey] , 
numpoints=8000) ; 

The grey line is a plot off (x) = -1n(2 x + .J2 2x - l) . The 
coloured line is a plot of g(x) = ln(2x - .J22x - 1). 

(a) Show that g(x) = f (x). 

(b) Why do the graphs off and g behave differently? 

(c) Estimate a value of x beyond which the plots off and g 

10 
0 

-10 

y 

-20 

-30 

Figure 4.49 

4. If you use a graphing calculator or other mathematical 
graphing software, try to determine machine epsilon for it. 
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In Exercises 5-6 assume that a computer uses 64 bits (binary 
digits) of memory to store a floating-point number, and that of 
these 64 bits 52 are used for the mantissa and one each for the 
signs of the mantissa and the exponent. 

number that can be represented in floating-point form by the 
computer? 

6. To the nearest power of 10, what is the largest positive 
number that can be represented in floating-point form by the 
computer? S. To the nearest power of 10, what is the smallest positive 

. _ E_x_tr_e_m_e-_V_a_lu_e _P_ro_b_le_m_s ____________ _ _ _ 
In this section we solve various word problem s that, when translated into mathematical 
terms , require the finding of a maximum or minimum value of a function of one 
variable . Such problem s can range from simple to very complex and difficult; they can 
be phrased in terminology appropriate to some other discipline , or they can be already 
partially translated into a more mathematical context. We have already encountered a 
few such problems in earlier chapters. 

y A = xy y 

X 

Figure 4.50 

Let us consider a couple of example s before attempting to formulate any general 
principles for dealing with such problem s. 

E X AM p L E l A rectangular animal enclosure is to be constructed having one 
side along an existing long wall and the other three sides fenced. 

If 100 m of fence are available , what is the largest possible area for the enclosure ? 

Solution This problem , like many others , is essentially a geometric one. A sketch 
should be made at the outset, as we have done in Figure 4.50. Let the length and width 
of the enclosure be x and y m, respectively, and let its area be A m2 . Thus A = xy. 

Since the total length of the fence is 100 m, we must have x + 2y = 100. A appears to 
be a function of two variables, x and y, but these variables are not independent ; they 
are related by the const raint x + 2y = 100. Thi s constraint equation can be solved for 
one variable in terms of the other, and A can therefore be written as a function of only 
one variable: 

X = 100 - 2y , 

A= A(y) = (100 - 2y)y = lOOy - 2/. 

Evidently, we require y ::: 0 and y S 50 (i.e., x ::: 0), in order that the area make 
sense . (It would otherwise be negative .) Thus , we must maximize the function A(y) 
on the interval [0, 50]. Being continuous on this closed, finite interval , A must have 
a maximum value, by Theorem 5. Clearly, A(O) = A(50) = 0 and A(y) > 0 for 
0 < y < 50. Hence , the maximum cannot occur at an endpoint. Since A has no 
singular points , the maximum must occur at a critical point. To find any critical point s, 
we set 

0 = A'(y) = 100 - 4y. 

Therefore , y = 25. Since A must have a maxim um value and there is only one possible 
point where it can be, the maximum must occur at y = 25. The greatest possible area 
for the enclosure is therefore A(25) = 1,250 m2 . 

EXAM p LE 2 A lighthouse L is located on a small island 5 km north of a point 
A on a straight east-west shoreline. A cable is to be laid from L to 

point Bon the shoreline 10 km east of A. The cable will be laid through the water in a 
straight line from L to a point C on the shoreline between A and B, and from there to 
B along the shoreline. (See Figure 4.51.) The part of the cable lying in the water costs 
$5,000/km, and the part along the shoreline costs $3,000/km . 

(a) Where should C be chosen to minimize the total cost of the cable? 

(b) Where should C be chosen if Bis only 3 km from A? 
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A X 10-x B 

Figure 4.51 

Solution 
(a) Let C be x km from A toward B. Thus O :::= x :::: 10. The length of LC is .J25 + x 2 

km , and the length of CB is 10 - x km, as illustrated in Figure 4.51. Hence, the 
total cost of the cable is $T, where 

T = T(x) = 5,000 J 25 + x 2 + 3,000(10 - x ) , (0:::: x :::: 10). 

T is continuous on the closed, finite interval [0, 10], so it has a minimum value 
that may occur at one of the endpoints x = 0 or x = 10 or at a critical point in the 
interval (0, 10). (T has no singular points .) To find any critical points, we set 

dT 5,000x 
0 = - = -==::::;: - 3,000 . 

dx .J25 + x 2 

Thus, 5,000x = 3,0oo J 25 + x 2 

25x 2 = 9(25 + x 2
) 

16x2 = 225 

2 225 152 

X =- 16 42 . 

This equation has two solutions , but only one, x = 15/ 4 = 3.75, lies in the 
interval (0, 10). Since T(O) = 55,000, T(l5 / 4) = 50,000, and T(lO) ~ 55,902, 
the critical point 3.75 evidently provides the minimum value for T (x ). For minimal 
cost, C should be 3.75 km from A. 

(b) If Bis 3 km from A, the corresponding total cost function is 

T(x) = s ,000 J 2s + x 2 + 3,000(3 - x) , (0 :S X ::S 3), 

which differs from the total cost function T (x) of part (a) only in the added 
constant (9,000 rather than 30,000). It therefore has the same critical point, 
x = 15/ 4 = 3.75, which does not lie in the interval (0, 3). Since T(O) = 34,000 
and T(3) ~ 29,155 , in this case we should choose x = 3. To minimize the total 
cost, the cable should go straight from L to B. 

Procedure for Solving Extreme-Value Problems 
Based on our experience with the examples above, we can formulate a checklist of 
steps involved in solving optimization problems. 

Solving extreme-value problems 

l. Read the problem very carefully , perhaps more than once . You must 
understand clearly what is given and what must be found . 

2. Make a diagram if appropriate. Many problem s have a geometric com 
ponent , and a good diagram can often be an essential part of the solution 
proce ss. 

3. Define any symbol s you wish to use that are not already specified in the 
statement of the problem . 

4. Expres s the quantity Q to be maximized or minimized as a function of 
one or more variable s. 

5. If Q depends on n variables, where n > l , find n - l equations (con
straint s) linking these variables . (If this cannot be done , the problem 
cannot be solved by single-variable techniques .) 

6. Use the constraints to eliminate variables and hence express Q as a 
function of only one variable . Determine the interval(s) in which this 
variable must lie for the problem to make sense . Alterna tively, regard the 
constraints as implicitly defining n - 1 of the variab les , and hence Q, as 
functions of the remaining variable . 
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7. Find the required extreme value of the function Q using the techniques 
of Section 4.4. Remember to consider any critical points , singular points, 
and endpoint s. Make sure to give a convincing argument that your 
extreme value is the one being sought; for example , if you are looking 
for a maximum , the value you have found should not be a minimum . 

8. Make a concluding statement answering the question asked. Is your 
answer for the question reasonable ? If not , check back through the 
solution to see what went wrong. 

EXAM p L E 3 Find the length of the shortest ladder that can extend from a vertical 
wall, over a fence 2 m high located 1 m away from the wall, to a 

point on the ground outside the fence. 

Solution Let 0 be the angle of inclination of the ladder, as shown in Figure 4.52. 
Using the two right-angled triangles in the figure, we obtain the length L of the ladder 
as a function of 0: 

1 2 
L = L(0) = - + -. - , 

COS 0 SIIl 0 

where O < 0 < n:/ 2. Since 

Jim L(0) = oo and Jim L(0) = oo, 
0-+(7!/ 2)- 0-+0+ 

L(0) must have a minimum value on (0, n: / 2) , occurring at a critical point. (L has no 
singular points in (0, n:/ 2).) To find any critical points , we set 

'( sin0 2cos0 sin3 0-2cos 3 0 
O = L B) = -co_s_2_0 - -sw-. -2 0- = _c_o_s_2_0_s-in_2_0_ 

Any critical point satisfies sin3 0 = 2cos 3 0, or, equivalently, tan3 0 = 2. We don ' t 
need to solve this equation for 0 = tan- 1 (2 113) since it is really the corresponding 
value of L(0) that we want. Observe that 

sec20 = 1 + tan20 = 1 + 2213
. 

It follows that 

1 
cos0 = (1 + 22/3) 1/2 and 

21/3 
sin0 = tan0 cos0 = (l + 2213) 1/ 2 . 

Therefore, the minimal value of L(0) is 

1 2 (1 + 2213) 112 3/2 
-- + -. - = (1 + 2213) 112 + 2---- = (1 + 2213) ~ 4.16 . 
cos0 sw0 21/ 3 

The shortest ladder that can extend from the wall over the fence to the ground outside 
is about 4.16 m long. 

EXAM p LE 4 Find the most economical shape of a cylindrical tin can. 
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h 

---- r ---------

Figure 4.53 

Solution This problem is stated in a rather vague way. We must consider what is 
meant by "most economical" and even "shape." Without further information, we can 
take one of two points of view: 

(i) the volume of the tin can is to be regarded as given, and we must choose the 
dimensions to minimize the total surface area, or 

(ii) the total surface area is given (we can use just so much metal) , and we must choose 
the dimensions to maximize the volume. 

We will discuss other possible interpretations later. Since a cylinder is determined by 
its radius and height (Figure 4.53), its shape is determined by the ratio radius/height. 
Let r, h, S, and V denote, respectively, the radius, height , total surface area, and volume 
of the can. The volume of a cylinder is the base area times the height: 

V = 7rr2h. 

The surface of the can is made up of the cylindrical wall and circular disks for the 
top and bottom . The disks each have area 7f r 2 , and the cylindrical wall is really 
just a rolled-up rectangle with base 27f r (the circumference of the can) and height h. 
Therefore , the total surface area of the can is 

S = 27rrh + 27rr2. 

Let us use interpretation (i): V is a given constant , and S is to be minimized. We 
can use the equation for V to eliminate one of the two variables r and h on which 
S depends. Say we solve for h = V / (7r r 2) and substitute into the equation for S to 
obtain S as a function of r alone: 

V 2 2V 2 S = S(r) = 2nr -
2 

+ 27rr = - + 27rr (0 < r < oo). 
7rr r 

Evidently, lillr ->O+ S(r) = oo and lim, _. 00 S(r) = oo. Being differentiable and 
therefore continuous on (0, oo), S(r) must have a minimum value, and it must occur 
at a critical point. To find any critical point s, 

, 2V 
0 = S (r) = -- 2 +47rr , 

r 

r3 = 2V = _1_7rr2h = ~ r2h. 
4n 27r 2 

Thus, h = 2r at the critical point of S. Under interpretation (i), the most economical 
can is shaped so that its height equals the diameter of its base. You are encouraged to 
show that interpretation (ii) leads to the same conclusion. 

Remark A different approach to the problem in Example 4 shows directly that 
interpretations (i) and (ii) must give the same solution. Again, we start from the two 
equations 

V = 7rr2h and 

If we regard h as a function of r and differentiate implicitly, we obtain 

dV 2 dh - = 2n rh + n r - , 
dr dr 

dS dh - = 27rh +2nr- +4nr. 
dr dr 

Under interpretation (i), V is constant and we want a critical point of S; under interpre
tation (ii), S is constant and we want a critical point of V. In either case, dV / dr = 0 
and dS/dr = 0. Hence both interpretations yield 

2 dh 
2nrh + 7rr - = 0 

dr 
and 

If we divide the first equation by n r 2 and the second equation by 2n r and subtract to 
eliminate dh / dr , we again get h = 2r. 
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Square Packing: 
each disk uses up a square 

Hexagonal Packing: 
each disk uses up a hexagon 

Figure 4.54 Square and hexagonal 
packing of disks in a plane 

Figure 4.55 Running and swimming to 
get from A to B 
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Remark Modifying Example 4 Given the sparse information provided in the state
ment of the problem in Example 4, interpretations (i) and (ii) are the best we can do. 
The problem could be made more meaningful economically (from the point of view, 
say, of a tin can manufacturer) if more elements were brought into it. For example: 

(a) Most cans use thicker material for the cylindrical wall than for the top and bottom 
disks. If the cylindrical wall material costs $A per unit area and the material for 
the top and bottom costs $B per unit area, we might prefer to minimize the total 
cost of materials for a can of given volume. What is the optimal shape if A = 2B? 

(b) Large number s of cans are to be manufactured. The materi al is probably being cut 
out of sheets of metal. The cylindrical walls are made by bending up rectangles, 
and rectangle s can be cut from the sheet with little or no waste. There will, 
however, always be a proportion of material wasted when the disks are cut out. 
The exact proportion will depend on how the disks are arranged; two possible 
arrangements are shown in Figure 4.54. What is the optimal shape of the can if a 
square packing of disks is used? A hexago nal packing? Any such modification of 
the original problem will alter the optimal shape to some extent. In "real-world" 
problems , many factors may have to be taken into account to come up with a "best" 
strategy. 

(c) The problem makes no provi sion for costs of manufacturing the can other than 
the cost of sheet metal. There may also be costs for joining the opposite edges of 
the rectang le to make the cylinder and for joining the top and bottom disks to the 
cylinder . The se costs may be proportion al to the lengths of the joins. 

In most of the examples above, the maximum or minimum value being sought occurred 
at a critical point. Our final example is one where this is not the case . 

EXAM p LE 5 A man can run twice as fast as he can swim. He is standing at point 
A on the edge of a circular swimming pool 40 m in diameter, and 

he wishes to get to the diametrically opposite point B as quickly as possible . He can 
run around the edge to point C, then swim directly from C to B. Wher e should C be 
chosen to minimize the total time taken to get from A to B ? 

I 
I 

I 
I 

I 

I 
I 

I 

I 
I 

I 

n:-0 \ I 0 
B ------ --- - 2- \/-------------A 

0 20m 

Solution It is convenient to describe the position of C in terms of the angle AOC, 
where O is the centre of the pool. (See Figure 4.55.) Let 0 denote this angle . Clearly 
0 :'S 0 .'.S 7T:. (If 0 = 0, the man swims the whole way; if 0 = 7T:, he runs the whole 
way.) The radius of the pool is 20 m, so arc AC= 200. Since angle BOC= 7T: - 0, 
we have angle BOL = (7r: - 0) / 2 and chord BC= 2BL = 40sin((7r: - 0) / 2) . 

Suppose the man swims at a rate k mis and therefore runs at a rate 2k mis. If t is 
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the total time he takes to get from A to B, then 

t = t (0) = time running + time swimming 

200 40 . 71: - 0 
=--+-sm--. 

2k k 2 

(We are assuming that no time is wasted in jumping into the water at C.) The domain 
of t is [0, 7T:] and t has no singular points. Since t is continuous on a closed, finite 
interval, it must have a minimum value, and that value must occur at a critical point or 
an endpoint. For critical points, 

I 10 20 7T: -0 
0 = t (0) = - - -cos--. 

k k 2 

Thus, 

7T: -0 l 
cos--= -

2 2' 
7T: -0 

2 

7T: 

3' 
This is the only critical value of 0 lying in the interval [O, 7T: ]. We have 

t (~) = 1071: + 40 sin~= 10 (~ + 4,)3) ~ 45.11. 
3 3k k 3 k 3 2 k 

We must also look at the endpoints 0 = 0 and 0 = 7T:: 

40 
t(O) = k' 

1071: 31.4 
t(7C) = - ~ -. 

k k 

Evidently t (71:) is the least of these three times. To get from A to B as quickly as 
possible, the man should run the entire distance . 

Remark This problem shows how important it is to check every candidate point to 
see whether it gives a maximum or minimum. Here, the critical point 0 = 7T: /3 yielded 
the worst possible strategy: running one-third of the way around and then swimming 
the remainder would take the greatest time, not the least. 

EXERCISES 4.8 

1. Two positive numbers have sum 7. What is the largest the least perimeter. 
possible value for their product? 8. Among all rectangles of given perimeter, show that the 

2. Two positive numbers have product 8. What is the smallest square has the greatest area. 
possible value for their sum? 9. Among all isosceles triangles of given perimeter, show that 

3. Two nonnegative numbers have sum 60. What are the the equilateral triangle has the greatest area. 
numbers if the product of one of them and the square of the 10. Find the largest possible area for an isosceles triangle if the 
other is maximal? length of each of its two equal sides is 10 m. 

4. Two numbers have sum 16. What are the numbers if the 11. Find the area of the largest rectangle that can be inscribed in 
product of the cube of one and the fifth power of the other is a semicircle of radius R if one side of the rectangle I ies along 
as large as possible? the diameter of the semicircle. 

5. The sum of two nonnegative numbers is 10. What is the 12. Find the largest possible perimeter of a rectangle inscribed in 
smallest value of the sum of the cube of one number and the a semicircle of radius R if one side of the rectangle lies along 
square of the other? the diameter of the semicircle. (It is interesting that the 

6. Two nonnegative numbers have sum n. What is the smallest rectangle with the largest perimeter has a different shape than 
possible value for the sum of their squares? the one with the largest area, obtained in Exercise 11.) 

7. Among all rectangles of given area, show that the square has 13. A rectangle with sides parallel to the coordinate axes is 
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inscribed in the ellipse 

x 2 y2 
2+2=1. a b 

Find the largest possible area for this rectangle. 

14. Let A BC be a triangle right-angled at C and having area S. 
Find the maximum area of a rectangle inscribed in the 
triangle if (a) one corner of the rectangle lies at C, or 
(b) one side of the rectangle lies along the hypotenuse , AB. 

15. Find the maximum area of an isosceles triangle whose equal 
sides a.re 10 cm in length. Use half the length of the third 
side of the triangle as the variable in terms of which to 
express the area of the triangle . 

16. Repeat Exercise 15, but use instead the angle between the 
equal sides of the triangle as the variable in terms of which to 
express the area of the triangle. Which solution is easier? 

17. (Designing a billboard) A billboard is to be made with 
100 m2 of printed area and with margins of 2 m at the top and 
bottom and 4 m on each side. Find the outside dimensions of 
the billboard if its total area is to be a minimum. 

18. (Designing a box) A box is to be made from a rectangular 
sheet of cardboard 70 cm by 150 cm by cutting equal squares 
out of the four corners and bending up the resulting four 
flaps to make the sides of the box. (The box has no top.) 
What is the largest pos sible volume of the box? 

19. (Using rebates to maximize profit) An automobile 
manufacturer sells 2,000 car s per month , at an average profit 
of $1,000 per car . Market research indicates that for each 
$50 of factory rebate the manufacturer offers to buyers it can 
expect to sell 200 more ca.rs each month. How much of a 
rebate should it offer to maximize its monthly profit? 

20. (Maximizing rental profit) All 80 rooms in a motel will 
be rented each night if the manager charges $40 or less per 
room . lfhe charges $(40 + x) per room, then 2x rooms will 
remain vacant. If each rented room costs the manager $10 
per day and each unrented room $2 per day in overhead, how 
much should the manager charge per room to maximize his 
daily profit? 

21. (Minimizing travel time) You are in a dune buggy in the 
desert 12 km due south of the nearest point A on a straight 
east-west road . You wish to get to point Bon the road 10 km 
east of A. If your dune buggy can average 15 km/h travelling 
over the desert and 39 km/h travelling on the road, toward 
what point on the road should you head in order to minimize 
your travel time to B? 

22. Repeat Exercise 21, but assume that B is only 4 km from A . 

23. (Flying with least energy) At the altitude of airliners, 
winds can typically blow at a speed of about 100 knots 
(nautical miles per hour) from the west toward the east. A 
westward-flying passenger jet from London, England , on its 
way to Toronto , flies directly against this wind for 3,000 
nautical miles. The energy per unit time expended by the 
airliner is proportional to v 3 , where v is the speed of the 
airliner relative to the air. This reflects the power required to 
push aside the air exerting ram pressure proportional to v2 . 

What speed uses the least energy on this trip? Estimate the 
time it would take to fly this route at the resulting optimal 
speed. Is this a typical speed at which airliners travel? 
Explain. 
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24. (Energy for a round trip) In the preceding problem we 
found that an airliner flying against the wind at speed , v , with 
respect to the air consumes the least energy over a flight if it 
travels at v = 3u/ 2, where u is the speed of the headwind 
with respect to the ground . Assume the power (energy per 
unit time) required to push a.side the air is kv 3. 

(a) Write the general expression for energy consumed over a 
trip of distance e flying with an airspeed v into a 
headwind of speed u. Also write the general expres sion 
for energy used on the return journey along the same 
path with airspeed w aided by a tailwind of speed u. 

(b) Show that the energy consumed in the return journey is a 
strictly increasing function of w. What is the least 
energy consumed in the return journey if the airliner 
must have a minimum airspeed of s (known as "stall 
speed ") to stay aloft? 

(c) What is the least energy consumed in the round trip if 
u > 2s / 3? What is the energy consumed when 
u < 2s / 3? 

25. A one-metre length of stiff wire is cut into two pieces. One 
piece is bent into a circle , the other piece into a square. Find 
the length of the part used for the square if the sum of the 
areas of the circle and the square is (a) maximum and 
(b) minimum . 

26. Find the area of the largest rectangle that can be drawn so 
that each of its sides passes through a different vertex of a 
rectangle having sides a and b. 

27. What is the length of the shortest line segment having one 
end on the x -axis , the other end on the y-axis, and passing 
through the point (9, -v'3)? 

am 

l 

-bm-. 

Figure 4.56 

28. (Getting around a corner) Find the length of the longe st 
beam that can be carried horizontally around the comer from 
a hallw ay of width a m to a hallway of width b m. (See 
Figure 4 .56 ; assume the beam has no width.) 

29. If the height of both hallways in Exercise 28 is c m, and if the 
beam need not be carried horizontally, how long can it be and 
still get around the corner ? Hint: You can use the result of 
the previou s exercise to do this one easily. 

30. The fence in Example 3 is demolished and a new fence is 
built 2 m away from the wall . How high can the fence be if a 
6 m ladder must be able to extend from the wall, over the 
fence, to the ground outside? 

31. Find the shortest distance from the origin to the curve 
x2y4 = 1. 

32. Find the shortest distance from the point (8, I) to the curve 
y = I +x3 /2_ 
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33. Find the dimensions of the largest right-circular cylinder that 
can be inscribed in a sphere of radius R. 

34. Find the dimensions of the circular cylinder of greatest 
volume that can be inscribed in a cone of base radius R and 
height H if the base of the cylinder lies in the base of the 
cone. 

35. A box with square base and no top has a volume of 4 m3. 

36. 

37. 

38. 

39. 

0 40. 

Find the dimensions of the most economical box. 

2 ft 

Figure 4.57 

(Folding a pyramid) A pyramid with a square base and 
four faces, each in the shape of an isosceles triangle, is made 
by cutting away four triangles from a 2 ft square piece of 
cardboard (as shown in Figure 4.57) and bending up the 
resulting triangles to form the walls of the pyramid. What is 
the largest volume the pyramid can have? Hint: The volume 
of a pyramid having base area A and height h measured 
perpendicular to the base is V = ½ Ah. 

(Getting the most light) A window has perimeter 10 m 
and is in the shape of a rectangle with the top edge replaced 
by a semicircle . Find the dimensions of the rectangle if the 
window admits the greatest amount of light. 

(Fuel tank design) A fuel tank is made of a cylindrical part 
capped by hemispheres at each end. If the hemispheres are 
twice as expensive per unit area as the cylindrical wall, and if 
the volume of the tank is V, find the radius and height of the 
cylindrical part to minimize the total cost. The surface area 
of a sphere of radius r is 4ir r2 ; its volume is 1 ir r3 . 

(Reflection of light) Light travels in such a way that it 
requires the minimum possible time to get from one point to 
another. A ray of light from C reflects off a plane mirror AB 
at X and then passes through D. (See Figure 4.58.) Show 
that the rays C X and X D make equal angles with the normal 
to AB at X. (Remark: You may wish to give a proof based 
on elementary geometry without using any calculus, or you 
can minimize the travel time on CXD.) 

A X B 
Figure 4.58 

(Snell's Law) If light travels with speed v, in one medium 
and speed v2 in a second medium , and if the two media are 
separated by a plane interface, show that a ray of light 

passing from point A in one medium to point B in the other 
is bent at the interface in such a way that 

sin i v1 

sin r v2 

where i and r are the angles of incidence and refraction, as is 
shown in Figure 4.59. This is known as Snell's Law. Deduce 
it from the least-time principle stated in Exercise 39. 

A 

speed v1 

speed v2 

B 

Figure 4.59 

41. (Cutting the stiffest beam) The stiffness of a wooden 
beam of rectangu lar cross sect ion is proportional to the 
product of the width and the cube of the depth of the cross 
sect ion. Find the width and depth of the stiffest beam that 
can be cut out of a circular log of radius R. 

42. Find the equation of the straight line of maximum slope 
tangent to the curve y = l + 2x - x 3 . 

43. A quantity Q grows according to the differential equation 

where k and L are positive constants. How large is Q when 
it is growing most rapidly ? 

0 44. Find the smallest possible volume of a right-circular cone 
that can contain a sphere of radius R. (The volume of a cone 
of base radius r and height h is ½ ir r2 h.) 

0 45. (Ferry loading) A ferry runs between the mainland and the 
island of Dedios. The ferry has a maximum capacity of 1,000 
cars, but loading near capacity is very time consuming. It is 
found that the number of cars that can be loaded in t hours is 

t 
f(t) = 1,000-- . 

e- 1 +t 

(Note that limr-+oo f(t) = 1,000 as expected .) Further, it is 
found that it takes x / 1,000 hours to unload x cars. The 
sailing time to or from the island is 1 hour. Assume there are 
always more cars waiting for each sailing than can be loaded. 
How many cars should be loaded on the ferry for each sailing 
to maximize the average movement of cars back and forth to 
the island ? (You will need to use a graphing calculator or 
computer software like Maple's f so 1 ve routine to find the 
appropriate critical point.) 
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0 46. (The best view of a mural) How far back from a mural 
should one stand to view it best if the mural is 10 ft high and 
the bottom of it is 2 ft above eye level? (See Figure 4.60.) 

A 

0 

10ft 

0 

2-ft-----------------~t ',,, 
---------------------- ----' 

X 

Figure 4.61 

Figure 4.60 

0 47. (Improving the enclosure of Example 1) An enclosure 
is to be constructed having part of its boundary along an 
existing straight wall. The other part of the boundary is to be 
fenced in the shape of an arc of a circle. If 100 m of fencing 
is available, what is the area of the largest possible 
enclosure? Into what fraction of a circle is the fence bent? 

0 49. (Minimize the fold) One corner of a strip of paper a cm 
wide is folded up so that it lies along the opposite edge. (See 
Figure 4.62.) Find the least possible length for the fold line. 

l 
a 

0 48. (Designing a Dixie cup) A sector is cut out of a circular 
disk of radius R, and the remaining part of the disk is bent up 
so that the two edges join and a cone is formed. (See 
Figure 4.61.) What is the largest possible volume for the 
cone? 

Figure 4.62 

. _ L_in_e_a_r A_p_p_ro_xi_m_a_tio_n_s ______________ _ 
Many problems in applied mathematics are too difficult to be solved exactly-that is 
why we resort to using computers, even though in many cases they may only give 
approximate answers. However , not all approximation is done with machines. Linear 
approximation can be a very effective way to estimate values or test the plausibility of 
numbers given by a computer. In Section 2.7 we observed how differentials could be 
used to approximate (changes in) the values of functions between nearby points. In this 
section we reconsider such approximations in a more formal way, and obtain estimates 
for the size of the errors encountered when such "linear" approximations are made. 

y 

Figure 4.63 

f about a 

a X X 

The linearization of function 

DEFINITION 

I 

The tangent to the graph y = f (x) at x = a describes the behaviour of that graph 
near the point P = (a, f(a)) better than any other straig ht line through P, because it 
goes through Pin the same direction as the curve y = f(x). (See Figure 4 .63.) We 
exploit this fact by using the height to the tangent line to calculate approximate values of 
f(x) for values of x near a. The tangent line has equation y = f(a) + f'(a)(x - a). 
We call the right side of this equation the linearization off about a ( or the linearization 
of f(x) aboutx = a). 

The linearization of the function f about a is the function L defined by 

L(x) = f(a) + J'(a)(x - a). 

We say that f (x) ~ L(x) = f (a)+ f'(a)(x-a) provides linear approximations 
for values off near a. 
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EXAMPLE 1 

Solution 

Find linearizations of (a) f(x) = .JT+x about x = 0 and 
(b) g(t) = 1/ t about t = 1/ 2. 

(a) We have f (0) = 1 and, since f'(x) = 1/ (2.Jf+x), f ' (O) = 1/ 2. The lineariza
tion off about O is 

1 X 
L(x) = 1 + -( x - 0) = 1 + - . 

2 2 

(b) We have g(l/2) = 2 and , since g' (t) = -l / t 2, g' (l / 2) = -4. The linearization 
of g(t) about t = 1/ 2 is 

L(t) = 2 - 4 (i -~) = 4 - 4t . 

Approximating Values of Functions 
We have already made use of linearization in Section 2.7, where it was disguised as the 
formula 

dy 
f..y ~ - f..x 

dx 

and used to approximate a small change f..y = f(a + f..x) - f(a) in the values of 
function f corresponding to the small change in the argument of the function from a 
to a + f..x. This is just the linear approximat ion 

f(a + f..x) ~ L(a + f..x) = f(a) + J ' (a)f..x . 

EXAMPLE 2 A ball of ice melt s so that its radius decreases from 5 cm to 4.92 cm. 
By approximate! y how much does the volume of the ball decrease? 

Solution The volume V of a ball of radius r is V = i 7r r 3
, so that dV / dr = 47r r2 

and L(r + f..r) = V(r) + 47rr2 f..r . Thus , 

f..V ~ L(r + f..r) = 4u 2 f..r. 

For r = 5 and f..r = -0.08, we have 

f..V ~ 47r(52)(-0.08) = -87r ~ -25. 13. 

The volume of the ball decreases by about 25 cm3 . 

The following example illustrate s the use of linearization to find an approximate value 
of a function near a point where the values of the function and its derivative are known. 

EXAMPLE 3 Use the linearization for ,jx about x = 25 to find an approximate 
value for .Ju>. 

Solution If f (x) = ,jx, then J'(x) = 1/ (2,jx). Since we know that f (25) = 5 and 
J' (25) = 1/ 10, the linearization off (x) about x = 25 is 

1 
L (x) = 5 + 

10 
(x - 25). 
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Figure 4.64 f (x) and its linearization 
L(x) about x = a. E(x) is the error in the 
approximation f (x) ;,:; L (x) 
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Putting x = 26, we get 

v'26 = f (26) ~ L(26) = 5 + l~ (26 - 25) = 5.1. 

If we use the square root function on a calculator we can obtain the "true value" of 
-v'26 (actually, just another approximation, although presumably a better one): .vf26 = 
5.099 019 5 ... , but if we have such a calculator we don't need the approximation in 
the first place . Approximations are useful when there is no easy way to obtain the 
true value. However , if we don ' t know the true value, we would at least like to have 
some way of determining how good the approximation must be; that is, we want an 
estimate for the error. After all, any number is an approximation to -v'26, but the error 
may be unacceptably large; for instance , the size of the error in the approximation 
-v'26 ~ 1,000,000 is greater than 999 ,994. 

Error Analysis 
In any approximation, the error is defined by 

error = true value - approximate value . 

If the linearization of .f about a is used to approximate .f (x) near x = a, that is, 

f(x) ~ L(x) = f(a) + f'(a)(x - a), 

then the error E (x) in this approximation is 

E(x) = f(x) - L(x) = f(x) - f(a) - J ' (a)(x - a). 

It is the vertical distance at x between the graph off and the tangent line to that graph 
at x = a, as shown in Figure 4.64. Observe that if xis "near" a, then E(x) is small 
compared to the horizontal distance between x and a. 

y 

GE(x) 

I - - -t- - t -- l 
_____ l ~~a~l ~ ~) 

:: 1 f(x) 
L(x) 

I f (a) 1 
i l 

a X X 

The following theorem and its corollaries give us a way to estimate this error if we 
know bounds for the second derivative off. 
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THEOREM 

Ill 
An error formula for linearization 

If f" (t) exists for all tin an interval containjng a and x, then there exists some points 
between a and x such that the error E(x) = f(x) - L(x) in the linear approximation 
f(x) ~ L(x) = f(a) + f'(a)(x - a) satisfies 

f" (s) 
E(x) = -

2
- (x - a) 2

. 

PROOF Let us assume that x > a . (The proof for x < a is siwlar.) Since 

E(t) = f(t) - f(a) - J'(a)(t - a), 

we have E'(t) = f'(t) - f'(a). We apply the Generalized Mean-Value Theorem 
(Theorem 16 of Section 2.8) to the two functions E(t) and (t - a) 2 on [a, x]. Noting 
that E(a) = 0, we obtain a number u in (a, x) such that 

E(x) 

(x - a) 2 

E(x) - E(a) 

(x - a) 2 - (a - a) 2 
E ' (u) = f ' (u) - f'(a) = ~ J"(s) 

2(u -a) 2(u -a) 2 

for some s in (a, u); the latter expression is a consequence of applying the Mean-Value 
Theorem again, thjs time to f' on [a, u]. Thus, 

f" (s) 
E(x) = -

2
- (x - a)2 

as claimed. 

The following three corollaries are immediate consequences of Theorem 11. 

Corollary A. If f" (t) has constant sign (i.e ., is always positive or always negative) 
between a and x, then the error E (x) in the linear approximation f (x) ~ L (x) in the 
Theorem has that same sign; if f"(t) > 0 between a and x, then f (x) > L(x); if 
f"(t) < 0 between a and x, then f(x) < L(x). 

Corollary B. If lf"(t)[ < K for all t between a and x (where K is a constant), then 
[E(x)[ < (K/2)(x - a) 2 . 

Corollary C. If f" (t) satisfies M < f" (t) < N for all t between a and x (where M 
and N are constants), then 

M N 
L(x) + - (x - a) 2 < f(x) < L( x) + - (x - a/. 

2 2 

If Mand N have the same sign, a better approximation to f (x) is given by the midpoint 
of this interval containing f (x ): 

M+N 
f(x) ~ L(x) + -

4
- (x - a) 2

. 

For this approximation the error is less than half the length of the interval: 

N-M 
[Error[ < -

4
- (x - a )2 . 

EXAM p LE 4 Deterwne the sign and estimate the size of the error in the approx-
imation .J26 ~ 5.1 obtained in Example 3. Use these to give a 

small interval that you can be sure contains .J26. 
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Solution For f(t) = t 112 , we have 

1 
J'(t) = - t - 1/ 2 

2 
and J"(t) = -~ t-3 / 2. 

4 

For 25 < t < 26, we have f"(t) < 0, so ,Ji6 = f(26) < L(26) = 5.1. Also, 
t 312 > 253/ 2 = 125, so lf"(t)I < (1/ 4)(1 / 125) = 1/ 500 and 

1 1 1 
IE(26)1 < - x - x (26- 25)2 = -- = 0.001. 

2 500 1,000 

Therefore, f(26) > L(26) - 0.001 = 5.099, and ,J26 is in the interval (5.099, 5.1). 

Remark We can use Corollary C of Theorem 11 and the fact that ,J26 < 5 .1 to 
find a better (i.e., smaller) interval containing ,J26 as follows. If 25 < t < 26, then 
125 = 253/ 2 < t312 < 26312 < 5. 13 . Thus, 

1 1 
M = - 4 x 125 < J"(t) < - 4 x 5.13 = N 

M+N 1( 1 1 ) ,v'26 ~ L(26) + -
4
- = 5.1- 4 4 

X 
125 

+ 
4 

X 
5

.13 ~ 5.0990288 

N-M l ( l I) IErrorl < -- = - --
3 

+ - ~ 0.0000288. 
4 16 5.1 125 

Thus, ,J261ies in the interval (5.099 00, 5.099 06). 

EXAM p LE 5 Use a suitable linearization to find an approximate value for 
cos 36° = cos(ir / 5). Is the true value greater than or less than 

your approximation? Estimate the size of the error, and give an interval that you can 
be sure contains cos(36 °). 

Solution Let f(t) =cost, so that J ' (t) = - sin t and f"(t) = - cost. The value of 
a nearest to 36° for which we know cos a is a = 30° = ir / 6, so we use the linearization 
about that point: 

ir . ir ( ir) y'3 1 ( ir) L(x) = cos 6 - sm 6 x - 6 = 2 - 2 x - 6 · 

Since (ir /5) - (ir / 6) = ir / 30, our approximation is 

cos36 ° =cosi~L(i)= ~-~(;
0

)~0.81367. 

If (ir/6) < t < (ir/ 5), then J"(t) < 0 and lf"(t)I < cos(ir / 6) = ""3/2. Therefore, 
cos 36° < 0.813 67 and 

IE(36°)1 < v'3 (!!_)2 
< 0.004 75. 

4 30 

Thus, 0.81367 - 0.00475 < cos36 ° < 0.81367, so cos36° lies in the interval 
(0.808 92, 0.813 67). 

Remark The error in the linearization off (x) about x = a can be interpreted in 
terms of differentials (see Section 2.7 and the beginning of this section) as follows: If 
~x = dx = x - a, then the change in J(x) as we pass from x = a to x =a+ ~x 
is f(a + ~x) - f(a) = ~y, and the corresponding change in the linearization L(x) 
is J'(a)(x - a) = J'(a) dx, which is just the value at x = a of the differential 
dy = J'(x) dx. Thus, 

E(x) = ~y - dy. 
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The error E(x) is small compared with t,.x as t,.x approaches 0, as seen in Figure 4.64 . 
In fact , 

. t,.y-dy . (t,. y dy ) dy dy 
};~o t,.x = Li

1;~o t,.x - dx = dx - dx = O. 

If lf "(t)I S K (constant) near t = a, a stronger assertion can be made : 

l
t,.y-dyl I E(x) I K 

(t,.x)2 = (t,.x)2 S 2' so 
K 

it,.y - dy l S 2 (t,.x) 2. 

EXE R C IS ES 4.9 
In Exercise s 1- 10, find the linearization of the given function 
about the given point. 

1. x 2 aboutx = 3 2. x- 3 about x = 2 

3. .J 4 - x about x = 0 4. J3 + x 2 about x = 1 

5. 1/ (l+ x) 2 about x =2 6. 1/ Jx about x = 4 

7. sin x about x = 11: 8. cos(2x) about x = 11: / 3 

9. sin2 x about x = 11: / 6 10. tan x about x = n / 4 

11. By approximately how much does the area of a square 
increa se if its side length increa ses from 10 cm to 10.4 cm? 

12. By about how much must the edge length of a cube decrease 
from 20 cm to reduce the volume of the cube by 12 cm3? 

13. A spacecraft orbits the earth at a distance of 4,100 miles 
from the centre of the earth. By about how much will the 
circumference of its orbit decre ase if the radius decreases by 
10 miles ? 

14. (Acceleration of gravity) The acce leration a of gravity at 
an altitude of h miles above the surface of the earth is given 
by 

a=g(R:hr 
where g ~ 32 ft/s2 is the acceleration at the surface of the 
earth , and R ~ 3960 miles is the radius of the earth. By 
about what percentage will a decrea se if h increases from 0 
to 10 miles? 

In Exerci ses 15- 22, use a suitabl e lineari zation to approximate 
the indic ated value. Determine the sign of the error and estimate 
its size. Use this information to specify an interval you can be 
sure contains the value . 

15 . .Jso 16. ,,/47 

17. ~ 18. 
1 

--
2.003 

19. cos 46° 20. 
7r 

sin -
5 

21. sin (3.14) 22. sin 33° 

Use Corollary C of Theorem 11 in the manner sugges ted in the 
remark following Example 4 to find better intervals and better 
approximat ions to the values in Exerc ise 23- 26. 

23 . .Jso as first approximat ed in Exercise 15. 

24. ../47 as first approximat ed in Exercise 16. 

25. cos 36° as first approximated in Exampl e 5. 

26. sin 33° as first approximated in Exercise 22. 

27. If f(2) = 4, ! ' (2) = -1 , and O::: f"(x ) ::: 1/ x for x > 0, 
find the smallest interval you ca n be sure co ntains f (3). 

l l 
28. If f(2) = 4, ! ' (2) = -1 , and -

2 
::: f " (x)::: - for 

X X 
2 ::: x ::: 3, find the best approximation you can for f (3). 

29. If g(2) = 1, g'(2) = 2, and lg" (x)I < 1 + (x - 2)2 for all 
x > 0, find the best approximation you can for g(l.8). How 
large can the error be? 

30. Show that the linearization of sin 0 at 0 = 0 is L(0) = 0. 
How large can the percentage error in the approximation 
sin0 ~ 0 be if 10 1 is less than 17°? 

31. A spherical balloon is inflated so that its radius increase s 
from 20.00 cm to 20 .20 cm in 1 min . By approximately how 
much has its volume increased in that minute ? 

• _ T_a_yl_or_P_o_ly_no_m_i_al_s ______________ _ _ 
The linearization of a functi on f (x) about x = a, namely , the linear function 

Pi (x) = L( x) = f(a) + J'(a)(x - a) , 

describes the behaviour of f near a better than any other polynomial of degree 1 
because both Pi and f have the same value and the same derivative at a: 

P1(a) = f(a) and P !(a) = J ' (a). 
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(We are now using the symbol Pi instead of L to stress the fact that the linearization is 
a polynomial of degree at most 1.) 

We can obtain even better approximations to f (x) by using quadratic or higher
degree polynomials and matching more derivatives at x = a. For example, if f is 
twice differentiable near a, then the polynomial 

J"(a) 
P2(x) = f(a) + J ' (a)(x - a)+ -

2
- (x - a)2 

satisfies P2(a) = f(a), P~(a) = J ' (a) , and P~' (a) = f"(a) and describes the 
behaviour of f near a better than any other polynomial of degree at most 2. 

In general , if j (n) (x) exists in an open interval containing x = a, then the 
polynomial 

f ' (a) J"(a) 
Pn(x) = f(a) + - 1!- (x - a)+ ~(x - a) 2 

J" ' (a) f(n)(a) 
+--(x-a) 3 + ··· + -- (x -a t 

3! n! 

matches f and its first n derivative s at x = a, 

Pn(a) = f(a), P,:(a) = J ' (a) , 

and so describes f(x) near x = a better than any other polynomial of degree at 
most n. Pn is called the nth-order Taylor polynomial for f about a . (Taylor 
polynomials about Oare usually called Maclaurin polynomials.) The 0th-order Taylor 
polynomial for f about a is just the constant function Po(x) = f (a). The nth-order 
Taylor polynomial for f about a is sometimes called the nth-degree Taylor polynomial , 
but its degree will actually be less than n if jC11\a) = 0. 

EXAM p LE 1 Find the following Taylor polynomials: 

(a) P2(x) for f(x) = ,Jx about x = 25 . 

(b) P3(x) for g(x) = lnx about x = e. 

Solution (a) J'(x) = (l / 2)x - 112, f"(x) = -(I / 4)x- 312 . Thus, 

!"(25) 
P2(x) = !(25) + J ' (25)(x - 25) + -

2
-, -(x - 25)2 

1 1 2 = 5 + - (x - 25) - --( x - 25) . 
10 1,000 

1 1 2 
(b) g'(x) = -, g"(x) = - 2 , g'" (x) = 3 . Thus, 

X X X 

g" (e) g"' (e) 
P3(x) = g(e) + g' (e)(x - e) + ~(x - e)2 + -

3
,-(x - e)3 

1 1 2 1 3 = 1 + -(x - e) - -(x - e) + -(x - e) . 
e 2e2 3e3 

EXAM p LE 2 Find the nth-order Maclaurin polynomial Pn (x) for ex. Use Po(l), 
P1 (1), P2(1), .. . to calculate approximate values fore= e1. Stop 

when you think you have 3 decimal places correct. 
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Figure 4.65 Some Maclaurin 
polynomials for ex 

Solution Since every derivative of ex is ex and so is 1 at x = 0, the nth-order 
Maclaurin polynomial for ex (i.e., Taylor polynomial at x = 0) is 

x x 2 x 3 xn 
P (x) = l + - + - + - + · · · + - . 

n l! 2! 3! n! 

Thus, we have for x = 1, adding one more term at each step : 

Po(l) = 1 

1 
P1 (1) = Po(l) + 1! = 1 + 1 = 2 

1 1 
P2(1) = Pi (1) + 

2
! = 2 + 2 = 2.5 

1 1 
P3(1) = P2(1) + 

3
! = 2.5 + 6 = 2.6666 

1 1 
?4(1) = P3(l) + - = 2 .6666 + - = 2.7083 

4! 24 
1 1 

Ps(l) = P4(1) + 
5

! = 2.7083 + 
120 

= 2.7166 

1 1 
P6(1) = Ps(l) + 

6
! = 2.7166 + no = 2.7180 

1 1 
P7(l) = P6(l) + - = 2.7180 + -- = 2.7182. 

7! 5,040 

It appears that e ~ 2. 718 to 3 decimal places . We will verify in Example 5 below 
that P7(1) does indeed give this much preci sion. The graphs of ex and its first four 
Maclaurin polynomials are shown in Figure 4.65. 
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EXAMPLE 3 Find Macl aurin polynomials P1(x), P2(x), P3 (x), and P4 (x) for 
f (x) = sin x. Then write the general Maclaurin polynomials 

P2n- l (x) and P2n (x) for that function. 

Solution We have f'(x) = cosx, f"(x) = - sinx, f"'(x) = -cosx, and JC4)(x) = 
sinx = f(x), so the pattern repeats for higher derivatives. Since 

f(O) = 0, J"(O) = 0, 

J' (0) = 1, !"' (0) = -1 , 

/
4)(0) = 0, 

/ 5)(0) = I, 

!( 6)(0) = 0, .. . 

/
7)(0) = -1 , .. . 
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THEOREM 

I 
Note that the error term 
(Lagrange remainder) in 
Taylor's formula looks just like 
the next term in the Taylor 
polynomial would look if we 
continued the Taylor polynomial 
to include one more term (of 
degree n + 1) EXCEPT that the 
derivative j<n+l) is not 
evaluated at a but rather at some 
(generally unknown) points 
between a and x . This makes it 
easy to remember Taylor's 
formula. 

we have 

P1 (x) = 0 + X = X 

0 ? 
P2(x) = x + 

21
x- = x = Pi(x) 

l x 3 

P3(x) = x - -x 3 = x - -
3! 3! 

SECTION 4. IO: Taylor Polynomials 275 

l 3 0 4 x 3 
P4(x) = x - - x + -x = x - - = P3(x). 

3! 4! 3! 

In general, 1C211- 1l(o) = (-1r - 1 and J C211l (O) = 0, so 

x 3 x 5 x2n-l 
P211- 1(x) = P211(x) = X - - + - - ... + (-1r - 1---

3! 5! (2n - 1)! 

Taylor's Formula 
The following theorem provides a formula for the error in a Taylor approximation 
f (x) ~ P11 (x) similar to that provided for linear approximation by Theorem 11. 

Taylor's Theorem 

If the (n + l)st-order derivative, J Cn+ I) (t) , exists for all t in an interval containing a 
and x, and if P11 (x) is the nth-order Taylor polynomial for f about a, that is, 

, f " (a) 2 f (nl(a) n 
P11(x) = f(a) + f (a)(x - a)+ -- (x - a) + · · · + -- (x - a) , 

2! n! 

then the error E,,(x) = f(x) - Pn(x) in the approximation f(x) ~ P11(x) is given by 

f (n+I)( ) 
E (x) = s (x - a) 11+l 

II (n+l)! ' 

where s is some number between a and x. The resulting formula 

, f"(a) 2 f(nl(a) 11 f(x) = f(a) + f (a)(x - a)+ -- (x - a) + .. · + -- (x - a) 
2! n! 

f(n+ l) (s) 
+ --- (x - at+! for some s between a and x, 

(n+l)! ' 

is called Taylor's formula with Lagrange remainder; the Lagrange remainder term 
is the explicit formula given above for E11 (x ). 

PROOF Observe that the case n = 0 of Taylor 's formula , namely , 

f ' (s) 
f(x) = Po(x) + Eo(x) = f(a) + -( x - a), 

l ! 

is just the Mean-Value Theorem 

f(x)- f(a) = J ' (s) forsomes between a and x. 
x -a 

Also note that the case n = l is just the error formula for linearization given in 
Theorem 11. 

We will complete the proof for higher n using mathematical induction. (See the 
proof of Theorem 2 in Section 2.3.) Suppose, therefore, that we have proved the case 
n = k - l, where k :=,: 2 is an integer. Thus , we are assuming that if f is any function 
whose kth derivative exists on an interval containing a and x, then 

f(k) (s) 
Ek-i(x) = -k-! - (x - a)\ 
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wheres is some number between a and x . Let us consider the next higher case: n = k. 
As in the proof of Theorem 11, we assume x > a (the case x < a is similar) and apply 
the Generalized Mean-Value Theorem to the functions Ek(t) and (t - a/+' on [a, x]. 
Since Ek(a) = 0, we obtain a number u in (a, x) such that 

E~(u) 

(x - a)k+' - (a - a)k+' (k+I)(u-a)k. 

Now 

I d ( / f" (a) 2 
Ek(u) = dt f (t) - f(a) - f (a) (t - a) - 2! (t - a) 

- ... _ l:,(a) (t -a)') I,_, 
= J'(u) - J ' (a) - f " (a) (u - a) - · ·. - j(kl(a) (u - a)k-l _ 

(k - l)! 

This last expression is just Ek-1 (u) for the function J' instead off . By the induction 
assumption it is equal to 

(f')(k)(s) j(k+l)(s) 
k! (u-a)k= k! (u-al, 

for some s between a and u . Therefore , 

f (k+l)() 
E (x) = s (x - al +'. 

k (k + I)! 
We have shown that the case n = k of Taylor 's Theorem is true if the case n = k - l 
is true, and the inductive proof is complete . 

Remark For any value of x for which limn-HlO En (x) = 0, we can ensure that the 
Taylor approximation f (x) ~ P11 (x) is as close as we want by choosing n large enough . 

Use the 2nd-order Taylor polynomial for fx about x = 25 found 
EXAM p LE 4 in Example 1 (a) to approximate -)26. Estimate the size of the 

error, and specify an interval that you can be sure contains -)26. 

Solution In Example l(a) we calculated J"(x) = -(1 / 4)x- 312 and obtained the 
Taylor polynomial 

1 1 2 
P2(x) = 5 + -(x - 25) - --(x - 25) . 

10 1,000 

The required approximation is 

v'26 = f(26) ~ P2(26) = 5 + ~(26 - 25) - -
1

-(26 - 25)2 = 5.099. 
10 1,000 

Now f"'(x) = (3/ 8)x- 512. For 25 < s < 26, we have 

111 31 3 3 
If (s)I:::; 8 255/ 2 = 8 x 3, 125 25,000 

Thus, the error in the approximation satisfies 

1£2(26)1 < 
3 

(26 - 25)3 = -
1

- = 0.000 02. 
- 25,000 X 6 50,000 

Therefore, -J26 lies in the interval (5.098 98, 5.099 02). 
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EXAM p LE 5 Use Taylor 's Theorem to confirm that the Maclaurin polynomial 
?7 (x) for ex is sufficient to give e correct to 3 decimal places as 

claimed in Example 2. 

Solution The error in the approximation ex ~ Pn (x) satisfies 

es 
E (x) - ---xn+ 1 for some s between O and x. 

II -(n+l)! ' 

If x = l , then O < s < 1, so es < e < 3 and O < En.(l) < 3/ (n + 1)!. 
To get an approximation for e = e 1 correct to 3 decimal places, we need to have 
En(l) < 0.0005. Since 3/ (8!) = 3/ 40,320 ~ 0.000074, but 3/ (7!) = 3/ 5,040 ~ 
0.000 59, we can be sure n = 7 will do, but we cannot be sure n = 6 will do: 

1 1 1 1 1 1 
e ~ 1 + 1 + - + - + - + - + - + - ~ 2.7183 ~ 2.718 

2! 3! 4! 5! 6! 7! 

to 3 decimal places. 

Big-0 Notation 

We write f(x) = O(u(x)) as x -+ a (read this "f(x) is big-Oh of u(x) as x 
approaches a") provided that 

lf(x)I S Klu (x)I 

holds for some constant K on some open interval containing x = a. 

Similarly , f(x) = g(x) + O(u (x)) as x -+ a if f(x) - g(x) = O(u( x) ) as 
x -+ a, that is, if 

If (x) - g(x)I S Klu( x)I near a. 

For example , sin x = 0 (x) as x -+ 0 becau se I sin x I ::: Ix I near 0. 

The following properties of big-0 notation follow from the definition: 

(i) If f(x) = O(u(x)) as x-+ a, then Cf(x) = O(u (x) ) as x-+ a for any value of 
the constant C. 

(ii) If f(x) = O(u(x)) as x -+ a and g(x) = O(u( x) ) as x -+ a, then 
f(x) ± g(x) = O(u(x)) as x-+ a. 

(iii) If f(x) = O((x - aiu(x)) as x-+ a, then f(x) / (x - ai = O(u(x)) as x-+ a 
for any constant k. 

Taylor 's Theorem says that if jC11+1)(t) exists on an interval containing a and x, 
and if Pn is the nth-order Taylor polynomi al for f at a, then, as x -+ a, 

f(x) = Pn(x) + O((x - ay+ 1
). 

This is a statement about how rapidly the graph of the Taylor polynomial Pn(x) 
approaches that off (x) as x -+ a; the vertical distance between the graphs decreases 
as fast as Ix - a in+ 1• The following theorem shows that the Taylor polynomial Pn (x) is 
the only polynomial of degree at most n whose graph approximates the graph of f(x) 
that rapidly. 
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THEOREM 

I 
If f(x) = Qn(x) + O((x - ay +1) as x -+ a, where Q11 is a polynomial of degree at 
most n, then Q11 (x) = P11 (x ) , that is, Qn is the Taylor polynomial for f (x) at x = a. 

PROOF Let P11 be the Taylor polynomial , then properties (i) and (ii) of big-0 imply 
thatR 11(x) = Q11(x)-P 11(x) = O((x - a) 11+ 1)asx -+ a. WewanttoshowthatR 11(x) 
is identically zero so that Q11(x ) = P11(x ) for all x. By replacing x with a+ (x - a) 
and expanding powers, we can write R,, (x) in the form 

Rn(x) =co+ CJ (x - a)+ c2(x - a) 2 + · · · + Cn(X - a) 11
• 

If Rn (x) is not identically zero , then there is a smallest coefficient q (k :S n ), such that 
Ck i= 0, but Cj = 0 for O :S j :S k - 1. Thus, 

Therefore, limx--+a R11 (x) / (x-al = Ck i= 0. However, by property (iii) above we have 
R11(x) / (x-a)k = O((x-ay +l- k) . Sincen+l-k > O,thissaysRn(x) / (x-al-+ 0 
as x -+ a. This contradiction shows that R,, (x) must be identically zero. Therefore 
Qn(x) = Pn(x) for all x. 

Table 5 lists Taylor formulas about O (Maclaurin formulas) for some elementary func
tions, with error terms expressed using big-0 notation. 

Table 5. Some Maclaurin Formulas with Errors in Big-0 Form 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

As x -+ 0: 

2 3 n 

ex = 1 +x + ~ + ~ + · · · + ~ + O(x 11+1
) 

2! 3! n! 
2 4 211 

X X ( 11 X ( 211+2) COS X = l - - + - - · · · + -1) -- + 0 X 
2! 4! (2n)! 

3 5 211+ [ 

sinx = x - ~ + ~ - · · · + (-1)'1 x + O(x 211+ 3) 
3! 5! (2n + l)! 

1 -- = 1 +x +x 2 +x 3 + · · · +xn + O(xn+I) 
1-x 

2 3 n 

( X X ( 11- l X ( n+l) ln 1 + X) = X - - + - - · · · + - I) - + 0 X 
2 3 n 

3 5 2n+I 
-I X X n X ( 211+3) tan x = x - - + - - · · · + ( -1) -- + 0 x 

3 5 2n+l 

It is worthwhile remembering these. The first three can be established easily by using 
Taylor's formula with Lagrange remainder ; the other three would require much more 
effort to verify for general n. In Section 9.6 we will return to the subject of Taylor and 
Maclaurin polynomials in relation to Taylor and Maclaurin series. At that time we will 
have access to much more powerful machinery to establish such results. The need to 
calculate high-order derivatives can make the use of Taylor's formula difficult for all 
but the simplest functions. 

The real importance of Theorem 13 is that it enables us to obtain Taylor 
polynomials for new functions by combining others already known; as long as the 
error term is of higher degree than the order of the polynomial obtained, the polyno
mial must be the Taylor polynomial. We illustrate this with a few examples. 

EXAMPLE 6 Find the Maclaurin polynomial of order 2n for cosh x. 
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Solution Write the Taylor formula for ex at x = 0 (fro m Table 5) with n replaced by 
2n + 1, and then rewrite that with x replaced by -x. We get 

x2 x3 x2n x2n+I 
ex = 1 +x + 2! + 3! + ... + (2n)! + (2n + l)! + O(x 2n+2), 

x2 x3 x2n x2n+ l 
e-x = 1- x + 2! - 3! + . .. + (2n)! - (2n + l)! + O(x 2n+2) 

as x ---+ 0. Now average these two to get 

ex + e-x x2 x4 x2n 
cosh x = 2 = 1 + - + - + .. . + -- + 0 (x2n+2) 

2! 4 ! (2n)! 

as x ---+ 0. By Theorem 13 the Maclaurin polynomial P2n (x) for cosh x is 

x2 x4 x2n 
P2 (x) = 1 + - + - + · · · + -- . 

n 2! 4! (2n)! 

EXAMPLE 7 Obtain the Taylor polynomial of order 3 for e2x about x = 1 from 
the corresponding Maclaurin polynomial for ex (from Table 5). 

Solution Writing x = 1 + (x - 1), we have 

e2x = e2+2(x- l) = e2e2(x-l) 

[ 
2

2 (x 1)2 23(x 1)3 J = e2 I+ 2(x - 1) + 
2
~ + 

3
~ + O((x - 1)4) 

as x ---+ l. By Theorem 13 the Taylor polynomi al P3(x) for e2x at x = 1 must be 

EXAM p LE 8 Use the Taylor formula for ln(l + x) (from Table 5) to find the 
Taylor polynomial P3(x) for ln x about x = e. (This provides an 

alternative to using the definition of Taylor polynomial as was done to solve the same 
problem in Example l(b) .) 

Solution We have x = e + (x - e) = e (I + t) where t = (x - e)/e. As x---+ ewe 
have t---+ 0, so 

t2 t3 
lnx = In e + ln(l + t) = ln e + t - 2 + 3 + O(t 4

) 

x - e l x-e l x-e 4 ( )2 ( )3 = 1 + - - - - + - - + o( (x - e) ). 
e 2 e 3 e 

Therefore, by Theorem 13, 

x - e 1 ( x - e )
2 

1 (x -e )
3 

P3(x) = 1 + -- - - -- + - --
e 2 e 3 e 

Evaluating Limits of Indeterminate Forms 
Taylor and Maclaurin polynomials provide us with another method for evaluating 
limits of indeterminate forms of type [0/ 0]. For some such limits this method can be 
considerably easier than using l'H6pital 's Rule. 
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EXE R C I SES 4.10 

EXAMPLE 9 
2sinx - sin(2x) 

Evaluate lim 
2 

. 
x->0 2ex - 2 - 2x - x 

Solution Both the numerator and denominator approach O as x ~ 0. Let us replace 
the trigonometric and exponential functions with their degree-3 Maclaurin polynomials 
plus error terms written in big-0 notation: 

. 2 sin x - sin(2x) 
hm ? 
x->0 2ex - 2 - 2x - x-

2 (x - x: + O(x 5
)) - (2x -

23
~

3 
+ O(x 5

)) 

1
. 3. 3. = 1m --'-----------'------'----------'-

x->0 ( x
2 

x
3 

) 2 1 + x + - + - + 0 (x4
) - 2 - 2x - x 2 

2! 3! 

x 3 4x 3 

--+- + O(x 5
) 

= Jim 3 3 
x->0 x3 

3 + O(x4) 

. 1 + O(x 2
) 1 = hm ---- = - = 3. 

x->0 1 1 
3 + O(x) 3 

Observe how we used the properties of big-0 as listed in this section. We needed to use 
Maclaurin polynomials of degree at least 3 because all lower degree terms cancelled 
out in the numerator and the denominator . 

EXAMPLE 10 
lnx 

Evaluate Jim -
2
--. 

x-> I X - I 

Solution This is also of type [0/ 0]. We begin by substituting x = I+ t. Note that 
x ~ I corresponds tot ~ 0. We can use a known Maclaurin polynomial for ln(l + t) . 
For this limit even the degree 1 polynomial P1 (t) = t with error O (t 2) will do . 

. lnx . ln(l+t) . ln(l+t) 
hm -- = hm ----- = hm ---
x->I x 2 - 1 1->0 (1 + t) 2 - 1 1->0 2t + t 2 

. t+O(t 2
) . l+O(t) 1 = hm---- = hm--- = -

1->0 2t + t 2 HO 2 + t 2 

Find the indicated Taylor polynomials for the functions in 
Exercises 1-8 by using the definition of Taylor polynomial. 

In Exercises 9-14 , use second order Taylor polynomials P2(x) 
for the given function about the point specified to approximate 
the indicated value. Estimate the error, and write the smallest 
interval you can be sure contains the value. 

1. for e- x about x = 0, order 4. 

2. for cos x about x = n / 4, order 3. 

3. for In x about x = 2, order 4. 

4. for secx about x = 0, order 3. 

5. for .j"i about x = 4, order 3. 

6. for 1/ (1 - x) about x = 0, order n. 

7. for 1/ (2 + x) about x = l, order n. 

8. for sin(2x) about x = n / 2, order 2n - 1. 

9. f (x) = x J/ 3 about 8; approximate 9 113 . 

10. f (x) = .j"i about 64; approximate -v'61. 

11. 

12. 

l 1 
f (x) = - about 1; approximate -- . 

X 1.02 
f(x) = tan- 1 x about l; approximate tan- 1(0.97). 

13. f (x) = ex about O; approximate e-o.s. 

14. f(x) = sinx about n / 4; approximate sin(47°). 
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In Exercises 15-20, write the indicated case of Taylor 's formula 
for the given function. What is the Lagrange remainder in each 
case? 

15. f (x) = sin x, a = 0, n = 7 

16. f(x) = cosx, a= 0, n = 6 

17. 

18. 

f(x) = sinx , a= n / 4, n = 4 

1 
f(x)= -

1
--, a=O, n=6 
-x 

19. f(x) = ln x, a= l , n = 6 

20. f(x) = tan x, a= 0, n = 3 

Find the requested Taylor polynomial s in Exercises 21-26 by 
using known Taylor or Maclaurin polynomials and changing 
variables as in Examples 6--8. 

21. P3(x) for e3x about x = -1. 
2 22. Ps(x)for e-x about x =O. 

1 - cos(2x) 
23. P4 (x) for sin2 x about x = 0. Hint: sin2 x = ----

2 

24. P5 (x) for sin x about x = n. 

25. P6(x) for 1/ (1 +2x 2) aboutx = 0 

26. Ps (x) for cos(3x - n) about x = 0. 

27. Find aJI Maclaurin polynomial s Pn(x) for f(x) = x 3. 

28. Find all Taylor polynomial s Pn (x) for f (x) = x 3 at x = I. 
29. Find the Maclaurin polynomial P2n+ 1 (x) for sinh x by 

suitably combining polynomial s for ex and e- x . 

30. By suitably combining Maclaurin polynomial s for ln(l + x) 
and ln(l - x), find the Maclaurin polynomial oforder 2n + 1 

fortanh - 1(x) = ~ln(
1 

+x ) · 
2 1 -x 

31. Write Taylor 's formula for f (x) = e-x with a= 0, and use 
it to calculate 1/ e to 5 decimal places. (You may use a 
calculator but not the ex function on it.) 

SECTION 4. l l: Roundoff Error, Truncation Error, and Computer s 281 

0 32. Write the general form of Taylor 's formula for f(x) = sin x 
at x = 0 with Lagrange remainder. How large need n be 
taken to ensure that the corresponding Taylor polynomial 
approximation will give the sine of 1 radian correct to 
5 decimal places? 

33. What is the best order 2 approximation to the function 
f (x) = (x - I )2 at x = O? What is the error in this 
approximation ? Now answer the same questions for 
g(x) = x 3 + 2x2 + 3x + 4. Can the constant 1/ 6 = 1/ 3!, in 
the error formula for the degree 2 approxin1ation, be 
improved (i.e., made smaller)? 

34. By factoring 1 - xn+ I (or by long division) , show that 

1 xn+I 
-- = 1 +x + x 2 +x 3 + · · · +x" + --. (*) 
1 -x 1- x 

Next , show that if lxl ::: K < I, then 

-- ::, -- lxn+ll. 
I 
x

11

+
1 I 1 

1 -x 1-K 

This implies that xn+I / (1 - x) = O(x 11+1) as x ~ 0 and 
confirms formula (d) of Table 5. What does Theorem 13 then 
say about the nth-order Maclaurin polynomial for 1/ (1 - x)? 

0 35. By differentiating identity (*) in Exercise 34 and then 
replacing n with n + I , show that 

1 
--~

2 
= I + 2x + 3x 2 + · · · + (n + l) x" 

(1 - x) 

n + 2 - (n + l)x 11+1 
+ (1 - x)2 X 

Then use Theorem 13 to determine the nth-order Maclaurin 
polynomial for 1/ (1 - x)2. 

Roundoff Error, Truncation Error, and Computers 
In Section 4.7 we introduced the idea of roundoff error , while in Sections 4.9 and 4 .10 
we di scussed the result of approximating a function by its Taylor polynomial s . The 
resulting error her e is known as truncation error. Thi s conventional terminology may 
be a bit confusing at first because rounding off is itself a kind of truncation of the digital 
representation of a number. However in numerical analy sis "truncation " is reserved for 
discarding higher order terms, typically represented by big-0 , often leaving a Taylor 
polynomial. 

Truncation error is a crucial source of error in u ing computers to do mathemat
ical operation s. In computation with computers , many of the mathematical function s 
and structures being investigated are approximated by polynomial s in order to make 
it possible for computer s to manipul ate them . However , the other source of error , 

roundoff , is ubiquitou s, so it is inevit able that mathematics on computers ha s to involve 
consideration of both sources of error. These sources can sometimes be treated inde
pendently, but in other circumstances they can interact with each other in fascinating 
ways. In this sec tion we look at some of these fascinating interactions in the form of 
Numerical Monster s using Maple . Of course, as stated previously, the issues concern 
all calculation on computers and not Maple in particular. 
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Figure 4.66 The error sin x - P3 (x) over 
(a) the interval [-1 , 1], and (b) the 
interval [-4 .2 x 10- 4 , 4 .2 x 10- 4] 

Taylor Polynomials in Maple 
In much of the following discussion we will be examining the function sin x. Let us 
begin by defining the Maple expression s . - sin ( x) to denote this function: The 
Maple input 

> u : = taylor(s , x=O , 5) ; 

produces the Taylor polynomial of degree 4 about x = 0 (i.e., a Maclaurin polynomial) 
for sin(x) together with a big-0 term of order x5: 

1 
u ·- x - - x 3 + O(x 5 ) .- 6 

The presence of the big-0 term means that u is an actual representation of sin x; there 
is no error involved. If we want to get an actual Taylor polynomial , we need to convert 
the expression for u to drop off the big-0 term. Since the coefficient of x 4 is zero , let 
us call the resulting polynomial P3: 

> P3 : = convert(u , polynom) ; 

1 
P3 := x - -x 3 

6 

Unlike u, P3 is not an exact representation of sin x; it is only an approximation . The 
discarded term O (x 5) = s - P3 = u - P3 is the error in this approximation . On the 
basis of the discussion in the previou s section , this truncation error can be expected to be 
quite small for x close to 0, a fact that is confirmed by the Maple plot in Figure 4.66(a) . 
The behaviour is much as expected. sin x behaves like the cubic polynomial near 
0 (so the difference is nearly 0), while farther from O the cubic term dominates the 
expression. 

> plot(s-P3 , x=-1 .. 1 , style=point , 

symbol=point , numpoints=lOOO) ; 

-1 

0.008 

0.006 

0.004 

0.002 

-0.004 

-0.006 

-0 .008 

(a) 

0.2 ~-6 

(b) 

A. The limiting behaviour near O can be explored by changing the plot window. If the 
Maple plot instruction is revised to 

> plot(s-P3 , x=-0 . 42e-3 . . 0 . 42e-3 , style=point , 

symbol=point , numpoints=lOOO) ; 

the plot in Figure 4.66(b) results. What is this structure ? Clearly the distances from the 
x-axis are very small, and one can see the cubic-like behaviour. But why are the points 
not distributed along a single curve, filling out a jagged arrow-like structure instead? 
This is another numerical monster connected to roundoff error, as we can see if we 
plot sin(x) - P3(x) together with the functions ±(E / 2) sin(x) and ±(E / 4) sinx, where 
E = 2- 52 is machine epsilon, as calculated in Section 4.7 . 

> eps : = evalf(2A(-52)) : 
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1e-20 / 
/ 

Figure 4.67 Examining the structure of 
the Maple plot of sin x - P3 (x) for x in 
[-0.0001, 0.0001]. Note the relationship 
to the envelope curves y = ±(E / 4) sinx 
(black), and y = ±(E / 2) sinx (grey) 

Figure 4.68 The values of 
x 2 - 2x + 1 - (x - 1)2 (colour) lie 
between the parabolas ±E (x - 1 )2 (black) 
and ±E(x - 1)2 / 2 (grey) for 
(a) - 108 :::: x :::: 108, and 
(b) -100 '.::: X '.::: 100 
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> plot([s-P3 , -eps*s/2, eps*s/2 , -eps*s/4 , eps*s/4] , 

x=-0 .l e-3 , 0 . le-3 , colour=[blue , grey , grey , black , black] , 

style =point , symbol=point , numpoints=lOOO) ; 

The result is in Figure 4.67. The black and grey envelope curves (which appear 
like straight lines since the plot window is so close to the origin) link the structure of 
the plot to machine epsilon; the seemingly random points are not as random as they 
first seemed. 

Moreover , this structure is distinctive to Maple. Other software packages , such as 
Matlab, produce a somewhat different , but still spuriou s, structure for the same plotting 
window. Try some others. If different software produces different behaviour under 
the same instructions, it is certain that some type of computational error is involved . 
Software-dependent behaviour is one sure sign of computationa l error. 

A distinctive aspect of this monster is that for a large plot window, the truncation 
error dominate s, while near zero, where the truncation error approaches zero, the 
roundoff error dominate s. This is a common relationship between truncation error and 
roundoff error. However , the roundoff error shows up for plot windows near zero, 
while the truncation error is dominant over wide ranges of plot windows . Is this always 
true for truncation error? No - as the next monster shows. 

Persistent Roundoff Error 
The trade-off between truncation error and roundoff error is distinctive, but one should 
not get the impression that roundoff error only matters in extreme limiting cases in 
certain plot windows. Consider, for example, the function f (x) = x 2 -2x+ l-(x-1)2. 
It is identically 0, not just O in the limiting case x = 0. However , the computer evaluates 
the two mathematically equivalent parts of the function f differently, leaving different 
errors from rounding off the true values of the numbers inserted into the expression. 
The difference of the result is then not exactly 0. A plot of f (x) on the interval 
[ - 108, 108] is produced by the Maple command 

> plot( [eps*(x-l)A2,eps*(x-l)A2/2,-eps*(x-l)A2, 

-eps* (x-1) A2/2 , (xA2-2*x+l) - (x-1) A2] , 

x = -le8 .. le8 , numpoints=l500,style=point,symbol=point , 

color=[black,grey,black,grey,blue], 

t i c kma r ks = [ [ - 1 e 8 , - 5 e 7 , 5 e 7 , 1 e 8 ] , [ - 2 , - 1 , 1 , 2 J J ) ; 

2 2e-12 

-2 -2e-12 

(a) (b) 

A. It is shown in Figure 4 .68(a). The spuriou s values off (x) seem like rungs on a ladder . 
Note that these false nonzero values of f(x) (colour) are not small compared to 1. 
This is because the window is so wide. But the error is clearly due to roundoff as 
the grey and black envelope curves are proportional to machine epsilon . This plot is 
largely independent of the width of the window chosen. Figure 4.68(b) is the same 
plot with a window one million times narrower. Except for of a change of scale, it is 
virtually identical to the plot in Figure 4.68(a). This behaviour is quite different from 
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3 

2 
y 

0 

-1 

-2 
·-

-3 - · 

Figure 4.69 The coloured cloud results 
from Maple 's attempt to evaluate the 
polynomial P99(x) at 500 values of x 

between 35 and 39 

EX E R C I S ES 4.11 

A. 

the numerical monster involving Taylor polynomials encountered above. 

Truncation, Roundoff, and Computer Algebra 
One of the more modern developments in computer mathematics is the computer's 
ability to deal with mathematics symbolically. This important capability is known as 
"computer algebra ." For example, Maple can generate Taylor expansions of very high 
order. This might appear to make the issue of error less important. If one can generate 
exact Taylor polynomials of very high order, how could error remain an issue? 

To see how the finiteness of computers intrudes on our calculations in this case too , let 
us consider the Taylor (Maclaurin) polynomial of degree 99 for sinx. 

> v : = taylor(s , x=O , 100) : P99 : = convert(v , polynom) : 

It is good to suppress the output here ; each command produces screensfull of output. 
Figure 4.69 shows the result of the Maple plot command 

> plot( [P99 , s] , x=35 .. 39 , y=-3 .. 3 , colour=[blue , black] , 

style=point , symbol=point , numpoints=500 , 

xtickmarks=[36 , 37 , 38 , 39] ) ; 

The black curve is the graph of the sine function , and the colour tornado-like cloud is 
the plot of P99 (x) that Maple produces . For plotting, the polynomial must be evaluated 
at specific values of x. The algorithm cannot employ the large rational expressions 
for coefficients and high powers of input values . In order to place the result into an 
actual pixel on the computer screen, the value of the polynomial must be converted to 
a floating-point number. Then with the adding and subtracting of 100 terms involving 
rounded powers, roundoff error returns despite the exact polynomial that we began 
with . 

Of course, there are often tactics to fix these types of problems, but the only way 
to know what the problems are that need fixing is to understand the mathematics in the 
first place. But this also means that careful calculations on computers constitute a full 
field of modern research , requiring considerable mathematical knowledge . 

1. Use Maple to repeat the plots of Figure 4.68, except using the 
mathematically equivalent function (x - 1)2 - (x 2 - 2x + 1). 
Does the result look the same? Is the result surprising? 

computer, with each step in the evaluation of each of the 
expressions , roundoff error is introduced as digits are 
discarded and rounded according to various rules . In 
subsequent steps, resulting error is added or subtracted 
according to the details of the expression producing a final 
error that depends in detail on the expression, the particular 
software package, the operating system, and the machine 
hardware. Computer errors are not equivalent for the two 
expressions, even when the expressions are mathematically 
equivalent. 

2. Use Maple to graph f - P4(x) where f (x) = cosx and 
P4(x) is the 4th degree Taylor polynomial off about x = 0. 
Use the interval [-10 - 3 / 2, 10- 3 / 2] for the plot and plot 
1000 points. On the same plot, graph ±Ef / 2 and ±Ef / 4, 
where f is machine epsilon. How does the result differ from 
what is expected mathematically? 

D 3. If a real number x is represented on a computer, it is replaced 
by a floating-point number F(x); xis said to be "floated" by 
the function F. Show that the relative error in floating for a 
base two machine satisfies 

lerrorl = Ix - F( x ) I ::: Elxl , 

where f = 2- 1 and t is the number of base two digits (bits) 
in the floating point number. 

D 4. Consider two different, but mathematically equivalent 
expressions, having the value C after evaluation. On a 

(a) If we suppose that the computer satisfactorily evaluates 
the expressions for many input values within an interval, 
all to within machine precision, why might we expect 
the difference of these expressions on a computer to 
have an error contained within an interval [-EC , EC]? 

(b) Is it possible for exceptional values of the error to lie 
outside that interval in some cases? Why? 

(c) Is it possible for the error to be much smaller than the 
interval indicates? Why? 
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CHAPTER REVIEW 
Key Ideas 
• What do the following words, phrases , and statements 

mean? 

o critical point off o singular point off 

o inflection point off 

o f has absolute maximum value M 

o f has a local minimum value at x = c 

o vertical asymptote o horizont al asymptote 

o oblique asymptote o machine epsilon 

o the linearization of f (x) about x = a 

o the Taylor polynomial of degree n off (x) about x = a 

o Taylor 's formula with Lagrange remainder 

o f (x) = 0 ( (x - al) as x -+ a 

o a root of f(x) = 0 o a fixed point of f(x) 

o an indeterminate form o l' Hopital 's Rules 

• Describe how to estimate the error in a linear (tangent 
line) approximation to the value of a function. 

• Describe how to find a root of an equation J (x) = 0 by 
using Newton 's Method. When will this method work 
well? 

Review Exercises 
1. If the radius r of a ball is increasing at a rate of 2 percent per 

minute, how fast is the volume V of the ball increasing? 

2. (Gravitational attraction) The gravita tional attraction of 
the earth on a mass m at distance r from the centre of the earth 
is a contin uous function of r for r :::. 0, given by 

F = { m!t if r ::':. R 
mkr if O ~ r < R , 

where R is the radius of the earth, and g is the accelerat ion 
due to gravity at the surface of the earth. 

(a) Find the constant k in terms of g and R . 

(b) F decreases as m moves away from the surface of the 
earth , either upward or downward. Show that F de
creases as r increases from R at twice the rate at which 
F decreases as r decreases from R. 

3. (Resistors in parallel ) Two variable resistors R 1 and R2 are 
connected in parallel so that their combined resistance R is 
given by 

l l l 
-=-+- . 
R R1 R2 

At an instant when R 1 = 250 ohms and R2 = 1000 ohms, R 1 

is increasing at a rate of 100 ohms/min. How fast must R2 be 
changing at that moment (a) to keep R constant? and (b) to 
enable R to increase at a rate of 10 ohms/min? 

4. (Gas law) The volume V (in m3), pressure P (in kilopascals , 
kPa), and temperature T (in kelvin , K) for a sample of a certain 
gas satisfy the equation p V = 5.0T. 
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(a) How rapidly does the pressure increase if the temperature 
is 400 Kand increasing at 4 K/min while the gas is kept 
confined in a volume of 2.0 m3? 

(b) How rapidly does the pressure decrease if the volume is 
2 m3 and increases at 0.05 m3/min while the temperatur e 
is kept constant at 400 K? 

5. (The size of a print run) It costs a publisher $10,000 
to set up the presses for a print run of a book and $8 to 
cover the material costs for each book printed . In addition, 
machinery servicing, labour, and warehousing add another 
$6.25 x 10- 7 x 2 to the cost of each book if x copies are 
manufactured during the printing . How many copies should 
the publisher print in order to minimize the average cost per 
book? 

6. (Maximizing profit) A bicycle wholesaler must pay the 
manufacturer $75 for each bicycle. Market research tells the 
wholesaler that if she charges her customers $x per bicycle , 
she can expect to sell N(x) = 4.5 x 106 / x2 of them. What 
price should she charge to maximize her profit, and how many 
bicycles should she order from the manufacturer ? 

7. Find the largest possible volume of a right-circular cone that 
can be inscribed in a sphere of radius R. 

8. (Minimizing production costs) The cost $C (x) of produc 
tion in a factory varies with the amount x of product manu
factured. The cost may rise sharply with x when x is smaJl, 
and more slowly for larger values of x because of economies 
of scale . However, if x becomes too large, the resources of 
the factory can be overtaxed, and the cost can begin to rise 
quickly again . Figure 4.70 shows the graph of a typical uch 
cost function C(x). 

C 

_,,- (x, C(x)) 

,,--- C(x) 
, ,- slope = -- = average cost 

, X 

X 

Figure 4.70 

If x units are manufactured, the average cost per unit is 
$C(x) / x , which is the slope of the line from the origin to 
the point (x, C(x)) on the graph. 

(a) If it is desired to choose x to minimize this average cost 
per unit (as would be the case if all units produced could 
be sold for the same price), how that x should be chosen 
to make the average cost equal to the marginal cost: 

C(x) = C'(x). 
X 

(b) Interpret the conclusion of (a) geometrica lly in the figure. 

(c) If the average cost equals the marginal cost for some x, 
does x necessarily minimize the average cost? 
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side 

side 

bottom side 

side 

80cm 

Figure 4.71 

flap 

top 

flap 

50cm 

9. (Box design) Four squares are cut out of a rectangle of card
board 50 cm by 80 cm, as shown in Figure 4.71, and the 
remaining piece is folded into a closed, rectangular box, with 
two extra flaps tucked in. What is the largest possible volume 
for such a box? 

10. (Yield from an orchard) A certain orchard has 60 trees and 
produces an average of 800 apples per tree per year. If the 
density of trees is increased, the yield per tree drops; for each 
additio nal tree planted, the average yield per tree is reduced by 
10 apples per year. How many more trees should be planted to 
maximize the total annual yield of apples from the orchard? 

11. (Rotation of a tracking antenna) What is the maximum 
rate at which the antenna in Exercise 41 of Section 4.1 must 
be able to tum in order to track the rocket during its entire 
vertical ascent? 

12. An oval table has its outer edge in the shape of the curve 
x 2 + y4 = 1/ 8, where x and y are measured in metres. Wha t 
is the width of the narrowest hallway in which the table can 
be turned horizontally through 180°? 

gg 13. A hollow iron ball whose shell is 2 cm thick weighs half as 
much as it would if it were solid iron throughout. What is the 
radius of the ball? 

gg 14. (Range of a cannon fired from a hill) A cannon ball is 
fired with a speed of 200 ft/s at an angle of 45° above the 
horizontal from the top of a hill whose height at a horizontal 
distancex ft from the top is y = 1,000 / {I +(x / 500)2) ft above 
sea level. How far does the cannon ball travel horizontally 
before striking the ground ? 

gg 15. (Linear approximation for a pendulum) Because 
sin 0 ~ 0 for small values of 101, the nonlinear equation of 
motion of a simp le pendulum 

d20 g . - = - - sm0 
dt 2 L ' 

which determines the displacement angle 0(t) away from the 
vertical at time t for a simple pendulum, is frequently approx
imated by the simpler linear equation 

d20 g 
-=--0 
dt 2 L ' 

when the maximum displacement of the pendulum is not large . 
What is the percentage error in the right side of the equation 
if 101 does not exceed 20°? 

16. Find the Taylor polynomial of degree 6 for sin 2 x about x = 0 
and use it to help you evaluate 

3sin 2 x - 3x 2 + x 4 

lim---~---
x->0 x 6 

17. Use a seco nd-order Taylor polynomial fortan - l x aboutx = 1 
to find an approximate value for tan - 1 (1.1). Estimate the size 
of the error by using Taylor's formula. 

18. The line 2y = lOx-19 is tangent toy= f(x) atx = 2. Ifan 
initial approximation xo = 2 is made for a root of f (x) = 0 
and Newton 's Method is applied once, what will be the new 
approximation that results? 

gg 19. Find all solutions of the equation cos x = (x - 1)2 to 10 
decimal places. 

gg 20. Find the shortest distance from the point (2 , 0) to the curve 
y = lnx. 

gg 21. A car is travelling at night along a level , curved road whose 
equation is y = ex. At a certain instant its headlights illumi
nate a signpost located at the point (1, 1). Where is the car at 
that instant? 

Challenging Problems 
1. (Growth of a crystal) A single cubical salt crystal is grow

ing in a beaker of salt solution. The crystal's volume V 
increases at a rate proportional to its surface area and to the 
amount by which its volume is less than a limiting volume Vo: 

dV 2 dt = kx (Vo - V), 

where x is the edge length of the crystal at time t. 

(a) Using V = x 3, transform the equation above to one that 
gives the rate of change dx / dt of the edge length x in 
terms of x. 

(b) Show that the growth rate of the edge of the crystal de
creases with time but remains positive as long as 

x < xo = v0tf
3 

(c) Find the volume of the crystal when its edge length is 
growing at half the rate it was initially. 

D 2. (A review of calculus!) You are in a tank (the military 
variety) moving down the y-axis toward the origin. At time 
t = 0 you are 4 km from the origin , and 10 min later you 
are 2 km from the origin. Your speed is decreasing; it is 
proportional to your distance from the origin. You know that 
an enemy tank is waiting somewhere on the positive x-axis, 
but there is a high wall along the curve xy = 1 (all distances in 
kilometres) preventing you from seeing just where it is. How 
fast must your gun turret be capable of turning to maximize 
your chances of surviving the encounter? 

gg 3. (The economics of blood testing) Suppose that it is neces
sary to perform a blood test on a large number N of individuals 
to detect the presence of a virus. If each test costs $C, then the 
total cost of the testing program is $NC. If the proportion of 
people in the population who have the virus is not large, this 
cost can be great ly reduced by adopting the following strategy. 
Divide the N samples of blood into N / x groups of x samples 
each . Pool the blood in each group to make a single sample 
for that group and test it. If it tests negative, no further testing 
is necessary for individuals in that group. If the group sample 
tests positive, test all the individuals in that group. 

www.konkur.in



Suppose that the fraction of individuals in the population 
infected with the virus is p, so the fraction uninfected is 
q = 1 - p. The probability that a given individual is un
affected is q , so the probability that all x individuals in a 
group are unaffected is qx. Therefore, the probability that a 
pooled samp le is infected is 1 - qx . Each gro up requires one 
test, and the infected groups require an extra x tests. Therefore 
the expected total number of tests to be performed is 

N N (1 ) T = - + - (l - qx)x = N - + 1 - qx . 
X X X 

For example , if p = 0.01, so that q = 0.99 and x = 20, 
then the expected number of tests required is T = 0.23N, 
a reduction of over 75 %. But maybe we can do better by 
making a different choice for x. 

(a) For q = 0.99 , find the number x of samp les in a group 
that minimizes T (i.e., solve dT / dx = 0). Show that the 
minimizing value of x satisfies 

(0.99) - x/ 2 

X= 
,J- ln(0 .99) 

(b) Use the technique of fixed-point iteration (see Section 
4.2) to solve the equation in (a) for x. Start with x = 20, 
say. 

4. (Measuring variations in g) The period P of a pendulum 
of length L is given by 

P = 2n/Lii, 

where g is the acceleration of gravity. 

(a) Assuming that L remains fixed, show that a 1 % increase 
in g results in approximate ly a 0.5 % decrease in the period 
P. (Variations in the period of a pendulum can be used 
to detect small variations in g from place to place on the 
earth 's surface .) 

(b) For fixed g, what percentage change in L will produce a 
1 % increase in P? 

5. (Torricelli's Law) The rate at which a tank drains is propor
tional to the square root of the depth of liquid in the tank above 
the level of the drain: if V (t) is the volume of liquid in the 
tank at time t , and y (t) is the height of the surface of the liquid 
above the drain, then dV / dt = -k.Jy , where k is a constant 
depending on the size of the drain. For a cylindrical tank with 
constant cross- sectional area A with drain at the bottom: 

(a) Verify that the depth y (t) of liquid in the tank at time t 
sati sfies dy/ dt = -(k / A)Jy. 

(b) Verify that if the depth of liquid in the tank at t = 0 is 
yo, then the depth at subseque nt times during the draining 

process is y = ( .JYO - ;~) 
2 

(c) If the tank drains complete ly in time T, express the depth 
y (t) at time t in terms of YO and T . 

(d) In terms of T, how long does it take for half the liquid in 
the tank to drain out ? 

6. If a conical tank with top radius R and depth H drains accord
ing to Torricelli's Law and empties in time T, show that the 
depth of liquid in the tank at time t (0 < t < T) is 

Y = YO ( 1 - "f) 215 
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where YO is the depth at t = 0. 

7. Find the largest possible area of a right-angled triangle whose 
perimeter is P. 

8. Find a tangent to the graph of y = x 3 + ax 2 + bx + c that is 
not para llel to any other tangent. 

9. (Branching angles for electric wires and pipes) 

(a) The resistance offered by a wire to the flow of electric cur
rent through it is proportional to its length and inversely 
proportional to its cross-sectional area. Thus , the resis
tance R ofa wire of length Land radius r is R = kL / r 2 , 

where k is a positive constant. A long straight wire of 
length L and radius r1 exte nds from A to B. A second 
straight wire of smaller radius r 2 is to be connected be
tween a point Pon AB and a point Cat distance h from B 
such that CB is perpend icul ar to AB. (See Figure 4.72.) 
Find the value of the angle 0 = LB PC that minimizes 
the total resistance of the path AP C , that is, the resistance 
of AP plus the resistance of PC. 

A----- p~- 0-- :B 
:h 
I 

I 
I 

C 

Figure 4.72 

(b) The resistance of a pipe (e.g ., a blood vessel) to the flow 
of liquid through it is , by Poiseume 's Law, proportional to 
its length and inversely proportional to the fourth power 
of its radi us: R = kL / r4 . If the situation in part (a) 
represents pipes instead of wires , find the value of 0 that 
minimi zes the total resistance of the path AP C. How 
does your answer relate to the answer for part (a)? Could 
you have predicted this relationship? 

D 10. (The range of a spurt) A cylindri cal water tank sitting on 
a horizontal table has a small hole located on its vertical wall 
at height h above the bottom of the tank. Water escapes from 
the tank horizontally through the hole and then curves down 
under the influence of gravity to strike the table at a distance 
R from the base of the tank , as shown in Figure 4.73. (We 
ignore air resistance.) Torricelli 's Law implies that the speed 
v at which water escapes through the hole is proportional to 
the square root of the depth of the hole below the surface of the 
water: if the depth of water in the tank at time t is y (t) > h, 
then v = k..jy=h, , where the constant k depends on the size 
of the hole . 

(a) Find the range R in terms of v and h. 

(b) For a given depth y of water in the tank , how high should 
the hole be to maximize R? 

(c) Suppose that the depth of water in the tank at time t = 0 
is yo, that the range R of the spurt is Ro at that time, and 
that the water level drop s to the height h of the hole in T 
minute s. Find , as a function oft, the range R of the water 
that escaped through the hole at time t . 
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y 

Figure 4.73 

i 11. (Designing a dustpan ) Equal squares are cut out of two 
adjace nt corners of a square of sheet metal having sides of 
length 25 cm. The three resulting flaps are bent up, as shown in 
Figure 4.74, to form the sides of a dustpan. Find the maximum 
volume of a dustpan made in this way. 

---------

1 
I I 

I I 

I I I 

25, ~ 
I I 

I I 

I I 
I 
I 

I I j I 
I 

I 

5c m 

Figure 4.74 
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Integration 

'' There are in this world optimists who feel that any symbol that starts 
off with an integral sign must necessarily denote something that will 
have every property that they should like an integral to possess. This 
of course is quite annoying to us rigorous mathematicians; what is 
even more annoying is that by doing so they often come up with the 
right answer. 

'' E. J. McShane 
Bulletin of the American Mathematical Society, v. 69, p. 611, 1963 

I n trod LI Ct I
• 0 n The second fundamental p~oblem addressed by calcu!u~ is 

the problem of areas, that 1s, the problem of determrnmg 
the area of a region of the plane bounded by various curves. Like the problem of 
tangents considered in Chapter 2, many practical problems in various disciplines require 
the evaluation of areas for their solution, and the solution of the problem of areas 
necessarily involves the notion of limits. On the surface the problem of areas appears 
unrelated to the problem of tangents. However, we will see that the two problems are 
very closely related; one is the inverse of the other. Finding an area is equivalent to 
finding an antiderivative or, as we prefer to say, finding an integral. The relationship 
between areas and antiderivatives is called the Fundamental Theorem of Calculus . 
When we have proved it, we will be able to find areas at will, provided only that we 
can integrate (i.e., antidifferentiate) the various functions we encounter. 

We would like to have at our disposal a set of integration rules similar to the 
differentiation rules developed in Chapter 2. We can find the derivative of any differen
tiable function using those differentiation rules. Unfortunately, integration is generally 
more difficult; indeed, some fairly simple functions are not themselves derivatives of 

simple functions. For example, ex
2 

is not the derivative of any finite combination of 
elementary functions. Nevertheless, we will expend some effort in Section 5.6 and 
Sections 6.1-6.4 to develop techniques for integrating as many functions as possible . 
Later in Chapter 6 we will examine how to approximate areas bounded by graphs of 
functions that we cannot antidifferentiate . 

• _ S_u_m_s_an_d_S_ig_m_a_N_o_ta_ti_on ____________ _ 
When we begin calculating areas in the next section, we will often encounter sums 
of values of functions. We need to have a convenient notation for representing sums 
of arbitrary (possibly large) numbers of terms, and we need to develop techniques for 
evaluating some such sums. 
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DEFINITION 

I 

We use the symbol L to represent a sum; it is an enlarged Greek capital letter S 
called sigma. 

Sigma notation 

If m and n are integers with m S n, and if f is a function defined at the integers 
m, m + I, m + 2, ... , n, the symbo l Z::?=m f (i) represents the sum of the values 
off at those integers : 

n 

L f(i) = f(m) + f(m + 1) + f(m + 2) + · · · + f(n). 
i=m 

The explicit sum appearing on the right side of this equation is the expansion of 
the sum represented in sigma notation on the left side. 

5 

EXAMPLE 1 I: i
2 = 12 + 22 + 32 + 42 + 52 = 55. 

i=I 

The i that appears in the symbo l z:=;'=m f (i) is called an index of summation. To 
evaluate Z::?=m f(i), replace the index i with the integers m , m+ 1, ... , n, successively, 
and sum the results . Observe that the value of the sum does not depend on what we 
call the index ; the index does not appear on the right side of the definition. If we use 
another letter in place of i in the sum in Example 1, we still get the same value for the 
sum: 

5 

I: k2 = 12 + 22 + 32 + 42 + 52 = 55. 
k=I 

The index of summation is a dummy variable used to represent an arbitrary point where 
the function is evaluated to produce a term to be included in the sum. On the other 
hand, the sum Z::?=m f (i) does depend on the two numbers m and n, called the limits 
of summation ; m is the lower limit , and n is the upper limit. 

EX A M p L E 2 (Examples of sums using sigma notation) 

20 

I: 1 = 1 + 2 + 3 + ... + 1 s + 19 + 20 
) = 1 

n L xi = XO + x I + x2 + ... + xn- I + xn 

i=O 

n 

I:l=l+l+l+ ···+l 
m=I n terms 

3 1 11111 l 
k~2 k + 7 = 5 + 6 + 7 + 8 + 9 + 10 

Sometimes we use a subscripted variable a; to denote the ith term of a general sum 
instead of using the functional notation f (i): 

n 

La; =am+ am+I + am+2 +· · ·+an. 
i=m 
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In particular, an infinite series is such a sum with infinitely many terms: 

00 

Lan = a 1 + a2 + a 3 + · · · . 
n= l 

When no final term follow s the · · ·, it is understood that the terms go on forever . We 
will study infinite series in Chapter 9. 

When adding finitely many numbers , the order in which they are added is unimpor
tant; any order will give the same sum. If all the number s have a common factor, then 
that factor can be removed from each term and multiplied after the sum is evaluated: 
ca+ cb = c(a + b ) . These laws of arithmetic translate into the following linearity rule 
for finite sums; if A and B are constant s, then 

n n n 
L (Af(i) + Bg(i)) = A L f(i) +B L g(i) . 
i=m i=m. i=m 

Both of the sums LJ:;,7 f(j) and L?=o f(i + m) have the same expansion , namely , 
f(m) + f(m + 1) + · · · + f(m + n) . Therefore , the two sums are equal. 

m+n 11 

I: 1u) = I: 1u +m). 
j=m i= O 

This equality can also be derived by substituting i + m for j everywhere j appears on 
the left side , noting that i + m = m reduc es to i = 0, and i + m = m + n reduces to 
i = n. It is often convenient to make such a change of index in a summation. 

EXAMPLE 3 

Solution Let j = i + 2, Then j = 3 corresponds to i = 1 and j = 17 corresponds 
to i = 15. Thus, 

17 15 

L J 1 + j2 = L J l + (i + 2)2
. 

j = 3 i=l 

Evaluating Sums 
There is a closed form expre ssion for the sum S of the first n positive integers , namely , 

11 n(n + 1) 
S = Li = 1 + 2 + 3 + · · . + n = --- . 

i= l 2 

To see this , write the sum forwards and backward s and add the two to get 

S = 1 + 2 + 3 + · · · + (n - 1) + n 
S = n + (n - 1) + (n - 2) + · · · + 2 + 

2S = (n + 1) + (n + 1) + (n + 1) + · · · + (n + 1) + (n + 1) = n(n + 1) 

The formula for S follows when we divide by 2. 

It is not usually this easy to evaluate a general sum in closed form . We can only 
simplify L?=m f(i) for a small class of functions f. The only such formulas we will 
need in the next sections are collected in Theorem 1. 
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THEOREM 

I 
Summation formulas 

n 

(a) I: 1 = 1 + 1 + 1 + ... + 1 = n . 
i=l n terms 

(b) 
n n(n + 1) I:i = 1 +2+3+ · ·· +n = --- . 

i=l 2 

(c) 
~ .2 2 2 2 2 n(n + 1)(2n + 1) 
L.,,z =1 +2 +3 +···+n =------. 
i=I 6 

(d) 
n . rn - 1 L r' - 1 = 1 + r + r2 + r3 + · · · + rn- I = -- if r =I= 1. 

i=L r - l 

PROOF Formula (a) is trivial; the sum of nones is n. One proof of formula (b) was 
given above. Three others are suggested in Exercises 34-36. 

To prove ( c) we write n copies of the identity 

(k + 1)3 - k 3 = 3k 2 + 3k + 1, 

one for each value of k from 1 to n, and add them up: 

23 13 3 X 12 + 3 X 1 + 1 
33 23 3 X 22 + 3 X 2 + 1 
43 33 3 X 32 + 3 X 3 + l 

n3 (n - 1)3 3(n - 1)2 
+ 3(n - 1) + 

(n + 1)3 n3 3n 2 + 3n + 1 

(n + 1)3 13 3 (I:7=, i2) + 3 (I:7=1 i) + n 

3 (I:7=1 i2) + 
3n(n + 1) 

+ n. 
2 

We used formula (b) in the last line . The final equation can be solved for the desired 
sum to give formula (c). Note the cancellations that occurred when we added up the 
left sides of the n equations. The term 23 in the first line cancelled the -2 3 in the 
second line, and so on, leaving us with only two terms, the (n + 1)3 from the nth line 
and the -1 3 from the first line: 

n 

I:(ck + 1)3 - k3) = (n + 1)3 - 13. 
k=l 

This is an example of what we call a telescoping sum. In general, a sum of the form 
I:.'.'=m(f(i + 1) - f(i)) telescopes to the closed form f(n + 1) - f(m) because all 
but the first and last terms cancel out. 

To prove formula (d) , lets = I:,;1=1 r
1- 1 and subtracts from rs: 

(r - l)s = rs - s = (r + r2 + r3 + · · · + rn) - (1 + r + r2 + . . . + rn- l) 

= rn - 1. 

The result follows on division by r - I. 

n 

EXAMPLE 4 Evaluate L (6k 2 
- 4k + 3), where 1 Sm < n . 

k=m + I 
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Solution Using the rules of summation and various summation formulas from Theorem 1, 
we calculate 

n n n n 

I)6k 2 
- 4k + 3) = 6 I:) 2 

- 4 I>+ 3 L 1 
k= I k= I k=I k= I 

n(n + 1)(2n + 1) n(n + l) 
= 6 

6 
- 4 

2 
+ 3n 

= 2n3 + n2 + 2n 

Thus, 

n n m 

L (6k2 
- 4k + 3) = L(6k 2 

- 4k + 3) - L(6k 2 
- 4k + 3) 

k=m+I k=l k=I 

= 2n 3 + n2 + 2n - 2m3 - m2 
- 2m. 

i Remark Maple can find closed form expressions for some sums. For example, 

> sum(iA4 , i=l .. n) ; factor(%) ; 

EXE RC I SES 5.1 
Expand the sums in Exercises 1-6. 

4 100 . 

1. I:i3 2. I:-1-
J= l j + I i=I 

~ (-Ii 
4. L 

i=O i + J 

~ (-2)1 n ·2 
5· L . 2 

6· L 1
3 

J=3 (1 - 2) J= l n 

Write the sums in Exercises 7-14 using sigma notation. (Note 
that the answers are not unique.) 

7. 5 + 6 + 7 + 8 + 9 

8. 2 + 2 + 2 + · · · + 2 (200 terms) 

9. 22 - 32 + 42 - 52 + ... - 992 

10. 1 + 2x + 3x2 + 4x 3 + · ·. + I00x 99 

11. l + x + x 2 + x 3 + ... + x 11 

12. 

13. 

14. 

1 - x + x 2 - x3 + ... + x2n 

l l l (-1) 11-
1 

1 - 4 + 9 - 16 + · · · + _n_ 2_ 

1 2 3 4 n 
-+-+-+-+···+-
2 4 8 16 2" 

Express the sums in Exercises 15- 16 in the form I:7=1 f (i). 

99 

15. Lsin(j) 
J=O 

m 1 
16. L -2-

k=-5 k + I 
Find closed form values for the sums in Exercises 17-28. 

1 5 l 4 l 3 1 1 
s(n + 1) - 2(n + 1) + 3(n + 1) - 30n - 30 

1 

30
n(2n + l)(n + 1)(3n2 + 3n - 1) 

n 

11. L (i2 + 2i) 
i=I 

n 

21. Linm 
m=I 

23. The sum in Exercise 8. 

25. The sum in Exercise 12. 

1,000 

18. L c21 + 3) 
J=I 

ll 

20. Lc2i - i2
) 

i=l 

n 

22. Lei f n 
i=O 

24. The sum in Exercise 11. 

D 26. The sum in Exercise 10. Hint: Differentiate the sum 
"'100 xi 
L...,,=0 . 

D 27. The sum in Exercise 9. Hint: The sum is 
49 49 

L(<2k)
2 

- c2k + 1/) = L<-4k -1). 
k=I k=I 

D 28. The sum in Exercise 14. Hint : apply the method of proof of 
Theorem l(d) to th.is sum. 

29. Verify the formula for the value of a telescoping sum: 

II 

L(f(i + 1) - f(i)) = f(n + 1) - f(m). 
t=m 

Why is the word "telescoping" used to describe this sum? 
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In Exercise s 30-32, evaluate the given telescoping sums. 

10 m 

30. L(n 4 
- (n - 1)4) 

n= I 

31. I:c2 j - 2j - 1
) 

j= I 

2111 

( 1 I ) 32. L -- -
. i i + l 1.= rn 

33. 
1 1 1 

Show that j (j + 
1
) = j - j + 

1 
, and hence evaluate 

II 1 

L ·c 1)" j= I J J + 
34. Figure 5.1 shows a square of side n subdivided into n2 

smaller square s of side 1. How many small squares are 
shaded? Obtain the closed form expression for I:7=1 i by 
considering the sum of the areas of the shaded squares . 

" " "' " " I'- I'-

" 
Figure 5.1 

35. Write n. copies of the identity (k + 1)2 - k2 = 2k + 1, one 
for each integer k from l ton , and add them up to obtain the 
formula 

ti= n(n + 1) 
i= l 

2 

in a manner similar to the proof of Theorem 1 ( c) . 

36. Use mathematical induction to prove Theorem l(b). 

37. Use mathematica l induction to prove Theorem l(c). 

38. Use mathemati cal induction to prove Theorem l(d) . 

39. Figure 5.2 shows a square of side I:7=1 i = n(n + 1)/ 2 
subdivided into a small square of side l and n - 1 

L-shaped regions whose short edges are 2, 3, .. . , n . Show 
that the area of the L-shaped region with short side i is i 3, 

and hence verify that 

n. 

3 

2 

1 ~ 
1 2 3 

Figure 5.2 

0 40. Write n copie s of the identity 

n 

(k + 1)4 - k4 = 4k3 + 6k2 + 4k + 1, 

one for each integer k from 1 ton , and add them up to obtain 
the formula 

t i3 = _n_2_(n_ +_l)_2 

i= I 
4 

in a manner similar to the proof of Theorem l(c). 

41. Use mathematical induction to verify the formula for the sum 
of cubes given in Exercise 40. 

i 42. Extend the method of Exercise 40 to find a closed form 
expression for I:;'= 1 i

4
. You will probably want to use Maple 

or other computer algebra software to do all the algebra . 

i 43. Use Maple or another comp uter algebra system to find 
I:7=1 i k fork = 5, 6, 7, 8. Observe the term involving the 
highest power of n in each case . Predict the highest-power 
term in I:7=1 i 

10 and verify your prediction . 

. _ A_r_ea_s_a_s_L_im_it_s_o_f _Su_m_s _____________ _ 
We began the study of derivatives in Chapter 2 by defining what is meant by a tangent 
line to a curve at a particular point. We wo uld like to begi n the stu dy of integrals by 
defining what is meant by the area of a plane region, but a definition of area is much 
more difficult to give than a definition of tangency. Let us ass um e (as we did, for 
examp le, in Section 3.3) that we know intuiti vely what area means and list some of its 
properties. (See Figure 5.3.) 

(i) The area of a plane region is a nonnegative rea l number of square units . 

(ii) The area of a rectangle with wi dth w and hei ght h is A = wh . 

www.konkur.in



Figure 5.3 Properties of area 

y 

y = f(x) 

R 

X 

Figure 5.4 The basic area problem: find 
a b 

the area of region R 
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(iii) The areas of congruent plane regions are equal. 

(iv) If region Sis contained in region R, then the area of S is less than or equal to that 
of R. 

(v) If region R is a union of (finitely many) nonoverlapping regions, then the area of 
R is the sum of the areas of those regions. 

Using these five properties we can calculate the area of any polygon (a region bounded 
by straight line segments). First, we note that properties (iii) and (v) show that the 
area of a parallelogram is the same as that of a rectangle having the same base width 
and height. Any triangle can be butted against a congruent copy of itself to form a 
parallelogram, so a triangle has area half the base width times the height. Finally, any 
polygon can be subdivided into finitely many nonoverlapping triangles so its area is 
the sum of the areas of those triangles. 

We can't go beyond polygons without taking limits. If a region has a curved 
boundary, its area can only be approximated by using rectangles or triangles; calculating 
the exact area requires the evaluation of a limit. We showed how this could be done 
for a circle in Section 1.1. 

D C D D' C C' 

h R 

A w B A w B 

area ABCD = wh area S < area R area ABC' D' = wh 

C 

A w B 

area ABC= ½ wh area of polygon = 
sum of areas of triangle s 

The Basic Area Problem 
In this section we are going to consider how to find the area of a region R lying under 
the graph y = f(x) of a nonnegative-valued , continuous function f, above the x-axis 
and between the vertical lines x = a and x = b, where a < b. (See Figure 5.4.) To 
accomplish this we proceed as follows. Divide the interval [a, b] into n subintervals 
by using division points: 

a= xo < XJ < x2 < X3 < · · · < Xn-1 < x,, = b. 

Denote by llx; the length of the ith subinterval [x;-1 , x; ]: 

f:lx; = X; - Xi-I, (i = 1, 2, 3, ... , n). 

Vertically above each subinterval [x;-1 , x;] build a rectangle whose base has length 
ll x; and whose height is f (x;). The area of this rectangle is f (x;) llx;. Form the sum 
of these areas : 

ll 

Sn = f (x1) llx1 + f (x2) llx2 + f (x3) llx3 + · · · + f(xn) llxn = L f(x;) llx;. 
i=I 
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Figure 5.5 Approximating the area under 
the graph of a decreasing function using 
rectangles 

y 

y = f(x) 

X 

y 

y = J(x) 

X 

Figure 5.6 Using more rectangles makes 
the error smaller 

The rectangles are shown shaded in Figure 5.5 for a decreasing function f . For 
an incre asing function , the tops of the rectangle s would lie above the graph of f 
rather than below it. Evidently, Sn is an approximation to the area of the region 
R , and the approximation gets better as n increa ses, provided we choose the point s 
a = xo < x 1 < · · · < Xn = b in such a way that the width t:ix; of the widest rectangle 
approache s zero. 

y 

XQ 

=a 

!ix; 

Xi - I 

lix11 

x; X 

=b 

Observe in Figure 5.6, for example, that subdividing a subinterval into two smaller 
subinterval s reduces the error in the approximation by reducing that part of the area 
under the curve that is not contained in the rectangles. It is reasonable, therefore , to 
calculate the area of R by finding the limit of S,, as n --+ oo with the restriction that 
the largest of the subinterval widths D.x; must approach zero: 

Area of R = lim 
fl-+00 

max 6.Xj~O 

Sometime s, but not always, it is usefu l to choose the points x; (0 Si S n) in [a, b] in 
such a way that the subinterval lengths D.x; are all equal. In this case we have 

b- a 
D.x; = D.x = -- , 

n 

l 
x; = a+ iD.x =a+ -( b - a). 

n 

Some Area Calculations 
We devote the rest of this section to some examples in which we apply the technique 
described above for finding areas under graphs of functions by approximating with 
rectangle s. Let us begin with a region for which we already know the area so we can 
satisfy ourselves that the method does give the correct value. 

EXAMPLE 1 Find the area A of the region lying under the straight line y = x + 1, 
above the x-axis and between the lines x = 0 and x = 2. 

Solution The region is shaded in Figure 5.7(a). It is a trapezaid (a four-sided polygon 
with one pair of parall el sides) and has area 4 square units. (It can be divided into a 
rectan gle and a triangle, each of area 2 square units.) We will calculate the area as a 
limit of sums of areas of rectangles constructed as described above. Divide the interval 
[O, 2] into n subinterval s of equal length by point s 

2 4 6 2n 
xo = 0, XJ = -, x2 = -, X3 = -, . .. Xn = - = 2. 

n n n n 

2i 
The value of y = x + 1 at x = x; is x; + 1 = - + 1 and the ith subinterval , 

n 

[
2(i -1) 2i] 

n , -;; , has length D.x; 
2 

n 
Observe that D.x; --+ 0 as n --+ oo . The sum 
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(a) The region of Example 1 

(b) The region of Example 2 
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of the areas of the approximating rectangle s shown in Figure 5.7(a) is 

Sn= L ~ + 1 -n (2· ) 2 
i=I n n 

= - -I::i+I::1 (2) [2 n II J (Use parts (b) and (a) of Theorem 1.) 
n n i=I i=l 

= (~) rn n(n: 1) +n] 

n+l 
=2--+2 . 

n 
Therefore , the required area A is given by 

A = lim Sn = Jim (2 n + 
1 

+ 2) = 2 + 2 = 4 square units. 
n--+oo n--+oo n 

y 

I!. ~ 21!. 
±. ± §. £!. 

X n II n 
II ll ll ll 

(a) (b) 

f !112.=b 
II 

(11- l )b 
ll 

X 

EXAMPLE 2 Find the area of the region bounded by the parabola y = x2 and 
the straig ht lines y = 0, x = 0, and x = b, where b > 0. 

Solution The area A of the region is the limit of the sum Sn of areas of the rectangle s 
shown in Figure 5.7(b). Again we have used equal subintervals, each of length b/ n. 
The height of the ith rectangle is (ib / n)2. Thus , 

S _ ~ ( ib )
2 

!!_ _ b
3 ~ i2 _ b

3 
n(n + 1)(2n + l) 

n -~ - 3 ~ - 3 6 ' 
i= I n n n i= I n 

by formula ( c) of Theorem 1. Hence, the required area is 

(n + 1)(2n + 1) b3 
A = Jim Sn = lim b3 

2 
= - square units. 

n --+oo 11--+oo 6n 3 

Finding an area under the graph of y = xk over an interval / becomes more and more 
difficult as k increa ses if we continue to try to subdivide / into subintervals of equal 
length. (See Exerci se 14 at the end of this sectio n for the case k = 3.) It is, however , 
possible to find the area for arbitrary k if we subdivide the interval / into subintervals 
whose lengths increa se in geometr ic progression . Example 3 illustrates this . 

EXAMPLE 3 

X =bis 

Let b > a > 0, and let k be any real number except -1. Show that 
the area A of the region bounded by y = xk, y = 0, x = a, and 

bk+l -a k+ I 
A = ----- square units. 

k+l 
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Figure 5.8 For this partition the 
subinterval lengths increase exponentially 

BEWARE! This is a long and 
rather difficult example. Either 
skip over it or take your time 
and check each step carefully . 

y 

a at at2 at 3 at"= b X 

Solution Lett= (b /a) ' l n and let 

xo = a, xi= at, x2 = at 2, x3 = at 3, . . . x,, =at " = b. 

These points subdivide the interval [a, b] into n subintervals of which the ith, [Xi-I, x;], 
has length l':i.x; = ati-l (t - 1). If f (x) = xk, then f (x;) = ak t ki. The sum of the 
areas of the rectangles shown in Figure 5.8 is: 

11 

S,, = L f(x;) 1':i.x; 
i = I 

n 

= L ak l; at; - 1 (t - 1) 
i=I 

n 
= ak+l er_ l) tk I> (k+ l )(i- 1) 

i= I 

n 

= ak+ 1 (t - l)l Lr (i- l) 

i= l 

r" - 1 = ak+I (t- l)t k --
r - 1 

tCk+t)n _ 1 
= ak +I (t- l)l----

tk+I -1 

where r = tk+ 1 

(by Theorem l(d)) 

Now replace t with its value (b / a) 1l n and rearrange factors to obtain 

(b)k+I 
((~) 1/n _ l) (~)k/n ; - 1 

a a (~) (k+I) / 11 -1 

1/n 1 b = (bk+ l _ ak+l) / I n c -
c(k+ l)/ 11 - 1' where c = -. 

a 

Of the three factors in the final line above, the first does not depend on n, and the 
seco nd, ck!", approaches c0 = I as n --+ oo. The third factor is an inde termi nate form 
of type [0 /0], which we evaluate using l'H6pital' s Rule. First let u = 1 / n. Then 

c 1111 
- 1 cu - 1 

Jim ~~~-- = lim 
n-+oo c(k+l) / n - 1 u-+0+ c(k+ l)u - 1 

Cu ln C 
= lim 

11-+0+ (k + 1) c(k+ l)u ln c k + 1 
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n n n 

!!.= I 
II 

X 

Figure 5.9 Recognizing a sum of areas 

EXE RC IS ES 5.2 
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Therefore , the required area is 

1 bk+I -a k+ I 
A= lim S,, = (bk+ I - ak+ 1

) x 1 x -- =-- - -- square unit s. 
n-+oo k + 1 k + I 

As you can see, it can be rather diffi cult to calculate areas bounded by curves by the 
methods developed above . Fortunately, there is an eas ier way, as we will di scove r in 
Section 5.5. 

Remark For technical reasons it was necessary to ass ume a > 0 in Example 3. The 

result is also valid for a = 0 provided k > - I. In thi s case we have lim a-+0+ ak+ 1 = 0, 
so the area under y = xk, above y = 0, between x = 0 and x = b > 0, is 
A = bk+ 1 / (k + l) square unit s. For k = 2 this agrees with the result of Example 2. 

EXAMPLE 4 Identify the limit L = bm t n ~ i as an area , and eva luate it. 
n-+oo i=I n 

Solution We can rewrite the i th term of the sum so that it depends on i / n: 

/7 ( • ) 1 L = lim '°' 1 - !:_ -. 
n-+oo L n n 

1=) 

Th e term s now appear to be the areas of rectangles of base 1 / n and height s 1 - x;, 
(1 _:::: i .::, n) , where 

2 3 
X I = - ' X2 = - ' X3 = - ' 

n n n 

n 
Xn = - . 

n 

Thus , the limit L is the area under the curve y = l - x from x = 0 to x = l. (See 
Figure 5 .9.) Thi s region is a triangle having area 1/ 2 square unit , so L = 1/ 2. 

Use the technique s of Examples 1 and 2 ( with subintervals of 
equal length) to find the areas of the regions specified in 
Exercises 1- 13. 

D 12. Below y = ex, above y = 0, from x = 0 to x = b > 0. 

D 13. Below y = 2x, above y = 0, from x = - 1 to x = 1. 

14. Use the form ula I:;'=1 i
3 = n2 (n + 1)2 / 4, from 

1. Below y = 3x , above y = 0, from x = 0 to x = 1. 

2. Below y = 2x + 1, above y = 0, from x = 0 to x = 3. 

3. Below y = 2x - l , above y = 0, from x = l to x = 3. 

4. Below y = 3x + 4, above y = 0, from x = -1 to x = 2. 

5. Below y = x 2 , above y = 0, from x = l to x = 3. 

6. Below y = x2 + 1, above y = 0, from x = 0 to x = a > 0. 

7. Below y = x2 + 2x + 3, above y = 0, from x = - l to 
X =2. 

8. Above y = x2 - 1, below y = 0. 

9. Above y = 1 - x, below y = 0, from x = 2 to x = 4. 

10. Above y = x 2 - 2x, below y = 0. 

11. Below y = 4x - x2 + 1, above y = 1. 

Exercises 39-41 of Section 5.1, to find the area of the region 
lying under y = x 3 , above the x-ax is, and between the 
vertical lines at x = 0 and x = b > 0. 

15. Use the subdivision of [a, b] given in Example 3 to find the 
area under y = 1/ x, above y = 0 from x =a > 0 to 
x = b > a. Why should your answer not be surprising? 

In Exercises 16-19, interpret the given sum S11 as a sum of areas 
of rectangles approximat ing the area of a certain region in the 
plane and hence evaluate limn-+oo Sn. 

II 2 ( i) 16. Sn = L - I - -
i= I n n. 

18 
_ ~ 2n. + 3i 

. Sn-~ ? 

i=I n.-

II 2 ( 2i) 17. S,, = L - 1 - -
i=I n. n. 

,. 1 ~----
0 19. S11 = :z:=-Jl - (j / n.)2 

j= I n. 
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• 
The Definite Integral 

-----
In this section we generalize and make more precise the procedure used for finding areas 
developed in Section 5.2, and we use it to define the definite integral of a function f on 

Xi-I Uj l; x; X 

Figure 5.10 

DEFINITION 

I 

an interval/. Let us assume , for the time being , that f(x) is defined and continuous 
on the closed, finite interval [a , b ]. We no longer assume that the values of f are 
nonnegative. 

Partitions and Riemann Sums 
Let P be a finite set of points arranged in order between a and b on the real line, say 

p = {XO, Xi, X2, X3, ... , Xn-1, Xn}, 

where a = xo < xi < x2 < x3 < · · · < Xn-1 < x 11 = b. Such a set P is called a 
partition of [a , b]; it divides [a, b] into n subintervals of which the i th is [xi - I , Xi]. We 
call these the subintervals of the partition P. The number n depends on the particular 
partition, so we write n = n(P). The length of the ith subinterval of Pis 

!:i.xi = Xi - Xi-I, (for 1 S i S n) 

and we caJI the greatest of these numbers !:i.xi the norm of the partition P and denote 
it II PII: 

IIPII = max t:i.xi. 
I .::,i.::,n 

Since f is continuous on each subinterval [xi- I, Xi] of P , it takes on maximum and 
minimum values at points of that interval (by Theorem 8 of Section 1.4). Thus, there 
are numbers l; and u; in [Xi- I , x;] such that 

f(li) S f(x) S f(u;) whenever Xi-I S x S Xi. 

If f (x) :::: 0 on [a, b ] , then f (li) t:i.xi and f (u;) !:i.xi represent the areas of rectangles 
having the interval [xi- I, Xi] on the x-axis as base, and having tops passing through 
the lowest and highest points, respectively, on the graph of f on that interval. (See 
Figure 5.10.) If A; is that part of the area under y = f(x) and above the x-axis that 
lies in the vertical strip between x = Xi- 1 and x = Xi, then 

f (li) !:i.xi S Ai S f (u;) !:i.xi. 

If f can have negative values, then one or both of f (li) !:i.x; and f (u;) !:i.xi can be 
negative and will then represent the negative of the area of a rectangle lying below the 
x-axis. In any event, we always have f(li) !:i.xi S f(ui) !:i.x;. 

Upper and lower Riemann sums 

The lower (Riemann) sum, L(f, P) , and the upper (Riemann) sum, U(f, P) , 
for the function f and the partition P are defined by: 

n 

= "I:. 1ui) 1::i.xi, 
i=I 

n 

= L, f(ui)t:i.xi, 
i=I 

Figure 5.11 illustrates these Riemann sums as sums of signed areas of rectangles ; any 
such areas that lie below the x -axis are counted as negative . 
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Figure 5.11 (a) A lower Riemann sum 
and (b) an upper Riemann sum for a 
decreasing function f. The areas of 
rectangles shaded in colour are counted as 
positive; those shaded in grey are counted 
as negative 
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(a) (b) 

EXAM p L E 1 Calculate lower and upper Riemann sums for the function 
f(x) = 1/ x on the interval [l, 2], corresponding to the partition 

P of [ 1, 2] into four subintervals of equal length. 

Solution The partition P consists of the points xo = 1, x, = 5/ 4, x2 = 3/ 2, 
x3 = 7 / 4, and x 4 = 2. Since 1/ x is decreasing on [l , 2], its minimum and maximum 
values on the ith subinterval [x;- i, x ;] are 1/ x; and l / x;- 1, respectively. Thus , the 
lower and upper Riemann sums are 

1 (4 2 4 1) 533 
L(f, P) = 4 5 + 3 + 7 + 2 = 840 ~ 0·6345 ' 

1 ( 4 2 4) 319 U(f , P) = 4 l + S + 3 + 7 = 
420 

~ 0.7595 . 

EXAM p LE 2 Calculate the lower and upper Riemann sums for the function 
f (x) = x 2 on the interval [0, a] (where a > 0), corresponding to 

the partition Pn of [0, a] into n subintervals of equal length. 

Solution Each subinterval of P11 has length tu = a/ n, and the division points are 
given by x; = ia / n for i = 0, 1, 2, ... , n. Sincex 2 is increasing on [O, a], its minimum 
and maximum values over the ith subinterval [x;-1, x;] occur at l; = x;-t and u; = x ; , 

respectively. Thus, the lower Riemann sum off for Pn is 

n 3 n 

L(f, Pn) = L(X;-1) 2 6x = a 3 I:u - 1)2 

i=l n i =l 

= a3 ~ j2 = a3 (n - 1)n(2(n - 1) + 1) = (n - 1)(2n - l)a 3 

n3 L..., n3 6 6n2 ' 
J = O 

where we have used Theorem l(c ) of Section 5.1 to evaluate the sum of squares. 
Similarly, the upper Riemann sum is 

n 

U(f , P11) = L(x;) 2 6x 
i=l 

= a3 ~ i2 = a3 n(n + 1)(2n + 1) = (n + 1)(2n + l)a 3 

n3 L..., n3 6 6n2 
1= ! 

The Definite Integral 
If we calculate L (f , P) and U (f , P) for partitions P having more and more points 
spaced closer and closer together, we expect that, in the limit, these Riemann sums will 
converge to a common value that will be the area bounded by y = f(x), y = 0, x = a, 
and x = b if f(x) 2: 0 on [a, b]. This is indeed the case, but we cannot fully prove it 
yet. 
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DEFINITION 

I 

If P1 and P2 are two partitions of [a , b] such that every point of P1 also belong s 
to P2, then we say that P2 is a refinement of P1. It is not difficult to show that in this 
case 

adding more points to a partition increases the lower sum and decreases the upper sum. 
(See Exercise 18 at the end of this section.) Given any two partitions, Pi and P2, we 
can form their common refinement P , which consists of all of the points of P 1 and 
P2. Thus, 

L(J, Pi) S L(J, P) S U(J , P) S U(J , P2) . 

Hence, every lower sum is Jess than or equal to every upper sum. Since the real numbers 
are complete, there must exist at least one real number I such that 

L(J, P) SIS U(f , P), for every partition P. 

If there is only one such number, we will call it the definite integral off on [a, b ]. 

The definite integral 

Suppose there is exactly one number / such that for every partition P of [a , b] 
we have 

L(J, P) S I S U(J , P). 

Then we say that the function f is integrable on [a , b ], and we call / the definite 
integral off on [a , b]. The definite integral is denoted by the symbol 

I= lb f(x) dx. 

The definite integral off (x) over [a, b] is a number; it is not a function of x. It depends 
on the numbers a and b and on the particular function f, but not on the variable x 
(which is a dummy variable like the variable i in the sum I:=?=1 f (i)) . Replacing x 
with another variable does not change the value of the integral: 

lb f(x) dx = lb f(t) dt. 

The various parts of the symbo l lb f(x) dx have their own names: 

(i) f is called the integral sign; it resembles the letter S since it represents the limit 
of a sum. 

(ii) a and b are called the limits of integration ; a is the lower limit , b is the upper 
limit. 

(iii) The function f is the integrand ; x is the variable of integration. 

(iv) dx is the differential of x. It replaces t.x in the Riemann sums. If an integrand 
depends on more than one variable, the differential tells you which one is the 
variable of integration . 

EXAMPLE 3 Show that f( x ) = x 2 is integrable over the interval (0, a], where 

a > 0, and evaluate foa x 2 dx. 
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Figure 5.12 1b f(x)dx equals 

area R1 - area R2 + area R3 
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Solution We evaluate the limits as n ---+ oo of the lower and upper sums of f over 
[0, a] obtained in Example 2 above. 

. . (n - 1)(2n - l)a 3 a 3 
ltm L(f, Pn) = ltm 2 3 

, 
n~oo n~oo 6n 

Jim U(f, Pn) = lim (n + 1)(2n + l)a 3 = a3 
n~oo n~oo 6n2 3 

If L(f, Pn) :::= / :::= U (f, P11) , we must have / = a3 / 3. Thus, f (x) = x2 is integrable 
over [O, a], and 

f(x)dx = x 2 dx = -. la
a laa a 3 

O O 3 

For all partitions P of [a , b ], we have 

L(f, P) :S lb f(x)dx :S U(f, P). 

If f (x) 2: 0 on [ a, b], then the area of the region R bounded by the graph of y = f (x) , 

the x-axis , and the lines x = a and x =bis A square units, where A = J; f(x) dx. 

If f(x) :::= 0 on [a , b], the area of R is - J; f(x) dx square units. For general f, J: f (x) dx is the area of that part of R lying above the x-ax is minus the area of that 

part lying below the x-ax is. (See Figure 5.12.) You can think of J; f (x) dx as a "sum" 
of "areas" of infinitely many rectangles with heights f(x) and "infinitesimally small 
widths" dx; it is a limit of the upper and lower Riemann sums. 

y 

X 

General Riemann Sums 
Let P = {xo, x1, x2, ... , Xn}, where a = xo < x1 < x2 < · · · < x 11 = b , be a 
partition of [a, b] having norm II P II = max1:::i:::n !n;. In each subinterval [Xi -I, xi] 
of P pick a point Ci (called a tag). Let c = (c1, c2, ... , en) denote the set of these tags. 
The sum 

n 

R(f, P, c) = L f(c;) !n; 
i=l 

is called the Riemann sum off on [a, b] corresponding to partition P and tags c. 

Note in Figure 5.13 that R(f , P, c) is a sum of signed areas of rectangles between 
the x-axis and the curve y = f(x). For any choice of the tags c, the Riemann sum 
R (f, P, c) satisfies 

L(f, P) :S R(f , P , c) :S U(f, P) . 
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Figure 5.13 The Riemann sum R (J, P, c) 
is the sum of areas of the rectangles 
shaded in colour minus the sum of the 
areas of the rectangles shaded in grey 

THEOREM 

I 

Therefore, if f is integrable on [a, b ] , then its integral is the limit of such Riemann 
sums, where the limit is taken as the number n(P) of subintervals of P increases to 
infinity in such a way that the lengths of all the subintervals approach zero. That is, 

Jim R (f, P, c) = ( b f(x) dx . 
n(P)-+oo J a 
IIP ll-+ 0 

As we will see in Chapter 7, many applications of integration depend on recognizing 
that a limit of Riemann sums is a definite integral. 

y 

X 

c2 C11 

If f is continuous on [a, b], then f is integrable on [a , b]. 

Remark The assumption that f is continuous in Theorem 2 may seem a bit super
fluous since continuity was required throughout the above discussion leading to the 
definition of the definite integral . We cannot, however, prove this theorem yet. Its 
proof makes subtle use of the completeness property of the real numbers, and is given 
in Appendix IV in the context of an extended definition of definite integral that is 
meaningful for a larger class of functions that are not necessarily continuous. (The 
integral studied in Appendix IV is called the Riemann integral.) 

We can, however, make the following observation. In order to prove that f is 
integrable on [a, b], it is sufficient that , for any given positive number E, we should be 
able to find a partition P of [a , b] for which U(f, P) - L(f , P) < €. This condition 
prevents there being more than one number I that is both greater than every lower sum 
and less than every upper sum. It is not difficult to find such a partition if the function 
f is nondecreasing ( or if it is nonincreasing) on [a, b]. (See Exercise 17 at the end 
of this section.) Therefore, nondecreasing and nonincreasing continuous functions are 
integrable; so, therefore, is any continuous function that is the sum of a nondecreasing 
and a nonincreasing function. This class offunctions includes any continuous functions 
we are likely to encounter in concrete applications of calculus but, unfortunately, does 
not include all continuous functions . 

Meanwhile, in Sections 5.4 and 6.5 we will extend the definition of the definite 
integral to certain kinds of functions that are not continuous , or where the interval of 
integration is not closed or not bounded. 

11 

2 ( 2i - 1) 
113 

EXAMPLE 4 Express the limit lim L - 1 + -- as a definite 
n--+oo i=I n n 

integral. 

Solution We want to interpret the sum as a Riemann sum for f (x) = ( 1 + x) 1 / 3 . The 
factor 2/ n suggests that the interval of integration has length 2 and is partitioned into n 
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equal subintervals, each of length 2/ n. Let c; = (2i - 1)/ n for i = 1, 2, 3, .. . , n. As 
n-+ oo,c 1 = 1/ n-+ Oand c11 = (2n-l) / n-+ 2. Thus , theintervalis[0,2] ,a ndthe 
pointsofthepartitionarex; = 2i / n. Ob serve that x;- 1 = (2i-2) / n < c; < 2i / n = x; 

for each i, so that the sum is indeed a Riemann sum for f(x) over (0, 2]. Since f is 
continuous on that interval , it is integrable there , and 

ll 2 ( 2i - 1) 1/3 12 
Jim I:- 1 + -- = (1 +x) 113 dx. 

n - H)O i = I n n 0 

In Exercises 1-6 , let Pn denote the partition of the given interval 
[a, b] into n subintervals of equal length !ix; = (b - a) / n . 
Evaluate L(f, Pn) and U (f, Pn) for the given functions f and 
the given values of n. 

15. lim t !tan - 1 (
2

i -
1

) 
n-->oo i=I n 2n 

. n n 
16. 11m L -2-- 2 

11-->oo i=l n +i 1. f (x) = x on [O, 2], with n = 8 

2. f (x) = x 2 on [0, 4], with n = 4 

3. f (x) = ex on [-2, 2], with n = 4 

4. f (x) = ln x on [1, 2], with n = 5 

5. f(x) = sinx on [0, ir] , with n = 6 

6. f(x) = cosx on (0, 2ir], with n = 4 

In Exercises 7-10, calculate L(f , P11) and U(f, P11) for the given 
function f over the given interval [a, b], where P11 is the partition 
of the interval into n subintervals of equal length 
!ix = (b - a) / n. Show that 

lim L(f , P,,) = lim U(f , P11). 
n.~oo n-+-oo 

Hence, f is integrable on [a , b]. (Why?) What is J; f (x) dx? 

7. f(x) = x, [a, b] = [O, 1] 

8. f (x) = 1 - x, [a , b] = [O, 2] 

9. f(x)=x 3 , [a,b]=[O,l] 

10. f (x) = ex, [a, b] = [0, 3] 

In Exercises 11-16 , express the given limit as a definite integral. 

11. • II \/f 12. 
n 1p; 

lim - - Jim - --n-->ooL n n n-->ooL n n 
t=I r= I 

/1 ( " ) 

11 2 ( 2i) 13. lim L '.:. sin '.:..:.. 14. Jim L - ln 1 +-
11-->oo . n n n-->oo i = I n n l=i 

D 17. If f is continuous and nondecreasing on [a, b], and P,, is the 
partition of [a , b] into n subintervals of equal length 
(t:.x; = (b - a) / n for 1 .'.Si .'.Sn), show that 

(b - a)(!(b) - f(a)) 
U(f , P,,) - L(f, P11) = --~-- -~ 

n 

Since we can make the right side as small as we please by 
choosing n large enough, f must be integrable on [a , b ] . 

D 18. Let P = [a= xo < x1 < x2 < · · · < x 11 = b) be a partition 
of [a, b], and let P' be a refinement of P having one more 
point, x ', satisfying, say, x; _ 1 < x ' < x; for some i between 
l and n. Show that 

L(f , P) .'.S L(f , P') .'.S U(f, P') .'.S U(f, P) 

for any continuous function f. (Hint: Consider the 
maximum and minimum values off on the intervals 
[x;- 1, x;], [x;- 1, x '], and [x ' , x;].) Hence, deduce that 

L (f, P) .'.S L (f, P") .'.S U(f , P") .'.S U(f, P) if P" 

is any refinement of P . 

• 
Properties of the Definite Integral 

-----
It is convenient to extend the definition of the definite integral fab f(x) dx to a!Jow 
a = band a > b as well as a < b. The extension still involves partitions P having 
xo = a and x 11 = b with intermediate point s occuning in order between these end 
points, so that if a= b, then we must have tu; = 0 for every i, and hence the integral 
is zero. If a > b, we have !:i.x; < 0 for each i , so the integral will be negative for 
positive functions f and vice versa. 

Some of the most important properties of the definite integral are summarized in 
the following theorem. 
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THEOREM 

I 
Let f and g be integrable on an interval containing the points a, b, and c. Then 

(a) An integral over an interval of zero length is zero. 

1a J(x) dx = 0. 

(b) Reversing the limits of integration changes the sign of the integral. 

1a f(x) dx = -1b f(x) dx. 

(c) An integral depends linearly on the integrand. If A and B are constants, then 

1\AJ(x) + Bg(x)) dx = A 1b f(x) dx + B 1b g(x) dx. 

(d) An integral depends additively on the interval of integration. 

1b f(x)dx+ 1c f(x)dx= 1 c f(x)dx. 

(e) If a Sb and f(x) S g(x) for a S x Sb, then 

1b f(x) dx S 1b g(x) dx. 

(f) The triangle inequality for sums extends to definite integrals. If a S b, then 

11b f(x)dxl S 1b lf(x)ldx. 

(g) The integral of an odd function over an interval symmetric about zero is zero. If 
f is an odd function (i.e., f(-x) = - f(x)), then 

1_: f(x)dx = 0. 

(h) The integral of an even function over an interval symmetric about zero is twice 
the integral over the positive half of the interval. If f is an even function (i.e., 
f(-x) = f(x)), then 

la f(x) dx = 2 t f(x) dx. 
- a Jo 

The proofs of parts (a) and (b) are suggested in the first paragraph of this section. We 
postpone giving formal proofs of parts (c)-(h) until Appendix IV (see Exercises 5-8 in 
that Appendix). Nevertheless, all of these results should appear intuitively reasonable 
if you regard the integrals as representing (signed) areas. For instance, properties (d) 
and (e) are, respectively, properties (v) and (iv) of areas mentioned in the first paragraph 
of Section 5.2. (See Figure 5.14.) 
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Figure 5.14 

(a) Property (d) of Theorem 3 

(b) Property (e) of Theorem 3 

Figure 5.15 

(a) Property (g) of Theorem 3 

(b) Property (h) of Theorem 3 

-2 

Figure 5.16 

y 
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y y 
y =g(x) ----

X a b X 

area R1 + area R2 = area R 

1b f (x) dx + 1c f (x) dx = 1c f(x) dx 

area S :'.5 area R 

1b f(x)dx S 1b g(x)dx 

(a) (b) 

Property (f) is a generalization of the triangle inequality for numbers: 

Ix+ yl::: lxl + IYI, or more generally, ltx; I ::: t lxil · 

It follows from property (e) (assuming that Iii is integrable on [a , b]), since 
-lf(x)I S f(x) S If (x)I. The symmetry properties (g) and (h), which are illus
trated in Figure 5.15, are particularly useful and should always be kept in mind when 
evaluating definite integrals because they can ave much unnecessary work. 

Y y = f(x) (odd) y 

y = f (x) (even) 

-a a X 

area R1 - area R2 = 0 area R1 + area R2 = 2 area R2 

L: f (x) dx = 0 la f(x) dx = 2 t f(x) dx 
-a Jo 

(a) (b) 

As yet we have no easy method for evaluating definite integrals. However , some 
such integrals can be simplified by using various properties in Theorem 3, and others 
can be interpreted as known areas . 

EXAMPLE 1 

y=2 

2 X 

Evaluate 

(a) 1: (2+5x) dx, (b) fo3 

(2+x) dx, and 

y 

y = X + 2 (3, 5) 

3 

Figure 5.17 

X 
-3 

Figure 5.18 

Solution See Figures 5.16-5.18 . 

(c) [
3 

J9 - x 2 dx. 
}_3 

y 
y = J9-x 2 

_.....,.._ 

3 X 
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While areas are measured in 
squared units of length, definite 
integrals are numbers and have 
no units. Even when you use an 
area to find an integral, do not 
quote units for the integral. 

THEOREM 

I 

(a) By the linearity property (c), f~2 (2 + Sx) dx = f~2 2dx + 5 f 2 x dx. The first 
integral on the right represents the area of a rectangle of width 4 and height 2 
(Figure 5 .16), so it has value 8. The second integral on the right is O because its 
integrand is odd and the interval is symmetric about 0. Thus, 

f 
2 

(2 + Sx) dx = 8 + 0 = 8. 
-2 

(b) Jg (2 + x) dx represents the area of the trapezoid in Figure 5.17. Adding the areas 
of the rectangle and triangle comprising this trapezoid, we get 

1
3 l 21 

(2 + X) dx = (3 X 2) + -(3 X 3) = - . 
o 2 2 

(c) J23 ./9 - x 2 dx represents the area of a semicircle of radius 3 (Figure 5.18), so 

J9-x 2 dx = -rr(3 2
) = -. f 3 1 9rr 

- 3 2 2 

A Mean-Value Theorem for Integrals 
Let f be a function continuous on the interval [a, b]. Then f assumes a minimum 
value m and a maximum value M on the interval, say at points x = l and x = u, 
respectively : 

m = f(l) S f(x) S f(u) = M for all x in [a, b]. 

For the 2-point partition P of [a, b] having xo = a and x1 = b , we have 

m(b - a)= L(f , P) S 1b f(x) dx S U(f, P) = M(b - a). 

Therefore, 

l 1b f(l) = m '.:: b _ a a f(x) dx ::: M = f(u). 

By the Intermediate-Value Theorem, f(x) must take on every value between the two 
values f(l) and f(u) at some point between land u (Figure 5.19). Hence, there is a 
number c between l and u such that 

l 1b f(c) = -- f(x)dx. 
b -a a 

That is, J: f(x) dx is equal to the area (b - a)f (c) of a rectangle with base width 
b - a and height f (c) for some c between a and b. This is the Mean-Value Theorem 
for integrals. 

The Mean-Value Theorem for integrals 

If f is continuous on [a, b ] , then there exists a point c in [a, b] such that 

1b f (x) dx = (b - a)f (c). 
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Figure 5.19 Half of the area between 
y = f (x) and the horizontal line 
y = f (c) lies above the line, and the other 
half lies below the line 

DEFINITION 

y 

5 

Figure 5.20 is 2x dx = 24 

I 

X 
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y 

M 

f (c) 1-_,.. _______ _,,_ ____ ....__ __ _, I 

m 

a 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I I 

---------r-------~------i 
I I 
I I 
I I 
I I 

C u b X 

Observe in Figure 5.19 that the area below the curve y = f (x) and above the line 
y = f (c) is equal to the area above y = f(x) and below y = f(c) . In this sense, f(c) 
is the average value of the function f (x) on the interval [a, b ] . 

Average value of a function 

If f is integrable on [a, b ] , then the average value or mean value off on [a, b] , 
denoted by J, is 

1 lb J = -- f(x) dx. 
b-a a 

EX A M p L E 2 Find the average value of f (x) 2x on the interval [ 1, 5]. 

Solution The average value (see Figure 5.20) is 

J = -- 2x dx = - 4 x 2 + -(4 x 8) = 6. 1 !5 
l ( 1 ) 

5-1 1 4 2 

Definite Integrals of Piecewise Continuous Functions 
The definition of integrability and the definite integral given above can be extended to 
a wider class than just continuous functions. One simple but very important extension 
is to the class of piecewise cont inuous functions. 

Consider the graph y = f (x) shown in Figure 5.2l(a). Although f is not contin
uous at all points in [a , b] (it is discontinuous at c1 and c2), clearly the region lying 
under the graph and above the x -axi s between x = a and x = b does have an area. We 
would like to represent this area as 

1CJ 1 C2 lb 
a f(x) dx + c i f (x) dx + ci f(x) dx. 

This is reasonable because there are continuous functions on [a, ci], [c1, c2], and [c2, b] 
equal to f(x) on the corresponding open intervals, (a, c1), (c1, c2), and (c2, b). 
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DEFINITION 

I 
Piecewise continuous functions 

Let co < c 1 < c2 < · · · < c11 be a finite set of points on the real line . A function 
f defined on [co, c,,] except possibly at some of the points c;, (0 s i s n), is 
called piecewise continuous on that interval if for each i (1 .::: i S n) there exists 
a function F; continuous on the closed interval [c;- J , c; ] such that 

f(x) = F;(x) ontheopeninterval (c; - 1,c;). 

In this case, we define the definjte integral off from co to c,, to be 

le" f(x)dx = t le; F;(x)dx. 
co i=I Cj-1 

[
3 I~ ifO S x S 1 EXAMPLE 3 Find Jo f(x)dx,wheref(x)= 2 ifl < x.:::2 

X - 2 if 2 < X .'.:: 3. 
Solution The value of the integral is the sum of the shaded areas in Figure 5.2l(b): 

fo3 

f(x)dx = fo1 

~dx + fi2 

2d x + 13 

(x - 2)dx 

Figure 5.21 Two piecewise continuous 
functions 

EX E R C I S ES 5.4 

y 

a 

1. Simplify 1b f(x) dx + r f(x) dx + la f(x) dx. 
a h C 

2. Simplify fo
2 

3f(x)dx + 13 
3f(x)dx - fo

3 

2f(x)dx 

-12 

3f(x)dx. 

(
1 ) (1 ) 7r:+10 = 4 X 7r: X 12 + (2 X 1) + 2 X l X ] = -

4
- . 

n ~f(x) 
: ~ I I 
I I 
I I 
I I 

I I 
I I 
I I 

: I 
I I 

CJ c2 b X 

(a) 

5. 1b X dx 

1~ 7. ~dt 
-~ 

9. 

y 

1 

y=2 ~---· 
y =~ 

(b) 

6. l~ ( l - 2x) dx 

j 0 
)2-x 2 dx 8. 

-~ 

Evaluate the integrals in Exercises 3-16 by using the properties 
of the definite integral and interpreting integrals as areas. 

l: sin(x3
) dx 

11 

(u5 
- 3u3 + n) du 

10. l : (a - Isl) ds 

fo
2 

J2x - x 2 dx 11. 12. 
- I 

3. l: (x + 2) dx 4. fo2 

(3x + 1) dx 13. 14 (ex - e- x ) dx 14. l : (2 + t))9 - t 2 cit 
-4 

X 
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D 15. f )4-x2dx Piecewise continuous functions 

33. 
? 

1
a a 3 

Given that x 2 dx = - , evaluate the integrals in Exercises 
0 3 

Evaluate 1-sgn x dx. Recall that sgn x is l if x > 0 and -1 
- ) 

if X < 0. 

17-22. 

17. 12 
6x

2 
dx 18. 13 

(x2 - 4) dx 

19. 1_: (4 - t 2
) dt 20. fo\v 2 

- v)dv 

21. fo
1 

(x2 + ~)dx 22. 16 

x2(2 + sinx)dx 
- 6 

34. . 12 
{ l + X if X < 0 Fmd _

3 
f(x)dx , where f(x) = 2 if x:::, O. 

35. Find lo \ (x ) dx, where g (x) = { ~
2 

:: ~ ! : ; ;, 
36. Evaluate 13 

12 - xi dx. 

The definition of lnx as an area in Section 3.3 implies that 
D 37. Evaluate 12 

J 4 - x2 sgn(x - I)dx. 

[ 3.5 

f
x l 

-dt=ln x 
I t 

38. Evaluate Jo LxJ dx, where LxJ is the greatest integer less 

for x > 0. Use this to evaluate the integrals in Exercises 23-26. 

than or equal to x . (See Example IO of section P.5.) 

Evaluate the integrals in Exercises 39--40 by inspecting the 
graphs of the integrands . 

23. f
2 
~ dx 

11 X 
24. 1

4 l 
- dt 

2 t i~ 39. f) 1x + lJ - Ix - lJ + Jx + 21) dx 

25. (1 ~ dt 
11;3 t 26. !3 J 

- ds 
1/ 4 S 

;~ 40. - -d x 13 x 2 - x 

o Ix - II 
Find the average values of the functions in Exercises 27- 32 over 
the given intervals. 

41. Find the average value of the function 
f (x) = Ix + l I sgn x on the interval [-2 , 2]. 

27. f (x) = x + 2 over [0, 4) 

28. g(x) = x + 2 over [a, b] 

29. f(t) =I+ sint over [-ir , ir] 

30. k(x) = x2 over [0, 3] 

31. f (x) = J 4 - x2 over [O, 2] 

32. g(s) = 1/ s over [1/ 2, 2] 

42. If a < b and f is continuou on [a , b], show that 

1b (!( x ) - J) dx = 0. 

G 43. Suppose that a < band f is continuous on [a , b ]. Find the 

constant k that minimize s the integral lb (!ex) - k )2 dx. 
a 

• 
The Fundamental Theorem of Calculus 

-----
In this section we demonstrate the relationship between the definite integral defined 
in Section 5.3 and the indefinite integral (or general antiderivative) intr oduced in 

THEOREM 

I 

Section 2.10. A consequence of this relationship is that we will be able to calculate 
definite integrals of functions who se antiderivatives we can find. 

In Section 3.3 we wanted to find a function whose derivative was 1/ x . We solved 

this problem by defining the desired function (In x) in terms of the area under the graph 

of y = 1/x. This idea motivates , and is a special case of, the following theorem. 

The Fundamental Theorem of Calculus 

Suppose that the function f is continuous on an interval / containing the point a. 

PART I. Let the function F be defined on I by 

F(x) = lx f(t) dt. 

Then F is differentiable on I , and F' (x) = f (x) there. Thus, F is an anti derivative of 
f on/: 
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DEFINITION 

I 

d lx - f(t) dt = f(x). 
dx a 

PART II. If G(x) is any antiderivative of f (x) on I , so that G' (x) = f (x) on I, then 
for any b in / we have 

1b f(x) dx = G(b) - G(a) . 

PROOF Using the definition of the derivative, we calculate 

'( . F(x + h) - F(x) 
F x) = hm ------

h->0 h 

= lim ~ ( r+h 1 (t) dt -1x 1 (t) dt) 
h-> Oh L a 

11x+h = Jim - f (t) dt 
h-> 0 h X 

1 = lim - hf( c) 
h->O h 

= Jim f(c) 
C->X 

= f(x) 

by Theorem 3(d) 

for some c = c (h) (dependi ng on h) 

between x and x + h (Theorem 4) 

since c -+ x as h -+ 0 

since f is continuous . 

Also, if G' (x) = f(x), then F(x) = G(x) +Con I for some constant C (by Theorem 
13 of Section 2.8). Hence , 

ix f(t) dt = F(x) = G(x) + C. 

Letx = a and obtain O = G(a) + C via Theorem 3(a), so C = -G(a) . Now Ietx = b 
to get 

1b f(t) dt = G(b) + C = G(b) - G(a) . 

Of course, we can replace t with x ( or any other variable) as the variable of integration 
on the left-hand side. 

Remark You should remember both conclusions of the Fundamental Theorem; they 
are both useful. Part I concern s the derivative of an integral; it tells you how to 
differenti ate a definite integral with respect to its upper limit. Part II concerns the 
integral of a derivative; it tells you how to evaluate a definite integral if you can find an 
antiderivative of the integrand. 

To facilitate the evaluation of definite integrals using the Fundamental Theorem 
of Calculus, we define the evaluation symbol: 

F(x>[ = F(b) - F(a) . 
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BEWARE! Be careful to keep 
track of all the minus signs 
when substituting a negative 
lower limit. 

y = 3x -x 2 

3 

Figure 5.22 

y 

y = sinx 

Figure 5.23 

X 

X 
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Thus, 

1b f(x) dx = (! f(x) dx) I:, 
where f f (x) dx denotes the indefinite integral or general anti derivative of f. (See 
Section 2.10.) When evaluating a definite integral this way, we will omit the constant of 
integration ( +C) from the indefinite integral because it cancels out in the subtraction: 

(F(x) + c{ = F(b) + C - (F(a) + C) = F(b) - F(a) = F(x{. 

Any antiderivative off can be used to calculate the definite integral. 

EXAMPLE 1 Evaluate (a) foa x 2 dx and (b) /_~(x 2 -3x+2)dx . 

Solution 

(a) t x2dx = ~x31a = ~a3 - ~03 = a3 
lo 3 0 3 3 3 

d x3 

(because - - = x 2
). 

dx 3 

(b) f 2 (x 2 - 3x + 2) dx = (~x3 
- ~x 2 + 2x) 1

2 

- 1 3 2 - ] 

EXAMPLE 2 

l 3 (l 3 ) 9 =3(8)-2(4 )+4 - 3(-1)-2(1)+(-2) =2· 

Find the area A of the plane region lying above the x-axis and 
under the curve y = 3x - x 2. 

Solution We need to find the points where the curve y = 3x - x 2 meets the x -axis . 
These are solutions of the equation 

0 = 3x - x 2 = x(3 - x). 

The only roots are x = 0 and x = 3. (See Figure 5.22.) Hence, the area of the region 
is given by 

2 2 I 3 13 (3 ) 13 A = 0 (3x - X ) dx = 2 X - 3 X 0 

27 27 27 9 
= - - - - (0 - 0) = - = - square units . 

2 3 6 2 

EXAM p LE 3 Find the area under the curve y = sinx, above y = 0 from x = O 
tox = n . 

Solution The required area, illustrated in Figure 5.23, is 

A= lo" sinxdx = -cosxl: = -(-1 - (1)) = 2 square units. 

Note that while the definite integral is a pure number , an area is a geometric quantity 
that implicitly involves units . If the units along the x- and y-axes are, for example, 
metres, the area should be quoted in square metres (m2). If units of length along the 
x-axis and y-axis are not specified, areas should be quoted in square units. 

www.konkur.in



314 CHAPTER 5 Integration 

-2 

Figure 5.24 

Figure 5.25 

-1 

y 5 
y = x 2 + I 

y 

X 

X 

EXAMPLE 4 Find the area of the region R lying above the line y = 1 and below 
the curve y = 5/ (x2 + 1). 

Solution The region R is shaded in Figure 5.24. To find the intersections of y = I 
and y = 5/ (x2 + 1), we must solve these equations simultaneously: 

5 
1= -

x2 + l ' 

so x 2 + 1 = 5, x 2 = 4, and x = ±2. 

The area A of the region R is the area under the curve y = 5 / (x 2 + 1) and above 
the x-axis between x = -2 and x = 2, minus the area of a rectangle of width 4 and 
height 1. Since tan - 1x is an antiderivative of 1/ (x2 + 1), 

A = f 2 

-
5
- dx - 4 = 2 f 2 -

5
- dx - 4 

-2 x 2 + 1 lo x 2 + 1 

= 10 tan - 1 xi: - 4 = 10 tan - 1 2 - 4 square units . 

Observe the use of even symmetry (Theorem 3(h) of Section 5.4) to replace the lower 
limit of integration by 0. It is easier to substitute O into the antiderivative than -2 . 

EXAMPLE 5 Find the average value of f (x) 
[-n -/ 2, OJ. 

Solution The average value is 

_ 1 /0 /= ( n:) (e-x+cosx)dx 
0 - -- - (rr/ 2) 

2 

2 [o = - (-e -x +sinx) 
n: -(11: / 2) 

2 ( rr/ 2 ( ) 2 rr/ 2 =; -l+O+ e - -1) =;e . 

e-x + cos x on the interval 

Beware of integrals of the form J: f (x) dx , where f is not continuous at all points in 
the interval [a, b]. The Fundamental Theorem does not apply in such cases. 

d l 
EXAMPLE 6 We know that - In !xi = - if x -f. 0. It is incorrect, however, to 

dx X 
state that 

f l d II ~= lnlxl =0 -0 =0 , 
- I X - I 

even though 1 / x is an odd function . In fact, l / x is undefined and has no limit at x = 0, 
and it is not integrable on [-1, OJ or [0, 1 J (Figure 5.25) . Observe that 

1
1 1 

lim - dx = lim - In c = oo , 
c--->0+ c X c--->0+ 

so both shaded regions in Figure 5.25 have infinite area. Integrals of this type are called 
improper integrals. We deal with them in Section 6.5. 

The following example illustrates , this time using definite integrals, the relationship 
observed in Example 1 of Section 2.11 between the area under the graph of its velocity 
and the distance travelled by an object over a time interval. 
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EXAM p LE 7 An object at rest at time t = 0 accelerates at a constant 10 mJs2 

during the time interval [0, T]. If O :S to :S t1 :S T , find the 
distance travelled by the object in the time interval [to, t1]. 

Solution Let v( t) denote the velocity of the object at time t, and let y(t) denote the 
distance travelled by the object during the time interval [O, t], where O :S t :S T . Then 
v( O) = 0 and y( O) = 0. Also v'(t) = 10 and y'(t) = v(t). Thus , 

v(t) = v(t) - v(O) = fo1 

v'(u) du= fo1 

lOdu = lOu[ = lOt 

y(t) = y (t) - y( O) = fo
1 

y'( u)du = fo
1 

v(u)d u = fo
1 

lOudu = 5u
21~ = 5t2

. 

On the time interval [to, ti], the object has travelled distance 

y(t(l)) - y (t(O)) = 5tf- 5tJ = t' v(t)dt - (
0 

v(t)dt = f 11 

v(t)dt m. 
lo lo 10 

Observe that this last integral is the area under the graph of y = v(t) above the interval 
[to, t,] on the t axis. 

We now give some examples ilJustrating the first conclusion of the Fundamental 
Theorem . 

EXAM p LE 8 Find the derivatives of the following functions : 

13 2 15x 2 j x3 
2 

(a) F(x) = e- 1 dt, (b) G(x) = x 2 e- 1 dt, (c) H(x) = e- 1 dt . 
X -4 x 2 

Solution The solutions involve applying the first conclusion of the Fundament al 
Theorem together with other differentiation rule s. 

(a) Observe that F( x) = - J; e-
12 dt (by Theorem 3(b)). Therefore, by the Funda-

2 
mental Theorem , F'(x) = -e- x . 

(b) By the Product Rule and the Chain Rule , 

G'(x) = 2x {
5
x e- 12 dt + x 2 .!!:__ {

5
x e- 12 dt 

1-4 dx 1-4 

1
5x 2 2 

= 2x e- 1 dt + x 2 e-( 5x) (5) 
-4 

1
5x 2 2 

= 2x e- 1 dt + 5x 2e- 25x . 
- 4 

( c) Split the integral into a difference of two integrals in each of which the variable x 
appears only in the upper limit. 

H( x) = fox3 e-12 dt - fox2 e-12 dt 

H ' (x) = e-(x
3
)\ 3x2) - e-(x

2
)\2x) 

= 3x2 e-x
6 

- 2x e-x
4

• 

Parts (b) and ( c) of Example 8 are examples of the following formulas that build the 
Chain Rule into the first conclusion of the Fundamental Theorem . 
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y 

y = cosx 

X 

Figure 5.26 

EXE RC IS ES 5.5 

d ig(x) 
- f(t) dt = f(g(x)) g'(x) 
dx a 

d 1g(x) 
- f(t) dt = f(g(x)) g ' (x) - f(h(x)) h'(x) 
dx h(x) 

EXAM p LE 9 Solve the integral equation f(x) = 2 + 3 L" f(t) dt. 

Solution Differentiate the integral equation to get J ' (x) = 3f(x) , the DE for ex
ponential growth, having solution f (x) = C e3x . Now put x = 4 into the integral 
equation to get f(4) = 2. Hence 2 = Ce 12, so C = 2e- 12. Therefore, the integral 
equation has solution f(x) = 2e 3x - 12 . 

We conclude with an example showing how the Fundamental Theorem can be used to 
evaluate limits of Riemann sums. 

EXAMPLE 10 Evaluate lim - "cos 11r: . 1 
11 

( · ) 

11-H :,o n L...., 2n 
1=1 

Solution The sum involves values of cos x at the right endpoints of then subintervals 
of the partition 

0, 
7r: 

2n' 

21r: 

2n ' 

31r: 

2n ' ... ' 
n1r: 

2n 

of the interval [0, 1r: / 2]. Since each of the subintervals of this partition has length 
1r: / (2n) , and since cos x is continuous on [O, 1r: / 2], we have, expressing the limit of a 
Riemann sum as an integral (see Figure 5.26) , 

7r: It (j7r:) 1,r/2 l,r/2 
lim - " cos - = cos x dx = sin x = 1 - 0 = 1. 

n---+oo 2n L...., 2n o o 
J=I 

The given sum differs from the Riemann sum above only in that the factor 1r: / 2 is 
missing. Thus, 

l n ( ' ) 2 lim - " cos 1
1r: = - . 

n---+oo n L...., 2n 7r: 
J= I 

Evaluate the definite integrals in Exercises 1- 20. 9. 
f -,r /6 

cos x dx 10. 1 " /3 

0 
sec2 B dB 

1 2 x 3 dx 14 ,,/xd x 
- 7[/4 

1. 2. 
1 ,r/3 12 ,r 

ll 1-1 

( l l ) 
11. sinB dB 12. 

0 
(l+sinu)du 

3. -d x 4. - - - dx ,r/4 
1/ 2 x2 -2 x2 x 3 

J_2
1 
(3x2 - 4x + 2) dx - ! 2 ( 2 x 3) 13. 1_: ex dx 14. f 2 (ex - e- x) dx 

5. 6. - - - dx 
1 x 3 2 -2 

7. 1_: (x2 + 3)2 dx 8. 19 

( Jx - :rx) dx 15. fo e ax dx (a > 0) 16. f 1 2xdx 
- ) 

www.konkur.in



17. { dx 
- I 1 +x2 

18. 11/2 dx 

0 ~ 

0 19. [ dx 
- I J4-x 2 

0 20. lo dx 
- 2 4 + x2 

Find the area of the region R specified in Exercises 2 l-32. It is 
helpful to make a sketch of the region. 

21. Bounded by y = x 4 , y = 0, x = 0, and x = 1 

22. Bounded by y = l / x , y = 0, x = e, and x = e2 

23. Above y = x 2 - 4x and below the x- axis 

24. Bounded by y = 5 - 2x - 3x2, y = 0, x = - 1, and x = l 

25. Bounded by y = x 1 - 3x + 3 and y = l 
X 

26. Below y = .,/x and above y = 2 
27. Above y = x 2 and to the right of x = y2 
28. Above y = [x I and below y = 12 - x 2 

29. Bounded by y = x 113 -x 111 , y = 0, x = 0, and x = l 
30. Under y = e-x and above y = 0 from x = -a to x = 0 

31. Below y = l - cos x and above y = 0 between two 
consecutive intersections of these graphs 

32. Below y = x - 113 and above y = 0 from x = l to x = 27 

Find the integrals of the piecewise continuous functions in 
Exercises 33-34 . 

r 3"/2 
33. lo I cosx [ dx 34 f 

3 sgn (x - 2) 
• 

2 
dx 

I X 

In Exercises 35-38, find the average values of the given functions 
over the intervals specified. 

35. f (x) = l + x + x 2 + x 3 over (0, 2] 

36. f (x) = e3x over [-2 , 2] 

37. f (x) = 2x over [O, 1/ In 2] 

{ 
0 ifO < t < l 

38. g (t) = 1 if 1 -:;: t ; 3 over [0, 3] 

Find the indicated derivatives in Exercises 39-46. 

39 d 1x sint 40 d 13 sinx • - - dt . - -- dx 
dx 2 t dt t X 
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41. - -dt d lo sint d 1 1x2 sin u d 42. -x -- u 
dx x2 t dx O u 

43. 
d 11 cosy d 1cos0 l 

- --
2 

dy 44. - --
2 

dx 
dt -1C l + y d0 sin0 1 - X 

45. d 11 

- F(.Jx) , if F(t) = cos(x 2
) dx 

dx o 

46. 
x2 

H '(2), if H (x) = 3x i e- 0 dt 

47. Solve the integral equation f (x) = n ( I + f x f (t) dt). 

48. Solve the integral equation f(x) = l - l x f(t)dt. 

8 49. Criticize the following erroneous calculation: 

11 dx = - ~I' = - 1 + _l = -2 . 
- I x2 X -I -1 

Exactly where did the error occur? Why is -2 an 
unreasonable value for the integral? 

0 50. Use a definit~ integral to define a function F( x) having 
. . sin x . . 

denvat1ve --
2 

for all x and satisfying F(l7) = 0. 
l +x 

0 51. Does the function F(x) = f
2x-x

2 

cos ( -. -
1-2) dt have a 

lo 1 + t 
maximum or a minimum value? Justify your answer. 

Evaluate the limits in Exercises 52-54 . 

0 52. n~ ~ ( ( 1 + ~ y + ( I + ~ y + .. · + ( I + ~ )5) . 
0 53. n ( n 2n 3n nn ) lim - sin - + sin - + sin - + · · · + sin - . 

n--,.cx, n n n n n 

0 54. lim --+--+--+ .. ·+- . ( 
n n n n ) 

,,-,. ex, n2 + I n2 + 4 n2 + 9 2n2 

• 
The Method of Substitution · -----

As we have seen , the evaluation of definite integrals is mo st easily carried out if we 
can antidifferentiate the integrand . In this sec tion and Sections 6.1-6.4 we develop 
some techniques of integration , that is, method s for finding antiderivatives of functions. 
Although the techniques we develop can be used for a large class of functions, they 
will not work for all function s we might want to integrate . If a definite integral involve s 
an integrand whose antiderivative is either impos sible or very difficult to find , we may 
wish, instead, to approximate the definite integral by numerical means . Techniques for 
doing that will be presented in Sections 6.6-6 .8. 

Let us begin by assembling a table of some known indefinite integrals. These 
results have all emerged during our development of differentiation formulas for ele
mentary functions. You should memori ze them . 
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Some elementary integrals 

1. 

3. 

5. 

7. 

9. 

11. 

13. 

15. 

17. 

19. 

f ld x = X +C 2. f x dx = ~x
2

+c 

f x 2 
dx = i x 3 

+ C 4. f ~dx = _2_ +c 
x 2 X 

f ,Jx dx = ~x3f2 +c 6. f ~ dx = 2,,/x + C 

f x' dx = -
1
- xr+ I + C (r =I= - 1) 8. f ~ dx = In Ix I + C 

r + I 

f . 1 smax dx =--;; cos ax + C 10. f cos ax dx =~sin ax+ C 

f sec
2 ax dx = ~ tan ax + C 12. f csc2 ax dx =-~cot ax+ C 

f sec ax tan ax dx = ¾ sec ax + C 14. f csc ax cot ax dx = -¾ csc ax + C 

f 1 
dx = sin- 1 ~ + C (a> 0) 16. / 1 1 I X 

2 2 
dx = - tan- - + C 

J a2 -x2 a a + x a a 

f eax dx = ~ eax + C 18. f bax dx = _ l _ bax + C 
a Inb 

/ l . cosha x dx = ; smh ax + C 20. f . 1 smha x dx = ~ coshax + C 

Note that formulas 1-6 are special cases of formula 7, which holds on any interval 
where x' makes sense. The linearity formula 

f (A f(x) + B g(x)) dx = A f f(x) dx + B f g(x) dx 

makes it possible to integrate sums and constant multiples of functions. 

EXAM p LE 1 ( Combining elementary integrals) 

f 
5 3 4 8 3 

(a) (x4 
- 3x 3 + 8x2 

- 6x - 7) dx = ~ - + + f -3x 2 
- 7x + C 

(b) f (sx 315 - -
3
-) dx = 

25 
x 815 - 2_ tan- 1 ~ + C 

2 +x 2 8 ,./2 ,./2 

f 4 5 
( c) ( 4 cos 5x - 5 sin 3x) dx = 5 sin 5x + 3 cos 3x + C 

(d) f (-1 
+ au) dx = 2-1n lxl + -

1
-a rrx + C, (a > 0). 

1r x 1r 1r In a 

Sometimes it is necessary to manipulate an integrand so that the method can be applied. 

EXAM p LE 2 / (x: 1)3 dx = f x 3 + 3x2/ 3x + 1 dx 

= f (x2 
+ 3x + 3 + ~) dx 

1 3 
= 3x 3 + 2x2 + 3x + ln lxl + C. 

When an integral cannot be evaluated by inspection, as those in Examples 1-2 can, 
we require one or more special techniques. The most important of these techniques is 
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the method of substitution, the integral version of the Chain Rule. If we rewrite the 
Chain Rule, fx f(g(x)) = f'(g(x)) g'(x), in integral form, we obtain 

f J' (g (x)) g' (x) dx = f (g (x)) + C. 

Observe that the following formalism would produce this latter formula even if we did 
not already know it was true: 

Let u = g(x). Then du / dx = g'(x), or in differential form, du= g'(x) dx. Thus, 

ff' (g(x)) g'(x) dx = f J'(u) du= f(u) + C = f (g(x)) + C. 

EXAM p LE 3 (Examples of substitution) Find the indefinite integrals: 

(a) f +-dx, 
X + 1 

(b) f sin(31nx) 
x dx, and (c) 

Solution 

(a) f -!--dx 
X + l Let u = x 2 + 1. 

Then du = 2x dx and 

x dx =½du 

= ! f du = ! ln lul + C = ! ln(x 2 + 1) + C = In &+1 + C. 
2 u 2 2 

(Both versions of the final answer are equally acceptable.) 

f sin(3lnx) 
(b) ---dx Letu = 3lnx. 

X 3 
Then du= -d x 

X 

l / 1 1 = 3 sinudu = - 3 cosu + C = - 3 cos(31nx) + C. 

(c) f ex v'f+ex dx Let v = l +ex. 

Then dv = ex dx 

= f v l /2 dv = ~ v3f2 + C = ~ (1 + ex )3/2 + C. 
3 3 

Sometimes the appropriate substitutions are not as obvious as they were in Example 3, 
and it may be necessary to manipulate the integrand algebraically to put it into a better 
form for substitution. 

EXAMPLE 4 Evaluate (a) f 
2 

1 
dx and (b) f dx . 

x + 4x + 5 Je2x - l 

Solution 
() f dx f dx 
a x 2 + 4x + 5 - (x + 2)2 + 1 

Lett= x + 2. 

Then dt = dx. 

f dt 

= t2 + 1 

= tan- 1 t + C = tan- 1 (x + 2) + C. 
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THEOREM 

I 

(b) f dx 
.,j e2x - I 

Let u = e-x . 

Then du= -e -x dx. 

=-fh 
= -sin- 1 u + C = - sin- 1 (e- x) + C. 

The method of substitution cannot be forced to work. There is no substitution that will 
do much good with the integral J x (2 + x 7) 1 / 5 dx , for instance. However, the integral 

J x 6 (2 + x 7) 1/ 5 dx will yield to the substitution u = 2 + x 7 . The substitution u = g(x) 
is more likely to work if g' (x) is a factor of the integrand . 

The following theorem simplifies the use of the method of substitution in definite 
integrals. 

Substitution in a definite integral 

Suppose that g is a differentiable function on [a, b] that satisfies g(a) 
g(b) = B. Also suppose that f is continuous on the range of g. Then 

lb f(g(x)) g'(x) dx = iB f(u) du. 

PROOF Let F be an antiderivative off; F' (u) = f (u). Then 

!:._ F(g(x)) = F' (g(x)) g' (x) = f(g(x)) g'(x). 
dx 

Thus, 

1b f(g(x)) g'(x) dx = F(g(x){ = F(g(b)) - F(g(a)) 

= F(B) - F(A) = F(u)i: = iB f(u) du. 

EXAMPLE 5 1
8 cosfx+T 

Evaluate the integral / = ~ dx. 
o vx+l 

A and 

dx Solution METHOD I. Let u = fx+T. Then du = --- If x = 0, then 
2Fx+T" 

u = I; if x = 8, then u = 3. Thus 

I = 2 i3 

cos u du = 2 sin i{ = 2 sin 3 - 2 sin 1. 

METHOD II. We use the same substitution as in Method I, but we do not transform 
the limits of integration from x values to u values. Hence , we must return to the 
variable x before substituting in the limits: 

1x=8 1x=8 18 
I = 2 cos u du= 2 sin u = 2 sin .Jx+1 = 2 sin 3 - 2 sin 1. 

x=O x=O 0 

Note that the limits must be written x = 0 and x = 8 at any stage where the variable is 
not x. It would have been wrong to write 

I = 2 fo
8 

cos u du 
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because this would imply that u, rather than x, goes from Oto 8. Method I gives the 
shorter solution and is therefore preferable. However, in cases where the transformed 
limits (the u-limits) are very complicated, you might prefer to use Method II. 

EXAM p LE 6 Find the area of the region bounded by y = ( 2 + sin ~) 
2 

cos ~, 

the x-axis, and the Jjnes x = 0 and x = 71:. 

Solution Because y ::: 0 when O .:::: x .::: 7r, the required area is 

[" ( x)2 X 
A= Jo 2 + sin 2 cos 2 dx 

. X 
Let V = 2 + Sin l. 

l X 
Then dv = - cos - dx 

2 2 

1
3 

2 1

3 
2 38 = 2 v 2 dv = - v 3 = - (27 - 8) = - square units . 

2 3 2 3 3 

Remark The condition that f be continuous on the range of the function u = g (x) 
(for a .:::: x .:::: b) is essential in Theorem 6. Using the substitution u = x 2 in the integral 

f ~ 1 x csc(x 2) dx leads to the erroneous conclusion 

1
1 

x csc(x 2
) dx = ~ f 

1 

csc u du = 0. 
- 1 2 11 

Although x csc(x 2) is an odd function, it is not continuous at 0, and it happens that 
the given integral represents the difference of infinite areas. If we assume that f is 
continuous on an interval containing A and B, then it suffices to know that u = g(x) 

is one-to-one as well as differentiable. In this case the range of g will lie between A 
and B , so the condition of Theorem 6 will be satisfied. 

Trigonometric Integrals 
The method of substitution is often usefu l for evaluating trigonometric integrals. We 
begin by listing the integrals of the four trigonometric functions whose integrals we 
have not yet seen. They arise often in applications and should be memorized . 

Integrals of tangent, cotangent , secant, and cosecant 

f tanx dx = ln I sec xi+ C, 

f cot x dx = 1n I sin x I + C = - In I csc x I + C, 

f sec x dx = In I sec x + tan x I + C, 

f cscx dx = - ln I cscx + cot xi+ C = In I cscx - cot xi+ C. 

All of these can, of course, be checked by differentiating the right-ha nd sides. The fust 
two can be evaluated directly by rewriting tan x or cotx in terms of sin x and cos x and 
using an appropriate substitution. For example, 

f tan x dx = f sin x dx Let u = cos x. 
cosx 

Then du= -sinxdx. 

= - f duu = - ln lul + C 

= - ln I cos x I + C = ln 1-1-1 + C = In I sec x I + C. 
COSX 
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The integral of sec x can be evaluated by rewriting it in the form 

f f secx(secx + tan x) 
sec x dx = -------- dx 

secx + tanx 

and using the substitution u = sec x + tan x . The integral of csc x can be evaluated 
similarly. (Show that the two versions given for that integral are equivalent!) 

We now consider integrals of the form 

f sinm x cosn x dx. 

If either m or n is an odd, positive integer, the integral can be done easily by substitution. 
If, say, n = 2k+ 1 where k is an integer, then we can use the identity sin2 x +cos 2 x = 1 
to rewrite the integral in the form 

f sinm x (1 - sin2 x/ cosx dx, 

which can be integrated using the substitution u = sinx . Similarly, u = cosx can be 
used if m is an odd integer. 

EXAMPLE 7 Evaluate: (a) f sin3 x cossxdx and (b) f cos5 axdx. 

Solution 

Let u = cosx, (a) f sin3 x cossx dx = f ( I -cos 2 x) cossxs inxd x 

du= - sinx dx. 

= - f (1 - u2
) us du = f (u IO - us) du 

u 11 u9 1 11 1 9 
= - - - + C = - cos X - - cos X + C 

11 9 11 9 . 

Let u = sin ax, (b) f cos5 ax dx = f (1 - sin2 ax)2 cos ax dx 

du= acosaxdx. 

= ~ f (1 - u
2
)2 du = ~ f (1 - 2u 2 + u4

) du 

1 ( 2 3 1 5) =; u- 3u + 5u +c 

=~(sin ax - ~ sin3 ax+~ sin5 ax)+ C. 
a 3 5 

If the powers of sin x and cos x are both even, then we can make use of the double-angl e 
formulas (see Section P.7): 

l 
cos2 x = 2 (I + cos 2x) and 

. 1 
sm2 x = 2(1- cos2x). 

EXAMPLE 8 (Integrating even powers of sine and cosine) Verify the integra
tion formulas 

f cos2 x dx = ~(x + sinx cosx) + C, 

f sin2 x dx = ~ (x - sin x cos x) + C. 

These integrals are encountered frequently and are worth remembering . 
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Solution Each of the integra ls follows from the corresponding double-angle identity. 
We do the first; the second is irnilar. 

f cos2 xdx = ~ f ( l + cos2x)dx 

X l 
= - + - sin 2x + C 

2 4 
l . 

= 2(x + sinx cosx) + C (since sin 2x = 2sinx cosx). 

EXAMPLE 9 Evaluate / sin
4

xdx. 

Solution We will have to apply the double-angle formula twice. 

f sin4 x dx = ~ f (l - cos 2x) 2 dx 

1 / ? = 4 (1-2cos2x+cos-2x)dx 

=::.-~ sin2 x+~ J ( l+co s4x)dx 
4 4 8 
X ] X 1 

= - - - sin 2x + - + - sin4x + C 
4 4 8 32 
3 I I 

= - x - - sin 2x + - sin 4x + C 
8 4 32 

(Note that there is no point in inserting the constant of integration C until the last 
integral has been evaluated.) 

Using the identities sec2 x = l + tan2 x and csc2 x = l + cot2 x and one of the 
substitutions u = sec x, u = tan x, u = csc x, or u = cot x, we can evaluate integrals 
of the form 

f seem x tan" x dx or f csc111 x cot11 x dx, 

unless m is odd and n is even. (If this is the case, these integrals can be handled by 
integration by parts; see Section 6.1 .) 

EXAMPLE 10 (Integrals involving secants and tangents ) Evaluate the follow

(a) / tan2 x dx , 

Solution 

ing integrals: 

(b) f sec4 t dt , and (c) f sec3 x tan3 x dx. 

(a) / tan2 x dx= f (sec2 x-l)dx=tanx-x+C. 

(b) f sec4 t dt = f (1 + tan2 t) sec2 t dt Let u = tan t, 

du= sec2 t dt . 

= f (1 + u2
) du= u + iu3 + C = tan t + i tan

3 
t + C. 

(c) f sec3 x tan3 x dx 

= f sec2 x (sec2 x - 1) secxtanxdx Let u = secx, 

du= secx tanxdx. 

f 4 2 us u3 1 5 1 3 
= (u - u ) du= 5 - 3 + C = 5 sec x - 3 sec x + C. 
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EXE RC IS ES 5.6 
Eva luate the integrals in Exercises 1--44. Remember to include a 
constant of integra tion with the indefinite integrals . Your answers 
may appear different from those in the Answers section but may 
still be correct. For example, evaluating I = f sin x cos x dx 

using the substitution u = sin x leads to I = ½ sin2 x + C; using 

u = cosx leads to I = - ½ cos2 x + C; and rewriting 

I=½ f sin(2x) dx leads to/ = -¼ cos(2x) + C. These 
answers are all equal except for differ ent choices for the constant 

of integration C: ½ sin2 x = -½ cos2 +½ = -¼ cos(2x) + ¼-
You can always check your own answer to an indefinite 

integral by differenti ating it to get back to the integrand. This is 
often easier than comparing your answer with the answer in the 
back of the book. You may find integrals that you can ' t do, but 
you should not make mistakes in those you can do because the 
answer is so easily checked . (This is a good thing to remember 
during tests and exams.) 

1. J e5 - 2x dx 

3. J ./3x + 4d x 

5• J ~dx 
(4x + 1)5 

7. x ex dx J .2 

f cosx 
9. --~dx 

4 + sin2 x 

D U. 

13. 

J tdt 
15. 
~ 

0 17. J dx 

eX + 1 

19. J tan x In cosx dx 

21. J dx 

x 2 + 6x + 13 

23. J sin3 
X cos5 

X dx 

25. J sin ax cos2 ax dx 

27. J sin6 x dx 

29. J sec5 x tan x dx 

31. J -Jranxsec 4 xdx 

33. J cosxsin4(sinx)dx 

2. J cos(ax + b) dx 

4. J e2
x sin(e2x) dx 

6. -- dx J sin../x 

Jx 

8. J x 22x
3
+ l dx 

f sec2 x 
10. ---;==== dx 

./1 - tan2 x 

12. J ~dt 
t 

14. J x + 1 
dx 

./x 2 + 2x + 3 

J x
2 dx 

16. 
6 2+x 

0 18. J dx 
ex+ e-x 

20. f X +] c/x 
./1 - x 2 

22. J dx 

./ 4+2x- x 2 

24. J sin4 t cos5 t dt 

26. f sin2 
X cos 2 

X dx 

28. J COS
4 

X dx 

30. J sec6 x tan2 x dx 

32. f sin- 2
/
3 

X cos3 
X dx 

J sin3 In x cos 3 In x 
34. -----dx 

X 

J sin2 x 
35. -- dx 

cos4 x 

37. / csc5 x cot5 x dx 

39. 14 

x3(x 2 + 1)- ½ dx 

r 12 
41. lo sin

4 
x dx 

43. t 1
e

2 d 

e t Int 

J sin3 x 
36. --dx 

cos4 x 

f COS
4 

X 
38. --dx 

sin8 x 

f v1e sin(ir lnx) 
40. ---dx 

I X 

42. 17( sin5 x dx 
7C/ 4 

44. 

7(2 . 

fz 
9 2sm ..fi COS Jx 
2 r.; dx 
~ yX 
16 

D 45. Use the identities cos 20 = 2 cos2 0 - 1 = 1 - 2 sin2 0 and 

sin 0 = cos ( ~ - 0) to help you evaluate the following: 

r 12 
lo ./ l +cosxdx and 

r 12 
lo ./1 - sinx dx 

46. Find the area of the region bounded by 
y = x / (x2 + 16), y = 0, x = 0, and x = 2. 

47. Find the area of the region bounded by 
y = x / (x4 + 16), y = 0, x = 0, and x = 2. 

48. Express the area bounded by the ellipse 
(x 2 / a2) + (y2 / b2) = 1 as a definite integral. Make a 
substitution that converts this integral into one representing 
the area of a circle, and hence evaluate it. 

D 49. Use the addition formulas for sin(x ± y) and cos(x ± y) 
from Section P.7 to establish the following identities: 

cosx cosy= ~(cos(x - y) + cos(x + y)), 

sinx siny = ~(cos(x - y)-c os(x + y)), 

sinx cosy= ~(sin(x + y) + sin(x - y)). 

D 50. Use the identities established in Exercise 49 to calculate the 
following integrals: 

J cosax cosbxdx , J sinax sinbxdx, 

and J sina x cosbxdx . 

D 51. If m and n are integers, show that: 

(i) 1_: cosmxcosnxdx=Oifm=j=.n, 

(ii) 17( sin mx sin nx dx = 0 if m =j=. n, -7( 
(iii) l: sin mx cos nx dx = 0. 

D 52. (Fourier coefficients) Suppose that for some positive 
integer k, 

k 
ao °'"" f (x) = 2 + L., (a11 cos nx + b11 sin nx) 

n=I 
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holds for all x in [-1t:, 1t: ]. Use the result of Exercise 51 to 
show that the coefficients am (0 ::: m ::S k) and bm 
(1 ::: m ::S k), which are called the Fourier coefficients off 

SECTION 5.7: Areas of Plane Regions 325 

on [-1t: , 1t:]. are given by 

11" 11" am= - f(x)cosmxdx, b111 = - f(x)sinmxdx. 
7[ -,c 7[ -1C 

. _ A_re_a_s _of_P_la_n_e _Re_g_io_n_s _____________ _ 
In this section we review and extend the use of definite integrals to represent plane 
areas. Recall that the integral J: f (x) dx measures the area between the graph off 
and the x -axis from x = a to x = b, but treats as negative any part of this area that 
lies below the x -axis. (We are assuming that a < b.) In order to express the total area 
bounded by y = f (x), y = 0, x = a, and x = b, counting all of the area positively, 
we should integrate the absolute value off (see Figure 5.27): 

y 

y = f(x) 
y = lf(x)I 

a b X 

Figure 5.27 

Figure 5.28 

and 

There is no "rule" for integrating J; If (x)I dx; one must break the integral into a sum 
of integrals over intervals where f (x) > 0 (so If (x) I = f (x) ), and intervals where 
f(x) < 0 (so lf(x)I = - f(x)). 

EXAMPLE 1 The area bounded by y = cos x, y = 0, x = 0, and x = 31r / 2 (see 
Figure 5.28) is 

{3 n/2 
A= Jo lcosxldx 

in/2 1 3n/2 
= cos x dx + ( - cos x) dx 

0 n/ 2 

l
,r/2 13,r/2 

= sinx - sinx 
0 n/ 2 

= (1 - 0) - (-1 - 1) = 3 square units. 

Areas Between Two Curves 
Suppose that a plane region R is bounded by the graphs of two continuous functions, 
y = f (x) and y = g(x), and the vertical straight lines x = a and x = b, as shown in 
Figure 5.29(a). Assume that a < band that f(x) S g(x) on [a, b], so the graph off 
lies below that of g. If f(x) ::: 0 on [a, b], then the area A of R is the area above the 
x-axis and under the graph of g minus the area above the x-ax is and under the graph 
off: 

A= lb g(x) dx - lb f(x) dx = lb (g(x) - f(x)) dx. 
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Figure 5.29 

(a) The region R lying between two 
graphs 

(b) An area element of the region R 

Figure 5.30 An area element for the 
region between y = f (x) and y = g(x) 

y 
y = g(x) 

y 
y = g(x) 

/i 
I 
I 

R I 

~ 
y = f(x) ' y = f(x) 

b X X b X 

(a) (b) 

It is useful to regard this formula as expressing A as the "sum" (i.e., the integral) of 
infinitely many area elements 

dA = (g(x) - f (x)) dx , 

corresponding to values of x between a and b. Each such area element is the area 
of an infinitely thin vertical rectangle of width dx and height g(x) - f(x) located at 
position x (see Figure 5.29(b )). Even if f and g can take on negative values on [a , b] , 
this interpretation and the resulting area formu la 

A= 1\g(x) - f(x)) dx 

remain valid, provided that f(x) :S g (x) on [a, b] so that all the area elements dA have 
positive area . Using integrals to represent a quantity as a sum of differential elements 
(i.e., a sum of little bits of the quantity) is a very helpful approach. We will do this 
often in Chapter 7. Of course , what we are really doing is identifyin g the integral as a 
limit of a suitable Riemann sum. 

More generally , if the restriction f(x) :S g(x) is removed , then the vertical 
rectangle of width dx at position x extending between the graphs off and g has height 
If (x) - g(x) I and hence area 

dA = lf( x) - g(x)I dx . 

(See Figure 5.30.) Hence the total area lying between the graphs y f (x) and 
y = g (x) and between the vertical lines x = a and x = b > a is given by 

y 

A= 1blf(x) - g(x)I dx. 

y = f(x) 

,a 

y = g(x) 

I 
I 
I 
I 

----------1-------1---
1 

'b 
I 

I 
I 

lf(x) - g(x)I 

---- - ---- -1 -----------
1 
I 

X 

In order to evaluate this integral, we have to determine the intervals on which f (x) > 
g (x) or f (x) < g (x), and break the integral into a sum of integral s over each of these 
intervals. 
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X 

Figure 5.31 

Figure 5.32 

SECTION 5.7: Areas of Plane Regions 327 

EXAMPLE 2 Find the area of the bounded, plane region R lying between the 
curves y = x 2 - 2x and y = 4 - x 2 . 

Solution First, we must find the intersections of the curves, so we solve the equations 
simultaneously : 

x 2 
- 2x = y = 4 - x 2 

2x2 - 2x - 4 = 0 

2(x - 2) (x + 1) = 0 so x = 2 or x = -1. 

The curves are sketched in Figure 5.31, and the bounded (finite) region between them 
is shaded . (A sketch should always be made in problem s of this sort.) Since 4 - x2 ::: 

x 2 - 2x for -1 _:::: x.::: 2, the area A of R is given by 

A= /
2 

((4- x2)- (x2 -2x))dx 
-I 

= /
2 

C4 - 2x
2 + 2x) dx 

- l 

= (4 x - ~x
3 

+x
2

) [ , 

= 4C2) - ~ C8) + 4 - ( -4 + ~ + 1) = 9 square units. 

Note that in representing the area as an integral we must subtract the height y to the 
lower curve from the height y to the upper curve to get a positive area element d A. 
Subtracting the wrong way would have produced a negative value for the area. 

EXAMPLE 3 

y 

Find the total area A lying between the curves y 
y = cos x from x = 0 to x = 2n. 

y = si n x 

y = COSX 

sinx and 

Solution The region is shaded in Figure 5.32. Between O and 2n the graphs of sine 
and cosine cross at x = n: / 4 and x = Sn / 4. The required area is 

in/4 1 5n/4 
A= Ccosx - sinx)d x + Csinx - cosx)dx 

0 n/4 

1
2n 

+ Ccosx-sinx)dx 
Sn/4 

l
n/4 15n/4 12n 

= Csinx + cosx) - Ccosx + sin x) + Csinx + cosx) 
0 n/4 Sn/4 

= ch- 1) +ch+ h) + (1 + h) = 4h square units. 

www.konkur.in



328 CHAPTER 5 Integration 

Figure 5.33 

(a) A horizontal area element 

(b) The finite region bounded by 
x = y2 - 12 and x = y 

EXE RC IS ES 5.7 

It is sometimes more convenient to use horizontal area elements instead of vertical ones 
and integrate over an interval of the y-axis instead of the x-axis. This is usually the 
case if the region whose area we want to find is bounded by curves whose equations 
are written in terms of functions of y. In Figure 5.33(a), the region R lying to the right 
of x = f (y) and to the left of x = g(y), and between the horizontal lines y = c and 
y = d > c, has area element dA = (g(y) - f(y)) dy . Its area is 

A= 1d (g(y) - f(y)) dy. 

y 

-12 

X 

(a) (b) 

EXAMPLE 4 Find the area of the plane region lying to the right of the parabola 
x = y 2 - 12 and to the left of the straight line y = x, as illustrated 

in Figure 5.33(b) . 

Solution For the intersections of the curves: 

y2-12 = X = y 

y2- y - 12 = 0 

(y - 4)(y + 3) = 0 soy = 4 or y = -3. 

Observe that y2 - 12 :s y for -3 :S y S 4. Thus, the area is 

f 4 (y2 y3 ) 1
4 

343 A= (y - (y2-12))dy = - - - + 12y = - square units. 
-3 2 3 -3 6 

Of course, the same result could have been obtained by integrating in the x direction, 
but the integral would have been more complicated: 

f-3 !4 A= (./12+x-(-./12+x))dx+ (.JI2+x-x)dx; 
- 12 -3 

different integrals are required over the intervals where the region is bounded below by 
the parabola and by the straight line. 

In Exercises 1-16, sketch and find the area of the plane region 
bounded by the given curves. 

4. y = x 2 - 2x , y = 6x - x 2 

5. 2y = 4x - x 2
, 2y + 3x = 6 

1. y = x , y = x 2 2. y = -/x, y = x 2 6. X - y = 7, X = 2y2 - y + 3 

3. y = x 2 
- 5, y = 3 - x 2 
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7. y = x3, y=x 

9. y=x 3, X = y2 

X = 2y2- y -2 10. X = y2, 
1 

11. y=-, 2x+2y=5 
X 

y =x2 

12. y = (x 2 
- 1)2, y = 1 - x 2 

I 
y = x 2 + 1 

4x 
14. y = 3 + x2' y = 1 

4 
15. y = x 2 , y = 5 - x 2 16. x = y2 

- TC 2
, x = sin y 

Find the areas of the regions de scribed in Exercises 17- 28. It is 
helpful to sketch the regions before writing an integral to 
represent the area. 

17. Bounded by y = sin x and y = cos x, and between two 
consecutive inter sectio ns of these curves 

18. Bounded by y = sin2 x and y = 1, and between two 
consecutive intersections of these curves 

19. Bounded by y = sinx and y = sin2 x, between x = 0 and 
X =TC/ 2 

20. Bounded by y = sin2 x and y = cos 2 x, and between two 

CHAPTER REVIEW 
Key Ideas 
• What do the following terms and phrases mean? 

o sigma notation o a partition of an interval 

o a Riemann sum o a definite integral 

o an indefinite integral o an integrable function 

o an area element o an evaluation symbol 

o the triangle inequality for integrals 

o a piecewise continuous function 

o the average value of function f on [a , b] 

o the method of substitut ion 

• State the Mean-Value Theorem for integrals. 

• State the Fundamental Theorem of Calculus. 
• List as many properties of the definite integral as you 

can. 
• What is the relationship between the definite integral 

and the indefinite integral of a function f on an interval 
[a, b]? 

• What is the derivative of JA~~) h(t) dt with respect 
tox? 

• How can the area between the graphs of two functions 
be calculated? 

Review Exercises 
2) + 1 

1. Show that 12() + l) 2 

n 2) + 1 
I: ·2c . + 1)2 · 
1=1 J J 

1 
hence evaluate 

j 2 - (j + 1)2' 
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consecutive inter sec tion s of the se curves 

21. Under y = 4x / TC and above y = tan x, between x = 0 and 
the first inter sec tion of the curve s to the right of x = 0 

22. Bounded by y = x 113 and the co mponent of y = tan(TC x / 4) 
that passes through the origin 

23. Bounded by y = 2 and the component of y = sec x that 
passes throu gh the point (0 , 1) 

24. Bounded by y = .Jlcos(TCx / 4) and y = lxl 

25. Bounded by y = sin(TC x / 2) and y = x 

ii 26. Bounded by y = ex and y = x + 2 

27. Find the total area enclosed by the curve y2 = x 2 - x 4 . 

28. Find the area of the closed loop of the curve y2 = x 4 (2 + x) 
that lies to the left of the origin. 

29. Find the area of the finite plane region that is bounded by the 
curve y = ex, the line x = 0, and the tangent line to y = ex 

at X = 1. 

D 30. Find the area of the finite plane region bounded by the curve 
y = x 3 and the tangent line to that curve at the point (I , I). 
Hint: Find the other point at which that tangent line meets 
the curve. 

2. (Stacking balls) A di splay of golf ball s in a sportin g goods 
store is built in the shape of a pyramid with a rectangular base 
measuring 40 balls long and 30 ball s wide. The next layer 
up is 39 ball s by 29 balls , etc. How many ball s are in the 
pyramid ? 

3. Let Pn = {xo = 1, x1, x2, ... , x11 = 3) be a parti
tion of (1, 3] into n subintervals of equal length, and let 

f (x) = x 2 - 2x + 3. Evaluate f 3 

f (x) dx by findin g 

lim,z--,00 I:7=1 f(x;) l'u;. 

"1Ff· 4. Interpret Rn = L - 1 + - as a Riemann sum for a certain 
i=I n n 

function f on the interval (0, l] ; hence evaluate limn-->oo R11• 

Evalu ate the integra ls in Exercises 5-8 without using the Funda
mental Theorem of Calculu s. 

5. 1-: (2 - sin x) dx 
{ Js 

6. Jo Js - x 2 dx 

8. la" cosx dx 

Find the average values of the functions in Exercises 9-10 over 
the indicated inter vals. 

9. f(x) = 2 - sinx 3 on [-TC, TC] 

10. h(x) = Ix - 21 on [0, 3] 

Find the derivatives of the functions in Exercises 11-14. 

11. f (t) = [1 sin(x 2) dx 
},3 l

sin x 

12. f (x) = /J+t2 dt 
- 13 
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13. g(s) = 11 esin u d u 
4s 

ecos0 

14. g(0) = L;,,o ln x d x 

15. Solve the integral equation 2f (x)+ l = 3 1
1 

f(t)dt . 

16. Use the substitution x = -n: - u to show that 

la7[ "I[ la" x f(s in x ) dx = - f(s in x) d x 
0 2 0 

for any function f continuous on [O, l]. 

Find the areas of the finite plane regions bounded by the indicated 
graphs in Exercises 17-22 . 

17. y = 2 + x - x 2 and y = 0 

18. y = (x -1 )2, y =O , and x =O 

19. X = y - y4 and X = 0 20. y = 4x - x 2 and y = 3 

21. y = sin x , y = cos2x,x = 0, and x = -n:/ 6 

22. y = 5 - x 2 and y = 4/ x 2 

Eva luate the integra ls in Exercises 23- 30. 

23. 

25. 

27. 

29. 

31. 

32. 

J x 2 cos(2x 3 + 1) dx 24. 
f e ln x 

-d x 
I X 

14 

J9t 2 + t4 dt 26. f sin3 (-n:x) dx 

laln 2 e" 28. f Ve tan2 -n: ln x 
- -- d u dx 

o 4 + e2" I X 

j sinJ2s+l 30. J cos2 ~ sin2 ~ dt ds 
J2s+T 5 5 

1
x 2 - 2x 1 

Find the minimum value of F (x) = 
0 

-- 2 cit. Does 
1 + t 

F have a maximum value? Why ? 

Find the maximum value of J; (4x - x 2) dx for intervals 
[a , b], where a < b. How do you know such a maximum 
value exists? 

33. An object moves along the x -axis so that its position at time t 
is given by the function x(t). In Section 2.11 we defined the 
average velocity of the object over the time interval [to, ti] to 

be Vav = ( x(ti) - x( to) ) ! (ti - to). Show that Vav is, in fact , 

the average value of the velocity function v (t) = dx / dt over 
the interval [to, t i] . 

34. If an object falls from rest under constant gravitational accel
eration, show that its average height durin g the time T of its 
fa ll is its height at time T / .,/3. 

35. Find two numbers x i and x2 in the interval [O, l] with x 1 < x2 
such that if f (x) is any cubic polynomial (i.e. , polynomial of 
degree 3), then 

r I f (x) dx = f (x 1) + f (xz). 
lo 2 

Challenging Problems 
1. Evaluate the upper and lower Riemann sums , U (f , P11) and 

L (f , P11), for f (x) = 1/ x on the interv al [l , 2] for the parti
tion P11 with division point s x; = i l 11 for O :'.': i :'.': n. Verify 
that lim,,--+oo U(f , P11) = ln2 = lim,1--+oo L(f , Pn). 

D 2. (a) Use the addition formula s for cos(a + b) and cos(a - b) 
to show that 

cos (()+ ½)t)-co s (u - ½)t) 

= -2 sin(½t) sin(jt) , 

and hence deduce that if t / (2-n:) is not an integer , then 

11 cos½ - cos((n + ½)t) 
I: sin(jt) = --- ---
j= I 2 sin ½ 

(b) Use the result of part (a) to evaluate Jt2 
sin x dx as a 

limit of a Riemann sum . 

3. ( a) Use the method of Problem 2 to show that if t / (2-n:) is not 
an integer, then 

11 sin((n+½)t)-sin½ 
I:co s(jt) = -~--~ - -
j= i 2sin ½ 

(b) Use the result to part (a) to evaluate J0" 
13 cos x dx as a 

limit of a Riemann sum . 

4. Let f (x) = 1 / x 2 and let 1 = xo < x 1 < x 2 < · · · < X n = 2, 
so that {xo, x 1, x2 , .. . , x 11) is a partition of [l , 2] into n 
subint ervals. Show that e; = ,J x ;- 1x; is in the ith subinter
val [x; _ 1, x; ] of the partition, and evaluate the Riemann sum 

I:;'=1 f (e;) D.x; . What does this imply about J1
2

(1/ x2) dx? 

D 5. (a) Use mathematical induction to verify that for every posi
nk+ 1 nk 

tiveinteger k, I:
1
"_ 1 / = -- + - + Pk- I (n) , where 
- k + 1 2 

Pk- I is a polynomial of degree at most k - 1. Hint: Start 
by iterating the identity 

(j + J/ + I _ / + 1 = (k + l)/ + (k ~ l)k / -1 
+ lower powers of j 

for j = 1, 2, 3, ... , k and adding . 

(b) Deduce from (a) that x k dx = --. !o
a ak + I 

o k + 1 

i 6. Let C be the cubic curve y = ax 3 + bx 2 + ex + d , and let P 
be any point on C. The tangent to C at P meets C again at 
point Q. The tangent to C at Q meets C again at R . Show 
that the area between C and the tangent at Q is 16 times the 
area betwe en C and the tangent at P. 

i 7. Let C be the cubic curve y = ax 3 + bx 2 + ex+ d, and let P 
be any point on C . The tangent to C at P meets C again at 
point Q. Let R be the inflection point of C . Show that R lies 
between P and Q on C and that QR divides the area between 
C and its tangent at P in the ratio 16/11. 

i 8. (Double tangents) Let line PQ be tangent to the graph C 
of the quartic polynomial f (x ) = ax 4 + bx 3 + ex 2 + dx + e 
at two distinct points: P = (p , f(p)) and Q = (q, f(q)) . 
Let U = (u , f(u)) and V = (v, f(v)) be the othertwo points 
where the line tangent to Cat T = ((p + q ) / 2, f ((p +q) / 2)) 
meets C. If A and B are the two inflection points of C, let 
R and S be the other two points where AB meets C . (See 
Figure 5.34 . Also see Challenging Problem 17 in Chapter 2 
for more background .) 
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(a) Find the ratio of the area bounded by UV and C to the 
area bounded by P Q and C. 

(b) Show that the area bounded by RS and C is divided at A 
and B into three parts in the ratio I : 2 : l. 

CHAPTER REVIEW 331 

Figure 5.34 
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Techniques of 
Integration 
, , I'm very good at integral and differential calculus, 

I know the scientific names of beings animalculous; 
In short, in matters vegetable, animal, and mineral, 
I am the very model of a modern Major-General. 

'' William Schwenck Gilbert 1836-1911 
from The Pirates of Penzance 

I n trod LI Ct I• On !his chapter is completely conc.erned wit~ how to evaluate 
integrals. The first four sectwns continue our search , 

begun in Section 5.6, for ways to find antiderivat ives and, therefore, definite integrals 
by the Fundamental Theorem of Calculus. Section 6.5 deals with the problem of 
finding definite integrals of functions over infinite intervals, or over intervals where 
the functions are not bounded. The remaining three sections deal with techniques of 
numerical integration that can be used to find approximate values of definite integrals 
when an antiderivative cannot be found. 

It is not necessary to cover the material of this chapter before proceeding to the 
various applications of integration discussed in Chapter 7, but some of the examples 
and exercises in that chapter do depend on techniques presented here . 

• _ l_nt_eg_r_at_io_n_b_y_Pa_rt_s ______________ _ 
Our next general method for antidifferentiation is called integration by parts . Just 
as the method of substitution can be regarded as inverse to the Chain Rule for dif
ferentiation, so the method for integration by parts is inverse to the Product Rule for 
differentiation. 

Suppose that U (x) and V (x) are two differentiab le functions. According to the 
Product Rule, 

d dV dU 
- (U(x)V(x)) = U(x) - + V(x) -. 
dx dx dx 

Integrating both sides of this equation and transposing terms, we obtain 

I dV I dU U (x) - dx = U (x) V (x) - V (x) - dx 
dx dx 

or, more simply, 
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SECTION 6.1: Integration by Parts 333 

I u dV = UV - I V dU. 

The above formula serves as a pattern for carrying out integration by parts, as we will 
see in the examples below. In each application of the method, we break up the given 
integrand into a product of two pieces , U and V' , where V' is readily integrated and 
where J VU' dx is usually (but not always) a simpler integral than JU V' dx. The 
technique is called integration by parts because it replaces one integral with the sum 
of an integrated term and another integral that remains to be evaluated. That is, it 
accomplishes only part of the original integration. 

EXAMPLE 1 Let U = x, dV = ex dx. 

Then dU = dx, 

= xe x - f ex dx 

= xe x - ex+ C. 

(i.e., UV - f V dU) 

Note the form in which the integration by parts is carried out. We indicate at the side 
what choices we are making for U and dV and then calculate dU and V from these. 
However, we do not actually substitute U and V into the integral; instead, we use the 
formula J U d V = UV - J V d U as a pattern or mnemonic device to replace the given 
integral by the equivalent partially integrated form on the second line. 

Note also that had we included a constant of integration with V, for example, 
V = ex + K, that constant would cancel out in the next step: 

f xex dx = x(ex + K) - f (ex + K) dx 

= xex + Kx - ex - Kx + C = xe x - ex+ C. 

In general, do not include a constant of integration with V or on the right-hand side 
until the last integral has been evaluated. 

Study the various parts of the following example carefully; they show the various 
ways in which integration by parts is used, and they give some insights into what 
choices should be made for U and dV in various situations. An improper choice can 
result in making an integral more difficult rather than easier . Look for a factor of the 
integrand that is easily integrated, and include dx with that factor to make up dV. Then 
U is the remaining factor of the integrand. Sometimes it is necessary to take dV = dx 
only. When breaking up an integrand using integration by parts, choose U and dV so 
that, if possible , V dU is "simpler" (easier to integrate) than U dV. 

EXAM p LE 2 Use integration by parts to evaluate: 

(a)/ lnxdx, (b) f x 2 sinxdx, (c) / x tan- 1 xdx , (d) f sin- 1 xdx . 

Solution 

(a) / lnx dx 

= x In x - f x ~ dx 

= xlnx-x+C. 

Let U = lnx, dV = dx. 

Then dU = dx / x, V = x. 
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334 CHAPTER 6 Techniques of Integration 

(b) We have to integrate by parts twice this time : 

f x2 sin x dx Let U = x2 , dV = sin x dx . 

Then dU = 2x dx, V = - cos x . 

Let U = x, dV = cosx dx. = -x 2 cosx + 2 / x cosx dx 

Then d U = dx, V = sin x . 

= -x 2 cosx + 2 ( x sin x - / sin x dx ) 

= - x2 cosx + 2x sin x + 2 cos x + C. 

(c) / x tan- 1 x dx Let U = tan- 1 x , 

Then dU = dx / (1 + x2) , 

1 2 - I 1 / x 2 
= 2 x tan x - 2 1 

+ x2 dx 

= ~ x2 tan- 1 x - ~ f (1 - -
1
-) dx 

2 2 1 + x2 

I 1 1 
= 2x2 tan- 1 x - 2x + 2 tan- 1 x + C. 

dV = xdx. 

V - .!.x 2 - 2 . 

(d) / sin- 1 x dx Let U = sin- 1 x , dV = dx . 

Then dU = dx / ../f=x2, V = x . 

= x sin- 1x- f ~ dx 
I -x 2 

1/ = x sin- I x + 2 u- 1/ 2 du 

Letu = l -x 2, 

du= - 2x dx 

= x sin- 1 x + u 112 + C = x sin- 1 x +~ + C. 

The following are two useful rules of thumb for choosing U and d V: 

(i) If the integrand involves a polynomial multiplied by an exponential , a sine or a 
cosine, or some other readil y integrable function, try U equals the polynomial and 
dV equals the rest. 

(ii) If the integrand involves a logarithm , an inverse trigonometric function, or some 
other function that is not readily integrable but whose derivative is readily calcu
lated, try that function for U and let dV equal the rest. 

(Of course , these "rules" come with no guarantee. They may fail to be helpful if 
"the rest" is not of a suitable form. There remain many function s that cannot be 

antidifferentiated by any standard technique s; e.g., ex
2 

.) 

The following two examples illustrate a frequently occurring and very useful 
phenomenon . It may happen after one or two integrations by parts, with the possible 
application of some known identity, that the original integral reappears on the right
hand side . Unless its coefficient there is 1, we have an equation that can be solved for 
that integral. 

EXAMPLE 3 Evaluate/=/ sec3 
x dx . 

Solution Start by integrating by parts: 

I= f sec3 x dx Let U = secx , 

Then dU = secx tan x dx , 

dV = sec2 x dx . 

V = tan x . 

= secx tanx - f sec x tan2 x dx 
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= secx tan x - f secx(sec 2 x - I)dx 

= sec x tan x - J sec3 x dx + J sec x dx 

= secx tan x - I+ In I secx + tan xi. 

SECTION 6. 1: Integration by Parts 335 

This is an equation that can be solved for the desired integral/ : Since 
2/ = secx tan x + In I secx + tan xi, we have 

/ 

1 1 
sec3 x dx = I = 2 sec x tan x + 2 1n I sec x + tan x I + C. 

This integral occurs frequently in applications and is worth remembering. 

EXAMPLE 4 Find I = j eax cos bx dx . 

Solution If either a = 0 or b = 0, the integral is easy to do, so let us assume a =fa 0 
and b =fa 0. We have 

I = f eax cos bx dx Let U = eax, 

Then dV = a eax dx, 

dV = cos bx dx. 

V = (1/ b)sinbx. 

= ~ eax sin bx - ; J eax sin bx dx 

Let V = eax, dV = sinb xdx. 

Then dV = aeaxdx, V = -(cosbx) / b. 

= ~ eax sin bx - ~ (-~ eax cos bx+~ J eax cos bx dx) 
b b b b 

1 a a2 

= - eax sin bx+ - eax cos bx - - I . 
b b2 b2 

Thus, 

( 
a

2
) 1 a 1 + b2 I = b eax sin bx+ b2 eax cos bx+ C 1 

and 

J ax b eax sin bx + a eax cos bx 
e cos bx dx = I = 2 2 + C. 

b +a 

Observe that after the first integration by parts we had an integral that was different 
from, but no simpler than , the original integral . At this point we might have become 
discouraged and given up on this method. However , persevera nce proved worthwhile ; 
a second integration by parts returned the original integral / in an equation that could 
be solved for / . Having chosen to Jet U be the exponential in the first integration by 
parts (we could have let it be the cos ine), we made the arne choice for V in the second 
integration by parts. Had we switched horses in midstream and decided to let U be the 
trigonometric function the second time , we would have obtained 

1 1 . 
I= - eax sin bx - - eax sin bx+/· 

b b ' 

we would have undone what we accomplished in the first step. 

If we want to evaluate a definite integral by the method of integration by parts , we 
must remember to include the appropriate evaluation symbol with the integrated term. 
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EXAM p L E 5 (A definite integral) 

Let U = (ln x)2, dV=x 3 dx . 

Then dU = 21nx (1/x )dx, V = x 4 /4. 

x4 le 1 f e =-(ln x) 2 
-- x 3 1nxdx 

4 I 2 I 
Let U = lnx, 

Then dU = dx / x, 

dV=x 3 dx. 

V = x 4 /4. 

Reduction Formulas 
Consider the problem of finding J x4 e-x dx. We can, as in Example 1, proceed by 
using integration by parts four times. Each time will reduce the power of x by 1. Since 
this is repetitive and tedious , we prefer the following approach . For n c:: 0, let 

We want to find /4. If we integrate by parts, we obtain a formula for In in terms of 

In-I: 

I f n -x d n = Xe X Let U = X
11

, 

Then dU = nx n- l dx, 

dV = e-x dx. 

V = -e -x . 

= -x" e-x + n f xn- l e-x dx = -x" e-x + nln-l · 

The formula 

is called a reduction formula because it gives the value of the integral I,, in terms of 
/ ,,_ 1, an integral corresponding to a reduced value of the exponent n. Starting with 

Io= f x 0 e-x dx = f e-x dx = -e -x + C, 

we can apply the reduction formula four times to get 

11 = -xe -x +lo= -e -x (x +I)+ C1 

h = -x 2e-x + 211 = -e-x(x 2 + 2x + 2) + C2 

/3 = -x 3e-x + 312 = -e-x(x 3 + 3x2 + 6x + 6) + C3 

/4 = -x 4 e-x + 4/ 3 = - e-x (x4 + 4x3 + l2x 2 + 24x + 24) + C4. 

EXAMPLE 6 

t' /2 

Obtain and use a reduction formula to evaluate 

In = Jo cos" x dx (n=0,1,2,3, . . . ). 
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Solution Observe first that 

[" / 2 n 
Io= lo dx = 2 and 

[" /2 l,r/2 
I, = l 

O 
cos x dx = sin x 

O 
= 1. 

Now let n 2: 2: 

[" /2 [" /2 
In = lo cosn X dx = l o cos 11

-
1 

X COSX dx 

V = cos 11
-

1 x, dV = cosxdx 

dU = -(n - 1) cos 11
-

2 x sinx dx, V = sinx 

l

,r/2 [" /2 
= sinx cosn-l x 

O 
+ (n - 1) l o cos11

-
2 x sin2 x dx 

[" /2 
= 0 - 0 + (n - l) l o cos11

-
2 x (1 - cos2 x) dx 

= (n - l)In -2 - (n - l)I11. 

Transposing the term -(n - l)I 11, we obtain nI 11 = (n - l)In-2, or 

n - I 
I11 = --In-2, 

n 

which is the required reduction formula. It is valid for n 2: 2, which was needed to 
ensure that cos 11

-
1 (n / 2) = 0. If n 2: 2 is an even integer, we have 

n-1 n-1 n-3 
In = -- In-2 = -- · -- In-4 = · · · 

n n n -2 
n-1 n-3 n-5 5 3 1 = -- . -- . -- · · ·-. - . - . Io 

n n-2 n-4 6 4 2 
n-l n-3 n-5 5 3 1 n 
--, -- . --···-· - . - ·-

n n-2 n-4 6 4 2 2 

If n 2: 3 is an odd integer, we have 

n-1 n-3 n-5 6 4 2 
In = -- · -- · -- · · · - · - · - · I1 

n n-2 n-4 7 5 3 
n-1 n-3 n-5 6 4 2 

n n-2 n-4 7 5 3 

See Exercise 38 for an interesting consequence of these formulas. 

Evaluate the integrals in Exercises 1-28. 9. f xsin - 1 xdx 10. f x5e-x 2 dx 

1. f xcosxdx 2. f (x + 3)e2
x dx fr/4 

/ tan2 x secx dx 11. 
0 

sec5 x dx 12. 
3. f x2 cos nx dx 4. f (x2 - 2x )ekx dx 

f x 3 1nxdx f x(lnx) 3 dx 
13. f e2x sin 3x dx 14. f xe..fidx 

5. 6. 

7. f tan- 1 x dx 8. f x2 tan-Ix dx 0 15. f' sin- 1x --d x 
t / 2 x2 16. la I 

v'x sin(ir v'x) dx 
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17. f x sec2 
x dx 18. f xsin 2 

xdx 

19. f cos(ln x )dx 20. lie sin(lnx)dx 

21. f ln(lnx) 22. 14 

./xe Jx dx --- dx 
X 

23. f arccosx dx 24. f xsec - 1xdx 

25. fi2 
sec- 1xd x D 26. f (sin- 1 x)2 dx 

D 27. f x(tan - 1 x )2 dx D 28. f X ex COSX dx 

29. Find the area below y = e- x sinx and above y = 0 from 
X = 0 to X = 7C. 

30. Find the area of the finite plane region bounded by the curve 
y = lnx , the line y = 1, and the tangent line toy= lnx at 
X = 1. 

Reduction formulas 
31. Obtain a reduction formula for !11 = f (In x)" dx, and use it 

to evaluate /4. 

32. Obtain a reduction formula for /11 = f0"
12 x" sinx dx, and 

use it to evaluate /6. 

33. Obtain a reduction formula for /11 = f sin11 x dx (where 
n :=: 2) , and use it to find 16 and '7. 

34. Obtain a reduction formula for In = f sec" x dx (where 
n :=: 3), and use it to find /6 and '7. 

D 35. By writing 

f dx 
I -
n - (x2 + a2)n 

1 / dx 
= a2 (x2 + a2l - I 

-- x----dx l f X 
a2 (x2 + a2)n 

and integrating the last integral by parts, using U = x, obtain 
a reduction formula for /11• Use this formula to find I). 

D 36. If f is twice differentiable on [a, b] and f(a) = f(b) = 0, 
show that 

lb (x - a)(b - x)J"(x) dx = -21b f(x) dx . 
a a 

(Hint: Use integration by parts on the left-hand side twice.) 
This formula will be used in Section 6.6 to construct an error 
estimate for the Trapezoid Rule approximation formula. 

D 37. If f and g are two functions having continuous second 
derivatives on the interval [a , b], and if 
f (a)= g(a) = f (b) = g(b) = 0, show that 

1b f(x)g " (x)dx = 1b J "(x)g(x)dx. 

What other assumptions about the values of f and g at a and 
b would give the same result? 

D 38. (The Wallis Product) Let /11 = Jt2 cos" x dx. 

(a) Use the fact that O S cos x S 1 for O S x S 7r /2 to show 
that '211+2 S '211+ 1 S /211, for n = 0, 1, 2, .... 

(b) Use the reduction formula /11 = ((n - l)/n)/ 11_2 
obtained in Example 6, together with the result of (a), to 
show that 

lim '2n+ I = 1. 
n->oo /zn 

(c) Combine the result of (b) with the explicit formulas 
obtained for /11 (for even and odd n) in Example 6 to 
show that 

224466 2n 2n 7r 
lim - · - · - · - · - · - ··· -- · -- = -. 

n->oo 1 3 3 5 5 7 2n - 1 2n + 1 2 

This interesting product formula for 7r is due to the 
seventeenth-century English mathematician John Wallis 
and is referred to as the Wallis Product. 

. _ l_nt_eg_r_al_s _of_R_a_tio_n_a_l F_u_nc_ti_on_s ___________ _ 
In this section we are concerned with integrals of the form 

I P(x) dx 
Q(x) ' 

where P and Q are polynomials . Recall that a polynomial is a function P of the form 

where n is a nonnegative integer , ao, a, , a2, . . . , an are constants, and an =/= 0. We 
call n the degree of P. A quotient P (x) / Q (x) of two polynomials is ca lled a rational 
function. (See Section P.6 for more di scussion of polynomials and rational functions.) 
We need normally concern ourselves only with rational functions P(x)/Q(x) where 
the degree of Pis less than that of Q. If the degree of P equals or exceeds the degree 
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of Q, then we can use divi sion to express the fraction P (x) / Q(x) as a polynomi al plus 
another fraction R( x) / Q(x), where R , the remainder in the divi sion, has degree less 
than that of Q. 

EXAMPLE 1 f x
3 + 3x 2 

Evaluate 
2 

dx . 
X + 1 

Solution The numerator has degree 3 and the denominator has degree 2 so we need 
to divide . We use long division: 

X + 3 

x2 + 1 I x3 
x3 

+ 3x 2 

+x x 3 + 3x 2 x + 3 
-~-= x +3--- . 

3x 2 
- X x 2 + l x 2 + 1 

3x 2 + 3 
- X - 3 

Thus, 

f x3 + 3x2 f f x f dx 
2 

dx = (x + 3) dx - -
2
-- dx - 3 -

2
--

x + l x+ l x +l 

EXAMPLE 2 

1 I = 2 x
2 + 3x - 2 ln (x2 + 1) - 3 tan-Ix+ C. 

Evaluate / _x_ dx. 
2x -1 

Solution The numerator and denominator have the same degree , 1, so division is 
again required. In this case the divi sion can be carried out by manipulation of the 
integrand: 

a process that we call short division (see Section P.6). We have 

-- dx = - l + -- dx = - + - ln 12x - 11 + C. f X lf( l ) x l 
2x-l 2 2x-l 2 4 

In the discus sion that follows, we always assume that any nece ssary division has been 
performed and the quotient polynomial has been integrated . The remaining basic 
problem with which we will deal in this sect ion is the following: 

The basic problem 

f P(x) 
Evaluate -- dx, where the degree of P < the degree of Q. 

Q(x) 

The complexity of this problem depend s on the degree of Q. 

Linear and Quadratic Denominators 
Suppose that Q(x) has degree 1. Thus, Q(x) = ax+ b, where a -:/= 0. Then P( x) 
must have degree O and be a constant c. We have P(x) / Q(x) = c/(ax + b). The 
substitution u = ax + b leads to 

f C C f du C --dx = - - = - lnlul + C, 
ax +b a u a 
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so that for c = l: 

The case of a linear denominator 

f I 1 
--dx = - lnlax +bl +c. 
ax + b a 

Now suppose that Q( x) is quadratic, that is, has degree 2. For purposes of this 
discussion we can assume that Q(x) is either of the form x 2 + a2 or of the form 
x 2 - a2 , since completing the square and making the appropriate change of variable 
can always reduce a quadratic denominator to this form, as shown in Section 6.2 . Since 
P(x) can be at most a linear function , P(x) = Ax+ B , we are led to consider the 
following four integral s: 

f xdx 

x2 + a2' f xdx 
x2 - a2, f dx and 

x2 + a2, f dx 
x2 - a2. 

(If a = 0, there are only two integrals; each is easily evaluated.) The first two integrals 
yield to the substitution u = x 2 ± a 2 ; the third is a known integral. The fourth integral 
will be evaluated by a different method below. The values of all four integrals are given 
in the following box: 

The case of a quadratic denominator 

f xdx I 2 2 
x2 + a2 = 2 In(x + a ) + C' 

f xdx I 2 2 
x 2 _ aZ = 2 ln Ix - a I + C, 

f dx I _1 x 
2 2 = - tan - + C, 

x +a a a 

To obtain the last formula in the box, let us try to write the integrand as a sum of two 
fractions with linear denominator s: 

I 1 A B Ax + Aa + Bx - Ba 
~-~- - ---- ----+ --- ---~-~--
x2 - a2 - (x - a)(x + a) - x - a x + a - x 2 - a2 

where we have added the two fractions together again in the last step. If this equation is 
to hold identically for all x (except x = ±a) , then the numerators on the left and right 
sides must be identical as polynom ials in x. The equation (A + B)x + (Aa - Ba) = 
l = Ox + 1 can hold for all x only if 

A+B=O 

Aa - Ba= l 

(the coefficient of x), 

(the constant term). 

Solving this pair of linear equations for the unknowns A and B, we get A = I/ (2a) 
and B = -l / (2a). Therefor e, 

f dx I f dx 1 f dx 
x 2 - a2 = 2a x - a - 2a x + a 

I 1 
= - In Ix -al - - In Ix+ al+ C 

2a 2a 

= - ln -- +c . 1 Ix - a I 
2a x +a 
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Partial Fractions 
The technique used above, involving the writing of a complicated fraction as a sum of 
simpler fractions, is called the method of partial fractions . Suppose that a polynomial 
Q(x) is of degree n and that its highest degree term is xn (with coefficient 1). Suppose 
also that Q factors into a product of n distinct linear (degree 1) factors, say, 

Q(x) = (x - a1)(x - a2) · · · (x - an), 

where a; =f. a1 if i =f. j , I ::: i, j ::: n. If P (x) is a polynomial of degree smaller than 
n, then P(x) / Q(x) has a partial fraction decomposition of the form 

P(x) A1 A2 An 
-- = --+--+ .. ·+-
Q (x) X - a I X - a2 X - Gn 

for certain values of the constants A 1 , A 2, ... , A 11• We do not attempt to give any 
formal proof of this assertion here ; such a proof belongs in an algebra course. (See 
Theorem 1 below for the statement of a more general result.) 

Given that P(x) / Q(x) has a partial fraction decomposition as claimed above, there 
are two methods for determining the constants A1, A2, ... , A 11• The first of these 
methods, and one that generalizes most easily to the more complicated decompositions 
considered below, is to add up the fractions in the decomposition, obtaining a new 
fraction S(x) / Q(x) with numerator S(x), a polynomial of degree one less than that 
of Q(x). This new fraction will be identical to the original fraction P(x) / Q(x) if S 
and P are identical polynomials. The constants A 1, A2, ... , An are determined by 
solving the n linear equations resulting from equating the coefficients of like powers 
of x in the two polynomials S and P. 

The seco nd method depends on the following observation: If we multiply the 
partial fraction decomposition by x - a1, we get 

P( x) 
(x - a1) Q(x) 

X - a; X - Gj X - Gj X - Gj 
= A1 -- + · · · + A1-1--- + AJ + A1+1--~ + · · · + A11---. 

x-a1 x-a;-1 x-a;+ 1 x -a 11 

All terms on the right side are Oat x = a; except the jth term, A J. Hence, 

P(x) 
A- = lim (x - a )--

1 X-*Gj J Q(x) 

P(a;) 
=------------------

(aj - a1) · · · (a1 - a;-i)(a; - a;+1) ···(a; - an)' 

for 1 ::: j ::: n. In practice, you can use this method to find each number A 1 by 
cancelling the factor x - a; from the denominator of P(x) / Q(x) and evaluating the 
resulting expression at x = a;. 

EXAMPLE 3 I (x + 4) 
Evaluate 

2 
dx. 

x -Sx +6 

Solution The partial fraction decomposition takes the form 

x+4 x+4 A B 

x 2 - Sx + 6 = (x - 2)(x - 3) = x - 2 + x - 3 · 

We calculate A and B by both of the methods suggested above. 

METHOD I. Add the partial fractions 

x+4 

x 2 - Sx + 6 

Ax - 3A + Bx - 28 

(x - 2)(x - 3) 
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and equate the coefficient of x and the constant terms in the numerators on both sides 
to obtain 

A+B=l and - 3A - 2B = 4. 

Solve these equations to get A = -6 and B = 7. 

METHOD II. To find A, cancel x - 2 from the denominator of the expression 
P(x) / Q(x) and evaluate the result at x = 2. Obtain B similarly. 

A=-- =-6 X +41 
X - 3 x =2 

and X +41 
B = X - 2 x=3 = 7. 

In either case we have 

f (x +4) f 1 f l 
2 

dx = -6 -- dx + 7 -- dx 
X - 5x + 6 X - 2 X - 3 

= -6 ln Ix - 21 + 7 In Ix - 31 + C. 

f x
3 +2 EXAMPLE 4 Evaluate I = -. 
3
-- dx . 

X -X 

Solution Since the numerator does not have degree smaller than the denomjnator , we 
must divide : 

f X3 - X + X + 2 f ( X + 2 ) f X + 2 I = 3 dx = 1 + - 3-- dx = x + -
3
-- dx. 

X - X X -X X -X 

Now we can use the method of partial fractions. 

x+2 x+2 A B C 
--=--- -- = - +--+-
x 3 -x x (x-l)(x+l) x x-1 x+l 

A(x 2 - 1) + B(x 2 + x) + C(x 2 - x) 

x(x - 1)(x + 1) 

We have 
A + B + C O (coefficient of x 2) 

B C I (coefficient of x) 
A 2 (constant term) . 

It follows that A = -2 , B = 3/ 2, and C = 1/ 2. We can also find these values using 
Method II of the previous example: 

x +2 I 
A = (x - 1) (x + l) x =O = - 2, 

B- _x_+_2_1 
- x(x + I) x =I 

C= x +2 I 1 
x( x - 1) x=- I 2 

Finally , we have 

I = x - 2 - dx + - -- dx + - -- dx / 1 3/ 1 1/ 1 
x 2 x -1 2 x+l 

3 1 
=x -2lnlxl + 2 lnl x- 11 + 2 !nix+ 11 +c. 

3 

2' and 

Next, we consider a rational function whose denominator has a quadratic factor that is 
equivalent to a sum of squares and cannot , therefore , be further factored into a product 
of real linear factors. 
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EXAMPLE 5 f 2 + 3x +x 2 
Evaluate ( 2 dx . 

XX + 1) 

Solution Note that the numerator has degree 2 and the denominator degree 3, so no 
division is necessary. If we decompose the integrand as a sum of two simpler fractions , 
we want one with denominator x and one with denominator x 2 + 1. The appropriate 
form of the decomposition turns out to be 

2 + 3x + x 2 A Bx + C A(x 2 + 1) + Bx 2 + Cx 
x (x2 + 1) = ~ + _x_2_+_1_ = ___ x_(_x2_+_1_) __ 

Note that corresponding to the quadratic ( degree 2) denominator we use a linear ( degree 
1) numerator . Equating coefficients in the two numerators, we obtain 

A + B 1 (coefficient of x 2) 

C = 3 (coefficient of x) 

A = 2 (constant term) . 

Hence A= 2, B = -1 , and C = 3. We have, therefore, 

f _2_+_3_x_+_x_2 dx = 2 f ~ dx - f _x_ dx + 3 f _1_ dx 
x(x 2 +1) x x2 +1 x2 +1 

1 
= 21n lx l - 2 ln(x 2 + 1) + 3tan - 1 x + C. 

We remark that addition of the fractions is the only reasonable real-variable method 
for determining the constants A, B , and Chere . We could determine A by Method II 
of Example 3, but there is no simple equivalent way of finding B or C without using 
complex numbers . 

Completing the Square 
Quadratic expressions of the form Ax 2 +B x + C are often found in integrands. These 
can be written as sums or differences of squares using the procedure of completing 
the square, as was done to find the formula for the roots of quadratic equations in 
Section P.6. First factor out A so that the remaining expression begins with x 2 + 2bx, 
where 2b = B / A. These are the firsttwo terms of (x + b )2 = x 2 + 2bx + b2. Add the 
third term b2 = B2 / 4A 2 and then subtract it again : 

Ax
2 

+Bx+ C = A (x2 + ~ x + ~) 

( 
B s2 c s2) 

= A x
2 

+Ax+ 4A 2 + A - 4A 2 

( 
B )

2 
4AC - B 2 

-A x+- +----
2A 4A 

B 
The substitution u = x + 

2
A should then be made. 

EXAMPLE 6 Evaluate I = f -3-
1
- dx. 

X + l 
Solution Here Q(x) = x3 + 1 = (x + l)(x 2 - x + 1). The latter factor has no real 
roots, so it has no real linear subfactors . We have 

1 1 A Bx+ C -- - ---~--- - -- + ~---
x3 + 1 - (x + l)(x 2 - x + 1) - x + 1 x 2 - x + 1 

A(x 2 - x + 1) + B(x 2 + x) + C(x + 1) 
(x + l)(x 2 - x + l) 
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A + B O (coefficient of x 2) 

A + B + C O (coefficient of x) 
A + C (constant term). 

Hence, A = 1/3, B = -1 / 3, and C = 2/ 3. We have 

1 / dx 1 / X - 2 
I= 3 X + l - 3 x 2 - X + 1 dx. 

The first integral is easily evaluated; in the second we complete the square in the 

( 1)2 3 denominator: x 2 - x + 1 = x - 2 + 4, and make a similar modification in the 

numerator. 

1 3 1 1/ x-2-2 
1 - 3 lnlx+ll- 3 (,-D'+~dx ~':;;-1/2, 

= 2, In Ix + 11 - 2, f _ u_ du + 2, f - 1
- du 

3 3 u 2 + ~ 2 u2 + ~ 
4 4 

= 2, ln Ix+ 11 - 2, ln (u2 + ~) + 2. ~ tan-I(~)+ C 
3 6 4 2./3 ./3 

1 1 2 1 _ 1 (2x - 1) = - ln Ix+ 11 - - ln(x -x + 1) + - tan -- + C. 
3 6 ./3 v'3 

Denominators with Repeated Factors 
We require one final refinement of the method of partia l fractions. If any of the 
linear or quadratic factors of Q(x) is repeated (say, m times), then the partia l fraction 
decomposition of P (x) / Q (x) requires m distinct fractions corresponding to that factor. 
The denominators of these fractions have exponents increasing from 1 to m, and the 
numerators are all constants where the repeated factor is linear or linear where the 
repeated factor is quadratic. (See Theorem 1 below.) 

EXAMPLE 7 Evaluate / 
1 

2 dx. 
x(x - 1) 

Solution The appropriate partial fraction decompos ition here is 

1 A B C 
----=-+--+--
x(x - 1)2 x x - 1 (x - 1)2 

A(x 2 - 2x + 1) + B(x 2 - x) + Cx 

x(x - 1)2 

Equating coefficients of x 2 , x, and 1 in the numerators of both sides, we get 
A + B O (coefficient of x 2 ) 

- 2A - B + C = 0 (coefficient of x) 
A = 1 (constant term) . 

Hence A= l, B = -1, C = 1, and 

f _l -dx = f 2. dx - f- 1
- dx + f- 1 

- dx 
x(x-1) 2 x x-1 (x-1) 2 

1 
= 1n Ix I - ln Ix - 11 - -- + c 

x-1 

= lnl-x I-_ l +C. 
x-1 x-1 
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EXAMPLE 8 I x 2 +2 
Evaluate/ = 

5 3 
dx. 

4x +4x +x 

Solution The denominator factors to x(2x 2 + 1)2, so the appropriate partial fraction 
decomposition is 

x 2 + 2 A Bx + C Dx + E -~-~ = - + ~~- + -~-~ 
x(2x 2 + 1)2 x 2x 2 + l (2x2 + 1)2 

A(4x 4 + 4x 2 + 1) + B(2x 4 + x 2) + C(2x 3 + x) + Dx 2 + Ex 

x(2x 2 + 1)2 

Thus, 
4A + 28 0 (coefficient of x 4) 

2C 0 (coefficient of x 3) 

4A + B + D 1 (coefficient of x 2) 

C + E O ( coefficient of x) 

A 2 (constant term). 

Solving these equations, we get A= 2, B = -4 , C = 0, D = -3, and E = 0. 

1=2 --4 ------=---3 f dx f x dx f x dx 
x 2x 2 + 1 (2x 2 + 1)2 

= 2 ln Ix I - - - - -I du 3 I du 
u 4 u2 

3 
= 21n lxl - ln lul + - + C 

4u 

( 
x

2 
) 3 1 =ln --- +- ---+c. 

2x 2 + 1 4 2x 2 + 1 

Let u = 2x 2 + I , 

du= 4xdx 

The following theorem summarizes the various aspects of the method of partial frac
tions. 

Partial fraction decompositions of rational functions 

Let P and Q be polynomials with real coefficients, and suppose that the degree of P 
is less than the degree of Q. Then 

(a) Q(x) can be factored into the product of a constant K, real linear factors of the 
form x - ai, and real quadratic factors of the form x 2 + bi x + Ci having no real 
roots . The linear and quadratic factors may be repeated: 

Q(x) = K(x - a1yn 1 (x - a2yn2 • • • (x - a1ynj(x 2 + b1x + c1t1 
· · · (x 2 + bkX + Cktk. 

The degree of Q is m1 + m2 + · · · + m1 + 2n1 + 2n2 + · · · + 2nk. 

(b) The rational function P (x) / Q (x) can be expressed as a sum of partial fractions as 
follows: 

(i) corresponding to each factor (x - a)"' of Q(x) the decomposition contains a 
sum of fractions of the form 

A1 A2 Am -- + --- + ... + ---· 
x - a (x - a) 2 (x - a)'ll ' 

(ii) corresponding to each factor (x 2 + bx + c)ll of Q(x) the decompo sition 
contains a sum of fractions of the form 

B1x + C1 B2x + C2 Bnx + Cn ---- + ----- + ... + ----
x2 +b x+ c (x 2 +bx+ c)2 (x 2 +bx+ c)n · 
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EXE RC IS ES 6.2 

TheconstantsAt, A2, ... , Am, Bt, B2, ... , B11, C1, C2, ... , C11 canbedetermined 
by adding up the fractions in the decompo si tion and equating the coefficients of like 
powers of x in the numerator of the sum with those in P (x). 

Part (a) of the above theorem is just a restatement of results discussed and proved in 

Section P.6 and Appendix II. The proof of part (b) is algebraic in nature and is beyond 

the scope of this text. 

Note that part (a) does not tell us how to find the factors of Q(x); it tells us only 

what form they have . We must know the factors of Q before we can make use of partial 

fractions to integrate the rational function P (x) / Q (x ). Partial fraction decompositions 

are also used in other mathematical situations, in particular, to so lve certain problems 

involving differential equations. 

Evaluate the integrals in Exercises 1-28. In Exercises 29-30 write the form that the partial fraction 
decomposition of the given rational function takes. Do not 
actually evaluate the constants you use in the decomposition. 1. f 2dx 

2x - 3 

3. f xdx 
7CX + 2 

5. f - 1
-dx 

x 2 -9 

1.J~ 
f x 2dx 

9. 2 
X +x -2 

11. f X -2 dx 
x 2 +x 

13. f dx 2 
1 - 6x + 9x 

15. 

17. 

f x2 + I 
--~d x 
6x - 9x2 

f dx 

x(x 2 - a2) 

f x 3 dx 
D 19. x3 - a3 

21. f dx 

x3 - 4x2 + 3x 

23 f dx 
• (x2 - 1)2 

25. f dx 

x4 - 3x3 

0 27. f dx 
e2x -4ex +4 

2. f dx 
5-4x 

4. f ~ dx 
x-4 

6· / 5 ~x2 

8. f 2 dx 2 2 
b -a X 

10. f xdx 

3x2 + 8x - 3 

12. f dx 

x 3 +9x 

14. f xdx 

2 + 6x + 9x2 

f x 3 + 1 
16. ---~dx 

12+7x+x 2 

18. f dx 
x4 - a4 

20. f x3 + :: 2 +2x 

f x
2 + 1 

22. --dx 
x 3 +8 

f x 2 dx 
24. 2 2 

(x - l)(x - 4) 

0 26 f dt 
. (t - l)(t 2 - 1)2 

0 28. f d0 
cos0(l + sin0) 

XS+ x3 + 1 
29. 2 3 (x - l)(x - l)(x - 1) 

30 
123 - x 7 

• (x 4 - 16)2 

31. 

32. 

XS 
Write (x2 _ 

4
)(x + 

2
)2 as the sum of a polynomial and a 

partial fraction decomposition (with constants left 
undetermined) of a rational function whose numerator has 
smal ler degree than the denominator. 

Show that x4 + 4x2 + 16 factors to 
(x2 + kx + 4)(x 2 - kx + 4) for a certain positive constant k. 
What is the value of k? Now repeat the previous exercise for 

x4 
the rational function x4 + 

4
x 2 + 

16 

D 33. Suppose that P and Q are polynomials such that the degree 
of P is smaller than that of Q. If 

Q(x) = (x - a1)(x - a2) · · · (x - an), 

where a; f. aj if i f. j (1 ::: i, j ::c n), so that P(x)/ Q(x) 
has partial fraction decomposition 

P(x) A1 A2 A,, -- = - - +-- + ··· + --, 
Q (x) x - a I x - a2 x - a,, 

show that 

(l::cj::cn). 

This gives yet another method for computing the constants in 
a partial fraction decomposition if the denominator factors 
completely into distinct linear factors. 
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• 
Inverse Substitutions · - - ---

The substitutions considered in Section 5.6 were direct substitutions in the sense that 
we simplified an integrand by replacing an expression appearing in it with a single 

X 

Figure 6.1 

variable. In this section we consider the reverse approach; we replace the variable 
of integration with a function of a new variable. Such substitutions, called inverse 
substitutions, would appear on the surface to make the integral more complicated . 
That is, substituting x = g( u) in the integral 

1b f(x)dx 

leads to the more "complicated " integral 

1::b f(g(u)) g'(u) du . 

As we will see, however, sometimes such substitutions can actually simplify an inte
grand, transforming the integral into one that can be evaluated by inspection or to which 
other techniques can readily be applied. In any event, inverse substitutions can often 
be used to convert integrands to rational functions, to which the methods of Section 
6.2 can be applied . 

The Inverse Trigonometric Substitutions 
Three very useful inverse substitutions are: 

x = a sin 0, x = a tan 0, and x = a sec 0. 

These correspond to the direct substitutions: 

0 = sin- 1 ~, 
a 

X 
0 = tan- 1 - , and 

a 
I X - I a 0 = sec - - = cos -

a X 

The inverse sine substitution 

Integrals involving ,J a2 - x 2 (where a > 0) can frequently be reduced to a 
simpler form by means of the substitution 

X 
x = a sin0 or, equivalently , 0 = sin- 1 -. 

a 

Observe that ,J a2 - x 2 makes sense only if -a ::: x < a, which corresponds to 
-n; / 2 ::: 0 S n; /2 . Since cos 0 :::. 0 for such 0, we have 

Ja 2 -x2 = Ja 2(1 - sin2 0) = Ja 2cos20 = acos0. 

(If cos 0 were not nonnegative, we would have obtained a I cos 01 instead.) If needed , 
the other trigonometric function s of 0 can be recovered in terms of x by examining a 
right-angled triangle labelled to correspond to the substitution . (See Figure 6.1.) 

,Ja2 - x2 
cos0= ----

a 
and 

X 

tan 0 = --;::==== 
Ja2-x2 

EXAMPLE 1 Evaluate / \ 312 dx. 
(5 -x ) 
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X 

Figure 6.2 

y 
y = Ja2 -x2 ~--.--

b a 
X 

Figure 6.3 

X 

Figure 6.4 

Solution Refer to Figure 6.2. 

J-- 1
--dx 

(5 _ x2)3 / 2 

f v'Scos0d0 
- 53/ 2 cos 3 0 

Let x = v'5 sin 0, 

dx = v'5 cos 0 d0 

1/ 2 ] 1 X 
= - sec 0d0 = - tan0 + C = -~ + C 

5 5 5 5 - x2 

EXAM p LE 2 Find the area of the circular segment shaded in Figure 6.3. 

Solution The area is 

= 2 rx=a a2 cos 2 0 d0 
Jx=b 

= a2 
(0 + sin 0 cos 0) i::: 

Let x = a sin 0, 

dx = acos0d0 

(as in Example 8 of Section 5.6) 

~a' (,;,-';+ xJa~
2
-x')I: (See Figure 6.1.) 

= ~ a2 - a2 sin- 1 ~ - b) a 2 - b2 square unit s. 
2 a 

The inverse tangent substitution 

l 
Integrals involving .J a2 + x 2 or 2 2 

(where a > 0) are often simplified 
X +a 

by the substitution 

X 
x = a tan0 or, equivalently , 0 = tan - 1 

-. 
a 

Since x can take any real value , we have -n; / 2 < 0 < n: / 2, so sec 0 > 0 and 

Ja 2 + x 2 = a)l + tan2 0 = a sec 0. 

Other trigonometric functions of 0 can be expressed in terms of x by referring to a 
right-angled triangle with legs a and x and hypotenuse .J a2 + x 2 (see Figure 6.4): 

X a 
sin 0 = --;:~=~ and cos 0 = ----;::;~=~ 

.Ja2 + x2 ,Ja2 + x2 

EXAMPLE 3 Evaluate (a)/ ~dx and (b)/ 
1 

dx 
-v 4 + x 2 (1 + 9x 2) 2 · 

Solution Figures 6.5 and 6.6 illustrate parts (a) and (b), respectively . 
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Figure 6.5 

3x 

Figure 6.6 

(a) / 
1 

dx 
.J4 + x 2 

I 2sec 2 0 
= --d0 

2sec0 

= f sec0d0 

Let x = 2 tan 0, 

dx = 2 sec2 0 d0 
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= In I sec 0 + tan 01 + C = ln / 7 + ~ / + C 

=ln(J4+ x 2 + x)+C 1, whereC 1 =C-ln2. 

(Note that .J4 + x 2 + x > 0 for all x, so we do not need an absolute value on it.) 

(b) / (1 + ~x 2) 2 dx Let 3x = tan 0, 
3dx = sec2 0 d0, 

1 + 9x 2 = sec2 0 =~I sec
2

0d0 
3 sec4 0 

l I l = 3 cos20d0 = 6(0 + sin0 cos0) + C 

1 1 3x l 
= - tan- 1(3x) + - -;:::== ----;:::== + C 

6 6 .Ji + 9x 2 .JI + 9x 2 

1 1 1 X 
= - tan- (3x) + -

2 
+ C 

6 2 l + 9x 

The inverse secant substitution 

Integrals involving .J x 2 - a2 (where a > 0) can frequently be simplified by 
using the substitution 

x = a sec 0 or, equivalently , 
X 

0 = sec- 1 -. 
a 

We must be more careful with this substitution. Although 

Jx 2 - a2 = aJsec 20 - 1 = aJtan 2 0 = al tan 01, 

we cannot always drop the absolute value from the tangent. Observe that .J x 2 - a2 

makes sense for x :::. a and for x ,:::: -a. 

X a 7C 
lfx :::.a,then0,::::0 =sec 1 ; = arccos~ < 2, and tan0 :::.0. 

7C X a 
If x .:::: -a, then 2 < 0 = sec 1

; = arccos ~ .:::: 1r:, and tan 0 ,:::: 0. 

In the first case .Jx 2 - a2 = a tan0 ; in the second case .Jx 2 - a2 = -a tan 0. 

EXAMPLE 4 Find / = / dx , where a > 0. 
.Jx2 - a2 

Solution For the moment, assume that x :::. a. If x = a sec 0, then 
dx = a sec 0 tan 0 d0 and .J x 2 - a2 = a tan 0. (See Figure 6. 7). Thus, 

I = f sec 0 d0 = In I sec 0 + tan 0 I + C 

I
x .Jx2 - a2 I 

= In ; + a + C = In Ix+,./ x 2 - a 2 1 +Ci, 
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Figure 6.7 

where C1 = C - Ina. If x :::: -a , let u = -x so that u ~ a and du= -dx. We have 

I=-! du = - lnlu +J u2 -a 21+C, 
Ju2 - a2 

I 
l x +J x 2 -a 2

1 = In ------;:==:;: ----;=== + C 1 
-x + Jx 2 - a2 x + Jx 2 - a2 

I
x+ Jx2 -a2 I 

=in -a 2 +c, =lnl x+Jx 2 -a 21+C 2, 

where C2 = C 1 - 2 ln a. Thus, in either case , we have 

I= In Ix+ )x 2 - a2 1 + C. 

The following example requires the technique of completing the square as presented 
in Section 6.2. 

EXAMPLE 5 Evaluate (a)/ 
1 

dxand(b)/ 2 x dx. 
J2x - x 2 4x + 12x + 13 

Solution 
(a) / 1 dx - I dx 

J2x - x 2 - J I - (I - 2x + x 2) 

I dx 

- J l-( x- 1)2 

I du 
- ~ 

Let u = x - 1, 

du =d x 

= sin- 1 u + C = sin- 1 (x - 1) + C. 

(b) / x dx - I x dx 
4x2 +12x+l3 - 4 ( 2 3 9 1) 

X + x+ 4 + 

=~I x dx 
4 (x + ~y + 1 

= ~ f dv - ~ tan- ' u 
8 V 8 
} 3 I 

= - In lvl - - tan- u + C 
8 8 

Let u = x + (3/2), 

du= dx, 

X = U - (3/ 2) 

In the first integral 

let v = u2 + 1, 

dv = 2udu 

= - ln(4x 2 + l2x + 13) - - tan- 1 x + - + C1, l 3 ( 3) 
8 8 2 

where C1 = C - (ln4) / 8. 

Inverse Hyperbolic Substitutions 
As an alternative to the inverse secant substitution x = a sec 0 to simplify integrals 
involving Jx 2 - a2 (where x ~ a > 0) we can use the inverse hyperbolic cosine 
substitution x = a cosh u. Since cosh 2u - 1 = sinh2 u, this substution produces 
Jx 2 - a2 = a sinh u. To express u in terms of x, we need the result, noted in Section 
3.6, 

cosh- 1 x = ln ( x + ~) , X ~ 1. 
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To illustrate, we redo Example 4 using the inverse hyperbolic cosine substitution. 

EXAMPLE 6 Find / = --;:::::;;:::=::;;:, where a > 0. f dx 

Jx2 - a2 

Solution Again we assume x ::=: a. (The case where x :S -a can be handled 
similarly.) Using the substitution x = a cosh u, so that dx = a sinh u du, we have 

/ = f a s~nh u du = f du = U + C 
a Slnh U 

= cosh- 1 ~ + C = 1n (~ + ~ + C 
a~-- · a y~-') 

= ln (x + )x 2 - a2) + C1 (where Ci= C - Ina) 

Similarly, the inverse hyperbolic substitution x = a sinh u can be used instead of the 
inverse tangent substitution x = a tan 0 to simplify integrals involving ,J x2 + a 2 or 

1 . 
2 2

. In this case we have dx = a cosh u du and x2 + a 2 = a 2 cosh2 u, and we 
X +a 
may need the result 

sinh - I x = In ( x + .Jx'i+i) 

valid for all x and proved in Section 3.6. 

EXAMPLE 7 1
4 dx 

Evaluate / = ( 2 312 . 0 X + 9) 

Solution We use the inverse substitution x = 3 sinh u, so that dx = 3 cosh u du and 
x2 + 9 = 9cosh 2 u. We have 

x= 4 3 cosh u 1 x= 4 1 

[
x=4 

I = j 3 du= -1 sech 2u du= - tanh u 
x=O 27 cosh u 9 x=O 9 x=O 

1 sinh u I x / 3 1 4 4 
[
x=4 14 

= 9 coshu x=O = 9 (.Jx2 +9) / 3 
0 

= 9 x 5 = 45· 

Integrals involving .J a 2 - x2 , where Ix I :S a, can be attempted with the aid of the 
inverse hyperbolic substitution x = a tanh u, making use of the identity 1 - tanh2 u = 
sech 2u. However, it is usually better to use the inverse sine substitution x = a sin 0 for 
such integrals. In general, it is better to avoid the inverse trigonometric substitutions 
unless you are very familiar with the identities satisfied by the hyperbolic functions as 
presented in Section 3.6. 

Other Inverse Substitutions 
Integrals involving ,Jax + b can sometimes be made simpler with the substitution 
ax+b=u 2. 
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EXAMPLE 8 f --1
-dx 

1 +ffx 

=fl: u du 

= ----du 
f

l + u - 1 

l+u 

Let 2x = u2 , 

2dx = 2udu 

= f ( 1 - 1 ~ u) du Let v = l + u, 

dv =du 

= u -f :v = u - In Iv I + C 

= .Jh - ln(l + .Jh) + C 

Sometimes integrals involving Vax + b will be much simplified by the hybrid substi
tution ax + b = un, a dx = n u11

-
1 du . 

EXAMPLE 9 
/

2 3 X dx 
- 1/ 3 ,V3x + 2 

Let 3x + 2 = u3, 

3dx = 3u2 du 

= --u 2 du !2 u 3 - 2 

I 3u 

= ~ r \u 4 
- 2u) du= ~ (u

5 

- u
2
) 1

2 

3 }1 3 5 1 

16 

15 

Note that the limits were changed in this definite integral. u = I when x = - 1/ 3, and , 
coincidentally, u = 2 when x = 2. 

If more than one frac tional power is present , it may be possible to eliminate all of them 
at once. 

EXAMPLE 10 Evaluate / 
112 

1 
113 

dx. 
X (l+x ) 

Solution We can eliminate both the square root and the cube root by using the inverse 
substitution x = u6. (The power 6 is chosen because 6 is the least common multipl e 
of 2 and 3.) 

Letx = u6, 

dx = 6u5 du 

= 6 -- -- = 6 -- du = 6 1 --- du f u
5 

du f u
2 f ( 1 ) 

u3(l + u2) l +u 2 l + u2 

= 6 (u - tan- 1 u) + C = 6 (x 116 - tan- 1 x 116) + C. 

The tan(0/2} Substitution 
There is a certain special substitution that can transform an integral whose integrand is 
a rational function of sin 0 and cos 0 (i.e., a quotient of polynomia ls in sin 0 and cos 0) 
into a rational function of x . The substitution is 

0 
x = tan 2 or, equivalently, 0 = 2 tan- 1 x. 
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Observe that 

2 0 1 
cos 2 = --0 = 0 

sec2 
2 1 + tan2 

2 
1 +x 2 ' 

so 

2 0 2 1 - x 2 

cos 0 = 2 cos - - 1 = -- - 1 = --
2 l + x 2 l + x 2 

0 0 0 2 0 2x 
sin0 = 2sin -cos - = 2tan -cos - = --. 

2 2 2 2 1 + x 2 

1 0 
Also, dx = 2 sec2 

2 d0, so 

2 0 2dx 
d0 = 2cos - dx = --

2
. 

2 l+x 

In summary: 

The tan(O /2 ) substitution 

If x = tan(0 / 2) , then 

1 -x 2 

cos0 = --
2

, 
l+ x 

2x 
sin 0 = - -

2
, and 

l+ x 
2dx 

d0 = -- 2· 
l +x 

Note that cos 0, sin 0, and d0 all involve only rational functions of x. We examined 
general techniques for integrating rational functions of x in Section 6.2. 

EXAMPLE 11 / 
1 0 

2 + cos0 d 

2dx 

Let x = tan(0 / 2), so 

1 - x 2 

cos0 = --
2

, 
l+x 

dB= 2dx 
1 + x2 

= f 1 + x2 = 2 f _l_ dx 
1 - x 2 3 + x 2 

2+--
1 +x 2 

2 -I X = - tan -+c 
v13 v13 

= ~ tan-
1 

(~ tan i) + C. 

Evaluate the integrals in Exercises 1-42. 5. J dx 6. J dx 
x 2 J9 - x 2 xJ9 - x 2 

1. J dx 2. J x
2

dx J x+ I J dx J1 - 4x 2 JI - 4x2 7. dx 8. 
J9 - x 2 J9+x 2 

3. J x 2
dx 

J9-x 2 
4. J dx 

xJl -4x 2 
9. J x 3

dx 
J9+x 2 

10. J J9 +x2 dx 
x4 
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11. J dx 
(a2 _ x2)3/2 12. J dx 

(a2 + x2)3/2 
0 39. J dx O 40. J dx 3 2 

x (3 + x2)~ x 2(x 2 - 1) / 

J x 2 dx 
13• (a.2 _ x2)3/2 14. J dx 

(I + 2x2)5/2 
0 41. J dx 

x (l + x2)3/2 
0 42. J dx 

x (l - x2)3/2 

15. J dx 

xJx 2 -4 ' 
(x > 2) 16. J dx 

x2Jx2 - a2 
(x > a > 0) 

In Exercises 43--45, evaluate the integral using the special 
substitution x = tan(0 / 2) as in Example 11. 

17. J dx 

x 2 + 2x + lO 

19. J dx 

(4x2 + 4x + 5)2 

21. J xdx 

J2ax -x 2 

23. J xdx 
(3 - 2x - x2)3/2 

25 J dx 
• (1 + x2)3 

!~ 
0 27. 

3 
dx 

X 

29. J_r!!_ 
2+.Jx 

J 1. +xt /2 0 31. ------,-.,,,.d x 
I +x t/3 

33. j 0 
exJ 1 - e2x dx 

- 1112 

Jv'3- I dx 
35. -2~---

- 1 X +2x +2 

0 37. J tdt 

(t + l)(t 2 + 1)2 

18. J dx 

x 2 +x + I 

20. J xd x 

x 2 - 2x + 3 

22. J dx 
(4x - x2)3/2 

24. J dx 

(x2 + 2x + 2)2 

J x 2 dx 
26. 2 2 ([ + X ) 

28. J /9+x 2 dx 

30. J dx 
l + x l /3 

0 32. --- dx J xJ 2 -x 2 

v'x2+1 

34. f" /2 cosx dx 
lo J1 + sin2x 

36. 1
2 dx 

1 x 2J9 - x 2 

J x dx 
38. 2 2 

(x - x +l) 

0 43. 

0 45. 

J d0 

2 + sin0 

J d0 

3 + 2cos0 

0 44. [" 12 ___ d_0 __ 

lo 1 + cos0 + sin0 

46. Find the area of the region bounded by 
y = (2x - x2)- 112, y = 0, x = 1/ 2, and x = 1. 

47. Find the area of the region lying below 
y = 9/ (x4 + 4x 2 + 4) and above y = 1. 

48. Find the average value of the function 
f (x) = (x2 - 4x + 8)- 312 over the interval [O, 4]. 

49. Find the area inside the circle x 2 + y2 = a2 and above the 
line y = b, (-a::, b::, a). 

50. Find the area inside both of the circles x 2 + y 2 = 1 and 
(x - 2)2 + y 2 = 4. 

51. Find the area in the first quadrant, above the hyperbola 
xy = 12 and inside the circle x 2 + y2 = 25. 

x2 y2 
52. Find the area to the left of a2 + b2 = l and to the right of 

the line x = c, where - a ::::: c ::::: a . 

0 53. Find the area of the region bounded by the x-axis, the 
hyperbola x 2 - y2 = 1, and the straight line from the origin 

to the point ( ~ . Y) on that hyperbola. (Assume 

Y > 0.) In particular, show that the area is t / 2 square units if 
Y = sinht . 

0 54. Evaluate the integral J ~, for x > a > 0, using 
x2 x2 - a2 

the inverse hyperbolic cosine substitution x = a cosh u. 

Other Methods for Evaluating Integrals 
Sections 5.6 and 6.1- 6.3 explore some standard methods for evaluating both definite 
and indefinite integrals of functions belonging to severa l well-defined classes. There is 
another such method which is often used to solve certain bnds of differential equations 
but which can also be helpful for evaluati ng integrals; after all, integrating f(x) is 
equivalent to solving the DE dy / dx = f(x). It goes by the name of the Method 
of Undetermined Coefficients or the Method of Judicious Guessing, and we will 
investigate it below. 

Although anyone who uses calculus should be familiar with the basic techniques of 
integration, just as anyone who uses arithmetic should be familiar with the techniques 
of multiplication and division , technology is steadily eroding the necessity for being 
able to do long, complicated integrals by such method s. In fact , today there are several 
computer programs that can manipulate mathematical expressions symbolically (rather 
than just numerically) and that can carry out, with little or no assistance from us, the 
various algebraic steps and limit calculations that are required to calculate and simplify 
both derivatives and integrals. Much pain can be avoided and time saved by having the 
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computer evaluate a complicated integral such as 

f l +x +x 2 

(x4 - l)( x4 - 16)2 dx 

rather than doing it by hand using partial fractions. Even without the aid of a computer, 
we can use tables of standard integrals such as the ones in the back endpapers of 
this book to help us evaluate complicated integrals . Using computers or tables can 
nevertheless require that we perform some simplifications beforehand and can make 
demands on our ability to interpret the answers we get. We also examine some such 
situations in this section . 

The Method of Undetermined Coefficients 
The method consists of guessing a family of functions that may contain the integral , 
then using differentiation to select the member of the family with the derivative that 
matches the integrand. It should be stressed that both people and machines are able to 
calculate derivatives with fewer complications than are involved in calculating integrals. 

The method of undetermined coefficients is not so much a method as a strategy , 
because the family might be chosen on little more than an informed guess . But other 
integration methods can involve guesswork too . There can be some guesswork , for 
example, in deciding which integration technique will work best. What technique is best 
can remain unclear even after considerable effort has been expended. For undetermined 
coefficients, matters are clear. If the wrong family is guessed, a contradiction quickly 
emerges . Moreover , because of its broad nature , it provides a general alternative to 
other integration techniques. Often the guess is easily made. For example , if the 
integrand belongs to a family that remains unchanged under differentiation , then a 
good first guess at the form of the antiderivative is that family. A few examples will 
illustrate the technique. 

EXAMPLE 1 Evaluate I = f (x 2 + x + 1) ex dx using the method of undeter

mined coefficient s. 

Solution Experience tells us that the derivative of a polynomial times an exponential 
is a different polynomial of the same degree times the exponential. Thus , we "gue ss" 
that 

We differentiate / and equate the result to the integrand to determine the actual values 
of the coeffieients ao, a1, and a2. 

d/ X 2 X - = (a1 +2a 2x)e +(ao+a1x+a2x )e 
dx 

= (a2x 2 + (a1 + 2a2)x + (ao + ai))e x 

= (x 2 + x + l)e x, 

provided that a2 = l , a, + 2a2 = l , and ao + ai 

a2 = 1, a1 = -1 , and ao = 2. Thus , 

f (x 2 + x + I) ex dx = I = (x 2 - x + 2)ex + C. 

1. These equations imply that 

EXAM p LE 2 Evaluate y = f x3 cos(3x) dx using the method of undetermined 

coefficients. 
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Solution The derivative of a sum of products of polynomials with sine or cosine 
functions is a sum of products of polynomials with sine or cosine functions. Thus, we 
try y = P(x) cos(3x) + Q(x) sin(3x) + C, where P(x) and Q(x) are polynomials 
of degrees m and n respective ly. The degrees m and n and the coefficients of the 
polynomial s are determined by setting the derivative y' equal to the given integrand 
x 3 cos(3x). 

y' = P ' (x) cos(3x) - 3P(x) sin(3x) + Q' (x) sin(3x) + 3Q' (x) cos(3x) 

= x 3 cos3x. 

Equating coefficients of like trigonometric functions, we find 

P ' (x) + 3Q(x) = x 3 and Q'(x) - 3P(x) = 0. 

The second of these equation s requires that m = n - 1. From the first we conclude 
that n = 3, which implie s that m = 2. Thus, we let P(x) = po+ pix+ p2x 2 and 
Q(x) = qo + q1x + q2x 2 + q3x 3 in these equations: 

Pl + 2p2x + 3(qo + q,x + q2x2 + q3x3) = x 3 

qi + 2q2x + 3q3x 2 - 3(po +pix+ p2x 2) = 0. 

Comparison of coefficients with like powers yields: 

Pl + 3qo = 0 2p2 + 3q1 = 0 

which leads to q3 = 1/ 3, P2 = 1/ 3, q1 = -2 / 9, and po = -2 / 27, with Pl = qo = 
q2 = 0. Thus, 

/ ( 
2 x

2
) ( 2x x

3
) x 3 cos(3x) dx = y = -

27 
+ 3 cos(3x) + - 9 + 3 sin(3x) + C. 

EXAMPLE 3 

integral. 

Solution We have 

Find the derivative of fmn (x) = xm (lnxt and use the result to 

suggest a trial formula for l = f x3 (ln x )2 dx. Thus evaluate this 

This suggests that we try 

l = f x3 (1nx) 2 
dx = f h2(x )dx = Px4(Inx)2 + Qx 4 lnx + R x 4 + C 

for constants P, Q, R, and C. Differentiating, we get 

di 
- = 4P x 3(1nx)2 + 2Px 3 1nx +4Qx 3 lnx + Qx 3 +4Rx 3 = x3(lnx) 2 , 
dx 

provided 4P = 1, 2P + 4Q = 0, and Q + 4R = 0. Thus P = 1/ 4, Q = -1 / 8, and 
R = 1/3 2, and so 

/ 

1 l 1 
x 3(1nx) 2 dx = 4x4 (ln x)2 - 8x 4 ln x + 

32
x 4 + C. 
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Remark These examples and most in the following exercises can also be done using 
integration by parts. Using undetermined coefficients does not replace other method s, 
but it does provide an alternative that gives insight into what types of functions will not 
work as guesses for the integral. This has implication s for how computer algorithms 
can and cannot do antiderivatives. This issue is taken up in Exercise 20. Moreover , 
with access to a differentiation algorithm and a computer to manage details , this method 
can sometimes produce integrals more quickly and preci sely than classical technique s 
alone . 

Using Maple for Integration 
Computer algebra systems are capable of evaluating both indefinite and definite in
tegrals symbolically, as well as giving numerical approximations for those definite 
integrals that have numerical values. The following examples show how to use Maple 
to evaluate integrals. 

We begin by calculating f 2x ,J l + 4x dx and lo n 2x ,J l + 4x dx. 

We use Maple 's "int" command , specifying the function and the variable of inte
gration: 

> int(2Ax*sqrt(l+4Ax) , x) ; 

e<x ln(2)) J l + (e(x ln(2)))2 arcsinh(e(x In(2))) 

2 ln(2) + 2 ln(2) 

If you don ' t like the inverse hyperbolic sine, you can convert it to a logarithm : 

> convert(% , ln) ; 

e(x ln(2)) J I + (e(x ln(2)))22 Jn(2) + 1n ( e<x ln(2)) + J I + (e(x ln(2)))2) 

2 ln(2) 

The "%" there refers to the result of the previous calculation . Note how Maple prefer s 
to use ex In 2 in place of 2x. 

For the definite integral , you specify the interval of values of the variable of 
integration using two dots between the endpoints as follows: 

> int(2Ax*sqrt(1+4Ax) , x=O . . Pi) ; 

- ./2 - ln(l + ./2) + 2n ,JT+4ir + ln(2n + .JT+4ir) 
2 ln(2) 

If you want a decimal approximation to this exact answer, you can ask Maple to evaluate 
the last result as a floating point number: 

> evalf(%) ; 

56.955 42155 

i Remark Maple default s to giving 10 significant digits in its floating point number s 
unless you request a different precision by declarin g a value for the variable "Digit s": 

> Digits : = 20; evalf(Pi) ; 

3. 14159265 3 589 793 238 5 

Suppose we ask Maple to do an integral that we know we can't do ourselves: 

> int(exp(-xA2) , x); 

l 

2 .Ji erf(x) 

Maple expresses the answer in terms of the error function that is defined by 

2 r 2 
erf(x) = fi Jo e-

1 
dt. 
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But observe: 

> Int(exp(-xA2) , x=-infinity .. infinity) 

= int(exp(-xA2) , x=-infinity .. infinity) ; L: i -x2
) dx = ,Ji 

Note the use of the inert Maple command "Int" on the left side to simply print the 
integral without any evaluation. The active command "int" performs the evaluation. 

Computer algebra programs can be used to integrate symbolically many functions , 
but you may get some surprises when you use them, and you may have to do some 
of the work to get an answer useful in the context of the problem on which you are 
working. Such programs , and some of the more sophisticated scientific calculators , are 
able to evaluate definite integrals numerically to any desired degree of accuracy even 
if symbolic antiderivatives cannot be found. We will discuss techniques of numerical 
integration in Sections 6.6-6.8 , but note here that Maple's evalf ( Int () ) can always 
be used to get numerical values: 

> evalf(Int(sin(cos(x)) , x=O .. l)) ; 

.738 642 998 0 

Using Integral Tables 
You can get some help evaluating integrals by using an Integral Table, such as the one in 
the back endpapers of this book . Besides giving the values of the common elementary 
integrals that you likely remember whiJe you are studying calculus, they also give many 
more complicated integrals , especially ones representing standard types that often arise 
in applications. Familiarize yourself with the main headings under which the integrals 
are classified. Using the tables usually means massaging your integral using simple 
substitutions until you get it into the form of one of the integrals in the table. 

EXAMPLE 4 I ts 
Use the table to evaluate/= -;:==:::;: dt . 

.J3 - 2t4 

Solution This integral doesn 't resemble any in the tables, but there are numerous 
integrals in the tables involving .J a2 - x 2 . We can begin to put the integral into this 
form with the substitution t2 = u, so that 2t dt = du . Thus, 

I=~ I u2 du. 
2 ,J3 - 2u2 

This is not quite what we want yet; let us get rid of the 2 multiplying the u2 under 
the square root. One way to do this is with the change of variable ./iu = x, so that 
du= dx / ./2: 

I= _I_! x2 dx 
4./2 .J3 - x 2 · 

Now the denominator is of the form .J a2 - x 2 for a = ,,/3. Looking through the part 
of the table (in the back endpapers) dealing with integrals involving .J a2 - x 2 , we find 
the third one, which says that 

-----;::==::;: dx = --Ja 2 - x 2 + -si n- 1- + C . I x 2 x a2 x 

.Ja2 _ x2 2 2 a 

Thus, 

I= 
4

~ ( -~J3 - x
2 + ~sin-

1 
~) + c1 

t2 3 ./2 t2 

= --J3 - 2t4 + -- sin- 1-- + c,. 
8 8./2 J3 
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Many of the integral s in the table are reduction formulas. (An integral appears on both 

sides of the equation.) These can be iterated to simplify integrals as in some of the 
examples and exercises of Section 6 .1. 

EXAMPLE 5 1
1 1 

Evaluate / = 2 3 
dx. 

o (x + 1) 

Solution The fourth integral in the table of Miscellaneous Algebraic Integrals says 
that if n '=fa 1, then 

f dx l ( x f dx ) 
(a2 ± x2)ll = 2a2(n - 1) (a2 ± x2)n- l + (2n - 3) (a2 ± x2)n-1 . 

Using a = I and the+ signs, we have 

[1 dx 

lo (1 + x2)n 

Thus, we have 

EX E R C I S ES 6.4 
In Exercises 1-4 use the method of undetermined coefficients to 
evaluate the given integrals . 

1. J e3
x sin(4x) dx 2. J x e- x sinx dx 

3. J x 5 e- x
2 

dx 4. J x2(ln x) 4 dx 

ii 5. Use Maple or another computer algebra program to check 
any of the integrals you have done in the exercises from 
Sections 5.6 and 6.1-6.3 , as well as any of the integrals you 
have been unable to do . 

ii 6. Use Maple or another computer algebra program to evaluate 
the integral in the opening paragraph of this section. 

ii 7. Use Maple or another computer algebra program to 
reevaluate the integral in Example 4 . 

ii 8. Use Maple or another computer algebra program to 
reevaluate the integral in Example 5. 

Use the integral tables to help you find the integrals in Exercises 
9-18. 

1 ( x 1

1 
f I dx ) 

2(n - 1) (1 + x2 )n-l o + (2n - 3) lo (1 + x2)n-1 

1 2n - 3 f I dx 

= 2n(n - 1) + 2(n - 1) lo (1 + x 2)ll- 1 · 

9. J x2 
.Jx 2 - 2 

dx 10. J /(x 2 + 4) 3 dx 

11. J dt 
t 2.J3t 2 + 5 

12. J dt 
t./3t=5 

13. J x4( ln x) 4 dx 14. J x 7ex
2 

dx 

15. J x/2x -x 2 dx 16. J .J2x -x 2 

2 dx 
X 

17. J dx 
(.J4x - x2) 3 

18. J dx 
(.J4x - x2)4 

ii 19. Use Maple or another computer algebra program to evaluate 
the integrals in Exercises 9-18. 

D 20. Consider the integral I = J e- x
2 

dx. It is known that any 

evaluation of the integral as a finite combination of 
elementary functions must take the form 

I = e-x dx = P( x) e-x + C, J .2 2 

where P (x) is a polynomial. 
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(a) Show that there can be no polynomial P(x) for which 
the above formula holds. 

Express the integral f e-x
2 

dx in terms of the error 

function. 
(b) Because some elementary functions like e- x

2 
do not 

possess antiderivatives that can be expressed as finite 
combinations of elementary functions, new 
nonelementary functions are defined to fulfill the need 
for such antiderivatives. One such function is the error 
function defined by 

(c) Use undetermined coefficients to evaluate 

J = f Erf(x)dx. 

Erf(x) = ~ fox e-
12 

dt. 

• 
Improper Integrals 

---- -
Up to this point, we have considered definite integrals of the form 

I= r f(x)dx, 
la 

where the integrand f is continu ous on the closed, finite interval [a, b]. Since such 
a function is necessarily bound ed, the integra l / is necessa rily a finite number; for 
positive f it correspo nds to the area of a bounded region of the plane, a region 
contained inside some disk of finite radius with centre at the origin . Such integrals are 
also called proper integrals . We are now going to genera lize the definite integra l to 
allow for two possibilities excluded in the situation descri bed above : 

(i) We may have a = -oo orb = oo or both . 

(ii) f may be unbound ed as x approac hes a or b or both . 

Integrals satisfying (i) are called improper integrals of type I; integrals satisfying (ii) 
are called improper integrals of type II . Either type of improper integral corresponds 
(for positive f) to the area of a region in the plane that "extends to infinity " in some 
direction and therefore is unbounded. As we will see, such integrals may or may not 
have finite values. The ideas involved are best introduced by examples. 

Improper Integrals of Type I 

EXAMPLE 1 Find the area of the region A lying under the curve y = l /x 2 and 
above the x -axis to the right of x = l. (See Figure 6.8(a).) 

Solution We would like to calc ulate the area with an integral 

-Joo dx 
A - 2 ' 

I X 

which is improper of type I, since its interval of integration is infinite . It is not 
immediately obvious whe ther the area is finite; the region has an infinitely long "spike" 
along the x-axis, but this spike becomes infinitely thin as x approaches oo. In order 
to evaluate this impro per integral , we interpret it as a limit of proper integrals over 
intervals (1, R] as R---+ oo. (See Figure 6.8(b) .) 
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Figure 6.8 

(a) A = f' ,o ~ dx 
11 X 

(b) A = Lim f R _!__ dx 
R----HXJJI x 2 

Figure 6.9 
infinite 

The area shaded in colour is 
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J
oo dx JR dx ( l)IR A= - = lim - = lim --

1 x 2 R~oo I x 2 R~oo X I 

= lim (-2-+ 1) = 1 R~oo R 

Since the limit exists (is finite), we say that the improper integral converges. The region 
has finite area A = l square unit. 

y 

EXAMPLE 2 

y 

y 

X R X 

(a) (b) 

Find the area of the region under y = l / x, above y = 0, and to 
the right of x = l. (See Figure 6.9.) 

1 
y =

x 

l 
y = x2 

X 

Solution This area is given by the improper integral 

J
oo dx JR dx IR 

A = - = lim - = lim 1n x 
t X R~oo J X R~oo I 

Jim lnR = oo. R~oo 

We say that this improper integral diverges to infinity. Observe that the region has a 
similar shape to the region under y = l / x 2 considered in the above example, but its 
"spike" is somewhat thicker at each value of x > 1. Evidently , the extra thicknes s 
makes a big differenc e; this region has in.finite area . 
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DEFINITION 

I 

Figure 6.10 

Improper integrals of type I 

If f is continuous on [a, oo), we define the improper integral off over [a, oo) 
as a limit of proper integrals : 

f')O f(x)dx = Jim [R f(x)dx. 
la R-+oo la 

Similarly, if f is continuous on (-oo, b ] , then we define 

f b f(x) dx = lim [b f(x) dx. 
-oo R-+-oo 1 R 

In either case , if the limit exists (is a finite number) , we say that the improper 
integral converges; if the limit does not exist, we say that the improper integral 
diverges. If the limit is oo (or -oo) , we say the improper integral diverges to 
infinity (or diverges to negative infinity). 

The integral J~
00 

f(x) dx is, for f continuous on the real line, improper of type I at 
both endpoints. We break it into two separate integral s: 

r: f(x)dx = r: f(x)dx + fo
00 

f(x)dx. 

The integral on the left converges if and only if both integrals on the right converge . 

EXAMPLE 3 
/

00 1 
Evaluate --

2 
dx. 

_ 00 ] + X 

Solution By the (even) symmetry of the integrand (see Figure 6.10), we have 

f 00 dx f O dx [ 00 dx 

-oo 1 + x 2 = -oo 1 + x 2 + lo I + x 2 

= 2 lim r dx 
R-+oo lo 1 + x2 

= 2 lim tan - 1 R = 2 ( ~) = 1r. 
R-+oo 2 

The use of symmetry here requires some justification. At the time we used it we did 
not know whether each of the half-line integrals was finite or infinite. However, since 
both are positive, even if they are infinite, their sum would still be twice one of them . 
If one had been positive and the other negative , we would not have been justified in 
cancelling them to get O until we knew that they were finite. ( oo + oo = oo, but oo - oo 
is not defined.) In any event, the given integral converges to 1r. 

EXAMPLE 4 f
00 

cosxdx = lim r cosxd x = lim sinR. lo R-+oo lo R-+oo 

This limit does not exist (and it is not oo or -oo) , so all we can say is that the given 
integral diverges. (See Figure 6.11.) As R increases , the integral alternately adds and 
subtracts the areas of the hills and valleys but does not approach any unique limit. 
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Figure 6.11 Not every divergent improper 
integral diverges to oo or -oo 

y 

s 

C 

DEFINITION 

1 
y=-

,./x 

I 

X 

Figure 6. 12 The shaded area is finite 
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y 

y = COS X 

Improper Integrals of Type II 

Improper integrals of type II 

If f is continuou s on the interval (a, b] and is possibly unbounded near a, we 
define the improper integral 

fb f(x) dx = lim l b f(x) dx . 
l a c--->a+ c 

Similarly, if f is continuous on [a , b) and is possibly unbounded near b, we 
define 

{b f(x) dx = Jim r f(x) dx. 
l a c-+b- } a 

These improper integrals may converge, diverge, diverge to infinity, or diverge to 
negative infinity. 

EXAMPLE 5 Find the area of the region S lying under y = I/ ,Jx., above the 
x -axis, between x = 0 and x = 1. 

Solution The area A is given by 

A= fo
1 

)xdx , 

which is an improper integral of type II since the integrand is unbounded near x = 0. 
The region S has a "spike" extending to infinity along the y-axis, a vertical asymptote 
of the integrand, as shown in Figure 6.12. As we did for improper integrals of type I, 
we express such integrals as limits of proper integrals: 

A= Jim J1

x - 112 dx= Jim 2x 112
1

1 

= Jim (2-2../c)=2. 
c--->0+ c c--->0+ c c--->0+ 

This integral converges, and S has a finite area of 2 square units. 

While improper integrals of type I are always easily recognized because of the infinite 
limits of integration , improper integrals of type II can be somewhat harder to spot. You 
should be alert for singularitie s of integrands and especially points where they have 
vertical asymptotes. It may be necessary to break an improper integral into several 
improper integral s if it is improper at both endpoints or at points inside the interval of 
integration. For example , 

! 
1 ln [x [ dx = Jo ln [x [ dx + [112 1n Ix I dx + [ 1 In Ix I dx . 

- I v'f=x -I v'f=x lo v'f=x 11;2 v'f=x 
Each integral on the right is improper because of a singularity at one endpoint. 
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THEOREM 

I 

EXAMPLE 6 Evaluate each of the following integrals or show that it diverges : 

(a) r'~d x , 
lo X 

(b) {2 --;::=l=::::;: dx, 
lo .J2x - x 2 

and (c) fo
1

1nxdx. 

Solution 

(a) f
0

' ~ dx = lim f 1 

~ dx = lim (In 1 - Inc)= oo. lo X c--+0+ c X c--+0+ 

This integral diverges to infinity. 

(b) f
2 1 

dx = f
2 1 

dx 
lo J2x - x 2 lo .j 1 - (x - 1)2 

= f I 1 du 
- 1~ 

= 2 [1 1 
du 

lo~ 
= 2 lim t l du 

c--+l- lo ~ 

Let u = x - 1, 

du= dx 

(by symmetry) 

= 2 Jim sin- 1 ulc = 2 lim sin- 1 c = 11:. 
C--+ I - o C--+ I -

This integral converges to 11:. Observe how a change of variable can be made even 
before an improper integral is expressed as a limit of proper integrals. 

(c) {' Inxdx = lim f 11nxd x (SeeExample2(a)ofSection6.1 
lo C--+0+ c 

for the evaluation of the indefi-

nite integral. ) 

= Jim (x ln x - x)l1 

c--+0+ C 

= lim (0-1- c lnc+ c) 
c--+0+ 

Inc 
=-1+0- Jim -

c--+0+ 1/ C 

. 1/c = - 1- hm 
c--+0+ -(1 / c2) 

[-:J 
(by l'Hopital 's Rule) 

=-1- Jim (-c)=-1+0=-l. 
c--+0+ 

The integral converges to -1 . 

The following theorem summarizes the behaviour of improper integrals of types I and 
II for powers of x . 

p-integrals 

If0 < a < oo, then 

I converges to a l - p if p > l 
p-l 

diverges to oo if p :S 1 

I converges to al-p if p < I 
l-p 

diverges to oo if p ::::_ 1. 
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Figure 6.13 A discontinuous function 
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PROOF We prove part (b) only. The proof of part (a) is similar and is left as an 
exercise. Also, the case p = I of part (b) is similar to Example 6(a) above, so we need 
consider only the cases p < I and p > 1. If p < I, then we have 

{° x - P dx = lim f a .x.- P dx 
lo c- 0+ c 

. x- p+ I la 
= lim 

C- 0+ -p +) C 

al -p - c l - p 
lim 

c- o+ 1 - p 

al -p 

1-p 

because 1 - p > 0. If p > I , then 

{a x-P dx = lim f a x -P dx 
lo c- 0+ c 

x- p+ I la 
= Jim 

c- 0+ -p +) C 

c-( p-1 ) - a- (p-1 ) 
= lim ------- = oo . 

c- o+ p - I 

The integrals in Theorem 2 are called p-integra ls. It is very useful to know when they 
converge and diverge when you have to decide whether certain other improper integrals 
converge or not and you can't find the appropriate antiderivatives . (See the discussion 
of estimating convergence below.) Note that fa°° x - P dx does not converge for any 
value of p. 

Remark If f is continuous on the interval [a, b] so that J: f(x) dx is a proper 
definite integral, then treating the integral as improper will lead to the same value : 

Jim lb f(x) dx = r f( x ) d .x. = Lim r f( x ) dx. 
c-a+ c l a c- b- l a 

This justifies the definition of the definite integral of a piecewise continuous function 
that was given in Section 5.4. To integrate a function defined to be different continuous 
functions on different intervals, we merely add the integrals of the various component 
functions over their respective intervals. Any of these integrals may be proper or 
improper ; if any are improper , all must converge or the given integral will diverge. 

EXAMPLE 7 1
2 

{ 1/ .Jx ifO < x .:'.': 1 Evaluate f (x ) dx , where f (x ) = o x-1 ~l<xs2 
Solution The graph off is shown in Figure 6.13. We have 

fo
2 

f(x)d.x. = fo
1 

~ + fi \x - I)dx 

=c!lrs+1
1 

~+(x;-x)I~ =2+(2-2-~+1)=~; 
the first integral on the right is improper but convergent (see Example 5 above) , and 
the second is proper. 

Estimating Convergence and Divergence 
When an improper integral cannot be evaluated by the Fundamental Theorem of Calcu
lus because an antiderivative can't be found , we may still be able to determine whether 
the integral converges by comparing it with simpler integrals. The following theorem 
is central to this approach. 
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THEOREM 

I 

X 

Figure 6.14 Comparing e-x
2 

and e-x 

A comparison theorem for integrals 

Let -oo S a < b S oo, and suppose that functions f and g are continuous on the 

interval (a, b) and satisfy O S f (x) S g(x) . If J: g(x) dx converges, then so does 

J: f(x) dx, and 

lb f(x) dx S lb g(x) dx. 

Equivalently, if J: f(x) dx diverges to oo, then so does J: g(x) dx . 

PROOF Since both integrands are nonnegative, there are only two possibilities for 
each integral: it can either converge to a nonnegative number or diverge to oo. Since 
f(x) S g(x)on(a,b),itfollowsbyTheorem3(e)ofSection5.4thatifa < r < s < b, 
then 

Js f(x) dx S Js g(x) dx. 

This theorem now follows by taking limits as r -+ a+ ands -+ b-. 

EXAM PL E 8 Show that 100 

e-x
2 

dx converges, and find an upper bound for its 

value. 

Solution We can't integrate e-x
2

, but we can integrate e-x . We would like to use the 

inequality e-x
2 

S e-x, but this is only valid for x 2: l. (See Figure 6.14.) Therefore, 
we break the integral into two parts. 

2 
On [0, l] we have O < e-x S 1, so 

r1 2 r1 
0 < Jo e-x dx S Jo dx = 1. 

On [l , oo) we have x 2 2: x, so -x 2 S - x and O < e-x
2 

S e-x. Thus, 

Hence, 100 

e-x
2 

dx converges and its value is not greater than 1 + (1/e). 

We remark that the above integral is, in fact, equal to {ft, although we cannot prove 
this now. See Section 14.4. 

For large or small values of x many integrands behave like powers of x. If so, they 
can be compared with p-integrals. 

EXAMPLE 9 Determine whether f 00 ~ converges. 
lo x + x3 

Solution The integral is improper of both types, so we write 

{oo dx = {1 dx + {oo ~=Ii+ h 
Jo .Jx+x 3 Jo .Jx+x3 11 3 
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On (0, 1] we have Jx + x 3 > .jx , so 

[1 dx 
ft < lo .jx = 2 (by Theorem 2). 

On [1, oo) we have -Jx + x3 > ,J;S, so 

(by Theorem 2). 

Hence, the given integral converges, and its value is less than 4. 

In Section 4.10 we introduced big-0 notation as a way of conveyi ng growth-rate 
information in limit situations. We wrote f (x) = 0 (g(x)) as x -+ a to mean the same 
thing as lf(x)I .'.S Klg(x)I for some constant Kon some open interval containing a. 
Similarly, we can say that f (x) = 0 (g (x)) as x -+ oo if for some constants a and K 
we have lf(x)I .'.S Klg(x)I for all x 2: a. 

EXAMPLE 10 1 + x 2 
( 1 ) --

4 
= 0 2 as x -+ oo because, for x 2: 1 we have 

l+x X 

1~1 1 +x 4 

2x 2 2 
< -4 = 2· 

X X 

EXAM p L E 11 Show that if p > 1 and f is continuous on [ 1, oo) and satisfies 
00 

f(x) = O(x-P), then f1 f (x) dx converges, and the error E(R) 
in the approximation 

satisfies E(R) = O(R 1-P) as R -+ oo. 

Solution Since f (x) = O(x-P) as x -+ oo, we have, for some a 2: 1 and some K, 
f(x) .'.S K x-P for all x 2: a. Thus, 

IE(R)I = 1100 

f(x) dxl 

< K x-p dx = K--- = --R 1-P 100 x-p+L loo K 

- R -p + 1 R p - l ' 

so E(R) = O(R 1- P) as R-+ oo . 

In Exercises 1-22, evaluate the given integral or show that it 
diverges. !-I dx 

4. -2-
-00 X + 1 

1
00 1 

1. ---dx 
2 (x - 1)3 

roo 1 
2. }3 (2x - 1)2/3 dx 1

1 dx 
5. -I (x + 1)2/3 1a dx 

6 --
• o a2 - x2 
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7. f 1 
( 1 - x) 1/3 

dx 8. f 1 
o x.Jf=x" 

dx 

f r/ 2 cosx dx fo
00 

x e -x dx 9. 
0 (l - sin x) 2/ 3 10. 

f dx 
12. l oo X 11. ---dx 

.Jx(I - x) o I + 2x 2 . 

13. l oo xdx 
o (I + 2x2) 3/2 

14. l ,r/2 

0 
secxdx 

l ,r/2 16. 1 00 __!:!_ 15. 
0 

tanxdx e x ln x 

17. f e dx 

ix.Jinx 
18. 100 

dx 
e x(lnx) 2 

19. --dx l oo X 

-oo 1 + x2 
20. --dx l oo X 

- oo 1 + x4 

21. i: x e - x
2 

dx 22. i: e -l x l dx 

23. Find the area below y = 0, above y = ln x , and to the right 
ofx = 0. 

24. Find the area below y = e - x , above y = e- 2x, and to the 
right of x = 0. 

25. Find the area of a region that lies above y = 0, to the right of 
4 2 

x = I, and under the curve y = -- - - - . 
2x+I x+2 

26. Find the area of the plane region that lies under the graph of 
y = x - 2 e- 1 Ix, above the x-axis , and to the right of the 
y-axis. 

27. Prove Theorem 2(a) by directly evaluating the integrals 
involved . 

28. Evaluate t , (x sgnx) / (x + 2) dx . Reca ll that 
sgnx = x/ lxl. 

29. Evaluate ft x 2 sgn (x - 1) dx. 

In Exercises 30-41, state whether the given integral converges or 
diverges , and just ify your claim. 

30. l oo x2 --dx 
o x5 + 1 

31. l oo dx 
O l +.ft 

32. 100 
x.fi dx 

2 x2 - 1 
33. l oo 

3 

0 

e- x dx 

100 
dx 35. t ex 34. --dx 

o .Jx +x2 - IX+] 

36. l " sin x 0 37. 100 I sin xi --dx --dx 
0 X o x2 

1"2 cl 1 ,r/2 0 38. 
0 I - c:s.fi 

0 39. cscx dx 
-1r:/2 

0 40. { oo dx O 41. { oo ctx 
12 .fi ln x Jo xe' 

0 42. . oo 2 1 C 
Given that J0 e-x dx = 2,nr, evaluate 

(a) 100 
x 2e-x

2 
dx and (b) 100 

x 4e-x
2 

dx. 

43. Suppose f is continuous on the interva l (0, I] and satisfies 
f(x) = O(xP) as x ~ 0+ , where p > - l. Show that 

la I 
f (x) dx converges, and that if O < E < 1, then the error 

E(E) in the approximation 

la I 

f (x) dx ~ [ J( x ) dx 

satisfies E(E) = 0(E P+1) as E ~ 0+. 

44. What is the largest value of k such that the error E(E) in the 
approximation 

[ 00 dx 111, dx 
l o .Jx + x 2 ~ , .Jx + x 2 ' 

where O < E < 1, satisfies E(E) = O(Ek) as E ~ 0+. 

0 45. If f is continuous on [a, b], show that 

lim lb f(x) dx = lb f(x) dx. 
c~ a+ c a 

Hint: A continuous function on a closed, finite interva l is 
bounded: there exists a positive constant K such that 
lf(x) I .::: K for all x in [a , b]. Use this fact, together with 
parts (d) and (f) of Theorem 3 of Section 5.4, to show that 

lim (lb f(x)dx -lb f(x)dx) = 0. 
c->a+ a c 

Similarly, show that 

_lim le f(x)dx = lb f(x)dx. 
c~ b- a a 

0 46. (The gamma function) The gamma function f(x) is 
defined by the improper integra l 

(f is the Greek cap ital letter gamma.) 

(a) Show that the integral conve rges for x > 0. 

(b) Use integration by parts to show that r(x + 1) = x[(x) 
for X > 0. 

(c) Show that f(n + 1) = n! for n = 0, 1, 2, .. . . 

(d) Given that ft e-x
2 

dx = ½ft , show that f'C½) = ft 
and r( ~) = ½ft. 

In view of ( c ), r (x + 1) is often written x ! and regarded as a 
real-valued extension of the factorial function. Some 
scientific calculator s (in particular, HP ca lculators) with the 
factor ial function n! built in actually calculate the gamma 
function rather than ju st the integral factorial. Check whether 
your calculator does this by asking it for 0.5 ! . If you get an 
error message , it 's not using the gamma function . 
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. _ T_h_e _Tr_ap_e_zo_id_a_n_d_M_id_p_oi_nt_R_u_le_s __________ _ 
Most of the applications of integration , within and outside of mathematics, involve the 
defi nj te integral 

I= 1b f(x) dx. 

Thanks to the Fundamental Theorem of Calculus, we can evaluate such definite integral s 
by first finding an antiderivative off . This is why we have spent considerable time 
developing techniques of integration . There are, however, two obstacles that can 
prevent our calculating I in this way: 

(i) Finding an antiderivative of f in terms of farmliar functions may be impossible , 
or at least very difficult. 

(ii) We may not be given a formula for f (x) as a function of x; for instance, f (x) may 
be an unknown function whose values at certrun points of the interval [a, b] have 
been determined by experimental measurement. 

In the next two sections we investigate the problem of approximating the value of the 
definite integral I using only the values of f(x) at finitely many points of [a, b]. Ob
taining such an approximation is called numerical integration. Upper and lower sums 
(or, indeed, any Riemann sum) can be used for this purpose , but these usually require 
much more calculation to yield a desired precision than the methods we will develop 
here . We will develop three methods for evaluating definite integrals numerically : the 
Trapezoid Rule, the Midpoint Rule, and Simpson 's Rule (see Section 6.7). All of these 
methods can be easily implemented on a small computer or using a scientific calcula
tor. The wide availability of these devices makes numerical integration a steadily more 
important tool for the user of mathematics. Some of the more advanced calculators 
have built-in routines for numerical integration. 

All the techniques we consider require us to calculate the values off (x) at a set of 
equally spaced points in [a , b]. The computational "expense" involved in determining 
an approximate value for the integral / will be roughly proportional to the number 
of function values required , so that the fewer function evaluations needed to achieve 
a desired degree of accuracy for the integral, the better we will regard the technique . 
Time is money, even in the world of computers. 

The Trapezoid Rule 
We assume that f(x) is continuous on [a , b] and subdjvide [a , b] into n subinterval s 
of equal length h = (b - a) / n using then+ I points 

xo = a, X J =a+ h, x2 =a+ 2h, .. . ' x 11 = a +nh = b. 

We assume that the value of f(x) at each of these points is known: 

YO= f(xo), YI = f(x1), Y2 = f(x2), Yn = f(xn) . 
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Figure 6.15 The area under y = f(x) is 
approximated by the sum of the areas of n 

trapezoids 

YI YI 
h 

xo x , 
Figure 6. 16 The trapezoid has area 
Y1h + ½<Yo - Y1)h = ½h(yo + Yi) 

y 

Yn-1 

Yn 

YO Y2 
YI 

h h h 

a= xo XI x2 Xn- 1 Xn = b 
X 

The Trapezoid Rule approximates J: f (x) dx by using straight line segments between 
the points (Xj-l , YJ- l) and (x1, y1) , (I :S j S n) , to approximate the graph off , 
as shown in Figure 6.15, and summing the areas of the resulting n trapezaids. A 
trapezoid is a four-sided polygon with one pair of parallel sides. (For our discussion 
we assume f is positive so we can talk about "areas," but the resulting formulas apply 
to any continuous function f .) 

The first trapezoid has vertices (xo, O), (xo,Y o), (x1, Y1), and (x, , O). The two 
parallel sides are vertical and have lengths Yo and YI. The perpendicular distance 
between them is h = x 1 - xo. The area of this trapezoid is h times the average of the 
parallel sides: 

YO+ YI . 
h --

2
- square umts. 

This can be seen geometrically by considering the trapezoid as the nonoverlapping 
union of a rectangle and a triangle; see Figure 6.16. We use this trapezoidal area to 
approximate the integral off over the first subinterval [xo, xi]: 

r1 f(x)dx ~ h YO+ YI. 
lxo 2 

We can approximate the integral of f over any subinterval in the same way: 

ri f (x ) dx ~ h YJ- I + YJ ' 
} Xj - 1 2 

(1 :S j S n) . 

It follows that the original integral / can be approximated by the sum of these trapezoidal 
areas: 

{b f(x)dx~h (Yo+y, + Y1+Y 2 +y 2 +y3 +· · ·+Yn-I+Yn) 
la 2 2 2 2 

= h (~YO+ YI+ Y2 + Y3 + · · · + Yn-1 + ~ Yn) · 
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y 

X 

Figure 6.17 The trapezoid areas are 
greater than the area under the curve if the 
curve is concave upward 
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The Trapezoid Rule 

The n-subinterval Trapezoid Rule approximation to Jct f (x) dx, denoted T,,, is 
given by 

T,, = h (~YO+ YI+ Y2 + Y3 + · · · + Yn-I + ~ Yn) · 

We now illustrate the Trapezoid Rule by using it to approximate an integral whose 
value we already know: 

!21 
I= -dx=ln2=0 .69314718 ... . 

1 X 

(This value, and those of all the approximations quoted in these sections, were cal
culated using a scientific calculator.) We will use the same integral to illustrate other 
methods for approximating definite integrals later. 

EXAM p LE 1 Calculate the Trapezoid Rule approximations T4, Ts, and T16 for 

I= f
2 
~ dx. 

lt X 

Solution For n = 4 we have h = (2 - 1)/ 4 = 1/ 4; for n = 8 we have h = 1/ 8; for 
n = 16 we have h = 1/ 16. Therefore, 

Note how the function values used to calculate T4 were reused in the calculation of Ts, 
and similarly how those in Ts were reused for Tt 6· When several approximations are 
needed, it is very useful to double the number of subintervals for each new calculation , 
so that previously calculated values off can be reused . 

All Trapezoid Rule approximations to / = J12(1/ x) dx are greater than the true value 
of I. This is because the graph of y = 1/ x is concave up on [l , 2), and therefore the 
tops of the approximating trapezoids lie above the curve. (See Figure 6.17.) 

We can calculate the exact errors in the three approximations since we know that 
I= ln2 = 0.69314718 . .. (We always take the error in an approximation to be the 
true value minus the approximate value.) 

I - T4 = 0.69314718 ... - 0.697023 81 .. . = -0.003 87663 .. . 

I - Ts= 0.693147 18 ... - 0.69412185 ... = -0.00097467 .. . 

I - T16 = 0.693 14718 ... - 0.693 39120 ... = -0.000244 02 .. . . 
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DEFINITION 

I 

Figure 6.18 The Midpoint Rule 
b 

approximation M,, to fa f (x) dx is the 
Riemann sum based on the heights to the 

graph off at the midpoint s of the 

subinterval s of the partition 

Observe that the size of the error decreases to about a quarter of its previous value each 
time we double n. We will show below that this is to be expected for a "well-behaved " 
function like 1/ x. 

Example l is somewhat artificial in the sense that we know the actual value of 
the integral so we really don ' t need an approximation. In practical applications of 
numerical integration we do not know the actual value. It is tempting to calculate 
several approximations for increasing values of n until the two most recent ones agree 
to within a prescribed error tolerance. For example , we might be inclined to claim that 
In 2 ~ 0.69 .. . from a comparison of T4 and Tg, and further comparison of T16 and 
Tg suggests that the third decimal place is probably 3: / ~ 0.693 . . .. Although this 
approach cannot be justified in general , it is frequently used in practice. 

The Midpoint Rule 
A somewhat simpler approximation to J; f (x) dx , based on the partition of [a, b] into 
n equal subinterva ls, involves forming a Riemann sum of the areas of rectangles whose 
heights are taken at the midpoints of then subintervals . (See Figure 6.18 .) 

The Midpoint Rule 

If h = (b - a) / n, let m1 =a+ (j - ½) h for l ~ j ~ n. The Midpoint Rule 

approximation to J: f( x ) dx , denoted M11, is given by 

y 

/1. 

M,, = h(f (m1) + J(m 2) + · · · + f(mn.)) = h L f(m1) 
J=I 

Y = f (x ) 

X 

EXAM p LE 2 Find the Midpoint Rule approximations M4 and M8 for the integral 

I = f
2 

~ dx, and compare their actual errors with those obtained 
11 X 

for the Trapezoid Rule approximations above. 

Solution To find M4, the interval [1, 2] is divided into four equal subintervals, 
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Figure 6.19 The Midpoint Rule error, the 
area shaded in colour, is opposite in sign 
and about half the size of the Trapezoid 
Rule error, the area shaded in grey 

THEOREM 

I 

SECTION 6.6: The Trapezoid and Midpoint Rules 373 

The midpoints of these intervals are 9/ 8, 11/ 8, 13/ 8, and 15/ 8, respectively . The 
midpoints of the subintervals for Mg are obtained in a similar way. The required 
Midpoint Rule approximations are 

M4 = - - + - + - + - = 0.691219 89 ... 1 [8 8 8 8] 
4 9 11 13 15 

I [ 16 16 16 16 16 16 16 16] 
Ms = - - + - + - + - + - + - + - + - = 0.692 660 55 ... 

8 17 19 21 23 25 27 29 31 

The errors in these approximation s are 

I - M4 = 0.693 147 18 . . . - 0.691219 89 . .. = 0.00192729 .. . 

I - Ms= 0.69314718 ... - 0.69266055 . . . = 0.00048663 .. . 

These errors are of opposite sign and about half the size of the corresponding Trapezoid 
Rule errors / - T4 and I - Ts . Figure 6.19 suggests the reason for this. The rectangular 
area hf (m 1) is equal to the area of the trapezoid formed by the tangent line toy = f (x) 
at (m1, f (m1 )). The shaded region above the curve is the part of the Trapezoid Rule 
error due to the }th subinterval. The shaded area below the curve is the corresponding 
Midpoint Rule error. 

One drawback of the Midpoint Rule is that we cannot reuse values of f calculated 
for Mn when we calculate M2n· However, to calculate T2n we can use the data values 
already calculated for Tn and Mn. Specifically, 

A good strategy for using these methods to obtain a value for an integral / to a desired 
degree of accuracy is to calculate successively: 

M2n, 
T2n + M2n 

T4n=----
2 

until two consecutive terms agree sufficiently closely. If a single quick approximation 
is needed, Mn is a better choice than Tn. 

Error Estimates 
The following theorem provides a bound for the error in the Trapezoid and Midpoint 
Rule approximations in terms of the second derivative of the integrand. 

Error estimates for the Trapezoid and Midpoint Rules 

If f has a continuous second derivative on [a, b] and satisfies lf"(x)I S K there, then 

11b f(x)dx - Tnl S _K_(b_-_a_) h2 = K(b- a)3 
12 12n2 ' 

I 
{ab f(x)dx-Mnl S K(b-a) h2= K(b-a)3 
la 24 24n2 ' 

where h = (b - a) / n. Note that these error bounds decrease like the square of the 
subinterval length as n increases . 

PROOF We will prove only the Trapezoid Rule error estimate here. (The one for the 
Midpoint Rule is a little easier to prove; the method is suggested in Exercise 14 below.) 
The straight line approximating y = f(x) in the first subinterval [xo, xi]= [a, a+ h] 
passes through the two points (xo, yo) and (x1, Y1). Its equation is y = A+ B(x - xo), 
where 

A= Yo and B 
_ YI - YO _ YI - YO 
- x1 -xo - --h-. 
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' ' ' 
y =i A+ B(x - xo) 

YO : 
' 

h 
xo X 

YI 

x, 
Figure 6.20 The en-or in approximating 
the area under the curve by that of the 
trapezoid is J:a1 g(x ) dx 

Let the function g (x) be the vertical distance between the graph off and this line: 

g(x) = f(x) - A - B( x - xo) . 

Since the integral of A+ B (x - xo) over [xo, x i] is the area of the first trapezoid , which 
is h(yo + y i) /2 (see Figure 6.20), the integral of g(x) over [xo, x 1] is the error in the 
approximation of J;~1 f (x) dx by the area of the trapezoid: 

1

XJ YO+ YI 1 XJ 
f(x)dx - h -- = g(x)dx. 

XO 2 XO 

Now g is twice differenti able , and g"(x) = J"(x). Also g(xo) = g (x1) = 0. Two 
integrations by parts (see Exercise 36 of Section 6.1) show that 

t 1

(x -xo)(x1 -x)J"(x)dx = t 1

(x -x o)(x 1 - x)g 11(x)dx 
ho ho 

1
XJ 

= -2 g(x)dx. 
XQ 

By the triangle inequality for definite integrals (Theorem 3(f) of Section 5.4) , 

f(x)dx-h-- S- (x-xo)(x1-x)lf 11(x)ldx 
11

Xi YO+ YI I 1 1 XJ 

XO 2 2 XO 

S K t i (-x 2 + (xo + x 1)x - xox 1) dx 
2 lxo 
K 3 K 3 

= - (x1 - xo) = - h . 
12 12 

A similar estimate holds on each subinterval [XJ- I, x1] (1 S j S n). Therefore, 

It f( x) dx - T,.I = t (( f(x)dx - h Yj-l/ Yj) 

St [1xi f(x)dx - h YJ- 1 + YJ I 
}= I Xj - 1 2 

= t K h3 = K nh 3 = K(b - a) h2 
J= I 12 12 12 ' 

since nh = b - a. 

We illustrate this error estimate for the approximations of Examples l and 2 above . 

EXAMPLE 3 Obtain bounds for the errors for T4, Ts, T16, M4, and Ms for 

I= f
2 

! dx. 11 X 

Solution If f(x) = 1/x, then J'(x) = -l / x 2 and f"(x) = 2/x 3 . On [l , 2] we have 
lf"(x) I S 2, so we may take K = 2 in the estimate. Thus, 

2(2 - l ) ( 1 )
2 

I/ - T4 I s 
12 4 = 0. 010 4 .. . , 

2(2-1) (1)2 

II - M4I s 
24 4 = 0.0052 ... , 

2(2 - 1) ( 1 )
2 

II-T sl s 
12 8 =0 .0026 . .. , 

2(2-1) (1)2 

I/ - Ms I s 
24 8 = O.001 3 ... , 

2(2 - 1) ( 1 )
2 

II - T16I S 12 16 = 0.00065 .. .. 
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The actual errors calculated ear lier are considerably smaller than the se bounds , becau se 
If " (x) I is rather smaller than K = 2 over mo st of the interval [ l , 2]. 

Remark Error bound s are not usually as easily obtained as they are in Example 3. In 
particular, if an exact formula for f (x) is not known (as is usually the case if the values 
of f are obtained from experimental data ), then we have no method of calcul atin g 

f"(x), so we can ' t determine K . Theorem4 is of mor e theoretical than practical 
importance . It shows us that, for a "we ll-behaved " function f, the Midpoint Rule error 
is typically about half as large as the Trapezoid Rule error and that both the Trapezoid 
Rule and Midpoint Rule errors can be expected to decr ease like l / n2 as n increa ses; 
in terms of big-0 notation , 

as n-+ oo. 

Of course, actual errors are not equal to the error bounds , so they won't always be cut 
to exactly a quarter of their size when we double n. 

EXERCISES 6.6 
In Exercises 1-4 , calculate the approximations T4 , M4 , Ts, Ms, 
and T16 for the given integrals. (Use a scientific calculator or 
computer spreadsheet program.) Also calculate the exact value of 
each integral, and so determine the exact error in each 
approximation . Compare these exact errors with the bounds for 
the size of the error supplied by Theorem 4. 

811. I = fo
2 

(1 + x
2

) dx 812. I= fo' e- x dx 

813. 1~12 
I= 

0 
sinx dx 814. I= f dx 

l +x 2 

5. Figure 6.21 shows the graph of a function f over the interval 
(1, 9]. Using values from the graph, find the Trapezoid Rule 

estimates T4 and Ts for I,9 
f (x) dx. 

6. Obtain the best Midpoint Rule approximation that you can 

for Ii9 f (x) dx from the data in Figure 6.21. 

y 

8 

7 

6 

5 

4 

3 

2 

/ 

2 

I 
y = f(x) / , 

I 
/ 

/ 

3 4 5 

Figure 6.21 

- I 

" i\ \ 
\ 

\ 

6 7 8 9 X 

7. The map of a region is traced on the grid in Figure 6.22, 
where 1 unit in both the vertical and horizontal directions 

represents 10 km. Use the Trapezoid Rule to obtain two 
estimates for the area of the region. 
y 

8 

7 

6 

5 

4 

3 

2 

/ 
V .......... , 

/ \. I 

I/ I"'-. 
/ 

I 

\ I/ " "- / 
......._ 

I'-.. -
2 3 4 5 6 7 

Figure 6.22 

" \ 
J 

/ 

8 9 X 

8. Find a Midpoint Rule estimate for the area of the region in 
Exercise 7. 

gg 9. Find T4, M4, Tg, Mg, and T16 for I01.
6 f (x) dx for the 

function f whose values are given in Table I. 

Table 1. 

X f(x) X f(x) 

0.0 1.4142 0.1 l .4 l24 
0.2 1.4071 0.3 1.3983 
0.4 1.3860 0.5 1.3702 
0.6 1.3510 0.7 1.3285 
0.8 1.3026 0.9 1.2734 
1.0 1.2411 1.1 1.2057 
1.2 1.1772 1.3 1.1258 
1.4 1.0817 1.5 1.0348 
1.6 0.9853 

gg 10. Find the approximations Mg and T16 for Io' e-x
2 

dx. Quote a 
value for the integral to as many decimal places as you feel 
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are justified. 
= rrpsmx 
1:1a 11. Repeat Exercise 10 for fo -- dx. 

X 
(Assume the integrand is 1 at x = 0.) 

Use this inequality to show that 

0 12. Compute the actual error in the approximation 11:1 

f(x)dx - f(m1)hl J0
1 x 2 dx ~ T1 and use it to show that the constant 12 in the 

estimate of Theorem 4 cannot be improved. That is, show 
that the absolute value of the actual error is as large as 
allowed by that estimate. 

= 11:1 

(!ex) - f(m1) - f
1
(m1)(x - m1))dxl 

< !!.... h 3 0 13. Repeat Exercise 12 for M1. 

D 14. Prove the error estimate for the Midpoint Rule in Theorem 4 
as follows: If x1 - xo = hand m I is the midpoint of [xo, xi], 
use the error estimate for the tangent line approximation 
(Theorem 11 of Section 4.9) to show that 

- 24 

Complete the proof the same way used for the Trapezoid 
Rule estimate in Theorem 4 . 1 K 2 

lf(x) - f(m1) - f (m1)(x - m1)I :'.:: 2 (x - m1) . 

• _ S_im_ps_o_n'_s _R_ul_e _______________ _ 
The Trapezoid Rule approximation to J; f (x) dx results from approximating the graph 
of f by straight line segments through adjacent pairs of data points on the graph. 
Intuitively , we would expect to do better if we approximate the graph by more general 
curves . Since straight lines are the graphs of linear functions , the simplest obvious 
generalization is to use the class of quadratic functions, that is, to approximate the 
graph off by segme nts of parab olas. This is the basis of Simpson's Rule . 

YR 

- h h X 

Figure 6.23 Fitting a quadratic graph 
through three points with equal horizontal 
spacmg 

Suppose that we are given three points in the plane, one on each of three equally 
spaced vertical lines , spaced, say, h units apart. If we choose the middle of these lines 
as the y-axis, then the coordinates of the three points will be, say, (-h, yL), (0, YM ), 
and (h, YR), as illustrated in Figure 6.23. 

Constants A, B, and C can be chosen so that the parabola y = A+ Bx+ Cx 2 

passes through these points; substituting the coordinates of the three points into the 
equation of the parabola, we get 

YM = A =} A= YM and 2Ch 2 = YL - 2yM + YR· 

YL = A - Bh + Ch
2 

) 

YR= A+ Bh + Ch 2 

Now we have 

1h (A+ Bx+ Cx 2) dx = (Ax+!!_ x 2 + £ x 3) lh = 2Ah + ~ Ch 3 

-h 2 3 -h 3 

= h ( 2 y M + ~ (YL - 2 Y M + YR)) 

h 
= :3 (YL + 4 Y M + YR). 

Thus, the area of the plane region bounded by the parabolic arc, the interval of length 
2h on the x -axis, and the left and right vertical lines is equal to (h/3) times the sum 
of the heights of the region at the left and right edges and four times the height at the 
middle . (It is independent of the position of the y-axis.) 

Now suppose that we are given the same data for f as we were given for the 
Trapezoid Rule; that is, we know the values Yj = f (xj) (O :::: j :::: n) at n + 1 equally 
spaced points 

xo = a, xi =a+ h , x2 =a+ 2h, Xn =a+ nh = b, 
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where h = (b - a) / n. We can approximate the graph of f over pairs of the 
subinterval s [Xj- 1, Xj ] using parabolic segment s, and use the integr als of the corre
sponding quadrati c function s to approximate the integrals off over these subintervals. 
Since we need to use the subinterval s two at a time, we must assume that n is even.. 
Using the integral comp uted for the parabolic segment above , we have 

1
x2 h 

f(x) dx :::::: - (yo+ 4y1 + Y2) 
XQ 3 

1
X4 h 

f (x) dx :::::: - (y2 + 4n + y4) 
Xz 3 

{x" h 
} , f(x) dx :::::: 3 (Yn-2 + 4Yn-1 + y,,). 

Xn-2 

Adding these n / 2 individual appro ximations, we get the Simp son's Rule approximation 

to the integra l J; f (x) dx. 

Simpson's Rule 

The Simpson's Rule approxi mation to J; f (x) dx based on a subdivision of 
[a , b] into an even number n of subinterva ls of equal length h = (b - a) / n is 
denoted S,, and is given by: 

lb f (x) dx:::::: S,, 

h 
= 3 (Yo+ 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2Yn-2 + 4Yn-l + Yn) 

= i (L Y"ends" + 4 L Y"odds" + 2 L Y"evens") · 

Note that the Simpson' s Rule approximation S,, requires no more data than does the 
Trapezoid Rule approximatio n T,1; both require the values of f(x) at n + 1 equally 
spaced point s. However, Simpson 's Rule treats the data differently , weightin g succes
sive values either 1/ 3, 2/ 3, or 4/ 3. As we will see, this can produce a much better 
approximation to the integral off. 

EXAMPLE 1 
/

2 ] 
Calculate the approximation s S4, Ss, and S16 for / = - dx and 

I X 

compare them with the actual value / = In 2 = 0.693 147 18 ... , 
and with the values of T4, Ts, and T16 obtained in Examp le I of Section 6.6. 

Solution We calculate 

S4 = /2 [ 1 + 4 ( i) + 2 (~) + 4 (;) + ~ J = 0.693 253 97 ... , 
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THEOREM 

I 

l [ 1 (8 8 8 8) 
Ss = 24 l + 2 + 4 9 + 11 + 13 + 15 

+2 (i + ~ + ;) J = 0.69315453 ... , 

l [ 1 S15 = - 1 + -
48 2 

(
16 16 16 16 16 16 16 16) 

~ ~+19+21 + n + ~+n+~+ii 

+2 - + - + - + - + - + - + - = 0.693 147 65 .. . . (
8 4 8 2 8 4 8 )] 
9 5 11 3 13 7 15 

The errors are 

I - S4 = 0.693 147 18 . . . - 0.693 253 97 . . . =-0 .000106 79, 

I - Ss = 0.693 14718 ... - 0.693 154 53 ... = -0.000007 35, 

I - S15 = 0.69314718 . .. - 0.693 147 65 . . . = -0.00000047 . 

These errors are evidently much smaller than the corresponding errors for the Trapezoid 
or Midpoint Rule approximation s. 

Remark Simpson 's Rule S2n makes use of the same 2n + I data values that Tn and 
Mn together use. It is not difficult to verify that 

and 

Figure 6.19 and Theorem 4 in Section 6.6 suggest why the first of these formulas ought 
to yield a particularly good approximation to / . 

Obtaining an error estimate for Simpson's Rule is more difficult than for the 
Trapezoid Rule . We state the appropriate estimate in the following theorem, but we do 
not attempt any proof. Proofs can be found in textbook s on numerical analysis. 

Error estimate for Simpson's Rule 

If f has a continuous fourth derivative on the interval [a , b ] , satisfying 
1 JC4) (x) I :'::: K there, then 

I 
{ab f(x)dx-Snl :'::: K(b-a) h4= K(b-a)5 
la 180 180n4 ' 

where h = (b - a) / n. 

Observe that, as n increases, the error decrease s as the fourth power of h and, hence , 
as 1/ n4 . Using the big-0 notation we have 

lb f( x )d x = S,, + 0 (: 4 ) as n -+ oo. 

This accounts for the fact that Sn is a much better approximation than is Tn, provided 
that his small and IJ C4)(x)I is not unduly large compared with lf"( x )I . Note also 
that for any (even) n, Sn gives the exact value of the integral of any cubic function 
f (x) = A+ Bx+ Cx 2 + Dx 3 ; JC4\ x ) = 0 identically for such f, so we can take 
K = 0 in the error estimate. 
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EXAMPLE 2 Obtain bounds for the absolute values of the errors in the approx
imations of Example 1. 

Solution If f (x) = 1 / x, then 

I 1 
f (x) = - 2 , 

X 

II 2 
f (x) = 3 , 

X 

Clearly , 1/(4\x)I :S 24 on [l , 2], so we can take K = 24 in the estimate of Theorem 5. 
We have 

II - S4I :s 24
(:

8
~ l) (ir ~ 0.00052083 , 

II - Ssl :s 24
(:

8
~ l) (~) 

4 

~ 0.00003255 , 

24(2 - 1) ( 1 )
4 

II - S16I :s 
180 16 ~ 0.00000203. 

Again we observe that the actual errors are well within these bounds. 

EXAMPLE 3 A function f satisfies IJ C4l (x)I :S 7 on the interval [l, 3), and 
the values f(l.O) = 0.1860, f(l.5) = 0.9411, /(2.0) = 1.1550, 

/(2.5) = 1.4511, and /(3.0) = 1.2144. Find the best possible Simpson 's Rule 

approximation to I = J? f (x) dx based on these data . Give a bound for the size of the 
error, and specify the smallest interval you can that must contain the value of/. 

Solution We taken= 4, so that h = (3 - 1)/ 4 = 0.5, and we obtain 

I= 13 

f(x)dx 

0.5 ( ) ~ S4 = 3 0.1860+4(0.9411 + 1.4511) +2(1.1550) + 1.2144 

= 2.2132 . 

Since l/( 4l(x)I :S 7 on [1, 3], we have 

7(3 - I) 
II - S4I :s 

180 
(0.5)4 < 0.0049 . 

I must therefore satisfy 

2.2132 - 0.0049 < I < 2.2132 + 0.0049 or 2.2083 < I < 2.2181. 

www.konkur.in



380 CHAPTER 6 Techniques oflntegration 

EXE RC IS ES 6.7 

In Exercises 1-4, find Simpson's Rule approximations S4 and Ss 
for the given functions. Compare your results with the actual 
values of the integrals and with the corresponding Trapezoid Rule 
approximations obtained in Exercises 1-4 of Section 6.6. 

M11 refer to the appropriate Trapezoid and Midpoint Rule 
. . 4T2,, - T,, 

approx1mat10ns. Deduce that S211 = ----
3 

gg 9. Find S4, Ss, and S16 for f01.
6 f (x) dx for the funct ion f 

whose values are tabulated in Exercise 9 of Section 6.6. 

ii 1. I= fo \ i +x 2) dx ii 2. 

ii 3. f'/2 I= 
0 

sin xdx ii 4. 

I= fo
1 

e-x dx 

I= fol 
dx 

1 +x 2 

gg 10. Find the Simpson 's Rule approximations Ss and S16 for 
f0

1 e- x
2 

dx. Quote a value for the integral to the number of 
decimal places you feel is justified based on comparing the 
two approximations. 

5. Find the Simpson 's Rule approximation Ss for the integral in 
Exercise 5 of Section 6.6. 

0 11. Compute the actual error in the approximation 

f0
1 x 4 dx ~ S2 and use it to show that the constant 180 in the 

estimate of Theorem 5 cannot be improved. 
6. Find the best Simpson 's Rule approximation that you can for 

the area of the region in Exercise 7 of Section 6.6. 0 12. Since Simpson 's Rule is based on quadratic approximation , 
it is not surprising that it should give an exact value for an 
integral of A + Bx+ Cx 2 . It is more surprising that it is 
exact for a cubic function as well. Verify by direct 

calculation that f0
1 x 3 dx = S2. 

81 7. Use Theorem 5 to obtain bounds for the errors in the 
approximations obtained in Exercises 2 and 3 above. 

T,, + 2Mn 
8. Verify that S2n = 

3 

2T211 + Mn 

3 
, where T,, and 

Other Aspects of Approximate Integration 
The numerical methods de scribed in Section s 6.6 and 6.7 are suitable for finding 

approximate values for integr als of the form 

I = 1b f (x) dx , 

where [a , b] is a finite interval and the integrand f is "well-behaved" on [a , b]. In 
particular , I must be a prop er integral. There are many other methods for dealing 
with such integrals, some of which we mention later in this section. First, however , 
we consider what can be done if the function f isn't "well-behaved" on [a, b ]. We 
mean by this that either the integral is improper or f doesn ' t have sufficiently many 
continuous de1ivatives on [a, b] to justify whatever numerical methods we want to use . 

The ideas of this section are best presented by mean s of concrete examples. 

EXAMPLE 1 How can you evaluate the integral / = lo 1 

,Jx ex dx numerically? 

Solution Although / is a prop er integral, with integra nd f(x) = Jx ex satisfying 
f(x) -+ 0 as x -+ 0+ , nevertheless, the standard num erical methods can be expected 
to perform poorly for / bec ause the derivative s of f a.re not bounded near 0. This 
problem is easily remedied ; ju st make the change of variable x = t2 and rewrite I in 
the form 

whose integrand g(t) = t2 e12 has bounded derivatives near 0. The latter integral can 
be efficiently approximated by the methods of Section s 6.6 and 6.7. 
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Approximating Improper Integrals 

r1 cosx EXAMPLE 2 Describe how to evaluate / = lo ..Ji dx numerically . 

Solution The integral is improper, but convergent because, on [O, l], 

cosx 1 
0 < --<-..Ji - ..Ji and 1

1 dx _ 
,.; - 2. 

Q yA 

COSX 
However, since limx~o+ ..Ji = oo, we cannot directly apply any of the technique s 

developed in Sections 6.6 and 6.7. (yo is infinite.) The substitution x = t2 removes 
this difficulty: 

1
1 cost 2 11 

I= --2tdt=2 cost 2dt . 
0 t 0 

The latter integral is not improper and is well-behaved. Numerical techniques can be 
applied to evaluate it. 

EXAMPLE 3 Show how to evaluate / = ( X> dx by numerical 
lo -./2 + x2 + x4 

means. 

Solution Here , the integral is improper of type I; the interval of integration is infinite. 
Although there is no singularity at x = 0, it is still useful to break the integral into two 
parts: 

1
1 

dx Joo dx 
I = ---;:==== + ---;:==== = I 1 + h 

o J2 + x 2 + x 4 1 J2 + x2 + x 4 

I 1 is proper. In h make the change of variable x = l / t: 

1
1 

dt 11 
dt 12 - --===== -

- o 2 J2 
1 1 - o J2r4 + t2 + I 

t +-+-t2 t4 

This is also a proper integral. If desired, /1 and h can be recombined into a single 
integral before numerical methods are applied: 

11 ( 1 1 ) I = ----;::==== + ---;:==== dx. 
o J2 + x 2 + x 4 J2x 4 + x 2 + 1 

Example 3 suggests that when an integral is taken over an infinite interval, a change of 
variable should be made to convert the integral to a finite interval. 

Using Taylor's Formula 
Taylor's Formula (see Section 4.10) can sometimes be useful for evaluating integral s. 
Here is an example . 

EXAMPLE 4 Use Taylor's Formula for f (x) = ex, obtained in Section 4.10, to 

evaluate the integral f0
1 

ex
2 

dx to within an error of less than 1 o-4 . 
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Solution In Example 4 of Section 4.10 we showed that 

x2 x3 xn 
f (x) = ex = 1 + x + - + - + · · · + - + E (x) 

2! 3! n! n ' 

where 

ex 
E (x) = - -- xn+I 

n (n+l)! 

for some X between O and x . If O ::=: x ::=: 1, then O ::=: X < I, so ex ::=: e < 3. 
Therefore, 

3 
IE (x)I < ---xn +I. 

n - (n+l)! 

Now replace x by x 2 in the formula for ex above and integrate from Oto 1: 

ex dx = 1 + x 2 + - + · · · + - dx + En(x 2) dx 11 2 lo'( x4 x2n) 11 
o o 2! n! o 

1 l l 11 

= 1 + - + -- + · · · + ---+ En(x 2)dx . 
3 5 x2! (2n+l)n! o 

We want the error to be less than 10-4, so we estimate the remainder term: 

I 
[1 E (x2)dxl < 3 fl x2(n+l)dx = 3 < 10- 4 
lo n -(n+l)!}o (n+l)!(2n+3) ' 

provided (2n + 3)(n + I)! > 30,000. Since 13 x 6! = 9,360 and 15 x 7! = 75,600, 
we need n = 6. Thus, 

{ 
1 

x2 I I I l l I 
lo e dx ~ I+ 3 + 5 x 2! + 7 x 3! + 9 x 4! + 11 x 5! + 13 x 6! 

~ 1.46264 , 

with error less than 1 o-4 . 

Romberg Integration 
Using Taylor's Formula, it is possible to verify that for a function f having continuous 
derivatives up to order 2m + 2 on [a, b] the error En = I - T,1 in the Trapezoid Rule 
approximation Tn to I = J: f (x) dx satisfies 

C1 C2 C3 Cm ( 1 ) 
En= I - Tn = 2 + 4 + 6 + · · · + 2m + O 2n+2 ' n n n n · n' 

where the constants C1 depend on the 2jth derivative of f. It is possible to use 
this formula to obtain higher-order approximations to / , starting with Trapezoid Rule 
approximation s. The technique is known as Romberg integration or Richardson 
extrapolation . 

To begin, suppose we have constructed Trapezoid Rule approximations for values 
of n that are powers of 2: n = 1, 2, 4, 8, ... . Accordingly, let us define 
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Using the formula for T2k = I - E2k given above, we write 

(ask -+ oo) . 

Similarly, replacing k by k + I, we get 

o C1 C2 Cm ( 1 ) 
Tk+I = / - 4k + I - 4 2(k+ I) - . .. - 4m (k+ I) + O 4 (111+ I)(k+ I) . 

If we multiply the formula for Tk0+1 by 4 and subtract the formula for Tt the term s 
involving C1 will cancel out. The first term on the right will be 41 - I= 31, so let us 
also divide by 3 and define Tk'+i to be the result. Then as k -+ oo, we have 

(The C/ are new constants.) Unless these constants are much larger than the previou s 

ones, Tk~L ought to be a better approxjmation to/ than Tk0+, since we have eliminated 

the lowest order (and therefore the largest ) of the error term, C1/ 4 k+ I. In fact , 
Exercise 8 in Section 6.7 shows that Tk'+i = S2H 1, the Simp son 's Rule approxim ation 

based on 2k+L subintervals. 

We can continue the process of eliminating error term s begun above. Replacin g 
k + l by k + 2 in the expres ion for Tk'+I' we obtain 

1 CJ Cj c,:, ( 1 ) 
Tk+2 = I - 42 (k+I ) - 4 3(k+ I) - .. . - 4m (k+ l ) + O 4(111+ I)(k+ l ) . 

To eliminate CJ we can multip ly the second formula by 16, subtract the first formula , 

and divide by 15. Denoting the result Tl+2 , we have, as k -+ oo , 

We can proceed in this way, eliminating one error term after another. In general , for 
j < m and k::: 0, 

4j T j- l T j- l Cj j 
j k+j - k+j-l j+l Cm ( 1 ) 

Tk+J = 4J _ ] = / 4(J+I)k 4mk + O 4 (m+l)k . 

The big-0 term refers to k -+ oo for fixed j. All thjs look s very complicated , but it is 
not difficu lt to carry out in practice, e pecially with the aid of a computer spread sheet. 

Let Rj = ~j , called a Romberg approximatio n to /, and calculate the entrie s in the 
fo llowing scheme in order from left to right and down each column when you come 
to it: 

Scheme for calculatin g Romberg approximation s 

~= n =~ - ~ = ~ - ~=~ - T30 = Ts -,j, ,j, ,j, 

T3' = Ss 

,j, 
y2 

3 

,j, 

T] = R3 
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·-1 
Stop when ~ 1 and Rj differ by less than the acceptable error, and quote Rj as the 

Romberg approximation to J: f (x) dx. 

The top line in the scheme is made up of the Trapezoid Rule approximations T1, 

T2, T4, Ts, .... Elements in subsequent rows are calculated by the formulas: 

Formulas for calculating Romberg approximations 

1 4Ti° - Tt 1 4Ti° - Ti° 1 4T3° - Tf 
T, = --'---3--=- T2 = - =--3--'- T3 = --''--3-=-

2 16Tl - Ti 
T3 = 15 

3 64Ti - T:f 
T3 = 63 

4jT J- l yi - 1 
Ti= k - k- 1 In general , if 1 ::S j ::S k , then 

k 4} - 1 

Each new entry is calculated from the one above and the one to the left of that one. 

EXAMPLE 5 Calculate the Romberg approximations Ro, R1 , R2 , R3, and R4 for 

!
2 1 

the integral I = - dx. 
I X 

Solution We will carry all calculations to 8 decimal places . Since we must obtain 
R4 , we will need to find all the entries in the first five columns of the scheme. First we 
calculate the first two Trapezoid Rule approximations: 

o l 1 
Ro= To = T1 = 2 + 4 = 0.75000000 , 

o l[l 2 l(l)] T1 = T2 = 2 2(1) + 3 + 2 2 = 0.70833333. 

The remaining required Trapezoid Rule approximations were calculated in Example l 
of Section 6.6, so we will just record them here: 

Tf = T4 = 0.697 023 81, 

T3° =Ts= 0.69412185 , 

Tj = T16 = 0.693 39120. 

Now we calculate down the columns from left to right. For the second column : 

1 4Ti°- Tt 
R1 = S2 = T1 = 

3 
= 0.69444444 ; 

the third column: 

l 4T20 - Ti° 
S4 = T2 = 

3 
= 0.693 253 97 , 

l6T 1 
- T 1 

R2 = T.2
2 = 2 1 = 0.693 17460· 

15 ' 
the fourth column: 

I 4T30 - Tf 
Ss = T3 = 

3 
= 0.693 154 53 , 

16T 1 - T 1 

Ti = \
5 

2 = 0.693 147 90, 

64T 2 - T 2 

R3 = T.3
3 = 3 2 = 0.693 147 48· 

63 ' 
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and the fifth column: 

I 4Tf- T30 
S16 = T4 = 

3 
= 0.693 147 65, 

16T 1 - T 1 

Tl= \
5 

3 = 0.693 147 19, 

64T 2 - T 2 

T3 = 4 3 = 0.693 147 18 4 63 ' 

4 256Tj - Tf 
R4 = T4 = 

255 
= 0.693 147 18. 

Since Tj and R4 agree to the 8 decimal places we are calcu lating, we expect that 

!
2 dx 

I = - = In 2 ~ 0.693 147 18 . ... 
1 X 

The various approximations calculated above suggest that for any given value of n = 2k, 
the Romberg approximation Rn should give the best value obtainable for the integral 
based on then + 1 data values YO, y,, . .. , Yn · This is so only if the derivatives JCn) (x) 
do not grow too rapidly as n increase s. 

The Importance of Higher-Order Methods 
Hig her-order methods , such as Romberg , remove lower-order error by manipulating 
series. Removing lower-order error is of enormous importance for computation. With
out it, even simple computations would be impossible for all practical purposes. For 

example, consider again the integral/ = f
2 

.!_ dx. 
11 X 

We can use Maple to compute this integral numerically to 16 digits (classical 
double precision), 

> Digits=16 : 
> int ( l/x , x 

Comparison with ln 2 

> ln ( 2.) ; 

1 . . 2 . ) ; 

0.6931471805599453 

0.6931471805599453 

confirms the consistency of this calculation. Furthermore, we can compute the proces
sor time for this calculation 

> time(int(l/x , x = 1 . . 2.)) ; 

0 .033 

which indicates that, on the system used , 16 digits of accuracy is produced in hundredths 
of seconds of processor time. 

Now let' s consider what happens without removing lower order error. If we were 
to estimate this integral using a simple end point Riemann sum, as we used in the 
original definition of a definite integral , the error is O (h) or O (1 / n). Let the step size 
be 10- 7. 

> le-7*add(l/(l+i/le7) , i = 1 . . le7) ; 

0 .6931471555599459 

which has an error of 2 .5 x 1 o-8. The processor time used to do this sum comp utation 
is given by 
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> time(le-7*add(l/(l+i/le7) , i = 1 . . le7) ) ; 

175.777 

that is, 175.577 seconds on the particular computer we used. (If you do the calculation 
on your machine your result will vary according to the speed of your sys tem .) Note that 
we used the Maple "add" routine rather than " sum " in the calculations above. This 
was done to tell Maple to add the floating-point values of the terms one after another 
rather than to attempt a symbolic summation. 

Because the computation time is proportional to the number n of rectangles used 
in the Riemann sum , and because the error is proportional to 1/ n, it follows that error 
times computation time is roughly constant. We can use this to estimate the time to 
compute the integral by this method to 16 digits of precision. Assuming an error of 
10- 16, the time for the computation will be 

10-8 
175.777 x 2.5 x --

1
-
6 

seconds, 
10-

or about 1,400 years. 

Maple is not limited to 16 digits , of course . For the each additional digit of 
precision, the Riemann sum method corresponds to a factor -of-ten increase in time 
because of low-order error. The ability to compute such quantities is a powerful and 
important application of series expansions . 

Other Methods 
As developed above , the Trapezoid , Midpoint , Simp son, and Romberg methods all 
involved using equal subdivision s of the interval [a, b]. There are other methods 
that avoid this restriction. In particular, Gaussian approximations involve selecting 
evaluation points and weights in an optimal way so as to give the most accurate results 
for "well-behaved" functions. See Exercise s 11-13 below. You can consult a text on 
numerical analysis to learn more about this method. 

Finally , we note that even when you apply one of the methods of Sections 6.6 and 
6.7, it may be advisable for you to break up the integral into two or more integrals over 
smaller intervals and then use different subinterval lengths h for each of the different 
integrals. You will want to evaluate the integrand at more points in an interval where its 
graph is changing direction erratically than in one where the graph is better behaved. 

EX E R C I S ES 6.8 
Rewrite the integrals in Exercises 1-6 in a form to which 
numerical methods can be readily applied. 

1. L dx 
o x l/3 (1 + x) 

2. f ex ---dx 
o .JT=°x 

3. [ ex 

- I~ 
dx 4. Joo dx 

1 x 2 +Jx + I 
1~12 dx l oo dx 5. 

0 .Jsinx 
6. 

o x4 + 1 

7. Find T2, T4, Ts, and T16 for f0
1 Jx dx, and find the actual 

errors in these approximations. Do the errors decrease like 
1/ n2 as n increases? Why? 

llll 9. f:lll 

g~ 10. 

8 11. 

I to the accuracy you feel is justified. Do the approximations 
converge as quickly as you might expect? Can you think of a 
reason why they might not? 

I 2 Evaluate/ = J0 e-x dx, by the Taylor's Formula method of 
Example 4, to within an error of 10- 4 . 

Recall that ft e-x
2 

dx = ~.jir . Combine this fact with the 
2 r,c, 2 

result of Exercise 9 to evaluate / = J, e- x dx to 3 

decimal places. 

(Gaussian approximation) Find constants A and u, with 
u between O and 1, such that 

g:i 8. Transform the integral / = ft e- x
2 

dx using the 
substitution x = 1/ t , and calculate the Simpson's Rule 
approximations S2, S4, and Ss for the resulting integral 
(whose integrand has limit Oas t -* O+ ). Quote the value of 

J_'
1 

f(x) dx = Af(-u) + Af(u) 
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holds for every cubic polynomial 
f (x) = ax 3 + bx 2 + ex+ d. For a genera l function f (x) 
defined on [ -1 , 1], the approx imation 

J_1
1 

J(x) dx ~ Af (-u) + Af (u) 

is called a Gaussian approximatio n. 

gg 12. Use the method of Exercise 11 to approximate the integral s 
of (a) x4, (b) cosx , and (c) ex, over the interval [-1, l], and 
find the error in each approximation. 

0 13. (Another Gaussian approximation) Find constant s A 
and B, and u between O and 1, such that 

/_

1

1 
f(x)dx = Af(-u) + Bf(O) + Af(u) 

holds for every quintic polynomial 
f(x) = ax 5 + bx 4 + cx 3 + dx 2 +ex+ f. 

gg 14. Use the Gaussian approximation 

[
1 

f (x) dx ~ Af (-u) + Bf (0) + Af (u), 

where A, B , and u are as determined in Exercise 13, to find 
approximations for the integrals of (a) x 6, (b) cos x , and (c) 
ex over the interval [-1, 1], and find the error in each 
approximation. 

gg 15. Calculate sufficiently many Romber g approximation s 
R1, R2, R3, . . . for the integral 

r1 2 Jo e- x dx 

to be confident you have evaluated the integral correctly to 
6 decimal places. 

gg 16. Use the values off (x) given in the table accompanying 
Exercise 9 in Section 6.6 to calculate the Romberg 
approximations R1, R2, and R3 for the integral 

rl.6 
Jo f (x) dx 

CHAPTER REVIEW 
Key Ideas 

• What do the following terms and phrases mean? 
o integration by parts o a reduction formula 

o an inverse substitution o a rational function 

o the method of partial fractions 

o a computer algebra system 

o an improper integral of type I 

o an improper integral of type II 

o a p-integral o the Trapezoid Rule 

CHAPTER REVIEW 387 

in that exercise . 

0 17. The Romberg approximation R2 for J; f(x) dx requires five 
values off , Yo = J(a), Yi = f (a+ h), .. . , 
Y4 = f (x + 4h) = f (b), where h = (b - a) / 4. Write the 
form ula for R2 explic itly in terms of these five values. 

D 18. Exp lain why the change of variable x = 1/ tis not suitable 

1
00 sinx 

for transforming the integral --
2 

dx into a form to 
" 1 +x 

which numerica l methods can be applied. Try to devise a 
method whereby this integral cou ld be approxim ated to any 
desired degree of accuracy. 

sinx 
0 19. If f(x) = - for x =I= 0 and f(O) = 1, show that f"(x) 

X 
has a finite limit as x -+ 0. Hence , J" is bounded on finite 
intervals [O, a], and Trapezoid Rule approx imations T,, to 

a smx f0 -- dx converge suitably quickly as n increases. Higher 
X 

derivatives are also bounded (Taylor 's Formula is usefu l for 
showin g this) so Simpson's Rule and higher-order 
approxim ations can also be used effective ly. 

0 20. (Estimating computation time) With higher-order 
methods, the time to compute remains proportional to the 
number of intervals n, used to numerically approximate an 
integral. But the error is reduced. For the trapezoid rule the 
erro r goes as 0( 1/ n2). When n = 1 x 107 , the error turns 
out to be 6 x rn- 16. The comp utation time is approximately 
the same as that comp uted for the Riemann sum 

approximatio n to J12( 1/ x) dx discussed above (175.777 
secon ds for our computer), because we need essentially the 
same number of function evaluations . How long would it 
take our computer to get the trapezoid approx imation to have 
quadruple (i.e. , 32 digit) precession? 

0 21. Repeat the previous exercise, but this time using Simpson's 
Rule, whose erro r is O(l / n4). Again use the same time, 
175.777 s for n = l x !07 , but for Simpson's Rule , the error 
for this calculation is 3.15 x 10- 30. How long would we 
expect our computer to take to achieve 32-digit accuracy 
(i.e. , error 10- 32)? Note, however, that Maple's integration 
packa ge for the computer used took 0.134 seconds to achieve 
this precision . Will it have used a higher -order method than 
Simpson 's Rule to achieve this time? 

o the Midpoint Rule o Simpson 's Rule 

• Describe the inverse sine and inverse tangent substitu
tions. 

• What is the significance of the comparison theorem for 
improper integrals? 

• When is numerical integration necessary? 

Summary of Techniques of Integration 
Student s sometime s have difficulty deciding which method to use 
to evaluate a given integral. Often no one method will suffice to 
produce the whole solution , but one method may lead to a different , 
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possibly simpler, integral that can then be dealt with on its own 
merits. Here are a few guideline s: 

1. First , and always, be alert for simplifying substitutions. Even 
when these don ' t accompli sh the whole integrat ion, they can 
lead to integrals to which some other method can be applied. 

2. If the integral involves a quadratic expression Ax 2 +B x+ C 
with A f= 0 and B f= 0, complete the square. A simple 
substitution then reduces the quadratic expression to a sum or 
difference of squares. 

3. Integral s of products of trigonometric functions can some
times be evaluated or rendered simpler by the use of appro
priate trigonometric identities such as: 

sin2 x + cos2 x = 1 

sec2 x = 1 + tan2 x 

csc2 x = 1 + cot2 x 

sinx cosx = ½ sin2 x 

sin2 x = ½ (1 - cos 2x) 

COS
2 

X = ½ (1 + COS 2x). 

4. Integrals involving (a2 - x 2) 112 can be transformed using 
x = a sin 0. Integrals involving (a2 + x 2) 112 or 1/(a 2 + x 2) 
may yield to x = a tan 0. Integrals involving (x 2 -a 2) 1/ 2 can 
be transformed using x = a sec 0 or x = a cosh 0. 

5. Use integratio n by part s for integrals of functions such as 
product s of polynomials and transcendental functions, and for 
inverse trigonometric function s and logari thms. Be alert for 
ways of using integration by parts to obtain formulas repre
senting complicated integrals in terms of simpler ones. 

6. Use partial fractions to integrate rational functions whose de
nominators can be factored into real linear and quadratic fac
tors. Remember to divide the polynomials first, if necessary , 
to reduce the fraction to one whose numerator has degree 
smaller than that of its denomin ator. 

7. There is a table of integrals at the back of this book . If you 
can't do an integral directl y, try to use the methods above to 
convert it to the form of one of the integrals in the table . 

8. If you can ' t find any way to evaluate a definite integral for 
which you need a numeri cal value, consider using a computer 
or calculator and one of the numeri cal method s presented in 
Sections 6.6-6.8. 

Review Exercises on Techniques 
of Integration 
Here is an opportunity to get more practice evaluating integrals. 
Unlike the exercises in Sections 5.6 and 6.1-6.3, which used only 
the technique of the particular sectio n, these exerc ises are grouped 
randomly so you will have to decide which techniques to use. 

l. f 2x2 : ~: + 2 
2

• f c/~~)3 

3. J sin3 
X cos3 

X dx J (I + .fi) I/ 3 
4. .fi dx 

f 3dx 
5. 2 

4x - I 
6. f (x2 + x - 2) sin 3x dx 

f v'T=x2 
7. 

4 
dx 

X 

f x 2dx 
9. (5x3 - 2)2/ 3 

11. f dx 2 2 
(4 +x ) 

13. f 2x ~ dx 

f sin3 x 
15. --dx 

cos7 x 

17. f e-x sin(2x)dx 

19. 

21. 

23. 

f cos(3 lnx) dx 

J x ln(l +x 2) 
dx 

1 + x 2 

f x2 dx 
.J2 -x 2 

f x 2dx 
25. 

0 (4x+l) 1 

27. f sin5(4x) dx 

29. J dx 

2+ex 

f sin2 x cosx 
31. dx 

2 - sin x 

33. f dx 

x2v'T=x2 

35. J x3 dx 
.JI - 4x 2 

37. f x + 1 
dx 

RTI 

39. f x33 - 3 dx 
X -9X 

41. f sin5 
X cos9 

X dx 

43. f xdx 

x 2 + 2x - I 

45. J x2 sin- I (2x) dx 

47. f cos4 
X sin4 

X dx 

49. f dx 
(4 + x).fi 

51. 

53. 

J x
4 - I 

dx 
x 3 + 2x 2 

f sin(2 ln x) 
dx 

X 

8. j x 3 cos(x 2) dx 

10. f dx 

x 2 + 2x - 15 

12. f (sin x + cosx) 2 dx 

f cosx 
14. --~dx 

I+ sin2 x 

f x 2dx 
16. (3 + 5x2)3/2 

f 2x 2 +4 x - 3 
18. ---,---dx 

x 2 + 5x 

20. f dx 

4x 3 +x 

22. J sin2 
X cos4 

X dx 

24. f tan4 x secx dx 

26. j x sin- 1 i dx 

28. f dx 

x 5 - 2x 3 + x 

30. f x 3Y dx 

32. 

34. 

f x 2 + I 
dx 

x 2 + 2x + 2 

f x 3(1n x)2dx 

f 
e 1fx dx 

36. x2 

38. f /xl f 3) dx 

f 
1ov1x+2 

40. ~ dx 
vx+2 

f x 2dx 
42 . 

.Jx"2=l 

44. 

46. 

f --;::=2=x=-=3=:::;: dx 
.J4 - 3x + x 2 

!~ 
dx 

X 

48. f J x - x 2 dx 

50. j x tan - 1 i dx 

52. J dx 

x(x 2 + 4) 2 

f sin (ln x) 
54. 

2 
dx 

X 
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f 
e2tan- 1 x 

55. ---dx 
l +x 2 

57. 

59. 

61. 

f ln(3 +x 2) 
3 + x2 x dx 

f sin- 1 (x / 2) 
----dx 
(4 _ x2) 1/2 

f (x+ l )dx 

-!x 2 + 6x + IO 

f x 3 dx 
63. (x2 + 2)7/2 

65. 

67. 

69. 

f 
x l/2 

---dx 
l + x l/3 

f ~ d X 

l + .Jx 

f x dx 
(x2 - 4)2 

71. f x2 tan- I x dx 

73. f dx 

4s in x - 3cosx 

75. f dx 

tanx + sin x 

77. f .Jx dx 
l+x 

79. f x4 dx 
x 3 - 8 

Other Review Exercises 

56. ----dx f x
3 +x -2 

x2 - 7 

58. f cos7 x dx 

60. 

62. 

64. 

66. 

68. 

70. 

f tan4(n-x)dx 

f ex (1 - e2x)5/2 dx 

f 
x2 

- -- dx 
2x2 - 3 

f dx 
x(x2 +x + 1) 1/2 

f xdx 

4x 4 + 4x2 + 5 

f dx 

x3 +x 2 +x 

72. f ex sec(ex) dx 

74. f x 1l~x- I 

76. f xdx 

,J3 - 4x -4x2 

78. f ~ dx 

80. f xex cos x dx 

1. Evaluate / = f x ex cos x dx and J = f x ex sin x dx by dif

ferentiating ex ( (ax +b) cos x + (cx+d) sin x ) and examining 

coefficients. 

2. For which real numbers r is the following reduction formula 
(obtained using integration by parts) valid? 

Evaluate the integrals in Exercises 3-6, or show that they diverge. 

{" /2 
3. Jo cscx dx 4. r oo_ l _dx 

11 X + x 3 

5. r' ,Jx ln xdx 6. J' ~ lo -I x I - x 2 

7. Show that the integral I = ft ( I / ( .Jx ex)) dx converges and 
that its value satisfies / < (2e + 1)/ e. 

gg 8. By measuring the areas enclosed by contours on a topographic 
map, a geologist determines the cross-sectional areas A (m2) 
through a 60 m high hill at various heights h (m) given in 
Table 2. 

Table 2. 

h O 10 20 30 40 50 60 

A 10,200 9,200 8,000 7, 100 4,500 2,400 100 

CHAPTER REVIEW 389 

If she uses the Trapezoid Rule to estimate the volume of the 
hill (which is V = f0

60 A(h) dh) , what will be her estimate , 
to the nearest 1,000 m3 ? 

gg 9. What will be the geologist's estimate of the volume of the 
hill in Exercise 8 if she uses Simpson 's Rule instead of the 
Trapezoid Rule? 

gg 10. Find the Trapezo id Rule and Midpoint Rule approximations 

T4 and M4 for the integral/= fd ,J2+sin(n-x)dx. Quote 
the results to 5 decimal places. Quote a value of/ to as many 
decimal places as you feel are justified by these approxima
tions. 

gg 11. Use the results of Exercise 10 to calculate the Trapezoid Rule 
approximat ion Ts and the Simpson's Rule approximation Ss 
for the integral / in that exercise. Quote a value of / to 
as many decimal places as you feel are justified by these 
approximations. 

gg 12. Devise a way to evaluate / = fi'12 x2 / (x 5 + x 3 + 1) dx nu
merically, and use it to find / correct to 3 decimal places. 

8 13. You want to approximate the integral / = f0
4 f(x)dx of 

an unknown function f (x) , and you measure the following 
values off: 

Table 3. 

X O l 2 3 4 

f (x) 0.730 1.001 1.332 1.729 2.198 

(a) What are the approximations T4 and S4 to / that you 
calculate with these data. 

(b) You then decide to make more measurements in order to 
calculate Ts and Sg. You obtain Ts = 5.5095. What do 
you obtain for Ss? 

(c) You have theoretical reasons to believe that f (x) is, in 
fact, a polynomial of degree 3. Do your calculation 
support this theory? Why or why not? 

Challenging Problems 
D 1. (a) Some people think that n = 22/ 7. Prove that this is not 

so by showing that 

r' x4(1-x)4 dx = 22 -ir. 

lo x2 + l 7 

(b) If I = f0
1 x4 (1 - x)4 dx , show that 

22 22 I 
- - I < n- < - - - . 
7 7 2 

(c) Evaluate / and hence determine an explicit small interval 
containing ir. 

2. (a) Find a reduction formula for f (1 - x 2)" dx. 

(b) Show that if n is a positive integer, then 

1
1 

7 2211(n!)2 
(l-x-) 11 dx = ---

0 (2n + l)! 
(c) Use your reduction formula to evaluate 

f (1 - x2)-3 /2 dx. 

3. (a) Show that x 4 + x2 + 1 factors into a product of two real 
quadratics, and evaluate f(x 2 + l) / (x4 + x 2 + l)dx. 
Hint: x 4 + x 2 + l = (x2 + 1)2 - x2. 
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390 CHAPTER 6 Techniques of Integration 

(b) Use the same method to find f(x 2 + l) / (x 4 + 1) dx. 

4. Let Im,n = f 0
1 
xm(l n x)"dx. 

(a) Show that 1111, 11 = (-1)" fa°° x"e-(m+ l)x dx. 

(-l)"n! 
(b) Show that 1111" = + I . 

' (m + l)" 

D 5. Let /11 = fd x"e-x dx. 

l 
(a) Show that O < /11 < -- and hence that 

n+l 
limt1---+oo I,, = 0. 

1 t 
(b) Show that /11 = n/ 11_ 1 - - for n::: 1, and Jo= 1 - -. 

e e 

( 
1 " 1 ) (c) Verify by induction that J,, = n! I - - L ~ . 
e j=O J. 

II 1 
(d) Deduce from (a) and (c) that lim L --:--= e. 

11---+oo j=O j ! 

D 6. If K is very large, which of the approximations T100 (Trape
zoidal Rule) , M100 (Midpoint Rule) , and S100 (Simpson ' s 

Rule) will be closest to the true value for fd e-Kx dx? Which 
will be farthest? Justify your answers. (Caution: This is 
trickier than it sounds!) 

D 7. Simpson 's Rule gives the exact definite integral for a cubic 
f. Suppose you want a numerical integration rule that gives 
the exact answer for a polynomial of degree 5. You might 
approximate the integral over the subinterval [m - h, m + h] 

by something of the form 2h(af(m - h) + bf(m - i) + 

f (m) + bf (m + i) + af (m + h) ), for some constants a, b, 

and c. 

(a) Determine a, b, and c for which this will work. (Hint: 
Take m = 0 to make things simple.) 

(b) Use this method to approximate f0
1 e-x dx using first 

one and then two of these intervals (thus evaluating the 
integrand at nine points). 

D 8. The convergence of improper integrals can be a more delicate 
matter when the integrand changes sign. Here is one method 
that can be used to prove convergence in some cases where 
the comparison theorem fails. 

(a) Suppose that f(x) is differentiable on [1, oo), J'(x) 

is continuous there, f ' (x) < 0, and Jim f (x) = 0. 
X---+00 

Show that f1
00 f' (x) cos(x) dx converges. Hint: What is 

ft lf ' (x)I dx? 

(b) Under the same hypotheses, show that ft f (x) sin x dx 
converges. Hint: Integrate by parts and use (a). 

00 sinx 00 I sin xi 
(c) Show that f

1 
-- dx converges but f1 -- dx di-

x X 
. 2 1 - cos(2x) 

verges. Htnt: I sin xi ::: sin x = 
2 

. Note 

that (b) would work just as well with sin x replaced by 
cos(2x). 
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Applications of 
Integration 

'' 'It's like this,' he said. 'When you go after honey with a balloon, the 
great thing is not to let the bees know you're coming. Now if you have 
a green balloon, they might think you were only part of the tree and 
not notice you, and if you have a blue balloon, they might think you 
were only part of the sky and not notice you, and the question' [said 
Winnie the Pooh] 'is: Which is most likely?' 

391 

'' A. A. Milne 1882-1956 
from Winnie the Pooh 

I n trod U Ct '1 Q n Numerou s quantities in mathematics, physics, economics , 
biology, and indeed any quantitative science can be con

veniently represented by integrals. In addition to measuring plane areas, the problem 
that motivated the definition of the definite integral , we can use these integrals to 
express volumes of solids, lengths of curves, areas of surfaces, forces, work, energy, 
pressure , probabilities , dollar values of a stream of payments , and a variety of other 
quantities that are in one sense or another equivalent to areas under graphs. 

In addition, as we saw previously , many of the basic principles that govern the 
behaviour of our world are expressed in terms of differential equations and initial-value 
problems. Indefinite integration is a key tool in the solution of such problems. 

In this chapter we examine some of these application s. For the most part they are 
independent of one another, and for that reason some of the later sections in this chapter 
can be regarded as optional material. The material of Sections 7.1-7 .3, however, should 
be regarded as core because these ideas will arise again in the study of multivariable 
calculus. 

Volumes by Slicing-Solids of Revolution 
In this section we show how volumes of certain three-dimensional regions (or solids) 
can be expressed as definite integrals and thereby determined. We will not attempt 
to give a definition of volume but will rely on our intuition and experience with solid 
objects to provide enough insight for us to specify the volumes of certain simple solids. 
For example, if the base of a rectangular box is a rectangle of length l and width w ( and 
therefore area A = l w ), and if the box has height h, then its volume is V = Ah = l wh. 
If l , w, and hare measured in units (e.g., centimetres) , then the volume is expressed in 
cubic units (cubic centimetres, or cm3). 
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392 CHAPTER 7 Applications of Integrat ion 

Figure 7.1 The volume of any prism or 
cylinder is the base area times the height 
(measured perpendicularly to the base): 
V = Ah 

Figure 7.2 Slicing a solid perpendicularly 
to an axis 

A rectangular box is a special case of a solid called a prism or cylinder. (See 
Figure 7 .1.) Such a solid has a flat base occupying a region R in a plane , and consists 
of all points on parallel straight line segments having one end in R and the other end 
in a (necessarily congruent ) region in a second plane parallel to the plane of the base. 
Either of these regions can be called the base of the prism or cylinder. If the base is 
bounded by straight lines , the solid is called a prism; if at least part of the boundary 
of the base is curved, the solid is called a cylinder. The height of the solid is the 
perpendicular distance between the parallel planes containing the two bases. If this 
height is h units and the area of a base is A square units , then the volume of the prism 
or cylinder is V = Ah cubic units. 

We use the adjective right to describe a prism or cylinder if the parallel line 
segments that constitute it are perpendicular to the base planes; otherwise, the prism 
or cylinder is called oblique. For example, a right cylinder whose bases are circular 
disks of radius r units and whose height is h units is called a right circular cylinder; 
its volume is V = 7r r 2 h cubic units. Obliqueness has no effect on the volume V = Ah 
of a prism or cylinder since h is always measured in a direction perpendicular to the 
base. 

h 

h 

rectangular box triangular prism 

Volumes by Slicing 

h 

right-circular 
cylinder 

oblique general 
cylinder 

Knowing the volume of a cylinder enables us to determine the volumes of some more 
general solids. We can divide solids into thin "slices" by parallel planes . (Think of a 
loaf of sliced bread.) Each slice is approximately a cylinder of very small "height"; 
the height is the thicknes s of the slice. See Figure 7 .2, where the height is measured 
horizontally in the direction of the x-ax is. If we know the cross-sectional area of each 
slice, we can determine its volume and sum these volumes to find the volume of the 
solid. 

b 
X 

To be specific, suppose that the solid S lies between planes perpendicular to the 
x-axis at positions x = a and x = b and that the cross-sectional area of Sin the plane 
perpendicular to the x-axis at x is a known funct ion A (x ) , for a S x S b. We assume 
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X 

Figure 7.3 The volume of a slice 

b 
X 

Figure 7.4 The volume element 

SECTIO 7 .1: Volumes by Slicing-Solids of Revolution 393 

that A(x) is continuous on [a, b]. If a = xo < x1 < x2 < · · · < Xn-1 < Xn = b, 
then P = {xo, x1, x2, . . . , Xn-1, x11} is a partition of [a, b] into n subintervals, and 
the planes perpendicular to the x-axis at x1, x2, ... , Xn-1 divide the solid into n slices 
of which the ith has thickness tixi = Xi - x;-1. The volume ti V; of that slice lies 
between the maximum and minimum values of A(x) !'ix; for values of x in [Xi- I, x;] 
(Figure 7 .3), so 

ti V; = A(c;) !'ix; 

for some c; in [x; _ 1, x; ], by the Intermediate- Value Theorem. The volume of the solid 
is therefore given by the Riemann sum 

n n 

V = L ti V; = L A(ci) !'ix;. 
i = I i = I 

Letting n approach infinity in such a way that max tix; approaches 0, we obtain the 
definite integral of A (x) over [a, b] as the limit of this Riemann sum. Therefore: 

The volume V of a solid between x = a and x = b having cross-sectional 
area A(x) at position xis 

V = 1b A(x) dx. 

There is another way to obtain this formula and others of a similar nature. Con ider 
a slice of the solid between the plane perpendicular to the x-axis at positions x and 
x + 6x. Since A (x) is continuous, it doesn't change much in a short interval, so if 6x 
is small, then the slice has volume 6 V approximately equal to the volume of a cylinder 
of base area A (x) and height D.x: 

6 V ~ A(x) D.x. 

The error in this approximation is small compared to the size of 6 V. This sugge t , 
correctly, that the volume element , that is, the volume of an infinitely thin slice of 
thickness dx is d V = A (x) dx, and that the volume of the solid is the "sum" (i.e., the 
integral) of these volume element s between the two ends of the solid, x = a and x = b 
(see Figure 7.4): 

1
x=b 

V = dV, 
x=a 

where dV = A(x)dx. 

We will use this differential element approach to model other applications that result 
in integrals rather than setting up explicit Riemann sums each time. Even though this 
argument does not constitute a proof of the formula, you are strongly encouraged to 
think of the formula this way; the volume is the integral of the volume elements. 

Solids of Revolution 
Many common solids have circular cros - ections in planes perpendicular to some 
axis . Such solids are ca11ed solids of revolution because they can be generated by 
rotating a plane region about an axis in that plane so that it sweeps out the solid. For 
example, a solid ball is generated by rotating a half -disk about the diameter of that 
half-disk (Figure 7.5(a)) . Similarly, a solid right-circular cone is generated by rotating 
a right-angled trian gle about one of its legs (Figure 7.5(b)). 

If the region R bounded by y = f(x) , y = 0, x = a, and x =bis rotated about 
the x-ax is, then the cross-section of the solid generated in the plane perpendicular to 
the x-axis at x is a circular disk of radius If (x) 1- The area of this cross-section is 

A (x) = n (f (x)) 
2

, so the volume of the solid of revolution is 
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Figure 7.5 

(a) The ball is generated by rotating the 
half-di sk O _:-:= y _:-:= ,J a2 - x 2 (shown 
in colour) about the x-axis 

(b) The cone of base radius r and height 
h is generated by rotating the triangle 
0 _:-:= x _:-:= h, 0 _:-:= y _:-:= rx / h (in colour) 
about the x-axis 

EXAMPLE 1 (The volume of a ball) Find the volume of a solid ball having 
radius a. 

Solution The ball can be generated by rotating the half-disk , 0 ::: y .::: ,J a2 - x2, 
-a ::: x .::: a about the x-axis . See the cutaway view in Figure 7.S(a). Therefore, its 
volume is 

V = :ir fa ( J a2 - x 2)2 dx = 2:ir t (a2 - x2) dx 
- a lo 

= 2:ir ( a2 x - x
3

3

) I: = 2:ir ( a3 
- ~a 3

) = i:ira 3 cubic units. 

y 

y = J a2 -x2 

X 
X 

(a) (b) 

EXAM p LE 2 (The volume of a right-circular cone) Find the volume of the 
right-circular cone of base radius r and height h that is generated 

by rotating the triangle with vertices (0, 0) , (h, 0) , and (h, r) about the x-axis. 

Solution The line from (O, 0) to (h, r) has equation y = r x / h. Thus the volume of 
the cone (see the cutaway view in Figure 7.S(b)) is 

r(rx)2 (r)2x
3

1h 1 V = :ir lo h dx = 7r h 3 0 
= 3:ir r

2
h cubic units . 

Improper integrals can represent volumes of unbounded solids. If the improper integral 
converges, the unbounded solid has a finite volume. 

EXAM p LE 3 Find the volume of the infinitely long horn that is generated by 
rotating the region bounded by y = l / x and y = 0 and lying to 

the right of x = l about the x-axis. The horn is illustrated in Figure 7.6. 

Solution The volume of the horn is 

V = :ir [''° (~)
2 

dx = :ir Jim [R-; dx 11 X R ->oo 11 X 

= -:,r lim ~IR = -:,r lim (! - 1) = :ir cubic units. 
R ->oo X I R ->oo R 

It is interesting to note that this finite volume arises from rotating a region that itself 
has infinite area: J1

00 dx / x = oo. We have a paradox : it takes an infinite amount of 
paint to paint the region but only a finite amount to fill the horn obtained by rotating 
the region. (How can you resolve this paradox?) 
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Figure 7.6 Cutaway view of an infinitely 
long horn 

y 

y=2 -Tr 
y = l 2 - x2 

~ i] 
----t--

-1 
Figure 7.7 The volume element for 
Example 4 

y 2 

Figure 7.8 The volume element for 
Example 5 

X 

X 
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y 
I 

y=
x 

X 

The following example shows how to deal with a problem where the axis of rotation 
is not the x -axis . Just rotate a suitable area element about the axis to form a volume 
element. 

EXAM p LE 4 A ring-shaped solid is generated by rotating the finite plane region 
R bounded by the curve y = x 2 and the line y = 1 about the line 

y = 2. Find its volume. 

Solution First , we solve the pair of equation s y = x 2 and y = l to obtain the 
intersections at x = - I and x = 1. The solid lies between these two values of x. The 
area element of R at position x is a vertical strip of width dx extending upward from 
y = x 2 to y = 1. When R is rotated about the line y = 2, this area element sweeps 
out a thin, washer-shaped volume element of thickne ss dx and radius 2 - x 2, having a 
hole of radius l through the middle. (See Figure 7 .7 .) The cross-sectional area of this 
element is the area of a circle of radiu s 2 - x 2 minu s the area of the hole , a circle of 
radius 1. Thus , 

dV = (n(2 - x 2) 2 - n(l) 2
) dx = n(3 - 4x 2 + x 4

) dx . 

Since the solid extends from x = -1 to x = 1, its volume is 

V = n f I (3 - 4x 2 + x 4) dx = 2n { I (3 - 4x 2 + x 4) dx 
- 1 lo 

( 
4x

3 
x

5
) 1

1 
( 4 1) 56n = 2n 3x - 3 + 5 0 

= 2n 3 - 3 + 5 = 15 cubic units. 

Sometimes we want to rotate a region bounded by curves with equations of the form 
x = g(y) about the y-axis. In this case, the role of x and y are reversed , and we use 
horizontal slices instead of vertical one s. 

EXAMPLE 5 

the y-axis . 

Find the volume of the solid generated by rotating the region to the 
right of the y-axis and to the left of the curve x = 2y - y2 about 

Solution For intersections of x = 2y - y2 and x = 0, we have 

2y -y2 = 0 ===} y = 0 or y = 2. 

The solid lies between the horizontal planes at y = 0 and y = 2. A horizontal area 
element at height y and having thickness dy rotates about the y-axis to generate a thin 
disk-shaped volume element of radius 2y - y2 and thickness dy. (See Figure 7.8.) Its 
volume is 

dV = n(2y - y2)2 dy = n(4y2 - 4y 3 + y4) dy . 
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Figure 7 .9 When rotated around the 
y-axis, the area element of width dx under 
y = f (x) at x generates a cylindrical shell 
of height f (x), circumference 2n: x, and 
hence volumed V = 2n: x f (x) dx 

Thu s, the volume of the solid is 

V = n fo
2 

(4y2 
- 4y3 + y4) dy 

=n(4(-y4+~5)1: 
(

32 32) 16n = n 3 - 16 + 5 = ----is-cubic units. 

Cylindrical Shells 
Suppo se that the region R bounded by y = f (x) ::=: 0, y = 0, x = a ::=: 0, and 
x = b > a is rotated about the y -axis to generate a solid of revolution. In order to find 
the volume of the solid using (plane ) slices , we would need to know the cross-sectional 
area A (y) in each plane of height y, and this would entail solving the equation y = f (x) 
for one or more solutions of the form x = g(y). In practice this can be inconvenient 
or impossible . 

y 

circumference 2n: x 

X 
X 

The standard area element of R at position x is a vertical strip of width dx , height 
f(x), and area dA = f (x) dx. When R is rotated about the y-axis , this strip swee ps 
out a volume element in the shape of a circ ular cylindrical shell having radius x, height 
f (x ), and thickn ess dx. (See Figure 7 .9.) Regard this shell as a rolled- up rectangular 
slab with dimen sions 2n x, f(x), and dx ; evidently it has volume 

d V = 2n x f (x ) dx. 

The volume of the solid of revolution is the sum ( integral) of the volumes of such shells 
with radii rang ing from a to b: 

The volume of the solid obtained by rotating the plane region 
0 :Sy :S f(x), 0 :Sa < x < b about the y-axis is 

V = 2n lb x f(x)dx. 
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Figure 7 .10 Cutaway view of a torus 
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EXAM p LE 6 (The volume of a torus) A disk of radius a has centre at the point 
(b, 0), where b > a > 0. The disk is rotated about the y-axis to 

generate a torus (a doughnut-shaped solid), illustrated in Figure 7.10. Find its volume. 

Solution The circle with centre at (b, 0) and having radius a has equation 
(x - b )2 + y2 = a2, so its upper semicircle is the graph of the function 

f(x) = Ja 2 - (x - b)2 . 

We will double the volume of the upper half of the torus, which is generated by rotating 

the half-disk O :S y ::S J a2 - (x - b )2 , b - a ::s x ::S b + a about the y-axis. The 
volume of the complete torus is 

1
b+a 

V = 2 x 2n x J a2 - (x - b)2 dx 
b-a 

= 4n 1_: (u + b )J a2 - u2 du 

Let u = x - b, 

du =dx 

=4n 1_: u)a 2 -u 2 du+4nb 1_: )a 2 -u 2 du 

na 2 

= 0 + 4nb 2 = 2n 2a 2b cubic units. 

(The first of the final two integrals is O because the integrand is odd and the interval is 
symmetric about O; the second is the area of a semicircle of radius a.) Note that the 
volume of the toru s is (n a2) (2n b ), that is, the area of the disk being rotated times the 
distance travelled by the centre of that disk as it rotate s about the y-axis. This result 
will be generalized by Pappus 's Theorem in Section 7.5. 

EXAMPLE 7 

y 

y= Ja 2 -(x-b)2 

X 

b-a 

Find the volume of a bowl obtained by revolving the parabolic arc 
y = x 2 , 0 :s x ::S 1 about the y-axis . 

Solution The interior of the bowl corresponds to revolving the region given by 
x 2 :S y ::S 1, 0 :S x ::S 1 about the y-ax is. The area element at position x has height 
1 - x 2 and generates a cylindrical shell of volume dV = 2n x(l - x 2) dx . (See 
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y 

X 

Figure 7.11.) Thus, the volume of the bowl is 

V = 2n: fo
1 

x(l -x 2)dx 

(x2 x4)11 
n: = 2n: 2 - 4 0 

= 2 cubic units. 

Figure 7 .11 A parabolic bowl 

We have descr ibed two method s for determining the volume of a solid of revolution , 
slicing and cylindrical shells. The choice of method for a particular solid is usually 
dictated by the form of the equations defining the region being rotated and by the axis 
of rotation. The volume element dV can alway s be determined by rotating a suitable 
area element dA about the axis of rotation. If the region is bounded by vertical lines 
and one or more graphs of the form y = f (x), the appropriate area element is a vertical 
strip of width dx . If the rotation is about the x -axis or any other horizontal line, this 
strip generate s a disk- or washer-shaped slice of thickness dx. If the rotation is about 
the y-ax is or any other vertical line, the strip generates a cylindrical shell of thickness 
dx. On the other hand, if the region being rotated is bounded by horizontal lines and 
one or more graphs of the form x = g(y ), it is easier to use a horizontal strip of width 
dy as the area element, and this generates a slice if the rotation is about a vertical line 
and a cylindrical shell if the rotation is about a horizontal line . For very simple regions 
either method can be made to work easily. See the following table. 

Table 1. Volumes of solids of revolution 
y 

y = g(x) 
y 

d 

If region R ---+ + y 
+ 

dy 

R 
X = h(y) R 

+ +d x 

C 

is rotated about y = J( x ) 

-l, 
a X b X 

use plane slices use cylindrical shells 

the x -axis 
V = n: 1b ((g(x))2 - (f(x)) 2

) dx V = 2n: ld y (k(y) - h( y )) dy 

use cylindrical shells use plane slices 

X 

the y-axis 
V = 2n: lb x (g(x)- f(x))dx V = n: 1d ((k(y))2 - (h(y))2) dy 

Our final example involves rotation about a vertical line other than the y-axis. 

EXAMPLE 8 The triangular region bounded by y = x, y = 0, and x = a > 0 
is rotated about the line x = b > a. (See Figure 7.12.) Find the 

volume of the solid so generated. 

Solution Here the vertical area element at x generates a cylindrical shell of radius 
b - x , height x, and thickne ss dx. Its volume is d V = 2n: (b - x) x dx, and the volume 
of the solid is 

V=2n: fo
0

(b-x) xdx=2n:(bt _x:)[ =n:(a 2b-
2

;
3

) cubicunits. 
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Figure 7 .12 The volume element for 

Example 8 

EXERCISES 7.1 

y 

Find the volume of each so lid Sin Exercises 1-4 in two ways , 
using the method of slicin g and the method of cylindrical shells. 

1. S is generated by rotating about the x -axis the region 
bounded by y = x2, y = 0, and x = 1. 

2. S is generated by rotating the region of Exerci se 1 about the 
y-axis. 

3. Sis generated by rotating about the x-axis the region 
bounded by y = x 2 and y = .,/x between x = 0 and x = I. 

4. S is generated by rotating the region of Exercise 3 about the 
y- axi s. 

Find the volumes of the solids obtained if the plane regions R 
described in Exercises 5-10 are rotated about (a) the x-ax is and 
(b) the y-axis. 

5. R is bounded by y = x(2 - x) and y = 0 betwe en x = 0 and 
X =2. 

6. R is the finite region bounded by y = x and y = x 2 . 

7. R is the finite region bounded by y = x and x = 4y - y2 . 

8. R is bounded by y = 1 + sin x and y = 1 from x = 0 to 
X = 71:. 

9. R is bounded by y = 1/ (1 +x 2), y = 2,x = 0, andx = 1. 

10. R is the finite region bounded by y = 1/x and 
3x + 3y = 10. 

11. The triangular region with vertices (0, -1), (1, 0) , and (0, 1) 
is rotated about the line x = 2. Find the volume of the solid 
so generated. 

12. Find the volume of the solid generated by rotating the region 
0 _:s y _:s 1 - x 2 about the line y = 1. 

13. What percentage of the volume of a ball of radius 2 is 
removed if a hole of radius 1 is drilled through the centre of 
the ball? 

14. A cylindrical hole is bored throu gh the centre of a ball of 
radius R . If the length of the hole is L , show that the volume 
of the remaining part of the ball depend s only on L and not 
on R. 

15. A cylindrical hole of radius a is bored through a solid 
right-circular cone of height h and base radius b > a. If the 
axis of the hole Lies along that of the cone, find the volume of 
the remainin g part of the cone. 

16. Find the volume of the solid obtained by rotating a circular 
disk about one of its tangent lines. 

SECTION 7.1: Volumes by Slicing-Solids of Revolution 399 

X 

17. A plane slices a ball of radius a into two pieces. If the plane 
passes b unit s away from the centre of the ball (where 
b < a), find the volume of the smal ler piec e. 

18. Water partia lly fills a hemisp herical bowl of radius 30 cm so 
that the maximum depth of the water is 20 cm. What volume 
of water is in the bowl? 

19. Find the volume of the ellip so id of revo lution obtained by 
rotating the ellipse (x 2 / a2) + (y 2 /b2) = 1 abo ut the x-axis. 

20. Recalculate the volume of the torus of Example 6 by slic ing 
perpendicular to the y-ax is rather than u ing cylindrical 
shells. 

21. The region R bounded by y = e- x and y = 0 and lyin g to 
the right of x = 0 is rotated (a) about the x-axis and (b) 
about the y-ax is. Find the volume of the sol id of revolution 
generated in each case. 

22. The region R bounded by y = x-k and y = 0 and lying to 
the right of x = 1 is rotated about the x -axis. Find all real 
values of k for which the solid so generated has finite 
volume. 

23. Repe at Exerci e 22 with rotation about the y-axis. 

24. Early edition s of thi s text incorrectly defined a prism or 
cylinder a bein g a so lid for which cross-sections parall el to 
the base were congruent to the base . Does thi s define a larger 
or smal ler set of solids than the definition given in this 
sectio n? What doe s the older definiti on say about the volum e 
of a cylinder or prism having base area A and height h? 

25. Continuin g Exercise 24, consider the solid S whose 
cross-section in the plan e perpendicular to the x-axis at x is 
an isosceles right-angled triangle having eq ual sides of length 
a cm with one end of the hypotenu se on the x-axis and with 
hypotenuse making angl e x with a fixed direction. Is S a 
prism according to the definition given in ear ly editions? Is it 
a prism according to the definition in this editio n? If the 
height of S is b cm, what is the volum e of S? 

gg 26. The region shaded in Figure 7.13 is rotated about the x-axis. 
Use Simp son's Rule to find the volum e of the resulting solid . 

gg 27. The region shaded in Figure 7.13 is rotated abo ut the y-ax is. 
Use Simp son's Rule to find the volume of the resulting solid. 

gg 28. The region shaded in Figure 7 .13 is rotated about the line 
x = - 1. Use Simpson's Rule to find the volume of the 
resultin g so lid . 
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ingenuity and a lot of hard work to solve them by the techniques 
available to you now. 

D 31. A martini glass in the shape of a right-circular cone of height 
hand semivertical angle a (see Figure 7.14) is filled with 
liquid. Slowly a ball is lowered into the glass, displacing 
liquid and causing it to overflow. Find the radius R of the 
ball that causes the greatest volume of liquid to overflow out 
of the glass. 

D 29. Find the volume of the solid generated by rotating the finite 
region in the first quadrant bounded by the coordinate axes 
and the curve x213 + y213 = 4 about either of the coordinate 
axes. (Both volumes are the same. Why?) 

D 30. Given that the surface area of a sphere of radius r is kr 2, 

where k is a constant independent of r , express the volume of 
a ball of radius R as an integral of volume elements that are 
the volumes of spherical shells of thickness dr and varying 
radii r. Hence find k . 

The following problems are very difficult. You will need some 

Figure 7.14 

D 32. The finite plane region bounded by the curve xy = 1 and the 
straight line 2x + 2y = 5 is rotated about that Line to 
generate a solid of revolution. Find the volume of that solid . 

• _ M_o_re_V_o_lu_m_e_s_b_y S_l_ic_in_g ______ ___ ____ _ 
The method of slicing introduced in Section 7 . 1 can be used to determine volumes of 
solids that are not solids of revolution. All we need to know is the area of cross -section 
of the solid in every plane perpendicular to some fixed axis. If that axis is the x -axis , 
if the solid lies between the plane s at x = a and x = b > a, and if the cross-sectional 
area in the plane at x is the continuous (or even piecewise continuous) function A(x), 
then the volume of the solid is 

V = 1b A(x)dx. 

In this sec tion we consider some examples that are not solids of revolution. 

Pyramids and cones are so lids consisting of all points on line segments that join 
a fixed point , the vertex, to all the points in a region lying in a plane not containing the 
vertex. The region is called the base of the pyramid or cone. Some pyramids and cones 
are shown in Figure 7.15. If the base is bounded by straight lines, the solid is called 
a pyramid; if the base has a curved boundary the solid is called a cone . All pyramids 
and cones have volume 

1 
V = -Ah 

3 ' 

where A is the area of the base region, and h is the height from the vertex to the plane 
of the base , measured in the direction perpendicular to that plane. We will give a very 
simple proof of this fact in Section 16.4 . For the time being, we verify it for the case 
of a rectangular base. 
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Figure 7.15 Some pyramids and 
1 

cones. Each has volume V = 3 Ah, 

where A is the area of the base , 

and h is the height measured 

perpendicular to the base 

Figure 7.16 

(a) A rectangular pyramid 

(b) A general cone 

SECTION 7.2: More Volumes by Slicing 401 

EXAMPLE 1 Verify the formula for the volume of a pyramid with rectangular 
base of area A and height h. 

0 
0 

X X 

(a) (b) 

Solution Cross-sections of the pyramid in planes parallel to the base are simjlar 
rectangles . If the origin is at the vertex of the pyramid and the x-axis is perpendicular 
to the base, then the cross-section at position x is a rectangle whose dimensions are 
x/ h times the corresponding dimension s of the base. For example, in Figure 7.16(a), 
the length LM is x/ h times the length P Q, as can be seen from the similar triangles 
0 LM and OP Q. Thus, the area of the rectangular cross-section at x is 

The volume of the pyramid is therefore 

1h x 2 A x3 lh 1 
V = (-) A dx = 2 - = -Ah cubic units. 

o h h 3 o 3 

A similar argument, resulting in the same formula for the volume, holds for a cone, 
that is, a pyramid with a more general (curved) shape to its base, such as that in 
Figure 7. l 6(b ). Although it is not as obvious as in the case of the pyramid, the cross
section at x still has area (x / h )2 times that of the base . 
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Figure 7 .17 The tent of Example 2 with 
the front covering removed to show the 
shape more clearly 

X 

EXAM p LE 2 A tent has a circular base of radius a metres and is supported by 
a horizontal ridge bar held at height b metres above a diameter of 

the base by vertical supports at each end of the diameter. The material of the tent is 
stretched tight so that each cross-section perpendicular to the ridge bar is an isosceles 
triangle. (See Figure 7 . 17 .) Find the volume of the tent. 

Solution Let the x-axis be the diameter of the base under the ridge bar. The cross
sect ion at position x has base len gth 2J a2 - x 2 , so its area is 

A(x) = ~(2J a2 - x 2)b = bJ a2 - x 2 . 
2 

Thus, the volume of the solid is 

V= r bJ a2 - x 2 dx=b f a Ja 2 -x 2 dx=brca
2 

="l!_a2bm 3 . 
J_a 1-a 2 2 

Note that we evaluated the last integral by inspection. It is the area of a half-disk of 
radius a. 

EXAM p LE 3 Two circular cylinders , each having radius a, intersect so that their 
axes meet at right angles. Find the volume of the region lying 

inside both cylinders. 

Solution We represent the cylinders in a three-dimen sional Cartes ian coordinate 
sys tem where the plane contain ing the x- and y-axes is horizontal and the z-axis is 
vertical. One-eighth of the sol id is represented in Fig ure 7.18, that part corresponding 
to all three coordinates being positive. The two cylinders have axes along the x - and 
y-axes , respectively. The cy linder with axis along the x-axis intersects the plane of the 
y- and z-axes in a circle of radius a. 

Similarly, the other cylinder meet s the plane of the x- and z-axes in a circle of 
radius a. It follows that if the region lying inside both cylinders (and having x :::. 0, 
y :::. 0, and z :::. 0) is sliced hori zonta lly, then the slice at height z above the xy-p lane is 
a square of side J a2 - z2 and has area A (z) = a2 - z2 . The volume V of the whole 
region, being eight time s that of the part shown, is 

fa ( z3)1a 16 V = 8 Jo (a2 
- z2) dz = 8 a2z - 3 0 

= 3 a 3 cubic unit s. 
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Figure 7.18 One-eighth of the solid lying 
inside two perpendicular cylindrical pipes. x 

The horizontal slice shown is square 

EXERCISES 7 .2 
1. A solid is 2 m high. The cross-section of the solid at height x 

above its base has area 3x square metres. Find the volume of 
the solid. 

2. The cross-section at height z of a solid of height h is a 
rectangle with dimensions z and h - z. Find the volume of 
the solid. 

3. Find the volume of a solid of height 1 whose cross-section at 
height z is an ellipse with semi-axes z and .Jf=zI. 

4. A solid extends from x = 1 to x = 3. The cross-section of 
the solid in the plane perpendicular to the x-axis at x is a 
square of side x. Find the volume of the solid . 

5. A solid is 6 ft high. Its horizontal cross-sec tion at height z ft 
above its base is a rectangle with length 2 + z ft and width 
8 - z ft. Find the volume of the solid. 

6. A solid extends along the x-axis from x = l to x = 4. Its 
cross-section at position x is an equilateral triangle with edge 
length .jx. Find the volume of the solid. 

7. Find the volume of a solid that is h cm high if its horizontal 
cross-section at any height y above its base is a circular sector 

having radius a cm and angle 211: ( l - (y / h)) radians. 

8. The opposite ends of a solid are at x = 0 and x = 2. The 
area of cross-section of the solid in a plane perpendicular to 
the x-axis at x is kx 3 square units. The volume of the solid is 
4 cubic units. Find k. 

9. Find the cross-sectional area of a solid in any horizontal 
plane at height z above its base if the volume of that part of 
the solid lying below any such plane is z3 cubic units. 

10. All the cross-sections of a solid in horizontal planes are 
squares . The volume of the part of the solid lying below any 
plane of height z is 4z cubic units, where O < z < h, the 
height of the solid. Find the edge length of the square 
cross-section at height z for O < z < h. 

SECTION 7.2: More Volumes by Slicing 403 

z 

11. A solid has a circular base of radius r. All sections of the 
solid perpendicular to a particular diameter of the base are 
squares. Find the volume of the solid . 

12. Repeat Exercise 11 but with sections that are equilateral 
triangles instead of squares. 

13. The base of a solid is an isosceles right-angled triangle with 
equal legs measuring 12 cm. Each cross-section 
perpendicular to one of these legs is half of a circular disk. 
Find the volume of the solid . 

14. (Cavalieri's Principle) Two solids have equal 
cross-sectional areas at equal heights above their bases. If 
both solids have the same height, show that they both have 
the same volume. 

a 

-~--------------;---

Figure 7.19 

y 

15. The top of a circular cylinder of radius r is a plane inclined at 
an angle to the horizontal. (See Figure 7.19.) If the lowest 
and highest points on the top are at heights a and b, 
respectively , above the base, find the volume of the cylinder. 
(Note that there is an easy geometric way to get the answer, 
but you should also try to do it by slicing. You can use either 
rectangular or trapezoidal slices.) 
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D 16. (Volume of an ellipsoid) Find the volume enclosed by the 
ellipsoid 

x2 y2 z2 

a2 + b2 + c2 = 1. 

Hint: This is not a solid of revolution. As in Examp le 3, the 
z-axis is perpendicular to the plane of the x- and y-axes. 
Each horizontal plane z = k (-c ::: k ::: c) intersect s the 
ellipsoid in an ellipse (x/ a) 2 + (y / b)2 = I - (k/ c)2. Thus , 
d V = dz x the area of this ellipse. The area of the ellipse 
(x / a)2 + (y / b)2 = I is n:ab. 

. 20 cm 
·····-------

Figure 7.20 

D 17. (Notching a log) A 45° notch is cut to the centre of a 
cylindrical log having radius 20 cm, as shown in Figure 7 .20. 

One plane face of the notch is perpendicular to the axis of the 
log. What volume of wood was removed from the log by 
cutting the notch ? 

18. (A smaller notch) Repeat Exerci se 17, but assume that the 
notch penetrates only one quarter way (10 cm) into the log. 

19. What volume of wood is removed from a 3-in-thick board if 
a circ ular hole of radius 2 in is drilled through it with the axis 
of the hole tilted at an angle of 45° to board? 

D 20. (More intersecting cylinders) The axes of two circular 
cylinders intersect at right angles. If the radii of the cylinders 
are a and b (a > b > 0) , show that the region lying inside 
both cylinders has volume 

Hint: Review Examp le 3. Try to make a similar diagram, 
showing only one-eighth of the region. The integral is not 
easi ly evaluated . 

8~ 21. A circular hole of radius 2 cm is drilled through the middle 
of a circu lar log of radius 4 cm, with the axis of the hole 
perpendicular to the axis of the log. Find the volume of wood 
removed from the log. Hint : This is very similar to Exerc ise 
20. You will need to use numer ical methods or a calculator 
with a numerical integrat ion function to get the answer. 

• 
Arc Length and Surface Area 

-----

Figure 7.21 
to a curve e 

A polygonal approximatio n 

In this section we consider how integrals can be used to find the lengths of curves and 
the areas of the surfaces of solids of revolution . 

Arc Length 
If A and Bare two point s in the plane , let IABI denote the distance between A and B, 
that is, the length of the straight I ine segment A B . 

Pn = B 

Given a curve c? joinin g the two points A and B, we would like to define what is meant 
by the length of the curve c? from A to B. Suppose we choose points A = Po, P 1, 

P2, .. . , Pn- 1, and P,, = B in order along the curve, as shown in Figure 7.21. The 
polygonal line PoP1 P2 . .. P11_ 1 P11 constructed by j oining adjacent pairs of these point s 
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I 

SECTION 7.3: Arc Length and Surface Area 405 

with straig ht line segments forms a polygonal approximation to e, having length 

n 

Ln = tPoP1t + IP1P2I + · .. + IP11- 1P,,t = LIPi - JPil-
i=I 

Intuition tells us that the shortest curve joining two points is a straight line segment, 
so the length L 11 of any such polygonal approximation to e cannot exceed the length 
of e. If we increase n by adding more vertices to the polygonal line between existing 
vertices, L11 cannot get smaller and may increase. If there exists a finite number K 
such that L 11 ::: K for every polygonal approximation toe , then there will be a smallest 
such number K (by the completeness of the real numbers), and we call this smallest K 
the arc length of e. 

The arc length of the curve e from A to B is the smallest real number s such 
that the length L 11 of every polygonal approximation to e satisfies L 11 :S s. 

A curve with a finite arc length is said to be rectifiable. Its arc lengths is the limit of the 
lengths L 11 of polygonal approximations as n -+ oo in such a way that the maximum 
segment length I P;-1 Pi I -+ 0. 

It is possible to construct continuou s curves that are bounded (they do not go off 
to infinity anywhere) but are not rectifiable ; they have infinite length. To avoid such 
pathological examples, we will assume that our curves are smooth; they will be defined 
by functions having continuous derivative . 

The Arc Length of the Graph of a Function 
Let J be a function defined on a closed , finite interval [a, b] and having a continuous 
derivative J' there. If e is the graph off , that is, the graph of the equation y = J(x) , 
then any partition of [a , b] provides a polygonal approximation to e. For the partition 

{a= xo < XJ < x2 < · · · < Xn = b}, 

let P; be the point (x;, J(xi)), (0 ::: i ::: n). The length of the polygonal line 
PoP1 P2 ... Pn- t Pn is 

n n r--------------
L n = L IPi-1P;I = L J<xi -Xi-1) 2 + (J(x;) - f(xi - 1))

2 

i=l i=l 

n 

= L 
i = l 

(
f(xi) - f(x; - 1))

2 

l+ ------ b.Xi, 
Xi -Xi - I 

where l:!.x; = Xi - x;_ 1_ By the Mean-Value Theorem there exists a number Ci in the 
interval [x;- 1, Xi] such that 

J(x;) - f(x;-1) = J ' (ci) , 
X; -X; - l 

so we have L,, = t Ji+ (J ' (ci))
2 

l:!.x;. 
i=l 

Thus L,, is a Riemann sum for J; J 1 + (f ' (x) )2 dx . Being the limit of such Riemann 
sums as n -+ oo in such a way that max(b.x ;)-+ 0, that integral is the length of the 
curve e . 

The arc length s of the curve y = f (x) from x = a to x = b is given by 
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Figure 7 .22 A differential triangle 

You can regard the integral formula above as giving the arc lengths of e as a "sum" of 
arc length elements 

l
x=b 

s = ds, where ds =Ji+ (/'(x)) 2 
dx. 

x=a 

Figure 7.22 provides a convenient way to remember this; it also suggests how we 
can arrive at similar formula s for arc length element s of other kinds of curves. The 
differential triangle in the figure sugges ts that 

(ds) 2 = (dx)2 + (dy)2. 

Dividing this equation by (dx )2 and taking the square root, we get 

(::r = 1 + (~r 
1+(~)2 

ds 

dx 

ds= 1+(: ~rdx=J 1+(/ ' (x))
2

dx. 

A similar argument shows that for a curve specified by an equation of the form x = g(y), 
(c ~ y ~ d) , the arc length element is 

ds = 1 + (~~) 
2 

dy = J1 + (g'(y) )
2 

dy. 

EXAMPLE 1 Find the length of the curve y = x213 from x = 1 to x = 8. 

Solution Since d y / dx = j x - 113 is continuous between x = 1 and x = 8 and 

x 1 / 3 > 0 there , the length of the curve is given by 

s = is J1 + ~x-2 /3 dx = is 9x 213 + 4 
2/3 dx 9x 

is .J9x2 /3 + 4 
= --~-d x 

I 3xl /3 
Let u = 9x213 + 4, 

du= 6x- 113 dx 

1 i4o 1 140 = - ul /2 du= -u3 /2 40../40- 13.JTI . 
------ unit s. 

18 13 27 13 27 

. 1 
EXAMPLE 2 Find the length of the curve y = x 4 + --

2 
from x = 1 to x = 2. 

32x 

Solution dy 3 1 
Here - = 4x - -- and 

dx 16x3 

(dy)
2 

( 3 1 )2 

1 + - = 1 + 4x - --
dx 16x3 

( )

2 
3 2 1 1 = 1 + (4x ) - - + -

2 16x3 

1 ( 1 )
2 

( 1 )
2 

= (4x3)2 + 2 + 16x3 = 4x3 + 16x3 
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Figure 7.23 A corrugated roofing panel 

y 
I ------- Y- 20 

Figure 7.24 One period of the panel's 
cross-section 

X 

SECTION 7.3: Arc Length and Surface Area 407 

The expression in the last set of parentheses is positive for 1 ::: x :::: 2, so the length of 
the curve is 

s = {2 (4x 3 + _I 3) dx = ( x4 - ~) 12 1, l6x 32x 1 

I ( I ) 3 = 16-
128 

- 1-
32 

= 15+ 
128 

units. 

The examples above are deceptively simple; the curves were chosen so that the arc 
length integrals could be easily evaluated. For instance , the number 32 in the curve in 
Example 2 was chosen so the expression 1 + (dy / dx) 2 would turn out to be a perfect 
square and its square root would cause no problems. Because of the square root in 
the formula, arc length problems for most curves lead to integrals that are difficult or 
impossible to evaluate without using numerical techniques . 

EXAM p LE J (Manufacturing corrugated panels) Flat rectangular sheets of 
metal 2 m wide are to be formed into corrugated roofing panels 

2 m wide by bending them into the sinusoidal shape shown in Figure 7 .23. The period 
of the cross-sectional sine curve is 20 cm. Its amplitude is 5 cm, so the panel is 10 cm 
thick. How long should the flat sheets be cut if the resulting panels must be 5 m long? 

Sm 

Solution One period of the sinusoidal cross-section is shown in Figure 7.24. The 
distances are all in metres; the 5 cm amplitude is shown as 1/20 m, and the 20 cm 
period is shown as 2/10 m. The curve has equation 

l . 
y = 

20 
sm(lOirx). 

Note that 25 periods are required to produce a 5 m long panel. The length of the flat 
sheet required is 25 times the length of one period of the sine curve : 

r21,o ; 7r 2 
s = 25 lo y I+ ( 2 cos(lOirx)) dx Lett= 10irx, 

dt = IOir dx 

= 2- {2" 
2ir lo 1 + - cos2 t dt = -

7r 2 10 lo,r/2 
4 7r o 

7r 2 
1 + - cos2 t dt . 

4 

The integral can be evaluated numerically using the techniques of the previous chapter 
or by using the definite integral function on an advanced scientific calculator. The 
value is s ~ 7.32. The flat metal sheet should be about 7.32 m long to yield a 5 m long 
finished panel. 

If integrals needed for standard problems such as arc lengths of simple curves cannot 
be evaluated exactly, they are sometimes used to define new functions whose values are 
tabulated or built into computer programs. An example of this is the complete elliptic 
integral function that arises in the next example. 
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y b 

a 
-a X 

-b x 2 y2 
,;-r+ J)"=I 

Figure 7.25 The ellip se of Examp le 4 

EXAMPLE 4 (The circumference of an ellipse) Find the circumfere nce of the 
ellipse 

x2 y2 
a2 + b2 = 1, 

where a :::. b > 0. See Figure 7.25. 

Solution The upper half of the ellipse has equation y = bn = ~J a2 - x 2 . 

Hence , 

so 

dy b X 

dx -~ .Ja2-x2' 

(
dy)2 b2 x2 

l+ - =1+ -~-~ 
dx a 2 a 2 - x 2 

a4 - (a2 - b2)x2 

a2(a 2 - x2) 

The circumference of the ellipse is four times the arc length of the part lying in the first 
quadrant, so 

In
a J a4 _ (a2 _ b2)x2 

s = 4 ------;:::::;:::=:::::;:- - dx Let x = a sin t , 
o a.Ja 2 - x2 

dx = a cos t dt 

ln:/ 2 J a4 - (a2 - b2)a 2 sin2 t = 4 --------- a cost dt 
o a(a cost) 

r 12 
= 4 lo J a2 - (a2 - b2 ) sin2 t dt 

l
n:/ 2 

=4a 
0 

a2 - b2 
1 -

2 
sin2 t dt 

a 

r 12 
= 4a lo J I - c2 sin2 t dt units, 

where E: = (.Ja 2 - b2) / a is the ecce ntri city of the ellipse. (See Section 8.1 for a 
discussion of ellipses.) Note that OS E: < 1. The function E( e), defined by 

r 12 
E(e) = Jo JI-E: 2 sin2 tdt, 

is called the complete elliptic integral of the second kind. The integral cannot be 
evaluated by elementary techniques for general e, although numerical methods can be 
applied to find approxim ate values for any given value of e. Tables of values of E(e) 
for various values of e can be found in collections of mathematical tables. As shown 
above, the circumference of the ellipse is given by 4aE( e). Note that for a = b we 
have e = 0, and the formula returns the circumference of a circle; s = 4a(n-/ 2) = 2n-a 
units. 

Areas of Surfaces of Revolution 
When a plane curve is rotated (in three dimension s) about a line in the plane of the 
curve , it sweeps out a surface of revolution. For instance, a sphere of radius a is 
generated by rotating a semicircle of radius a about the diameter of that semicircle. 
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Figure 7 .26 The circular band generated 
by rotating arc length element ds about 
the axis 

SECTION 7.3: Arc Length and Surface Area 409 

The area of a surface of revolution can be found by integrating an area element dS 
constructed by rotating the arc length element ds of the curve about the given line . If 
the radius of rotation of the element ds is r , then it generates, on rotation, a circular 
band of width ds and length (circumference) 21e r. The area ofthis band is, therefore , 

dS = 21er ds, 

as shown in Figure 7 .26. The areas of surfaces of revolution around various lines can 
be obtained by integratin g dS with appropri ate choices of r. Here are some important 
special cases. 

Area of a surface of revolution 

If f'(x) is continuous on [a, b] and the curve y = f(x) is rotated about the 
x-axis, the area of the surface of revolution so generated is 

r-b r 
S = 21e lx=: IYI ds = 21e la lf(x)l/1 + (f ' (x)) 2 dx . 

If the rotation is about the y-axis , the surface area is 

r-b rb 
S = 21e lx=: lx l ds = 21e la lxl/1 + (f ' (x )) 2 dx . 

If g'(y) is continuous on [c, d] and the curve x = g(y) is rotated about the 
x-axis, the area of the surface of revolution so generated is 

j y-d id 
S=21e y=~ ly ld s =21e c IYl/t+( g' (y)) 2 dy . 

If the rotation is about the y-axis, the surface area is 

Jy-d id 
S=21e y =~ lx lds=2n c lg(y )I/ I+( g' (y ))2 dy. 

Remark Students sometimes wonder whether such complicated formula s are actually 
necessary. Why not just use dS = 21e IYI dx for the area element when y = f (x) is 
rotated about the x-axis instead of the more complicated area element dS = 2n IYI ds? 
After all, we are regarding dx and ds as both being infinitely small , and we certainly 
used dx for the width of the disk-shaped volume element when we rotated the region 
under y = f(x) about the x-axis to generate a solid of revolution. The reason is 
somewhat subtle. For small thickness !:.x, the volume of a slice of the solid of revolution 
is only approximately 1e y 2 !:.x, but the error is small compared to the volume of this 
slice. On the other hand , if we use 21e IYI !:.x as an approximation to the area of a thin 
band of the surface of revolution corresponding to an x interval of width !:.x, the error 
is not small compared to the area of that band. If , for instance, the curve y = f (x) 
has slope 1 at x, then the width of the band is really !:.s = ,./2 !:.x, so that the area 
of the band is t.S = 21e ../2iyl !:.x, not just 21e IYI !:.x. Always use the appropriate arc 
length element along the curve when you rotate a curve to find the area of a surface of 
revolution . 

EXAMPLE 5 (Surface area of a sphere) Find the area of the surface of a sphere 
of radius a. 

Solution Such a sphere can be generated by rotating the semicircle with equation 
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y 
y = .J a2 - x 2 

Figure 7.27 An area element on a sphere 

y 

Figure 7.28 The area element is a 
horizontal band here 

EXERCISES 7.3 

X 

y = ,J a 2 - x 2 , (-a _:s x _:s a), about the x-axis. (See Figure 7.27.) Since 

dy 

dx 

X 

,Ja2 - x2 

X 

y 

the area of the sphere is given by 

S = 2n f_c: yFG) dx 

= 4n foa Jy2 +x 2 dx 

= 4n 1a /;;J, dx = 4n ax [ = 4n a2 square units. 

EXAM p LE 6 (Surface area of a parabolic dish) Find the surface area of 
a parabolic reflector whose shape is obtained by rotating the parabolic 

arc y = x 2 , (0 _:s x _:s 1), about the y-axis, as illustrated in Figure 7.28. 

Solution The arc length element for the parabola y = x 2 is ds = ,J1 + 4x 2 dx, so 
the required surface area is 

S = 2n fo1 

xJI +4x 2 dx 

='.:_ rsul f2du 
4 }1 

Let u = l + 4x 2, 

du= 8xdx 

= '.:_ u312
1

5 

= '.:_ (5.Js - 1) square units. 
6 I 6 

In Exercises 1-14, find the lengths of the given curves. ex - l 
D 14. y = In -- from x = 2 to x = 4 

eX + l 1. y = 2x - 1 from x = 1 to x = 3 

2. y = ax + b from x = A to x = B 
2 

3. y = - x 312 from x = 0 to x = 8 
3 

4. y2 = (x - 1)3 from (1,0) to (2, 1) 

5. y3 =x 2 from(-l,l)to(l , 1) 

6. 2(x + 1)3 = 3(y - 1)2 from (- 1, 1) to (0, I + .,/273) 
x 3 l 

7. y = - + - from x = l to x = 4 
}2 X 

x 3 l 
8. y = - + - from x = 1 to x = 2 

3 4x 
9. 4y = 21nx - x 2 from x = 1 to x = e 

lnx 
10. y = x 2 - - from x = 1 to x = 2 

8 
ex+ e-x 

11. y = 
2 

(= coshx) from x = 0 to x = a 

12. y=lncosxfromx =n / 6tox=n / 4 

D 13. y = x 2 from x = 0 to x = 2 

15. Find the circumference of the closed curve 
x213 + y213 = a213 . Hint: The curve is symmetric about 
both coordinate axes (why?), so one-quarter of it lies in the 
first quadrant. 

Use numerical methods (or a calculator with an integration 
function) to find the lengths of the curves in Exercises 16-19 to 4 
decimal places. 

g~ 16. y = x4 from x = 0 to x = I 

g~ 17. y = x 1l3 fromx=ltox=2 

g~ 18. the circumference of the ellipse 3x2 + y2 = 3 

g~ 19. the shorter arc of the ellipse x 2 + 2y 2 = 2 between (0, 1) 
and (1, l / v'2) 

In Exercises 20- 27, find the areas of the surfaces obtained by 
rotating the given curve about the indicated lines. 

20. y = x 2 , (0 S x S 2), about the y-axis 

21. y = x3, (0 S x S 1), about the x-axis 

22. y = x 312 , (0 S x S 1), about the x-axis 
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23. y = x 312, (0 .::: x .::: l ), about the y-axis the surface area of this doughnut in terms of the complete 
elliptic integral function E( e) introduced in that example. 24. y = ex, (0 .::: x .::: J ) , about the x-axis 

25. y = sin x, (0 .::: x .::: ir ), about the x-axis D 33. Express the integral formula obtained for the length of the 
metal heet in Example 3 in terms of the complete elliptic 
integral function£(€) introduced in Example 4. 26. 

27. 

28. 

29. 

x 3 1 
Y = 12 + ~· ( l .::: x .::: 4), about the x-axis 

x 3 l 
y = 

12 
+ ~· (1 .::: x .::: 4), about the y-axis 

(Surfa ce area of a cone) Find the area of the curved 
surface of a right-circular cone of base radius r and height h 
by rotating the straight line segment from (0, 0) to (r, h) 
about the y-axis. 

(How much icing on a doughnut?) Find the surface area 
of the torus (doughnut) obtained by rotating the circle 
(x - b) 2 + y2 = a2 about the y -axis. 

34. (An intere sting prop erty of spheres) If two parallel 
plane intersect a phere, show that the surface area of that 
part of the sphere lying between the two planes depends only 
on the radius of the sphere and the distance between the 
planes, and not on the position of the planes. 

35. For what real values of k does the surface generated by 
rotating the curve y = xk , (0 < x .'.:: 1), about the y-axis 
have a finite surface area? 

D 36. The curve y = ln x, (0 < x .::: 1), is rotated about the y-axis. 

30. (Area of a prolate spheroid) Find the area of the surface 
obtained by rotating the ellipse x 2 + 4y 2 = 4 about the 

Find the area of the horn-shaped surface so generated. 

8 37. A hollow container in the shape of an infinitely long horn is 
generated by rotating the curve y = l / x, (1 .::: x < oo), 
about the x -axis. 

x-axis. 

31. (Area of an oblate sphe roid) Find the area of the surface 
obtained by rotating the ellipse x 2 + 4y 2 = 4 about the 
y-axis. 

(a) Find the volume of the container. 

(b) Show that the container has infinite surface area. 

D 32. The ellipse of Example 4 is rotated about the line y = c > b 
to generate a doughnut with elliptical cross-sect ions. Express 

(c) How do you explain the "paradox" that the container can 
be filled with a finite volume of paint but requires an 
infinite amount of paint to cover its surface? 

• 
Mass, Moments, and Centre of Mass 

-----
Many quantities of interest in physics , mechanics , ecology, finance , and other disci
plines are described in terms of densities over regions of space , the plane , or even the 

By "density at a point P" of a 
solid object, we mean the limit 
p(P) of mass/volume for the 
part of the solid lying in small 
regions containing P (for 
example, balls centred at P) as 
the dimensions of the regions 
approach zero. Such a density p 
is continuous at P if we can 
ensure that Jp(Q) - p(P)J is as 
small as we want by taking Q 
close enough to P . 

real line. To determine the total value of such a quantity we must add up (integrate) 
the contributions from the various places where the quantity is distributed . 

Mass and Density 
If a solid object is made of a homogeneous material , we would expect different parts 
of the solid that have the same volume to have the same mass as well. We express 
this homogeneity by saying that the object has constant density, that density being 
the mass divided by the volume fo r the whole obj ect or for any part of it. Thus, for 
examp le, a rectangular brick with dimen sions 20 cm , 10 cm, and 8 cm would have 
volume V = 20 x 10 x 8 = 1,600 cm 3, and if it was made of material having constant 
density p = 3 g/cm3, it would have mas s m = pV = 3 x 1,600 = 4,800 g. (We will 
use the lowercase Greek letter delta (p) to represent density.) 

If the density of the material constituti ng a solid object is not constant but varies 
from point to point in the object , no such simp le relationship exists between mass and 
volume. If the density p = p (P) is a continuous function of position P, we can subdi
vide the solid into many small volume elements and , by regarding p as approximately 
constant over each suc h element, determine the masses of all the elements and add them 
up to get the ma ss of the solid. The mass 11m of a volume element /1 V containing the 
point P would satisfy 

11m ~ p(P) 11 V, 

so the mass m of the solid can be approximated: 

m = L 11m ~ L p(P) 11 V. 
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Figure 7.29 

(a) A solid cylinder whose density varies 
with height 

(b) Cutaway view of a planet whose 
density depends on distance from the 
centre 

Such approximations become exact as we pass to the limit of differential mass and 
volume elements, dm = p ( P) d V, so we expect to be able to calculate masses as 
integrals , that is, as the limit s of such sums: 

m = f dm = f p(P) dV. 

EXAM p LE 1 The density of a solid vertical cylinder of height H cm and base 
area A cm2 is p = po(l + h) g!cm3, where h is the height in 

centimetres above the base and po is a constant. Find the mass of the cylinder. 

Solution See Figure 7 .29(a). A slice of the solid at height h above the base and 
having thickness dh is a circular disk of volume dV = A dh. Since the density is 
constant over this disk , the mass of the volume element is 

dm = p dV = po(l + h) A dh. 

Therefore, the mass of the whole cylinder is 

m = foH poA(l +h)dh = poA ( H + ~
2

) g. 

A dh 

h 

(a) (b) 

EXAMPLE 2 (Using spherical shells) The den sity of a certain spherical planet 
of radius R m varies with distance r from the centre according to 

the formula 

Po 3 
p = -- 2 kg/ m . 

1 + r 

Find the mass of the planet. 

Solution Recall that the surface area of a sphere of radius r is 4;,r r 2 . The planet can 
be regarded as being composed of concentric spherical shell s having radii between 0 
and R. The volume of a shell of radius rand thicknes s dr (see Figure 7.29(b)) is equal 
to its surface area times its thickne ss, and its mass is its volume times its density: 

dV = 41rr2 dr ; 
r 2 

dm = pdV = 41rpo--
2 

dr . 
1 + r 
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Figure 7.30 The area element of 
Example4 
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SECTION 7.4: Mass, Moments, and Centre of Mass 413 

We add the masses of these shells to find the mass of the whole planet: 

1R r2 1R ( 1 ) m = 4;,rpo --
2 

dr = 4;,rpo 1- --
2 

dr 
o l+r o l+r 

= 4;,rpo(r - tan- 1 r)I: = 4;,rpo(R - tan- 1 R) kg. 

Similar techniques can be applied to find masses of one- and two-dimensional objects, 
such as wires and thjn plates , that have variable densities of the forms mass/unit length 
(line density, which we will usually denote by i5) and a = mass/unit area (areal 
density, which we will denote by a). 

EXAM p LE 3 A wire of variable composition is stretched along the x-axis from 
x = 0 to x = L cm. Find the mass of the wire if the line density 

at position x is o(x) = kx g/cm, where k is a positive constant. 

Solution The mass of a length element dx of the wire located at position x is given 
by dm = o(x) dx = kx dx. Thus , the mass of the wire is 

m = fol kxdx = c;2)1: = _k~_2 g. 

EXAM p LE 4 Find the mass of a disk ofradius a cm whose centre is at the origin in 
the xy-plane if the areal density at position (x, y) i a = k(2a + x) 

g/cm2 . Here k is a constant. 

Solution The areal density depends only on the horizontal coordinate x, so it is 
constant along vertical lines on the disk. This suggests that thin vertical strips should 
be used as area elements. A vertical strip of thickness dx at x has area dA = 
2.J a2 - x 2 dx (see Figure 7 .30); its mass is therefore 

dm = a dA = 2k(2a + x)Ja 2 - x 2 dx. 

Hence, the mass of the disk is 

m= 1:~: dm=2k/_:(2a+x)Ja2-x2dx 

= 4ak 1_: J a2 - x 2 dx + 2k 1_: xJ a2 - x 2 dx 

;,ra2 
= 4ak 2 + 0 = 27rka3 g. 

We used the area of a semicircle to evaluate the first integral. The second integral is 
zero because the integrand is odd and the interval is symmetric about x = 0. 

Distributions of mass along one-dimensional structures (lines or curves) necessarily 
lead to integrals of functions of one variable, but distributions of mass on a surface 
or in space can lead to integrals involving functions of more than one variable. Such 
integrals are studied in multivariable calculus. (See, for example, Section 14.7.) In 
the examples above, the given densitie s were functions of only one variable, so these 
problems, although higher dimensional in nature , led to integrals of functions of only 
one variable and could be solved by the methods at hand . 
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Figure 7.31 A system of discrete masses 

on a line 

Moments and Centres of Mass 
The moment about the point x = xo of a mass m located at position x on the x-axis 
is the product m (x - xo) of the mass and its (signed) distance from xo. If the x -axis 
is a horizontal arm hinged at xo, the moment about xo measures the tendency of the 
weight of the mass m to cause the arm to rotate . If several masses m 1, m2, m3, . . . , 
m,, are located at the points x 1, x2, x3, ... , x,,, respectively , then the total moment of 
the system of masses about the point x = xo is the sum of the individual moments (see 
Figure 7.31): 

fl 

Mx=xo = (x 1 - xo)m 1 + (x2 - xo)m2 + · · · + (x,, - xo)m,, = L (xj - xo)m j. 
j =1 

ms 

0 x, X3 

The centre of mass of the system of masses is the point i about which the total 
moment of the system is zero . Thus, 

n n n. 

0 = L( Xj - i)mj = L Xjmj - i Lm j. 
j=I j= I j=I 

The centre of mass of the system is therefore given by 

It 

L Xjmj 
j =1 

x=---
Mx=O 

m 

where m is the total mass of the system and Mx=O is the total moment about x = 0. 
If you think of the x -axis as being a weightle ss wire supporting the masses, then 
i is the point at which the wire could be supported and remain in perfect balance 
(equilibri um), not tipping either way. Even if the axis represents a nonweightless 
support , say a seesaw, supported at x = i, it will remain balanced after the masses are 
added, provided it was balanced beforehand. For many purposes a system of masses 
behaves as though its total mass were concentrated at its centre of mass. 

Now suppose that a one-dimensional distribution of mass with continuously vari
able line density b(x) lies along the interval [a, b] of the x-axis. An element of length 
dx at position x contains mass dm = b(x) dx, so its moment is dM x=O = x dm = 
xb(x) dx about x = 0. The total moment about x = 0 is the sum (integral) of these 
moment elements: 

Mx=O = 1b xb(x)dx . 

Since the total mass is 

m = 1b b(x) dx , 

we obtain the following formula for the centre of mass. 
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The centre of mass of a distribution of mass with line density J(x) on the 
interval [a, b] is given by 

- M x= O lb xJ(x) dx 

X =---;;;-= 1b 
a J(x) dx 

EXAMPLE 5 At what point can the wire of Example 3 be suspended so that it 
will balance? 

Solution In Example 3 we evaluated the mass of the wire to be kL 2 / 2 g. Its moment 
aboutx = 0 is 

M x =O = foL xo( x ) dx 

= foL kx
2 dx = c;3 ) ,: = k~

3 
g·cm . 

(Note that the appropriate units for the moment are units of mass times units of distance : 
in this case gram-centimetres .) The centre of mass of the wire is 

_ kL 3/ 3 2L 
x - ----

- kL 2/ 2 - 3 . 

The wire will be balanced if suspended at position x = 2L / 3 cm. 

Two-and Three-Dimensional Examples 
The system of mass considered in Example 5 is one-dimensional and lies along a 
straight line. If mass is distributed in a plane or in space , similar considerations prevail. 
For a system of masses mi at (x i , Yi), m2 at (x2, y2) , ... , mn at (xn , Yn), the moment 
about x = 0 is 

II 

Mx=O = x1mi + x2m2 + · · · + xnmn = L Xjmj , 
j= I 

and the moment about y = 0 is 

n 

M y=O = y ,mi + y2m2 + · · · + Ynmn = L Yjm j, 
j = l 

The centre of mass is the point (i , ji) where 

and 

For continuous distributions of mass, the sums become appropriate integrals. 

EXAM p LE 6 Find the centre of mass of a rectangular plate that occupies the 
region O ::: x .::: a, 0 ::: y .::: b, if the areal density of the material 

in the plate at position (x, y) is a = ky . 
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y 

b ------.------, 

• 
y -------.--1111 

dy 

Figure 7.32 

Example 6 

a/ 2 a 
The area element for 

X 

Figure 7.33 Mass element of a solid 
hemisphere with density depending on 
height 

Solution Since the areal density is independent of x and the rectangle is symmetric 
about the line x = a/ 2, the x -coordinate of the centre of mass must be x = a/ 2. A 
thin horizontal strip of width dy at height y (see Figure 7.32) has mass dm = aky dy. 
The moment of this strip about y = 0 is dM y=O = y dm = kay 2 dy. Hence, the mass 
and moment about y = 0 of the whole plate are 

lb kab 2 

m = ka y dy = -- , 
0 2 

r kab 3 

My=O = ka lo y2 dy = -
3

-. 

Therefore, y = My=ol m = 2b/ 3, and the centre of mass of the plate is (a/ 2, 2b/ 3). 
The plate would be balanced if supported at this point. 

For distributions of mass in three-dimension al space one defines, analogously , the 
moments Mx=O, My=O, and Mz=O of the syste m of mass about the planes x = 0, 
y = 0, and z = 0, respectively. The centre of mass is (i , y, z) where 

- Mx=O 
x =-- , 

m 

- My=O 
y =-- , 

m 
and 

- Mz=O z =-- , 
m 

m being the total mass: m = m 1 + m2 + · · · + m11• Again, the sums are replaced with 
integrals for continuous distributions of mass . 

EXAMPLE 7 

POZ lb/ft3
. 

Find the centre of mass of a solid hemi sphere of radius R ft if its 
density at height z ft above the base plane of the hemispher e is 

Solution The solid is symmetric about the vertical axis (let us call it the z-axi s), and 
the density is constant in plane s perpendicular to this axis. Therefore , the centre of 
mass must lie somewhere on this axis . A slice of the solid at height z above the base , 
and having thickness dz, is a disk of radius J R2 - z2 . (See Figure 7 .33.) Its volume is 
d V = 7l: (R 2 - z2

) dz, and its mass is dm = poz d V = poll: (R2z - z3) dz. Its moment 
about the base plane z = 0 is dM z=O = z dm = poH:(R2z2 - z4) dz . The mass of the 
solid is 

m = POll: (R 2z - z3)d z = POll: -- - - = -poR 4 lb . 1R (R2z2 z4) IR 7l: 

o 2 4 o 4 

The moment of the hemi sphere about the plane z = 0 is 

The centre of mas s therefore lies along the axis of symmetry of the hemi sphere at 
height z = Mz=OI m = 8R/ l5 ft above the base of the hemisphere. 

EXAMPLE 8 

is a (x). 

Find the centre of mass of a plate that occupies the region 
a S x S b, 0 S y S f(x) , if the density at any point (x, y ) 

Solution The appropriate area element is shown in Figure 7.34 . It has area f (x) dx , 
mass 

dm = a(x)f(x) dx, 
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and moment about x = 0 

dM x=O = XCJ(x)f(x)dx. 

Since the density depends only on x, the mass element dm has constant density , so the 
y-coordinate of its centre of mass is at its midpoint: Ydm = ½ f (x). Therefore, the 
moment of the mass element dm about y = 0 is 

y 

_ 1 2 
dM y=O = Ydm dm = 2 a(x)(f(x)) dx. 

The coordinates of the centre of mass of the plate are i 

where 

Mx=O d _ 
--any 

m 

a 

Figure 7.34 

dx 
X b 

Mass element of a plate 

X 
m = 1b a(x)f(x)dx , 

Mx=O = 1b xa(x)f(x)dx, 

11b 2 My=O = - a(x)(f(x)) dx. 
2 a 

Remark Similar formulas can be obtained if the density depends on y instead of 

x, provided that the region admits a suitable horizontal area element (e.g ., the region 
mig ht be specified by c .'.:: y .'.:: d, 0 .'.:: x .'.:: g(y)). Finding centres of mass for plates 
that occupy regions specified by functions of x , but where the density depends on y, 
generally requires the use of "double integrals." Such problems are therefore studied 
in multivariable calculus. (See Section 14.7 .) 

EX E R C I S ES 7 .4 
Find the mass and centre of mass for the systems in Exercises 
1-16. Be alert for symmetries. 

1. A straight wire of length L cm, where the density at distance 
s cm from one end is b(s) = sin 1r: s / L glcm 

2. A straight wire along the x-axis from x = 0 to x = L if the 
density is constant bo, but the cross-sectional radius of the 
wire varies so that its value at x is a + bx 

3. A quarter-circular plate having radius a, constant areal 
density ao, and occupying the region x2 + y2 s a 2, x ::: 0, 
y :'.'. 0 

4. A quarter-circular plate of radius a occupying the region 
x 2 + y2 s a 2 , x ::: 0, y ::: 0, having areal density 
a(x) = aox 

5. A plate occupying the region O S y S 4 - x2 if the areal 
density at (x, y) is ky 

6. A right-triangular plate with legs 2 m and 3 m if the areal 
density at any point P is Sh kg/m2, h being the distance of P 
from the shorter leg 

7. A square plate of edge a cm if the areal density at P is kx 
g/cm2 , where x is the distance from P to one edge of the 
square 

8. The plate in Exercise 7, but with areal density kr g/cm2, 

where r is the distance (in centimetres) from P to one of the 
diagonal s of the square 

9. A plate of areal density a (x) occupying the region 
a ::: x ::: b, f( x ) ::: y ::: g (x) 

10. A rectangular brick with dimensions 20 cm , 10 cm, and 
5 cm, if the density at P is kx glcm3, where x is the distance 
from P to one of the 10 x 5 faces 

11. A solid ball of radius R m if the density at P is z kg/m 3, 

where z is the distance from P to a plane at distance 2R m 
from the centre of the ball 

12. A right-circular cone of base radiu s a cm and height b cm if 
the density at point P is kz g/cm3, where z is the distance of 
P from the base of the cone 

D 13. The solid occupying the quarter of a ball of radiu s a centred 
at the origin having as base the region x2 + y2 ::: a 2 , x ::: O in 
the x y-plane, if the density at height z above the base is poz 

D 14. The cone of Exercise 12, but with density at P equal to 
kx g/cm3, where x is the distance of P from the axis of 
symmetry of the cone . Hint: Use a cylindrical shell centred 
on the axis of symmetry as a volume element. This element 
has constant density , so its centre of mass is known , and its 
moment can be determined from its mass . 
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D 15. A semicircular plate occupying the region x2 + y 2 ::: a2 , 

y c:'.. 0, if the density at distance s from the origin is 
from the centre of the star. The radius of the star is 
indeterminate but can be taken to be infinite since p(r) 
decreases very rapidly for larger. Find the approximate 
mass of the star in terms of C and k. 

ks g/cm2 

D 16. The wire in Exercise 1 if it is bent in a semicircle 

gg 17. It is estimated that the density of matter in the 
neighbourhood of a gas giant star is given by p (r) = C e-kr

2
, 

where C and k are positive constants, and r is the distance 

gg 18. Find the average distance r of matter in the star of 
Exercise 17 from the centre of the star. r is given by 
fa°° r dm/ fa°° dm , where dm is the mass element at distance 
r from the centre of the star. 

• 
Centroids 

-----

y y = J a 2 - x2 

-a 
Figure 7 .35 The half-disk of Example l 

If matter is distributed uniformly in a system so that the density bis constant, then that 
density cancels out of the numerator and denominator in sum or integral expressions 
for coordinates of the centre of mass. In such cases the centre of mass depends only 
on the shape of the object, that is , on geometric properties of the region occupied by 
the object , and we call it the centroid of the region. 

Centroid s are calculated using the same formulas as those used for centres of 
mass, except that the density (being constant) is taken to be unity , so the mass is just 
the length , area , or volume of the region, and the moments are referred to as moments 
of the region , rather than of any mass occupying the region. If we set a (x) = l in the 
formulas obtained in Example 8 of Section 7.4, we obtai n the following result: 

The centroid of a standard plane region 

The centroid of the plane region a .::: x .::: b, 0 ::: y .::: f(x), is (x, ji), where 
- Mx=O - M y=O 
x = ~, y = -A-, and 

A = 1b f(x) dx, M x= O = lb xf(x) dx, 11b 2 
M y=O = - (f (x)) dx. 

2 a 

Thus, for example, xis the average value of the function x over the region . 

The centroids of some regions are obvious by symmetry. The centroid of a circular 
disk or an elliptical disk is at the centre of the disk . The centroid of a rectangle is at 
the centre also; the centre is the point of inter section of the diagonals. The centroid of 
any region lies on any axes of symmetry of the region. 

EXAMPLE 1 What is the average value of y over the half-di sk -a ::: x .::: a, 
0 ::: y .::: .J a2 - x 2 ? Find the centroid of the half-di sk. 

Solution By symmetry , the centroid lies on the y -axis , so its x-coordinate is i = 0. 
(See Figure 7 .35.) Since the area of the half-disk is A = ½ n: a2, the average value of 
y over the half-disk is 

ji = M y= O = _2__ ~ la (a2 - x2) dx = _2__ 2a 3 = 4a . 
A n:a2 2 -a n:a2 3 3n: 

The centroid of the half -disk is ( 0, :: ) . 

EXAMPLE 2 Find the centroid of the semicircle y = .J a2 - x 2 . 
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y y = Ja 2 - x2 
.----r---

- a X a X 

Figure 7 .36 The semi-circle of Example 2 

THEOREM 

I 

Figure 7 .37 The axes of Theorem l 

SECTION 7.5: Centroids 419 

Solution Here, the "region " is a one-dimensional curve , having length rather than 
area. Again i = 0 by symmetry. A short arc of length ds at height y on the semicircle 
has moment dM y=O = y ds about y = 0. (See Figure 7 .36.) Since 

ds = (
dy )

2 Fh2 
adx 1 + - dx = 1 + 2 2 dx = -;=:;;:====;,: , 

dx a - x .J a2 _ x2 

and since y = .J a2 - x 2 on the semicircle , we have 

My=O = Ja 2 - x2 -;:::;;==:;:=a dx = 2a2
. la adx la 

-a .Ja2 - x2 - a 

Since the length of the semicircle is 1r: a, we have y = M y=O = 
2

a , and the centroid 
1r:a 7r: 

of the semicircle is ( 0, : ) . Note that the centroid of a semicircle of radius a is not 

the same as that of half-disk of radiu s a. Note also that the centroid of the semicircle 
does not lie on the semicircle itself. 

The centroid of a triangle 

The centroid of a triangle is the point at which all three median s of the triangle intersect. 

PROOF Recall that a median of a triangle is a straight line joining one vertex of the 
triangle to the midpoint of the opposite side. Given any median of a triangle, we will 
show that the centroid lies on that median . Thus , the centroid must lie on all three 
median . 

y 

(a, m +c) 

-x X X 

Adopt a coordinate system where the median in question lies along the y-axis and 
such that a vertex of the triangle is at the origin. (See Figure 7.37 .) Let the midpoint 
of the opposite side be (0, m). Then the other two vertices of the triangle must have 
coordinates of the form (-a, m - c) and (a, m + c) so that (0, m) will be the midpoint 
between them. The two vertical area element s shown in the figure are at the same 
distance on opposite sides of the y-axis, so they have the same heights h(-x) = h(x) 
(by similar triangles) and the same area. The sum of the moments about x = 0 of these 
area elements is 

dM x=O = -xh(-x) dx + xh(x) dx = 0, 
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y 
(I, 2) 

s 

(0, 0) ( I , 0) X 

Figure 7 .38 The trapezoid of Example 3 

y 

4 

Figure 7.39 A parabolic solid 

so the moment of the whole triangle about x = 0 is 

j
x=a 

Mx=O = dM x=O = 0. 
X=- a 

Therefore , the centroid of the triangle lies on the y-axis. 

Remark By simultaneously solving the equations of any two medians of a triangle , 
we can verify the following formula: 

Coordinates of the centroid of a triangle 

The coordinates of the centroid of a triangle are the averages of the corre
sponding coordinates of the three vertices of the triangle. The triangle with 
vertices (x1, Y1), (x2, y2) , and (x3, y3) has centroid 

(- _) = (XJ + x2 + X3 YI + Y2 + Y3) 
x,y 3 ' 3 · 

If a region is a union of nonoverlapping subregions, then any moment of the region 
is the sum of the corresponding moments of the subregions. This fact enables us 
to calculate the centroid of the region if we know the centroids and areas of all the 
subregions. 

EXAMPLE 3 Find the centroid of the trapezoid with vertices (0, 0), (I, 0), (I, 2), 
and (0, 1). 

Solution The trapezoid is the union of a square and a (nonoverlapping) triangle , as 
shown in Figure 7.38. By symmetry, the square has centroid (is , 5is) = (½,½) ,a nd 
its area is A s = 1. The triangle has area Ar=½ , and its centroid is (ir, YT) , where 

_ 0+1+1 
XT = 

3 

2 

3 
and YT= 

1+1+2 

3 

4 

3 

Continuing to use subscripts S and T to denote the square and triangle, respectively , 
we calculate 

1 1 2 5 
Mx=O = Ms ;x=O + Mr ;x=O = Asis + Arir = 1 X l + l X '.3 = 6, 

1 I 4 7 
My=O = Ms;y=O + Mr ;y=O = Asjis +Ar.YT= 1 x 2 + 2 x 3 = 6" 

Since the area of the trapezoid is A = As + Ar = ~' its centroid is 

EXAM p LE 4 Find the centroid of the solid region obtained by rotating about the 
y-axis the first quadrant region lying between the x -axis and the 

parabola y = 4 - x2 . 

Solution By symmetry, the centroid of the parabolic solid will lie on its axis of 
symmetry, the y-axis . A thin, disk-shaped slice of the solid at height y and having 
thicknes s dy (see Figure 7.39) has volume 

dV = 1rx 2 dy = 1r(4 - y)dy 
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I 

y 

a X X 

Figure 7.40 Proving Theorem 2(a) 
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and moment about the base plane 

dM y=O = y dV = 11:(4y - y2) dy. 

Hence, the volume of the solid is 

V = 11: fo
4

(4- y)dy = 11: (4y- y:)i: = 11:(16- 8) = 811:, 

and its moment about y = 0 is 

My=O = 11: fo4c4y - y2)dy = 11: (2 y2 - y: ) i: = 11: (32- 634) = 332 11:. 

3211: 1 4 
Hence, the centroid is located at ji = -- x - = - . 

3 811: 3 

Pappus's Theorem 
The following theorem relate s volumes or surface areas of revolution to the centroid of 
the region or curve being rotated. 

Pappus's Theorem 

(a) If a plane region R lies on one side of a line L in that plane and is rotated about 
L to generate a solid of revolution, then the volume V of that solid is the product 
of the area of R and the distance travelled by the centroid of R under the rotation ; 
that is, 

V = 211:rA, 

where A is the area of R , and r is the perpendicular distance from the centroid of 
R to L. 

(b) If a plane curve e lies on one ide of a line L in that plane and is rotated about 
that line to generate a surface of revolution , then the area S of that surface is the 
length of e times the distance travelled by the centroid of C: 

S = 211:rs, 

where s is the length of the curve e, and r is the perpendicular distance from the 
centroid of e to the line L. 

PROOF We prove part (a). The proof of (b) is similar and is left as an exercise. 

Let us take L to be the y-axis and suppose that R lies between x = a and x = b where 
0 S a < b. Thus r = x, the x -coordinate of the centroid of R. Let dA denote the 
area of a thin strip of Rat position x and having width dx. (See Figure 7.40.) This 
strip generates , on rotation about L, a cylindrical shell of volume dV = 211:x dA , so 
the volume of the solid of revolution is 

l
x=b 

V = 211: xdA = 211:Mx=O = 211:xA = 211:rA. 
x=a 

As the following examples illustrate, Pappus's Theorem can be used in two ways: 
either the centroid can be determined when the appropriate volume or surface area is 
known, or the volume or surface area can be determined if the centroid of the rotating 
region or curve is known . 
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EXAMPLE 5 Use Pappus ' s Theorem to find the centroid of the semicircle 
y = .Ja2 -x 2. 

Solution The centroid of the semicircle lies on its axis of symmetry, the y -axi s, so it 
is located at a po int with coordinates (0 , ji). Since the semicircle has length na unit s 
and generates, on rotation about the x -axis, a sphere having area 4n a 2 square units , 
we obtain, using part (b) of Pappus's Theorem , 

4na 2 = 2n(na)y. 

Thus y = 2a/ n, as shown previously in Example 2. 

EXAM p LE 6 Use Pappus 's Theorem to find the volume and surface area of the 
torus (doughnut) obtained by rotating the disk (x - b)2 + y2 ::s a 2 

about the y-axis. Here O < a < b. (See Figure 7.10 in Section 7 .1.) 

Solution The centroid of the disk is at (b, 0) , which is at distance r = b units from 
the axis of rotation. Since the disk has area n a 2 square units, the volume of the torus is 

To find the surface area S of the torus (in case you want to have icing on the doughnut) , 
rotate the circular boundary of the disk , which has length 2na, about the y-ax is and 
obtain 

EX E R C I S ES 7 .5 
Find the centroids of the geometric structures in Exercises 1-21. 
Be alert for symmetries and opportunities to use Pappus's 
Theorem. 

1. The quarter-disk x 2 + y2 S r 2 , x ==: 0, y ::: 0 

2. The region O S y S 9 - x 2 

l 
3. The region O S x S 1, 0 S y S vi+? 

l+x 

4. The circular disk sector x 2 + y2 S r2 , 0 S y S x 

5. The circular disk segment O S y S ~ - 1 

6. The semi-elliptic disk OS y S b)l - (x / a) 2 

7. The quadrilateral with vertices (in clockwise order) (O, 0), 
(3, 1), (4, 0), and (2, -2) 

8. The region bounded by the semicircle 
y = JI - (x - 1)2 , the y-axis, and the Line y = x - 2. 

9. A hemispherical surface of radius r 

10. A solid half ball of radius r 

11. A solid cone of base radius r and height h 

12. A conical surface of base radius r and height h 

13. The plane region O S y S sinx , 0 S x S n 

14. The plane region O S y S cosx , 0 S x S n / 2 

15. 

16. 

The quarter-circle arc x 2 + y 2 = r2 , x ::: 0, y ::: O 

The solid obtained by rotating the region in Figure 7.4l(a) 
about the y-axis 

y y 
(a) (0,2) (2,2) (b) ,__<o_, 1_) _ .. ( 1, 1) 

(-1,0) ( l ,O) 

(2, 1) X 

(0,0) X (0,- 1) 

y y 
(c) (d) 

semicircle 

( 1,0) 

X (1,0) 

(- 1,0) X 

(0,- 1) semic rcles 

Figure 7.41 
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17. The region in Figure 7.4l(a) 

18. The region in Figure 7.4l(b) 

19. The region in Figure 7.4l(c) 

20. The region in Figure 7.4l(d) 

21. The solid obtained by rotating the plane region 
0::: y :S 2x - x 2 about the line y = -2 . 

22. The line segment from ( 1, 0) to (0, l) is rotated about the 
line x = 2 to generate part of a conical surface. Find the area 
of that surface. 

23. The triangle with vertices (0, 0), (1, 0), and (0, 1) is rotated 
about the line x = 2 to generate a certain solid. Find the 
volume of that solid. 

24. An equilateral triangle of edge s cm is rotated about one of 
its edges to generate a solid. Find the volume and surface 
area of that solid. 

f:l!l 25. Find to 5 decimal places the coordinates of the centroid of 
the region O ::: x ::: n / 2, 0 ::: y ::; Jx cos x. 

f:l!l 26. Find to 5 decimal places the coordinates of the centroid of 
the region O < x::: n / 2, ln(sinx) ::: y::; 0. 

27. Find the centroid of the infinitely long spike-shaped region 
lying between the x-axis and the curve y = (x + 1)- 3 and to 
the right of the y-axis. 

0 28. Show that the curve y = e-x
2 

(-oo < x < oo) generates a 
surface of finite area when rotated about the x-ax is. What 
does this imply about the location of the centroid of this 
infinitely long curve? 

29. Obtain formulas for the coordinates of the centroid of the 
plane region c::: y ::: d, 0 < f (y) ::: x ::; g(y). 

0 30. Prove part (b) of Pappus's Theorem (Theorem 2). 

ii 31. (Stability of a floating object) Determining the 
orientation that a floating object will assume is a problem of 
critical importance to ship designers. Boats must be 
designed to float stably in an upright position ; if the boat tilts 
somewhat from upright , the forces on it must be such as to 
right it again. The two forces on a floating object that need to 
be taken into account are its weight W and the balancing 
buoyant force B = -W . The weight W must be treated for 
mechanical purposes as being applied at the centre of mass 
(CM) of the object. The buoyant force, however, acts at the 
centre of buoyancy (CB), which is the centre of mass of the 
water displaced by the object, and is therefore the centroid of 
the "hole in the water" made by the object. 

For example, consider a channel marker buoy consisting 
of a hemispherical hull surmounted by a conical tower 
supporting a navigation light. The buoy has a vertical axis of 
symmetry. If it is upright , both the CM and the CB lie on this 
line, as shown in Figure 7.42(left). 
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Figure 7.42 
y 

------; --\-~---,---:,,_+:,c::..-,r)..'.:...,..,.,c--,--~\£... -- X 
t - - I ' 

I 

N 

M 

Figure 7.43 

Is this upright flotation of the buoy stable? It is if the 
CM lies below the centre O of the hemispherical hull, as 
shown in the figure. To see why, imagine the buoy tilted 
slightly from the vertical as shown in the right figure. 
Observe that the CM still lies on the axis of symmetry of the 
buoy, but the CB lies on the vertical line through 0. The 
forces Wand B no longer act along the same line, but their 
torques are such as to rotate the buoy back to a vertical 
upright position. If CM had been above O in the left figure, 
the torques would have been such as to tip the buoy over 
once it was displaced even slightly from the vertical. 

A wooden beam has a square cross-section and specific 
gravity 0.5 , so that it will float with half of its volume 
submerged. (See Figure 7.43.) Assuming it will float 
horizontally in the water, what is the stable orientation of the 
square cross section with respect to the surface of the water? 
In particular , will the beam float with a flat face upward or an 
edge upward? Prove your as ertions. You may find Maple or 
another symbolic algebra program useful. 

• 
Other Physical Applications _____ ___:__:_ ______________ _ 

ln_tl~is s~ction v:e present some examples of the use of integration to calculate quantities 
ansmg m physics and mechanics. 
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h 

Figure 7 .44 The volume of liquid above 
the area A is V = Ah. The weight of this 
liquid is p V g = pghA, so the pressure 
(force per unit area) at depth his p = pgh 

---,, R 
h ',, ___ _ 

Figure 7.45 An end plate of the water 
trough 

Hydrostatic Pressure 
The pressure p at depth h beneath the surface of a liquid is the force per unit area 
exerted on a horizontal plane surface at that depth due to the weight of the liquid above 
it. Hence p is given by 

p = pgh , 

where p is the density of the liquid , and g is the acce leration produced by gravity where 
the fluid is located. (See Figure 7.44 .) For water at the surface of the earth we have, 
approximately, p = 1,000 kg/m 3 and g = 9.8 m/s2 , so the pressure at depth h mis 

p = 9,800h N!m2 . 

The unit of force used here is the newton (N); 1 N = 1 kg-m/s2 , the force that imparts 
an acceleration of 1 m/s2 to a mass of 1 kg. 

The molecules in a liquid interact in such a way that the pressure at any depth 
acts equally in all directions; the pressure against a vertical surface is the same as that 
against a horizontal surface at the same depth. This is Pascal's principle . 

The total force exerted by a liquid on a horizontal surface (say, the bottom of a 
tank holding the liquid) is found by multiplying the area of that surface by the pressure 
at the depth of the surface below the top of the liquid. For nonhorizontal surfaces, 
however, the pressure is not constant over the whole surface , and the total force cannot 
be determined so easily. In this case we divide the surface into area elements dA, each 
at some particular depth h, and we then sum (i.e ., integrate) the corresponding force 
elements d F = pgh dA to find the total force . 

EXAM p LE 1 One vertical wall of a water trough is a semicircular plate of radius 
R m with curved edge downward. If the trough is full, so that the 

water comes up to the top of the plate, find the total force of the water on the plate. 

Solution A horizontal strip of the surface of the plate at depth h m and having width dh 
m (see Figure 7.45) has length 2,J R2 - h2 m; hence, its area is dA = 2,J R2 - h2 dh 
m2 . The force of the water on this strip is 

dF = pgh dA = 2pghJ R2 - h2 dh. 

Thus , the total force on the plate is 

1h=R loR 
F = dF = 2pg hJR 2 - h2dh 

h=O 0 

R2 R2 

=pg [ ul f2du=pg~u 3f21 
lo 3 o 

2 
~ :3 x 9,800R 3 ~ 6,533R 3 N. 

Let u = R2 - h2, 

du=-2hdh 

EXAM p LE 2 (Force on a dam) Find the total force on a section of a dam 100 m 
long and having a vertical height of 10 m, if the surface holding 

back the water is inclined at an angle of 30° to the vertical and the water comes up to 
the top of the dam. 

Solution The water in a horizontal layer of thickness dh m at depth h m makes 
contact with the dam along a slanted strip of width dh sec 30° = (2/ ../3) dh m. (See 
Figure 7.46.) The area of this strip is dA = (200/ ../3) dh m2, and the force of water 
against the strip is 

200 
dF = pghdA = ../3 x 1,000 x 9.8hdh ~ 1,131,600/idh N. 
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Figure 7.46 The dam of Example 2 
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The total force on the dam section is therefore 

F ~ 1,131,600 hdh = 1, 131,600 x - ~ 5.658 X 107 N. 1
10 102 

o 2 

30° 

\ 

\ 
dh sec 30° 

IOOm 

Work 
When a force acts on an object to move that object, it is said to have done work on the 
object. The amount of work done by a constant force is measured by the product of the 
force and the distance through which it moves the object. This assumes that the force 
is in the direction of the motion . 

work = force x distance 

Work is always related to a particular force . If other forces acting on an object cause 
it to move in a direction opposite to the force F, then work is said to have been done 
against the force F. 

Suppose that a force in the direction of the x-axis moves an object from x = a 
to x = b on that axis and that the force varies continuously with the position x of 
the object; that is, F = F(x) is a continuous function. The element of work done 
by the force in moving the object through a very short distance from x to x + dx is 
d W = F (x) dx , so the total work done by the force is 

lx=b l b 
W = dW = F(x)dx. 

x=a a 

EXAM p LE 3 (Stretching or compressing a spring) By Hooke's Law , the force 
F(x) required to extend (or compress) an elastic spring to x units 

longer (or shorter) than its natural length is proportional to x: 

F(x) = kx, 

where k is the spring constant for the particular spring. If a force of 2,000 N is 
requi red to extend a certain spring to 4 cm longer than its natural length , how much 
work must be done to extend it that far? 

Solution Since F(x) = kx = 2,000 N when x = 4 cm, we must have 
k = 2,000 / 4 = 500 N/cm. The work done in extending the spring 4 cm is 

14 x214 N 42 cm2 
W= kxdx=k- =500- x --=4 ,000N-cm=40N-m. 

o 2 0 cm 2 

Forty newton-metres Uoules) of work must be done to stretch the spring 4 cm. 
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Figure 7.47 Pumping water out of a 
conical tank 

EX A M p L E 4 (Work done to pump out a tank) Water fills a tank in the shape 
of a right-circular cone with top radius 3 m and depth 4 m. How 

much work must be done (against gravity) to pump all the water out of the tank over 
the top edge of the tank? 

Solution A thin, disk-shaped slice of water at height h above the vertex of the tank 
has radius r (see Figure 7.47) , where r = ¾ h by similar triangles. The volume of this 
slice is 

9 
d V = n r 2 dh = - n h2 dh , 

16 

and its weight (the force of gravity on the mass of water in the slice) is 

9 
dF = pgdV = - pg nh 2 dh . 

16 

The water in this disk must be raised (against gravity) a distance (4 - h) m by the 
pump . The work required to do this is 

9 
dW = l6 pg n(4 - h)h 2 dh. 

The total work that must be done to empty the tank is the sum (integral) of all these 
elements of work for disks at depths between O and 4 m: 

W = - pg n(4h 2 
- h3) dh 1

4 9 

o 16 

= J_ pg 71: (4h3 - h4) 14 
16 3 4 o 
9n 64 

= - X 1,000 X 9.8 X - ~ 3.69 X 105 N·m. 
16 3 

EXAMPLE 5 

earth is given by 

(Work to raise material into orbit) The gravitational force of 
the earth on a mass m located at height h above the surface of the 

Km 
F(h) = -(R-+-h)-2 ' 
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Figure 7.48 The Piston in Example 6 
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where R is the radius of the earth , and K is a constant that is independent of m and h. 
Determine, in terms of K and R, the work that must be done against gravity to raise an 
object from the surface of the earth to: 

(a) a height H above the surface of the earth , and 

(b) an infinite height above the surface of the earth. 

Solution The work done to raise the mass m from height h to height h + dh is 

Km 
dW = (R +h) 2 dh. 

(a) The total work to raise it from height h = 0 to height h = H is 

{H Km -Km IH ( l l ) 
W= lo (R+h) 2 dh= R+h 

O 
=Km R- R+H · 

If R and H are measured in metres and F is measured in newtons, then W is 
measured in newton-metres (N·m), or joules. 

(b) The total work necessary to raise the mass m to an infinite height is 

t'° Km ( l 1 ) Km 
W = lo (R + h) 2 dh = J~ Km R - R + H = R . 

EXAM p LE 6 One end of a horizontal tank with cross-section a square of edge 
length L metres is fixed while the other end is a square piston free 

to travel without friction along the length of the tank. Between the piston and the fixed 
end there is some water in the tank ; its depth depends on the position of the piston. 
(See Figure 7.48.) 

(a) When the depth of the water is y metres (0 ,:::: y ,:::: L), what force does it exert on 
the piston? 

(b) If the piston is X metres from the fixed end of the tank when the water depth is 
L / 2 metres, how much work must be done to force the piston in further to halve 
that distance and hence cause the water level to increase to fill the available space ? 
Assume no water leaks out but that trapped air can escape from the top of the tank . 

Solution 
(a) When the depth of water in the tank is y m, a horizontal strip on the face of the 

piston at depth z below the surface of the water (0 ,:::: z ,:::: y) and having height 
dz has area dA = L dz . Since the pressure at depth z is pg z = 9,800z N/m2 , 

the force of the water on the strip is dF = 9,800 Lz dz N. Thus , the force on the 
piston is 

F = lay 9,800L z dz = 4,900L y2 N, whereO ,:::: y,:::: L. 

(b) If the distance from the fixed end of the tank to the piston is x m when the water 
depth is y m, then the volume of water in the tank is V = Lx y m3. But we are 
given that V = L2X / 2, so we have u = LX / 2. Now the work done in moving 
the piston from x to x - dx is 

L2X2 
dW =4,900L y2(-d x ) = -4 ,900L-

2
-d x. 

4x 

Thus, the work done to move the piston from position X to position X/ 2 is 

1X/2 L3X 2 dx 
W =- 4,900-- -

X 4 x2 

= 4 900 L
3

X
2 

(~ - 2-) = 1 225N · m. 
' 4 X X ' 
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Potential Energy and Kinetic Energy 
The units of energy are the same as those of work (force x distance). Work done 
against a force may be regarded as storing up energy for future use or for conversion 
to other forms . Such stored energy is called potential energy (P.E.). For instance, 
in extending or compressing an elastic spring , we are doing work against the tension 
in the spring and hence storing energy in the spring. When work is done against a 
(variable) force F(x) to move an object from x = a to x = b, the energy stored is 

P.E. = -1b F( x ) dx . 

Since the work is being done against F, the signs of F(x) and b - a are opposite, 
so the integral is negative; the explicit negative sign is included so that the calculated 
potential energy will be positive. 

One of the forms of energy into which potential energy can be converted is kinetic 
energy (K.E.), the energy of motion. If an object of mass m is moving with velocity 
v, it has kinetic energy 

l 2 
K.E . = 2m v 

For example, if an object is raised and then dropped , it accelerates downward under 
gravity as more and more of the potential energy stored in it when it was raised is 
converted to kinetic energy. 

Consider the change in potential energy stored in a mass m as it moves along the 
x-axis from a to b under the influence of a force F( x ) depending only on x: 

P.E.(b) - P.E.(a) = -1b F (x) dx. 

(The change in P.E. is negative if m is moving in the direction of F .) According to 
Newton's second law of motion , the force F( x ) causes the mass m to accelerate, with 
acceleration dv / dt given by 

dv 
F(x) = m

dt 
(force= mass x acceleration). 

By the Chain Rule we can rewrite dv / dt in the form 

dv dv dx dv 
-=--=v- , 
dt dx dt dx 

dv 
so F(x) = mv-. Hence , 

dx 

1b dv 
P.E.(b) - P.E.(a) = - mv- dx 

a dx 

r =b 
= -m Jx=a vdv 

= -- mv2 1 1x=b 
2 x=a 

= K.E.(a) - K.E.(b). 

It follows that 

P.E.(b) + K.E .(b) = P.E.(a) + K.E.(a). 

This shows that the total energy (potential + kinetic) remains constant as the mass m 

moves under the influence of a force F, depending only on position. Such a force 
is said to be conservative , and the above result is called the law of conservation of 
energy. Conservative forces will be further discussed in Section 15.2. 
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EXAM p LE 7 (Escape velocity) Use the result of Example 5 together with the 
following known values, 

(a) the radius R of the earth is about 6,400 km, or 6.4 x 106 m, 

(b) the acceleration of gravity g at the surface of the earth is about 9. 8 m/s2 , 

to determine the constant K in the gravitational force formula of Example 5, and use 
this information to determine the escape velocity for a projectile fired vertically from 
the surface of the earth . The escape velocity is the (minimum) speed that such a 
projectile must have at firing to ensure that it will continue to move farther and farther 
away from the earth and not fall back. 

Solution According to the formula of Example 5, the force of gravity on a mass 
m kg at the surface of the earth (h = 0) is 

Km Km 
F---~-

- (R +0)2 - R 2 . 

According to Newton's second law of motion , this force is related to the acceleration 
of gravity (g) there by the equation F = mg. Thus, 

Km 
--=mg 
R2 and K = gR 2

. 

According to the law of conservation of energy, the projectile must have sufficient 
kinetic energy at firing to do the work necessary to raise the mass m to infinite height. 
By the result of Example 5, this required energy is Km / R. If the initial velocity of the 
projectile is v, we want 

l 2 Km 
-mv > --
2 - R 

Thus v must satisfy 

V '.:': ~ = /2gR ::::: ) 2 X 9.8 X 6.4 X 106 ::::: 1.12 X 104 m/s. 

Thus, the escape velocity is approximately 11.2 km/s and is independent of the mass 
m. In this calculation we have neglected any air resistance near the surface of the earth . 
Such resistance depends on velocity rather than on position, so it is not a conservative 
force. The effect of such resistance would be to use up (convert to heat) some of the 
initial kinetic energy and so raise the escape velocity. 

1. A tank has a square base 2 m on each side and vertica l sides 
6 m high. If the tank is filled with water, find the total force 
exerted by the water (a) on the bottom of the tank and (b) on 
one of the four vertical walls of the tank. 

200m 

2. A swimming pool 20 m long and 8 m wide has a sloping 
plane bottom so that the depth of the pool is I m at one end 
and 3 m at the other end. Find the total force exerted on the 
bottom if the pool is full of water. 

3. A dam 200 m long and 24 m high presents a sloping face of 
26 m slant height to the water in a reservoir behind the dam 
(Figure 7.49). If the surface of the water is level with the top 
of the dam, what is the total force of the water on the dam? Figure 7.49 
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4. A pyramid with a square base, 4 m on each side and four 
equilateral triangular faces, sits on the level bottom of a lake 
at a place where the lake is 10 m deep. Find the total force of 
the water on each of the triangular faces. 

5. A lock on a canal has a gate in the shape of a vertical 
rectangle 5 m wide and 20 m high. If the water on one side 
of the gate comes up to the top of the gate, and the water on 
the other side comes only 6 m up the gate, find the total force 
that must be exerted to hold the gate in place. 

6. If 100 N·cm of work must be done to compress an elastic 
spring to 3 cm shorter than its natural length, how much 
work must be done to compress it l cm further? 

7. Find the total work that must be done to pump all the water 
in the tank of Exercise 1 out over the top of the tank. 

8. Find the total work that must be done to pump all the water 
in the swimming pool of Exercise 2 out over the top edge of 
the pool. 

9. Find the work that must be done to pump all the water in a 
full hemispherical bowl of radius a m to a height h m above 
the top of the bowl. 

D 10. A horizontal cylindrical tank has radius R m. One end of the 
tank is a fixed disk, but the other end is a circular piston of 
radius R m free to travel along the length of the tank. There 
is some water in the tank between the piston and the fixed 
end; its depth depends on the position of the piston. What 
force does the water exert on the piston when the surface of 
the water is y m ( - R ::: y ::: R) above the centre of the 
piston face? (See Figure 7 .50.) 

Figure 7.50 

D 11. Continuing the previous problem, suppose that when the 
piston is X m from the fixed end of the tank the water level is 
at the centre of the piston face . How much work must be 
done to reduce the distance from the piston to the fixed end 
to X / 2 m, and thus cause the water to fill the volume 
between the piston and the fixed end of the tank? As in 
Example 6, you can assume the piston can move without 
friction, and that trapped air can escape. Hint: The 
technique used to solve part (b) of Example 6 is very difficult 
to apply here. Instead, calculate the work done to raise the 
water in half of the bottom half-cylinder of length X so that it 
fills the top half-cylinder of length X / 2. 

D 12. A bucket is raised vertically from ground level at a constant 
speed of 2 rn/min by a winch. If the bucket weighs I kg and 
contains 15 kg of water when it starts up but loses water by 
leakage at a rate of 1 kg/min thereafter, how much work must 
be done by the winch to raise the bucket to a height of 10 m? 

Applications in Business, Finance, and Ecology 
If the rate of change J' (x ) of a function f (x ) is known, the change in value of the 
function over an interval from x = a to x = b is just the integral of J' over [a, b ]: 

f(b) - J(a) = 1b J'(x) dx. 

For examp le, if the speed of a moving car at time t is v(t) km/h, then the distance 

travelled by the car during the time interval [O, T] (hours) is J[ v(t) dt km. 

Similar situations arise naturally in business and eco nomic s, where the rates of 
change are often called marginals. 

EXAM p LE 1 (Finding total revenue from marginal revenue) A supplier of 
calculators realizes a marginal revenue of $15 - 5e - x/SO per cal

culator when she has sold x calculators . What will be her total revenue from the sale 
of 100 calculators? 

Solution The marginal revenue is the rate of change of revenue with respect to the 
number of calculators sold. Thus , the revenue from the sa le of dx calculators after x 
have already been sold is 

dR = (15 - 5e-x /SO) dx dollars . 
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The total revenue from the sale of the first I 00 calculators is $R , where 

fx=IOO 1100 
R = d R = (15 - 5e- x/SO) dx 

x=O 0 

1

100 
= (15x + 250e -x /SO) 

0 

= 1, 500 + 250e - 2 
- 250 ~ 1, 283.83, 

that is, about $1,284. 

The Present Value of a Stream of Payments 
Suppose that you have a business that generates income continuously at a variable rate 
P(t) dollars per year at time t and that you expect this income to continue for the next 
T years. How much is the business worth today? 

The answer surely depends on interest rates. One dollar to be received t years from 
now is worth less than one dollar received today, which could be invested at interest to 
yield more than one dollar t years from now. The higher the interest rate, the lower the 
value today of a payment that is not due until sometime in the future . 

To analyze this situation, suppose that the nominal interest rate is r % per annum, 
but is compounded continuously. Let t5 = r / 100. As shown in Section 3.4, an 
investment of $1 today will grow to 

( 
t5)"1 lim 1 + - = e01 

n~oo n 
dollars 

after t years. Therefore , a payment of $1 after t years must be worth only $e- 0' today. 
This is called the present value of the future payment. When viewed this way, the 
interest rate t5 is frequently called a discount rate; it represents the amount by which 
future payments are discounted . 

Returning to the business income problem , in the short time interval from t to t+dt , 
the business produces income $P(t)dt , of which the present value is $e- 01 P(t)dt. 
Therefore , the present value $ V of the income stream over the time interval [0, T] is 
the "sum" of these contributions: 

EXAM p LE 2 What is the present value of a constant, continual stream of pay-
ments at a rate of 10,000 per year, to continue forever , starting 

now? Assume an interest rate of 6% per annum , compounded continuously. 

Solution The required present value is 

V = e- 0-061 10,000dt = 10,000 Jim _e _ · - ~ $166,667. 100 - 0061 IR 
O R~oo - 0.06 0 

The Economics of Exploiting Renewable Resources 
As noted in Section 3.4 , the rate of increase of a biological population sometimes 
conforms to a logistic model 1 

dx ( X) Tt = kx 1 - z . 
1 This example was suggested by Professor C. W. Clark, of the University of British 

Columbia. 
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Here , x = x(t) is the size (or biomass) of the popu lation at time t, k is the natural rate 
at which the population would grow if its food supply were unlimited, and L is the 
natural limiting size of the population - the carrying capacity of its environment. Such 
models are thought to apply, for example, to the Antarctic blue whale and to several 
species of fish and trees. If the resource is harvested (say, the fish are caught) at a rate 
h(t) units per year at time t, then the population grows at a slower rate: 

dx ( X) - = kx l - - - h(t). 
dt L 

In particular, if we harvest the population at its current rate of growth, 

h(t) = kx ( 1 - i) , 
then dx/dt = 0, and the population will maintai n a constant size. Assume that each 
unit of harvest produces an income of $p for the fishing industry. The total annual 
income from harvesting the resource at its current rate of growth will be 

T = ph(t) = pk x (1 - i). 
Considered as a function of x, this total annual income is quadratic and has a maximum 
value when x = L/ 2, the value that ensures dT / dx = 0. The industry can maintain a 
stable maximum annual income by ensuring that the population level remains at half 
the maximal size of the population with no harvesting. 

The analysis above, however, does not take into account the discounted value 
of future harvests. If the discount rate is 6, compounded continuously, then the 
present value of the income $ph(t) dt due between t and t + dt years from now 
is e- 01 ph(t) dt. The total present value of all income from the fishery in future 
years is 

T = fo00 

e- i5t ph(t) dt. 

What fishing strategy will maximize T? If we substitute for h(t) from equation (*) 
governi ng the growth rate of the population, we get 

r,o - ot [ ( X ) dx ] T = lo pe kx I - L - dt dt 

= kpe-i5tx 1- - dt- pe- 01 -dt . loo ( X) loo dx 
o L o dt 

dx 
Integrate by parts in the last integral above, taking U = pe- 01 and dV = - dt: 

dt 

T = fo00 

kp e-
01

x (1 - f) dt - [pe -orx[ + fo
00 

p6e -
01

xdt ] 

= px(O) + fo
00 

pe-
01 

[kx (1 - f)-6x J dt . 

To make this expressio n as large as possible , we should choose the population size x 
to maximize the quadratic expression 

Q (x) = kx ( 1 - f) -6x 

at as early a time t as possible , and keep the population size constant at that level 
thereafter. The maximum occurs where Q' (x) = k - (2kx / L) - 6 = 0, that is, where 

L 6L L 
X = 2 - 2k = (k - J) 2k. 

The maximum present value of the fishery is realized if the population level x is held 
at this value. Note that this population level is smaller than the optimal level L/ 2 we 
obtained by ignoring the discount rate. The higher the discount rate 6, the smaller 
will be the income -maximizing population level. More unfortunately, if 6 ::::: k, the 
model predicts greatest income from fishing the species to extinctio n immediately! 
(See Figure 7.51.) 
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: y= kx(i -f ) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

:L/ 2 

Figure 7.51 The greater the discount rate 

o, the smaller the population size x that 

will maximize the present value of future 
income from harvesting. If o c".: k, the 

model predicts fishing the species to 
extinction extinction tx = (k - '5)L/ (2k) L x 

Of course, this model fails to take into consideration other factors that may affect 
the fishing strategy, such as the increased cost of harvesting when the population level 
is small and the effect of competition among various parts of the fishing industry. 
Nevertheless, it does explain the regrettable fact that, under some circumstances, an 
industry based on a renewable resource can find it in its best interest to destroy the 
resource . This is especially likely to happen when the natural growth rate k of the 
resource is low, as it is for the case of whales and most trees. There is good reason not 
to allow economics alone to dictate the management of the resource. 

EXERCISES 7.7 

1. (Cost of production ) The marginal cost of production in a 
coa l mine is $6 - 2 x 10-3x + 6 x 10-6x 2 per ton after the 
first x tons are produced each day. In addition, there is a 
fixed cost of $4,000 per day to open the mine. Find the total 
cos t of production on a day when 1,000 tons are produced. 

2. (Total sales) The sales of a new computer chip are modelled 
by s(t) = te- 1110, where s(t) is the number of thousands of 
chips sold per week, t weeks after the chip was introduced to 
the market. How many chips were sold in the first year? 

3. (Internet connection rates ) An internet service provider 
charges clients at a continuously decreasing marginal rate of 
$4/ (1 + .Ji) per hour when the client has already used t 
hours durin g a month. How much will be billed to a client 
who uses x hours in a month ? (x need not be an integer.) 

4. (Total revenue from declining sales) The price per 
kilogram of maple syrup in a store rises at a constant rate 
from $10 at the beginning of the year to $15 at the end of the 
year. As the price rises, the quantity sold decrease s; the sales 
rate is 400 / (1 + O.lt) kg/year at time t years, (0 :St .:S 1). 
What total revenue does the store obtain from sales of the 
syrup during the year? 

(Stream of payment problems ) Find the present value of a 
contin uous stream of payments of $ 1,000 per year for the periods 
and discount rates given in Exercises 5-10 . In each case the 
discount rate is compo unded contin uously. 

5. 10 years at a discount rate of 2% 

6. 10 years at a discount rate of 5% 

7. 10 years beginning 2 years from now at a discount rate of 8% 

8. 25 years beginnin g 10 years from now at a discount rate 
of5% 

9. For all futur e time at a discount rate of 2% 

10. Beginning in 10 years and conti nuing forever after at a 
discount rate of 5% 

11. Find the pre ent value of a continuous stream of payment s 
over a 10-year period beginning at a rate of $1,000 per year 
now and increasing steadily at $100 per year. The discount 
rate is 5%. 

12. Find the present value of a continuous stream of payment s 
over a 10-year period beginning at a rate of $1,000 per year 
now and increasing steadily at 10% per year . The discount 
rate is 5%. 

13. Money flows continuou sly into an account at a rate of $5,000 
per year. If the account earns interest at a rate of 5% 
compounded continuously , how much will be in the account 
after 10 years? 

81 14. Money flows continuously into an account beginning at a 
rate of $5,000 per year and increasing at 10% per year. 
Interest causes the account to grow at a real rate of 6% (so 
that $1 grows to $1.06 1 int years). How long will it take for 
the balance in the account to reach $1,000,000? 

15. If the disco unt rate ovaries with time , say o = o(t), show 
that the present value of a payment of $P duet years from 
now is $ P e-l(r), where 

,l (t) = { o(r)dr. 

What is the value of a strea m of payment s due at a rate $P(t) 

at time t , from t = 0 to t = T ? 

9 16. (Discount rates and population models) Suppose that 
the growth rate of a population is a function of the popul ation 
size: dx / dt = F(x). (For the logistic model , 
F( x) = kx(l - (x / L)) .) If the population is harvested at 
rate h (t) at time t , then x (t) satisfies 

dx - = F(x) - h(t) . 
dt 

www.konkur.in



434 CHAPTER 7 Applications of Integration 

Show that the value of x that maximizes the present value of 
all future harvests satisfies F ' (x) = o, where o is the 
(continuously compounded) discount rate. Hint: Mimic the 
argument used above for the logistic case. 

$ I 0,000. Assuming that the blue whale population satisfies a 
logi tic model, and using the data above, find the following: 

(a) the maximum sustainable annual harvest of blue whales. 

(b) the annual revenue resulting from the maximum annual 
17. (Managing a fishery) The carrying capacity of a certain 

lake is L = 80,000 of a certain species of fish. The natural 
growth rate of this species is 12% per year (k = 0.12). Each 
fish is worth $6. The discount rate is 5%. What population 
of fish should be maintained in the lake to maximize the 
present value of all future revenue from harvesting the fish? 
What is the annual revenue resulting from maintaining this 
population level? 

18. (Blue whales) It is speculated that the natural growth rate 
of the Antarctic blue whale population is about 2% per year 
(k = 0.02) and that the carrying capacity of its habitat is 
about L = 150,000. One blue whale is worth, on average, 

sustainable harvest. 

(c) the annual interest generated if the whale population 
(assumed to be at the level L / 2 supporting the maximum 
sustainable harvest) is exterminated and the proceeds 
invested at 2%. (d) at 5%. 

(e) the total present value of all future revenue if the 
population is maintained at the level L/ 2 and the 
discount rate is 5%. 

D 19. The model developed above does not allow for the costs of 
harvesting. Try to devise a way to alter the model to take this 
into account. Typically, the cost of catching a fish goes up as 
the number of fish goes down . 

• _ P_ro_b_ab_il_ity ________________ _ 
Probability theory is a very important field of application of calculus. This subject 
cannot , of course, be developed thoroughly here -a n adequate presentation require s 
one or more whole courses-but we can give a brief introduction that suggests some 
of the ways sums and integral s are used in probability theory. 

In the context of probability theory the term experiment is used to denote a proce ss 
that can result in different outcomes. The set of all po ssible outcomes is called the 
sample space for the experiment. For example , the proce ss might be the tossing of a 
coin for which we could have three poss ible outcomes: H (the coin lands horizontal 
with "heads " showing on top), T (the coin land s horizontal with "tails" showing on 
top), or E (the coin land s and remains standing on its edge). Of course, outcome Eis 
not very likely unless the coin is quite thick , but it can happen. So our sample space 
is S = {H, T, E}. Suppose we were to toss the coin a great many times, and observe 
that the outcomes H and T each occur on 49 % of the tosses while E occurs only 2% 
of the time. We would say that on any one toss of the coin the outcomes H and T each 
have probability 0.49 and E has probability 0.02 . 

An event is any subset of the sample space . The probability of an event occurring 
is a real number between O and 1 that mea sures the proportion of times the outcome 
of the experiment can be expected to belong to that event if the experiment is repeated 
many time s. If the event is the who le sample space , its occurrence is certain, and its 
probability is 1; if the eve nt i the empty set 0 = { }, it cannot possibly occur, and its 
probability is 0 . For the coin-tossing experiment, there are eight possible events; we 
record their probabilitie s as follows: 

Pr(0) = 0, Pr({T}) = 0.49 , Pr({H , T}) = 0.98, Pr({T, E}) = 0.51 , 

Pr({H}) = 0.49 , Pr ({E}) = 0.02 , Pr({H , E}) = 0 .51 , Pr(S) = 1. 

Given any two events A and B (subsets of sample space S) , their intersection 
A n B consists of tho se outcomes belon ging to both A and B; it is sometimes called 
the event "A and B ." Two events are disjoint if A n B = 0; no outcome can belong 
to two disjoint event s. For instance , an event A and its complement, AC, consisting of 
all outcomes in S that don ' t belong to A , are disjoint. The union of two events A and 
B (also called the event "A or B") consists of all outcome s that belong to at least one 
of A and B . Note that AU Ac = S. 
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Figure 7 .52 The prob ability function for 
a single rolled die 
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We summarize the basic rule s governi ng probability as follows: if S is a sample 
space, 0 is the empty subset of S, and A and Bare any events, then 

(a) 0::: Pr(A) ::: 1, 

(b) Pr(0) = 0 and Pr(S) = 1, 

(c) Pr(A c) = l - Pr(A), 

(d) Pr(A U B) = Pr(A) + Pr(B) - Pr(A n B). 

Note that just adding Pr(A ) + Pr(B) would count outcomes in A n B twice. As 
an example, in our coin-tossing experiment if A = {H, T} and B = {H, E}, then 
Ac = {E}, AU B = {H, T, E} = S, and An B = {H}. We have 

Pr(A c) = Pr({E}) = 0.02 = 1 - 0.98 = 1 - Pr({H, T}) = 1 - Pr(A) 

Pr(A U B) = Pr(S) = 1 = 0.51 + 0.51 - 0.02 = Pr(A) + Pr(B) - Pr(A n B). 

Discrete Random Variables 
A random variable is a function defined on a sample space. We will denote random 
variables by using uppercase letter s such as X and Y. If the sample space contains only 
discrete outcomes (like the sample space for the coin-tossing experiment), a random 
variable on it will have only discrete values and will be called a discrete random 
variable. If, on the other hand, the sample space contains all possible measurements 
of, say, height s of trees, then a random variable equal to that measurement can itself 
take on a continuum of real values and will be called a continuous random variable. 
We will study both types in thjs section. 

Most discrete random variables have only finjtely many values, but some can 
have infinitely many values if, say, the samp le space consisted of the positive integers 
{l, 2, 3, ... }. A discrete random variable X has an associated probability function 
f defined on the range of X by f (x) = Pr(X = x) for each possible value x of X . 
Typically, f is repre sented by a bar grap h; the sum of the height s of all the bars must 
be 1, 

L f(x) = LPr(X = x) = 1, 
X X 

since it is certain that the experiment must produce an outcome, and therefore a value 
of X. 

EXAM p LE 1 A single fair die is rolled so that it will show one of the number s 1 
to 6 on top when it stops. If X denotes the number showing on any 

roll, then X is a discrete random variable with 6 possible values. Since the die is fair, 
no one value of Xis any more likely than any other, so the probability that the number 
showing is n must be 1/6 for each po sible value of n. If f is the probability function 
of X, then 

1 
f(n) =Pr(X =n) = -

6 
for each n in {1, 2, 3, 4, 5, 6}. 

The discrete random variable X is therefore said to be distributed uniformly . All the 
bars in the graph of its probability function f have the same height. (See Figure 7.52.) 
Note that 

6 

L Pr(X = n) = 1, 
11= ) 

reflecting the fact that the rolled die must certainly give one of the six possible outcomes. 
The probability that a roll will produce a value from 1 to 4 is 

4 1 1 1 1 2 
Pr(l < X < 4) = L Pr(X = n) = - + - + - + - = -. 

- - 11=) 6 6 6 6 3 
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6 
J(k) = Pr(X = k) 
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Figure 7 .53 The probability function for 
the sum of two dice 

EXAM p LE 2 What is the sam ple space for the numbers showing on top when 
two fair dice are rolled . What is the probability that a 4 and a 2 

will be showing? Find the prob ability function for the random variable X that gives 
the sum of the two number s showing on the dice. What is the probability that that sum 
is less than IO? 

Solution The sample space consists of all pairs of integer s (m, n) satisfying 1 S m S 
6 and 1 S n S 6. There are 36 such pairs, so the probability of any one of them is 
1/36 . Two of the pair s, (4, 2) and (2, 4), correspond to a 4 and a 2 showing, so the 
probability of that event is (1/ 36) + (1/ 36) = 1/ 18. The random variable X defined 
by X (m , n) = m + n has 11 po ssible values , the integers from 2 to 12 inclusive. The 
following table lists the pair s that produ ce each value k of X and the probability f (k) 
of that value, that is, the value of the probability function at k. 

Table 2. Probability function for the sum of two dice 

k = m + n outcome s for which X = k f (k) = Pr(X = k) 

2 
3 
4 
5 
6 
7 
8 
9 
IO 
11 
12 

(1, 1) 
(I , 2), (2, 1) 
(1, 3), (2, 2), (3, 1) 
(1, 4) , (2, 3) , (3, 2), (4, 1) 
(1, 5) , (2, 4) , (3 , 3), (4 , 2), (5, 1) 
(1, 6) , (2, 5), (3, 4) , (4 , 3) , (5 , 2), (6, 1) 

~.~.o.~.~.~.0.~,0.~ 
(3, 6), (4, 5), (5, 4) , (6, 3) 
(4, 6), (5, 5) , (6, 4) 
(5 , 6) , (6 , 5) 
(6 , 6) 

1/ 36 
2/36 = 1/ 18 
3/36 = 1/ 12 
4/36 = 1/ 9 
5/3 6 
6/36 = 1/ 6 
5/3 6 
4 /3 6 = l / 9 
3/36 = 1/ 12 
2/ 36 = 1/ 18 
1/3 6 

The bar graph of the probabilit y function f is shown in Figure 7 .53 . We have 

Pr(X < 10) = 1 - Pr(X > 10) = 1 - - + - + - = - . (
1 l 1) 5 

- 12 18 36 6 

Expectation, Mean, Variance, and Standard Deviation 
Consider a simple gambling game in which the player pays the house C dollars for 
the privilege of rolling a sing le die and in which he wins X dollars , where X is the 
number showing on top of the rolled die. In each game the possible winnings are 1, 2, 
3, 4, 5, or 6 doll ars, each with probability l/6. Inn games the player can expect to win 
about n/6 + 2n / 6 + 3n/ 6 + 4n / 6 + 5n/ 6 + 6n / 6 = 2ln / 6 = 7n / 2 dollars, so that 
his expec ted average winnings per game are 7/2 dollars, that is, $3.50. If C > 3.5, the 
player can expect , on average, to lose money. The amou nt 3.5 is called the expectation , 
or mean, of the discrete rand om variable X. The mean is usually denoted byµ , the 
Greek letter "mu" (pronounced "mew"). 
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Figure 7.54 A probability function with 
mean Jt = 5 and standard deviation 
a = 1.86 
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Figure 7.55 A probability function with 
mean p = 5.38 and standard deviation 
a= 3.05 
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Mean or expectation 

If X is a discrete random variable with range of values R and probability function 
f, then the mean (denoted p) , or expectation of X (denoted E(X)), is 

Jl = E(X) = I> f(x). 
xE R 

Also, the expectation of any function g(X) of the random variable Xis 

E(g(X)) = L g(x) f(x). 
xe R 

Note that in this usage E(X) does not define a function of X but a constant (parameter) 
associated with the random variable X. Note also that if f (x) were a mass density 
such as that studied in Section 7.4 , then p would be the moment of the mass about 0 
and, since the total mass would be L xe R f(x) = l , Jl would in fact be the centre of 
mass . 

Another parameter used to describe the way probability is distributed for a random 
variable is the variable 's standard deviation. 

Variance and standard deviation 

The variance of a random variable X with range R and probability function f is 
the expectation of the square of the di tance of X from its mean Jt. The variance 
is denoted a 2 or Var(X) . 

a 2 = Var(X) = E((X - p) 2
) = L (x - p) 2 f(x) . 

xe R 

The standard deviation of X is the square root of the variance and therefore is 
denoted a . 

The symbol a is the lowerc ase Greek letter "sigma ." (The symbol L used for sum
mation is an upperca se sigma.) The standard deviation gives a measure of how spread 
out the probability distribution of X is. The smal ler the standard deviation, the more 
the probability is concentrated at values of X close to the mean . Figure 7.54 and 
Figure 7.55 illustrate the probability functions of two random variables with sample 
space {1, 2, . .. , 9), one having sma ll a and one with large a. Note how a significant 
fraction of the total probability lies between p - a and p + a in each case. Note 
also the distribution of probability in Figure 7.54 is symmetric , resulting in p = 5, the 
midpoint of the sample space, while the distribution in Figure 7.55 is skewed a bit to 
the right, resulting in p > 5 . 

Since L xe R f(x) = 1, the expression given in the definition of variance can be 
rewritten as follows: 

a 2 = Va.r(X) = L (x2 
- 2px + Jt2) f(x) 

xe R 

= I: x2 f(x) - 2p L xf(x) + p 2 L f(x) 
xe R xe R xe R 

= L x2 f(x) - 2p 2 + 1t2 = E(X 2) - µ 2, 
xe R 

that is, 

a 2 = Var(X) = E(X 2) - p 2 = E(X 2
) - (E(X)) 2. 
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Therefore, the standard deviation of X is given by 

EXAMPLE 3 Find the mean of the random variable X of Example 2. Also find 
the expectation of X2 and the standard deviation of X. 

Solution We have 

1 2 3 4 5 6 
µ = E(X) = 2 X - + 3 X - + 4 X - + 5 X - + 6 X - + 7 X -

36 36 36 36 36 36 
5 4 3 2 1 + 8 X - + 9 X - + 10 X - + 11 X - + 12 X - = 7 

36 36 36 36 36 ' 

a fact that is fairly obvious from the symmetry of the graph of the probability function 
in Figure 7.53. Also, 

1 2 3 4 5 
£(X 2

) = 22 
X - + 32 

X - + 42 
X - + 52 

X - + 62 
X -

36 36 36 36 36 
6 5 4 3 + 72 

X - + 82 
X - + 92 

X - + 102 
X -

36 36 36 36 

+ 112 X 2-+ 122 X ~ = l ,
974 ~ 54.8333 . 

36 36 36 

The variance of Xis a 2 = E(X 2 ) - µ 2 ~ 54.8333 - 49 = 5.8333, so the standard 
deviation of Xis a ~ 2.4152. 

Continuous Random Variables 
Now we consider an example with a continuous range of possible outcomes. 

EXAM p LE 4 Suppose that a needle is dropped at random on a flat table with a 
straight line drawn on it. For each drop, let X be the number of 

degrees in the (acute) angle that the needle makes with the line. (See Figure 7.56(a).) 
Evidently X can take any real value in the interval [O, 90]; therefore, X is called a 
continuous random variable . The probability that X takes on any particular real 
value is 0. (There are infinitely many real numbers in [O, 90] and none is more likely 
than any other.) However , the probability that X lies in some interval, say [10, 20], is 
the same as the probability that it lies in any other interval of the same length . Since 
the interval has length 10 and the interval of all possible values of X has length 90, this 
probability is 

10 l 
Pr(lO < X < 20) = - = -. - - 90 9 

More generally, if O _:::: x 1 _:::: x2 :S 90, then 

1 
Pr(x1 :S X :S x2) = 

90 
(x2 - x1) . 

This situation can be conveniently represented as follows: Let f(x) be defined on the 
interval [O, 90], taking at each point the constant value 1/90: 

1 
f(x) = 90 ' 0 .'.S X .'.S 90. 

The area under the graph off is 1, and Pr(x1 :S X :S x2) is equal to the area under that 
part of the graph lying over the interval [xi , x2]. (See Figure 7.56(b).) The function 
f (x) is called the probability density function for the random variable X. Since f (x) 
is constant on its domain , X is said to be uniformly distributed . 
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(a) X is the number of degrees in the 
acute angle the needle makes with the 
line 

(b) The probability density function f of 
the random variable X 
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.·······-\'~ 

line 
(a) 

\~" 
X( \_ 

Probability density functions 

y 

I 
90 

XJ 

(b) 

y = f(x) 

I 

X2 90 X 

A function defined on an interval [a, b] is a probability density function for a 
continuous random variable X distributed on [a, b] if, whenever xi and x2 satisfy 
a :S x1 :S x2 :Sb , we have 

1
x2 

Pr(x1 :S X :S x2) = f(x)dx. x, 
In order to be such a probability density function , f must satisfy two conditions: 

(a) f(x) 2: 0 on [a, b] (probability cannot be negative) and 

(b) J: f(x) dx = 1 (Pr(a :S X :Sb)= 1). 

These ideas extend to random variables distributed on semi-i nfinite or infinite intervals, 
but the integrals appearing will be improper in those cases. In any event, the role 
played by sums in the analysis of discrete random variables is taken over by integrals 
for continuous random variable . 

In the example of the dropping needle , the probability density function has a 
horizontal straight line graph, and we termed such a probability distribution uniform . 
The uniform probability density function on the interval [a, b] is 

J(x)=(g~a ifa_:Sx .:Sb 

otherwise. 

Many other functions are commonly encountered as density functions for continuous 
random variables. 

EXAM p LE 5 (The exponential distribution) The length of time T that any 
particular atom in a radioactive sample survives before decaying is 

a random variable taking values in [O, oo ). It has been observed that the proportion of 
atoms that survive to time t becomes small exponentially as t increases; thus , 

Pr(T 2: t) =C e-kt. 

Let f be the probability density function for the random variable T. Then 

[ )O f(x) dx = Pr(T 2:: t) = ce-kr . 

Differentiating this equation with respect to t (using the Fundamental Theorem of 
Calculus), we obtain - f (t) = -Cke -k r, so f (t) = Cke - k1

• C is determined by the 
requirement that fa°° f (t) dt = 1. We have 

1 = Ck (JO e-kt dt = lim Ck {Re -kt dt = -C lim (e-kR - 1) = C. 
lo R --H )O lo R--HJO 

Thus, C = I and f(t) = ke-k 1
• Note that Pr(T 2: (ln2) / k) = e- k(lnl)/ k 1/ 2, 

reflecting the fact that the half-life of such a radioactive sample is (In 2) / k. 
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DEFINITIONS 

I 

EXAMPLE 6 For what value of C is f(x) = C(l - x 2) a probability density 
function on [-1 , l ]? If X is a random variable with this density , 

what is the probability that X S 1/ 2? 

Solution Observe that f (x) ::: 0 on [- 1, l] if C ::: 0. Since 

f 
I 

f (x) dx = Cf 1 

(1 - x 2) dx = 2C ( x - x
3

) I' = 
4

C , 
- I - I 3 0 3 

f(x) will be a probability density function if C = 3/ 4. In this case 

Pr (x .::': ~) = ~ f I / 2 (1 - x2) dx = ~ (x - x 3) I I / 2 
2 4 - I 4 3 - 1 

=~(~-_2._-( - 1) + -1)=27_ 
4 2 24 3 32 

By analogy with the discrete case , we formulate definitions for the mean (or expec
tation) , variance, and standard deviation of a continuous random variable as follows : 

If Xis a continuous random variable on [a , b] with probability density function 
f(x), the meanµ, (or expectation E(X)) of Xis 

µ = E(X) = 1b xf(x) dx. 

The expectation of a function g of X is 

E(g(X)) = 1b g(x) f(x) dx. 

Similarly , the variance a 2 of X is the mean of the squared deviation of X from 
its mean: 

a 2 = Var(X) = E((X - /t) 2) = 1b (x - µ)2 f(x) dx, 

and the standard deviation is the square root of the variance. 

As was the case for a discrete random variable, it is easily shown that 

Again the standard deviation gives a mea sure of how spread out the probability distri
bution of X is. The smaller the standard deviation , the more concentrated is the area 
under the density curve around the mean , and so the smaller is the probability that a 
value of X will be far away from the mean . (See Figure 7.57.) 

EXAMPLE 7 

X S µ+ a) . 

Find the meanµ and the standard deviation a of a random variable 
X distributed uniformly on the interval [a , b]. Find Pr(µ - a S 

Solution The probability den sity function is f (x) = 1/ (b-a) on [a, b], so the mean 
is given by 

1b X 1 x
2 lb 

µ = E(X) = --dx = ---
0 b-a b-a2 0 

1 b2 - a2 

2 b-a 
b+a 

2 
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small standard deviations 
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y y 

large a 

X X 

Hence, the mean is, as might have been anticipated, the midpoint of [a, b ]. The 
expectation of X2 is given by 

E(X 2) = --dx = ---lb x 2 1 x31b 
0 b-a b-a3

0 

Hence, the variance is 

2 ( 2) 2 b2 +ab+ a2 
(J =EX -µ =--

3
--

and the standard deviation is 

b-a 
(J = r,:, ~ 0.29(b - a). 

2-v 3 

Finally , 

1 b3 - a3 
----
3 b-a 

b2 + 2ab +a 2 

4 

b2 +ab+ a2 

3 

(b-a)2 

12 

1µ+a dx I 2(b - a) 1 
Pr(µ -(J::: X ::: µ +(J) = -- = ----,--,-- = - ~ 0.577. 

µ -a b - a b - a 2../3 ../3 

EXAM p L E 8 Find the mean µ and the standard deviation (J of a random variable 
X distributed exponentially with density function f (x) = ke-k x 

on the interval [0, oo) . Find Pr(µ - (J ::: X::: µ + (J). 

Solution We use integration by part s to find the mean : 

µ = E(X) = k fo00 

x e- kx dx 

= Jim k {R xe-kx dx 
R->oo lo Let 

Then 

U = x , 

dU = dx , 

= Jim (- x e- kxl R + {R e-kx dx) 
R->oo O lo 

= lim ( - Re- kR - ~( e-k R - 1)) = ~. 
R->oo k k 

dV = e- kx dx . 

V = -e - kx / k. 

since k > 0. 

Thus, the mean of the exponential distribution is 1/ k. This fact can be quite useful in 
determining the value of k for an exponentially distributed random variable. A similar 
integration by parts enables us to evaluate 
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Figure 7 .58 Exponential density 
functions 

DEFINITION 

I 

so the variance of the exponential distribution is 

and the standard deviation is equal to the mean 

1 
(J = µ = -. 

k 

Now we have 

Pr(µ - CJ :::: X :::: µ+CJ)= Pr(O:::: X:::: 2/ k) 

{ 2/ k 
= k lo e-kx dx 

= -e-kx1:/k 
= 1 - e- 2 ~ 0.86, 

which is independent of the value of k. Exponential densities for small and large values 
of k are graphed in Figure 7.58. 

y 

k 

I 
k 

The Normal Distribution 

X 

y 

small k 

k 
y = ke-k x 

I 
k 

X 

The most important probability distributions are the so-called normal or Gaussian 
distributions. Such distributions govern the behaviour of many interesting random 
variables, in particular , those associated with random errors in measurements. There 
is a family of normal distributions, all related to the particular normal distribution 
called the standard normal distribution , which has the following probability density 
function: 

The standard normal probability density 

f( z) = - 1
-e - z

2!2, -oo < z < oo. 
~ 

It is common to use z to denote the random variable in the standard normal distribution ; 
the other normal distributions are obtained from this one by a change of variable. The 
graph of the standard normal density has a pleasant bell shape , as shown in Figure 7.59. 

As we have noted previously , the function e- z
2 

has no elementary antiderivative, 
so the improper integral 

/

00 
2 

I= e- z 12 dz 
- 00 
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Figure 7.59 The standard normal density 
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Y = !1,,u(x) 

X 

Figure 7.60 A general normal density 
with meanµ 
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cannot be evaluated using the Fundamental Theorem of Calculus , although it is a 
convergent improper integral. The integral can be evaluated using techniques of 
multivariable calculus involving double integrals of functions of two variables. (We 
do so in Example 4 of Section 14.4.) The value is / = ,./fi, which ensures that the 
above-defined standard normal density f (z) is indeed a probability density function: 

f( z) d z = -- e-z 12 d z = 1. 1
00 

1 100 

2 

-00 .Jin -oo 

Since ze -z
2
12 is an odd function of z and its integral on ( -oo , oo) converges, the mean 

of the standard normal distribution is 0: 

µ = E(Z) = -- ze -z 12 d z = 0 . l 100 

2 

.Jin - oo 

We calculate the variance of the standard normal distribution using integration by parts 
as follows: 

Let U = z, dV = ze-z
2
J2 d z . 

Then dU = dz , V = -e -z2 ;2_ 

= -- Jim - ze-z 12 + e-z 12 d z 1 ( 
2 IR f R 2 ) 

,./fi R-+oo - R - R 

=-
1
- lim (-2Re - R

2
12)+-

1-f e-z
2
12 dz 

,Jin R-+ oo .Jin -oo 

=0+1=1. 

Henc e, the standard deviation of the standard normal distribution is 1. 

Other normal distributions are obtained from the standard normal distribution by 
a change of variable. 

The general normal distribution 

A random variable X on ( -oo , oo) is said to be normally distributed with mean 
µ and standard deviation a (where µ is any real number and a > 0) if its 
probability density function Jµ,u is given in terms of the standard normal density 
f by 

f ( ) - _!_ f (X - µ) - _ l_ -(x-µ)2 / (2a2) 
/ta X - - e . 

' a a a,./fi 

(See Figure 7.60.) Using the change of variable z = (x - µ) / a, d z = dx / a, we can 
verify that 

1_: J µ, a (x) dx = 1_: f( z) d z = 1, 

so Jµ ,a (x) is indeed a probability density function. Using the same cha nge of variable, 
we can show that 

E(X) = µ and E((X - µ)2) = a 2
. 

Hence , the density Jµ ,a does indeed have meanµ and standard deviation a. 
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Because e-z
2
12 cannot be easily antidifferentiated, we cannot determine normal 

probabilities (i.e ., areas) by using the Fundamenta l Theorem of Calculus. Numerical 
integrations can be performed , or one can consult a book of statistical tables for 
computed areas under the standard normal curve. Specifically , these tables usually 
provide values for what is caJ!ed the cumulative distribution function of a random 
variable with standard normal distribution. This is the function 

l f z 2 F (z) = r,c e-x 12 dx = Pr(Z _:::: z) , 
v2n -oo 

which represents the area under the standard normal density function from -oo up to 
z, as shown in Figure 7.61. 

y 1 - x2/ 2 y = -- e 
,,Ji; 

y 

Figure 7.61 The cumulative distribution 
function F( z) for the standard normal 
distribution is the area under the standard 
normal density function from -oo to z z X z 

Table 3. 

z 

-3.0 
-2 .0 
-1 .0 
-0 .0 

0.0 
1.0 
2.0 
3.0 

For use in the following example s and exercise s, we include here an abbreviated 
version of such a table . 

Values of the standard normal distribution function F( z) (rounded to 3 decimal places) 

0.0 0.1 0.2 

0.001 0.001 0.001 
0.023 0.018 0.014 
0.159 0.136 O. ll5 
0.500 0.460 0.421 

0.500 0.540 0.579 
0.841 0.864 0.885 
0.977 0.982 0.986 
0.999 0.999 0.999 

EXAMPLE 9 

0.3 0.4 0.5 0.6 0.7 

0.000 0.000 0.000 0.000 0.000 
0.011 0 .008 0.006 0.005 0.003 
0.097 0 .081 0.067 0.055 0.045 
0.382 0.345 0.309 0.274 0.242 

0.618 0.655 0.691 0.726 0.758 
0.903 0.919 0.933 0.945 0.955 
0.989 0 .992 0.994 0.995 0.997 
1.000 1.000 1.000 1.000 1.000 

If Z is a standard normal random variable, find 
(a) Pr( - 1.2 _:::: Z _:::: 2.0) , and (b) Pr(Z 2: 1.5). 

Solution Using values from the table , we obtain 

Pr( - 1.2 _:::: Z _:::: 2.0) = Pr(Z _:::: 2.0) - Pr(Z < - 1.2) 

= F(2 .0) - F( - 1.2) ~ 0.977 - 0.115 

= 0.862 

Pr(Z 2: 1.5) = 1 - Pr(Z < 1.5) 

= 1 - F(l.5) ~ 1 - 0.933 = 0.067 . 

0.8 0.9 

0.000 0.000 
0.003 0.002 
0.036 0.029 
0.212 0.184 

0.788 0.816 
0.964 0.971 
0.997 0.998 
1.000 1.000 

EXAMPLE 10 

(b) Pr(X > 2.4). 

A certain random variable X is distributed normally with mean 
2 and standard deviation 0.4. Find (a) Pr(l.8 _:::: X _:::: 2.4), and 
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Solution Since X is distributed normally with mean 2 and standard deviation 0.4, 

Z = (X - 2) / 0.4 is distributed according to the standard normal distribution (with 

mean O and standard deviation 1). Accordingly, 

Pr(l.8 :S X :S 2.4) = Pr(-0 .5 :S Z :S 1) 

= F(l) - F(-0.5) ~ 0.841 - 0.309 = 0.532, 

Pr(X > 2.4) = Pr(Z > 1) = 1 - Pr(Z :S 1) 

EXE R C I S ES 7 .8 
1. How much should you be willing to pay to play a game 

where you toss the coin discussed at the beginning of this 
section and win $1 if it comes up heads, $2 if it comes up 
tails, and $50 if it remains standing on its edge? Assume you 
will play the game many times and would like to at least 
break even. 

2. A die is weighted so that if X represents the number showing 
on top when the die is rolled, then Pr(X = n) = Kn for 
n E {l,2,3,4 ,5,6 ). 

(a) Find the value of the constant K. 

(b) Find the probability that X :::: 3 on any roll of the die . 

3. Find the standard deviation of your winings on a roll of the 
die in Exercise I . 

4. Find the mean and standard deviation of the random variable 
X in Exercise 2. 

5. A die is weighted so that the probability of rolling each of 
the numbers 2, 3, 4, and 5 is still 1/6, but the probability of 
rolling 1 is 9/60 and the probability of rolling 6 is 11/60. 
What are the mean and standard deviation of the number X 
rolled using this die? What is the probability that X :::: 3? 

g1 6. Two dice, each weighted like the one in Exercise 5, are 
thrown. Let X be the random variable giving the sum of the 
numbers showing on top of the two dice. 

(a) Find the probability function for X. 

(b) Determine the mean and standard deviation of X. 
Compare them with those found for unweighted dice in 
Example 3. 

g1 7. A thin but biased coin has probability 0.55 of landing heads 
and 0.45 of landing tails. (Standing on its edge is not 
possible for this coin.) The coin is tossed three times. 
(Determine all numerical answers to the following questions 
to 6 decimal places.) 

(a) What is the sample space of possible outcomes of the 
three tosses ? 

(b) What is the probability of each of these possible 
outcomes? 

(c) Find the probability function for the number X of times 
heads comes up during the 3 tosses. 

(d) What is the probability that the number of heads is at 
least 1? 

(e) What is the expectation of X? 

8. A sack contains 20 balls all the same size; some are red and 

= 1 - F(l) ~ 1 - 0.841 = 0.159. 

the rest are blue. If you reach in and pull out a ball at 
random , the probability that it is red is 0.6. 

(a) If you reach in and pull out two balls , what is the 
probability they are both blue ? 

(b) Suppose you reach in the bag of 20 balls and pull out 
three balls. Describe the sample space of possible 
outcomes of this experiment. What is the expectation of 
the number of red balls among the three balls you pulled 
out? 

For each function f (x) in Exercises 9-15, find the following: 

(a) the value of C for which f is a probability density on the 
given interval, 

(b) the mean µ, variance a 2 , and standard deviation a of the 
probability density f, and 

(c) Pr(µ - a :::: X :::: µ+a), that is, the probability that the 
random variable X is no further than one standard deviation 
away from its mean. 

9. f (x) = Cx on [O, 3] 10. f (x) = Cx on [l, 2] 

11. f(x) = Cx 2 on [O, I] 12. f(x) = C sinx on [0, ir] 

13. f (x) = C(x - x2) on [0, l] 

14. f(x) = C xe-k x on [O, oo), (k > 0) 

15. f(x) = C e-x
2 

on [O, oo). Hint: Use properties of the 

standard normal density to show that ft e-x
2 

dx = .Jir / 2. 

16. Is it possible for a random variable to be uniformly 
distributed on the whole real line? Explain why. 

17. 

0 18. 

19. 

Carry out the calculations to show that the normal density 
Jµ,a (x) defined in the text is a probability density function 
and has mean µ and standard deviation a . 

2 
Show that f (x) = 

2 
is a probability density on 

ir(l+x) 
[0, oo). Find the expectation of X for this density. If a 
machine generates values of a random variable X distributed 
with density f (x), how much would you be willing to pay, 
per game , to play a game in which you operate the machine 
to produce a value of X and win X dollar s? Explain . 

Calculate Pr(IX - µ I ::': 2a) for 

(a) the uniform distribution on [a, b], 

(b) the exponential distribution with density f (x) = ke-kx 
on [O, oo), and 

(c) the normal distribution with density Jµ ,a (x). 
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20. The length of time T (in hours) between malfunctions of a 
computer system is an exponentially distributed random 
variable. If the average length of time between successive 
malfunction s is 20 hours, find the probability that the system, 
having ju st had a malfunction corrected , will operate without 
malfunction for at least 12 hours. 

number of metres of cable produced exceed 5,500? 

22. A spinner is made with a scale from Oto 1. Over time it 
suffers from wear and tends to stick at the number 1/4. 
Suppose it sticks at 1/4 half of the time and the rest of the 
time it gives values uniformly distributed in the interval 
[O, 1 ]. What is the mean and standard deviation of the 
spinner 's values? (Note: the random variable giving the 
spinner 's value has a distribution that is partially discrete and 
partially continuo us.) 

21. The number X of metres of cable produced any day by a 
cable-makin g company is a normally distributed random 
variable with mean 5,000 and standard deviation 200. On 
what fraction of the days the company operates will the 

. _ F_ir_st_-O_r_d_er_D_if_fe_re_n_ti_al_E_q_ua_t_io_ns __________ _ 
This final section on applications of integration concentrates on application of the 
indefinite integral rather than of the definite integral. We can use the technique s of 
integration developed in Chapter s 5 and 6 to solve certain kinds of first-order differential 
equations that arise in a variety of modelling situ ations. We have already see n some 
examples of applications of differential equations to modelling growth and decay 
phenomena in Section 3.4 . 

Separable Equations 
Consider the logistic equation introduced in Section 3.4 to model the growth of an 
animal population with a limited food supply: 

dy = ky (1 - 2'..) 
dt L ' 

where y (t) is the size of the popul ation at time t , k is a po sitive constant related to the 
fertility of the population , and L is the steady-state population size that can be sustained 
by the available food supply . Thi s equation has two particular solutions , y = 0 and 
y = L , that are constant functions of time. 

The logistic equation is an example of a class of first-order differential equations 
called separable equations because when they are written in terms of differentials, 
they can be separated with only the dependent variable on one side of the equation and 
only the independent variable on the other. The logistic equation can be written in the 
form 

Ldy 
---- =kdt , 
y( L - y) 

and so lved by integrating both side s. Expanding the left side in partial fractions and 
integrating, we get 

/ ( ~ + -- 1
-) dy =kt+ C. 

y L -y 

Assuming that O < y < L , we therefore obtain 

ln y - ln(L - y) =kt+ C, 

ln (-y-) =kt+ C. 
L- y 

We can solve this equation for y by taking exponentials of both sides: 

_Y_ = ekt+C = Ciekr 
L-y 

y = (L - y) C1i 1 

C1Lekr 

y = 1 + C1ek1 ' 
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Figure 7 .62 Some curves of the family 
y2-x 2 = C 

y 

X 

(7/ 6)1/3 

Figure 7.63 The solution of dy = x 2y3 
dx 

satisfying y(l) = 3 
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where C1 = ec. 
Generally, separable equations are of the form 

dy 
dx = f (x)g(y). 

We solve them by rewriting them in the form 

d(y = f(x) dx 
g y) 

and integrating both sides . Note that the separable equation above will have a constant 
solution y(x) = C for any constant C satisfying g(C) = 0. 

EXAMPLE 1 
dy X 

Solve the equation - = - . 
dx y 

Solution We rewrite the equation in the form y d y = x dx and integrate both sides 
to get 

1 2 1 2 
-y = -x +C1 
2 2 ' 

or y 2 - x 2 = C, where C = 2C 1 is an arbitrary constant. The solut ion curves are 
rectangular hyperbolas. (See Figure 7.62.) Their a ymptotes y = x and y = -x are 
also solutions corresponding to C = 0. 

EXAM p LE 2 Solve the initial-value problem 

!
d y=x2y3 
dx 

y(l) = 3. 

Solution Separating the differential equation gives d; = x 2 dx . Thus, 
y 

I dy I 2 y3 = X dx, so 
-1 x 3 

-=-+C. 
2y2 3 

Since y = 3 when x = 1, we have --i1s = ½ + C and C = --?s-. Substituting this 
value into the above solution and solving for y, we obtain 

3 
y(x) = --;:::==::;:. (Only the positive square root of y 2 satisfies y(l) = 3.) 

.J7 - 6x3 

Thi s solutio n is valid for x < (t/13. (See Figure 7.63.) 

EXAMPLE 3 Solve the integral equation y(x) = 3 + 2 ix ty(t) dt. 

Solution Differentiating the integral equation with respect to x gives 

dy 
- = 2x y(x) 
dx 

or 
dy - = 2xdx . 
y 

Thus In ly(x)I = x 2 + C, and solving for y, y(x) = C1ex
2

• Putting x = 1 in the 
integral equation provides an initial value : y(l) = 3 + 0 = 3, so C 1 = 3/ e and 

y(x) = 3ex2-1 _ 
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EXAM p LE 4 (A solution concentration problem) Initially a tank contains 
1,000 L of brine with 50 kg of dissolved salt. Brine containing 

10 g of salt per litre is flowing into the tank at a constant rate of 10 L/min. If the 
contents of the tank are kept thoroughly mixed at all times, and if the solution also 
flows out at 10 L/min , how much salt remains in the tank at the end of 40 min? 

Solution Let x (t) be the number of kilograms of salt in solution in the tank after 
t min . Thus x(O) = 50. Salt is coming into the tank at a rate of 10 g/L x 10 L/min 
= 100 g/min = 1/10 kg/min . At all times the tank contains 1,000 L of liquid, so the 
concentration of salt in the tank at time t is x / 1,000 kg/L . Since the contents flow out 
at 10 L/min, salt is being removed at a rate of lOx / 1,000 = x / 100 kg/min. Therefore, 

dx . l X 10 -X 
- = rate m - rate out = - - - = --- . 
dt 10 100 100 

Although x (t) = 10 is a constant solution of the differential equation, it does not satisfy 
the initial condition x(O) = 50, so we will find other solutions by separating variables: 

dx dt 

10 - X 100 

Integrating both sides of this equation , we obtain 

t 
- In 110 - x I = - + C. 

100 

Observe that x (t) -/= 10 for any finite time t (since In O is not defined). Since x(O) = 
50 > 10, it follows that x(t) > 10 for all t > 0. (x(t) is necessarily continuous so 
it cannot take any value less than 10 without somewhere taking the value 10 by the 
Intermediate-Value Theorem .) Hence , we can drop the absolute value from the solution 
above and obtain 

t 
ln(x - 10) = -- - C. 

100 

Since x(O) = 50, we have -C = ln40 and 

x = x(t) = 10 + 40e-t f lOO_ 

After 40 min there will be 10 + 40e- 0.4 ~ 36.8 kg of salt in the tank. 

EXAM p LE 5 (A rate of reaction problem) In a chemical reaction that goes to 
completion in solution , one molecule of each of two reactants, A 

and B, combine to form each molecule of the product C . According to the law of mass 
action , the reaction proceeds at a rate proportional to the product of the concentrations 
of A and B in the solution. Thus , if there were initially present a > 0 molecules/cm 3 

of A and b > 0 molecules/cm 3 of B , then the number x(t) of molecules/cm 3 of C 
present at time t thereafter is determined by the differential equation 

dx 
- =k(a-x)(b-x). 
dt 

This equation has constant solutions x(t) = a and x(t) = b, neither of which satisfies 
the initial condition x(O) = 0. We find other solutions for this equation by separation 
of variables and the technique of partial fraction decomposition under the assumption 
that b -/= a: 

f __ d_x _ _ = kl dt =kt+ C. 
(a-x)(b-x) 
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Figure 7.64 The parabolas y = C1x2 and 
the ellipses x 2 + 2y2 = C2 intersect at 
right angles 
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Since 

(a-x)(b-x) b-a 

and since necessarily x Sa and x S b, we have 

1 
--(-ln(a -x) + ln(b-x)) =kt+ C, 
b-a 

or 

(
b- x ) In -- = (b - a) kt+ C1, where C1 = (b - a)C. 
a-x 

By assumption, x(O) = 0, so Ci = ln(b / a) and 

a(b -x) 
ln---=(b-a)kt. 

b(a -x) 
ab(e(b-a)kt - l) 

This equation can be solved for x to yield x = x(t) = (b )k . 
be -a 1 - a 

EXAMPLE 6 Find a family of curves, each of which intersect s every parabola 
with equation of the form y = Cx 2 at right angles. 

Solution The family of parabolas y = Cx 2 satisfies the differential equation 

d ( y )- d C - O· 
dx x 2 - dx - ' 

that is, 

2 dy dy 2y 
x - - 2xy = 0 or 

dx dx x 
Any curve that meets the parabolas y = Cx 2 at right angles must, at any point (x, y) 
on it, have slope equal to the negative reciprocal of the slope of the particular parabola 
passing through that point. Thus, such a curve must satisfy 

dy X 

dx 2y 

Separation of the variables leads to 2y dy = -x dx, and integration of both sides then 
yields y2 = -½ x2 + C1 or x2 + 2y2 = C, where C = 2C 1. This equation represents 
a family of ellipses centred at the origin. Each ellipse meets each parabola at right 
angles, as shown in Figure 7.64. When the curves of one family intersect the curves 
of a second family at right angles, each family is called the family of orthogonal 
trajectories of the other family. 
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First-Order Linear Equations 
A first-order linear differenti al equation is one of the type 

dy 
dx + p( x )y = q( x), (*) 

where p(x) and q(x) are given functions , which we assume to be continuous . The 
equation is called nonhomogeneous unless q (x) is identically zero. The corresponding 
homogeneous equation , 

dy 
-+p(x)y=O , 
dx 

is separable and so is easily solved to give y = K e-µ(x), where K is any constant and 
µ(x) is any antiderivative of p(x) : 

µ(x) = f p(x) dx and 
dµ - = p( x ) . 
dx 

There are two methods for solving the nonhomogeneous equatio n ( * ). Both involve 
the function µ (x) defined above. 

METHOD I. Using an Integrating Factor. Multiply equation(*) by eµ(x) (which 
is cal led an integrating factor for the equation) and ob erve that the left side is just 
the derivative of eµ(x) y; by the Product Rule 

~(eµ(x)y(x)) = ep(x) dy + ep(x) dµ y (x) 
dx dx dx 

= eµ(x) (!~ +p(x)y) = ep(x)q(x). 

Therefore, ep(x) y(x) = f ep(x) q(x) dx , or 

y (x) = e- µ(x) f ep(x) q(x ) dx . 

METHOD II. Variation of the Parameter. Start with the solution of the corre
sponding homogeneou s equation, namely y = K e-µ( x), and replace the constant (i.e ., 
parameter) K by an as yet unknown function k(x) of the independent variable. Then 
substitute this expression for y into the differential equation ( *) and simplify: 

:x (k(x)e -µ(x) ) + p(x)k(x)e - µ(x) = q(x) 

k'(x)e-p(x) - µ '(x) k(x)e_,,(x) + p(x)k(x) e-p(x) = q(x ) , 

which , since µ'(x) = p( x), reduce s to 

k' (x ) = eµ(x)q(x ) . 

Integrating the right side leads to the solution for k(x) and thereby to the solution y 

for(*). 

EXAMPLE 7 
~ y . 

Solve - + - = 1 for x > 0. Use both methods for companson. 
dx X 
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Solution Here , p(x) = 1/ x, so µ(x) = J p(x) dx = lnx (for x > 0). 

METHOD I. The ingegrating factor is eµ(x) = x. We calculate 

d dy (d y y ) -(xy)=x-+y=x -+- =x , 
dx dx dx x 

and so 

xy = f x dx = ~ x 2 + C. 

Finally, 

y = ~ (~x2 + c) = ~ + £. 
X 2 2 X 

This is a solution of the given equation for any value of the constant C . 

METHOD II. The corresponding homogeneous equation, dy + ~ = 0, has solution 
dx X 

K 
y = K e-µ( x) = - . Replacing the constant K with the function k(x) and substituting 

X 
into the given differential equation we obtain 

1 I 1 1 
- k (x) - - k(x) + - k(x) = 1, 
x x 2 x 2 

x2 
so that k' (x) = x and k(x) = 2 + C, where C is any constant. Therefore 

k(x) x C 
y =-= -+-, 

X 2 X 

the same solution obtained by METHOD I. 

Remark Both method s really amount to the same calculations expressed in different 
ways. Use whichever one you think is easiest to under stand. The remaining examples 
in this section will be done by using integrating factors, but variation of parameter s will 
prove useful later on (Section 18.6) to deal with nonhomogeneous linear differential 
equations of second or higher order. 

EXAMPLE 8 
dy 3 

Solve - + xy = x . 
dx 

Solution Here, p(x) = x , so µ(x) = x 2 /2 and eµ(x) = ex
2

/ 2. We calculate 

Thus , 

Let U=x 2, dV = x ex
2

/ 2 dx. 

Then dU = 2x dx, V = exz/2_ 

= x2 exz/2 - 2 / x exz/2 dx 

= x2 exz / 2 - 2 exz / 2 + C' 

and, finally, y = x 2 - 2 + ce -x
2
12 . 
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s 

Figure 7.65 

circuit 

R L 

An inductance-resistance 

EXAM p LE g (An inductance-resistance circuit) An electric circuit (Figure 7 .65) 
contains a constant DC voltage source of V volts, a switch, a resis

tor of size R ohms, and an inductor of size L henrys. The circuit has no capacitance. 
The switch , initially open so that no current is flowing, is closed at time t = 0 so 
that current begins to flow at that time. If the inductance L were zero, the current 
would suddenly jump from O amperes when t < 0 to I = V / R amperes when t > 0. 
However, if L > 0 the current cannot change instantaneously; it will depend on time 
t. Let the current t seconds after the switch is closed be I (t) amperes. It is known that 
I (t) satisfies the initial-value problem 

L- +RI= V 
dt I 
di 

/(0) = 0. 

Find I (t). What is limHoo I (t)? How long does it take after the switch is closed for 
the current to rise to 90% of its limiting value? 

di R 
Solution The DE can be written in the form - + - I 

dt L 
integrating factor efl(r), where 

I R Rt 
µ(t) = - dt = -. 

L L 

Therefore , 

!!._ (eRr / L 1) = eRt / L (di + !!_1) = eRt / L ~ 
dt dt L L 

eRr/ L I = V f eRt / L dt = V eRr/L + C 
L R 
V 

J(t) = - + Ce-Rt / L_ 
R 

V 

L 
It is linear and has 

Since I (0) = 0, we have O = (V / R) + C, so C = - V / R. Thus, the current flowing 
at any time t > 0 is 

It is clear from this solution that lim 1-, 00 I (t) = V / R ; the steady state current is the 
current that would flow if the inductance were zero. 

I (t) will be 90% of this limiting value when 

V (1-e - Rt/ L) = ~ V_ 
R 100 R 

This equation implies that e-Rt / L = 1/10, or t = (L ln 10)/ R . The current will grow 
to 90% of its limiting value in (L ln 10)/ R seconds. 

Our final example reviews a typical stream of payments problem of the sort considered 
in Section 7.7. This time we treat the problem as an initial-value problem for a 
differential equation. 

EXAM p LE 10 A savings account is opened with a deposit of A dollars. At any 
time t years thereafter, money is being continually deposited into 

the account at a rate of (C + Dt) dollars per year . If interest is also being paid into the 
account at a nominal rate of lOOR percent per year, compounded continuously, find 
the balance B(t) dollars in the account after t years. Illustrate the solution for the data 
A= 5,000, C = 1,00 0, D = 200 , R = 0.13, and t = 5. 
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Solution As noted in Section 3.4, continuous compounding of interest at a nominal 
rate of 1 OOR percent causes $1.00 to grow to eR1 dollar s in t years. Without subsequent 
deposits, the balance in the account would grow according to the differential equation 
of exponential growth: 

dB 
-=RB. 
dt 

Allowing for additional growth due to the continual depo sits, we observe that B must 
satisfy the differential equation 

dB 
-=RB+(C+Dt) 
dt 

or, equivalently, dB / dt - RB = C + Dt. This is a linear equation for B having 
p(t) = -R. Hence, we may take µ(t) = -Rt and eµ(t) = e-Ri_ We now calculate 

d dB 
-(e-R 1 B(t)) = e- Ri - - Re- R1 B(t) = (C + Dt) e-Rt 
dt dt 

and 

e- Rt B(t) = f (C + Dt) e- R1 dt Let U = C + Dt , 

Then dU = D dt, 

dV = e- Rt dt . 

V = -e - Rt / R. 

=----e +- e dt C + Dt -RI D f - RI 

R R 
C + Dt - R1 D - Rr 
-- R- e - -R-2 e + K , (K = constant). 

Hence 

C + Dt D Rt 
B(t) = --- - -+K e 

R R2 

C D C D 
Since A= B(O) = -- - -

2 
+ K , we have K =A+ - + -

2 
and 

R R R R 

( 
C D ) Rt C + Dt D 

B(t) = A + R + R2 e - R - R2. 

For the illustration A = 5,000, C = 1,000, D = 200, R = 0.13, and t = 5, we obtain, 
using a calculator, 8(5) = 19,762.82 . The account will contain $19,762.82, after 5 
years, under these circumstances. 

Solve the separable equations in Exercises 1-10. 9. 
dy 
- =2+ eY 10. 

dy 2 
- = y (1- y) 

dy dy 3y - 1 dt dx 
1. 

y 
2. Solve the linear equations in Exercises 11-16. 

dx 2x dx X 

dy x2 dy 2 2 11. 
dy 2y 2 12. 

dy 2y 1 
3. 4. -- -=x -+-=-

y2 
- =X y dx X dx x x2 

dx dx 

dY dx 13. 
dy 

14. 
dy 

5. -=tY 6. - = ex sint - +2 y = 3 -+y=e x 
dt dt dx dx 

7. dy 2 
8. dy = l + y2 15. 

dy 
16. 

dy 
- = 1- y -+ y=x - +2exy = ex 
dx dx dx dx 
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Solve the initial-value problems in Exercises 17-20. 

17. I 
dy - + lOy = I 
dt 

y( l / 10) = 2/ 10 

18. I dy + 3x2y = X. 2 
dx 

y(O) = 1 

{ 

x2y' + y = x2e l/x 
19. 

y(I) = 3e { 

y' + (cosx)y = 2xe-sin x 
20. 

y(ir)=O 

Solve the integral equations in Exercises 21-24 . 

21. y(x)=2+ -dt lo
x t 

O y( t) 

( )

2 
X y( f) 

22. y(x ) = 1 + f -- 2 dt lo L + t 

f x y(t) dt 
23. y(x) = l + --

1 t (t + I) 
24. y(x) = 3 + fox e-y(t) dt 

25. Ifa > b > OinExample5,findlim ,_. 00 x(t). 

26. If b > a > 0 in Example 5, find lim,_. 00 x(t). 

27. Why is the solution given in Example 5 not valid for a = b? 
Find the solution for the case a = b. 

28. An object of mass m falling near the surface of the earth is 
retarded by air resistance proportional to its velocity so that, 
according to Newton 's Second Law of Motion, 

dv 
m - =m g- kv 

dt , 

where v = v (t) is the velocity of the object at time t, and g is 
the acceleration of gravity near the surface of the earth. 

CHAPTER REVIEW 
Key Ideas 
• What do the following phrases mean? 

o a solid of revolution 

o a volume element 

o the arc length of a curve 

o the moment of a point mass m about x = 0 

o the centre of mass of a distribution of mass 

o the centroid of a plane region 

o a first-order separable differential equation 

o a first-order Linear differential equation 

• Let D be the plane region O ~ y ~ J (x), a ~ x ~ b. 
Use integra ls to represent the following: 

o the volume generated by revolving D about the x -axis 

o the volume generated by revolvin g D about the y-axis 

o the moment of D about the y-axis 

o the moment of D about the x-ax is 

o the centroid of D 
• Let C be the curve y = f(x), a~ x ~ b. Use integrals 

to represent the following: 

o the length of C 

o the area of the surface generated by revolving C about the 

Assuming that the object falls from rest at time t = 0, that is, 
v(O) = 0, find the velocity v(t) for any t > 0 (up until the 
object strikes the ground ). Show v(t) approaches a limit as 
t ---+ oo. Do you need the explicit formula for v(t) to 
determine this limiting velocity ? 

29. Repeat Exercise 28 except assuming that the air resistance is 
proportional to the square of the velocity so that the equation 
of motion is 

dv 2 m- =mg-kv 
dt 

30. Find the amount in a savings account after one year if the 
initial balance in the account was $1,000 , if the interest is 
paid continuously into the account at a nominal rate of 10% 
per annum , compounded continuously , and if the account is 
being continuously depleted (by taxes, say) at a rate of 
y2 / 1,000,000 dollars per year, where y = y(t) is the balance 
in the account after t years. How large can the account 
grow? How long will it take the account to grow to half this 
balance ? 

31. Find the family of curves each of which intersects all of the 
hyperbolas xy = Cat right angles. 

32. Repeat the solution concentration problem in Example 4, 
changing the rate of inflow of brine into the tank to 12 L/min 
but leaving all the other data as they were in that example. 
Note that the volume of liquid in the tank is no longer 
constant as time increa ses. 

x-axis 

o the area of the surface generated by revolving C about the 
y-axis 

Review Exercises 
1. Figure 7.66 shows cross-sections along the axes of two circu

lar spools. The left spool will hold 1,000 metres of thread if 
wound full with no bulging. How many metres of thread of 
the same size will the right spool hold ? 

3cm-+ I 1-3 cm-I 

1 
--. 

T I 9m 

5cm -.j 1cm 5cm 

1 1 
~ l- 1 cm 

Figure 7.66 

2. Water sitting in a bowl evaporates at a rate proportional to 
its surface area. Show that the depth of water in the bowl 
decreases at a constant rate, regardless of the shape of the 
bowl. 
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f:l~ 3. A barrel is 4 ft high and its volume is 16 cubic feet. Its 
top and bottom are circular disks of radius I ft, and its 
side wall is obtained by rotating the part of the parabola 
x = a - by2 between y = - 2 and y = 2 about the 
y-axis. Find , approximate ly, the values of the positive con
stants a and b. 

Figure 7.67 

4. The solid in Figure 7.67 is cut from a vertical cylinder of 
radius 10 cm by two planes making angles of 60° with the 
horizontal. Find its volume. 

f:l~ 5. Find to 4 decimal places the value of the positive constant a 
for which the curve y = (1/ a) cosh ax has arc length 2 units 
between x = 0 and x = I. 

6. Find the area of the surface obtained by rotating the curve 
y = ../i, (0 :'.:: x :'.:: 6), about the x-ax is. 

7. Find the centroid of the plane region x ::: 0, y ::: 0, 
x 2 + 4y2 :'.:: 4. 

8. A thin plate in the shape of a circular disk has radius 3 ft and 
constant areal density. A circular hole of radius l ft is cut out 
of the disk, centred l ft from the centre of the disk. Find the 
centre of mass of the remaining part of the disk. 

piston 

gas 

Figure 7.68 

9. According to Boyle's Law, the product of the pressure and 
volume of a gas remains constant if the gas expands or is 
compressed isothermally. The cylinder in Figure 7.68 is filled 
with a gas that exerts a force of 1,000 Non the piston when 
the piston is 20 cm above the base of the cylinder. How much 
work is done by the piston if it compresses the gas isothermally 
by descendin g to a height of 5 cm above the base? 

10. Suppose two functions f and g have the following property: 
for any a > 0, the solid produced by revolving the region 
of the xy -plane bounded by y = f (x), y = g(x), x = 0, 
and x = a about the x-axis has the same volume as the solid 
produced by revolving the same region about the y-ax is. What 
can you say about f and g? 

CHAPTER REVIEW 455 

11. Find the equation of a curve that passes through the point 
(2, 4) and has slope 3y / (x - 1) at any point (x , y) on it. 

12. Find a family of curves that intersect every ellipse of the form 
3x 2 + 4y 2 = Cat right angles. 

13. The income and expense s of a seasonal business result in de
posit s and withdrawal s from its bank account that correspond 
to a flow rate into the account of $P(t)/year at time t years, 
where P(t) = 10, 000 sin(2;,r t). If the account earns interest 
at an instantaneous rate of 4% per year, and has $8,000 in it 
at time t = 0, how much is in the account two years later ? 

Challenging Problems 
1. The curve y = e-kx sin x , (x ::: 0), is revolved about the 

x-axi s to generate a string of "beads" whose volumes decrease 
to the right if k > 0. 

(a) Show that the ratio of the volume of the (n + l)st bead to 
that of the nth bead depends on k, but not on n. 

(b) For what value of k is the ratio in part (a) equal to 1/2? 

(c) Find the total volume of all the beads as a function of 
k > 0. 

2. (Conservation of earth) A landscaper wants to create on 
level ground a ring-shaped pool having an outside radius of 
10 m and a maximum depth of 1 m surrounding a hill that will 
be built up using all the earth excavated from the pool. (See 
Figure 7.69.) She decide s to u ea fourth-degree polynomial 
to determine the cross- sectional shape of the nill and pool bot
tom : at distance r metres from the centre of the development 
the height above or below normal ground level will be 

h(r) = a(r 2 - I OO)(r2 - k2) metres , 

for some a > 0, where k is the inner radius of the pool. Find 
k and a so that the requirements given above are all satisfied . 
How much earth must be moved from the pool to build the 
hill ? 

+---!Om-

Figure 7.69 

i 3. (Rocket design) The nose of a rocket is a solid of revolution 
of base radiu s r and height h that must join moothly to the 
cy lindrical body of the rocket. (See Figure 7.70.) Taking the 
orig in at the tip of the nose and the x-axis along the central 
axis of the rocket, various nose shapes can be obtained by 
revolving the cubic curve 

y = f( x ) = ax + bx 2 +cx 3 

about the x -axis . The cubic curve must have slope Oat x = h, 
and its slope must be positive for O < x < h. Find the 
particular cubic curve that maximizes the volume of the nose . 
Also show that this choice of the cubic makes the slope dy / dx 
at the origin as large as possible and, hence , corresponds to 
the bluntest nose. 
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y y = ax + bx 2 + cx 3 

h,r 

Figure 7.70 

i 4. (Quadratic splines) Let A = (x1, YI), B = (x2, yz), and 
C = (x3, y3) be three points with x 1 < x2 < x3. A func
tion f (x) whose graph passes through the three points is a 
quadratic spline if f (x) is a quadratic function on [x1, x2] 
and a possibly different quadratic function on [x2, x3], and the 
two quadratics have the same slope at x2. For this problem, 
take A = (0, 1), B = (I , 2), and C = (3, 0). 

(a) Find a one-parameter family f (x, m) of quadratic splines 
through A, B , and C, having slope mat B. 

(b) Find the value of m for which the length of the graph 
y = f(x , m) between x = 0 and x = 3 is minimum. 
What is this minimum length? Compare it with the length 
of the polygonal line ABC. 

i 5. A concrete wall in the shape of a circular ring must be built 
to have maximum height 2 m, inner radius 15 m, and width 
l m at ground level , so that its outer radius is 16 m. (See 
Figure 7 .71.) Built on level ground, the wall will have a 
curved top with height at distance 15 + x metres from the 
centre of the ring given by the cubic function 

J(x) = x( l - x)(ax + b) m, 

which must not vanish anywhere in the open interval (0, 1). 
Find the values of a and b that minimize the total volume of 
concrete needed to build the wall. 

------l-?_ 

Figure 7.71 

i 6. (The volume of an n-dimensional ball) Euclidean 
n-dimensional space consists of points (x1, x2, ... , x,,) with 
n real coor dinat es. By analogy with the 3-dimensional case, 
we call the set of such points that satisfy the inequality 
xf + x? + · · · + x; :=:: r 2 the n-dimensional ball centred at 
the origin. For example, the I-dimen sional ball is the interval 
- r :=:: x1 ::= r , which has volume (i.e ., length) Vi (r) = 2r. 
The 2-dimensional ball is the disk xf + x? :": r2, which has 
volume (i.e. , area) 

V2(r) = -n:r
2 

= 1:, 2Jr 2 - x 2 dx 

= L, Vi (Jr2-x2) dx. 

The 3-dimensional ball xf + Xi + Xj :": r2 has volume 

By analogy with these formulas, the volume V,,(r) of the 
n-dimensional ball of radius r is the integral of the volume of 
the (n - !)-dimensional ball of radius -Jr 2 - x 2 from x = -r 
to x = r: 

Vn(r) = 1:, Vn- 1 (Jr 2 -x2) dx. 

Using a computer algebra program, calculate V4(r), Vs(r), 
. .. , Vio(r), and guess formulas for V2n(r) (the even
dimensional balls) and V2n+1 (r) (the odd-dimensional balls). 
If your computer algebra soft ware is sufficiently powerful , 
you may be able to verify your guesses by induction. Other
wise , use them to predict Vi 1 (r) and Vi2(r), then check your 
prediction s by starting from Vio(r). 

I 

I 

y , 

~ 

Figure 7.72 

i 
10cm 

l 
i 

10cm 

l 
10cm 

l 

D 7. (Buffon's needle problem) A horizontal flat surface is ruled 
with parallel lines 10 cm apart, as shown in Figure 7.72. A 
needle 5 cm long is dropped at random onto the surface. Find 
the probability that the needle intersects one of the lines. Hint: 
Let the " lower" end of the needle (the end further down the 
page in the figure) be considered the reference point. (If both 
ends are the same height , use the left end.) Let y be the 
distance from the reference point to the nearest l ine above 
it, and let 0 be the angle between the needle and the line 
extending to the right of the reference point in the figure . What 
are the possible values of y and 0? In a plane with Cartesian 
coordinates 0 and y sketch the region consisting of all points 
(0, y) corresponding to possible positions of the needle. Also 
sketch the region corresponding to those positions for which 
the needle crosses one of the parallel lines. The required 
probability is the area of the second region divided by the area 
of the first. 
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(L , 0) 

Figure 7.73 

D 8. (The path of a trailer) Find the equation y = f (x) of a 
curve in the first quadrant of the xy-plane, starting from the 
point (L, 0), and having the property that if the tangent line to 
the curve at P meets the y-axis at Q, then the length of P Q 
is the constant L. (See Figure 7.73. This curve is called a 
tractrix after the Latin participle tractus meaning dragged. 
It is the path of the rear end P of a traileroflength L, originally 
lying along the x-axis, as the trailer is pulled (dragged) by a 
tractor Q moving along the y-axis away from the origin.) 

D 9. (Approximating the surface area of an ellipsoid) A 
physical geographer studying the flow of streams around oval 
stones needed to calculate the surface areas of many such 
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stones that he modelled as ellipsoids: 

x2 Y2 z2 
2+2+ 2 =1. a b C 

He wanted a simple formula for the surface area so that he 
could implement it in a spreadsheet containing the measure
ments a, b, and c of the stones. Unfortunately, there is no 
exact formula for the area of a general ellipsoid in terms of 
elementary functions. However, there are such formulas for 
ellipsoids of revolution, where two of the three semi-axes 
are equal. These ellipsoids are called spheroids; an oblate 
spheroid (like the earth) has its two longer semi-axes equal; 
a prolate spheroid (like an American football) has its two 
shorter semi-axes equal. A reasonable approximation to the 
area of a general ellipsoid can be obtained by linear interpo
lation between these two. 

To be specific, assume the semi-axes are arranged in 
decreasing order a :::: b :::: c, and let the surface area be 
S(a, b, c) . 

(a) Calculate S(a, a, c), the area of an oblate spheroid. 

(b) Calculate S(a, c, c), the area of a prolate spheroid. 

(c) Construct an approximation for S(a, b, c) that divides the 
interval from S(a, a, c) to S(a, c, c) in the same ratio that 
b divides the interval from a to c. 

(d) Approximate the area of the ellipsoid 

x2 y2 
-+-+ z2=1 
9 4 

using the above method. 
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Conics, Parametric Curves, 
and Polar Curves 
'' Everyone knows what a curve is, until he has studied enough math

ematics to become confused through the countless number of possible 
exceptions .... A curve is the totality of points, whose co-ordinates 
are functions of a parameter which may be differentiated as often as 
may be required. 

'' Felix Klein 1849-1925 

I ntrod Uct·1on Until now, most curves we have encountered have been 
graphs of functions , and they provided useful visual in

formation about the behaviour of the functions. In this chapter we begin to look at 
plane curves as interesting objects in their own right. First, we examine conic sections, 
curves with quadratic equations obtained by intersecting a plane with a right-circular 
cone. Then we consider curves that can be described by two parametric equations 
that give the coordinates of points on the curve as functions of a parameter. If this 
parameter is time, the equations describe the path of a moving point in the plane. 
Finally , we consider curves described by equations in a new coordinate system called 
polar coordinates, in which a point is located by giving its distance and direction from 
the origin. In Chapter 11 we will expand our study of curves to three dimensions . 

• _ C_o_n_ic_s ___________________ _ 

A 

Figure 8.1 A cone with vertex V, axis A, 

and semi-vertical angle a 

Circles, ellipses, parabolas, and hyperbolas are called conic sections (or, more simply, 
just conics) because they are curves in which planes intersect right-circular cones. 

To be specific, suppose that a line A is fixed in space, and V is a point fixed on 
A. The right-circular cone having axis A, vertex V, and semi-vertical angle a 
is the surface consisting of all points on straight lines through V that make angle a 
with the line A . (See Figure 8 .1.) The cone has two halves ( called nappes) lying on 
opposite sides of the vertex V. Any plane P that does not pass through V will intersect 
the cone (one or both nappes) in a curve e. (See Figure 8.2.) If a line normal (i.e., 
perpendicular) to P makes angle 0 with the axis A of the cone, where O _::::: 0 _::::: 7r: / 2, 
then 

e is a circle if 

e is an ellipse if 

e is a parabola if 

e is a hyperbola if 

7r: 
0 < 0<--a 

2 
7r: 

0= - -a 
2 

7r: 7r: 
- -a< 0 < -. 
2 - 2 
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Figure 8.2 Planes intersecting cones in an 
ellipse, a parabola, and a hyperbola 

DEFINITION 

I 

SECTION 8.1: Conics 459 

ellipse parabola hyperbola 

In Sections 10.4 and I 0.5 it is shown that planes are represented by first-degree equa
tions and cones by second-degree equations. Therefore, all conics can be represented 
analytically (in terms of Cartesian coordinates x and y in the plane of the conic) by a 
second-degree equation of the general form 

Ax 2 + Bx y + cy2 + Dx + Ey + F = 0, 

where A, B , ... , F are constants. However, such an equation can also represent the 
empty set, a single point , or one or two straight lines if the left-hand side factors into 
linear factors: 

After straight lines, the conic sections are the simplest of plane curves . They have 
many properties that make them useful in applications of mathematics; that is why we 
include a discussion of them here . Much of this material is optional from the point 
of view of a calculus course, but familiarity with the properties of conics can be very 
important in some applications. Most of the properties of conics were discovered by 
the Greek geometer Apollonius of Perga, around 200 BC. It is remarkable that he 
was able to obtain these properties using only the techniques of classical Euclidean 
geometry ; today, most of these properties are expressed more conveniently using 
analytic geometry and specific coordinate systems. 

Parabolas 

Parabolas 

A parabola consists of points in the plane that are equidistant from a given point 
(the focus of the parabola) and a given straight line (the directrix of the parabola). 
The line through the focus perpendicular to the directrix is called the principal 
axis (or simply the axis) of the parabola. The vertex of the parabola is the point 
where the parabola crosses its principal axis. It is on the axis halfway between 
the focus and the directrix. 

EXAMPLE 1 Find an equation of the parabola whose focus is the point F 
(a, 0) and whose directrix is the line L with equation x = -a. 
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Q 

(- a,y) 

X = -a 

Figure 8.3 PF= PQ: the defining 
property of a parabola 

X 

Figure 8.4 Reflection by a straight line 

Solution The parabola has axis along the x-axis and vertex at the origin . (See 
Figure 8.3.) If P = (x , y) is any point on the parabola, then the distance from P to F 
is equal to the distance from P to the nearest point Q on L. Thus, 

/ (x - a )2 + y2 = x + a 

or x2 
- 2ax + a2 + y2 = x2 + 2ax + a 2

, 

or, upon simplification, y2 = 4ax. 

Similarly , we can obtain standard equations for parabolas with vertices at the origin 
and foci at (-a , 0) , (0, a), and (0, -a): 

Table 1. Standard equations of parabolas 

Focus Directrix Equation 

(a, 0) X = -a i =4a x 
(-a, 0) x =a y2 = -4ax 
(0, a) Y = -a x 2 = 4ay 

(0, -a) y =a x 2 = -4ay 

The Focal Property of a Parabola 
All of the conic sections have interesting and useful focal properties relating to the way 
in which surfaces of revolution they generate reflect light if the surfaces are mirrors . 
For instance, a circle will clearly reflect back along the same path any ray of light 
incident along a line passing through its centre. The focal properties of parabolas , 
ellipses, and hyperbolas can be derived from the reflecting property of a straight line 
(i.e., a plane mirror) by elementary geometrical argument s. 

Light travels in straight lines in a medium of constant optical density (one where 
the speed of light is constant). This is a consequence of the physical Principle of 
Least Action, which asserts that in travelling between two points , light takes the path 
requiring the minimum travel time. Given a straight line L in a plane and two points 
A and B in the plane on the same side of L, the point P on L for which the sum of the 
distances AP+ PB is minimum is such that AP and PB make equal angles with L , 
or equivalently, with the normal to L at P. (See Figure 8.4.) If B ' is the point such 
that L is the right bisector of the line segment BB ', then P is the intersection of L and 
AB'. Since one side of a triangle cannot exceed the sum of the other two sides, 

AP + PB = AP + PB ' = AB' .::: A Q + QB ' = A Q + QB . 

B 
A 

B' 

Reflection by a straight line 

The point P on L at which a ray from A reflects so as to pass through B is the 
point that minimizes the sum of the distances AP + PB . 
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Figure 8.5 Reflection by a parabola 

BEWARE! consider the 
equalities and inequalities in this 
chain one at a time. Why is each 
one true? 

DEFINITION 

I 

SECTION 8. I: Conics 46 1 

D 

Now consider a parabola with focus F and directrix D. Let P be on the parabola 
and Jet T be the line tangent to the parabola at P. (See Figure 8.5.) Let Q be any point 
on T. Then FQ meets the parabola at a point X between F and Q. Let Mand N be 
points on D such that M X and NP are perpendicular to D, and let A be a point on the 
line through N and P that lies on the same side of the parabola as F . We have 

FP+PA=NP+PA=NA ::, MX+XA=FX+XA 

::: FX + XQ +QA= FQ + QA . 

Thus, among all points Q on the line T , Q = P is the one that minimize s the sum 
of distances F Q + QA . By the observation made for straight lines above, F P and 
PA make equal angles with T and so also with the normal to the parabola at P . (The 
parabola and the tangent line have the same normal at P .) 

Reflection by a parabola 

Any ray from the focus will be reflected parallel to the axis of the parabola. 
Equivalently, any incident ray parallel to the axis of the parabola will be 
reflected through the focus. 

Ellipses 

Ellipses 

An ellipse consists of all points in the plane, the sum of whose distances from 
two fixed points (the foci) is constant. 

EXAM p LE 2 Find the ellipse with foci at the point s e-c, 0) and ec, 0) if the sum 
of the distances from any point P on the ellipse to these two foci 

is 2a (where a > c). 

Solution The ellipse passes through the four points ea, 0) , e-a , 0) , eo, b ), and 
eo, -b) , where b2 = a2 - c2 . (See Figure 8.6.) Also , if P = ex, y) is on the 
ellipse, then 

Jex - c)2 + y2 +Jex+ c)2 + y2 = 2a. 

Transposing one term from the left side to the right side and squaring , we get 

ex - c)2 + y2 = 4a2 
- 4aJex + c)2 + y2 +ex+ c)2 + y2. 
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Figure 8.6 An ellipse 

Now we expand the squares, cancel terms, transpose, and square again: 

a)(x + c)2 + y2 = a2 + ex 

a2(x2 + 2cx + c2 + y2) = a4 + 2a2cx + c2x 2 

(a2 - c2)x 2 + a2y2 = a2(a2 - c2
) . 

Finally, replace a2 - c2 with b2 and divide by a2b2 to get the standard equation of the 
ellipse : 

x2 y2 
2 + 2 = 1. a b 

(-a, 0) 

(-c, 0) 

y 
(O, b) 

b 

C 

(c, 0) 

I co, - b) 

The following quantities describe this ellipse: 

a is the semi-major axis, 

b is the semi-minor axis, 

(a, 0) 

c = J a2 - b2 is the semi-focal separation . 

X 

The point halfway between the foci is called the centre of the ellipse. In the example 
above it is the origin. Note that a > b in this example . If a < b, then the ellipse has 
its foci at (O, c) and (0, - c), where c = ,,/b2 - a2. The line containing the foci (the 
major axis) and the line through the centre perpendicular to that line (the minor axis) 
are called the principal axes of the ellipse. 

The eccentricity of an ellipse is the ratio of the semi-focal separatio n to the 
x2 y2 

semi-major axis. We denote the eccentricity c. For the ellipse a
2 

+ b
2 

= 1 with 

a > b, 

C ,,/a2 - b2 
E:=-=- ---

a a 

Note that c < 1 for any ellipse; the greater the value of c, the more elongated (less 
circular) is the ellipse. If c = 0 so that a = b and c = 0, the two foci coincide and the 
ellipse is a circle. 

The Focal Property of an Ellipse 
Let P be any point on an ellipse having foci F1 and F2. The normal to the ellipse at P 
bisects the angle between the lines Fi P and F2 P . 
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Figure 8.7 A ray from one focus of an 
ellipse is reflected to the other focus 

y 

X 

Figure 8.8 A focus and correspo nding 
directrix of an ellipse 

DEFINITION 

I 
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Reflection by an ellipse 

Any ray coming from one focus of an ellipse will be reflected through the 
other focus. 

To see this, observe that if Q is any point on the line T tangent to the ellipse at P, then 
Fi Q meets the ellipse at a point X between Fi and Q (see Figure 8.7), so 

Among all points on T , P is the one that minimizes the sum of the distances to F1 and 
F2. This implies that the normal to the ellipse at P bisects the angle F1 P F2. 

Q y 

X 

The Directrices of an Ellipse 
If a > b > 0, each of the lines x = a/ t: and x = - a / t: is called a directrix of the 

ellipse : : + ;: = l . If P is on the ellipse, then the ratio of the distance from P to a 

focus to its distance from the corresponding directrix is equal to the eccentricity t:. If 
P = (x, y) , Fis the focus (c, 0), Q is on the corresponding directrix x = a/ t:, and 
P Q is perpendicular to the directrix , then (see Figure 8.8) 

P F 2 = (x - c)2 + y2 

= x 2 
- 2cx + c2 + b2 

( l - : : ) 

= x2 ( a2 ~ b2) - 2cx + a2 - b2 + b2 

= t:2x 2 - 2t:ax + a2 

= (a - t:x/. 

(because c = ea) 

Thus , PF= a- t:x . Also, QP = (a/ t:)- x = (a- t:x) / t:. Therefore , PF / QP = t:, 
as asserted . 

A parabola may be considered as the limiting case of an ellipse whose eccentricity 
has increased to 1. The distance between the foci is infinite, so the centre, one focus, 
and its corresponding directrix have moved off to infinity leaving only one focus and 
its directrix in the finite plane. 

Hyperbolas 

Hyperbola s 

A hyperbola consists of all points in the plane , the difference of whose distances 
from two fixed points (the foci) is constant. 
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Figure 8.9 Hyperbola with foci (±c , 0) 
and vertices (±a , 0) 

Figure 8.10 Terms associated with a 
hyperbola 

y 

Figure 8. 11 The directrices of a 
hyperbola 

EXAM p LE 3 If the foci of a hyperbola are F1 = (c , 0) and F2 = (-c , 0) , and 
the difference of the distance s from a point P = (x, y ) on the 

hyperbola to these foci is 2a (where a < c), then 

J J { 2a (right branch) 
p F2 - p F 1 = (x + c)2 + y2 - (x - c)2 + y2 = -2a 

(left branch). 

(See Figure 8.9.) Simplifying this equation by squaring and transposing as was done 
for the ellipse in Example 2, we obtain the standard equation for the hyperbola: 

x2 y2 
--- =1 a2 b2 , 

where b2 = c2 - a2. 

The points (a, 0) and (-a, 0) (called the vertices) lie on the hyperbola , one on each 
branch. (The two branches correspond to the intersections of the plane of the hyperbola 
with the two nappe s of a cone.) Some parameters used to describe the hyperbola are 

a the semi-trans verse axis, 

b the semi-conjugate axis, 

c = J a2 + b2 the semi-focal separation . 

The midpoint of the line segment F1 F2 (in this case the origin) is called the centre of 
the hyperbola . The line through the centre, the vertices , and the foci is the transverse 
axis . The line through the centre perpendicular to the transverse axis is the conjugate 
axis. The conjugate axis doe s not inter sect the hyperbola . If a rectangle with sides 2a 
and 2b is drawn centred at the centre of the hyperbola and with two sides tangent to the 
hyperbola at the vertice s, then the two diagonal lines of the rectan gle are asymptotes 
of the hyperbola . They have equations (x / a) ± (y / b) = O; that is, they are solutions 
of the degenerate equation 

x2 y2 
-- -=0 a2 b2 . 

The hyperbola approaches arbitrarily close to these lines as it recedes from the origin. 
(See Figure 8.10.) A rectangular hyperbola is one whose asymptotes are perpendicular 
ljne s. (This is so if b = a.) 

The eccentricity of the hyperbola is 

C ,Ja2 +b 2 
t: =-=----

a a 
Note that t: > 1. The lines x = ±(a / t:) are called the directrices of the hyperbol a 
(x 2 / a 2) - (y2 / b2) = 1. (See Figure 8.11.) In a manner similar to that used for the 
ellipse , you can show that if P is on the hyperbola , then 

distance from P to a focus ------------------ = E:. 
distance from P to the corresponding directrix 

The eccentricity of a rectangular hyperbola is ./2. 
A hyperbola with the same asymptotes as x 2 / a 2 - y2 / b2 = 1, but with transverse 

axis along the y-axis , vertice s at (0, b) and (0, -b) , and foci at (0, c) and (0, -c) is 
repre sented by the equation 

x2 y2 y2 x2 
a 2 - b2 = -1, or, equivalently, b2 - a 2 = 1. 

The two hyperbolas are said to be conjugate to one another. (See Figure 8.12.) 
The conjugate axis of a hyperbola is the transverse axis of the conj ugate hyperbola . 
Together , the transverse and conjugate axes of a hyperbola are called its principal axes . 
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Figure 8.12 Two conjugate hyperbolas 
and their common asymptotes 

Figure 8. 13 A ray from one focus is 
reflected along a line from the other focus 

SECTION 8.1: Conics 465 

y 

The Focal Property of a Hyperbola 
Let P be any point on a hyperbola with foci F1 and F2. Then the tangent line to the 
hyperbola at P bisects the angle between the lines F1 P and F2 P . 

Reflection by a hyperbola 

A ray from one focus of a hyperbola is reflected by the hyperbola so that it 
appears to have come from the other focus . 

To see this, let P be on the right branch, let T be the line tangent to the hyperbola 
at P , and let C be a circle of large radius centred at F2. (See Figure 8.13.) Let F2P 
intersect this circle at D. Let Q be any point on T. Then Q Fi meets the hyperbola at 
X between Q and Fi, and F2X meets C at E. Since X is on the radial line F2 E, it is 
closer to E than it is to other points on C. That is, XE S X D . Thus, 

F1P +PD= F1P + F2D - F2P 

= F2D - (F2P - F1 P) 

= F2E - (F2X - F1X) 
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BEWARE! Check the 
equalities and inequalities in the 
above chain one at a time to 
make sure you understand why 
it is true. 

y 

x 2 + 2y2 + 6x - 4y + 7 = 0 

Figure 8.14 This curve is an ellipse 

BEWARE! A lengthy 
calculation is needed here. The 
details have been omitted. 

X 

= Fi X + F2 E - F2X 

= F1X+XE 

.:S F1X +XD 

.:S Fi X + X Q + Q D = Fi Q + Q D. 

P is the point on T that minimizes the sum of distances to F1 and D; therefore, the 
normal to the hyperbola at P bisects the ang le F 1 PD . Therefore , T bisects the angle 
F1PF 2. 

Classifying General Conics 
A second-degree equation in two variab les, 

Ax 2 + Bxy + cy2 + Dx + Ey + F = 0, (A 2 + B 2 + C2 > 0), 

generally represents a conic curve, but in certain degenerate cases it may represe nt two 
straight lines (x 2 - y 2 = 0 represent s the lines x = y and x = - y), one straig ht line 
(x 2 = 0 represents the line x = 0) , a single point (x 2 + y2 = 0 represents the origin) , 
or no points at all (x 2 + y 2 = -1 is not satisfied by any point in the plane). 

The nature of the set of points represented by a given second-degree equation can 
be determined by rewriting the equation in a form that can be recognized as one of 
the standard type s. If B = 0, this rewriting can be accomplished by completing the 
squares in the x and y terms. 

EXAMPLE 4 Describe the curve with equation x 2 + 2y 2 + 6x - 4y + 7 = 0. 

Solution We complete the squares in the x and y terms, and rewrite the equation in 
the form 

x 2 + 6x + 9 + 2(y2 - 2y + 1) = 9 + 2 - 7 = 4 

(x + 3)2 (y - 1)2 
--4-- + --2-- = I. 

Therefore, it represents an ellipse with centre at (-3, 1), semi-major axis a = 2, and 
semi-minor axis b = .,/2. Since c = .J a2 - b2 = .,/2, the foci are (-3 ± .,/2, 1). See 
Figure 8.14. 

If B =I= 0, the equation has an xy term, and it cannot represent a circle . To see what 
it does represent, we can rotate the coordinate axes to produce an equation with no 
xy term . Let new coordinate axes (a u-axis and av-axis) have the same origin but be 
rotated an angle 0 from the x- and y-axes, respectively. (See Figure 8.15.) If point P 
has coordinates (x , y) with respect to the old axes and coordinates (u, v) with respect 
to the new axes, then an analysis of triangles in the figure shows that 

x = 0 A - X A = 0 U cos 0 - 0 V sin 0 = u cos 0 - v sin 0, 

y = X B + BP = 0 U sin 0 + 0 V cos 0 = u sin 0 + v cos 0. 

Substituting these expressions into the equation 

Ax 2 + Bxy + cy2 + Dx + Ey + F = 0, 

leads to a new equation, 

A'u 2 + B'uv + C'v 2 + D'u + E'v + F = 0, 

where 

(A 2 + B 2 + C2 > 0), 
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Figure 8.15 Rotation of axes 

y 

x = u cos 0 - v sin 0 
y =u. sin 0 + v cos0 

X 

A'= ~(A(l + cos20) + B sin20 + C(l - cos20)) 

B' = (C - A) sin 20 + B cos 20 

C' = ~ ( A (1 - cos 20) - B sin 20 + C (l + cos 20)) 
D' = Dcos0 + Esin0 

E' = -D sin0 + E cos 0. 

Note that F remains unchanged . If we choose 0 so that 
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B n: . 
tan 20 = A _ C , or 0 = 4 1f A = C, B -:/= 0, 

then B' = 0, and the new equation can then be analyzed as described previously. 

EXAM p LE 5 Identify the curve with equation xy = l. 

Solution The reader is likely well aware that the given equation represents a rect
angular hyperbola with the coordinate axes as asymptote s. Since the given equation 
involves A = C = D = E = 0 and B = 1, it is appropriate to rotate the axes through 
angle 1r / 4 so that 

1 
x = -(u -v) 

./2 ' 

1 
y = ./2.(u +v ) . 

The transformed equation is u2 - v2 = 2, which is, as suspected , a rectangul ar 
hyperbola with vertices at u = ±./2 , v = 0, foci at u = ±2 , v = 0, and asymptote s 
u = ±v. Hence, xy = l represents a rectangular hyperbola with coordinate axes as 
asymptotes, vertices at (l , I) and (- 1, - 1 ), and foci at ( ./2, ./2) and (-./2 , -./2). 

EXAMPLE 6 Show that the curve 2x 2 + xy + y2 = 2 is an ellipse , and find the 
length s of its semi-major and semi-minor axes . 

Solution Here, A = 2, B = C = 1, D = E = 0, and F = -2. We rotate the 
axes through angle 0 where tan 20 = B / (A - C) = 1. Thus , B' = 0, 20 = 1r / 4, and 
sin 20 = cos 20 = l / ./2 . We have 

A' = ~ [2 (1 + _l ) + _l + (1 -_l )] = 3 + ./2 
2 ./2 ./2 ./2 2 

C' = ~ [ 2 ( 1 - ~) - ~ + ( 1 + ~) J = 
3 

- 2 ./2. 
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The transformed equation is (3 + .../2)u2 + (3 - .../2)v2 = 4, which represents an ellipse 

with semi-major axis 2/ )3 - .../2 and semi -minor axis 2/ )3 + .../2. (We will discover 

another way to do a question like this in Section 13.3 .) 

EXERCISES 8.1 
Find equations of the conics specified in Exercises 1-6 . 

1. ellipse with foci at (0, ±2) and semi-major axis 3. 

2. ellipse with foci at (0, 1) and (4, 1) and eccentricity 1/ 2. 

3. parabola with focus at (2, 3) and vertex at (2, 4). 

4. parabola passing through the origin and having focus at 
(0, - 1) and axis along y = -1. 

5. hyperbola with foci at (0, ±2) and semi-transverse axis 1. 

6. hyperbola with foci at (±5, 1) and asymptotes 
X = ±(y - 1). 

In Exercises 7-15, identify and sketch the set of points in the 
plane satisfying the given equation. Specify the asymptotes of 
any hyperbola s. 

7. x 2 +y2+2x=- l 

9. 4x 2 + y2 - 4y = 0 

11. x 2 + 2x - y = 3 

13. x 2 - 2y2 + 3x + 4y = 2 

8. x 2 + 4y 2 
- 4y = 0 

10. 4x 2 - y2 - 4y = 0 

12. x + 2y + 2y2 = I 

14. 9x 2 +4y2-I8x+8y=-l3 

15. 9x 2 +4y2- 18x +Sy= 23 

16. Identify and sketch the curve that is the graph of the equation 
(x - y)2 - (x + y)2 = 1. 

0 17. Light rays in the xy-plane coming from the point (3, 4) 
reflect in a parabola so that they form a beam parallel to the 
x-ax is. The parabola passes through the origin. Find its 
equation. (There are two possible answers.) 

18. Light rays in the xy-p lane coming from the origin are 
reflected by an ellipse so that they converge at the point 
(3, 0). Find all possible equations for the ellipse. 

In Exercises 19-22, identify the conic and find its centre, 
principal axes, foci, and eccentricity. Specify the asymptotes of 
any hyperbol as. 

19. xy + X - y = 2 

0 20. x2 +2xy + y2 = 4x -4y +4 

0 21. 8x2 + l2xy + 17y2 = 20 

0 22. x 2 
- 4xy + 4y2 + 2x + y = 0 

23. The fo cus-directrix definition of a conic defines a conic as 
a set of point s P in the plane that satisfy the condit ion 

distance from P to F 
--------=E: 
distance from P to D ' 

where F is a fixed point , D a fixed straight line, and e a fixed 
positive number. The conic is an ellipse, a parabola , or a 
hyperbola accordi ng to whether e < 1, e = 1, ore > 1. Find 
the equation of the conic if F is the origin and D is the line 
X = - p. 

Another parameter associated with conics is the semi -latus 
rectum , usually denoted t . For a circle it is equal to the radius . 
For other conics it is half the length of the chord through a focus 
and perpendicular to the axis (for a parabola) , the major axis (for 
an ellipse), or the transverse axis (for a hyperbola). That chord is 
called the latus rectum of the conic. 

0 24. Show that the semi- latus rectum of the parabola is twice the 
distance from the vertex to the focus. 

8 25. Show that the semi-latus rectum for an ellipse with 
semi-major axis a and semi-minor axis bis e = b2 / a. 

8 26. Show that the formula in Exercise 25 also gives the 
semi-latu s rectum of a hyperbola with semi-transver se axis a 
and semi-conjugate ax is b. 

0 27. Suppose a plane intersects a right-circular cone in an ellipse 
and that two spheres (one on each side of the plane) are 
inscribed between the cone and the plane so that each is 
tangent to the cone around a circle and is also tangent to the 
plane at a point. Show that the points where these two 
sphere s touch the plane are the foci of the ellipse. Hint : All 
tangent Jines drawn to a sphere from a given point outside 
the sphere are equal in length . The distance between the two 
circles in which the spheres intersect the cone, measured 
along generators of the cone (i.e., straight lines lying on the 
cone), is the same for all generators . 

0 28. State and prove a result analogous to that in Exercise 27 but 
pertaining to a hyperbola. 

0 29. Suppose a plane intersects a right-circular cone in a parabol a 
with vertex at V. Suppose that a sphere is inscribed between 
the cone and the plane as in the previous exercises and is 
tangent to the plane of the parabola at point F . Show that the 
chord to the parabola through F which is perpendicular to 
F V has length equal to that of the latus rectum of the 
parabola. Therefore, F is the focus of the parabola. 
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. _ P_a_ra_m_e_tr_ic_C_u_rv_e_s ______________ _ 
Suppose that an object moves around in the xy-pla ne so that the coordinates of its 
position at any time t are continuous functions of the variable t: 

DEFINITION 

I 

Figure 8.16 A parametric curve 

X = f (t) , y = g(t). 

The path followed by the object is a curve e in the plane that is specified by the two 
equations above. We call these equations parametric equations of e. A curve specified 
by a particular pair of parametric equations is called a parametric curve. 

Parametric curves 

A parametric curve e in the plane consists of an ordered pair (f, g) of continuous 
functions each defined on the same interval I. The equations 

X = f (t), y = g(t), fort in I , 

are called parametric equations of the curve e. The independent variable t is 
called the parameter. 

Note that the parametric curve e was not defined as a set of points in the plane , but 
rather as the ordered pair of functions whose range is that set of points. Different pairs 
of function s can give the same set of points in the plane , but we may still want to 
regard them as different parametric curves. Neverthele ss, we will often refer to the set 
of points (the path traced out by (x, y) as t traverses /) as the curve e. The axis (real 
line) of the parameter t is distinct from the coordinate axes of the plane of the curve. 
(See Figure 8.16.) We will usually denote the parameter by t ; in many applications 
the paramete r represents time, but this need not always be the case . Because f and g 
are assumed to be continuous, the curve x = f (t), y = g(t) has no breaks in it. A 
parametric curve has a direction (indicated , say, by arrowheads), namely, the direction 
corresponding to increasing values of the parameter t, as shown in Figure 8.16. 

y 

b 

X 

EXAMPLE 1 Sketch and identify the parametric curve 

X = t2 
- 1, y = t + l (- oo < t < oo). 

Solution We could construct a table of values of x and y for various values oft, thus 
getting the coordinates of a number of points on a curve. However, for this example it is 
easier to eliminate the param eter from the pair of parametric equations, thus producing 
a single equation in x and y whose graph is the desired curve : 

t = y - l, X = t2 - 1 = (y - 1)2 - 1 = y2 - 2y. 
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y 

Figure 8.17 The parabola defined 
parametrically by x = t2 - 1, y = t + 1, 
(-oo < t < oo) 

y 

X 

Figure 8.18 The straight line through Po 

and P1 

y 

f=7f 

t =O X 

1=3; 

Figure 8.19 Three quarters of a circle 

All points on the curve lie on the parabola x = y2 - 2y. Since y ~ ±oo as t ~ ±oo, 
the parametric curve is the whole parabola . (See Figure 8.17 .) 

Although the curve in Example 1 is more easily identified when the parameter is elim
inated, there is a loss of information in going to the nonparametric form. Specifically, 
we lose the sense of the curve as the path of a moving point and hence also the direction 
of the curve. If the t in the parametric form denotes the time at which an object is at 
the point (x, y ), the nonparametric equation x = y 2 - 2y no longer tells us where the 
object is at any particular time t. 

EXAM p LE 2 (Parametric equations of a straight line) The straight line pass-
ing through the two points Po = (xo, Yo) and P1 = (x1, YI) (see 

Figure 8.18) has parametric equations 

[ 

x = xo + t(xi - xo) 

y = yo+t(y1-yo) 
(- oo < t < oo) . 

To see that these equations represent a straight line , note that 

Y - YO YI - YO -- = --- = constant (assumjng x1 i- xo). 
X - XO Xt - XO 

The point P = (x , y) is at position Po when t = 0 and at P1 when t = 1. If t = 1/ 2, 
then P is the mjdpoint between Po and P1. Note that the line segment from Po to P1 
corresponds to values oft between O and 1. 

EXAMPLE 3 (An arc of a circle) Sketch and identify the curve x = 3 cost, 

y = 3sint , (0 =::: t =::: 3rc/ 2) . 

Solution Since x 2 + y2 = 9 cos 2 t + 9 sin2 t = 9, all points on the curve lie on the 
circle x 2 + y 2 = 9. As t increases from O through n / 2 and n to 3n / 2, the point (x, y) 
moves from (3, 0) through (0, 3) and (-3 , 0) to (0, -3). The parametric curve is three
quarters of the circle . See Figure 8.19 . The parameter t has geometric significance in 
this example. If P1 is the point on the curve corresponding to parameter value t, then 
t is the angle at the centre of the circle corresponding to the arc from the initial point 
to P1 . 

EXAMPLE 4 (Parametric equations of an ellipse) Sketch and identify the 
curve x = a cost , y = b sin t , (0 =::: t =::: 2n ), where a > b > 0. 

Solution Observe that 

x 2 y2 2 . 2 1 
a 2 + b2 = COS t + Sin t = . 

Therefore, the curve is all or part of an ellipse with major axis from (- a, 0) to (a, 0) 
and mjnor axis from (0 , - b) to (0 , b). Ast increases from Oto 2n , the point (x, y) 
moves counterclockwise around the ellipse starting from (a, 0) and returning to the 
same point. Thus, the curve is the whole ellipse . 

Figure 8.20(a) shows how the parameter t can be interpreted as an angle and how 
the points on the ellipse can be obtained using circles of radi i a and b. Since the curve 
starts and ends at the same point, it is called a closed curve. 

EX A M p L E 5 Sketch the parametric curve 

X = t3 
- 3t , (-2:::: t:::: 2). 
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Figure 8.20 

(a) An ellipse parametrized in terms of 
an angle and constructed with the 
help of two circles 

(b) A self-intersecting parametric curve 

SECTION 8.2: Parametric Curves 4 71 

y y 

a 
X 

t= I 

t=O X 

(a) (b) 

Solution We could eliminate the parameter and obtain 

but this doesn ' t help much since we do not recognize this curve from its Cartesian 
equation. Instead , let us calculate the coordinates of some points: 

Table 2. Coordinates of some points on the curve of Example 5 

3 1 1 3 
-2 -1 0 - - 2 

2 2 2 2 

9 11 11 9 
X -2 - 2 - 0 -- -2 2 

8 8 8 8 
9 1 1 9 

y 4 - 1 - 0 1 4 
4 4 4 4 

Note that the curve is symmetric about the y-ax is because x is an odd function oft 
and y is an even function oft. (At t and -t, x has opposite values but y has the same 
value .) 

The curve intersects itself on the y-axis. (See Figure 8.20(b) .) To find this self
intersection , set x = 0: 

0 = X = t3 - 3t = t(t - ./3)(t + ./3). 

For t = 0 the curve is at (0, 0) , but for t = ±./3 the curve is at (0, 3). The self
intersection occurs because the curve passes through the same point for two different 
values of the parameter. 

i Remark Here is how to get Maple to plot the parametric curve in the example above. 
Note the square brackets enclosing the two function s t3 - 3t and t2 , and the paramete r 
interval, followed by the ranges of x and y for the plot. 

> plot([t"3-3*t , t"2 , t=-2 .. 2], x=-3 .. 3 , y=-1. . 5) ; 

General Plane Curves and Parametrizations 
According to Definition 4, a parametric curve always involves a particular set of 
parametric equations; it is not just a set of points in the plane. When we are interested 
in considering a curve solely as a set of points (a geometric object), we need not be 
concerned with any particular pair of parametric equations representing that curve. In 
this case we call the curve simply a plane curve. 
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DEFINITION 

Figure 8.21 Each arch of the 

cycloid is traced out by P as 
the wheel rolls through one 

comp lete revolution 

I 
Plane curves 

A plane curve is a set of points (x, y) in the plane such that x = f(t) and 
y = g(t) for some t in an interval /, where f and g are continuous function s 
defined on I. Any such interval / and function pair(!, g) that generate the points 
of e is called a parametrization of e. 

Since a plane curve does not involve any specific parametrization, it has no specific 
direction. 

EXAM p LE 6 The circle x
2 + y2 = l is a plane curve. Each of the following is 

a possible parametrization of the circle: 

(i) x=cost, y=sint, (0 .:St _:S2n), 

(ii) x = sin s2 , y = cos s2 , (0 :S s :S -J27r), 

(iii) x = cos(nu + 1) , y = sin(nu + 1), (-1 :S u S 1), 

(iv) X = 1- t2, y = t./2=tf , (--Ji _:St _:S -Ji) . 
To verify that any of these represents the circle , substitute the appropriate functions for 
x and y in the expression x 2 + y 2, and show that the result simplifies to the value 1. 
This shows that the parametric curve lies on the circle. Then examine the ranges of x 

and y as the parameter varies over its domain . For example, for (iv) we have 

x 2 + y2 = (1 - t 2)2 + (t~)2 = 1 - 2t 2 + t4 + 2t 2 
- t4 = 1, 

and (x , y) moves from ( -1 , 0) through (0, -1) to ( 1, 0) as t increases from --Ji 
through -1 to 0, and then continues on through (0, 1) back to (-1 , 0) as t continues 
to increase from O through l to ,Ji . 

There are, of course , infinitely many other possible parametrizations of this curve. 

EXAMPLE 7 

X = t , 

If / is a continuous function on an interval /, then the graph off 
is a plane curve. One obviou s parametrization of this curve is 

y = f (t) , (t in /). 

Some Interesting Plane Curves 
We complete this section by parametrizing two curves that arise in the physical world. 

EXAMPLE 8 

called a cycloid. 

y 

0 

(A cycloid) If a circle rolls without slippin g along a straight line, 
find the path followed by a point fixed on the circle. This path is 

T X 
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The brachistochrone and 
tautochrone problems 
Suppose a wire is bent into a 
curve from point A to a lower 
point B and a bead can slide 
without friction along the wire. 
If the bead is released at A, it 
will fall toward B. What curve 
should be used to minimize the 
time it takes to fall from A to B? 
This problem, known as the 
brachistochrone (Greek for 
"shortest time") problem, has as 
its solution part of an 
upside-down arch of a cycloid. 
Moreover, it takes the same 
amount of time for the bead to 
slide from any point on the 
curve to the lowest point B, 
making the cycloid the solution 
of the tautochrone ("equal 
time") problem as well. We will 
examine these matters further in 
the Challenging Exercises at the 
end of Chapter 11. 
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Solution Suppose that the line on which the circle rolls is the x-axis , that the circle 
has radius a and lies above the line , and that the point whose motion we follow is 
originally at the 01igin O. See Figure 8.21. After the circle has rolled through an angle 
t, it is tangent to the Line at T, and the point whose path we are trying to find has moved 
to position P, as shown in the figure. Since no slipping occurs , 

segment OT= arc PT= at. 

Let PQ be perpendicular to TC, as shown in the figure. If P has coordinates (x , y), 

then 

x = OT- PQ = at - a sin(1r - t) = at - a sin t , 

y = TC + CQ = a + a cos (1r - t) = a - a cos t. 

The parametric equations of the cycloid are, therefore, 

x = a(t - sint), y = a(l - cost). 

Observe that the cycloid has a cusp at the points where it returns to the x-ax is, that is , 
at points con-esponding tot = 2mr, where n is an integer. Even though the functions x 
and y are everywhere differentiable functions oft, the curve is not smooth everywhere. 
We shall consider such matters in the next section. 

EXAM p LE g (An involute of a circle) A string is wound around a fixed circ le . 
One end is unwound in such a way that the part of the string not 

lying on the circle is extended in a straight line . The curve followed by this free end 
of the string is called an involute of the circle. (The involute of any curve is the path 
traced out by the end of the curve as the curve is straig htened out beginning at that 
end.) 

Suppose the circle has equation x 2 + y 2 = a2 , and suppose the end of the string 
being unwound starts at the point A = (a, 0). At some subsequent time during the 
unwinding let P be the position of the end of the string, and let T be the point where 
the string leaves the circle. The line PT must be tangent to the circle at T. 

We parametrize the path of Pin terms of the angle AOT, which we denote by t. 
Let points R on OA and Son TR be as show n in Figure 8.22. TR is perpendicular to 
OA and to PS . Note that 

OR= OTcost = a cost, RT = OT sin t = a sin t. 

Since angle OTP is 90°, we have angle STP = t. Since PT = arc AT = at (beca use 
the str-ing does not stretc h or slip on the circle), we have 

SP = TP sin t = at sin t, ST= TPcost = at cost. 

If P has coordinates (x, y), then x = 0 R +SP, and y = RT - ST: 

x = a cos t + at sin t, y = a sin t - at cost, (t ::::. 0). 

These are parametric equations of the involute. 
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Figure 8.22 An involute of a circle 

EX E R C I S ES 8.2 
In Exercises 1-10 , sketc h the given parametric curve , showing its 
direction with an arrow. Eliminate the parameter to give a 
Cartesian equat ion in x and y whose graph contains the 
parametric curve. 

1. X = I + 21, y = t2
, ( -(X) < t < (X)) 

2. X = 2 - I , y = t + l , (Q :'.': t < 00) 

l 
3. X = - , y = t - l , (0 < t < 4) 

t 
I I 

4. x = l +1 2' Y = 1 + 12' (-oo < t < oo) 

5. x = 3 sin 2t , y = 3 cos 2t , ( 0 S t S ~) 

6. x = a sec t , y = b tan t, ( - ~ < t < ~) 

7. x = 3sinirt, y = 4cosirt, (- 1 S t S l) 

8. x = cos sin s, y = sin sins , (-oo < s < oo) 

9. x =co s3 t , y =sin 3 t, (O ::: t ::: 2ir) 

10. x = I - ~' y = 2 + t , (-2 S I S 2) 

11. Describe the parametric curve x = cos h t , y = sinh t, and 
find its Cartesian equation. 

12. Describe the parametric curve x = 2 - 3 cosh I , 

y = - 1 + 2 sinh t. 

13. Describe the curve x = t cost , y = t sin I , (0 S t S 4ir ) . 

14. Show that each of the following sets of param etr ic equation s 
repre sents a different arc of the parabol a with eq uation 
2(x + y) = I + (x - y) 2 . 

(a) x = cos4 I , y = sin4 t 

(b) x=s ec4 t , y= tan4 t 

(c) x = tan4 t , y = sec4 I 

15. Find a parametrization of the parabola y = x 2 using as 
parameter the slope of the tangent line at the general point. 

16. Find a parametri zation of the ci rcle x 2 + y2 = R2 using as 

y 

17. 

18. 

0 19. 

0 20. 

0 21. 

P= (x ,y ) 

X 

parameter the slope m of the line joining the general point to 
the point (R , 0) . Does the parametrization fail to give any 
point on the circle? 

A circle of radius a is centred at the origin O. T is a point on 
the circle such that OT make s angle t with the positive 
x-ax is. The tangent to the circle at T meet s the x-axis at X . 
The point P = (x, y) is at the intersection of the vertical line 
through X and the horizontal line through T. Find, in term s 
of the parameter t, parametric equations for the curve e 
traced out by P as T move s around the circle. Also, 
eliminat e I and find an equation fore in x and y. Sketch e. 

Repeat Exercise 17 with the following modification: 0 T 
meets a seco nd circle of radius b centred at O at the point Y. 
P = (x, y ) is at the inter section of the vertical line through 
X and the horizont al line through Y. 

(The folium of Descartes) Eliminate the parameter from 
the parametric equations 

31 
X= --[ + t3' 

3t 2 

y = I + 13 ' 
(t :/- -!) , 

and hence find an ordinary equation in x and y for this curve. 
The parameter t can be interpret ed as the slope of the line 
joining the general point (x, y) to the origin. Sketch the 
curve and show that the line x + y = - I is an asymptote . 

(A prolate cycloid) A railroad wheel has a flange 
ex tending below the level of the track on which the wheel 
rolls. If the radius of the wheel is a and that of the flange is 
b > a, find parametric equations of the path of a point P at 
the circumference of the flange as the wheel rolls along the 
track . (No te that for a portion of each revolution of the 
wheel , P is moving backward. ) Try to sketch the graph of 
thi s prolate cycloid. 

(Hypocycloids ) If a circle of radius b rolls, without 
slippin g, around the inside of a fixed circle of radius a > b, a 
point on the circumference of the rolling circle traces a curve 
called a hypocyc loid. If the fixed circle is centred at the 
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origin and the point tracing the curve starts at (a , 0) , show 
that the hypocycloid has parametric equations 

(
a -b ) x=(a-b)cost+bcos -b-t, 

y = (a -b) sint - b sin (a: b t), 
where t is the angle between the positive x-axis and the line 
from the origin to the point at which the rolling circle 
touches the fixed circle. 

If a = 2 and b = 1, show that the hypocycloid becomes 
a straight line segment. 

If a = 4 and b = 1, show that the parametric equation s 
of the hypocycloid simplify to x = 4 cos3 t, y = 4 sin3 t . 
This curve is called a hypocycloid of four cusps or an 
astroid. (See Figure 8.23.) It has Cartesian equation 
x2/3 + y2/3 = 42; 3. 

y 
4 

4 

- 4 X 

-4 

Figure 8.23 The ast:roid x 213 + y213 = 42/ 3 

Hypocycloids resemble the curves produced by a 
popular children's toy called Spirograph, but Spirograph 
curves result from following a point inside the disc of the 
rolling circle rather than on its circumference, and they 
therefore do not have sharp cusps. 

D 22. (The witch of Agnesi) 

(a) Show that the curve traced out by the point P 
constructed from a circle as shown in Figure 8.24 has 
parametric equations x = tan t, y = cos2 t in terms of 
the angle t shown. (Hint: You will need to make 
extensive use of similar triangles.) 

(b) Use a trigonometric identity to eliminate t from the 
parametric equations, and hence find an ordinary 
Cartesian equation for the curve. 

This curve is named for the Italian mathematician Maria 
Agnesi (1718-1799), one of the foremost women scholars of 
the eighteenth century and author of an important calculu s 
text. The term witch is due to a mistranslation of the Italian 
word versiera ("turning curve"), which she used to describe 
the curve. The word is similar to avversiera ("wife of the 
devil" or "witch"). 
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y 

y =l 

X 

Figure 8.24 The witch of Agnesi 

In Exercise s 23-26, obtain a graph of the curve x = sin(mt), 
y = sin(nt) for the given values of m and n. Such curves are 
called Lissajous figures. They arise in the analysis of electrical 
signals using an oscilloscope. A signal of fixed but unknown 
frequency is applied to the vertical input, and a control signal is 
applied to the horizontal input. The horizontal frequency is 
varied until a stable Lissajous figure is observed. The (known) 
frequency of the control signal and the shape of the figure then 
determine the unknown frequency . 

H 23. m = 1, n = 2 

i: 25. m = 2, n = 3 

ii 24. m = 1, n = 3 

i: 26. m = 2, n = 5 

ii 27. (Epicycloids) Use a graphing calculator or computer 
graphing program to investigate the behaviour of curves with 
equations of the form 

x = ( 1 + ~) cos t - ~ cos(nt) 

y = (1 + !..) sin t - 2_ sin(nt) 
n n 

for various integer and fractional values of n c::: 3. Can you 
formulate any principles governing the behaviour of such 
curves? 

i: 28. (More hypocycloids) Use a graphing calculator or 
computer graphing program to investigate the behaviour of 
curves with equations of the form 

x = (1 +~)cost+ ~ cos((n - l)t) 

y = (1 + ~) sint - ~ sin((n - l)t) 

for various integer and fractional values of n c::: 3. Can you 
formulate any principles governing the behaviour of these 
curves? 
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Smooth Parametric Curves and Their Slopes 

y 
1 = 1 

X = 12 

y = 13 

I= -l 

X 

Figure 8.25 This curve is not smooth at 
the origin but has a cusp there 

THEOREM 

I 

We say that a plane curve is smoot h if it has a tangent line at each point P and this 
tangent turns in a continuous way as P moves along the curve . (That is, the angle 
between the tangent line at P and some fixed line, the x-axis say, is a continuous 
function of the position of P .) 

If the curve e is the graph of function f, then e is certainly smooth on any 
interval where the derivative J' (x) exists and is a continuous function of x. It may 
also be smooth on intervals containing isolated singular points; for example, the curve 
y = x 1 / 3 is smooth everywhere even though d y / dx does not exist at x = 0. 

For parametric curves x = f (t), y = g(t), the situation is more complicated. 
Even if f and g have continuous derivatives everywhere, such curves may fail to be 
smooth at certain points , specifically points where J'(t) = g'(t) = 0. 

EXAMPLE 1 Consider the parametric curve x = f(t) = t2 , y = g(t) = t 3 . 

Eliminating t leads to the Cartesian equation y2 = x 3 or x = 
y213, which is not smooth at the origin even though J'(t) = 2t and g'(t) = 3t2 are 
continuous for all t. (See Figure 8.25.) Observe that both J' and g' vanish at t = 0: 
J' (0) = g' (0) = 0. If we regard the parametric equations as specifying the position at 
time t of a moving point P , then the horizontal velocity is J' (t) and the vertical velocity 
is g' (t). Both velocities are Oat t = 0, so P has come to a stop at that instant. When 
it starts moving again, it need not move in the direction it was going before it stopped. 
The cycloid of Example 8 of Section 8.2 is another example where a parametric curve 
is not smooth at point s where dx / dt and dy / dt both vanish. 

The Slope of a Parametric Curve 
The following theorem confirms that a parametric curve is smooth at points where the 
derivatives of its coordinate functions are continuous and not both zero. 

Let e be the parametric curve x = f (t), y = g(t), where J' (t) and g' (t) are continuous 
on an interval /. If J' (t) I- 0 on / , then e is smooth and has at each t a tangent line 
with slope 

dy g'(t) 

dx f'(t) · 

If g'(t) I- 0 on/, then e is smooth and has at each ta normal line with slope 

dx J' (t) 
dy g' (t) 

Thus, e is smooth except possibly at points where J'(t) and g'(t) are both 0. 

PROOF If f' (t) I- 0 on /, then f is either increasing or decreasing on / and so is 
one-to-one and invertible . The part of e corresponding to values oft in / has ordinary 
equation y = g u-1 (x)) and hence slope 

We have used here the formula 

d -1 l 
dx f (x) = r(f- 1 (x)) 

g'(t) 
f'(t). 
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for the derivative of an inverse function obtained in Section 3.1. This slope is a 
continuous function oft, so the tangent to e turns continuously for t in /. The proof 
for g' (t) -:fa O is similar. In this case the slope of the normal is a continuous function of 
t, so the normal turns continuous! y. Therefore so doe s the tangent. 

If f' and g' are continuous , and both vanish at some point to, then the curve x = f (t) , 
y = g(t) may or may not be smooth around to. Example 1 was an example of a curve 
that was not smooth at such a point. 

EXAM p LE 2 The curve with parametrization x = t 3
, y = t6 is just the parabola 

y = x 2, so it is smooth everywhere, although dx / dt = 3t 2 and 
dy / dt = 6t 5 both vanish at t = 0. 

Tangents and normals to parametric curves 

If f' and g' are continu ous and not both Oa t to, then the parametric equati ons 

{ 
x = f(to) + f ' (to)(t - to) 
y = g(to) + g'( to)(t - to) 

(-oo < t < oo) 

represent the tangent line to the parametric curve x = f (t), y = g(t) at the 
point (!( to), g( to)) . The normal line there has parametric equations 

{ 
x = f(to) + g' (to)(t - to) 
y = g(to) - f' (to)(t - to) 

(- oo < t < oo) . 

Both line s pass through (! (to), g(to)) when t = to. 

EXAMPLE 3 Find equations of the tangent and normal lines to the parametric 
curve x = t2 - t, y = t2 +tat the point where t = 2. 

Solution At t = 2 we have x = 2, y = 6 and 

dx 
- = 2t-1 = 3 
dt ' 

dy 
- = 2t + 1 = 5. 
dt 

Hence, the tangent and the normal lines have parametric equations 

Tangent: 

Normal: 

{ 

X = 2 + 3(t - 2) = 3t - 4 
y = 6 + 5(t - 2) = St - 4. 

{ 
x = 2 + 5(t - 2) = St - 8 
y = 6 - 3(t - 2) = -3t + 12. 

The concavity of a parametric curve can be determined using the seco nd derivative s of 
the parametric equations. The proced ure is just to calculate d 2 y / dx 2 using the Chain 
Rule: 

d 2y _ .!!:__ dy _ .!!:__ g'(t) _ !!:_ (g '(t) ) dt 
dx 2 - dx dx - dx f'(t) - dt f'(t) dx 

f'(t)g " (t) - g'(t)f"(t) 1 

(f'(t)) 2 f'(t). 
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y 

(- 2,4) (2,4) 

t=I l= - 1 
(- 2, 1) (2,1) 

t=O 

Figure 8.26 The curve x = t3 - 3t, 

y = t2, (-2::: t S 2) 

X 

Concavity of a parametric curve 

On an interval where f ' (t) :/=-0, the parametric curve x = f(t), y = g(t) has 
concavity determined by 

f ' (t)g " (t) - g'(t)J"(t) 

(f ' (t))3 

Sketching Parametric Curves 
As in the case of graphs of function s, derivatives provide useful information about the 
shape of a parametric curve. At points where dy / dt = 0 but dx / dt :/=-0, the tangent 
is horizontal ; at points where dx / dt = 0 but dy / dt :/=-0, the tangent is vertical. For 
points where dx / dt = dy / dt = 0, anything can happen; it is wise to calculate left
and right-hand limits of the slope dy / dx as the parameter t approaches one of these 
points. Concavity can be determined using the formula obtained above. We illustrate 
these ideas by reconsidering a parametric curve encountered in the previous section. 

EXAMPLE 4 Use slope and concavity information to sketch the graph of the 
parametric curve 

X = f (t) = t3 
- 3t , y = g(t) = t 2

, (-2StS2) 

previously encountered in Example 5 of Section 8.2. 

Solution We have 

J'(t) = 3(t 2 
- 1) = 3(t - l)(t + 1), g'(t) = 2t. 

The curve has a horizontal tangent at t = 0, that is, at (0, 0), and vertical tangents at 
t = ±1, that is, at (2, 1) and (-2 , 1). Directional information for the curve between 
these points is summarized in the following chart. 

-2 - 1 0 2 

f'(t) + 0 0 + 
g'(t) 0 + + + 

X 

y t t t 
curve t 

For concavity we calculate the second derivative d2 y / dx 2 by the formula obtained 
above. Si nee f 11 (t) = 6t and g" (t) = 2, we have 

!' (t)g" (t) - g' (t) !" (t) 
(f ' (t))3 

3(t 2 - 1)(2) - 2t(6t) 

[3(t2 - 1)]3 
2 t 2 + 1 

-9 (t 2 -1) 3 ' 

which is never zero but which fails to be defined at t = ± l. Evidently the curve is 
concave upward for -1 < t < 1 and concave downward elsewhere. The curve is 
sketched in Figure 8.26. 
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EXE R C I S ES 8.3 e 

0 

In Exercises 1- 8, find the coordinates of the points at which the 
given parametr ic curve has (a) a horizontal tangent and (b) a 
vertical tangent. 

14. x=t-cost , y =l-sint , att=-n: / 4 

15. Show that the curve x = t 3 - t, y = t2 has two different 
tangent lines at the point (0, l) and find their slopes. 

1. x = t2 + 1, y = 2t - 4 2. x = t2 - 2t, y = t2 + 2t 16. Find the slopes of two lines that are tangent to x = sin t , 

3, X = t2 - 2t, y = t3 - J2t 

4, X = t 3 
- 3t, y = 2t 3 + 3t 2 

5. x = t e _ ,212, y = e - 12 

6. x = sin t, y = sin t - t cost 

y = sin 2t at the orig in. 

Where , if anywhere, do the curves in Exercises 17-20 fail to be 
smoot h? 

17, X = t 3 , y = t 2 

18, X = (t - 1)4, y = (t - 1)3 

7. x = sin 2t, y = sin t 
3t 3t2 

8. x --- y ---
- 1 + t 3 ' - 1 + t 3 

19. x = t sin t , y = t 3 20. x = t3
, y = t - sin t 

Find the slopes of the curves in Exercises 9-12 at the points 
indicated. 

In Exercises 21-25 , sketch the graphs of the given parametric 
curves, making use of information from the first two derivatives. 
Unless otherwise stated, the parameter interval for each curve is 
the whole real line. 9, X = t 3 + t, y = J - t3

, at t = J 

10, X = t4 
- t2, y = t3 + 2t, att = -1 

11. x = cos2t, y = sint, att = -n:/ 6 

12. x = e2', y = te 2' , at t = - 2 

21. x=t 2 -2t, 

23, X = t 3 - 3t , 

y = t2 
- 4t 
2 

y = I + t 2 

22. x=t 3 , y=3t 2 -I 

Find parametric equations of the tangents to the curves in 
Exercises 13-14 at the indicated points. 

24, X = t 3 - 3t - 2, y = t2 - t - 2 

25. x=cos1+1sint , y= sint-tcost , (t ::: O). (See 
Examp le 9 of Section 8.2.) 13, X = t 3 - 2t, y = I + t3 , at t = ] 

Arc Lengths and Areas for Parametric Curves 

Figure 8.27 A differential triang le 

In this section we look at the problems of finding lengt hs of curves defined paramet
rically, areas of surfaces of revolution obtained by rotating parametric curves, and areas 
of plane regions bounded by parametric curves. 

Arc Lengths and Surface Areas 
Let e be a smooth parametiic curve with equations 

X = f (t), y = g(t), (a::: t::: b). 

(We assume that f'(t) and g'(t) are continuous on the interval [a , b] and are never 
both zero.) From the differential triangle with legs dx and dy and hypotenu se ds (see 
Figure 8.27), we obtain (ds)2 = (dx) 2 + (dy )2, so we have 

The arc length element for a parametric curve 

ds Af,)ds )
2 

ds = - dt = - dt = 
dt dt (

dx )
2 (dy)2 

- + - dt 
dt dt 

The length of the curve e is given by 

it=b 1b 
s = ds = 

t=a a 
(

dx )
2 (dy)2 

dt + d t dt. 

EXAMPLE 1 Find the length of the parametric curve 

X = e
1 

COS t, y = e1 sint, (0 ::: t ::: 2). 
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y 
a 

a 

-a X 

-a 

Figure 8.28 An astroid 

Solution We have 

dx 
- = e1(cost - sint) , 
dt 

dy 
- =e 1(sint+cost) . 
dt 

Squaring these formulas, adding and simplifying, we get 

(::) 

2 

= e
21(cost - sin t) 2 + e21(sin t + cost) 2 

= e21 
( cos2 t - 2 cost sin t + sin2 t + sin2 t + 2 sin t cost + cos2 t) 

= 2e21_ 

The length of the curve is, therefore , 

s = 12 

/2;;£ dt = -Ji. 12 

/ dt = -Ji. (e2 
- l) units. 

Parametric curves can be rotated around various axes to generate surfaces of revolution. 
The areas of these surfaces can be found by the same procedure used for graphs of 
functions, with the appropriate version of ds. If the curve 

X = f(t), y = g(t), (a _:st _:s b) 

is rotated about the x-axis, the area S of the surface so generated is given by 

!
t- b rb 

S = 2n: t=: IYI ds = 2n: la lg(t) IJU
1
(t)) 2 + (g'(t)) 2 dt. 

If the rotation is about the y-axis, then the area is 

1
,-b rb 

S=2n: t=: lxlds=2n: la lf(t)IJ(f 1(t)) 2 +(g'(t)) 2 dt. 

EXAMPLE 2 Find the area of the surface of revolution obtained by rotating the 
astroid curve x = a cos3 t, y = a sin3 t, (where a > 0) about the 

x -axis. 

Solution The curve is symmetric about both coordinate axes. (See Figure 8.28.) The 
entire surface will be generated by rotating the upper half of the curve; in fact, we need 
only rotate the first quadrant part and multiply by 2. The first quadrant part of the curve 
corresponds to O _::: t _:s n: / 2. We have 

dx 2 . dy 2 -=-3acos tsmt , -=3asin tcost. 
dt dt 

Accordingly, the arc length element is 

ds = J9a 2 cos4 t sin2 t + 9a2 sin4 t cos2 t dt 

= 3a cost sin tJ cos2 t + sin2 t dt 

= 3a cost sin t dt. 

Therefore, the required surface area is 

f" /2 
S = 2 x 2n: lo a sin3 t 3a cost sin t dt 

f" /2 
=l2n:a 2 l

0 
sin4 tcostdt Letu=sint , 

du= cost dt 

1
1 12na 2 

= l2n:a 2 u4 du = -- square units . 
o 5 
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t=b 

+ + dx=f ' (t)dt 

J(a) f(t) f(b) X 

Figure 8.29 Area element under a 
parametric curve 

Figure 8.30 Areas defined by parametric 
curves 

SECTION 8.4: Arc Lengths and Areas for Parametric Curves 481 

Areas Bounded by Parametric Curves 
Consider the parametric curve e with equations x = f (t), y = g(t), (a _:::: t _:::: b), 
where f is differentiable and g is continuous on [a, b]. For the moment, let us also 
assume that f' (t) 2: 0 and g (t) 2: 0 on [a, b ], so e has no points below the x -axis and 
is traversed from left to right as t increases from a to b. 

The region under e and above the x-axis has area element given by 
dA = y dx = g(t)f'(t) dt, so its area (see Figure 8.29) is 

A= 1b g(t)f'(t) dt. 

Similar arguments can be given for three other cases: 

If f' (t) 2: 0 and g(t) _:::: 0 on [a, b ], then A = - lb g(t) J' (t) dt, 

If f' (t) _:::: 0 and g(t) 2: 0 on [a, b ], then A = - lb g(t) J' (t) dt, 

If f'(t).::: 0 and g(t) _:::: 0 on [a, b], then A= lb g(t)f'(t) dt, 

where A is the (positive) area bounded bye, the x-axis, and the vertical lines x = f (a) 
and x = f (b). Combining these results we can see that 

1b g(t)f'(t)dt = A1 - A2, 

where A 1 is the area lying vertically between e and that part of the x-axis consisting 
of points x = f (t) such that g(t)F(t) 2: 0, and A2 is a similar area corresponding 
to points where g(t)f ' (t) < 0. This formula is valid for arbitrary continuo us g 
and differentiable f . See Figure 8.30 for generic examples. In particular, if e is 
a non-self-intersecting closed curve, then the area of the region bounded by e is 
given by 

A = lb g(t) J' (t) dt 

A= -1b g(t)f'(t) dt 

if e is traversed clockwise as t increases, 

if e is traversed counterclockwise, 

both of which are illustrated in Figure 8.31. 

y 

A 

t=b 
t=a 

A= 1b g(t)J'(t)dt 

X 

y 

A 

t=b 

A= - lb g(t)f'(t)dt 

t=a 

X 
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Figure 8.31 Areas bounded by closed 
parametric curves 

y 

g(b) 

A 

g (a) 
t=a 

Figure 8.32 The shaded area is 

A= 1b f(t)g ' (t)dt 

X 

y y 

l=b 

X 

A= 1b g(t)J'(t)dt A=-1b g(t)J'(t)dt 

EXAMPLE 3 Find the area bounded by the ellipse x = a cos s, y = b sins, 
(0 :::: s :::: 21r ). 

X 

Solution This ellipse is traversed counterclockwise. (See Example 4 in Section 8.2.) 
The area enclosed is 

{2" 
A= - lo bsins(-asins)ds 

ab i2" = - (1 - cos 2s) ds 
2 o 

ab 12" ab 12" = -s - - sin 2s = 1rab square units. 
2 0 4 0 

EXAMPLE 4 Find the area above the x-axis and under one arch of the cycloid 
x = at - a sin t , y = a - a cost . 

Solution Part of the cycloid is shown in Figure 8.21 in Section 8.2. One arch 
corresponds to the parameter interval O :::: t :::: 21r. Since y = a(l - cost) =:::: 0 and 
dx / dt = a (1 - cost) =:::: 0, the area under one arch is 

[2" [ 2
" ( 1+cos2t) 

A= lo a2(1-cost) 2 dt=a 2 l
0 

1-2cost+ 
2 

dt 

( 
t sin2t)l

2
" = a2 t - 2 sin t + 2 + -

4
-

0 
= 31r a2 square units . 

Similar arguments to those used above show that if f is continuous and g is differen
tiable, then we can also interpret 

rb r=b 
la f(t)g'(t)dt = lt=a xdy = Ai -A2 , 

where A I is the area of the region lying horizantally between the parametric curve 
x = f(t), y = g(t), (a :::: t :::: b) and that part of the y-axis consisting of points 
y = g(t) such that f (t)g ' (t) =:::: 0, and A2 is the area of a similar region corresponding to 

f(t)g'(t) < 0. For example , the region shaded in Figure 8.32 has area J: f (t)g'(t) dt. 
Green's Theorem in Section 16.3 provides a more coherent approach to finding such 
areas. 
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EXE RC I SES 8.4 

Find the lengths of the curves in Exercises 1-8. 

1. X = 3t2, y = 2t 3
, (0 ::C t ::C 1) 

2. X = 1 + t 3
' y = 1 - t2

, ( -1 :::: t :::: 2) 

3. x = a cos3 t, y = a sin3 t , (0 :::: t :::: 2ir) 

4. x= ln(l+t2 ), y=2tan- 1 t, (O::ct::cl) 

5. x=t 2 sint, y=t 2 cost, (O::ct ::c2ir) 

6. x = cost + t sin t, y = sin t - t cost , (0 :::: t :::: 2ir) 

7. x = t + sin t , y = cost, (0 :::: t :::: 1r) 

8. x = sin2 t , y = 2 cost, (0 :::: t _:s 1r / 2) 

9. Find the length of one arch of the cycloid x = at - a sin t, 
y = a - a cost. (One arch corresponds to O :::: t :::: 2ir .) 

10. Find the area of the surfaces obtained by rotating one arch of 
the cycloid in Exercise 9 about (a) the x-axis, (b) the y-axis. 

11. Find the area of the surface generated by rotating the curve 
x = et cost , y = et sin t, (0 :::: t :::: 1r / 2) about the x -axis . 

12. Find the area of the surface generated by rotating the curve 
of Exercise 11 about the y-axis. 

13. Find the area of the surface generated by rotating the curve 
x = 3t2 , y = 2t3, (0 :::: t :::: l) about the y-axis. 

14. Find the area of the surface generated by rotating the curve 
x = 3t2 , y = 2t3, (0 _:st _:s 1) aboutthe x-axis . 

In Exercises 15-20, sketch and find the area of the region R 
described in terms of the given parametric curves. 

SECTION 8.5: Polar Coordinates and Polar Curves 483 

15. R is the closed loop bounded by x = t 3 - 4t , y = t2 , 

(-2 ::ct ::c 2). 

16. R is bounded by the astroid x = a cos3 t , y = a sin3 t, 
(0 _:s t _:s 27r ) . 

17. R is bounded by the coordinate axes and the parabolic arc 
x = sin4 t , y = cos4 t . 

18. R is bounded by x = cos s sin s, y = sin2 s, 
(0 :::: s :::: 1r / 2) , and the y -axis. 

19. R is bounded by the oval x = (2 + sin t) cost, 
y = (2+sint)sint. 

D 20. R is bounded by the x-axis, the hyperbola x = sect , 
y = tan t , and the ray joining the origin to the point 
(sec to, tan to)-

21. Show that the region bounded by the x-ax is and the 
hyperbola x = cash t , y = sinh t (where t > 0), and the ray 
from the origin to the point (cosh to, sinh to) has area to/ 2 
square units. This proves a claim made at the beginning of 
Section 3.6. 

22. Find the volume of the solid obtained by rotating about the 
x-axis the region bounded by that axis and one arch of the 
cycloid x = at - a sin t , y = a - a cost. (See Example 8 in 
Section 8.2.) 

23. Find the volume generated by rotating about the x-ax is the 
region lying under the astroid x = a cos3 t , y = a sin3 t and 
above the x-axis . 

• _ P_o_la_r_C_oo_rd_i_na_te_s_a_n_d_P_ol_ar_C_u_rv_e_s __________ _ 
The polar coordinate system is an alternative to the rectangular (Cartesian) coordinate 
system for describing the location of point s in a plane. Sometimes it is more important 
to know how far, and in what direction , a point is from the origin than it is to know its 
Cartesian coordinates. In the polar coordinate system there is an origin ( or pole ), 0 , 
and a polar axis , a ray (i.e., a half-line) extending from O horizontally to the right. 
The position of any point P in the plane is then determined by its polar coordinate s 
[r, 0], where 

(i) r is the distance from O to P , and 

(ii) 0 is the angle that the ray OP makes with the polar axis (counterclockwise angles 
being considered positive). 

We will use square brackets for polar coordinates of a point to distinguish them from 
rectangular (Cartesian) coordinates. Figure 8.33 shows some points with their polar 
coordinates. The rectangular coordinate axes x and y are usually shown on a polar 
graph . The polar axis coincides with the positive x-axis. 

Unlike rectangular coordinates, the polar coordinates of a point are not unique . 
The polar coordinates [r , 01] and [r , 02] represent the same point provided 01 and 02 
differ by an integer multiple of 2ir : 

where n = 0, ±1 , ±2 , 
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Figure 8.33 Polar coordinates of some 
points in the xy-plane 

y 
[r ,0] 

./ ......... ·• (x ,y) 

r _/ /Y 
.... ···· 

....... 0 

X X 

Figure 8.34 Relating Cartesian and polar 
coordinates of a point 

y 

X 

For instance , the polar coordinates 

all represent the same point with Cartesian coordinates (}i, _}i). Similarly, [4, n] 

and [4, -n] both represe nt the point with Cartesian coordinates (-4, 0) , and [l , OJ 
and [ 1, 2n] both represent the point with Cartesian coordinates ( 1, 0). In addition, the 
origin O has polar coordinates [O, 0] for any value of 0. (If we go zero distance from 
0, it doesn't matter in what direction we go.) 

Sometimes we need to interpret polar coordinates [r, 0], where r < 0. The 
appropriate interpretation for this "negative distance" r is that it represents a positive 
distance -r measured in the opposite direction (i.e., in the direction 0 + n ): 

[r , 0] = [-r , 0 + n]. 

For example, [-1 , n / 4] = [l, Sn / 4]. Allowing r < 0 increase s the numberof different 
sets of polar coordinates that represent the same point. 

If we want to consider both rectangular and polar coordinate systems in the same 
plane, and we choose the positive x-ax is as the polar axis, then the relationship s 
between the rectangular coordinates of a point and its polar coordinates are as shown 
in Figure 8.34. 

Polar-rectangular conversion 

x=rcos0 x
2 + Y2

=r
2 

y = rs in 0 tan 0 = 2:'. 
X 

A single equation in x and y generally represents a curve in the plane with respect 
to the Cartesian coordinate system. Similarly , a single equation in r and 0 generally 
represents a curve with respect to the polar coordinate system. The conversion formula s 
above can be used to convert one representation of a curve into the other. 

EXAMPLE 1 

5 

The straight line 2x - 3 y = 5 has polar equation 
r(2c os0 - 3sin0) = 5, or 

r=------. 
2 cos 0 - 3 sin 0 
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Figure 8.35 The circle r = 2a cos 0 

y 

X 

Figure 8.36 Coordinate curves for the 
polar coordinate system 

y 

a 

.,..··00 

..... • [a,0o] 

X 

Figure 8.37 The circler = 2a cos(0 - Bo) 
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EXAMPLE 2 Find the Cartesian equation of the curve represented by the polar 
equation r = 2a cos 0; hence identify the curve. 

Solution The polar equation can be tran formed to Cartesian coordinates if we first 
multiply it by r: 

r 2 = 2ar cosB 

x 2 + y2 = 2ax 

(x - a) 2 + y2 = a 2 

The given polar equation r = 2a cos 0 thus represents a circle with centre (a, 0) and 
radius a as shown in Figure 8.35. Observe from the equation that r ~ 0 as 0 ~ ±ir / 2. 
In the figure, this corresponds to the fact that the circle approaches the origin in the 
vertical direction . 

Some Polar Curves 
Figure 8.36 shows the graphs of the polar equations r = a and 0 = fJ, where a and fJ 
(Greek "beta") are constants. These are , respectively , the circle with radius lal centred 
at the origin, and a line through the origin making angle /J with the polar axis . Note that 
the line and the circle meet at two points , with polar coordinates [a , /J] and [-a, fJ]. 
The "coordinate curves" for polar coordinates, that is, the curves with equations r = 
constant and 0 = constant, are circles centred at the origin and lines through the origin, 
respectively. The "coordinate curves" for Cartesian coordinates , x = constant and y = 
constant, are vertical and horizontal straight lines. Cartesian graph paper is ruled with 
vertical and horizontal lines; polar graph paper is ruled with concentric circles and 
radial lines emanating from the origin, as shown in Figures 8.33 and 8.38. 

The graph of an equation of the form r = f (0) is calJed the polar graph of 
the function f. Some polar graphs can be recognized easily if the polar equation is 
transformed to rectangular form. For others, this transformation does not help; the 
rectangular equation may be too complicated to be recognizable. In these cases one 
must resort to constructing a table of values and plotting points. 

EXAM p LE 3 Sketch and identify the curve r = 2a cos(0 - 0o). 

Solution We proceed as in Example 2. 

r 2 = 2ar cos(0 - 0o) = 2ar cos 0o cos 0 + 2ar sin 0o sin 0 

x 2 + y2 = 2a cos0ox + 2a sin0oy 

x 2 
- 2a cos 0ox + a 2 cos2 0o + y2 - 2a sin Boy + a 2 sin2 0o = a 2 

(x - a cos 0o)2 + (y - a sin 00)2 = a 2
• 

Th is is a circle of radius a that passes through the ongin in the directions 
0 = 0o ± ½, which make r = 0. (See Figure 8.37.) Its centre has Cartesian co
ordinates (a cos 0o, a sin 0o) and hence polar coordinates [a , 0o]. For 0o = ir / 2 we 
haver = 2a sin 0 as the equation of a circle of radius a centred on the y-axis. 

Comparing Examples 2 and 3, we are led to formulate the following principle . 

Rotating a polar graph 

The polar graph with equation r = f (0 - 0o) is the polar graph with equation 
r = f (0) rotated through angle 0o about the origin . 

www.konkur.in



486 CHAPTER 8 Conics, Parametric Curves, and Polar Curves 

Figure 8.38 The cardioid 
r = a(l - cos0) 

y 

X 

Figure 8.39 The cardioid r = a (l - sin 0) 

EXAM p LE 4 Sketch the polar curve r = a(l - cos 0), where a > O. 

Solution Transformation to rectangular coordinates is not much help here; the result 
ing equation is (x 2 + y 2 +a x )2 = a2 (x 2 + y 2) (verify this) , which we do not recognize. 
Therefore, we will make a table of values and plot some points. 

Table 3. 

0 0 

r 0 

7[ 

±-
6 

0.13a 

7[ 

±-
4 

0.29a 

7[ 

±-
3 

0.5a 

7[ 

±-
2 

a 

2n 
±-

3 

1.5a 

3n 
±-

4 

1.71a 

Sn 
±-

6 

1.87a 

7[ 

2a 

Because it is shaped like a heart , this curve is called a cardioid. Observe the cusp at 
the origin in Figure 8.38. As in the previous example, the curve enters the origin in the 
directions 0 that maker = f (0) = 0. In this case, the only such direction is 0 = 0. It 
is important, when sketching polar graphs , to show clearly any directions of approach 
to the origin. 

y 

X 

Direction of a polar graph at the origin 

A polar graph r = f (0) approache s the origin from the direction 0 for which 
f (0) = 0. 

The equation r = a(l - cos(0 - 0o)) represents a cardioid of the same size and 
shape as that in Figure 8.38 but rotated through an angle 0o counterclockwise about the 
origin. Its cusp is in the direction 0 = 0o. In particular , r = a(l - sin0) has a vertical 
cusp, as shown in Figure 8.39. 

It is not usually necessary to make a detailed table of values to sketch a polar curve 
with a simple equation of the form r = f (0). It is essential to determine those values 
of 0 for which r = 0 and indicate them on the graph with rays. It is also useful to 
determine points where the curve is farthest from the origin. (Where is f (0) maximum 
or minimum?) Except possibly at the origin, polar curves will be smooth wherever 
f (0) is a differentiable function of 0. 
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Figure 8.40 Curve (a): the polar 
curve r = cos(20) 

Figure 8.43 

(a) The equiangular spiral r = 0 

(b) The exponential spiral r = e- 813 

X 
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EXAMPLE 5 Sketch the polar graphs (a) r = cos(20), (b) r = sin(30) , and 
(c) r 2 = cos(20). 

Solution The graphs are shown in Figures 8.40-8.42. Observe how the curves (a) 
and (c) approach the origin in the directions 0 = ±f and 0 = ± 3

; , and curve 

(b) approaches in the directions 0 = 0, 1C, ± ½ and ± 2f. This curve is traced out 
twice as 0 increases from -1C to 1C. So is curve (c) if we allow both square roots 
r = ±.Jcos(20). Note that there are no points on curve (c) between 0 = ±f and 

0 = ± 3; because r 2 cannot be negative. 

Curve (c) is called a lemniscate . Lemniscates are curves consisting of points P 
such that the product of the distances from P to certain fixed points is constant. For 
the curve ( c ), these fixed points are ( ± }i-, 0). 

y 

Figure 8.41 Curve (b) : the polar 
curve r = sin(30) 

X 

y 

3,r/ 4 ··········· ... 
. ... ,r/ 4 

.. ········ 

··· ... 

-3,r / 4··· ······ ... -,r / 4 

Figure 8.42 Curve (c): the 
lemniscate r 2 = cos(20) 

X 

In all of the examples above, the functions f (0) are periodic and 27r is a period of each 
of them, so each line through the origin could meet the polar graph at most twice. (0 
and 0 + 1C determine the same line.) If f (0) does not have period 27r, then the curve 
can wind around the origin many times. Two such spirals are shown in Figure 8.43, 
the equiangular spiral r = 0 and the exponential spiral r = e- 013 , each sketched 
for positive values of 0. 

y y 

X X 

(a) (b) 

i Remark Maple has a po l a rpl ot routine as part of its "plots" package, which must 
be loaded prior to the use of polarplot. Here is how to get Maple to plot on the same 
graph the polar curves r = l and r = 2 sin(30), for O ::: 0 S 27r: 

> with(plots): 

> polarplot([l , 2*sin(3*t)) , t=O .. 2*Pi,scaling=constrained) ; 
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y 

Figure 8.44 Two intersecting circles 
y 

X 

r = l - sin0 

Figure 8.45 The circle and the cardioid 
intersect at three points 

The option sca li ng=constrained is necessary with polar plots to force Maple 
to use the same distance unit on both axes (so a circle will appear circular) . 

Intersections of Polar Curves 
Because the polar coordinates of points are not unique, finding the intersection points 
of two polar curves can be more complicated than the similar problem for Cartesian 
graphs. Of course, the polar curves r = f (0) and r = g(0) will intersect at any points 
[ro, 0o] for which 

f (0o) = g(0o) and ro = f(0 o) , 

but there may be other intersections as well. In particular, if both curves pass through 
the origin, then the origin will be an intersection point, even though it may not show 
up in solving f (0) = g(0), because the curves may be at the origin for different values 
of 0 . For example, the two circles r = cos 0 and r = sin 0 intersect at the origin and 
also at the point [1/ .J2, ir / 4] , even though only the latter point is obtained by solving 
the equation cos 0 = sin 0. (See Figure 8.44.) 

EXAMPLE 6 Find the intersections of the curves r = sin 0 and r = 1 - sin 0. 

Solution Since both function s of 0 are periodic with period 2ir , we need only look 
for solutions satisfying O .'.": 0 _:s 2ir. Solving the equation 

sin0 = 1 - sin 0, 

we get sin 0 = 1/ 2, so that 0 = ir / 6 or 0 = Sir / 6. Both curves have r = 1/ 2 at 
these points, so the two curves intersect at [1/ 2, ir / 6] and [1/ 2, Sir / 6]. Also, the origin 
lies on the curve r = sin 0 (for 0 = 0 and 0 = 2ir) and on the curve r = l - sin 0 
(for 0 = ir / 2) . Therefore, the origin is also an intersection point of the curves. (See 
Figure 8.45.) 

Finally , if negative values of rare allowed, then the curves r = f (0) and y = g(0) 
will also intersect at [r1, 01] = [r2, 02] if, for some integer k, 

and 

See Exercise 28 for an example . 

Polar Conics 
Let D be the vertical straight line x = - p , and let E: be a positive real number. The set 
of points P in the plane that satisfy the condition 

distance of P from the origin 
------- ---- --= [; 
perpendicular distance from P to D 

is a conic section with eccentricity E:, focus at the origin, and corresponding directrix 
D, as observed in Section 8.1. (It is an ellipse if 1:: < I , a parabola if 1:: = I, and 
a hyperbola if E: > 1.) If P has polar coordinates [r, 0] , then the condition above 
becomes (see Figure 8.46) 

r 
--- - =E: , 
p + rcos0 

or, solving for r, 
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Figure 8.46 A conic curve with 
eccentricity t:, focus at the origin, and 
directrix x = - p 

X = - p 

t:p 
r= - -- -

1 - t:cos0 · 
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X 

Examples of the three possibilities (ellipse, parabola, and hyperbola) are shown in 
Figures 8.47-8.49. Note that for the hyperbola, the directions of the asymptotes are 
the angles that make the denominator l - e cos 0 = 0. We will have more to say about 
polar equations of conics, especially ellipses, in Section 11.6. 

y y y 

[ 1,ir J 
X 

Figure 8.47 Ellipse: t: < 1 Figure 8.48 Parabola: e = 1 Figure 8.49 Hyperbola: e > 1 

EXERCISES 8.5 
In Exercises 1-12, transform the given polar equation to 
rectangular coordinates, and identify the curve represented. 

1. r = 3 sec 0 2. r = - 2 csc 0 

3. 
5 

4. r = sin 0 + cos 0 r= 
3 sin 0 - 4 cos 0 

5. r 2 =csc20 6. r = sec0tan0 

7. r = sec0(1 + tan0) 8. 
2 

r= 
,Jcos 2 0 + 4 sin2 0 

9. 
1 

10. 
2 

r = r = 
1 - cos 0 2 - cos0 

11. 
2 

12. 
2 

r= r= 
1 - 2sin0 l + sin0 

In Exercises 13-24, sketch the polar graphs of the given 
equations. 

13. r = l + sin0 14. r = 1 - cos(0 + f) 
15. r = 1 + 2cos0 16. r = 1 - 2si n0 

17. r = 2 + cos0 18. r = 2sin20 

19. r = cos 30 20. r = 2cos40 

21. r 2 = 4sin 20 22. r 2 = 4cos30 

23. r 2 = sin30 24. r = ln 0 

Find all intersections of the pairs of curves in Exercises 25- 28. 

25. r = J3cos0, r = sin0 

26. r2 = 2cos(20) , r = I 
27. r = 1 + cos 0, r = 3 cos 0 

D 28. r = 0, r = 0 + ;,r 
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0 29. Sketch the graph of the equation r = l/ 0, 0 > 0. Show that 
this curve has a horizontal asymptote. Does r = 1/ (0 - a) 
have an asymptote? 

30. How many leaves does the curve r = cos n0 have? the curve 
r 2 = cos n0? Distinguish the cases where n is odd and even. 

31. Show that the polar graph r = f (0) (where f is continuous) 
can be written as a parametric curve with parameter 0. 

In Exercises 32-3 7, use computer graphing software or a 
graphing calculator to plot various members of the given families 
of polar curves, and try to observe patterns that would enable you 
to predict behaviour of other members of the families. 

ii 32. r = cos0cos(m0) , m = l , 2, 3, .. . 

il 33. r = I +cos0cos(m0) , m = 1, 2, 3, .. . 

ii 34. r = sin(20) sin(m0), m = 2, 3, 4, 5, . . . 

H 35. r = l + sin(20) sin(m0), m = 2, 3, 4, 5, ... 

ii 36. r = C + cos 0 cos(20) for C = 0, C = 1, values of C 
between O and 1, and values of C greater than 1 

ii 37. r = C + cos0 sin(30) for C = 0, C = 1, values of C 
between O and 1, values of C Jess than 0, and values of C 
greater than 1 

ii 38. Plot the curve r = ln 0 for O < 0 S 2n. It intersects itself at 
point P. Thus there are two values 01 and 02 between O and 
2n for which [!(01) , 01] = [!(0 2), 02]. What equations 
must be satsified by 01 and 02? Find 01 and 02, and find the 
Cartesian coordinates of P correct to 6 decimal places. 

ii 39. Simultaneously plot the two curves r = ln0 and r = 1/0, for 
0 < 0 S 2n . The two curves intersect at two points. What 
equations must be satisfied by the 0 values of these points? 
What are their Cartesian coordinates to 6 decimal places? 

Slopes, Areas, and Arc Lengths for Polar Curves 

Figure 8.50 The angle If/ is the limit of 

angle SQP ash--+ 0 

There is a simple formula that can be used to determine the direction of the tangent line to 
a polar curve r = f (0) at a point P = [r, 0] other than the origin. Let Q be a point on the 

curve near P corresponding to polar angle 0+h. Let S be on O Q with PS perpendicular 

to O Q. Observe that PS= f (0) sinh and SQ = 0 Q- OS= f(0 +h)- f(0) cos h. 
If the tangent line tor = f (0) at P makes angle If/ (Greek "psi") with the radial line 

0 P as shown in Figure 8.50, then 1/f is the limit of the ang le SQ P as h ~ 0. Thus, 

. PS . f(0) sinh 
tan 1/f = hm - = hm ------- --

h-+0 SQ h-+ 0 f(0 +h)- f(0)cosh 

y 

0 

. f(0)cosh = hm --------
h-+ 0 f'(0 + h) + f(0) sinh 

f(0) r 

f ' (0) dr / d0 

X 

(by l'Hopital's Rul e) 
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Figure 8.51 Horizontal and vertical 
tangents to a cardioid 
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Tangent direction for a polar curve 

At any point P other than the origin on the polar curve r = f (0) , the angle 
1/f between the radial line from the origin to P and the tangent to the curve is 
given by 

f(0 ) 
tan 1/f = f ' (B). 

In particular, 1/f = n / 2 if J' (0) = 0. If f (0o) = 0 and the curve has a tangent 
line at Bo, then that tangent line has equation 0 = Bo. 

The formula above can be used to find points where a polar graph has horizontal or 
vertical tangents: 

1/f + 0 = n, so tan 1/f = - tan 0 
77: 

1/f + 0 = 2, so tan 1/f = cot 0 

for a horizontal tangent, 

for a vertical tangent. 

Remark Since for parametric curves horizontal and vertical tangents correspond to 
dy / dt = 0 and dx / dt = 0, respectively, it is usually easier to find the critical points 
of y = f (0) sin 0 for horizontal tangents and of x = f (0) cos 0 for vertical tangents. 

EXAMPLE 1 Find the points on the cardioid r = I + cos 0, where the tangent 
lines are vertical or horizontal. 

Solution We have y = (1 + cos 0) sin 0 and x = (l + cos 0) cos 0. For horizontal 
tangents, 

0 = !~ = - sin2 0 + cos2 0 + cos 0 

= 2 COS
2 0 + COS 0 - l 

= (2co s 0 - l)(cos0 + 1). 

The solutions are cos 0 = ½ and cos 0 = -1, that is, 0 = ±11: / 3 and 0 = 11:. There are 

horizontal tangents at[ ~, ±?f]. At 0 = 11:, we haver= 0. The curve does not have a 
tangent line at the origin (it has a cusp). See Figure 8.51. 

For vertical tangents , 

dx 
0 = d

0 
= - sin0 - 2cos0 sin0 = -sin0(1 + 2co s 0). 

The solutions are sin 0 = 0 and cos 0 = -½, that is, 0 = 0, 11:, ±211: / 3. There are 

vertical tangent lines at [2, 0) and [ ½, ± 2f ]. 
y 

,c/ 3 

21'/ 3, 

2 X 

- 2,c/ 3 

- ,c/ 3 
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y 

r = f(0) 

X 

Figure 8.52 An area element in polar 
coordinates 

y 

2a 

Figure 8.53 The area encosed by the 
cardioid is twice the shaded part 

y 

X 

Figure 8.54 The area between two polar 
curves 

Areas Bounded by Polar Curves 
The basic area problem in polar coordinates is that of finding the area A of the region R 

bounded by the polar graph r = f (0) and the two rays 0 = a and 0 = /3. We assume 
that /3 > a and that f is continuous for a S 0 S /3. See Figure 8.52. 

A suitable area element in this case is a sector of angular width d0, as shown in 
Figure 8.52. For infinitesimal d0 this is just a sector of a circle of radi us r = f (0): 

d0 I l 2 
dA = - rcr2 = - r2 d0 = - (!(0)) d0 . 

2rc 2 2 

Area in polar coordinate s 

The region bounded by r = f (0) and the rays 0 = a and 0 = /3, (a < /3), 
has area 

EXAMPLE 2 Find the area bounded by the cardioid r = a(l + cos 0), as illus
trated in Figure 8.53. 

Solution By symmetry, the area is twice that of the top half: 

A= 2 x - a 2 (1 +cos0) 2 d0 1 la" 
2 0 

= a2 la" (1 + 2cos0 + cos2 0) d0 

{" ( l + cos 20 ) =a 2
}

0 
1+2cos0+ 

2 
d0 

= a 2 
- 0 + 2sin0 + - sin 20 = - rca2 square units . ( 3 I ) I" 3 
2 4 0 2 

EXAMPLE 3 Find the area of the region that lies inside the circle r = ./2 sin 0 
and inside the lemniscate r2 = sin 20. 

Solution The region is shaded in Figure 8.54. Besides intersecting at the origin, the 
curves intersect at the first quadrant point satisfying 

2sin 2 0 = sin20 = 2sin0cos0. 

Thus, sin 0 = cos 0 and 0 = re / 4. The required area is 

A = - 2 sin2 0 d0 + - sin 20 d0 l la"/4 11 "/2 
2 o 2 "~ 

11r/4 I - cos 20 l 1"12 
= ---- d0 - - cos20 

0 2 4 ,r/ 4 

= ~ - ~ sin201"
14 

+ ~ = ~ - ~ + ~ = ~ square units. 
8 4 0 4 8 44 8 
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rd0 

X 

Figure 8.55 The arc length element for a 
polar curve 

EXE R C I SES 8.6 
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Arc Lengths for Polar Curves 
The arc length element for the polar curve r = f (0) can be determined from the 
differential triangle shown in Figure 8.55. The leg r d0 of the triangle is obtained as 
the arc length of a circular arc of radius r subtending angle d0 at the origin. We have 

so we obtain the following formula: 

Arc length element for a polar curve 

The arc length element for the polar curve r = f (0) is 

This arc length element can also be derived from that for a parametric curve. See 
Exercise 26 at the end of this section. 

EXAM p L E 4 Find the total length of the cardioid r = a ( 1 + cos 0). 

Solution The total length is twice the length from 0 = 0 to 0 = n: . (Review 
Figure 8.53.) Since dr / d0 = -a sin0 for the cardioid, the arc length is 

s = 2 lo" Ja 2 sin20 + a2(1 + cos0)2d0 

= 2 lo" J2a2 + 2a 2 cos 0 d0 (but 1 + cos 0 = 2 cos2 (0 / 2)) 

= 2ha lo" J2cos
2 ~ d0 

= 4a cos - d0 = 8a sin - = 8a units. 1" 0 01" 
0 2 2 0 

In Exercises 1-11, sketch and find the areas of the given polar 
regions R. 

r = 3 cos 0. 

10. R is bounded by the lemniscate r 2 = 2 cos 20 and is outside 
the circle r = l. 1. R lies between the origin and the spiral r = ../0, 

0 S 0 S 2rc. 

2. R lies between the origin and the spiral r = 0, 0 S 0 S 2rc. 

3. R is bounded by the curve r 2 = a2 cos 20. 

4. R is one leaf of the curve r = sin 30. 

5. R is bounded by the curve r = cos 40. 

6. R lies inside both of the circles r = a and r = 2a cos 0. 

7. R lies inside the cardioid r = 1 - cos 0 and outside the circle 
r = 1. 

8. R lies inside the cardioid r = a ( l - sin 0) and inside the 
circler= a. 

9. R lies inside the cardioid r = l + cos 0 and outside the circle 

11. R is bounded by the smaller loop of the curve 
r = 1 + 2cos0. 

Find the lengths of the polar curves in Exercises 12-14 . 

12. r = 02
, 0 S 0 S re 

14. r = a0, 0 S 0 S 2rc 

15. Show that the total arc length of the lemniscate r 2 = cos 20 
{ "/4 

is4}
0 

./sec20d0. 

16. One leaf of the lemniscate r 2 = cos 20 is rotated (a) about 
the x-axis and (b) about the y-axis. Find the area of the 
surface generated in each case. 
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0 17. Determine the angles at which the straight line 0 = ir / 4 
intersects the cardioid r = I + sin 0. 

0 18. At what point s do the curve s r2 = 2 sin 20 and r = 2 cos 0 
intersect? At what angle do the curves inter sect at each of 
these point s? 

0 19. At what points do the curve s r = I - cos 0 and r = I - sin 0 
intersect? At what angle do the curves intersect at each of 
these point s? 

In Exercises 20-25, find all point s on the given curve where the 
tangent line is horizontal , vertical , or does not exist. 

CHAPTER REVIEW 
Key Ideas 
• What do the following terms and phrases mean? 

<> a conic sectio n 

<> a parabola 

<> a parametric curve 

o an ellipse 

<> a hyperbola 

<> a param etrization of a curve 

<> a smooth curve <> a polar curve 

• What is the focus-directrix definition of a conic? 

• How can you find the slope of a parametric curve? 

• How can you find the length of a parametric curve? 

• How can you find the length of a polar curve? 

• How can you find the area bounded by a polar curve? 

Review Exercises 
In Exercise s 1-4 , descri be the conic having the given equation. 
Give its foci and principal axes and, if it is a hyperbola , its asymp
tote s. 

1. x 2 + 2y2 = 2 2. 9x 2 - 4y2 = 36 

3. X + y2 = 2y +3 4. 2x 2 + sy2 = 4x - 48y 

Identi fy the parametric curves in Exercises 5-10. 

5. X = t, y = 2 - t , (0 5 t 5 2) 

6. x = 2 sin 3t, y = 2 cos 3t, (0 5 t 5 I / 2) 

7. x = cosht, y = sinh2 t , 

8. x = i, y = e-Zr, (-1 5 t 5 1) 

9. x = cos(t / 2), y = 4sin(t / 2) , (0 5 t 5 ir) 

10. x =co s t+sint , y =co st-sint, (Os t 5 2ir) 

In Exercises 11- 14, determine the point s where the given para
metric curves have horizontal and vertical tangent s, and sketch the 
curves . 

4 3 
11. X = l + tZ , y = t - 3t 

12. X = t3 
- 3t , y = t3 + 3t 

13. X = t3 - 3t, y = t3 

14. x=t 3 -3 t , y =t 3 - I2t 

15. Find the area bound ed by the part of the curve x = t 3 - t , 
y = it3 I that forms a closed loop . 

16. Find the volume of the solid generated by rotating the closed 
loop in Exerc ise 15 about the y -axis. 

0 20. r = cos0 + sin 0 

0 22. r 2 = cos20 

0 21. r = 2cos0 

0 23. r = sin 20 

0 24. r = e6 0 25. r = 2(1 - sin 0) 

26. The polar curve r = f (0) , (a 5 0 5 /J), can be 
parametrized: 

x = rcos0 = f(0) cos0, y = rsin0 = f(0) sin0 . 

Derive the formula for the arc length element for the po lar 
curve from that for a parametric curve. 

17. Find the length of the curve x = e1 
- t , y = 4e112 from t = 0 

tot = 2. 

18. Find the area of the surface obtai ned by rotating the arc in 
Exercise 17 about the x-ax is. 

Sketch the polar graphs of the equation s in Exercises 19-24 . 

19. r=0, (- 3
{ 505 3

;) 20. r= l01, (-2 1r 5052ir) 

21. r = 1 + cos 20 22. r = 2 + cos 20 

23. r = l + 2 cos 20 24. r = I - sin 30 

25. Find the area of one of the two larger loops of the curve in 
Exerc ise 23. 

26. Find the area of one of the two smaller loops of the curve in 
Exercise 23. 

27. Find the area of the smaller of the two loops enclosed by the 
curve r = l + .J2s in 0. 

28. Find the area of the region inside the cardioid r = I + cos 0 
and to the left of the line x = 1/ 4 . 

Challenging Problems 
1. A glass in the shape of a circular cylinder of radius 4 cm is 

more than half filled with water. If the glass is tilted by an 
ang le 0 from the vertica l, where 0 is small eno ugh that no 
water spills out , find the surface area of the water. 

2. Show that a plane that is not parall el to the axis of a cir
cular cylinder intersects the cy linder in an ellipse. Hint: 
You can do this by the same method used in Exercise 27 of 
Section 8.1. 

3. Given two points F1 and F2 that are foc i of an ellipse and 
a third point P on the ellipse , describe a geometric method 
(using a straight edge and a compass) for constructing the tan
gent line to the ellipse at P. Hint: Think about the reflection 
property of ellipse s. 

4. Let C be a parabo la with vertex V, and let P be any point 
on the parabol a. Let R be the point where the tangent to the 
parabola at P intersects the axis of the parabola . (Thus, the 
axis is the line RV.) Let Q be the point on RV such that P Q 
is perpend icular to RV . Show that V bisects the line segment 
R Q. How does this result sugges t a geometr ic method for 
constructing a tangent to a parabola at a point on it, given the 
axis and vertex of the parabola ? 
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5. A barrel has the shape of a solid of revolution obtained by 
rotating about its major axis the part of an ellipse lying between 
lines through its foci perpendicular to that axis. The barrel is 
4 ft high and 2 ft in radius at its middl e. What is its volume? 

6. (a) Show that any straight line not pass ing through the origin 
can be written in polar form as 

a 
r-----

- cos(B - Bo)' 
where a and Bo are constants. What is the geometric 
significance of these constants? 

(b) Let r = g(B) be the polar equation of a straight line that 
does not pass through the origin. Show that 

g2 + 2(g ' )2 - gg" = 0. 

(c) Let r = f (0) be the polar equation of a curve, where f" 
is conti nuous and r i- 0 in some interval of values of 0. 
Let 

F = f 2 + 2(!')2- ff". 
Show that the curve is turning toward the origin if F > 0 
and away from the origin if F < 0. Hint: Let r = g(B) 
be the polar equation of a straight line tangent to the curve, 
and use part (b). How do f, f', and f" relate tog, g', 
and g" at the point of tangency? 

7. (Fast trip, but it might get hot) If we assume that the 
density of the earth is uniform throughout, then it can be 
shown that the accelerati on of gravity at a distance r :S R 
from the centre of the earth is directed toward the centre of 
the earth and has magnitude a(r) = rg/ R, where g is the 
usual acce leratio n of gravity at the surface (g ~ 32 ft/s2), and 
R is the radius of the earth (R ~ 3,960 mi). Suppose that a 
straight tunnel AB is drilled through the earth between any 
two points A and B on the surface , say Atlanta and Baghdad. 
(See Figure 8.56.) 

X 

Figure 8.56 

CHAPTER REVIEW 495 

Suppo se that a vehicle is constructed that can slide without 
friction or air resistance through this tunnel. Show that such a 
vehicle will, if released at one end of the tunnel , fall back and 
forth betwee n A and B , executing simple harmonic motion 
with period 2n ../R!g . How many minute s will the round 
trip take? What is surprising here is that this period does not 
depend on where A and B are or on the distance betwe en 
them. Hint: Let the x -axis lie along the tunnel, with origin at 
the point closest to the centre of the earth. When the vehicle 
is at position with x -coordinate x(t) , its acce leration along 
the tunnel is the component of the grav itational acceleration 
along the tunnel , that is, -a(r) cos 0, where 0 is the angle 
between the line of the tunnel and the line from the vehicle to 
the centre of the earth. 

D 8. (Search and Rescue) Two coast guard station s pick up a 
distress signal from a ship and use radio direction finders 
to locate it. Station O observes that the distres s signal is 
coming from the northeast ( 45° east of north), while station 
P, which is 100 miles north of station O , observes that the 
signal is comi ng from due east. Each station 's direction finder 
is accurate to within ±3 °. 

(a) How large an area of the ocean must a rescue aircraft 
search to ensure that it finds the founderin g ship? 

(b) lf the accuracy of the direction finders is within ±e, how 
sensitive is the search area to changes in e when e = 3°? 
(Express your answer in square miles per degree.) 

9. Figure 8.57 shows the graphs of the parametric curve 
x = sin t, y = ½ sin(2t), 0 :S t :S 2n, and the polar curve 

r 2 = cos(20). Each has the shape of an "oo." Which curve 
is which? Find the area inside the outer curve and outside the 
inner curve. 

y 

X 

Figure 8.57 
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496 

Sequences, Series, 
and Power Series 
, , 'Then you should say what you mean,' the March Hare went on. 

'I do,' Alice hastily replied; 'at least - at least I mean what I say -
that's the same thing, you know.' 
'Not the same thing a bit!' said the Hatter. 'Why, you might just as 
well say that "I see what I eat" is the same thing as "I eat what I see!"' , , 

Lewis Carroll (Charles Lutwidge Dodgson) 1832-1898 
from Alice's Adventures in Wonderland 

I n trod U ct j On An infini~e series _i~ a ~um th~t involves infinite ly many 
terms. Smee add1t1on 1s earned out on two numbers at 

a time, the evaluation of the sum of an infinite series necessarily involves finding a 
limit. Complicated functions f (x) can frequently be expressed as series of simpler 
functions. For example , many of the transcendental functions we have encountered 
can be expressed as series of powers of x so that they resemble polynomials of infinite 
degree. Such series can be differentiated and integrated term by term, and they play a 
very important role in the study of calcu lus. 

• 
Sequences and Convergence 

-----
By a sequence (or an infinite sequence) we mean an ordered list having a first element 
but no last element. For our purposes, the elements (called terms) of a sequence will 
always be real numbers , although much of our discussion could be applied to complex 
numbers as well. Examples of sequences are: 

{ 1, 2, 3, 4 , 5, . .. } the sequence of positive integers , 

{
11 11} 1 - 2, 4, - 8, 

16
, . . . the sequence of positive integer powers of - 2. 

The terms of a sequence are usually listed in braces as shown. The ellipsis points( . . . ) 
should be read "and so on." 

An infinite sequence is a special kind of function, one whose domain is a set of 
integers extending from some starting integer to infinity. The starting integer is usually 
1, so the domain is the set of positive integers. The sequence {a, , a2, a3, a4, .. . } is 
the function f that takes the value f(n) = an at each positive integer n . A sequence 
can be specified in three ways: 

(i) We can list the first few terms followed by .. . if the pattern is obvious. 

(ii) We can provide a formula for the general term an as a function of n. 

(iii) We can provide a formula for calculating the term an as a function of earlier terms 
a 1, a2, . . . , an- I and spec ify enough of the beginning terms so the process of 
computing higher terms can begin. 
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In each case it must be possible to determine any term of the seq uence, althou gh it may 
be neces sary to calculate all the preceding term s first. 

EXAMPLE 1 (Some examples of sequences) 

(a) {n} = (1, 2, 3, 4, 5, . . . } 

(b) {(-~r1 = {-~ . i, -{ /6 . ... } 

(c) r: 1} = { 0, ~' ~' ~' ;, ... } 
(d) {(-1r - 1} = {cos((n - l)n)} = (1, -1 , 1, -1, 1, .. . } 

{ 
n

2
} { 1 9 25 36 49 } 

(e) 2n = 2' l , 8' l, 32 ' 64 ' 128 ' · · · 

(f) { ( 1 + ~rJ = [2• (~r. (;r. (~r .... J 

(g) { cos(:n /2)} = { 0, -~, 0, }, 0, -i, 0, ~ , 0, . . . } 

(h) a, = 1, an+I = ,J6 + an, (n = I, 2, 3, ... ) 

In this case {a11} = { 1, .Ji, J 6 + .Ji, ... ). Note that there is no obvious formu la 
for a11 as an explicit function of n here , but we can still calc ulate a,, for any desired 
value of n provided we first calc ulate all the ear lier values a2 , a 3, .. . , an- I . 

(i) a 1 = 1, a2 = 1, an+2 =an+ an+I, (n = 1, 2, 3, .. . ) 
Here {a,,} = (1, 1, 2, 3, 5, 8, 13, 21, ... }. This is called the Fibonacci 
sequence . Each term after the second is the sum of the previous two terms. 

In part s (a)-(g) of Example 1, the form ulas on the left sides define the genera l term of 
each sequence {a,,} as an explicit function of n . In parts (h) and (i) we say the sequence 
{a,,} is defined recursively or inductively ; each term must be calcu lated from previous 
ones rather than directly as a function of n. We now introduce terminology u ed to 
descri be various properties of seq uences. 

Terms for describing sequences 

(a) The sequence {a11} is bounded below by L , and L is a lower bound for {an), 
if a11 2::. L for eve ry n = 1, 2, 3, . ... The sequence is bounded above by 
M, and Mis an upper bound , if an S M for every such n. 

The sequence {an) is bounded if it is both bounded above and bounded 
below. In this case there is a consta nt K such that Ian I S K for every 
n = I, 2, 3, . . . . (We can take K to be the larger of ILi and IMI.) 

(b) The sequence {a11} is positive if it is bounded below by zero, that is, if an 2::. 0 
for every n = 1, 2, 3, ... ; it is negative if a11 S O for every n. 

(c) The sequence {an) is increasing if a 11+ 1 2::. a,, for every n = I, 2 , 3, .. . ; 
it is decreasing if a11+ 1 S a11 for every such n. The sequence is said to be 
monotonic if it is either increasing or decreasing. (The terminology here is 
loo ser than that used for functions, where we wou ld have used nonde creas
ing and nonin creasing to describe this behaviour . The distinction between 
an+I > a11 and a11+1 2::. an is not as important for sequences as it is for 
functions defined on intervals.) 

(d) The sequence {an) is alternating if a11a11+ 1 < 0 for every n = I, 2, . .. , that 
is, if any two consec utive terms have opposite signs. Note that thi s definition 
require s an f. 0 for each n. 
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EXAM p LE 2 (Describing some sequences) 

(a) The sequence {n} = { 1, 2, 3, ... } is positive, increasing , and bounded below. A 
lower bound for the sequence is 1 or any smaller number. The sequence is not 
bounded above. 

(b) { n: 1 
} = { 0, ~, ~, ~ , ... } is positive , bounded , and increasing. Here, 0 is a 

lower bound and I is an upper bound. 

(c) { (-~) n} = {-~ , ~' -i, 
1
~ , ... } is bounded and alternating . Here, -1 / 2 

is a lower bound and 1/ 4 is an upper bound. 

(d) {(-lYn} = (-1 , 2, -3, 4, -5, ... } isalternatingbutnotboundedeitherabove 
or below. 

When you want to show that a sequence is increasing, you can try to show that 
the inequality an+I - an ::: 0 holds for n ::: 1. Alternatively, if an = f (n) for 
a differentiable function f(x), you can show that f is a nondecreasing function on 
[ 1, oo) by showing that f ' (x) ::: 0 there. Similar approaches are useful for showing 
that a sequence is decreasing . 

EXAMPLE 3 
n 

If an = - 2--, show that the sequence {an} is decreasing. 
n + 1 

Solution Since a,,= f(n) , where f(x) =---/---and 
X + l 

f '(x) - (x2 + 1)(1) - x(2x) - 1 - x2 S O for x ::: 1, 
- (x2 + 1)2 - (x2 + 1)2 

the function f (x) is decreasing on [1, oo); therefore, {an} is a decreasing sequence. 

{ 
n

2 
} { I 9 25 36 49 } The sequence 

2
n = 2, 1, 8, I , 

32
, 

64
, 

128
, . . . is positive and therefore 

bounded below. It seems clear that from the fourth term on, all the terms are getting 
smaller. However, a2 > a1 and a3 > a2. Since a 11+ 1 S a,, only if n ::: 3, we say 
that this sequence is ultimately decreasing . The adverb ultimately is used to describe 
any termwise property of a sequence that the terms have from some point on, but not 
necessarily at the beginning of the sequence. Thus , the sequence 

{n - 100} = (-99 , -98 , ... , -2, -1 , 0, 1, 2, 3, ... } 

is ultimately positive even though the first 99 terms are negative, and the sequence 

{c-1)" + ~} = {3, 3, ~. 2, -i, ~. -~, ~. ···} 
is ultimately alternating even though the first few terms do not alternate. 

Convergence of Sequences 
Central to the study of sequences is the notion of convergence. The concept of the limit 
of a sequence is a special case of the concept of the limit of a function f (x) as x -+ oo. 
We say that the sequence {a,,} converges to the limit L, and we write lim11 .... *'xi a,, = L, 
provided the distance from a11 to L on the real line approaches O as n increase s toward 
oo. We state this definition more formally as follows: 
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Limit of a sequence 

We say that sequence {an) converges to the Iirrtit L , and we write 
limn-+oo an = L, if for every positive real number E there exists an integer N 
(which may depend on E) such that if n :::: N, then Ian - LI < E. 

This definition is illustrated in Figure 9.1. 
y 

L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -• - - - -• - - -• - - -• - - -• - - -• 

L-E 

Figure 9. 1 A convergent sequence 

• • l ' • • • ' ' • ' ' l ' l l 

' ' • ' l 

' ' ' ' ' ,a4 ' , a 3 
' • ' : a2 

,a1 
' ' x 

2 3 4 N n 

EXAMPLE 4 
. C 

Show that limn-+oo - = 0 for any real number c and any p > 0. 
n P 

Solution Let E > 0 be given . Then 

lncPl<E .f P lcl 
I n > -, 

E 

that is, if n :::: N , the least integer greater than (I c I/ E) 1 IP. Therefore, by Definition 2, 
. C 

limn-+oo - = 0. 
nP 

Every sequence {an} must either converge to a finite lirrtit L or diverge . That is, 
either limn-.oo an = L exists (is a real number) or limn-+oo an does not exist. If 
limn-+oo an = oo, we can say that the sequence diverges to oo; if limn-+oo an = -oo, 
we can say that it diverges to -oo. If limn-+oo an simply does not exist (but is not oo 
or - oo ), we can only say that the sequence diverges. 

EXAM p LE 5 (Examples of convergent and divergent sequences) 

(a) {(n - 1)/ n} conver ges to 1; limn-.oo (n - 1)/ n = limn-.oo (l - (1/ n)) = l. 

(b) {n} = {1, 2, 3, 4, . . . } diverges to oo. 

(c) {- n} = {- 1, - 2, - 3, - 4, ... } diverg es to - oo. 

(d) {(-lt} = {- 1, 1, - 1, 1, -1, ... } simply diverges . 

(e) {(- ltn} = {- 1, 2, -3 , 4, -5 , ... } diverges (but not to oo or - oo even though 
limn-+oo lanl = oo). 

The lirrtit of a sequ ence is equival ent to the lirrtit of a function as its argument approaches 
infinity : 

If lim f( x ) =Land an= f(n) , then Jim an = L. 
x-+ oo n---+oo 
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Because of this, the standard rules for limit s of function s (Theorems 2 and 4 of 
Section 1.2) also hold for limit s of sequence s, with the appropriate changes of notation. 
Thu s, if {a,,} and {bn} converge, then 

Jim (a11 ± bn) = Jim a11 ± Jim b,,, 
n.--+oo n---+OO n---+oo 

lim can= c lim an, 
n--+oo n--+oo 

lim a11b,, = ( lim an) ( lim b11) , 
n--+oo 11--+oo n--+oo 

lim a11 

1
. an n-+oo 
1m - = ---

n-+oo b11 lim bn 
assuming lim bn f= 0. 

tz-+00 
n-+oo 

If an :S bn ultimately, then lim an :S lim bn. 
tz-+00 tz-+00 

If a11 :S bn :S Cn ultimately , and lim an= L = lim Cn, then lim bn = L. 
n--+oo n--+oo n--+oo 

The limits of many explicitly defined sequence s can be evaluated using these propertie s 
in a manner similar to the method s used for limits of the form limx-+oo f(x) in 
Section 1.3. 

EXAM p LE 6 Calculate the limits of the sequences 

{ 
2n2 - n - 1} 

(a) 5n2 + n - 3 ' { 
cos n } 

(b) - ' and (c){./ n2 +2n-n) . 
n 

Solution 
(a) We divide the numerator and denomin ator of the expre ssion for a11 by the highe st 

power of n in the denomin ator, that is, by n2 : 

. 2n2 -n-l . 2 - (l / n) -(l / n2) 
hm -.,---- - = hm 

,Hoo 5n2 + n - 3 11-+oo 5 + (1/ n) - (3/ n2) 

2-0-0 2 

5+0-0 5' 

since limn-+oo 1/ n = 0 and lim11....,00 l / n2 = 0. The sequence converges and its 
limit is 2/5. 

(b) Since I cos n I :S 1 for every n , we have 

1 cos n 1 
- - < -- < - for n 2'.. 1. 

n n n 

Now, lim11....,00-l / n = 0 and limn....,00 1/ n = 0. There fore, by the sequence 
version of the Squee ze Theorem, lim11...., 00 ( cos n) / n = 0. The given sequence 
converges to 0 . 

(c) For this sequenc e we multipl y the numerator and the denominator (which is 1) by 
the conjugate of the expression in the numerator : 

Jim (J n2 + 2n - n) = Jim (.J n2 + 2n - n)(.J n2 + 2n + n) 
n-+oo n-+oo .J n2 + 2n + n 

2n 2 
= lim ----;::::;;===-- = Ii m ----;:;::=:::::;:;;::::;::::;:----:- = 1. 

n-+oo .J n2 + 2n + n 1Hoo .J l + (2/ n) + 1 

The sequence converge s to 1. 
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THEOREM 

Figure 9.2 An ultimately 
increasing sequence that is 
bounded above 

I 

M 

L 

SECTION 9.1: Sequences and Convergence 50 1 

EXAMPLE 7 Evaluate lim ntan - 1 
(~)-

n-+oo n 

Solution For this example it is best to replace the nth term of the sequence by the 
corresponding function of a real variable x and take the limit as x ~ oo. We use 
l'Hopital's Rule : 

lim n tan- 1 
(~) = Jim x tan- 1 

(~) 
n-+oo n x-+oo x 

= Jim tan_ , (~) [Qo] 
X-+00 l 

If {an} converges , then {an} is bounded. 

. 1 
= hm --- = 1. 

X-+00 1 
1+

x2 

PROOF Suppose limn-+oo an = L. According to Definition 2, for f = 1 there exists 
a number N such that if n > N, then Ian - LI < 1; therefore Ian I < 1 + IL I for such 
n. (Why is this true?) If K denotes the largest of the numbers la, I, la2I, . .. , laNI, and 
1 + ILi, then Ian! S K for every n = 1, 2, 3, . . . . Hence {an) is bounded. 

The converse of Theorem I is false ; the sequence { ( - 1 Y} is bounded but does not 
converge. 

The completeness property of the real number system (see Section P.l) can be 
reformulated in terms of sequences to read as follows: 

Bounded monotonic sequences converge 

If the sequence {an) is bounded above and is (ultimately) increasing, then 
it converges. The same conclusion holds if {an) is bounded below and is 
(ultimately) decreasing. 

Thus, a bounded, ultimately monotonic sequence is convergent. (See Figure 9.2.) 

y 

• 

• ---------------------------------------------------- ----- ------- . ----. • • • • • • • 
• • • 

X 
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There is a subtle point to note in 
this solution. Showing that {an) 
is increasing is pretty obvious, 
but how did we know to try and 
show that 3 (rather than some 
other number) was an upper 
bound? The answer is that we 
actually did the last part first and 
showed that if lim a,, = a 
exists, then a = 3. It then 
makes sense to try and show that 
a,, < 3 for all n . 

Of course, we can easily 
show that any number greater 
than 3 is an upper bound. 

THEOREM 

I 
THEOREM 

I 

EXAM p LE B Let a,, be defined recursively by 

(n = 1, 2, 3, . . . ). 

Show that limn --><XJ an exists and find its value . 

Solution Observe that a2 = .Jm = ./7 > a1. If ak+I > ak, then 
ak+2 = J6 + ak+I > J6 + ak = ak+I , so {a,,} is increasing , by induction. Now 
observe that a1 = 1 < 3. If ak < 3, then ak+t = J6 + ak < J6 + 3 = 3, so a,, < 3 
for every n by induction. Since {a,,} is increa sing and bounded above, lim,, _. 00 a,, = a 
exists, by completenes s. Since J6 + x is a continuous function of x, we have 

a= Iim a11+ t = lim J6+a,, = 16+ lim a11 = J6+a. 
n--+oo n--+oo "\/ n---+oo 

Thus , a 2 = 6 + a, or a2 - a - 6 = 0, or (a - 3)(a + 2) = 0. This quadratic has roots 
a = 3 and a = -2. Since a,, ::: 1 for every n, we must have a ::: 1. Therefore, a = 3 
and lim,, _. 00 a,, = 3. 

EXAMPLE 9 Doe s { ( 1 + ~) 
11

} converge or diverge? 

Solution We could make an effort to show that the given sequence is, in fact, increas
ing and bounded above. (See Exercise 32 at the end of this section.) However, we 
already know the answer. The sequence converges by Theorem 6 of Section 3.4: 

Jim (1 + ~)
11 

= e 1 = e. 
n->oo n 

If (a 11} is (ultimately) increa sing , then either it is bounded above, and therefore conver
gent, or it is not bounded above and diverges to infinity . 

The proof of this theorem is left as an exercise. A corresponding res ult holds for 

(ultimately) decreasing sequences. 

The following theorem evaluates two important limits that find frequent application 
in the study of series. 

(a) If lxl < 1, then lim x 11 = 0. 
n->oo 

x" 
(b) If x is any real number, then lim - = 0. 

11->oo n! 

PROOF For part (a) observe that 

lim In Jxl11 = lim n In Jxl = -oo, 
n---+oo n--+oo 

since In Ix I < 0 when Ix I < 1. Accordingly, since ex is continuous, 

Jim Ix In = lim eln lxl" = elim,, .... oo ln lxl" = 0. 
n.--+oo n--+oo 

Since - lxJ11 S x 11 S lxl11
, we have lim11_. 00 x11 = 0 by the Squeeze Theorem. 

For part (b ), pick any x and let N be an integer such that N > Ix 1- If n > N we 
have 

I:~ I = 1: I 1; I 1; I . . . )~ 
1 
1;1 )~ 

1 
. . . 1: I 

lxlN-l lxl lxl lxl lxl 
< ---- --

(N - 1)! N N N ... N 

= lxlN-1 (~) n-N+l = K (~)n 
(N - l)! N N ' 
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Ix IN- I ( lxl) I- N 
where K = ( - is a constant that is independent of n . Since 

N -1)! N 
lxl/ N < 1, we have limn---+oo(lxl/ Nt = 0 by part (a). Thus l imn---+oo Ix" / n!I = 0, so 
lim,,---+oo x" / n ! = 0. 

EXAMPLE 10 
3n +411 + 5'' 

Find Jjm,z---+oo -----
511 

Solution n~~ 3"+:::+sn = 
11

~~[(~)" + (i)" + 1] = o+o+ 1 = 1, by 
Theorem 3(a). 

EXERCISES 9.1 

In Exe rcises 1- 13, determ ine whether the given seq uence is (a) 
bounded (above or below), (b) pos itive or negat ive (ultimately), 
(c) increas ing, decreas ing, or alternati ng, and (d) convergent, 
diverge nt, diverge nt to oo or -oo. 

1. { 2n
2 

} 
n2 + I 

2. 
{ n/: 1} 

3. {4-(-~)II} 4. {sin~ } 

5. { n
2

: I } 6. { _c} 
n" 

7. { e" } 8. r -1)
11

n } 
7C n/ 2 e" 

9. { ~: } 10. { (n !)2 } 
(2n)! 

11. {n cos c;)} 12. r :n } 

13. (1, 1, -2, 3, 3, -4, 5, 5, -6, .. . } 

In Exe rcises 14-29, evaluate, wherever possi ble, the limit of the 
sequ ence {a,,}. 

14. 
5 -2n 

an = --
3n - 7 

n2 
16. a11 = n3 + 1 

n2 
- 2.jn + l 

18. all = 1 - n - 3n2 

20. a11 = n sin -
n 

n 
22, an= ( 

1n n + 1) 

24. a11 = n - J n 2 - 4n 

15. 
n 2 -4 

a,,=- -
n+ 5 

n n 
17. a,, = ( -1) n 3 + 

1 

19. 
e11 - e- n 

a----
11 - e" + e- n 

( 3)11 

21. a"= n: 
23, an=.Jn"+T-Jn 

25. a,, =Jn2+n-&--=--i" 

(
n - l )

11 

26, an= --
n+ 1 

27. 
(n!)2 

a,,=--
(2n)! 

28. 

30. 

8 31. 

8 32. 

n2211 nn 
a11 = ~ 29. a11 = I + 22,, 

Let a1 = 1 and a 11+ 1 = ./1 + 2a 11 (n = 1, 2 , 3, ... ). Show 
that {a,,} is increasing and bounded above. (Hint: Show that 
3 is an upper bound.) Hence , conclude that the sequence 
converges, and find its limit. 

Repeat Exercise 30 for the seque nce defined by a1 = 3, 
a 11+ 1 = ./15 + 2a 11, n = 1, 2 , 3, .... This time you will 
have to guess an upper bound. 

Let a11 = ( 1 + ~ )" so that ln a11 = n ln ( l + ~). Use 

properties of the logarithm function to show that (a) {all} is 
increasing and (b) e is an upper bound for {a11}. 

8 33. Prove Theorem 2. Also, state an analogo us theorem 
pertaining to ultimately decreasing sequences. 

8 34. If {la,, I} is bo unded, prove that {a11} is bounded . 

8 35. If lim11___,00 la11 I = 0, prove that lim,,___,00 a,, = 0. 

8 36. Wh ich of the following statements are TRUE and which are 
FALSE? Justify your answers. 

(a) If lim11___,00 a11 = oo and lim11___,00 b11 = L > 0, then 
lim11___,00 a11b11 = 00 . 

(b) If lim 11___,00 a11 = oo and lim11___,00 b,, = -oo, then 
limn --->oo(an + bn) = 0. 

(c) If lim11___, a11 = oo and lim11___,00 b,, = -oo, then 
limn--->oo a11b,, = -00. 

(d) If neither {a,,} nor {b11} converges, then {a11b11) does not 
converge . 

(e) If {la 11I} converges, then (a11} converges. 
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504 CHAPTER 9 Sequences, Serie s, and Power Serie s 

. _ l_nf_in_it_e_S_er_ie_s ________________ _ 
An infinite series, usually just called a series , is a formal sum of infinitely many terms; 
for instance , a 1 + a2 + a3 + a4 + · · · is a series formed by adding the terms of the 
sequence {an} . This series is also denoted L~ 1 an: 

00 

Lan = a 1 + a2 + a 3 + a4 + · · · . 
n= l 

For example , 

It is sometimes necessary or useful to start the sum from some index other than 1: 

00 

Lan = I + a + a2 + a3 + · · · 
n=O 

Note that the latter series would make no sense if we had started the sum from n = I; 
the first term would have been undefined . 

When necessary, we can change the index of summation to start at a different value. 
This is accomplished by a substitution as illustrated in Example 3 of Section 5.1. For 
instance, using the substitution n = m - 2, we can rewrite I:~ 1 an in the form 
I:: =3 am- 2· Both sums give rise to the same expansion 

00 00 

Lan= a, +a2 +a3 + · · · = Lam-2· 
n=I m=3 

Addition is an operation that is carried out on two numbers at a time. If we want to 
calculate the finite sum a1 + a2 + a3, we could proceed by adding a1 + a2 and then 
adding a3 to this sum, or else we might first add a2 + a3 and then add a 1 to the sum. 
Of course, the associative law for addition assures us we will get the same answer both 
ways. This is the reason the symbol a 1 + a2 + a3 makes sense; we would otherwise 
have to write (a1 + a2) + a3 or ai + (a2 + a3) . This reasoning extends to any sum 
a 1 + a2 + · · · + an of finitely many terms, but it is not obvious what should be meant 
by a sum with infinitely many terms: 

We no longer have any assurance that the terms can be added up in any order to yield the 
same sum. In fact, we will see in Section 9 .4 that in certain circumstances, changing the 
order of terms in a series can actually change the sum of the series . The interpretation 
we place on the infinite sum is that of adding from left to right , as suggested by the 
grouping 

We accomplish this by defining a new sequence {sn}, called the sequence of partial 
sums of the series L~ 1 an, so that Sn is the sum of the first n terms of the series: 
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St =a1 

s2 = SJ + a2 = a1 + a2 

s3 = s2 + a3 = a1 + a2 + a3 

n 

Sn = Sn-1 + an = a 1 + a2 + a3 + · · · + an = L aj 
j= I 

We then define the sum of the infinite series to be the limit of this sequence of partial 
sums . 

Convergence of a series 

We say that the series L~I an converges to the sums , and we write 

00 

Lan= s , 
n=I 

if limn~oo Sn = s, where Sn is the nth partial sum of L~ 1 an: 

n 

Sn = a 1 + a2 + a3 + · · · + an = L aj. 
j = I 

Thus , a series converges if and only if the sequen ce of its partial sums converges. 

Similarly, a series is said to diverge to infinity, diverge to negative infinity, or simply 
diverge if its sequence of partial sums does so. It must be stressed that the convergence 
of the series L ~ J an depends on the convergence of the sequence {sn} = {LJ=I aj }, 
not the sequence {an}. 

Geometric Series 

Geometric series 

A series of the form L~ 1 a rn - I = a + ar + ar 2 + ar 3 + · · ·, whose nth term 
is an = a rn- l, is called a geometric series. The number a is the first term. The 
number r is called the common ratio of the series, since it is the value of the 
ratio of the (n + 1 )st term to the nth term for any n 2: 1: 

an+l ar n 
--=-- . =r 

an arn - 1 ' 
n = I , 2, 3, . .. . 

The nth partial sum Sn of a geometric series is calculated as follows : 

Sn = a + ar + ar 2 + ar 3 + · · · + ar n- 1 

rsn = ar + ar 2 + ar 3 + · · · + ar" - 1 + arn. 

The second equation is obtained by multiplying the first by r. Subtracting these two 
equations (note the cancellations) , we get (1- r )sn = a - arn. If r 'F 1, we can divide 
by 1 - rand get a formula for s11• 
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506 CHAPTER 9 Sequences, Series, and Power Series 

Partial sums of geometric series 

If r = 1, then the nth partial sum of a geometric series L~L arn-l is 

Sn =a+ a+···+ a= na . If r f= 1, then 

a(l - r") 
Sn= a +ar + ar 2 + · · · +arn - l = ----. 

1-r 

If a = 0, then Sn = 0 for every n , and limn--+oo Sn = 0. Now suppose a f= 0. If lrl < 1, 
then limn--+oo rn = 0, so limn--+oo Sn = a/ (l - r). If r > 1, then limn--+oo r" = oo, 
and limn--+oo Sn = oo if a > 0, or limn--+oo s11 = -oo if a < 0. The same conclusion 
holds if r = 1, since s11 = na in this case. If r ::: -1, lim 11--, 00 rn does not exist and 
neither does limn--+oo s11• Hence , we conclude that 

00 

Larn -l 
n=I I 

converges to O a 

converges to --
1 - r 

diverges to oo 
diverges to -oo 
diverges 

if a= 0 

if Ir! < 1 

if r =::: I and a > 0 
if r =::: 1 and a < 0 
if r ::: -1 and a f= 0. 

The representation of the function 1 / ( 1 - x) as the sum of a geometric series, 

1 ~ n 2 3 --=~x =l+ x+x +x + ·· · 
1-x n=O 

for - 1 < X < 1, 

will be important in our discussion of power series later in this chapter. 

EXAMPLE 1 (Examples of geometric series and their sums) 

(a) 1 + ~ + ~ + ~ + ... = f (~)n-1 1 1 

2 4 8 n=I 2 
= 2 . Here a = l and r = 

1-~ 2 

Since Ir! < 1, the series converges. 

e2 e3 oo ( e )n-1 
(b) 7C - e + ;- - 7!2 + ... =I: 7C -; 

n=l 

7C 

1 - (-;) 

The series converges since I-; I < 1. 

00 

2 

e 
Here a = 1C and r = - - . 

7C 

(c) 1+2 112 +2+2 312 +- . . = I::<ht-1
. Thisseriesdivergestooosincea = 1 > 0 

n=I 

and r = .J2 > 1. 
00 

(d) l - 1 + 1 - l + 1- · · · = I::<-1t-1• This series diverges since r = -1. 
n=I 

(e) Let x = 0.32 32 32 · · · = 0.32; then 

32 32 32 00 32 ( 1 ) n - l 

X = 100 + 1002 + 1003 + . . . = ?; 100 100 
32 1 

100 l __ I_ 
100 

32 

99 

This is an alternative to the method of Example 1 of Section P. l for representing 
repeating decimals as quotients of integers. 
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EXAM p LE 2 If money earns interest at a constant effective rate of 5% per year, 
how much should you pay today for an annuity that will pay you 

(a) $1,000 at the end of each of the next 10 years and (b) $1,000 at the end of every 
year forever? 

Solution A payment of $1,000 that is due to be received n years from now has present 

value$1 ,000 x (-
1-)n (since $A would grow to $A(l.05t inn years). Thus, $1,000 

1.05 
payments at the end of each of the next n years are worth $sn at the present time, where 

Sn = 1,000 [-
1 

+ (-
1 

)

2 

+ · · · + (-
1 )n] 

1.05 1.05 1.05 

= l;~~o [ 1 + l.~5 + ( l.~5r + ... + (1.~5r-'J 

1,000 I-(~)" - 1,000 [l -(-1-)n]. 
1.05 l _ _ 0.05 1.05 

1.05 

(a) The present value of 10 future payments is $s10 = $7,721.73 . 

(b) The present value of future payments continuing forever is 

. $1,000 
$ lim Sn= -- = $20,000. 

n~oo 0.05 

Telescoping Series and Harmonic Series 

EXAMPLE 3 Show that the series 

00 1 1 1 1 1 ?; n(n + 1) = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... 

converges and find its sum. 

1 1 1 Solution Since --- = - - -- , we can write the partial sum Sn in the form 
n(n + 1) n n + l 

1 1 1 1 1 
Sn = -- + -- + -- + · · · + --- + ---

1 x 2 2 x 3 3 x 4 (n - l)n n(n + 1) 

= (1-~) + (~ - ~) + (~ -i) 
+ ... + (-1 _ ~) + (~ _ _ 1 ) 

n-1 n n n+l 

1111 11 1 
=1- -+--- +--···--+----

2 2 3 3 n n n+I 
1 

=1---. 
n+l 

Therefore, limn~ oo s11 = 1 and the series converges to 1: 

00 1 

?; n(n + 1) = 1. 

This is an example of a telescoping series, so called because the partial sums fo ld up 
into a simple form when the terms are expanded in partial fractions. Other examples 
can be found in the exercises at the end of this section . As these examples show, the 
method of partial fractions can be a useful tool for series as well as for integrals. 
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Figure 9.3 A partial sum of the harmonic 

series 

THEOREM 

I 

EXAMPLE 4 Show that the harmonic series 

00 1 1 1 1 
I:: - =1 + -+-+-+··· 
n= l n 2 3 4 

diverges to infinity. 

Solution If Sn is the nth parti al sum of the harmonic series, then 

1 l 1 
Sn = 1 + 2 + 3 + · · · + -;;, 

sum of areas of rectangles shaded in Figure 9 .3 

1 
> area under y = - from x = 1 to x = n + I 

X 

f
n+l dx 

= -=ln (n+l). 
l X 

Now limn-->oo ln(n + 1) = oo. Therefore , limn-->oo Sn = oo and 

y 

0.5 

00 l 1 1 
I:: -=l+- +-+· ·· 
n= l n 2 3 

1 
y = -

X 

2 3 

diverges to infinity . 

n n+ 1 X 

Like geome tric series, the harmonic series will often be encountered in subsequent 
sections. 

Some Theorems About Series 

If L~ 1 an converges, then limn-->oo an = 0. Therefore , if limn-->oo an doe s not exist , 
or exists but is not zero , then the series I:;~ 1 an is divergent. (This amounts to an nth 
term test for divergence of a series. 

PROOF If Sn = a 1 + a2 + · · · +a n, then Sn - Sn-1 = an. If I:;~ 1 an converges , then 
limn-->oo Sn = sex ists, and limn-->oo Sn- I = s. Hence limn-->oo an = s - s = 0. 

Remark Theorem 4 is very important for the understanding of infinite series. Stu
dents often err either in forgetting that a ser ies cannot converge if its terms do not 
approa ch zero or in confusing this result with its converse , which is false . The con
verse would say that if limn-->oo an = 0, then I:~ 1 an must converge . The harmonic 
series is a counterexample showing the falsehood of this assertio n: 

1 
lim - = 0 

n-->oo n 
but 

CX) 1 L - diverge s to infinity. 
n= I n 
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When considering whether a given series converges, the first question you should ask 
yourself is: "Does the nth term approach Oas n approaches oo?" If the answer is no, 
then the series does not converge. If the answer is yes, then the series may or may 
not converge. If the sequence of terms {a,,} tends to a nonzero limit L , then I:~ 1 a,, 
diverges to infinity if L > 0 and diverges to negative infinity if L < 0. 

EXAMPLE 5 

~ n n (a) L.., --- diverges to infinity since lim11_, 00 --- = 1/ 2 > 0. 
n= 1 2n - 1 2n - 1 

(b) I:~ 1(-1)'1nsin(l / n)divergessince 

I 
11 sin(l / n) sinx 

Jim (-lfnsin - = Jim --- = lim -- = 1 f=-0. 
n->oo n n->oo l/ n x-> 0+ x 

The following theorem asserts that it is only the ultimate behaviour of {an} that deter
mines whether I:~ 1 an converges. Any finite number of terms can be dropped from 
the beginning of a series without affecting the convergence ; the convergence depends 
only on the tail of the series. Of course, the actual sum of the series depends on all the 
terms. 

L~ 1 a,, converges if and only if L~N a11 converges for any integer N 2: 1. 

If {a,,} is ultimately positive , then the series I:~ 1 an must either converge (if its 
partial sums are bounded above) or diverge to infinity (if its partial sums are not 
bounded above). 

The proofs of these two theorems are posed as exercises at the end of this section. The 
following theorem is just a reformulation of standard laws of limits. 

If I:~ 1 a,, and I:~ 1 bn converge to A and B, respectively, then 

(a) I:~ 1 can converges to cA (where c is any constant); 

(b) L~t (an± bn) converges to A± B ; 

(c) if a11 S b11 for all n = l , 2, 3, . .. , then A S B. 

EXAMPLE 6 
1 + 2n+l 

Find the sum of the series L ---
n= l 3n 

Solution The given series is the sum of two geometric series, 

1/ 3 
1 - (1/ 3) 

1 

2 

_4_ / 3_ =4. 
1 - (2/ 3) 

. . 1 9 
Thus, its sum 1s - + 4 = - by Theorem 7(b) . 

2 2 

and 
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EX E R C I S ES 9.2 

In Exerc ises 1-18, find the sum of the given series, or show that 
the series diverges (poss ibly to infinity or negative infinity). 
Exercise s 11- 14 are telescoping ser ies and should be done by 
partial fractions as suggeste d in Example 3 in this sec tion. 

1 1 1 00 1 
l. 3 + 9 + 27 + · · · = ?; 3n 

3 3 3 
00 

( 1 ) "- ' 2 · 3 - 4 + 16 - 64 + " . = ?; 3 - 4 

00 1 00 5 
3. ~ (2 + ir)2n 

4. I:: 103,, 
n=O 

00 
00 (-5)" 1 

s.L g2n 6. 
L e'' 

11=2 11=0 

00 2k+3 00 

7. I:: ek-3 
8. L n j /Z cos() n) 

k=O j= l 

00 3 + 2" 00 3 + 2" 
9. I:: 2,,+2 10. L 3n+2 

n= l n=O 
00 I 1 I 1 

11 · ; n(n + 2) = 1 x 3 + 2 x 4 + 3 x 5 + .. . 

00 l 1 1 1 
12· ?; (2n - l) (2n + l) = ~ + 3 x 5 + 5 x 7 + · · · 

00 1 l 1 l 
13· ?; (3n - 2)(3n + 1) = l x 4 + 4 x 7 + 7 x JO+ . .. 

D 14. f 1 

n= l n(n + l)(n + 2) 
1 1 l 

= --- +---+---+ .. , 
l x2x3 2 x 3x4 3x4 x 5 

00 1 
15. "' -L 2n- l 

n=l 

00 

16. L _n_ 
n= l n + 2 

00 

11. L n- ,12 
11=1 

18. f -2-
ll = l n + I 

19. Obtain a simple expre ssion fo r the partial sum Sn of the series 
L~ 1 (-1 t , and use it to show that the series diverges . 

20. Find the sum of the series 

l l 1 l 
-+-- +---+----+ .. .. 
1 1 +2 1 +2+3 1 +2+3+4 

21. When dropped , an elastic ball bounce s back up to a height 
three-quarters of that from which it fell. If the ball is dropped 
from a height of 2 m and allowed to bounce up and down 
indefinitely , what is the total distanc e it travels before 
corning to rest ? 

22. If a bank acco unt pay s 10% simple interest into an acco unt 
once a year, what is the balance in the account at the end of 
8 years if $ 1,000 is depos ited into the account at the 
beginning of each of the 8 years? (Assu me there was no 
balance in the accou nt initia lly.) 

D 23. Prove Theorem 5. 8 24. Prove Theore m 6. 

8 25. State a theorem analogous to Theorem 6 but for a negative 
sequence. 

In Exe rcises 26-31 , decide whether the given statement is TRUE 
or FALSE. If it is true , prove it. If it is false, give a counter
example showing the falsehood. 

8 26. If a,, = 0 for every n, then L a11 converges . 

8 27. If La,, converges, then L (1 /an) diverges to infinity . 

8 28. If Lan and L b,, both diverge, then so does L (a,, + bn). 
8 29. If a11 ::': c > 0 for every n, then La,, diverges to infinit y. 

8 30. If La ,, diverges and {bn} is bound ed, then L a,,bn diverge s. 

8 31. If a,, > 0 and La,, converges, then Z:::(a,,)2 converges. 

Convergence Tests for Positive Series 
In the previous section we saw a few examples of convergent series (geometric and 
telescoping series) whose sums could be determined exactly because the partial sums 
s,, could be expressed in closed form as explicit function s of n whose limits as n -+ oo 
could be evaluated. It is not usually possible to do this with a given series, and therefore 
it is not usually possible to determine the sum of the series exactly. However, there are 
many technique s for determining whether a given series converges and, if it does, for 
approxim ating the sum to any desired degree of accuracy. 

In this section we deal exclusively with po sitive series, that is, series of the form 

00 

L a,, = a 1 + a2 + a3 + · · · , 
n= 1 

www.konkur.in



THEOREM 

I 

Figure 9.4 Comparing integrals and series 
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where an 2: 0 for all n 2: 1. As noted in Theorem 6, such a series will converge 
if its partial sums are bounded above and will diverge to infinity otherwise. All our 
results apply equally well to ultimately positive series since convergence or divergence 
depends only on the tail of a series. 

The Integral Test 
The integral test provides a means for determinin g whether an ultimately positive series 
converges or diverges by comparing it with an improper integral that behaves similar ly. 
Example 4 in Section 9.2 is an example of the use of this technique. We formalize the 
method in the following theorem. 

The integral test 

Suppo se that an = f (n), where f is positive, continuous , and nonincreasing on an 
interval [N, oo) for some positive integer N. Then 

and loo f(t) dt 

either both converge or both diverge to infinity. 

PROOF Let Sn= ai + a2 +···+a,,. If n > N, we have 

Sn= SN+ aN+I + aN+2 + · ··+a,, 

=SN+ f (N + 1) + f (N + 2) + · · · + f (n) 

=SN+ sum of areas of rectangles shaded in Figure 9.4(a) 

:'.::SN+ loo f(t)dt. 

If the improper integral r: f (t) dt converges, then the sequence {s,,} is bounded above 
and I:;~ 1 a,, converges. 

Y = f(x) 

N N+2 II X N N +2 
N+I N+3 N+ I N +3 

(a) (b) 

Conversely, suppose that I:;~ 1 an converges to the sums. Then 

l oo f (t) dt = area under y = f (t) above y = 0 from t = N tot = oo 

s sum of areas of shaded rectangles in Figure 9.4(b) 

= aN + aN+I + aN+2 + · · · 
= S - SN- I < 00, 

X 

so the improper integral represents a finite area and is thus convergent. (We omit 

the remaining details showing that limR~ oo ft f (t) dt exists; like the series case, the 
argument depends on the completeness of the real numbers.) 
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Remark If an = f (n), where f is positive, continuous, and nonincreasing on [1, oo), 
then Theorem 8 assures us that L~ 1 an and fi°0 

f (x) dx both converge or both diverge 
to infinity. It does not tell us that the sum of the series is equal to the value of the 
integral. The two are not likely to be equal in the case of convergence. However , as 
we see below, integrals can help us approximate the sum of a series. 

The principal use of the integral test is to establish the resu lt of the following 
example concerning the series I:~, n - P, which is called a p -series. This result 
should be memorized ; we will frequently compare the behaviour of other series with 
p-series later in this and subsequent sections. 

EXAMPLE 1 (p-series) Show that 

~ n- P = ~ nlP { converges if p > l 
~ ~ diverge s to infinity if p _::::: l . 
n= I n= I 

Solution Observe that if p > 0, then f(x) = x - P is positive, continuous , and 
decreasing on [l, oo). By the integral test , the p-series converges for p > l and 
diverges for O < p _::::: 1 by comparison with Ji°° x - P dx. (See Theorem 2(a) of 
Section 6.5.) If p _::::: 0, then limn_, 00 (1/ nP)-/= 0, so the series cannot converge in this 
case. Being a positive series , it must diverge to infinity. 

Remark The harmonic series I::~ 1 n- 1 (the case p = 1 of the p-series) is on the 
borderline between convergence and divergence, although it diverges. While its terms 
decrease toward O as n increases, they do not decrease fast enough to allow the sum 
of the series to be finite. If p > I , the terms of L~ , n- P decrease toward zero fast 
enough that their sum is finite. We can refine the distinction between convergence and 
divergence at p = I by using terms that decrease faster than 1 / n, but not as fast as 
1/ nq for any q > 1. If p > 0, the terms 1/ (n(lnn)P) have this property since Inn 
grows more slowly than any positive power of n as n increases. The question now 
arises whether I::~ 2 1/ (n(ln n)P) converges. It does , provided again that p > I ; you 
can use the substitution u = In x to check that 

[
00 dx [ 00 du 

12 x(lnx)P = },0 2 uP' 

which converges if p > I and diverges if O < p _::::: 1. This process of fine-tuning 
Example 1 can be extended even further. (See Exercise 36 below.) 

Using Integral Bounds to Estimate the Sum of a Series 
Suppose that ak = f (k) fork = n + 1, n + 2, n + 3, ... , where f is a positive, 
continuous function, decreasing at least on the interval [n , oo ). We have: 

00 

S -Sn= L f(k) 
k=n + I 

= sum of areas of rectangles shaded in Figure 9.5(a) 

::: [,

00 

f(x) dx. 
11 
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n n+I 11+ 2 n+3 X n 11+111+ 2 11+3 

(a) 

Similarly, 

s - Sn = sum of areas of rectangles in Figure 9.5(b) 

:::::-. f
00 

f(x) dx. 
ln +l 

If we define 

An = 100 

f (x) dx , 

then we can combine the above inequalities to obtain 

An+I S s - s,, S A,,, 

or, equivalently: 

Sn+ An+l S S S Sn+ An. 

X 

(b) 

The error in the approximations ~ Sn satisfies O .::: s - Sn .::: An. However, since s 
must lie in the interval [sn + An+I, Sn + An], we can do better by using the midpoint 
s~ of this interval as an approximation for s. The error is then less than half the length 
An - An+ 1 of the interval: 

A better integral approximation 

The error Is - s~I in the approximation 

An+l + An 
S ~ s,: = Sn + - --- -

2 

satisfies 

where A n = 100 

f(x) dx , 
n 

(Whenever a quantity is known to lie in a certain interval, the midpoint of that interval 
can be used to approximate the quantity, and the absolute value of the error in that 
approximation does not exceed half the length of the interval.) 

EXAM p LE 2 Find the best approximations,~ to the sums of the series L~ t l / n2
, 

making use of the partial sum Sn of the first n terms. How large 
would n have to be to ensure that the approximations ~ s~ has error less than 0.001 in 
absolute value? How large would n have to be to ensure that the approximations ~ Sn 

has error less than 0.001 in absolute value? 

Solution Since f(x) = l / x 2 is positive , continuous, and decreasing on [1, oo) for 
any n = 1, 2, 3, . . . , we have 

Sn+ An+I S S S Sn+ An, 
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THEOREM 

I 
BEWARE! Theorem 9 does 
not say that if Lan converges, 
then L b11 converges. It is 
possible that the smaller sum 
may be finite while the larger 
one is infinite. (Do not confuse 
a theorem with its converse.) 

where 

1
00 

dx ( l)IR An= - = Jim --
11 x 2 R-+oo x n n 

The best approximation to s using Sn is 

* 1 ( I 1) 2n + I 
sn = Sn+ 2 n + I + ;;- = s,, + 2n(n + l) 

1 1 l 2n + 1 
= 1 +- +-+ ··· +-+---. 

4 9 n2 2n(n + 1) 

The error in this approximation satisfies 

* 1 (1 1 ) I Is - s I < - - - -- = --- < 0.001 11 
- 2 n n + l 2n(n + 1) - ' 

provided 2n(n + 1) :::. 1/ 0.001 = 1,000. It is easily checked that this condition is 
satisfied if n :::. 22; the approxima tion 

* l l l 45 
S ~ S22 = l + 4 + 9 + ... + 222 + 44 X 

will have error with absolute value not exceeding 0.00 l. Had we used the approx imation 
s ~ s11 we could only have concluded that 

I 
0 S S - S 11 S An= - < 0.001, 

n 

provided n > l, 000; we would need 1,000 terms of the series to get the desired 
accuracy. 

Comparison Tests 
The next test we consider for positive series is analogous to the comparison theorem 
for improper integrals. (See Theorem 3 of Section 6.5.) It enables us to determine 
the convergence or divergence of one series by comparing it with another series that is 
known to converge or diverge . 

A comparison test 

Let {a,,} and {bn} be sequences for which there exists a positive constant K such that , 
ultimately , 0 S an S K bn. 

( a) If the series I::;: 1 bn converges, then so does the series I::;: 1 an. 

(b) If the series I::;: 1 an diverges to infinity, then so does the series I::;: 1 bn. 

PROOF Since a series converges if and only if its tail converges (Theorem 5), we 
can assume , without loss of generality, that the conditio n O S an S Kb,, hold s for all 
n ::'.. I. Let Sn = a1 + a2 + ·· · +an and Sn = b1 + b2 + · · · + b11• Then S11 S K S11• If 
L b11 converges, then {Sn} is convergent and hence is bounded by Theorem 1. Hence 
{s,,} is bounded above . By Theorem 6, I: an converges. Since the convergence of 
I: b11 guarantees that of I: a11, if the latter series diverges to infinity, then the former 
cannot converge either, so it must diverge to infinity too. 

EXAM p LE 3 Which of the following series converge? Give reasons for your 

(a) 
00 1 

L 211+1' 
n= I 

answers. 
00 3n + I 

(b) I: n 3 + i ' 
n=I 

00 1 
(c) I: -. 

11
=2 Inn 
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Solution In each case we must find a suitable comparison series that we already know 
converges or diverges. 

1 1 "'(X) 1 
(a) Since O < -- < - for n = 1, 2, 3, ... , and since Ln-l - is a convergent 

2n + 1 2n - 211 

1 
geometric series , the series L ~ 1 -- also converges by comparison. 

- 2n + 1 
3n + 1 3 

(b) Observe that -
3 

-- behaves like -
2 

for large n , so we would expect to compare 
n + I n 

the series with the convergent p-series I:~ 1 n - 2 . We have, for n::: 1, 

3n + 1 3n 1 3n 1 3 1 4 
--=--+-- < -+- <- +-=-
n3 + 1 n 3 + 1 n 3 + 1 n3 n 3 n 2 n 2 n 2 · 

Thus, the given series converges by Theorem 9. 

1 1 . "'(X) 1 
(c) For n = 2, 3, 4, ... , we have O < Inn < n. Thus - > Smee Ln= 2 -

Inn n n 
1 

diverges to infinity (it is a harmonjc series) , so does I:~ 2 - by comparison. 
Inn 

The following theorem provides a version of the comparison test that is not quite as 
general as Theorem 9 but is often easier to apply in specific cases. 

A limit comparison test 

Suppose that {an} and {b11} are positive sequences and that 

. an 
hm - = L , 

n--+oo b11 

where L is either a nonnegative finite number or +oo. 

(a) If L < oo and I:~ 1 bn converges, then L~l an also converges. 

(b) If L > 0 and L ~l bn diverges to infiruty, then so does L~J an. 

PROOF If L < oo, then for n sufficiently large, we have bn > 0 and 

a 
O <_'..'_<L+ l 

- bn - ' 

so O :S an ::S (L + l)b n. Hence L~l an converges if L ~ J bn converges, by 
Theorem 9(a). 

If L > 0, then for n sufficiently large 

an L 
->-
bn - 2 

Therefore, 0 < bn ::S (2/ L)an, and L ~J an diverges to infiruty if L ~ J b11 does, by 
Theorem 9(b). 

EX A M p L E 4 Which of the following series converge? Give reasons for your 
answers . 

(a) ~ 1 (b) ~ n + 5 ;:-r 1 + Jn ' ;:-r n3 - 2n + 3 · 

Solution Again we must make appropriate choices for comparison series. 

(a) The terms of this series decrease like 1/ yin. Observe that 

L= Jim 
n--+OO 

1 

l+Jn 
I 

Jn 

. Jn . 1 
= hm --- = hm ---- = 1. 

n--+oo I + Jn 11--+oo (I / Jn) + 1 
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1 
Since the p-series Z:::~ 1 ,Jn diverges to infinity (p = 1/ 2), so does the series 

1 L~ J 
1 

+ ,Jn' by the limit comparison test. 

(b) For large n, the terms behave like n/ n3, so let us compare the series with the 
p-seri es L~t l / n2, which we know converges . 

n+5 
n3 - 2n + 3 n3 + 5n2 

L = Jim -- -,--~- = lim ---,----- = 1. 
n-H )O l n ->oo n 3 - 2n + 3 

n 2 

S. L h . ~ n + S l b h 1· . . ince < oo, t e senes L 
3 

a so converges y t e urut companson 
n= I n - 2n + 3 

test. 

In order to apply the original version of the comparison test (Theorem 9) successfully, 
it is important to have an intuitive feeling for whether the given series converges or 
diverge s. The form of the compari son will depend on whether you are trying to prove 
convergenc e or divergence. For instance, if you did not know intuitively that 

00 1 

; IOOn + 

would have to diverge to infinity , you might try to argue that 

1 l 
< -

lOOn + 20,000 n 
for n = 1, 2, 3, .... 

While true , this doesn't help at all. L~ J 1/ n diverges to infinity; therefore Theorem 9 
yields no information from this compari son. We could , of course , argue instead that 

------ > - --
IOOn + 20 ,000 - 20, lOOn 

if n ::: l, 

and conclude by Theorem 9 that L~J (1/ (lOOn + 20 ,000)) diverges to infinity by 
comparison with the divergent series I:~ 1 1/ n. An easier way is to use Theorem 10 
and the fact that 

L = Jim lOOn + 20 ,000 = lim n = _l_ > O. 
,,.....oo 1 11->oo lOOn + 20,000 100 

n 

However , the limit comparison test Theorem 10 has a disadvantage when compared to 
the ordinary comparison test Theorem 9. It can fail in certain cases because the limit 
L does not exist. In such cases it is possible that the ordinary comparison test may still 
work. 

~ 1 + sinn EXAM P L E 5 Test the serie s L 
2 

for convergence. 
n= I n 

Solution Since 

1 + sinn 
n2 

Jim -~-- = Jim (I+ sinn) 
11->00 1 17->00 

n2 
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does not exist, the limit comparison test gives us no information. However, since 
sin n ::S 1, we have 

1 + Sinn 2 
0 < 

2 
< -

2 
for n = l, 2, 3, . ... - n - n 

The given series does, in fact, converge by comparison with I:~1 l / n2, using the 
ordi nary comparison test. 

The Ratio and Root Tests 
The ratio test 

Suppose that an > 0 (ultimately) and that p = Jim an+I exists or is +oo. 
n-->00 an 

(a) If0 :Sp < l , then I:~1 an converges. 

(b) If 1 < p ::S oo, then limn-.oo a11 = oo and L~J an diverges to infinity. 

(c) If p = I, this test gives no information; the series may either converge or diverge 
to infinity . 

PROOF Here p is the lowercase Greek letter "rho" (prono unced "roh"). 

(a) Suppose p < l. Pick a number r such that p < r < l. Since we are given 
that limn-.oo an+ifa 11 = p, we have an+1/ a11 :Sr for n sufficiently large; that is, 
an+I :S ran for n:::: N, say. In particular, 

aN+I :S raN 
2 aN+2 :S raN+l :S r aN 
3 aN+3 .:S raN+2 :S r aN 

(k = 0, 1, 2, 3, .. . ). 

Hence, L~N an converges by comparison with the convergent geometric serie s 

L~o rk. It follows that L ~ 1 an = I:::/ an + L~N an must also converge. 

(b) Now suppose that p > 1. Pick a number r such that 1 < r < p . Since 
limn-. oo an+i/an = p, we have an+i/ an :::: r for n sufficient ly large, say for 
n :::: N. We assume N is chosen large enough that aN > 0. It follows by an 
argument similar to that used in part (a) that aN+k :::: rkaN fork = 0, I, 2, .. . , 
and since r > 1, limn-.oo an = oo. Therefore, L~t an diverges to infinity. 

(c) If pis computed for the series L~t 1/ n and L~t 1/ n2, we get p = l in each 
case. Since the first series diverges to infinity and the second converges, the ratio 
test cannot distinguish between convergence and divergence if p = I. 

All p-series fall into the indecisive category where p = 1, as does L~ 1 an, where 
an is any rationa l function of n . The ratio test is most useful for series whose terms 
decrease at least exponentially fast. The presence of factorials in a term also suggests 
that the ratio test might be useful. 

EXAM p LE 6 Test the following series for convergence: 

(a) 
oo 99n I: -,, 

n=I n. 
(b) (c) ~n! . 

~ n , 
n=l n 

Solution We use the ratio test for each of these series. 

(a) p = lim --- -- = Jim -- = 0 < 1. 
99n+l /9 911 99 

n.-->oo(n+l)! n! n-->oon+l 

00 

Thus, Ln= 1 (9911 
/ n !) converges. 

(d) 
~ (2n)! 
~ (n!)2 . 
n.=l 
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(b) p = hm -------,-- - = hm - -- < 1. . (n+l)
5

/n
5 

. l (n+l)
5 

l 
n-+oo 211+1 217 n-+oo 2 n 2 

Hence , I: : 1 (n
5 / 211

) converges . 

(c) p = hm ---- - = hm ------,-- = hm - -. (n+l)! In! . (n+l)!n
11 

• ( n )" 
n-+oo (n + 1)11+1 n11 n-+oo (n + 1)11+1n! n-+oo n + 1 

1 l 
= lim ( ) 11 = - < 1. n-+oo 1 e 

1 + -
n 

Thus , I: ~ 1 (n! / n") converges . 

(d) p = hm ---- -- = hm --- ----, c--- = 4 > 1. 
. (2(n+l))!/(2n)! . (2n+2)(2n+l) 

ri-+oo ((n + 1)!)2 (n!) 2 11-+oo (n + 1)2 

Thus, I: : 1 (2n)! / (n!) 2 diverge s to infinity. 

The foI1owing theorem is very similar to the ratio test but is less frequently used . Its 
proof is left as an exercise. (See Exercise 37 .) For examples of series to which it can 
be applied , see Exercises 38 and 39. 

The root test 

Suppose that an > 0 (ultimately) and that a = limn-+oo(a,,) 1111 exists or is +oo. 

(a) If O :::: a < 1, then I:~ 1 an converges. 

(b) If 1 < a :::: oo, then limn-+oo a11 = oo and L ~ l an diverges to infinity. 

(c) If a = l , this test gives no information ; the series may either converge or diverge 
to infinity. 

Using Geometric Bounds to Estimate the Sum of a Series 
Suppose that an inequality of the form 

holds fork = n + 1, n + 2, n + 3, .. . , where Kand rare constants and r < 1. We 
can then use a geometric series to bound the tail of I: ~ 1 a,,. 

00 

0 S s - Sn = L ak S 
k=n+l k=n + I 

= Kr 11+1(1 + r +r 2 + ·· ·) 
Krn +l 

1 - r 

Since r < l , the series converges and the errnr approaches Oat an exponential rate as 
n increases. 

EXAMPLE 7 In Section 9.6 we will show that 

1 1 1 1 00 1 
e = - + - + - + - + ... = L -. 

O! 1! 2! 3! n=O n! 

(Recall that O! = 1.) Estimate the error if the sum s,, of the first n terms of the series 
is used to approximate e. Find e to 3-dec imal-place accuracy using the series. 
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Solution We have 

1 1 1 1 1 
Sn= O! + 1! + 2! + 3! + · · · + (n - 1)! 

1 1 1 1 
= 1 + 1 + - + - + - + · · · + --- . 

2 6 24 (n -1 )! 

(Since the series starts with the term for n = 0, the nth term is 1 / (n - l) ! . ) We can 
estimate the error in the approximation s ~ Sn as follows: 

1 1 1 1 
O <s -s =-+- - -+---+-- -+··· 

n n! (n+ l)! (n+2)! (n+3 )! 

1 ( 1 1 1 ) 
= n! 

1 
+ n + 1 + (n + l)(n + 2) + (n + l)(n + 2)(n + 3) + · · · 

< - l+--+- --+ ---+··· 1( 1 1 1 ) 
n! n+l (n+ l) 2 (n+l)3 

since n + 2 > n + 1, n + 3 > n + l, and so on. The latter series is geometric, so 

1 1 
O < s-s < - ---

1
-

n n! 1 - --
n+ l 

n+l 

n!n 

If we want to evaluate e accurately to 3 decimal places, then we must ensure that the 
error is less than 5 in the fourth decimal place, that is, that the error is less than 0.0005. 
Hence, we want 

n + l 1 l 
-- - < 0.0005 = -- . 

n n! 2,000 

Since 7! = 5,040 but 6! = 720, we can use n = 7 but no smaller. We have 

l 1 1 1 1 
e~S7 = 1+1+-+-+-+-+-

2! 3! 4! 5! 6! 
1 1 1 l 1 

= 2 + - + - + - + - + - ~ 2.7 18 to 3 decimal places. 
2 6 24 120 720 

It is appropriate to use geometric series to bound the tails of positive series whose 
convergence would be demonstrated by the ratio test. Such series converge ultimately 
faster than any p-series I:~ 1 n- P, for which the limit ratio is p = l. 
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In Exercises 1- 26, determine whether the given series converges 
or diverges by using any appropriate test. The p-serie s can be 
used for comparison, as can geometric series. Be alert for series 
whose terms do not approach 0. 

00 1 

i. I: n2 + i 
n= I 

oo n2 + l 
3. I: n3 + i 

n=I 

5. f lsin ~2 1 

11= 1 

00 l 

7. ?; (lnn) 3 

00 l 
9."--

L.., n:" - n" 
n= I 

oo 1 + n4/3 
11. I: --

n=I 2 + n 5/ 3 

00 l 
13.I:- --

n= 3 n ln n,./ininn 

00 1 - (-J)ll 
15. I: 4 

n=I n 

17. ~ 1 

t:-r 211 (n + l) 

oo n ! 
19. L n2en 

11=1 

00 Jn 
21. " L.., 311 ln n 

n=2 

23. ~ (2n)! 
L.., (n 1)3 
11=1 . 

oo n 
2. I: -4-n -2 n=I 

00 Jn 
4. L n2 +n 

n= I 

oo I 
6. I: n;ll +s 

11=8 

oo I 
8

· ?; ln(3n) 

~ l+n 
10. L.., 

n=O 2 + n 

oo n2 
12. I:--

n= I I+ n./n 

00 1 
14. I: 2 

n=2 n ln n(ln Inn) 

00 l + (- I )II 16.?; Jn 

oo n4 
18. " 

L.., n' n= l · 

00 (2n) !611 

20. "- t:-r (3n) ! 

~ nl00211 
22. L... 

n=O .J,iT 
00 l +n! 

24. "-t:-r (1 + n)! 

00 2" 00 II 

25. L 311 - n 3 26. L n::n! 
11=4 n= I 

In Exercises 27-30 , use Sn and integral bounds to find the 
smallest interval that you can be sure contains the sum s of the 
series. If the midpoints; of this interval is used to approximates, 
how large should n be chosen to ensure that the error is less than 
0.001? 

00 l 
21. L4 

k=I k 

00 1 
29. L312 

k= l k 

oo I 
28. I: 3 

k=I k 

00 l 
30. I: -2-

k=l k +4 

For each positive series in Exercises 31-34 , find the best upper 
bound you can for the errors - s11 encounter ed if the partial sum 
Sn is used to approximate the sum s of the series. How many 
terms of each series do you need to be sure that the 
approximation has error less than 0.001? 

00 l 

31. I: 2kk' 
k=I . 

32. ~ 1 

t:-r (2n - !)! 

00 211 

33. ?; (2n)! 
34. ~~ 

L... nn 
n= I 

35. 

D 36. 

00 l 
Use the integral test to show that I:-- 2 converges. 

n= I l +n 
Show that the sums of the series is less than n: / 2. 

Show that L~/1 / (n 1n n(ln ln n)P) converges if and only if 
p > 1. Generalize this result to series of the form 

00 l 

,~ n(ln n)(ln Inn)··· (lnj n)(ln j+ I n)P ' 

where lnj n = ln In ln In· ·· Inn . 
'---v--' 

j In' s 

D 37. Prove the root test. Hint: Mimic the proof of the ratio test. 

oo 211+ I 
38. Use the root test to show that L -- converges. 

n=l nn 

D 39. Use the root test to test the following series for convergence: 

40. Repe at Exercise 38, but use the ratio test instead of the root 
test. 

D 41. 
oo 2211 (n !)2 

Try to use the ratio test to determine whether L ( 
n=I 2n)! 

converges. What happen s? Now observe that 

22"(n!) 2 [2n(2n - 2)(2n - 4) ... 6 x 4 x 2]2 

(2n) ! 2n(2n-1)(2n-2) ·· ·4 x 3x2xl 
2n 2n-2 4 2 = -- - X --- X · · · X - X -. 

2n - I 2n - 3 3 1 
Does the given series converge? Why or why not? 

D 42 
~ (2n)! . 

. Determine whether the series L.., 2 2 converges. Hint: 
n=I 2 n(n!) 

Proceed as in Exercise 41. Show that a11 2'.. l / (2n). 

D 43. (a) Show that if k > 0 and n is a positive integer, then 
1 

n < -( l +k) 11
• 

8 44. 

k 
(b) Use the estimate in (a) with O < k < 1 to obtain an 

upper bound for the sum of the series L~o n/ 211
• For 

what value of k is this bound lowest? 

(c) If we use the sum s11 of the first n terms to approximate 
the sum s of the series in (b), obtain an upper bound for 
the errors - Sn using the inequality from (a). For given 
n, find k to minimize this upper bound. 

(Improving the convergence of a series) We know that 

Z::~ 1 I;( n(n + 1)) = 1. (See Example 3 of Section 9.2.) 

Since 

1 1 1 
n2 = n(n + 1) + Cn, 

where C - ~---
11 - n2(n + 1)' 
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oo l oo 

we have L 2 = l + L en. 
n= I n n=I 

decreases faster than Ian I as n tends to infinity .) 

The series I:~ 1 en converges more rapidly than doe s 
I:~ 1 l / n2 because its term s decrease like l / n3. Hence , 
fewer terms of that series will be needed to comp ute 

gg 45. Con sider the serie s s = I:~ 1 1/ (2n + 1), and the pa11ial 
sum Sn of its first n term s. 

(a) How large need n be taken to ensure that the error in the 
approximations ~ s,, is less than 0.001 in absolute 
value? I:~ 1 1 / n 2 to any desired degree of accuracy than would be 

needed ifwe calculated with I:~ 1 1/ n2 directly. Using 
integral upper and lower bounds , determine a value of n for 
which the modified partial sum s,~ for the series I:~ 1 e,. 
approximates the sum of that series with error less than 0.001 
in abso lute value . Hence , determine I:~ 1 l / n2 to within 
0.001 of its true value . (The technique exibited in this 
exercise is known as improving the convergence of a 
series. It can be applied to estimating the sum I: an if we 
know the sum I: bn and if a,. - bn = e11, where le" I 

(b) The geometric series I:~ 1 1/ 2" converges to 1. If 

1 1 
b -- - --

" - 211 2" + 1 

for n = I, 2, 3, ... , how many terms of the series 
I:~ 1 b11 are needed to calculate its sum to within 0.001? 

(c) Use the result of part (b) to calculate the 
I:~ 1 1/ (2" + 1) to within 0.001. 

Absolute and Conditional Convergence 

DEFINITION 

I 

THEOREM 

I 

All of the series I:~ 1 a,. considered in the previous section were ultimately positive; 
that is, an 2: 0 for n sufficiently large. We now drop this restriction and allow arbitrary 
real terms an. We can, however, always obtain a positive series from any given series 
by replacing all the terms with their absolute values. 

Absolute convergence 

The series I:~ , an is said to be absolutely convergent if I:~ 1 Ian I converges . 

The series 

converges absolutely since 

converges. It seems reasonable that the first series must converge, and its sum s should 
satisfy -S :::: s :::: S. In general , the cancellatio n that occurs because some terms are 
negative and others positive makes it easier for a series to converge than if all the terms 
are of one sign. We verify this insight in the following theorem. 

If a series converges absolutely , then it converges. 

PROOF Let I:~ 1 an be absolutely convergent, and let bn = a11 + Ian I for each n. 
Since -la nl :::: an .:::: lanl, we have O :::: b,. .:::: 21a,.I for each n. Thus, L ~ J bn 
converges by the compariso n test. Therefore , I:~ 1 an = L~ l b11 - L~ , lanl also 
converges. 

Again you are cautioned not to confuse the statement of Theorem 13 with the converse 
statement, which is false . We will show later in this section that the alternating 
harmonic series 
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BEWARE! Although absolute 
convergence implies 
convergence, convergence does 
not imply absolute convergence. 

DEFINITION 

I 

THEOREM 

I 

f (-1)11- ] = 1 - ~ + ~ - ~ + ~ - . . . 
n= l n 2 3 4 5 

converges, although it doe s not co nverge absolutely. If we replace all the terms by their 
absolute values, we get the divergent harmonic series 

00 l l 1 l I: - = 1 + - + - + - + ... = oo. 
n= l 11 2 3 4 

Conditional convergence 

If L~t a 11 is convergent, but not absolutely convergent, then we say that it is 
conditionally convergent or that it converges conditionally . 

The alternating harmonic series is an example of a conditiona lly convergent series. 

The comparison tests , the integral test , and the ratio test can each be used to test 
for abso lute convergence. They should be applied to the series I:~ 1 Jani- For the 
ratio test we calculate p = lim11__,.00 la11+1/ a11I. If p < I , then I:~ 1 an converges 
abso lutely. If p > I, then lim,1--+oo la11I = oo, so both I:~ 1 la11I and I:~ 1 an must 
diverge. 1f p = I , we ge t no inform ation ; the series I:~ 1 a11 may converge absolutely , 
it may converge conditionally, or it may diverge. 

EXAM p LE 1 Test the following series for absolute convergence: 

(a) 
~ nco s(mr) 

(b) ~ 211 . 
n= I 

Solution 

(a) Jim --- - = lim -- = - > 0. I (-1)
11

-
1 I/ L n I 

n--+oo 2n - 1 11 11--+oo 2n - 1 2 

Since the harmonic series I:~ 1 (1 / n) diverges to infinity , the comparison test 

assure s us that I:~ 1 ( ( -1 )11
-

1 / (211 - l)) does not converge absolutely . 

. l(n+l)cos((n+l)1r) /11 cos(111r)I . n+l 1 (b) p = hm ----~--- ---- = lim -- = - < 1. 
n--+oo 211+ 1 211 11--+oo 2n 2 

(Note that cos(n;,r) is just a fancy way of writing (- 1)'1 .) Therefore (ratio test) 
I:~ 1 ((11 cos(n;,r )) / 211) converges absolutely. 

The Alternating Series Test 
We cannot use any of the prev iously developed tests to show that the alternating 
harm onic series converges ; all of those tests apply only to (ultimately) positive series, 
so they can test only for absolute convergence . Demon strating convergence that is not 
absolut e is generally more difficult to do. We present only one test that can establish 
such convergence; this test can only be used on a very special kind of series. 

The alternating series test 

Suppose {a,i} is a seq uence whose terms satisfy, for some positive integer N, 

(i) anan + I < 0 for 11 2: N, 

(ii) la,,+ 1 I::: lanl for n 2: N, and 

(iii) lim,,__,.00 a11 = 0, 

that is, the terms are ultimately alternating in sign and decrea sing in size , and the 
seq uence has limit zero. Then the series I:~ 1 a,, converges. 
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PROOF Without loss of generality we can assume N = 1 because convergence only 
depends on the tail of a series. We also assume a1 > O; the proof if a1 < 0 is 
similar . If Sn = a1 + a2 + · · · + an is the nth partial sum of the series, it follows 
from the alternation of {an) that a211+1 > 0 and a2n < 0 for each n. Since the terms 
decrease in size, a211+1 ::: -a2n.+2 · Therefore, s2n+2 = s211 + a211+ 1 + a 2n+2 ::: s2n for 
n = 1, 2, 3, ... ; the even partial sums {s211} form an increasing sequence. Similarly, 
s2n+l = s2n - l +a2n +a211+l :S s211-l, so the odd partial sums {s211- d form a decreasing 
sequence. Since s211 = s211-1 + a211 :S s21l- !, we can say, for any n, that 

Hence, s2 is a lower bound for the decreasing sequence {s2"- tl ' ands, is an upper 
bound for the increasing sequence {s211 }. Both of these sequences therefore converge 
by the completeness of the real number s: 

Jim s2n-J = Sodd, 
n-+oo 

lim S211 = Seven, 
n~oo 

Now a211 = s2n - s211- l , so O = limn-+oo a2n = limn-+oo(s211 - s2n-1) = Seven - Sodd· 

Therefore Sodd = Seven = s, say. Every partial sum Sn is either of the form s2n- l or of 
the form s2n- Thus, lim" -+oos11 =sexists and the series I:(-1)11 - 1a" converges to 
this sums. 

Remark The proof of Theorem 14 shows that the sum s of the series always lies 
between any two consecutive partial sums of the series: 

either Sn < s < Sn+I or Sn+! < s < Sn, 

This proves the following theorem . 

Error estimate for alternating series 

If the sequence {an} satisfies the conditions of the alternating series test (Theorem 14 ), 
so that the series I:~ 1 an converges to the sum s, then the error in the approximation 
s ~ s11 (where n ::: N) has the same sign as the first omitted term an+l = Sn+I - Sn, 

and its size is no greater than the size of that term: 

EXAMPLE 2 
oo (-It 

How many terms of the series L --- are needed to compute 
n=l l + 2" 

the sum of the series with error less than 0.001? 

Solution This series satisfies the hypothese s for Theorem 15. If we use the partial 
sum of the first n terms of the series to approximate the sum of the series, the error will 
satisfy 

1 
lerrorl :S I first omitted term I = ---1 + 211+1. 

This error is less than 0.001 if 1 + 211+ 1 > 1,000 . Since 2 10 = 1,024, n + l = 10 
will do; we need 9 terms of the series to compute the sum to within 0.001 of its actual 
value. 

When determinin g the convergence of a given series, it is best to consider first whether 
the series converges absolutely. If it does not, then there remains the possibility of 
conditional convergence. 
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EXAM p LE 3 Test the following series for absolute and conditional convergence: 

(a) 
f, (-1)" - I, 

n n=l 

(b) f cos(nir), 

n= 2 Inn 
(c) 

00 (-1)" - ] 

I: n4 
n=l 

Solution The absolute values of the terms in series (a) and (b) are 1/ n and 1/ (!n n) , 
respectively. Since 1/ (!nn) > 1/ n, and I:~ 1 1/ n diverges to infinity, neither series 
(a) nor (b) converges absolutely. However, both series satisfy the requirements of 
Theorem 14 and so both converge. Each of these series is conditionally convergent. 

Series (c) is absolutely convergent because I (-1) 11
-

1 / n4
1 = 1/ n4, and I:~ 1 1/ n4 

is a convergent p-series (p = 4 > 1). We could establish its convergence using 
Theorem 14, but there is no need to do that since every absolutely convergent series is 
convergent (Theorem 13). 

00 (x - 5)" 
For what values of x does the series L --- converge abso-

11= I n 2
11 

EXAMPLE 4 

lutely? converge conditionally? diverge? 

Solution For such series whose terms involve functions of a variable x, it is usually 
wisest to begin testing for absolute convergence with the ratio test. We have 

. (x - 5)"+ 
1 I (x - 5)" . n Ix - 51 Ix - 51 p= hm ---- --- = hm -- -- = --

11---->oo (n + 1)211+ 1 n 2n n---->oo n + 1 2 2 · 

The series converges absolutely if l(x - 5)/ 21 < 1. This inequality is equivalent to 
Ix - 51 < 2 (the distance from x to 5 is less than 2), that is, 3 < x < 7. If x < 3 or 
x > 7, then l(x - 5)/ 21 > 1. The series diverges ; its terms do not approach zero. 

If x = 3, the series is I:~ 1 ( ( - I )11 
/ n), which converges conditionally (it is an 

alternating harmonic series); if x = 7, the series is the harmonic series I:~ 1 1/ n, 
which diverges to infinity. Hence , the given series converges absolute ly on the open 
interval (3, 7), converges conditionally at x = 3, and diverges everywhere else. 

EXAM PL E 5 For what values of x does the series f, (n + l )2 (-x-) 11 

con-
n=O X + 2 

verge absolutely? converge conditionally? diverge? 

Solution Again we begin with the ratio test. 

p = Jim l(n + 2)2 (-x )" +L / (n + 1)2 (-x )11

1 
n---->oo X + 2 X + 2 

. (n + 2)2 1 x I I x I lxl 
= n~~ n + I x + 2 = x + 2 = Ix + 21 

The series converges absolutely if Ix I/ Ix+ 21 < 1. This condition says that the distance 
from x to O is less than the distance from x to -2. Hence x > - l. The series diverges if 
lxl/ lx + 21 > 1, that is, if x < - 1. If x = -l , the series is I:~ 0 ( - l)"(n + 1)2, which 
diverges. We conclude that the series converges absolutely for x > -1 , converges 
conditionally nowhere , and diverges for x S -1. 

When using the alternating series test, it is important to verify (at least mentally) that 
all three conditions (i)-(iii) are satisfied. 
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EXAM p L E 6 Test the following series for convergence : 

(a) 
00 + 1 I )-1r-1_n - , 

n=l n 

(b) 
1 1 1 1 00 

1 - 4 + 3 - 16 
+ 5 - · · · = Lan, where 

11= 1 

{ 
1/n 

a11 = -l / n2 

Solution 

if n is odd , 
if n is even. 

(a) Here, the terms a11 alternate and decrease in size as n increases. However , 
limn--+oo Ian I = 1 -:p 0. The alternating series test does not apply. In fact , 
tbe given series diverges because its terms do not approach 0. 

(b) This series alternates and its terms bave limit zero . However , the terms are not 
decreasing in size (even ultimately) . Once again, the alternating series test cannot 
be applied. In fact, since 

4 16 (2n)2 
converge s, and 

1 1 1 
1+-+-+ · ··+--+· · · 

3 5 2n-l 
diverges to infinity, 

it is readily seen that the given series diverges to infinity. 

Rearranging the Terms in a Series 
The basic difference between absolute and conditional convergence is that when a 
series L~t an converges absolutely , it does so because its terms {a,,} decrease in size 
fast enough that their sum can be finite even if no cancellation occurs due to term s 
of opposite sign. If cancellation is required to make the series converge (because the 
terms decrease slowly) , then the series can only converge conditionally . 

Consider the alternating harmonic series 

I I 1 I 1 
1--+---+---+·· · . 

2 3 4 5 6 

This series converges, but only conditionally . If we take the subseries containing only 
the positive terms, we get the series 

1 1 I 
I+-+-+-+ · ·· 

3 5 7 ' 

whic h diverges to infinity. Similarly , the subseries of negative terms 

1 1 1 1 
- - - - - - - - - ... 

2 4 6 8 

diverges to negative infinity. 

If a series converges absolutely , the subseries consisting of positive terms and the 
subseries consisting of negative terms must each converge to a finite sum. If a serie s 
converges conditionally, the positive and negative subseries will both diverge, to oo 
and -oo, respectively . 

Using these facts we can answer a question raised at the beginning of Section 9.2 . 
If we rearrange the terms of a convergent series so that they are added in a different 
order, must the rearranged series converge , and if it does will it converge to the same 
sum as the original series? The answer depends on whether the original series was 
absolutely convergent or merely conditionally convergent. 
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THEOREM Convergence of rearrangements of a series 

I 

EXERCISES 9.4 

(a) If the terms of an absolutely convergent series are rearranged so that addition 
occurs in a different order, the rearranged series still converges to the same sum as 
the original series. 

(b) If a series is conditionally convergent, and Lis any real number, then the terms of 
the series can be rearranged so as to make the series converge (conditionally) to 
the sum L. It can also be rearranged so as to diverge to oo or to -oo, or just to 
diverge . 

Part (b) shows that conditional convergence is a rather suspect kind of convergence, 
being dependent on the order in which the terms are added. We will not present a 
formal proof of the theorem but will give an example suggesting what is involved. (See 
also Exercise 30 below.) 

EXAM p LE 7 In Section 9 .5 we will show that the alternating harmonic series 

converges (conditionally) to the sum In 2. Describe how to rearrange its terms so that 
it converges to 8 instead. 

Solution Start adding terms of the positive subseries 

1 1 
l+-+-+· · · 

3 5 ' 

and keep going until the partial sum exceeds 8. (It will , eventually, because the positive 
subseries diverges to infinity.) Then add the first term -1 / 2 of the negative subserie s 

1 
-- - - - - - ... 

2 4 6 

This will reduce the partial sum below 8 again. Now resume adding terms of the 
positive subseries until the partial sum climbs above 8 once more. Then add the second 
term of the negative subseries and the partial sum will drop below 8. Keep repeating 
this procedure, alternately adding terms of the positive subseries to force the sum above 
8 and then terms of the negative subserie s to force it below 8. Since both subseries 
have infinitely many terms and diverge to oo and -oo , respectively, eventually every 
term of the original series will be included , and the partial sums of the new series will 
oscillate back and forth around 8, converging to that number. Of course, any number 
other than 8 could also be used in place of 8. 

Determine whether the series in Exercises 1-12 converge 
absolutely, converge conditionally, or diverge. 

00 (-I)"(n 2 - 1) s.I:---
n=o n2 + 1 

00 (-2)" 
6. L-n-,-

n= I . 

3 
f cos(nir) 

• n= I (n + 1) ln(n + 1) 

00 (- 1)" 
2. L n2 +ln 

n=I 

00 (-1) 2" 4 '\'_ 
. L 2" 

n=I 

00 (-1)" 
7. I: nir " 

n= I 

9. fc-1)"2on 2 - n -1 
n=I n3+ n2 +33 

8. ~ 2-n 
Ln +1 
n= O 

lO. f 100 cos(nir) 

n= I 2n+3 
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11. '°' n. 
~ (-lOW 

12_ f sin(n + l / 2)n 

ll=IO In Inn 
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8 26. Show that the series I:~ 1 a11 converges absolutely if 
a11 = 10/ n2 for even n and a11 = -l / 10n3 for odd n. 

For the series in Exercises 13-16, find the smallest integer n that 
ensures that the partial sum Sn approximates the sums of the 
series with error less than 0.001 in absolute value. 

8 27. Which of the following statements are TRUE and which are 
FALSE? Justify your assertion of truth, or give a counter
example to show falsehood . 

00 

13. '°' (-1)"-1 _n_ 
L.., n 2 + 1 
n= I 

00 

15. '°'(-l)n - l !!.._ 
L.., 2" 
n= I 

00 (- 1)" 
14. "~ (2n)! 

16. f (-l)"3n 
n=O n! 

(a) If L~ , an converge s, then I:~ 1 (- l) na,, converges . 

(b) If L~ 1 an converges and L~ 1 ( -1 )11 an converges, 
then I:~ 1 an converges absolutely. 

(c) If I:~ 1 an converges absolutely , then 
00 

L n=I (-l)"a,, converges absolutely. 
Determine the values of x for which the series in Exerci ses 17-2 4 
converge absolutely, converge conditionally , or diverge. 

0 28. (a) Use a Riemann sum argument to show that 

17.f~ 
n=O .JnTI 

19. f (-1)" (x - l) " 
n=O 2n + 3 

oo xn 

21. " -L.., 2" Inn 
n=2 

23 
~ (2x + 3)" 

· L.., 111/ 3411 
n=I 

18. ~ (x -2)" 
L.., 1122211 
n=I 

20_ f-l-(3 x +2)" 
2n - 1 -5 

n=I 

22. f (4x ~ l)" 
n=I 

11 

oo l( 1)11 

24.?; ;:;-1 + ~ 

0 29. 

[" 
lnn! ::: Ji lntdt=nlnn -n+ l. 

n 1x" 
(b) For what values of x does the series I:~ 1 -· n-

n 
converge absolutely? converge conditionally? diverge? 
(Hint: First use the ratio test. To test the ca es where 
p = l , you may find the inequality in part (a) useful.) 

(2n)!x 11 

For what values of x does the series I:00
n- l 2 2 - 2 "(n !) 

converge absolutely? converge condition ally? diverge? 
Hint: See Exercise 42 of Section 9.3. 

8 25. Does the alternating series test apply directly to the series 
I:~ 1(1/ n) sin(nir / 2) ? Determine whether the series 
converges . 

8 30. Devise procedur es for rearranging the term s of the 
alternating harmonic series so that the rearranged serie 
(a) diverges to oo, (b) converges to -2. 

• _ P_o_w_e_r S_e_r_ie_s _________________ _ 
This section is concerned with a special kind of infinite series called a power series, 
which may be thought of as a polynomial of infinite degree. 

DEFINITION 

I 
Power series 

A series of the form 

00 

Lan(x - c)" = ao + a1(x - c) + a2(x - c)2 + a3(x - c) 3 + · · · 
11=0 

is called a power series in powers of x - c or a power series about c. The 
constants ao, a 1 , a2, ... are called the coefficients of the power series. 

Since the terms of a power series are function s of a variable x, the series may or may 
not converge for each value of x. For those values of x for which the series does 
converge, the sum defines a function of x. For example, if -1 < x < 1, then 

2 3 l 
l+ x + x +x +· .. =-- . 

1- x 

The geometric series on the left side is a power series representation of the function 
1/ (1 - x) in powers of x (or about 0) . Note that the representation is valid only in the 
open interval ( -1, 1) even though 1 / (1 - x) is defined for all real x except x = 1. For 
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I 

x = -1 and for Ix I > 1 the series does not converge, so it cannot represent 1 / (1 - x) 
at these points . 

The point c is the centre of convergence of the power series L ~o an (x - c )". 
The series certainly converges (to ao) at x = c . (All the terms except possibly the first 
are 0.) Theorem 17 below shows that if the series converge s anywhere else, then it 
converges on an interv al (possibly infinite) centred atx = c, and it converges absolutely 
everywhere on that interval except possibly at one or both of the endpoints if the interval 
is finite. The geometri c series 

1 + x + x 2 + x 3 + · · · 

is an example of this behaviour. It has centre of convergence c = 0, and converges 
only on the interval (-1 , 1 ), centred at 0. The convergence is absolute at every point 
of the interval. Another exa mple is the series 

~ - 1_. (x _ 5 11 _ x - 5 (x - 5)2 (x - 5)3 
. .. 

~ n 2n ) - 2 + 2 x 22 + 3 x 23 + ' 

which we discussed in Example 4 of Section 9.4. We showed that this series converges 
on the interval [3, 7), an interval with centre x = 5, and that the convergence is absolute 
on the open inter val (3, 7) but is only conditional at the endpoint x = 3. 

For any power series L~o an (x - c)" one of the following alternative s must hold : 

(i) the series may converge only at x = c, 

(ii) the series may converge at every real number x, or 

(iii) there may exist a positive real number R such that the series converges at 
every x satisfying Ix - cl < R and diverges at every x satisfying Ix - cl > R. 
In this case the series may or may not converge at either of the two endpoints 
x = c - R and x = c + R . 

In each of these cases the converge nce is absolute except possibly at the endpoints 
x = c - R and x = c + R in case (iii) . 

PROOF We observed above that every power series converges at its centre of con
vergence; only the first term can be nonzero so the convergence is absolute. To prove 
the rest of this theorem, it suffices to show that if the series converges at any number 
xo =I= c, then it converges absolutely at every number x closer to c than xo is , that is, 
at every x satisfyin g Ix - c l < lxo - cl. This mean s that convergence at any xo =I= c 

implies absolute convergence on (c - xo, c + xo), so the set of points x where the series 
converges must be an interva l centre d at c. 

Suppose, therefore, that L ~ o an (xo - c )" converges. Then lim an (xo - c )" = 0, 
so la,,(xo - c)" I S K for all n, where K is some constant (Theorem 1 of Section 9.1). 
If r = Ix - cl/ lxo - cl < 1, then 

f lan(X - c)"I = f la11(xo - c)" l 1:-=-cc In S K f ,.n = -
1

-~-,. < 00. 

n=O n=O O n=O 

Thus , L~o a,, (x - c)" converges absolutely. 

By Theorem 17, the set of values x for which the power serie s L~o a11 (x - c)" 
converges is an interv al centred at x = c. We call this interval the interval of 
convergence of the power series. It must have one of the following forms: 

(i) the isolated point x = c (a degenerate closed interv al [c, c]), 

(ii) the entire line (-oo, oo ), 

(iii) a finite interval centred at c: 
[c - R, c + R] , or [c - R, c + R), or (c - R, c + R] , or (c - R, c + R). 
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The number R in (iii) is called the radius of convergence of the power series. In case 
(i) we say the radius of converge nce is R = O; in case (ii) it is R = oo. 

The radius of convergence, R, can often be found by using the ratio test on the 
power series: if 

1. 1an+1(x -c)"+' I ( 1. Ian+! I) I I p = Jill = Jill -- X - C 
n->oo an(x-c) 11 n->oo a11 

exists, then the series L ~o a11 (x - c )" converges absol utely where p < 1, that is , 
where 

Ix - cl < R = 1/ Jim I an+I I · 
n->00 all 

The series diverge s if Ix - cl > R. 

Radius of convergence 

S h L li I 
an+I I . . uppose t at = m11_, 00 -;;;- exists or 1s oo. 

I:~ 0 a11(x - c)'1 has radius of convergence R 

Then the power series 

1/ L. (If L = 0, then 
R = oo; if L = oo, then R = 0.) 

EXAM p LE 1 Determin e the centre, radius, and interval of convergence of 

00 

(2x + 5)" ?; (n2 + 1)3 11 • 

Solution The series can be rewritten 

oo (2)11 1 ( 5)11 

?; 3 n2 + 1 X + 2 
The cen tre of convergence is x = - 5/ 2. The radius of convergence, R, is given by 

1 
- = L = lim 
R 

(2)11
+

1 1 
3 (n + 1)2 + 1 

(2)11 1 
3 n 2 + 1 

2 n2 + 1 
=lim -- ----

3 (n + 1)2 + 1 

2 

3 

Thus, R = 3/ 2. The series converges absolutely on (-5 / 2 - 3/ 2, -5 / 2 + 3/ 2) = 
(- 4, - 1), and it diverges on (- oo, -4) and on (- 1, oo). At x = -1 the series is 
L ~ o l / (n2 + l) ; at x = -4 it is I:~ 0 (-1)" / (n2 + 1). Both series converge (abso
lutely). The interval of convergence of the given power series is therefore [-4, - 1]. 

EXAMPLE 2 Determin e the radii of convergence of the series 
oo xn oo 

(a) L ;i" and (b) I:n!x 11
• 

n=O . n=O 

Solution 

(a) L = lim --- - = lim --- = lim -- = 0. Thus R = oo. 

I 
1 ; 1 I n! 1 

(n+l)! n! (n+l)! n+l 
This series converges (absolutely) for all x . The sum is ex , as will be shown in 
Example 1 in the next sec tion . 

I. (n+l)'I . (b) L = hm n! = hm (n + 1) = oo. Thus R = 0. 

Thi s series converges only at its centre of convergence, x = 0 . 
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Algebraic Operations on Power Series 
To simplify the following discussion, we will consider only power series with centre 
of convergence 0, that is, series of the form 

CX) 

LanX 11 = ao +aix +a2x 2 +a3x 3 + ·. ·. 
n=O 

Any properties we demonstrate for such series extend automatically to power series of 
the form L ~o a11 (y - c Y via the change of variable x = y - c. 

First, we observe that series having the same centre of convergence can be added 
or subtracted on whatever interval is common to their intervals of convergence. The 
following theorem is a simple consequence of Theorem 7 of Section 9.2 and does not 
require a proof. 

Let L ~o a11 x 11 and L ~o b11 x 11 be two power series with radii of convergence Ra and 
Rb, respectively, and let c be a constant. Then 

(i) I:~ 0 (ca11) x 11 has radius of convergence Ra, and 

CX) CX) 

L(can)x" = c La n x" 
11=0 n=O 

wherever the series on the right converges. 

(ii) I:~ 0 (a11 + b,,) x" has radius of convergence Rat least as large as the smaller of 
Ra and Rb (R :::: min{Ra, Rb}), and 

CX) CX) CX) 

L(a11+h11)x 11 = La 11x
11 + Lb 11 xn 

n=O 11= 0 n=O 

wherever both series on the right converge . 

The situation regarding multiplication and division of power series is more complicated. 
We will mention only the results and will not attempt any proofs of our assertions. A 
textbook in mathematical analysis will provide more details. 

Long multiplication of the form 

(ao + a,x + a2x 2 + · · ·)(bo + b,x + b2x 2 + · · ·) 
= aobo + (aob, + a,bo)x + (aob2 + a1b1 + a2bo)x 2 + · · · 

leads us to conjecture the formula 

where 

n 

Cn = aobn + a1h11- l + ... + a11bo = L aJbn- J· 
J=O 

The series L~o c11x
11 is called the Cauchy product of the series L~o a11x 11 and 

L~o b11x
11

• Like the sum, the Cauchy product also has radius of convergence at least 
equal to the lesser of those of the factor series. 
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1 2 . 3 ~ n --=l+x+x +x +···=L..x 
1-x 11=0 
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holds for -1 < x < 1, we can determine a power series representation for 1/ (1 - x) 2 

by taking the Cauchy product of this series with itself. Since a11 = b11 = 1 for 
n = 0, 1, 2, ... , we have 

n 

Cn = L l = n + l and 
}=0 

00 1 
2 = 1 + 2x + 3x 2 + 4x3 + · · · = L (n + l )x", 

(l - x) n=O 

which must also hold for -1 < x < 1. The same series can be obtained by direct long 
multiplication of the series: 

1 + X + x2 + x3 + 
X 1 + X + x 2 + x3 + 

+ X + x 2 + x3 + 
X + x 2 + x3 + 

x2 + x3 + 
x3 + 

1 + 2x + 3x2 + 4x3 + 

Long division can also be performed on power series , but there is no simple rule for 
determining the coefficients of the quotient series . The radius of convergence of the 
quotient series is not less than the least of the three numbers R1, R2, and R3, where R1 
and R2 are the radii of convergence of the numerator and denominator series and R3 
is the distance from the centre of convergence to the nearest complex number where 
the denominator series has sum equal to 0. To illustrate this point, observe that 1 and 
1 - x are both power series with infinite radii of convergence : 

1 = 1 + Ox + Ox2 + Ox3 + .. . 
1 - x = 1 - x + Ox2 + Ox3 + .. . 

for all x , 

for all x. 

Their quotient , 1 / (1- x ), however, only has radius of convergence 1, the distance from 
the centre of convergence x = 0 to the point x = 1 where the denominator vanishe s: 

1 2 3 -- = l+x+x +x + ··· 
1- x 

for lxl < 1. 

Differentiation and Integration of Power Series 
If a power series has a positive radius of convergence, it can be differentiated or 
integrated term by term . The resulting series will converge to the appropriate derivative 
or integral of the sum of the original series everywhere except possibly at the endpoints 
of the interval of convergence of the original series. This very important fact ensures 
that, for purposes of calculation , power series behave just like polynomials, the easiest 
functions to differentiate and integrate. We formalize the differentiation and integration 
properties of power series in the following theorem. 
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THEOREM 

I 

While understanding the 
statement of this theorem is very 
important for what follows, 
understanding the proof is not. 
Feel free to skip the proof and 
go on to the applications. 

Term-by-term differentiation and integration of power series 

If the series I:~ 0 a11x
11 converges to the sum f(x) on an interval (-R , R) , where 

R > 0, that is, 

00 

f(x) = L anx" = ao + aix + a2x 2 + a3x 3 + · · ·, (-R < x < R), 
11= 0 

then f is differentiable on ( - R, R) and 

00 

f'(x) = I:n a11xn- t =a,+ 2a2x + 3a3x 2 + · · ·, (-R < X < R) . 
n=l 

Also , f is integrable over any closed subinterval of (-R , R) , and if lxl < R, then 

rx f(t) dt = t ~xn +I = aox + a1 X2 + a2 X3 + .. ,. 
Jo 11=0 n + l 2 3 

PROOF Let x satisfy -R < x < Rand choose H > 0 such that lxl + H < R. By 
Theorem 17 we then have 1 

00 

L la,,l(lxl + H)" = K < oo. 
11= 1 

The Binomial Theorem (see Section 9.8) shows that if n :"'. l, then 

11 

(x + h)'1 = xn + nxn - lh + L (n) x n- khk. 
k=2 k 

Therefore , if lhl S H we have 

I! 

l(x + ht - X 11 
- nxn-l hi= L (n) xn - khk 

k=2 k 

S 1;1: t (~) lxln- k Hk 
k=O 

= l~I: (lxl + H)". 

Also, 

nlxl11
-

1 H l 
lnx"- 11= H S H(lxl+H)". 

Thus, 

oo 1 oo K L lna,,x
11

-
1 I S H L lanl(lxl +Ht= H < 00, 

n=l n=l 

so the series I:~ 1 na 11x 11
-

1 converges (absolutely) to g(x), say. Now 

I f(x + h1- f( x ) _ g(x)I = It an(x + ht - a~x
11 

- na11x
11

-

1
h I 

1 00 

S !hi?; lanll(x + ht - X
11 

- nx
11

-
1hl 

S :l f lanl(lxl + H)" S ~~I. 
n=l 

1 This proof is due to R. Vybom y, Ameri can Math ematical Monthly , April 1987. 
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Letting h approach zero, we obtain lf ' (x) - g(x)I :::: 0, so f'(x) = g(x), as required. 

Now observe that since la11/ (n + 1)1 S lanl, the series 

00 

h(x) = L ~ xn+l 
n=O n + 1 

converges (absolutely) at least on the interval (-R , R). Using the differentiation result 
proved above, we obtain 

h' (x) = La,,x" = f(x) . 
n=O 

Since h(O) = 0, we have 

fox f (t) dt = fox h' (t) dt = h(t{ = h(x) , 

as required. 

Together, these results imply that the termwise differentiated or integrated series have 
the ame radius of convergence as the given series. In fact, as the following examples 
illustrate, the interval of convergence of the differentiated series is the same as that of 
the original series except for the possible loss of one or both endpoints if the original 
series converges at endpoints of its interval of convergence. Similarly, the integrated 
series will converge everywhere on the interval of convergence of the original series 
and possibly at one or both endpoints of that interval , even if the original serie does 
not converge at the endpoints. 

Being differentiable on (- R , R) , where R is the radius of convergence , the sum 
f (x) of a power series is necessarily continuous on that open interval . If the series 
happens to converge at either or both of the endpoints -R and R , then f is also 
continuous (on one side) up to these endpoints. This result is stated formally in the 
following theorem. We will not prove it here; the interested reader is referred to 
textbooks on mathematical analysis for a proof. 

Abel's Theorem 

The sum of a power series is a contin uous function everywhere on the interval of 
convergence of the series. In particular, if L~o a,, R 11 converges for some R > 0, then 

00 00 

lim I:a 11x11 = I:a 11R
11

, 
X--'>R-

n=O 11=0 

and if L ~ o a11 ( - R)11 converges, then 

00 00 

lim I: a11x11 = Lan(-R)". 
X--'>- R+ n=O n=O 

The following examples show how the above theorem s are applied to obtain power 
series representations for functions. 

EXAM p LE 4 Find power series representation s for the functions 

(a) 
1 

(1-x) 2 ' 
(b) 

(1-x) 3 ' 
and (c) ln(l +x) 

by starting with the geometric series 

1 ~ 11 2 3 --=L.,x =l+x+x +x +··· 
l - X n=O 

(-1 < X < 1) 

and using differentiation, integration, and substitution. Where is each series valid? 
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Solution 
(a) Differentiate the geometric series term by term to obtain 

1 CXl 

-----,- = ~ nx 11
-

1 = 1 + 2x + 3x 2 + 4x 3 + · · · 
( I -x) 2 ~ 

n= I 

(-l<x < l) . 

This is the same result obtained by multiplication of series in Example 3 above. 

(b) Differentiate again to get, for -1 < x < l, 

2 CXl 

--....,..
3 

= Ln(n - l) x 11
-

2 =(Ix 2) + (2 x 3)x + (3 x 4)x 2 + · · · . 
(1-x) 11= 2 

Now divide by 2 : 

1 Loo n(n - 1) 2 2 3 -- - = -- - x"- = 1 +3x +6x + lOx + ·· · 
( I - x) 3 2 

11=2 

(c) Substitute -t in place of x in the original geometric series: 

-
1
- = f (-l) 11t 11 = 1- t + t 2 

- t 3 + t4 
- · · · 

1 + t n=O 

Integrate from Oto x , where [xi < 1, to get 

In(l+ x) = r_!!__!___=f(-1) " rt"dt 
lo 1 + t n=O lo 

(-1 < X < 1). 

(-1 < t < 1). 

oo . xn+ I x2 x3 x4 
= I) - ll -- = x - - + - - - + · · · (-1 < x S 1). 

n=O n + 1 2 3 4 

Note that the latter series co nverges (conditionally) at the endpoint x = l as well as on 
the interval - 1 < x < I. Since ln(l + x) is continuous at x = l , Theorem 20 assures 
us that the series must converge to that function at x = 1 also. In particular, therefore, 
the alternating harmonic se ries converges to In 2: 

I 1 1 I 00 (-1)" 
In 2 = 1 - - + - - - + - - · · · = L -- · 

2 3 4 5 n=O n + I 
This would not, however , be a very useful formula for calculating the value of ln 2. 
(Why not?) 

EXAMPLE 5 Use the geometric ser ies of the previous example to find a power 
se ries representation for tan - 1 x. 

Solution Substitute -t 2 for x in the geometric series. Since O s t2 < 1 whenever 
-1 < t < I , we obtain 

1 -- = 1 - t2 + t4 
- t6 + t 8 

I+ t 2 

Now integrate from Oto x, where [xi < 1: 

(-l < t < l). 

- I lox dt lox 2 4 6 8 tan x = - - = (l - t + t - t + t - · · ·) dt 
0 1 + t2 0 

x3 xs x7 x9 
= x--+---+-- ··· 

3 5 7 9 
oo x2n+I 

= I:c-1t-
/1=0 2n + l 

(-1 <X < 1). 
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However, note that the series also converges (conditionally) at x = -1 and l. Since 
tan- 1 is contin uous at ±1, the above series representation for tan- 1 x also holds for 
these values, by Theorem 20. Letting x = 1 we get another interes ting result: 

11: l 1 1 1 
-=!--+---+--···. 
4 3 5 7 9 

Again, however, this would not be a good formula with which to calculate a numerical 
value of 11:. (Why not?) 

EXAMPLE 6 
oo n2 

Find the sum of the series ~ - by first finding the sum of the ~211 
n=l 

power series 

00 

L n2xn = x + 4x 2 + 9x 3 + 16x4 + · ... 
n=l 

Solution Observe in Example 4(a) how the process of differentiating the geometric 
series produces a series with coefficients 1, 2, 3, .. .. Start with the series obtained 
for 1/ (1 - x) 2 and multiply it by x to obtain 

00 

L nx 11 = x + 2x 2 + 3x3 + 4x 4 + · · · = x . 
n=I (1- x) 2 

Now differentiate again to get a series with coefficients 12 , 22 , 32 , ... : 

Loo 2 2 3 d x l+x 
n xn-l = l + 4x + 9x + l6x + · · · = - --- = ---. 

n=1 dx (x - 1)2 (1 - x) 3 

Multiplication by x again gives the desired power series : 

Loo 2 2 3 4 x(l + x) 
nx 11 =x+4x +9x +l6x + ··· =---. 

( 1 - x) 3 
n=l 

Differentiation and multiplication by x do not change the radius of convergence, so 
this series converges to the indicated function for -1 < x < l. Putting x = l / 2, 
we get 

1 3 
00 2 - x -L;n =Y= 6· 

n=I -
8 

The following example illustrates how substitution can be used to obtain power series 
representations of functions with centres of convergence different from 0. 

EXAMPLE 7 Find a series representation of f (x) = 1 / (2 + x) in powers of 
x - l. What is the interval of convergence of this series? 

Solution Lett= x - 1 so that x = t + l. We have 

1 1 1 1 

(-1 < t / 3 < 1) 

(-3 <t< 3) 

(-2 < X < 4). 
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EX E R C I S ES 9.5 

Note that the radius of convergence of this series is 3, the distance from the centre of 
convergence, 1, to the point -2 where the denominator is 0. We could have predicted 
this in advance . 

Maple Calculations 
Maple can find the sums of many kinds of seties, including absolutely and conditionally 
convergent numerical series and many power series. Even when Maple can't find the 
formal sum of a (convergent) series, it can provide a decimal approximation to the 
precision indicated by the current value of its variable Digits, which defaults to 10. 
Here are some examples . 

> sum(nA4/2An , n=l . . infinity) ; 

150 

> sum(l/nA2 , n=l . . infinity) ; 

1 2 
- 7r 
6 

> sum(exp(-nA2) , n=O .. infinity) ; 

> evalf(%) ; 

l.386318602 

> f . - x - > sum(xA(n-1)/n , n=l .. infinity) ; 

oo (x(n-1)) t :=x--+ I: --
"=' n 

> f(l) ; f(-1) ; f(l/2) ; 

00 

ln(2) 

2 ln(2) 

Determine the centre, radius, and interval of convergence of each 
of the power series in Exercises 1-8 . 

10. Determine the Cauchy product of the series 
1 + x + x 2 + x 3 + ···and l - x + x 2 - x 3 + · · ·. On what 
interval and to what function does the product series 
converge? 

oo J (X + 2)11 

3.L - -
11= 1 n 2 

00 

5. L n3 (2x - 3)" 
n= O 

00 

2. L 3n (x + 1 )" 
11=0 

00 (-l)II 
4. ~ 4 2 x" 

~n2" 
11=1 

7. f (I + 5") x'' 8. f (4x - l)" 

11=0 n! n=I 
1111 

9. Use multiplication of series to find a power series 
representation of 1/ (l - x) 3 valid in the interval (-1, 1). 

11. Determine the power series expansion of 1/ (l - x)2 by 
formally dividing I - 2x + x 2 into 1. 

Starting with the power series representation 

1 2 3 -- = I + x + x + x + · · · , (-1 < x < 1 ), 
1- x 

determine power series representations for the functions 
indicated in Exercises 12-20. On what interval is each 
representation valid? 

12. 
1 

13. 
1 

-- in powers of x 
2 

in powers of x 
2-x (2 -x) 

14. 
I 

--- in powers of x 
l +2x 

15. ln(2 - x) in powers of x 
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16. 
l 

17. 
1 . 

- in powers of x - I 2 rn powers of x + 2 
X X 

00 

= I)-l) "(n+l)(n+3)x 11 

n=O 
00 

18. 
1-x 

19. 
x3 

-- in powers of x ---
2 

in powers of x 
l+x l - 2x 

0 25. 2 + 4x2 + 6x 4 + 8x6 + 10x8 + · · · = L2 (n + l)x 211 

n=O 

20. lnx in powers of x - 4 x2 x4 x6 x8 oo (-l)11x2n 

Determine the interval of convergence and the sum of each of the 
series in Exercises 21-26. 

0 26. 1 - - + - - - + - - .. ·=I:---
2 3 4 5 n=O n + I 

Use the technique (or the result) of Example 6 to find the sums of 
the numerical series in Exercises 27-32. 

00 

21. l - 4x + 16x2 
- 64x3 + · · · = I)-l) 11(4xt 

oo n n=O 
00 

D 22. 3 + 4x + 5x 2 + 6x3 + .. · = I)n + 3)x 11 
27. °" -L.., 311 

11=1 

D 23. 

0 24. 

n=O 

1 x x2 x3 oo xn 
-+ - +-+-+ .. ·=I:-
3 4 5 6 n=O n + 3 

l x 3 - 2 x 4x + 3 x 5x 2 - 4 x 6x3 + ... 

D 29. ~ (n+ 1)
2 

~ nn 
n=O 

oo (-l)n-1 
31. "-L.., n211 

11=1 

0 30. ~ (-lYn(n + 1) 
L.., 2" 
n=l 

32. ~- 1 
L.., n211 

n= 3 

. _ T_a_ylo_r_a_n_d _M_ac_l_au_r_in_S_er_ie_s ____________ _ 
If a power series .L~o a,, (x - c)'1 has a positive radius of convergence R, then the 
sum of the series defines a function f (x) on the interval (c - R, c + R). We say that 
the power series is a representation off (x) on that interval. What relationship exists 
between the function f(x) and the coefficients ao, a1, a2, ... of the power series? 
The following theorem answers this question. 

THEOREM 

m 
Suppose the series 

00 

f(x) = L> n(x - c)11 = ao + a1 (x - c) + a2(x - c) 2 + a3(x - c) 3 + · · · 
n=O 

converges to f(x) for c - R < x < c + R , where R > 0. Then 

fork = 0, 1, 2, 3, .... 

PROOF This proof requires that we differentiate the series for f(x) term by term 
several times, a process justified by Theorem 19 (suitably reformulated for powers of 
X - c): 

00 

J ' (x) = I:n a11(x - c)'1- 1 =a,+ 2a2(x - c) + 3a3(x - c)2 + · · · 
n=I 

00 

J"(x) = Ln(n - I)a 11(x - c)'1- 2 = 2a2 + 6a3(x - c) + I2a4(x - c)2 + · · · 
11= 2 

00 

j<k)(x) = Ln(n - I)(n - 2) · · · (n - k + l)a 11(x - c)'1-k 
n=k 

(k + l)! (k + 2)! 2 = k!ak + ---ak+i(x - c) + -- -ak+2(x - c) + · · · . 
1! 2! 
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DEFINITION 

I 

DEFINITION 

I 

Each series converges for c - R < x < c + R. Setting x = c, we obtain 
JCk\c) = k!ak, which proves the theorem. 

Theorem 21 shows that a function f (x) that has a power series representation with 
centre at c and positive radius of convergence must have derivatives of all orders in 
an interval around x = c, and it can have only one representation as a power series in 
powers of x - c, namely 

oo fw~ !"~ 
f(x) = Z::--( x - c/ = f(c) + J'(c)(x - c) + --(x - c)2 + · · ·. 

n=O n! 2! 

Such a series is called a Taylor series or, if c = 0, a Maclaurin series. 

Taylor and Maclaurin series 

If f (x) has derivatives of all orders at x 
0, 1, 2, 3, ... ), then the series 

c (i.e., if f(k)(c) exists fork 

oo j(k)(c) 
Z::--( x-c)k 
k=O k! 

f"(c) JC3)(c) 
= f(c) + J'(c)(x - c) + -- (x - c)2 + -- (x - c)3 + ... 

2! 3! 

is called the Taylor series off about c (or the Taylor series of/ in powers of 
x - c). If c = 0, the term Maclaurin series is usually used in place of Taylor 
series. 

Note that the paitial sums of such Taylor (or Maclaurin) series are just the Taylor (or 
Maclaurin) polynomials studied in Section 4.10. 

The Taylor series is a power series as defined in the previous section. Theorem 17 
implies that c must be the centre of any interval on which such a series converges, but 
the definition of Taylor series makes no requirement that the series should converge 
anywhere except at the point x = c where the series is just f (c) + 0 + 0 + · · ·. The 
series exists provided all the derivatives off exist at x = c; in practice this means that 
each derivative must exist in an open interval containing x = c. (Why?) However, 
the series may converge nowhere except at x = c, and if it does converge elsewhere, it 
may converge to something other than f (x). (See Exercise 40 at the end of this section 
for an example where this happens.) If the Taylor series does converge to f (x) in an 
open interval containing c, then we will say that f is analytic at c. 

Analytic functions 

A function f is analytic at c if f has a Taylor series at c and that series converges 
to f(x) in an open interval containing c. If f is analytic at each point of an open 
interval, then we say it is analytic on that interval. 

Most, but not all, of the elementary functions encountered in calculus are analytic 
wherever they have derivatives of all orders. On the other hand, whenever a power 
series in powers of x - c converges for all x in an open interval containing c, then its 
sum f (x) is analytic at c, and the given series is the Taylor series off about c. 

Maclaurin Series for Some Elementary Functions 
Calculating Taylor and Maclaurin series for a function f directly from Definition 8 is 
practical only when we can find a formula for the nth derivative off. Examples of 
such functions include (ax+ by, eax+b, ln(ax + b), sin(ax + b), cos(ax + b), and 
sums of such functions. 
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EXAMPLE 1 Find the Taylor series for ex about x = c . Where does the series 
converge to ex ? Where is ex analytic? What is the Maclaurin 

Solution Since all the derivatives of f(x) = ex are ex, we have j <11) (c) = ec for 
every integer n ::: 0. Thus, the Taylor series for ex about x = c is 

00 C C C L :.___(x - c)" = ec + ec (x - c) + :.___(x - c)2 + :.___(x - c)3 + . . . . 
n=O n! 2! 3! 

The radius of convergence R of this series is given by 

_!__= lim lec/ (n+l)!I= lim n! = lim - 1-=0 . 
R n---+oo ec / n! n---+oo (n + 1)! n---+oo n + 1 

Thus, the radius of convergence is R = oo and the series converges for all x. 

Suppose the sum is g( x ) : 

c c ec 2 ec 3 
g(x)= e +e(x-c)+-(x - c) +-(x- c) +···. 

2! 3! 
By Theorem 19, we have 

, c ec ec 2 
g (x) = 0 + e + -2(x - c) + -3( x - c) + · · · 

2! 3! 
c c ec 2 = e + e (x - c) + -(x - c) + · · · = g(x). 

2! 
Also , g( c) = ec + 0 + 0 + · · · = ec. Since g( x ) satisfies the differential equation 
g' (x) = g(x) of exponential growth, we have g (x) = C ex . Substituting x = c gives 
ec = g ( c) = C ec, so C = 1. Thus, the Tay !or series for ex in powers of x - c converges 
to ex for every real number x: 

00 ec 
ex = L -(x - c )11 

n=O n! 
c c ec 2 ec 3 

= e + e (x - c) + -(x - c) + -(x - c) + · · · 
2! 3! 

(for all x) . 

In particular , ex is analytic on the whole real line IR. Setting c = 0 we obtain the 
Maclaurin series for ex : 

00 x" x 2 x 3 

ex= I:-= 1 +x +-+- + ··· 
n=O n! 2! 3! 

(for all x). 

EXAMPLE 2 Find the Maclaurin series for (a) sin x and (b) cos x. Where does 
each series converge? 

Solution Let f(x) = sinx. Then we have f(O) = 0 and 

J'( x ) = cos x 

J"( x ) = - sin x 

/
3\x) = -cosx 

j<4)(x) = sinx 

j<5)(x) = COSX 

f ' (O) = 1 

j"(O) = 0 

j<3)(0) = -1 

/
4)(0) = 0 

/ 5) (0) = 1 
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Thus, the Maclaurin series for sin x is 

X3 XS 
g(x) = 0 + X + 0 - - + 0 + - + 0 - · · · 

3! 5! 
x 3 xs x 7 oo (-1)" = x - 3! + 5! - 7! + ... =?; (2n + l)!x2n + I _ 

We have denoted the sum by g (x) since we don ' t yet know whether the series converges 
to sin x. The series doe s converge for al I x by the ratio test: 

lim 
11---* 00 

(-l)" + l 2(n+l)+J 
----- - x 
(2(n + 1) + l)! 

(-l)" 2n+ I --- x 
(2n + 1)! 

. (2n + !)! 2 = hm ---lxl 
n--> oo (2n + 3) ! 

lxl2 

= Jim ------ = 0. 
n-->oo (2n + 3)(2n + 2) 

Now we can differentiate the function g (x) twice to get 

x 2 x4 x6 
g' (x) = 1 - - + - - - + · · · 

2! 4! 6! 
x3 xs x 7 

g11 (x) = -x + - - - + - - · · · = - g (x) . 
3! 5! 7! 

Thus, g (x) satisfies the differential equation g11 (x) + g (x) = 0 of simple harmonic 
motion. The general solution of this equation , as observed in Section 3.7, is 

g(x) = A cosx + B sinx. 

Observe , from the series, that g(O) = 0 and g ' (O) = 1. These values determine that 

A= 0 and B = 1. Thus , g(x) = sinx and g' (x) = cosx for all x . 

We have therefore demonstrated that 

oo (-l)n x3 XS x1 · '"°' 2n+1 + smx = ~ ----x = x - - - - - + · · · 
n=O (2n + I)! 3! 5! 7! 

(for all x), 

oo (-1)" 2n x2 x4 x6 
cosx = L -- X = l - - + - - - + ... 

n=O (2n)! 2! 4! 6! 
(for all x). 

Theorem 21 shows that we can use any available means to find a power series converging 
to a given function on an interval, and the series obtained will tum out to be the Taylor 
series . In Section 9.5 several series were constructed by manipulating a geometric 
series. These include: 

Some Maclaurin series 

1 ~ n 2 3 -- = ~x = 1 +x+x +x + · ·· 
1 - X n=O 

(-l <x< l) 

1 00 

--- = '"°' nxn- I = 1 + 2x + 3x2 + 4x3 + · · · 
(1-x)2 f=r (-l < x < l) 

oo (-l)n-1 n x2 x3 x4 
ln(l + x) = L ---x = x - - + - - - + · · · 

n=I n 2 3 4 
(-} < X :': 1) 

oo ( l)n 3 S 7 
tan-Ix= L---- x 2n+l = x - ::_ + ::_ - ::_ + ·· · (-1 :': x :': 1) 

n=O 2n + 1 3 5 7 

These series, together with the intervals on which they converge , are frequently used 
hereafter and should be memorized . 
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Other Maclaurin and Taylor Series 
Series can be combined in various ways to generate new series . For example , we can 
find the Maclaurin series for e-x by replacing x with - x in the series for ex : 

oo (- l) n x2 x3 
-x "'""' 11 1 e =~-- x = - x +---+ ·· · 

n=O n! 2! 3! 
(for all x). 

The series for ex and e-x can then be subtracted or added and the results divided by 2 
to obtain Maclaurin series for the hyperbolic functions sinh x and cosh x: 

ex _ e-x oo x2n+I x3 x5 
sinh x = 

2 
= L --- = x + - + - + · · · (for all x) 

n=O (2n + I)! 3! 5! 

ex + e-x oo x2n x2 x4 
cosh x = 2 = ?; (2n) ! = l + 2! + 41 + · · · (for all x). 

Remark Observe the similarity between the series for sin x and sinh x and between 
those for cos x and cosh x. If we were to allow complex numbers (numbers of the 
form z = x + i y, where i 2 = -1 and x and y are real ; see Appendix I) as arguments 
for our functions, and if we were to demonstrate that our operations on series could 
be extended to series of complex numbers , we would see that cos x = cosh(ix) and 
sinx = -i sinh(ix). In fact , eix = cosx + i sinx and e-i x = cosx - i sinx, so 

cosx = - -- - and 
eix _ e - ix 

sinx = ----
2i 2 

Such formulas are encounte red in the study of functions of a complex variable (see Ap
pendix II); from the complex point of view the trigonometric and exponential functions 
are just different manifestations of the same basic function, a complex exponential 
ez = ex+iy . We content ourselves here with having mentioned the interesting relation
ships above and invite the reader to verify them formally by calculating with series. 
(Such formal calculations do not, of course, constitute a proof, since we have not 
established the various rules covering series of complex numbers.) 

EXAM p LE 3 Obtain Maclaurin series for the following functions: 

(a) (b) 
sin(x 2) 

(c) sin2x . 
X 

Solution 
(a) We substitute -x 2 /3 for x in the Maclaurin serie s for ex : 

e _x2;3 = 1 - x2 + 2_ (x 2) 2 - 2_ ( x2 ) 3 + ... 
3 2! 3 3! 3 

00 1 
= "'""' ( -1 )'1-- x 2n 
~ 3nn! 
n=O 

(for all real x) . 

(b) For all x =/. 0 we have 

sin(x2) = 1 (x2 - (x2)3 + (x2)5 - . . ·) 
X X 3! 5! 

x5 x9 oo x4n+I 
=x- - +- - ·· · = I:c-1)'1--. 

3! 5! n=O (2n + l)! 
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Note that f(x) = (sin(x 2)) / x is not defined atx = Obutdoes have a limit(namely 
0) as x approaches 0. If we define f(O) = 0 (the continuous extension off (x) to 
x = 0), then the series converges to f (x) for all x . 

(c) We use a trigonometric identity to express sin2 x in terms of cos 2x and then use 
the Maclaurin series for cosx with x replaced by 2x. 

sin2 x = I - cos 2x = ! _ ! (i _ (2x)2 + (2x)
4 

_ .. ·) 

2 2 2 2! 4! 

_ l ((2 x)2 (2x )
4 

(2x )6 
) -- --- -- +---·· · 

2 2! 4! 6! 
00 2211+ 1 

= I)- I)" --- x2n +2 
n=O (2n + 2)! 

(for alJ real x). 

Taylor series about points other than O can often be obtained from known Maclaurin 
series by a change of variable. 

EXAMPLE 4 Find the Taylor series for In x in powers of x - 2. Where does the 
series converge to In x ? 

Solution Note that if t = (x - 2) / 2, then 

ln x = In(2 + (x - 2)) = In [ 2 ( 1 + x; 
2

) J = In 2 + ln(l + t) . 

We use the known Maclaurin series for ln(l + t): 

lnx=ln2+ln(l+t) 

t 2 r3 t 4 
=ln2+t--+----· · · 

2 3 4 
x - 2 (x - 2)2 (x - 2)3 (x - 2)4 

= in 2 + -2 - - 2 X 22 + 3 X 23 - 4 X 24 + ... 

oo ( l)n - 1 
= ln 2 + L - (x - 2)'1. 

n=I n2" 

Since the series for ln(l + t) is valid for - I < t S l , this series for lnx is valid for 
- l < (x - 2)/ 2 S 1, that is, for O < x S 4. 

EXAMPLE 5 Find the Taylor series for cos x about 1r / 3. Where is the series 
valid? 

Solution We use the addition formula for cosine: 

cos x = cos (x - i + i) = cos ( x - i) cos i -sin ( x - i) sin i 
= ~ [ 1 - ;, (x - i )2 + ~! (x - i r -.. ·] 

-'7 [ (x - i )- ;, (x - i )3 + .. ·] 

= ~ - v'3 (x - ~) - ~ !__ (x - ~)
2 
+ v'3 !__ (x - ~)

3 

2 2 3 2 2! 3 2 3! 3 

+ ~ ~! (x - i r -.... 
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This series representation is valid for all x. A similar calculation would enable us to 
expand cos x or sin x in powers of x - c for any real c; both functions are analytic at 
every point of the real line. 

Sometimes it is quite difficult, if not impossible, to find a formula for the general 
term of a Maclaurin or Taylor series. In such cases it is usually possible to obtain 
the first few terms before the calculations get too cumbersome. Had we attempted to 
solve Example 3(c) by multiplying the series for sinx by itself we might have found 
ourselves in this bind. Other examples occur when it is necessary to substitute one 
series into another or to divide one by another. 

EXAMPLE 6 Obtain the first three nonzero terms of the Maclaurin series for 
(a) tanx and (b) lncosx. 

Solution 
(a) tan x = (sin x ) / (cos x ) . We can obtain the first three terms of the Maclaurin series 

for tan x by long division of the series for cos x into that for sin x: 

x3 2 5 
X + + -x 

3 15 + 

x2 x4 x3 XS 
1 + X + 2 24 6 120 

x3 XS 
X 

2 + 24 
x3 XS 

3 30 + 

x3 XS 

3 6 + 

2xs 

15 
2xs 

15 

1 3 2 s 
Thus, tanx = x + -x + -x + · · ·. 

3 15 
We cannot easily find all the terms of the series; only with considerable com

putational effort can we find many more terms than we have already found. This 
Maclaurin series for tan x converges for Ix I < 1r: / 2, but we cannot demonstrate this 
fact by the techniq ues we have at our disposal now. (It is true because the complex 
number z = x + iy closest to O where the "denominator" of tan z, that is, cos z, is zero, 
is, in fact, the real value z = 1r: / 2.) 

(b) lncosx = In (1 + (- x
2 

+ x
4 

- x
6 

+ · · ·)) 
2! 4! 6! 

= ( - ;~ + :: - ~~ + .. -)- ~ (- ;~ + :: - ~~ + .. ·) 2 

+ ~ (- x2 + x4 - x6 + .. ·) 3 
3 2! 4! 6! 

= - x22 + ;: - ;260 + ... - ~ ( x44 - ;: + ... ) 

+ ~ ( _ x
8
6 + .. ·) _ ... 
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THEOREM 

I 

x2 x4 x6 

2 12 45 

Note that at each stage of the calculation we kept only enough terms to ensure 
that we could get all the terms with powers up to x 6 . Being an even function, 
In cos x has only even powers in its Maclaurin series. Again, we cannot find the 
general term of this series. We could try to calculate terms by using the formula 
ak = f (k) (0) / k ! but even this becomes difficult after the first few values of k. 

Observe that the series for tan x could also have been derived from that of In cos x 
d 

because we have tan x = - - ln cos x. 
dx 

Taylor's Formula Revisited 
In the examples above we have used a variety of techniques to obtain Taylor series for 
functions and verify that functions are analytic. As shown in Section 4.10, Taylor's 
Theorem provides a means for estimating the size of the error En (x) = f (x) - Pn (x) 
involved when the Taylor polynomial 

is used to approximate the value off (x) for x ,fa c. Since the Taylor polynomials are 
partial sums of the Taylor series for f at c (if the latter exists), another technique for 
verifying the convergence of a Taylor series is to use the formula for En (x) provided 
by Taylor 's Theorem to show, at least for an interval of values of x containing c, that 
limn---+oo En(x) = 0. This implies that limn---+oo Pn(x) = f(x) so that f is indeed 
the sum of its Taylor series about c on that inverval, and f is analytic at c. Here is a 
somewhat more general version of Taylor 's theroem. 

Taylor's Theorem 

If the (n + 1 )st derivative of f exists on an interval containing c and x, and if Pn (x) 
is the Taylor polynomial of degree n for f about the point x = c, then 

f( x ) = Pn(x) + En(x ) Taylor's Formula 

holds , where the error term En (x) is given by either of the following formulas: 

Lagrange remainder 
jCn+ll(s) 

En(x ) = (n + l )! (x ct+
1

, 

for some s betwe en c and x 

Integral remainder En(x) = - (x - tt JCn+l)(t) d t. I ix 
n! C 

Taylor 's Theorem with Lagrange remainder was proved in Section 4.10 (Theorem 12) 
by using the Mean-Value Theorem and induction on n. The Integral remainder version 
is also proved by induction on n. See Exercise 42 for hints on how to carry out the 
proof. We will not make any use of the Integral form of the remainder here . 

Our final example in this section reestablishes the Maclaurin series for ex by 
finding the limit of the Lagrange remainder as suggested above . 

EXAMPLE 7 Use Taylor's Theorem to find the Maclaurin series for f(x) =e x . 
Where does the series converge to f (x) ? 
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Solution Since ex is positive and increasing, e5 
.'.:: elxl for any s .'.:: lxl- Since 

f(k)(x) = ex for any k we have , taking c = 0 in the Lagrange remainder in Taylor's 

Formula, 

IE (x) I = I f (n+l)(s) x 11+' I for some s between O and x 
11 

(n + I)! 
es lxln+I 

---1 1n+ I < lxl --- -+ 0 as n -+ oo 
(n+l)!x _e (n+l)! 

for any real x, as shown in Theorem 3(b) of Section 9.1. Thus, lim,, -4 00 E,,(x) = 0. 
Since the nth-order Maclaurin polynomial for ex is L~=0(xk / k!), 

ex = Jim '\"""' - + E . (x) = '\"""' - = 1 + x + - + - + · · · 
( 

n xk ) oo xk x 2 x3 

L. kl II L. kl 2I 3I ' 
n-oo k=O · k=O · · · 

and the series converges to ex for all real numbers x. 

EXE RC I SES 9.6 
Find Maclaurin series representations for the functions in 
Exercises 1-14 . For what values of xis each representation valid? 

1. e3x+I 2. cos(2x 3) 

3. sin(x - 1r / 4) 4. cos(2x - 1r) 

5. x 2 sin(x / 3) 6. cos2(x / 2) 

7. sin x cosx 8. tan- 1 (5x2) 

9. 
1 + x 3 

10. ln(2 + x 2) 
1 +x 2 

11. 
l+ x 

12. (e2x2 - l) / x2 ln- -
1-x 

13. coshx - cosx 14. sinh x - sin x 

Find the required Taylor series representations of the functions in 
Exercises 15-26. Where is each series representation valid? 

15. f(x) = e- 2x about -1 

16. f(x) = sinx about 1r/ 2 

17. f(x) = cosx in powers of x - 1r 

18. f(x) = ln x in powers of x - 3 

19. f (x) = ln(2 + x) in powers of x - 2 

20. f(x) = e2x+3 in powers of x + 1 

21. 
• 7l" 

f(x) = sm x - cosx about -
4 

22. 
7l" 

f (x) = cos2 x about 8 
23. f (x) = I /x 2 in powers of x + 2 

24. 
X . 

f(x) = -- m powers of x - 1 
l+x 

25. f (x) = x lnx in powers of x - 1 

26. f (x) = xex in powers of x + 2 

Find the first three nonzero terms in the Maclaurin series for the 
functions in Exercises 27-30. 

27. secx 28. sec x tan x 

29. tan- 1(ex -l) 30. etan- ' x -1 

0 31. Use the fact that (.JT+x)2 = l + X to find the first three 
nonzero terms of the Maclaurin series for .JT+x. 

32. Does csc x have a Maclaurin series? Why? Find the first 
three nonzero terms of the Taylor series for csc x about the 
point x = 1r / 2. 

Find the sums of the series in Exercise 33-36. 
x4 x 6 xs 

33. l + x 2 + - + - + - + · · · 
2! 3! 4! 

3 
x9 xl5 x21 x27 

0 34. X - 3! X 4 + 5! X 16 - 7! X 64 + 9! X 256 

x2 x4 x6 xs 
35. l + - + - + - + - + · · · 

3! 5! 7! 9! 
l l 1 

0 36· J + 2 X 2! + 4 X 3! + 8 X 4! + ... 
37. Let P (x) = 1 + x + x 2. Find (a) the Maclaurin series for 

P(x) and (b) the Taylor series for P( x ) about 1. 

0 38. Verify by direct calculation that f (x) = 1/ x is analytic at a 
for every a f=. 0. 

0 39. Verify by direct calculation that In x is analytic at a for every 
a > 0. 

0 40. Review Exercise 41 of Section 4.5. It shows that the function 

f( x ) = { ~- l/x
2 

ifxf=.O 
if x = 0 

has derivatives of all orders at every point of the real line, 
and f (k) (0) = 0 for every positive integer k. What is the 
Maclaurin series for f (x)? What is the interval of 
convergence of this Maclaurin series? On what interval does 
the series converge to f (x) ? Is f analytic at O? 

0 41. By direct multiplication of the Maclaurin series for ex and eY 
show that ex eY = ex+y. 
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D 42. (Taylor's Formula with integral remainder) Verify 
that if JC11+l) exists on an interval containing c and x, and if 
P11 (x) is the nth-order Taylor polynomi al for f abo ut c, then 
f(x) = P11(x) + E 11(x), where 

E11(x) = - (x - t) 11jC11+1\t)dt. I ix 
n! C 

Proc eed as follows: 

(a) First observe that the case n = 0 is just the Fundamental 
Theorem of Calc ulu s: 

f(x) = f(c) + 1x J ' (t)dt. 

Now integrate by parts in this formula, taking U = f' (t) 
and d V = dt. Contrary to our usual policy of not 
includin g a co nstant of integrati on in V, here write 
V = -(x - t) rather than ju st V = t . Observe that the 
result of the integration by part s is the case n = l of the 
formu la. 

(b) Use induction arg ument (and integra tion by part s again) 
to show that if the formula is valid for n = k , then it is 
also valid for n = k + I . 

D 43. Use Taylor 's formul a with integra l remainder to reprove that 
the Maclaurin serie s for ln (l + x ) conve rges to ln(l + x) for 
-l < x:::l. 

D 44. (Stirling's Formula) The limit 

n! 
Jim ------ = l 

11->oo .jh 11n+l/2e- 11 

says that the relative error in the approxim ation 

appro ac hes zero as n increa ses. That is, n ! grows at a rate 
comparab le to .Jhn 11+1l2e-11. This result, known as 
Stirling 's Form ula, is often very useful in applied 
mathem atics and statistics. Prove it by carrying out the 
fo llowi ng steps. 

(a) Use the identity ln (n !) = L} =I In j and the increasi ng 
nature of In to show that if n :=: 1, 

[" J, 11+ 1 
Jo ln x dx < ln (n!) < 

1 
ln x dx 

and hen ce that 

nlnn -n < Ln(n!) < (n + l) ln(n+ l )-n. 

(b) If c11 = ln(n!) - (n +½) In n+ n, show that 

( 1) n + 1 c11 -c 11+ 1 = n+ 2 ln - n - - 1 

= (n +~) In l + l / (2n + I) _ 1. 
2 1 - l / (2n + l ) 

. . f 1+1 ( . ) (c) Use the Maclaunn sen es or In -- see Exercise 11 
l - t 

to show that 

I ( I l ) 
0 < C11 - C11+ 1 < 3 (2n + 1)2 + (2n + 1)4 + . .. 

I ( l 1 ) 
=12 ;:;-- n+l ' 

and therefore that {c11} is decreas ing and { c11 - iin} is 
increasing . Hen ce co nclude that lim11_, 00 c11 = c ex ists, 
and that 

n! 
lim -~~- = lim ecn = ec. 

n->oo n11+ l/2e- " n->oo 

(d) Now use the Wallis Product from Exerc ise 38 of Section 
6. l to show that 

. (211n!)2 {ir 
11'2.~ (2n)1v'Ztr = v 2· 

and hence deduce that ec = .Jh, which comp letes the 
proof. 

D 45. (A Modified Stirling Formula) A simpl er app roximation 
to n ! for large n is give n by 

n! ~ n11 e - n or, equ ivalent ly, In(n!) ~ n Inn - n . 

Whil e not as accurate as Stirlin g's Fo rmul a, thi s modifi ed 
versio n still has relative error appro achin g zero as n ~ oo 
and ca n be useful in many app lica tions. 

(a) Prove this assert ion about the relative error by using the 
co nclu sion of part (a) of the previou s exercise. 

(b) Compare the rel ative errors in the approximations for 
ln( IO!) and ln(20! ) using Stirli ng's Formula and the 
Modified Stirling Formu la . 

Applications of Taylor and Maclaurin Series 

Approximating the Values of Functions 
We saw in Section 4.10 how Taylor and Maclaurin polynomi als (the parti al sums 
of Taylor and Maclaurin series) can be used as polynomial approximat ions to more 
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complicated function s. In Example 5 of that section we used the Lagrange remainder 
in Taylor 's Formula to determine how many terms of the Maclaurin series for ex are 
needed to calculate e 1 = e correct to 3 decimal places. For comparison, we obtained 
the same result in Example 7 in Section 9.3 by using a geometric series to bound the 
tail of the series fore. 

The following example shows how the error bound associated with the alternatin g 
series test (see Theorem 15 in Section 9.4) can also be used for such approximations. 
When the terms a11 of a series (i) alternate in sign, (ii) decrease steadily in size, and (iii) 
approach zero as n -+ oo, then the error involved in using a partial sum of the series 
as an approximation to the sum of the series has the same sign as, and is no greater in 
absolute value than, the first omitted term . 

EXAMPLE 1 Find cos 43° with error less than 1/ 10,000. 

Solution We give two alternative solutions: 

METHOD I. We can use the Maclaurin series for cosine: 

0 43n 1 (43n )
2 

1 (43n )
4 

cos 43 = cos -- = 1 - - -- + - --
180 2! 180 4! 180 

Now 43n / 180 ~ 0.75049 · · · < 1, so the series above must satisfy the conditions 
(i)-(iii) mentioned above . If we truncate the series after the nth term 

1 (43n )
211

-
2 

(-lt -
1

(2n-2)! 180 

then the error E will be bounded by the size of the first omitted term: 

1 (43n )
2
n l 

[El.:'.:: (2n)! 180 < (2n)! · 

The error will not exceed 1/ 10,000 if (2n)! > 10,000, son= 4 will do (8! = 40 ,320). 

cos43o ~ 1 - _!__ (43n )2 + _!__ (43n )4 - _!__ (43n )6 ~ 0.73135 ... 
2! 180 4! 180 6! 180 

METHOD II. Since 43° is close to 45° = n / 4 rad, we can do a bit better by using the 
Taylor series about n / 4 instead of the Maclaurin series: 

cos43° =co s (~ - ;
0

) 

n n .n.n 
= cos - cos - + sm - sm -

4 90 4 90 

= ~ [ ( 1 - ;! (;of+:! (;of -· · ·) 
+ (;o -;! (;or+ .. -) J. 

Since 

1 ( n )4 1 ( n )3 1 
4! 90 < 3! 90 < 20,000 ' 

we need only the first two terms of the first series and the first term of the second series : 

cos43 ° ~ ~ ( l + ;
0 

- ~ (;
0
f) ~ 0.731358 .... 

(In fact, cos 43° = 0.731 353 7 · · .. ) 

When finding approximate values of functions , it is best , whenever possib le, to use a 
power series about a point as close as possible to the point where the approximation is 
desired. 
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Functions Defined by Integrals 
Many functions that can be expressed as simple combinations of elementary functions 
cannot be antidifferentiated by elementary technique s; their antiderivatives are not 
simple combinations of elementary function s. We can, however, often find the Taylor 
series for the antiderivatives of such functions and hence approximate their definite 
integrals. 

EXAMPLE 2 Find the Maclaurin series for 

and use it to evaluate £(1) correct to 3 decimal place s. 

Solution The Maclaurin series for E(x) is given by 

E(x) = 1 - t 2 + - - - + - - · · · dt 1x ( t4 t6 ts ) 

o 2! 3! 4! 

x3 xs x7 x9 oo x2n+ 1 

= X - 3 + 5 X 2 ! - 7 X 3 ! + 9 X 4 ! - . .. = ; ( - l )" (2n + l )n ! ' 

and is valid for all x because the series for e- 12 is valid for all t. Therefore , 

l l 1 
£(1) = 1- - + -- - -- + · .. 

3 5 X 2! 7 X 3! 
1 l 1 (-1)11-l 

~ 1- -+-- - --+···+- -- -- . 
3 5 x 2! 7 x3 ! (2n-l)(n-1)! 

We stopped with the nth term. Again, the alternating series test assures us that the 
error in this approximation does not exceed the first omitted term, so it will be less than 
0.0005, provided (2n + l)n! > 2,000. Since 13 x 6! = 9,360, n = 6 will do. Thus, 

1 I 1 1 1 
£(1) ~ l - - + - - - + - - -- ~ 0.747 

3 lO 42 216 1,320 ' 

rounded to 3 decimal places. 

Indeterminate Forms 
Examples 9 and 10 of Section 4.10 showed how Mac laurin polynomial s could be used 
for evaluating the limits of indeterminate forms. Here are two more examples, this 
time using the series directly and keeping enough terms to allow cancellation of the 
[0/ 0] factors . 

EXAMPLE 3 Evaluate 
x - sinx (e2x - l)ln(l + x 3) 

(a) Jim -~ - and (b) lim -----~- . 
x->0 x 3 x->0 (1 - cos 3x )2 

Solution 
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x - sinx 
(a) lim---

x->0 x 3 

. X - ( X - ~: + ~: - · · ) 
= hm ----------

x ->0 x 3 

X3 XS 
---+--· 

lim 3! 5! 
x-> 0 x 3 

= !~o(;, -~: +--·) = ;, = i· 
(b) Jim (e2x - 1) ln(l + x3) [Qo] 

x-> 0 (1 - cos 3x )2 

(
1 + (2x) + (2x?2 + (2x?3 + ... - 1) ( x3 - x6 + .. ·) 

I
. 2. 3. 2 = Im -'------------------c----

x->0 ( 1 - ( 1 - (3;?2 + (3:t -.. ·)) 2 

. 2x 4 + 2x 5 + ... = hm -----------=-
x->O (9 34 )2 2 x2 - 4! x4 + ... 

. 2+2x+--· 2 8 = hm -------~ = -- = -. 
x->0 (;- !~ x 2 + .. ·f (;)2 81 

You can check that the second of these examples is much more difficult if attempted 
using l'Hopital 's Rule . 

EX E R C I S ES 9.7 

1. Estimate the error if the Maclaurin polynomial of degree 5 
for sin x is used to approximate sin(0.2). 

2. Estimate the error if the Taylor polynomial of degree 4 for 
Lnx in powers of x - 2 is used to approximate ln(l.95). 

Use Maclaurin or Taylor series to calculate the function values 
indicated in Exercises 3-14 , with error less than 5 x 10- 5 in 
absolute value. 

3. eo.2 4. 1/e 

5. e1.2 6. sin(O. l) 

7. cos5 ° 8. ln(6/ 5) 

9. ln(0.9) 10. sin 80° 

11. cos 65° 12. tan- 10.2 

13. cosh(l) 14. ln(3 / 2) 

Find Maclaurin series for the functions in Exercises 15-19. 

lo
x sin t lox e1 

- 1 
15. /(x) = - dt 16. J(x) = -- dt 

0 t O t 

f 
l+x Int 

17. K(x) = - dt 
1 t - 1 

18. L( x ) = fox cos(t 2) dt 

lo
x tan-I t 2 

19. M(x) = -
2
-dt 

0 t 
20. Find L(0 .5) correct to 3 decimal places, with L defined as in 

Exercise I 8. 

21. Find I (1) correct to 3 decimal places, with/ defined as in 
Exercise 15. 

Evaluate the limits in Exercises 22-27. 

22. 
. sin(x2) 

23. 
. I - cos(x 2) 

hm-- - lim ? 
x->0 sinhx x->0 (1 - cosx)-

24. 
(ex- l-x)2 

25. 
2sin3x - 3sin2x 

lim 2 ? lim 
5x - tan- 1 5x x->0 x - ln(l + x-) x->0 

26. Jim 
sin(sinx) - x 

x->0 x(cos(sinx) - 1) 
27. lim 

sinhx - sinx 

x->0 cosh x - cos x 
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The Binomial Theorem and Binomial Series 

EXAMPLE 1 Use Taylor's Formula to prove the Binomial Theorem: if n is a 
positive integer, then 

n(n - 1) 2 2 (a +x)" = a" +na" - 1x + ---a"- x + · · · +nax"- 1 +x" 
2! 

= t C) a"-kxk, 
k=O k 

(n) n! 
where k = (n _ k)!k!. 

Solution Let f (x) = (a + x )". Then 

J'(x)=n(a+x)''- 1 = n! (a+x)"- 1 

(n - l)! 

n' n' 
J"(x) = ( · (n - l)(a +x)" - 2 = ( · (a +x)"- 2 

n - l)! n - 2)! 

n' !Ck\x) = . (a+ x)"-k 
(n-k)! 

(0 ::: k ::o n) . 

n! 
In particular, JC"\x) = O! (a+ x)"- 11 = n!, a constant, and so 

forallx,ifk > n. 

For O ::: k ::: n we have jCk) (0) = n ! a"-k. Thus, by Taylor 's Theorem with 
(n - k)! 

Lagrange remainder , for some s between a and x, 

" f(k)(O) f(rz+I)( ) 
(a +x)" = f(x) = I:-- -xk + s x"+ 1 

k=O k! (n + 1)! 

This is, in fact, the Maclaurin series for (a+ x)'1, not just the Maclaurin polynomial 
of degree n. Since all higher-degree terms are zero, the series has only finitely many 
nonzero terms and so converges for all x. 

Remark If f (x) = (a+ x Y, where a > 0 and r is any real number, then calculations 
similar to those above show that the Maclaurin polynomial of degree n for f is 

. ~ r(r - l)(r - 2) · · · (r - k + 1) - k k 
P,, (x) = a' + ~ 

1 
ar x . 

k=I k. 

However, if r is not a positive integer, then there will be no positive integer n for which 
the remainder E,,(x) = f(x) - P,,(x) vanishes identically, and the correspondin g 
Maclaurin series will not be a polynomial. 
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The Binomial Series 
To simplify the discussion of the function (a+ x )' when r is not a positive integer , we 
take a = I and consider the function (1 + xY. Result s for the general case follow via 
the identity 

(a + X )' = ar ( 1 + ~ r , 
valid for any a > 0. 

If r is any real number and x > - l, then the kth derivative of (1 + x Y is 

r(r - l)(r - 2) · · · (r - k + l) (1 + xy-k, 

Thus , the Maclaurin series for ( l + x Y is 

~ r(r - 1)(r - 2) .. · (r - k + l) k 
1 + .L., ----------- X , 

k=I k! 

(k = 1, 2, ... ). 

which is called the binomial series. The following theorem shows that the binomial 
series does, in fact, converge to (1 + x Y if Ix I < 1. We could accomplish this by 
writing Taylor's Formula for (1 + x)' with c = 0 and showing that the remainder 
E,,(x) -+ 0 as n -+ oo. (We would need to use the integral form of the remainder to 
prove thi s for all Ix I < 1.) However, we will use an easier method, similar to the one 
used for the exponential and trigonometric functions in Section 9.6. 

The binomial series 

If lxl < 1, then 

( )
r r(r - I) 2 r(r - l)(r - 2) 3 l+x =l+rx+---x +------x + ... 

2! 3! 

~ r(r - l)(r - 2) .. · (r - n + l) = 1 + L.,----------xn (- 1 < x < l). 
n=l n! 

PROOF If Ix I < l , then the series 

~ r(r - l)(r - 2) .. · (r - n + 1) 
f(x) = 1 + .L., ---------- x 11 

11=1 n! 

converges by the ratio test, since 

p = lim 
n-t oo 

r(r - I)(r - 2) · · · (r - n + l)(r - n) 1 -------------- x"+ 
(n+l)! 

r(r - l)(r - 2) · .. (r - n + l) 
----------- x11 

n! 

= lim 1-r -_n I [xi= [xi < 1. 
n->oo n + I 

Note that f(O) = 1. We need to show that f(x) = (1 + x)' for [xi < 1. 

By Theorem 19, we can differentiate the series for f (x) termwise on [xi < 1 to 
obtain 

~ r(r - l)(r - 2) · · · (r - n + l) 1 J' (x) = L., ----------- x" -
n=I (n - l)! 

= f r (r - l) (r - 2) · · · (r - n) x". 

n=O n! 
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We have replaced n with n + 1 to get the second version of the sum from the first 
version. Adding the second version to x times the first version , we get 

~ r(r - l)(r - 2) · · · (r - n) 
(1 + x)J' (x) = ~ -------- xn 

n= O n! 

~ r(r - l)(r - 2) · · · (r - n + 1) + ~ -----------x,, 
n= I (n - I)! 

~ r(r - l)(r - 2) · · · (r - n + 1) = r + ~ 
1 

x" [ (r - n) + n] 
n= I n . 

= r f( x ). 

The differential equation (1 + x) / 1 (x) = r f (x) implies that 

d f(x) _ (1 + xY f'(x) - r(l + xy - 1 f(x) _ 
0 

dx (1 + x)' - (1 +x) 2r -

for all x satisfying Ix I < 1. Thu s, f (x) / (l + x Y is constant on that interval , and since 
f (0) = 1, the constant must be 1. Thus, f(x) = (1 + x)'. 

Remark For some values of r the binomial series may converge at the endpoints 
x = 1 or x = -1. As observed above, if r is a positive integer, the series has only 
finitely many nonzero terms , and so converges for all x. 

EXAMPLE 2 
1 

Find the Maclaurin series for ~. 
vl+ x 

Solution Here r = -(I / 2) : 

1 - - = (1 + x) - 1/2 
JT+x 

1 1 
=l-- x+-

2 2! 

1 1 X 3 2 
=1 - -x+-- x 

2 222! 

1 X 3 X 5 3 
--2 3_3_!_ X + ... 

~ 1 X 3 X 5 X · · · X (2n - 1) = 1 + ~(-l t ------- - --x". 
n= I 2"n! 

This series converges for - 1 < x :S 1. (Use the alternating series test to get the 
endpoint x = 1.) 

EXAMPLE 3 Find the Maclaurin series for sin- 1 x . 

Solution Replace x with -t 2 in the series obtained in the previous example to get 

1 Loo 1 X 3 X 5 X · · · X (2n - 1) 2,, 
---=l+ ---------t (-l < t < l). 
~ 211 n ! v l - r~ n= I 

Now integrate t from Oto x: 

sin- IX= [Ox dt = rx (1 + ~ l X 3 X 5 X .. . X (2n - 1) t2n) dt 
lo v1f=t2 lo ~ 211n! 

L
oo 1 x 3 x 5 x · · · x (2n - 1) 2n+I 

= x + ----------x 
n=I 211n!(2n + 1) 

x 3 3 
= x +- +-x 5 +·· · 

6 40 
(-l <x< l). 
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The Multinomial Theorem 
The Binomial Theorem can be extended to provide for expansions of positive integer 
powers of sums of more than two quantities. Before stating this Multinomial Theorem, 
we require some new notation. 

For an integer n :::. 2, let m = (m1, m2, ... , mn) be an n-tuple of nonnegative 
integers. We call ma multiindex of order n, and the number Im I = m 1 +m2 + · · · +mn 
the degree of the multiindex. In terms of multiindices , the Binomial Theorem can be 
restated in the form 

the sum being taken over all multiindices of order 2 having degree k. Here the binomial 
coefficients have been rewritten in the form 

which is correct since m2 = k - m,. 

The Multinomial Theorem 

If m and k are integers satisfying n :::. 2 and k :::. 1, then 

k ~ k! nl) m 2 m 
(x1 + x2 + · · · + Xn) = ~ ------ x I x2 · · · X11 " , 

lml=k m, ! m2! · · · mn ! 

the sum being taken over all multiindices m of order n and degree k. 

Evidently, the Binomial Theorem is the special case n = 2. The proof of the Multino
mial Theorem can be carried out by induction on n. See Exercise 12 below. 

The coefficients of the various product s of powers of the variables x; in the Multi
nomial Theorem are called multinomial coefficients . By analogy with the notation used 
for binomial coefficients , they are sometimes denoted (assuming m, + · · · + mn = k) 

They are useful for counting distinct arrangements of objects where not all of the 
objects appear to be different. 

EXAM p LE 4 The number of ways that k distinct objects can be arranged in a 
sequence of positions 1, 2, ... , k is k ! because there are k choice s 

for the object to go in position 1, then k - l choices for the object to go into position 2, 
etc. , until there is only 1 choice for the object to go into position k. But what if the objects 
are not all distinct, but instead there are several objects of each of n different types, say 
type 1, type 2, .. . , type n such that objects of the same type are indistinguishable from 
one another. If you ju st look at positions in the sequence containing objects of type j , 
and rearrange only those objects , you can't tell the difference. If there are mj object s 
of type j , (l S j S n), then the number of distinct rearrangements of the k objects is 
given by the multinomial coefficient ( *). For example , the number of visually different 
arrangements of 9 ball s, 2 of which are red, 3 green, and 4 blue is 

= - - = -- = 1 260. ( 
9 ) 9! 362,880 

2, 3, 4 2!3!4! 288 ' 
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Remark A direct proof of the Multinomial Theorem can be based on the above 

exa mpl e. When calculating the kth power of (x, +x2 + · · · +xn) by long multiplication , 
we obtain a sum of monomial s of deg ree k hav ing the form x;" 1 x;n2 

• · · x;;'", where 

m 1 + m2 + · · · + m,, = k. The numb er of ways yo u ca n arrange m1 factors x, , m 2 

factors x2, ... , and m11 factor s x11 to form that monomial is the multinomial coefficient 

(*). Since (x, + x2 + · · · + x 11l is the sum of all such monomial s, we must have 

k! 
(x, + x2 + · · · + x,,/ = ""' ------ x;"1 x;n2 · · · x;;111

• 
L..., m1!m2! ·· · m,,! 

lml=k 

EXE RC IS ES 9.8 
Find Maclaurin series representations for the functions in 
Exercises 1-8. Use the binomial ser ies to calc ulate the answers. 

1.~ 

3. J4+x 

5. (1 - x) - 2 

7. cos - 1 x 

2. xJT""=x" 

4. 
1 

J4+x 2 

6. (1 + x) - 3 

8. sinh- 1 x 

9 9. (Binomial coefficients) Show that the binomial 

coefficients (n) = 11 
! satisfy 

k k!(n-k)! 

(i) (;) = (:) = l for every n, and 

(ii) ifO ~ k ~ n, then C: 
1
) + C) = (n; 1). 

It follows that, for fixed n 2:, 1, the binomial coefficients 

G)· G)· G). .. · · C) 
are the eleme nts of the nth row of Pascal's triangle below, 
where each element with value grea ter than 1 is the sum of 
the two diagon ally above it. 

l 2 
3 3 

4 6 4 
5 10 10 5 

D 10. (An inductive proof of the Binomial Theorem) Use 
mathem atical induction and the result s of Exercise 9 to prove 

the Binomial Theorem: 

(a+ b)" = :t (n)a "-kbk 
k=O k 

=a"+ nan-I b + (;)an -2b2 + C)an -3b3 + . .. + b". 

D 11. (The Leibniz Rule ) Use mathem atical inducti on, the 
Product Rule, and Exe rcise 9 to verify the Leibniz Rule for 
the nth derivative of a product of two functions: 

(Jg/")= ta C)J<n-k)g(k) 

=/"lg+ n/n- l)g' + G) J<n-2)g" 

+ C)J<11-3)g(3) + ... +Jg<"). 

D 12. (Proof of the Multinomial Theorem) Use the Bin omial 
Theorem and inducti on on n to prove Theorem 24. Hint : 
Assume the theorem holds for specifi c n and all k. Apply the 
Binomial Theorem to 

(x, + · · · +xn +x11+1/ = (<x, + · · · +x11) +x11+1t. 

D 13. (A Multifunction Leibniz Rule) Use the technique of 
Exercise 12 to generalize the Leibniz Rule of Exercise l l to 
ca lculate the kth derivative of a produ ct of n functions 
Ji h ... fn, 

. _ F_o_u_rie_r_S_er_ie_s _________________ _ 
As we have see n, pow er serie s representations of functions make it po ss ibl e to ap

proximate tho se functions as clo se ly as we want in int erval s near a particular point of 
intere st by using partial sum s of the se rie s, that is, polynomi als. However , in many 

www.konkur.in



Figure 9.6 This function has period 2. 
Observe how the graph repeats the part in 
the interval (0, 2) over and over to the left 
and right 
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important applications of mathematics, the functions involved are required to be peri
odic. For example, much of electrical engineering is concerned with the analysis and 
manipulation of waveforms, which are periodic functions of time. Polynomials are not 
periodic functions, and for this reason power series are not well suited to representing 
such functions . 

Much more appropriate for the representations of periodic functions over extended 
intervals are certain infinite series of periodic functions called Fourier series. 

Periodic Functions 
Recall that a function f defined on the real line is periodic with period T if 

f(t + T) = f(t) for all real t. 

This implies that f (t + mT) = f (t) for any integer m , so that if T is a period off , 
then so is any multiple m T of T. The smallest positive number T for which ( *) holds 
is called the fundamental period , or simply the period off. 

The entire graph of a function with period T can be obtained by shifting the part 
of the graph in any half-open interval of length T (e.g. , the interval [0, T)) to the left 
or right by integer multiples of the period T. Figure 9 .6 shows the graph of a function 
of period 2. 

y 

2 

- 2 

y = f(t) = cos(irt) + ½ sin(2irt) 

6 t 

EXAMPLE 1 The functions g(t) = cos(1r t) and h(t) = sin(1r t) are both periodic 
with period 2: 

g(t + 2) = COS(7r t + 27r) = COS(7r t) = g(t) . 

The function k(t) = sin(21rt) also has period 2, but this is not its fundamental period. 
The fundamental period is l: 

k(t +I)= sin(21rt + 21r) = sin(21rt) = k(t). 

The sum f(t) = g(t) + ½k(t) = cos(1rt) + ½ sin(21rt), graphed in Figure 9.6, has 
period 2, the least common multiple of the periods of its two terms. 

EXAM p LE 2 For any positive integer n, the functions 

fn (t) = cos(ncvt) and gn (t) = sin(ncvt) 

both have fundamental period T = 21r / (ncv). The collection of all such functions cor
responding to all positive integers n have common period T = 21r / cv, the fundamental 
period of !1 and g1. T is an integer multiple of the fundamental periods of all the 
functions fn and g11• The subject of Fourier series is concerned with expressing general 
functions with period T as series whose terms are real multiples of these functions. 
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Fourier Series 
It can be shown (but we won't do it here) that if f (t) is periodic with fundamental 
period T , is continuous, and has a piecewise continuou s derivative on the real line, then 
f (t) is everywhere the sum of a series of the form 

a oo 

f (t) = ; + L )an cos(nwt) + bn sin(nwt) ), 
n=I 

called the Fourier series of f, where w = 2n / T and the sequences {an} ~o and 
{ bn} ~ 1 are the Fourier coefficients of f. Determining the values of these coefficients 
for a given such function f is made possible by the following identities , valid for 
integers m and n , which are easily proved by using the addition formulas for sine and 
cosine. (See Exercises 49-51 in Section 5.6.) 

[OT cos (nwt) dt = { OT if n =/= 0 Jo if n = 0 

foT sin (nwt) dt = 0 

foT cos (mwt) cos (nwt) dt = { ~ 
12 

foT sin (mwt) sin (nwt) dt = { ~ 
12 

foT cos (mwt) sin (nwt) dt = 0. 

if m =I= n 
ifm = n 

ifm =I= n 
ifm = n 

If we multiply equation ( **) by cos( mwt) (or by sin(mwt)) and integrate the resulting 
equation over [0, T] term by term, all the terms on the right except the one involving 
am (or bm) will be 0. (The term-by-term integration requires justification, but we won' t 
try to do that here either.) The integration results in 

1
T 1 

f(t)cos(mwt)dt = -T am 
o 2 

lo
T 1 

f( t)sin(mwt)dt = -Tbm, 
o 2 

(Note that the first of these formulas is even valid for m = 0 because we chose to call 
the constant term in the Fourier series ao/ 2 instead of ao.) Since the integrands are all 
periodic with period T, the integrals can be taken over any interval of length T; it is 
often convenient to use [ -T / 2, T / 2] instead of [0, T] . The Fourier coefficients of f 
are therefore given by 

2 !T/2 
an = - f (t) cos(nwt) dt 

T -T / 2 
(n = 0, 1, 2, ... ) 

2 !T/2 
bn = - f (t) sin(nwt) dt 

T -T / 2 
(n = 1, 2, 3, ... ), 

where w = 2n / T. 
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Figure 9.7 A sawtooth function of period 

211: 
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y 

y = f(t) 

EXAMPLE 3 Find the Fourier series of the sawtooth function f (t) of period 211: 
whose values in the interval [-11:, 11:] are given by f(t) = 11: - ltl. 

(See Figure 9.7.) 

Solution Here T = 211: and OJ = 27! / (27!) = 1. Since f (t) is an even function , 
f (t) sin(nt) is odd, so all the Fourier sine coefficient s b11 are zero: 

2171: bn = - f (t) sin(nt) dt = 0. 
211: -n 

Also , f (t) cos(nt) is an even function, so 

2111: 4 Ion a11 = - f (t) cos(nt) dt = - f(t) cos(nt) dt 
27! -n 27! 0 

2111: = - (7! - t) cos(nt) dt 
7( 0 

[ 

7r if n = 0 
= 0 if n =/. 0 and n is even 

4 / (7! n2) if n is odd . 

Since odd positive integers n are of the form n = 2k - 1, where k is a positive integer , 
the Fourier series off is given by 

7( 00 4 
f(t) = - + L ( 2 cos((2k - l)t) . 

2 k=l7r2 k-l) 

Convergence of Fourier Series 
The partial sums of a Fourier series are called Fourier polynomials becau se they can 
be expressed as polynomials in sin(OJt) and cos(OJt), although we will not actually try 
to write them that way. The Fourier polynomial of order m of the periodic function f 
having period T is 

111 

ao ""'"" fm(t) = 2 + L..,(an cos(nOJt) + bn sin(nOJt)), 
n= l 

where OJ = 271: / T and the coefficients a11 (0 S n S m) and b11 (1 S n S m) are given 
by the integral formulas developed earlier. 

EXAM p LE 4 The Fourier polynomi al of order 3 of the sawtooth function of 
Example 3 is 

7( 4 4 
h(t) = - + - cost+ - cos(3t). 

2 7r 971: 
The graph of this function is shown in Figure 9.8. Observe that it appears to be a 
reasonable approximation to the graph off in Figure 9.7, but, being a finite sum of 
differentiable functions, h (t) is itself differentiable everywhere, even at the integer 
multiples of 7r where f is not differentiable . 
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Figure 9.8 The Fourier polynomial 
approximation h(t) to the sawtooth 
function of Example 3 

THEOREM 

I 

y 

1r 4 4 
y = h(t) = - + - cos t+ - cos(3t) 

2 1r 91r: 

As noted earlier, the Fourier series of a function f (t) that is periodic, continuous, 
and has a piecewise continuous derivative on the real line converges to f (t) at each 
real number t. However, the Fourier coefficients (and hence the Fourier series) can 
be calculated (by the formulas given above) for periodic functions with piecewise 
continuous derivative even if the functions are not themselves continuous, but only 
piecewise continuous. 

Recall that f (t) is piecewise continuous on the interval [a, b] if there exists a 
partition {a = xo < XJ < x2 < · · · < Xk = b} of [a , b] and functions F1, F2, . .. , Fk, 
such that 

(i) F; is continuous on [x;- 1, x;], and 

(ii) f(t) = F;(t) on (x;- 1,x;). 

The integral of such a function f is the sum of integrals of the functions F;: 

rb k 1x· Ja f(t)dt = L I 

F;(t)dt . 
a i=I x ; - 1 

Since f(t) cos(nwt) and f (t) sin(nwt) are piecewise continuous if f is, the Fourier 
coefficients of a piecewise continuous, periodic function can be calculated by the same 
formulas given for a continuous periodic function. The question of where and to what 
the Fourier series converges in this case is answered by the following theorem, proved 
in textbooks on Fourier analysis. 

The Fourier series of a piecew ise continuous , periodic function f with piecewise 
continuous derivative converges to that function at every point t where f is continuous. 
Moreover , if f is discontinuous at t = c, then f has different, but finite, left and right 
limits at c: 

lim f(t) = f(c-), and lim f(t) = f(c+). 
t~ c+ t~ c-

The Fourier series off converges at t = c to the average of these left and right limits: 

ao ~ . f(c-) + f(c+) - + L.)ancos(nwc) +b 11 sm(nwc)) = ------ , 
2 n=I 2 

wherew = 21r:/ T. 

EXAMPLE 5 

f(t)={~
1 

Calculate the Fourier series for the periodic function f with period 
2 satisfying 

if-l < x < O 
ifO < X < 1. 

Where does f fail to be continuous? To what does the Fourier series off converge at 
these points? 
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Figure 9.9 The piecewise continuous 
function f (black) of Example 5 and its 
Fourier polynomial J15 (colour) 

s 4sin((2k-l)iri) 

fis(t) =; (2k - l)ir 
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Solution Here T = 2 and w = 2n: / 2 = n:. Since f is an odd function, its cosine 
coefficients are all zero: 

an= [1 f(t)cos(nn:t)dt = 0. ]_, 

The same symmetry implies that 

bn = f_', f(t) sin(nn:t) dt 

(The integrand is odd.) 

1
1 2cos(nn:t) I' = 2 sin(nn:t)dt = - -- --

0 nn: o 

= _ 2_ ( ( _ 1 t _ 1) = { 4 / (nn:) ~f n !s odd 
nn: 0 if n 1s even. 

Odd integer s n are of the form n = 2k - 1 fork = l, 2, 3, .... Therefore, the Fourier 
series of f is 

4 00 1 - Z::-- sin((2k - l)n:t) 
7T: k= I 2k - ] 

4 ( 1 1 ) = - sin(ir t) + - sin(3n: t) + - sin(5n: t) + · · · . 
n: 3 5 

Note that f is continuous except at the points where t is an integer. At each of these 
points f jumps from - 1 to 1 or from 1 to -1, so the average of the left and right limits 
off at these points is 0. Observe that the sum of the Fourier series is Oat integer values 
oft, in accordance with Theorem 25. See Figure 9.9. 

y 

A ,. 
I A ,. A ,. 

~ 

I 2 

I 

~ l - -V " ~ 

Fourier Cosine and Sine Series 
As observed in Example 3 and Example 5, even functions have no sine terms in their 
Fourier series , and odd functions have no cosine terms (including the constant term 
ao/ 2). It is often necessary in application s to find a Fourier series repre sentation of a 
given function defined on a finite interval [0, a] havin g either no sine term s (a Fourier 
cosine series) or no cosine term s (a Fourier sine series). This is accomplished by 
extending the dom ain off to [-a , 0) so as to make f either even or odd on [-a , a] , 

f (- t) = f (t) if -a S t < 0 for the even exten ion 

f (- t) = - f (t) if - a S t < 0 for the odd extension , 

and then calcu lating its Fourier series considerin g the extended f to have period 2a. 
(If we want the odd extension , we may have to redefin e f (0) to be 0.) 

EXAM p LE 6 Find the Fourier cosine series of g (t) = n: - t defined on [0, n:]. 
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Solution The even ex tension of g(t) to [-TC, TC] is the function f of Exampl e 3. 
Thu s, the Fourier cosine se ries of g is 

TC oo 4 
- + L ( 2 cos((2k - l)t) . 
2 k= I TC 2k - 1) 

EXAMPLE 7 Find the Fourier sine se ries of h(t) = l defined on [0, l] . 

Solution If we rede fine h(O) = 0, then the odd extension of h to [- 1, l] coincides 

with the function f (t) of Example 5 except that the latter function is undefined at 
t = 0. The Fourier sine serie s of h is the se rie s obtained in Example 5, namely , 

4 00 1 - I:- - si n( (2k - l)TCt). 
TC k= l 2k - 1 

Remark Fourier cosine and sin e se rie s are treated from a different perspective in 
Section 13.4 . 

EXE R C I SES 9.9 
In Exercises 1-4, what is the fundamental period of the given 
function ? 

1. f (t) = sin(3t) 

3. h(t) = cos2 t 

2. g(t) = cos(3 + TCt) 

4. k(t) = sin (2t) + cos(3t) 

In Exercises 5- 8, find the Fourier series of the given functio n. 

5. f (t) = t, -TC < t _::::TC, f has period 2TC. 

{
O ifO < t < l . 

6. f (t) = 
1 

.f 
1 

-
2 

f has penod 2. 
I _:::: ( < , 

{
O if-l < t < O . 

7. f(t) = t 'fO -
1 

f has penod 2. 
I _:::: t < , 

{ 

t ifO .:::: t < l 
8. f (t) = l if l _:::: t < 2 f has period 3. 

3 - t if 2 _::::t < 3, 

9. What is the Fourier cosine series of the function h(t) of 
Example 7? 

10. Calculate the Fourier sine series of the functi on g( t) of 
Example 6. 

CHAPTER REVIEW 
Key Ideas 

• What does it mean to say that the sequence {a11) 

<> is bounded above? 

<> is alternating? 

<> converges? 

<> is ultimatel y positive? 

<> is increasing? 

<> diverges to infinit y? 

11. Find the Fourier sine series off (t) = ton [0, l]. 

12. Find the Fourier cosine series off (t) =ton [O, l]. 

13. Use the result of Example 3 to evaluat e 

00 l l 1 L c2n - i) 2 = i + 32 + 52 + .... 
n= I 

0 14. Verify that if f is an even function of period T , then the 
Fourier sine coeffic ient s b11 of f are all zero and the Fourier 
cos ine coefficients a,, off are given by 

4 loT/2 
an = - f(t)cos(nwt)dt, 

T o 
n = 0, 1, 2, . .. , 

where w = 2TC / T. State and verify the correspondin g result 
for odd functions f. 

• What does it mean to say that the series I::;"=1 a11 

<> converges? 

<> is geo metric? 

<> is a p-series ? 

<> converges absolutely? 

<> diverges? 

<> is telesco ping? 

<> is positive? 

<> converges conditionally ? 
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• State the following convergence tests for series. 
o the integral test o the comparison test 

o the limit comparison test o the ratio test 

o the alternating series test 

• How can you find bounds for the tail of a series? 

• What is a bound for the tail of an alternating series? 

• What do the following terms and phrase s mean? 
o a power series o interval of convergence 

o radius of convergence o centre of convergence 

o a Taylor series o a Maclaurin series 

o a Taylor polynomial o a binomial series 

o an analytic function 

• Where is the sum of a power series differentiable? 

• Where does the integral of a power series converge? 

• Where is the sum of a power series continuous? 

• State Taylor's Theorem with Lagrange remainder. 

• State Taylor 's Theorem with integral remainder. 

• What is the Binomial Theorem? 

• What is a Fourier series? 

• What is a Fourier cosine series? a Fourier sine series? 

Review Exercises 
In Exercises 1-4, determine whether the given sequence converges, 
and find its limit if it does converge. 

1. 

3. 

5. 

{ (-~

1

ne"} 2. rJOO; 2nn } 

{ Inn } 
tan- 1n 

4. { (-ltn
2 

} 
nn(n - n) 

Let a 1 > ../2, and let 

a,, 1 
an+I = - + - for n = 1, 2, 3, .. . 

2 a,, 

Show that {a,,} is decreasing and that a,, > ../2 for n ::: 1. 
Why must {a,,} converge? Find lim,,--,00 a,,. 

6. Find the limit of the sequence {ln ln (n + 1) - In 1n n}. 

Evaluate the sums of the series in Exercises 7-10. 
00 

1. I: i-<11-si12 

n=I 

00 411- l 

8. ; (n - 1)211 

00 1 00 1 
9· I: -2-1 10· I: -2-9 

n=I n - 4 11=1 n - 4 

Determine whether the series in Exercises 11-16 converge or di
verge. Give reasons for your answers. 

L
00 n-l 

11. 3 
n 

n=I 

00 

13. I: n 
n=I (1 + n)(l + n./n) 
oo 32n+I 

15.L-
1 

n=I n . 

00 
n + 2" 12. ~-

L 1 + 3" 
n=I 

00 2 

14. I: n 
n=I (1 + 2")(1 + n./n) 
oo I 

16. ~ n. 
f:,r (n +2)! + 1 
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Do the series in Exercises 17-2 0 converge absolutely, converge 
conditionally, or diverge? 

oo (-l)n-1 
11. I: 3 

ll = I I +n 

18. ~ (-l)" 
L 2"-n n=I 

00 (-1)11-) 
19. I: --

11=10 lnlnn 
20

_ ~ n2cos(nn) 
L 1 +n3 
n=l 

For what values of x do the series in Exercises 21-22 converge 
absolute ly? converge conditionally? diverge? 

21. f (x -2)11 

11=1 3"./n 
22_ f (5-2xt 

n=I n 

Determine the sums of the series in Exercises 23-24 to within 
0.001. 

00 1 00 1 
23. I: 3 24. I:-- 2 

11=1 n n=I 4 +n 

In Exercises 25-32, find Maclaurin series for the given function s. 
State where each series converges to the function . 

25. 26. 
X 

3-x 3 -x 2 

27. ln(e + x 2) 28. 
1 - e-2.x 

X 

29. X COS
2 

X 30. sin(x + (n /3 )) 

31. (8 +x)- 113 32. (1 +x) 113 

Find Taylor series for the functions in Exercises 33-3 4 about the 
indicated points x = c. 

33. 1/ x, c = n 34. sin x + cos x, c = n / 4 

Find the Maclaurin polynomial of the indicated degree for the 
functions in Exercises 35-38. 

35. ex
2
+2x, degree 3 36. sin(!+ x), degree 3 

37. cos( sin x), degree4 38 . .JI +s in x, degree4 

39. What function has Maclaurin series 

x x2 00 (-l)"x" 
1- -+--·· ·=I:-- ? 

2! 4! n=O (2n)! 

40. A function f (x) has Maclaurin series 

x4 x6 oo x2n 
l+ x2 + -+-+···= l+ ~ -. 22 32 L n2 

n=I 

Find j(k)(O) for all positive integers k. 

Find the sums of the series in Exercises 41-44. 

~n + l 
41. L 

n=O n" 

00 1 
43. ~ -

Ln e" 
n=I 

0 42. 
oo n2 

Lnn 
n=O 

oo (-l)11n211-4 
0 44. ~--

~ (2n - l)! 

1x x 3 - 3S(x) 
45. If S(x) = sin(t 2)dt, find lim 

7 0 x-->0 X 

. . (x -tan- 1x)(e 2x -1) 
46. Use sene s to evaluate hm -~ 2----- 

x-->O 2x - 1 + cos(2x) 
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562 CHAPTER 9 Sequences, Series, and Power Series 

47. How many nonzero terms in the Maclaur in series for e- x
4 

are 

needed to evaluate f0
112 e- x

4 
dx correct to 5 decimal places? 

Evaluate the integral to that accuracy. 

48. Estimate the size of the error if the Tay !or polynomi al of degree 
4 about x = 7C / 2 for f (x) = In sin x is used to approximate 
In sin(l.5) . 

49. 

so. 

Find the Fourier sine serie s for f( t) = 7r - ton [O, 7r]. 

{ 
1 if -7[ < t ::: 0 

Find the Fourier series for f (t) = t 
if O < t ::: 7r . 

Challenging Problems 
1. (A refinement of the ratio test) Suppose a,, > 0 and 

a,,+1/ a,, c:: n / (n + 1) for all n . Show that L~t a,, diverges. 
Hint: a,, c:: K / n for some constant K . 

D 2. (Summation by parts) Let {u,,} and {v,,} be two sequences, 
and lets,, = L ~=I Vk . 

(a) Show that I:~=l UkVk = u,,+ 1 s,, + I:Z= 1 (uk - Uk+ 1 )s,,. 
(Hint: Write v,, = s,, - Sn- I , with so = 0, and rearrange 
the sum.) 

(b) If {u11} is positi ve, decreasin g, and convergent to 0, and 
if {v11} has bounded parti al sums, ts,,t ::: K for all n, 
where K is a constant, show that I:~ 1 u,,v,, converges. 
(Hint: Show that the series L ~ J (u11-u 11+1 )s11 converges 
by comparing it to the telescoping series I:~ 1 (u11 -

Un+)).) 

D 3. Show that L ~ J (1/ n) sin(n x) converges for every x . Hint: 
If x is an integer multipl e of 7r, all the terms in the series are 
0 so there is nothing to prove. Otherwise, sin(x / 2) =I-0. In 
this case show that 

f- . ( cos(x / 2) - cos((N + l / 2)x) 
L.., sm nx) = ------- ---
n= 

1 
2 sin(x / 2) 

using the identit y 

. . cos(a - b) - cos(a + b) 
smasmb = 

2 

to make the sum telescope . Then apply the result of Probl em 
2(b) with u,, = 1/ n and v,, = sin(n x). 

4. Leta1 , a2, a3, . .. be those positive integers that do not contain 
the digit O in their decimal representations. Thus a 1 = 1, 
a2 = 2, . .. , a9 = 9, a10 = 11, ... , a1g = 19, a19 = 21, 

oo 1 
... , a90 = 99, a9 1 = 111, etc. Show that the series L -

n= l a,, 
converges and that the sum is less than 90. (Hint: How many 
of these integers have m digits ? Each term l / a11, where a,, 
has m digits, is less than 10 - m+ I .) 

D S. (Using an integral to improve convergence) Recall the 
error form ula for the Midpoint Rule, accord ing to which 

1
k+ l / 2 f"(c) 

f (x) dx - f (k) = -- , 
k- 1/2 24 

where k - (1/ 2) ::: c ::: k + (1/ 2). 

(a) If f" (x) is a decreasing function of x, show that 

J'( k + !) - J ' (k + ½)::: J " (c)::: J'( k - ½) - J'(k - !)-

(b) If (i) f" (x) is a decreas ing function of x, 

(ii) f'/:+ 1;2 f(x)dx converges, and (iii) f'(x) ~ 0 as 
x ~ oo, show that 

f ' (N I) oo 100 f'(N + 3) 
----~ 2~ :": L f(n) - f (x) dx ::: 2 . 

24 n=N+I N+ l / 2 24 

(c) Use the result of part (b) to approxi mate I:~ 1 l / n2 to 
within 0.001. 

D 6. (The number e is irrational) Start withe= I:~o 1/ n!. 

(a) Use the technique of Example 7 in Section 9.3 to show 
that for any n > 0, 

" 1 1 
0 < e- ""' - < -. L.., ·1 I 

j=ol · n.n 

(Note that the sum here has n + 1 terms, not n terms .) 

(b) Suppose that e is a rational number, say e = M/ N for 
certain positive integers M and N. Show that 

N ! (e - I:f=0 (1/ j!)) is an integer. 

(c) Combine parts (a) and (b) to show that there is an integer 
between O and I / N. Why is this not possible? Conclude 
that e cannot be a rational number. 

7. Let 

oo 22kk I 
""' · 2k+ I 

f(x) = f:o (2k + l)!x 

= X + ~X 3 4 5 8 7 
3 

+--X + X + .... 
3 x 5 3 x 5x7 

(a) Find the radius of convergence of this power series. 

(b) Show that f ' (x) = 1 + 2xf(x). 

(c) What is :x (e -x
2 

f(x))? 

(d) Express f (x) in terms of an integral. 

D 8. (The number Jr is irrational) Problem 6 above shows 
how to prove that e is irration al by assuming the contrary and 
deducing a contradiction. In this problem you will show that 
7r is also irrational. The proof for 7r is also by contradiction 
but is rather more complicated, so it will be broken down into 
severa l parts. 

(a) Let f (x) be a polynomial , and let 

g(x) = f(x) - J " (x) + .t<4\x) - .t<6\x) + ... 
00 

= I: c-1/ .r<2n(x) . 
j= O 

(Since f is a polynomial, all but a finite number of terms 
in the above sum are identically zero, so there are no 
convergence problems.) Verify that 

:x (g'(x) sinx - g(x) cosx) = f (x) sinx, 

and hence that fo,r f(x) sin x dx = g(7r) + g(O). 
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(b) Suppose that 1r: is rational, say, 1r: = m/ n, where m and 
n are positive integers. You will show that this leads 
to a contradiction and thus cannot be true. Choose a 
positive integer k such that (1r:m/ / k! < l / 2. (Why is 
this possible?) Consider the polynomial 

( ) xk(m - nxl l ~ (k) k-j c j j+k 
f x = 

1 
= 1 ~ . m - n) x . 

k. k.j=O J 

ShowthatO < f(x) < l / 2for0 < x < 1r:,a ndhencethat 

0 < fa" f(x)sinxdx < 1. Thus,O < g(1r:)+g( O) < l, 

where g(x) is defined as in part (a) . 

(c) Show that the ith derivative off (x) is given by 

JCi\x) = ~ t (k) mk-j( -n)j U + k)!_ ,xj+k - i_ 
k. j=O J (1+k-t) . 

(d) Show that j<il (0) is an integer for i = 0, 1, 2, ... . (Hint: 
Observe for i < k that JCil (0) = 0, and for i > 2k that 
jUl(x) = 0 for all x. Fork ::o i ::o 2k, show that only 
one term in the sum for JCil (0) is not 0, and that this term 
is an integer. You will need the fact that the binomial 

coefficients O) are integers.) 

CHAPTER REV[EW 563 

(e) Show that f(1r: - x) = f(x) for all x , and hence that 
f (i) (1r:) is also an integer for each i = 0, I, 2, .... 
Therefore , if g(x) is defined as in (a), then g(1r:) + g(O) 
is an integer. This contradicts the conclusion of part (b) 
and so shows that 1r: cannot be rational. 

D 9. (An asymptotic series) Integrate by parts to show that 

r N 
Jo e-l / i dt = e - !/x I)-1)" (n - I) !x" 

0 11=2 

+ (-l)N+I N! fo x / N-le-l / 1 dt. 

Why can't you just use a Maclaurin series to approximate 
this integral ? Using N = 5, find an approximate value for 

ft' e- 1
/

1 cit, and estimate the error. Estimate the error for 
N = IO and N = 20. 

Note that the series I::~ 2 ( - I)" (n - 1) !x" diverges for 
any x 'F 0. This is an example of what is called an asymp
totic series. Even though it diverges, a properly chosen 
partial sum gives a good approximation to our function when 
x is small. 
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564 

Vectors and Coordinate 
Geometry in 3-Space 
, , Lord Ronald said nothing; he flung himself from the room, flung 

himself upon his horse and rode madly off in all directions .... 

And who is this tall young man who draws nearer to Gertrude with 
every revolution of the horse? ... 

The two were destined to meet. Nearer and nearer they came. And 
then still nearer. Then for one brief moment they met. As they passed 
Gertrude raised her head and directed towards the young nobleman 
two eyes so eye-like in their expression as to be absolutely circular, 
while Lord Ronald directed towards the occupant of the dogcart a 
gaze so gaze-like that nothing but a gazelle, or a gas-pipe, could have 
emulated its intensity. 

'' Stephen Leacock 1869-1944 
from Gertrude the Governess: or, Simple Seventeen 

I n trod LI ct j On :u~::~lete real-variable calcul us program involves the 

(i) real-valued functions of a single real variab le, 

(ii) vector-valued functions of a single real variable, 

(iii) real-valued functions of a real vector variable , 

(iv) vector-valued functions of a real vector variab le. 

Chapters 1-9 are concerned with item (i). The remaining chapter s deal with items (ii), 
(iii), and (iv). Specifically, Chapter 11 deals with vecto r-valued functions of a single 
real variab le. Chapters 12-14 are concerned with the differentiation and integration 
of real-valued functio ns of several real variab les, that is, of a real vector variable. 
Chapters 15 and 16 present aspects of the calculus of functions whose domains and 
ranges both have dimension greater than one, that is, vector-va lued functions of a vector 
variable. Most of the time we will limit our attentio n to vector functions with domains 
and ranges in the plane , or in 3-dim ensional space. 

In this chapter we will lay the foundation for multivariable and vector calculus 
by extending the concepts of analytic geometry to three or more dimen sions and by 
introducing vectors as a convenient way of dealing with several variable s as a single 
entity. We also introduce matrices, because these will prove useful for formulating 
some of the concepts of calc ulus. This chapter is not intended to be a course in linear 
algebra. We develop only those aspects that we will use in later chapt ers and omit most 
proofs . 
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SECTION LO. I : Analytic Geometry in Three Dimensions 565 

Analytic Geometry in Three Dimensions 

Figure 10.1 

(a) The screw moves upward when 
twisted counterclockwise as seen 
from above 

(b) The three coordinates of a point in 
3-space 

X 

P (x2 ,Y2,z2) 

lz2-z 1 I 

Pi (x2,Y2,z 1) 
. .r. l.:r2-x 1 I 

(x1, 1,z 1/ ly2-y il \(x ii,Y2,z 1) 
1 : l 

..... .l-.<. 
·------:---.;·· 

.i ... ··· 

Figure 10.2 Distance between points 

y 

We say that the physical world in which we live is three-dimensional because through 
any point there can pass three, and no more , straight lines that are mutually perpen
dicular ; that is, each of them is perpendicular to the other two. Thi s is equivalent to 
the fact that we require three numbers to locate a point in space with respect to some 
reference point (the origin). One way to use three numbers to locate a point is by 
having them represent (signed) distances from the origin, measured in the directions 
of three mutually perpendicular lines passing through the origin. We call such a set 
of lines a Cartesian coordinate system, and each of the lines is called a coordinate 
axis. We usually call these axes the x-axis , the y-axis , and the z-axis , regarding the 
x- and y-axes as lying in a horizontal plane and the z-axis as vertical. Moreover , 
the coordinate system should have a right-handed orientation. This means that the 
thumb, forefinger , and middle finger of the right hand can be extended so as to point , 
respectively, in the directions of the positive x-axis , the positive y-axis, and the positive 
z-axis. For the more mechanically minded, a right-handed screw will advance in the 
positive z direction if twisted in the direction of rotation from the positive x -axis toward 
the positive y-axis . (See Figure 10.l(a).) 

z 

z 

P= (x,y,z ) 

X 

......... s ' 

X 

y 

X 

-- - -- - ',,, ~ y 
y"-----<: -. Q = (x, y, 0) 

(a) (b) 

With respect to such a Cartesian coordinate system, the coordinates of a point 
P in 3-space constitute an ordered triple of real numbers, (x , y, z) . The numbers x, 
y, and z are, respectively, the signed distances of P from the origin , measured in the 
directions of the x-axis , the y-axis, and the z-axis. (See Figure 10. l(b). ) 

Let Q be the point with coordinates (x, y, 0). Then Q lies in the xy -plane (the 
plane containing the x- and y -axes) directly under (or over) P. We say that Q is the 
vertical projection of P onto the xy-plane. If r is the distance from the origin O to P 
ands is the distance from Oto Q, then , using two right-angled triangles , we have 

s2 = x2 + y2 and r2 = s2 + z2 = x2 + y2 + z2. 
Thus, the distance from P to the origin is given by 

r = Jx2 + y2 + z2 . 

Similarly, the distance r between points Pi = (x 1, YI, z1) and P2 = (x2, Y2, z2) (see 
Figure 10.2) is 

r = j(x2 - x1)2 + (y2 - Yt)2 + (z2 - z 1)2 . 

EXAMPLE 1 Show that the triangle with vertices A = (1, -1, 2), B = (3, 3, 8) , 
and C = (2, 0, 1) has a right angle . 
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566 CHAPTER 10 Vectors and Coordinate Geometry in 3-Space 

z 

X 

Figure 10.3 The first octant 

y 

X 

Figure 10.4 Equation x = y defines a 
vertical plane 

z 

X 

y 

Figure 10.5 The plane with equation 
x+y+z=l 

Solution We calculate the lengths of the three sides of the triangle: 

a= IBCI = )(2 - 3)2 + (0 - 3)2 + (l - 8)2 = v'59 
b = IACI = )(2 - 1)2 + (0 + 1)2 + (1 - 2)2 = ~ 
c = IAB I = )(3 - 1)2 + (3 + 1)2 + (8 - 2)2 = .J56 

By the cosine law, a2 = b2 + c2 - 2bc cos A. In this case a2 = 59 = 3 + 56 = b2 + c2 , 

so that 2bc cos A must be 0. Therefore, cos A = 0 and A = 90°. 

Just as the x- and y-axes divide the xy-plane into four quadrants, so also the three 
coordinate planes in 3-space (the xy-plane, the xz-plane, and the yz-plane) divide 
3-space into eight octants . We call the octant in which x ::: 0, y ::: 0, and z ::: 0 the 
first octant. When drawing graphs in 3-space it is sometimes easier to draw only the 
part lying in the first octant (Figure 10.3). 

An equation or inequality involving the three variables x, y, and z defines a subset 
of points in 3-space whose coordinates satisfy the equation or inequality. A single 
equation usually represents a surface (a two-dimensional object) in 3-space. 

EXAM p LE 2 (Some equations and the surfaces they represent) 

(a) The equation z = 0 represents all points with coordinates (x, y, 0), that is, the 
xy-p lane. The equation z = -2 represents all points with coordinates (x, y, -2) , 
that is, the horizontal plane passing through the point (0, 0, -2) on the z-axis. 

(b) The equation x = y represents all points with coordinates (x, x, z). This is a 
vertical plane containing the straight line with equation x = y in the xy-plane. 
The plane also contains the z-axis . (See Figure 10.4.) 

(c) The equation x + y + z = 1 represents all points the sum of whose coordinates 
is I. This set is a plane that passes through the three points (1, 0, 0), (0, 1, 0), 
and (0, 0, 1). These points are not collinear (they do not lie on a straight line), so 
there is only one plane passing through all three . (See Figure 10.5.) The equation 
x + y + z = 0 represents a plane parallel to the one with equation x + y + z = l 
but passing through the origin. 

(d) The equation x 2 + y 2 = 4 represents all points on the vertical circular cylinder 
containing the circle with equation x 2 + y 2 = 4 in the xy -plane. This cylinder has 
radius 2 and axis along the z-axis. (See Figure 10.6.) 

( e) The equation z = x 2 represents all points with coordinates (x, y, x 2). This surface 
is a parabolic cylinder tangent to the xy -plane along the y-axis. (See Figure 10.7 .) 

(f) The equation x2 + y2 + z2 = 25 represent s all points (x, y, z) at distance 5 from 
the origin . This set of points is a sphere of radius 5 centred at the origin. 

z z 

X 

Figure 10.6 The circular cylinder 
with equation x 2 + y2 = 4 

X 

Figure 10.7 The parabolic cylinder 
with equation z = x2 
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z 

X 

Figure 10.8 The cylinder 
y2 + (z - 1)2 = 4 and its axial line 
y2 + (z - 1)2 = 0 

SECTION 10.1: Analytic Geometry in Three Dimen sions 567 

Observe that equations in x, y , and z need not involve each variable explicitly. When 
one of the variable s is missing from the equation , the equation represents a surface 
parallel to the axis of the missing variable . Such a surface may be a plane or a cylinder . 
For example, if z is absent from the equation , the equation represents in 3-space a 
vertical (i.e. , parallel to the z-axis) surface containing the curve with the same equation 
in the xy-plane . 

Occasionally , a single equation may not represent a two-dimensional object (a 
surface). It can represent a one-dimensional object (a line or curve) , a zero -dimensional 
object (one or more points), or even nothing at all. 

EXAMPLE 3 

Solution 

Identify the graph s of : (a) y 2 + (z - 1 )2 = 4, (b) y 2 + (z -1 )2 = 0, 
(c) x 2 + y 2 + z2 = 0, and (d) x 2 + y2 + z2 = - 1. 

(a) Since x is absent, the equation y2 + (z - 1)2 = 4 represent s an object parallel to 
the x-axis. In the yz -plane the equation represents a circle of radiu s 2 centred at 
(y, z) = (0, 1). In 3-space it represents a horizontal circular cylinder, parallel to 
the x-axis , with axis one unit above the x -axi s. (See Figure 10.8.) 

(b) Since squares cannot be negative , the equation y 2 + (z - 1)2 = 0 implies that 
y = 0 and z = 1, so it represents points (x, 0, 1). All these points lie on the line 
parallel to the x-axi s and one unit above it. (See Figure 10.8.) 

(c) As in part (b) , x2 + y2 + z2 = 0 implie s that x = 0, y = 0, and z = 0. The 
equation represent s only one point , the origin . 

(d) The equation x 2 + y2 + z2 = -1 is not satisfied by any real numbers x , y , and z, 
so it represents no point s at all. 

A single inequality in x, y, and z typically represent s points lying on one side of the 
surface represented by the corre sponding equation (together with points on the surface 
if the inequality is not strict ) . 

EXAM p LE 4 (a) The inequality z > 0 represents all points above the xy -plane . 

(b) The inequality x 2 + y2 ::: 4 says that the square of the distance from (x, y, z) to 
the neare st point (0, 0, z) on the z-axi s is at least 4 . This inequality repre sents all 
points lying on or outside the cylinder of Example 2( d) . 

(c) The inequality x 2 + y 2 + z2 .::: 25 says that the square of the distance from (x , y , z) 
to the origin is no greater than 25. It represent s the solid ball of radius 5 centred at 
the origin , which consists of all points lying inside or on the sphere of Example 2(f) . 

Two equations in x, y, and z normally represent a one-dimensional object , the line or 
curve along which the two surface s represented by the two equation s intersect. Any 
point whose coordinate s satisfy both equation s must lie on both the surfaces, so must 
lie on their intersection. 

EXAMPLE 5 What sets of points in 3-space are represented by the following 
pairs of equations ? 

(a) {
x+y+ z =l 
y-2x=0 

(b) { 
x2 + Y2 + z2 = 1 
x + y =l 
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568 CHAPTER 10 Vectors and Coordinate Geometry in 3-Space 

Figure 10.9 

(a) The two planes intersect in a straight x 
line 

(b) The plane intersects the sphere in 
a circle 

z z 

x2 + y 2 + z2 = I 

x +y+ z =I 

y 

y X 

(a) (b) 

Solution 
(a) The equation x + y + z = 1 represents the oblique plane of Example 2(c), and the 

equation y - 2x = 0 represents a vertical plane through the origin and the point 
(1, 2, 0). Together these two equations represent the line of intersection of the two 
planes . This line passes through, for example, the points (0, 0, 1) and ( ½, i, 0). 
(See Figure 10.9(a).) 

(b) The equation x 2 + y2 + z2 = l represents a sphere of radius 1 with centre at the 
origin, and x + y = l represents a vertical plane through the points (I, 0, 0) and 
(0, 1, 0). The two surfaces intersect in a circle, as shown in Figure 10.9(b). The 
line from (1, 0, 0) to (0, l, 0) is a diameter of the circle , so the centre of the circle 
is(½,½ , 0), and its radius is ./2 / 2. 

In Sections 10.4 and 10.5 we will see many more examples of geometric objects in 
3-space represented by simple equations. 

Euclidean n-Space 
Mathematicians and users of mathematics frequently need to consider n-dimensional 
space, where n is greater than 3 and may even be infinite. It is difficult to visua lize a 
space of dimension 4 or higher geometrically. The secret to dealing with these spaces 
is to regard the points in n-space as being ordered n-tuples of real numbers; that is, 
(x1, x2, .. . , Xn) is a point in n-space instead of just being the coordinates of such a 
point. We stop thinking of points as existing in physical space and start thinking of 
them as algebraic objects. We usually denote n-space by the symbol JR" to show that 
its points are n-tuples of real numbers. Thus JR2 and JR3 denote the plane and 3-space , 
respectively. Note that in passing from JR3 to JR" we have altered the notation a bit: in 
JR3 we called the coordinates x , y, and z, while in JR" we called them x1, x2, ... and x,, 
so as not to run out of letters. We could, of course, talk about coordinates (x1, x2, x3) 
in JR3 and (x 1, x2) in the plane JR2 , but (x , y , z) and (x , y) are traditionally used there. 

Although we think of points in JR" as n-tuples rather than geometric objects, we 
do not want to lose all sight of the underlying geometry. By analogy with the two- and 
three-dimensional cases , we still consider the quantity 

j(y1 - x1)2 + (y2 - x2)2 + · · · + (y,, - x,,)2 

as representing the distan ce between the points with coordinates (x1, x2, . .. , x,,) and 
(y 1, Y2, . .. , y11). Also, we call the (n - l )-dimensional set of points in JR" that satisfy 
the equation x,, = 0 a hyperplane, by analogy with the plane z = 0 in JR3. 

Describing Sets in the Plane, 3-Space, and n-Space 
We conclude this section by collecting some definitions of terms used to describe sets 
of points in JR11 for n ::: 2. These terms belong to the branch of mathematics called 
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Figure 10.10 The closed disk S 

consisting of points (x, y) E R2 that 
satisfy x 2 + y2 :::: I . Note the shaded 
neighbourhoods of the boundary 
point and the interior point. 
bdry(S) is the circle x 2 + y 2 = 1 
int(S) is the open disk x 2 + y 2 < 1 
ext(S) is the open set x 2 + y2 > l 

EXE R C I S ES 10.1 

X 
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topology, and they generalize the notions of open and closed intervals and endpoints 
used to describe se ts on the real line R We state the definitions for JR11

, but we are 

most interested in the cases where n = 2 or n = 3. 

A neighbourhood of a point P in ]Rn is a set of the form 

B,(P) = {Q E JR11
: distance from Q to P < r} 

for some r > 0. 

For n = l, if p E JR, then B,.(p) is the open interval (p - r, p + r) centred at p. 

For n = 2, B,. ( P) is the open disk of radius r centred at point P. 

For n = 3, B,( P) is the open ball of radius r centred at point P. 

A set S is open in ]Rn if every point of S has a neighbourhood contained in S. 
Every neighbourhood is itself an open set. Other examples of open sets in JR2 include 
the sets of points (x , y ) such that x > 0, or such that y > x2 , or even such that y =I= x 2 . 

Typically, sets defined by strict inequalities (using > and < ) are open. Examples in JR3 

include the sets of points (x , y, z) satisfying x + y + z > 2, or 1 < x < 3. 

The whole space JR" is an open set in itself. For technical reasons , the empty set 
(containing no points) is also considered to be open. (No point in the empty set fails to 
have a neighbourhood contained in the empty set.) 

The complement, sc, of a set S in JR11 is the set of all point s in JR11 that do not 
belong to S. For example, the complement of the set of points (x, y) in IR2 such that 
x > 0 is the set of points for which x _:::: 0. A set is said to be closed if its complement 
is open . Typically , sets defined by nonstrict inequalitie s (using ::: and _::::) are closed. 
Closed intervals are closed sets in R Since the whole space and the empty set are both 
open in IR11 and are complements of each other, they are also both closed . They are the 
only sets that are both open and closed. 

A point P is called a boundary point of a set S if every neighbourhood of P 
contains both points in Sand points in sc. The boundary , bdry(S), of a set Sis the set 
of all boundary points of S. For example , the boundary of the closed disk x 2 + y2 _:::: l 
in JR2 is the circle x 2 + y2 = l. A closed set contains all its boundary points. An open 
set contains none of its boundary points. 

A point P is an interior point of a set S if it belongs to S but not to the boundary 
of S. P is an exterior point of S if it belongs to the complement of S but not to 
the boundary of S. The interior , int(S) , and exterior, ext(S), of S consist of all the 
interior point s and exterior points of S, respectively. Both int(S) and ext(S) are ope n 
sets. Sis open if and only if int(S) = S. Sis closed if and only if ext(S) = sc. See 
Figure 10.10. 

Find the distance between the pairs of points in Exercise s 1-4. and (0, 1, 1). 

1. (0, 0, 0) and (2, -1, -2) 2. ( - 1, - 1, - l) and (l, 1, l) 

3. (1, 1, 0) and (0, 2, -2) 4. (3, 8, -1) and (-2 , 3, -6) 

S. What is the shortest distance from the point (x, y, z) to 
(a) the xy- plane? (b) the x-axis? 

6. Show that the triangle with vertices (1, 2, 3) , (4, 0, 5), and 
(3, 6, 4) has a right angle . 

7. Find the angle A in the triangle with vertices 
A= (2, -1 , -1) , B = (0, 1, -2), and C = (1, -3, 1). 

8. Show that the triangle with vertices(! , 2, 3) , (1, 3, 4), and 
(0, 3, 3) is equilateral. 

9. Find the area of the triangle with vertices (1, 1, 0), (1, 0, 1), 

10. What is the distance from the origin to the point (1, 1, ... , 1) 
in R"? 

11. What is the distance from the point (I, 1, .. . , 1) inn.- pace 
to the closest point on the x 1-axis? 

In Exercises 12-23, describe (and sketch if possible) the set of 
points in R3 that satisfy the given equation or inequality. 

12. z = 2 

14. Z = X 

16. x2 + y2 + z2 = 4 

13. y c': -1 

15. x + y = I 

17. (x - 1)2 + (y + 2) 2 + (z - 3)2 = 4 

www.konkur.in



570 CHAPTER 10 Vectors and Coordinate Geometry in 3-Space 

18. x 2 + y2 + z2 = 2z 19. y 2 + z2 S 4 

20. x 2 + z2 = 4 21. z = y2 
{ 

x2 + Y2 + z2 < I 
32. -

Jx2 + y2.::::z 

22. z :::: J x 2 + y 2 23. X + 2y + 3z = 6 

In Exercises 24-32 , describe (and sketch if possible) the set of 

In Exercises 33-36 , specify the boundary and the interior of the 
plane sets S whose points (x, y) satisfy the given conditions. Is S 
open, closed, or neither? 

points in Ill3 that satisfy the given pair of equations or inequalities. 
33. 0 < x 2 + y2 < 1 

35. x + y = l 
24. { x = I 

y=2 
25. 

26. { x2 + y2 + z2 = 4 27. 
z= I 

28. { x2 + Y2 + z2 = 4 
x2 + z2 = 1 

29. 

30. { y ::'.: X 
z s y 

31. 

{ X = 1 
y= z 

{ x2 + y2 + z2 = 4 
x2 + y2 + z2 = 4x 

{ x
2 + y2 = 1 

z = x 

{ x
2 + y2 S l 

z:::: y 

34. X ::'.: 0, y < 0 

36. lxl + lyl S 1 

In Exercises 37-40 , specify the boundary and the interior of the 
sets S in 3-space whose points (x, y, z) satisfy the given 
conditions. ls S open, closed, or neither? 

38. X ::'.: 0, y > 1, Z < 2 

39. (x - z)2 + (y - z)2 = 0 40. x 2 + y2 < 1, y + z > 2 

• 
Vectors 

---------------------

A 

Figure 10.11 The vector v = AB 

~ 
_____________ ... y 

X 

Figure 10.12 AB= XY 

y 

P=(p ,q) 

___...-: q-b 
~ .............. : 

A=(a ,b) p - a 

X=(p - a,q-b) 

Q X 

B 

B 

Figure 10.13 Components of a vector 

A vector is a quantity that involves both magnitude (size or length) and direction . 
For instance , the velocity of a moving object involves its speed and direction of motion , 
so is a vector. Such quantitie s are represented geo metrically by arrows (directed line 
~me nts) and are often actually identified with these arrows. For instance , the vector 
AB is an arrow with tail at the point A and head at the point B. In print, such a vector 
is usually denoted by a single letter in boldface type , 

V= AB. 

(See Fig ure 10.11.) In handwritin g, an arrow over a letter (If = AB) can be used to 
denote a vector. The magnitude of the vector v is the length of the arrow and is denoted 
lvl or IABI. 

While vectors have magnitude and direct ion , they do not generally have position ; 
that is, they are not regarded as being in a particular place. Two vectors , u and v, are 
considered equal if they have the same length and the same direction, even if their 
representative arrows do not coincide . The arrows must be parallel , have the same 
length , and point in the same direction. In Figure 10.12, for example, if ABY Xis a 
parallelogram, then AB = XY. 

For the moment , we consider plane vectors , that is, vectors whose representative 
arrows lie in a plane. If we introduce a Cartesian coordi nate syste m into the plane, we 
can talk about the x and y compo nents of any vector . If A = (a , b) and P = (p, q), 
as shown in Figure 10.13, then the x and y components of AP are, respectively, p - a 
and q - b. Note that if O is the origin and X is the point (p - a, q - b) , then 

IAPI = j( p - a)2 + (q - b)2 = Ifill 
~ q-b =-* 

slope of A I' = -- = slope of Ox. 
p-a 

Hence AP = OX. In general , two vectors are equal if and only if they have the same 
x compone nts and y components. 

There are two important algebraic operations defined for vectors: addition and 
scalar multiplication. 
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I 

Figure 10.14 

(a) Vector addition 

(b) Scalar multiplication 

DEFINITION 

I 

Figure 10.15 The components of a sum 
of vectors or a scalar multiple of a vector 
is the same sum or multiple of the 
corresponding components of the vectors 
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Vector addition 

Given two vectors u and v, their sum u +vis defined as follows. If an arrow 
representing v is placed with its tail at the head of an arrow representing u, then 
an arrow from the tail of u to the head of v represents u + v. Equivalently , if u 
and v have tails at the same point , then u +vis represented by an arrow with its 
tail at that point and its head at the opposite vertex of the parallelogram spanned 
by u and v. This is shown in Figure 10.14(a). 

V 

2v 

V -v 

--½v 

(a) (b) 

Scalar multiplication 

If v is a vector and t is a real number (also called a scalar), then the scalar 
multiple tv is a vector with magnitude It I times that of v and direction the same 
as v if t > 0, or opposite to that of v if t < 0. See Figure 10. l 4(b ). If t = 0, 
then tv has zero length and therefore no particular direction. It is the zero vector, 
denoted 0. 

Suppose that u has components a and band that v has component s x and y. Then 
the components of u + v are a + x and b + y, and those of tv are tx and ty. See 
Figure 10.15. 

y y 

a+x tx 

X 

In JR2 we single out two particular vectors for special attention. They are 

(i) the vector i from the origin to the point (1, 0) , and 

(ii) the vector j from the origin to the point (0, 1). 

ty 

X 

Thus , i has components I and 0, and j has components O and 1. These vectors are 
called the standard basis vectors in the plane. The vector r from the origin to the 
point (x , y) has components x and y and can be expressed in the form 

r= (x,y)=x i+ yj. 
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y 

(x , y) 

j 

Figure 10.16 Any vector is a linear 
combination of the basis vectors 

X 

In the first form we specify the vector by listing its components between angle brackets; 
in the second we write r as a linear combination of the standard basis vectors i and 
j . (See Figure 10.16.) The vector r is called the position vector of the point (x, y). 
A position vector has its tail at the origin and its head at the point whose position it is 

specifying. The length of r is lrl = J x 2 + y 2. 

More generally, the vector AP from A = (a , b) to P = (p, q) in Figure 10.13 
can also be written as a list of components or as a linear combination of the standard 
basis vectors: 

AP= (p - a, q - b) = (p - a)i + (q - b)j . 

Sums and scalar multiples of vectors are easily expressed in terms of components. If 
u = u 1 i + u2j and v = v Ii + vij , and if t is a scalar (i.e., a real number), then 

u + v = (u1 + v1)i + (u2 + v2)j, 

tu= (tu1)i + (tu 2)j. 

The zero vector is O = Oi + Oj. It has length zero and no specific direction. For any 
vector u we have Ou = 0. A unit vector is a vector of length 1. The standard basis 
vectors i and j are unit vectors. Given any nonzero vector v, we can form a unit vector 
v in the same direction as v by multiplying v by the reciprocal of its length (a scalar): 

V = C~1) V. 

EXAMPLE 1 If A = (2, -1), B = (-l, 3), and C = (0, 1), express each of 
the following vectors as a linear combination of the standard basis 

vectors: 

ca) AB Cb) BC Cc) AC Cd) AB+ BC 
(f) a unit vector in the direction of AB. 
Solution 
Ca) AB= c-1 - 2)i + (3 - c-1))j = -3i + 4j 

Cb) BC = co - c-1))i + o - 3)j = i - 2j 

Cc) AC = co - 2)i + o - c-1))j = -2i + 2j 

Cd) AB+ BC = Xe = -2i + 2j 

Ce) 2AC - 3EB 

Ce) 2AC - 3EB = 2(-2i + 2j) - 3(-i + 2j) = -i - 2j 

"'7"'7'. AB 3 4 
(f) A unit vector in the direction of Alf is "'7"'7'. = --i + -j. 

IA11I 5 5 

Implicit in the above example is the fact that the operations of addition and scalar 
multiplication obey appropriate algebraic rules , such as 

u+v = v+u, 

(u + v) + w = u + (v + w) , 

u-v=u+(-l)v , 

t(u + v) =tu+ tv . 

Vectors in 3-Space 
The algebra and geometry of vectors described here extends to spaces of any number 
of dimensions ; we can still think of vectors as represented by arrows, and sums and 
scalar multiples are formed just as for plane vectors . 
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P=(x j y , z) 

..... l,. .. ·<l'. 
y 

X y 

Figure 10.17 The standard basis vectors i, 
j, and k 

y 

- lOOi X 

Figure 10.18 Velocity diagram for the 
aircraft in Example 3 
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Given a Cartesian coordinate system in 3-space , we define three standard basis 
vectors, i, j, and k, represented by arrows from the origin to the points (1, 0, 0) , 
(0, 1, 0), and (0, 0, 1), respectively. (See Figure 10.17.) Any vector in 3-space can be 
written as a linear combination of these basis vectors ; for instance, the position vector 
of the point (x, y, z) is given by 

r = xi + yj + zk. 

We say that r has components x, y, and z. The length of r is 

lrl = Jx2 + y2 + z2. 

If P1 = (x 1 , y 1, z 1) and P2 = (x2, Y2, z2) are two point s in 3-space , then the vector 
v = P1 Pi from P1 to P2 has components x2 - x 1 , Y2 - Y1 , and z2 - z 1 and is therefore 
represented in terms of the standard basis vectors by 

v = P1 P2 = (x2 - x1)i + (y2 - Y1)j + (z2 - z 1)k. 

EXAMPLE 2 If u = 2i + j - 2k and v = 3i - 2j - k, find u + v, u - v, 3u - 2v , 
lu l, lv l, and a unit vector u in the direction ofu. 

Solution 

u + v = (2 + 3)i + (1 - 2)j + (-2 - l)k = Si - j - 3k 

U - V = (2 - 3)i + (1 + 2)j + (-2 + l)k = - i + 3j - k 

3u - 2v = (6 - 6)i + (3 + 4)j + (- 6 + 2)k = 7j - 4k 

lul = .J4 + 1 + 4 = 3, lvl = .J9 + 4 + 1 = .Ji4 

u = C!
1

) u = ~i + ~j _ ~k. 

The following example illustrates the way vectors can be used to solve problems 
involving relative velocities . If A move s with velocity v A rel B relative to B, and B 
moves with velocity v a rel c relative to C, then A moves with velocity v A rel c relative 
to C, where 

VA rel C = VA rel B + VB rel C · 

EXAM p L E 3 An aircraft cruises at a speed of 300 km/h in still air. If the wind 
is blowing from the east at 100 km/h , in what direction should the 

aircraft head in order to fly in a straight line from city P to city Q, 400 km north 
northeast of P? How long will the trip take? 

Solution The problem is two-dimensional , so we use plane vectors . Let us choo se 
our coordinate system so that the x - and y-axes point east and north , respectively. 
Figure 10.18 illustrates the three velocitie s that must be considered. The velocity of 
the air relative to the ground is 

Vair rel ground = -100 i. 

If the aircraft heads in a direction making angle 0 with the positive direction of the 
x -axis, then the velocity of the aircraft relative to the air is 

Vaircraft rel air = 300 COS 0 i + 300 sin 0 j. 

Thus, the velocity of the aircraft relative to the ground is 

Vaircraft rel ground = Vaircraft rel air + Vair rel ground 

= (300 cos 0 - 100) i + 300 sin 0 j. 
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We want this latter velocity to be in a north-northeasterly direction , that is, in the 
direction making angle 3ir / 8 = 67 .5° with the positive direction of the x-axis. Thus , 
we will have 

Vaircra ft rel ground= V [(cos67 .5°) i + (sin67 .5°) j] , 

where v is the actual groundspeed of the aircraft. Comparing the two expressions for 
Vaircraft rel ground we obtain 

300 COS 0 - 100 = V COS 67 .5° 

300sin0 = v sin67.5 ° . 

Eliminating v between these two equations we get 

300 cos 0 sin 67 .5° - 300 sin 0 cos 67 .5° = 100 sin 67 .5°, 

or 

3 sin(67.5° - 0) = sin67 .5°. 

Therefore , the aircraft should head in direction 0 given by 

0 = 67 .5° - arcs in G· sin 67 .5°) ~ 49 .56°, 

that is, 49.56° north of east. The groundspeed is now seen to be 

v = 300sin0 / sin67.5 ° ~ 247.15 km/h . 

Thus, the 400 km trip will take about 400/ 247.15 ~ 1.618 hours, or about 1 hour and 
37 minutes . 

Hanging Cables and Chains 
When it is suspended from both ends and aJJowed to hang under gravity, a heavy cable 
or chain assumes the shape of a catenary curve, which is the graph of the hyperbolic 
cosine function. We will demonstrate this now, using vectors to keep track of the 
various forces acting on the cable. 

Suppose that the cable has line density o (units of mass per unit length) and hangs 
as shown in Figure 10.19. Let us choose a coordinate system so that the lowest point 
L on the cable is at (O, Yo); we will specify the value of Yo later. If P = (x , y) is 
another point on the cable, there are three forces acting on the arc LP of the cable 
between L and P . These are all forces that we can represent using horizontal and 
vertical components . 

(i) The horizontal tension H = - Hi at L. This is the force that the part of the 
cable to the left of L exerts on the arc LP at L. 

(ii) The tangential tension T = T1zi + Tvj. This is the force the part of the cable 
to the right of P exerts on arc LP at P. 

(iii) The weight W = -ogsj of arc LP , where g is the acceleration of gravity and 
s is the length of the arc LP. 

Since the cable is not moving , these three forces must balance ; their vector sum must 
be zero: 

T+H+W=O 

(T1z - H)i + (T,i - ogs)j = 0 
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Figure 10.19 A hanging cable and the 
forces acting on arc LP 
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y 

L 

H=-Hi 

YO 
W = -c5gsj 

X 

Thus , T1i = H and Tv = ogs . Since T is tangent to the cable at P, the slope of the 
cable there is 

dy Tv ogs 
- = - = - =as , 
dx T1, H 

where a = og / H is a constant for the given cable. Differentiating with respect to x 

and using the fact, from our study of arc length, that 

ds 

dx 

we obtain a second-order differential equation , 

d2y =ads = a 1 + (dy)2 
dx 2 dx dx ' 

to be solved for the equation of the curve along which the hanging cable lies. The 
appropriate initial conditions are y = Yo and d y / dx = 0 at x = 0. 

Since the differential equation depends on dy / dx rather than y, we substitute 
m (x) = dy / dx and obtain a first-order equation for m : 

dm r:-:--;; 
- =av I +m2 . 
dx 

This equation is separable; we integrate it using the substitution m = sinh u: 

f hdm=fadx 
I +m2 

f du = f cosh u du = ax + C 1 

J 1 + sinh2 u 

sinh- 1 m = u =a x + Ci 

m = sinh(ax + C 1) . 

Since m = dy / dx = 0 at x = 0, we have O = sinh C 1, so C 1 = 0 and 

dy . - = m = srnh(ax) . 
dx 
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DEFINITION 

I 

This equation is easily integrated to find y. (Had we used a tangent substitution instead 
of the hyperbolic sine substitution form we would have had more trouble here .) 

l 
y = - cosh(ax) + C2. 

a 

If we choose yo= y( O) = 1/ a, then, substituting x = 0 we will get C2 = 0. With this 
choice of yo, we therefore find that the equation of the curve along which the hanging 
cable lies is the catenary 

1 
y = - cosh(ax) . 

a 

Remark If a hanging cable bears loads other than its own weight, it will assume 
a different shape. For example , a cable supporting a level suspension bridge whose 
weight per unit length is much greater than that of the cable will assume the shape of 
a parabola. See Exercise 34 below. 

The Dot Product and Projections 
There is another operation on vectors in any dimension by which two vectors are 
combined to produce a number called their dot product. 

The dot product of two vectors 

Given two vectors, u = u, i + u2j and v = v, i + vij in JR2, we define their dot 
product u • v to be the sum of the products of their corresponding components: 

The terms scalar product and inner product are also used in place of dot product. 
Similarly , for vectors u = u, i + u2j + u3k and v = v Ii + vij + v3k in JR3, 

The dot product has the following algebraic properties , easily checked using the defi
nition above: 

U•V=VeU 

u • (v + w) = u • v + u • w 

(tu) • v = u • (tv) = t(u • v) 

u • u = iu l2. 

(commutative law), 

(distributive law), 

(for real t ), 

The real significance of the dot product is shown by the following result, which could 
have been used as the definition of dot product: 

TH E O REM If 0 is the angle between the directions of u and v (O s 0 s n: ) , then I u o v- lullvlcos0. 

In particular, u • v = 0 if and only if u and v are perpendicular. (Of course, the zero 
vector is perpendicular to every vector.) 
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Figure 10.20 Applying the Cosine Law to 
a triangle reveals the relationship between 
dot the product and angle between vectors 

DEFINITION 

I 

V 

Figure 10.21 The scalar projections and 
the vector projection Uv of vector u along 
vector v 

SECTION 10.2: Vectors 577 

PROOF Refer to Figure 10.20 and apply the Cosine Law to the triangle with the 
arrows u, v, and u - v as sides : 

[u[2 + [v[2 
- 2[u[ [v[ cos0 = [u - v[2 = (u - v) • (u - v) 

= u • (u - v) - v • (u - v) 

=U•u-uev-veu+v•v 

= [u[2 + [v[2 
- 2u • v 

Hence [u[ [vi cos 0 = u • v, as claimed. 

EXAMPLE 4 Find the angle 0 between the vectors u = 2i + j - 2k and v = 
3i - 2j - k. 

Solution Solving the formula u • v = I u 11 v I cos 0 for 0, we obtain 

0 = cos -- = cos 
- I U • V - I ((2)(3) + (1)(-2) + (-2)( -1)) 

[ullv[ 3v'I4 
2 = cos- 1 r,;, ~ 57.69°. 

V 14 

It is sometimes useful to project one vector along another. We define both scalar and 
vector projection s of u in the direction of v: 

Scalar and vector projections 

The scalar projection s of any vector u in the direction of a nonzero vector v is 
the dot product of u with a unit vector in the direction of v. Thus, it is the number 

U•V 
s = -- = lu[ cos0, 

[vi 

where 0 is the angle between u and v. 

The vector projection , Uv, of u in the direction of v (see Figure 10.21) is the 
scalar multiple of a unit vector v in the direction of v, by the scalar projection of 
u in the direction of v; that is, 

u•v ~ uev 
vector projection of u along v = llv = -- v = --

2 
v. 

[vi [vi 

Note that Is I is the length of the line segment along the line of v obtained by dropping 
perpendiculars to that line from the tail and head of u. (See Figure 10.21.) Also, s is 
negative if 0 > 90°. 

It is often necessary to express a vector as a sum of two other vectors parallel and 
perpendicular to a given direction. 

EXAMPLE 5 

Solution 

Express the vector 3i + j as a sum of vectors u + v, where u is 
parallel to the vector i + j and v is perpendicular to u. 

METHOD I (Using vector projection) Note that u must be the vector projection of 
3i + j in the direction of i + j. Thus, 

(3i + j) • Ci + j) c· + .) 4 c· + .) 2. + 2. 
U = [i + j[Z I J = 2 I J = I J 

V = 3i + j - U = i - j. 
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EXERCISES 10.2 

METHOD II (From basic principles) Since u is parallel to i + j and vis perpendicular 
to u, we have 

u = t(i + j) and V • (i + j) = 0, 

for some scalar t . We want u + v = 3i + j. Take the dot product of this equation with 
i + j: 

U • (i + j) + V • (i + j) = (3i + j) • (i + j) 
t (i + j) • (i + j) + 0 = 4. 

Thus 2t = 4, so t = 2. Therefore , 

u = 2i + 2j and V = 3i + j - U = i - j. 

Vectors in n-Space 
All the above ideas make sense for vectors in spaces of any dimension . Vectors in !Rn 
can be expressed as linear combinations of the n unit vectors 

e1 from the origin to the point (1, 0, 0, . .. , 0) 

e2 from the origin to the point (0, 1, 0, . . . , 0) 

e0 from the origin to the point (0, 0, 0, . .. , 1). 

These vectors constitute a standard basis in !Rn. The n-vector x with components 
xi , x2 , . .. , X n is expressed in the form 

The length of xis lxl = J x 12 + x2 2 + · · · + Xn 2 . The angle between two vectors x 
and y is 

1 X • y 0 =COS- --, 
lxllYI 

where 

X • Y = X I Y I + X2Y2 + · · · + Xn Yn. 

We will not make much use of n-vectors for n > 3 but you should be aware that 
everything said up until now for 2-vectors or 3-vectors extends ton-vectors . 

1. Let A= (-1,2), B = (2,0) , C = (1 , -3) , D = (0,4) . A's+ AC+ XD 
(h) 3 . Express each of the following vectors as a linear combination 

of the standard basis vectors i and j in ~ 2 . 

(a) AB, (b) BA, (c) AC, (d) ED, (e) DA, 

(f) AB - lie , (g) AC - 2AB + 3CD, and 

In Exercises 2-3 , calculate the following for the given vectors u 
and v: 

(a) u + v, u - v, 2u - 3v, 

(b) the lengths lul and lvl, 
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(c) unit vectors ii and v in the directions of u and v, 
respectively, 

(d) the dot product u • v, 

(e) the angle between u and v, 

(f) the scalar projection of u in the direction of v, 

(g) the vector projection of v along u. 
2. u = i - j and v = j + 2k 

3. U = 3i + 4j - 5k and V = 3i - 4j - 5k 

4. Use vectors to show that the triangle with vertices ( -1 , 1), 
(2, 5), and (10, -1) is right-angled . 

In Exercises 5-8 , prove the stated geometric result using vectors. 

8 5. The line segment joining the midpoints of two sides of a 
triangle is parallel to and half as long as the third side. 

8 6. If P, Q, R, and Sare midpoints of sides AB, BC, CD, and 
DA, respectively, of quadrilateral ABC D, then PQRS is a 
parallelogram. 

D 7. The diagonals of any parallelogram bisect each other. 

D 8. The medians of any triangle meet in a common point. (A 
median is a line joining one vertex to the midpoint of the 
opposite side. The common point is the centroid of the 
triangle.) 

9. A weather vane mounted on the top of a car moving due 
north at 50 km/h indicates that the wind is coming from the 
west. When the car doubles its speed, the weather vane 
indicates that the wind is coming from the northwest. From 
what direction is the wind coming, and what is its speed? 

10. A straight river 500 m wide flows due east at a constant speed 
of 3 km/h. If you can row your boat at a speed of 5 km/h in 
still water, in what direction should you head if you wish to 
row from point A on the south shore to point B on the north 
shore directly north of A? How long will the trip take? 

D 11. In what direction should you head to cross the river in 
Exercise 10 if you can only row at 2 km/h, and you wish to 
row from A to point C on the north shore, k km downstream 
from B? For what values of k is the trip not possible? 

12. A certain aircraft flies with an airspeed of 750 km/h. In what 
direction should it head in order to make progress in a true 
easterly direction if the wind is from the northeast at 
100 km/h? How long will it take to complete a trip to a city 
1,500 km from its starting point? 

13. For what value oft is the vector 2ti + 4j - (10 + t)k 
perpendicular to the vector i + tj + k? 

14. Find the angle between a diagonal of a cube and one of the 
edges of the cube. 

15. Find the angle between a diagonal of a cube and a diagonal 
of one of the faces of the cube. Give all possible answer s. 

8 16. (Direct ion cos ines) If a vector u in JR3 makes angles a, /J, 
and y with the coordinate axes, show that 

ii = cos ai + cos /Jj + cosy k 

is a unit vector in the direction of u, so 
cos2 a + cos2 fJ + cos2 y = 1. The numbers cos a., cos fJ, 
and cos y are called the direction cosines of u. 

17. Find a unit vector that makes equal angles with the three 
coordinate axes. 
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18. Find the three angles of the triangle with vertices (1, 0, 0), 
(0, 2, 0) , and (0, 0, 3). 

8 19. If r 1 and r 2 are the position vectors of two points, P1 and P2, 
and l is a real number, show that 

is the position vector of a point P on the straight line joining 
P1 and P2. Where is P if l = 1/ 2? if l = 2/ 3? if l = -1 ? 
if l = 2? 

20. Let a be a nonzero vector. Describe the set of all points in 
3-space whose position vectors r satisfy a • r = 0. 

21. Let a be a nonzero vector, and let b be any real number. 
Describe the set of all points in 3-space whose position 
vectors r satisfy a• r = b. 

In Exercises 22-24 , u = 2i + j - 2k , v = i + 2j - 2k, and 
w = 2i - 2j + k. 

22. Find two unit vectors each of which is perpendicular to both 
U and V. 

23. Find a vector x satisfying the system of equations x • u = 9, 
X • V = 4, X • W = 6. 

24. Find two unit vectors each of which makes equal angles with 
U, V, and W. 

25. Find a unit vector that bisects the angle between any two 
nonzero vectors u and v. 

26. Given two nonparallel vectors u and v, describe the set of all 
points whose position vectors rare of the form r = l u + µv , 
where l and µ are arbitrary real numbers . 

8 27. (The triangle inequality) Let u and v be two vectors. 

(a) Show that In+ vl2 = lu l2 + 2u • v + lvl2 . 

(b) Show that u • v ::: lnllv l. 

(c) Deduce from (a) and (b) that lu + vi ::: lul + lvl. 

28. (a) Why is the inequality in Exercise 27(c) called a triangle 
inequality ? 

(b) What condition s on u and v imply that 
ln + vl = lnl + lvl? 

29. (Orthonormal bases) Let u = ¾i + ;j, v = ; i - ¾j, and 
w = k. 

(a) Show that lul = lvl = lwl = 1 and 
u • v = u • w = v • w = 0. The vectors u, v, and war e 
mutually perpendicular unit vectors and as such are said 
to constitute an orthonormal basis for JR3 . 

(b) If r =x i + yj + zk , show by direct calculation that 

r = (r • u)u + (r • v)v + (r • w)w. 

30. Show that if u, v, and w are any three mutually 
perpendi cular unit vectors in JR3 and r = au + bv + cw, then 
a = r • u, b = r • v, and c = r • w. 

31. (Resolving a vector in perpendicular directions) If a 
is a nonzero vector and w is any vector, find vectors u and v 
such that w = u + v, u is parallel to a, and vis perpendicular 
to a. 
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8 32. (Expressing a vector as a linear combination of two 
other vectors with which it is coplanar) Suppose that u, 
v, and rar e position vectors of points U, V, and P, 
respectively , that u is not parallel to v, and that P lies in the 
plane conta ining the origin, U, and V . Show that there exist 
numbers A andµ such that r = l u + µv. Hint: Resolve both 
v and r as sums of vectors parallel and perpendicular to u as 
suggested in Exercise 31. 

weight supported by the arc LP in Figure 10.19 is Jgx rather 
than Jgs, show that the cable assumes the shape of a 
parabola rather than a catenary. Such is likely to be the case 
for the cables of a suspension bridge. 

gg 35. At a point P, 10 m away horizontally from its lowest point 
L , a cab le makes an angle 55° with the horizontal. Find the 
length of the cable between L and P. 

36. Calculate the length s of the arc LP of the hanging cable in 
Figure 10.19 u ing the equatio n y = (1/ a)cos h(a x) 
obtai ned for the cable. Hence , verify that the magnitude 

D 33. Given constants r, s, and t , with r # 0 ands # 0, and given a 
vector a satisfying lal2 > 4rst , solve the system of equations 

{ 
rx + sy = a 
X e y = t 

for the unknown vectors x and y. 
Hanging cables 

T = IT I of the tension in the cab le at any point P = (x, y) is 
T = Jgy. 

34. (A suspension bridge) If a hanging cable is supporting 
weight with constant horizontal line density (so that the 

gg 37. A cable 100 m long hangs between two towers 90 m apart so 
that its ends are attached at the same height on the two 
towers. How far below that height is the lowest point on the 
cab le? 

• 
The Cross Product in 3-Space 

---------------------
There is defined, in 3-space on ly, another kind of product of two vectors called a cross 
produ ct or vector produ ct, and denoted uxv . 

DEFINITION 

I 

p 

Figure 10.22 u x v is perpendicular to 
both u and v and has length equal to the 
area of the shaded parallelogram 

THEOREM 

I 

For any vectors u and v in JH:.3, the cross product u x v is the unique vector 
sat isfying the following three condit ion s: 

(i) (u x v) • u = 0 and (u x v) • v = 0, 

(ii) lu x vi = lul lvl sin 0, where 0 is the angle between u and v, and 

(iii) u, v, and u x v form a right-handed triad. 

If u and v are parallel , condition (ii) says that u x v = 0, the zero vector. Otherwi se, 
through any point in IR3 there is a unique straig ht line that is perpendicular to both u 
and v. Condition (i) says that u x v is parallel to this line. Condition (iii) determine s 
which of the two direction s along thi s line is the direction of u x v; a right-handed 
screw advances in the direction of u x v if rotated in the direction from u toward v. 
(Thi s is equivalent to say ing that the thumb , forefinger , and middle finger of the right 
hand can be made to point in the directions of u, v, and uxv , respectively .) 

If u and v have their tails at the point P , then u xv is norma l (i.e., perpendicular) 
to the plane through P in which u and v lie and , by co nditi on (ii), u xv has len gth 
eq ual to the area of the parallelogram spanned by u and v. (See Figure 10.22.) These 
properties make the cross product very usefu l for the de scription of tangent planes and 
norm al line s to surfaces in IR3 . 

The definiti on of cross product given above does not involve any coordinate system 
and therefore does not directly show the components of the cross product with respect 
to the standard basis. These compone nts are provided by the fo llow ing theor em: 

Components of the cross product 

If u = u 1 i + uij + u3k and v = v Ii+ vij + v3k , then 

PROOF First , we observe that the vector 

w = (u2v3 - u3v2)i + (u 3v 1 - u1v3)j + (u1v 2 - u2v1)k 
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is perpendicular to both u and v since 

u • w = u1(u2v 3 - u 3v2 ) + u2(u 3v 1 - u1v 3) + u3(u1v2 - u2v1) = 0, 

and similarly v • w = 0. Thus, u x vi s parallel tow. Next , we show that wand u x v 
have the same length . In fact, 

lwl2 = (u2v 3 - u3v 2)
2 + (u 3v t - u 1 v3)

2 + (u I v2 - u2v 1 )
2 

22 22 2 22 22 = U2V3 + U3V2 - u2v 3u 3v2 + U3V 1 + U1V3 

2 2 2 2 2 2 - u 3v 1u1v3 +u 1v 2 +u 2v 1 - u1v2u2v1, 

while 

lo x vl2 = lul2 lvl2 sin2 0 

= lol2 1vl2 (l - cos 2 0) 

= lul2 1vl2 
- (u • v) 2 

= (ui + Ui + u j)(vf +Vi+ Vj) - (u1v1 + u2v2 + u3v3)
2 

2 2 2 2 2 2 2 2 2 2 2 2 2. 2 2 2 2 2 = U1V1 + U1V2 + U1V3 + U2V1 + U2V2 + U2V3 + U3V1 + U3V2 + U3V3 

- ufvf - u ~v? - u ~v5 - 2u1v1u2v2 - 2u1v1u3v3 - 2u2v 2u 3v3 

= lwl
2

. 

Since w is parallel to, and has the same length as, u xv , we must have either u xv= w 
or u x v = -w. It remains to be shown that the first of these is the correct choice. 
To see this, suppo se that the triad of vectors u, v, and w is rigidly rotated in 3-space 
so that u points in the direction of the positive x-axis and v lies in the upper half of 
the xy -plane. Then u = u1i, and v = vii+ v2j, where ui > 0 and v2 > 0. By 
the "r ight-hand rule" u x v must point in the direction of the positive z-axi s. But 
w = u I v2k does point in that direction , sou x v = w, as asserted. 

The formula for the cross product in term s of components may seem awkward and 
asymmetric. As we shall see, however , it can be written more easily in term s of a 
determinant. We introduce determinants later in this section. 

EXAMPLE l (Calculating cross products) 

(a) i X i = 0, j X j = k, 

j X j = 0, j X k = i, 
k X k = 0, k X i = j, 

j Xi= - k, 

k X j = - i , 

i X k = - j. 

(b) (2i + j - 3k) x (-2 j + Sk) 

= (0)(5) - (-2)(-3))i + (( -3)( 0) - (2)(5))j + ((2)(-2) - (l)(O))k 

= - i - lOj - 4k. 

The cross product has some but not all of the properties we usually ascribe to product s. 
We summarize its algebraic propertie s as follows: 

Properties of the cross product 

If u, v, and w are any vector s in ffi.3, and tis a real number (a scalar), then 

(i) U XU= 0, 

(ii) u x v = - v x u, (The cross prod uct is anticommutative.) 

(iii) (u + v) X w = u X w + V X w, 
(iv) u X (v + w) = u XV + u X w, 

(v) (tu) x v = u x (tv) = t( u x v), 

(vi) u • (u x v) = v • (u x v) = 0. 
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Figure 10.23 Upward and downward 
diagonals 

Figure 10.24 WARNING: This method 

does not work for 4 x 4 or higher-order 
determinants! 

These identities are all easily verified using the components or the definition of the 
cross product or by using propertie s of determinants discussed below. They are left as 
exercises for the reader. Note the absence of an associative law. The cross product is 
not associative. (See Exercise 21 at the end of this section.) In general, 

u x (v x w) -I= (u x v) x w. 

Determinants 
In order to simp lify certain formulas such as the component representation of the cross 
produ ct, we introduce 2 x 2 and 3 x 3 determinants. General n x n determinants are 
normally studied in courses on linear algebra ; we will encounter them in Section 10.7. 
In this section we will outline enough of the properties of determinants to enable us to 
use them as shorthand in some otherwise complicated formulas. 

A determinant is an expression that involves the elements of a square array (matrix) 
of numbers . The determinant of the 2x2 array of numbers 

a b 
e d 

is denoted by enclosing the array between vertical bars , and its value is the number 
ad - be: 

I : ! I = ad - be. 

This is the product of element s in the downward diagonal of the array minus the product 
of elements in the upward diagonal , as shown in Figure 10.23. For example, 

I~ ; I = (1)(4) _ (2)(3) = -2 . 

Simil arly, the determinant of a 3 x 3 array of numbers is defined by 

a b e 
d e f =aei+bfg+edh-gee-hfa-idb. 
g h 

Observe that each of the six products in the value of the determinant involves exact ly 
one element from each row and exactly one from each column of the array. As such , 
each term is the prod uct of elements in a diagonal of an extended array obtained by 
repeating the first two columns of the array to the right of the third column , as shown 
in Figure 10.24. The value of the determin ant is the sum of products corresponding 
to the three comp lete downward diagonals minus the sum corresponding to the three 
upward diagonals. With practice you will be able to form these diagonal products 
without havin g to write the extended array. 

If we group the terms in the expansion of the determinant to factor out the elements 
of the first row, we obtain 

b 
e 

h 
{ I = a(ei - f h) - b(di - f g) + e(dh - eg) 

=al~ {I-bl: {l+el: ~I· 
The 2 x 2 determinants appearing here ( called minors of the given 3 x 3 determinant) are 
obtained by deleting the row and column containing the corres pondin g element from 
the original 3 x 3 determinant. Thi s proce ss is called expanding the 3 x 3 determinant 
in minors about the first row. 
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used with the terms of an 
expansion in minors of a 3 x 3 
determinant is given by 
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Such expansions in minors can be carried out about any row or column. Note that 
if i + j is an odd number, a minus sign appears in a term obtained by multiplying 
the element in the ith row and jth column and its corresponding minor obtained by 
deleting that row and column. For example, we can expand the above determinant in 
minors about the second column as follows: 

I 

a b 
d e 

g h 

= -bdi + bfg + eai - ecg - haf + hcd. 

(Of course, this is the same value as the one obtained previously.) 

EXAMPLE 2 
I 

1 4 
-3 1 

2 2 :~ I = 3 1 ~ =; I + 1 I; =; I 
= 3(-8) + 1 = -23. 

We expanded about the second row; the third column would also have been a good 
choice. (Why?) 

Any row (or column) of a determinant may be regarded as the components of a vector. 
Then the determinant is a linear function of that vector. For example , 

I 
a b c I la b 
d e f =s d e 

sx + tl sy + tm sz + tn x y 

c I I a b f +t d e 

z l m ~I 
because the determinant is a linear function of its third row. This and other properties of 
determinants follow directly from the definition. Some other properties are summarized 
below. These are stated for rows and for 3 x 3 determinants , but similar statements can 
be made for columns and for determinants of any order. 

Properties of determinants 

(i) If two rows of a determinant are interchang ed, then the determinant 
changes sign: 

;1=-1:: 
l g h 

(ii) If two rows of a determinant are equal , the determinant has value 0: 

l
a b c I 
a b ~ = 0. 
g h l 

(iii) If a multiple of one row of a determinant is added to another row, the 
value of the determinant remain s unchanged : 

b 
e + tb 

h 

c I I a b f '. tc = d e 
l g h 
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C=(0,-1,1) 

Figure 10.25 

V X W 
..... ~ ...... . 

.. ···· ·· .. 

Figure 10.26 

DEFINITION 

I 

The Cross Product as a Determinant 
The elements of a determinant are usually numbers because they have to be multiplied 
to get the value of the determinant. However, it is possible to use vectors as the elements 
of one row (or column) of a determinant. When expanding in minors about that row 
(or column), the minor for each vector element is a number that determi nes the sca lar 
multiple of the vector. The formula for the cross product of 

presented in Theorem 2 can be expressed symbolically as a determinant with the 
standard basis vectors as the elements of the first row: 

j 
u2 

V2 

~ I = I u2 u3 I i - I u I 
D2 V3 VI 

V3 

U3 I j + I U[ 
V3 Vi 

u2 I k. 
v2 

The formula for the cross product given in that theorem is just the expansion of this 
determinant in minors about the first row. 

EXAMPLE 3 Find the area of the triangle with vertices at the three points 
A= (I , I , 0) , B = (3, 0 , 2), and C = (0, -1, 1). 

Solution Two sides of the triangle (Figure 10.25) are given by the vectors: 

AB= 2i-j + 2k and AC = -i - 2j + k. 

The area of the triangle is half the area of the parallelogram spanned by AB and AC. 
By the definition of cross product, the area of the tria ngle must therefore be 

1 1 I i - [AB x AC[ = - I 2 
2 2 -1 

. k I _{ 2 I 
-2 1 

1 l~---5 
= - [3i - 4j - 5k[ = --J9 + 16 + 25 = -./2 square units . 

2 2 2 

A para llelepiped is the three-dimensional analog ue of a parallelogram. It is a solid 
with three pairs of parallel planar faces . Each face is in the shape of a para llelogram . 
A rectangular brick is a special case of a paral lelepiped in which nonpara llel faces 
intersect at right angle s. We say that a parallelepiped is spanned by three vectors 
coinciding with three of its edges that meet at one vertex. (See Figure 10.26 .) 

EXAMPLE 4 Find the volume of the parallelepiped spanned by the vectors u, v, 
and w. 

Solution The volume of the parallelepiped is equal to the area of one of its faces , say, 
the face spanned by v and w, mu ltiplied by the height of the parallelepiped measured 
in a direction perpendicular to that face. The area of the face is [v x w[. Since v x w is 
perpendicular to the face, the height h of the para llelepiped will be the abso lute value 
of the scalar projection of u along v x w. If 0 is the angle between u and v x w, then 
the volume of the parallelepiped is given by 

Volume= [u[[ v x wJ I cos0[ = [u • (v x w)J cubic units. 

The quantity u • (v x w) is called the sca lar tripl e product of the vectors u, v, 
and w. 
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The scalar triple product is easily expressed in terms of a determinant. If 
u = u Ji+ ui,j + u3k , and similar representations hold for v and w, then 

u • (v x w) = u J I v2 

w2 

=I~~ ~~ 
W J W2 

V3 I I V J - u 2 
W3 W J 

v2 I 
W2 

U3 I V3 . 

W3 

The volume of the parallelepiped spanned by u, v, and w is the absolute value of this 
determinant. 

Using the properties of the determinant , it is easily verified that 

u • (v x w) = v • (w x u) = w • (u x v). 

(See Exercise 18 below.) Note that u, v, and w remain in the same cyclic order in these 
three expressions. Reversing the order would introduce a factor -1: 

u • (v x w) = -u • (w xv) . 

Three vectors in 3-space are said to be coplanar if the parallelepiped they span has 
zero volume; if their tails coincide, three such vectors must lie in the same plane. 

u, v, and war e coplanar {=::=? u • (v x w) = 0 

I 

U t 

VJ 

W J 

U3 I 
V3 = 0. 
W3 

Three vectors are certainly coplanar if any of them is 0, or if any pair of them is parallel. 
If neither of these degenerate conditions apply, they are only coplanar if any one of 
them can be expressed as a linear combination of the other two. (See Exercise 20 
below.) 

Applications of Cross Products 
Cross products are of considerable importance in mechanics and electromagnetic the
ory, as well as in the study of motion in general. For example: 

(a) The linear velocity v of a particle located at position r in a body rotating with 
angular velocity Q about the origin is given by v = Q x r. (See Section 11.2 for 
more details.) 

(b) The angular momentum of a planet of mass m moving with velocity v in its orbit 
around the sun is given by h = r x mv, where r is the position vector of the planet 
relative to the sun as origin. (See Section 11.6.) 

(c) If a particle of electric charge q is travelling with velocity v through a magnetic 
field whose strength and direction are given by vector B, then the force that the 
field exerts on the particle is given by F = qv x B. The electron beam in a 
television tube is controlled by magnetic fields using this principle. 

(d) The torque T of a force F applied at the point P with position vector r about 
another point Po with position vector ro is defined to be 

T = PoP x F = (r - ro) x F. 

This torque measures the effectiveness of the force Fin causing rotation about Po. 
The direction of T is along the axis through Po about which F acts to rotate P . 
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z 

y 

Figure 10.27 The force on the handle is 
500 N in a direction directly toward you 

EXE RC IS ES 10.3 

EXAM p LE 5 An automobile wheel has centre at the origin and axle along the 
y-axis. One of the retaining nuts holding the wheel is at position 

Po = (0, 0, 10). (Distances are measured in centimetres.) A bent tire wrench with arm 
25 cm long and inclined at an angle of 60° to the direction of its handle is fitted to the 
nut in an upright direction, as shown in Figure 10.27. If a horizontal force F = 500i 
newtons (N) is applied to the handle of the wrench, what is its torque on the nut? 
What part (component) of this torque is effective in trying to rotate the nut about its 
horizontal axis? What is the effective torque trying to rotate the wheel? 

Solution The nut is at position ro = 10k, and the handle of the wrench is at position 

r = 25 cos 60°j + (10 + 25 sin 60°)k ~ 12.5j + 31.65k. 

The torque of the force F on the nut is 

T = (r - ro) x F 

~ (12.5j + 21.65k) X 500i ~ 10,825j - 6,250k , 

which is at right angles to F and to the arm of the wrench. Only the horizontal 
component of this torque is effective in turning the nut. This component is 10,825 N ·cm 
or 108.25 N·m in magnitude. For the effective torque on the wheel itself, we have to 
replace ro by 0, the position of the centre of the wheel. In this case the horizontal 
torque is 

31.65k X 500i ~ 15,825j , 

that is, about 158.25 N·m. 

1. Calculate u x v if u = i - 2j + 3k and v = 3i + j - 4k. 0 ::: a - /J ::: 7r. Hint: Regard u and v as position vectors. 
What is the area of the parallelogram they span? 2. Calculate u x v if u = j + 2k and v = -i - j + k. 

3. Find the area of the triangle with vertices (1, 2, 0), (1, 0, 2), 
and (0, 3, 1). 

4. Find a unit vector perpendicular to the plane containing the 
points (a, 0, 0), (0, b, 0) , and (0, 0, c). What is the area of 
the triangle with these vertices? 

5. Find a unit vector perpendicular to the vectors i + j and 
j +2k . 

6. Find a unit vector with positive k component that is 
perpendicular to both 2i - j - 2k and 2i - 3j + k. 

Verify the identities in Exercises 7-11, either by using the 
definition of cross product or the properties of determinants. 

7. U X U = 0 8. U X V = -V X U 

9. (u + v) x w = u x w + v x w 

10. (tu) x v = u x (tv) = t(u xv) 

11. u • (u x v) = v • (u x v) = 0 

12. Obtain the addition formula 

sin(a - /J) = sin a cos /J - cosa sin /J 

by examining the cross product of the two unit vectors 
u =co s/J i + sin/Jj and v = cosai + sinaj. Assume 

13. If u + v + w = 0, show that u x v = v x w = w x u. 

8 14. (Volume of a tetrahedron) A tetrahedron is a pyramid 
with a triangular base and three other triangular faces. It has 
four vertices and six edges. Like any pyramid or cone, its 
volume is equal to ½ Ah , where A is the area of the base and 
h is the height measured perpendicular to the base. If u, v, 
and w are vectors coinciding with the three edges of a 
tetrahedron that meet at one vertex, show that the tetrahedron 
has volume given by 

1 1 I LI I 
Volume= 6 lu • (v x w)I = 6 I v1 

WJ 

u 3 I 
V3 1. 
W3 

Thus, the volume of a tetrahedron spanned by three vectors is 
one-sixth of the volume of the parallelepiped spanned by the 
same vectors. 

15. Find the volume of the tetrahedron with vertices ( 1, 0, 0), 
(1, 2, 0), (2, 2, 2), and (0, 3, 2). 

16. Find the volume of the parallelepiped spanned by the 
diagonals of the three faces of a cube of side a that meet at 
one vertex of the cube. 
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17. For what value of k do the four points (1, 1, -1) , (0, 3, -2), 
(-2, 1, 0), and (k, 0, 2) all lie in a plane? 

0 23. (The vector triple product) The product u x (v x w) is 
called a vector triple product. Since it is perpendicular to 
v x w, it must lie in the plane of v and w. Show that 0 18. (The scalar triple product) Verify the identities 

u • (v x w) = v • (w x u) = w • (u x v). 
u x (v x w) = (u • w)v - (u • v)w. 

19. If u • (v x w) cfa O and xis an arbitrary 3-vector, find the 
numbers A, µ, and v such that 

Hint: This can be done by direct calculation of the 
components of both sides of the equation, but the job is much 
easier if you choose coordinate axes so that v lies along the 
x-axis and w lies in the xy -plane. 

x = ,lu + µv + vw. 
24. If u, v, and ware mutually perpendicular vectors, show that 

u x (v x w) = 0. What is u • (v x w) in this case? 

25. Show that u x (v x w) + v x (w x u) + w x (u x v) = 0. 

26. Find all vectors x that satisfy the equation 
20. If u • (v x w) = 0 but v x w cp 0, show that there are 

constants A and µ such that (- i + 2j + 3k) X X = i + 5j - 3k. 

u =h+µw. 

27. Show that the equation 
Hint: Use the result of Exercise 19 with u in place of x and 
v x w in place of u. (-i + 2j + 3k) X X = i + 5j 

21. Calculate u x (v x w) and (u x v) x w, given that 
u = i + 2j + 3k, v = 2i - 3j, and w = j - k. Why would 
you not expect these to be equal? 

22. Does the notation u • v x w make sense? Why? How about 
the notation u x v x w? 

has no solutions for the unknown vector x. 

28. What condition must be satisfied by the nonzero vectors a 
and b to guarantee that the equation a x x = b has a solution 
for x? Is the solution unique? 

. _ P_la_n_e_s_a_nd_L_i_ne_s _______________ _ 
A single equation in the three variables, x, y , and z, constitutes a single constraint on 
the freedom of the point P = (x , y, z) to lie anywhere in 3-space . Such a constraint 
usually results in the loss of exactly one degree of freedom and so forces P to lie on a 
two-dimensional surface. For example, the equation 

x2 + y2+ z2 =4 

states that the point (x , y , z) is at distance 2 from the origin. All points satisfying this 
condition lie on a sphere (i.e., the surface of a ball) of radius 2 centred at the origin . 
The equation above therefore represents that sphere , and the sphere is the graph of the 
equation. In this section we will investigate the graphs of linear equations in three 
variables. 

Planes in 3-Space 
Let Po = (xo, Yo, zo) be a point in IR3 with position vector 

ro = xoi + yoj + zok. 

If n = Ai+ Bj + Ck is any given non zero vector, then there exists exactly one plane 
(flat surface) passing through Po and perpendicular to n. We say that n is a normal 
vector to the plane. The plane is the set of all points P for which PoP is perpendicular 
ton. (See Figure 10.28.) 

If P = (x, y, z) has position vector r, then PoP = r - ro. This vector is 
perpendicular to n if and only if n • (r - ro) = 0. This is the equation of the plane 
in vector form. We can rewrite it in terms of coordinates to obtain the corresponding 
scalar equation. 
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Figure 10.28 The plane through Po with 

normal n contains all point s P for which 
Pof' is perpendicular to n 

X 

z 

y 

The point-normal equation of a plane 

The plane having nonzero normal vector n = Ai+ Bj + Ck, and passing 
through the point Po = (xo, yo, zo) with position vector ro, has equation 

n • (r - ro) = 0 

in vector form, or, equivalently , 

A(x - xo) + B(y - Yo)+ C(z - zo) = 0 

in scalar form . 

The scalar form can be written more simply in the standard form Ax+ By + Cz = D, 
where D = Axo + Byo + Czo. 

If at least one of the constants A, B, and C is not zero, then the linear equation 
Ax + By + C z = D always represents a plane in JR3. For example , if A f=. 0, it 
represents the plane through (D / A, 0, 0) with normal vector n = Ai + Bj + Ck . A 
vector normal to a plane can always be determined from the coefficients of x, y, and z. 
If the constant term D = 0, then the plane must pass through the origin . 

EXAMPLE 1 (Recognizing and writing the equations of planes) 

(a) The equation 2x - 3y - 4z = 0 represents a plane that passes through the origin 
and is normal (perpendicular ) to the vector n = 2i - 3j - 4k. 

(b) The plane that passes through the point (2, 0, 1) and is perpendicular to the straight 
line passing through the points (1, 1, 0) and ( 4, - 1, - 2) has normal vector n = 
(4 - l)i + (-1 - l)j + (-2 - O)k = 3i - 2j - 2k. Therefore , its equation is 
3(x - 2) - 2(y - 0) - 2(z - 1) = 0, or, more simply, 3x - 2y - 2z = 4. 

(c) The plane with equation 2x - y = l has a normal 2i - j that is perpendicular to 
the z-axis. The plane is therefore parallel to the z-axis. Note that the equation is 
independent of z. In the xy- plane , the equation 2x - y = 1 represents a straight 
line; in 3-space it represents a plane containing that line and parallel to the z-axis . 
What does the equation y = z represent in JR3? the equation y = -2? 

(d) The equation 2x + y + 3z = 6 represents a plane with normal n = 2i + j + 3k. In 
this case we cannot directly read from the equation the coordinate s of a particular 
point on the plane, but it is not difficult to discover some points. For instance , if 
we put y = z = 0 in the equation we get x = 3, so (3, 0, 0) is a point on the plane. 
We say that the x-intercept of the plane is 3 since (3, 0, 0) is the point where the 
plane intersects the x-axis. Similarly, the y-intercept is 6 and the z-intercept is 2 
because the plane intersects the y- and z-axes at (0, 6, 0) and (0, 0, 2) , respectively. 
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Figure 10.29 The plane with intercepts a, 
b, and con the coordinate axes 

Figure 10.30 A pencil of planes 
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(e) In general, if a, b, and c are all nonzero , the plane with intercepts a, b, and c on 
the coordinate axes has equation 

~ + ~ + ~ = 1, 
a b C 

called the intercept form of the equation of the plane. (See Figure 10.29.) 

EXAMPLE 2 Find an equation of the plane that passes through the three points 
P = (1, 1, 0) , Q = (0, 2, 1), and R = (3, 2, -1) . 

Solution We need to find a vector, n, normal to the plane. Such a vector will be 
perpendicular to the vectors PQ = -i + j + k and PR = 2i + j - k. Therefore , we 
can use 

~I= -2i + j _ 3k . 
-1 

We can use this normal vector together with the coordinates of any one of the three 
given points to write the equation of the plane. Using point P leads to the equation 
-2(x - 1) + I (y - 1) - 3(z - 0) = 0, or 

2x - y + 3z = 1. 

You can check that using either Q or R leads to the same equation. (If the cross product 
PQ x PR had been the zero vector, what would have been true about the three points 
P, Q, and R? Would they have determined a unique plane?) 

EXAMPLE 3 Show that the two planes x - y = 3 and x + y + z = 0 intersect, 
and find a vector, v, parallel to their line of intersection. 

Solution The two planes have normal vectors 

D1 = i -j and D2 = i + j + k, 

respectively . Since these vectors are not parallel , the planes are not parallel, and they 
intersect in a straight line perpendicular to both 01 and n 2. This line must therefore be 
parallel to 

v - n, x n, -1 l -: ~ I--i -i+ 2k 

A family of planes intersecting in a straight line is called a pencil of planes. (See 
Figure 10.30.) Such a pencil of planes is determined by any two nonparallel planes in 
it, since these have a unique line of intersection. If the two nonparallel planes have 
equations 

and 

then , for any value of the real number .?i., the equation 

represents a plane in the pencil. To see this, observe that the equation is linear, and so 
represents a plane, and that any point (x , y, z) satisfying the equations of both given 
planes also satisfies this equation for any value of .?i.. Any plane in the pencil except the 
second defining plane , A 2x + B2y + C2z = D2, can be obtained by suitably choosing 
the value of .?i.. 
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Figure 10.31 The line through Po parallel 
to V 

EXAMPLE 4 Find an equation of the plane passing through the line of intersec
tion of the two planes 

X + y - 2z = 6 and 2x - y+ z =2 

and also passing through the point (-2, 0, 1). 

Solution For any constant A, the equation 

x + y - 2z - 6 + l(2x - y + z - 2) = 0 

represents a plane and is satisfied by the coordinates of all points on the line of 
intersection of the given planes. This plane passes through the point (-2, 0, 1) if 
-2 - 2 - 6 + l(-4 + 1 - 2) = 0, that is, if A = -2. The equation of the required 
plane therefore simplifies to 3x - 3y + 4z + 2 = 0. (This solution would not have 
worked if the given point had been on the second plane , 2x - y + z = 2. Why?) 

Lines in 3-Space 
As we observed above, any two nonparallel planes in JR3 determine a unique (straight) 
line of intersection, and a vector parallel to this line can be obtained by taking the cross 
product of normal vectors to the two planes. 

Suppose that ro = xoi + yoj + zok is the position vector of point Po and v = 
ai + bj + ck is a nonzero vector. There is a unique line passing through Po parallel 
to v. If r = xi + yj + zk is the position vector of any other point P on the line, then 
r - ro lies along the line and so is parallel to v. (See Figure 10.3 !.) Thus, r - ro = tv 
for some real number t . This equation , usually rewritten in the form 

r = ro + tv , 

is called the vector parametric equation of the straight line. All points on the line 
can be obtained as the parameter t ranges from - oo to oo . The vector v is called a 
direction vector of the line. 

z 

X 
y 

Breaking the vector parametric equation down into its components yields the 
scalar parametric equations of the line: 

I
X= XO+ at 
y =YO+ bt 
z = zo + ct. 

(-oo < t < oo) 
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These appear to be three linear equations , but the parameter t can be eliminated to give 
two linear equations in x , y , and z . If a -I 0, b -I 0, and c -I 0, then we can solve each 
of the scalar equations fort and so obtain 

X -Xo 

a 
Y - YO Z - Zo 

b C 

which is called the standard form for the equations of the straight line through 
(xo, YO, zo) parallel to v. The standard form must be modified if any component of v 

vanishes. For example , if c = 0, the equations are 

X -xo 

a 

Y - YO 
b 

z = zo. 

Note that none of the above equation s for straight lines is unique; each depends on the 
particular choice of the point (xo, yo, zo) on the line. In general , you can always use 
the equations of two nonparallel plane s to repre sent their line of intersection. 

EXAM p LE 5 (Equations of straight lines) 

(a) The equations 

(

x =2+t 
y =3 
z = -4t 

repre sent the straight line through (2, 3, 0) parallel to the vector i - 4k. 

(b) The straight line through (1, -2 , 3) perpendicular to the plane x - 2y + 4z = 5 
is parallel to the normal vector i - 2j + 4k of the plane. Therefore, the line has 
vector parametric equation 

r = i - 2j + 3k + t(i - 2j + 4k) , 

or scalar parametric equations 

(

x=l+t 
y = -2-2t 
z = 3 + 4t . 

Its standard form equations are 

x-1 y+2 z -3 
-- --

1 -2 4 

EXAM p LE 6 Find a direction vector for the line of intersection of the two plane s 
x + y - z = 0 and y + 2z = 6, and find a set of equations for the 

line in standard form. 

Solution The two planes have respective normals n, = i + j - k and 0 2 = j + 2k. 
Thu s, a direction vector of their line of intersection is 

V = Di X 0 2 = 3i - 2j + k. 

We need to know one point on the line in order to write equation s in standard form. We 
can find a point by assigning a value to one coordinate and calculating the other two 
from the given equations. For instance , taking z = 0 in the two equations we are led to 
y = 6 and x = -6 , so ( -6 , 6, 0) is one point on the line. Thu s, the line has standard 
form equations 

x+6 y -6 ------ z 3 - -2 - . 

This answer is not unique; the coordinates of any other point on the line could be used 
in place of (-6, 6, 0). You could even find a direction vector v by subtracting the 
position vectors of two different points on the line. 
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Figure 10.32 The distance from Po to the 
plane :P is the length of the vector 
projection of P Po along the normal n to 
:P, where P is any point on :P 

Distances 
The distance between two geometric objects always means the minimum distance 
between two points, one in each object. In the case ofjlat objects like lines and planes 
defined by linear equations, such minimum distances can usually be determined by 
geometric arguments without having to use calculus . 

EX A M p L E 7 (Distance from a point to a plane) 

(a) Find the distance from the point Po = (xo, yo, zo) to the plane :P having equation 
Ax + By + Cz = D. 

(b) What is the distance from (2, -1, 3) to the plane 2x - 2y - z = 9? 
z 

X 
y 

Solution 
(a) Let ro be the position vector of Po, and let n = Ai+ A+ Ck be the normal to :P. 

Let P1 be the point on :P that is closest to Po. Then P1 o is perpendicular to :P and 
so is parallel to n. The distance from Po to :Pis s = I P1 Po I. If P , having position 
vector r , is any point on :P, then s is the length of the projection of P Po = ro - r 
in the direction of n. (See Figure 10.32.) Thus, 

s = I PPo • n I = I (ro - r) • nl = lro • n - r • nl. 
lnl ln l lnl 

Since P = (x , y, z) lies on :P, we haver• n =Ax+ By + Cz = D. In terms of 
the coordinates (xo, Yo, zo) of Po, we can therefore represent the distance from Po 
to :Pas 

IAxo + Byo + Czo - D I 
S = 

(b) The distance from (2, - 1, 3) to the plane 2x - 2y - z = 9 is 

s = _12_(2-;:::)=-=2=(-=l)=-=1=(=3)=-=9_1 = _1-_6_1 = 2 units . 
J22 + (-2)2 + (-1)2 3 

EXAMPLE 8 (Distance from a point to a line) 

(a) Find the distance from the point Po to the straight line £ through P1 parallel to 
the nonzero vector v. 

(b) What is the distance from (2, 0, -3) to the liner= i + (1 + 3t)j - (3 - 4t)k? 
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(a) The distance from Po to the 
line£ is s = I PoPi I sin0 

(b) The distance between the lines 
£ 1 and £ 2 is the length of the x 
projection of P1 P2 along the vector 
Vi X V2 

SECTION 10.4: Planes and Lines 593 

Solution 
(a) Let ro and r, be the position vectors of Po and P, , respectively. The point P2 on 

£ that is closest to Po is such that P2 Po is perpendicular to £. The distance from 
Po to£ is 

where 0 is the angle between ro - r, and v. (See Figure 10.33(a).) Since 

l(ro - r1) xvi = lro - r, I lvl sin 0, 

we have 

l(ro - r,) xvi 
s= 

!vi 

(b) The liner= i + (1 + 3t)j - (3 - 4t)k passes through P1 = (1, 1, -3) and is 
parallel to v = 3j + 4k. The distance from Po = (2, 0, -3) to this line is 

1((2- l)i+(O- l)j+(-3+3)k) X (3j+4k)I 
S=-------V---;=3 2:a:::=+=4~2,---------

1 (i - j) x (3j + 4k) I I - 4i - 4j + 3kl J4J . 
= ------- = ------ = -- umts. 

5 5 5 

z z 

y X y 

(a) (b) 

EXAM p LE g (The distance between two lines) Find the distance between the 
two lines £ 1 through point Pi parallel to vector v I and £ 2 through 

point P2 parallel to vector v2. 

Solution Let r, and r2 be the position vectors of points P, and P2, respectively. If 
P3 and P4 (with position vectors r3 and r4) are the points on £ 1 and £2, respectively, 
that are closest to one another, then P3 P4 is perpendicular to both Ii nes and is therefore 
parallel to v, x v2. (See Figure 10.33(b).) P3P4 is the vector projection of P1 P2 = 
r2 - r, along v, x v2. Therefore , the distances= IP3P4I between the lines is given 
by 

l(r2 - rt)• (v, x v2)I 
s = lr4 - r3I = -------- . 

Iv, x v2I 
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EX E R C I S ES 10.4 

1. A single equation involving the coordinates (x, y, z) need 
not always represent a two-dimensional "surface" in IR3. For 
example, x 2 + y2 + z2 = 0 represents the single point 
(0, 0, 0) , which has dimension zero. Give examples of single 
equations in x, y, and z that represent 

(a) a (one-dimensional) straight line , 

(b) the whole of JR3, 

(c) no points at all (i.e ., the empty set). 

In Exercises 2-9, find equations of the planes satisfying the given 
conditions. 

2. Passing through (0, 2, -3) and normal to the vector 
4i -j - 2k 

3. Passing through the origin and having normal i - j + 2k 

4. Passing through (1 , 2 , 3) and parallel to the plane 
3x + y - 2z = 15 

5. Passing through the three points (1, 1, 0), (2, 0, 2), and 
(0, 3, 3) 

6. Passing through the three points (-2 , 0 , 0), (0, 3, 0) , and 
(0 , 0, 4) 

7. Pas sing through (1, l , 1) and (2, 0, 3) and perpendicular to 
the plane x + 2y - 3z = 0 

8. Passing through the ljne of intersection of the planes 
2x + 3y - z = Oandx -4 y +2 z = -5 , and passing 
through the point ( - 2, 0 , - 1) 

9. Passing through the line x + y = 2, y - z = 3, and 
perpendicular to the plane 2x + 3 y + 4z = 5 

10. Under what geometric condition will three distinct points in 
JR3 not determine a uruque plane passing through them? 
How can this condi tion be expressed algebraically in terms 
of the position vectors, r,, r2 , and r3, of the three points? 

11. Give a condition on the position vectors of four points that 
guarantees that the four points are coplanar, that is, all lie 
on one plane. 

Describe geometrically the one-parameter families of planes in 
Exercises 12-14. (l is a real parameter .) 

12. X + y + Z = A. 0 13. x + AY + AZ = k 

0 14. h + J"i=12y = 1. 

In Exercises 15-19, find equations of the line specified in vector 
and scalar parametric forms and in standard form. 

15. Through the point (I, 2, 3) and para llel to 2i - 3j - 4k 

16. Through (-I, 0, I) and perpendicular to the plane 

2x - y + 7z = 12 

17. Through the origin and parallel to the line of intersection of 
the plane s x + 2y - z = 2 and 2x - y + 4z = 5 

18. Thro ugh (2, -1, - 1) and parallel to each of the two planes 
x + y = 0 and x - y + 2z = 0 

19. Through ( 1, 2, -1) and making equal angles with the 
positive directions of the coordinate axes 

In Exercises 20-22 , find the equations of the given line in 
standard form. 

20. r = (! - 2t)i + (4 + 3t)j + (9 - 4t) k. 

{ 

x = 4- St 
21. y = 3t 

z =7 
22 { X - 2y + 3z = 0 

• 2x + 3y - 4z = 4 

23. If P1 = (x1, YI, z 1) and P2 = (x2, Y2, z2), show that the 
equations 

I
x= x, + t(x 2 - x ,) 

y = y 1+t( y2-y ,) 

z = z , +t(z2-z 1) 

repr esent a line through P1 and P2. 

24. What points on the line in Exercise 23 correspond to the 
parameter values t = - 1, t = 1/ 2, and t = 2? Describe their 
locat ions. 

25. Under what conditio ns on the position vectors of four 
distinct point P1, P2, P3, and ?4 will the straight line 
through P1 and P2 intersect the straight line through P3 and 
?4 at a unique point ? 

Find the required distances in Exercises 26-29. 

26. From the origin to the plane x + 2y + 3z = 4 

27. From(! , 2 , 0) to the plane 3x - 4y - Sz = 2 

28. From the origin to the line x + y + z = 0, 2x - y - Sz = 1 

29. Between the lines 

30. 

{ 

X + 2y = 3 
y +2 z = 3 

and {
x+y+z=6 
X - 2z = -5 

. y+3 z- 1 . 
Show that the line x - 2 = -- = -- 1s parallel to the 

2 4 
plan e 2y - z = l. What is the distance between the line and 
the plane? 

In Exercises 31-32 , desc1ibe the one-parameter fami lies of 
straight lines represented by the given equations. (l is a real 
parameter.) 

0 31. (l - l )(x - xo) = l (y - yo), z = zo. 

0 32. ~ = Y~Yo = z - zo. 
1 - A.2 /l 

33. Why does the factored second-degree equation 

repre sent a pair of plane s rather than a single straight line? 
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• 
Quadric Surfaces 

---------------------
The most general second-degree equation in three variables is 

Figure 10.34 

(a) The circular cylinder 
x2 + y2 = a 2 

(b) The parabolic cylinder z = x2 

Ax 2 + By 2 + cz2 + Dxy + Ex z + Fy z + Gx +H y + / z = J. 

We will not attempt the (rather difficult) task of classifying all the surfaces that can be 
represented by such an equation , but will examine some interesting special cases . Let 
us observe at the outset that if the above equation can be factored in the form 

then the graph is, in fact, a pair of planes, 

and 

or one plane if the two linear equations represent the same plane. This is considered a 
degenerate case. Where such factorization is not possible , the surface ( called a quadric 
surface) will not be flat, although there may still be straight lines that lie on the surface. 
Nondegenerate quadric surfaces fall into the following six categories. 

Spheres. The equation x 2 + y 2 + z2 = a2 represent s a sphere of radius a centred at 
the origin. More generally, 

(x - xo)2 + (y - Yo)2 + (z - zof = a2 

represents a sphere of radius a centred at the point (xo, YO, zo). If a quadratic equation 
in x, y , and z has equal coefficients for the x 2 , y 2, and z2 terms and has no other 
second-degree terms, then it will represent , if any surface at all, a sphere. The centre 
can be found by completing the squares as for circles in the plane. 

Cylinders. The equation x 2 + y2 = a2 , being independent of z , represents a right
circular cylinder of radius a and axis along the z-axis. (See Figure 10.34(a).) The 
intersection of the cylinder with the horizontal plane z = k is the circle with equation s 

{ 
x2 + y2 = a2 

z =k. 

Quadric cylinders also come in other shapes: elliptic, parabolic, and hyperbolic. For 
instance , z = x2 represents a parabolic cylinder with vertex line along the y-axis. (See 
Figure 10.34(b).) In general , an equation in two variables only will represent a cylinder 
in 3-space. 

z z 

y 

X 

X 

(a) (b) 
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Figure 10.35 

(a) The circular cone a 2z2 = x2 + y2 

x2 y2 z2 
(b) The ellipsoid a2 + b2 + c2 = l 

Cones. The equation z2 = x 2 + y2 represents a right-circular cone with axis along 
the z-axis . The surface is generated by rotati ng about the z-axis the line z = y in 
the yz-plane. This generator makes an angle of 45° with the axis of the cone. Cross
sections of the cone in planes para! lei to the xy- plane are circles. (See Figure I 0.35(a).) 
The equation x 2 + y 2 = a 2 z2 also represents a right-circular cone with vertex at the 
origin and axis along the z-axis but having semi-vertical angle a. = tan- 1 a. A circular 
cone has plane cross -sectio ns that are elliptical, parabolic, and hyperbolic. Conversely, 
any nondegenerate quadric cone has a direction perpendicular to which the cross
sections of the cone are circular. In that sense, every quadric cone is a circular cone, 
although it may be oblique rather than right-c ircular in that the line joining the centres 
of the circular cross -sections need not be perpendicular to those cross -sections. (See 
Exercise 24.) 

z z 

y y 

X X a 

(a) (b) 

Ellipsoids. The equation 

x2 y 2 22 

-+-+-=l 
a 2 b2 c2 

represents an ellipsoid with semi -axes a , b, and c. (See Figure 10.35(b).) The surface is 
oval, and it is enclosed inside the rectangular parallelepiped -a S x S a, -b S y S b, 
-c S z S c. If a = b = c, the ellipsoid is a sphere. In general, all plane cross-sections 
of ell ipsoids are ellipses. This is easy to see for cross-sections parallel to coordin ate 
planes , but somewhat harder to see for other planes . 

Paraboloids. The equations 

and 
x2 y2 

z =---
a 2 b2 

represent , respectively, an elliptic paraboloid and a hyperbolic paraboloid . (See 
Figure 10.36(a) and (b).) Cross-sections in planes z = k (k being a positive constant) 
are ellipses (circles if a = b) and hyperbolas, respectively. Parabolic reflective mirror s 
have the shape of circular paraboloids. The hyperbolic paraboloid is a ruled surface. 
(A ruled surface is one through every point of which there passes a straight line lying 
wholly on the surface. Cones and cylinders are also examp les of ruled surfaces.) There 
are two one-parameter families of straight lines that lie on the hyperboli c paraboloid: 

! AZ =~ - i; 
I X y 
-=-+
}, a b 

and 

1 
X y 

µ z = ; + b 
l X y 

- - ---
µ a b 

where A and µ are real parameter s. Every point on the hyperbolic paraboloid lies on 
one line of each family. 
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Figure 10.36 

x2 y 2 
(a) The elliptic paraboloid z = 2 + 2 a b 
(b) The hyperbolic paraboloid 

x2 y2 
z =---

a 2 b2 

Figure 10.37 

(a) The hyperboloid of one sheet 
x2 Y2 z 2 
-+---=l 
a 2 b2 c2 

(b) The hyperboloid of two sheets 
x2 Y2 22 
-+- - - = -1 
a 2 b2 c2 

z 

X 

(a) 

Hyperboloids. The equation 

x2 Y2 z2 
-+---=1 
a2 b2 c2 

SECTION 10.5: Quadric Surfaces 597 

z 

y 

(b) 

represents a surface called a hyperboloid of one sheet. (See Figure 10.37(a) .) The 
equation 

x2 Y2 z2 
-+- - - =-1 
a2 b2 c2 

represents a hyperboloid of two sheets. (See Figure 10.37(b).) Both surfaces 

z z 

y y 

X X 

(a) (b) 

have elliptical cross-sections in horizontal planes and hyperbolic cross-sections in 
vertical planes. Both are asymptotic to the elliptic cone with equation 

they approach arbitrarily close to the cone as they recede arbitrarily far away from the 
origin. Like the hyperbolic paraboloid, the hyperboloid of one sheet is a ruled surface . 
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EXE RC IS ES 10.5 

Identify the surfaces represented by the equations in 
Exercise s 1-16 and sketch their graphs. { 

z2 = x2 + y2 19. 
z =l +x 

20. { x2 + 2y 2 + 3z2 = 6 
y=l 

1. x 2 +4 y 2 +9 z2 = 36 2. x 2 + y2 + 4z2 = 4 

3. 2x 2 + 2y 2 + 2z2 - 4x + 8y - 12z + 27 = 0 

21. Find two one-parameter families of straight lines that lie on 
the hyperboloid of one sheet 

4. x2 +4 y2 +9 z2 + 4x -8 y = 8 

5. z = x2 + 2y2 6. 

7. xz - y2 - z2 = 4 8. 

9. z = xy 10. 

11. x2 - 4z2 = 4 12. 

z = x2 - 2y 2 

- x 2 + Yz + z2 = 4 

x2 +4z 2 = 4 

Y = z2 

x 2 y2 zz 
-+----1 a 2 b2 c2 - . 

22. Find two one-parameter families of straight lines that lie on 
the hyperbolic paraboloid z = x y . 

13. x = z2 + z 14. x 2 = y2 + 2z2 

23. The equation 2x 2 + y2 = l represents a cylinder with 
elliptical cross-sections in planes perpendicular to the z-axis . 
Find a vector a perpendicular to which the cylinder has 
circular cross-sections. 15. (z - 1)2 = (x - 2)2 + (y - 3)2 

16. (z - 1)2 = (x - 2)2 + (y - 3)2 + 4 

Describe and sketch the geometric objects represented by the 
systems of equations in Exercises 17-20 . 

D 24. The equation z2 = 2x2 + y2 represen ts a cone with elliptical 
cross-sections in planes perpendicular to the z-axis. Find a 
vector a perpendicular to which the cone has circular 
cross-sections . Hint: Do Exercise 23 first and use its result. 

17. { x 2 + y2 + z2 = 4 
x+y+z=l 

18. { x2 + y2 = 1 
z = x+y 

Cylindrical and Spherical Coordinates 
Polar coordinate s provide a useful alternative to plane Cartesian coordinates for de
scribing plane regions with circular symmetry or bounded by arcs of circles centred 
at the origin and radia l lines from the origin . Similarly, there are two commonly 
encountered alternatives to Cartesian coordinates in 3-space . They generalize plane 
polar coordi nat es to 3-space and are suitable for describing regions with cylin dri cal or 
spherical symmetry . We introduce these two coordinate systems here, but won't make 
much use of them until the latter part of Chapter 14 when we will learn how to int egrate 
over such regions. 

Cylindrical Coordinates 
Among the most useful alte rnatives to Cartesian coor din ates in 3-space is the coor
dinate systems that directly generalizes plane polar coordinates by replacing only the 
horizontal x and y coordinates with the polar coordi na tes r and 0, while leaving the 
vertical z coordinate untouched . This sys tem is calle d cylindrical coordinates . Each 
point in 3-sp ace has cylindrica l coordinates [r , 0, z] related to its Cartesian coo rdin ates 
(x, y, z) by the transformation 

x = r cos 0, y = r sin 0, z = z . 

Figure 10.38 shows how a point Pis loc ated by its cylindrical coordinates [r , 0, z] as 
well as by its Cartesian coordinates (x , y, z). Note that the distance from P to the 
z-axis is r , while the distance from P to the origin is 

d = J r2 + z2 = J x2 + y2 + z2. 
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EXAMPLE 1 The point with Cartesian coordinates (1, 1, 1) has cylindrical co-
ordinates [.J2, 1r/ 4, 1]. The point with Cartesian coordinates 

(0, 2, -3) has cylindrical coordinates [2, 1r / 2, - 3]. The point with cylindrical co
ordinates [4, -1r / 3, 5] has Cartesian coordinates (2, - 2.J3 , 5) . 

P=( x , y ,z ) 
= [r , 0, z] 

y 

X 

z 
cylinder r = constant 

-----t- -+--

vertical half-plane Y 
0 = constant 

Figure 10.38 The cylindrical coordinat es of a point Figure 10.39 The coordi nate surfaces for cylindrical 
coordinates 

Just as planes with equations x = constant, y = constant, and z = constant are 
the coordinate surfaces of the Cartesian coordinate system in 3-space, the coordinate 
surfaces in cylindrical coordinates are: 

the r-surfaces with equations r = constant (vertical circular cylinders centred on 
the z-axis), 

the 0-surfaces 0 = constant (vertical half-planes with edge along the z-axis), and 

the z-surfaces z = constant (horizontal planes). 

See Figure 10.39. Cylindrical coordinates lend themselves to representing domains 
that are bounded by such surfaces and, in particular, to problems with axial symmetry 
(around the z-axis). 

The coordinate curves in the cylindrical coordinate system are intersections of 
pairs of coordinate surfaces. 

The r- curves are the intersection s of the planes 0 = constant and z = constant, 
and so are horizontal radial lines emanating from the z-axis. 

The 0-curves are intersections of the cylinders r = constant and planes z = 
constant, and so are horizontal circles centred on the z-axis. 

The z-curves are intersections of the cylinders r = constant and the half-planes 
0 = constant, and so are vertical straight lines. 

EXAM p LE 2 Identify the surfaces whose equations in cylindrical coordinates 
are: 

(a) z =r , (b) z = r cos 0, (c) r = 2cos0. 

Solution 
(a) z = r2 represents the circular paraboloid with Cartesian equation 

z = x2 + y2. It has vertex at the origin and axis of symmetry along the positive 
z-axis. 

(b) z = r cos 0 represents the plane with Cartesian equation z = x. It contains the 
y-axis and the point with Cartesian coordinates (I, 0, 1). 

( c) r = 2 cos 0 can be rewritten r2 = 2r cos 0, so represents the vertical surface with 
Cartesian equation x 2 + y 2 = 2x. This is a circular cylinder of radius 1 with central 
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z 

R 

X 

X 

axis along the vertical line through the point (1, 0, 0) (in Cartesian coordinates). 

EXAM p LE 3 Describe the curves whose equations in cylindrical coordinates are: 

(a) I
r= z 

z = 1 + r cos0 ' 
(b) 

1
0 = n /2 
r2 + z2 = 4 · 

Solution 
(a) The curve is the parabola in which the plane z = l + x intersects the right-circular 

half-cone z = J x2 + y2 . Since the plane is parallel to the line z = x, which is a 
generator of the cone , the intersection must be a parabola rather than an ellipse or 
a hyperbola . (See Section 8.1.) 

(b) 0 = n / 2 represents the half of the yz-plane where y 2'. 0. r2 + z2 = 4 represents 
a sphere of radius 2 centred at the origin. Thus, this curve is the semicircle with 
cartesian equation y = .J 4 - z2 in the plane x = 0. 

Spherical Coordinates 
In the system of spherical coordinates a point P in 3-space is represented by the 
ordered triple [R, ¢ , 0] , where R is the distance from P to the origin 0 , ¢ (Greek 
"phi") is the angle the radial line OP makes with the positive direction of the z-axis, 
and 0 is the angle between the plane containing P and the z-axis and the xz -plane. 
(See Figure 10.40.) It is conventional to consider spherical coordinates restricted in 
such a way that R 2'. 0, 0:::: ¢:::: n , and O:::: 0 < 2n (or -n < 0:::: n). Every 
point not on the z-axis then has exactly one spherical coordinate representation , and the 
transformation from Cartesian coordinates (x, y , z) to spherical coordinates [R, ¢, 0] 
is one-to -one off the z-axis . Using the right-angled triangles in the figure, we can see 
that this transformation is given by: 

x = R sin¢ cos 0 

y = R sin ¢ sin 0 

z = Reos¢. 

P=( x,y,z ) 
= [R , <P, 0] 

I 

I 

<P: 
I 
I 
I 

I 

I ,z 
I 

I 

y 

z 

P = [R ,</J,0] 

X 

y 

0 = constant 
vertical half-plane 

Figure 10.40 The spherical coordinates of a point Figure 10.41 The coordinate surfaces for spherical 
coordinates 

Observe that 
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and that the r coordinate in cylindrical coordinates is related to R and ¢ by 

r = Jx 2 + y2 = Rsincp. 

Thus, also 

r Jx2 + y2 
tan¢= - = ----

z z 
and 

y 
tan0 = - . 

X 

If¢ = 0 or¢ = 11:, then r = 0, so the 0 coordinate is irrelevant at points on the z-axis . 

Some coordinate surfaces for spherical coordinates are shown in Figure 10.41. 

The R-surfaces (R = constant) are spheres centred at the origin . 

The ¢-surfaces(¢ = constant) are nappes of circular cones with the z-axis as axis. 

The 0-surfaces (0 = constant) are vertical half-planes with edge along the z-axis. 

Similarly, pairs of coordinate surfaces intersect in coordinate curves along which only 
one of the coordinates varies. 

The R-curves (along which R varies) are the intersections of¢- and 0-surface s, 
and so are radial lines emanating from the origin . 

The ¢-curves (along which¢ varies) are the intersections of R- and 0-surface s, 
and so are vertical semicircles centred at the origin and beginning and ending on 
the z-axis. 

The 0-curves (along which 0 varies) are the intersections of the R- and ¢-surfaces , 
and thus are horizontal circles with centres on the z-axis. 

If we take a coordinate system with origin at the centre of the earth , z-axis through 
the north pole, and x -axis through the intersection of the Greenwich meridian and the 
equator, then the earth 's surface is (roughly speaking) a R-surface. It 's intersections 
with the ¢-surface s are 0-curves on the earth's surface and are called parallels of 
latitude . The intersections of the surface of the earth with the 0-surfaces are ¢ -curves 
called meridians of longitude. Since latitude is measured from 90° at the north pole to 
-90 ° at the south pole , while¢ is measured from Oat the north pole to 11: (= 180°) at 
the south pole, the coordinate ¢ is frequently referred to as the colatitude coordinate; 
0 is the longitude coordinate. Observe that 0 has the same significance in spherical 
coordinates as it does in cylindrical coordinates. 

Spherical coordinates are suited to problems involving spherical symmetry and, 
in particular , to regions bounded by spheres centred at the origin, circular cones with 
axes along the z-axis , and vertical planes containing the z-axis . 

EXAMPLE 4 Find : 

(a) the Cartesian coordinates of the point P with spherical coordinates 
[2, 11: / 3, 11: / 2], and 

(b) the spherical coordinates of the point Q with Cartesian coordinates (1, 1, ,Ji,). 

Solution 
(a) If R = 2, ¢ = 11: / 3, and 0 = 11: / 2, then 

x = 2 sin(11: / 3) cos(11: / 2) = 0 

y = 2 sin(11: / 3) sin(11: / 2) = .J3 
z = 2cos(11:/ 3) = l. 

The Cartesian coordinates of P are (0, .J3, 1). 
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EXERCISES 10.6 

(b) Given that 

R sin¢ cos 0 = x = 1 

R sin ¢ sin 0 = y = 1 

Reos¢= z = h, 

we calculate that R2 = l + 1 + 2 = 4, so R = 2. Also r 2 = 1 + 1 = 2, so r = ,./2. 
Thus, tan ¢ = r / z = l, so¢= 1r/ 4. Also, tan0 = y / x = 1, so 0 = 1r/ 4 or 
S1r / 4 . Since x > 0, we must have 0 = 1r / 4. The spherical coordinates of Q are 
[2, 1r / 4 , 1r / 4]. 

Remark You may wonder why we write spherical coordinates in the order R, ¢, 0 
rather than R , 0, ¢. The reason, which will not become apparent until Chapter 16, 
concerns the triad of unit vectors at any po int P , taken in coordinate order and tangent 
to the cotTesponding coordinate curve in the direction of increase of that coordinate. 
The order R, ¢, 0 ensures that this triad is a right-handed basis rather than a left-handed 
one . 

1. Convert the Cartesian coordinates (2, - 2, 1) to cylindrical 
coordinates and to spherical coordinates. 

Describe the sets of points in 3-space that satisfy the equations in 
Exercises 5- 14. Here, r, 0, R, and ¢ denote the appropriate 
cylindrical or spherical coordinates. 2. Convert the cylindrical coordinates [2, 1r / 6, -2] to Cartesian 

coordinates and to spherical coordinates. 

3. Convert the spherical coordinates [4, 1r/ 3, 21r/ 3] to 
Cartesian coordinates and to cylindrical coordinates. 

4. A point P has spherical coordinates [l , ¢ , 0] and cylindrical 
coordinates [r, 1r / 4, r ]. Find the Cartesian coordinates of the 
point. 

5. 0 = 1r/ 2 

7. ¢ = 1r/ 2 

9. r=4 

11. R = r 

13. R = 2cos ¢ 

6. ¢ = 21r/ 3 

8. R =4 

10. R = z 

12. R = 2x 

14. r = 2cos0 

• 
A Little Linear Algebra 

-------- -------------
Differential calculus is essentially the study of linear approximations to functions. The 
tangent line to the graph y = f (x) at x = xo provides the "best linear approximation " 
to f(x) near xo. Differentiation of functions of several variables can also be viewed 
as a process of finding best linear approximations . Therefore, the language of linear 
algebra can be very useful for expre ssing certain concepts in the calculus of several 
variables. 

Linear algebra is a vast subject and is usually studied independently of calculus. 
This is unfortunate becau se understanding the relat ionship between the two subjects 
can greatly enhance your understanding and appreciation of each of them . Knowledge 
of linear algebra , and therefore familiarity with the material covered in this section , is 
not essential for fruitful study of the rest of this book. However , we shall occasionally 
comment on the significance of the subject at hand from the point of view of linear 
algebra. To this end we need only a little of the termino logy and content of this 
subject, especially that part pertaining to matrix manipulation and systems of linear 
equations. In the rest of this section we present an outline of this material. Some 
students will already be familiar with it; others will encounter it later. We make no 
attempt at completeness here and refer interested students to standard linear algebra 
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texts for proofs of some assertions. Students proceeding beyond this book to further 
study of advanced calculus and differential equations will certainly need a much more 
extensive background in linear algebra. 

Matrices 
An m x n matrix .A is a rectangular array of mn numbers arranged in m rows and n 
columns. If aij is the element in the ith row and the jth column, then 

a1n ) 
a~n . 

amn 

Sometimes, as a shorthand notation , we write .A = (aiJ). In this case i is assumed to 
range from 1 tom and j from 1 ton. If m = n, we say that .A is a square matrix. The 
elements aiJ of the matrices we use in this book will always be real numbers. 

The transpose of an m x n matrix .A is then x m matrix .AT whose rows are the 
columns of .A: 

C 
a21 am,) 

T a12 a22 
a,t . .A = . 

a1n a2n a,nn 

Matrix .A is called symmetric if .AT = .A. Symmetric matrices are necessarily square. 
Observe that (.A 7 )7 = .A for every matrix .A. Frequently we want to consider an 
n-vector x as an n x 1 matrix having n rows and one column: 

(
XJ) x2 

X= 

~n 

As such, xis called a column vector. x7 then has one row and n columns and is called 
a row vector: 

Note that x and x7 have the same components, so they are identical as vectors even 
though they appear differently as matrices. 

Most of the usefulness of matrices depends on the following definition of matrix 
multiplication , which enables two arrays to be combined into a single one in a manner 
that preserves linear relationships. 

Multiplying matrices 

If .A = (aij) is an m x n matrix and 13 = (bij) is an n x p matrix, then the 
product .AB is them x p matrix e = (ciJ) with elements given by 

II 

C;J = L a;kbkJ, 
k=l 

i=l, ... ,m, j=l, ... ,p. 

That is, c;1 is the dot product of the ith row of .A and the jth column of 13 (both 
of which are n-vectors). 

Note that only some pairs of matrices can be multiplied. The product .AB is only 
defined if the number of columns of .A is equal to the number of rows of 13. 
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EXAMPLE 1 

1 
1 

13 15) 
-4 

The left factor has 2 rows and 3 columns, and the right factor has 3 rows and 4 columns. 
Therefore, the product has 2 rows and 4 columns . The element in the first row and 
third column of the product , 13, is the dot product of the first row, (I, 0, 3), of the left 
factor and the third column, (1, 3, 4), of the second factor: 

1 x I + 0 x 3 + 3 x 4 = 13. 

With a little practice you can easily calculate the elements of a matrix product by 
simultaneously running your left index finger across rows of the left factor and your 
right index finger down columns of the right factor while taking the dot products . 

EXAMPLE 2 

( 

1 2 
0 1 

-2 3 

3) (x)-(x+2y+3z) -1 y - y - z 
0 z -2x + 3y 

The product of a 3 x 3 matrix with a column 3-vector is a column 3-vector. 

Matrix multiplication is associative. This means that 

.A(B e) = (.AB )e 

(provided .A, B , and e have dimen sions compatible with the formation of the various 
products); therefore , it makes ense to write .A.Be . However, matrix multiplication is 
not commutative. Indeed, if .A is an m x n matrix and B is an n x p matrix, then the 
product .AB is defined, but the product B .A is not defined unless m = p . Even if .A 
and B are square matrices of the same size, it is not necessarily true that .AB = B.A . 

EXAMPLE 3 

The reader should verify that if the product .AB is defined, then the transpose of the 
product is the product of the transposes in the reverse order: 

(.A.Bf= B T .AT. 

Determinants and Matrix Inverses 
In Section 10.3 we introduced 2 x 2 and 3 x 3 determinants as certain algebraic 
expressions associated with 2 x 2 and 3 x 3 square arrays of numbers . In general, it is 
possible to define the determin ant det(.A) for any square matrix. For an n x n matrix 
.A we continue to denote 

a, 1 a1 2 a1n 
a21 a22 a211 

det(.A) = 
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We wiU not attempt to give a formal definition of the determinant here but will note 
that the properties of determinants stated for the 3 x 3 case in Section 10.3 continue to 
be true. In particular, an n x n determinant can be expanded in minors about any row 
or column and so expressed as a sum of multiples of (n - 1) x (n - 1) determinants. 
The expansion in minors of then x n determinant det(.A.) about its ith row is a sum of 
n terms: 

n 

det(.A.) = ~)-1i +jaiJAij , 
j =I 

where A;j is the (n - l) x (n - 1) determinant obtained by deleting the ith row and jth 
column from .A.. Continuing this process, we can eventually reduce the evaluation of 
any n x n determinant to the evaluation of (perhaps many) 2 x 2 or 3 x 3 determinants. 
It is important to realize that the "diagonal " method for evaluating 2 x 2 or 3 x 3 
determinants does not extend to 4 x 4 or higher-order determinants. 

EXAMPLE 4 

2 1 0 
1 0 1 
3 0 0 

-1 1 

Here is the expansion of a certain 4 x 4 determinant about its third 
column: 

1 

~ -11 ~ ii-1 I! 1 

ll 0 0 
2 
0 

-1 0 

=-(-3 1! ~l-21-~ !1)-(-il~ ~I) 
= 3(0 - 1) + 2(2 + 1) + 1(2 - 3) = 2. 

Since the third column had only two nonzero element s, the expansion has only two 
nonzero terms involving 3 x 3 determinants. The first of these was then expanded 
about its second row, and the other about its second column . 

In addition to the properties stated in Section 10.3, determinants have two other very 
important properties, which are stated in the following theorem . 

If A and :B are n x n matrices , then 

(a) det(.A.7 ) = det(.A.) and 

(b) det( .A.:B) = det( .A. )det( :B). 

We will not attempt any proof of this or other theorems in this section. The reader is 
referred to texts on linear algebra. Part (a) is not very difficult to prove, even in the case 
of general n . Part (b) cannot really be proved in general without a formal definition 
of determinant. However, the reader should verify (b) for 2 x 2 matrices by direct 
calculation . 

We say that the square matrix .A. is singular if det(.A.) = 0. If det(.A.) 'I-0, we 
say that .A. is nonsingular or invertible. 

Remark If .A. is a 3 x 3 matrix , then det(.A.) is the scalar triple product of the rows 
of .A., and its absolute value is the volume of the parallelepiped spanned by those rows. 
Therefore, .A. is nonsingular if and only if its rows span a parallelepiped of positive 
volume; the row vectors cannot all lie in the same plane. The same may be said of the 
columns of .A.. 

In general, an n x n matrix is singular if its rows (or columns), considered as 
vectors , satisfy one or more linear equations of the form 

c1x1 + c2x2 + · · · + CnXn = 0, 
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THEOREM 

I 

with at least one nonzero coefficient c; . A set of vectors satisfying such a linear equation 
is called linearly dependent because one of the vectors can always be expressed as a 
linear combination of the others; if c 1 =I= 0, then 

c2 c3 Cn 
X1 = - - X2 - - X3 - · · · - - X,, . 

C i C J C i 

All linear combinations of the vectors in a linearly dependent set of n vectors in IR11 

must lie in a subspace of dimen sion lower than n . Conversely , a set of m vectors in IR11 

(where m ::S n) is called linearly independent if the only linear combination of them 
that equals the zero vector is the one with all coefficients equal to zero; that is 

c 1x1 + c2 x 2 + · · · + CmXm = 0 ===} c; = 0 for 1 :S i :S m. 

Such a set of vectors spans (constitutes a basi s of) a subspace space of dimension min 
!Rn unless m = n, in which case the set spans IR11 itself. 

The n x n identity matrix is the matrix 

,-(t: I) 
with " l " in every position on the main diagonal and "O" in every other position. 
Evidently, I commutes with every n x n matrix: I ,A = .AI = .A. Also det(J) = 1. 
The identity matrix plays the same role in matrix algebra that the number 1 plays in 
arithmetic. 

Any nonzero number x has a reciprocal x- 1 such that xx- 1 = x- 1x = l. A 
similar situation holds for square matrices. The inverse of a nonsingular square matrix 
,A is a nonsingular square matrix ,A - I satisfying 

o4,o4,- 1 = o4,- lo4, = I . 

Every nonsingular square matrix ,A has a unique inverse ,A - l . Moreover , the inverse 
satisfies 

(a) 

(b) 

- I 1 
det(.A ) = -(- , 

det .A) 

(,A - l)T = (,A T)- 1. 

We will not have much cause to calculate inverses, but we note that it can be done by 
solving systems of linear equation s, as the following simple example illustrates. 

EXAMPLE 5 Show that the matrix ,A = 
inverse. 

- ~ ) is nonsingular and find its 

Solutl·on det( ') = [ 1
1 

-
1

1 
[ I 2 Th f • · · 1 d ""' = + I = . ere ore, ""' 1s nonsrngu ar an 

invertible. Let o4,-I = ( ; ! ). Then o4,o4,- l = I , that is, 

(1 0) = (1 -1) ( a b) = (a- c 
0 I 1 1 c d a + c 

b-d) 
b+d ' 

so a, b, c, and d must satisfy the systems of equations 

{
a-c=l {b -d =O 
a +c=O b +d =l. 

Evidently, a= b = d = 1/ 2, c = -1 / 2, and 

et-•-(_; '.) 
2 2 
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Remark The same technique used in Example 5 can be used to show that the general 

2 x 2 matrix .A, = (: ! ) is nonsingular (and therefore invertible) provided D = 
ad - be i, 0, and in this case 

( 
d -b) 

.A,- 1 = D D . 
-c a 
- -
D D 

Generally, matrix inversion is not carried out by the method of Examp le 5 but 
rather by an orderly process of performing operations on the rows of the matrix to 
transform it into the identity. When the same operations are performed on the rows 
of the identity matrix, the inverse of the original matrix results. See a text on linear 
algebra for a description of the method. A singular matrix has no inverse. 

Linear Transformations 
A function F whose domain is the m-dime nsional space IR111 and whose range is 
contained in the n-dimensional space JR" is called a linear transformation from !Rm 
to IR11 if it satisfies 

F(Jcx + µy) = l F(x) + µ F(y) 

for all points x and yin IR.111 and all real numbers A andµ. To such a linear transformation 
F there correspo nds an n x m matrix :F such that for all x in IR111

, 

F(x) = :Fx, 

or, expressed in terms of the components of x, 

F (x1,x2, · · · ,xm) = :F(;;) . 
Xm 

We say that :Fis a matrix representation of the linear transformation F. If m = n so 
that F maps IR111 into itself , then :Fis a square matrix. In this case :Fis nonsingular if 
and only if F is one-to-one and has the whole of IR111 as range. 

A composition of linear transformations is still a linear transformation and will 
have a matrix representation. The real motivation lying behind the definition of matrix 
multiplication is that the matrix representation of a composition of linear transforma
tions is the product of the individual matrix representations of the transformations being 
composed. 

If F is a linear transformation from IR.111 to JR" represented by the n x m matrix :F, and 
if G is a linear transformation from IR11 to JRP represented by the p x n matrix <J, then 
the composition G o F defined by 

Go F(x1 , x2, ... , Xm) = G(F (x1, x2, ... , Xm)) 

is itself a linear transformation from !Rm to JRP represented by the p x m matrix <J:F. 
That is, 

G ( F(x )) = <J:Fx. 
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Linear Equations 
A system of n linear equation s in n unknowns : 

a11x1 + a12x 2 + · · · + a1nXn = b1 

a2 1x 1 + a22x2 + · · · + a 2nXn = b2 

a111X1 + an 2X2 + · · · + a,111Xn = bn 

can be written compactly as a single matrix equation , 

Ax=b , 

where 

an 2 

a1n ) 
a~n , 

ann 

x = ( ;: ) , and b = ( :: ) . 

Xn bn 

Compare the equation Ax= b with the equatio n ax = b for a single unkn own x. The 
equation ax = b has the unique solution x = a - 1 b provided a I= 0. By analogy, the 
linear system cA,x = b has a unique solution given by 

provided cA, is nonsingular. To see this,just multiply both sides of the equation cA,x = b 
on the left by cA,- 1; x =Ix= cA,-1 .Ax= .A- 1b. 

If cA, is singular , then the system .Ax = b may or may not have a sol ution , and 
if a solution exists it will not be unique. Consider the case b = 0 (the zero vector) . 
Then any vector x perp endicular to all the rows of .A will satisfy the sys tem. Since 
the rows of .A lie in a space of dimension less than n (beca use det(.A) = 0) , there will 
be at least a line of such vector s x. Thus , solutio ns of .Ax = 0 are not unique if .A is 
singular. The same must be true of the system .AT y = O; there will be nonzero vectors 
y satisfying it if .A is singular. But then, if the system .Ax = b has any solution x, we 
must have 

Hence, .Ax = b can only have solutions for those vectors b that are perpe ndicul ar to 
every solution y of .AT y = 0. 

A system of m linear equations in n unknowns may or may not have any solution s 
if n < m . It will have solution s if some m - n of the equatio ns are linear combinatio ns 
(sums of multiples) of the other n equations . If n > m, then we can try to solve them 
equations for m of the variables, allowing the solution s to depend on the other n - m 
variables . Such a solution exist s if the determinant of the coefficients of them variables 
for whic h we want to solve is not zero . This is a special case of the Implicit Function 
Theorem , which we will examine in Section 12.8 . 

{ 
2x + y - 3z = 4 . 

EXAMPLE 6 Solve x + 2y + 6z = S forxandy mt ermsof z. 

Solution The system can be expressed in the form 

cA, (X) = (4+3 z) ' 
y 5 - 6z where cA, = ( ~ ~) . 
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,A has determinant 3 and inverse ,A - l = ( !G3 ~~~
3

). Thus , 

(X) = ,A-I (4+3z) = ( 2/ 3 
y 5-6 z -1 / 3 

-1 / 3) (4+3 z ) = (1 +4 z ) . 
2/ 3 5 - 6z 2 - Sz 

The solution is x = 1 +4 z, y = 2- Sz . (Of course, this solution could have been found 
by elimination of x or y from the given equations without using matrix methods.) 

The following theorem states a result of some theoretical importance expressing the 
solution of the system .Ax = b for nonsingular .A in terms of determinants. 

Cramer's Rule 

Let .A be a nonsingular n x n matrix . Then the solution x of the system 

cAx=b 

has components given by 

det(.An) det(.A1) 
XJ = det(cA,) ' 

det(cA2) 
x 2 = det(.A) ' 

X ----
11 - det(.A) ' 

where .Aj is the matrix .A with its }th column replaced by the column vector b. That 
is, 

a,1 a1 (j -l ) b1 a1 (j+ l ) a1n 

a21 a2(j - l ) b2 a2u+ 1) a2n 
det(.Aj) = 

a111 an(j - 1) bn an (j+ I) an/I 

The following example provides a concrete illu stration of the use of Cramer 's Rule to 
solve a specific linear system . However , Cramer 's Rule is primarily used in a more 
general (theoretical) context; it is not efficient to use determinants to calculate solution s 
of linear systems. 

EXAM p L E 7 Find the point of intersection of the three planes 

X + y + 2z = 1 

3x + 6y - z = 0 

X - y - 4z = 3. 

Solution The solution of the linear system above provides the coordinates of the 
intersection point. The determinant of the coefficient matrix of this system is 

det(A) ~ I l 1 
6 

-1 
-~I= -32 . 
-4 

so the system does have a unique solution. We have 

1 11 
1 

21 -64 x = -- 0 6 -1 = -32 =2, -32 3 -1 -4 

1 1 1 2 32 
y = -32 3 0 -1 ----1 

1 3 -4 
- -32 - ' 

z= - 1-1~ 
-32 l 

1 1 I 0 6 0 = - =0. 
-1 3 -32 

The intersection point is (2, -1, 0) . 
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Quadratic Forms, Eigenvalues, and Eigenvectors 
If xis a column vector in ]Rn and A = (aij) is an n x n, real, symmetric matrix (i.e., 
aiJ = a1; for 1 ::: i , j ::::: n), then the expression 

n 

Q(x) = xT Ax= L aiJXiXJ 
i ,J=I 

is called a quadratic form on ]Rn corresponding to the matrix A. Observe that Q(x) 
is a real number for every n-vector x. 

We say that A is positive definite if Q(x) > 0 for every nonzero vector x. 
Similarly, A is negative definite if Q(x) < 0 for every nonzero vector x. We say that 
A is positive semidefinite (or negative semidefinite) if Q(x) :::: 0 (or Q(x) ::: 0) for 
every nonzero vector x. 

If Q(x) > 0 for some nonzero vectors x while Q(x) < 0 for other such x (i.e., if 
A is neither positive semidefinite nor negative semidefinite), then we will say that A 
is indefinite. 

EXAMPLE 8 The expression Q(x, y, z) = 3x 2 + 2y 2 + 5z2 - 2x y + 4x z + 2yz 
is a quadratic form on JR3 corresponding to the symmetric matrix 

Observe how the elements of the matrix are obtained from the coefficients of Q; the 
coefficients of x 2 , y2, and z2 form the main diagonal elements, while the coefficients 
of the product terms are cut in half and half is put in each of the two corresponding 
symmetric off-diagonal positions. 

The matrix A is positive definite since Q(x, y, z) can be rewritten in the form 

Q(x , y, z) = x 2 + (x - y) 2 + (x + 2z)2 + (y + z)2, 

from which it is apparent that Q (x, y , z) :::: 0 for all (x, y, z) and Q (x, y, z) = 0 only 
if X = y = Z = 0. 

In Section 13.1 we will use the positive or negative definiteness of certain matrices to 
classify critical points of functions of several variables as local maxima and minima . 
Useful criteria for definiteness can be expressed in terms of the eigenvalues of the 
matrix A. 

We say that ;t is an eigenvalue of the n x n square matrix A = (aiJ) if there exists 
a nonzero column vector x such that Ax = lx, or, equivalently, 

(A - U)x = 0, 

where I is the n x n identity matrix. The nonzero vector x is called an eigenvector of 
A corresponding to the eigenvalue ;t and can exist only if A - ;(/ is a singular matrix, 
that is, if 

a11 - 1 a12 a1,, 

a21 a22- l a2,, 
det(A - H) = =0. 

an! a112 ann - A 

The eigenvalues of A must satisfy this nth-degree polynomial equation, so they can be 
either real or complex. The following theorems are proved in standard linear algebra 
texts. 
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THEOREM If .A = (aij(j= I is a real , symmetric matrix , then 

(a) all the eigenvalues of ,A are real, I (b) all the eigenvalues of ,A are nonzero if det(.A) i= 0, 

(c) ,A is positive definite if all its eigenvalues are positive, 

(d) ,A is negative definite if aJI its eigenvalues are negative, 

(e) ,A is positive semidefinite if all its eigenvalues are nonnegative, 

(f) ,A is negative semidefinite if all its eigenvalues are nonpositive, 

(g) ,A is indefinite if it has at least one positive eigenvalue and at least one negative 
eigenvalue . 

THEOREM Let ,A = (aij )'.:j=l be a real symmetric matrix and consider the determinants 

I 

EXE RC IS ES 10.7 

a11 a,2 a1i 

a21 a22 a2i 
Di = for l 2:. i S n . 

ail ai2 a;; 

Thus, D1 =au , D2 = I all a
12 I= a1 ,a22 - a,2a21 = a, 1a22 - af 2, etc. 

a21 a22 

(a) If Di > 0 for 1 S i S n, then ,A is positive definite. 

(b) If Di > 0 for even numbers i in { 1, 2, . .. , n}, and Di < 0 for odd numbers i in 
{ 1, 2, . .. , n}, then ,A is negative definite. 

(c) If det( .A) = D11 i= 0 but neither of the above conditions hold, then Q(x) is 
indefinite. 

(d) If det( .A) = 0, then ,A is not positive or negative definite and may be semidefinite 
or indefin ite. 

EXAM p LE 9 For the matrix .A of Example 8, we have 

D1 = 3 > 0, D2 = 13 -1 -11 
2 

= 5 > 0, 
-I 
2 

which reconfirms that the quadratic form of that exercise is positive definite. 

Evaluate the matrix products in Exercises 1-4. 5. Evaluate .A.AT and .A.2 = .A.A , where 

1. ( ~ ~ -~) (~ ~) 
-1 1 -1 0 -2 

2
· G l D G l D 

( I 1) 0 1 l l 
.A= 0 0 l 1 . 

0 0 0 l 

3. (: ! ) ( ~ ~) 4 (w x)(a b) 
, Y Z C d 

6. Evaluate xxT , xT x, and xT .Ax , where 
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Evaluate the determinants in Exercises 7-8. Find the inverses of the matrices in Exercises 17-18. 
2 3 -1 0 l 

7. 4 0 2 1 
8. 

I 2 3 4 
0 -1 l -2 0 2 4 

11 
· G l D 18

· ( -l r -D 
- 2 0 0 1 3 -3 2 -2 

9. Show that if ,A = (aij) is an n x n matrix for which aij = 0 
whenever i > j , then det(,A) = nk=I akk , the product of the 
elements on the main diagonal of .A. 

19. Use your result from Exercisel8 to solve the linear system 

{ 

X - Z = -2 
-x + y = I 

10. Show that J 1 
1 

I = y - x, and 
X y 

2x + y + 3z = 13. 

f) 11. 

f) 12. 

f) 13. 

f) 14. 

1

1 I 
X y 

x2 y2 
! I = (y - x)( z - x)( z - y). 
z2 

Try to generalize this result to the n x n case. 

Verify the associative law (.AB)e? = .A(Be?) by direct 
calculation for three arbitrary 2 x 2 matrices. 

Show that det( .AT) = det(.A) for n x n matrices by 
induction on n. Start with the 2 x 2 case. 

Verify by direct calculation that det(.AB) = det(.A)det(B) 
holds for two arbitrary 2 x 2 matrices. 

( 
cos0 sin0) Let .Ao = . 

0 0 
. Show that 

- sm cos 

(.Ao)T = (.Ao)- 1 = A -o -

20. Solve the system of Exercise 19 by using Cramer's Rule. 

I 
XI + X2 + X3 + X4 = Q 

21. Solve the system xi + x2 + x3 - X4 = 4 
XJ + X2 - X3 - X4 = 6 
XJ - X2 - X3 - X4 = 2. 

22. Verify Theorem 5 for the special case where F and G are 
linear transformations from JR2 to m:.2 . 

In Exercises 23-28 , classify the given symmetric matrices as 
positive or negative definite, positive or negative semidefinite, or 
indefinite. 

(-1 I) G 
2 

D 23. 24. 1 
1 -2 

0 

f) 15. Verify by using matrix multiplication that the inverse of the 
matrix ,A in the remark following Example 5 is as specified 
there. 

25. n 1 

D 2 
1 

(i 1 

D 26. 1 
0 

16. For what values of the variables x and y is the matrix 

B = ( ; 2 ; 2 ) invertible, and what is its inverse? 27. G 0 

-D 28. G 0 

-D 4 
-] -1 

Using Maple for Vector and Matrix Calculations 
The use of a computer algebra system can free us from much of the tedious calculation 
needed to do calculus. This is especially true of calculations in multivariable and vector 
calculus, where the calculations can quickly become unmanageable as the number of 
variables increase s. This author's colleague , Dr. Robert Israel , has written an excellent 
book, Calculus, the Maple Way, to show how Maple can be used effectively for doing 
calculus involving both single-variable and multivariable functions. 

In this book we will occasionally call on the power of Maple to carry out calcu
lations involving function s of several variables and vector-valued functions of one or 
more variable s. This section illustrate s some of the most basic techniques for calcu
lating with vectors and matrice s. The examples here were calculated using Maple 10, 
but Maple 6 or later should give similar output. 

Most of Maple 's capability to deal with vectors and matrices is not in its kernel 
but is written into a packa ge of procedures called LinearAlgebra. Therefore , it is 
customary to load this pack age at the beginning of a session where it will be needed: 

> with(LinearAlgebra) : 

On e usually completes a Maple command with a semicolon rather than a colon. You 
can use a colon to suppress output. Had we used a semicolon to complete the command 
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the result would have produced a list of all the procedures defined in the LinearAJgebra 
package. 

Maple also includes a second linear algebra package called linalg , but it is inferior 
to LinearAlgebra, especially for heavy-duty numerical calculations using large matri
ces ; it is also somewhat more difficult to use . However , the linalg package was present 
in releases of Maple earlier than release 6, and is still present in release 9. We will 
not make any use of linalg here , but it was used instead of LinearAlgebra in the fifth 
edition of this book . 

Vectors 
There are several ways to define vectors in Maple; the easiest are to use the Vec

tor ( [ , ] ) or < , > constructions, where a comma-separated list of the components 
of the vector is placed in the square or angle brackets. Both of these constructions 
produce column vectors: 

> Uc:= Vector( [1,2,3]); Ve:= <a,b,c> ; 

Uc -rn 
Ve:=[;] 

You can use Vecto r [row] ( [ , ] ) to produce a row vector; alternatively, you can 
define a row vector using angle brackets with "I" to separate the components: 

> Ur : = Vector[row] ((1 , 2 , 3]) ; Vr := <alblc> ; 

Ur :=[1 ,2,3] 

Vr := [a, b, c] 

Vectors can be of any dimension; simply include the appropriate number of commas or I 
separated components. You can also use the Vec t or () construct with two arguments, 
the first a positive integer giving the dimension of the vector and the second either a 
square-bracket -enclosed list of components or an assignment rule giving the value of 
the i th component: 

> <51-2131x> ; W : = Vector[row; (5, i -> i"2); 

[5, -2, 3, x] 

W := [l , 4, 9, 16, 25] 

We can also construct a vector with arbitrary components like this : 

> X . - Vector(2 , symbol=x) ; 
Y := Vector[row] (4, symbol=y) ; 

The components of a vector can be referenced by appending the index of the component, 
enclosed in square brackets , to the name or constructor of the vector. The fourth 
component of vector W above is W [ 4 ] : 

> W[4] ; Vector(l6 , i -> 3*i - 1) (10] ; X[2J+Y[3] ; 
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16 

29 

x2 + Y3 

Vectors of the same dimension and type (row or column) can be added, subtracted, and 
multiplied by scalars using the ordinary operators+, -, and*: 

> Uc+ Ve ; Ve - 3*Uc ; 

[ 
l +a] 
2+b 
3+c 

[

a - 3] 
b-6 
c-9 

For most vector calculation s it doesn ' t matter whether you think of vectors as row or 
column vectors, but it does make a difference for some Linear Algebra operators; if you 
try to add a row vector to a column vector, or two vectors of different dimensions, you 
will get an error message. 

The LinearAlgebra package also defines the product functions DotProduct and 
Cr o ssProduct, each of which takes two vector arguments. For DotProduct, the 
arguments must be of the same but arbitrary dimension. For CrossProduct, both 
arguments must have dimension 3. However, neither requires both arguments to be of 
the same type (row or column) . The cross product will be a column vector unless both 
its arguments are row vector s. 

As defined in the LinearAlgebra package, DotProduct can produce some strange 
results. Consider the following: 

> DotProduct(Uc , Vc) ; DotProduct(Vc , Uc) ; 
DotProduct(Ur , Vr) ; 

a+ 2b + 3c 

a+ 2b + 3c 
a+ 2E + 3c 

What is going on here ? The bars on the unknown quantities a, b, and c denote complex 
conjugates of these quantitie s; The LinearAlgebra pack age is designed to meet the 
need s of a great many users of linear algebra, not just calculus students for whom all 
vectors are assumed to have real components . In fact , DotProduct ( U, V) sums 
the product s of the complex cong ugates of the components of U and the unconjugated 
components of V if both vectors are column vectors , and vice versa if both are row 
vectors. In the first example above, the component s of Uc are real numbers so no 
conjugates appeared over them; in the other two cases it is the components of Ve or Vr 
that requi re conjugation , and since Maple doesn' t know that these are real, it puts on the 
bars . To avoid this difficulty when using real vectors, include "conjugate=false" 
as a third argument when using DotProduct from the Linear Algebra package : 

> DotProduct(Ur , Vr , conjugate=false) ; 

a+ 2b + 3c 

It is also possible to use a dot "." as a binary operator to calculate a dot product. 
However, dot also repre sents matrix multiplication , so you must use a row vector to 
the left of the dot and a column vector to the right to be sure of getting a dot product. 

> <11213> . <a , b , c> ; <1 , 2 , 3> . <alblc> ; 
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a+ 2b + 3c 

b 
2b 
3b 

LinearAlgebra also has a CrossProduct function , which applies only to 3-vectors. 
It does not matter whether either of the arguments is a row or column vector. This 
function can be called using either CrossProduct (U, V) or U &x V. 

> CrossProduct(Uc , Vc) ; Ur &x Vr ; 

[

2c - 3b] 
3a - C 

b-2a 

[2c-3b , 3a - c, b - 2a] 

LinearAlgebra has a function No r m () for calculating the length of a vector. Unfor
tunately, Maple knows many different definitions for the length of a vector. The one 
we use is the Euclidean length . The Euclidean length of a vector V is calculated by 
Nor m (V, Euc li dean ) or Norm (V, 2 ). (In the latter case the 2 stands for the fact 
that we use the square root of the sum of the squares of the components to find the 
length.) 

> Norm(Ur , Euclidean) ; Norm(<l , -1 , 2 , -3 , 1> , 2) ; 

4 

You can use Nor mal i ze (U, Euclidean ) of Nor ma liz e (U, 2 ) to find a unit 
vector in the same direction as u. Of course, you could always just multiply u by the 
scalar which is the reciprocal of its length : 

> Normalize(<21-211>,2) ; (1/Norm(Uc , 2))*Uc ; 

[2 -2 1] 
3 ' 3 '3 

[ 

1f-'14] -v'14 
7 
3 
-v'14 
14 

LinearAlgebra has a function VectorAngle to give the angle between two 
vectors. It doesn't matter whether either vector is a row or column . The result will be 
in radian measure so you will have to multiply it by 180/ n to get the angle in degrees . 

> VectorAngle(<2 , 2 , 1> , <l , -2 , 2>) ; 

1 
- n 
2 

To further illustrate these ideas, let us get Maple to calculate an equation of the 
plane through (2, 1, -1) perpendicular to the line of intersection of the two planes 
2x + 3y + z = 5 and 3x - 2y - 4z = 1. 

> (<21311> &x <31-21-4>) . (<x , y , z>-<2 , 1 , - 1>) = O; 

-10x-4+11 y -13 z =0 
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or, as we would write it, lOx - lly + 13z = -4 . Note how we used the cross product 
of two row vectors (which is itself, therefore , a row vector) to the left of the"." and a 
difference of two column vectors (which is itself a column vector) to the right of the 
"." for calculating the dot product. 

Finally, let us use Maple to verify the identity 

(U x V) x W = (W • U)V - (W • V)U. 

First , we define U, V, and W to be vectors with arbitrary components. In view of the 
two dot product s on the right-hand side of the identity, we make W a row vector and 
the other two column vectors : 

> U . - Vector(3 , symbol=u) ; 
V . - Vector(3 , symbol=v) ; 
W . - Vector[row] (3 , symbol=w) ; 

u = [~[] 

V = [ii] 
Now we only need to subtract the right side of the identity from the left side and 
simplify the result: 

> simplify( (U &x V) &x W - (W . U) *V + (W . V) *U) ; 

m 
The result is the zero vector, thus confimting the identity. 

Remark Maple 8 and later releases have a new package called VectorCalculus , which 
provides greater functionality than the Linear Algebra package for dealing with vector
valued functions and functions of vector variables. We will be illustrating the use of 
this package in later chapters , but note here that it also defines the vector operations 
considered above but not all of the matrix functions considered below. VectorCalculus 
reports vectors as linear combinations of basis vectors rather than as row or column 
matrices. The default bases it uses consist of vectors ex, ey, ez (rather than i, j, 
k) for vectors of dimension up to 3, but ex 1, ex2, ... for dimensions higher than 3. 
Neverthele ss, although it is not apparent from the way VectorCalculus displays vectors , 
it still maintains the distinction between row and column vectors and won' t let you add 
a row vector to a column vector. A big advantage of the VectorCalculus package over 
LinearAlgebra is that VectorCalculus uses the usual definition of dot product (even 
when using the "." notation) , so that the order of factors in a dot product is irrelevant 
and no complex conjugation is used. If you want to use the VectorCalculus package 
and still have access to all the matrix operations provided by LinearAlgebra, load the 
VectorCalculus package after the Linear Algebra package, so that its new definitions of 
vector operations will replace those of the Linear Algebra package . 

> with(LinearAlgebra): 
with(VectorCalculus): 

Even with output suppressed, the second with above produces a few lines of "warn
ings" mainly about the changed definitions of some vector operation s. 

> Vl := <2 , -3 , 4> ; V2 := <alblc> ; V3 := <2 , -3 , 4 , -5 , 6> ; 

www.konkur.in



SECTION I 0.8: Using Maple for Vector and Matri x Calcu lations 617 

VI:= 2ex - 3ey +4e z 

V2 := aex +be y + cez 

V3 := 2ex J - 3ex2 + 4ex3 - 5ex4 + 6exs 

> Vl. V2 ; V2 . Vl ; 

2a - 3b + 4c 
2a - 3b + 4c 

Because Vl is a column vector and V2 is a row vector, any attempt to calculate a 
linear combination of these vectors will generate an error, as will attempts to calcu late 
M. V2 or Vl . M if Mis a 3 x 3 matrix. Of course , M. Vl will work fine, as will V2 . M, 
although the result will be a one-row matrix rather than a vector. We will examine 
VectorCalculus further in later chapter s. 

Matrices 
The LinearAJgebra package also provides a variety of ways to define and manipulate 
matrice s. We can define a matrix as a column vector whose elements are row vectors, 
or as a row vector whose elements are column vectors: 

> <<11111> , <21113>> ; <<1,2>1<1 , l>l<l,3>> ; 

[~ 
[~ 

1 
1 

You can aJso use the Matrix function to define a matrix. This function can either be 
supplied with a list of lists specifying the rows of the matrix, or two positive integers 
(the number of rows and columns, respectively) and a rule for calculating the element 
in the ith row and jth column. 

> L . - Matrix ( [ [ 1 , 1 , l ] , [ 2 , 1 , 3 J J ) ; 
M : = Mat r ix ( 3 , 3 , ( i , j ) - > i - j ) ; 

L := [ ~ ! ; J 

M -[! -~ =n 
A matrix P with 2 rows and four columns having arbitrary elements Pi,J can be 
constructed as follows: 

> P : = Matrix(2 , 4 , symbol =p); 

p := [ Pt , ! Pl ,2 
P 2, t P2 ,2 

Pt ,3 

P 2,3 
Pl ,4 J 
P 2,4 

As with vectors, particular elements in a matrix can be accessed by including the row 
and column indices in square brackets following the name of the matrix. 

> P[l,2] := Pi; P[l , 4]+P[2 , 4] ; P ; 

P1 ,2 := n 

Pl ,4 + P 2,4 

[ P1 , 1 
n Pl ,3 PI ,4 J 

P2 ,2 P 2,3 P2 , I P2 ,4 

There are also shorthand constructs for special kinds of matrices , such as ones 
with all zero entries, identity (square) matrices, and diagonal matrices: 

> Matrix(2 , 3) ; IdentityMatrix(3) ; 
DiagonalMatrix( [a,b,c]); 
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The transpose T of the matrix Lis obtained by using the Tr ans p o s e function , 
or, more simply, T : = L"%T. 

> T : = Transp ose(L) ; 

The product, AB , of two matrices A and B is calc ulated using the binary operator 
. ; that is, we calculate A . B. Of course , the number of columns of A must be equal to 
the number of rows of B. 

> L . T; T .L; 

[~ 1
6
4] 

u ; 1~] 
The determinant and inverse of a square matrix are calcu lated with the Det e r 

minant and Matrixi nverse functions. 

> A : = <<lllll> , <21113> , <11112>> ; 
DetA : = Determinant(A ); Ainv : = Matrixinverse(A) ; 

A =U : u 
DetA := - 1 

Ain v := [ ! -1 ~2] 
-1 0 

> A . Ainv Ainv . A; 

[~ 
0 

~] = [~ 

0 ~] I 1 
0 0 

Linear Equations 
A set of n linear equations in n variables can be written in the form AX = B, where 
A is an n x n matrix and X and B are column n-vectors. Thus, the solution can be 
calculated as X = A - I B. For example, the system 

X + y + Z = 2, 2x + y + 3z = 9, X + y + 2z = 1 

has the matrix A defined above as its coefficien t matrix, and B the column vector 
< 2 , 9 , 1 >. The solution of the system is: 

> X : = Ainv . <2 , 9 , 1> ; 
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that is, x = 9, y = -6 , z = -1. Linear Algebra provides a simpler way of solving the 
system AX= B; we just need to use the function Linear So l v e (A, B): 

> X : = LinearSolve(A, <2 , 9 , 1>) ; 

Li ne a r So l v e is better at solving linear systems than is matrix inversion, since it can 
solve some systems for which the matrix is singular or not square. Consider the two 
systems 

X + y = l 

2x + 2y = 2 
and 

x+y=l 

2x + 2y = l 

The first system has a one-parameter family of solutions x = l - t, y = t for arbitrary 
t. The second system is inconsistent and has no solution s. 

> L : = Matrix ( [ [ 1 , 1 l, [ 2 , 2 ] ] ) ; B 1 : = < 1 , 2 > ; B 2 : = < 1 , 1 > ; 

L := [ ~ ~ J 

Bl:=[~] 
B2 := UJ 

> X . - LinearSolve(L,Bl,free=t); 

The extra argument f re e =t was included to force LinearSolve to use subscripted t 
variables for any parameters . It is always safe to include an argument of this type; 
omitt ing it can cause output that looks somewhat strange . (Try it and see.) If the 
system has a unique solution, the fr ee =t parameter will just be ignored. 

> X : = LinearSolve(L , B2 , free=t) ; 

Err or, (in Linear So l ve ) in con s i st en t sy st em 

Eigenvalues and Eigenvectors 
The Linear Algebra package has procedures for finding the eigenvalues and eigenvectors 
of matrices . For a real symmetric matrix, the eigenvalues are always real. 

> K : = Ma tr ix ( [ [ 3 , 1 , -1] , [ 1, 4 , 1], [ -1, 1, 3] ] ) ; 

K := [ i 
-1 

> Eigenvalues(K); 

l 
4 

The Eigenvalue s function produces a column vector of the eigenvalues of the 
square matrix that is its argument. In this example all three eigenvalues are positive, so 
K is a positive definite matrix. Our main use for eigenvalues will be the classification of 
critical points of functions of several variables. This use does not require knowledge of 
the corresponding eigenvectors , but if we did need to know them, we could have used 
the function Eig e nve c tor s (K) instead. The output would then have consisted 

www.konkur.in



620 CHAPTER 10 Vectors and Coordinate Geometry in 3-Space 

of two items separated by a comma. The first item would be the column vector 
of eigenvalues of K; the second would be a square matrix whose columns are the 
eigenvectors corresponding to those eigenvalues. (Corresponding to an eigenvalue 
having multiplicity m there would be m linearly independent columns in the matrix.) 

> Eigenvectors(K); 

(-2 + v13)v13 

-3 + 2v13 
-3 + v13 

-3 + 2-/3 
I 

- (-2 - v13)v13 l 
-3 - 2v13 
-3 - -/3 

-3 - 2-/3 
l 

Maple isn't always good at spotting simplifications. If you follow the above Maple 
command with simplify ( % [ 2] ) , you will see that the top row in the matrix of 
eigenvectors is, in fact, much simpler than it looks. 

Remark All the matrices and vectors used in the examples of this section were 
of very small dimension . The LinearAlgebra package is capable of dealing with 
large matrices with hundreds of rows and columns, but for such matrices it is best to 
avoid simple expressions like 2 *M-3 *N and M. N for linear combinations and prod
ucts of matrices , and use instead Matr ixAdd (M, N, 2 , -3) and Matr ixMatr ix 
Multiply (M, N), which are much more efficient in their calculations. Similarly , 
use Matr ixVectorMul tiply (M, X) rather than M. X if X is a column vector and 
ScalarMul ti ply (M, c) rather than c*M if c is a number. 

EXERCISES 10.8 
Use Maple to calculate the quantities in Exercises 1-2 . 

1. The distance between the line through (3, 0, 2) parallel to the 
vector 2i + j - 2k and the line through (1, 2, 4) parallel to 
i + 3j +4k 

2. The angle (in degrees) between the vector i - j + 2k and the 
plane through the origin containing the vectors i - 2j - 3k 
and 2i + 3j + 4k 

Use Maple to verify the identities in Exercises 3-4. 

3. U • (V x W) = V • (W x U) = W • (U x V) 

4. (U x V) x (U x W) = (U • (V x W))U 

In Exercises 5-10, define Maple functions to produce the 
indicated results. You may use functions already defined in 
Linear Algebra. 
5. A function s p ( U, V) that gives the scalar projection of 

vector U along the nonzero vector V 
6. A function vp ( U, V) that gives the vector projection of 

vector U along the nonzero vector V 

7. A function ang ( U, V) that gives the angle between the 
nonzero vectors U and V in degrees as a decimal number 

8. A function uni tn ( U, V) that gives a unit vector normal to 
the two nonparallel vectors U and V in 3-space 

9. A function Vol T ( U, V , W) that gives the volume of the 
tetrahedron in 3-space that is spanned by the vectors U, V, 
andW 

10. A function dist (A, B ) giving the distance between two 
points having position vectors A and B. Use your function to 
find the distance between [I, 1, 1, l] and [3, - 1, 2, 5] 

In Exercises 11-12 , use Linear Solve to solve the systems. 

u + 2v + 3x + 4y + 5z = 20 

6u - v + 6x + 2y - 3z = 0 

11. 2u + 8v - 8x - 2y + z = 6 

u+v+x+y+z=5 

I Ou - 3v + 3x - 2y + 2z = 5 

u +v +x + y = 10 

u + y + z = 10 

12. u +x + y = 8 

u+v+x+z=ll 

v+y- z =l 

13. Evaluate the determinant of the coefficient matrix for the 
system in Exercise 11. 

14. Find the eigenvalues of the coefficient matrix for the system 
in Exercise 12. Quote your answers as decimal numbers (use 
eva lf) to 5 decimal places. Do you think any of them are 
really complex? 

15. Find the inverse of the matrix 

A= [ 1~2 
1/ 3 

1/ 2 
1/3 
1/4 

1/3] 1/4 . 
1/ 5 

16. Find, in decimal form (using evalf (Eigenvals (A)), 
the eigenvalues of the matrix A of Exercise 15 and the 
Eigenvalues of its inverse. Use Digits := 10 . How do 
you account for the fact that some of the eigenvalues appear 
to be complex? What relationship appears to exist between 
the eigenvalues of A and those of its inverse? 
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CHAPTER REVIEW 
Key Ideas 
• What is each of the following? 

o a neighbourhood o an open set o a closed set 

o the boundary of a set o the interior of a set 

o a vector in 3-space o the dot product of vectors 

o the cross product of two vectors in JR3 

o a scalar triple product o a vector triple product 

o a matrix o a determinant 

o a plane o a straight line o a cone 

o a cylinder o an ellipsoid o a paraboloid 

o a hyperboloid of 1 sheet o a hyperboloid of 2 sheets 

o the transpose of a matrix o the inverse of a matrix 

o a linear transformation o an eigenvalue of a matrix 

• What is the angle between the vectors u and v? 
• How do you calculate u x v, given the components of u 

and v? 
• What is an equation of the plane through Po having 

normal vector N? 
• What is an equation of the straight line through Po 

parallel to a? 
• Given two 3 x 3 matrices A and B, how do you calculate 

AB? 
• What is the distance from Po to the plane Ax + By + 

Cz + D = O? 
• What is Cramer's Rule, and how is it used? 

Review Exercises 
Describe the sets of points in 3-space that satisfy the given equa
tions or inequalities in Exercises 1-18. 

1. X + 3z = 3 2. y - zc"'.:l 

3. x+y+zc"'.:0 4. X - 2y -4 z = 8 

5. y = 1 +x 2 +z2 6. Y = z2 

7. X = y2 -z2 8. z = xy 

9. x 2 + y2 +4 z2 < 4 10. x2 + y2-4z 2 = 4 

11. x 2 - y2-4z 2 = 0 12. x 2 -y2 -4 z2 = 4 

D 13. (x - z)2 + y2 = 1 D 14. (x - z)2 + y2 = z2 

15. { X + 2y = 0 
z =3 

16. { X + y + 2z = [ 
x+y+z=O 

17. { x2 + Y2 + z2 = 4 
x+y+z =3 

18. { x
2 + z2 

:::c l 
x-yc"'.:0 

Find equations of the planes and lines spec ified in Exerci ses 
19-28. 

19. The plane through the origin perpendicular to the line 

x -1 

2 

y+3 
-1 

z +2 
3 
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20. The plane through (2, - 1, 1) and ( 1, 0 , -1) parallel to the line 
in Exercise 19 

21. The plane through (2, -1 , 1) perpendicular to the plane s 
x - y + z = 0 and 2x + y - 3z = 2 

22. The plane through (-1 , 1, 0) , (0,4, -1), and (2, 0 , 0) 

23. The plane containing the line of intersection of the plane s 
x + y + z = 0 and 2x + y - 3z = 2, and pas sing through the 
point (2, 0, 1) 

24. The plane containing the line of intersection of the plane s 

x + y + z = 0 and 2x + y - 3z = 2, and perpendicular to the 
plane x - 2 y - Sz = 17 

25. The vector parametric equation of the line through (2, 1, - 1) 
and (-1, 0, 1) 

26. Standard form equations of the line through (1, 0 , -1) paraJlel 
to each of the planes x - y = 3 and x + 2y + z = 1 

27. Scalar parametric equations of the line through the origin 
perpendicular to the plane 3x - 2y + 4z = 5 

28. The vector parametric equation of the line that joins points on 
the two line s 

r = (1 + t) i - rj - (2 + 2t)k 

r = 2ti + (t - 2)j - (1 + 3t)k 

and is perpendicular to both those lines 

Express the given conditions or quantiti es in Exercises 29-30 in 
terms of dot and cross products . 

29. The three points with position vectors r1, r 2, and r 3 all lie on 
a straig ht line. 

30. The four points with position vectors r1 , r 2, r 3, and r4 do not 
all lie on a plane. 

31. Find the area of the triangle with vertices (1, 2, 1), (4, -1 , 1), 
and (3, 4 , -2). 

32. Find the volume of the tetrahedron with vertices (1, 2, 1), 
(4, -1 , 1), (3, 4 , -2), and (2, 2, 2). 

33. Show that the matrix 

.A.= 2 1 0 0 
( 

1 0 0 0) 

3 2 1 0 
4 3 2 1 

has an inverse, and find the inverse .A.- 1 
• 

34. Let .A, = ( ~ ~ ~ ) . What condition must the vector b 
1 0 -1 

satsify in order that the equation .A.x = b has solutions x? 
What are the solution s x if b satisfies the condition? 

35. Is the matri x (- ~ - ~ - ~ ) positive or negative definite 
1 -1 2 

or neither ? 

Challenging Problems 
0 1. Show that the dist ance d from point P to the line AB can be 

expressed in terms of the position vectors of P, A , and B by 

d = _I (_r A_-_r_p_) _x_(_r_s _-_r_p_) I 

lrA - rsl 
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0 2. For any vectors u, v, w, and x, show that 

(u X v) X (w X X)= (cu X v) ex)w - ( (u X V) •w)x 

= ( (w x x)• u )v - ( (w x x)• v )u. 
In particular, show that 

(u x v) x (u x w) = ( (u x v) • w )u. 

0 3. Show that the area A of a triangle with vertices (x1, YI, 0) , 
(x2, Y2, 0) , and (x3, y3, 0) in the xy -plane is given by 

A = ~ 1 I :~ ~~ :1 I l-
x3 Y3 

0 4. (a) If LI and L2 are two skew (i.e., nonparallel and noninter
secting) lines, show that there is a pair of parallel planes 
P1 and P2 such that LI lies in P1 and L2 lies in P2. 

(b) Find parallel planes containing the following two lines : 
L1 through point s (1, 1, 0) and (2, 0, 1) and L2 through 
points (0, 1, 1) and ( 1, 2, 2). 

0 5. What condit ion must the vector s a and b satisfy to ensure that 
the equation a x x = b has solutions? If this condition is 
satisfied, find all solution s of the equation. Describe the set 
of solutions. 
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Vector Functions 
and Curves 
'' Philosophy is written in this grand book - I mean the universe 

- which stands continually open to our gaze, but it cannot be 
understood unless one first learns to comprehend the language and 
interpret the characters in which it is written. It is written in the 
language of mathematics, and its characters are triangles, circles, 
and other geometrical figures, without which it is humanly impossible 
to understand a single word of it; without these, one is wandering 
about in a dark labyrinth. 

623 

'' Galileo Galilei 1564-1642 

I n trod LI Ct '1 Q n Thi.s chapter is concerned with functions of~ single real 
vanable that have vector values. Such funct10ns can be 

thought of as pa.ramet1ic representations of curves, and we will examine them from both 
a kinematic point of view (involving position, velocity, and acceleratio n of a moving 
particle) and a geometric point of view (involving tangents, normals, curvat ure, and 
torsion). Finally , we will work through a simp le derivation of Kepler's laws of planetary 
motion . 

• 
Vector Functions of One Variable 

-----
In this section we will examine several aspects of differential and integral calculus 
as applied to vector-valued functions of a single real variable. Such functions can 
be used to represent curves param etrica lly. It is natural to interpret a vector-valued 
function of the real variable t as giving the position , at time t , of a point or "particle " 
moving around in space. Derivatives of this position vector are then other vector
valued functions giving the velocity and acceleration of the particle. To motivate the 
study of vector function s, we will cons ider such a vectorial description of motion in 
3-space . Some of our examples will involve motion in the plane; in this case the third 
component s of the vectors will be O and will be omitted . 

If a particle moves around in 3-space, its motion can be described by giving the 
three coordinates of its position as functions of time t: 

X = x(t), y = y(t), and z = z(t) . 

It is more convenient , however, to replace these three equa tions by a single vector 
equation, 

r = r(t) , 

giving the position vector of the moving particle as a function of t. (Recall that the 
position vector of a point is the vector from the origin to that point.) In terms of the 
standard basis vectors i, j , and k, the position of the particle at time t is 
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Figure 11.1 The velocity v(t) is the 
derivative of the position r(t) and is 
tangent to the path of motion at the point 
with position vector r(t) 

y 

X 

Figure 11.2 The components of r(t) are 
smooth functions oft, but the curve fails 
to be smooth at the origin, where v = 0 

position: r = r(t) = x (t) i + y(t) j + z(t) k. 

Ast increa ses , the particle move s along a path, a curve e in 3-space. If z (t) = 0, then 
e is a plane curve in the xy- plane . We assume that e is a continuous curve; the particle 
cannot instantaneously jump from one point to a distant point. This is equivalent to 
requiring that the component functions x(t), y( t) , and z( t) are continuous functions of 
t , and we therefore say that r(t) is a continuous vector function oft. 

In the time interval from t to t + 11 t , the particle moves from position r(t) to 
position r(t + !1t). Therefore, its average velocity is 

r(t + M) - r(t ) 

!1t 

which is a vector parallel to the secant vector from r(t) to r( t + !1t) . If the average 
velocity has a limit as !1t --+ 0, then we say that r is differentiable at t, and we call 
the limit the (instantaneous) velocity of the particle at time t. We denote the velocity 
vector by v(t) : 

velocity : ( ) 
. r(t + !1t) - r (t) d ( 

v t = hm ------=-rt). 
61 --+0 l'!,.t dt 

v(t) 

Thi s velocity vector has direction tangent to the path eat the point r(t) (see Figure 11.1 ), 
and it points in the direction of motion . The length of the velocity vector , v (t) = Jv(t)I , 
is ca lled the speed of the particle : 

speed: v(t) = lv(t)J. 

Wherever the velocity vector exists, is continuous, and does not vanish, the path e is 
a smooth curve; that is, it has a continuously turning tangent line. The path may not 
be smoo th at points where the velocity is zero , even if the components of the velocity 
vector are smooth functions oft. 

EXAMPLE 1 Con sider the plane curve r = t 3i + t 2j. Its component functions 
t 3 and t 2 have continuous derivatives of all orders. However , the 

curve is not smooth at the origin (t = 0) , where its velocity v = 3t2i + 2tj = 0. (See 
Figure 11.2.) The curve is smooth at all other points where v(t) i= 0. 

The rules for addition and scalar multiplic ation of vectors imply that 

dr 
V=-

dt 
. (x(t + l'!,.t) - x(t) . y(t + !1t) - y(t) . z (t + M) - z (t) ) = hm ------, + --- - -- J + ------k 

61--+0 !1t l'!,.t !1t 

dx. dy . d z 
= dt 1 + dtJ + dt k. 
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Thus, the vector function r is differentiable at t if and only if its three scalar components, 
x, y, and z, are differentiable at t . In general, vector functions can be differentiated ( or 
integrated) by differentiating (or integrating) their component functions , provided that 
the basis vectors with respect to which the components are taken are fixed in space and 
not changing with time. 

Continuing our analysis of the moving particle , we define the acceleration of the 
particle to be the time derivative of the velocity: 

acceleration: 
dv d 2r 

a(t) = dt = dt 2 · 

Newton's Second Law of Motion asserts that this acceleration is proportional to, and 
in the same direction as, the force F causing the motion: if the particle has mass m, 
then the law is expressed by the vector equation F = ma. 

EXAMPLE 2 Describe the curve r = ti + t 2j + t 3k. Find the velocity and 
acceleration vectors for this curve at (1, 1, 1). 

Solution Since the scalar parametric equations for the curve are 

X = t, and Z = t3
, 

which satisfy y = x2 and z = x3, the curve is the curve of intersection of the two 
cylinders y = x 2 and z = x 3 . At any time t the velocity and acceleration vectors are 
given by 

dr 
V = - = i + 2tj + 3t2k, 

dt 
dv 

a = - = 2j + 6tk. 
dt 

The point (1, 1, 1) on the curve corresponds to t = 1, so the velocity and acceleration 
at that point are v = i + 2j + 3k and a= 2j + 6k, respectively. 

EXAMPLE 3 Find the velocity, speed, and acceleration , and describe the motion 
of a particle whose position at time t is 

r = 3 cos wt i + 4 cos wt j + 5 sin wt k. 

Solution The velocity, speed, and acceleration are readily calculated: 

dr 
v = - = -3wsinwti - 4w sinwt j + 5wcoswt k 

dt 

v = lvl = 5w 

a= dv = -3w 2 cos wt i - 4w2 cos wt j - 5w2 sin wt k = -w 2r. 
dt 

Observe that lrl = 5. Therefore , the path of the particle lies on the sphere with equation 
x2 + y 2 + z2 = 25. Since x = 3 cos wt and y = 4 cos wt, the path also lies on the 
vertical plane 4x = 3y. Hence , the particle moves around a circle of radius 5 centred 
at the origin and lying in the plane 4x = 3y. Observe also that r is periodic with period 
27r / w. Therefore , the particle makes one revolution around the circle in time 27r / w. 
The acceleration is always in the direction of -r , that is, toward the origin . The term 
centripetal acceleration is used to describe such a "centre-seeking" acceleration. 
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Figure 11.3 The path of a projectile fired 
from position ro with velocity vo 

EXAM p LE 4 (The projectile problem) Describe the path followed by a particle 
experiencing a constant downward acceleration, - gk, caused by 

gravity. Assume that at time t = 0 the particle is at position ro and its velocity is vo. 

Solution If the position of the particle at time tis r(t), then its acceleration is d 2r / dt 2. 
The position of the particle can be found by solving the initial-value problem 

d2r 
-=-gk 
dt 2 ' 

drl - =Vo, 
dt t=O 

r(O) = ro . 

We integrate the differential equation twice. Each integration introduces a vector 
constant of integration that we can determine from the given data by evaluating at 
t = 0: 

dr 
-=-gtk+vo 
dt 

gt2 
r = - 2 k + vot + ro. 

The latter equation represent s a parabola in the vertical plane passing through the point 
with position vector ro and containing the vector vo. (See Figure 11.3.) The parabola 
has scalar parametric equation s 

x = uot + xo, 

Y = vot + Yo, 

gt2 
z =- 2 +wot+ zo, 

where ro = xoi + yoj + zok and vo = uoi + voj + wok. 

X 

EXAM p LE 5 An object moves to the right along the plane curve y = x 2 with 
constant speed v = 5. Find the velocity and acceleration of the 

object when it is at the point (1, 1). 

Solution The position of the object at time t is 

r =xi+ x 2j , 

where x , the x-coordinate of the object 's position, is a function of t. The object's 
velocity, speed, and acceleration at time t are given by 

dr dx dx dx 
v = dt = dti + 2x dtj = dt (i + 2xj) , 

v = lvl = ldx I J I+ (2x) 2 = dx J1 +4x2 , 
dt dt 

dv d
2
x (dx)

2 

a = dt = dt2 (i + 2xj) + 2 dt j. 

www.konkur.in



THEOREM 

I 

SECTION 11.1: Vector Functions of One Variable 627 

(In the speed calculation we used ldx / dtl = dx / dt because the object is moving to 
the right.) We are given that the speed is constant; v = 5. Therefore, 

dx 5 

dt .JI+ 4x2 

When x = I , we have dx / dt = 5 / ../I""+4 = Js, so the velocity of the object at that 
point is v = Js i + 2./sj. Now we can calculate 

d
2
x d 5 ( d 5 ) dx 

dt 2 = dt .JI+ 4x2 = dx .Jl + 4x2 dt 
5 5 lOOx 

2(1 + 4x2)3/2 (8x) .Jl + 4x2 (1 + 4x2)2. 

At x = I , we have d 2x / dt 2 = -4. Thus, the acceleration at that point is 
a = -4(i + 2j) + lOj = -4i + 2j. 

Remark Note that we used x as the parameter for the curve in the above example, 
so we could use t for time. If you want to analyze motion along a curve r = r (t), 
where t is just a parameter , not necessarily time, then you will have to use a different 
symbol, say r (Greek "tau"), for time. The physical velocity and acceleration of a 
particle moving along the curve are then 

dr dt dr 
V=-=--

dr dr dt 
and a= dv = d

2
t dr + (dt)

2 
d

2
r. 

dr dr 2 dt dr dt 2 

Be careful how you interpret t in a problem where time is meaningful. 

Differentiating Combinations of Vectors 
Vectors and scalars can be combined in a variety of ways to form other vectors or 
scalars . Vectors can be added and multiplied by scalars and can be factors in dot and 
cross products . Appropriate differentiation rules apply to all such combinations of 
vector and scalar functions ; we summarize them in the following theorem. 

Differentiation rules for vector functions 

Let u(t) and v(t) be differentiable vector-valued functions, and Jet l(t) be a differen
tiable scalar-valued function. Then u(t) + v(t), l(t) u( t), u(t) • v(t), u(t) x v(t), and 
u ( A (t)) are differentiable , and 
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628 CHAPTER 11 Vector Function s and Curves 

(a) :t ( u(t) + v(t)) = u' (t) + v' (t) 

(b) :t ( l(t) u (t)) = A'(t) u (t) + l(t) u'(t) 

(c) :t ( u(t) • v(t)) = u' (t) • v(t) + u(t) • v' (t) 

(d) :t ( u(t) x v(t)) = u' (t) x v(t) + u(t) x v' (t) 

(e) :t ( u (l(t))) = l' (t) u'(l(t)). 

Also, at any point where u(t) -:/= 0, 

(f) ~ u(t) = u(t) • u' (t) . 
dt I I lu (t)I 

Remark Formulas (b), (c), and (d) are versions of the Product Rule. Formula (e) is 
a version of the Chain Rule. Formula (f) is also a case of the Chain Rule applied to 
lul = ,Jii.u. All have the obvious form . Note that the order of the factors is the same 
in the terms on both sides of the cross product formula ( d). It is essential that the order 
be preserved because , unlike the dot product or the product of a vector with a scalar, 
the cross product is not commutative. 

Remark The formula for the derivative of a cross product is a special case of that 
for the derivative of a 3 x 3 determinant. (See Section 10.3.) Since every term in 
the expansion of a determinant of any order is a product involving one element from 
each row (or column), the general Product Rule implies that the derivative of an n x n 
determjnant whose elements are functions will be the sum of n such n x n determinants , 
each with the elements of one of the rows (or columns) differentiated. For the 3 x 3 
case we have 

d a11 (t) a12(t) a13(t) 
a21(t) a22(t) a23(t) 

dt a31(t) a32(t) a33(t) 

a; 1(t) a;2(t) a;3(t) 
a21 (t) a22(t) a23(t) 
a31 (t) a32(t) a33(t) 

l

a 11(t) a 12(t) a13(t)I la11(t) a!2(t) a13(t)I 
+ a; 1 (t) a;2 (t) a;3 (t) + a21 (t) a22(t) a23(t) . 

a31 (t) a32(t) a33(t) a31 (t) a3i(t) a33(t) 

EXAM p LE 6 Show that the speed of a moving particle remains constant over an 
interval of time if and only if the acceleration is perpendicular to 

the velocity throughout that interval. 

Solution Since (v(t))
2 = v(t) • v(t) , we have 

2v(t)d v = ~(v(t))
2 

= ~(v(t) • v(t)) 
dt dt dt 

= a(t) • v(t) + v(t) • a(t) = 2v(t) • a(t). 

If we assume that v(t) -:/= 0, it follow s that dv / dt = 0 if and only if v • a= 0. The 
speed is constant if and only if the velocity is perpendicular to the acceleration . 

EXAMPLE 7 If u is three times differentiable, calculate and simplify the triple 
product derivative 
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Solution Using various versions of the Product Rule, we calculate 

d ( (du d
2u)) 

dt U• dt X dt 2 

=du• (du x d
2
u) +u• (d

2
u x d

2
u) +u • (du x d

3
u) 

dt dt dt 2 dt 2 dt 2 dt dt 3 

(
du d

3u) (du d
3
u) =0+0+u • -X- =U• - X-. 

dt dt 3 dt dt 3 

The first term vanishes because du/ dt is perpendicular to its cross product with another 

vector; the second term vanishes because of the cross product of identical vectors. 

EXERCISES 11.1 
In Exercises 1-14, find the velocity, speed, and acceleration at 
time t of the particle whose position is r(t ) . Describe the path of 
the particle. 

1. r = i + tj 2. r = t 2i + k 

3. r = t2j + tk 4. r = i + tj + tk 

5. r = t2i - t2j + k 6. r =ti+ t2j + t2k 

7. r = a cos ti +asintj + ct k 

8. r = a cos wt i + bj + a sin wt k 

9. r = 3 cost i + 4 cost j + 5 sin t k 

10. r = 3 cost i + 4 sin t j + tk 

11. r = ae 1i + be1j + ce1k 

12. r = at cos wt i + at sin wt j + b Int k 
13. r = e- 1 cos(e1)i + e- 1 sin(e1) j - e1k 

14. r = a cost sin ti + a sin2 t j + a cost k 

15. A particle moves around the circle x 2 + y2 = 25 at constant 
speed, making one revolution in 2 s. Find its acceleration 
when it is at (3, 4). 

16. A particle move s to the right along the curve y = 3 / x. If its 
speed is 10 when it passes through the point (2, D, what is 
its velocity at that time? 

17. A point P move s along the curve of intersection of the 
cylinder z = x 2 and the plane x + y = 2 in the direction of 
increasing y with constant speed v = 3. Find the velocity of 
P when it is at (1, I, 1). 

18. An object moves along the curve y = x2, z = x3, with 
constant vertical spee d dz / dt = 3. Find the velocity and 
acceleration of the object when it is at the point (2, 4, 8). 

19. A particle moves along the curve r = 3ui + 3u 2j + 2u 3k in 
the direction corresponding to increasing u and with a 
constant speed of 6. Find the velocity and acceleration of the 
particle when it is at the point (3, 3, 2). 

20. A particle move s along the curve of intersection of the 
cylinders y = -x 2 and z = x2 in the direction in which x 
increases. (All distances are in centimetres.) At the instant 
when the particle is at the point (1, -1, 1), its speed is 
9 emf s, and that speed is increasing at a rate of 3 crn/s 2 . Find 
the velocity and acce leration of the particle at that instant. 

21. Show that if the dot product of the velocity and acceleration 

of a movi11g particle is positive (or negative), then the speed 
of the particle is increasing (or decreasing). 

22. Verify the formula for the derivative of a dot product given in 
Theorem l(c). 

23. Verify the formula for the derivative of a 3 x 3 determinant 
in the second remark following Theorem l. Use this formula 
to verify the formula for the derivative of the cross product in 
Theorem 1. 

24. If the position and velocity vectors of a moving paiticle ai·e 
a lway s perpendicular, show that the path of the particle lies 
on a sphere. 

25. Generalize Exercise 24 to the case where the velocity of the 
particle is always perpendicular to the line joining the 
particle to a fixed point Po. 

26. What can be said about the motion of a particle at a time 
when its position and velocity satisfy r • v > O? What can be 
said when r • v < O? 

In Exercises 27-32 , assume that the vector function s encountered 
have continuous derivatives of all required orders. 

27. Show that- - x - = - x -. d (du d2u) du d3u 
dt dt dt 2 dt dt 3 

28. Write the Product Rule for :t ( u • (v x w)). 
29. Write the Product Rule for :t ( u x (v x w)). 
30. Expand and simplify: :!.._ (u x (du x d 2u)) 

dt dt dt 2 . 

31. Expand and simp lify: - (u + u ) • (u x u) . d ( I/ I) 
dt 

32. Expand and simplify: :t ( (u x u') • (u' x u")). 

33. If at all times t the position and velocity vectors of a moving 
particle satisfy v(t) = 2r(t) , and if r(O) = ro , find r(t) and 
the acceleration a(t). What is the path of motion ? 

E::334. Verify that r = ro cos(wt) + (vo/ w) sin(wt) satisfies the 
initial-value problem 

r ' (O) = vo, r(O) = ro. 
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(It is the unique solution.) Describe the path r(t). What is 
the path if ro is perpendicular to vo? 

where c is a positive constant. If r = ro and dr / dt = vo at 
time t = 0, find r (t). (Hint: Let w = ec1 (dr / dt) .) Show that 
the solution approaches that of the projectile problem given 
in this section as c ~ 0. 

E:335. (Free fall with air resistance) A projectile falling under 
gravity and slowed by air resistance proportional to its speed 
has position satisfying 

d 2r dr 
- = -g k -c - , 
dt 2 dt 

Some Applications of Vector Differentiation 
Many interesting problem s in mech anics involve the differenti ation of vector functions . 
This section is devoted to a brief discussion of a few of these. 

Motion Involving Varying Mass 
The momentum p of a moving object is the product of its (scalar) mass m and its 
(vector) velocity v; p = mv . Newton's Second Law of Motion states that the rate of 
change of momentum is equal to the external force acting on the object: 

F = dp = !!:_(mv) . 
dt dt 

It is only when the mass of the object remains constant that this law reduces to the 
more famil iar F = ma . When mass is changing you must deal with momentum rather 
than acce leration . 

EXAM p LE 1 (The changing velocity of a rocket) A rocket accelerates by 
burnin g its onboard fuel. If the exhaust gases are ejected with 

constant velocity Ve relative to the rocket, and if the rocket ejects p% of its initial mass 
while its engines are firing, by what amou nt will the velocity of the rocket change? 
Assume the rocket is in deep space so that gravitational and other external forces acting 
on it can be neglected. 

Solution Since the rocket is not acted on by any external forces (i.e., F = 0), Newton 's 
law implies that the total momentum of the rocket and its exhaust gases will remain 
constant. At time t the rocket has mass m(t) and velocity v(t). At time t + /':,.t the 
rocket 's mass is m+ /':,.m (where /':,.m < 0), its velocity is v + 1':,.v, and the mass -1':,.m 

of exhaust gases has escape d with velocity v + Ve (relative to a coordinate system fixed 
in space). Equating total momenta at t and t + /':,.t we obtain 

(m + /':,.m)(v + 1':,.v) + (-1':,.m)(v +V e)= mv. 

Simp lifying this equation and dividing by /':,.t gives 

1':,.v /':,.m 
(m + /':,.m)- = - Ve, 

I':,. t /':,.t 

and, on taking the limit as /':,.t ---+ 0, 

dv dm 
m- =-V e, 

dt dt 

Suppose that the engine fires fro m t = 0 to t = T . By the Fundamental Theorem of 
Calculus , the velocity of the rocket will change by 

1T dv (1T 1 dm ) v(T)-v(O)= -dt= --dt Ve 
o dt o m dt 

= (1nm(T) - lnm(O))v e = -In(;;i)) Ve, 

www.konkur.in



0 

Figure 11.4 Rotation with angular 
velocity Q : v = Q x r 

SECTION 11.2: Some Applications of Vector Differentiation 631 

Since m(O) > m(T) , we have ln(m (O)/ m(T)) > 0 and, as was to be expected, the 
change in velocity of the rocket is in the opposite direction to the exhaust velocity v e. 

If p o/o of the mass of the rocket is ejected during the burn, then the velocity of the 
rocket will change by the amount -V e ln(l00 / (100 - p)). 

Remark It is intere sting that this model places no restriction on how great a velocity 
the rocket can achieve, provided that a sufficiently large percentage of its initial mass 
is fuel. See Exercise 1 at the end of the section. 

Circular Motion 
The angular speed n of a rotating body is its rate of rotatio n measured in radians per 
unit time . For instance, a lighthou se lamp rotating at a rate of three revolutions per 
minute has an angular speed of n = 6n radians per minute. It is useful to represent 
the rate of rotation of a rigid body about an axis in terms of an angular velocity vector 
rather than ju st the scalar angular speed. The angular velocity vector, Q , has magnitude 
equal to the angular speed, n, and direction along the axis of rotation such that if the 
extended right thumb point s in the direction of Q , then the fingers surround the axis in 
the direction of rotation. 

If the origin of the coordinate system is on the axis of rotation, and r = r(t) is the 
position vector at time t of a point P in the rotating body, then P moves around a circle 
of radius D = lr (t)I sin 0, where 0 is the (constant) angle between Q and r(t). (See 
Figure 11.4.) Thus, P travels a distance 2n D in time 2n / n, and its linear speed is 

distance 2n D . . = -- =OD= IS21ir(t)I srn0 = IQ x r (t)I. 
time 2n / O 

Since the direction of Q was defined so that Q x r (t) would point in the direction of 
motion of P, the linear velocity of P at time t is given by 

dr 
- = v(t) = Q x r(t) . 
dt 

EXAMPLE 2 The position vector r(t ) of a moving particle P satisfies the initial
value problem 

- = 2i X r (t) 
dt l 
dr 

r(O) = i + 3j. 

Find r(t) and describe the motion of P. 

Solution There are two ways to solve this problem. We will do it both ways . 

METHOD I. By the discussion above, the given differential equation is consistent with 
rotation about the x-ax is with angular velocity 2i, so that the angular speed is 2, and the 
motion is counterclockwise as seen from far out on the positive x-axis. Therefore, the 
particle P moves on a circle in a plane x = constant and centred on the x-ax is. Since 
Pis at (1, 3, 0) at time t = 0, the plane of motion is x = 1, and the radius of the circle 
is 3. Therefore , the circle has a parametric equation of the form 

r = i + 3 cos(Jct)j + 3 sin( Jct)k. 

P travels once around this circle (2n radians) in time t = 2n / Jc, so the angular speed 
is Jc. Therefore , Jc = 2 and the motion of the particle is given by 

r = i + 3 cos(2t)j + 3 sin(2t)k. 
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METHOD II. Break the given vector differential equation into components: 

dx · dy · dz k 2· ( · · k) 2 · 2 k 
dt I + dt J + dt = I X XI+ YJ + z = - ZJ + y 

dx dy d z 
dt = O, dt = - 2z, dt = 2Y· 

The first equation implies that x = constant. Since x (0) = 1, we have x (t) = 1 for all 
t. Differentiate the second equation with respect to t and substitute the third equation. 
This leads to the equation of simple harmonic motion for y, 

d 2y d z 
dt 2 = - 2 dt = - 4Y, 

for which a general solution is 

y = A cos(2t) + B sin(2t). 

Thus, z = -½(dy / dt) = A sin(2t) - B cos(2t). Since y(O) = 3 and z(O) = 0, we 
have A = 3 and B = 0. Thus , the particle P travels counterclockwise around the 
circular path 

r = i + 3 cos(2t)j + 3 sin(2t)k 

in the plane x = 1 with angular speed 2. 

Remark Newton 's Second Law states that F = (d / dt)(mv) = dp / dt, where 
p = mv is the (linear) momentum of a particle of mass m moving under the influence 
of a force F. This law may be reformulated in a manner appropriate for describing 
rotational motion as follows. If r(t) is the position of the particle at time t, then, since 
V XV= 0, 

!!:._(r x p) = !!:._(r x (mv)) = v x (mv) + r x !!:._(mv) = r x F. 
dt dt dt 

The quantities H = r x (mv) and T = r x Fare, respectively, the angular momentum 
of the particle about the origin and the torque of F about the origin. We have shown 
that 

dH 
T=-· 

dt ' 

the torque of the external forces is equal to the rate of change of the angu lar momentum 
of the particle. This is the analogue for rotational motion of F = dp/ dt. 

0 Rotating Frames and the Coriolis Effect 
The procedure of differentiating a vector function by differentiating its components is 
valid only if the basis vectors themselves do not depend on the variable of differentia
tion. In some situations in mechanics this is not the case . For instance, in modelling 
large-scale weather phenomena the analysis is affected by the fact that a coordinate 
system fixed with respect to the earth is, in fact, rotating (along with the earth) relative 
to directions fixed in space. 

In order to under stand the effect that the rotation of the coordinate system has on 
representations of velocity and acceleration, let us consider two Cartesian coordinate 
frames (i.e., systems of axes with corresponding unit basis vectors), a "fixed" frame 
with basis {I, J, K}, not rotating with the earth, and a rotating frame with basis {i, j , k} 
attached to the earth and therefore rotating with the same angular speed as the earth , 
namely, n / 12 radians/hour. Let us take the origin of the fixed frame to be at the 
centre of the earth, with K pointing north. Then the angular velocity of the earth is 
Q = (n / l 2)K. The fixed frame is being carried along with the earth in its orbit around 
the sun, but it is not rotating with the earth, and, since the earth's orbital rotation around 
the sun has angular speed only l/365th of the angular speed of its rotation about its 
axis, we can ignore the much smaller effect of the motion of the earth along its orbit. 
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Figure 11.5 The fixed and local frames 

moving object 
r 

centre of the earth 

Po 
observer 

Figure 11.6 Position vectors relative to 
the fixed and rotating frames 
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Let us take the origin of the rotating frame to be at the location of an observer on 
the surface of the earth, say, at point Po with po sition vector Ro with respect to the 
fixed frame. 1 Assume that Po has colatitude cf> (the angle between Ro and K ) satisfying 
0 < cf> < n, so that Po is not at either the north pole or the south pole. Let us assume 
that i and j point, respecti vely, due east and north at Po. Thus , k must point directly 
upward there. (See Figur e 11.5.) 

Since eac h of the vectors i , j , k, and Ro is rotating with the earth (with angular 
velocity Q), we have , as shown earlier in thi s sect ion , 

di . - = Q XI 
dt ' 

d" J n • - = ~G X J 
dt ' 

dk 
-=Qxk 
dt ' 

and 
d Ro 
--= QxR o. 

dt 

Any vector function ca n be expressed in term s of either ba sis. Let us denote by R(t), 
V(t), and A(t) the position, velocity, and acce leration of a mo ving object with re spect 
to the fixed frame , and by r(t), v(t) , and a(t) the same quantitie s with respect to the 
rotating frame. Thu s, 

R = XI + Y J + ZK, 
dX dY dZ 

V = dtl+ dt J + dtK, 
d2 X d2 Y d2 Z 

A = dt 2 I + dt 2 J + dt 2 K, 

r = xi + yj + zk, 

dx . dy . d z 
V=-I+-J+-k, 

dt dt dt 

d2x . d2y . d2z 
a=- 2 1 + -2 J+- 2 k. 

dt dt dt 

How are the rotating-frame values of these vectors related to the fixed-frame values? 
Since the origin of the rotating frame is at Ro, we hav e (see Figure 11.6) 

R =R o+ r. 

When we differentiate with respect to time , we must remember that Ro, i, j , and k all 
depend on time. Therefor e, 

dR dRo dx. di dy . dj dz dk 
V= - = -+-i+x-+-J+ y-+ -k+ z-

dt dt dt dt dt dt dt dt 
= V + Q X Ro + x Q X i + y Q X j + zQ X k 
=v+2xRo+2xr 

=v + QxR. 

The authors are grateful to Professor Lon Rosen for suggesting this approach to the analysis of 
the rotating frame. 
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Similarly, 
dV d 

A= - = -(v + Q x R) 
dt dt 

d2x. dx di d2y. dy dj d 2z dz dk dR 
= dt 2 l + dt dt + dt 2 J + dt dt + dt 2 k + dt df + Q X dt 
= a + Q x v + Q x (V) 

=a+ 2Q XV+ Q X (Q X R ) . 

The term 2Q x v is called the Coriolis acceleration, and the term Q x (Q x R) is 
cailed the centripetal acceleration. 

Suppose our moving object has mass m and is acted on by an external force F. By 
Newton's Second Law, 

F = mA =ma+ 2mQ xv+ mQ x (Q x R), 

or, equivalently, 

F 
a= - - 2Q X V - Q X (Q X R). 

m 
To the observer on the rotating earth, the object appears to be subject to F and to two 
other forces, a Coriolis force, whose value per unit mass is - 2Q xv , and a centrifugal 
force, whose value per unit mass is -Q x (Q x R). The centrifugal and Coriolis forces 
are not "real" forces acting on the object. They are fictitious forces that compensate 
for the fact that we are measuring acceleration with respect to a frame that we are 
regarding as fixed, although it is really rotating and hence accelerating. 

Observe that the centrifugal force points directly away from the polar axis of the 
earth. It represents the effect that the moving object wants to continue moving in a 
straight line and "fly off" from the earth rather than continuing to rotate along with the 
observer . This force is greatest at the equator (where Q is perpendicular to R), but it is 
of very small magnitude: 12121Rol ~ 0.003g. 

The Coriolis force is quite different in nature from the centrifugal force. In 
particular , it is zero if the observer perceives the object to be at rest. It is perpendicular 
to both the velocity of the object and the polar axis of the earth , and its magnitude can 
be as large as 21Slllvl; and, in particular, it can be larger than that of the centrifugal 
force if lvl is sufficiently large. 

EXAM p LE 3 (Win ds around the eye of a storm) The circulation of winds 
around a storm centre is an example of the Coriolis effect. The eye 

of a storm is an area of low pressure sucking air toward it. The direction of rotation of 
the earth is such that the angular velocity Q points north and is parallel to the earth 's 
axis of rotation . At any point P on the surface of the earth we can express Q as a sum 
of tangential (to the earth 's surface) and normal components (see Figure 1 l.7(a)), 

Q(P ) = Slr(P) + QN(P). 

If P is in the northern hemisphere , QN (P) points upward (away from the centre of 
the earth) . At such a point the Coriolis "force" C = -2 Q(P) x v on a particle of air 
moving with horizontal velocity v would itself have horizontal and normal components 

C = -2 Slr xv - 2QN xv= CN + Cr . 

The normal component of the Coriolis force has negligible effect, since air is not free 
to travel great distances vertically. However, the tangential component of the Coriolis 
force , Cr = -2 QN x v, is 90° to the right of v (i.e., clockwise from v). Therefore, 
particles of air that are being sucked toward the eye of the storm experience Coriolis 
deflection to the right and so actually spiral into the eye in a counterclockwise direction. 
The opposite is true in the southern hemisphere, where the normal component QN is 
downward (into the earth). The suction force F, the velocity v, and the component 
of the Coriolis force tangential to the earth 's surface, Cr , are shown at two positions 
on the path of an air particle spiralling around a low-pressure area in the northern 
hemisphere in Figure 1 l.7(b). 

www.konkur.in



Figure 11.7 

(a) Tangential and normal components of 
the angular velocity of the earth in the 
northern and southern hemispheres 

(b) In the northern hemisphere the 
tangential Coriolis force deflects 
winds to the right of the path toward 
the low-pressure area L so the winds 
move counterclockwise around the 
centre of L 
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s 
(a) 

N 

s 
(b) 

Remark Strong winds spiralling inward around low-pressure areas are called cy
clones . Strong winds spiralling outward around high-pressure areas are called 
anticyclones. The latter spiral counterclockwise in the southern hemisphere and 
clockwise in the northern hemisphere. The Coriolis effect also accounts for the high
velocity eastward-flowing jet streams in the upper atmosphere at midlatitudes in both 
hemispheres, the energy being supplied by the rising of warm tropical air and its 
subsequent moving toward the poles. 

The relationships between the basis vectors in the fixed and rotating frames can be 
used to analyze many phenomena. Recall that Ro makes angle¢ with K. Suppose the 
projection of Ro onto the equatorial plane (containing I and J) makes angle 0 with I as 
shown in Figure 11.5. Careful consideration of that figure should convince you that 

i = - sin0I + cos0J 

j = - cos¢ cos 01 - cos¢ sin 0J + sin ¢K 

k =sin¢ cos0I +sin¢ sin0J + cos ¢K. 

Similarly, or by solving the above equations for I, J, and K, 

I= - sin 0i - cos¢ cos0j +sin¢ cos0k 

J = cos 0i - cos¢ sin 0j +sin¢ sin 0k 

K = sin ¢j + cos ¢k. 

Note that as the earth rotates on its axis,¢ remains constant while 0 increases at (n / 12) 
radians/hour. 

EXAMPLE 4 

vector 

Suppose that the direction to the sun lies in the plane of I and K, 
and makes angle (J with I. Thus, the sun lies in the direction of the 

S = cos al+ sinaK. 

(a = 0 at the March and September equinoxes , and a ~ 23.5° and -23 .5° at the June 
and December solstices.) Find the length of the day (the time between sunrise and 
sunset) for an observer at colatitude¢. 
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Solution The sun will be "up" for the observer if the angle between Sand k does not 

exceed n / 2, that is, if S • k ::::: 0. Thus, daytime con-esponds to 

cos (J sin¢ cos 0 + sin (J cos¢ ::::: 0, 

or, equivale ntl y, cos 0 > 

namely , when 

tan (J 

tan¢ 
Sunup and sundo wn occur where equa lit y occurs, 

0 =Bo= ±cos- ---1 ( tan (J) 

tan¢ 

if such values exist. (They will exist if¢ ::::: (J ::::: 0 or if n - ¢ ::::: -(J ::::: 0.) In this 

case, daytime for the observer lasts 

- x 24 = -cos --- hours. 
200 24 _ 1 ( tan (J ) 

2n n tan¢ 

For instance , on June 21st at the Arctic Circle (so¢= (J), daytime lasts 

(24 / n) cos- 1 (-1) = 24 hours. 

EXE R C IS ES 11.2 

1. What fraction of its total initial mass would the rocket 
considered in Examp le 1 have to burn as fuel in order to 
accelerate in a straight line from rest to the speed of its own 
exhaust gases? to twice that speed? 

D 2. When run at maximum power outp ut, the motor in a 
self-propelled tank car can acce lerate the full car (mass 
M kg) along a horizontal track at a m/s2 . The tank is full at 
time zero, but the contents pour out of a hole in the bottom at 
rate k kg/s thereafter. If the car is at rest at time zero and full 
forward power is turned on at that time , how fast will it be 
moving at any time t before the tank is empty? 

E] 3. Solve the initial-value problem 

dr 
- =k X r dt , r(O) = i + k. 

Describe the curve r = r(t). 
E] 4. An object moves so that its position vector r(t) satisfies 

dr ( ) dt = a x r(t) - b 

and r(O) = ro. Here, a, b, and ro are given constant vectors 
with a i= 0. Describe the path along which the object moves. 

The Coriolis effect 

D 5. A satellite is in a low, circular, polar orbit around the earth 
(i.e., passing over the north and south poles). It makes one 
revolution every two hours . An observer standing on the 
earth at the equator sees the satellite pass directly overhead. 

In what direction does it seem to the observer to be moving? 
From the observer's point of view, what is the approx imate 
value of the Coriolis force acting on the satellite? 

D 6. Repeat Exercise 5 for an observer at a latitude of 45° in the 
northern hemisphere. 

D 7. Descr ibe the tangential and normal components of the 
Corio lis force on a part icle moving with horizontal velocity v 
at (a) the north pole , (b) the south pole, and (c) the equat or. 
In general , what is the effect of the normal component of the 
Corio lis force near the eye of a storm? 

D 8. (The location of sunrise and sunset) Extend the 
argument in Example 4 to determine where on the horizon of 
the observer at Po the sun will rise and set. Specifically , ifµ 
is the angle between j and S (the direction to the sun) at 
sunri se or sunset, show that 

sin a 
cosµ= sin¢. 

For examp le , if a = 0 (the equinoxes), then µ = n / 2 at a ll 
co latitudes ¢; the sun rises due east and sets due west on 
those days. 

9. Vancouver, Canada, has latitude 49.2 ° N, so its colatitude is 
40.8 ° . How long is the sun visib le in Vancouver on 
June 2 lst? Or rather, how long would it be visible if it 
weren't raining and if there were not so many mountains 
around? At what angle away from north would the sun rise 
and set? 

10. Repeat Exerc ise 9 for Umea , Sweden (latitude 63.5 ° N). 
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• 
Curves and Parametrizations 

-- ---
In this section we will consider curves as geometric objects rather than as paths of 
moving particles. Everyone has an intuitive idea of what a curve is, but it is difficult 
to give a formal definition of a curve as a geometric object (i.e., as a certain kind of set 
of points) without involving the concept of parametric representation. We will avoid 
this difficulty by continuing to regard a curve in 3-space as the set of points whose 
positions are given by the position vector function 

r = r (t) = x(t) i + y(t) j + z(t) k , a St Sb. 

However, the parameter t need no longer represent time or any other specific physical 
quantity. 

EXAMPLE 1 Use t = y to parametrize the part of the line of intersection of the 
two planes y = 2x - 4 and z = 3x + 1 from (2, 0, 7) to (3, 2, 10). 

Solution We need to express all three coordinates of an arbitrary point on the line 
as functions of t = y. Since y = t , the equation y = 2x - 4 assures us that 
x = ½(y+4) = ½Ct+4). Thentheequation z = 3x+l gives z = ~(t+4)+1 = ~t+7. 
Since the line segment goes from y = 0 to y = 2, the required parametrization is 

t + 4 (3 ) r = -
2

- i + tj + 2t + 7 k, 0 S t S 2. 

EXAM p LE 2 The plane x + y = 1 intersect s the paraboloid z = x 2 + y2 
in a parabola. Parametrize the whole parabola using t = x as 

parameter. Could t = y have been used as parameter ? What about t = z? 

Solution From the equations of the two surfaces defining the parabola , we have 
y = I - x = l - t, and z = x 2 + y2 = 1 - 2t + 2t 2. Thus , the required parametrization 
IS 

r = ti+ (1 - t)j + (1 - 2t + 2t 2)k , -oo < t < oo. 

We could use t = y instead oft = x as the parameter; in this case the parametrization 
would be r = (1 - t)i + tj + (1 - 2t + 2t2)k , -oo < t < oo. However, if we try 
to use t = z as parameter, we would have to solve the system of equations x + y = 1, 
x 2 + y2 = t for x and y . This system has two possible solutions , each corresponding 
to a different half of the parabola starting at the lowest point (½, ½, ½) because there 

are two points on the parabola at each height z > ½. The whole parabola cannot be 
parametrized using z as the parameter. 

Curves can be very pathological . For instance , there exist continuous curves that pass 
through every point in a cu be. It is difficult to think of such a curve as a one-dimensional 
object. In order to avoid such strange objects we assume hereafter that the defining 
function r(t) has a continuou s first derivative , dr / dt , which we will continue to call 
"velocity" and denote by v(t) by analogy with the physical case where t is time. (We 
also continue to call v(t) = lv(t)I the "speed.") As we will see later, this implies that 
the curve has an arc length between any two points corresponding to parameter values 
t1 and t2; if ti < t2, this arc length is 

112 112 112 dr 
v(t)dt = lv(t)ldt= 1-ldt. 

ti ti ti dt 
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y 

(- 1,0) 

Figure 11.8 Three parametrizations of the 
semicircle C' are given in Example 3 

(;J
t=a © t=a t=b b 

C'2 

t=a t=b 

06) 
Figure 11.9 Curves C' 1 and C'3 are 
non-self-intersecting 
Curves C'2 and C'4 intersect themselves 
Curves C' 1 and C'2 are not closed 
Curves C'3 and C'4 are closed 
Curve C'3 is a simple closed curve 

Frequently we will want r(t) to have continuous derivatives of higher order. Whenever 
needed, we will assume that the "acce leration ," a(t) = d2r/ dt 2, and even the third 
derivative, d3r/ dt3, are continuous. Of course, most of the curves we encounter in 
practice have parametrizations with continuous derivatives of all orders. 

It must be recalled, however, that no ass umptions on the continuity of derivatives 
of the function r(t) are sufficient to guarantee that the curve r = r(t) is a "smooth" 
curve. It may fail to be smooth at a point where v = 0. (See Example l in Section 
11. I.) We will show in the next section that if, besides being continuous, the velocity 
vector v(t) is never the zero vector, then the curve r = r(t) is smooth in the sense that 
it has a continuously turning tangent line. 

Although we have said that a curve is a set of points given by a parametric equation 
r = r(t), there is no unique way of representing a given curve parametrically. Just 
as two cars can travel the same highway at different speeds , stopping and starting at 
different places, so too can the same curve be defined by different parametrizations; a 
given curve can have infinitely many different parametrizations. 

EXAMPLE 3 Show that each of the vector functions 

r1 (t) = sin ti+ cost j , 

r2(t) = (t - 1) i + .J2t - t 2 j , 

r 3(t) = t.J2=t2i + (1 - t 2)j, 

(-1r / 2 St S 1r/ 2), 

(0 S t S 2) , and 

(-l S t S l) 

all represent the same curve . Describe the curve. 

Solution All three functions represent point s in the xy -plane. The function r 1 (t) 
starts at the point (-1, 0) with position vector r1 (-1r / 2) = -i and ends at the point 
(1, 0) with position vector i. It lies in the half of the xy- plane where y 2: 0 (because 
cost 2: 0 for (-1r / 2 S t S 7r / 2)). Finally , all points on the curve are at distance 1 
from the origin: 

Jr1(t)J = J(sint) 2 + (cost) 2 = 1. 

Therefore, r1 (t) represents the semicircle y = ~ in the xy-plane traversed from 
left to right. 

The other two functions have the same properties: both graphs lie in y 2: 0, 

r2(0) = -i, 
r3(-l) = -i, 

r2(2) = i , 
r 3(l) =i , 

Jr2(t) J = J(t - 1)2 + 2t - t 2 = 1, 

Jr3 (t) J = Jt2(2 - t2) + (I - t2)2 = 1. 

Thus , all three functions represent the same semicircle (see Figure 11.8) . Of course, 
the three parametrizations trace out the curve with different velocities. 

The curve r = r(t), (a S t S b ), is called a closed curve if r(a) = r(b ), that is, if the 
curve begins and ends at the same point. The curve C? is non-self -intersecting if there 
exists some parametrization r = r(t) , (a S t S b), of C? that is one-to-one except that 
the endpoints could be the same: 

r( t 1) = r(t2 ) a S t1 < t2 S b =} ti = a and t2 = b. 

Such a curve can be closed , but otherwise does not intersect itself; it is then called a 
simple closed curve . Circles and ellipses are examples of simple closed curves. Every 
parametrization of a particular curve determines one of two possible orientations 
corresponding to the direction along the curve in which the parameter is increasing. 
Figure 11.9 illustrates these concepts . All three parametrizations of the semicircle in 
Example 3 orient the semicircle clockwise as viewed from a point above the xy-plane. 
This orientation is shown by the arrowheads on the curve in Figure 11.8. The same 
semicircle could be given the opposite orientation by, for example, the parametrization 

r(t) = cost i + sin t j , osis1r. 
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Figure 11. 10 The curve of intersection of 
an oblique plane and an elliptic cylinder 
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Parametrizing the Curve of Intersection of Two Surfaces 
Frequently , a curve is specified as the intersection of two surfaces with given Cartesian 
equations. We may want to represent the curve by parametric equations. There is 
no unique way to do thjs , but if one of the given suifaces is a cylinder parallel to a 
coordinate axis (so its equation is independent of one of the variables), we can begin 
by parametrizing that surface. The following examples clarify the method. 

EXAMPLE 4 Parametrize the curve of intersection of the plane x + 2y + 4z = 4 
and the elliptic cylinder x 2 + 4y 2 = 4. 

Solution We begin with the equation x 2 + 4y2 = 4, which is independent of z. It 
can be parametrized in many ways ; one convenient way is 

x = 2cos t, y = sin t, (0 S t S 27r). 

The equation of the plane can then be solved for z, so that z can be expressed in terms 
oft: 

1 1 
z = -(4-x -2 y) = 1- -(cost +sint). 

4 2 

Thus , the given surfaces intersect in the curve (see Figure 11. l 0) 

( 
cos t + sin t ) 

r = 2 cos ti + sin tj + 1 -
2 

k, (O::::: t S 2n). 

EXAMPLE 5 Find a parametric representation of the curve of intersection of the 
two surfaces 

x2 + y + z = 2 and x y + z = I. 

Solution Here, neither given equation is independent of a variable, but we can obtain 
a third equation representing a surface containjng the curve of intersection of the two 
given surfaces by subtracting the two given equations to eliminate z: 

This equation is readily parametrized. If, for example , we Jet x = t, then 

t2 + y (l -t) = 1, 
1 - t2 

so y = -- = l + t. 
1 - t 

Either of the given equations can then be used to express z in terms oft: 

z = I - x y = l - t(l + t) = 1 - t - t 2
. 

Thus, a possible parametrization of the curve is 

r =ti+ (1 + t)j + (l - t - t2)k. 

Of course , this answer is not unique. Many other parametrizations can be found for 
the curve, providing orientations in either direction. 
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Figure 11.11 A polygonal approximation 
to a curve e. The length of the polygonal 
line cannot exceed the length of the curve. 
In this figure the points on the curve are 
labelled with their position vectors, but the 
origin and these vectors are not 
themselves shown 

Arc Length 
We now consider how to define and calculate the length of a curve. Let e be a bounded, 
continuous curve specified by 

r = r(t), a St Sb. 

Subdivide the closed interval [a , b] into n subinterval s by points 

a = to < f1 < t2 < · · · < tn-1 < t,, = b. 

The points ri = r(ti ), (0 S i S n ), subdivide e into n arcs. If we use the chord length 
Ir; - r; _ 1 I as an approximation to the arc length between ri - 1 and r;, then the sum 

n 

Sn= Llr; -ri - ll 
i=l 

approximates the length of e by the length of a polygonal line. (See Figure 11.11.) 
Evidently, any such approximation is less than or equa l to the actual length of e. We 
say that e is rectifiable if there exists a constant K such that s,, S K for every n and 
every choice of the points t;. In this case, the completeness axiom of the real number 
system assures us that there will be a smallest such number K. We call this smallest 
K the length of e and denote it bys. Let /'}.t; = t; - t;-1 and t,,,ri = r i - r;_ 1• Then 
s,, can be written in the form 

" I t,,,r; I Sn= L --. /'}.t;. 
i = I /'}.t, 

r; 

If r(t) has a continuous derivative v(t) , then 

s = Jim s,, = rb ld r l dt = rb lv(t)ldt = rb v(t)dt. 
!HOO la dt la la max At;-+O a a a 

In kinematic terms , this formula states that the distance travelled by a moving particle 
is the integral of its speed. 

Remark Although the above formula is expressed in terms of the parameter t, the 
arc length , as defined above, is a strictly geometric property of the curve e. It is 
independent of the particular parametrization used to represent e. See Exercise 27 at 
the end of this section . 

If s(t) denotes the arc length of that part of e corresponding to parameter values 
in [a , t], then 

ds d 11 

- = - v(r) dr = v(t), 
dt dt a 
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X = a COS t 

y = a sin t 

z = bt 
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The helix 
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so that the arc length element for e is given by 

ds = v(t)dt = 1:/(t)I dt. 

The length of e is the integral of these arc length elements; we write 

le ds = length of e = 1b v(t) dt. 

Several familiar formulas for arc length follow from the above formula by using 
specific parametrizations of curves. For instance, the arc length element ds for the 
Cartesian plane curve y = f(x) on [a, b] is obtained by using x as parameter ; here, 
r =xi+ f(x)j, so v = i + f'(x)j and 

Similarly, the arc length element ds for a plane polar curve r = g(0) can be calculated 
from the parametrization 

r(0) = g(0) cos0i + g(0) sin0j. 

It is 

EXAM p LE 6 Find the length s of that part of the circular helix 

r = a cost i + a sin t j + bt k 

between the points (a, 0, 0) and (a, 0, 21rb). 

Solution This curve spirals around the z-axis, rising as it turns. (See Figure 11.12.) 
It lies on the surface of the circular cylinder x 2 + y2 = a2 . We have 

dr 
v = - = -a sin t i + a cost j + bk 

dt 

V = Ja2 +b 2 , 

so that in terms of the parameter t the helix is traced out at constant speed. The required 
lengths corresponds to parameter interval [O, 21r ]. Thus, 

Piecewise Smooth Curves 
As observed earlier, a parametric curve e given by r = r(t) can fail to be smooth at 
points where dr / dt = 0. If there are finitely many such points, we will say that the 
curve is piecewise smooth. 

In general, a piecewise smooth curve e consists of a finite number of smooth 
arcs, C?1, C?2, ... , C?k, as shown in Figure 11.13. 
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Figure 11.1 J A piecewise smooth curve r1 a 1) 

In this case we express e as the sum of the individual arcs: 

Each arc C; can have its own parametrization 

r = r;(t) , (a; S t S b;), 

where v; = dr ;/ dt -1-0 for a; < t < b;. The fact that C;+ 1 must begin at the point 
where C; ends requires the condition s 

r; + 1 (a;+i) = r;(b;) for 1 S i S k - l . 

If also r k(bk) = r1 (a1) , then e is a closed piecewise smooth curve. 

The length of a piecewise smooth curve e = C1 + C2 + · · · + ek is the sum of the 
lengths of its component arcs: 

k lb; ldr· 1 1ength of e = I: -' d r. 
i = I a; dt 

The Arc-Length Parametrization 
The selection of a particul ar parameter in term s of which to specify a given curve 
will usually depend on the probl em in which the curve arises ; there is no one "right 
way" to parametrize a curve. However, there is one param eter that is "natural " in that it 
arises from the geometry (shape and size) of the curve itself and not from any particular 
coordinate system in which the equation of the curve is to be expressed. This parameter 
is the arc length measured from some particular point (the initial point) on the curve. 
The position vector of an arbitrary point P on the curve can be specified as a function 
of the arc lengths along the curve from the initial point Po to P, 

r = r (s) . 

This equation is called an arc-length parametrization or intrinsic parametrization 
of the curve. Since ds = v( t) dt for any parametrization r = r(t) , for the arc
length parametrization we have ds = v (s) ds. Thus v (s) = 1, identically ; a curve 
parametri zed in terms of arc length is traced at unit speed . Although it is seldom easy 
(and usually not possibl e) to find r(s) explicitly when the curve is given in terms of some 
other parameter , smooth curves always have such parametri zations (see Exercise 28 at 
the end of this section) , and they will prove useful when we develop the fundamental s 
of the differential geomet ry for 3-space curves in the next sectio n. 

Suppose that a curve is spec ified in terms of an arb itrary parameter t . If the arc 
length over a parameter interval [to, t] , 

s = s(t) = ( J!__r(r )J dr, lro dr 

can be evaluated explicitly , and if the equations = s(t) can be explicitly solved fort as 
a function of s (t = t (s) ), then the curve can be re parametrized in term s of arc length 
by substituting for t in the original parametrization : 

r = r (t(s)). 
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EXAMPLE 7 Parametrize the circular helix 

r = a cos ti+ a sin tj + btk 

in terms of the arc length measured from the point (a, 0, 0) in the direction of increasing 

t. (See Figure 11.12.) 

Solution The initial point corresponds to t = 0. As shown in Example 6, we have 

ds / dt = .Ja 2 + b2, so 

s = s(t) = fo' J a2 + b2 dr = J a2 + b2 t . 

Therefore, t = s / .Ja 2 + b2, and the arc-length parametrization is 

r(s) = a cos --;:::::;;:::=:;; i + a sin --;:::::;;:::=:;; J + --;:::::;;:::=:;;k . ( 
s ) ( s ) . bs 

.Ja2 + b2 ,Ja 2 + b2 .Ja2 + b2 

EXE RC IS ES 11.3 
In Exercises 1-4, find the required parametrization of the first 
quadrant part of the circular arc x 2 + y2 = a 2 . 

1. In terms of the y-coordinate, oriented counterclockwise 

2. In terms of the x-coordinate, oriented clockwise 

3. In terms of the angle between the tangent line and the 
positive x-axis, oriented counterclockwise 

4. In terms of arc length measured from (0, a), oriented 
clockwise 

5. The cylinders z = x2 and z = 4y2 intersect in two curves, 
one of which passes through the point (2, -1 , 4) . Find a 
parametrization of that curve using t = y as parameter. 

6. The plane x + y + z = 1 intersects the cylinder z = x 2 in a 
parabo la. Parametrize the parabola using t = x as parameter. 

In Exercises 7-10, parametrize the curve of intersection of the 
given surfaces. Note: the answers are not unique . 

7. x 2 + y2 = 9 and z = x + y 

8. z = J1 - x 2 - y2 and x + y = 1 

9. z = x 2 + y2 and 2x - 4y - z - 1 = 0 

10. y z + x = I and xz - x = 1 

11. The plane z = 1 + x intersects the cone z2 = x 2 + y2 in a 
parabola. Try to parametrize the parabola using as 
parameter : (a) t = x, (b) t = y, and (c) t = z. 
Which of these choices for t leads to a single parametrization 
that represents the whole parabola? What is that 
parametrization? What happens with the other two choice s? 

D 12. The plane x + y + z = l intersects the sphere 
x 2 + y2 + z2 = 1 in a circle e. Find the centre ro and radius 
r of e. Also find two perpendicular unit vectors v1 and v2 
parallel to the plane of e. (Hint: To be specific, show that 
v, = (i - j)/ .J2 is one such vector ; then find a second that is 
perpendicular to v1 .) Use your results to construct a 
parametrization of e. 

13. Find the length of the curve r = t2i + t2j + t 3k from t = 0 
tot = 1. 

14. For what values of the parameter Jc is the length s(T) of the 
curve r = ti+ J.t2j + t3k, (0 .::: t .::: T) given by 
s(T) = T + T 3? 

15. Expre ss the length of the curve r = at 2 i + bt j + c In t k, 
(I .::: t .::: T) , as a definite integral. Evalu ate the integral if 
b2 = 4ac. 

16. Describe the parametric curve e given by 

x = a cos t sin t , y = asin 2 t , z = bt. 

What is the length of e between t = 0 and t = T > O? 

17. Find the length of the conical helix given by the 
parametriz ation r = t cos t i + t sin t j + t k, (0 .::: t .::: 2ir ) . 
Why is the curve called a conical helix? 

18. Describe the intersection of the sphere x 2 + y2 + z2 = 1 and 
the elliptic cylinder x 2 + 2z2 = l. Find the total length of 
this intersection curve. 

19. Let e be the curve x = e1 cos t, y = e1 sin t , z = t between 
t = 0 and t = 2ir. Find the length of e. 

20. Find the length of the piecewise smooth curve r = t 3i + t2j , 
(-1 .:::t .:::2). 

21. Describe the piecewise smooth curve e = e, + e2 , where 
r, (t) =ti+ tj, (0 .::: t .::: l) , and r2(t) = ( l - t)i + (1 + t)j , 
(0 .::: t .::: 1). 

0 22. A cable of length Land circular cro ss-section of radiu s a is 
wound around a cylindrical spool of radiu s b with no 
overlapping and with the adjacent windings touching one 
another. What length of the spool is covered by the cable? 

In Exercise s 23-26, reparametrize the given curve in the same 
orientation in term s of arc length measured from the point where 
t = 0. 

23. r = Ati + Btj + Ctk , (A 2 + 8 2 + C2 > 0) 
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24. r = e1i + -htj - e- 1k 

D 25. r = a cos3 ti + a sin3 t j + b cos 2t k, 

D 26. r = 3t cost i + 3t sin t j + 2-v12r312k 

7[ 

(0 < t < -) - - 2 

8 28. If the curve r = r(t) has continuous, nonvanishing velocity 
v(t) on the interval [a , b ] , and if to is some point in [a, b], 
show that the function 

8 27. Let r = r1 (t), (a::: t::: b), and r = r 2(u) , (c ::: u ::: d) , be 
two parametrizations of the same curve C?, each one-to-one 
on its domain and each giving C? the same orientation (so that 
r1 (a)= r 2(c) and r1 (b) = r2(d)) . Then for each tin [a, b] 
there is a unique u = u(t) such that r2(u(t)) = r1 (1). Show 
that 

s = g(t) = J,' lv(u)I du 
to 

is an increasing function on [a, b] and so has an inverse: 

1b 1:/1(t)I cit=[' 1:ur2(u)I du , 

and thus that the length of C? is independent of 
parametrization. 

t = g- 1 (s) <===} s = g(t). 

Hence, show that the curve can be parametrized in terms of 
arc length measured from r(to). 

Curvature, Torsion, and the Frenet Frame 
In this section and the next we deve lop the fundamentals of differential geometry of 
curves in 3-space. We will introduce several new scalar and vector funct ions associated 
with a curve e. The most important of these are the curvature and torsio n of the curve 
and a right -handed triad of mutually perpendicular unit vectors forming a basis at any 
point on the curve, and called the Frenet frame. The curvature measures the rate at 
which a curve is turning (away from its tange nt line) at any point. The tors ion meas ures 
the rate at which the curve is twisting (out of the p lane in whjch it is turning) at any 
point. 

The Unit Tangent Vector 
The velocity vector v(t) = dr / dt is tangent to the parametric curve r = r (t) at the 
point r(t) and points in the direction of the orientation of the curve there. Since we are 
assuming that v(t) I- 0, we can find a unit tangent vector , T(t), at r(t) by dividing 
v(t) by its length: 

T(t) = v(t) = dr/ ldrl. 
v(t) dt dt 

Recall that a curve parametrized in terms of arc length, r = r (s), is traced at unit speed; 
v(s) = 1. In terms of arc-length parametrization , the unit tangent vector is 

A dr 
T (s) = -. 

ds 

EXAMPLE 1 Find the unjt tangent vecto r, T, for the circ ular helix of Examp le 6 
of Section 11.3, in terms of both t and the arc- leng th parameters. 

Solution In term s of t we have 

r = a cost i + a sin t j + btk 

v(t) = - a sin ti+ a cost j + bk 

v(t) = J a2 sin2 t + a2 cos 2 t + b2 = J a2 + b2 

A a a b 
T(t) = --;::== sin ti+ -;::==c ost j + --;:::== k. 

,Ja2+b2 .Ja 2+ b2 .Ja2+b 2 
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In terms of the arc-length parameter (see Example 7 of Section 11.3) 

r(s) = a cos --;:==:::;:: 1 + a sm --;:==:::;:: J + --;:==:::;::k ( 
s )· . ( s ) . bs 

,Ja 2 +b 2 .Ja2+b 2 .Ja2+b 2 

A dr a ( s ) . a ( s ) . T(s) = - = - --;:==:::;:: sin --;:==:::;:: 1 + --;:==:::;:: cos --;:==:::;:: J 
ds ,Ja 2 + b2 .Ja2 + b2 .Ja 2 + b2 .Ja2 + b2 

b + -,=::;:====;;ck. 
,Ja 2 + b2 

Remark If the curve r = r(t) has a continuous , nonvanishing velocity v(t), then the 
unit tangent vector T(t) is a continuous function oft. The angle 0(t) between T(t) and 
any fixed unit vector ii is also continuou s int: 

0(t) = cos- 1 (T(t) • ii) . 

Thus, as asserted previously , the curve is smooth in the sense that it has a continuously 
turning tangent line. The rate of this turning is quantified by the curvature, which we 
introduce now. 

Curvature and the Unit Normal 
In the rest of this section we will deal abstractly with a curve e parametrized in terms 
of arc length measured from some point on it: 

r = r(s). 

In the next section we return to curves with arbitrary parametrizations and apply the 
ptinciples developed in this section to specific problems. Throughout we assume that 
the parametric equation s of curves have continuou s derivatives up to third order on the 
intervals where they are defined. 

Having unit length, the tangent vector T(s) = dr / ds satisfies T(s) • T(s) = I. 
Differentiating this equation with respect to s we get 

A dT 
2T(s) • - = 0, 

ds 

so that dT/ ds is perpendicular to T(s). 

Curvature and radius of curvature 

The curvature of eat the point r( s ) is the length of dT/ ds there . It is denoted 
by K, the Greek letter "kappa": 

The radius of curvature, denoted p , the Greek letter "rho," is the reciprocal of 
the curvature : 

1 
p(s) = K(s) · 

As we will see below, the curvature of e at r(s) measures the rate of turning of the 
tangent line to the curve there. The radius of curvature is the radius of the circle through 
r(s) that most closely approximates the curve e near that point. 
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Figure 11.14 

(a) The unit tangent and principal normal 
vectors for a curve 

(b) The unit tangent and principal normal 
vectors for a circle 

According to its definition , K(s) ::: 0 everywhere one. If K(s) I- 0, we can divide 
dT / ds by its length, K(s), and obtain a unit vecto r N(s) in the same direction. This 
unit vector is called the unit principal normal toe at r (s), or, more commonly, just 
the unit normal: 

N(s) = _l_ dT = dT / ldTI. 
K(s) ds ds ds 

Note that N (s) is perpendicular to e at r( s) and point s in the direction that T, and 
therefore e, is turning. The principal norm al is not defined at point s where the curvature 
K (s) is zero. For instance, a straight line has no principal normal. Figure 1 l.14(a) shows 
T and N at a point on a typical curve. 

EXAM p LE 2 Let a > 0. Show that the curve e given by 

r = a cos(~)i + a sin(~)j 

is a circle in the xy-p lane having radius a and centre at the origin and that it is 
parametrized in terms of arc length. Find the curvature, the radius of curvat ure, and 
the unit tangent and principal normal vectors at any point on e. 

y 

s 

_/ ·· s/a 

a X 

r 

(a) (b) 

Solution Since 

lr (s)I =a (co s(~)f + (sin(~)f =a , 

e is indeed a circle of radius a centred at the origin in the xy- plan e. Since the speed 

the parameters must represent arc length; hence the unit tangent vector is 

T(s) = - sin( ~ )i + cos(~) j. 

Therefore , 

dT = -~ cos(~) i - ~ sin(~) j 
ds a a a a 

and the curvature and radius of curvature at r( s) are 

l
dTI l K(S) = - = - , 
ds a 

l 
p(s) = - =a. 

K(S) 
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Figure 11.16 An osculating circle 

SECTION I 1.4: Curvature , Torsion , and the Frenet Frame 64 7 

Finally , the unit principal normal is 

N(s) = -cos(~)i- sin(~)j = -~r(s). 

Note that the curvature and radius of curvature are constant; the latter is in fact the 
radius of the circle. The circle and its unit tangent and normal vectors at a typical point 
are sketched in Figure l 1.14(b). Note that N points toward the centre of the circle. 

Remark Another observation can be made about the above example. The position 
vector r(s) makes angle 0 = s / a with the positive x-axis; therefore, T(s) makes the 
same angle with the positive y-ax is. Therefore , the rate of rotation of T with respect 
to sis 

d0 l 
----IC 
ds - a - · 

That is, IC is the rate at which Tis turning (measured with respect to arc length). This 
observation extends to a general smooth curve. 

Curvature is the rate of turning of the unit tangent 

Let IC > 0 on an interval containing s, and let 1).0 be the angle between T(s + /).s) and 
T(s ), the unit tangent vectors at neighbouring points on the curve. Then 

1C(s)= Jim 11).
0

,. 
~s->0 /).s 

PROOF Let !).'f = T(s + !).s) - T(s). Because both T(s) and T(s + !).s) are unit 
vectors, 11). T / !).01 is the ratio of the length of a chord to the length of the corresponding 
arc on a circle of radius 1. (See Figure 11.15.) Thus , 

lim - = 1 

'

!).Tl 
~s -> 0 1).0 

and 

' 

!). T I I /),. T 11 /),.
0 I I /),.0 I 1C(s) = Lim - = Lim - - = Jim - . 

~s->0 /).s M->O 1).0 /).s ~s->0 /).s 

The unit tangent T and unit normal N at a point r( s) on a curve e are regarded as 
having their tails at that point. They are perpendicular , and N points in the direction 
toward which T(s) turns ass increases. The plane passing through r(s) and containing 
the vectors T(s) and N (s) is called the osculating plane of e at r(s) (from the 
Latin osculum, meaning kiss). For a plane curve, such as the circle in Example 2, 
the osculating plane is just the plane containing the curve . For more general three
dimensional curves the osculating plane varies from point to point; at any point it is 
the plane that comes closest to containing the part of the curve near that point. The 
osculating plane is not properly defined at a point where IC (s) = 0, although if such 
point s are isolated, it can sometimes be defined as a limit of osculating plane s for 
neighbouring points . 

Still assuming that IC (s) f= 0, let 

rc(s) = r(s) + p(s)N(s). 

For each s the point with position vector rc(s) lies in the osculating plane of eat r(s) , 
on the concave side of e and at distance p (s) from r(s ). It is called the centre of 
curvature of e for the point r (s). The circle in the osculating plane having centre at 
the centre of curvature and radius equal to the radius of curvature p (s) is called the 
osculating circle for e at r(s). Among all circles that pass through the point r(s) , 
the osculating circle is the one that best describes the behaviour of e near that point. 
Of course, the osculating circle of a circle at any point is the same circle. A typical 
example of an osculating circle is shown in Figure 11.16. 
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Figure 11.17 The Frenet frame {T, N, B} 
at some points on C; 

DEFINITION 

I 

Torsion and Binormal, the Frenet-Serret Formulas 
At any point r(s) on the curve e where T and N are defined, a third unit vector, the 
unit binormal B, is defined by the formu la 

B = TX N. 

Note that B(s) is normal to the osculating plane of eat r(s); if e is a plane curve , 
then Bis a constant vector, independent of son any interval where ,c(s) =/= 0. At each 
point r(s) one, the three vectors {T, N, B} constitute a right-handed basis of mutually 
perpendicular unit vectors like the standard basis {i, j , k}. (See Figure 11.17.) This 
basis is called the Frenet frame fore at the point r (s ). Note that 

B x T = N and N x B = T. 

Since l = B(s) • B(s) , then B(s) • (dB / ds) = 0, and dB / ds is perpendicular to B(s). 
Also, differentiating B = T x N we obtain 

dB dT A A dN A A A dN A dN 
--=-xN+Tx-=,cNxN+Tx-=T x -. 
ds ds ds ds ds 

Therefore, dB / ds is also perpendicular to T. Being perpendicular to both T and B, 
dB / ds must be parallel to N. This fact is the basis for our definition of torsion. 

Torsion 

On any interval where ,c (s) =/= 0 there exists a function r (s) such that 

dB A 

- = -r(s)N(s). 
ds 

The number r (s) is called the torsion of e at r(s). 

The torsion measures the degree of twisting that the curve exhibits near a point, that 
is, the extent to which the curve fails to be planar. It may be positive or negative , 
depending on the right-handedness or left-handedness of the twisting. We will present 
an example later in this section . 

Theorem 2 has an analogue for torsion, for which the proof is similar. It states 
that the abso lute value of the torsion , Ir (s) I, at point r(s) on the curve e is the rate of 
turning of the unit binormal: 

· I !1.lfl I hm - = lr(s) I, 
t. s-+0 !is 

where !1. lfl is the angle between B(s + ti s) and B(s). 

www.konkur.in



SECTION 11.4: Curvature, Torsion, and the Frenet Frame 649 

EXAMPLE 3 {The circular helix) As observed in Example 7 of Section 11.3, 
the parametric equation 

1 
r(s) = a cos(cs)i + a sin(cs)j + bcsk , where c = --;::::;;:::=~, 

Ja2 + b2 

represents a circular helix wound on the cylinder x2 + y2 = a2 and parametrized in 
terms of arc length. Assume a > 0. Find the curvature and torsion functions K(s) and 
r (s) for this helix and also the unit vectors comprising the Frenet frame at any point 
r(s) on the helix . 

Solution In Example 1 we calculated the unit tangent vector to be 

T(s) = -ac sin(cs )i + ac cos(cs )j + bck. 

Differentiating again leads to 

dT - = -ac 2 cos(cs)i - ac 2 sin(cs)j, 
ds 

so that the curvature of the helix is 

K(s) = ldTI = ac2 = a 
ds a2 + b2 ' 

and the unit normal vector is 

A 1 dT 
N(s) = -(-- = -cos(cs)i- sin(cs)j. 

Ks) ds 

Now we have 

B(s) = T(s) x N(s) = l-acs ~n(cs) acc1s(cs) 
- cos(cs) - sin(cs) 

= bcsin( cs) i - bccos(cs)j + ack . 

Differentiating this formula leads to 

dB = bc2 cos(cs)i + bc2 sin(cs)j = -bc 2N(s). 
ds 

Therefore, the torsion is given by 

2 b 
r(s)=-(-bc )= a2+b2· 

fl 

Remark Observe that the curvature K(s) and the torsion r(s) are both constant (i.e., 
independent of s) for a circular helix . In the above example, r > 0 (assuming that 
b > 0). This corresponds to the fact that the helix is right-handed. (See Figure 11. l 2 
in the previous section.) If you grasp the helix with your right hand so your fingers 
surround it in the direction of increasings (counterclockwise, looking down from the 
positive z-axis), then your thumb also points in the axial direction corresponding to 
increasings (the upward direction) . Had we started with a left-handed helix, such as 

r = a sin ti+ a cost j + btk , (a, b > 0), 

we would have obtained r = -b / (a2 + b2). 

Making use of the formulas dT / ds = KN and dB / ds = -rN, we can calculate 
dN / ds as well: 

dN d A A dB A A dT 
- =-(BX T) = - X T+B X -
ds ds ds ds 

= -rN x T + KB x N =-KT+ rB. 

Together, the three formulas 
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-rN 
B 

Figure 11.18 T, N, and B, and their 
directions of change 

THEOREM 

II 

dT A 

-=K N 
ds 

dN A A 

-=-K T +r B 
ds 

d B A 

-=- rN 
ds 

are known as the Frenet-Serret formulas. (See Figure 11.18.) They are of funda
mental importance in the theory of curves in 3-space. The Frenet-Serret formulas can 
be written in matrix form as follows: 

!!_ ( ; ) = ( -~ 
ds B 0 

K 

0 
-r 

Using the Frenet-Serret formulas , we can show that the shape of a curve with non
vanishing curvature is completely determined by the curvature and torsion functions 
K(s) and r(s). 

The Fundamental Theorem of Space Curves 

Let e, and e2 be two curves, both of which have the same nonvanishing curvature 
function K (s) and the same torsion function r (s). Then the curves are congruent. That 
is, one can be moved rigidly (translated and rotated) so as to coincide exact ly with the 
other. 

PROOF We require K =/. 0 because N and B are not defined where K = 0. Move 
0 2 rigidly so that its initial point coincides with the initial point of e, and so that the 
Frenet frames of both curves coincide at that point. Let T1, T2, N 1, N2, B 1, and B2 be 
the unit tangents, normal s, and bi normals for the two curves. Let 

We calculate the derivative of f(s) using the Product Rule and the Frenet-Serret 
formulas: 

I ""1 ,,.. " " t "' 1 A A ,,.. , A " " ,... 

f (s) = T 1 • T2 + T1 • T2 + N 1 • N2 + N, • N2 + B'1 • B2 + B1 • B~ 

=KN1 •T 2+ KT1 e N2 -KT1 e N2+rB1 • N2 -KN1 • T2 

+ r N 1 • B2 - r N 1 • B2 - r B 1 • N2 

=0. 

Therefore, f (s) is constant. Since the frames coincide at s = 0, the co nstant must, in 
fact, be 3: 

T1 (s) • T2(s) + N 1 (s) • N2(s) + B1 (s) • B2(s) = 3. 

However, each dot product cannot exceed I since the factors are unit vectors . Therefore , 
each dot product must be equa l to 1. In particular , T1 (s) • T2(s) = 1 for alls; hence , 

dr 1 A A dr 2 
- = T1(s) = T2(s) = -. 
ds ds 

Integrating with respect to s and using the fact that both curves start from the same 
point whens = 0, we obtain r, (s) = r2(s) for alls , which is what we wanted to show. 

Remark It is a consequence of the above theorem that any curve having nonzero 
constant curvature and constant torsion must, in fact, be a circle (if the torsion is zero) 
or a circular helix (if the torsion is nonzero). See Exercises 7 and 8 below. 
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EXE R C I S ES 11.4 
Find the unit tangent vector T(t) for the curves in Exercises 1-4. 8 6. Show that if r (s) = 0 for all s, then the curve r = r(s) is a 

plane curve. Hint: Show that r(s) lies in the plane through 
r(O) with normal B(O). 

1. r = t i - 2t 2j + 3t 3k 

2. r = a sin wt i + a cos wt k 
3. r = cost sin t i + sin2 t j + cost k 
4. r = a cost i +bsintj + tk 

8 7. Show that if K(s) = C is a positive constant and r(s) = 0 for 
alls, then the curve r = r( s) is a circle. Hint: Find a circle 
having the given constant curvat ure . Then use Theorem 3. 

5. Show that if K (s) = 0 for all s, then the curve r = r( s) i a 
straight line. 

8 8. Show that if the curvature K (s) and the torsion r (s) are both 
nonzero constant , then the curve r = r(s) is a circular helix. 
Hint: Find a helix having the give n curva ture and torsion. 

Curvature and Torsion for General Parametrizations 
The formulas developed above for curvature and torsion as well as for the unit normal 
and binormal vectors are not very useful if the curve we want to analyze is not expressed 
in terms of the arc-length parameter. We will now consider how to find these quantitie s 
in terms of a general parametrization r = r (t). We will express them all in terms of the 
velocity, v(t), the speed, v(t) = lv(t)I , and the acceleration, a(t) . First, observe that 

dr dr ds A 

v=- =-- =vT 
dt ds dt 

dv dv A dT 
a= - = -T+v-

dt dt dt 

dv A dT ds dv A 2 A 

= -T+v- - = -T+v KN 
dt ds dt dt 

dv A A 3 A A 3 A 

v x a= v-T x T + v KT x N = v KB. 
dt 

Note that Bi s in the direction of v x a. From these formulas we obtain useful formulas 
for T, B, and K: 

A V 
T=-, 

V 

A v x a 
B= --- , 

Iv x al 
Iv x al 

K = -- 3-· 
V 

There are several ways to calculate N. Perhaps the easiest is 

N=B X T . 

dT dT ds dT A 

Sometimes it may be easier to use - = - - = v- = vKN to calculate 
dt ds dt ds 

N = _!._ dT = !!.. dT = dT I I dT I · 
VK dt V dt dt dt 

The torsion remains to be calculated. Observe that 

da d (dv A 2 A) 
-=- -T+v KN. 
dt dt dt 

This differentiation will produce several terms. The only one that involves Bis the one 
thatcomesfromevaluatingv 2K(dN/ dt) = v3K(dN / ds) = v3K(rB-KT). Therefore, 

da A A 3 A 

- = l T+µN+v KrB, 
dt 
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for certain scalars A andµ. Since v x a = v3,cB, it follows that 

da 
(v x a)• - = (v3,c)2r = Iv x al2 r. 

dt 
Hence, 

(v x a)• (da / dt) 
T= 

Iv x al2 

EXAM p LE l Find the curvature, the torsion, and the Frenet frame at a general 
point on the curve 

r = (t + cost)i + (t - cost)j + hsi ntk . 

Describe this curve. 

Solution We calculate the various quantities using the recipe given above. First , the 
preliminaries : 

v = (1- sint)i + (1 + sint)j + hcostk 

a= -cos ti+ costj - hs intk 

da ~ 
- = sin ti- sin tj - v2costk 
dt 

v x a= 11 - isint l +j sint .J2 : ost I 
- cost cost -.Ji sin t 

= -./2(1 + sin t) i - ./2(1 - sint)j + 2costk 

(v x a)• da = -hsint(l + sint ) + hsint(l - sint) - 2hcos 2 t 
dt 

= -2./2 

v = lvl = J2 + 2 sin2 t + 2 cos2 t = 2 

Iv x al = )2(2 + 2 sin2 t) + 4 cos2 t = .Js = 2./2 . 

Thus , we have 

Iv x al 2.Ji l 
IC=--=--=--

v3 8 2.Ji 

(v x a)• (da/ dt) -2.Ji 
r= 

Iv x al2 (2.Ji)2 

1 

2./2 
A v 1 - sin t 1 + sin t 1 
T = - = ---i + --- j + r,:; cos tk 

V 2 2 v2 
A v x a 1 + sin t 1 - sin t 1 
B = -lv_x_a_l = ---2-i - 2 j + ./2 cos tk 

A A A 1 1 
N = B x T = - ./2 cos t i + .Ji cos tj - sin tk. 

Since the curvature and torsion are both constant (they are therefore constant when 
expressed in terms of any parametrization) , the curve must be a circular helix by 
Theorem 3. It is left-handed, since r < 0. By Example 3 in Section 11.4, it is 
congruent to the helix 

r = a cos t i+ a sin tj + btk , 

providedthata /(a 2 +b 2) = 1/ (2.Ji) = -b / (a2 +b 2). Solving these equations gives 
a = ./2 and b = -./2 , so the helix is wound on a cylinder of radius ./2. The axis 
of this cylinder is the line x = y, z = 0, as can be seen by inspecting the components 
of r( t) . 
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Figure 11.19 Banking a curve on a 
roadway 
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EXAM p LE 2 (Curvature of the graph of a function of one variable) Find the 
curvature of the plane curve with equation y = f(x) atan arbitrary 

point (x , f (x)) on the curve . 

Solution The graph can be parametrized: r = x i+ f( x )j. Thus , 

V = i + j ' (x )j , 

a= J"( x)j , 

v x a= J " (x)k. 

Therefore, the curvature is 

( 
_ Iv x al _ lf"(x)I 

K X) - 3 - 3/ 2 . 

V ( 1 + (f ' (x))2) 

Tangential and Normal Acceleration 
• 

In the formula obtained earlier for the acceleration in terms of the unit tangent and 
normal, 

dv A 2 A 

a=-T+vKN , 
dt 

the term (dv / dt)T is called the tangential acceleration , and the term v 2KN is called the 
normal or centripetal acceleration. Thi s latter component is directed toward the centre 
of curvature and its magnitude is v2K = v2 / p. Highway , railway, and roller-coa ster 
designers attempt to bank curve s in such a way that the resultant of the corresponding 
centrifugal force , -m( v2 / p )N, and the weight , - mgk , of the vehicle will be normal 
to the surface at a desired speed. 

EXAM p L E 3 Banking a curve. A level, curved road lies along the curve y = x 2 

in the horizontal xy- plane . Find, as a function of x , the angle at 
which the road should be banked (i.e. , the angle between the vertical and the normal to 
the surface of the road) so that the resultant of the centrifugal and gravitational (-mgk ) 
forces acting on the vehicle travelling at constant speed vo along the road is always 
normal to the surface of the road. 

Solution By Example 2 the path of the road , y = x 2 , has curvature 

Jd2y/dx2 J 2 
K--------c-=------,,-c-~ 

- (l+(d y/ dx)2)3/2 - (1+4x 2)3/2. 

The normal component of the acceleration of a vehicle travelling at speed vo along the 
road is 

2 2v5 
aN = VoK = (1 + 4x2)3/2. 

If the road is banked at angle 0 (see Figure 11.19), then the resultant of the centrifugal 
force -maNN and the gravitation al force - mgk is normal to the roadway provided 

maN 2v2 

tan 0 = -- , that is, 0 = tan- 1 0 

mg g (l + 4x2)3/2 · 

Remark The definition of centrip etal acceleration given above is consistent with the 
one that arose in the discussion of rotatin g frame s in Section 11.2. If r(t) is the position 
of a moving particle at time t , we can regard the motion at any instant as being a rotation 
about the centre of curvature, so that the angular velocity must be Q = OB. The linear 
velocity is v = Q x (r - r e)= vT, so the speed is v = Op, and Q = (v / p)B . As 
developed in Section 11.2, the centripetal acceleration is 

v2 
A A v 2 

A 

Q x (Q x (r - re))= Q xv= -Bx T = -N. 
p p 
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Evolutes 
The centre of curvature rc(t) of a given curve can itself trace out another curve as t 
varies. This curve is called the evolute of the given curve r(t) . 

EXAM p LE 4 Find the evolute of the exponential spira l 

r = ae - 1 cos ti+ ae - 1 sin t j. 

Solution The curve is a plane curve so r = 0. We will take a shortc ut to the curvature 
and the unit normal witho ut calculating v x a. First, we calc ulate 

v = ae- 1 (-(co st+ sin t)i - (sin t - cos t)j) 

ds = v = hae- 1 

dt 

T(t) = ~(-(cost+ sin t) i - (sin t - cos t)j) 

dT 1 dT 1 ( ) - = --- = -- (sint - cost) i - (cost+ sin t)j 
ds (ds / dt) dt 2ae - 1 

K(t)=ldTI= l . 
ds ../2,ae- 1 

It follows that the radius of curvature is p (t) = ../2,ae- 1
• Since dT / ds = KN, we have 

N = p (dT / ds ) . The centre of curvature is 

rc(t) = r(t) + p(t)N(t) 

dT 
= r(t) + p 2

-
ds 

= ae- 1 (cost i + sin t j) 
+ 2a 2e- 21 -

1
-((s in t - cos t) i - (cost+ sin t)j) 

2ae - 1 

= ae - 1 
( sin t i - cost j) 

= ae - 1 
( cos(t - ~ ) i + sin(t - ~ )j). 

Th us, interes tingly, the evolute of the expo nential spiral is the same expo nential spiral 
rotated 90° clockwise in the plane . (See Figure l 1.20(a).) 

An Application to Track (or Road) Design 
Model trains frequently come with two kinds of track sections: straight and curved . 
The curved sections are arcs of a circle of radius R, and the track is intended to be laid 
out in the shape shown in Figure l l.20(b) ; AB and CD are straig ht, and BC and DA 
are semicircles. The track look s smooth , but is it smooth enough? 
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(a) The evolute of an exponential spiral 
is another exponential spiral 

(b) The shape of a model train track 
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y 

r = ae- 1 (cos t i + sin tj) 
A B 

X 

re = ae- 1 (sin ti - cos tj) 

D C 

(a) (b) 

The track is held together by friction, and occasionally it can come apart as the 
train is racing around. It is especially likely to come apart at the points A, B, C, 
and D. To see why, assume that the train is travelling at constant speed v. Then 
the tangential acceleration, (dv / dt )T, i zero, and the total acceleration is just the 
centripetal acceleration, a = (v 2 / p )N. Therefore , lal = 0 along the straight sections, 
and lal = v2K = v 2 / Ron the semicircu lar sections. The accelerat ion is discontinuou s 
at the points A, B, C, and D , and the reactive force exerted by the train on the track 
is also discontinuous at these points. There is a "shock " or "jolt " as the train enters or 
leaves a curved part of the track. In order to avoid such stress points, tracks should be 
designed so that the curvature varies continuously from point to point. 

EXAM p LE 5 Existing track along the negative x-axis and along the ray 
y = x - I , x :::: 2, i to be joined smoothly by track along the 

trans1twn curve y = f (x), 0 :S x :S 2, where f (x ) is a polynomial of degree as 
small as possible. Find f (x ) so that a train moving along the track will not experience 
discontinuous acceleration at the joins. 

Solution The situation is shown in Figure 11.21. The polynomial f (x) must be 
chosen so that the track is continuous, has continuous slope, and has continuous 
curvature at x = 0 and x = 2. Since the curvature of y = f (x) is 

K = lf"(x)I( 1 + (f ' (x)) 2
)-

312
, 

we need only arrange that f , f ', and f " take the same values at x = 0 and x = 2 that 
the straight sections do there: 

f(O) = 0, 

f(2) = 1, 

J ' (O) = 0, 

! ' (2) = 1, 

j" (O) = 0, 

J"(2) = 0. 

These six independent conditions suggest we should try a polynomial of degree 5 
involving six arbitrary coefficients: 

f(x) =A+ Bx+ Cx 2 + Dx 3 + Ex 4 + Fx 5 

J'(x) = B + 2Cx + 3Dx 2 + 4E x 3 + 5Fx 4 

J"(x) = 2C + 6Dx + l2Ex 2 + 20Fx 3
. 

The three conditions at x = 0 imply that A = B = C = 0. Those at x = 2 imply that 

8D + 16£ + 32F = f(2) = 1 

12D + 32£ + 80F = ! ' (2) = 1 

12D + 48£ + 160F = J"(2) = 0. 

This system has solution D = 1/ 4, E 
f(x) = (x3/ 4)-(x 4/ 16). 

-1 / 16, and F 0, so we should use 
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Figure 11.21 Joining two straight tracks 
with a curved track 

y 

x 3 x4 
y =- --

4 16 
X 

Remark Road and railroad builder s do not usually use polynomial graphs as transition 
curves . Other kinds of curves called clothoids and lemniscates are usually used. (See 
Exercise 7 in the Review Exercises at the end of this chapter.) 

Maple Calculations 
Calculations of the sort done in this section for fairly simple curves can become quite 
oppressive for more complicated curves. As usual, Maple can come to the rescue. 
Before the advent of the VectorCa lcuJus package in Maple 8, which introduces a true 
vector data structure, definin g a vector-valued function was a bit tricky: one had to use 
something like 

> R : = [t -> f(t) , t -> g(t) , t -> h(t)] ; 

rather than the more obvious 

> R : = t -> [f(t) , g(t) , h(t)J ; 

because in the latter the function R was not considered to be a vector, even though its 
values are vectors. 

In the following we assume the LinearAJgebra and VectorCalculu s packages have 
been loaded (in that order) : 

> with( LinearAl gebra) : with(VectorCalculus ): 

Here is how we might define a vector-valued function repre senting a circular helix : 

> R : = t -> <a*cos(t) , a*sin(t) , b*t> ; 

The output from this definition (which we omit here) may appear a bit cryptic at first; it 
asserts that R is defined as a procedure "VectorCalculus-<,>" whose arguments are three 
"VectorCalculus-* " procedure s for the products that represent the three components of 
R. Calling the function generates the expected result s. 

> R(t) ; R(Pi) ; 

a cos(t) ex + a sin(t ) ey + b t ez 
-a ex+ b 7r: ez 

Velocity , acceleration, and speed function s can now be defined in the obvious way and 
the results used to find these quantitie s at any point: 

> V : = D ( R) : A : = D (V) : 

> v : = t -> Norm(V(t) , 2) : 
> V(t) ; A(t) ; v(t) ; 

-a sin(t) ex + a cos(t) ey + b ez 
-a cos(t) ex - a sin(t) ey 

J la sin(t )l 2 + la cos(t)l 2 + 1h12 

No attempt to simplify the last expression has much effect unle ss we tell Maple that 
a and b are real numbers. In fact, it is useful for purpose s of simplification to tell 
Maple that a, b, and t are all real, and to suppress Maple's urge to beat us over the 
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head with that fact by subsequently placing a tilde C) after each of these variables in 
all subsequent output. We can accomplish this with 

> assume(a : : real , b :: real , t :: real) ; 
> interface(showassumed = O) ; 
> simplify(v(t)) ; 

The VectorCalculus package has a function called TNBFrarne whose output is a 
list of functions generating the unit tangent , principal normal, and binormal vectors 
T(t) , N(t), and B(t) . We can use the compo nents of this list to define each vector: 

> T : = TNBFrame(R , t) [l] : T(t) ; 

> 

a sin(t ) a cos(t) b 
- --;:==:;: ex + --;:==:;: ey + --;:::==:;: ez 

./b2 + a2 ./b2 + a2 Jb2 + a2 

N . - TNBFrame(R , t) [2] : 

a cos(t) 

lal 

N (t) ; 

ex -
a sin(t) 
---e 

lal Y 

> B : = TNBFrame(R , t) [3] : B(t) ; 

b a sin(t) b a cos(t) ( a2 sin(t) 2 a2 cos(t)2 ) 
--;::==:;;--- ex - --;::==::;:-- e y + --;:==::;:-- + --;:==::;:-- ez 
Jb 2 + a2 lal ./b2 + a2 lal Jb 2 + a2 lal Jb 2 + a2 lal 

> simplify ( % ) ; 

basin(t) bacos(t) lal 
--;::= = ::;:-- ex - --;:==::;:-- e y + ----;:.:::;;==:;;: e z 
Jb2 + a2 lal Jb2 + a2 lal Jb2 + a2 

VectorCalculus also defines Curvature and Torsion functions that can be invoked as 
follows: 

> simplify(Curvature(R , t) (t)) ; 

lal 

> simplify (Torsion (R , t) (t)) ; 

b 

In Maple 8 and some releases of Maple 9 the expression generated for the torsion had 
an absolute value on the numerator (i.e., lbl instead of b). This was in error if b < O; 
the torsion should be negative in this case . In fact, the result above would make the 
third Serret-Frenet formula false as we can see from 

> simplify(diff(B(t),t) + tau*N(t)) ; 

a cos(t) (b - rJb 2 + a2) a sin(t) (b - rJb 2 + a2) 
---===- --- ex + ---,::=;===;=---- - ey 

./b2 + a2 lal Jb 2 + a2 lal 

This must be 0, but will be zero only if r = b / ./b2 + a 2 . This error has been corrected 
in Maple 10 and more recent releases. 

Find the radius of curvature of the curves in Exercises 1-4 at the 
points indicated. 

2. y = cos x at x = 0 and at x = 1r: / 2 

3. r = 2ti + (1/ t)j - 2tk at (2, I, -2) 
1. y = x 2 at x = 0 and at x = ../2 4. r = t 3i + t2j + tk at the point where t = l 
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Find the Frenet frames {T, N, B} for the curves in Exercises 5-6 
at the points indicated. 

5. r =ti+ t2j + 2k at (1, 1, 2) 

6. r =ti+ t 2j + tk at (1, 1, 1) 

In Exercises 7-8, find the unit tangent, normal, and binormal 
vectors and the curvature and torsion at a general point on the 
given curve. 

8. r = e1 (cost i + sin t j + k) 

9. Find the curvature and torsion of the parametric curve 

x = 2 + -v12 cost, y = 1 - sin t, z = 3 + sin t 

at an arbitrary point t. What is the curve? 

10. A particle moves along the plane curve y = sin x in the 
direction of increasing x with constant horizontal speed 
dx / dt = k. Find the tangential and normal components of 
the acceleration of the particle when it is at position x. 

11. Find the unit tangent , normal and binormal , and the 
curvature and torsion for the curve 

r = sin t cost i + sin2 t j +cost k 

at the points (a) t = 0 and (b) t = n / 4. 

12. A particle moves on an elliptical path in the xy-plane so that 
its position at time t is r = a cos ti+ b sin tj. Find the 
tangential and normal components of its acceleration at time 
t. At what points is the tangential acceleration zero? 

13. Find the maximum and minimum values for the curvature of 
the ellipse x = a cost, y = b sin t , where a > b > 0. 

14. A bead of mass m slides without friction down a wire bent in 
the shape of the curve y = x 2 , under the influence of the 
gravitational force -mgj. The speed of the bead is v as it 
passes through the point (1, 1). Find, at that instant, the 
magnitude of the normal acceleration of the bead and the rate 
of change of its speed . 

15. Find the curvature of the plane curve y = ex at x. Find the 
equation of the evolute of this curve. 

0 16. Show that the curvature of the plane polar graph r = f (0) at 
a general point 0 is 

12(t'c0))2 + (tce)f - JCB)f"CB)I 
K(B) = 2 2 3/ 2 

[(rce)) + (tee)) J 

17. Find the curvature of the cardioid r = a (1 - cos 0). 

D 18. Find the curve r = r(t) for which K(t) = I and r(t) = l for 
all t, and r(O) = T(O) = i, N(O) = j , and B(O) = k. 

19. 
dr 

Suppose the curve r = r(t) satisfies - = c x r(t) , where c 
dt 

is a constant vector. Show that the curve is the circle in 
which the plane through r(O) normal to c intersect s a sphere 
with radius lr(O)I centred at the origin. 

20. Find the evolute of the circular helix 
r = a cost i + a sin t j + btk. 

21. Find the evolute of the parabola y = x 2. 

22. Find the evolute of the ellipse x = 2 cost, y = sin t. 

23. Find the polynomi al f (x) of lowest degree so that track 
along y = f (x) from x = -1 to x = 1 joins with existing 
straight tracks y = -1 , x :'S -1 and y = 1, x ::: 1 
sufficiently smoothly that a train moving at constant speed 
will not experience discontinuous acceleration at the joins. 

D 24. Help out model train manufacturers. Design a track segment 
y = f(x), -1 :'S x :'S 0, to provide a jolt-free link between a 
straight track section y = l , x :'S -1, and a semicircular arc 
section x2 + y2 = 1, x ::: 0. 

8 25. If the position r , velocity v, and acceleration a of a moving 
particle satisfy a(t ) = J (t)r(t) + µ(t)v(t), where J(t) and 
µ (t) are scalar functions of time t, and if v x a ,j: 0, show 
that the path of the particle lies in a plane. 

Use Maple in Exercises 26-31. Make sure to load the 
Linear Algebra and VectorCalculus packages. 

In Exercises 26-29 , determin e the curvature and torsion function s 
for the given curves. Because of the problem with the Tors ion 
function in some versions of the YectorCalculus package (as 
mentioned at the end of this section), you may want to use the 
formulas derived from the derivatives of position to determine it, 
and probably the curvature as well. Try to describe the curve. 

ii 26. r(t) = cos(t)i + 2 sin(t) j + cos(t)k. Why should you not be 
surprised at the value of the torsion? What are the maximum 
and minimum curvatures? Describe the curve. 

ii 27. r(t) = (t - sin t)i + (1 - cos t)j + tk. Are the curvature and 
torsion continuous for all t? 

ii 28. r(t) = cos(t) cos(2t)i + cos(t) sin(2t)j + sin(t)k. Show that 
the curve lies on the sphere x2 + y 2 + z2 = 1. What is the 
minimum value of its curvature? 

ii 29. r(t) = (t + cos t)i + (t + sin t)j + (1 + t - cos t)k. 

In Exercises 30-31, define new Maple functions to calculate the 
requested items. Assume the Linear Algebra and VectorCalculus 
package s are loaded . 

ii 30. The ev o lute (R) (t) whose value at R is the function 
whose value at t is the position vector of the centre of 
curvature of the curve R for the point R ( t ) . 

ii 31. A function tan line (R) ( t , u) whose value at R is the 
function whose value at ( t , u) is the position vector of the 
point on the tangent line to the curve Rat t at distance u 
from R ( t) in the direction of increasing t . 
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• 
Kepler's Laws of Planetary Motion 

--- --
The German mathematician and astronomer Johannes Kepler (1571-1630) was a stu
dent and colleague of Danish astronomer Tycho Brahe (1546- 1601). Over a lifetime 
of observing the positions of planets without the aid of a telescope, Brahe compiled 
a vast amount of data, which Kepler analyzed. Although Polish astronomer Nicolaus 
Copernicus (1473-1543) had postulated that the earth and other planets moved around 
the sun, the religious and philosophical climate in Europe at the end of the sixteenth 
century still favoured explaining the motion of heavenly bodies in terms of circular 
orbits around the earth. It was known that planets such as Mars could not move on 
circular orbits centred at the earth, but models were proposed in which they moved on 
other circles (epicycles) whose centres moved on circles cent.red at the earth. 

Brahe's observations of Mars were sufficiently detailed that Kepler realized that 
no simple model based on circles could be made to conform very closely with the 
actual orbit. He was, however, able to fit a more general quadratic curve, an ellipse 
with one focus at the sun. Based on this success and on Brahe's data on other planets, 
he formulated the following three laws of planetary motion: 

Kepler's Laws 

1. The planets move on elliptical orbits with the sun at one focus . 

2. The radial line from the sun to a planet sweeps out equal areas in equal 
times. 

3. The squares of the periods of revolution of the planets around the sun are 
proportional to the cubes of the major axes of their orbits. 

Kepler 's statement of the third law actually says that the squares of the periods of 
revolution of the planets are proportional to the cubes of their mean distances from the 
sun. The mean distance of points on an ellipse from a focus of the ellipse is equal to 
the semi-major axis. (See Exercise 17 at the end of this section.) Therefore, the two 
statements are equivalent. 

The choice of ellipses was reasonable once it became clear that circles would not 
work. The properties of the conic sections were weJJ understood, having been developed 
by the Greek mathematician Apollonius of Perga around 200 BC. Neverthele ss, based, 
as it was, on observations rather than theory, Kepler 's formulation of his laws without 
any causal explanation was a truly remarkable feat. The theoretical underpinning s 
came later when Newton , with the aid of his newly created calculus , showed that 
Kepler 's laws implied an inverse square gravitational force. (See Review Exercises 
14-16 at the end of this chapter.) Newton believed that his universal gravitational law 
also implied Kepler 's laws, but his writings fail to provide a proof that is convincing 
by today 's standards. 1 

Later in this section we will derive Kepler 's Jaws from the gravitational law by an 
elegant method that exploits vector differentiation to the fullest. First, however, we 
need to attend to some preliminaries. 

Ellipses in Polar Coordinates 
The polar coordinates [r , 0] of a point in the plane whose distance r from the origin 
is e times its distance p - r cos 0 from the line x = p (see Figure 11.22) satisfy the 
equation r = t:(p - r cos 0), or, solving for r, 

1 There are interesting articles debatin g the historica l significance of Newton's work by Robert 

Weinstock, Curtis Wilson, and others in The College Mathematics Journal, vol. 25, No. 3, 1994. 
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y 

X 

x=p 

Figure 11.22 An ellipse with focus at the 
origin, directrix x = p , and eccentricity e 

Figure 11.23 The sum of the distances 
from any point P on the ellipse to the two 
foci O and F is constant, e times the 
distance between the directrices 

e 
r=----

1 + ec os0 ' 

where t = ep. As observed in Sections 8.1 and 8.5, for O :S e < 1 this equation 
represe nts an ellipse having eccentricity e. (It is a circle if e = 0.) To see this, let us 
transform the equat ion to Cartesia n coordinates: 

x 2 + y2 = r2 = e2 (p - r cos0) 2 = e2 (p - x) 2 = e2 (p 2 
- 2p x + x 2). 

With some algebraic manipulation , this equation can be ju ggled into the form 

(x + 1 ~\2 r y2 
2 +----- =1 , c~e2 ) (hr 

which can be recognized as an ellipse with centre at the point C 
c = el / (1 - e2), and semi-axe s a and b given by 

t 
a=---

l - e2 

t 
b=---
~ 

(semi-major axis), 

(semi-minor axis) . 

(-c , 0), where 

The Cartesian equation of the ellipse shows that the curve is symmetric about the lines 
x = -ca nd y = 0 and so has a second focus at F = (- 2c , 0) and a second directrix 
with equation x = -2c - p. (See Figure 11.23.) The ends of the major axis are 
A = (a - c, 0) and A' = (-a - c, 0), and the ends of the minor axis are B = (- c, b) 
and B' = (-c, -b). 

B = (-c,b) y 

Q' 
Q 

(-a - c, 0) F = (- 2c, O) C (-c,O) 0 (a-c,O) X 

X = -2c - p x=p 

B ' = (-c, -b) 

If P is any point on the ellipse, then the distance OP is e times the distance P Q 

from P to the right directrix. Similarly, the distance F P is e times the distance Q' P 
from P to the left directrix. Thus , the sum of the focal radii OP + F P is the constant 
e Q' Q = e( 2c + 2p), regardless of where Pi s on the ellipse . Letting P be A or B we 
get for this sum 

2a = (a - c) + (a + c) = 0 A + FA = 0 B + F B = 2J b2 + c2 . 

It follows that 

c = J a2 - b2 = _!!__ = ea . 
1 - e2 
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Figure 11.24 Some parameters of an 
ellipse 

y 

Figure 11.25 Basis vectors in the 
direction of increasing r and 0 

X 

X 
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The number e is called the semi-latus rectum of the ellipse; the latus rectum is the 
width measured along the line through a focus, perpendicular to the major axis. (See 
Figure 11.24.) 

Remark The polar equation r = e / (l + e cos 0) represents a bounded curve only if 
e < I; in this case we have t / (1 + e) :S r :S t/ (1 - e) for all directions 0. If e = I, 
the equation represents a parabola , and if e > I , a hyperbola. It is possible for objects 
to travel on parabolic or hyperbolic orbits, but they will approach the sun only once, 
rather than continue to loop around it. Some comets have hyperbolic orbits. 

Polar Components of Velocity and Acceleration 
Let r(t) be the position vector at time t of a particle P moving in the xy-plane. We 
construct two unit vectors at P, the vector r points in the direction of the position vector 
r, and the vector 0 is rotated 90° counterclockwise from r. (See Figure 11.25.) If P 

has polar coordinates [r, 0], then r points in the direction of increasing r at P, and 0 
points in the direction of increasing 0. Evidently, 

r = cos 0 i + sin 0 j 

8 = - sin 0 i + cos 0 j. 

Note that rand 0 do not depend on r but only on 0: 

dr ~ 
-=8 
d0 

and 
d6 -= - r. 
d0 

The pair {r, 0) forms a reference frame (a basis) at P so that vectors in the plane can 
be expressed in terms of these two unit vectors. The r component of a vector is called 
the radial component, and the 0 component is called the transverse component. The 
frame varies from point to point , so we must remember that r and 0 are both functions 
oft. In terms of this moving frame , the position r(t) of P can be expressed very 
simply: 

r = rr, 
where r = r(t) = lr(t)I is the distance from P to the origin at time t. 

We are going to differentiate this equation with respect to t in order to express 
the velocity and acceleration of P in terms of the moving frame. Along the path of 
motion, r can be regarded as a function of either 0 or t; 0 is itself a function oft . To 
avoid confusion, let us adopt a notation that is used extensively in mechanics and that 
resembles the notation originally used by Newton in his calculus . 

A dot over a quantity denotes the time derivative of that quantity. Two dots 
denote the second derivative with respect to time. Thus, 

u = du / dt and 

First, Jet us record the time derivatives of the vectors rand 0. By the Chain Rule, we 
have 

. dr d0 .~ r= -- =06 
d0 dt ' 

0 = de d0 = -iJr. 
d0 dt 

Now the velocity of P is 

. d ~ . ~ . ~ 
v = r = -(rr ) = rr + r06. 

dt 
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Polar components of velocity: 

The radial compon ent of velocit y is r. 
The transverse component of veloci ty is r0. 

Since rand 9 are perpendicular unit vectors, the speed of P is given by 

Similarly, the acceleration of P can be expressed in terms of radial and transverse 
components: 

d , A 

a = v = r = -(rr + r08) 
dt 

= rr + ;-ea + ;-ea + rea - riPr 
= (r - r02)r + (r0 + 2r0)6. 

Polar components of acceleration: 

The radial component of acceleration is ;: - r02 . 

The transver se compon ent of acceleration is r0 + 2r0. 

Central Forces and Kepler's Second Law 
Polar coordinates are most appropriate for analyzing motion due to a central force that 
is always directed toward (or away from) a single point, the origin: F = ..l.(r)r, where 
the scalar ..l.(r) depends on the position r of the object. If the velocity and acceleration 
of the object are v = rand a= v, then Newton 's Second Law of Motion (F = ma) 
says that a is parallel to r. Therefore , 

!!__(r xv )= r xv+ r xv= v x v+ r x a= 0 + 0 = 0, 
dt 

and r x v = h, a constant vector representing the object 's angular momentum per unit 
mass about the origin. This says that r is always perpendicular to h, so motion due to 
a central force always takes place in a plane through the origin having normal h. 

If we choose the z-axis to be in the direction of h and let lhl = h, then h = hk, 
and the path of the object is in the xy-plane. In this case the position and velocity of 
the object satisfy 

r = rr and V = rr + r06. 

Since r x a = k , we have 

hk = r X V = rrr X r + r20r X 9 = r20k. 

Hence , for any motion under a central force, 

(a constant for the path of motion) . 

This formula is equivalent to Kepler' s Second Law; if A(t) is the area in the plane of 
motion bounded by the orbit and radial lines 0 = 0o and 0 = 0(t) , then 

1 i0(t) 
A(t) = - r 2 d0 , 

2 0o 

so that 

dA dA d0 I 20. h 
-=--=-r =- . 
dt d0 dt 2 2 
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Thus, area is being swept out at the constant rate h/ 2, and equal areas are swept out in 
equal times. Note that this law does not depend on the magnitude or direction of the 
force on the moving object other than the fact that it is central. You can also derive 
the equation r 20 = h (constant) directly from the fact that the transverse acceleration 
is zero: 

~(r 20) = 2rr0 + r2iJ = r(2r0 + r0 ) = 0. 
dt 

EXAM p LE l An object moves along the polar curve r = l / 0 under the influence 
of a force attracting it toward the origin. If the speed of the object 

is vo at the instant when 0 = I , find the magnitude of the acceleration of the object at 
any point on its path as a function of its distance r from the origin. 

Solution Since the force is central, we know that the transverse acceleration is zero 
and that r 20 = h is constant. Differentiating the equation of the path with respect to 
time and expressing the result in terms of r , we obtain 

. 1 . 2 h 
r = - 020 = -r r2 = -h. 

Hence, the radial component of acceleration is 

. h2 h2 
a,.= r - r(0) 2 = 0 - r- = --. 

r4 r3 

At 0 = I we haver = I , so 0 = h. At that instant the square of the speed is 

v5 = ;,2 + r2(J2 = h2 + h2 = 2Ji2. 

Hence , h2 = v5/2, and, at any point of its path, the magnitude of the acceleration of 
the object is 

v2 
la,.1=~. 

2r 

Derivation of Kepler's First and Third Laws 
The planets and the sun move around their common centre of mass. Since the sun is 
vastly more massive than the planets , that centre of mass is quite close to the centre 
of the sun. For example, the joint centre of mass of the sun and the earth lies inside 
the sun. For the following derivation we will take the sun and a planet as point masses 
and consider the sun to be fixed at the origin. We will specify the directions of the 
coordinate axes later, when the need arises. 

According to Newton 's law of gravitation, the force that the sun exerts on a planet 
of mass m whose position vector is r is 

km ~ km 
F= - -r=--r 

r2 r3 ' 

where k is a positive constant depending on the mass of the sun, and r = r / r. 

As observed above, the fact that the force on the planet is always directed toward 
the origin implies that r x v is constant. We choose the direction of the z-axis so 
that r x v = hk, so the motion will be in the xy- plane and r20 = h . We have not 
yet specified the directions of the x- and y-axes but will do so shortly. Using polar 
coordinates in the xy -plane, we calculate 

k ~ 
dv v - r2 r k ~ 
d0 = 0 = -h- = -hr. 

r2 
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y 

orbit 

X 

velocities 

X 

Figure 11.26 The velocity vectors define 

a circle 

Since d0/d0 = -r, we can integrate the differential equation above to find v: 

v=-- rd0=-e+c k f k A 
h h ' 

where C is a vector constant of integration. Therefore , we have shown that 

This result, known as Hamilton 's Theorem , says that as a planet moves around its 
orbit , its velocity vector (when positioned with its tail at the origin) traces out a circle 
with centre at point C having position vector C. It is perhaps surprising that there is a 
circle associated with the orbit of a planet after all. Only it is not the position vector 
that moves on a circle but the velocity vector. (See Figure 11.26.) 

Recall that so far we have specified only the position of the origin and the direction 
of the z-axis. Therefore, the xy -plane is determined but not the directions of the x -axis 
or the y-axis . Let us choose these axes in the xy-plane so that C is in the direction of 
the y-axis ; say C = (ck/ h)j , where E: is a positive constant. We therefore have 

The position of the x-axis is now determined by the fact that the three vectors i, j , and 
k are mutually perpendicular and form a right-handed basis. We calculate r x v again. 
Remember that r = r cos 0i + r sin 0j, and also r = rr : 

k A 

hk = r XV= h,(rr X 0 + r E:COS0i X j + r E:Sin0j X j ) 

k 
= - r(l + ccos0) k. 

h 

kr 
Thus , h = h(l + E:Cos0), or, solving for r , 

r=----
l + E: cos0 · 

This is the polar equation of the orbit. If E: < 1, it is an ellipse with one focus at the 
origin (the sun) and with parameters given by 

Semi-latus rectum: 

Semi-major axis: 

Semi-minor axis: 

Semi-focal separation: 

h2 
f =

k 

1i2 e 
a = -----,-

k ( l - c2) l - E:2 

1i2 e 
b- ---- ----

- k~- ~ 

C = Ja2 - b2 = __!!__ 
1 - E:2 

We have deduced Kepler 's First Law! The choices we made for the coordinate axes 
result in perihelion (the point on the orbit that is closest to the sun) being on the positive 
x -axis (0 = 0). 

EXAM p LE 2 A planet 's orbit has eccentricity E: (where O < E: < 1), and its speed 
at perihelion is v p. Find its speed VA at aphelion (the point on its 

orbit farthest from the sun). 
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Solution At perihelion and aphelion the planet's radial velocity r is zero (since r is 
minimum or maximum) , so the velocity is entire ly transverse. Thus, v p = r p0 p and 
v A = r A iJ A. Since r 20 = h has the same value at all points of the orbit , we have 

2 · 2 · 
rpVp = rp0P = h = rA0A = rAVA. 

The planet 's orbit has equation 

.e 
r=----

1 + 1:: cos0' 

so perihelion corresponds to 0 = 0 and aphelion to 0 = n:: 

.e .e 
rp=--

1+ 1:: 
and rA = --. 

l - 1:: 

rp l - 1:: 
Therefore, VA= -vp = --vp . 

rA 1 + f: 

We can obtain Kepler 's Third Law from the other two as follows. Since the radial line 
from the sun to a planet sweeps out area at a constant rate h / 2, the total area A enclosed 
by the orbit is A = (h / 2)T, where Tis the period of revolution. The area of an ellipse 
with semi-axes a and b is A = n: ab. Since b2 = ea = h2a/ k , we have 

2 4 2 4 2 2 4n: 2 3 
T = -A = -n: a b2 = -a 

Ji2 h2 k 

Note how the final expression for T2 does not depend on h, which is a constant for 
the orbit of any one planet, but varies from planet to planet. The constant 4n: 2 / k does 
not depend on the particular planet. (k depends on the mass of the sun and a universal 
gravitational constant.) Thus, 

2 4n: 2 3 
T =-a 

k 

says that the square of the period of a planet is proportional to the cube of the length, 
2a, of the major axis of its orbit, the proportionality extending over all the planets. 
This is Kepler's Third Law. Modern astronomical data show that T 2 /a3 va1ies by only 
about three-tenths of one percent over the solar system's known planets. 

Conservation of Energy 
Solving the second-order differential equation of motion F = mr to find the orbit of a 
planet requires two integrations. In the above derivation we exploited properties of the 
cross product to make these integrations easy. More traditional derivations of Kepler' s 
laws usually begin with separating the radial and transverse components in the equation 
of motion : 

.. ·2 k 
r -re = --

2' r 
r0 + 2r0 = 0. 

As observed earlier, the second equation above implies that r20 = h = constant, which 
is Kepler 's Second Law. This can be used to eliminate 0 from the first equation to give 

.. h2 k 
r- - = --

r3 r2. 

Therefore , 
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If we integrate this equation, we obtain 

! (;2 + h2)-~ = E. 
2 r2 r 

This is a conservation of energy law. The first term on the left is v 2 / 2, the kinetic 
energy (per unit mass) of the planet. The term -k / r is the potential energy per unit 
mass. It is difficult to integrate this equation and to find r as a function of t. In any 
event, we really want r as a function of 0 so that we can recognize that we have an 
ellipse. Another way to obtain this is suggested in Exercise 18 below . 

Remark The procedure used above to demonstrate Kepler's laws in fact shows that 
if any object moves under the influence of a force that attracts it toward the origin (or 
repels it away from the origin) and has magnitude proportional to the reciprocal of the 
square of distance from the origin, then the object must move in a plane orbit whose 
shape is a conic section . If the total energy E defined above is negative, then the orbit 
is bounded and must therefore be an ellipse. If E = 0, the orbit is a parabola. If 
E > 0, the orbit is a hyperbola. Hyperbolic orbits are typical for repulsive forces but 
may also occur for attractions if the object has high enough velocity (excee ding the 
escape velocity). See Exercise 22 for an example. 

EXERCISES 11.6 
1. (Polar ellipses) Fill in the details of the calculation 

suggested in the text to transform the polar equation of an 
ellipse, r = t / (1 + e cos0) , where O < e < 1, to Cartesian 
coordinates in a form showing the centre and semi-axes 
explicitly. 

Polar components of velocity and acceleration 

2. A particle moves on the circle with polar equation r = k, 
(k > 0). What are the radial and transverse components of 
its velocity and acceleration? Show that the transverse 
component of the acceleration is equal to the rate of change 
of the speed of the particle. 

3. Find the radial and transverse components of velocity and 
acceleration of a particle moving at unit speed along the 
exponential spiral r = e0 . Express your answers in terms of 
the angle 0. 

4. If a particle moves along the polar curve r = 0 under the 
influence of a central force attracting it to the origin, find the 
magnitude of the acceleration as a function of r and the 
speed of the particle . 

5. An object moves along the polar curve r = 0- 2 under the 
influence of a force attracting it toward the origin. If the 
speed of the object is vo at the instant when 0 = 1, find the 
magnitude of the acceleration of the object at any point on its 
path as a function of its distance r from the origin . 

Deductions from Kepler's laws 

6. The mean distance from the earth to the sun is approximately 
150 million km. Comet Halley approaches perihelion (comes 
closest to the sun) in its elliptical orbit approximately every 
76 years. Estimate the major axis of the orbit of Comet 
Halley. 

7. The mean distance from the moon to the earth is about 
385,000 km, and its period of revolution around the earth is 
about 27 days (the sidereal month). At approximately what 

distance from the centre of the earth, and in what plane, 
should a communications satellite be inserted into circular 
orbit if it must remain directly above the same position on 
the earth at all times? 

8. An asteroid is in a circular orbit around the sun. If its period 
of revolution is T, find the radius of its orbit. 

D 9. If the asteroid in Exercise 8 is instantaneously stopped in its 
orbit , it will fall toward the sun. How long will it take to get 
there? Hint: You can do this question easily if instead you 
regard the asteroid as almost stopped, so that it goes into a 
highly eccentric elliptical orbit whose major axis is a bit 
greater than the radius of the original circular orbit. 

10. Find the eccentricity of an asteroid's orbit if the asteroid's 
speed at perihelion is twice its speed at aphelion. 

11. Show that the orbital speed of a planet is constant if and only 
if the orbit is circular. Hint: Use the conservation of energy 
identity. 

12. A planet's distance from the sun at perihelion is 80% of its 
distance at aphelion. Find the ratio of its speeds at perihelion 
and aphelion and the eccentricity of its orbit. 

D 13. As a result of a collision, an asteroid originally in a circular 
orbit about the sun suddenly has its velocity cut in half, so 
that it falls into an elliptical orbit with maximum distance 
from the sun equal to the radius of the original circular orbit. 
Find the eccentricity of its new orbit. 

14. If the speeds of a planet at perihelion and aphelion are v p 

and VA, respectively, what is its speed when it is at the ends 
of the minor axis of its orbit? 

15. What fraction of its "year" (i.e., the period of its orbit) does a 
planet spend traversing the half of its orbit that is closest to 
the sun? Give your answer in terms of the eccentricity e of 
the planet's orbit. 
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D 16. Suppose that a planet is travelling at speed vo at an instant 
when it is at distance ro from the sun. Show that the period 
of the planet's orbit is 

( 
2) -3/2 27r 2 Vo 

T=- ---
,j"k. ro k 

k 1 
Hint: The quantity - - - v2 is constant at all points of the 

r 2 
orbit, as shown in the discussion of conservation of energy. 
Find the value of this expression at perihelion in terms of the 
semi-major axis, a. 

D 17. The sum of the distances from a point P on an ellipse 8 to 
the foci of 8 is the constant 2a, the length of the major axis 
of the ellipse. Use this fact in a geometric argument to show 
that the mean distance from points P to one focus of 8 is a. 
That is, show that 

-(
1 

[ rds = a, 
C 8) j 8 

where c(8) is the circumference of 8, and r is the distance 
from a point on 8 to one focus. 

D 18. (A direct approach to Kepler's First Law) The result 
of eliminating B between the equations for the radial and 
transverse components of acceleration for a planet is 

h2 k 
r - 7f = - ,2· 

Show that the change of dependent and independent 
variables: 

I 
r(t) = u(B), B = B(t), 

transforms this equation to the simp ler equation 

Show that the solution of this equation is 

u = :2 (1 + t:cos(B - Bo)), 

where t: and Bo are constants. Hence , show that the orbit is 
elliptical if It: I < I. 

D 19. (What if gravitation were an inverse cube law?) Use 
the technique of Exercise 18 to find the trajectory of an 
object of unit mass attracted to the origin by a force of 
magnitude f (r) = k/ r3. Are there any orbits that do not 
approach infinity or the origin as t ~ oo? 

CHAPTER REVIEW 
Key Ideas 

• What is a vector function of a real variable, and why 
does it represent a curve? 

CHAPTER REVIEW 667 

20. Use the conservation of energy formula to show that if 
E < 0 the orbit must be bounded; that is, it cannot get 
arbitrarily far away from the origin. 

D 21. (Polar hyperbolas) If t: > 1, then the equation 

e 
r=----

1 + t:cosB 

represents a hyperbola rather than an ellipse. Sketch the 
hyperbola , find its centre and the directions of its asymptotes , 
and determine its semi-transverse axis, its semi-conjugate 
axis, and semi-focal separation in terms of e and t:. 

D 22. (Hyperbolic orbits) A meteor travels from infinity on a 
hyperbolic orbit passing near the sun . At a very large 
distance from the sun it has speed v00 • The asymptotes of its 
orbit pass at perpendicular distance D from the sun. (See 
Figure 11.27.) Show that the angle b through which the 
meteor 's path is deflected by the grav itationa l attraction of 
the sun is given by 

cot (D = D~2 . 

y 

(c,O) 

// {> 
28 

S r p a X 

Figure 11.27 Path of a meteor 

(Hint : You will need the result of Exercise 21 .) The same 
analy is and results hold for electrostat ic attraction or 
repulsion ; f (r) = ±k / r2 in that case also. The constant k 
depend s on the charges of two particles, and r is the distance 
between them. 

• State the Product Rule for the derivative of 
u(t) • ( v(t) x w(t) ). 

• What do the following terms mean? 

o angular velocity o angular momentum 
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o centripetal acceleration o Coriolis acceleration 

o arc-length parametrization o central force 

• Find the following quantities associated with a 
parametric curve e with parametrization 
r = r(t), (a ~ t ~ b). 

o the velocity v(t) o the speed v(t) 

o the arc length o the acceleration a(t) 

o the unit tangent T(t) o the unit normal N(t) 

o the curvature K (t) o the radius of curvature p(t) 

o the osculating plane o the osculating circle 

o the unit binormal B(t) o the torsion r (t) 

o the tangential acceleration o the normal acceleration 

o the evolute 

• State the Frenet-Serret formulas. 

• State Kepler's laws of planetary motion. 

• What are the radial and transverse components of ve
locity and acceleration? 

Review Exercises 
1. If r(t), v(t), and a(t) represent the position , velocity, and 

acceleration at time t of a particle moving in 3-space, and if, 
at every time t, the a is perpendicular to both rand v, show 
that the vector r(t) - tv(t) has constant length. 

2. Describe the parametric curve 

r = tcosti + t sint j + (2n - t)k, 

(0 :::: t :::: 2n ) , and find its length. 

3. A particle moves along the curve of intersection of the surfaces 
y = x2 and z = 2x3 / 3 with constant speed v = 6. It is 
moving in the direction of increasing x. Find its velocity and 
acceleration when it is at the point (1 , 1, 2/ 3). 

4. A particle move s along the curve y = x 2 in the xy-plane so 
that at time t its speed is v = t. Find its acceleration at time 
t = 3 if it is at the point ( ./2, 2) at that time. 

5. Find the curvature and torsion at a general point of the curve 
r = e1i + ,J1.tj + e- 1k. 

6. A particle moves on the curve of Exercise 5 so that it is 
at position r(t) at time t. Find its normal acceleration and 
tangential acceleration at any time t . What is its minimum 
speed? 

7. (A clothoid curve) The plane curve e in Figure 11.28 has 
parametric equations 

1
S kf2 

x(s) = cos - dt 
0 2 1

S k/ 2 
and y(s) = sin - dt . 

0 2 

Verify thats is, in fact , the arc length along e measured from 
(0, 0) and that the curvature of e is given by K (s) = ks. 
Because the curvature changes linearly with distance along 
the curve , such curves, called clothoids, are useful for joining 
track sections of different curvatures. 

y 

X 

Figure 11.28 A clothoid curve 

8. A particle moves along the polar curve r = e- 0 with constant 
angular speed 0 = k. Express its velocity and acceleration in 
terms of radial and transverse components depending only on 
the distance r from the origin. 

Some properties of cycloids 

Exercises 9-12 all deal with the cycloid 

r = a(t - sin t)i + a(l - cos t)j . 

Recall that this curve is the path of a point on the circumference 
of a circle of radius a rolling along the x-axis. 

9. Find the arc lengths = s(T) of the part of the cycloid from 
t = 0 to I = T :::: 2n. 

10. 

11. 

Find the arc-length parametrization r = r(s) of the arch 
0 :::: t :::: 2n of the cycloid, with s measured from the 
point (0 , 0). 

Find the evolute of the cycloid; that is, find parametric equa
tions of the centre of curvature r = r c (t) of the cycloid. Show 
that the evo lute is the same cycloid trans lated na units to the 
right and 2a units downward. 

, , , 
I 

y 

_,, ... -
,,,,,.,' 

0 

Figure 11.29 

X 

12. A string of length 4a has one end fixed at the origin and is 
wound along the arch of the cycloid to the right of the origin. 
Since that arch has total length 8a, the free end of the string lies 
at the highe st point A of the arch. Find the path followed by 
the free end Q of the string as it is unwound from the cycloid 
and is held taught during the unwinding . (See Fig ure 11.29 .) 
If the string leaves the cycloid at P, then 

(arc OP) + P Q = 4a . 

The path of Q is called the involute of the cycloid. Show that , 
like the evol ute, the invol ute is also a translate of the original 
cycloid. ln fact , the cycloid is the evo lute of its invo lute. 

13. Let P be a point in 3-space with spherical coordinates 
(R, </>, 0). Suppose that P is not on the z-ax is. Find a triad 

of mutually perpendicular unit vectors, {R, ~, 0), at P in the 
directions of increasing R, </>, and 0, respectively. Is the triad 
right- or left-handed? 
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Kepler's laws imply Newton's law of gravitation 

In Exercises 14-16, it is assumed that a planet of mass m moves 
in an elliptical orbit r = t / (l + e cos0) , with focus at the origin 
(the sun), under the influence of a force F = F(r) that depends 
only on the position of the planet. 

14. Assuming Kepler's Second Law, show that r x v = h is 
constant and, hence, that r 20 = h is constant. 

15. Use Newton 's Second Law of Motion (F = mr) to show that 
r x F(r) = 0. Therefore F(r) is parallel to r: 
F(r) = - f (r) r, for some scalar-valued function f (r), and 
the transverse component of F(r) is zero. 

16. By direct calculation of the radial acceleration of the planet , 
show that f (r) = mh 2 / (tr 2), where r = lr l. Thus, Fi s an 
attraction to the origin, proportional to the mass of the planet , 
and inversely proportional to the square of its distance from 
the sun. 

Challenging Problems 
1. Let P be a point on the surface of the earth at 45° north 

latitude. Use a coordinate system with origin at P and basis 
vectors i and j pointing east and north , respectively, so that k 
point s vertically upward. 

D 2. 

(a) Express the angular velocity Q of the earth in terms of 
the basis vectors at P . What is the magnitude n of Q in 
radians per second? 

(b) Find the Coriolis acceleration ac = 2Q x v of an object 
falling vertically with speed v above P. 

( c) If the object in (b) drops from rest from a height of l 00 m 
above P, approximately where will it strike the ground? 
Ignore air resistance but not the Coriolis acceleration. 
Since the Corioli s acceleration is much smaller than the 
gravitational acceleration in magnitude, you can use the 
vertical velocity as a good approximation to the actual 
velocity of the object at any time durin g its fall. 

(The spin of a baseball) When a ball is thrown with spin 
about an axis that is not parallel to its velocity , it experiences 
a lateral acceleration due to difference s in friction along its 
sides. This spin acceleration is given by as = kS x v, where 
v is the velocity of the ball , S is the angular velocity of its 
spin, and k is a positive constant dependin g on the surface of 
the ball. Suppose that a ball for which k = 0.001 is thrown 
horizontally along the x-axis with an initial speed of 70 ft/s 
and a spin of 1,000 radians/s about a vertical axis. Its velocity 
v must satisfy 

- = (0.001)(1,000k) X V - 32k = k X V - 32k 
dt I 
dv 

v(O) = 70i, 

since the acceleration of gravity is 32 ft/s2 . 

(a) Show that the components of v = v Ji+ v2j + v3k satisfy 

I 
dvJ 

dt 
VJ (0) = 70 I 

dv 2 

dt 
v2(0) 

= VJ 

=0 

= -32 

=0 . 

(b) Solve these equations , and find the position of the ball t s 
after it is thrown. Assume that it is thrown from the origin 
at time t = 0. 

CHAPTER REVIEW 669 

(c) At t = 1/ 5 s, how far, and in what direction , has the ball 
deviated from the parabolic path it would have followed 
if it had been thrown without spin? 

D 3. (Charged particles moving in magnetic fields) Mag
netic fields exert forces on moving charged particle s. If a 
particle of mass m and charge q is moving with velocity v in 
a magnetic field B, then it experiences a force F = qv x B, 
and hence its velocity is governed by the equation 

D 4. 

dv 
m- =qv x B. 

dt 

For this exerci se, suppose that the magnetic field is constant 
and vertical , say, B = Bk (as, e.g., in a cathode-ray tube). If 
the moving particle has initial velocity vo, then its velocity at 
time t is determined by 

I 
dv 
- = WV X k, 
dt 

v(O) = vo. 

qB 
wherew= -

m 

(a) Show that v • k = vo • k and Jvl = Jvol for all I. 

(b) Let w (t) = v(t) - (vo • k)k, so that w is perpendicular to 
k for all t. Show that w atisfies 

I 
d 2w 2 -- = -w w 
dt 2 

w(O) = vo - (vo • k)k 

w'( O) = wvo x k. 

(c) Solve the initial-value problem in (b) for w(t), and hence 
find v(t). 

( d) Find the position vector r(t) of the particle at time t if 
it is at the origin at time t = 0. Verify that the path of 
the particle is, in general , a circ ular helix. Under what 
circumstances is the path a straig ht line? a circle ? 

(The tautochrone) The parametric equations 

x = a(0 - sin0) and y = a(cos0 - l) 

(for O ::: 0 ::: 2n ), describe an arch of the cycloid followed 
by a point on a circle of radius a rolling along the under side 
of the x -axi s. Suppose the curve is made of wire along which 
a bead can slide without frictio n. (See Figure 11.30.) If the 
bead slides from rest under gravity, starting at a point having 
parame ter value 0o, show that the time it takes for the bead to 
fall to the lowest point on the arch (correspo nding to 0 = n) is 
a constant , independent of the starting position 0o. Thus, two 
such beads released simultaneously from different positions 
along the wire will always collide at the lowest point. For 
this reason, the cycloid is sometime s called the tautochrone , 
from the Greek for "constant time." Hint: When the bead 
has fallen from height y (0o) to height y (0) , its speed is v = 

J2g ( y(0o) - y (0)) . (Why ?) The time for the bead to fall to 

the bottom is 

!o
0=1C l 

T = -ds , 
0=0o V 

where ds is the arc length element along the cycloid. 
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y 

X 

Figure 11.30 

D 5. (The Drop of Doom) An amusement park ride that used 
to be located at the West Edmonton Mall in Alberta, Canada , 
gives thrill seekers a taste of free-fall. It consists of a car mov
ing along a track consisting of straight vertical and horizontal 
sect ions joined by a smooth curve. The car drops from the 
top and falls vertically under gravity for 10 - 2../2 ~ 7.2 m 
before entering the curved section at B. (See Figure 11.31.) 
It falls another 2../2 ~ 2.8 mas it whips around the curve and 
into the horizontal sectio n DE at ground level , where brakes 
are applied to stop it. (Thus, the total vertical drop from A 
to D or E is 10 m, a figure, like the others in this problem , 
chosen for mathematical convenience rather than engineering 
precision.) For purposes of thi s problem it is helpful to take 
the coordinate axes at a 45 ° angle to the vertical, so that the 
two stra ight sections of the track lie along the graph y = Ix I. 
The curved section then goes from {-2, 2) to (2, 2) and can 
be taken to be symmetric about the y-axis. With this coordi
nate system, the gravitational acceleration is in the direction 
ofi -j. 

A 

I 
I 

I 
I 

I 

I 
I 

y 

C 

Figure 11.31 

' ' \ 
\ 
\ 
\ 
I 

X 

(a) Find a fourth-degree polynomial whose graph can be used 
to link the two straight sections of track without producing 

D 6. 

discontinuous accelerations for the falling car. (Why is 
fourth degree adequate?) 

(b) Ignoring friction and air resistance, how fast is the car 
moving when it enters the curve at B? at the midpoint C 
of the curve? and when it leaves the curve at D? 

(c) Find the magnitude of the normal acceleration and of the 
total acceleration of the car as it passes through C. 

(A chase problem ) A fox and a hare are running in the 
xy -plane. Both are running at the same speed v. The hare is 
runnin g up the y- axis; at time t = 0 it is at the origin. The fox 
is always running straight toward the hare. At time t = 0 the 
fox is at the point (a, 0), where a > 0. Let the fox 's position 

at time t be (x(t), y(t)). 

(a) Verify that the tangent to the fox's path at time t has slope 

dy 

dx 

y(t) - Vt 

x(t) 

(b) Show that the equation of the path of the fox satisfies the 
equation 

Hint: Differentiate the equation in (a) with respect to t. 
On the left side note that (d / dt) = (dx / dt)(d / dx). 

(c) Solve the equation in (b) by substituting u(x) = dy/dx 
and separating variables. Note that y = 0 and u = 0 
when x = a. 

D 7. Suppo se the earth is a perfect sphere of radius a. You set out 
from the point on the equator whose spherical coordinates are 
(R, ¢, 0) = (a, ir /2 , 0) and travel on the surface of the earth 
at constant speed v, always moving toward the northeast (45° 
east of north). 

(a) Will you ever get to the north pole? If so, how long will 
it take to get there ? 

(b) Find the functions cp(t) and 0(t) that are the angular spher
ical coordinates of your position at time t > 0. 

(c) How many times does your path cross the meridian 

0 = O? 
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Partial 
Differentiation 

'' I have a very wide command of matters mathematical, 
I understand equations both the simple and quadratical. 
About binomial theorem I'm teeming with a lot of news, 
And many cheerful facts about the square on the hypotenuse. 

671 

'' William Schwenck Gilbert 1836- 1911 
from The Pirates of Penzance 

I n trod U Ct '1 Q n This chapter is concerned with extending the idea of the 
derivative to real function s of a vector variable, that is, to 

function s depending on several real variables. Although differentia tion is carried out 
one variable at a time, the relationship between derivatives with respect to different 
variables makes the analysis of such functions much more complicated and subtle than 
in the single-variable case. 

• 
Functions of Several Variables 

-----
The notation y = f (x) is used to indicate that the variable y depends on the single real 
variable x, that is, that y is a function of x. The domain of such a function f is a set 
of real numbers. Many quantities can be regarded as depending on more than one real 
variable and thu to be functions of more than one variable. For example, the volume 
of a circular cylinder of radius r and height h is given by V = n r 2 h; we say that V is 
a function of the two variables r and h . If we choose to denote this function by f, then 
we would write V = J(r, h) where 

f(r, h) = nr 2h, (r ~ 0, h ~ 0). 

Thus, f is a function of two variables having as domain the set of points in the 
rh-plane with coordinates (r, h) satisfying r ~ 0 and h ~ 0. Similarly , the relationship 
w = f(x , y, z) = x + 2y - 3z defines was a function of the three variables x, y, and 
z, with domain the whole of IR3, or, if we state explicitly, some particular subset of IR3 . 

By analogy with the corresponding definition for functions of one variable, we 
define a function of n variables as follows: 
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DEFINITION 

I 

Figure 12.1 The graph off (x, y) is the 
surface with equation z = f (x , y) defined 
for points (x , y ) in the domain of f 

z 

4 

y 

X 

Figure 12.2 The graph of the function in 
Example I 

A function f of n real variables is a rule that assigns a unique real number 
f (x 1 , x2, . . . , Xn) to each point (x 1, x2, ... , Xn) in some subset :D(f) of JR.n. 
:D(f) is called the domain off. The set of real numbers f(x1,x2, ... ,xn) 
obtained from points in the domain is called the range off. 

As for functions of one variable, the domain convention specifies that the 
domain of a function of n variables is the largest set of points (x1, x2, ... , Xn) 
for which f (x 1, x2, .. . , x ,,) makes sense as a real number, unless that domain is 
explicitly stated to be a smaller set. 

Most of the examples we consider hereafter will be functions of two or three 
independent variables. When a function f depends on two variables, we will usually 
call these independent variables x and y, and we will use z to denote the dependent 
variable that represents the value of the function ; that is, z = f (x, y). We will normally 
use x, y, and z as the independent variables of a function of three variables and w as 
the value of the function: w = f (x , y , z). Some definitions will be given, and some 
theorems will be stated (and proved) only for the two-variable case, but extensions to 
three or more variables will usually be obvious . 

Graphs 
The graph of a fun ction f of one variable (i.e., the graph of the equation y = f (x)) is the 
set of points in thexy-plane having coordinates (x, f (x) ) , wherex is in the domain off. 
Similarly , the graph of a junction f of two variables (i.e., the graph of the equation z = 
f (x , y )) is the set of points in 3-space having coordinates (x, y , f (x, y)) , where (x, y) 

belong s to the domain off . This graph is a surface in JR.3 lying above (if f(x, y) > 0) 
or below (if f(x, y) < 0) the domain off in the xy-plane. (See Figure 12.1.) The 
graph of a function of three variables is a three-dimensional hypersurface in 4-space, 
IR4

. In general , the graph of a function of n variables is an n-dimensional surface in 
JR"+ 1. We will not attempt to draw graphs of functions of more than two variables! 

z 

graph 
z = f (x , y) 

! ~ ~· y 

domain off 
X 

EXAMPLE 1 Consider the function 

f(x , y) = 3 ( l - ~ - i) , (0 S X S 2, 0 S y S 4 - 2x). 

The graph off is the plane triangular surface with vertices at (2, 0, 0), (0, 4, 0), and 
(0, 0, 3) . (See Figure 12.2.) If the domain of f had not been explicitly stated to be 
a particular set in the xy-plane , the graph would have been the whole plane through 
these three points. 
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z 

z= .J9 - x2-y2 

y 

Figure 12.3 The graph of the funtion in 
Example 2 is a hemisphere 

Figure 12.4 The graph of 
-6y 

z =----
2 + x 2 + y2 

EXAMPLE 2 

in the xy -plane . 

SECTION 12. l : Functions of Several Variables 673 

Consider f (x , y) = J9 - x2 - y2 . The expression under the 
square root cannot be negative, so the domain is the disk x2+y2 s 9 

If we square the equation z = J9 - x 2 - y2 , we can rewrite the result in the form 
x2 + y2 + z2 = 9. This is a sphere of radius 3 centred at the origin . However, the 
graph off is only the upper hemisphere where z :::: 0. (See Figure 12.3.) 

Since it is necessary to project the surface z = f (x, y) onto a two-dimensional page, 
most such graphs are difficult to sketch without considerable artistic talent and training . 
Nevertheless, you should always try to visualize such a graph and sketch it as best you 
can. Sometime s it is convenient to sketch only part of a graph, for instance , the part 
lying in the first octant. It is also helpful to determine (and sketch) the intersections of 
the graph with various plane s, especially the coordinate planes , and planes parallel to 
the coordinate planes. (See Figure 12.1.) 

Some mathematical software packages will produce plots of three-dimen sional 
graphs to help you get a feeling for how the corresponding function s behave. Figure 12.1 
is an example of such a computer-drawn graph , as is Figure 12.4 below. Along with 
most of the other mathematical graphics in this book, both were produced using the 
mathematical graphics software package MG. Later in this section we discuss how to 
use Maple to produce such graphs . 

z - 6y 
z = - --;c-- ---;: 

2 + x2 + y2 

y 

X 

Level Curves 
Another way to represent the function f( x, y) graphically is to produce a two
dimensional topogr aphi c map of the surface z = f (x, y) . In thexy-plane we sketch the 
curves f (x, y) = C for various values of the constant C. These curves are called level 
curves off because they are the vertical projections onto the xy -plane of the curves in 
which the graph z = f (x, y) intersects the horizontal (level) planes z = C. The graph 
and some level curves of the function f( x, y) = x2 + y2 are shown in Figure 12.5. 
The graph is a circular paraboloid in 3-space, which is a smooth surface. The level 
curves off are circles centred at the origin in the xy-plane. Observe , however, that the 
function g(x, y) = J x2 + y2 has the same family of circles as its level curves (though 
for different values of C) , but the graph of g is a circular cone with vertex at the origin 
and is therefore not smooth there. We can not infer from the smoothness of the level 
curves of a function that the graph of the function is smooth. 
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z 

graph z=x 2+y2 

y 

t~IOO 

400

300 

'"' ' 

Figure 12.5 The graph of f (x , y) = x 2 + y2 
and some level curves of f 

Figure 12.6 Level curves (contours) representing 
elevation in a topographic map 

Figure 12.7 

(a) Level curves of 3 ( 1 -1-i) 
(b) Level curves of ) 9 - x 2 - y 2 

EXAM p LE 3 The contour curves in the topographic map in Figure 12.6 show the 
elevations, in 100 m increments above sea level, on part of Nelson 

Island on the British Columbia coast. Since these contours are drawn for equally 
spaced values of C , the spacing of the contours themselves conveys information about 
the relative steepness at various places on the mountains; the land is steepest where 
the contour lines are closest together. Observe also that the streams shown cross the 
contours at right angles. They take the route of steepest descent. Isotherms (curves of 
constant temperature) and isobars (curves of constant pressure ) on weather maps are 
also examples of level curves. 

EXAMPLE 4 The level curves of the function f(x , y) = 3 (1 - ~ - ~) of 

Example 1 are the segments of the straight lines 

3 (1 - ::_ - ~ ) = C or ::_ + ~ = 1 - £ (0 :'.S C :'.S 3) , 
2 4 2 4 3 ' 

which lie in the first quadrant. Several such level curves are shown in Figur e 12.7(a) . 
They corres pond to equally spaced values of C, and their equal spacing indic ates the 
uniform steepness of the graph off in Figure 12.2. 

y y 
level curves 

4 f( x ,y )=3 (1 - i - i)=c 
3 

2 

2 X 

(a) 

EXAMPLE 5 
Example 2 are the concentric circles 
The level curves of the function f (x , y) 

(b) 

C= 2.25 
C=2 .5 

C= 2.75 

X 

J9 -x 2 - y2 of 

)9 - x 2 - y 2 = C or x 2 + y2 = 9 - C2
, (0 :'.':: C :'.':: 3). 

Observe the spacing of these circles in Figure 12.7(b) ; they are plotted for several 
equalJy spaced values of C. The bunching of the circles as C ~ 0+ indicates the 
steepness of the hemispherical surface that is the graph off. (See Figure 12.3.) 
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Figure 12.8 

(a) Level curves of x 2 - y2 
(b) The graph of x 2 - y2 

Figure 12.9 

(a) Level curves of z = g(x, y) for 
Example 7 

(b) The graph of z = g(x, y) 

SECTION 12.1: Functions of Several Variables 675 

A function determines its level curves with any given spacing between consecutive 
values of C. However, level curve s only determine the function if all of them are 
known. 

EXAM p LE 6 The level curves of the function f (x , y) = x 2 
- y 2 are the curves 

x 2 - y 2 = C. For C = O the level "curve " is the pair of straight 
lines x = y and x = -y. For other values of C the level curves are rectangular 
hyperbolas with these lines as asymptotes. (See Figure 12.8(a).) The graph off is the 
saddle-like hyperbolic paraboloid in Figure 12.8(b) . 

EXAMPLE 7 

of the function g. 

z 

X 

z = x2 - y2 

(a) (b) 

Describe and sketch some level curves of the function z = g(x , y) 
defined by z ::: 0, and x 2 + (y - z)2 = 2z2 . Also sketch the graph 

Solution The level curve z = g(x, y) = C (where C is a positive constant) has 
equation x 2 +(y-C) 2 = 2C 2 and is, therefore , a circle of radius ,Ji.c centred at (0, C) . 
Level curves for C in increments of0.1 from Oto I are shown in Figure 12.9(a). These 
level curves intersect rays from the origin at equal spacing (the spacing is different 
for different rays) indicating that the surface z = g(x, y) is an oblique cone . See 
Figure 12.9(b). 

y z 

x2 + (y - z)2 = 2z2 , z :::: 0 

C=O 

y 

X 

(a) (b) 

Although the graph of a function f (x , y, z) of three variables cannot easily be drawn (it 
is a three-dimensional hypersurfa ce in 4-space) , such a function has level surfaces in 
3-space that can, perhaps , be drawn. These level surfaces have equations of the form 
f(x , y, z) = C for various choices of the constant C. For instance, the level surface s 
of the function f (x, y, z) = x 2 + y2 + z2 are concentric spheres centred at the origin. 
Figure 12.10 shows a few level surfaces of the function f(x, y, z) = x 2 - z. They are 
parabolic cylinders. 
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Figure 12.10 Level surfaces of 
f(x,y, z)=x 2 - z 

y 

X 

Using Maple Graphics 
Like many mathematical software packages, Maple has several plotting routines to 
help you visualize the behaviour of functions of two and three variables. We mention 
only a few of them here; there are many more . Most of the plotting routines are in the 
plots package, so you sho uld begin any Maple session where you want to use them 
with the input 

> with (plots) ; 

To save space, we won't show any of the plot output here. You will need to play with 
modifications to the various plot comma nds to obtain the kind of outp ut you desire. 

The graph of a function f (x , y ) of two variables (or an expression in x and y) 
can be plotted over a rectangle in the xy -plan e with a call to the plot3d routine. For 
example, 

> f : = -6*y/(2+xA2+yA2) ; 

> plot3d( f, x=-6 . . 6 , y=-6 . . 6) ; 

will plot a surface similar to the one in Figure 12.4 but without axes and viewed from 
a steeper angle. You can add many kinds of options to the command to change the 
output. For instance, 

> plot3d(f , x=-6 . . 6 , y=-6 . . 6 , axes=boxed , 

orientation=[30,70] ); 

will plot the same surface within a three-dimensional rectangu lar box with scales on 
three of its edges indicating the coordinate values. (If we had said a x e s= n o rm a l 
instead, we would have gotten the usual coordinate axes through the origin, but they tend 
to be more difficult to see against the background of the surface, so axes =b oxe d 
is usually preferable .) The optio n orien t a tion= [30 , 70 ] results in the plot's 
being viewed from the direction making angle 70° with the z-axis and lying in a plane 
containing the z-axis making an angle 30° with the x z-plane. (The default value of 
the orientation is [45 , 45] if the option is not specified.) By default , the surface plotted 
by plot3d is ruled by two families of curves , representing its intersection with vertical 
planes x = a and y = b for several equally spaced values of a and b, and it is coloured 
opaquely so that hidden parts do not show. 

Instead of plot3d, you can use contourplot3d to get a plot of the surface ruled 
by contours on which the value of the function is constant. If you don't get enough 
contours by default, you can include a c o ntour s=n option to specify the number 
you want. 
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> contourplot3d(f , x=-6 .. 6 , y=-6 .. 6 , axes=boxed , 

contours=24) ; 

The contours are the proj ectio ns of the level curves onto the graph of the surface. 
Alternativel y, you can get a two-dimensional plot of the level curves them selves using 
contourplot: 

> contourplot(f , x=-6 .. 6 , y=-6 .. 6 , axes =normal , 

contours =24) ; 

Other options you may want to include with plot3d or contourp lot3d are 

(a) view=zmin .. zmax to specify the range of values of the function (i.e ., z) to 
show in the plot. 

(b) gr id= [m, n J to specify the numb er of x and y value at which to evaluate the 
function. If your plot doe sn' t look smooth eno ugh, try m = n = 20 or 30 or even 
higher values . 

The graph of an equation , f(x , y) = 0, in the xy -plane ca n be ge nerat ed witho ut 
solving the equation for x or y first, by using implicitplot. 

> implicitplot(xA3-yA2-5*x*y-x-5 , x=-6 .. 7, y=-5 .. 6) ; 

will produc e the grap h of x 3 - y2 - Sxy - x - S = 0 on the rectangle -6 S x S 7, 
-5 S y S 6. There is also an implicitplot3d routine to plot the surfac e in 3-space 
having an equation of the for m f (x, y, z) = 0. For this routine you mu t specify 
ranges for all three variable s; 

> implicitplot3d(x A2+y A2-z A2- 1 , x=-4 . . 4 , y=-4 .. 4 , 

z=-3 .. 3 , axes=boxed) ; 

plot s the hyperboloid z2 = x 2 + y2 - 1. 

Finally , we observe that Mapl e is no more capable than we are of drawing graphs 
of function s of three or more variables, since it doe sn 't have four-dimensional plot 
capability . The best we ca n do is plot a set of level surface s for such a function: 

> implicitplot3d( {z-x A2-2 , z-x A2 , z-x A2+2 }, x=-2 .. 2 , 

y=-2 .. 2 , z=-2 .. 5 , axes=boxed) ; 

It is possible to co nstruct a sequen ce of plot structures and assign them to , say, the 
elements of a list var iab le, without actually plotting them. Then al l the plot s can be 
plotted simultan eo usly using the display function. 

> for c from -1 to 1 do 

p[c) : = implicitplot3d(z A2-xA2-yA2-2*c , x=-3 .. 3 , 

y=-3 .. 3 , z=0 .. 2 , color=COLOR(RGB , (l+c) / 2 , (1-c) / 2 , 1)) 

od : 

> display([seq(p[c] , c=-1 .. l)] , axes=boxed , 

orientation=[30 , 40]) ; 

Note that the command creating the plots is terminated with a colon rather than the 
usual semicolon. If you don ' t suppre ss the output in this way, you will get va t amounts 
of meanin gless numeric al output as the plot s are constr ucted . The color= ... option 
is an attempt to give the three plots different colour s so they can be distinguished from 
each other. 

Specify the domains of the functions in Exercises 1- 10. 
X 

3• f (x , Y) = -2--2 
X + y 

xy 
4. f(x, y) = -

2
--

2 

x+y 
1. f (x, y) = -

x - y 
2. f(x , y) = FY 

X - y 
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1 
6. f (x, y ) = ~ 7. f( x, y ) = ln(l + xy) 

v x2 - y2 

8. f(x , y ) = sin- 1(x + y) 
x yz 

9. f (x , y , z) = 2 2 2 
X + Y + z 
exyz 

10. f (x, y , z) = --
.Jxyz, 

Sketch the graphs of the function s in Exercises 11-18 . 

11. f (x , y ) = X, (0 :'.:: X '.:: 2, 0 :'.:: Y '.:: 3) 

12. f (x , y ) = sin x, (0 S x S 21r, 0 Sy S 1) 

13. f (X, y ) = y2, ( - 1 :'.:: X '.:: 1, - 1 :'.:: y '.:: 1) 

14. f (x, y ) = 4 - x 2 - y2 , (x 2 + y2 S 4, x c:: 0, y c:: 0) 

15. f(x,y) = Jx 2 + y 2 16. f( x,y ) = 4 -x 2 

17. f (x, y) = lxl + IYI 18. f(x ,y )=6 -x- 2y 

Sketch some of the level curves of the function s in 
Exercises 19- 26. 

19. f (x, y) = X - y 

21. f (x , y ) = xy 

x-y 
23. f(x , y ) = -

x + y 

25. f( x , y ) = xe -Y 

20. f (x , y ) = x 2 + 2y 2 

x2 
22. f (x , y) = -

y 

y 
24. f (x, y ) = - 2-- 2 

X + y 

26. f( x,y) = j~ -x
2 

Exercises 27-28 refer to Figure 12.11, which shows contours of a 
hilly region with heights given in metres. 

Figure 12. 11 

27. At which of the points A or B is the landscape steeper? How 
do you know? 

28. Describe the topography of the region near point C . 

(a) 

t 
C=- 5 

(c) 

y 

X 

(b) 

T C= IO 

t 
C= O 

(d) 

Figure 12.12 

V 

X 

y 

Describe the graphs of the functions f (x , y) for which families 
of level curves f (x , y) =Care shown in the figures referred to 
in Exercises 29-32. Assume that each family corresponds to 
equally spaced values of C and that the behaviour of the family is 
representative of all such families for the function. 

29. See Figure 12.12(a). 

31. See Figure 12.12(c). 

30. See Figure 12.12(b). 

32. See Figure 12.12(d). 

33. Are the curves y = (x - C)2 level curves of a function 
f (x , y )? What property must a family of curves in a region 
of the xy -plane have to be the family of level curves of a 
function defined in the region ? 

34. If we assume z c:: 0, the equation 4z2 = (x - z)2 + (y - z)2 
defines z as a function of x and y. Sketch some level curves 
of this function. Describe its graph. 

35. Find f (x, y ) if each level curve f (x, y) = C is a circle 
centred at the origin and having radius 
(a) C (b) C2 (c) ,Jc (d) In C . 

36. Find f (x, y, z) if for each constant C the level surface 
f(x , y , z) = C is a plane having intercept s c3, 2C3, and 
3C3 on the x-axi s, the y-axis, and the z-axis , respectively . 

Describe the level surfaces of the functions specified in 
Exercises 37-41. 

37. f (x , y , z)=x 2 + y2 + z2 

38. f( x,y,z )=x+2y+3 z 

39. f( x , y , z)= x 2 + y2 

41. f (x , y, z) = lxl + IYI + lzl 

x2 + y 2 
40. f (x , y, z) = - -

2 
-

z 

42. Describe the "level hypersurfaces" of the function 

J(x, y, z, t) = x2 + y2 + z2 + t2
. 
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Use Maple or other computer graphing software to plot the 
graphs and the level curves of the functions in Exercises 43-48. 

H 4s. 
y 

1 + x2 + y2 
H 46. 

(x2 _ 1)2 + y2 
X 

... 43 1 

.:!, • 2 2 
1 +x + y 

... 44 cosx 

.:!, • 1 + y2 ;: 47. xy 
1 

:: 48. 
xy 

• 
Limits and Continuity 

- --- -
Before reading this section you should review the concepts of neighbourhood , open 
and closed sets, and boundary and interior point s introduced in Section 10.1. 

DEFINITION 

I 

The concept of the limit of a function of several variables is similar to that for 
functions of one variable. For clarity we present the definition for functions of two 
variables only ; the general case is similar. 

We might say that f(x, y) approaches the limit Las the point (x , y ) approaches 
the point (a, b ), and write 

lim f (x, y) = L , 
(x ,y)-> (a,b) 

if all points of a neighbourhood of (a, b) , except possibly the point (a, b) itself , belong 
to the domain of f, and if f (x, y) approaches L as (x, y ) approaches (a, b). However , 
it is more convenient to define the limit in such a way that (a, b) can be a boundary point 
of the domain off . Thu s, our formal definition will generalize the one-dimensional 
notion of one-sided limit as well. 

Definition of Limit 

We say that lim f (x, y) = L , provided that 
(x ,y)->(a,b) 

(i) every neighbourhood of (a , b) contains point s of the domain off different 
from (a, b), and 

(ii) for every positive number E there exists a positive number <5 = <5(€) such that 
If (x, y) - LI < € holds whenever (x, y ) is in the domain off and satisfies 

0 < Jex - a)2 + (y - b)2 < <5. 

Condition (i) is includ ed in Definition 2 because it is not appropriate to consider limits 
at iso lated point s of the domain off , that is, points with neighbourhood s that contain 
no other points of the domain. 

If a limit exists it is unique. For a single-variable function f, the existence of 
1im x-> a f (x) implie s that f(x) approaches the same finite number as x approaches a 
from either the right or the left. Similarly , for a function of two variables, we can have 
1im (x ,y)->(a ,b) f (x, y) = L only if f(x, y) approaches the same number L no matter 
how (x , y) approache s (a, b) in the domain off. In particular , (x, y) can approach 
(a, b) along any curve that lies in :IJ(f) . It is not necessary that L = f (a, b) even if 
f (a, b) is defined . The examples below illustrate these assertions. 

All the usual laws of limits extend to function s of several variables in the obviou s 
way. For example, if Iim cx,y)->(a,b) f(x, y) = L , limcx, y)-> (a,b) g(x, y) = M, and 
every neighbourhood of (a, b) contains points in :IJ(f) n :IJ(g) other than (a, b), then 
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Jim (f (x, y) ± g(x, y)) = L ± M, 
(x,y)-+(a,b) 

lim f(x, y) g(x, y) = LM , 
(x,y)-+(a,b) 

l
. f(x, y) L 
lffi ---

(x ,y)-+(a ,b) g(x, y) M' 
provided M I 0. 

Also, if F(t) is continuous at t = L, then 

lim F(f(x, y)) = F(l). 
(x ,y)-+ (a,b) 

EXAMPLE 1 (a) 

(b) 

(c) 

Jim (2 x - i ) = 4 - 9 = -5, 
(x ,y)-+ (2,3) 

lim x 2 y = a2b, 
(x ,y )-> (a,b) 

Jim y sin (::) = 2 sin (~) = 1. 
(x ,y )-+(ir / 3,2) y 6 

The function f(x , y) = J I - x2 - y 2 has limit f(a, b) at all 
EXAMPLE 2 points (a, b) of its domain, the closed disk x2 + y 2 .::: l, and is 

therefore considered to be continuous on its domain. Of course, (x, y) can approach 
points of the bounding circle x2 + y2 = 1 only from within the disk. 

The following examples show that the requirement that f(x, y) approac h the same 
limit no matter how (x, y) approaches (a , b) can be very restrictive, and makes limits 
in two or more variable s much more subtle than in the single-variable case . 

EXAMPLE 3 Investigate the limiting behaviour of f(x, y) = }xy 
2 

as (x, y) 
X + y 

approaches (0, 0). 

Solution Note that f (x, y) is defined at all points of the xy-plane except the origin 
(0, 0). We can still ask whether limcx,y)-+(0,0) f (x, y) exists. If we let (x, y) approach 
(0, 0) along the x-axis (y = 0), then f(x , y) = f(x, 0) -+ 0 (because f (x, 0) = 0 
identically). Thus, limcx,y)->(O,O) f(x, y) must be O if it exists at all. Similarly, at all 
points of the y-ax is we have f (x , y) = f(O, y) = 0. However, at points of the line 
x = y, f has a different constant value; f(x, x) = 1. Since the limit of f(x, y) isl as 
(x, y) approaches (0, 0) along this line, it follows that f (x, y) cannot have a limit at 
the origin. That is, 

2xy 
Jim 

(x ,y )-+ (0,0) x 2 + y2 
does not exist. 

Observe that f (x, y) has a constant value on any ray from the origin ( on the ray y = kx 
the value is 2k/ (1 + k2 )), but these values differ on different rays. The level curves of 
f are the rays from the origin (with the origin itself removed). It is difficult to sketch 
the graph of f near the origin. The first octan t part of the graph is the "hood- shaped" 
surface in Figure 12.13(a). 
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Figure 12.13 

(a) f(x, y) has different limjts as 
(x, y) ~ (0, 0) along different 
straight lines 

(b) f(x, y) has the same limjt Oas 
(x, y) ~ (0, 0) along any straight 
line but has Jimjt 1 as (x, y) ~ (0, 0) 
along y = x 2 

z 

X 

2xy 
z=- 

x2 + y2 

(a) 

y X 

SECTION 12.2: Limits and Continuity 68 1 

z 

(b) 

2x 2y 
z=-

x4 + y2 

y 

EXAMPLE 4 Investigate the limiting behaviour of f (x, y) = ;x2 
y 

2 
as (x, y) 

X + y 
approaches (0, 0) . 

Solution As in Example 3, f(x, y) vanishes identically on the coordinate axes, so 
lim cx,y)-+(O,O) f(x, y) must be O if it exists at all. If we examine f(x , y) at points of 
the ray y = kx , we obtain 

2kx 3 
f (x, kx) = 4 2 2 X +k X 

2k x 
2 2 - O, 

X +k 
as x -+ 0 (k -/= 0). 

Thus , f(x, y) -+ 0 as (x, y) -+ (0, 0) along any straight line through the origin. We 
might be tempted to conclude, therefore , that lim cx ,y)-+ (O,O) f (x, y) = 0, but this is 
incorrect. Observe the behaviour of f(x, y) along the curve y = x 2: 

2x 4 

f(x,x2) = 4 4 = 1. 
X +x 

Thus , f(x, y) does not approach Oa s (x, y) approaches the origin along this curve , so 
lim cx,y)-+(0,0) f(x , y) does not exist. The level curves off are pairs of parabolas of 
the form y = kx 2, y = x 2 / k with the origin removed. See Figure l 2. l 3(b) for the first 
octant part of the graph of f. 

2 

EXAM P L E 5 Show that the function f (x, y) = : y 
2 

does have a limit at the 
X + y 

origin; specifically , 

x2y 
lim --- =0. 

(x ,y)-+(0,0) x 2 + y2 

Solution This function is also defined everywhere except at the origin. Observe that 
since x 2 ::: x 2 + y2, we have 

which approaches zero as (x, y) -+ (0, 0). (See Figure 12.14.) Formally , if€ > 0 is 

given and we take c5 = E, then 1/(x, y) - 01 < E whenever O < Jx2 + y 2 < <5, so 
f(x , y) has limit Oas (x, y)-+ (0, 0) by Definition 2. 

As for functions of one variable, continuity of a function f at a point of its domain is 
defined directly in terms of the limit. (See, for instance, Example 2.) 
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x2y 
z =--

x2 + y2 

z 

y 

Figure 12.14 
x2y 

lim --- =0 
(x,y)---+(0,0) x 2 + y 2 

X 

DEFINITION The function f(x, y) is continuous at the point (a , b) if 

I 

EXERCISES 12.2 

Jim f( x, y) = f(a, b). 
(x ,y )---+(a,b) 

It remains true that sums, difference s, products , quotients, and compositions of continu
ous functions are continuous . The function s of Example s 3 and 4 above are continuous 
wherever they are defined, that is, at all points except the origin. There is no way to 
define f (0, 0) so that these function s become continuous at the origin. They show 
that the continuity of the single-variable functions f (x, b) at x = a and f(a, y) at 
y = b does not imply that f (x, y) is contin uous at (a , b ). In fact, even if f (x, y) 
is continuous along every straight line through (a, b ), it still need not be continuous 
at (a, b) . (See Exercise s 16-17 below .) Note , however , that the function f(x, y) of 
Example 5, although not defined at the origin, has a continuous extension to that point. 
If we extend the domain off by defining f(O, 0) = lim (x,y)---+{0,0) f(x, y) = 0, then 
f is contin uous on the whole xy-plane. 

As for functions of one variable, the existence of a limit of a function at a point 
does not imply that the function is continuous at that point. The function 

f(x )-{o if(x,y)=/-(0 , 0) 
,y - l if( x,y )=(O , O) 

satisfies lim(x,y)---+{O,O) f (x, y) = 0, which is not equal to f (0, 0), so f is not continuous 
at (O, 0). Of course , we can make f continuous at (0, 0) by redefining its value at that 
point to be 0. 

In Exercises 1- 12, evaluate the indicated limit or explain why it 9. 
. sin( xy) 

ltm -2--2 10. lim 
2x2 -xy 

does not exist. (x, y)---+(0,0) X + y (x,y)---+(1,2) 4x 2 - y 2 

1. lim xy + x 2 2. Jim Jx 2 + y2 11. 
x2y2 

12. Jim 
x2y2 

lim ---
(x,y )---+(2,- 1) (x,y)---+(0,0) (x ,y)---+(0,0) x 2 + y4 (x ,y)---+(0,0) 2x4 + y4 

13. How can the function 

3. 
x2 + y2 

4. 
X x2+y2-x3y3 Jim lim ---

f(x, y) = (x ,y ) =f. (0,0), (x,y)---+ (0,0) y (x,y)---+(0,0) x2 + y 2 
x2 + y2 

cos(xy) x2(y - 1)2 be defined at the origin so that it becomes continuous at all 
5. lim 6. lim points of the xy-plane? 

(x ,y)---+(1,ir) 1 - X - COS y (x,y)---+(0, 1) x 2 + (y - 1)2 

14. How can the function 

7. 
y3 

8. lim 
sin(x - y) x3 _ y3 

(x =f. y), Jim --- f(x,y) = -- , 
(x ,y)---+(0,0) x 2 + y 2 (x,y)---+(0,0) cos(x + y) x - y 
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be defined along the line x = y so that the resulting function 
is continuou s on the whole xy- plane? 

SECTION 12.3: Partial Derivatives 683 

15. What is the domain of 

8 18. What condition must the nonnegative integers m, n, and p 
satisfy to guarantee that limcx,y)-+(0,0) x 111 y" / (x2 + y2)P 
exjsts? Prove your answer. 

8 16. 

x - y 
f (x, y) = - 2-- 2? 

X - y 

Does f (x, y) have a limit as (x, y) ~ (I, I) ? Can the 
domain off be extended so that the resulting function is 
continuous at (I , I) ? Can the domain be extended so that the 
resulting function is continuous everywhere in the xy-plane ? 

Given a function f (x, y) and a point (a, b) in its domain , 
define single-variable function s g and h as follows: 

g(x) = f (x , b) , h(y) = f (a, y). 

If g is continuous at x = a and h is continuous at y = b, 
does it follow that f is continuous at (a, b)? Conversely, 
does the continuity off at (a, b) guarantee the continuity of 
g at a and the continuity of h at b? Justify your answers. 

8 19. What condition must the constants a, b, and c satisfy to 
guarantee that Limcx,y)-+(0,0) xy/ (ax 2 + bxy + cy2) exists? 
Prove your answer. 

sinx sin3 y 
8 20. Can the function f (x , y) = ( 2 2 be defined at 

1 - COS X + y ) 
(0, 0) in such a way that it becomes continuous there? If so, 
how? 

H 21. Use two- and three-dimensional mathematical graphing 
software to examine the graph and level curves of the 
function f (x , y ) of Example 3 on the region -1 S x S 1, 
- 1 Sy S 1, (x, y) =I= (0, 0). How would you describe the 
behaviour of the graph near (x, y) = (0, O)? 

8 17. Let u = ui + vj be a unit vector, and let 

:;: 22. Use two- and three-dimensional mathematical graphing 
software to examine the graph and level curves of the 
function f (x , y) of Example 4 on the region - 1 S x S 1, 
- 1 Sy S I, (x, y) =I= (0, 0). How would you describe the 
behaviour of the graph near (x , y) = (0, O)? 

fu(t) = f(a + tu, b + tv) 

be the single-variable function obtained by restricting the 
domain of f(x, y) to points of the straight line through (a, b) 
parallel to u. If fu(t) is continuou s at t = 0 for every unit 
vector u, does it follow that f is continuous at (a, b)? 
Conversely, does the continuity off at (a, b) guarantee the 
continuity of f u(t) at t = O? Justify your answers. 

23. The graph of a single-variab le function f(x) that is 
continuous on an interval is a curve that has no breaks in it 
there and that intersects any vertical line through a point in 
the interval exact ly once. What analogous statement can you 
make about the graph of a bivariate function f (x, y) that is 
continuous on a region of the xy-p lane? 

• 
Partial Derivatives 

-----
In this section we begin the proces s of extending the concepts and techniques of single
variable calculus to function s of more than one variable. It is convenient to begin by 

DEFINITION 

I 

considering the rate of change of such function s with respect to one variable at a time. 
Thus , a function of n variables has nfirst-order partial derivatives, one with respect to 
each of its independent variables. For a function of two variables, we mak e trus preci se 
in the following defiruti on: 

The first partial derivati ves of the function f (x, y ) with respect to the variables 
x and y are the functions / 1 (x, y) and fi(x, y) give n by 

/() 1
. f(x+h,y)-f(x,y) 

I X, y = Im --------- , 
h-+ 0 h 

f ( ) 
_ lirn /(x, y + k) - f(x, y) 

2 x, Y - k , 
k-+ 0 

provided the se lirrut s exist. 

Each of the two partial deriv ative s is the lirrut of a Newton quotient in one of the vari
ables. Observe that /1 (x, y) is ju st the ordinary first derivative of f (x, y) considered 
as a function of x only, reg arding y as a constant parameter. Sirrularly , h (x , y) is the 
first derivative of f (x , y) considered as a function of y alone, with x held fixed . 
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z 

a 

X 

EXAMPLE 1 If f(x , y) = x 2 sin y, then 

f 1 (x , y) = 2x sin y and h(x,y) =x 2cosy. 

The subscripts 1 and 2 in the notations for the partial derivatives refer to the first and 
second variables of f . For functions of one variable we use the notation f' for the 
derivative; the prime (' ) denotes differentiation with respect to the only variable on 
which f depends. For functions f of two variables, we use Ji or h to show the 
variable of differentiation . Do not confuse these subscripts with subscripts used for 
other purposes (e.g., to denote the components of vectors). 

The partial derivative !1 (a, b) measures the rate of change of f(x , y) with respect 
to x at x =awhile y is held fixed at b. In graphical terms, the surface z = f (x, y) 
intersects the vertical plane y = b in a curve. If we take horizontal and vertical lines 
through the point (0, b, 0) as coordinate axes in the plane y = b, then the curve has 
equation z = f(x, b) , and its slope atx = a is !1 (a, b). (See Figure 12.15.) Similarly, 
h(a, b) represents the rate of change off with respect toy at y = b with x held fixed 
at a. The surface z = f (x , y) intersects the vertical plane x = a in a curve z = f (a , y) 
whose slope at y =bis h (a, b). (See Figure 12.16.) 

z 

plane y = b 

plane x = a 

z =f(x ,y ) z = f( x, y) 

a 
y 

X 

Figure 12.15 !1 (a, b) is the slope of the curve of 
intersection of z = f (x, y) and the vertical plane y = b at 
x =a 

Figure 12.16 h(a , b) is the slope of the curve of 
intersection of z = f (x, y) and the vertical plane x = a at 
y =b 

Various notations can be used to denote the partial derivatives of z 
considered as functions of x and y : 

Notations for first partial derivatives 

az a 
ax = ax f(x, y) = ! 1 (x, y) = Dif (x, y) 

az a 
ay = ay f(x, y) = h(x, y) = D2f(x, y) 

f(x, y) 

The symbol a/ ax should be read as "partial with respect to x " so az/ ax is "partial 
z with respect to x ." The reason for distinguishing a (pronounced "die") from the d 
of ordinary derivatives of single-variable functions will be made clear later. Similar 
notations can be used to denote the values of partial derivatives at a particular point 
(a, b): 

y 
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BEWARE! Read the paragraph 
at the right carefully. It explains 
why, at least for the time being, 
we are using subscripts I and 2 
instead of subscripts x and y for 
the partial derivatives of 
f (x , y). Later on, and 
especially when we are 
discussing partial differential 
equations or dealing with 
vector-valued functions for 
which numerical subscripts 
normally represent components, 
we will prefer to use letter 
subscripts for partial derivatives. 

SECTION 12.3: Partial Derivatives 685 

Values of partial derivatives 

az I = (~ f(x , y)) I = !1 (a , b) = Dif(a, b) 
ax (a, b) ax (a ,b) 

a
az I = (

0

8 
f( x, y )) I = h(a, b) = D2f(a , b) 

Y (a,b) Y (a,b) 

Some authors prefer to u e fx, Dx f, or af/ax, and f y , Dy f, or aJ/ay, instead of 
!1 and h- However , this can lead to problems of ambiguity when compositions of 
functions arise . For instance, suppose f(x, y) = x 2y. What should fx(x 2, xy) mean ? 
By !1 (x2, xy) we clearly mean to evaluate the partial derivative off (u, v) = u2v with 
respect to its first variable u and evaluate the result at u = x 2 and v = xy: 

But does fx (x 2, xy) mean the same thing ? One could argue that 

In order to avoid such ambiguities we usually prefer to use !1 and h instead of fx and 
fy. (However, in some situations where no confusion is likely to occur we may still 
use the notations fx and f y , and also Dxf, Dyf, of/ox and 8f / 8y .) 

All the standard differentiation rule s for sums, products, reciprocals , and quotients 
continue to apply to parti al derivative s. 

EXAMPLE 2 Find oz/ox and 8z / 8y if z = x 3y 2 + x 4 y + y 4 . 

Solution az / ox = 3x 2y 2 + 4x 3y and az/ay = 2x 3y + x 4 + 4y3. 

EXAMPLE J Findfi(O,n)iff(x,y)=ex y cos(x+y). 

Solution J1 (x, y) = y exy cos(x + y) - exy sin(x + y), 

Ji (0, n) = n e0 cos(n) - e0 sin(n) = -n . 

The single-variable version of the Chain Rule also continues to apply to , say, f (g(x , y) ) , 
where f is a function of only one variable having derivative f': 

8
~ f (g(x, y) ) = ! ' (g(x, y)) 8 1 (x, y), :Y f (g(x, y) ) = J' (g(x, y)) g2(x, y). 

We will develop versions of the Chain Rule for more complicated compositions of 
multivariate functions in Section 12.5. 

EXAMPLE 4 If f is an everywhere differentiable function of one variable , show 
that z = f (x / y) satisfies the partial diff erential equation 

oz oz 
x-+y- =0 . 

ax ay 
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Solution By the (single-variable) Chain Rule, 

:; = !' (~) (~) and 

Hence, 

az az '(x)( 1 -x) X - + y - = j - X X - + y X - = 0. 
ax ay y y y2 

Definition 4 can be extended in the obvious way to cover functions of more than two 
variables. If f is a function of n variables x1, x2, . .. , x,,, then f has n first partial 
derivatives, ft (x1, x2, ... , x,,), h(x1, x2, . .. , x,,), ... , J,, (x1, x2, ... , x,,), one with 
respect to each variable . 

EXAMPLE 5 a ( 2xy ) 2xy ( - ---- = - -----c- X + y). 
az I +xz + yz (1 +xz + yz) 2 

Again, all the standard differentiation rules are applied to calculate partial derivatives. 

Remark If a single -variable function f(x) has a derivative f'(a) at x = a, then f is 
necessarily continuous at x = a. This property does not extend to partial derivatives. 
Even if all the first partial derivatives of a function of several variables exist at a point, 
the function may still fail to be continuous at that point. See Exercise 36 below. 

Tangent Planes and Normal Lines 
If the graph z = f (x, y) is a "smooth" surface near the point P with coordi nates 
(a , b, f (a, b) ), then that graph will have a tangent plane and a normal line at P. The 
normal line is the line through P that is perpendicular to the surface; for instance, a 
line joining a point on a sphere to the centre of the sphere is normal to the sphere . Any 
nonzero vector that is parallel to the normal line at P is called a normal vector to the 
surface at P . The tangent plane to the surface z = f(x, y) at Pis the plane through P 
that is perpendicular to the normal line at P . 

Let us assume that the surface z = f (x, y) has a nonvertical tangent plane (and 
therefore a nonhorizantal normal line) at point P. (Later in this chapter we will state 
precise conditions that guarantee that the graph of a function has a nonvertical tangent 
plane at a point.) The tangent plane intersects the vertical plane y = bin a straight line 
that is tangent at P to the curve of intersection of the surface z = f (x , y) and the plane 
y = b. (See Figures 12.15 and 12.17.) This line has slope ft (a, b), so it is parallel to 
the vector T 1 = i + ft (a , b )k . Similar ly, the tangent plane intersects the vertical plane 
x = a in a straight line having slope h(a, b). This line is therefore parallel to the 
vector T2 = j + h(a, b)k. It follows that the tangent plane, and therefore the surface 
z = f (x, y) itself, has normal vector 

n = T2 x T1 = I ~l· { h(:, b) I = !1 (a, b)i + h(a, b)j - k. 
0 f1(a,b) 

A normal vector to z = f(x , y) at (a, b, f (a, b)) is 

n = ! 1 (a, b)i + h(a, b)j - k. 
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Figure 12.17 The tangent plane and a 
norm al vector to z = f (x , y ) at 

P=(a , b, f(a , b)) 

SECTION 12.3: Partial Derivatives 687 

z 

tangent plane 

y 

X 

Since the tangent plane passes through P = (a, b, f (a, b)) , it has equation 

!1 (a, b)( x - a)+ h (a , b)( y - b) - (z - f(a , b)) = 0, 

or, equivalently, 

An equation of the tangent plane to z = f (x, y) at (a, b, f (a , b)) is 

z = J(a , b) + ft (a, b)(x - a)+ h(a, b)(y - b) . 

We shall obtain this result by a different method in Section 12.7. 

The normal line to z = f( x , y) at (a, b, f(a , b)) has direction vector fi(a , b)i + 
h(a , b)j - k and so has equations 

x-a y -b z -f(a , b) 

!1 (a , b) h(a , b) -1 

with suitable modifications if either !1 (a , b) = 0 or h (a , b) = 0. 

EXAMPLE 6 Find a normal vector and equations of the tangent plane and normal 
line to the graph z = sin(x y ) at the point where x = n: /3 and 

y = -1. 

Solution The point on the graph has coordinates (n: / 3, -1 , -.,/3 / 2). Now 

az 
- = y cos(xy) 
ax 

and 
az - = x cos(xy ) . 
ay 

At (n:/ 3, -1) we have Bz/ Bx = -1 / 2 and Bz/ ay = n:/ 6. Therefore , the surface has 
normal vector n = -(1 / 2)i + (n: / 6)j - k and tangent plane 

-.,/3 1 ( 7T:) 7T: 
Z = -- - - X - - + -(y + 1) 

2 2 3 6 ' 

or, more simply, 3x - n: y + 6z = 211: - 3.,/3. The normal line has equation 

7T: .,/3 
x- - y+l z +- 6x - 211: 6y +6 6z + 3.,/3 3 2 

-1 7T: or 
-1 -3 7T: -6 

2 6 
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Figure 12.18 

(a) If Q is the point on z = x2 - y2 
closest to P, then PQ is normal 
to the surface 

. 9 
(b) Equation -t = (1 _ 

2
t) 2 has 

only one real root , t = - 1 

EXAM p L E 7 What horizontal plane is tangent to the surface 

z = x2 
- 4xy - 2y2 + 12x - 12y - 1, 

and what is the point of tangency? 

Solution A plane is horizontal only if its equation is of the form z = k, that is, it is 
independent of x and y. Therefore, we must have az/a x = az/ay = 0 at the point of 
tangency. The equations 

az - = 2x - 4y + 12 = 0 
ax 
az 
- = -4x - 4y - 12 = 0 
ay 

have solution x = -4 , y = 1. For these values we have z = - 31, so the required 
tangent plane has equation z = -31 and the point of tangency is (-4 , 1, -31) . 

Distance from a Point to a Surface: A Geometric Example 

EXAMPLE 8 Find the distance from the point (3, 0, 0) to the hyperbolic paraboloid 
with equation z = x2 - y 2. 

Solution This is an optimization problem of a sort we will deal with in a more 
systematic way in the next chapter. However, such problems involving minimizing 
distances from points to surfaces can frequently be solved using geometric methods . 

If Q = (X, Y, Z) is the point on the surface z = x2 - y2 that is closest to 
P = (3, 0, 0), then the vector PQ = (X - 3)i + Yj + Zk must be normal to the surface 
at Q. (See Figure 12.18(a).) Using the partial derivatives of z = x2 - y2 , we know 
that the vector n = 2Xi - 2Yj - k is normal to the surface at Q. Thus, PQ must be 
parallel to n, and PQ = tn for some scalar t. Separated into components, this vector 
equation states that 

X - 3 = 2Xt, Y = -2Yt , and z = -t. 

The middle equation implies that either Y = 0 or t = -½. We must consider both of 
these possibilities . 

CASE I If Y = 0, then 

X 

3 
X=--

1 -2t 
and 

z 

(a) 

z = -t. 

2 

(b) 
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But Z = X 2 - Y2 , so we mu st have 

9 
-t----

- (l -2t) 2 ' 

This is a cubic equation int, so we might expect to have to solve it numerically , for 
instance , by using Newton 's Method. However , if we try small integer values oft , 
we will quickly discover that t = - l is a so lution . The graphs of both sides of the 
equation are shown in Figure 12 .18(b). Th ey show thatt = -1 is the only real solution. 
Calculating the corresponding val ues of X and Z, we obtain (1, 0, l) as a candidate for 

Q. The distance from this point to P is v'S. 
CASE II If t = -l / 2 , then X = 3/ 2, Z = 1/ 2, and Y = ±.JX 2 - Z = ±.J? / 2 , 
and the distance from the se points to P is ../ft / 2. 

Since¥ < 5, the points (3 / 2 , ±.J7 / 2 , 1/ 2) are the point s on z = x 2 - y 2 clo ses t 

to (3, 0, 0), and the di stance from (3, 0, 0) to the surfac e is ../ft / 2 units. 

EXE RC IS ES 12.3 
In Exercises 1-10, find all the first partial derivatives of the 
function specifi ed, and evaluate them at the given point. 

1. f (x , y) = X - y + 2, (3, 2) 

2. f(x ,y )=xy+x 2, (2,0) 

3. f(x ,y,z) =x 3y4z5, (0, - 1, - 1) 
xz 

4. g(x, y, z) = -- , (1, 1, 1) 
y + z 

5. Z = tan- I (~) , (-1 , 1) 

6. w = ln(l + exyz) , (2,0,-1) 

7. f (x, y) = sin(x.Jy), (~,4) 
1 

8. f(x, y) = ~· (-3, 4) 
vx2 + y2 

9. w = x(Y ln z) , (e, 2, e) 

X] -x} 
10. g(x1,x2 ,x3,x4) = --

2
, (3, 1, - 1, -2) 

X3 +x4 
In Exercises 11- 12, calculate the first partial derivatives of the 
given function s at (0, 0). You will have to use Definition 4. 

l 2x 3 - y3 
11. f (x , y ) = x2 + 3y2' if (x, y) f. (0, 0) 

0, if (x , y) = (0, 0). 

I x2 - 2y2 
12, f (x, y) = X - y , if X f. y 

0, if x = y. 

In Exercises 13-22, find equations of the tangent plane and 
normal line to the graph of the given function at the point with 
specified values of x and y . 

13. f(x, y) = x 2 - y2 at (-2 , 1) 
x - y 

14. f(x, y) = -- at (1, 1) 
x+y 

15. f(x , y) = cos(x /y ) at (n, 4) 

16. f (x, y) = exy at (2, 0) 
X 

17. f (x, y) = -
2
--

2 
at (1, 2) 

X + y 

2 
18. f(x ,y )=ye-x at(O , l) 

19. f( x, y) = ln(x 2 + y2) at (1, -2) 
2xy 

20. f (x , y) = -
2
--

2 
at (0 , 2) 

X + y 

21. f(x, y) = tan- 1(y / x) at (1, -1) 

22. f(x,y) = J 1 +x 3y2 at(2,i) 

23. Find the coordinates of all points on the surface with 
equation z = x4 

- 4xy3 + 6y2 - 2 where the surface has a 
horizontal tangent plane. 

24. Find all horizontal planes that are tangent to the surface with 

equation z = xye-Cx
2+i) l2. At what point s are they 

tangent ? 

In Exercises 25-31, show that the given function satisfies the 
given partial differential equation. 

az az 
E:3 25. Z = X eY, X - = -

ax ay 

E:326. 
az az 

x-+y-=0 
ax ay 

x+ y 
z =-- , 

x-y 

E:3 27. 
oz oz 

x-+y- = z 
ax oy 

z =Jx 2+y2, 

E:328. w = x 2 + yz, 
ow aw ow 

X - + y - + Z - = 2W 
ax oy oz 

E:3 29. 
1 

w-----
- x2 + y2 + 22' 

ow aw ow 
x-+y - + z - =- 2w 

ax ay az 

E:3 30. z = f (x2 + y 2), where f is any differenti able function of 
one variable , 

oz oz 
y- -x- =0. 

ax ay 

E:331. z = f(x 2 - y2), where f is any differ entia ble function of 
one variable , 

az az 
y- +x- =0. 

ax oy 

www.konkur.in



690 CHAPTER 12 Partial Differentiation 

32. Give a formal definition of the three first partial derivatives 
of the function f (x , y, z). 

37. Determine /1 (0, 0) and h(O , 0) if they exist, where 

33. What is an equation of the "tangent hyperplane" to the graph 

w = f (x, y, z) at ( a, b, c, f (a , b, c) )? !( ) _ { (x 3 + y) sin~, if (x, y) # (0, 0) 
X, y - X + y 

0, if(x ,y )=(O,O). 

D 34. Find the distance from the point (1, 1, 0) to the circular 
paraboloid with equation z = x2 + y2. 38. Calculate /1 (x, y) for the function in Exercise 37. Is 

!1 (x , y ) continuous at (0, O)? D 35. Find the distance from the point (0, 0, 1) to the elliptic 
paraboloid having equation z = x2 + 2y2 . 

D 39. Let J (x, y ) = f ;: ~ ~:, if (x , y ) # (0, 0) 

{ 

2xy . 
D 36. Let f(x , y) = x2 + y2' ~ (x , y) # (0, 0) 

0, 1f(x , y)=(O , O). 
l 0, 1f(x , y) = (0,0). 

Note that f is not continuous at (0, 0). (See Example 3 of 
Section 12.2.) Therefore, its graph is not smooth there. 
Show, however, that Ji (0, 0) and h(O , 0) both exist. Hence, 
the existence of partial derivatives does not imply that a 
function of several variables is continuous. This is in 
contrast to the single-variable case. 

Calculate /1 (x, y) and h( x, y) at all points (x, y) in the 
plane. Is f continuous at (0, O)? Are /1 and h continuous at 
(0, O)? 

I xy2z 
D 40. Letf( x,y, z)= x4 + y4 + z4' if(x , y , z)~(0,0,0) 

0, if (x, y , z) - (0, 0, 0) . 

Find /1 (0, 0, 0), h(O, 0, 0), and /3(0 , 0, 0). Is f continuous 
at (0, 0, O)? Are /1, h, and h continuous at (0, 0, O)? 

• 
Higher-Order Derivatives 

-----
Partial derivatives of second and higher orders are calculated by taking partial deriva
tives of already calculated partial derivatives. The order in which the differentiations 
are performed is indicated in the notations used. If z = f( x, y), we can calculate four 
partial derivatives of second order, namely, two pure second partial derivatives with 
respect to x or y, 

a2z a az 
ax2 = ax ax = fn(X, y) = fxx(X, y), 

a2z a az 
ay2 = ay ay = h2(x, y) = Jyy(x, y), 

and two mixed second partial derivatives with respect to x and y, 

a2z a az 
axay = ax ay = h1(X, y) = fyx(X, y), 

a2z a az -- = - - = f12(x, y) = fxy(x, y). 
ayax ay ax 

Again , we remark that the notations !11, !12, h1, and !22 are usually preferable to f xx, 
f xy, f yx , and Jyy, although the latter are often used in partial differential equations. 
Note that !12 indicates differentiation off first with respect to its first variable and then 
with respect to its second variable ; h1 indicates the opposite order of differentiation . 
The subscript closest to f indicates which differentiation occurs first. 

Similarly , if w = f(x, y , z), then 

a5w a a a a aw 
x ay2az = By ax By ay a°i = h2212(x , Y, z) = f zyyxy(x, y, z). 
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EXAMPLE 1 Find the four seco nd partial derivatives off (x, y) = x 3 y4. 

Solution 

!1 (x , y) = 3x 2y4, 
a 2 4 4 f11(x ,y ) = -(3x y ) = 6xy , 

ax 
a 

JJ2(x , y ) = ay (3x 2y4) = l2 x 2y3, 

h( x, y) = 4x 3y3, 
a 

h1 (x, y ) = ax (4x 3y3) = 12x2y3, 
a 

h 2(x, y ) = -(4 x 3y3) = 12x3y2. 
ay 

EXAMPLE 2 Calculate f223(x , y, z), f232(x, y, z), and h22(x, y, z) for the 
function J( x, y, z) = ex-2y+3z. 

Solution 
a O O X 2y+3z f223(x ,y,z ) = - - -e -
oz By By 

= ~ !_ (- 2ex-2y+3z ) 
az ay 

= :Z (4ex-2y+3z) = l2e x-2 y+3z, 

0 0 0 X 2y+3z f232(x,y,z ) = - - -e -
ay az By 

= !_ ~ (- 2ex-2y+3z ) 
By oz 

= :y (-6e x-2 y+3z) = 12 ex-2y+3 z, 

a a a x 2 +3 h22(x,y,z) = - - -e - Y z 
ay ay oz 

= !_ !_ (3ex- 2y+3z) 
ay ay 

= !_ (-6e x-2y+3z ) = 12 ex-2y+3 z . 
By 

In both of the examples above observe that the mixed partial derivatives taken with 
respect to the same variables but in different orders turned out to be equal. This is not 
a coincidence. It will always occur for sufficiently smooth functions . In particular , 
the mixed partial derivatives involved are required to be con tinuous . The following 
theorem present s a more precise statement of this important phenomenon. 

Equality of mixed partials 

Suppo se that two mixed nth-order partial derivative s of a function f involve the same 
differentiation s but in different orders . If those partials are continuou s at a point P, 
and if f and all partial s off of order less than n are continuous in a neighbourhood of 
P, then the two mixed partials are equal at the point P . 

PROOF We shall prove only a repre sentative special case, showing the equality of 
JJ2(a, b) and h1 (a, b) for a function f of two variables, provided !12 and h1 are 
defined and Ji, h, and fare continuous throughout a disk of positive radius centred 
at (a, b), and !12 and h 1 are continuous at (a , b). Leth and k have sufficiently small 
absolute values that the point (a+ h, b + k) lies in this disk . Then so do all points of 
the rectangle with sides parallel to the coordinate axes and diagonally opposite corners 
at (a, b) and (a+ h, b + k). (See Figure 12.19.) 
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(a,b r (o+h~, 
(a,b) (a+h,b) 

Figure 12. 19 A rectangle contained in the 
disk where f and certain partials are 
continuous 

BEWARE! The Mean-Value 
Theorem is used four times in 
this proof, each time to write a 
difference of the form 
g(p + m) - g(p) in the form 
g' (c)m , where c is some number 
between p and p + m . It is 
convenient to write c in the form 
p + 0m , where 0 is some 
number between O and 1. 

i 

Let Q = f(a + h, b + k) - f(a + h , b) - f(a , b + k) + f (a , b) and define 
single-variable functions u (x) and v (y) by 

u(x) = f (x , b + k) - f( x, b) and v(y) = f(a + h , y) - f (a , y). 

Evidently , Q = u(a+h)-u(a) and also Q = v(b+k)-v(b) . Bythe(single-variable) 
Mean-Value Theorem, there exists a number 01 satisfying O < 01 < 1 (so that a + 01 h 
lies between a and a + h) such that 

Q = u(a +h)-u(a) = h u' (a +01h) = h [!1 (a +01h, b+k)- !1 (a +01h, b)]. 

Now we apply the Mean-Value Theorem again, this time to !1 considered as a function 
of its second vari able, and obtain another number 02 satisfying O < 02 < 1 such that 

Thus , Q = hk f12(a + 01h , b + 02k). Two similar applications of the Mean-Value 

Theorem to Q = v(b + k) - v (b) lead to Q = hk h1 (a+ 03h , b +04k) , where 03 and 
04 are two numbers each between O and 1. Equating these two expressions for Q and 
cancelling the common fact or hk , we obtain 

Since !12 and h1 are continuou s at (a , b), we can Jeth and k approach zero to obtain 
f!2(a, b) = hi (a , b) , as requir ed. 

Exercise 16 below develops an example of a function for which !12 and h1 exist but 

are not continuous at (0 , 0), and for which f!2(0 , 0) =/. hi (0, 0). 

Remark Partial Derivatives in Maple When you use the Maple function diff to 
calculate a deriv ative , you mu st include the name of the variable of differentiation . For 
example, di ff ( x" 2 +y" 3 , x) gives the result 2x. It doesn ' t matter that the function 
being differentiated depends on more than one variable since you are telling Maple to 
differentiate with respect to x . If you wanted the derivative with respect toy, you would 

input diff (x"2+y"3 , y) and the output would be 3y2. In this context, there is no 
di stinction between ordinary and partial derivatives. There is, however, a difference 
when you want to apply a differential operator to a function f. If f is a function of 
one variable, you can denote its derivative f ' in Maple by D ( f ) . For example, 

> f : = x - > sin(2*x) ; fprime : = D(f) ; 

f := x---+ sin(2 x ) 

fprime := x---+ 2 cos(2x) 

The input fprime (Pi/6 ) will now give the output 1, as expected . 

If f is a function of two (or more) variables, then D ( f ) no longer makes sense; do 
we mean !1 or h? We distinguish the two (or more) first partials by using subscripts 
with D. 

> f : = (x , y) -> exp ( 3*y)*sin(2*x) ; 

f := (x, y )---+ eC3y) * sin(2 x ) 

> fone . - D[l) (f) ; ftwo : = D[2) (f) ; 

f one:= (x , y)---+ 2e(3Y) * cos(2x) 

ftwo := (x , y )---+ 3e(3Y) * sin(2x) 

Higher-order partials are denoted with multiple subscripts (within one set of square 
brackets). 
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> D[l ,1, 2] (f) (Pi / 4 , 0) ; 

-12 

You don't need to worry about the order of the subscripts in a mixed partial. Maple 
assumes the partials are continuous , even if it doesn ' t know what the function is. Even 
if g has not been assigned any meaning during the current Maple session, the input 
D[l , 2] (g) (x,y)-0[2,l] (g) (x , y); producestheoutputO . 

The Laplace and Wave Equations 
Many important and interesting phenomena are modelled by function s of several vari
ables that satisfy certain partial differential equations. In the following examples we 
encounter two particular partial differential equations that arise frequently in mathemat
ics and the physical sciences. Exercise s 17- 19 below introduce another such equation 
with important applications . 

EXAM p LE 3 Show that for any real number k the functions 

z = ekx cos(k y) and z = /x sin(ky) 

satisfy the partial differenti al equation 

82z 82z 
-+-=0 
ax 2 ay 2 

at every point in the xy -plane. 

Solution For z = ekx cos(ky) we have 

az kx - = k e cos(k y), 
ax 

a2z 
ax2 = k2 /x cos(ky), 

Thus , 

az k . - = -k e x srn(ky), 
ay 

a2z - = -k 2 ekx cos(ky) . 
ay2 

a2z a2z - + - = k2 ekx cos(ky) - k 2 /x cos(k y) = 0. 
ax 2 ay 2 

The calculation for z = ekx sin(k y) is similar. 

Remark The partial differential equation in the above example is called the (two
dimensional) Laplace equation . A function of two variables having continuous second 
partial derivatives in a region of the plane is said to be harmonic there if it satisfies 
Laplace 's equation. Such functions play a critical role in the theory of differentiable 
functions of a complex variable (see Appendix II) and are used to model various physical 
quantitie s such as steady-state temperature distribution s, fluid flows, and electric and 
magnetic potential fields. Harmonic functions have many interesting propertie s. They 
have derivatives of all orders, and they are analytic ; that is, they are the sums of their 
(multivariable) Taylor series. Moreover , a harmonic function can achieve maximum 
and minimum values only on the boundary of its domain . Laplace 's equation, and 
therefore harmonic function s, can be considered in any number of dimensions. (See 
Exercises 13 and 14 below.) 

EXAMPLE 4 If f and g are any twice-differentiable functions of one variable , 
show that 

w = f (x - ct)+ g(x + ct) 

satisfies the partial differential equation 

a2w a2w -- =c 2 __ 
at2 ax 2 . 
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Figure 12.20 w = f (x - ct) represents a 
waveform moving to the right with speed c 

EXE RC IS ES 12.4 

Solution Using the Chain Rule for functions of one variable , we obtain 

aw '( '( - = -cf X - ct)+ Cg X + ct) , at 
a2w 
- 2- = c2 J " (x - ct)+ c2 g"(x + ct), at 

aw I / - = f (x - ct) + g (x + ct), ax 
a2 w 
- 2 = J"(x - ct)+ g"(x + ct). ax 

Thus , w satisfies the given differential equation. 

Remark The partial differential equation in the above example is called the ( one
dimensional) wave equation . 1ft measures time, then f(x -ct) represents a waveform 
travelling to the right along the x -axis with speed c. (See Figure 12.20.) Similarly , 
g(x + ct) represents a waveform travelling to the left with speed c . Unlike the 
solutions of Laplace's equation that must be infinitely differentiable, solutions of the 
wave equation need only have enough derivatives to satisfy the differential equation. 
The functions f and g are otherwise arbitrary. 

w 

time t = 0 

X 

time I= 1 

C X 

timet =2 

2c X 

In Exercises 1-6, find all the second partial derivatives of the 
given function. 

9. f(x , y) = 3x2y - y 3 in the whole plane (Can you think of 
another polynomial of degree 3 in x and y that is also 
harmonic ?) 

1. z = x2cl + y2) 

3. w = x3y3z3 

S. z = x eY - y ex 

6. J(x,y)=ln(l+sin(xy)) 

2. f (x, y ) = x 2 + y2 

4. z = J3x2 + y2 

7. How many mixed partial derivatives of order 3 can a function 
of three variables have? If they are all continuous, how many 
different values can they have at one point? Find the mixed 
partials of order 3 for / (x, y , z) = x exy cos(x z) that involve 
two differentiations with respect to z and one with respect 
to X. 

Show that the functions in Exercises 8-12 are harmonic in the 
plane regions indicated . 

8. f(x , y) = A(x 2 - y 2) + Bx y in the whole plane (A and B 
are constants .) 

10. 

11. 

X 
f(x, y) = - 2-- 2 

everywhere except at the origin 
X + y 

f(x, y) = ln(x2 + y2) everywhere except at the origin 

12. tan- 1 (y / x) except at points on the y-axis 

E:313. Show that w = e3x+4y sin(Sz) is harmonic in all of R3, that 
is, it satisfies everywhere the 3-dimensional Laplace equation 

E:314. Assume that f (x , y) is harmonic in the xy-plane. Show that 
each of the functions z f (x, y ) , x f (y, z), and y f (z, x) is 
harmonic in the whole of R3. What condition should the 
constants a, b, and c satisfy to ensure that f (ax+ by, cz) is 
harmonic in R3? 
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E:315. Let the functions u(x, y) and v(x , y) have continuous second 
partial derivatives and satisfy the Cauchy-Riemann 
equations 

au av 
and 

ax ay 

av 

ax 

au 

ay 

Show that u and v are both harmonic. 

I 2xy(x 2 - y2) 

D 16. Let F(x , y) = x2 + y2 , if (x, Y) f. (0, 0) 

0, if (x , y) = (0, 0) 

Calculate F1 (x, y) , F2(x, y), FJ2(x , y), and F21 (x, y ) at 
points (x, y) f. (0, 0). Also calculate these derivatives at 
(0, 0). Observe that F21 (0, 0) = 2 and F12(0, 0) = -2 . 
Does this result contradict Theorem 1? Explain why. 

The heat (diffusion) equation 

E:317. Show that the function u(x, t) = t-J /Z e-x
2

/ 4r satisfies the 
partial differential equation 

This equation is called the one-dimensional heat 
equation because it models heat diffusion in an insulated 
rod (with u(x, t) representing the temperature at position x at 
time t) and other similar phenomena. 

E:318. Show that the function u(x , y , t) = t- 1 e-<x
2+i) /4r satisfies 

the two-dimensional heat equation 

au a2u a2u 
---+-
at - ax 2 ay2 . 
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E:319. By comparing the results of Exercises 17 and 18, guess a 
solution to the three-dimensional heat equation 

Verify your guess. (If you 're feeling lazy, use Maple.) 

Biharmonic functions 

A function u (x, y ) with continuous partial s of fourth order is 
a2u a2u 

biharmonic if - 2 + - 2 is a harmonic function. 
ax ay 

E:3 20. Show that u(x, y) is biharmonic if and only if it satisfies the 
biharmonic equation 

21. Verify that u(x, y) = x 4 - 3x2y2 is biharmonic . 

22. Show that if u(x , y ) is harmonic, then v(x, y ) = xu (x, y ) 
and w (x, y ) = y u(x, y) are biharmonic. 

Use the re ult of Exercise 22 to show that the functions in 
Exercises 23-25 are biharmonic. 

23. 

25. 

x ex siny 
xy 

x2 + y2 

24. y ln(x2 + y2) 

E:3 26. Propose a definition of a biharmonic function of three 
variables , and prove results analogous to those of Exerci ses 
20 and 22 for biharmonic functions u(x , y, z). 

i 27. Use Maple to verify directly that the function of Exercise 25 
is biharmonic. 

• 
The Chain Rule 

-----
The Chain Rule for functions of one variable is a formula that gives the derivative of a 
composition f(g(x)) of two functions f and g: 

:x J(g(x)) = J ' (g(x))g ' (x). 

The situation for several variables is more complicated . If f depends on more than one 
variable, and any of those variables can be functions of one or more other variables, 
we cannot expect a simple formula for partial derivatives of the composition to cover 
all possible cases. We must come to think of the Chain Rule as a procedure for 
differentiating compositions rather than as a formula for their derivatives. In order to 
motivate a formulation of the Chain Rule for functions of two variables , we begin with 
a concrete example. 

EXAM p LE 1 Suppose you are hiking in a mountainous region for which you 
have a map . Let (x , y) be the coordinates of your position on 

the map (i.e., the horizontal coordinates of your actual position in the region). Let 
z = f (x, y) denote the height of land (above sea level , say) at position (x, y). Suppose 
you are walking along a trail so that your position at time t is given by x = u(t) and 
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y = v (t). (These are parametric equations of the trail on the map.) At time t your 
altitude above sea level is given by the composite function 

z = f(u(t) , v(t)) = g(t) , 

a function of only one variable. How fast is your altitude changing with respect to time 
at time t? 

Solution The answer is the derivative of g(t): 

1 . g(t+h)-g(t) . f(u(t+h) , v(t+h))-f(u(t),v(t)) 
g (t) = hm -- --- = hm -------------

h-*O h h-* 0 h 

. f(u(t + h), v(t + h)) - f(u(t) , v(t + h)) = hm ----------------'-
h-* O h 

. J(u(t), v(t + h)) - f(u(t) , v(t)) + hm --'-----'----'--------'---. 
h-* O h 

We added O to the numerator of the Newton quotient in a creative way so as to separate 
the quotient into the sum of two quotients , in the first of which the difference of values 
off involves only the first variable off, and in the second of which the difference 
involves only the second variable off. The single-variable Chain Rule suggests that 
the sum of the two limits above is 

g ' (t) = .fi (u(t), v(t))u'(t) + h(u(t), v(t))v'(t). 

d 
The above formula is the Chain Rule for - f (u(t) , v(t) ). In terms of Leibniz notation 

dt 
we have 

A version of the Chain Rule 

If z is a function of x and y with continuous first partial derivatives, and if x 
and y are differentiable functions of t , then 

dz az dx az dy 
-=--+--. 
dt ax dt ay dt 

Note that there are two terms in the expression for dz / dt (or g ' (t)) , one arising from 
each variable of f that depends on t. 

Now consider a function f of two variables, x and y , each of which is in tum a 
function of two other variables, s and t: 

z = f(x , y), where x = u(s, t) and y = v(s, t). 

We can form the composite function 

z = f(u(s, t), v(s, t)) = g(s , t). 

For instance , if f(x, y) = x 2 + 3y, where u(s, t) = st 2 and v(s, t) = s - t , then 
g(s, t) = s2t4 + 3(s - t) . 

Let us assume that f, u, and v have first partial derivatives with respect to their 
respective variables and that those of f are continuous. Then g has first partial 
derivatives given by 

gi (s , t) = J, (u(s, t) , v(s, t) )u1 (s, t) + h(u(s , t), v(s, t) )v 1 (s, t), 

g2(s , t) = J, (u(s, t) , v(s , t))u2(s , t) + h(u(s , t), v(s, t))v2(s , t). 

These formulas can be expressed more simply using Leibniz notation: 
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Another version of the Chain Rule 

If z is a function of x and y with continuous first partial derivatives, and if x 
and y depend on s and t, then 

az az ax az ay 
-=--+-- , 
as ax as ay as 
az az ax az ay 
-=--+-- . 
at ax at ay at 

This can be deduced from the version obtained in Example 1 by allowing u and v there 
to depend on two variables, but holding one of them fixed while we differentiate with 
respect to the other. A more formal proof of this simple but representative case of the 
Chain Rule will be given in the next section . 

The two equations in the box above can be combined into a single matrix equation: 

( 

ax 

az ) as 
ay ay 

as 

ax) at 
ay . 

at 

We will comment on the significance of this matrix form at the end of the next section. 

In general, if z is a function of several "primary " variables , and each of these 
depends on some "secondary" variables, then the partial derivative of z with respect to 
one of the secondary variables will have several terms, one for the contribution to the 
derivative arising from each of the primary variables on which z depends. 

Remark Note the significance of the various subscripts denoting partial derivatives 
in the functional form of the Chain Rule: 

g1 (s, t) = /1 (u(s , t), v( s, t))u1 (s , t) + h(u(s , t), v(s, t))v1 (s , t). 

The "l" in g1 (s , t) refers to differentiation with respect to s , the first variable on which 
g depends. By contrast , the "l" in /1 (u(s, t), v (s , t)) refers to differentiation with 
respect to x , the first variable on which f depends. (This derivative is then evaluated 
atx=u(s , t), y=v(s , t).) 

EXAMPLE 2 
1 

If z = sin(x 2y), where x = st 2 and y = s2 +-,find az/ as and 
t 

az / at 

(a) by direct substitution and the single -variable form of the Chain Rule, and 

(b) by using the (two-variable) Chain Rule. 

Solution 
(a) By direct substitution: 

z = sin ( (st 2)2(s 2 + i)) = sin(s 4
t
4 + s2t3

) , 

: ; = (4s 3t4 + 2st 3
) cos(s 4 t4 + s2t3

), 

az = (4s4t3 + 3s2t2) cos(s 4 t4 + s2t3). 
at 
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(b) Using the Chain Rule: 

az az ax az ay 
-= -- + -
as ax as ay as 

= (2xy cos(x 2y))t 2 + (x 2 cos(x 2y))2s 

= ( 2st
2 

(s
2 + i) t2 + 2s

3
t
4

) cos(s
4
t
4 + s2

t
3

) 

= (4s3t4 + 2st 3
) cos(s 4 t4 + s2 t3

), 

az az ax az ay 
- =- - +-
at ax at ay at 

= (2xycos(x 2y))2st + (x 2 cos(x 2y )) ( ~2

1
) 

= ( 2st2cs 2 + i )2st + s2
t
4 

( ~2

1
)) cos(s 4 t4 + s 2

t3) 

= (4s4t3 + 3s2t 2
) cos(s 4 t4 + s2 t 3

). 

Note that we still had to use direct substitution on the derivatives obtained in (b) in 
order to show that the values were the same as those obtained in (a). 

EXAMPLE 3 
a a 

Find - f(x 2y , x + 2y) and - f(x 2y, x + 2y) in terms of the 
ax ay 

partial derivatives off, assuming that these partial derivatives are 
continuous. 

Solution We have 

a 2 ? a2 2 a 
- f(x y, x + 2y) = !1 (x- y, x + 2y)-(x y) + h(x y, x + 2y)-( x + 2y) 
fu fu fu 

= 2xyf i (x 2y, x + 2y) + h(x 2y , x + 2y ), 

a a a 
- f(x 2y , x + 2y) = ! 1 (x 2y, x + 2y )-(x 2y ) + fz(x 2y, x + 2y) - (x + 2y) 
~ ~ ~ 

EXAMPLE 4 

= x 2 ! 1 (x 2y , x + 2y) + 2fz( x 2y, x + 2y ). 

Express the partia l derivatives of z = h(s , t) = f (g(s, t)) in terms 
of the derivative f' off and the partial derivatives of g. 

Solution The partial derivatives of h can be calculated using the single-variable 
version of the Chain Rule: if x = g(s, t), then z = f(x) and 

az d z ax I 

h1 (s , t) = as = dx as = f (g(s , t))g1 (s, t), 

az dz ax I 

h2(s, t) =at= dx at = f (g(s , t)) g2(s, t) . 

The following example involves a hybrid application of the Chain Rule to a function 
that depends both directly and indirectly on the variable of differentiation . 

EXAMPLE 5 Find d z/ dt , where z = f(x , y, t), x = g(t), and y = h(t) . 
(Assume that f, g, and hall have continuous derivatives.) 

Solution Since z depends on t through each of the three variables of f, there will be 
three terms in the appropriate Chain Rule: 

d z az dx az dy az 
- =--+--+
dt ax dt ay dt at 

= fi(x , y, t)g'(t) + fz(x, y, t)h ' (t) + h(x , y, t). 
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Remark In the above example we can easily distinguish between the meanings of 
the symbols d z/ dt and az/a t. If, however, we had been dealing with the situation 

z = f(x, y, s, t) , where x = g(s, t) and y = h( s, t) , 

then the meaning of the symbol az/a t would be unclear ; it could refer to the simple 
partial derivative off with respect to its fourth primary variable (i.e., f4(x, y, s, t)), 
or it could refer to the derivative of the composite function f(g(s, t), h(s , t) , s, t). 
Three of the four primary variables of f depend on t and, therefore , contribute to the 
rate of change of z with respect to t. The partial derivative f4 (x , y, s, t) denotes the 
contribution of only one of these three variables. It is conventional to use az / a t to 
denote the whole derivative of the composite function with respect to the secondary 
variable t: 

az a - = - f(g(s , t), h( s, t), s , t) 
at at 

= !1 (x, y, s , t) g2(s, t) + h(x, y, s, t)h2(s, t) + f4(x, y, s, t). 

When it is necessary, we can denote the contribution coming from the primary variable 
t by 

(
az ) a - = - f (x , y, s, t) = f4(x, y, s, t). 
a t x ,y ,s at 

Here, the subscripts denote those primary variables off being held.fix ed, that is, whose 
contributions to the rate of change of z with respect to t are being ignored. Of course , 
in the situation described above, (az/a t) 5 means the same as az / at . 

In applications, the variables that contribute to a particular partial derivative will 
usually be clear from the context. The following example contains such an application. 
This is an example of a procedure called differentiation following the motion. 

EXAM p LE 6 Atmospheric temperature depends on position and time. If we 
denote position by three spatial coordinates x, y, and z (measured 

in kilometres) and time by t (measured in hours), then the temperature T °C is a 
function of four variables, T(x, y, z, t) . 

(a) If a thermometer is attached to a weather balloon that moves through the atmo
sphere on a path with parametric equations x = f (t) , y = g(t), and z = h(t), what 
is the rate of change at time t of the temperature T recorded by the thermometer ? 

(b) Find the rate of change of the recorded temperature at time t = l if 

xy 
T(x, y, z, t) = --(1 + t), 

l+ z 

and if the balloon moves along the curve 

X = t, y = 2t, z =t-t 2. 

Solution 
(a) Here, the rate of change of the thermometer reading depends on the change in 

position of the thermometer as well as increasing time. Thus, none of the four 
variables of T can be ignored in the differentiation. The rate is given by 

dT a r dx a r dy ar dz a T 
- = -- + -- + -- + - . 
dt ax dt ay dt az dt at 

The term a T /a t refers only to the rate of change of the temperature with respect 
to time at a fixed position in the atmosphere. The other three terms arise from the 
motion of the balloon. 
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Figure 12.21 Chart showing the 
dependence of T on t in Example 6 
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Figure 12.22 Dependence chart for 
Example 7 

(b) The values of the three coordinates and their derivatives at t = 1 are x = 1, y = 2, 
z = 0, dx / dt = 1, dy/d t = 2, and d z/ dt = -1. Also, at t = 1, 

a T y 
- = --(1 +t) =4 , 
ax 1 + z 

a T - xy (1 + t) - -4 
az (1 + z) 2 - ' 

ar x 
- = --(1 + t) = 2, 
ay 1 + z 

a T = ____::2'._ = 2_ 
at 1 + z 

Thus, 

dT I - = (4)(1) + (2)(2) + (-4)(-1) + 2 = 14. 
dt t= l 

The recorded temperature is increa sing at a rate of 14 °C/h at time t = 1. 

The discussion and examples above show that the Chain Rule for functions of severa l 
variables can take different forms depending on the numbers of variables of the various 
function s being composed. As an aid in determining the correct form of the Chain 
Rule in a given situation you can construct a chart showing which variables depend on 
which . Figure 12.21 shows such a chart for the temperature function of Example 6. 
The Chain Rule for dT / dt involv es a term for every route from T tot in the chart. The 

a T dx 
route from T through x to t produce s the term - - and so on . 

ax dt 

EXAM p LE 7 Write the appro priate version of the Chain Rule for az/ax, where 
z depend s on u, v, and r; u and v depend on x, y, and r ; and r 

depend s on x and y . 

Solution The appropriate chart is shown in Figur e 12.22. There are five routes from 
z to x: 

az az au az au ar az av az av ar az ar 
-=-- +---+--+---+ -- . 
ax au ax au ar ax av ax avarax ar ax 

Homogeneous Functions 
A function f (xi, . .. , Xn) is said to be positively homogeneous of degree k if, for 
every point (x1, x2, ... , Xn) in its domain and every real number t > 0, we have 

J(txi, tx 2, ... , txn) = l f (xi, ... , Xn). 

For examp le, 

f(x, y) = x2 + xy - y2 

f(x , y) = Jx2 + y2 

2xy 
f(x, y) = 2 + 2 

X y 

x - y + Sz 
f(x,y,z)= 

2 yz - z 

f(x ,y) = x 2 +y 

is positively homogeneous of degree 2, 

is positively homog eneou s of degre e 1, 

is positively homo geneous of degre e 0 , 

is positively homo geneous of degree -1 , 

is not positively homogeneous . 

Observe that a positively homogeneous function of degree O remains constant along 
rays from the origin. More generally, along such ray s a positively homogeneou s 
function of degree k grows or decay s proportion ally to the kth power of distance from 
the origin. 

www.konkur.in



X y 

f 

I 

X 

THEOREM 

I 

y 

Figure 12.23 Chart showing the 
dependence of f on x and y through the 
primary variables u and v in Example 8 

SECTION 12.5: The Chain Rule 70 1 

Euler's Theorem 

If f (xi , ... , Xn) has continuous first partial derivatives and is positively homogeneous 
of degree k, then 

n 

Lx;f;(x,, .. . ,xn) = kf(x,, . .. ,xn) . 
i=l 

PROOF Differentiate the equation f (tx 1, tx 2, . . . , txn) = ck f (x, , . .. , Xn) with re
spect tot to get 

x, /1 (tx,, ... , txn) + x2h(t x 1, ... , tx 11) + .. . + x,ifn(tx1, ... , tx 11) 

=kt k-l f(xr , ... , x,,) . 

Now substitute t = l to get the desired result. 

Note that Exercises 26-29 in Section 12.3 illustrate this theorem. 

Higher-Order Derivatives 
Applications of the Chain Rule to higher-order derivatives can become quite compli
cated . It is important to keep in mind at each stage which variable s are independent of 
one another. 

EXAMPLE 8 

continuous. 

Calculate _!!___ f (x 2 - y2 , x y ) in term s of partial derivatives of 
axay 

the function f. Assume that the second-order partial s of f are 

Solution In this problem symbols for the primary variables on which f depends are 
not stated explicitly. Let them be u and v . (See Figure 12.23 .) The problem therefore 
asks us to find 

a2 
--f(u , v) , 
ax ay 

where u = x 2 - y 2 and v = x y . 

First differentiate with respect to y: 

a 
- f(u, v) = -2yfi (u , v) + xfz (u, v ) . 
ay 

Now differentiate this result with respect to x. Note that the second term on the right 
is a product of two functions of x, so we need to use the Product Rule: 

a2 
-- f(u , v) = - 2y (2 x f11 (u, v ) + yf!2(u , v)) 
ax ay 

+ h(u , v) + x (2x h 1 (u , v) + Yh2 (u , v)) 

=h(u, v) -4x yf11(u , v) + 2(x 2 
- y2)J12(u , v) + xy fz 2(u, v). 

In the last step we have used the fact that the mixed partials off are continuous, so we 
could equate !12 and ht . 

Review the above calculation very carefully and make sure you understand what is 
being done at each step . Note that all the derivatives of f that appear are evaluated at 
(u, v) = (x 2 - y 2, xy ) , not at (x , y ) , because x and y are not themselves the primary 
variables on which f depends. 

www.konkur.in



702 CHAPTER 12 Partial Differenti ation 

Remark The kind of calculation done in the above example (and the following ones) 
is easily carried out by a computer algebra system. In Maple: 

> g : = (x , y) -> f(xA2 - yA2 , x*y) : 

simplify(D[l , 2] (g) (x , y)) ; 

-4yD1,1 (f)(x 2 - y2, xy)x - 2 * D1,2(f)(x 2 - y2, xy)y2 

+ 2D1,2(f )(x 2 - y2, xy)x 2 

+ xD2 ,2U)(x 2 - y2, xy)y + D2(f)(x 2 - y2, xy) 

which , on close inspection, is the same answer we calculated in the example. 

EXAMPLE 9 If f (x , y) is harmonic , show that f (x 2 - y 2, 2x y) is also harmonic. 

Solution Let u = x 2 - y2 and v = 2xy . If z = f(u, v), then 

az 
- = 2xf1 (u, v) + 2yh(u, v), ax 
az - = -2 yf , (u, v) + 2xh(u, v), 
ay 

a2z 
- 2 = 2fi(u, v) + 2x(2xf11(u , v) + 2yf!2(u, v)) ax 

+ 2y(2xh 1 (u, v) + 2yh2(u , v)) 

= 2f1 (u , v) + 4x 2!11 (u, v) + 8xyf12(u, v) + 4y2 h2(u , v), 

a2z 
- 2 = -2!1 (u, v) - 2y(-2yf11 (u , v) + 2xfn(u , v)) 
ay 

+ 2x(-2yh, (u, v) + 2xh2( u , v) ) 

= -2f1 (u, v) + 4y2 f 11 (u, v) - 8xyfn(u , v) + 4x 2 h2(u, v ). 

Therefore, 

a2z a2z 
- 2 + - 2 = 4( x 2 + i )(f11 (u, v) + h2( u , v)) = 0 ax ay 

because f is harmonic. Thus, z = f(x 2 - y2, 2xy) is a harmonic function of x and y. 

In the folJowing example we show that the two-dimensional Laplace differential 
equation (see Example 3 in Section 12.4) takes the form 

a2z l az 1 a2z 
-+-- + --=0 
ar2 r ar r2 ae 2 

when stated for a function z expressed in terms of polar coordinates r and 0. 

EXAMPLE 10 (Laplace'sequationinpolarcoordinates) If z = J( x,y )ha s 
continuous partial derivatives of second order, and if x = r cos 0 

and y = r sin 0, show that 
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Solution It is possible to do this in two different ways; we can start with either 
side and use the Chain Rule to show that it is equal to the other side. Here , we will 
calculate the partial derivatives with respect to r and 0 that appear on the left side 
and express them in terms of partial derivatives with respect to x and y. The other 
approach, involving expressing partial derivatives with respect to x and y in terms of 
partial derivatives with respect to r and 0, is a little more difficult. (See Exercise 24 
at the end of this section .) However , we would have to do it that way if we were not 
given the form of the differential equation in polar coordinates and had to find it. 

First, note that 

ax 
- = cos 0, 
ar 

Thus, 

ax 
- = -rsin0 
ae ' 

By . 0 - = sin , 
ar 

az az ax az ay az . az - = - - + - - = cos0 - + sm 0 - . 
ar ax ar ay ar ax ay 

ay 
- = rcos0 . 
ae 

Now differentiate with respect to r again. Remember that r and 0 are independent 
variables, so the factors cos 0 and sin 0 can be regarded as constants. However , az/ ax 
and Bz/By depend on x and y and , therefore, on rand 0. 

a2z a az . a az - = cos0 - - + sm 0 - -
ar2 ar ax ar ay 

( 
a

2
z B

2
z ) ( a

2
z a

2
z ) = cos0 cos0 - 2 + sin0 -- + sin0 cos0 -- + sin0 - 2 ax ayax axay ay 

a2z a2z a2z = cos2 0 -
2 

+ 2 cos 0 sin 0 -- + sin2 0 - 2 . 
ax axay ay 

We have used the equality of mixed partial s in the last line. Similarly , 

az . az az - = -r sm0 - + r cos0 -. 
ae ax ay 

When we differentiate a second time with respect to 0, we can regard r as constant, but 
each term above is still a product of two functions that depend on 0. Thus, 

a2z ( az . a az ) ( . az a az) - = - r cos 0 - + sm 0 - - + r - sm 0 - + cos 0 - -
a02 ax ae ax ay ae ay 

az ( a2z a
2
z ) = - r - - r sin 0 - r sin 0 - + r cos 0 --

Br ax2 ayax 

( a2z a2z) + r cos0 -r sin0 -- + r cos0 -
2 axay ay 

az ( a2z a2z a2z ) = - r - + r2 sin2 0 - - 2 sin 0 cos 0 -- + cos2 0 - . 
ar ax2 axay ay2 

Combining these results, we obtain the desired formula : 
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EXE R C I SES 12.5 
In Exercises 1--4, write appropriate versions of the Chain Rule for 
the indicated derivatives. 

1. 8w /8 t if w = J(x, y, z), where x = g(s , t) , y = h( s, t) , 
and z = k(s , t) 

2. 8w /8 t if w = f(x, y, z), where x = g(s), y = h(s, t) , and 
z = k(t) 

3. 8z / 8u if z = g(x, y), where y = f(x) and x = h(u , v) 

4. dw / dt if w = f(x, y) , x = g( r, s) , y = h (r, t) , r = k(s , t) , 
and s= m(t) 

5. If w = f (x, y , z) , where x = g(y, z) and y = h( z) , state 

appropriate versions of the Chain Rule for dw , ( a w ) , 

and ( a w ) . d z az x 

az x ,y 

6. Use two different methods to calculate 8u / 8t if 
u = J x 2 + y2, x = est , and y = 1 + s2 cos I. 

7. Use two different methods to calculate 8z/8 x if 
z = tan- 1(u/ v), u = 2x + y, and v = 3x -y. 

8. Use two methods to calculate d z/ dt given that z = txy2, 
x = t + ln(y + 12) , and y = e1

• 

In Exercises 9-12, find the indicated derivatives, assuming that 
the function f (x, y) has continuous first partial derivatives. 

a 
9. - f(2x, 3y) 

ax 

a 
10. - f (2y, 3x) 

ax 

a 
11. - J( /, x 2

) 
ax 

12. :y t(yf(x , t) , f(y,t)) 

13. Suppose that the temperature T in a certain liquid varies with 
depth z and time I according to the formula T = e- 1 z. Find 
the rate of change of temperature with respect to time at a 
point that is moving through the liquid so that at time t its 
depth is f(t) . What is this rate if f(t) = e1? What is 
happenin g in this case? 

14. Suppose the strength E of an electric field in space varies 
with position (x, y, z) and time t according to the formula 
E = f (x, y , z, t). Find the rate of change with respect to 
time of the electric field strength measured by an instrument 
moving along the helix x = sin t , y = cost, z = t . 

In Exercises 15-2 0, assume that f has continuous partial 
derivatives of all orders. 

15. If z = f (x, y) , where x = 2s + 3t and y = 3s - 2t, find 

16. 

17. 

18. 

19. 

(a) (b) and (c) 

If f(x , y) is harmonic, show that f ( ~, 
2
-y 

2
) is 

X +y X +y 
also harmonic. 

a2 
If x = t sins and y = tcoss , find -- f( x, y ). 

as at 
a3 

Find --
2 

f (2x + 3 y, x y) in terms of partial derivatives of 
ax ay 

the function f. 
a2 

Find -- J(y2 , xy, - x2
) in terms of partial derivatives of 

ay ax 
the function f. 

a3 
20. Find - 2- f (s2 - t , s + 12) in terms of partial derivatives 

at as 
of the function f. 

21. Suppose that u(x , y) and v(x, y ) have continuous second 
partial derivatives and satisfy the Cauchy- Riemann equations 

au av 

ax ay 
and 

av 

ax 

au 

ay 

Suppose also that f(u , v) is a harmonic function of u and v. 

Show that f ( u (x, y) , v (x, y) ) is a harmonic function of x 

and y . Hint: u and v are harmonic functions by Exercise 15 
in Section 12.4. 

22. If r 2 = x2 + y2 + z2
, verify that u(x , y, z) = 1/ r is 

harmonic throughout JR3 except at the origin . 

D 23. If x = es cost, y = es sint, and z = u(x, y ) = v(s, t), show 
that 

D 24. (Converting Laplace's equation to polar coordinates) 
The transformation to polar coord inates, x = r cos 0, 
y = r sin 0 , implies that r 2 = x 2 + y2 and tan0 = y / x. Use 
these equations to show that 

ar 
- = cos0 
ax 
80 sin 0 

ax r 

ar . 
- =sm0 
8y 

80 cos 0 

ay r 

a2u a2u 
Use these formulas to help you express -

2 
+ -

2 
in terms 

ax ay 
of partials of u with respect to r and 0, and hence reprove the 
formula for the Laplace differential equation in polar 
coordinates given in Example 10. 

25. If u (x, y) = r 2 In r, where r 2 = x2 + y2, verify that u is a 
biharmonic function by showing that 

( 
a 2 a 2 ) (a2u a2u) - +- -+- -0 

ax 2 8y2 ax 2 8y2 - . 

26. If f (x, y ) is positively homogeneou s of degree k and has 
contin uous partial derivatives of second order, show that 

x 2! 11 (x , y) + 2xyf 12(x, y) + y2 h2(x, y ) 

= k(k - l)f (x , y). 

D 27. Generalize the result of Exercise 26 to functions of n 
variables. 

D 28. Generalize the results of Exercises 26 and 27 to expressions 
involving mth-order partial derivatives of the function f. 

Exerci ses 29-30 revisit Exercise I 6 of Section 12.4. Let 

I 2xy(x 2 - y2) 
F(x , y)= xZ+yz , if( x,y) #(O , O) 

0, if(x ,y ) = (0, 0). 
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29. (a) Show that F(x, y) = -F(y, x) for all (x, y). 

(b) Show that F1 (x, y) = -F2(y, x) and 

E::3 34. Show that the initial-value problem for the one-dimensional 
wave equation 

F!2(x, y) = -F21 (y, x) for (x, y) f=. (0, 0). 

(c) Show that F1 (O, y) = -2y for ally and, hence , that 
F!2(0,0) = -2. 

(d) Deduce that F2(x, 0) = 2x and F21 (0, 0) = 2. I U11(X, t) = c2 Uxx(X, t) 
u(x, 0) = p(x) 
U1(X, 0) = q(x) 

30. (a) Use Exercise 29(b) to find F!2(x, x) for x f=. 0. 

(b) Is F!2(x, y) continuous at (0, O)? Why? has the solution 

E::3 31. Use the change of variables ,; = x + ct, 17 = x to transform 
the partial differential equation J [ J 1 l x+ct u(x ,t)=- p(x-ct)+p(x+ ct) +- q(s)ds. 

au au 
at= c ax' (c = constant), 

into the simpler equation ov / 017 = 0, where 
v(,;, 17) = v(x + ct , x) = u(x, t). This equation says that 
v(,;, 17) does not depend on 17, so v = f (,;) for some arbitrary 
differentiable function f. What is the corresponding 
"general solution" u(x, t) of the original partial differential 
equation? 

2 2c x- ct 

(Note that we have used subscripts x and t instead of 1 and 2 
to denote the partial derivatives here . This is common usage 
in dealing with partial differential equations.) 

E::3 32. Having considered Exercise 31, guess a "general solution" 
w (r, s) of the second-order partial differential equation 

Remark The initial-value problem in Exercise 34 gives the 
small lateral displacement u (x , t) at position x at time t of a 
vibrating string held under tension along the x-axis. The function 
p(x) gives the initial displacement at position x, that is, the 
displacement at time t = 0. Similarly, q(x) gives the initial 
velocity at position x. Observe that the position at time t depends 
only on values of these initial data at points no further than ct 
units away. This is consistent with the previous observation that 
the solutions of the wave equation represent waves travelling 
with speed c. 

a2 
-- w(r, s) = 0. 
oros 

Your answer should involve two arbitrary functions. 

E::3 33. Use the change of variables r = x +ct, s = x - ct, 

y 

w(r, s) = u(x, t) to transform the one-dimensional wave 
equation 

Redo the examples and exercises listed in Exercises 35-40 
using Maple to do the calculatio ns. 

a2 u 2 a2 u 
8f2 =C fJx2 

to a simpler form. Now use the result of Exercise 32 to find 
the general solution of this wave equation in the form given 
in Example 4 in Section 12.4. 

i 35. Example 10 

i 37. Exercise 19 

i 39. Exercise 23 

i 36. Exercise 16 

i 38. Exercise 20 

i 40. Exercise 34 

Linear Approximations, Differentiability, and Differentials 

a X X 

As observed in Section 4.9, the tangent line to the graph y = f(x) at x = a provides 
a convenient approximation for values of f(x) for x near a (see Figure 12.24): 

f(x) ~ L(x) = f(a) + J'(a)(x - a) . 

Here , L(x) is the linearization off at a; its graph is the tangent line to y = f (x) there . 
The mere existence off ' (a) is sufficient to guarantee that the error in the approximation 
(the vertical distance between the curve and tangent at x) is small compared with the 
distance h = x - a between a and x, that is, 

Figure 12.24 The linearization of f at 

x=a 
. f(a + h) - L(a + h) . f (a+ h) - f(a) - f'(a)h 

lim -------- = lim -----------
h->O h h->0 h 

= lim f(a + h) - f(a) - J'(a) 
h->0 h 

= J'(a) - J'(a) = 0. 

Similarly, the tangent plane to the graph of z = f(x , y) at (a, b) is z = L(x, y), where 

L(x, y) = f(a, b) + !1 (a, b)(x - a)+ h(a, b)(y - b) 
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I 

is the linearization off at (a, b) . We can use L(x , y) to approximate values of f(x, y) 
near (a, b): 

f( x, y ) ~ L( x, y ) = f(a , b) + !1 (a, b)(x - a)+ h(a , b)(y - b). 

EXAMPLE 1 Find an approximate value for f (x, y) = .J2x 2 + e2Y at (2.2, -0.2). 

Solution It is convenient to use the linearization at (2, 0) , where the values off and 
its partials are easily evaluated: 

2x 
J, (x, y) = .J2x 2 + e2Y 

e2Y 

h(x, y) = .J2x2 + e2Y, 

f(2, 0) = 3, 

4 
ft(2, 0) = 3' 

1 
h(2, 0) = 3· 

4 1 
Thus , L(x , y) = 3 + 3(x - 2) + 3(y - 0), and 

4 1 
f (2.2, -0 .2) ~ L(2 .2, - 0.2) = 3 + 3 (2.2 - 2) + 3 (-0.2 - 0) = 3.2. 

(For the sake of comparison, f (2.2, -0 .2) ~ 3.2172 to 4 decimal places.) 

Unlike the single-variable case, the mere existence of the partial derivatives /1 (a, b) 
and h(a, b) does not even imply that f is continuous at (a, b) , let alone that the error 

in the linearization is small compared with the distance J (x - a )2 + (y - b )2 between 
(a, b) and (x, y). We adopt this latter condition as our definition of what it means for 
a function of two variables to be differentiable at a point. 

We say that the function f(x, y) is differentiable at the point (a, b) if 

. f(a + h , b + k) - f(a, b) - h J, (a, b) - kh(a, b) 
hm -----------;===-------- = 0. 

(h,k)->(0,0) ,Jti2 + k2 

This definition and the following theorems can be generalized to functions of any 
number of variables in the obvious way. For the sake of simplicity, we state them for 
the two-variable case only. 

The function f(x, y) is differentiable at the point (a, b) if and only if the surface 
z = f(x, y) has a nonverti cal tangent plane at (a , b). This implies that J, (a, b) and 
h(a, b) must exist and that f must be continuous at (a , b). (Recall, however, that the 
existence of the partial derivatives does not even imply that f is conti nuous, Jet alone 
differentiable.) In particu lar, the function is continuous wherever it is differentiable. 
We will prove a two-variable version of the Mean-Value Theorem and use it to show 
that functions are differentiable wherever they have continuous first partial derivatives . 

A Mean-Value Theorem 

If /1 (x, y) and h(x, y) are continuous in a neig hbourhood of the point (a, b), and if 
the absolute values of h and k are sufficiently small, then there exist numbers 01 and 
02, each between O and 1, such that 

f(a + h , b + k) - f(a, b) = hf, (a+ 01h, b + k) + kh(a , b + 02k). 
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PROOF The proof of this theorem is very similar to that of Theorem 1 in Section 12.4, 
so we give only a sketch here. The reader can fill in the details. Write 

f(a+h, b+k)- f(a, b) = (f(a+h , b+k)- f(a, b+k))+(f(a , b+k) - f(a , b)) , 

and then apply the single-variable Mean-Value Theorem separately to f (x, b + k) on 
the interval between a and a+ h, and to f (a , y ) on the interval between band b + k 
to get the desired result. 

If /1 and h are continuous in a neighbourhood of the point (a, b ) , then f is differen
tiable at (a, b ) . 

PROOF Using Theorem 3 and the facts that 

and 
I 

k I < 1, 
,J1i2 + k2 -

we estimate 

I
f (a+ h, b + k) - f (a , b) - hf, (a , b) - kh (a, b) I 

-Jh 2 + k2 

=I h (J,(a+01h , b+k)- f 1(a, b)) 
.Jh 2 + k2 

+ k ( h (a, b + 02k) - h (a, b)) I 
.Jh 2 + k2 

.::: 111 ca+ e, h, b + k) - 1i ca, b)I + lh<a , b + 02k) - h <a, b)I. 

Since / 1 and h are continuous at (a, b) , each of these latter terms approache s Oas h 
and k approach 0. This is what we needed to prove. 

We illustrate differentiability with an example where we can calculate directly the error 
in the tangent plane approximation. 

EXAMPLE 2 Calculate f( x + h , y + k) - f (x, y) - fi( x, y) h - h(x, y)k if 
f( x, y ) = x3 + xy2 . 

Solution Since fi( x, y ) = 3x 2 + y2 and h (x, y ) = 2xy, we have 

J(x + h , y + k) - J(x , y ) - Ji (x, y )h - h (x, y) k 

= (x + h) 3 + (x + h)( y + k) 2 - x 3 - xy2 - (3x2 + y2) h - 2xyk 

= 3x h2 + h3 + 2y hk + hk 2 + x k2. 

Observe that the result above is a polynomial in h and k with no term of degree less 
than 2 in these variables. Therefore , this difference approaches zero like the square of 
the distance -lh 2 + k2 from (x , y) to (x +h , y +k) as (h , k) -+ (0, 0) , so the condition 
for differentiability is certainly satisfied : 

3xh 2 + h3 + 2yhk + hk 2 + x k2 
Jim -----;:::==,------ - 0 

(h,k)->( 0,0) ,J 1i2 + k2 - . 

This quadratic behaviour is the case for any function f with continuou s second partial 
derivatives. (See Exercise 23 below.) 

Proof of the Chain Rule 
We are now able to give a formal statement and proof of a simple but representative 
case of the Chain Rule for multivariate functions. 
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A Chain Rule 

Let z = f(x, y), where x = u(s, t) and y = v(s, t) . Suppose that 

(i) u(a, b) = p and v(a, b) = q, 

(ii) the first partial derivatives of u and v exist at the point (a , b ), and 

(iii) f is differentiable at the point (p , q). 

Then z = w(s , t) = f(u(s , t) , v(s, t)) has first partial derivatives with respect to sand 
tat (a, b), and 

w 1 (a, b) = Ji (p, q)u1 (a , b) + h(p , q)v1 (a , b), 

w2(a,b) = f 1(p ,q)u2(a,b) + h(p , q)v2(a , b) . 

That is, 

az az ax az ay -=--+-
as ax as ay as 

and 
az az ax az ay -=--+--. 
ar ax at ay at 

PROOF Define a function E of two variables as follows: E(O, 0) = 0, and if (h, k) =/
(0, 0) , then 

E(h, k) = f(p + h, q + k) - f(p, q) - hf1 (p , q) - kf2(p, q). 

J h2 + k2 

Ob serve that E(h, k) is continuous at (0, 0) because f is differentiable at (p, q). Now , 

f(p + h, q + k) - f(p, q) = hf1 (p, q) + kf2(p, q) + J h2 + k2 E(h, k). 

In thi s formula put h = u(a + CJ, b) - u(a , b) and k = v(a + CJ, b) -v (a , b) and divide 
by CJ to obtain 

w(a + CJ, b) - w(a , b) f(u(a + CJ, b), v(a + CJ, b)) - f(u(a , b) , v(a, b)) 

CJ CJ 
f(p + h, q + k) - f(p , q) 

CJ 

= ft (p , q) ~ + h(P , q) ~ + J (~ )2 

+ (~ )2 E(h, k). 

We want to Jet CJ approach O in this formula. Note that 

. h . u(a+CJ , b)-u(a , b) ( 
hm - = hm ------- = u, a,b), 
a~o CJ a~ o CJ 

and , similarly , lima~ o(k / CJ) = v 1 (a, b ). Since (h, k) -+ (0, 0) if CJ -+ 0, we have 

W t (a, b) = ft (p, q)u 1 (a , b) + h(P, q)vi (a , b) . 

The proof for w2 is similar. 

Differentials 
If the first partial derivative s of a function z = f (xi , ... , x,,) exist at a point , we may 
construct a differential d z or df of the function at that point in a manner similar to 
that used for functions of one variable: 

az az az 
dz =df = -dx1 +-dx2 + ··· + -d x,, 

axi ax2 ax,, 

= !1 (x 1 , . .. , Xn) dx l + · · · + fn (x 1 , ... , Xn) dx11 . 
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Here , the differential dz is considered to be a function of the 2n independent variables 
x , , x2, ... , Xn, dxi, dx2, ... , dxn . 

For a differentiable function f, the differential df is an approximation to the 
change b..f in value of the function given by 

b..f = J(x, + dxi, ... , Xn + dxn) - f( xi, ... , Xn). 

The error in this approximation is small compared with the distance between the two 
points in the dom ain off ; that is, 

b..f-df 
--;::======== -+ 0 if all dxi -+ 0, 
J( dx1) 2 + · · · + (dxn) 2 

(1 S i Sn). 

In this sense , differential s are just another way of lookin g at lineari zation. 

EXAMPLE 3 Estimate the percentage change in the period T = 27r: i of a 

simple pendulum if the length, L , of the pendulum increases by 
2% and the acce leration of grav ity, g, decrea ses by 0.6 %. 

Solution We calculate the differenti al of T: 

ar ar 
dT = -dL+-d g aL a8 

27r: 27r:../i 
= 2./Lg dL - 2g 3/2 dg . 

2 6 
We are given that dL = 

100 
Land dg = - l ,OOO g. Thus, 

1 /L ( 6 ) 27r: fl 13 
dT = 100 l7r: {"i - -1 ,000 2 V g = l ,000 T . 

Therefore, the period T of the pendulum increases by 1.3%. 

Functions from n-Space tom-Space 
(This is an optional topic.) A vector f = (f,, h, ... , !,n) of m functions, eac h 
dependin g on n varia bles (x, , x2, . .. , Xn), define s a transformation (i.e., a function ) 
from JRn to JRm; specifically, if x = (x 1, x2, ... , x11) is a point in JR", and 

YI = Ji (xi, x2, ... , Xn) 

Y2 = h(x,, x2, ... , Xn) 

Ym = fm(Xt , X2, . .. , X11), 

then y = (YJ, Y2, .. . , Ym) is the point in ]Rm that corresponds to x under the 
transformation f . We can write these equations mor e compactly as 

y = f(x). 

Information about the rate of change of y with respect to x is contained in the various 
partial derivatives 8yifB x;, (1 Si S m, 1 S j Sn), and is conveniently organized 
into an m x n matrix , Df(x), called the Jacobian matrix of the transformation f : 
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ay1 ay i ay1 

ax1 ax2 ax,, 
ay2 ay2 ay2 

Df(x) = ax i ax2 ax,, 

aym ajm aym 
ax 1 ax2 ax,, 

If the partial derivatives in the Jacobian matrix are continuous, we say that f is differ
entiable at x. In this case the linear transformation (see Section 10.7) represented by 
the Jacobian matrix is called the derivative of the transformation f. 

Remark We can regard the scalar-valued function of two variables, f(x, y) say, as 
a transformation from JR.2 to R Its derivative is then the linear transformation with 
matrix 

Df(x , y) = (!, (x , y) , h(x, y)). 

It is not our purpose to enter into a study of such vector-valued functions of a vector 
variable at this point, but we can observe here that the Jacobian matrix of the compo
sition of two such transformations is the matrix product of their Jacobian matrices. 

To see this, let y = f(x) be a transformation from JR" to ]Rm as described above, 
and let z = g(y) be another such transformation from ]Rm to JR.k given by 

z 1 =g1( Y1, Y2, . . . , ym) 

z2 = g2(Y1, Y2, ... , Ym) 

Zk = 8k(Y1, Y2, · · · , Ym) , 

which has the k x m Jacobian matrix 

az 1 az , az1 
- -
ay1 ay2 aym 
az2 az2 az2 
- -

Dg(y) = ay, ay2 aym 

azk azk azk 
- -

ay i ay2 aym 

Then the composition z =go f(x) = g(f(x)) given by 

ZI = 8 1 (/1 (x, , . .. , x,,) , . . . , fm(x ,, . .. , Xn)) 

Z2 = g2(/1 (x, , . . . , x,,) , . .. , fm( x , , .. . , x,,)) 

has, according to the Chain Rule, the k x n Jacobian matrix 

az1 az1 az, az , az , az , ay, aYI ay1 
- -

ax1 ax2 axn ay , ay2 aym ax1 ax2 ax,, 
az2 az2 az2 az2 az2 az2 ay2 ay2 ay2 

- -
ax1 ax2 axn ay1 ay2 aym ax , ax2 ax,, 

azk azk azk azk azk azk aj m aym aym 
- - --

ax , ax2 ax/! ay, ay2 aym ax , ax2 ax,, 
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This is, in fact, the Chain Rule for compo sition s of transformations : 

D (g o f)(x) = Dg(f (x)) Df (x) , 

and exactly mimics the one-variable Chain Rule D( g o f)(x) = Dg(J( x ))Df(x). 

The transformation y = f(x) also defines a vector dy of differentials of the variable s 
Yi in terms of the vector dx of differential s of the variables XJ. Writing dy and dx as 
column vector s we have 

ay1 ay , ay1 

Cl) ax1 ax2 ax/I 

C) dyz 
ay2 8y2 8y2 

dxz 

dy = d; m = 
OX] oxz OXn : = Df (x)dx. 

aym oym oym dxn 

ax1 axz ax,, 

EXAMPLE 4 Find the Jacobian matrix Df(l , 0) for the transformation from JR2 

to JR3 given by 

f(x , y) = (xeY + cos(1ry) , x 2 , x - eY) 

and use it to find an approximate value for f ( l.02 , 0.01 ) . 

Solution Df( x, y) is the 3 x 2 matrix whose jth row consi sts of the partial derivatives 
of the jth component off with respect to x and y. Thu s, 

(

eY xeY -1r sin(1ry)) I (1 
Df(l , O) = 2x O = 2 

1 - eY (1,0) 1 
~)-

-1 

Since f(l , 0) = (2, 1, 0) and dx = (~:~~),we have 

df ~ Df(l , O)dx ~ 0 1) (0 .02) (0 .03 ) 0 O 01 = 0.04 . 
-1 . 0.01 

Therefore, f(l.02 , 0.01) ~ (2 .03 , 1.04 , 0.01). 

For transformations between space s of the same dimension (say from JR11 to JR11
), the 

correspondin g Jacobian matrices are square and have determinant s. The se Jacobian 
determinants will play an important role in our consideration of implicit function s and 
inverse functions in Section 12.8 and in changes of variable s in multiple integrals in 
Chapter 14. 

Maple 's VectorCalculus package has a function Jacobian that takes two inputs , a 
list ( or vector) of expressions and a list of variables, and produce s the Jacobian matrix of 
the partial derivatives of those expressions with respect to the variables. For example , 

> with(VectorCalculus) : 

> Jacobian([x*y*exp(z) , (x+2*y)*cos(z)], [x , y , z]) ; 

[ 
yeZ 

cos( z) 

x ez 
2cos( z) 

xyez ] 
-( x + 2y ) sin( z) 

VectorCalculus has only been included since Maple 8. If you have an earlier relea se 
use linalg instead , and the function jacobian. 
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0 Differentials in Applications 
Differentials are sometimes used as an alternative representation for differentiable 
functions. This is particularly so in the field of thermodynamics. In thermodynamics, 
physical states of thermodynamic equilibrium are expressed mathematically in terms 
of the existence of a function, 

E = E(S , V, Ni, .. . , N11) , 

where Eis internal energy, Sis entropy, Vis volume, and the N; are numbers of atoms 
or molecules of type i. 

These quantities are interpreted physically, but they are just independent variables 
in a function to which normal mathematical rules apply. Discussion of the physical 
meaning of a quantity like entropy, for example, is largely beyond the scope of this 
book. (One might remark that entropy is a logarithmic measure of the number of 
underlying physical states that appear indistinguishable on human scales, but such a 
description is completely unnecessary for this discussion.) E(S, V, N 1, ••• , N11) is 
known as a function of state. Any explicit equation relating thermodynamic variables 
is also known as an equation of state. 

Thermodynamics allows for any number of such variables to define the state. There 
can be others than those indicated for different physical systems. All such variables 
are additive in that, for example , the energy of two physical systems together is simply 
the sum of the energies of each system. The same is true for volume, entropy, and 
number. These additive variables are called extensive variables. In thermodynamics 
they are referred to as state variables or as state functions. That is because any one of 
the other variables can be expressed as a function of £ and the remaining variables. 
For example , S = S(E, V, N1, .. . , N11) . 

Differentials appear in thermodynamics as the normal way to express the existence 
of a state function . In writing 

aE aE aE aE 
dE = -dS+-dV +-dN1 + .. ·+-dN 

as a v aN, 0N11 
11

' 

we are saying that E depends on the variables whose differentials appear on the right 
side of the equation. In fact, everything is so effectively done with differentials that 
often no explicit function E is needed or even known . 

Historically the differential was also meant to convey an intuitive sense of change 
in time, even though mathematically it is simply the differential of a function. In 
fact this historical interpretation can be quite confusing , because, paradoxically, the 
existence of the function of state, and its differential, means the physical system is in 
thermodynamic equilibrium, which can be described as a time-independent condition 
of a physical system. If it were not in (timeless) thermodynamic equilibrium , there 
would be no state function and no corresponding differentials. The resolution of the 
paradox is to stick to the mathematic s, remembering that the differential only depicts 
a change in the values of variables and not any external process. 

So, for example, the state equation has nothing to do with whether some process is 
slow or not. Differentials in this case , do not suggest a physical process any more than 
the differential of any other function does . The differential only expresses the content 
of the function, so it has nothing to do with the physical processes that cause changes, 
or with whether any change is carried out slowly (reversible processes) or not. 

The partial derivatives that appear in the differential form of the state equation 

1 h I. . h . l. . aE . T aE . p a so ave exp 1c1t p ys1ca mterpretat10ns: a S 1s temperature , - a V 1s pressure , 

aE 
and the quantities -- are known as chemical pot entials,µ; . These partial derivatives 

aN; 
represent slopes on the graph of the function of state, and as such they are not additive . 
It makes no sense, for example, to add temperatures. Physically, these slopes define 
a condition rather than an amount. These non-additive quantities are called intensive 
variables . 
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With these definition s substituted, the differential form of the equation of state 
becomes , 

dE = T dS - P dV + µ, dN1 + · · · + µn dNn, 

which is known as the Gibbs equation. However , despit e the specia l treatment, this ex
pression remains simply the differential of E(S , V, N i , ... , Nn)- The Gibbs equatio n 
is a fund amental startin g point in many thermodynamical problems. 

Another related , and well-known, equation of differentials is the Gibbs-Duhem 
equation , 

0 = S dT - V d P + NI d µ I + · · · + N 11 d µ 11 

Thi s remarkable equation indicates that the intensi ve varia bles of thermodynamics are 
not independent of each other. It hold s because the addit ivity of the exte nsive variables 
implies thatth e function of state, E = E(S , V, N1 , ... , N11) , is homogeneous of degree 
l. (See Exerci se 24.) 

0 Differentials and Legendre Transformations 
It is often usefu l to shift the dependence of a function on one or more of its independent 
variables to dependenc e on, instead , the derivativ es of the function with respect to these 
variables. Consider , for exa mple, the function y = f (x), and denote its derivative by 
p; that is, p = f'(x). If we let u = px - f(x) , and calculate the differential of u , 
treating x and p as independent variables, we obtain 

du = p dx + x dp - J' (x) dx = p dx + x dp - p dx = x dp. 

Since there is no dx term remainin g in this differential, u does not depend explicitly 
on x, but only on p. Let us therefore define f*(p) = u = p x - f(x). f* (p) is ca lled 
the Legend.re tran sformation of f(x) with respect to x , and the two variables x and p 
are said to be conjugate to one another. Ob erve that 

f(x) + f*( p ) = px, 

and the symmetr y of this equation indicates that f must also be the Legend.re trans
formation off *; f ** = f . In fact , takin g the parti al derivatives of the eq uation with 
respect to x and p we obtain the symmetric relationships 

J'(x) = p and (f *)' (p) = x 

from which it is apparent that f ' and (! *)' are inverse functions; 

! ' (U *)' (p)) = P, (f*) ' (f'(x)) = X. 

Remark The above definition of f* clearly shows the symmetry in its relationship 
with f. An alternative transformation, - f*(p) (i.e., the function f( x ) - px) shifts 
dependence betwe en a variable and the derivativ e of the function just as effectively , 
although it does not share this symmetry . In some fields, particularly thermodynamics , 
this alternative is known as the Legendre transformation instead. 

EXAMPLE 5 Calculate the Legend.re transformation f * (p) of the function 
f(x) = ex. 

Solution Here p = f' (x) = ex, so x = In p. Ther efore, 

f*( p) = px - f(x) = plnp - p. 
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EXERCISES 12.6 

For functions of severa l variables, Legendre tran sformations can be taken with 
respect to one or more of the independent variable s. If u = f(x, y), p = J1 (x, y) and 
q = h(x, y), and if w = px + qy - u , then 

dw = p dx + x dp + q dy + y dq - !1 (x, y) dx - h(x, y) dy = x dp + y dq 

and w doe s not depend explicitly on x or y, but only on p and q . We can call w(p, q) 
(or -w(p, q) if we are doin g thermodynamics) the Lege ndre transformation off (x , y) 
with respect to x and y, and treat both {x, p} and {y, q} as conjugate pairs of variables. 
Observe that 

!1 (x, y) = p 

h(x, y) = q 
and 

w1(p,q)=x 

w2(p , q) = y. 

Returning to thermodynamic s, the Gibbs equation tell s us that E depends on S, 
aE 

V, and N;. Since T = - , T and Sare conjugate and we can express ene rgy in term s as 
of temperature rather than entropy by using an (alternative) Legendre transformation . 
Let F = E - TS. Then 

dF = dE - S dT - T dS = -Sd T - P dV + µ1 dN1 + · · · + Jtn dN n . 

Thus , F = F(T, V, N i, . . . , Nn)- F , is known as the Helmholtz free energy, which is 
called a thermodynamic potential. It can be mor e practical to use F, which depend s 
exp licitly on T, rather than E when an experiment is run at constant temperature. 

Legend re transformatio ns can be done in term s of any or all of the conjugat e 
pairs. In the case of the Helmholt z free energy , only the conjugates T and S are used. 
Other specific Legendre transformations lead to other thermodynamic pot entials . For 
exa mple , the Gibbs free energy, G = E -TS + P V, is widely used in chemistry, where 
processes normally take place at constant temperature and press ure. (See Exercise 30 
below.) 

Legendre transformations are very important in other areas of classical and mod
ern physics. Histor ically they appear in cla ssical mechanic s, where the functional 
expression of the energy, known as the Hamiltonian , is expressed in terms of Legendre 
tran sformation s of a function lrnown as the Lagrangian. (See Exercise 32 for a problem 
developing this relationship .) These notion s extend to modern phy sics which is often 
cast in terms of Lagra ngians. 

In Exercises 1-6, use suitable linearizations to find approximate 
values for the given functions at the points indicated. 

8. g(s , t) = s2/ t, g(2. l , 1.9) 

9. F( x, y, z) = )x 2 + y + 2 + z2 , F(0.7, 2.6, 1.7) 
1. f(x ,y )=x 2y3at(3 .l , 0.9) 

2. f(x, y) = tan- 1 
(~) at (3.01, 2.99) 

3. f(x, y) = sin(irxy + In y) at (0.01, 1.05) 
24 

4. f(x, y) = 2 2 at (2.1, 1.8) 
X +xy + y 

5. f(x, y, z) = Jx + 2y + 3z at (1.9, 1.8, 1.1) 

6. f (x , y) = x ey+x
2 

at (2.05, -3.92) 

In Exercises 7-10 write the differential of the given function and 
use it to estimate the value of the function at the given point by 
starting with a known value at a nearby point. 

7. z = x 2 e3
Y, at x = 3.05, y = - 0.02 

10. u = x sin(x + y), 
7C l 7C l 

at X = - + - y = - - -
2 20' 2 30 

11. The edges of a rectangular box are each measured to within 
an accuracy of I % of their values. What is the approximate 
maximum percentage error in 

(a) the calculated volume of the box, 

(b) the calculated area of one of the faces of the box, and 

(c) the calculated length of a diagonal of the box? 

gg 12. The radius and height of a right-circular conical tank are 
measured to be 25 ft and 21 ft, respectively. Each 
measurement is accurate to within 0.5 in. By about how 
much can the calculated volume of the tank be in error? 
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gg 13. By approximately how much can the calculated area of the 
conical surface of the tank in Exercise 12 be in error? 

gg 14. Two sides and the contained angle of a triangular plot of land 
are measured to be 224 m, 158 m, and 64°, respectively. The 
length measurements were accurate to within 0.4 m and the 
angle measurement to within 2° . What is the approximate 
maximum percentage error if the area of the plot is 
calculated from these measurements? 

gg 15. The angle of elevation of the top of a tower is measured at 
two points A and B on the ground in the same direction from 
the base of the tower. The angles are 50° at A and 35° at B, 
each measured to within 1 ° . The distance AB is measured to 
be 100 m with error at most 0.1 %. What is the calculated 
height of the building, and by about how much can it be in 
error? To which of the three measurements is the calculated 
height most sensitive? 

gg 16. By approximately what percentage will the value of x2y3 
w = -

4
- increase or decrease if x increases by 1 %, y 

z 
increases by 2%, and z increases by 3%? 

17. Find the Jacobian matrix for the transformation 
f(r , 0) = (x, y), where 

x = r cos 0 and y = r sin 0 . 

(Although (r, 0) can be regarded as polar coo rdinat es in 
the xy-plane, they are Cartesian coordinates in their own 
r0 -plane .) 

18. Find the Jacobian matrix for the transformation 
f(R , </>, 0) = (x, y, z), where 

x = R sin¢ cos 0, y = R sin¢ sin 0, z = R cos¢. 

Here, (R, ¢, 0) are spherical coordinates in xy z-space, as 
introduced in Section 10.6 . 

19. Find the Jacobian matrix Df(x , y, z) for the transform ation 
of JR3 to JR2 given by 

f(x , y, z) = (x 2 + yz, i-x 1nz). 

Use Df(2 , 2, 1) to help you find an approximate valu e for 
f(l.98 , 2.01, 1.03). 

20. Find the Jacobian matrix Dg(l , 3, 3) for the transformation 
of JR3 to JR3 given by 

and use the result to find an approximate value for 
g(0.99 , 3.02, 2.97). 

21. Prove that if f (x, y) is differentiable at (a , b ), then f (x, y) 
is continuous at (a, b). 

0 22. Prove the following version of the Mean -Value Theorem: If 
f (x, y) has first partial derivativ es continuous near every 
point of the straight line segment joining the point s (a, b) 
and (a+ h, b + k) , then there exists a number 0 satisfying 
0 < 0 < 1 such that 

f (a+ h, b + k) = f (a , b) + h/1 (a+ 0h, b + 0k) 

+ kh(a + 0h , b + 0k). 
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(Hint: Apply the single-variable Mean-Value Theorem to 
g(t) = f (a+ th , b + tk).) Why could we not have used this 
result in place of Theorem 3 to prove Theorem 4 and hence 
the version of the Chain Rule given in this section? 

0 23. Generalize Exercise 22 as follows: show that , if f (x , y) has 
continuous partial derivatives of seco nd order near the point 
(a , b), then there exists a number 0 satisfying O < 0 < 1 
such that , for h and k sufficiently sma ll in absolute value, 

f (a+ h , b + k) = f (a, b) + h/1 (a, b) + kh(a, b) 

+ h2 
/1 I (a + 0h, b + 0k) 

+ 2hkf 12 (a+ 0h, b + 0k) 

+ k2 f22(a + 0h, b +0k). 

Hence, show that there is a constant K such that for all 
value s of h and k that are sufficiently small in absolute 
value, 

lt(a + h, b + k) - f(a, b) - h/1 (a , b) - kh(a , b)I 
::, K(h 2 + k2

) . 

Thermodynamics and Legendre Transformations 

0 24. Use the Gibbs equation 

dE = TdS - PdV + µ1 dN1 + · · · + JtndN n 

and the fact that , being addit ive in its extensive variables, 
E = E(S , V, N 1, ••• , N,,) is necessarily hom ogeneous of 
degre e 1, to establish the Gibbs-Duhem equation 

0 = SdT - V dP + N1 dµ1 + · · · + N,, dµ,,. 

(Hint :use Euler's Theorem, Theorem 2 of Section 12.5.) 

0 25. The equation of state for an ideal gas in the form of 
E = E(S, V, N) , using exten sive variables only, is rarely 
quoted. It is 

E = 3h
2

N (N)213 } 3Vk-i), 
4irm V 

However, it is common to see PV = NkT, or E = ~N kT 
irtstead . Herek is the Boltzmann constant , h is Planck 's 
constant , and m is the mass of one atom. Deduce these 
common form s from the explicit formula for E given as a 
function of S, V , and N. 

0 26. If f" (x) > 0 for all x, show that the Legendre 
transformation f * (p) is the maximum value of the function 
g(x) = px - f (x ) considered as a function of x alone with 
p fixed. 

In Exercises 27-29 give an explicit formula for the Legendre 
transformation f* (p) of the given function f (x) . 

27. f(x) = x 2 28. f(x) = x 4 

29. f (x) = ln(2 + 3x) 

30. Use differentials to show that the Gibbs free energy, 
G = E - TS + P V depends on T and P alone when the 
numbers of molecules of each type are fixed . Determine the 
partial derivatives of G with respect to the new variables T 

and P. 
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31. Entropy can be written as a function, S = S(E , V , N 1, • • · , N 11). (a) What variables are conjugate in this Legendre 
transformation? What partial derivatives of L are 
implicitly determined by it? 

Legendre transformations can be performed on it too, 
although they are not so well-known. The resulting functions 
are called Massieu-Planckfunctions. Show that one of 
these, the Massieu 's potential, <l> = S - 1' E, depends on 
temperature instead of energy. 

(b) In the absence of external forces, the principle of least 
BL 

action requires that - = Pi. By taking the differential 
aqi 

D 32. In classical mechanics, the energy of a system is expressed in 
terms of a function called the Hamilt onian. When the 
energy is independent of time, the Hamiltonian depends only 
on the positions, qi, and the momenta, Pi of the particles in 
the system, that is, H = H (q1, · · ·, q11, p,, · · · , p,,). There 
is also another function, called the Lagrangian, that 
depends on the positions qi and the velocities CJi, that is, 

of H and using the result of part (a), show that 
aH . aH . - = - Pi and - = qi. These are known as 
aq; api 
Hamilton's equations. 

(c) Use Hamilton's equations to show that the Hamiltonian , 
½ (q2 + p2) , represents a harmonic oscillator because it 
is equivalent to the differential equation q + q = 0. 

L = L (q, , · · · , q11, iJ1, · · · , q,,), such that the Hamiltonian is 
a Legendre transformation of the Lagrangian with respect to 
the velocity variables: 

H (q 1, · · ·, qn, P 1, · · · , Pn.) 

= ~ p;q; - L(q1 , · · ·, qn, (JI, ··· , CJn). 

Gradients and Directional Derivatives 

DEFINITION 

I 

A first partial derivative of a function of several variables gives the rate of change of 
that function with respe ct to distance measured in the direction of one of the coordinate 
axes . In thi s sec tion we will develop a method for finding the rate of change of such 
a function with respect to distance meas ured in any direction in the domain of the 
function . 

To begin , it is usefu l to combine the first partial deriv ative s of a function into a 
single vector function called a gradient. For simplicit y, we will develop and interpret 
the gra dient for function s of two variables. Extension to function s of three or more 
variables is straightforward and will be discussed later in thi s sec tion . 

At any point (x , y) where the first partial derivative s of the function f (x, y) exi st, 
we define the gradient vector V f(x , y) = grad f(x , y) by 

V f(x, y) = grad f(x, y) = J, (x, y) i + h(x , y)j. 

Reca ll that i and j denote the uni t basis vectors from the origin to the points (1, 0) 
and (0, 1), respectively. The symbol V , called def or nabla , is a vector differential 
operato r: 

. a . a 
V=I-+J - . 

ax ay 

We can apply this operator to a function f (x, y) by writing the operator to the left of 
the function. The result is the gra dient of the function 

V f(x, y) = (i ~ + j ~ ) f(x, y) = ft (x , y)i + h (x, y)j. 
ax ay 

We will make extensive use of the de! operator in Chapter 16. 
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Figure 12.25 The gradient of 
f(x, y) = x 2 + y2 at (1, 2) is normal to 
the level curve off through (1, 2) 

THEOREM 

I 

SECTION 12.7: Gradients and Directional Derivatives 717 

EXAMPLE 1 Iff(x , y)=x 2 +y2,thenVf( x,y )=2xi+2yj. Inparticular , 
V f (1, 2) = 2i + 4j. Observe that this vector is perpendicular to 

the tangent line x + 2y = 5 to the circle x2 + y2 = 5 at (1, 2). This circle is the level 
curve off that passes through the point (1, 2) . (See Figure 12.25.) As the following 
theorem shows, this perpendicularity is not a coincidence. 

y 

X +2y = 5 

X 

If f(x , y) is differentiable at the point (a , b) and V f(a, b) =I= 0, then V f(a , b) is a 
normal vector to the level curve off that passes through (a , b) . 

PROOF Let r = r(t) = x(t)i + y(t)j be a parametrization of the level curve off 
such that x(O) = a and y(O) = b. Then for all t near 0, f(x(t) , y (t)) = f(a, b). 
Differentiating this equation with respect to t using the Chain Rule, we obtain 

dx dy 
fi(x(t), y(t)) - + h(x(t), y(t)) - = 0. 

dt dt 

drl At t = 0 this says that V f(a, b) • - = O; that is, V f is perpendicular to the 
dt t=O 

tangent vector dr / dt to the level curve at (a, b). 

Directional Derivatives 
The first partial derivatives Ji (a, b) and h(a, b) give the rates of change of f(x, y) 
at (a, b) measured in the directions of the positive x- and y-axes, respectively. If we 
want to know how fast f(x, y) changes value as we move through the domain off at 
(a, b) in some other direction , we require a more general directional derivative. We 
can specify the direction by means of a nonzero vector. It is most convenient to use a 
unit vector. 
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DEFINITION 

I 

y 

X 

Figure 12.26 Unit vector u determines a 
line L through (a, b) in the domain off . 
The vertical plane containing L intersects 
the graph off in a curve C? whose tangent 
Tat (a, b, f (a, b)) has slope Duf (a, b) 

THEOREM 

I 

Let u = ui + vj be a unit vector, so that u2 + v 2 = 1. The directional derivative 
of f( x, y) at (a, b) in the direction of u is the rate of change of f(x , y) with 
respect to distance measured at (a, b) along a ray in the direction of u in the 
xy -plane . (See Figure 12.26.) This directional derivative is given by 

. f(a + hu , b + hv) - f(a, b) 
Duf (a, b) = hm ---------. 

h---->0+ h 

It is also given by 

Duf(a , b) = :!__ f(a + tu , b + tv)I 
dt t=O 

if the deriv ative on the right side exists. 

Remark This is nothing more than the basic derivative in one variable disguised by 
the complication s arising when u is not parallel to either coordinate axis. The line L 
through (a, b) parallel to u is given by the position vector r(t) = ai + bj + tu. If we 
regard L as a single coordinate axis with po sition on it given by the coordinate t , and 
ignore the rest of the 2-dimensional space, then f(x(t), y (t)) = g(t) along Land 

d dg(t) 
Duf(x(t) , y(t)) = dt f(x(t), y( t)) = ~ , 

for any t along L. Similarly , if we return to the original axes and choose a direction 
parallel to either of them, then the directional derivatives become the corresponding 

first partials: Dif (a , b) = J, (a, b), DjJ(a, b) = h(a, b), D_if (a, b) = - Ji (a , b), 
and D- jf(a , b) = - h(a, b) . The following theorem shows how the gradient can be 
used to calcul ate any directional derivative. 

Using the gradient to find directional derivative s 

If f is differentiable at (a, b) and u = ui + vj is a unit vector , then the directional 
derivative off at (a, b) in the direction of u is given by 

Du f(a, b) = u • V f (a , b) . 

PROOF By the Chain Rule: 

Duf(a , b) = :!__ f(a + tu, b + tv) I 
dt t=O 

= ufi (a, b) + vh(a , b) = u • V f (a, b). 

We already know that having partial derivatives at a point does not imply that a function 
is continuous there , Jet alone that it is differentiable. The same can be said about 
directional derivative s. It is pos sible for a function to have a directional derivative 
in every dire ction at a given point and still not be continuous at that point. See 
Exerci se 37 for an example of such a function . 

Given any nonzero vector v, we can always obtain a unit vector in the same 
direction by dividing v by its length. The directional derivative of f at (a, b) in the 
direction of v is therefor e given by 

V 
Dv;1v1f(a, b) = - • V f(a , b). 

lvl 
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Remark When trying to understand why u must be a unit vector for calculatin g a 
directional derivative by the formula in Theorem 7, it helps to think of the directional 
derivative as a simple derivative with respect to a parameter t along the line L , described 
by a position vector r(t) as described in the remark preceeding the statement of the 
theorem. As in that remark, we have 

dg(t) = df( x (t), y (t)) = Ji (x , y )x ' (t) + h( x, y )y' (t) = V f • dr(t). 
dt dt dt 

While this is true for any parameter t , a directional derivative along L is the rate of 
change with respect to distance or arc length, s = t . Given the formula for arc length 
in terms of a parameter from Section 8.4 , it follow s that r' (t) must be a unit vector: 

I 
dr(t) I J 2 2 ds lul = - =( x' (t)) + (y' (t)) = - = 1. 

dt dt 

EXAMPLE 2 Find the rate of change of f( x, y ) = y4 + 2xy3 + x 2y2 at (0, l ) 
measured in each of the following directions: 

(a) i + 2j, (b) j - 2i, (c) 3i, (d) i + j. 

Solution We calculate 

V f(x , y ) = (2y3 + 2x y2 )i + (4y3 + 6xy2 + 2x 2y)j , 

V /(0 , 1) = 2i+4j. 

·+2· 
(a) The unit vector in the direction of i + 2j is 

1 ../5 J . Thus , the directional deriv ative 

off at (0, 1) in that direction is 

i + 2· 2 + 8 
../5 J • (2i + 4j) = ../5 = 2.Js. 

Observe that i + 2j points in the same direction as V f (0, 1) so the directional 
derivative is positive and equal to the length of V f (0 , 1). 

. 2· 
(b) The unit vector in the direction of j - 2i is J .Js 1

. Thu s, the directional derivativ e 

of f at (0, 1) in that direction is 

-2i + j . . -4 + 4 
../5 • (21 + 4J) = ../5 = 0. 

Since j - 2i is perpendicular to V f (0, 1), it is tangent to the level curve of f 
through (0 , 1), so the directional derivative in that direction is zero . 

(c) The unit vector in the direction of 3i is just i, so the directional derivati ve of f at 
(0, l) in that direction is 

i • (2i + 4j) = 2. 

As noted previously, the directional derivative off in the direction of the positive 
x-axis is just /1 (0, 1). 

(d) The unit vector in the direction of i + j is i ;.d, so the directional derivative off 

at (0, 1) in that direction is 

i+· 2+4 j_ • (2i + 4j) = ,Ji = 3v'2. 

If we move along the surface z = f (x , y) through the point (O, 1, 1) in a direction 
making horizontal angles of 45° with the positive directions of the x - and y-axe s, 
we would be rising at a rate of 3-/2 vertical units per horizontal unit moved. 
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y 
(cos¢, sin¢) 

X 

Figure 12.27 The unit vector specified by 

a polar angle efJ 

Remark A direction in the plane can be specified by a polar angle. The direction 
making angle¢ with the positive direction of the x-axis corresponds to the unit vector 
(see Figure 12.27) 

U¢, = cos¢i + sin ¢ j , 

so the directional derivative off at (x, y ) in that direction is 

D¢,J(x , y ) = Du,pf(x , y ) = U¢, • V f (x , y) = Ji (x , y) cos ¢ + h(x, y) sin¢. 

Note the use of the symbol D¢,J(x , y) to denote a derivative off with respect to 
distanc e measured in the direction¢ . 

As observed in the previous example, Theorem 7 provides a useful interpretation 
for the gradient vector. For any unit vector u we have 

Duf(a, b) = u • V f(a , b) = IV f(a , b)I cos 0 , 

where 0 is the angle between the vectors u and V f(a , b). Since cos0 only takes 
on values between -1 and 1, D11f(a , b) only takes on values between -IV f(a, b)I 
and IV f (a , b)I . Moreover, D11f(a , b) = - IV f(a , b)I if and only if u points in the 
opposite direction to V f( a, b) (so that cos0 = -1) , and D11f(a , b) = IV f(a, b)I 
if and only if u points in the same direction as V f(a, b) (so that cos0 = 1). The 
directional derivative is zero in the direction 0 = 1r / 2; this is the direction of the 
(tangent line to the) level curve off through (a , b ). 

We summarize these properties of the gradient as follows: 

Geometric properties of the gradient vector 

(i) At (a, b) , f(x, y) increases most rapidly in the direction of the gradient 
vector V f(a , b). The maximum rate of increase is IV f(a , b)I. 

(ii) At (a, b), f(x, y) decreases most rapidly in the direction of -V f(a, b). 
The maximum rate of decrease is IV f(a , b)I. 

(iii) The rate of change off (x , y) at (a, b) is zero in directions tangent to the 
level curve off that passes through (a, b) . 

Look again at the topographic map in Figure 12.6 in Section 12.1. The streams on the 
map flow in the direction of steepest descent , that is, in the direction of - V f, where 
f measures the elevation of land. The streams therefore cross the contours (the level 
curves of f) at right angles. Like the stream, an experienced skier might choose a 
downhill path close to the direction of the negative gradient, while a novice skier would 
prefer to stay closer to the level curves . 

EXAMPLE 3 The temperature at position (x, y) in a region of the xy-plane is 
T °C, where 

In what direction at the point (2, 1) does the temperature increase most rapidly? What 
is the rate of increase off in that direction? 

Solution We have 

VT( x, y ) = 2x e- Yi - x 2 e- Yj, 

4 4 4 
VT (2, 1) = - i - - j = - (i - j) . 

e e e 

At (2, 1), T(x , y) increases most rapidly in the direction of the vector i - j . The rate 
of increase in this direction is IV T (2, 1) I = 4.J2/ e °C/unit distance. 
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Figure 12.28 The hiker's map. Unlike 
most mountains, this one has perfectly 
elliptical contours. 
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EXAM p LE 4 A hiker is standing beside a stream on the side of a mountain, 
examining her map of the region. The height of land (in metres) at 

any point (x, y) is given by the function 

20 ,000 
h(x,y)= 3+x2+2y2' 

where x and y (in kilometres) denote the coordinates of the point on the hiker's map. 
The hiker is at the point (3, 2). 

(a) What is the direction of flow of the stream at (3, 2) on the hiker's map? How fast 
is the stream descending at her location? 

(b) Find the equation of the path of the stream on the hiker's map. 

( c) At what angle to the path of the stream ( on the map) should the hiker set out if she 
wishes to climb at a 15° inclination to the horizontal? 

( d) Make a sketch of the hiker's map , showing some curves of constant elevation, and 
showing the stream . 

X 

h=5 

Solution 
(a) We begin by calculating the gradient of hand its length at (3 , 2): 

20 ,000 . . 
Vh(x, y) = - (

3 
+ x 2 + 2y2)2 (2x1 + 4yJ), 

V h(3 , 2) = -100(3i + 4j), 

1Vh(3, 2)1 = 500. 

The stream is flowing in the direction whose horizontal projection at (3, 2) is 
-V h(3 , 2), that is, in the horizontal direction of the vector 3i + 4j. The stream is 
descending at a rate of 500 m/km, that is, 0.5 m per horizontal metre travelled. 

(b) Coordinates on the map are the coordinates (x , y) in the domain of the height 
function h. We can find an equation of the path of the stream on a map of the 
region by setting up a differential equation for a change of position along the path. 
If the vector dr = dx i + dy j is tangent to the path of the stream at point (x, y) 
on the map, then dr is parallel to V h (x, y). Hence, the components of these two 
vectors are proportional: 

dx 

2x 

dy 

4y 
or 

dy 

y 

2dx 

X 

Integrating both sides of this equation, we get ln y = 2 ln x + ln C , or y = Cx 2 . 

Since the path of the stream passes through (3, 2), we have C = 2/ 9 and the 
equation is 9y = 2x 2 . 
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(c) Suppose the hiker moves away from (3, 2) in the direction of the unit vector u. 
She will be ascending at an inclination of 15° if the directional derivative of h in 
the direction of u is 1,000 tan 15° ~ 268. (The 1,000 compensates for the fact that 
the vertical units are metres while the horizontal units are kilometre s.) If 0 is the 
angle between u and the upstream direction , then 

500cos0 = 1Vh(3, 2)1 cos0 = D0 h( 3, 2) ~ 268. 

Hence, cos 0 ~ 0.536 and 0 ~ 57 .6°. She should set out in a direction making a 
horizontal angle of about 58° with the upstream direction. 

(d) A suitable sketch of the map is given in Figure 12.28. 

EXAMPLE 5 Find the second directional derivative of f (x , y) in the direction 
making angle¢ with the positive x -axis. 

Solution As observed earlier, the first directional derivative is 

D¢,J (x, y) = (cos¢ i + sin ¢ j ) • V f(x , y) = J, (x, y) cos¢+ h(x, y) sin ¢. 

The second directional derivative is therefore 

Dif(x, y ) = D¢, (D¢,J(x, y)) 

= (cos¢ i + sin cpj ) • v(t1 (x, y) cos¢+ h(x, y) sin ¢ ) 

= (t, 1 (x , y) cos ¢ + h , (x, y) sin¢) cos¢ 

+ (tnCx , y) cos ¢ + h2 (x, y) sin ¢ ) sin ¢> 

= ! 11 (x , y) cos2 ¢ + 2f1 2(x, y) cos¢ sin ¢+ h2(x, y) sin2 ¢. 

Note that if¢ = 0 or¢ = n: (so the directional derivative is in a direction paral lel to the 
x -axis), then Di f(x ,y) = f 11(x , y). Similarly, Di f(x ,y ) = h2(x,y) if¢> = n:/ 2 
or 3n: / 2. 

Rates Perceived by a Moving Observer 
Suppose that an observer is moving around in the xy- plane measuring the value of 
a function f(x , y) defined in the plane as he passes through each point (x, y) . (For 
instance, f(x, y) might be the temperature at (x, y).) If the observer is moving with 
velocity vat the instant when he passes through the point (a, b), how fast would he 
observe f(x, y ) to be changing at that moment? 

At the moment in question the observer is moving in the direction of the unit vector 
v/ lvl. The rate of change of f(x, y) at (a , b) in that direction is 

V 
Dv; 1v1f(a, b) = - • V f(a, b) 

lvl 

measured in units off per unit distance in the xy-plane. To convert this rate to units 
off per unit time, we must multiply by the speed of the observer, lvl units of distance 
per unit time. Thus, the time rate of change of f (x, y) as measured by the observer 
passing through (a, b) is 

V 
lvl - • V f (a, b) = v • V f (a, b). 

lvl 

It is natural to extend our use of the symbol Dv f(a, b) to represent this rate even 
though v is not (necessarily) a unit vector. Thus, we have established the following 
principle . 
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The rate of change of f (x, y) at (a, b) as measured by an observer moving 
through (a, b) with velocity vi s 

Dvf (a , b) = V . V f (a , b) 

units off per unit time. 

If the hiker in Example 4 moves away from (3, 2) with horizontal velocity v = -i - j 
km/h, then she will be rising at a rate of 

V • V h(3 , 2) = (-i - j) • (-2_(3i + 4j)) =}_km/h . 
10 10 

As defined here, Dv f is the spatial component of the derivative of f following the 
motion. See Example 6 in Section 12.5. The rate of change of the reading on the 
moving thermometer in that example can be expres sed as 

dT ar - = DvT(x , y, z, t) + - , 
dt at 

where vis the velocity of the moving thermometer and DvT = v • VT. The gradient is 
being taken with respect to the three spatial variabl es only. (See below for the gradient 
in 3-space .) 

The Gradient in Three and More Dimensions 
By analogy with the two-dimensional case, a function f (x, , x2, .. . , x ,,) of n variable s 
possessing first partial derivatives has gradient given by 

where e1 is the unit vector from the origin to the unit point on the jth coordinate axis. 
In particular, for a function of three variables , 

!( ) af. af. af k 
V x, y, z =-I+ -J + - . 

ax ay az 

The level surface off (x , y, z) pas sing through (a, b, c) has a tangent plane there if/ 
is differentiable at (a, b, c) and V f (a, b, c) I= 0. 

For functions of any number of variables , the vector V f (Po) is normal to the 
"level surface " off passing through the point Po (i.e., the (hyper)surface with equation 
f (x, , . .. , x,,) = f (Po)) , and, if/ is differentiable at Po, the rate of change off at 
Po in the direction of the unit vector u is given by u • V f (Po). Equations of tangent 
planes to surfaces in 3-space can be found easily with the aid of gradients. 

EXAMPLE 6 Let f (x , y , z) = x 2 + y2 + z2. 

(a) Find V f(x, y, z) and V /(1 , -1 , 2) . 

(b) Find an equation of the tangent plane to the sphere x 2 + y2 + z2 = 6 at the point 
(1, -1, 2). 

( c) What is the maxi mum rate of increase of f at ( 1, -1, 2) ? 

( d) What is the rate of change with respect to distance of f at (1, -1, 2) measured in 
the direction from that point toward the point (3, 1, 1)? 
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Figure 12.29 

(a) The level surface f(x, y, z) = 6 for 
Example 6 and its tangent plane at 
(1,- 1,2) 

(b) The gradient off (x, y) - z at 
(a, b, f (a, b)) is normal to the 
tangent plane to z = f (x, y) at that 
point. See Example 7 

BEWARE! Make sure you 
understand the difference 
between the graph of a function 
and a level curve or level surface 
of that function. (See the 
discussion following this 
example.) Here, the surface 
z = f(x,y) isthegraphofthe 
function f, but it is also a leve l 
surfa ce of a different function 
g. 

Solution 
(a) V f(x , y, z) = 2xi + 2yj + 2zk, so V f(l, -1 , 2) = 2i - 2j + 4k. 

(b) The required tangent plane has V f(l, -1, 2) as normal. (See Figure 12.29(a).) 
Therefore, its equation is given by 2(x - 1) - 2(y + 1) + 4( z - 2) = 0 or, more 
simply, x - y + 2z = 6. 

(c) The maximum rate of increa se off at (1, -1 , 2) is IV f (1, -1, 2)1 = 2.)6, and it 
occurs in the direction of the vector i - j + 2k. 

(d) The direction from (l, -1 , 2) toward (3, 1, 1) is specified by 2i+2j-k. The rate 
of change off with respect to distance in this direction is 

2i + 2j - k 4 - 4 - 4 4 
------;:==== • (2i - 2j + 4k) = --- = -- ; 
J4 + 4 + 1 3 3 

that is, f decreases at rate 4/ 3 of a unit per horizontal unit moved. 

z z 
2i- 2j + 4k 

, =J(a ,b)+ / 1 (a,b)(x - a)+ fz(a ,b)(y- b) 

y 

y 

X 
X 

(a) (b) 

EXAM p LE 7 The graph of a function f (x , y) of two variables is the graph of 
the equation z = f (x, y) in 3-space. Thi s surface is also the level 

surface g(x , y, z) = 0 of the 3-var iable function 

g(x, y, z) = f(x , y) - z. 

If f is differenti able at (a, b) and c = f(a, b) , then g is differentiable at (a, b , c), and 

V g(a, b , c) = f1 (a, b)i + h(a, b)j - k 

is normal to g(x , y, z) = 0 at (a, b, c). (Note that V g(a, b, c) f- 0, since its z 
component is -1.) It follows that the graph off has nonvertical tangent plane at (a, b) 
given by 

!1 (a , b)(x - a)+ h(a, b)(y - b) - (z - c) = 0, 

or 

z = f(a, b) + f1 (a, b)(x - a)+ h(a, b)( y - b). 

(See Figure 12.29 (b ).) This result was obtained by a different argument in Section 12.3 . 

Student s somet ime s confuse gra phs of functions with level curves or surfaces of those 
functions. In the above example, we are talking about a level surface of the function 
g(x , y , z) that happen s to coincide with the graph of a different function , f(x, y). Do 
not confuse that surface with the graph of g, which is a three-dimen sional hypersurface 
in 4-sp ace having equation w = g(x, y, z). Similarly, do not confuse the tangent plan e 
to the gra ph of f(x , y) (i.e ., the plane obtained in the above example) with the tangent 
line to the level curve off (x, y) passing through (a, b) and lyin g in the xy- plane. Thi s 
line has an equation involving only x and y: f1 (a, b)( x - a)+ h(a, b)(y - b) = 0. 
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EXERCISES 12.7 
In Exercises 1-6 , find: 

EXAMPLE 8 

SECTION 12.7: Gradients and Directional Derivatives 725 

Find a vector tangent to the curve of intersection of the two surfaces 
z = x 2 - y2 and xyz + 30 = 0 at the point (- 3, 2, 5). 

Solution The coordinates of the given point satisfy the equation s of both surfaces so 
the point lies on the curve of inter section of the two surfaces. A vector tangent to this 
curve at that point will be perpendi cular to the norm als to both surface s, that is, to the 
vectors 

n1 = V(x 2 
- y2 - z)I = 2x i - 2yj - kl = -6 i - 4j - k , 

(-3 ,2,5) (-3 ,2 ,5) 

n 2 = V(x yz + 30)1 = (yzi + x zj + xyk)I = lOi - 15j - 6k. 
(- 3,2,5) (-3 ,2,5) 

For the tangent vector T we can therefor e use the cross product of these normals: 

j 
T = n I x n 2 = -6 -4 

10 - 15 

k 
-1 = 9i - 46j + 130k. 
-6 

i Remark Maple 's VectorCalculus package defines a function Gradient that takes a 
pair of argume nts-a n expression and a list of variables-and produces the gradient of 
the expression with respect to those variables : 

> with(VectorCalculus ): 
> f : = x"2+y"3+z"4 ; G : = Gradient(f , [x , y , z]) ; 

f := x2 + Y3 + z4 

G := 2 X ex + 3 y 2 ey + 4 z3 ez 
Although the result for G looks like a vector , it is actually somet hing different , namely 
a vector field which is a vector-valued function of a vector variab le. This fact is 
conveyed by the bars that appear over the basis vectors in the output. We will deal 
extensively with vector fields in Chapters 15 and 16 and will say little about them here 
except to note that evaluating the Gradi ent at a particular point requires the eval VF 
function , which takes two arguments: a vector field and a vector at which to evaluate 
it. 

> evalVF(G , <2 , 3 , -1>) ; 

Observe that the output is a vector, not a vecto r field; there are no bars on the basis 
vectors . 

If you want to define a gradient function (let us call it gr a d ) such that you would 
get the above value by using the input g r ad ( f) ( 2 , 3 , -1), you could use 

> grad:= g -> ((u , v , w) -> 
> evalVF (Gradient (g, [x , y , z ] ) , <u , v , w>)) ; 

(a) the gradient of the given function at the point indicated, 

(b) an equation of the plane tangent to the graph of the given 

(c) an equation of the straight line tangent, at the given point, to 
the level curve of the given function passing through that 
point. 

1. f(x , y) = x2 - y2 at (2, -1) function at the point whose x and y coordinates are given, 
and 
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x-y 
2. J(x, y) = -- at (1, 1) 

x+y 
X 

3. f(x, y) = -2-- 2 at (1, 2) 
X + )' 

4. f(x, y) = exy at (2, 0) 

5. f (x , y) = ln(x 2 + y2) at (1, -2) 

6. f(x , y) = J 1 + xy 2 at (2, -2) 

In Exercises 7-9, find an equation of the tangent plane to the level 
surface of the given function that passes through the given point. 

7. f(x , y, z) = x 2y + iz + z2x at(], - 1, 1) 

8. f(x, y, z) = cos(x + 2y + 3z) at (~ , 7r, 7r) 

9. f(x, y, z) = y e-x
2 

sin z at (O, 1, 7r/ 3) 

In Exercises 10-13, find the rate of change of the give n function 
at the given point in the spec ified direction. 

10. f (x, y) = 3x - 4 y at (0, 2) in the direct ion of the vector -2 i 

11. f (x, y) = x 2 y at (-1, - 1) in the direct ion of the vecto r 
i +2 j 

X 
12. J(x, y) = -- at (0, 0) in the direction of the vecto r i - j 

l +y 

13. f (x , y) = x 2 + y2 at (1, -2) in the direction makin g a 
(positive) angle of 60° with the positive x -axis 

14. Let f (x , y) = In lrl, where r =x i + yj . Show that 
r 

Vf=frp· 

15. Let f(x , y, z) = Jr J-n, where r =x i + yj + zk . Show that 
-n r 

V f = Jr J"+2· 

8 16. Show that , in term s of polar coordinates (r, 0) (where 
x = r cos 0 and y = r sin 0), the grad ient of a function 
f (r, 0) is given by 

v f = aJ r + ~ aJ a, 
ar r a0 

where r is a unit vector in the direction of the position vector 
r = x i + y j , and 0 is a unit vector at right angles to r in the 
direction of increasing 0. 

17. In what directions at the point (2, 0) doe s the function 
f (x , y) = x y have rate of change -1? Are there directions 
in which the rate is -3? How about -2? 

18. In what direction s at the point (a, b, c) does the function 
f (x , y, z) = x2 + y2 - z2 increa se at half of its maximal 
rate at that point? 

19. Find V f (a , b) for the differentiable function f (x , y) given 
the directional derivat ives 

D(i+j)/ ..fi.f (a, b) = 3.J2 and D(3i-4 j)/sf (a, b) = 5. 

20. If f (x, y) is differentiable at (a, b), what condition should 
ang les ¢ 1 and ¢2 satisfy in order that the gradient V J(a , b) 
can be determined from the values of the directional 
derivative s D¢,1 f (a , b) and D¢,if (a , b)? 

21. The temperat ure T (x, y) at points of the xy -plane is given by 
T(x , y) = x 2 - 2y2. 

(a) Draw a contour diagram for T showing some isotherm s 
(curves of constant temperature). 

(b) In what direction should an ant at positio n (2, -1 ) move 
if it wishes to coo l off as quickly as possible ? 

( c) If the ant moves in that direction at speed k ( unit s 
distance per unit time), at what rate does it experience 
the decrease of temperature ? 

(d) At what rate would the ant experience the decrease of 
tempera ture if it moved from (2, - 1) at speed kin the 
direction of the vector - i - 2j ? 

( e) Along what curve throu gh (2, -1 ) should the ant move 
in order to continue to experience maximum rate of 
cooling? 

22. Find an equat ion of the curve in the xy -plane that passes 
through the point ( 1, 1) and intersects all leve l curve s of the 
function f (x, y) = x 4 + y2 at right angles. 

23. Find an equati on of the curve in the xy- plane that passes 
throu gh the point (2, - J) and that intersects every curve with 
equation of the form x 2y3 = K at right angles. 

24. Find the seco nd directiona l derivative of e-x
2-i at the point 

(a, b) :/= (0, 0) in the direction directly away from the origin. 

25. Find the seco nd directi onal derivative off (x, y, z) = xyz at 
(2, 3, 1) in the direction of the vec tor i - j - k. 

26. Find a vecto r tangent to the curve of intersect ion of the two 
cylinders x2 + y2 = 2 and y2 + z2 = 2 at the point 
(L, -l , I ). 

27. Repeat Exercise 26 for the surface s x + y + z = 6 and 
x 2 + y2 + z2 = 14 and the point (1, 2, 3). 

28. The temperat ure in 3-space is given by 

T(x, y, z) = x2 
- y2 + z2 + xz2 . 

At time t = 0 a fly passes through the point (1 , 1, 2), flying 
along the curve of inter section of the surfaces z = 3x 2 - y2 
and 2x2 + 2y 2 - z2 = 0. If the fly's speed is 7, what rate of 
temperature change does it experience at t = O? 

8 29. State and prove a version of Theorem 6 for a function of 
three variables. 

30. What is the leve l surface off (x , y , z) = cos(x + 2y + 3z) 
that passes throu gh (7r, 7r, 7r )? Wh at is the tangent plane to 
that level surface at that point? (Co mpare this exercise with 
Exercise 8 above.) 

8 31. If V f (x, y) = 0 through out the disk x 2 + y2 < r 2 , prove 
that f (x, y) is constant throughout the disk. 

8 32. Theorem 6 imp lies that the level curve of f (x, y) passing 
through (a , b) is smooth (has a tangent line) at (a, b) 
provided f is differenti able at (a, b) and satisfies 
V f (a , b) :/= 0. Show that the level curve need not be smooth 
at (a, b) if V f (a, b) = 0. (Hint: Consider 
f (x, y) = y3 - x2 at (0, 0).) 

8 33. If vi s a nonzero vector , express Dv(Dvf) in term s of the 
co mponent s of v and the seco nd partials off. What is the 
interpre tation of this quantity for a movin g observer? 

D 34. An observer moves so that his position, velocity, and 
acce lera tion at time t are given by the for mulas 
r (t) = x(t) i + y (t)j + z (t) k, v(t) = d r/ dt, and 
a (t) = dv / dt. lfthe temperat ure in the vici nity of the 
observer depe nds only on position, T = T(x, y, z), express 
the seco nd time deriva tive of temperature as measured by the 
observer in terms of Dv and D 3 • 
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D 35. Repeat Exercise 34 but with T depending explicitly on time 
as well as position: T = T(x , y, z, t). 

Use the definition of directional derivative as a limit 
(Definition 7) to show that Duf (0, 0) exists for every unit 
vector u = ui + vj in the plane. Specifically, show that 
Duf(O, 0) = 0 if v = 0, and Duf (O, 0) = 2u2 / v if v =f=. 0. 
However, as was shown in Example 4 in Section 12.2, 

36 L !( ) - ~' if(x , y)=f=.(0, 0) I 
sin(xy) 

. et X, y - yX2 + y2 
0, if(x ,y) = (0,0) . 

f (x , y) has no limit as (x , y) -+ (0, 0) , so it is not 
continuous there. Even if a function has directional 
derivatives in all directions at a point, it may not be 
continuous at that point. 

(a) Calculate V f (0, 0). 

(b) Use the definition of directional derivative to calculate 
Duf(O, 0), where u = (i + j) / v'2. 

(c) Is f(x , y) differentiable at (0, O)? Why? 

8 37. Let f(x , y) = { 2x2y/ (x4 + y2), !f (x , y) =f=. (0, 0) 
0, tf (x , y) = (0, 0) . 

• _ l_m_pl_ic_it_F_un_c_ti_on_s _______ __ ______ _ 
When we study the calculus of functions of one variable, we encounter examples 
of functions that are defined implicitly as solutions of equations in two variables. 
Suppose, for example, that F(x , y) = 0 is such an equation . Suppose that the point 
(a, b) satisfies the equation and that F has continuous first partial derivatives (and so is 
differentiable) at all points near (a , b). Can the equation be solved for y as a function 
of x near (a, b)? That is, does there exist a function y(x) defined in some interval 
I = (a - h , a+ h) (where h > 0) satisfying y(a) =band such that 

y 

X 

Figure 12.30 The equation F(x , y) = 0 
can be solved for y as a function of x near 
Po or near any other point except the three 
points where the curve has a vertical 
tangent 

F(x , y(x)) = 0 

holds for all x in the interval /? If there is such a function y (x), we can try to find its 
derivative at x = a by differentiating the equation F (x, y) = 0 implicitly with respect 
to x, and evaluating the result at (a, b): 

dy 
F1 (x, y) + F2(x, y ) - = 0, 

dx 
so that 

:~ lx=a 
F1 (a, b) 

F2(a,b) ' 
provided 

Observe, however, that the condition F2 (a, b) f= 0 required for the calculation of y' (a) 
will itself guarantee that the solution y(x) exists. This conditio n, together with the 
differentiability of F(x, y) near (a, b), implies that the level curve F(x, y) = F(a, b) 
has nonvertical tangent lines near (a, b ), so some part of the level curve near (a, b) must 
be the graph of a function of x. (See Figure 12.30; the part of the curve F (x, y) = 0 in 
the shaded disk centred at Po= (a, b) is the graph of a function y(x) because vertical 
lines meet that part of the curve only once. The only points on the curve where a 
disk with that property cannot be drawn are the three points Vi, V2, and V3, where the 
curve has a vertical tangent, that is, where F2 (x, y) = 0.) This is a special case of the 
Implicit Function Theorem, which we will state more generally later in this section . 

A similar situation holds for equations involving several variables. We can , for 
example , ask whether the equation 

F(x ,y,z )=O 

defines z as a function ofx and y (say, z = z (x, y)) near some point Po with coordinates 
(xo, Yo, zo) satisfying the equation . If so, and if F has continuous first partials near Po, 
then the partial derivatives of z can be found at (xo, yo) by implicit differentiat ion of 
the equation F(x, y, z) = 0 with respect to x and y: 

az az 
F1 (x, y, z) + F3(x, y, z) - = 0 and F2(x , y, z) + F3(x, y, z) - = 0, 

ax ay 
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so that 

az[ 
ax (xo,Yo) 

F1 (xo, Yo, zo) 

F3 (xo, Yo, zo) 
and az I 

ay (xo,yo) 

F2 (xo, Yo, zo) 

F3 (xo, Yo, zo)' 

provided F3(xo, yo, zo) "I-0. Since F3 is the z component of the gradient of F, this 
condition implie s that the level surface of F through Po does not have a horizontal 
normal vector, so it is not vertical (i.e., it is not parallel to the z-axis). Therefore, part 
of the surface near Po must indeed be the graph of a function z = z(x , y). Similarly, 
F(x , y, z) = 0 can be solved for x as a function of y and z near points where F1 "I-0 
and for y = y (x, z) near points where F2 f. 0. 

EXAMPLE 1 Near what points on the sphere x2 + y2 + z2 = 1 can the equation 
of the sphere be solved for z as a function of x and y? Find 8z/ ax 

and az/ ay at such points . 

Solution The sphere is the level surface F (x , y, z) = 0 of the function 

F(x, y , z) = x2 + y2 + z2 - 1. 

The above equation can be solved for z = z(x , y) near Po = (xo, YO, zo), provided 
that Po is not on the equator of the sphere , that is, the circle x 2 + y2 = 1, z = 0. 
The equator consists of those points that satisfy F3 (x, y, z) = 0. If Po is not on the 
equator , then it is on either the upper or the lower hemisphere. The upper hemisphere 
has equation z = z (x, y) = J 1 - x 2 - y 2, and the lower hemisphere has equation 

z = z(x ,y ) = - J I - x 2 - y2 . 

If z "I-0, we can calculate the partial derivatives of the solution z = z(x , y) by 
implicitly differentiating the equation of the sphere: x2 + y2 + z2 = 1: 

az 
2x +2 z- =0 , ax 

az 
2y +2 z- =0 , ay 

so 

so 

Systems of Equations 

az 
ax 

az 
ay 

X 

z 

y 

z 

Experience with linear equations shows us that systems of such equations can generally 
be solved for as many variables as there are equations in the system . We would expect , 
therefore, that a pair of equations in several variables might determine two of those 
variables as functions of the remaining ones. For instance , we might expect the two 
equation s 

{
F( x,y,z,w )=O 
G(x,y,z ,w) =0 

to possess , near some point that satisfies them, solutions of one or more of the forms 

{ x = x (z, w) 
y = y (z, w) , 

{ x = x( y , w) 
z = z(y, w) , 

{x=x(y, z) 
w = w(y , z), 

{y= y (x , w) 
z = z(x, w) , 

{ y = y (x,z ) 
w = w(x, z) , 

{ z = z(x, y) 
w = w(x , y). 

Where such solutions exist , we should be able to differentiate the given system of 
equations implicitly to find partial derivatives of the solutions. 
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If you are given a single equation F(x, y , z) = 0 and asked to find ax /az , you 
would understand that x is intended to be a function of the remaining variables y and 
z, so there would be no chance of misinterpreting which variable is to be held constant 
in calculating the partial derivative. Suppose, however, that you are asked to calculate 
ax /az given the system F( x, y, z, w) = 0, G(x , y, z, w) = 0. The question implies 
that x is one of the dependent variables and z is one of the independent variables , but 
does not imply which of y and w is the other dependent variable and which is the other 
independent variable . In short, which of the situation s 

{
x =x( z,w) 
y= y (z,w) 

and { 
x = x( y, z) 
w = w( y, z) 

are we dealing with? As it stands, the question is ambiguous. To avoid this ambiguity, 
we can specify in the notation for the partial derivative which variable is to be regarded 
as the other independent variable and therefore held fixed during the differentiation. 
Thus, 

( ax ) implies the interpretation 
az w 

( ax ) implies the interpretation 
az Y 

{
x =x( z,w) 
y = y(z, w), 

{ 
x = x(y, z) 
w = w(y, z). 

EXAMPLE 2 Given the equations F(x , y , z, w) = 0 and G( x , y, z, w) = 0, 
where F and G have continuous first partial derivatives, calculate 

(ax /az )w-

So/ution We differentiate the two equations with respect to z, regarding x and y as 
functions of z and w , and holding w fixed: 

(Note that the terms F4(aw/ az) and G4(aw/ az) are not present because wand z are 
independent variables , and w is being held fixed during the differentiation.) The pair of 
equations above is linear in ax / az and ay / az . Eliminating ay / az (or using Cramer' s 
Rule, Theorem 6 of Section 10.7), we obtain 

F 3G 2 - F 2G 3 

F1G 2 - F2G1 

In the light of the example s considered above, you should not be too surprised to 
learn that the nonvanishing of the denominator Fi G 2 - F2G I at some point Po = 
(xo, yo, zo, wo) satisfying the system F = 0, G = 0 is sufficient to guarantee that the 
system does indeed have a solution of the form x = x (z, w ) , y = y (z, w) near Po. We 
will not, however, attempt to prove this fact here . 

EXAM p LE 3 Let x, y, u , and v be related by the equations 

{ 
u = x 2 + xy - y2 
v=2xy+y 2 . 

Find (a) (ax / au)v and (b) (ax /a u)y at the point where x = 2 and y = - 1. 
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Solution 
(a) To calculate (ax /a u) 0 we regard x and y as functions of u and v and differentiate 

the given equations with respect to u, holding v constant: 

au ax ay 
1 = - = (2x + y) - + (x - 2y )-

au au au 
av ax ay 

0= - =2 y -+(2 x +2 y)-
au au au 

At x = 2, y = - I we have 

ax ay 
1=3-+4-

au au 
ax ay 

0=-2-+2- . 
au au 

Eliminating ay / au leads to the result (ax/a u) 0 = 1/ 7. 

(b) To calculate (ax /a u)y we regard x and v as functions of y and u and differentiate 
the given equations with respect to u, holding y constant: 

au ax 
1 = - = (2x + y )- , 

au au 

av ax 
- = 2y-. 
au au 

Atx = 2, y = -1 the first equation immediately gives (ax /a u)y = 1/ 3. 

0 Choosing Dependent and Independent Variables 
Some applications involve several variables that must satisfy a smaller number of equa
tions . The question naturally arises concerning which variables should be considered 
independent. Typically, if there are n equations to be satisfied by n + m variables, we 
can choose any n of the variables to be considered as functions of the remaining m 
independent variables; in theory, at least, it is possible to solve then equations for any 
n of the variables . However, application s often come with conventions that prefer one 
set of variables over others . For example , in Section 12.6, we introduced the exten
sive variables in thermodynamic s, which are referred to as proper variables by some 
authors. In mechanics there are also preferred variables which are called canonical. 

However, as alternative selections of independent and dependent variables are 
mathematically sound, and often useful, they cannot be excluded by such conventions. 
As discussed in Section 12.6, a single component gas involves seven variables, energy 
E, entropy S, volume V, temperature T , pressure P , number N of molecules, and 
chemical potential, µ. Among these seven variables there hold four equations . In the 
usual formulation E is a function of three independent variables S, V , and N , while 
P, T , and µ are partial derivatives of that function and so functions of the same three 
independent variables: 

E = f(S , V , N) , 

aE 
P = -- = -f2(S V N) av ' ' ' 

aE 
T = as= /1(S, V, N) , 

aE 
µ = aN = h(S , V, N) . 

But it is just as reasonable (and sometimes preferable) to consider the independent 
variables to be T , V , and N with the other four variables being dependent on these 
three. In particular, we would have E = g (T , V, N) and similar representations would 
hold for S, P , and µ. Confusion arises because f and g are sometimes casually written 
as if they are the same function (e.g. E = E(S , V, N) or E = E(T , V, N)). They 
normally are not the same function. As shown in Exercise 25 of Section 12.6, the 
energy of an ideal gas can be written both as 

3h 2N (N)2/3 (-1L_1) 
E = f(S, V, N) = -- - e 3N k 3 . 

4nm V 
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and 
3 E = g(T, V, N) = 2NkT. 

Clearly , f and g are different functions , in different variables, that nevertheless produce 
the same energy. Observe , also, that while g is allowed to depend on V it is actually 
independent of V, while f is not. These function s may produce the same value, but 
the differences in their partial derivatives cannot be overlooked. We have 

(aE) - -P and (a£) = 0 av s,N - , av T,N . 

Thus , it is necessary to specify what variables are independent in the notation for the 
partial derivative, if it is not otherwise completely clear. The energy of an ideal gas will 
not change with volume , provided the temperature and number of molecules remain 
constant. On the other hand, energy will decrease as volume increases if the entropy 
and number of molecules remain constant. 

EXAM p LE 4 Use the explicit formula(*) for E = f (S, V, N) and the definitions 

of T and P as partial derivatives off to calculate ( a p) and 
as v N 

( aT) , thus showing that these partial derivatives differ only in sign. ' 
av s,N 

Solution Using formulas(*) we obtain 

aE 3h2 N 513 

p = - av = -h(S, V, N) = - 4nm 

ti2 ( NV ) 5/3 } 3~k-n, 
2nm 

so that 

( ~ ~) V,N 

_2_ ~ (N)5/3 }3~k-i) = _2_ P. 
3Nk2nm V 3Nk 

Similarly, 

aE 2 h
2 (Nv)

213 e(3~k-i), T = as = Ji (S, V, N) = 3Nk E = 2nmk 
so that 

( aT) = -~ _!::__ (N213) e(3~k-i) = __ 2_ P. 
aV S,N 3 2nmk V5/3 3Nk 

Therefore, ( ap) = - ( aT) . 
as v,N av s,N 

It is no accident that ( aT) = -( ap) . Since T = f1(S, V,N) and 
av s N as v N 

P = - h(S, V, N), equality or' mixed partial s (Theorem l of Section 12.4) assures us 
that 

( aT) = !12(S, V, N) = h 1 (S, V, N) = - ( ap) · 
av s,N as v,N 

This is one of the general relationships between partial derivatives in thermodynamic s 
known as the Maxwell relation s. Note that the subscripts S, V, and Nin the two partial 
derivatives involved tell us that we are regarding those three variables as the independent 
variables on which the remaining variables T, P, E, and µ depend . There are three 
more Maxwell relations that can be derived in terms of the Legendre transformations 
of E (with N held fixed) introduced in Section 12.6. These are presented in Exercises 
32-34 at the end of this section. 
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DEFINITION 

I 

Jacobian Determinants 
Partial derivatives obtained by implicit differentiation of systems of equations are 
fractions , the numerator s and denominators of which are conveniently expressed in 
terms of certain determinants called Jacobians. 

The Jacobian determinant (or simply the Jacobian) of the two functions , u = 
u (x , y) and v = v (x, y ) , with respect to two variables, x and y, is the determinant 

au au 
a(u,v) ax ay 
a(x , y) av av 

-
ax ay 

Similarly, the Jacobian of two functions , F(x, y , .. . ) and G(x, y , .. . ), with 
respect to the variables , x and y, is the determinant 

a(F , G) 

a(x, y) 

aF aF 

ax 
aG 

ax ay 

The definition above can be extended in the obvious way to give the Jacobian of n 
functions (or variables) with respect ton variables. For example , the Jacobian of three 
functions, F, G, and H , with respect to three variable s, x , y , and z, is the determinant 

a(F G H) I Fi 
' ' - G1 

a(x , y, z) - Hi 

Jacobians are the determinant s of the square Jacobian matrices corresponding to trans
formations of IR" to IR" as discussed briefly in Section I 2.6 . 

EXAMPLE 5 In terms of Jacobians , the value of (ax /az )w, obtained from the 
system of equations 

F(x, y, z, w) = 0, G(x,y,z, w)=O 

in Example 2, can be expressed in the form 

a(F , G) 

a(z, y ) 
a(F , G) . 

a(x , y) 

Observe the pattern here . The denominator is the Jacobian of F and G with respect to 
the two depend ent variables , x and y . The numerator is the same Jacobian except that 
the dependent variable x is replac ed by the independent variable z. 

The pattern observed above is general. We state it formally in the Implicit Function 
Theorem below. 

The Implicit Function Theorem 
The Implicit Function Theorem guarantees that systems of equations can be solved 
for certain variables as functions of other variables under certain circumstances, and it 
provides formulas for the partial derivatives of the solution functions. Before stating 
it, we consider a simple illustrative example . 
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EXAM p LE 6 Consider the system of linear equations 

F(x, y, s, t) = a, x + b1y + c,s + dit + e, = 0 

G(x , y, s, t) = a2x + b2y + c2s + d2t + e2 = 0. 

This system can be written in matrix form : 

where 

&\ = ( :~ !~ ) , e = ( :~ : ~ ) , and E = ( :~ ) . 

The equations can be solved for x and y as functions of s and t provided det(&\)I O; 
this implies the existence of the inverse matrix&\ - I (Theorem 4 of Section 10.7), so 

(;) = -&\ -
1 

( e C) + E) · 
Observe that det(&\) = 8(F , G) /8 (x, y), so the nonvanishing of this Jacobian guaran
tees that the equations can be solved for x and y. 

The Implicit Function Theorem 

Consider a system of n equations in n + m variables , 

I 
F (l) (X1 , x2, .. . , Xm, Yl , Y2, . .. , Yn) = 0 
F(2)(x, , xi, .. . , Xm, YI, Y2, .. . , Ye) : 0 

F(n)(Xi , X2, ... , Xm, YI, Y2, ... , Yn) - 0, 
and a point Po = (ai , a2, ... , am, b1, b2, . .. , bn) that satisfies the system. Suppo se 
each of the function s F (i) has continuous first partial derivatives with respect to each of 
the variables XJ and Yk, (i = 1, .. . , n, j = 1, . . . , m, k = I , .. . , n), near Po. Finall y, 
suppose that 

a(F(l) , F(2), ... , F(n)) I I 0. 

8(YI , Y2, · · · , Yn) Po 

Then the system can be solved for YI, Y2, ... , Yn as functions of x, , x2, ... , Xm near 
Po. That is, there exist functions 

</Ji (x 1, ... , Xm), . . . , </Jn(X1, ... , Xm) 

such that 

</Jj(a1 , .. . , a111) = b1, (j = 1, ... , n) , 

and such that the equations 

F(I) (XI, ... , Xm, <pi (x i , ... , Xm), ... , </Jn (xi, . .. , Xm)) = 0, 

F(2) ( Xt , ... , Xm, <p1 (x i , ... , Xm), . . . , </Jn (xi, .. . , Xm)) = 0, 

F(n)(x i , ... , Xm, <pi (x 1, ... , Xm), .. . , </Jn(x1, ... , Xm)) = 0, 

hold for all (xi , .. . , Xm) sufficiently near (a i , ... , am)-

Moreover , 

aJi = (ayi) 
ax· 8x· 

} } XJ , ... ,Xj- J ,Xj+ l , ··· ,Xm 

8(F(I), F(2), . . . , F(n)) 
8(y1, . .. , Xj, . .. , Yn) 
8(F(l), Fc2), . . . , F(n)). 
8(y1, .. . , Yi, ... , Yn) 
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734 CHAPTER 12 Partial Differentiation 

Remark The formula for the partial derivatives is a consequence of Cramer 's Rule 
(Theorem 6 of Section 10.7) applied to the n linear equations in the n unknowns 
ay 1/ axj, ... , ay,, / axj obtained by differentiating each of the equations in the given 
system with respect to Xj. 

EX A M p L E 7 Show that the system 

{ 
xy2 + x zu + yv 2 = 3 
x 3yz + 2xv - u2v2 = 2 

can be solved for (u, v) as a (vector) function of (x, y, z) near the point Po where 
(x, y, z, u, v) = (1, l , l , 1, l ),a ndfindthe valueof av / ay forthesolutionat(x, y, z) = 
(1, 1, 1). 

Solution Let { F(x, Y, z, u , v) = xy2 + xzu + yv
2 

- 3 . Then 
G(x , y, z, u , v) = x 3yz + 2xv - u2v2 - 2 

a (F, G) I = I xz 2yv 11 = 1 1 21 = 4 
a (u, v) Po -2uv 2 2x - 2u 2v Po -2 0 · 

Since this Jacobian is not zero, the Implicit Function Theorem assures us that the 
given equations can be solved for u and v as functions of x, y, and z, that is, for 
(u , v ) = f(x, y, z). Since 

a (F , G) I I xz 
a (u , y) Po = -2uv 2 2xy + v

2 
I 1 = 11 31 = 7 

x3z Po -2 1 ' 

we have 

a (F,G) 

(
av ) a (u ,y ) I 
ay x,z = - a (F, G) Po 

a (u , v) 

7 

4 

Remark If all we wanted in this example was to calculate av/ ay , it would have been 
easier to use the technique of Example 3 and differentiate the given equations directly 
with respect toy, holding x and z fixed. 

EXAMPLE 8 If the equations x = u2 + v 2 and y = uv are solved for u and v in 
terms of x and y, find, where possible, 

au 

ax' 

au 

ay' 

av 

ax' 
and 

av 

ay 

a (u ,v ) ; a (x,y) 
Hence, show that --- = 1 -(--, provided the denominator is not zero. 

a (x ,y ) a u,v) 

Solution The given equation s can be rewritten in the form 

F(u , v, x, y) = u2 + v2 
- x = 0 

G(u ,v,x,y ) = uv- y = 0. 

Let 

J = a( F , G) = I 2u 2v I = 2(u 2 - v2) = a (x , y ) . 
a (u,v) V U a (u,v) 
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If u2 =fa v2 , then J =fa O and we can calculate the required partial derivatives: 

au = _ _!_ a(F, G) = _ _!_ 1-1 
ax J a(x,v) J 0 

au = _ _!_ a(F , G) = _ _!_I o 
ay J a(y,v) J -l 

av = _ _!_ a(F , G) = _ _!_I 2u 
ax ] a(u,x) ] V 

av = _ _!_ a(F , G) = _ _!_I 2u 
ay ] a(u, y) ] V 

Thus , 

2v I u 
u 2(u 2 - v2) 

2v I -2v 
u - 2(u 2 - v2) 

-11 -v 
0 - 2(u2 - v2) 

o I 2u 
-1 - 2(u 2 - v2) · 

a(u, v) 1 I u 
a(x,y) = J2 - v --;:v I = ; 2 = ~ = ac/ y) · 

a(u,v) 

Remark Note in the above example that au/ ax =fa I / (ax/ au). This should be 
contrasted with the single-variable situation where , if y = f (x) and dy / dx =fa 0, 
then x = 1- 1 (y) and dx / dy = 1/ (dy / dx). Th.is is another reason for distinguishin g 
between a and d. It is the Jacobian rather than any single partial derivative that takes 
the place of the ordinary derivative in such situation s. 

Remark Let us look briefly at the general case of invertible transfor mation s from JR11 

to JR". Suppose that y = f(x) and z = g(y) are both functions from JR11 to JR11 whose 
components have continuous first partial derivatives . As shown in Section 12.6, the 
Chain Rule implies that 

(~ azi) C azi) C' ay,) 
ax1 

::: - :;: 
ayn ax1 axn 

. . . . 

a; n azn azn ayn 
- -

ax1 axn ay1 ayn ax1 axn 

This is just the Chain Rule for the composition z = g(f (x)). It follows from Theorem 
3(b) of Section 10.7 that the determin ants of these matrices satisfy a similar equation : 

a (z1 · · ·Zn) a(z1 · · ·Zn) a(y 1 · · · Yn) 

a(x1 · · · Xn) a(y1 · · · Yn) a(x 1 · · · Xn). 

If f is one-to -one and g is the inverse off, then z = g(f(x )) = x, and 
a(z 1 · • • Zn)/a(x 1 · · · xn) = 1, the determinant of the identity matrix . Thus , 

a(x1 · · · Xn) = ----,------,--
a (y1 · · · Yn) a(y1 · · · Yn) . 

a(x1 · · · Xn) 

In fact, the nonvanish.ing of either of these determin ants is sufficient to guarantee that 
f is one-to-one and has an inverse. Thi s is a special case of the Implicit Function 
Theorem. 

We will encounter Jacobians again when we study transformations of coordinates 
in multiple integrals in Chapter 14. 
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EXERCISES 12.8 

In Exercises 1-12, calculate the indicated derivative from the 
given equation( s). What condition on the variable s will guarantee 
the existence of a solution that has the indi cated derivative? 
Assume that any general functions F , G , and H have continuou s 
first partial derivative s. 

1. dx if x y3 + x 4y = 2 
dy 

oz 2 3 x z 
3. - if z + xy = -

ay Y 

ax . 3 2. - 1f xy = y - z 
ay 

ay . z 4. - 1f eYz - x z In y = 1r 
oz 

5. ox if x 2y2 + y2z2 + z2t 2 + t2w2 - x w = 0 
aw 

6. dy if F(x,y , x 2 - y2) = 0 
dx 
au 

7. -ifG(x,y ,z ,u,v)=O 
ax 

8. oz ifF(x 2 - z2,y2 +x z)=0 
ox 

9. ow if H(u 2w , v2t, wt)= 0 
at 

10. ( oy) if xyu v = 1 and x + y + u + v = 0 
OX LI 

11. ( ax) ifx 2 +y2 +z 2 +w 2 =1,and 
ay z 

x + 2y + 3z + 4w = 2 

12. du if x 2y + y2u - u3 = 0 and x 2 + y u = l 
dx 

13. If x = u3 + v 3 and y = uv - v2 are solved for u and v in 
terms of x and y, evaluate 

OU 
ax ' 

au 

ay' 

av 

ax ' 

av 
ay , 

and 

at the point where u = l and v = I. 

o(u , v) 

o (x, y ) 

14. Near what points (r, s) can the transformation 

x = r2 + 2s , y = s2 
- 2r 

be solved for r ands as functions of x and y? Calculate the 
values of the first partial derivatives of the solution at the 
origin. 

15. Evaluate the Jacobian o(x, y ) /o (r , 0) for the transformation 
to polar coordinates: x = r cos 0, y = r sin 0. Near what 
points (r , 0) is the transformation one-to-one and therefore 
invertible to giver and 0 as functions of x and y? 

16. Evaluate the Jacobian o(x, y, z) /o (R , cp, 0), where 

x = Rsincpcos0, y = Rsincp sin0 , and z = Reos¢. 

This is the transformation from Carte sian to spherical 
coordinates in 3-space that we discussed in Section 10.6 . 
Near what points is the transformation one-to-one and hence 
invertible to give R , cp, and 0 as functions of x, y , and z? 

17. Show that the equations 

I xy 2 + zu + v 2 = 3 
x3z + 2y - uv = 2 
xu + yv - xy z = 1 

18. 

can be solved for x, y, and z as functions of u and v near the 
point Po where (x, y, z, u, v) = (I , 1, 1, 1, 1), and find 
(oy/o u) v at (u , v ) = (J , I). 

. { xeY + uz - cos v = 2 Show that the equation s 2 2 1 
can be 

U COS y + X V - y Z = 
solved for u and v as function s of x, y, and z near the point 
Po wher e (x, y, z) = (2 , 0 , 1) and (u, v) = (I , 0) , and find 
(ou/oz )x ,y at (x, y, z) = (2 , 0 , 1). 

19. Find dx / dy from the system 

F (x, y, z, w) = 0, G( x, y, z, w) = 0, H(x , y , z, w) = 0. 

20. Given the system 

F( x,y,z, u ,v )=O 

G (x , y, z, u , v) = 0 

H (x, y, z, u , v) = 0, 

how many possible interpretations are there for ox / oy? 
Evalu ate them . 

21. Given the system 

F( x 1,x2, ... , xg) = 0 

G (x 1,x2, . .. ,xg ) = 0 

H (x 1,x2, ... ,xg ) = 0, 

how many possible interpret ation s are there for the partial 

- ? Evaluat e - . ax , ( ax ,) 

8x2 8x2 x4,x6,x1 ,xs 

22. If F( x, y, z) = 0 determines z as a function of x and y, 

calculate a2z/o x 2, o2z/8 x oy, and a2z/a y2 in terms of the 
partial derivative s of F. 

23. If x = u + v , y = uv, and z = u2 + v 2 define z as a function 
of X and y, find fJz/ fJx, fJz/fJy, and o2z/fJx fJy. 

24. A certain gas sati sfies the law p V = T - ~~ , 
where p = pressure, V = volume , and T = temperature . 

(a) Calculate fJT /o p and fJT ;a v at the point where 
p = V = 1 and T = 2. 

(b) If measurements of p and V yield the values 
p = 1 ± 0 .001 and V = 1 ± 0.002 , find the approximate 
maximum error in the calculated value T = 2. 

25. IfF( x,y,z) =0 ,s howth at(
8

x ) (
0Y) (0z) =-1. 

cJy z OZ X OX y 

Derive analogou s results for F( x, y, z, u) = 0 and for 
F( x, y, z, u, v) = 0. What is the general case? 

D 26. If the equation s F( x, y, u , v ) = 0 and G( x, y, u , v) = 0 are 
solved for x and y as functions of u and v , show that 

a(x, y ) _ a(F, G) ; a (F , G) 
o(u , v ) - o(u , v) o(x, y ) · 
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0 27. If the equations x = f(u, v), y = g(u, v) can be solved for u 
and v in terms of x and y, show that 

D 30. Prove the converse of Exercise 29 as follows: Let 
u = f (x , y ) and v = g(x , y), and suppose that 

a(u,v) = 
1

/ a(x,y )_ 

a (x,y) a(u,v) 

Hint: Use the result of Exercise 26. 

a (u, v)/a(x, y) = au, g) / a (x, y) is identically zero for all 
x and y. Show that (au / ax)u is identically zero. Hence u, 
considered as a function of x and v, is independent of x; that 
is, u = k(v) for some function k of one variable. Why does 
this imply that f and g are functionally dependent? 

0 28. If x = f(u , v), y = g(u , v), u = h(r , s), and v = k(r, s) , 
then x and y can be expressed as functions of r ands. Verify 
by direct calculation that 

Thermodynamics Problems 
31. Use the different versions of the equation of state, presented 

in this section, to determine explicit functions u and v such 
that S = u(E, V, N) and S = v(T, V, N) . 

0 29. 

a (x, y) a (x, y) a (u, v) 

a( r, s) a (u,v) a (r,s) 

This is a special case of the Chain Rule for Jacobians. 

In Exercises 32-34 verify the given Maxwell relation by using a 
suitable Legendre transformation (see the Thermodynamics 
subsection of Section 12.6) to involve the appropriate set of 
independent variables. 

0 32" (:;t,N = (:it ,N. Two functions , f (x, y) and g(x, y), are said to be 
functionally dependent if one is a function of the other; that 
is, if there exists a single-variable function k(t) such that 

0 33
" (~~t,N = G:t,N· 

0 34
" (!!t ,N = -G~t.N· 

f (x, y) = k( g(x, y)) for all x and y . Show that in this case 

au, g)/a(x, y) vanishes identically. Assume that all 
necessary derivatives exist. 

Taylor's Formula, Taylor Series, and Approximations 

To simplify the manipulation of 
many variables, irrespective of 
how many there are, it is 
convenient to introduce the idea 
of a function of a vector, which 
is an intuitively straightforward 
extension from functions of 
scalars. If x has components 
(x1, xz , . . . , Xn), then f (x) just 
means f (x1, x2, . .. , x 11), a 
function of n variables 

As is the case for functions of one variable, power series representations and their 
partial sums (Taylor polynomials) can provide an efficient method for determining the 
behaviour of a smooth function of several variables near a point in its domain . In this 
section we will look briefly at the extension of Taylor 's Formula and Taylor series to 
such functions . We will do this for functions of n variables as it is no more difficult to 
do this than to treat the special case n = 2. 

As a starting point , rec all Taylor 's Formula for a function F(t) with continuous 
derivatives of order up to m + l on the interval [0, 1). (See Theorem 12 in Section 
4.10, and put f = F, a= 0, x = h = 1, ands= 0 in the version of Taylor's Formula 
given there.) 

F"(O) F (m)(O) F<111+1\0) 
F(l) = F(O)+ F'(O)+--+···+--+---, 

2! m! (m+l)! 

where 0 is some number between O and 1. (The last term in the formula is the Lagrange 
form of the remainder.) 

Now suppose that a= (a1, a2, . .. , a11) and h = (h 1, h2, ... , h,,) belong to IR". If 
f is a function of x E IR" that has continuous partial derivatives of orders up tom + I 
in an open set containing the line segment joining a and a+ h, we can apply the above 
formula to 

F(t) = f (a+ th), (0 S t S 1). 

By the Chain Rule we will have 

F'(t) = hifhi(a +th)+ hif1,z(a +th)+·· · + h 11/h,, (a+ th) 

= (h • V)f(a + th), 

where 

(h • V)/(a +th)= ((h1 D1 + h2D2 + · · · + h11D,,)f(x))[ 
x=a+th 

www.konkur.in



738 CHAPTER 12 Partial Differentiation 

and D1 = 8/8 x1, (1 ::, p::, n). Similarly, 

F"(t) = h1h1!11 (a+ th)+ h1hzf12(a +th)+···+ h,,h,if ,,,,( a + th) 

=(h•V/J(a+th) 

pUl(t) = (h. v)1 f (a+ th) 

Thus F(l) = f(a+h), F(O) = f(a) , and pUl(O) = (heV )l f(a). The Taylor 
formula given above thus says that 

f(a + h) = f(a) + h • V f(a) + (h • V)2f(a) + ... + (h • vr f(a) 
2! m! 

(h • V)' 11+1 J(a + 0h) +--------
(m + l)! 

_ ~ (h • V) 1 f (a) (h • vyn + 1 f (a+ 0h) 
-L.., ., + ( 1)1 

)=0 J. ,n + . 
= P111(h) + R111(h, 0). 

This is Taylor's Formula for f about x = a. P111 (h) is a polynomial of degree m in the 
components of h Pm (h) is called the mth degree Taylor polynomial off about x = a. 
The term corresponding to j in the summation defining P111 is, if not zero, a polynomial 
of degree exactly j in the components of h, whose coefficients are jth order partial 
derivatives off evaluated at x = a. The remainder term R111 (h, 0) is also a polynomial 
in the components of h, each of whose terms if not zero has degree exactly m + 1, but 
its coefficients are (m + I )st order partial derivatives off evaluated at an indeterminate 
point a+ 0h along the line segment between a and a+ h. 

Sometimes it is useful to replace the explicit remainder in Taylor 's Formula with 
a Big-0 term that is bounded by a multiple of lhlm+I as lhl -+ 0. (See Section 4.10.) 

Ch • V) 2 f( a) (h • V) 111f(a) 
f(a+h) = f(a)+h •V f(a)+----+· · ·+----+O(l hlm+l). 

2! m! 

If all partial derivatives off are continuous, and if there exists a positive number 
r such that whenever lhl < r we have for all 0 E [O, 1), 

Jim Rm+I (h, 0) = 0, 
m---+oo 

then we can represent f (a+ h) as the sum of the Taylor series 

~ (h • V) J f (a) 
f(a + h) = L.., . I . 

j=O J. 

Remark An alternative approach is to develop Taylor 's formula with directional 
derivatives. Following Section 12.7, a function g(s) is introduced , wheres - so is 
distance, measured along a line L in direction u, from the point on L corresponding to 
s = so. As in Section 4.10, a Taylor formula for g(s) is 

g(s) = g(so)+g'(so)(s-so)+~g"(so)(s -so)2+ · +~gC111l(so)(s-so) 2+0(1s-sol 111+ 1
). 

Since d / ds = u • V is the directional derivative operation in direction u, the directional 
derivative extends to all orders in the Taylor expansion in s. We may choose g(s) = 
J(a + (s - so)u), where (s - so)u = h. It follows that lhl11 = Is - sol11 and 

g(s) = f(a+h) = f(a)+(h eV )f(a)+ (h • V)2 f(a) .. + (h • vr f(a) +O(l hlm+I) 
2! m! 

as above. 
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We stre s that the expression 
(hD 1 +k D2)jf(a , b)means 
first calculate 
(h D1 + kD2)j f (x, y) and then 
evaluate the result at 
(x , y) = (a, b). 
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EXAM p LE 1 Let us illustrate the above idea s with a simple special case . If f 
is a function of two variable s, x and y having continuous partial 

derivative s of order up to 4 in the disk (x - a)2 + (y - b)2 ::, r2, then for h = (h , k) 
in IR2 satisfying h2 + k2 < r we have 

f(a + h, b + k) = P3(h , k) + R3(h , k , 0) 

l 2 = f (a , b) + (hD, + kD 2)f (a , b) + 
2

! (hD1 + kD 2) f(a , b) 

1 3 + 
3

! (hD1 + kD 2) f(a , b) + R3(h, k , 0) 

= f (a , b) + hf, (a , b) + kfi (a , b) + ;, (1i2
!11 (a , b) + 2hkf!2(a , b) + k2 h2 (a , b)) 

+ ;! ( h3
!111 (a , b) + 3h 2kfi 12(a , b) + 3hk 2 f m (a, b) + k3 h22 (a , b)) + R3(h, k , 0) , 

where 

Note that since O < 0 < l , all the 4th order partial derivatives of f are bounded on 
the line segment from (a, b) to (a+ 0h , b + 0k). Thi s is why the remainder term is 
O((h 2 + k2)2). 

As for function s of one variable , the Taylor polynomial of degree m, provides the 
"be st" nth-degree polynomial approximation to f (x, y ) near (a , b) . For n = 1 thi s 
approximation reduce s to the tangent plan e approximation 

f(x, y ) ~ f(a , b) + J,(a , b)( x - a) + h (a , b)( y - b) . 

EXAM p LE 2 Find a second-degree polynomial approximation to the function 

f(x , y ) = Jx 2 + y 3 near the point (1 , 2) , and use it to estimate 

the value of J (l.02) 2 + (1.97) 3. 

Solution For the second-degree approxim ation we need the value s of the partial 
derivative s off up to second order at (l , 2) . We have 

f(x , y) = j x2 + y3 

X 

J,(x , y) = Jx2 + y3 

3y2 

h( x , y ) = 2Jx2 + y3 

y3 
f 11(x, y ) = (x2 + y3)3/ 2 

-3 xy 2 

!12(x, y ) = 2(x2 + y3)3/2 

I2 x 2y + 3y 4 

f 22(x, y ) = 4(x 2 + y3)3/ 2 

Thus , 

f (l , 2)=3 

1 
!1 (1 , 2) = 3 

h (l , 2)=2 

8 
!11 (1, 2) = 

27 

2 
f!2(l , 2) = -9 

2 
h 2(l , 2) = 3· 

1 1 ( 8 ( 2) 2 ) f(l + h, 2 + k) ~ 3 + -h + 2k + - -h 2 + 2 -- hk + -k 2 
3 2! 27 9 3 

www.konkur.in



740 C HAPT ER 12 Partial Differ enLiation 

or, setting x = I+ hand y= 2 + k , 

I 4 2 2 l 2 f(x y)= 3+-(x-1)+2(y - 2)+-(x- l) --(x-l)(y-2)+-(y-2). 
' 3 27 9 3 

Thjs is the required second-degree Taylor polynomial for f near ( l , 2) . Therefore , 

J(l.02) 2 + (I .97)3 = f(l + 0.02, 2 - 0.03) 

l 4 
~ 3 + -(0.02) + 2(-0.03) + -(0.02) 2 

3 27 

- ~(0.02)(-0.03) + ~( - 0.03)2 

9 3 
~ 2.947 1593. 

(For comparison purposes: the true value is 2.947 163 6 ... The approx imation is 
accurate to 6 significant figures.) 

As observed for function s of one variable, it is not usually necessary to calculate 
derivatives in order to determine the coefficients in a Taylor series or Taylor polynomial. 
It is often much easier to perform algebra ic manipulations on known series. For 
instance , the above examp le could have been done by writing f in the form 

f( L + h, 2 + k) = J(I + h) 2 + (2 + k)3 

= J9 + 2h + h2 + l 2k + 6k 2 + k3 

2h + h2 + l2k + 6k 2 + k3 

=3 I + 
9 

and then applying the binomial expansion 

.JT+t = 1 + - t + - - -- t + · · · 1 1 (1) ( 1) 2 
2 2! 2 2 

2h + h2 + l 2k + 6k 2 + k3 
with t = 

9 
to obtain the terms up to second degree in the 

variables h and k. 

EXAMPLE 3 Find the Taylor polynomial of degree 3 in powers of x and y for 
the function f(x, y) = ex- 2Y . 

Solution The required Taylor polynomial will be the Taylor polynomial of degree 3 
for e1 evaluated at t = x - 2y: 

1 J 
P3(x, y ) = 1 + (x - 2y ) + 

2
! (x - 2y)2 + 

3
! (x - 2y) 3 

1 l 4 
= J + x - 2y + -x 2 - 2x y + 2y 2 + -x 3 - x 2y + 2xy 2 

- -y3 
2 6 3 

i Remark Maple can, of course, be used to compute multivariate Taylor polynomjals 
with its function mtaylor , which, depending on the Maple version, may have to be 
read in from the Maple library before it can be used if it is not part of the Maple kernel. 

> readlib (mtaylor ): 

Arguments fed to mtaylor are as fol lows: 

(a) an express ion involving the expansion variables 
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SECTION 12.9: Taylor's Formula, Taylor Series, and Approximation s 741 

(b) a list whose elements are either variable names or equations of the form 
va riabl e=val ue giving the coordinates of the point about which the expan
sion is calculated. (Just naming a variable is equivalent to using the equation 
v a riabl e=O .) 

(c) (optionally) a positive integer m forcing the order of the computed Taylor polyno
mial to be Jess than m. If m is not specified , the value of Maple's global variable 
"Order" is used . The default value is 6. 

A few examples should suffice. 

> mtaylor (cos (x+y"2) , [x , y]) ; 

1 2 2 l4 l4 l23 
1 - -X - y X + -X - - y + -y X 

2 24 2 6 

> mtaylor(cos(x+y"2) , [x =Pi , yl,5) ; 

l 2 2 l 4 l4 -1 + - (x - n) + y (x - n) - - (x - n) + -y 
2 24 2 

> mtaylor(g(x , y), [x=a , y=b] , 3) ; 

1 
g(a, b) + D1 (g)(a, b)(x - a)+ D2(g)(a , b)(y - b) + 2D1,1 (g)(a , b)(x - a)2 

1 2 + (x - a)D1 ,2(g)(a, b)( y - b) + 2D2,2(g)(a , b)(y - b) 

The function mt aylor can be a bit quirky. It has a tendency to expand linear 
terms; for example, in an expansion about x = 1 and y = -2, it may rewrite terms 
2 + (x - 1) + 2(y + 2) in the form 5 + x + 2y. 

Approximating Implicit Functions 
In the previous section we saw how to determine whether an equation in several 
variables could be solved for one of those variables as a function of the others. Even 
when such a solution is known to exist, it is not usually possible to find an exact formula 
for it. However, if the equation involves only smooth functions, then the solution will 
have a Taylor series. We can determine at least the first several coefficients in that 
series and thus obtain a useful approximation to the solution. The following example 
shows the technique . 

EXAM p LE 4 Show that the equation sin(x + y ) = xy + 2x has a solution of the 
form y = f (x) near x = 0 satisfying f (0) = 0, and find the terms 

up to fourth degree for the Taylor series for f(x) in powers of x. 

Solution The given equation can be written in the form F( x, y) = 0, where 

F(x, y) = sin(x + y) - x y - 2x. 

Since F(O, 0) = 0 and F2(0 , 0) = cos(O) = l =I= 0, the equation has a solution 
y = f(x) near x = 0 satisfying /(0) = 0 by the Implicit Function Theorem. It is not 
possible to calculate f (x) exactly, but it will have a Maclaurin series of the form 

(There is no constant term because f (0) = 0.) We can substitute this series into 
the given equation and keep track of terms up to degree 4 in order to calculate the 
coefficients a1, a2, a3, and a4. For the left side we use the Maclaurin series for sin to 

www.konkur.in



742 CHAPTER 12 Partial Differentiation 

EXE RC IS ES 12.9 

obtain 

The right side is 

Equating coefficients of like powers of x, we obtain 

a2 = a , 

l 3 
a3 - 6 (l + a 1) = a2 

l 2 
a4 - - (l + a,) a2 = a3 

2 

Thus, 

a,= l 

a2 = l 

7 
a3 = -

3 
13 

a4=-. 
3 

2 7 3 13 4 
Y = f (x) = X + X + - X + - X + · · · . 

3 3 

(We could have obtained more terms in the series by keeping track of higher powers of 
x in the substitution process.) 

--------------------------- -'·· 
Remark From the series for f (x) obtained above, we can determine the values of 
the first four derivatives off at x = 0. Remember that 

f(k) (0) 
ak = ---. 

k! 

We have, therefore , 

J'(O) = a 1 = l 

J'"(O) = 3!a3 = 14 

j"( O) = 2!a2 = 2 

/ 4\ 0) = 4!a4 = 104. 

We could have done the example by first calculating these derivatives by implicit 
differentiation of the given equation and then determining the series coefficients from 
them. This would have been a much more difficult way to do it. (Try it and see.) 

In Exercises 1-6, find the Taylor series for the given function 
about the indicated point. 

2. f(x, y) = ln(l + x + y + x y), (0, 0) 

3. f(x ,y )=tan - 1(x +xy), (0,- 1) 
1 

1. f(x,y) = 
2

+xy 2 , (0, 0) 4. f(x,y)=x 2 +xy+y3, (1,- 1) 
2 2 

5. f(x , y) = ex +y , (0, 0) 
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6. f (x, y) = sin(2x + 3y), (0 , 0) 

In Exe rcises 7- 12, find Taylor polynomials of the indicate d 
degree for the given function s near the given point. After 
calcul ating them by hand, try to get the same results using 
Mapl e's mtaylor function. 

l 
7. f (x, y) = ----, degree 3, near (2, I) 

2 +x -2y 

8. f (x, y ) = Jn(x 2 + y2), degree 3, near ( l , 0) 

r +y2 
9. f (x, y) = Jo e-

12 
dt, degree 3, near (0, 0) 

10. f (x, y) = cos(x + sin y), degree 4, near (0, 0) 

sin x " 11. f(x, y) = -, degree 2, near (2 , 1) 
y 

l +x 
12. f(x, y) = 

2 4
, degree 2, near (0, 0) 

I +x +y 
In Exercises 13- 14, show that, for x near the indicated point 

CHAPTER REVIEW 
Key Ideas 

• What do the following sentences and phrases mean? 

o -8 is the graph of f (x, y ) . 

o e is a level curve off (x , y). 

0 lim (x ,y )---+(a,b) f (x, y) = L. 

o f (x, y) is continuous at (a, b). 

o the partial derivative (o/o x)f(x, y) 

o the tangent plane to z = J(x, y) at (a, b) 

o pure seco nd parti als o mixed seco nd part ials 

o f (x, y) is a harmonic function. 

o L (x, y) is the linear ization off (x, y) at (a, b). 

o the differential of z = f (x, y) 

o f(x, y) is differentiable at (a , b). 

o the gradi ent off (x, y) at (a, b) 

o the directional derivative of f (x, y) at (a , b) in directio n v 
o the Jacobian determinant o(x, y) /o (u, v) 

• Under what conditions are two mixed partial deriva
tives equal? 

• State the Chain Rule for z = f (x, y), where x = 
g(u, v), and y = h(u, v). 

• Describe the process of calculating partial derivatives 
of implicitly defined functions. 

• What is the Taylor series of f(x, y ) about (a , b)? 

Review Exercises 
4y2 

1. Sketch some level curves of the functi on x + - . 
X 

2. Sketch some isotherms (curves of co nstant temp era ture) for 

CHAPTER REVIEW 7 43 

x = a, the given equation has a solution of the form y = f (x) 
talcing on the indica ted value at that point. Find the first three 
nonzero terms of the Taylor series for f (x) in power of x - a. 

D 13. x sin y = y + sin x , near x = 0, with f(O) = 0 

D 14 . .J I + xy = 1 + x + In( ! + y), near x = 0, with J(O) = 0 

D 15. Show that the equation x + 2y + z + e22 = I has a solution 
of the form z = f (x, y) near x = 0, y = 0, where 
f (0, 0) = 0. Find the Taylor polynomial of degree 2 for 
f (x, y) in powers of x and y. 

D 16. U e ser ies methods to find the value of the partial derivative 
!112(0, 0) given that f (x , y) = arc tan (x + y). 

D 17. Use ser ies methods to evaluate 

a4" t I 
ox2 " oy2" l + x2 + y2 (0,0). 

the tempera ture function 

140 + 30x 2 - 60x + 120y 2 

T = ------- ( oC). 
8 + x2 - 2x + 4 y2 

Wh at is the coo lest loca tion? 

ii 3. Sketc h some level curves of the polynomial functio n 
f(x, y) = x 3 - 3xy2 . Why do you think the graph of this 
funct ion is ca lled a monkey saddle? 

4. Let f (x , y) = I x2: y2, if (x , y) :/= (0, 0) 

0, if (x, y) = (0, 0). 
Ca lculate eac h of the following partial derivatives or exp lain 
why it does not exist: ! 1 (0, 0), h (0, 0), h 1 (0, 0), fo( O, 0). 

x3 _ y3 
5. Let f (x , y) = - 2-- 2 . Where is f (x, y) continuous? To 

X - y 
what add itional set of points does f (x , y) have a continuous 
exte nsion? In partic ular, can f be exten ded to be continuous 
at the origin? Can f be defined at the or igin in such a way 
that its first partial derivatives exis t there? 

6. The surface -8 is the graph of the function z = f (x, y), where 
f (x , y) = ex 2-2x- 4y2+5 . 

(a) Find an equati on of the tange nt plane to -8 at the point 
(1,- 1, 1). 

(b) Sketch a representative sampl e of the leve l curves of the 
function f (x, y). 

7. Consider the surface -8 with equatio n x 2 + y2 + 4z2 = 16. 

(a) Find an equation for the tangent plane to -8 at the point 
(a, b, c) on -8. 

(b) For which points (a, b, c) on -8 does the tange nt plan e to 
-8 at (a, b, c) pass through the point (0, 0, 4)? De scribe 
this set of points geo metrica lly. 

(c) For which points (a, b, c) on -8 is the tangent plan e to -8 
at (a , b, c) paralJel to the plane x + y + 2v'2 z = 97 ? 

www.konkur.in



744 CHAPTER 12 Partial Differenti ation 

8. Two variable resistor s, R1 and R2, are connected in parallel 
so that their combined resist ance , R, is given by 

1 1 1 - =-+- . 
R R1 R2 

If R1 = 100 ohms ±5% and R2 = 25 ohms ±2 %, by ap
prox imately what percentage can the calculated value of their 
combined resi stance R = 20 ohms be in error? 

9. You have measured two sides of a triangular field and the angle 
between them. The side measurement s are 150 m and 200 m, 
each accurate to within ± 1 m. The angle measurem ent is 30°, 
accurate to within ±2 ° . What area do you calculate for the 
field, and what is your estimate of the maximum percent age 
erro r in this area? 

10. Suppose that T(x , y, z) = x 3y + y 3z + z3x gives the temper
ature at the point (x , y, z) in 3-space. 

(a) Calculate the directional derivative of T at (2 , - 1, 0) in 
the dire ction toward the point (1, J, 2). 

(b) A fly is movin g throu gh space with constan t speed 5. At 
time t = 0 the fly crosses the surface 2x 2 + 3y2 + z2 = 
11 at right angles at the point (2, - J, 0) , movin g in the 
direction of increasing temperatur e. Find dT / dt at I = 0 
as experienced by the fly. 

11. Consider the function f( x, y, z) = x 2y + y z + z2
. 

12. 

(a) Find the directional derivativ e off at (1 , - 1, I ) in the 
direction of the vector i + k. 

(b) An ant is crawling on the plan e x + y + z = l th.rough 
(I , -1, I). Suppose it crawls so as to keep f constant. In 
what direction is it going as it passes through ( I , - 1, J )? 

(c) Another ant crawls on the plane x + y + z = l , movin g 
in the direct.ion of the greate st rate of increa se off. Find 
its direction as it goes throu gh (I , -1, I) . 

2 2 7r xy 2 
Let f(x , y, z) = (x +z ) sin 2 + yz . Let Po be the point 

(1, 1, - l). 

(a) Find the gradient off at Po. 

(b) Find the linear ization L( x , y, z) off at Po. 

(c) Find an equation for the tangent plane at Po to the level 
surface off through Po. 

(d) If a bird flies th.rough Po with speed 5, head ing directl y 
toward the point (2, -1 , l ), what is the rate of change of 
f as seen by the bird as it passes th.rough Po? 

(e) In what direction from Po sho uld the bird fly at speed 5 
to experience the grea test rate of increase of/? 

13. Verify that for any constant , k, the function 

u(x, y) = k (1n cos(x / k)-ln cos(y / k)) satisfies the minimal 

surface equa tion 

( 2 ) 2 I + Ux Uyy - UU xU y Ux y + (l + Uy )U ,u = 0. 

14. The equation s F(x, y, z) = 0 and G(x , y, z) = 0 can de
fine any two of the variables x, y, and z as functions of the 
remain.ing variable . Show that 

dx dy d z 
---= ! . 
dy dz dx 

{ 

X - u3 - UV 15. The equations - 2 define u and v as functions 
y = 3uv + 2v 

of x and y near the point P where (u , v, x, y ) = (-1, 2 , 1, 2). 

au au 
(a) Find - and - at P. 

ax ay 

(b) Find the approximate value of u when x = l.0 2 and 
y = 1.97. 

16. The equations { u = x 2

2 
+ y2 2 define x and y impli citly as 

V = X - 2x y 

functions of u and v for value s of (x , y) near ( 1, 2) and values 
of (u, v) near (5, - 7). 

ax ay 
(a) Find - and - at (u, v) = (5 , - 7) . au au 
(b) If z = ln(y2 - x 2), find az at (u, v) = (5, - 7). au 

Challenging Problems 
1. (a) If the graph of a function f (x, y) that is differentiable at 

(a, b) contain s part of a straight line through (a, b), show 
that the line lies in the tangent plane to z = f (x , y) at 
(a, b) . 

(b) If g( t) is a differ entiable function oft , descr ibe the surface 
z = yg(x / y) and show that all its tangent plan es pas s 
throu gh the origin. 

2. A particle moves in 3-space in such a way that its dir ec tion of 
motion at any point is perp endicular to the level surface of 

f(x, y, z) = 4 - x2 
- 2y2 + 3z2 

through that point. If the path of the particle passes through 
the point (I , I , 8), show that it also passes through (2, 4 , I). 
Doe s it pass throu gh (3 , 7, O)? 

i 3. (The Laplace operator in spherical coordinates) If 
u(x, y, z) has continu ous second partial derivative s and 

v( R,¢, 0) = u(R sin ¢c os0 , R sin ¢s in0 , Reos ¢), 

show that 

You can do thi s by hand , but it is a lot eas ier using comp uter 
algebra. 

4. (Spherically expanding waves) If f is a twice 

differentiable function of one variable and R = J x 2 + y 2 + z2, 
f (R - ct) 

show that u(x, y, z, t) = ---- sat isfies the three
R 

dimensional wave equation 

What is the geo metr ic significance of thi s solution as a function 
of increasi ng time t? Hin t: You may want to use the result 
of Exercise 3. In this case v( R,¢, 0) is independent of¢ 
and 0. 
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• Extreme Values 

z 

z = x2 + y2 

y 

X 

Figure 13.1 x 2 + y2 has minim um value 

0 at the origin 

Applications of 
Partial Derivatives 

'' I don't know what I may seem to the world, but as to myself, I seem 
to have been only like a boy playing on the sea-shore and diverting 
myself in now and then finding a smoother pebble or a prettier shell 
than ordinary, whilst the great ocean of truth lay all undiscovered 
before me. 

745 

'' Isaac Newton 1642-1727 

I n trod LI Ct ·1 On 1n this chapter we will discuss some of the ways partial 
derivatives contribute to the understanding and solution 

of problems in applied mathematics. Many such problems can be put in the context of 
determining maximum or minimum values for functions of several variables , and the 
first four sections of this chapter deal with that subject. The remaining sections discuss 
some miscellaneous problems involving the differentiation of functions with respect 
to parameters, and also Newton 's Method for approximating solutions of systems of 
nonlinear equations. Much of the material in this chapter may be considered optional. 
Only Sections 13.1-13.3 contain core material, and even parts of those sections can be 
omitted (e.g., the discussion of linear programming in Section 13.2). 

The function f(x, y) = x 2 + y2, part of whose graph is shown in Figure 13.1, has 
a minimum value of 0; this value occurs at the origin (0, 0) where the graph has 
a horizontal tangent plane. Similarly , the function g(x, y) = 1 - x 2 - y2 , part of 
whose graph appears in Figure 13.2, has a maximum value of 1 at (0, 0). What 
techniques could be used to discover these fact if they were not evident from a 
diagram? Finding maximum and minimum values of functions of several variable is, 
like its single-variable counterpart, the crux of many applica tions of advanced calculus 
to problems that arise in other disciplines . Unfortunately, this problem is often much 
more complicated than in the single-variab le case. Our discussion will begin by 
developing the techniques for functions of two variables. Some of the techniques 
extend to functions of more variables in obvious ways. The extension of those that do 
not will be discussed later in this section. 

Let us begin by reviewing what we know about the single-variable case. Recall 
that a function f (x) has a local maximum value (or a local minimum value) at a point 
a in its domain if f(x) :::: f(a) (or f(x) ::::: f(a)) for all x in the domain off that 
are sufficiently close to a. If the appropriate inequality holds for all x in the domain 
off, then we say that f has an absolute maximum (or absolute minimum) value at a . 
Moreover, such local or absolute extreme values can occur only at points of one of the 
following three types : 
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z 

z = I -x 2 - y2 

y 

X 

Figure 13.2 l - x 2 - y2 has maximum 
value l at the origin 

THEOREM 

I 

THEOREM 

I 

(a) critical points, where f' (x) = 0, 

(b) singular points, where f ' (x) does not exist, or 

(c) endpoints of the domain off . 

A simi lar situation exists for functions of severa l variables. We say that a function of 
two variables has a local maximum or relative maximum value at the point (a, b) 
in its domain if f (x, y) S f(a, b) for all points (x, y) in the domain off that are 
sufficiently close to the point (a , b). If the inequality holdsforall (x, y) in the domain 
off, then we say that f has a global maximum or absolute maximum value at (a, b ). 
Similar definitions hold for local (relative ) and absolute (global) minimum values . In 
practice , the word absolute or global is usually omitted, and we refer simply to the 
maximum or the minimum value off. 

The following theorem shows that there are three possibilities for points where 
extreme values can occur, analogous to those for the single -variable case . 

Necessary conditions for extreme values 

A function f(x, y) can have a local or absolute extreme value at a point (a, b) in its 
domain only if (a, b) is one of the following: 

(a) a critical point off, that is, a point satisfying V f(a, b) = 0, 

(b) a singular point off, that is, a point where V f (a, b) does not exist, or 

( c) a boundary point of the domain of f. 

PROOF Suppose that (a, b) belongs to the domain of f. If (a, b) is not on the 
boundary of the dom ain off, then it must belong to the interior of that domain , and if 
(a, b) is notasingularpointof f, then V f(a, b) exists. Finally, if (a, b) is not a critical 
point off, then V f (a, b) i= 0, so f has a positive directional derivative in the direction 
of V f (a, b) and a negative directional derivative in the direction of - V f (a, b ); that 
is, f is increasing as we move from (a, b) in one direction and decreasing as we move 
in the opposite direction . Hence, f cannot have either a maximum or a minimum value 
at (a, b). Therefore, any point where an extreme value occurs must be either a critical 
point or a singular point of f, or a boundary point of the domain of f. 

Note that Theorem 1 remains valid with unchanged proof for functions of any number of 
variables. Of course, Theorem 1 does not guarantee that a given function will have any 
extreme values. It only tells us where to look to find any that may exist. Theorem 2, 
below , provides condition s that guarantee the existence of absolute maximum and 
minimum values for a continuous function . It is analogous to the Max-Min Theorem 
for functions of one variable. The proof is beyond the scope of this book; an interested 
student should consult an elementary text on mathematical analysis. 

A set in ]Rn is bounded if it is co ntained inside some ball xf +xi+· · · + x; S R 2 

of finite radius R. A set on the real line is bounded if it is contained in an interval of 
finite length . 

Sufficient conditions for extreme values 

If f is a cont inuous function of n variables whose domain is a closed and bounded set 
in ]Rn, then the range of f is a bounded set of real number s, and there are point s in its 
domain where f takes on absolute maximum and minimum values . 

EXAM p LE 1 The function f (x, y) = x 2 + y2 (see Figure 13.1) has a critical 
point at (0, 0), since V f = 2xi + 2yj and both components of V f 

vanish at (0, 0) . Since 

f(x, y) > 0 = f (0, 0) if (x, y) i= (0, 0) , 
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z 

y 

X 

Figure 13.3 y 2 - x 2 has a saddle point at 
(0, 0) 

z 

X 

Figure 13.4 A line of saddle points 

Figure 13.5 

(a) J x 2 + y2 has a minimum value 
at the singular point (0, 0) 

(b) When restricted to the disk 

y 

x 2 + y2 .::: 1, the function l - x has 
maximum and minimum values at 
boundary points 
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f must have (absolute) minimum value O at that point. If the domain of f is not 
restricted, f has no maximum value . Similarly , g(x , y) = 1 - x 2 - y2 has (absolute) 
maximum value 1 at its critical point (0, 0). (See Figure 13.2.) 

EXAM p LE 2 The function h(x , y) = y2 
- x 2 also has a critical point at (0, O) 

but has neither a local maximum nor a local minimum value at that 
point. Observe that h(O, 0) = 0 but h( x, 0) < 0 and h(O, y ) > 0 for all nonzero values 
of x and y . (See Figure 13.3.) The graph of his a hyperbolic paraboloid . In view of 
the shape of this surface , we call the critical point (0, 0) a saddle point of h. 

In general , we will somewhat loosely call any interior critical point of the domain of a 
function f of several variables a saddle point if f does not have a local maximum or 
minimum value there. Even for functions of two variables , the graph will not always 
look like a saddle near a saddle point. For instance, the function f(x , y) = -x 3 has a 
whole line of saddle points along the y-axis (see Figure 13.4), although its graph does 
not resemble a saddle anywhere. These points resemble inflection points of a function 
of one variable . Saddle points are higher-dimensional analogues of such horizontal 
inflection points. 

EXAMPLE 3 

minimum value, 
Figure 13.S(a).) 

The function f( x, y ) = Jx 2 + y 2 has no critical points but does 
have a singular point at (0, 0) where it has a local (and absolute) 

zero. The graph of f is (one nappe of) a circular cone . (See 

EXAM p LE 4 The function f (x, y ) = 1 - x is defined everywhere in the x y -
plane and has no critical or singular points. (V f (x, y) = -i at 

every point (x, y).) Therefore f has no extreme values . However, if we restrict the 
domain off to the points in the disk x 2 + y2 S I (a closed bounded set in the xy-plane) , 
then f does have absolute maximum and minimum values, as it must by Theorem 2. 
The maximum value is 2 at the boundary point ( -1 , 0) and the minimum value is O at 
(I, 0) . (See Figure 13.S(b).) 

z 

z = Jx2 + y2 

y 

X y 

(a) (b) 

Classifying Critical Points 
The above examples were very simple ones ; it was immediately obvious in each case 
whether the function had a local maximum , local minimum , or a saddle point at the 
critical or singular point. For more complicated functions, it may be harder to classify 
the interior critical points . In theory, such a classification can always be made by 
considering the difference 
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THEOREM 

II 

f..f = f (a+ h, b + k) - f (a, b) 

for small values of h and k, where (a, b) is the critical point in question . If the difference 
is always nonnegative (or nonpositive) for small h and k, then f must have a local 
minimum (or maximum) at (a , b); if the difference is negative for some points (h, k) 
arbitrarily near (0, 0) and positive for others, then f must have a saddle point at (a , b ). 

EXAM p LE 5 Find and classify the critical point s off (x, y) = 2x 3 
- 6xy + 3 y2 . 

Solution The critical point s must satisfy the sys tem of equations: 

0 = Ji (x, y) = 6x 2 
- 6y 

0 = h(x, y) = -6x + 6y 

{::::=} X 2 = y 

{::::=} X = y . 

Together , these equations imply that x 2 = x so that x = 0 or x = 1. Therefore, the 
critical points are (0, 0) and (1 , 1). 

Consider (0, 0). Here f..f is given by 

f..f = f(h, k) - f(O, 0) = 2h 3 
- 6hk + 3k2

. 

Since f (h, 0) - f(O , 0) = 2h 3 is positive for small positive hand negative for small 
negat ive h, f cannot have a maxi mum or minimum value at (0 , 0) . Therefore, (0, 0) 
is a saddle point. 

Now consider ( 1, 1). Here !if is given by 

f..f = f (1 + h , 1 + k) - f(l , 1) 

= 2(1 + h) 3 
- 6(1 + h)(l + k) + 3(1 + k)2 

- (-1) 

= 2 + 6h + 6h 2 + 2h 3 
- 6 - 6h - 6k - 6hk + 3 + 6k + 3k2 + 1 

= 6h 2 
- 6hk + 3k2 + 2h 3 

= 3(h - k) 2 + h2 (3 + 2h). 

Both terms in the latter expression are nonnegative if lhl < 3/ 2, and they are not both 
zero unless h = k = 0. Henc e, f..f > 0 for small hand k, and f has a local minimum 
value -1 at (1, 1). 

The method used to classify critical points in the above example takes on a "brute 
force" aspect if the function involv ed is more complicated . However , there is a second 
derivative test similar to that for functions of one variable. The n-variable version 
is the subject of the following theorem, the proof of which is based on propertie s of 
quadratic forms presented in Section 10.7. 

A secon d derivative test 

Suppose that a= (a1, a2, ... , an) is a critical point of f(x) = f(xi, xz, ... , Xn) and 
is interior to the domain off. Also , suppo se that all the second partial derivatives of 
f are continuous throughout a neighbourhood of a, so that the Hessian matrix 

( 

f1 I (x) 
h1 (x) 

Jf(x) = . 

fnl (x) f,,z(x) 

f1n(X)) hnt) 
fnn(X) 

is also continuous in that neighbourhood . Note that the continuity of the partials 
guarantees that Jf is a symmetric matrix. 

(a) If Jf(a) is positive definite , then f has a local minimum at a. 

(b) If Jf(a) is negative definite, then f has a local maximum at a. 
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(c) If Je(a) is indefinite, then f has a saddle point at a. 

(d) If Je(a) is neither positive nor negative definite, nor indefinite, this test gives no 
information. 

PROOF Let g(t) = f (a+ th) for O S t S I , where hi s an n-vector. Then 

It 

g'(t) = I: J;(a + th) h; 
i = I 

ll ll 

g11 (t) = LL /;j (a+ th) h; hj = hT Je(a + th) h . 
i=I j = I 

(In the latter expression, h is being treated as a column vector.) We apply Taylor's 
Formula with Lagrange remainder to g to write 

1 
g(l) = g(O) + g' (O) + 2g' ' (0) 

for some 0 between O and 1. Thus, 

,, 1 
f (a+ h) = /(a)+ L f; (a) hi + -hT Je(a + 0h)h. 

i=I 
2 

Since a is a critical point off, Ji (a) = 0 for l S i S n, so 

l 
f (a+ h) - /(a)= 2hT Je(a + 0h)h. 

If Je(a) is positive definite, then, by the continuity of Je, so is Je(a + 0h) for lh l 
sufficiently small. Therefore , /( a + h) - /(a) > 0 for nonzero h, proving (a). 

Parts (b) and (c) are proved similarly. The functions f (x, y) = x4 + y4, g(x, y ) = 
-x 4 - y4, and h(x, y) = x4 - y4 all fall under part (d) and show that in this case a 
function can have a minimum , a maximum, or a saddle point. 

Remark As mentioned in Section 12.9, the second derivative term hr Je(a + th)h is 
a second directional derivative. It can be thought of as a simple second derivative with 
respect to a single variable along a line L through a lying in the domain of f in the 
direction given by h. This direction is not necessarily parallel to the given coordinate 
axes. Viewed as a simple second derivative, Theorem 9 from Section 4.5 tells us that 
the sign of this term determines the concavity of the curve in which the vertical plane 
containing L intersects the graph off . This concavity makes sense even if a is not a 
critical point of f, and can vary as the direction of h changes. Therefore the Hessian 
can tell us about the concavity of the entire surface. 

EXAMPLE 6 Find and classify the critical points of the function 
f(x , Y, z) = x 2y + y 2z + z2 - 2x . 

Solution The equations that determine the critical points are 

0 = / 1 (x, y, z) = 2xy - 2, 

0 = h(x , y , z) = x 2 + 2yz, 

0 = h(x , y, z) = y2 + 2z . 

The third equation implies z = - y 2 / 2, and the second then implies y 3 = x 2 . From 
the first equation we get y 512 = I. Thus, y = land z = -½. Since xy = I, we must 

have x = l. The only critical point is P = (1, 1, -½). Evaluating the second partial 
derivatives off at this point, we obtain the Hessian matrix 

(
2 2 0) 

Je= 2 -1 2 . 
0 2 2 
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Since 

1

2 2 o I 
2 - 1 2 = -20 < 0, 
0 2 2 

Jf is indefinite by Theorem 8 of Section I 0.7 , so P is a saddle point off. 

Remark Applying the test (g iven in Theorem 8 of Section 10.7) for positive or 
negative definiteness or indefinitene ss of a real symmetric matrix to the Hessian matrix 
for a function of two variables , we can paraphrase the seco nd derivative test Theorem 3 
for such a function: 

Suppose that (a, b) is a critical point of the function f(x , y) that is interior to the 
domain off. Suppose also that the seco nd partial deriv ative s off are continuous in a 
neighbourhood of (a, b) and have at that point the values 

A= .fll(a,b), B = .f12(a,b) = h1(a , b) , and C = f22(a,b). 

(a) If 8 2 - AC < 0 and A > 0, then f has a local minimum value at (a, b) . 

(b) If 8 2 - AC < 0 and A < 0, then f has a local maximum value at (a, b). 

(c) If 8 2 - AC > 0, then f has a saddle point at (a, b). 

(d) If 8 2 - AC= 0, thi s test provides no information ; f may have a local maximum 
or a local minimum value or a saddl e point at (a , b) . 

EXAM p LE 7 Recon sider Example 5 and use the seco nd derivative test to cla ssify 
the two critic al point s (0 , 0) and (1 , l) of 

f(x , y) = 2x 3 - 6xy + 3y2. 

Solution We have 

!11 (x, y) = 12x, f12(x, y) = - 6, and f22(x, y) = 6. 

At (0, 0) we therefore have 

A = 0, 8 = -6, C = 6, and B 2 
- AC = 36 > 0 , 

so (0 , 0) is a saddle point. At (1 , 1) we have 

A= 12 > 0 , B = -6 , C = 6, and 8 2 
- AC= -36 < 0, 

so f must have a local minimum at (1 , 1). 

EXAM p LE 8 Find and class ify the critical point s of 

f(x, y) = xy e-(x2+y2)/2_ 

Does f have absolute maximum and minimum values? Why? 

Solution We begin by calculating the first- and second-order partial deriv atives of 
the function f: 

( , ') 
!1 (x , y) = y(l - x 2) e- x-+y- 12 , 

h(x, y) = x(l - y2) e-(x 2+y2)/2' 

./11 (x, y) = xy(x 2 - 3) e-<x
2
+i) l2, 

.f12(x, y) = (1 - x2)(1 - y2) e-<x
2
+i) l2, 

.f22(x, y) = xy(y2 - 3) e-<x
2
+i) l2. 
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Figure 13.6 Dimensions of a box 
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At any critical point /1 = 0 and h = 0, so the critical points are the solutions of the 
system of equations 

y(l - x 2
) = 0 

x(l - y2) = 0. 

(A) 

(B) 

Equation (A) says that y = 0 or x = ±1. If y = 0, then equation (B) says that x = 0. 
If either x = - I or x = l, then equatio n (B) forces y = ± 1. Thus, there are five 
points satisfying both equations: (0, 0), (1, 1), (1 , -1) , (-1, 1), and (-1 , -1). We 
classify them using the second derivative test. 

At (0, 0) we have A = C = 0, B = 1, so that B2 - AC = 1 > 0. Thus , f has a 
saddle point at (0, 0). 

At (1, 1) and (-1, -1) we have A = C = -2 / e < 0, B = 0. It follows that 
B 2 -AC= -4 / e2 < 0. Thus, f has local maximum values at these points. The value 
of f is 1 / e at each point. 

At (1, -1) and (-1, 1) we have A = C = 2/ e > 0, B = 0. If follows that 
B2 - AC= -4 / e2 < 0. Thus, f has local minimum values at these points. The value 
off at each of them is -1 / e. 

Indeed, f has absolute maximum and minimum values, namely, the values ob
tained above as local extrema . To see why, observe that f(x , y) approaches O as 
the point (x, y) recedes to infinity in any direction because the negative exponential 
dominates the power factor xy for large x 2 + y2 . Pick a number between O and the 
local maximum value 1/ e found above , say, the number l / (2e). For some R, we must 
havelf(x , y)I S l / (2e)wheneverx 2 +y 2 ::,: R2 . Onthecloseddiskx 2 +y2 S R2 ,J 
must have absolute maximum and minimum values by Theorem 2. These cannot occur 
on the boundary circle x 2 + y2 = R 2 because If I is smaller there (S 1/ (2e)) than it 
is at the critical points considered above. Since f has no singular points, the absolute 
maximum and minimum values for the disk , and therefore for the whole plane, must 
occur at those critical points. 

EXAMPLE 9 Find the shape of a rectangular box with no top having given 
volume V and the least possible total surface area of its five faces. 

Solution If the horizontal dimensions of the box are x, y , and its height is z (see 
Figure 13.6), then we want to minimize 

S = xy + 2y z + 2x z 

subject to the restriction that xy z = V, the required volume. We can use this restriction 
to reduce the number of variables on which S depends , for instance, by substituting 

V 
z=~ . 

xy 

Then S becomes a function of the two variables x and y : 

2V 2V 
S = S(x , y) = x y + - + -. 

X y 

A real box has positive dimensions , so the domain of S should consist of only those 
points (x , y) that satisfy x > 0 and y > 0. If either x or y approaches O or oo, then 
S -+ oo, so the minimum value of S must occur at a critical point. (S has no singular 
points.) For critical points we solve the equations 

as 2v 
0=-=y--ax x 2 

as 2v 
0=-=x--

ay y2 
xy2 = 2V. 
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Thus, x 2y-xy 2 = 0, or xy(x-y) = 0. Sincex > 0 and y > 0, this implies thatx = y. 

Therefore, x 3 = 2V, x = y = (2V) 113, and z = V / (xy) = 2- 2/ 3y 1/ 3 = x/2. Since 

there is only one critical point , it must minimize S. (Why?) The box having minimal 

surface area has a square base but is only half as high as its horizontal dimensions. 

Remark The preceding problem is a constrained extreme value problem in three 
variables; the equation xyz = V is a constraint limiting the freedom of x, y, and z. 

We used the constraint to eliminate one variable, z, and so to reduce the problem to a 
free (i.e., unconstrained) problem in two variables. In Section 13.3 we will develop a 
more powerful method for solving constrained extreme value problems. 

EXERCISES 13.1 
In Exercises 1-17, find and classify the critical points of the 
given functions. 

1. f(x , y) = x 2 + 2y2 - 4x + 4y 

2. f (x , y) = x y - x + y 3. f (x , y) = x 3 + y3 - 3xy 

X 8 
4. f (x , y) = x 4 + y4 - 4xy 5. f (x , y) = - + - - y 

y X 

6. f (x , y ) = cos(x + y) 7. f(x , y)=xsiny 

8. f(x , y) = cosx + cosy 9. f(x, y) = x2 y e - (x2+y2) 

xy 3 3 
lO. f(x,y) = 4 4 11. f (x , y) = x e- x +y 

2+x +y 

x2 
13. 

xy 
12. f(x , y) = - 2-- 2 f (x , y) = -2--2 

X + y X + y 

14. f (x, y) = 2 2 
1-x+y+x +y 

15. f (x, y) = ( 1 + ~) ( 1 + } ) ( ~ + } ) 

D 16. f(x, y, z) = xy z - x2 
- i - z2 

D 17. f(x, y , z) = xy + x 2 z - x 2 
- y - z2 

D 18. Show that f(x, y , z) = 4x yz - x 4 - y4 - z4 has a local 
maximum value at the point (1, 1, 1). 

19. Find the maximum and minimum values of 
2 4 

f (x, y) = xy e-x - y . 

20. Find the maximum and minimum values of 

X 

f(x, y )= (l+x2+ y2)" 

D 21. Find the maximum and minimum values of 
2 2 2 

f(x , y ,z )=xy z e-x -y-z . Howdoyouknowthatsuch 
extreme values exist? 

1 
22. Find the minimum value of f (x , y) = x + 8 y + - in the 

xy 
first quadrant x > 0, y > 0. How do you know that a 
minimum exists? 

23. Postal regulations require that the sum of the height and girth 
(horizontal perimete r) of a package should not exceed L 
units. Find the largest volume of a rectangular box that can 
satisfy this requirement. 

24. The material used to make the bottom of a rectangular box is 
twice as expensive per unit area as the material used to make 
the top or side walls . Find the dimensions of the box of given 
volume V for which the cost of materials is minimum. 

25. Find the volume of the largest rectangular box (with faces 
parallel to the coordinate planes) that can be inscribed inside 
the ellipsoid 

x2 y2 z2 
2 +2+ 2 =1. a b C 

26. Find the three positive numbers a, b, and c, whose sum is 30 
and for which the expression ab2c3 is maximum. 

27. Find the critical points of the function z = g (x, y) that 
satisfies the equation e2zx-x

2 
- 3e2zy+y2 = 2. 

D 28. Classify the critical points of the function g in the previous 
exercise . 

D 29. Let f (x , y) = (y - x 2)(y - 3x2). Show that the origin is a 
critical point off and that the restriction off to every 
straight line through the origin has a local minimum value at 
the origin. (That is, show that f (x, kx) has a local minimum 
value at x = 0 for every k and that f (0, y) has a local 
minimum value at y = 0.) Does f (x , y) have a local 
minimum value at the origin? What happens to f on the 
curve y = 2x 2? What does the second derivative test say 
about this situat ion? 

0 30. Verify by completing the square (i.e ., without appealing to 
Theorem 8 of Section 10.7) that the quadratic form 

Q(u ,v ) = (x ,y ) (~ ~) G) = Au
2

+2Buv+Cv
2 

is positive definite if A > 0 and I ~ ~ I > 0, negative 

definite if A < 0 and I ~ ~ I > 0, and indefinite if 

I ~ ~ I < 0. This gives independent confirmation of the 

assertion in the remark preceding Example 7. 
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D 31. State and prove (using square completion arguments rather 
than appealing to Theorem 8 of Section 10.7) a result 
analogous to that of Exercise 30 for a quadratic form 

implication s of this for a critical point (a, b, c) of a function 
f (x , y, z) all of whose second partial derivatives are known 
at (a, b, c)? 

Q(u , v, w) involving three variables . What are the 

Extreme Values of Functions Defined on Restricted Domains 

How to find extreme values 
of a continuous function f 
on a closed, bounded 
domain D 

1. Find any critical or singular 
points of f on the interior 
or D . 

2. Find any points on the 
boundary of D where f 
might have extreme values. 
To do this you can 
parametrize the whole 
boundary , or parts of it, and 
express f as a function of 
the parameter( s). If you 
break the boundary into 
pieces, you must consider 
the endpoints of those 
pieces . Section 13.3 will 
present another alternative 
for analyzin g f on the 
boundary of D. 

3. Evaluate f at all the points 
found in steps 1 and 2. 

y 

(0,0) X 

Figure 13. 7 Point s that are candidates for 
extreme values in Example 1 

Much of the previou s section was concerned with technjques for determining whether 
a critical point of a function provide s a local maximum or mmjmum value or is a 
saddle point. In this section we address the problem of determining absolute maximum 
and minimum values for function s that have them-u sually functions whose domain s 
are restricted to subsets of JR2 (or JR") having nonempty interiors . In Example 8 of 
Section 13.1 we had to prove that the given function had absolute extreme values. If , 
however, we are dealing with a continuous function on a domain that is closed and 
bounded , then we can rely on Theorem 2 to guarantee the existence of such extreme 
values, but we will always have to check boundar y points as well as any interior critical 
or singular points to find them . The following examples illustrate the technique. 

EXAMPLE 1 Find the maximum and minimum values of f(x , y) = 2xy on the 
closed disk x 2 + y2 ::; 4. (See Figure 13.7.) 

Solution Since f is continuous and the disk is closed, f must have absolute maximum 
and minimum values at some points of the disk . The first partial derivative s off are 

!1 (x, y) = 2y and h(x, y ) = 2x , 

so there are no singular points , and the only critical point is (0, 0) , where f has the 
value 0. 

We must still consider values of f on the boundary circle x 2 + y2 = 4. We 
can express f as a function of a single variable on this circle by using a convenient 
parametriz ation of the circle, say, 

x = 2cos t , y = 2sin t , ( -77: :s t s 7T:). 

We have 

f ( 2 cos t , 2 sin t) = 8 cos t sin t = g ( t). 

We must find any extreme values of g( t) . We can do this in either of two ways. If we 
rewrite g(t) = 4 sin 2t, it is clear that g( t) has maximum value 4 (at t = i and - 3

;) 

and minimum value -4 (at t = -i and 3; ). Altern atively, we can differentiate g to 
find its critical point s: 

0 = g' (t) = -8 sin2 t + 8 cos2 t tan2 t = 1 

7T: 311: 
t =±-or ± -

4 4 ' 

which again yield the maximum value 4 and the minimum value -4 . (It is not necessary 
to check the endpoints t = -11: and t = 11:; since g is everywhere differentiable and 
is periodic with period 11:, any absolute maximum or minimum will occur at a critical 
point.) 

In any event, f has maximum value 4 at the boundary points (v'2, v'2) and 
(-v'2, -v'2) and minimum value - 4 at the boundary point s ( v'2, -v'2) and 
(-v'2, v'2). It is easily shown by the Second Derivative Test (or otherwise) that 
the interior critical point (O, 0) is a saddle point. (See Figure 13. 7 .) 
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y 

4 

4 

Figure 13.8 Point s of intere st in 

Example 2 

X 

EXAMPLE 2 Find the extreme values of the function f(x, y) = x 2ye -(x +y) on 
the triangul ar region T given by x :::. 0 , y :::. 0, and x + y S 4. 

Solution First, we look for critical points: 

0 = ! 1 (x, y) = xy(2 - x)e - (x+y) 

0 = h(x, y) = x 2 ( 1 - y)e - (x+y) 

{=::::;> x = 0, y = 0, or x = 2, 

{=::::;> x = 0 or y = l . 

The critical points are (0 , y) for any y and (2, l) . Only (2, 1) is an interior point of 
T. (See Figure 13.8.) f(2 , 1) = 4/ e3 ~ 0.199. The boundary of T consists of three 
straight line segment s. On two of these , the coordinate axes, f is identically zero. The 
third segment is given by 

y = 4 -x, 0 S X S 4, 

so the values of f on this segment can be expressed as a function of x alone : 

g(x) = f(x, 4 - x) = x2 (4 - x )e- 4, 0 S XS 4. 

Note that g( O) = g( 4) = 0 and g(x) > 0 if O < x < 4. The critical point s of g are 
given by O = g' (x) = (8x - 3x 2)e - 4, so they are x = 0 and x = 8/ 3. We have 

(8) (8 4) 256 g 3 = f 3, 3 = 27 e- 4 ~ 0.174 < f(2, 1). 

We conclude that the maximum value off over the region Ti s 4/ e3 and that it occurs 
at the interior critical point (2, 1 ). The minimum value off is zero and occurs at all 
point s of the two perpendicul ar boundary segments . Note that f has neither a local 
maximum nor a local minimum at the boundary point (8/ 3, 4/ 3) , althou gh g has a 
local maximum there . Of course , that point is not a saddle point of f either; it is not a 
critical point off. 

EXAMPLE 3 Among all triang les with vertices on a given circle, find those that 
have the largest area. 

Solution Intuition tells us that the equilateral triangle s must have the largest area. 
However, proving this can be quite difficult unless a good choice of variables in which 
to set up the problem analytica lly is made. With a suitable choice of units and axes 
we can assume the circle is x 2 + y2 = 1 and that one vertex of the triangle is the 
point P with coordinates (I, 0). Let the other two vertices, Q and R, be as shown in 
Figure 13.9. There is no harm in assuming that Q lies on the upper semicircle and Ron 
the lower, and that the origin O is inside triangle P QR . Let P Q and PR make angles 
0 and ¢, respectively , with the negative direction of the x -axi s. Clearly O S 0 S n / 2 
and O S ¢ S n / 2. The line s from O to Q and R make equa l angles 1/f with the line 
QR , where 20 + 2¢ + 21/f = n. Dropping perpendiculars from O to the three sides 
of the triangl e P QR , we can write the area A of the triangle as the sum of the areas of 
six small, right-angled trian gles: 

1 . 1 . 1 . 
A = 2 x - sm 0 cos 0 + 2 x - sm ¢ cos ¢ + 2 x - sm 1/f cos 1/f 

2 2 2 
1 

= -(sin20+sin2¢+sin21/f). 
2 

Since 21/f = n - 2(0 +¢) , we express A as a function of the two variables 0 and ¢ : 

1 
A= A(0, ¢) = - (sin 20 + sin 2¢ + sin 2(0 + ¢) ) . 

2 
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Figure 13.9 Where should Q and R be to 
ensure that triangle P QR has maximum 

area? 

,r/ 2 

,r/ 4 

• (!, !) 
,r/ 2 

Figure13.10 ThedomainofA (0,¢) 
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y 

( 1,0) 

p X 

The domain of A is the triangle 0 2: 0, ¢ 2: 0, 0 + ¢ S 1C / 2. A = 0 at the vertices of 
the triangle and is positive elsewhere. (See Figure 13.10.) We show that the maximum 
value of A (0, ¢) on any edge of the triangle is 1 and occurs at the midpoint of that 
edge . On the edge 0 = 0 we have 

1 
A(O,¢) = 2(sin2¢+sin2¢) = sin2 ¢ S l = A(0, 1C/ 4). 

Similarly , on¢= 0, A(0, 0) S l = A(7r/ 4, 0). On the edge 0 + ¢ = 1C/ 2 we have 

A(0 , i-0) = ~(s in20 + sin(1C - 20)) 

= sin 20 S 1 = A ( ~, ~) . 

We must now check for any interior critical points of A(0, ¢). (There are no singular 
points.) For critical points we have 

BA 
0 = - = cos20 + cos(20 + 2¢), 

a0 
BA 

0 = - = cos 2¢ + cos(20 + 2¢), 
8¢ 

so the critical points satisfy cos 20 = cos 2¢ and, hence, 0 = ¢. We now substitute 
this equation into either of the above equations to determine 0: 

cos 20 + cos 40 = 0 

2 cos2 20 + COS 20 - l = 0 

(2cos20 - l )(cos20 + 1) = 0 

1 
cos20 = 2 or cos20 = - 1. 

The only solution leading to an interior point of the domain of A is 0 = </J = 1C / 6. 
Note that 

this interior critical point maximizes the area of the inscribed triangle . Finally, observe 
that for 0 = <f; = 7C / 6, we also have 1/f = 1C / 6, so the largest triangle is indeed 
equilateral. 
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Remark Since the area A of the inscribed triangle must have a maximum value (A is 
continuous and its domain is closed and bounded) , a strictly geometric argument can 
be used to show that the largest triangle is equilateral. If an inscribed triangle has two 
unequal sides, its area can be made larger by moving the common vertex of these two 
sides along the circle to increase its perpendicular distance from the opposite side of 
the triangle. 

0 Linear Programming 

Figure 13.11 The shaded region is the 
solution set for the constraint inequalities 
in Example4 

Linear programming is a branch of linear algebra that develops systematic techniques 
for finding maximum or minimum values of a linear function subject to several lin
ear inequality constraints . Such problems arise frequently in management science 
and operations research. Becau se of their linear nature they do not usually involve 
calculus in their solution; linear programming is frequently presented in courses on 
finite mathematics. We will not attempt any formal study of linear programming here , 
but we will make a few observations for comparison with the more general nonlinear 
extreme-va lue problems considered above that involve calculus in their solution. 

The inequality ax + by S c is an examp le of a linear inequality in two variables. 
The solution set of this inequality consists of a half-plane lying on one side of the 
straight line ax + by = c. The solution set of a system of several two-variable linear 
inequalities is an intersection of such half-planes , so it is a convex region of the plane 
bounded by a polygonal line. If it is a bounded set, then it is a convex polygon together 
with its interior. (A set is called convex if it contains the entire line segment between 
any two of its points. On the real line the convex sets are intervals .) 

Let us examine a simple concrete example that involves only two variables and a 
few constraints. 

EXAMPLE 4 Find the maximum value of F(x, y) = 2x + 7y subjec t to the 
constraints x + 2y S 6, 2x + y S 6, x 2: 0, and y 2: 0. 

Solution The solution set -8 of the system of four constraint inequalities is shown 
in Figure 13.11. It is the quadrilateral region with vertices (0, 0), (3, 0), (2, 2), and 
(0, 3). Several level curves of the linear function F are also shown in the figure. They 
are parallel straight lines with slope -r We want the line that gives F the greatest 
value and that still intersects -8. Evidently this is the line F = 21 that passes through 
the vertex (0, 3) of -8. The maximum value of F subject to the constraints is 21. 

y 

As this simple example illustrates , a linear function with domain restricted by linear 
inequalities does not achieve maximum or minimum values at points in the interior 
of its domain (if that domain has an interior). Any such extreme value occurs at a 
boundary point of the domain or a set of such boundary points. Where an extreme 
value occurs at a set of boundary points , that set will always contain at least one vertex. 
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Figure 13.12 The convex set of points 
satisfying the constraints in Example 5 
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This phenomenon holds in general for extreme-value problems for linear functions in 
any number of variables with domains restricted by any number of linear inequalities. 
For problems involving three variables the domain will be a convex region of R3 

bounded by planes. For a problem involving n variables the domain will be a convex 
region in R" bounded by (n - !)-dimensional hyperplanes. Such polyhedral regions 
still have vertices (where n hyperplanes intersect), and maximum or minimum values 
of linear functions ubject to the constraints will still occur at subsets of the boundary 
containing such vertice s. These problems can therefore be solved by evaluating the 
linear function to be extremized (it is called the objective function) at all the vertices 
and selecting the greatest or least value. 

In practice , linear programming problems can involve hundreds or even thousands 
of variables and even more constraints . Such problems need to be solved with com
puters, but even then it is extremely inefficient , if not impossible, to calculate all the 
vertices of the constraint solution set and the values of the objective function at them. 
Much of the study of linear programming therefore centres on devising techniques for 
getting to (or at least near) the optimizing vertex in as few steps as possible. Usually 
this involves criteria whereby large numbers of vertices can be rejected on geometric 
grounds. We will not delve into such techniques here but will content ourselves with 
one more example to illustrate , in a very simple case, how the underlying geometry of 
a problem can be used to reduce the number of vertices that must be considered. 

EX A M p LE 5 A tailor has 230 m of a certain fabric and ha orders for up to 20 
suits , up to 30 jackets, and up to 40 pairs of slacks to be made from 

the fabric . Each suit requires 6 m, each jacket 3 m, and each pair of lack 2 m of the 
fabric. If the tailor's profit is $20 per suit, $14 per jacket , and $12 per pair of slacks , 
how many of each should he make to realize the maximum profit from his supply of 
the fabric ? 

Solution Suppose he makes x suits, y jackets , and z pairs of slacks . Then his profit 
will be 

P = 20x + 14 y + 12z. 

The constraints posed in the problem are 

X 2:: 0, X _:S 20 , 

y 2:: 0, y S 30, 

z 2: 0, z S 40, 

6x + 3y + 2z :S 230. 

The last inequality is due to the limited supply of fabric. The solution set is shown in 
Figure 13.12. It has 10 vertices , A, B , ... , J. Since P increases in the direction of the 
vector VP = 20i + 14j + 12k, which points into the first octant , its maximum value 
cannot occur at any of the vertices A, B, .. . , G. (Think about why.) Thus , we need 
look only at the vertices H, I, and J. 

H = (20, 10, 40) , 

I = (10, 30, 40), 

J = (20, 30, 10), 

P = 1,020 at H. 

P = l, 100 at I . 

P = 940 at J. 

Thus, the tailor should make 10 suits, 30 jackets , and 40 pairs of slacks to realize the 
maximum profit, $1,100 , from the fabric. 
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EXE RC IS ES 13.2 

1. Find the maximum and minimum values of 
f (x, y) = x - x 2 + y2 on the rectangle O::: x ::: 2, 
0 :::: y:::: 1. 

2. Find the maximum and minimum values of 
f (x, y) = xy - 2x on the rectangle -1 ::: x ::: 1, 0 ::: y ::: I. 

3. Find the maximum and minimum values of 
f(x, y) = xy - y2 on the disk x 2 + y2::: 1. 

4. Find the maximum and minimum values of 
f(x, y) = x + 2y on thediskx 2 + y2 ::: 1. 

S. Find the maximum value of f(x , y) = xy - x 3y2 over the 
square O ::: x ::: 1, 0 ::: y ::: I. 

6. Find the maximum and mi.nimum values of 
f (x, y) = xy( I - x - y) over the triangle with vertices 
(0, 0) , (1, 0), and (0, 1). 

7. Find the maximum and minimum values of 
f (x, y) = sin x cos y on the closed triangular region 
bounded by the coordinate axes and the line x + y = 211:. 

8. Find the maximum value of 

f(x, y) = sinx siny sin(x + y) 

over the triangle bounded by the coordinate axes and the line 
x+y =77: . 

9. The temperature at all points in the disk x 2 + y2 ::: I is given 
by 

2 2 
T = (x + y) e-x -y . 

Find the maximum and minimum temperatures at points of 
the disk. 

10. Find the maximum and minimum values of 

x-y 
f (x, y) = l + x2 + y2 

on the upper half-plane y ::=: 0. 

11. Find the maximum and minimum values of xy 2 + yz 2 over 
the ball x2 + y2 + z2 

::: 1. 

12. Find the maximum and minimum values of xz + yz over the 
ball x2 + y2 + z2 ::: I. 

13. Consider the function f (x , y) = xy e-xy with domain the 
first quadrant: x ::=: 0, y ::=: 0. Show that 
limx-+oo f (x , kx) = 0. Does f have a limit as (x, y) recedes 
arbitrarily far from the origin in the first quadrant ? Does f 
have a maximum value in the first quadrant ? 

14. Repe at Exercise 13 for the function f (x, y) = xy 2 e-xy . 

15. In a certain community there are two breweries in 
competition, so that sales of each negative ly affec t the profits 
of the other. If brewery A produce s x litres of beer per month 
and brewery B produces y litres per month, then brewery A's 
monthly profit $P and brewery B' s month ly profit $Qare 
assumed to be 

2x 2 +y2 
P = 2x - 106 

4y2 + x 2 

Q = 2y - 6 . 
2 x JO 

Fi nd the sum of the profits of the two breweries if each 
brewery independently sets its own production level to 
maximize its own profit and assumes its competitor does 
likewise. Find the sum of the profits if the two breweries 
cooperate to determine their respective productions to 
maximize that sum. 

D 16. Equal angle bends are made at equal distance s from the two 
ends of a 100 m long straight length of fence so the resulting 
three-segment fence can be placed along an ex isting wall to 
make an enclosure of trapezoidal shape . What is the largest 
possible area for such an enclosure? 

17. Maximize Q(x, y) = 2x + 3y subject to the constraints 
x ::=: 0, y ::=: 0, y ::: 5, x + 2y ::: 12, and 4x + y ::: 12. 

18. Minimize F(x , y, z) = 2x + 3y + 4z subject to the 
constraints x ::=: 0, y ::=: 0, z ::=: 0, x + y ::=: 2, y + z ::=: 2, and 
X + z c': 2. 

19. A textile manufacturer produces two grades of 
wool-cotton-polyester fabric . The delux e grade has 
composition (by weight) 20 % wool, 50% cotton, and 30% 
polye ster, and it sells for $3 per kilogram. The standard 
grade has composition 10% wool, 40 % cotton, and 50 % 
polyester, and sells for $2 per kilogram. If he has in stock 
2,000 kg of wool and 6,000 kg each of cotton and polyester , 
how many kilograms of fabric of each grade should he 
manufacture to maximize his revenue? 

20. A I 0-hectare parcel of land is zoned for building densities of 
6 detached houses per hectare , 8 duplex units per hectare , or 
12 apartments per hectare. The developer who owns the land 
can make a profit of $40,0 00 per house , $20,000 per duplex 
unit, and $16,000 per apartment that he builds. Munic ipal 
bylaws require him to build at least as many apartme nts as 
the total of houses and duplex units. How many of each type 
of dwelling should he build to maximize his profit ? 

• 
Lagrange Multipliers 

-----
A constrained extreme-value problem is one in which the variables of the function to 
be maximized or minimized are not completely independent of one another, but must 
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THEOREM 

I 
V g(Po) 

Figure 13.13 If V f (Po) is not a multiple 
of V g(Po), then V f (Po) has a nonzero 
projection v tangent to the level curve of g 

through Po 
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satisfy one or more constraint equation s or inequalities . For instance, the problems 

maximize f (x, y) subject to g (x, y) = C 

and 

minimize f(x, y,z, w) subjectto g( x,y,z ,w)=C1 , 

and h(x, y, z, w) = C2 

have , respectively , one and two constraint equation s, while the problem 

maximize f( x, y, z) subject to g (x , y, z) .::: C 

has a single constraint inequality. 

Generally, inequality constraints can be regarded as restricting the domain of the 
function to be extremized to a smaller set that still has interior points . Section 13.2 was 
devoted to such problems . In each of the first three examples of that section we looked 
for free (i.e., unconstrained) extreme values in the interior of the domain, and we also 
examined the boundary of the domain , which was specified by one or more constraint 
equations . In Example 1 we parametrized the boundary and expressed the function 
to be extremized as a function of the parameter , thus reducing the boundary case to 
a free problem in one variable instead of a constrained problem in two variables . In 
Example 2 the boundary consisted of three line segments , on two of which the function 
was obviously zero . We solved the equation for the third boundary segment for y 
in terms of x, again in order to expre ss the value of f (x, y ) on that segment as a 
function of one free variable. A similar approach was used in Example 3 to deal with 
the triangular boundary of the domain of the area function A(0 , ¢) . 

The reduction of extremization problems with equation constraints to free problem s 
with fewer independent variables is only feasible when the constraint equations can be 
solved either explicitly for some variable s in term s of other s or parametrical.ly for all 
variables in terms of some parameter s. It is often very difficult or impossible to solve 
the constraint equations, so we need another technique . 

The Method of Lagrange Multipliers 
A technique for finding extreme value s of f (x, y) subject to the equality constraint 
g (x, y) = 0 is based on the following theorem: 

Suppose that f and g have continuous first partial derivatives near the point 
Po = (xo, yo) on the curve e with equation g( x, y ) = 0. Suppose also that, when 
restricted to points on e , the function f (x, y) has a local maximum or minimum value 
at Po. Finally, suppose that 

(i) Po is not an endpoint of e, and 

(ii) V g(Po) =/-0. 

Then there exists a number l o such that (xo, yo, l o) is a critical point of the 
Lagrange function 

L(x, y , l ) = f (x , y ) + l g( x, y ) . 

PROOF Together, (i) and (ii) imply that e is smooth enough to have a tangent line at 
Po and that V g(Po) is normal to that tangent line. If V f (Po) is not parallel to V g(Po) , 
then V f (Po) has a nonzero vector projection v along the tangent line toe at Po. (See 
Figure 13.13 .) Therefore , f has a positive directional derivative at Po in the direction 
of v and a negative directional derivative in the oppo site direction. Thus, f (x , y) 
increases or decreases as we move away from Po along e in the direction of v or -v , 
and f cannot have a maximum or minimum value at Po. Since we are assuming that f 
does have an extreme value at Po, it must be that V f (Po) is parallel to V g(Po). Since 
V g(Po) =I-0, there must exist a real number },o such that V f (Po) = -lo V g(Po), or 

V(f + log)(Po) = 0. 
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Figure 13.14 The level curve of the 
function representing the square of 
distance from the origin is tangent to the 
curve x 2 y = 16 at the two points on that 
curve that are closest to the origin 

The two components of the above vector equation assert that a L / ax = 0 and a L / ay = 
0 at (xo, yo, lo). The third equation that must be satisfied by a critical point of L is 
aL/a Jc = g(x, y) = 0. This is satisfied at (xo, Yo, },o) because Po lies on e. Thus , 
(xo, yo, lo ) is a ctitical point of L(x, y, Jc). 

Theorem 4 suggests that to find candidates for points on the curve g (x, y) = 0 at which 
f(x, y) is maximum or minimum , we should look for critical points of the Lagrange 
function 

L( x, y, Jc)= f(x , y) + Jcg(x, y) . 

At any critical point of L we must have 

0 = aL = J, (x, y) + Jcg1 (x, y), l !~ that is, V f is parallel to V g, 

0 = - = h(x, y) + .1cg2(x , y), 
ay 
aL 

0 = al = g(x, y), the constraint equation . and 

Note , however, that it is assumed that the constrained problem has a solution . Theorem 4 
does not guarantee that a solution exists; it only provide s a means for finding a solution 
already known to exist. It is usually necessary to satisfy yourself that the problem you 
are trying to solve has a solution before using this method to find the solution . 

Let us put the method to a concrete test: 

EXAMPLE 1 Find the shortest distance from the origin to the curve x 2y = 16. 

Solution The graph of x 2 y = 16 is shown in Figure 13.14. There appear to be two 
points on the curve that are closest to the origin and no point s that are farthest from the 
origin. (The curve is unbounded .) To find the closest points it is sufficient to minimize 
the square of the distance from the point (x , y) on the curve to the origin. (It is easier 
to work with the square of the distance rather than the distance itself , which involves a 
square root and so is harder to differentiate.) Thus, we want to solve the problem 

minimize f (x, y) = x 2 + y2 subject to g(x, y) = x 2y - 16 = 0. 

Let L(x , y, Jc) = x 2 + y2 + Jc(x2y - 16). For critical point s of L we want 

aL 
0 = - = 2x + 2hy = 2x(I + Jcy) (A) ox 

aL 2 0 = - = 2y + h (B) 
ay 
aL 2 0= aJc =x y- 16. (C) 

Equation (A) require s that either x = 0 or Jcy = -1. However , x = 0 is inconsistent 
with equation (C) . Therefore Jcy = -1. From equation (B) we now have 

0 = 2y2 + Jcyx2 = 2y2 
- x 2

. 

Thu s, x = ±v'2y, and (C) now gives 2y3 = 16, so y = 2. There are, therefore , 
two candidates for points on x 2y = 16 closest to the origin, (±2v'2, 2). Both of 
these point s are at distance JS + 4 = 2v'3 units from the origin, so this must be the 
minimum distance from the origin to the curve . Some level curves of x 2 + y2 are 
shown, along with the constraint curve x 2y = 16, in Figure 13.14. Observe how the 
constraint curve is tangent to the level curve passing through the minimizing point s 
(±2v'2, 2), reflecting the fact that the two curves have parallel normals there. 

www.konkur.in



SECTION 13.3 : Lagrange Multipliers 761 

Remark In the above example we could, of course, have solved the constraint equa
tion for y = 16/ x 2 , substituted into f, and thus reduced the problem to one of finding 
the (unconstrained) minimum value of 

( 
16) 2 256 

F(x) = f x, x 2 = x + 0 . 

The reader is invited to verify that this gives the same result. 

The number Jc that occurs in the Lagrange function is called a Lagrange multiplier . 
The technique for solving an extreme-value problem with equation constraints by 
looking for critical points of an unconstrained problem in more variables (the original 
variables plus a Lagrange multiplier corresponding to each constraint equation) is 
called the method of Lagrange multipliers . It can be expected to give results as 
long as the function to be maximized or minimized (called the objective function or 
cost function) and the constraint equations have smooth graphs in a neighbourhood of 
the points where the extreme values occur, and these points are not on edges of those 
grap hs. See Example 3 and Exercise 26 below. 

EXAMPLE 2 Find the points on the curve 17x 2 + I2xy + 8y 2 = 100 that are 
closest to and farthest away from the origin. 

Solution The quadrat ic form on the left side of the equation above is positive definite, 
as can be seen by completing a square. Hence , the curve is bounded and must have 
point s closest to and farthest from the origin. (In fact, the curve is an ellipse with centre 
at the origin and oblique principal axes. The problem asks us to find the ends of the 
major and minor axes.) 

Again, we want to extremize x 2 + y2 subject to an equation constraint. The 
Lagrang e function in this case is 

L(x, y, Jc)= x2 + y2 + Jc(l7 x 2 + 12xy + 8y 2 
- 100), 

and its critical point s are given by 

aL 
0 = - = 2x + Jc(34x + 12y) ax 

aL 
0 = - = 2y + Jc(l2x + 16y) 

ay 
aL 

0 = - }, = 17x2 + I2xy + 8y2 
- 100. a, 

(A) 

(B) 

(C) 

Solving each of equations (A) and (B) for Jc and equating the two expressions for Jc 
obtained, we get 

-2x -2y 

34x + l2y 12x + 16y 

This equation simplifies to 

2x 2 
- 3xy - 2y2 = 0. 

or 12x 2 + 16xy = 34xy + 12y2. 

(D) 

We multiply equation (D) by 4 and add the result to equation (C) to get 25x 2 = 100, 
so that x = ±2. Finally, we substitute each of these values of x into (D) and obtain 
(for each) two values of y from the resulting quadratics: 

For x = 2: y2 + 3y - 4 = 0, For x = -2: y2 - 3y -4 = 0, 

(y - l)(y + 4) = 0. (y+l)(y -4 )=0. 
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y 

Figure 13.15 The points on the ellipse 
that are closest to and farthest from the 
origin 

y 

X 

Figure 13.16 The minimum of y occurs 
at a point on the curve where the curve has 
no tangent line 

We therefore obtain four candidate points: (2, 1), (-2, -1), (2 , -4) , and (-2, 4). The 
first two points are closest to the origin (they are the ends of the minor axis of the 
ellipse); the other two are farthest from the origin (the ends of the major axis). (See 
Figure 13.15.) 

Considering the geometric underpinnings of the method of Lagrange multipliers , we 
would not expect the method to work if the level curves of the functions involved are 
not smooth or if the maximum or minimum occurs at an endpoint of the constraint 
curve. One of the pitfalls of the method is that the level curves of functions may not be 
smooth , even though the functions themselves have partial derivatives. Problems can 
occur where a gradient vanishes , as the following example shows. 

EXAMPLE 3 Find the minimum value of f(x , y) = y subject to the constraint 
equation g(x, y ) = y3 - x 2 = O. 

Solution The semicubical parabola y 3 = x 2 has a cusp atthe origin. (See Figure 13.16.) 
Clearly, f (x, y) = y has minimum value Oat that point. Suppose, however, that we try 
to solve the problem using the method of Lagrange multipliers. The Lagrange function 

here is 

L(x, y , 2) = y + 2(y3 - x 2) , 

which has critical points given by 

-2 2x = 0, 

l + 32y2 = 0, 

y3 - x 2 =0 . 

Observe that y = 0 cannot satisfy the second equation, and , in fact, the three equations 
have no solution (x , y , 2). (The first equation implies either A = 0 or x = 0, but 
neither of these is consistent with the other two equations .) 

Remark The method of Lagrange multipliers breaks down in the above example 
because V g = 0 at the solution point , and therefore the curve g(x , y) = 0 need not be 
smooth there. (In this case , it isn ' t smooth!) The geometric condition that V f should 
be parallel to V g at the solution point is meaningles s in this case. When applying the 
method of Lagrange multipliers, be aware that an extreme value may occur at 

(i) a critical point of the Lagrange function , 

(ii) a point where V g = 0, 

(iii) a point where V f or V g does not exist, or 

(iv) an "endpoint" of the constraint set. 

Thi s situation is similar to that for extreme values of a function f of one variable , 
which can occur at a critical point off, a singular point off , or an endpoint of the 
domain off. 

EXAMPLE 4 Find the maximum and minimum values of f(x, y, z) = xy 2z3 on 
the ball x2 + y 2 + z2 s 1. 

Solution Since / 1 (x , y, z) = y2z 3 = 0 only if either y = 0 or z = 0, there can be no 
critical points off where f(x, y, z) "I 0. Evidently (x, y , z) is positive at some points 
in the ball, and negative at other s, so no interior critical points can provide a maximum 
or minimum value for f on the ball. Therefore , these extreme values must occur on 
the boundary sphere x 2 + y2 + z2 = 1. To find them we look for critical points of the 
Lagrange function 

L(x, y, z, 2) = xy2z3 + 2(x2 + y2 + z2 - 1), X "'F 0, y "'F 0, Z, "'F 0. 
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Thus we calculate: 

aL 2 3 y2z3 
0 = - = y z + 2Jcx {==::=} -- = - 2Jc 

Bx X 

BL 
0 = - = 2xyz 3 + 2Jcy {=:} 2x z3 = -2 Jc 

ay 
BL 

0 = - = 3xy2z2 + 2Jcz {=:} 3xy2z = -2 Jc 
az 
BL 

0 = - = x 2 + y2 + z2 
- 1. 

aJc 

Eliminating A from pairs of the first three equations leads to 

y2z3 
-- = 2xz 3 = 3xy2z , 

X 

which, since none of x , y, and z can be zero, shows that at a critical point we must 
have y2 = 2x2 and z2 = (3/ 2)y2 = 3x 2 . Substituting these into the final (constraint) 
equation above, we obtain x 2 + 2x2 + 3x 2 = I, so 

2 1 
X = -6 ' 

2 1 
z = -

2 

Each of these squares has two square roots , leading to eight critical points (x, y , z) for 
L , one in each octant of JR3. At the one in the first octant (and at three others) f has 
the value 

f(x ,y , z) = (~) (~) (
2

~) = 
6

~. 

This is the maximum value off on the ball. The minimum value is -1 / (6.J3) and it 
occurs at the remaining four critical points. off . 

Problems with More than One Constraint 
Next consider a three-dimensional problem requiring us to find a maximum or minimum 
value of a function of three variab les subject to two equation constraint s: 

extremize f(x , y , z) subject to g(x , y , z) = 0 and h(x, y , z) = 0. 

Again , we assume that the problem has a solution, say, at the point Po = (xo, Yo, zo), 
and that the functions f , g , and h have continuous first partial derivatives near Po. Also, 
we assume that T = V g ( Po) x V h ( Po) =I=-0. These conditions imply that the surfaces 
g(x , y , z) = 0 and h(x, y, z) = 0 are smooth near Po and are not tangent to each other 
there, so they must intersect in a curve e that is smooth near Po. The curve e has 
tangent vector Tat Po. The same geometric argument used in the proof of Theorem 4 
again shows that V f (Po) must be perpendicular to T. (If not, then it would have a 
nonzero vector projection along T, and f would have nonzero directional derivative 
in the directions ±T and would therefore increase and decrease as we moved away 
from Po along e in opposite directions.) 

Since V g(Po) and V h(Po) are nonzero and both are perpendicular to T (see 
Figure 13.17), V f(Po) must lie in the plane spanned by these two vectors and hence 
must be a linear combination of them : 

V f (xo, YO, zo) = - Jco V g(xo , yo, zo) - µo V h(xo, Yo, zo) 

for some constant s Ao and µo. It follows that (xo, yo, zo, Jco, µo) is a critical point of 
the Lagrange function 

L(x, y, z, Jc,µ)= f(x, y, z) + Jcg(x, y, z) + µh(x, y, z). 
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Figure 13.17 At Po, V f, V g, and V h 
are all perpendicular to T. Thus, V f is in 
the plane spanned by V g and V h. 

When none of the equations 
factors, try to combine two or 
more of them to produce an 
equation that does factor. 

We look for triples (x, y, z) that extremize f (x, y, z) subject to the two constraints 
g(x, y, z) = 0 and h( x, y, z) = 0 among the points (x, y, z, 2, µ) that are critical 
points of the above Lagrange function , and we therefore solve the system of equations 

!1 (x, y, z) + 2g 1 (x, y, z) + µh1 (x, y, z) = 0, 

h(x, y, z) + 2g2(x, y, z) + µh 2(x , y, z) = 0, 

h(x, y, z) + 2g3(x, y, z) + µh 3(x , y, z) = 0, 

g (x, y, z) = 0, 

h(x, y, z) = 0. 

Solving such a system can be very difficult. It should be noted that , in using the method 
of Lagrange multipliers instead of solving the constraint equation s, we have traded the 
problem of having to solve two equations for two variables as functions of a third one 
for a problem of having to solve five equations for numeri ca l value s of five unknown s. 

EXAM p LE 5 Find the maximum and minimum values of f(x, y, z) = xy + 2z 
on the circle that is the intersection of the plane x + y + z = 0 and 

the sphere x 2 + y 2 + z2 = 24. 

Solution The function f is continuous, and the circle is a closed bounded set in 
3-space . Therefore , maximum and minimum values must exist. We look for critical 
points of the Lagrange function 

L = xy + 2z + 2(x + y + z) + 1,1(x2 + y2 + z2 - 24). 

Setting the first partial derivatives of L equal to zero, we obtain 

y + 2 + 2µx = 0, 

x + 2 + 2µy = 0, 

2 + 2 +2µ z = 0, 

X + y + Z = 0, 

x 2 + y2 + z2 - 24 = 0 . 

(A) 

(B) 

(C) 

(D) 

(E) 

Subtracting (A) from (B) we get (x - y)(l - 2µ) = 0. 
x = y. We analyze both possibilities. 

Therefore, eitherµ = ½ or 

CASE I Ifµ = ½, we obtain from (B) and (C) 

and 2 + 2 + z = 0. 
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Thus , x + y = 2 + z. Combining this with (D), we get z = -1 and x + y = l. 
Now, by (E), x 2 + y2 = 24 - z2 = 23 . Since x 2 + y2 + 2xy = (x + y) 2 = 1, we 

have2xy = 1-23 = -22andx y = -11. Now (x-y)2 =x 2 +y2-2xy = 
23 + 22 = 45 , so x - y = ±3.Js . Combining this with x + y = 1, we obtain two 

critical points arising from µ = ½, namely, ( (1 + 3.Js) / 2, (1 - 3.Js) / 2, - 1) and 

( (1 - 3.Js) / 2, (1 + 3.Js) / 2 , - 1). At both of these points we find that f (x, y , z) = 
X y + 2z = -11 - 2 = - [ 3. 

CASE II If x = y, then (D) implies that z = -2x, and (E) then gives 6x 2 = 24, so 
x = ±2 . Therefore , points (2, 2 , -4) and (-2 , -2 , 4) must be considered. We have 

f (2, 2, -4) = 4 - 8 = -4 and f ( - 2, - 2, 4) = 4 + 8 = 12. 

We conclude that the maximum value off on the circle is 12, and the minimum 

value is -13. 

EXE RC IS ES 13.3 
1. Use the method of Lagrange multipliers to maximize x 3y 5 

subject to the constraint x + y = 8. 

2. Find the shortest distance from the point (3, 0) to the 
parabola y = x 2, 

(a) by reducing to an unconstrained problem in one variable , 
and 

(b) by using the method of Lagrange multipliers. 

3. Find the distance from the origin to the plane 
X +2y + 2z = 3, 

(a) using a geometric argument (no calculus), 

(b) by reducing the problem to an unconstrained problem in 
two variables , and 

(c) using the method of Lagrange multipliers. 

4. Find the maximum and minimum values of the function 
f(x, y, z) = x + y - z over the sphere x 2 + y2 + z2 = 1. 

5. Use the Lagrange multiplier method to find the greatest and 
least distances from the point (2, 1, -2) to the sphere with 
equation x2 + y2 + z2 = 1. (Of course , the answer could be 
obtained more easily using a simple geometric argument.) 

6. Find the shortest distance from the origin to the surface 
xy z2 = 2. 

7. Find a, b, and c so that the volume V = 471:abc/ 3 of an 
x2 y2 z2 

ellipsoid 
0 2 

+ b2 + c2 = l passing through the point 

(I , 2, 1) is as small as possible. 

8. Find the ends of the major and minor axes of the ellipse 
3x2 + 2xy + 3y2 = 16. 

9. Find the maximum and minimum values off (x, y , z ) = x yz 

on the sphere x2 + y 2 + z2 = 12. 

10. Find the maximum and minimum values of x + 2y - 3z over 
the ellipsoid x 2 + 4y 2 + 9z 2 S 108. 

11. Find the distance from the origin to the surface x y2 z4 = 32. 

12. Find the maximum value of I:7=1 x; on then-sphere 
I:7=L x; = l in Rn. 

13. Find the maximum and minimum values of the function 
f (x , y, z) = x over the curve of intersection of the plane 
z = x + y and the ellipsoid x 2 + 2y 2 + 2z 2 = 8. 

14. Find the maximum and minimum value s of 
f (x , y, z) = x2 + y2 + z2 on the ellipse formed by the 
intersection of the cone z2 = x2 + y 2 and the plane 
X - 2z = 3. 

15. Find the maximum and minimum value of 
f (x, y, z) = 4 - z on the ellipse formed by the inter section 
of the cylinder x 2 + y2 = 8 and the plane x + y + z = I. 

16. Find the maximum and minimum values of 
f (x , y, z ) = x + y2z subject to the constraints y 2 + z2 = 2 
and z = x . 

D 17. Use the method of Lagrange multipliers to find the shortest 
distance between the straight lines x = y = z and 
x = - y, z = 2. (There are , of course , much easier ways to 
get the answer. Thi s is an object lesson in the folly of 
shooting sparrows with cannons.) 

18. Find the most economical shape of a rectangular box with no 
top. 

19. Find the maximum volume of a rectangular box with faces 
parallel to the coordinate planes if one corner is at the origin 
and the diagonally opposite corner lies on the plane 
4x +2 y + z = 2. 

20. Find the maximum volume of a rectangular box with faces 
parallel to the coordinate planes if one corner is at the origin 
and the diagonally opposite corner is on the first octant part 
of the surface xy + 2yz + 3xz = 18. 

21. A rectangular box having no top and having a prescribed 
volume Vm3 is to be con structed using two different 
material s. The material used for the bottom and front of the 
box is five times as costly (per quare metre) a the material 
used for the back and the other two sides. What should be the 
dimen sion of the box to minimize the cost of materials ? 

D 22. Find the maxin1Um and minimum values of xy + z2 on the 
ball x2 + y 2 + z2 s 1. Use Lagrange multipliers to treat the 
boundary case. 

D 23. Repeat Exercise 22 but handle the boundary case by 
parametrizing the sphere x2 + y 2 + z2 = I using 

x = sin ¢ cos 0, y = sin ¢ sin 0, z = cos ¢, 

where O S ¢ S 7T: and O S 0 S 271:. 
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8 24. If a., /J, and y are the angles of a triangle, show that This constitutes a more formal justification of the method of 
Lagrange multipliers in this case . . a../J. y 1 

sm - sm - sm - < - . 
2 2 2 - 8 

For what triangles does equality occur? 

D 25. Suppose that f and g have continuous first partial derivatives 
throughout the xy- plane, and suppose that g2(a, b) i= 0. 

8 26. What is the shortest distance from the point (0, - l) to the 
curve y = .ff=xI? Can this problem be solved by the 
Lagrange multiplier method? Why? 

8 27. Example 3 showed that the method of Lagrange multipliers 
might fail to find a point that extremizes f (x, y) subject to 
the constraint g (x , y) = 0 if V g = 0 at the extremizing 
point. Can the method also fail if V f = 0 at the extremizing 
point? Why? 

This implies that the equation g(x, y) = g(a, b) defines y 
implicitly as a function of x near the point (a, b). Use the 
Chain Rule to show that if f (x, y) has a local extreme value 
at (a, b) subject to the constraint g(x, y) = g(a, b), then for 
some number J.. the point (a, b, J..) is a critical point of the 
function 

L( x, y, J..) = f(x, y) + ),g(x , y ). 

• 
Lagrange Multipliers inn-Space 

---- -

Here the indices on g denote 
different functions, not partial 
derivatives. 

In IR(2 a manifold of dimension 1 
is just a curve. In IR(3 a manifold 
of dimension 1 is a curve; a 
manifold of dimension 2 is a 
surface. We are introducing the 
term manifold here to avoid 
having to use different terms to 
distinguish between curves, 
surfaces, and smooth subsets of 
dimension up ton - I in an 
n-dimensional space R". 

The concept of a tangent space, 
7, is simply the extension to 
higher dimensions of the tangent 
line in Section 2.1 and the 
tangent plane in section 12.3. 
Similarly, the normal space .N 
extends the concept of normal 
line or normal plane. 

In this section we will show how the method of Lagrange multipliers extends to the 
problem of finding local extreme values of a function f of n real variables, that is, of 
a vector variable x = (x1, x2, . . . , x,,), 

f(x) = f(x1, x2, ... , X11), 

subject to m S n - I constraints 

g1 (x) = 0, g2(x) = 0, .. . ' g111 (x) = 0, 

where 1 .::: m S n - l . 

In what follows we will assume that f and each of the functions g;, (1 .::: i .::: m), 
is smooth in the sense that its partial derivatives of orders up to 3 are all continuous . 
We also assume that for each i, the gradient V g; =/=-0 at any point x where g; (x) = 0. 
This means that for each i , the set of points x in JR.11 satisfying g; (x) = 0 is a smooth 
hypersurface of dimension n - 1 (called an n - I-dimensional manifold). 

The intersection M of all m of these manifolds (i.e. , the set of points satisfying all 
m constraint equations) will be a surface in JR." called the constrai nt manifold for the 
extrernization problem. M will have dimension n - m provided that the set of normal 
vectors V g; (x) , (1 .::: i .::: m ), is linear ly independent at each point x on M; that is , if 
an equation of the form 

holds , then every coefficient c; = 0 for 1 .::: i .::: m. The subspace of JR." spanned by 
them gradient vectors V g; (a), (l .::: i .::: m ), is the in-dimensional space N normal to 
M at a . In particular , if m = 1, then M. has dimension n - 1 and the normal space N 
has dimension 1. If m = n - 1, then M. has dimension 1 (and so is a curve in JR.") and 
the normal space N is an n - I -dimensional hyperplane perpendicular to that curve 
at the point a. The tangent space 7to M at a is the subspace of JR." consisting of all 
vectors perpendicular to the normal space N. Equivalently, 7 consists of all points on 
lines through a that are tangent to M. at a. Like M., its tangent space 7has dimension 
n - m. For example, in JR.3, the normal space to a surface (2-dimensional manifo ld) 
at a point is just the normal line to the surface at that point. The tangent space is the 
plane perpendicular to the normal line at that point. Similarly, the normal space to a 
curve (I-dimensional manifold) at a point is the plane normal to the curve at that point 
and the tangent space is the tangent line to the curve there. (See Sect ion 17 .3 for more 
discussion of these ideas.) 
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Under the conditions described above, we will show that if f, when restricted to 
points on the constraint manifold ..M, has a local extreme value at point a, then a must 
be a critical point of the Lagrange function 

m 

L(x) = f(x) + L A;g;( x) 
i=I 

for some values of them Lagrange multipliers A 1, A2, ... ,Am. Then we will show that if 
a is any critical point of L on ..M, then x n He ssia n matrix of seco nd partial deriv atives 
of L can be reduced to an (n - m) x (n - m) Hes sian matrix on the (n - m )-dimensional 
space '.Ttangent to ..M at a to provide a second derivative test for classifying the critical 
point a. This test is presented in the following theorem. It is analagous to the test for 
unconstrained extrema given in Theorem 3 in Section 13 .1. 1 

Suppose that the functions f (x) and g; (x) for 1 S i S m have continuous partial 
derivatives of order up to 3 in a neighbourhood of point a on the constraint manifold 
..M having equations g; (x) = 0, (1 S i S m). Suppose also that them vectors V g; (a) 
are linearly independent in !Rn. 

(a) Necessary Conditions for a local extreme value: If f, when restricted to points 
on ..M, has a local maximum or a local minimum value at a, then there exist 
numbers A 1, A2, ... , A111 such that a is a critical point of the Lagrange function. 

11 

L(x) = f(x) + L A;g;(x). (*) 
i=I 

(b) Second Derivative Test Suppose a Lagrange function of the type(*) has a critical 
point at a on ..M. Let Jf be the Hessian matri x of seco nd partial derivatives of L 
with respect to the component of x, evaluated at x = a: 

( 

L11 (a) 
L21 (a) 

Jf= 

L,,:(a) 

L111(a)) 
L211(a) 

Ln,,(a) 

Let u = (u 1, u2, ... , un) belong to the space '.Ttangent to ..Mat a. For purposes of 
matrix mu! ti plication we regard u as a column vector having transpose u T , a row 
vector. If the quadratic form 

/I IZ 

Q(u) =LL LiJ(a) u; Uj = uT Jfu 
i=I j=l 

is positive (or negative) definite when restricted to vectors u E '.T, then the restric
tion off to ..M has a local minimum (or a loca l maximum) at x = a. 

(c) The restricted Hessian 1f Jf is positive definite (or negative definite) on !Rn, then 
Q(u) will be positive (or negative ) definite on all of !Rn, and so on 7. If not , we can 
calculate a He ssia n matrix restricted to '.Tas follows. Since ..M has dimension n -m, 
so doe s 7. Let u 1, u 2, ... , u11_ 111 be an orthonormal basis for '.T, that is, a basis 
consisting of mutually perpendicular unit vectors. Let 8 be then x (n - m) matrix 
whose ith column consists of the component of the vector u;, (l S i S n - m). 
If eT is the (n - m) x n transpose of 8, then the (n - m) x (n - m) matrix 

1 This discussion is similar to the presentation ofM. A.H. Nerenberg's paper : "T he 
Second Derivative Test for Constrained Extremum Problems, " Int. J. Math. Educ. Sci. 
Technol., 1991, Vol. 22. 
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defines a quadratic form on T that restricts Jf to 7. Any vector u E T can be 
. '\'11 - m Th wntten u = L..,i = l u;u; . en 

n- mn - m 

Q(u) = uT Jfu =LL (JfT);J u; Uj , 
i = l j= I 

where ( Jf7) .. is the element in the ith row and )th column of Jf7- When restricted 
/,} 

to M, f will have a local minimum , a local maximum , or saddle behaviour at a 
if Jf7 is positive definite , or negative definite or indefinite. (See, for example, 
Theorem 7 or Theorem 8 of Section 10.7.) If Jf7is neither definite nor indefinite , 
this test will give no information about the nature of the critical point a. 

PROOF (a) If V f (a) does not lie in the normal space JI to M at a, then it will 
have a nonzero projection v on 7, and f will have a positive directional derivative 
at a in the direction of v and a negative directional derivative in the direction of -v, 
contradicting the assumption that when restricted to M , f has a local extreme value at 
a. Thus, V f (a) E JI. Since them vectors V g; (a) span JI, there must exist number s 
..1.;, (1 :::= i :::= m) such that 

111 

V f(a) = - L ..1.;V g;(a) 
i=l 

and so a is a critical point of the Lagran gian function ( *) . 

(b) Now let a and a + h be two points on M and suppose that a is a critical 
point of the Lagran ge function ( *) for some values of the multipli ers A;, ( 1 :::= i :::= m ). 

Because of the smoothness assumptions made on f and the constraint functions g;, 
Taylor 's Formula (Section 12.9) gives 

1 
f(a + h) - f (a)= h • V f (a)+ 2(h • v)2 f(a) + O(lh l3), 

1 
g;(a + h) - g;( a) = h • Vg;( a) + 2(h • V) 2g; (a) + O(lh l3), (1 :::= i :::= m). 

Noting that g;(a + h) - g;(a) = 0 and V L(a) = 0, multiplying the second formula 
above by ..1.;, summing , and adding the result to the first formula, we get 

1 
f (a+ h) - f(a) = - (h • v )2 L(a) + O(lhi 3

) 
2 
1 17 ll 

=
2

LLh ;hJ LiJ(a) 
i = l J= l 

= hT Jfh + O(lhl 3
) , 

where, in the final quadratic form expression, we are regarding h as a column vector 
with transpose h T_ Now let h = te = t (e7+ eJI) , where e is a unit vector , and e7and 
eJlare its projection s onto Tand JI, respec tively. The smoothn ess of M shows that the 
angle 0 between e and e JI approaches 7l: / 2 as t -+ 0. Accordingly, lim1~ o Jeri = 1 
and limHo leJII = 0. For small enough positive t, therefore , lhJII < tl hl = t2 . Thus, 

I T 3 
f(a + h) - f(a) = 2 (h7+ hJI) Jf(h7+ hJI) + O( lhl ) 

t 2 T 3 
= 2 u7 Jf u7+ O(t ). 

For small t the t 2 term dominate s the O (t 3) term, which now also contains three term s 
from the previous line that involve at least one copy ofhJI. Hence f, when restricted to 
M, will have a minimum (or maximum) value at a if The Hessi an matrix Jf is positive 
(or negative) definite on 7. 
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(c) Observe that the element in the ith row and }th column of Jf7is 

( Jf7) ij = u; Jfuj · 

If u = u1u1 + u2 u 2 + · · · + Un-mUn-m is an arbitrary vector in T, then 

n- m n.- m n - m n-m 

Q(u) = uT Jfu = L Lu; Uj u; Jfuj = L L (HT\j u; Uj. 

i=I j=I i=I j=l 

Thus, Q is positive definite (or negative definite, or indefinite) on T provided the 
restricted Hessian matrix Jf7 is positive definite (or negative definjte, or indefinite). 
Thjs completes the proof. 

Remark Suppose m = n - 1, o that M. is a one-dimensional curve in JR". Its tangent 
space Tat a is a one-dimensional straight line, spanned by a single nonzero vector u 
that is normal to then - 1 gradients V g; (a). In this case, the test boils down to looking 
at the sign of a single number , u T Jfu . For example, if n = 2 and m = 1, so that 
x = (x , y) and a = (a, b), then u mu t be normal to V g( a) = 8x (a, b)i + gy(a, b)j. 
Evidently, u = gyi - g,d will do , and we examine the number 

= (g yLxx - 2gxg yLxy + 8x Lyy) lca,b)" 
If Q > 0 (Q < 0), then there will be a local rninjmum (maxjmum) at (a, b) . 

The following examples illustrate the use of Theorem 5 in classifying critical 
points for constrai ned extrema. 

EXAM p LE 1 The entropy S of a system that can exist in n states is given by 
S = - I:7= 1 p; In p; , where each p; satisfies O < p; < 1 and 

is the probability the system is in the ith state . S is subject to two constraints: 
I:7=1 p; = l, and I:;7::,1 p; E; = E, where the E; and E are constants. (E; is the 
energy of the ith state and E is the average energy .) Show that attempting to extremize 
S subject to these constraints leads to a maximum value for S. 

Solution The Lagrange fuction for this problem is 

The critical points are given by 

aL 
-a = - In p; - 1 + ;t + pE;, 

p; 
(1 Si S n) 

and the two constraint equatio ns. Solving the first equation for p;, we obtain 
p; = C exp(p E;) for 1 s i s n, where the constants C and p can be found by 
substituting these values into the two constraint equations and solving. There is just 
the one critical point. Observe that 

a2s (-_!_ 
ap; apj = 

0 
p; 

if i = j 
if i i= j 

and so the (unconstrai ned) Hessian matrix Jf has its only nonzero elements on the main 
diagonal, and these are all negat ive at the critical point. Accordingly, Jf is negative 
definite (by either of Theorems 7 and 8 of Section 10.7), and we don't need to worry 
about restricting Jf to the (tange nt space to) the constraint manifold . The critica l point 
gives S a local maximum value. Since, limp;->0+ p; In p; = 0 and there are no other 
critical points, the local maximum must, in fact, be an abso lute maxim um . 
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X 

Figure 13.18 Clearly the distance 
between the circle and the line is .J2 units, 
the distance between B = (1, 1) and 
A= (2, 2) 

EXAMPLE 2 Find the minimum distance between the circle x 2 + y2 = 2 and 
the line x + y = 4. 

Solution We really don ' t need to use such fancy theory to solve this problem. It is 
geometrically evident in Figure 13.18 that the two close st point s are B = (1, 1) on 
the circle and A = (2, 2) on the line. We shall, however , treat it as a problem of 
minimizing (the square of) the distance between two arbitrary point s, (x1, Yt) on the 
circle and (x2, y2) on the line: 

minimize S = (x1 - x2)2 + (y1 - y2)2 

subject to xf + yf - 2 = 0 and x2 + y2 - 4 = 0. 

The Lagrange function is 

L = (x1 - x2)2 + (yi - Y2)2 + J.(xf + yf - 2) + µ(x2 + Y2 - 4). 

Since S and the constraint functi ons involve four variables , this is a problem in JR4. 
Since there are two constraint s, L depend s on six variable s, so its critical points satisfy 

aL 
0 = - = 2(x 1 - x2) + 2h 1 

ax 1 
aL 

0 = - = 2( y 1 - y2) + 2J.y1 
ay 1 
aL 

0 = - = -2( x 1 - x2) + µ 
ax2 
aL 

0 = - = -2(y 1 - Y2) + µ 
ay2 

aL 2 2 
0 = aJ. = Xi + Yt - 2 

aL 
0 = - = x2 + Y2 - 4. 

aµ 

We leave it to the reader to show that L (x 1 , y 1 , x2, Y2, J., µ) has two critical point s: 
P = (1, 1, 2 , 2 , -1 , -2 ), and Q = (- 1, -1 , 2, 2, 3, -2). The Hess ian matrices at P 

and Qare 

0 -2 
4 0 
0 2 

-2 0 

~2) 0 , 

2 
(

-4 0 

Jf(Q) = 0 -4 
-2 0 
0 - 2 

-2 
0 
2 
0 

~2) 0 . 

2 

In order to calculate the rest riction s of these Hes sians to the space tangent to the 
constraint manifold at each of P and Q, we need orthonormal bases for those tangent 
space s. Let e 1, e2, e3, and e4 be the standard ba sis vectors for the space JR4 of 
coordinates (xi, Yt , x2, y2) As luck would have it, the norm al vectors at P and Q are 
V( x2 + y2 - 2) = 2xe1 + 2ye 2 = ±2(e1 + e2) and V( x + y - 4) = e3 + e4, so the 
normal spaces at both point s are the same 2-dimensional subspace of JR4, and the two 
perpendicular unit vectors 

e, - e2 
Ut =---

~ 
being perpendicular to both tho se normal s, constitute an orthonormal basi s for the 
2-dimensional tangent space at eac h point. At both point s we can use 

( 

1 0 ) 1 -1 0 
8 = ~ 0 1 . 

0 -1 
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The restriction of Jf to the tangent space at P is 

:r ( 4 Jfp7= 8 Jf(P)8 = - 2 
-2) 
2 ' 

and that at Q is 

:r (-4 JfQ7= 8 Jf(Q)8 = - 2 -2) 2 . 

The eigenvalues of these 2 x 2 matrices are easily calculated. (See Section 10.7.) For 
Jfp7they are 3 ± "15, both positive. Therefore Jf PT is positive definite by Theorem 7 
of Section 10.7, and S has a local minimum value at P. It is also the absolute minimum , 
as observed in Figure 13.18. The minimum distance is the distance from A = (2, 2) to 
B = (1, 1), that is, ,J2 units. 

For JfQT the eigenvalues are -1 ± .JTI", which have opposite signs. Therefore , 
JfQT is indefinite and S has neither a local minimum nor a local maximum at Q. At 
first this may seem strange ; it may appear that S should have a local maximum at Q; 
if point C in the figure moves along the circle away from (-1 , -1), its distance from 
A = (2, 2) is decreasing. However , if A moves along the line away from (2, 2) , its 
distance from C = (- 1, - 1) is increasing. Thus, Q really is a saddle point of the 
constrained problem. Of course, there is no absolute maximum distance since the line 
is unbounded. 

Using Maple to Solve Constrained Extremal Problems 
As the previous Example indicate s, the classification of critical points for constrained 
problems can be quite computationally intensive. Our next Example will show how to 
make use of Maple to relieve some of the burden. 

EXAMPLE 3 Find and classify the critical point s of the Lagrange function for 
the problem 

1 1 1 
-+-+-=1. Extremize F(x , y , z) = x3 + y3 + z3 subject to 
X y Z 

Solution We begin by loading two Maple packages defining routines useful in what 
follows. 

> with(LinearAlgebra) : with(VectorCalculus) : 

The colons suppress output from these with command s. We will not reproduce here 
the results of the next few command s either , as their output just restates the input. First 
we define expression s for F and G and the Lagrange function L. We do not need these 
to be Maple functions , so we ju st set them up as expressions. 

> F . - xA3 + yA3 + zA3 ; 

> G : = (1 /x ) + (1 /y) + (1/z) ; 

> L : = F + lambda*(G - 1) ; 

Newer versions of Maple will use the symbol A in place of lambda in the output. Some 
of the commands used below require us to li t the variables to which the command 
should be applied. We require two sets of variables, the space variables x , y, z, and 
all variables, which include s the A as well. 

> spvars : = [x, y, z] ; allvars : = [x, y , z, lambda] ; 

Now we can get down to business. We calculate the gradient of L with respect to 
all four variables. The list al 1 vars is required by the Gradient command in the 
VectorCalculus package. 

> GrL := Gradient(L, allvars) ; 
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Grl := 3x - - ex+ 3y - - e + 3z - - ez + - + - + - - 1 e;_ 
( 

2 ).)_ ( 2 ).)_ ( 2 ).)_ (1 1 1 )-
x 2 y2 Y z2 x y z 

In the output above the vectors ex, ey, ez, and e;_ denote the standard basis in the 
4-space of variables x, y, z, and 2. To find the ctitical points of L we need to solve 
a set of four equations obtained by setting the four components of GrL equal to zero. 
We construct the list of these equations as follows. 

> eqns : = [seq(GrL[i]=O , i=l . . 4)] ; 

eqns := [3x2 
- \ = 0, 3y 2 

- \ = 0, 3z 2 
- ~ = 0, ~ + ~ + ~ - 1 = o] 

X y Z X y Z 

We now attempt to solve these equations for all four variables using Maple's solve 
command . 

> solns : = solve(eqns , allvars) ; 

This command produce s several lines of output, not all of which we reproduce here. 
The output consists of a list of eight lists, each of which provides one solution for 
the four variables. Only four of those solutions consist entirely of real numbers 
(in fact, integers). The other four involve expressions like RootOf (_Z"2+1) and 
Root Of ( 5-2 _ Z + _ Z" 2 ) , both of which represent complex numbers and are of no 
use to us. The four real critical points of L are 

[x = 3, y = 3, z = 3, ). = 343], [x = 1, y = 1, z = -1, ). = 3], 

[x = l ,y = - 1,z = 1,2 = 3], [x = -l ,y = l ,z = 1,2 = 3], 

that is, the points P = (3, 3,3,343), Q = (l,1,-1 , 3), R = (1,-1,1,3), and 
S = ( -1 , 1, 1, 3). When we did this calculation, the four real solutions were the first, 
second, fourth, and fifth ones in the solns list. Thus, P was solns [ 1 J and Q was 
solns [ 2 J. Now we need to classify these four points. By the symmetry of F and 
G in the spatial variables x, y, and z, the points Q, R and Swill be of the same type, 
so we need only look at P and Q. The YectorCalculus package has a function for 
calculating Hessian matrices. 

> H := Hessian(L , spvars) ; 

0 

2 ). 
6y+ y3 

0 

At P and Q these Hessians are, respectively, 

> HP : = eval(H , solns[l]) ; HQ . - eval(H , solns[2]) : 

HP -Ci 
(

12 

HQ := ~ 

0 0) 
36 0 
0 36 

0 
12 
0 

Both matrices are diagonal so the diagonal elements are the eigenvalues. HP is positive 
definite , so the constrained problem must have a local minimum at P. However, HQ 
is indefinite so we have to consider the restriction of HQ to the tangent plane '.Tto the 
constraint manifold at Q to determine the nature of Q. A vector normal to '.Tis given 
by 

> NQ := subs([x=l , y=l , z= - 1] , Gradient(G , spvars)) ; 

N Q := -ex - ey - ez 
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We need two linearly independent vectors each normal to N Q. Evidently , two such 
vectors are 

> vl : = <1 , -1 , 0> ; v2 : = <1 , 0 , -1> ; 

We can now use the GramSchmidt function in the Linear Algebra package to generate 
an orthonormal basis for T. 

> B : = GramSchmidt([vl , v2] , normalized) ; 

Now we convert B into the matrix E needed for calculating the restricted Hessian at 
Q. 

> E : = convert(B , Matrix) ; 

The transpose of E is Transpose ( E), so the restricted Hessian at Q is given by 

> HQT : = (Transpose(E)) . HQ. E ; 

HQT := [~ ~ 4 ] 

This matrix is diagonal and clearly indefinite, so we conclude that F, when restricted to 
the constraint manifold , has saddle behaviour rather than a local maximum or minimum 
at Q, and by symmetry also at Rand S. 

Remark There are two places in the above use of Maple where difficultie s can arise 
for other constrained problem s. Firstly, depending on the function s involved, Maple's 
solve routine may not be able to solve the system of equations for the critical point of 
the Lagrange functi on. If so, you should try the floating point f solve routine, but this 
may only give one solution even though there are many. Secondl y, if Fis a function of 
n variables, and is subject to m ~ n constraints, the tangent to the constraint manifold 
will have dimen sion n - m and you will need to first find m - n linearly independent 
vectors, each normal to the m gradients of the con traint function s, in order to apply 
the GramSchmidt routine to generate an orthonormal basis for T . This can usually 
be done by solving an underdetermin ed system of m linear equations inn unknown s. 

Significance of Lagrange Multiplier Values 
It would seem that the actual value of a Lagrange multipli er is of little significance for 
the process of solving constrained extreme value problem s. However, it is significant 
if we want to determine the sensitivity of the extreme value to changes in the value of 
a parameter on which a constraint function depends. 

Consider , for example, the problem of extremizing f (x, y) subject to the constraint 
g(x, y, p) = 0. Here pi s a parameter in the constraint equation which is beyond our 
control and so does not enter into the process of finding the extreme value of f. If 
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f has an extreme value at (a , b) , then for some A, (a , b, ).) is a critical point of the 
Lagrange function 

L = f(x, y) + lg(x, y, p) 

and so a, b, and ). are determined by the three equations 

!1 (a, b) = -lg1 (a , b, p) 

h(a, b) = - l g2(a, b, p) 

g(a, b, p) = 0. 

The solution of these equations for a, b, and ). results in all three being functions of p . 
How does the extreme value J(a, b) change if p changes? Observe that 

d da db 
- f(a, b) = Ji (a, b)- + h(a, b)-
dp dp dp 

= - A g1 (a , b)- + g2(a, b)- . ( 
da db) 
dp dp 

But, since g(a, b, p) = 0, we have 

d da db 
0 = - g(a , b, p) = g1 (a, b)- + g2(a, b)- + g3(a, b, p) . 

dp dp dp 

Thus , 

d 
- f(a , b) = A g3(a, b, p) . 
dp 

The extreme value of f changes at a rate ). times the rate of change of the function g 
with respect to the parameter p at the point where the extreme value occurs . 

0 Nonlinear Programming 
When we looked for extreme values of function s f on restricted domains R in Section 
13.2, we had to look separately for critical points off in the interior of R and then for 
critical points of the restriction off to the boundary of R. The interior of R is typically 
specified by one or more inequality constraints of the form g < 0, while the boundary 
corresponds to equation constraints of the form g = 0 (for which Lagrange multipliers 
can be used). 

It is possible to unify these approaches into a single method for finding extreme 
values of functions defined on regions specified by inequafaies of the form g :S 0. 

Consider, for example , the problem of finding extreme values of f (x, y) over the 
region R specified by g (x , y) :S 0. We can proceed by trying to find critical points of 
the four-variable function 

L(x, y, A, u) = f(x , y) + l (g(x , y) + u2). 

Such critical points must satisfy the four equations 

aL 
0 = - = !1 (x, y) + l g 1 (x , y), 

ax 
aL 

0 = - = h(x, y) + l g2(x , y) , 
ay 
aL 

0= al =g(x , y)+u 2, 

aL 
0= - = 2lu. 

au 

(A) 

(B) 

(C) 

(D) 
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Suppose that (x, y, A, u) satisfies these equations. We consider two cases: 

CASE I u -:j= 0. Then (D) implie s that A = 0, (C) implies that g(x, y) = -u 2 < 0, 
and (A) and (B) imply that / 1 (x , y) = 0 and h(x , y) = 0. Thu s, (x, y) is an interior 
critical point off. 

CASE II u = 0. Then (C) implie s that g(x, y) = 0, and (A) and (B) imply that 
V f(x, y) = - AV g(x, y), so that (x, y) is a boundary point candidate for the location 
of the extreme value. 

This technique can be extended to the problem of finding extreme values of a 
function of n variables, x = (x,, x2, ... , Xn), over the inter section R of m region s RJ 
defined by inequality constraints of the form gJ (x) :S 0. 

extremize f (x) subject to g, (x) :s 0, gm (x) :S 0. 

In this case we look for critical point s of the (n + 2m )-variable Lagrange function 
m 

L(x, Al , ... , Am, UJ , . .. , um)= f(x) + L AJ(gj(x) + uJ). 
}=I 

The critical points will satisfy n + 2m equations 
m 

V f(x) = - L Aj V gj( x) , (n equations) 
j=I 

gj( x) = -u J, (I :s j :s m) , (m equations) 

2AjUJ = 0, (1 :S j :Sm). (m equations) 

The last m equations show that Aj = 0 for any j for which Uj -:/= 0. If all Uj -:/= 0, then 
xi s a critical point off interior to R. Otherwi se, some of the Uj will be zero, say, 
those corresponding to j in a subset J of {l, 2, ... , m}. In this case, x will lie on the 
part of the boundary of R consisting of point s lying on the boundaries of each of the 
regions Rj for which j E J , and V f will be a linear combination of the corresponding 
gradients V g1: 

V f(x) = - L Aj V gj( x). 
jEJ 

These are known as Kuhn-Tucker conditions , and this technique for solving extreme
value problems on restric ted domain s is called nonlinear programming. 

1. Find the maximum and minimum values of then-variable 
function x , + x2 + · · · + Xn subject to the constraint 

D 5. Find and classify the three critical points for the Lagrange 
function 

2 2 2 l 
X l + x 2 + · · · + X 11 = . 

2. Repeat Exercise 1 for the function x, + 2x2 + 3x3 + · · · + nx 11 

with the same constraint. 

3. Find a finite local extreme value of S = LI~, x; subject to 

the two constraints LJ~, x; = 10 and LI~, ix; = 55. Is the 
extreme value a local maximum or a local minimum? Is it 
absolute? 

4. Ref<eat Exercise 3 except replace the second constraint with 
L ~, ix;= 60. 

L (x, y, u, v, J.., µ) = S + J..(y - x 2) + µ(v - 2u2 - 1) 

corresponding to the problem: 

extremize S = (x - u)2 + (y - v)2 

subject to y = x 2 and v = 2u2 + I. 

What is the minimum distance between the curves y = x 2 

and y = 2x 2 + l ? 

• 
The Method of Least Squares 

-----
Important optimization problems arise in the statistical analysis of experimental data. 
Frequently, experiments are designed to measure the values of one or more quantities 
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supposed to be constant, or to demonstrate a supposed functional relationship between 
variable quantities. Experimental error is usually present in the measurements, and 
experiments need to be repeated severa l times in order to arrive at mean or average 
values of the quantities being measured. 

Consider a very simple example. An experiment to measure a certain physical 
constant c is repeated n times, yielding the values C J , c2, . .. , c11 • If none of the 
measurements is suspected of being faulty, intuition tell s us that we should use the 
mean value c = (c1 + c2 + · · · + c") / n as the value of c determined by the experiments. 
Let us see how this intuition can be justified. 

Various methods for determining c from the data values are possible. We could, 
for instance, choose c to minimize the sum T of its distances from the data points: 

T = le - c, I + le - c2 I + · · · + le - c,, I-

This is unsatisfactory for a number of reasons . Since absolute values have singular 
points, it is difficult to determine the minimizing value of c. More importantly, c may 
not be determined uniquely. If n = 2, any point in the interval between c1 and c2 will 
give the same minimum value to T. (See Exercise 24 below for a generalization of this 
phenomenon.) 

A more promising approach is to minimize the sum S of squares of the distances 
from c to the data points : 

ll 

S = (c - C J )
2 + (c - c2)2 + · · · + (c - c,,)2 = I)c - c;) 2. 

i= I 

S is known as the cost function or objective function. It is well known in the theory 
of optimization that the objective function is not unique , and that the outcome depends 
on the choice of objective function. There is no reason why, for example, we could not 
choose to minimize the sum of the fourth powers of the distances from c to the data 
points instead. However, the seco nd power is both convenient and traditional. In this 
type of analysis, we simply hope that other cost functions will produce results that are 
not too different. 

S is convenient because second-degree polynomials have linear derivatives, mean

ing that the emerging expressions are linear equations, about which so much powerful 
and straightforward mathematical machinery is easily available. To see this, we note 
that S(c) is smooth, and its (unconstrained) minimum value will occur at a critical 
point c given by 

o = - = I: 2(c - c;) = 2nc - 2 I: c;. 
dS I n n 

de c=c i= I i=I 

Thus c is the mean of the data values: 

The technique used to obtain c above is an example of what is called the method 
of least squares. It has the following geometric interpretation. If the data values 
CJ, c2, ... , c,, are regarded as components of a vector c in ]Rn, and w is the vector with 
components 1, 1, ... , 1, then the vector projection of c in the direction of w, 

C • W CJ + C2 + · · · + C11 

Cw = lwl2 w = n w, 

has all its components equal to the average of the data values. Thus, determining c from 
the data by the method of least squares corresponds to finding the vector projection 
of the data vector onto the one-dimensional subspace of JR11 spanned by w. Had there 
been no error in the measurements c;, then c would have been equal to cw. 
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Linear Regression 
In scientific investigations it is often believed that the response of a system is a certain 
kind of function of one or more input variables. An investigator can set up an experiment 
to measure the response of the system for various values of those variables in order to 
determine the parameter s of the function. 

For example, suppose that the response y of a system is suspected to depend on 
the input x according to the linear relationship 

y =ax+ b, 

where the values of a and b are unknown. An experiment set up to measure values of 
y corresponding to several values of x yields n data points , (xi , yi) , i = l , 2, ... , n. 
If the supposed linear relationship is valid, these data points should lie approximately 
along a straight line, but not exactly on one because of experimental error. Suppose 
the points are as shown in Figure 13.19. The linear relationship seems reasonable in 
this case. We want to find values of a and b so that the straight line y = ax+ b "best" 
fits the data. 

y 

(xn,Yn) 

y = ax+ b 

X 

In this situation the method of least squares requires that a and b be chosen to minimize 
the sum S of the squares of the vertical displacements of the data points from the line : 

II 

S = L)Yi - axi - b )
2

. 

i = I 

This is an unconstrained minimum problem in two variables, a and b. The minimum 
will occur at a critical point of S that satisfies 

as 11 

0 = -;-- = -2 L Xi (y; - ax; - b) , 
ua i = I 

as 11 

0 = - = -2 L( Y; - ax; - b). 
ob i= I 

These equations can be rewritten 

(txf)a + (tx)b 
t= I t=l 

(tx)a + nb 
1=! 

n 

L x;y;, 
i=l 

11 

L Yi• 
i=l 

Solving this pair of linear equations, we obtain the desired parameters: 
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n (t xiy;)- (t x;) (t y;) 
1=1 1=1 1=1 xy -xy 

a------------- -= 

- n (t xt)- (t x;)2 

x
2 

- (.x)2' 

1=1 1=1 

(t xt) (t y;)- (t x;) (t x;yi) 
b = 1=1 1= 1 1=1 t=l 

n (t xt)-(txi)2 

t=l t= I 

x 2ji - ixy 
x2 _ (.x)2 

In these formulas, we have used a bar to indicate the mean value of a quantity; thus, xy = (1/n) I:?=t Xi Yi, and so on. 

This procedure for fitting the "best" straight line through data points by the method 
of least squares is called linear regression, and the line y = ax + b obtained in this 
way is called the empirical regression line corresponding to the data. Some scientific 
calculators with statistical feature s provide for linear regression by accumulating the 
sums of x;, y;, x;, and x; y; in various registers and keeping track of the number n of 
data points entered in another register. At any time it has available the information 
necessary to calculate a and b and the value of y corresponding to any given x. 

EXAM p LE 1 Find the empirical regression line for the data (x , y) = (0, 2.10), 
(1, 1.92), (2, 1.84), and (3, 1.71 ) , (4, 1.64). What is the predicted 

value of y at x = 5? 

Solution We have 
_ 0+1+2+3+4 
X = ------- = 2 

5 ' 
2.10 + 1.92 + 1.84 + 1.71 + 1.64 Y = ---------- = 1.842, 

5 xy = (0)(2.10) + (1)(1.92) + (2)(1.84) + (3)(1.71) + (4)(1.64) = 
3 458 5 . ' 

- 02 + 12 + 22 + 32 + 42 
x 2 = - - ------- = 6. 

5 
Therefore, 

3.458 - (2)(1.842) 
a= 

6
_

22 
=-0.113 , 

(6)(1.842) - (2)(3.458) 
b = 

6 
_ 22 = 2.068, 

and the empirical regression line is 

y = 2.068 - 0.113x. 

The predicted value of y at x = 5 is 2.068 - 0.113 x 5 = 1.503. 

Remark Linear regression can also be interpreted in terms of vector projection. The 
data points define two vectors x and y in JR" with components xi, x2, ... , x11 and 
Yt, Y2, ... , y,,, respectively. Let w be the vector with components 1, 1, ... , 1. Finding 
the coefficients a and b for the regression line corresponds to finding the orthogonal 

figure 13.20 p =ax+ bw is the projection of y onto the two-dimensional subspace (plane) in JR" spanned by x and w. 

projection of y onto the plane spanned by (See Figure 13.20.) This project ion is p = ax+bw. In fact, the two equations obtained 
x and w above by setting the partial derivatives of S equal to zero are just the two conditions 

(y- p) • X = 0, 

(y - p) • w = O, 
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stating that y minus its projection onto the subspace is perpendicular to the subspace. 
The angle between y and this p provides a measure of how well the empirical regression 
line fits the data ; the smaller the angle, the better the fit. 

Linear regression can be used to find specific functional relationships of types 
other than linear if suitable transformations are applied to the data. 

EX A M p LE 2 Find the values of constants K and s for which the curve y = K xs 
best fits the experimental data points (x;, y;), i = 1, 2, . . . , n. 

(Assume all data values are positive.) 

Solution Observe that the required functional form corresponds to a linear relation
ship between ln y and ln x: 

ln y = ln K + s In x. 

If we determine the parameters a and b of the empirical regression line Y/ = a~ + b 
corresponding to the transformed data(~;, Y/i) = (ln x;, In y;), thens = a and K = eb 
are the required values. 

Remark It should be stressed that the constants K and s obtained by the method 
used in the solution above are not the same as those that would be obtained by direct 
application of the least square s method to the untransformed problem, that is, by 
minimizing I:;1=1 (y; - K xf)2 . This latter problem cannot readily be solved. (Try it!) 

Generally, the method of least squares is applied to fit an equation in which the 
response is expressed as a sum of constants times functions of one or more input 
variables. The constants are determined as critical points of the sum of squared 
deviations of the actual response values from the values predicted by the equation. 

Applications of the Least Squares Method to Integrals 
The method of least squares can be used to find approximations to reasonably well
behaved (say, piecewise continuous) function s as sums of constants times specified 
functions . The idea is to choose the constants to minimize the integral of the square of 
the difference . 

For example , suppose we want to approximate the continuous function f (x) over 
the interval [0, l] by a linear function g(x) = px + q. The method of least squares 
would require that p and q be chosen to minimize the integral 

[I 2 
I(p , q)= lo (!( x)-px-q ) dx. 

Assuming that we can "differentiate through the integral" (we will investigate this issue 
in Section 13.6), the critical point of I (p, q) can be found from 

a1 [1 
0 = ap = -2 lo x (f( x) - px - q) dx, 

81 (1 
0 = aq = -2 lo (!( x) - px - q) dx. 

Thus , 

p q 11 - + - = xf(x) dx, 
3 2 o 

p 11 - + q = f (x) dx , 
2 o 
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and solving this linear syste m for p and q we get 

p = lo 1 

(12x - 6)J(x) dx, 

q = lo 1 

(4 - 6x)f(x) dx. 

The following example concerns the approximation of a function by a trigonomet
ric polynomial. Such approxim ations form the basis for the study of Fourier series , 
which are of fundament al importanc e in the solution of boundary-value problem s for 
the Laplace , heat , and wave equations and other partial differential equations that arise 
in applied mathematic s. (See Sect ion 9.9.) 

EXAM p LE 3 Use a least square s integral to approximate f (x) by the sum 

n 

Lbk sinkx 
k= I 

on the interval O S x S n. 

Solution We want to choose the constants to minimiz e 

r( n )2 I= Jo f(x) - I) k sinkx dx. 
0 k= I 

For each I S j S n, we have 

al 1" ( n ) 0 = -. = -2 f (x) - L>k sin kx sin jx dx. 
ab; 0 k= I 

Thus , 

11 1" 1" Lbk sinkxsinjxdx = f(x)sinjxdx. 
k= I O 0 

However , if j f=-k , then sin kx sin j x is an even function , so that 

lo" If" sinkxsinjxdx = - sink xs inj xdx 
0 2 -n 

1 / " = - (cos(k - j)x - cos(k + j)x) dx = 0. 
4 - ,r 

If j = k, then we have 

sin2 j x dx = - ( I - cos 2jx) dx = - , Ion 11" 7r: 

o 2 o 2 

so that 

21" bj = - f(x) sin j x dx. 
7r: 0 
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Remark The series 

00 

Lbksinkx , 
k= l 

where bk= ~ [" f( x ) sin kx dx, 
n lo k = 1, 2, ... , 

is called the Fourier sine series representation off (x) on the interval (0, n ). If f is 
continuous on [0, n ], it can be shown that 

lo"( 11 )2 lim f(x) - L bk sin kx dx = 0, 
11-->00 0 k=l 

but more than just continuity is required of f to ensure that this Fourier sine series 
converges to f (x) at each point of (0, n). Such questions are studied in harmonic 
analysis. Similarly, the series 

a oo 

_Q + L ak coskx , 
2 

k=l 

2 lo" where ak = - f (x) cos kx dx, 
7C 0 

k=0,1,2, . .. , 

is called the Fourier cosine series representation off (x) on the interval (0, n ). 

Remark Representing a function as the sum of a Fourier series is analogous to 
representing a vector as a linear combination of basis vectors. If we think of continuous 

functions on the interval [0, n] as "vectors" with addition and scalar multiplication 
defined pointwise: 

(f + g)(x) = f(x) + g(x), (cf)(x) = cf(x), 

and with the "dot product" defined as 

f • g = lo" f(x)g(x) dx, 

then the functions ek (x) = .j2fi sin kx form a "basis." As shown in the example 

above, e1 • e1 = l, and if k f= j, then ek • e1 = 0. Thus, these "basis vectors" are 
"mutually perpendicular unit vectors. " The Fourier sine coefficients b1 of a function f 
are the components off with respect to that basis . 

1. A generator is to be installed in a factory to supply power to 
n machines located at positions (xi , Yi), i = 1, 2, . .. , n. 
Where should the generator be located to minimize the sum 
of the squares of its distances from the machines? 

determine the two parameters p and q so that the given 
relationship fits the experimental data (xi, Yi), i = 1, 2, ... , n. In 
which of these situations are the values of p and q obtained 
identical to those obtained by direct application of the method of 
least square with no change of variable? 2. The relationship y = ax 2 is known to hold between certain 

variables. Given the experimental data (xi, Yi), 
i = 1, 2, ... , n, determine a value for a by the method of 
least squares. 

3. Repeat Exercise 2 but with the relationship y = aex. 

4. Use the method of least squares to find the plane 
z = ax + by + c that best fits the data (x; , Yi , z; ), 
i = 1, 2, ... ,n. 

5. Repeat Exercise 4 using a vector projection argument instead 
of the method of least squares. 

In Exercises 6--11, show how to adapt linear regression to 

6. y = p + qx 2 7. y = peqx 

8. y = ln(p + qx ) 9. y = px + qx 2 

10. y = ,,/px + q 11. y = pe x + qe -x 

12. Find the parabola of the form y = p + qx 2 that best fits the 
data (x, y ) = (1, 0.11), (2, 1.62), (3, 4.07), (4, 7.55), 
(6, 17.63), and (7, 24.20) . No value of y was measured at 
x = 5. What value would you predict at this point? 

13. Use the method of least squares to find constants a, b, and c 
so that the relationship y = ax 2 + bx + c best describes the 
experimental data (xi, y;), i = 1, 2, ... , n, (n c:: 3). How is 
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this situation interpreted in terms of vector projection? 

14. How can the result of Exercise I 3 be used to fit a curve of the 
form y = p ex + q + re -x through the same data points? 

D 21. Find constants aj, j = 0, I , ... , n , to minimize 

15. Find the value of the constant a for which the function 

1" ( " )2 f (x) = ax 2 best approximates the function g(x) = x 3 on 
the interval [O, 1], in the sense that the integral 

f (x) - ao - :z:::>k cos kx dx . 
0 2 k= I 

[' 2 
I = f o (t( x) - g(x) ) dx 

22. Find the Fourier sine series for the function f (x) = x on 

is minimized . What is the minimum value of/? 
0 < x < ,r. Assuming the series does converge to x on the 
interval (0, ir ), to what function would you expect the series 
to converge on (-,r , O)? 16. Find a to minimize / = J(; ( ax (ir - x) - sin x) 

2 
dx. What 

is the minimum value of the integral? 23. Repeat Exercise 22 but obtaining instead a Fourier cosine 
series. 17. Repeat Exercise 15 with the function f(x) = ax 2 +band 

the same g. Find a and b. 24. Suppose x , , x2, ... , x,, satisfy x; _:::: Xj whenever i < j. Find 
x that minimizes I:;'=1 Ix - x; 1-Treat the cases n odd and n 
even separately. For what values of n is x unique? Hint: Use 
no calculus in this problem. 

18. Find a , b , and c to minimize J0
1 
(x 3 - ax 2 - bx - c)2 dx. 

What is the minimum value of the integral? 

19. Find a and b to minimize J(; (sin x - ax 2 - bx )2 dx. 

D 20. Find a, b, and c to minimize the integral 

1
1 2 

J = ( x -asinrrx -bs in 2irx - cs in 31rx) dx. 
- 1 

• 
Parametric Problems 

· -----
In this section we will briefly examine three unrelated situations in which we want to 
differentiate a function with respec t to a parameter rather than one of the basic variables 
of the function. Such situations arise frequently in mathematics and its app lications . 

Differentiating Integrals with Parameters 
The Fundamental Theorem of Calc ulus shows how to differentiate a defi nite in tegral 
with respect to the upper limit of integration: 

d ix - f (t) dt = f(x). 
dx a 

We are going to look at a different problem about differentiat ing integra ls. If the 
integra nd of a definite integral also depend s on variables other than the variable of 
integration , then the integra l will be a function of those other variables . How are we to 
find the derivative of such a function ? For instance , consider the functio n F(x) defined 

by 

F(x) = 1b f (x, t) dt. 

We would like to be able to calcu late F' (x) by taking the derivative inside the integral : 

d lb lb a F'(x)=- f(x,t)dt= -J(x,t)dt. 
dx a a ax 

Observe that we use d / dx outside the integral and a/ ax inside; this is beca use the 
integral is a functio n of x only, but the integra nd f is a fu nction of both x and t. If 
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the integrand depends on more than one parameter, then partial derivatives would be 
needed inside and outside the integral: 

a lb lb a - f(x ,y, t)dt= -f(x,y,t)dt. 
ax a a ax 

The operation of taking a derivative with respect to a parameter inside the integral , 
or differentiating through the integral, as it is usually called, seems plausible. We 
differentiate sums term by term, and integrals are the limits of sums . However, both the 
differentiation and integration operations involve the taking of limits (limits of Newton 
quotients for derivatives , limits of lliemann sums for integrals). Differentiating through 
the integral requires changing the order in which the two limits are taken and, therefore, 
requires justification . 

We have already seen another example of change of order of limits . When we 
assert that two mixed partial derivative with respect to the same variables are equal, 

-- , 
ayax 

we are, in fact, saying that limits corresponding to differentiation with respect to x 

and y can be taken in either order with the same result. This is not true in general; 
we proved it under the assumption that both of the mixed partials were continuous. 
(See Theorem 1 and Exercise 16 of Section 12.4.) In general , some assumptions are 
required to justify the interchange of limits. The following theorem gives one set of 
conditions that justify the interchange of limits involved in differentiating through the 
integral. 

Differentiating through an integral 

Suppose that for every x satisfying c < x < d , the following conditions hold: 

(i) the integrals 

f b f (x, t) dt 
la 

and 

both exist (either as proper or convergent improper integrals). 

(ii) /1 1 (x, t) exists and satisfies 

l/11 (x, t)I S g(t), a < t < b, 

where 

l b g(t)dt = K < oo. 
a 

Then for each x satisfying c < x < d, we have 

d lb lb a - f(x , t) dt = - f(x, t) dt. 
dx a a ax 

PROOF Let 

F(x) = 1b f(x, t) dt. 

If c < x < d, h =/. 0, and lhl is sufficiently small that c < x + h < d, then, by Taylor's 
Formula , 

h2 
f(x + h, t) = f(x, t) + hf1 (x, t) + 2 /11 (x + 0h, t) 
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for some 0 between O and 1. Therefore, 

I F(x + h~ - F(x) - lb ! 1 (x, t) dtl 

Therefore, 

= lib f(x+h,t~-f(x,t) dt- l b !1(x , t)dtl 

.::: lblf( x+ h,t1 -f(x,t) _J,(x , t)ldt 

= l bli!11(x+0h,t)ld t 

h l b Kh ::: 2 a g(t) dt = 2 -+ 0 ash -+ 0. 

, F(x+h)-F( x) l b 
F (x) = lim ----- = !1 (x , t) dt , 

h--+O h a 

which is the desired result. 

Remark It can be shown that the conclusion of Theorem 6 also holds under the sole 
assumption that / 1 (x, t) is continuous on the closed, bounded rectangle c ::: x .::: 
d, a .::: t .::: b. We cannot prove this here ; the proof depend s on a subtle property called 
uniform continuity possessed by continuous functions on closed bounded sets in !Rn. 
(See Appendix IV for the case n = 1.) In any event, Theorem 6 is more useful for our 
purposes because it allows for improper integrals . 

EXAMPLE 1 Evaluate fo
00 

tne-r dt. 

Solution Starting with the convergent improper integral 

e-s ds = lim :_ = Jim (1 - e-R) = I , loo -s 1R 

o R--+oo -1 0 R--+oo 

we introduce a parameter by substituting s = xt, ds = x dt (where x > 0) and get 

1
00 1 

e-xt dt = - . 
0 X 

Now differentiate n time s (each resulting integral converges): 

loo -xr I 
-t e dt = -- , 

o x2 

(-t) 2 e -x r dt = (-1) 2 -, 1
00 2 

o x3 

(-tte -xt dt = (-lt-- . 1
00 n! 

0 xn+I 

Putting x = 1, we get 

Note that this result could be obtained by integration by parts (n times) or a reduction 
formula. This method is a little easier. 
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Remark The reader should check that the function f (x, t) = tk e-x t satisfies the 
conditions of Theorem 6 for x > 0 and k ::: 0. We will normally not make a point of 
thjs. 

EXAMPLE 2 Evaluate F(x, y) = ( '° e-x t - e-y t dt for x > 0, y > O. 
lo t 

Solution We have 

BF = - {oo e-x t dt = -~ and 
ax lo x 

BF [ 00 1 
By = lo e-y 1 dt = y· 

It follows that 

F(x , y) = -lnx + C1(y) and F(x , y) = ln y + C2(x). 

Comparing these two formulas for F, we are forced to conclude that 
C 1 (y) = In y + C for some constant C. Therefore, 

y 
F(x , y) = In y - lnx + C = ln - + C. 

X 

Since F(l, 1) = 0, we must have C = 0 and F(x , y ) = ln(y/ x). 

Remark We can combine Theorem 6 and the Fundamental Theorem of Calculu s 
to differentiate an integral with respect to a parameter that appears in the Jimjts of 
integration as well as in the integrand. If 

F(x,b,a)= lb f(x , t)dt, 

then, by the Chain Rule, 

d BF BF db BF da 
- F(x,b(x) , a(x)) = - +- - +- - . 
dx ax ab dx aa dx 

Accordingly, we have 

d lb(x) 
- f(x, t)dt 
dx a(x) 

1
b(x) a 

= - f (x, t) dt + f (x, b(x) )b' (x) - f (x, a(x) )a' (x). 
a(x) ax 

We require that a(x) and b(x) be differentiable at x, and for the application of 
Theorem 6, that a .::: a( x ) .::: band a .::: b(x) .::: b for all x satisfying c < x < d . 

EXAM p LE J Solve the integral equation 

f(x) = a - i x (x - t)f(t) dt . 

Solution Assume, for the moment , that the equation has a sufficiently well-behaved 
solution to allow for differentiation through the integral. Differentiating twice, we get 

J'(x) = -(x - x)f(x) - i x f(t) dt = - i x f(t) dt, 

f 11(x) = - f(x) . 
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Figure 13.21 A family of straight lines 
and their envelope 

BEWARE! This is a subtle 
argument. Take your time and 
try to understand each step in 
the development. 

The latter equation is the differential equation of simple harmonic motion . Observe 
that the given equation for f and that for f' imply the initial conditions 

f(b) = a and J'(b) = 0. 

According ly, we write the genera l solution of f"(x) = - f(x) in the form 

f (x) = A cos(x - b) + B sin(x - b). 

The initial conditions then imply A = a and B = 0, so the required solution is 
f (x) = a cos(x - b ). Finally, we note that this function is indeed smooth enough 
to allow the differentiations through the integral and is, therefore, the solution of the 
given integral equation . (If you wish , verify it in the integral equation.) 

Envelopes 
An equation f(x, y, c) = 0 that involves a parameter c as well as the variables x and 
y represents a family of curves in the xy -plane . Consider, for instance , the family 

X 
f( x, y, c) = - + cy - 2 = 0. 

C 

This family consists of straight lines with intercepts (2c, 2/c ) on the coordinate axes. 
Several of these line s are sketched in Figure 13.21. It appears that there is a curve to 
which all these lines a.re tangent. This curve is ca lled the enve lope of the family of 
line s. 

In general, a curve e is called the envelope of the family of curves with equations 
f(x, y, c) = 0 if, for each value of c, the curve f (x , y, c) = 0 is tangent toe at some 
point depending on c. 

For the family of lines in Figure 13.2 1 it appears that the envelope may be the 
rectang ular hyperbola xy = I. We will verify this after developing a method for 
determining the equation of the envelope of a family of curves. We assume that the 
function f (x, y, c) has continuou s first partial s and that the envelope is a smooth curve. 

For each c, the curve f(x, y, c) = 0 is tangent to the envelope at a point (x, y) that 
depends on c . Let us express this dependence in the explicit form x = g(c), y = h(c) ; 

these equations are parametric equations of the envelope. Since (x , y) lies on the curve 
f(x, y, c) = 0, we have 

f(g(c) , h(c) , c) = 0. 
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Differentiating this equation with respect to c, we obtain 

J,g'(c) + hh'(c) + h = 0, (*) 

where the partial s off are evaluated at (g(c), h( c), c) . 

The slope of the curve f(x , y, c) = 0 at (g(c), h(c) , c) can be obtained by 
differentiating its equation implicitly with respect to x: 

On the other hand , the slope of the envelope x = g(c), y = h( c) at that point is 
dy / dx = h' (c) / g' (c). Since the curve and the envelope are tangent at f (g(c) , h( c), c) , 
these slopes must be equal. Therefor e, 

h'(c) 
ft + h g'(c) = 0, so J,g'(c) + h h'(c) = 0. 

Combining this with equation ( *) we get h (x, y, c) = 0 at all points of the envelope. 

The equation of the envelope can be found by eliminating c between the two 
equations 

f(x, y, c) = 0 and 
a 

- f (x, y, c) = 0. ac 

EXAM p LE 4 Find the envelope of the family of straig ht Jines 

X 
f(x, y, c) = - + cy - 2 = 0. 

C 

Solution We eliminate c between the equations 

X 
f(x, y, c) = - + cy - 2 = 0 

C 
and 

X 
h(x, y, c) = - 2 + y = 0. 

C 

These equations can be easily solved and give x = c andy= 1/ c. Hence , they imply 
that the envelope is xy = 1, as we conjectured earlier . 

EXAM p L E 5 Find the envelope of the family of circles 

(x-c) 2 +i=c. 

Solution Here, f(x, y, c) = (x - c)2 + y2 - c. The equation of the envelope is 
obtained by eliminating c from the pair of equations 

f(x, y, c) = (x - c)2 + y2 - c = 0, 

a 
- f(x, y, c) = -2(x - c) - 1 = 0. ac 

From the second equation, x = c - ½, and then from the first, y2 = c - ¼. Hence, the 
envelope is the parabola 

2 1 
X = y - -

4 

This envelope and some of the circles in the family are sketched in Figure 13.22. 
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Figure 13.22 Circles (x - c)2 + y2 = c 
and their envelope 

Figure 13.23 The Mach cone 

y 

X 

A similar technique can be used to find the envelope of a family of surfaces. This will 
be a surface tangent to each member of the family. 

EXAM p LE 6 (The Mach cone) Suppose that sound travels at speed c in still 
air and that a supersonjc aircraft is travelling at speed v > c along 

the x-axis, so that its position at time t is (vt , 0, 0). Find the envelope at time t of the 
sound waves created by the aircraft at previous times . See Figure 13.23. 

X 

Solution The sound created by the aircraft at time r < t spreads out as a spherical 
wave front at speed c. The centre of this wave front is (vr, 0, 0), the position of the 
aircraft at time r. At time t the radius of this wave front is c(t - r ), so its equation is 

f(x, y, z, r) = (x - vr:)2 + y2 + z2 - c2 (t - r:)2 = 0. 

At time t the envelope of all these wave fronts created at earlier times r is obtained by 
eliminating the parameter r from the above equation and the equation 

a ? 
- f(x, y, z, r) = -2v(x - vr:) + 2c-(t - r) = 0. 
ar: 

vx - c2 t 
Solving this latter equation for r, we get r = 2 2 . Thus, 

V - C 

v2x -vc 2 t c2 

x -vr: = x - -~-~ = ---(vt -x) 
v2 - c2 v2 - c2 

VX - c2 t V 
t - r: = t -

2 2 
= -

2
--

2 
(vt - x) . 

V -C V -C 
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We substitute these two expressions into equation ( *) to eliminate r : 

4 2 2 
C 2 2 2 C V 2 

( 2 2) 2 (vt - x) + y + z - ( 2 2)2 (vt - x) = 0 
V -C V - C 

2 2 c
2 

( 2 2) ( )2 c
2 

( ) 2 y + Z = ( 2 2 2 V - C Vt - X = 2 2 Vt - X . 
v-c) v-c 

The envelope is the cone 

.Jv2 - c2 J 
X = Vt - ---- y2 + z2, 

C 

which extends backward in the x direction from its vertex at (vt, 0, 0) , the position of 
the aircraft at time t . This is called the Mach cone. The sound of the aircraft cannot 
be heard at any point until the cone reache s that point. 

Equations with Perturbations 
In applied mathematics one frequently encounters intractable equations for which at 
least approximate solutions are desired. Sometimes such equations result from adding 
an extra term to what would otherwise be a simple and easily solved equation. This 
extra term is called a perturbation of the simpler equation. Often the perturbation 
has a coefficient smaller than the other terms in the equation; that is, it is a small 
perturbation. If this is the case , you can find approximate solution s to the perturbed 
equation by replacing the small coefficient by a parameter and calculating Maclaurin 
polynomials in that parameter . One example should serve to clarify the method. 

EXAM p LE 7 Find an approximate solution of the equation 

1 
y + - ln(l + y) = x 2

. so 
Solution Without the logarithm term , the equation would clearly have the solution 
y = x 2 . Let us replace the coefficient 1 / 50 with the parameter E and look for a solution 
y = y(x , E) to the equation 

y + E ln(l + y) = x 2 (*) 

in the form 

where the subscripts E denote derivatives with respect to E. We shall calculate the terms 
up to seco nd order in E . Evidently y (x , 0) = x 2 . Differentiating equation (*) twice 
with respect to E and evaluating the results at E = 0, we obtain 

ay " ay 
- + ln(l + y) + --- = 0, 
a" 1 +ya" 

a2 y 2 ay a ( 1 ay) 
aE2 + 1 + y a" +"a" 1 + y a" = o, 

Ye(x, 0) = - ln(l + x 2
) , 

2 2 
Ya(x, 0)= l+x 2 ln(l+ x ). 

Hence, 

€2 
y(x, E) = x 2 

- E ln(l + x 2
) + --

2 
ln(l + x 2

) + · · ·, 
1+ x 
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and the given equation has the approximate solution 

2 ln(l + x 2
) ln(l + x 2

) 

y ~ X - 50 + 2,500(1 + x 2) . 

Similar perturbation techniques can be used for systems of equations and for differential 
equations. 

EXE R C IS ES 13.6 

1. Let F(x) = [ 
1 

tx dt = -
1

- for x > -1. By repeated 
lo x + 1 

differentiation of F evaluate the integral 

2. By replacing t with xt in the well-known integral 

J
oo 

2 
e- 1 dt = ./i, 

-00 

and differentiating with respect to x, evaluate 

J
oo 

2 

-oo t
2 e - r dt and J

oo 
2 

- oo t
4 

e-
1 

dt. 

J
oo e -x 12 - e -y 12 

3. Evaluate 
2 

dt for x > 0, y > 0. 
-00 t 

1
1 tx _ tY 

4. Evaluate --- dt for x > -1, y > -1. 
o Int 

5. Given that f
00 

e-X I sin t dt = - 1
- 2 for x > 0 (which can lo 1 +x 

be shown by integration by parts) , evaluate 

D 6. Referring to Exercise 5, for x > 0 evaluate 

F(x) = e - xt __ dt. 1
00 sin t 

0 t 

Show that limx--+oo F(x) = 0 and hence evaluate the integral 

1
00 sint 

- dt = lim F(x) . 
O t x--+ 0 

7. Evaluate f
00 

~ and use the result to help you evaluate lo X + t 

roo dt and 
lo (x 2 + t2) 2 

roo dt 

lo (x2 + t 2) 3 . 

lx dt 
D 8. Evalu ate -

2
--

2 
and use the result to help you evaluate 

O X + t 

r dt and 
lo (x 2 + t2)2 

r dt 
lo (x2 + t2)3 . 

9. Find j <11+1\ a) if f(x) = l + 1 x (x - t) " f(t)dt. 

Solve the integral equations in Exercises 10- 12. 

10. f(x) = Cx + D + fo x (x - t)f(t)dt 

11. f (x) = x + lax (x - 2t)f (t) dt 

12. f(x) = 1 + fo\x + t)f(t) dt 

Find the envelopes of the families of curves in Exercises 13- 18. 

13. y = 2cx - c2 

15. x cos c + y sin c = l 

14. 

16. 

y - (x - c) cos c = sin c 

X y 
--+-=l 
cosc sin c 

17. y = c + (x - c)2 18. (x - c)2 + (y - c)2 = 1 

19. Does every one-parameter family of curves in the plane have 
an envelop e? Try to find the envelope of y = x 2 + c. 

20. For what values of k does the family of curves 
x 2 + (y - c)2 = kc2 have an envelope ? 

21. Try to find the envelope of the family y3 = (x + c)2 . Are the 
curves of the family tangent to the envelope? What have you 
actually found in this case ? Compare with Example 3 of 
Section 13.3. 

D 22. Show that if a two-parameter family of surface s 
f (x , y, z, A, µ)= 0 has an envelope , then the equation of 
that envelope can be obtained by eliminating J and µ from 
the three equations 

f(x , y , z, J , µ) = 0, 

a 
oJ f(x , y , z, J , µ) = 0, 

a 
- f(x, y,z , J ,µ) =0. 
8µ 

23. Find the envelope of the two-parameter family of planes 

x sin J cos It + y sin J sinµ + z cos J = 1. 
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24. Find the envelope of the two-parameter family of spheres 
EX 

27. 2y + --2 = l 
l +y 

J.2 + Jl2 
(x - J.)2 + (y - µ)2 + z2 = --. 

2 

28. Use perturbation methods to evaluate y with error less than 
1 o-8 given that y + (y 5 / I 00) = 1 / 2. 

D 29. Use perturbation methods to find approximate values for x 
1 

In Exercises 25- 27, find the terms up to second power in E in the 
solution y of the given equation. 

and y from the system x + 2y + JOO e-x = 3, 

l 
x - y + -e- Y = 0. Calculate all terms up to second order 

100 

25. y + € sin 1r y = x in E =I / JOO. 

• 
Newton's Method 

-----
A frequently encountered problem in applied mathematics is to determine, to some 
desired degree of accuracy, a root (i.e., a solution r) of an equation of the form 

y 

X 

Figure 13.24 x11+ 1 is the x-intercept of 
the tangent at x 11 

f(r) = 0. 

Such a root is called a zero of the function f . In Section 4.2 we introduced Newton' s 
Method, a simp le but powerful method for determining roots of functions that are 
sufficiently smooth. The method involves guessing an approximate value xo for a root 
r of the function f, and then calculating successive approximations x 1, x2, ... , using 
the formula 

f(xn) 
Xn+I = Xn - f'(xn), n =0, 1,2, · ··. 

If the initial guess xo is not too far from r , and if I/' (x) I is not too small and I/ " (x) I is 
not too large near r , then the successive approximations x 1 , x2, ... wil I converge very 
rapidly to r. Recall that each new approximation x11+ 1 is obtained as the x- intercept 
of the tangent line drawn to the grap h of f at the previous approximation, x 11• The 
tangent line to the graph y = f(x) at x = x 11 has equation 

Y - f(xn) = J ' (xn)(x - Xn)-

(See Figure 13.24.) The x-intercept , x11+ 1, of this line is determined by setting y = 0, 
x = x11+ 1 in this equation, so is given by the formula in the shaded box above. 

Newton 's Method can be extended to finding solutions of syste ms of m equations 
in m variables. We will show here how to adapt the method to find approximations to 
a solution (x, y) of the pair of equations 

{ 
f(x, y) = 0 
g(x, y) = 0, 

starting from an initial guess (xo, yo). Under auspicious circumstances, we will observe 
the same rapid convergence of approximations to the root that typifies the single
variable case. 

The idea is as follows. The two urfaces z = f(x, y) and z = g(x, y) inter sect 
in a curve which itself intersects the xy-p lane at the point whose coordinates are the 
desired solution. If (xo, yo) is near that point , then the tangent planes to the two 
surfaces at (xo, yo) will intersect in a straight line. This line meets the xy -plane at a 
point (x,, y ,) that should be even closer to the solution point than was (xo, yo). We 
can easily determine (x, , y ,). The tangent planes to z = f(x , y) and z = g(x, y) at 
(xo, yo) have equations 

z = f(xo, Yo)+ J,(xo, Yo)(x - xo) + h(xo, Yo)(y - Yo), 

z = g(xo, Yo)+ g, (xo, Yo)(x - xo) + g2(xo, Yo)(y - yo). 
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Figure 13.25 The two graphs intersect 
near (0.2, 1.8) 

The line of intersection of these two planes meets the xy -plane at the point (x,, y,) 
satisfying 

!1 (xo , Yo)(x1 - xo) + h(xo , yo)(y1 - yo)+ f(xo, Yo) = 0, 

8 1 (xo, yo)(x1 - xo) + 82(xo, Yo)(y 1 - Yo)+ 8(xo, Yo)= 0. 

Solving these two equations for x 1 and YI, we obtain 

Observe that the denominator in each of these expressions is the Jacobian determinant 
o(f , 8) /o (x, y)jc )· This is another instance where the Jacobian is the appropriate 

xo,Yo 
multivariable analogue of the derivative of a function of one variable . 

Continuing in this way, we generate successive approximations (x11, y11) according 
to the formulas 

I~ 
Xn+ 1 = Xn _ 1 f l 

81 

Yn+l = Yn - , Ji 

8 1 

h I (x11,Y11)' 
82 

~I h, ,(Xn,Y11)
0 

82 

We stop when the desired accuracy has been achieved. 

EXAM p LE 1 Find the root of the system x(l + y2
) - 1 = O, y(l +x 2

) - 2 = O 
with sufficient accuracy to ensure that the left sides of the equations 

vanish to the sixth decimal place. 

Solution A sketch of the graphs of the two equations (see Figure 13.25) in the xy 
plane indicates that the system has only one root near the point (0 .2, 1.8). Application 
of Newton's Method requires successive computations of the quantities 

f(x, y) = x (l + y2) - 1, J1 (x , y) = 1 + y2, h(x, y) = 2xy, 

8(x, y ) = y(I + x 2) - 2, 8 1 (x, y) = 2xy , 

Using a calc ulator or computer , we can calculate successive values of (x11, y11) starting 
from x o = 0.2 , Yo = 1.8: 

Table 1. Root near (0.2 , 1.8) 

n Xn Yn f(x,,, Yn) 8(x,,, y,,) 

0 0.200000 1.800000 -0.152 000 -0 .128 000 
1 0.216 941 1.911 349 0.009 481 0.001 303 
2 0.214 827 1.911 779 -0.000003 0.000008 
3 0.214829 1.911 769 0.000000 0.000000 
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The values in Table 1 were calculated sequentially in a spreadsheet by the method 
suggested below. They were rounded for inclusion in the table but the unrounded 
values were used in subsequent calculations. If you actually use the (rounded) values 
of x 11 and Yn given in the table to calculate f(x 11, y11) and g(x 11, y,,), your results may 
vary slightly. 

The desired approximations to the root are the x 11 and y11 values in the last line of 
the above table . Note the rapidity of convergence. However, many function evaluations 
are needed for each iteration of the method. For large systems Newton 's Method is 
computationally too inefficient to be practical. Other methods requiring more iteration s 
but many fewer calculations per iteration are used in practice. 

Implementing Newton's Method Using a Spreadsheet 
A computer spreadsheet is an ideal environment in which to calculate Newton 's Method 
approximations. For a pair of equations in two unknowns such as the system in 
Example 1, you can proceed as follows: 

(i) In the first nine cells of the first row (Al-11 ) put the labels n, x, y, f, g, fl, 
f2, gl, and g2. 

(ii) In cells A2- A9 put the numbers 0, I, 2, . .. , 7. 

(iii) In cells B2 and C2 put the starting values xo and YO· 

(iv) In cells D2-12 put formulas for calculating f(x, y), g(x, y), ... , g2(x, y) in 
terms of values of x and y assumed to be in B2 and C2. 

(v) In cells B3 and C3 store the Newton 's Method formulas for calculating x 1 and 
YI in terms of the values xo and yo, using values calcu lated in the second row. 
For instance, cell B3 should contain the formula 

(vi) Replicate the formulas in cells D2-12 to cells D3-13 . 

(vii) Replicate the formulas in cells B3-13 to the cells B4-I9. 

You can now inspect the successive approximations x 11 and y 11 in columns B and C. To 
use different starting values, ju st replace the number s in cells B2 and C2. To solve a 
different system of (two) equations, replace the contents of cells D2-12. You may wish 
to save this spreadsheet for reuse with the exercises below or other systems you may 
want to solve later. 

Remark While a detailed analysis of the convergence of Newton 's Method approx
imations is beyond the scope of this book, a few observations can be made. At each 
step in the approximation process we must divide by J , the Jacobian determinant of 
f and g with respect to x and y evaluated at the most recently obtained approxima 
tion. Assuming that the functions and partial derivatives involved in the formulas are 
continuous, the larger the value of J at the actual solution, the more likely are the 
approximation s to converge to the solution, and to do so rapidly. If J vanishes (or is 
very small) at the solution , the successive approximations may not converge, even if 
the initial guess is quite close to the solution. Even if the first partials of f and g are 
large at the solution, their Jacobian may be small if their gradients are nearly parallel 
there. Thus , we cannot expect convergence to be rapid when the curves f(x , y) = 0 
and g(x, y) = 0 intersect at a very small angle. 

Newton's Method can be applied to systems of m equations in m variables ; the 
formulas are the obvious generalizations of those for two functions given above. 
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EXERCISES 13.7 

Find the solutions of the systems in Exercises 1-6 , so that the 
left-hand sides of the equations vanish up to 6 decimal places. 
These can be done with the aid of a scientific calculator, but that 
approach will be very time consuming. It is much easier to 
program the Newton's Method formulas on a computer to 
generate the required approximations. In each case try to 
determine reasonable initial guesses by sketching graphs of the 
equations. 

approximations to a solution of the system 

f( x, y, z) = 0, g (x, y, z) = 0, h(x , y, z) = 0, 

starting from an initial guess (xo, YO, zo). 

i 8. Use the formulas from Exercise 7 to find the first octant 
intersection point of the surfaces y 2 + z2 = 3, x2 + z2 = 2, 
and x2 - z = 0. 

i 1. y - ex = 0, x - sin y = 0 

i 2. x 2 + y2 - l = 0, y - ex = 0 (two solutions) 

i 3. x 4 + y2 - 16 = 0, x y - l = 0 (four solutions) 

i 4. x2 
- xy + 2y2 = 10, x3y2 = 2 (four solutions) 

i 9. The equations y - x 2 = 0 and y - x 3 = 0 evidently have the 
solutions x = y = 0 and x = y = l. Try to obtain these 
solutions using the two-variable form of Newton's Method 
with starting values: 
(a) xo = yo= 0.1, and (b) xo =Yo= 0.9. 

i 5. y - sinx = 0, x2 + (y + 1)2 
- 2 = 0 (two solutions) 

i 6. sinx + sin y - 1 = 0, y2 - x 3 = 0 (two solutions) 

8 7. Write formulas for obtaining successive Newton's Method 

How many iterations are required to obtain 6-decimal-place 
accuracy for the appropriate solution in each case? 
How do you account for the difference in the behaviour of 
Newton' s Method for these equations near (0, 0) and (I, l)? 

. _ C_a_lc_ul_at_io_n_s _w_ith_M_a_p_le _____________ _ 
The calculations involved in solving systems of equations involving several variables 
can be very lengthy, even if the number of variables is small. In particular, locating 
critical points of a function of n variables involves solving a system of n (usually 
nonlinear) equations in n unknowns. In such situations the effective use of a computer 
algebra system like Maple can be very helpful. In this optional (and brief) section we 
present examples of how to use Maple's "fsolve" routine to solve systems of nonlinear 
equations and to find and classify critical points and thereby solve extreme-value 
problems . 

Solving Systems of Equations 
Maple has a procedure called fsolve built into its kernel (no package needs to be loaded 
to access it) that attempts to find floating-point real solutions to systems n equations 
in n variables. (For a single polynomial equation in one variable it will try to find all 
the real roots , but it may miss some.) For our purposes , an equation consists of either 
a single expression f in the variables (in which case the equation is taken to be f = 0) 
or else two expressions joined by an equal sign as in f = g. The procedure takes two 
or three arguments . The first is a set of n equations separated by commas. The set is 
enclosed in braces. The second argument is a set (also enclosed in braces) listing the 
n variables for which the equations are to be solved. (The number of variables in the 
equation s must equal the number of equations .) The elements of the second set may 
con sist of equations of the form "variable= initial guess ," where the initial guess is a 
number we have reason to believe is clos e to the actual solution . It may not always 
be possible to make a good initial guess at the values of the variables, so, if we like, 
we can include a third argument specifing intervals of values of the variables in which 
to search for a solution. For example , to find a solution to the system x 2 + y 3 = 3, 
x sin(y) - y cos(x) = 0 near (1, 2) we could try 

> Digits : = 6 : 
> fsolve({x"2+y"2 = 3 , x*sin(y)-y*cos(x)) , {x=l , y = 2}) ; 

{x = 0.909510 , y = 1.47404) 
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If we had been unable to specify an initial guess, but instead had looked for a solution 
with x and y in [O, 2], we would have got the same answer: 

> fsolve({xA2+yA2=3 , x*sin(y)-y*cos(x) }, 
{x , y} , {x =O . . 2 , y=O .. 2}) ; 

{x = 0.909510 , y = 1.47404} 

In fact, not specifying an injtial guess or even searc h intervals would have led to the 
same outcome 

> fsolve ( {xA2+yA2=3 , x*sin (y)-y*cos (x)} , {x , y} ); 

{y = 1.47404 , X = 0.909510} , 

although , for its own private reasons , Maple chose to report the values of x and y in the 
oppo site order this time. Had we specified a different search interval, we might have 
gotten a differ ent result: 

> f solve ( {xA2+yA2=3 , x*sin (y)-y*cos (x)} , 
{ x , y} , { x=O . . 2 , y=O .. 1}) ; 

{y = 0., X = 1.73205} 

or even no solution at all , if there is in fact no solution in the given intervals. 

> fsolve({xA2+yA2=3 , x*sin(y)-y*cos(x)} , 
{x , y} , {x=O .. l , y=0 .. 1}) ; 

fsolve({x 2 + y2 = 3,ssin(y)-ysin(x)), {x,y), {x = (0 .. 1),y = (0 .. 1)}) 

Using fsolve efficiently usually requires u to have some idea where solution s can 
be found. If the number of variables is 2 or 3, Mapl e's graphical routines can often be 
used to help us find approximate locatio ns of solution s. 

EXAMPLE 1 

I 
x 2 + y4 = 1 

z = x3y 

ex = 2y - z. 

Solve the system 

Solution We begin by defining the set of equations. 

> eqns : = {xA2+yA4 =1, z=xA3*y , exp(x) =2*y - z} ; 

eqns := {x2 + y4 = 1, z = x 3 y, ex = 2y - z} 

What are we to use for initial guesses? The first equation cannot be satisfied by any 
points outside the square -1 .:S x .:S 1, -1 .:S y .:S 1, so we need only consider starting 
values for x and y inside this square. The second equation then forces z to lie between 
-1 and 1 also. We could ju st try many initial guesses that satisfy these conditions and 
see what we get using fsolve. Altern atively, we can make several implicit plots of the 
three equations for fixed values of z between - 1 and 1, looking for cases where the 
three curves come close to having a common intersect ion point: 

> with (plots) : 
for z from -1 by . 2 to 1 do print( " z = ", z) ; 
implicitplot({xA2+yA4-1 , z-xA3*y , exp(x)-2*y+z} , 
x=-1 . 5 .. 1.5 , y=-1 . 5 . . 1 . 5) od ; 

The se commands produc e 11 graphs of the three equations, considered as depend
ing on x and y for z values ranging from - 1 to 1 in steps of 0.2. Two of them 
are shown in Figure 13.26 and Figure 13.27 . They correspond to z = -0.2 and 
z = 0.2 and indicate that the three equations likely have solutions near ( -1, 0.2 , -0.2) 
and (0.5, 0.9 , 0.2). We run f solve with these starting values and then substitute the 
resulting output into the three equations to check that the equations are satisfied. We 
limit Maple 's outp ut to 6 significant figures rather than the default 10: 
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- 1,4 -1 .2 1 -0 .8 -0 .6 -0 .4 -0 .2 
--0.2 

--0., 

--0.6 

--0.8 

-1 .2 

-1 .4 

Figure 13.26 z = - 0.2 Figure 13.27 z = 0.2 

> Digits : = 6 : 
vars : = {x=-1 , y=0 . 2 , z=-0 . 2) : 
sols := f solve(eqns , vars) ; 
evalf(subs(sols , eqns)) ; 

sols:= {x = -.999887 , y = 0.122654, z = -.122613} 

{-.122613 = - .122612, 1.00000 = 1., 0.367921 = 0.367921} 

> vars:= {x=0 . 5 , y=0 . 9 , z=0 . 2} : 
sols : = fsolve(eqns , vars) ; 
evalf(subs(sols , eqns)) ; 

sols:= {z = 0.138432, x = 0.531836, y = 0.920243} 

{0.138432 = 0.138432, 1.00000 = 1., 1.70205 = 1.70206} 

We have found the two solutions to 6 significant digits. 

Finding and Classifying Critical Points 
Finding the critical points of a function of several variables amounts to solving the 
system of equations obtained by setting the first partial derivatives of the function to 
zero. The following example illustrates how this can be accomplished using Maple 's 
f so l ve routine. Since we also want to classify the critical points, we will find the 
eigenvalues of the Hessian matrix of the function at each critical point to determine 
whether that matrix is positive definite, negative definite, or indefinite. 

Because the VectorCalculus package contains a procedure Hessian for cal
culating the Hessian matrix and the LinearAlgebra package contains a procedure 
Ei genvalues for determining the eigenvalues of a square matrix, we will either 
have to load both these packages or else call the procedures using VectorCal
culus [Hessian] and Linear Algebra [Eigenvalues J, respectively. As we 
need nothing else from these packages here, we will do it the latter way. If you have 
a version earlier than Maple 8, be aware that the older linalg package has procedures 
hessian and eigenvals that will do the same job . 

EXAM p LE 2 Find and classify the critical points of 

(x 2 + xy + 5y 2 + x - y)e-(x
2
+i). 

Solution We begin by defining f to be the expression above, which involves only 
the two variables x and y. We don't need f to be a function , so just define it as an 
expression. 

> f : = (xA2+x*y+5*yA2+x-y)*exp(-(xA2+yA2 )); 
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Example 2. 
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f := (x 2 + xy + 5y 2 + x - y)e- (x
2
+i) 

Next , we define H to be the Hessian matrix for f with respect to the variables x and 
y. Since this produce s several lines of output, we will suppress the output. 

> H : = VectorCalculus[Hessian] (f , [x , y]) : The equations we want 
to solve to find the critical points off are 

> eqns : = {diff(f , x)=O , diff(f , y)=O}: 

Again we have surpressed output. We could have omitted the " = O" from each 
equation; it would have been assumed. 

Now comes the hard part : where do we look for solutions? Plottin g some level 
curves off can suggest likely locations for critical points. 

> plots[contourplot] (f , x=-3 .. 3 , y =-3 .. 3 , grid = [S0 , 50] , 
contours =16) ; 

2 

The contour plot (Figure 13.28) suggests that there are five critical point s, three local 
extrema near (0.3, 1), (O, -1) , and (-0.6 , 0. I) and two saddle points near (1, 0) and 
(-1.6 , 0.2). We use each of these as initial guesses with f solve . For each we first 
run f solve to find the critical point. Then we find the value off at that point. Finally, 
we calculate the eigenvalues of the Hessian off to determine the nature of the critical 
point. We set Maple for 6 significant figures again. 

> Digits : =6 : 

(a) Near the point (0.3, 1): 

> sols : = fsolve(eqns , {x= 0 . 3 , y=l}) ; evalf(subs(sols , f)) ; 

sols := {x = 0.275057 , y = 1.00132) 
1.57773 

> LinearAlgebra[Eigenvalues] (subs(sols , H)) ; 

[
-2 .41894] 
-6.6149 7 

Since both eigenvalues are negative, f has a local maximum value 1.577 73 at the 
critical point (0.275057, l.00132) . 

(b) Near the point (0, -1): 

> sols : = fsolve(eqns , {x=O , y=-1}) ; evalf(subs(sols , f)) ; 

sols:= {y = -.9555 06, x = 0.00492113) 
2.21553 
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> LinearAlgebra[Eigenvalues] (subs ( sols , H)) ; 

[
-3.5887 5 J 
-8. 54885 

Since both eigenvalues are negative , f has a local maximum value 2.215 533 at 
the critical point (0 .004 921 13, -0.955 506). 

(c) Near the point (-0.6, 0.1): 

> sols : = fsolve(eqns , {x=-0 . 6 , y=O . l}) ; 
evalf(subs(sols , f)) ; 

sols:= {y = 0.132977 , x = -.421365) 
-.283329 

> LinearAlgebra [Eigenvalues] (subs (sols , H)) ; 

[ 
8.90194 J 
2.32438 

Since both eigenvalues are positive, f has a local minimum value -0.283 329 at 
the critical point (-0.421365, 0.132 977). 

(d) Nearthepoint(l , O): 

> sols : = fsolve(eqns , {x=l , y=O}) ; evalf(subs(sols , f)) ; 

sols:= {y = 0.0207852, x = 0.858435) 
0 .762810 

> LinearAlgebra[Eigenvalues] (subs(sols , H)) ; 

[ 
3.28636 J 

-2.84680 

Since the Hessian has both positive and negative eigenvalues, f has a saddle point 
at (0.858 435 , 0 .020 785 2). Its value there is 0.762 810. 

(e) Near the point (-1.6, 0.2) : 

> sols : = fsolve(eqns , {x=-1 . 6 , y=0 . 2}) ; 
evalf ( subs(sols , f)) ; 

sols:= {y = 0.292686, x = -1.58082 ) 
0.0445843 

> Linear Algebra [Eigenvalues] ( subs (sols , H)) ; 

[ 
0 .673365 J 
-.407579 

Since the Hessian has both positive and negative eigenvalues, f has a saddle point 
at (-1.580 82, 0.292 686). Its value there is 0.044 584 3. 

The negative exponential in the definition off ensures that f ---+ 0 as x 2 + y2 ---+ oo. 
Assuming that we have found all the critical points off, the value at the critical point 
in (b) must be an absolute maximum and that in (c) must be an absolute minimum. 

Remark The most difficult part of using f solve for large systems is determining 
suitable star ting values for the roots or critical point s. Graphical mean s are really only 
suitable for small systems (one, two, or three equations), and even then it is important 
to analyze the equations or functions involved for clues on where the roots or critical 
points may be. Here are some possibilities to consider: 

1. Sometimes some of the equations will be simple enough that they can be solved for 
some variables and thus used to reduce the size of the system. We could have used 
the second equation in Example I to e liminate z from the first and third equations 
and, hence, reduced the system to two equations in two unknowns. 
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2. The system might result from adding a small extra term to a simpler sys tem , the 
location of whose roots is known. In this case you can use those known root s as 
initial guesses. 

3. Alway s be alert for equations limiting the po ssible values of some varia ble s. For 

insta nce , in Example 1 the equation x 2 + y4 = 1 limited x and y to the interva l 
[-1 , 1]. 

In Exercises 1-2, solve the given systems of equations by using 
Maple's f so l ve routine. Quote the solutions to 5 significant 
figures. Be alert for simple substitutions that can reduce the 
number of equations that must be fed to f solve. 

at (0, 0, 0) . Find the absolute maximum value of h = f + g, 
where g = yz - xyz - x - 2y + z by starting at various 
points near (0, 0, 0). 

ii 5. Find the minimum value of 

I x
2 + y2 + z2 = I I x

4 + y2 + z2 
= 1 

ii 1. z == xy i 2. y == sin z 

6x z = 1 z + z3 + z4 = x + y 

In Exercises 3-6 , use f solve to calculate the requested results. 
In each case quote the results to 5 significant digits. 

ii 3. Find the maximum and minimum values and their locations 
for f(x, y) = (xy - x - 2y) / ((I + x 2 + y 2)2). Use a 
contour plot to help you determine suitable starting points. 

ii 4. Evidently, f = l - 10x4 - 8y4 - 7z4 has maximum value 1 

f = x 2 + y2 + z2 + 0.2xy - 0.3x z + 4x - y. 

ii 6. Find the maximum and minimum values of 

X + l.l y - 0.9z + 1 
f (x , y, z) = l + x2 + y2 + z2 

Entropy in Statistical Mechanics and Information Theory 
Entropy was introduced in Chapter 12 as an independ ent variable in a function that 
determines internal energy. Many feel compelled to ask what entropy mean s phy sical ly. 
It is curious that when carefully examined , thermod ynamic energy is no less intuitively 
mysterious from a ph ysical point of view, but few feel moved to subject it to the same 
level of scru tiny . Nonetheless phy sici sts have delved extensively into the micro scopic 
origins of both of the se quantitie s throu gh the subj ect of statistical mechanics. 

Thi s sec tion presents gateway application s (marke d 0 ) that pertai n to entropy and 
repre sent entries into two distinct field s without attempting comprehensive treatment s. 
First elementary multivariate calculus leads to a statistical mechanical view of entropy . 
Thi s not only turn s out to be surprisingly simple, but it also has an unanti cipated broad 
scope, as often happen s with mathematics. An import ant example of thi s is the di stinct 
field of information theory where entropy become s the central object. As an entry to 
the subject we illustrate with the elementary example of data compr ess ion. 

0 Boltzmann Entropy 
The main city graveyard of Vienna is a fascinating place . It is the final resting place of 
many important historical figure s, including the famous scienti st Ludwig Bolt zmann. 
His tomb stone has an eq uation carve d into it, that relates a quantity S , known as 
entropy , to a single quantity W , known as statistical weight. W repre sents the number 
of ways that atomic and molecular positions and momenta can be rearranged without 
apparent ly changing how a phy sical sys tem appears to us in our every day world. 

Entropy is how we keep track of all of these invi sible pos sibilitie s in thermo
dynamics. It has the key property that the overall entropy of two completely inde
pendent physical systems is ju st the sum of the entropies of each system evaluated 

www.konkur.in



800 CHAPTER 13 Applications of Partial Derivatives 

separat ely. On the other hand, the number of ways one system can be arranged is 
independent of the other syste m, so the overall statistical weight of the independent 
pair of systems viewed as a whole is just the product of the statistical weights from 
each system. The size of the statistical weights are so large in reality that one can very 
effectively treat them as continuous variables and entropy as a differenti able function 
of them . We will use these propertie s to deduce the unique equation, valid for all 
systems, that you will find on Boltzmann's tombstone when you make your visit to the 
main city graveyard of Vienna. 

We seek a unique function of the form S = f (W) valid for all physical systems. 
Accordingly, two independent syste ms, labeled 1 and 2, will have entropies given by 
S1 = f (W1) and S2 = f (W2) in terms of their stat istical weights W1 and W2. 

Becau se of additivity S = S1 + S2. Because of independence, for every state in 
system 1 there are W2 states in independent system 2 so the number of states for both 
systems combined is W = W1 W2. Thus, S = f (W) = f(W1 W2). Since S1 does not 
depend on W2 and S2 does not depend on W1, it follows that 

dSi = ~ = J'(W)W and 
dW1 aw1 2 

dS2 as , 
- - - -J(W)W1 
dW2 - a W2 - ' 

and so 

Since the left side of this equation is independent of W2 and the right side is independ ent 
of W 1, both sides sides must be independent of both variables and so must be a constant 
k. Hence, S1 = k In W1 +C1 and S2 = k In W2+C 2. The only way to make the function 
of stat istical weight independent of the system is to require that entropy vanish when 
there is only one way to arrange the system; that is, when the statistical weight is I , the 
entropy must be 0, and C1 = C2 = 0 (see Exercise 1 below). Thus, generally , 

S = kin W, 

which is Boltzmann 's epitaph. A quibbl e is that the actual epitaph precedes the use of 
the In notation for the natural logarithm. So what is actually carved in the stone is 

S = k.loge W 

where the unorthodox "perio d" so carved clearly denotes multiplication. 

The positive constant k is known as the Boltzmann constant, which is regarded 
as one of the fundament al constants of nature. If entropy has units of energy per 
temperature , as we deduce from the definition of temperature in Chapter 12, then those 
are also the units of k. In modern physics, k is often written kB to distinguish it from 
other uses for the symbol. But because temperature scales are discretionary to an 
extent, k can just as easi ly be set to 1 with suitable units. 

0 Shannon Entropy 
An equivalent form of entropy can be expressed in terms of probabiliti es. We introduced 
it in Example 1 of Section 13.4. Although this form originated in physics, also dating 
back to Boltzmann , it was made most famous by Claude Shannon in the 1950's in his 
creation, Information Theory . Thu s, it became widely known as Shannon entropy. 
We adop t this slightl y ahistorical usage for that reason. 

To deduce this form, first consider an ensemble of M identical systems, each with 
entropy S. Each system has the same internal probability p; of being in any particular 
state i. The number of systems in state i is Mp; = m;, where L; p; = 1. The number 
of ways that the collection of M systems can have m I systems in state 1, m2 systems 
in state 2, etc., is 

M! 
WM = ------- 

m1 ! m2! · ·· m;! 
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By additivity, the combined entropy of the M systems is 

SM= MS= kin WM= k(lnM! - Lin mi !). 

If we use the Modified Stirling Formula In m ! ~ m In m - m (see Exercise 45 of Section 
9.6) to approximate the factorials , the above expression becomes 

SM = MS ~ k ( M In M - M - ~ (m; ln m; - m;)) 

= k (MlnM - M - ~(Mp;lnMp; -Mp;)) 

= k ( M In M - M - (M In M - M) ~ p; - ~(Mp; ln p;)) , 
so that, on division by M , we set 

S = -k L Pi In Pi. 
i 

Example 1 in Section 13.4 illustrated this with two constraints. Thi representation 
of Entropy also retains a useful maximum property when constrained in terms of 
probability alone , 

n 

extremize : S = -k L Pi ln Pi where 
i=l 

n 

LPi = 1 
i = I 

The maximum value occurs when all the probabilities Pi are equal to 1/ n. We expect a 
maximum principle to persist because in Example 1 of Section 13.4 it became apparent 
that any attempt to find a critical point of the entropy of the system led to a maximum 
value of the entropy. 

0 Information Theory 
The joining of probability with the maximum property of entropy led, amazingly , to 
an understanding of the general limits of transmission and encocting of signals , which 
was the origin of the subject of information theory. In information theory , entropy is 
expressed in a superficially different manner than it is in statistical mechanics. Instead 
of the natural logarithm , log to the base 2 is normally, but not necessarily, used and the 
constant is set to 1, 

N 

S = H(pi , .. . , PN) = - L Pi log2 Pi, 
i = l 

N 

where L Pi= l. 
i=I 

H is the customary notation for the Shannon or information entropy (or just informa
tion) . It is a common problem that one must dress up universal concepts in different 
clothes as they pass between different fields . Although H has been widely adopted by 
users of information theory, its use to denote entropy in this probabilistic form actually 
dates back to Boltzmann, who articulated his early ideas in his historically famous 
"H -theorem." In this form, H can be viewed as the mean value of log2 1 / Pi whkh is 
called the self information or the surprisal. 

Of course, these superficial changes do not alter the basic properties of entropy . 
H still has the maximum property , and it is still additive. That is, two independent 
systems with entropies, Hi and H2 can be regarded as a single system with entropy 
H1 + H2. The proof of this is left as an exercise. (See Exercise 3.) 
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If one has a sequence of n bits to represent a number in base 2 then there are 211 

possible numbers and the probability , when all probabilities are the same, of any one 
number is 2- 11

• This is the maximum entropy scenario. In this case for n bits 

2" 

H = - L2-11 1og2 2- 11 = n, 
i = I 

Thus, the maximum information entropy is nothing more than the number of bits in the 
sequence. 

We can use a string of bits to send a message , even though we send messages with 
an alphabet instead of bits. We can imagine a message as being a string of x characters. 
Each character is drawn from an alphabet of y letters. If all letter s are equally likely, 
the number of possible messag es is yx. This means that the entropy of the message 
string is 

yx 

H '"' -x I -x X - x ( ) I I 
111 = - ~ y og2 y = - y y - x og2 y = x og2 y 

i=I 

On the other hand , the entropy of each letter is given by 

y 

H1 =- L Y-I log2 y- 1 =- yy- 1 (-l)log 2 y =log 2 y. 
i=I 

By the additivity of entropy , since the message consists of x such letter s, it's entropy 
must satisfy 

Hm = X H1 = X log2 y, 

agreeing with the earlier calculation. 

We can use a bit string to assign a specific string of bits to represent one member 
of an alphabet. The now-classical example is ASCII (American Standard Code for 
Information Interchange ), which in its original form had 27 = 128 character s in its 
alphabet. This included the regular English alphabet in upper- and lower-case, number s, 
punctuation marks, and other special characters. For ASCII , in the unlikely case where 
all characters were equally probable, the entropy of our x-c haracter message would be 
H111 = 7x. More generally, for an m-bit alphabet (i.e ., y = 2m ,) 

Hm =mx. 

Thus , what seemed to be the maximum entropy for the message string, turn s out to be 
equivalent to the maximum entropy of the entire binary string, since mx = n. 

The relationship between entropy and bit string length only holds in the case of 
equal probabilities with symbols represented by equal number s of bits. We could , for 
example, change the probability structure by making some of the characters in the 
alphabet more likely than others, while using the same rule s for sending the message 
in terms of bits. In that case , the number of bits would be unchanged but the entropy 
would not be given by the length of the bit string any longer. Instead of the length of 
the string, the entropy is given by 

y 

H = -x LPi log2 p;. 
i=l 

Here p; is the probability of character i in an alphabet of y characters forming a 
message string of x characters. 
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This allows the possibility of compression. We might, on average, send a particular 
message with fewer than mx bits. This can be done quite simply by aJlowing the 
alphabet to be represented by unique bit strings of varying size. The improbable 
characters are assigned to longer bit strings, while the probable ones are assigned to 
shorter ones . A theorem from Information Theory says that the best compres sion 
possible is given by 

- L f=I Pi log2 p; 

log 2y 

which is just the ratio of entropies. 

EXAM p LE 1 Suppose our alphabet has only y = 8 characters , using the letters 
A through H for convenience. Then log2 y = 3, and we must 

use an average of 3 bits per character. Suppose, however, that the probabilitie s of the 
characters are as follows 

char A 

prob -
4 

B 

-
4 

C 

l 

8 

D 

1 

8 

E F G H 

-
8 16 32 32 

Note that the sum of the probabilities is indeed 1. Then the best compression is 

- - + - + - + - + - + - + - + - ~ 0.896 l (2 2 3 3 3 4 5 5 ) 
3 4 4 8 8 8 16 32 32 

using three figures of accuracy. 

If we represent A by the string 10, B by 11, C by 001, D by 000, Eby 010, F by 0111, 
G by 01101 , and H by 01100 , any string of bits can be uniquely decoded by a simple 
algorithm . One such algorithm for decoding the string character by character is: 

Read the first two bits. 

If l O then A (done) 

If 1 I then B (done) 

If O O then read the 3rd bit 

If 1 then C (done) 

If O then D (done) 

If O 1 then read the 3rd bit 

If0 then E (done) 

If 1 then read the 4th bit 

If l then F (done) 

If O then read the 5th bit 

If 1 then G (done) 

If0 then H (done) 

Repeat the above starting with the first unread bits for remaining characters . Here , in 
conformance to the entropy structure for average string length 3 bits, 2 bits correspond 
to the most probable letters while 5 bits represent the least. The optimal encoding 
scheme is not unique; all that is needed to be optimal is to assign the numbers of bits in 
such a way that the correct encoding can be deduced. If we use this encoding structure, 
we will on average have 89.6% of the message length of a scheme that assigns exactly 
3 bits to every one of the characters in the 8-character alphabet. 

Compression is just one simple application. There are also many other important 
results of information theory such as the transmis sion capacity on noisy channel s, data 
analysis methods , and much more. 
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EXE RC IS ES 13.9 
1. Using properties of entropy, show that the only value for the 

universal constant C that satisfies the expression 
S = k In W + C for all independent physical systems is 
C =0. 

2. Prove the form of the maximum property of entropy made in 

the text: If k > 0, 0 S Pi S l for 1 ::: i ::: n, and 

L:'=1 Pi = l, then -k L:'=1 /Ji ln Pi has a maximum value 
when p; = 1/ n for each i . 

D 3. Given two independent systems with information entropies 

I 

H 1 = - L Pi log 2 Pi 
i=I 

J 

H2 = - L qj log2 qj ; 
j = I 

I 

LPi=l, 
i=I 

J 

'°"'q · -1 L.,; 1- ' 
j = I 

show that sum of the entropies is also the entropy for the 
system , 

K 

H = - L 71:k log2 71:k ; 

k= I 

formed by interpreting both independent systems as 
subsystems of a single larger system. Hint: for each (i , j) 
satisfying I ::: i ::: / and 1 ::: j ::: J , there is a uniqu e 
k = i + I() - l) satisfying l ::: k S K= l J . Show that 

H1 + H2 = H, provided 11:k = p;qj. 

4. Find an optimal binary compression for a 4-character 
alphabet a, b, c , d w ith probabilities 1/ 2, 1/ 4 , 1/ 8, l / 8, and 
state the average compression . 

D S. The statistical weight W for N distinct atoms distributed 
among N states is just N !. But suppose these states form M 
groupings , each grouping with distinct energy Ei per atom, 

such that the atoms within each grouping may be excha nged 
without observable conseque nce . The physical cond ition of 
the system can then be specified by knowing on ly the 
number of atoms in eac h of these gro upin gs, n 1, n2 , . . . , nM , 

where L! 1 n; = N. The statist ical weight then becomes 

N! 

Assuming all n ; are large, use the Modified Stirling 
approximation Inn! ~ n Inn - n to show that maximizing 
the entropy S = k Ln W subject to the constraints of having a 
fixed total number N of atoms , and a fixed total energy 

L!i n;Ei = E, leads to the relationship 

CHAPTER REVIEW 
Key Ideas 

• What is meant by the following terms? 

o a critical point off (x , y) 

o a singular point off (x, y) 

where the constants A and B are determined by the values of 
the Lagrange multipliers for the co nstrained extrema l 
problem for S, and hence by the two constraints. 

D 6. The result of the previous problem hold s for other classes of 
particles, for instance molecules of an ideal gas, provided the 
energ ies of the particles are mainly the kinetic energies of 
their translational motions. In that result , we ca n let N and 
M grow very large in such a way that the largest gap between 
adjacent values of Ej approaches zero in length . In the limit, 
the kinetic energy of each atom is a function of its mass m 

and speed v: E = ½mv2 . 

Consider for the moment only the part of the kinetic 
energy of the particle due to its velocity ui in the x direction. 
The number of atoms for which the x-component of velocity 
is u will be give n by a density function n(u) sat isfying, by 
the result of the previous exercise, 

B 2 / ? n(u) = Ae- mu -. 

(a) Show that p(u) = n(u) is a normally distributed probability 
N 

density function. What are the values of the mean and 
variance of u? (See Definition 7 in Section 7.8 and the 
following discussion.) Express the value of A in terms of B, 

m, and N. 

(b) Find the expectat ion of u2 for the random variable u, and 
hence the expected value of the part of the kinetic energy of a 
random particle in our system due to its motion in the x 
direction. What is the expected val ue of the total kinetic 
energy of a random particle in the system, and of all the 

particles? 

3 
(c) Use the formula E = 2NkT (from Exercise 25 of Section 

12.6 or the discussion preceding Examp le 4 in Section 12.8), 
expressi ng the energy of an idea l gas at absolute temperature 
T and consisting of N molecules , to find the value of B. 
(Herek is the Boltzmann constant.) Hence, show that the 
probability density function for the number of particles 
having velocity v in an ideal gas is 

This is known as the Maxwell-Boltzmann distribution. 

o an absolute maximum value of f(x, y ) 

o a local minimum value off (x, y) 

o a sadd le point off (x, y) 

o a quadratic form 
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o a constraint 

o linear programming 

o an envelope of a family of curves 

• State the second derivative test for a critical point of 
f(x, y). 

• Describe the method of Lagrange multipliers. 

• Describe the method of least squares. 

• Describe Newton's Method for two equations. 

Review Exercises 
In Exercises J-4 , find and classify all the critical points of the 
given functions. 

1. xy e-x+y 2. x 2y - 2xy2 + 2xy 

4. x 2y(2-x-y) 
1 4 9 

3. -+-+---
x y 4-x-y 

2 2 2 l 5. Letf(x ,y,z )=x +y +z + 2 2 2 . Doesfhave 
X + y +z 

a minimum value? If so, what is it and where is it assumed? 

6. Show that x 2 + y2 + z2 - xy - xz - yz has a local minimum 
value at (0, 0, 0). Is the minimum value assumed anywhere 
else? 

7. Find the absolute maximum and minimum values of 
f (x, y) = xye-x

2
- 4Y

2
. Justify your answer. 

8. Let f (x , y) = (4x 2 - y2)e-x
2+i. 

(a) Find the maximum and minimum values of f(x , y) on 
the xy-p lane. 

(b) Find the maximum and minimum values of f(x, y) on 
the wedge-shaped region O ::: y ::: 3x. 

9. A wire of length L cm is cut into at most three pieces, and 
each piece is bent into a square. What is the (a) minimum and 
(b) maximum of the sum of the areas of the squares? 

10. 

11. 

A delivery service will accept parcels in the shape of rectan
gular boxes the sum of whose girth and height is at most 120 
in. (The girth is the perimeter of a horizontal cross-section.) 
What is the largest possible volume of such a box? 

x2 y2 
Find theareaofth es mallestellipse G2 + b2 = 1 that contains 

the rectangle - 1 ::: x :::: 1, - 2 ::: y :::: 2. 

12. Find the volume of the smalle st ellipsoid 

x2 y2 z2 
-+-+-=l 
G2 b2 c2 

that conta ins the rectangular box -1 ::: x ::: 1, -2 ::: y ::: 2, 
-3::: z::: 3. 

13. Find the volume of the smallest region of the form 

( 
x2 y2) 

O <z< G 1----
- - b2 c2 

thatcontainsthebox - 1::: x::: 1, -2::: y::: 2,0::: z::: 2. 

14. A window has the shape of a rectangle surmounted by an 
isosceles triangle. What are the dimensions x, y, and z of the 
window (see Figure 13.29) if its perimeter is L and its area is 
maximum? 

CHAPTER REVIEW 805 

y y 

X 

Figure 13.29 

15. A widget manufacturer determines that if she manufactures x 
thousands of widgets per month and sells the widgets for y 

dollars each , then her monthly profit (in thousands of dollars) 
will be P = xy - ,bx 2 y3 - x. If her factory is capable of 
producing at most 3,000 widgets per month , and government 
regulation s prevent her from charging more than $2 per wid
get, how many should she manufacture , and how much should 
she charge for each, to maximize her monthly profit? 

16. Find the envelope of the family of curves y = (x-c)3 +3c. 

17. Find an approximate solution y(x, E) of the equation 
y + ExeY = -2x having terms up to second degree in E. 

1
00 tan - 1 (xy ) 

18. (a) Calculate G'(y) if G(y) = ---dx. 
0 X 

1
00 tan- 1 (nx) - tan - 1x 

(b) Evaluate ------ - dx. 
0 X 

Hint: This inte-

gral is G(n) - G(l). 

Challenging Problems 
1. (Fourier series) 

Show that the constants Gk, (k = 0, 1, 2, ... , n), and bk, 
(k = 1, 2, ... , n), which minimize the integral 

[ ]

2 
1t a n 

I11= 1 f(x)-~- L(G kcoskx+bksinkx) dx, 
-,r 

2 k=O 

are given by 

1 1" Gk = - f (x) cos kx dx , 
7r 1C 

11" bk=- f(x)sinkxdx. 
7r 1C 

Note that these numbers, called the Fourier coefficients of 
f on [-n, n], do not depend on n. If they can be calculated 
for all positive integers k, then the series 

G 

00 

) ~ + L (Gk cos kx + bk sin kx 
2 k=O 

is called the (full-range ) Fourier series off on [-n , n]. 
(See Section 9.9.) 

2. This is a continuation of Prob lem 1. Find the (fu ll range) 
Fourier coefficients Gk and bk of 

f (x) = { ~ if -7r :'.:: X < 0 
if O :'.:: X :'.:: 7r. 
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D 3. 

D 4. 

What is the minimum value of / 11 in this case? How does it 
behave as n ---+ oo? 

lo
x ln(t x + 1) 

Evaluate 
2 

dt. 
o l + t 

(Steiner's problem) The problem of finding a point in the 
plane (or a higher-dimensional space) that minimize s the sum 
of its distances from n given points is very difficult. The 
case n = 3 is known as Steiner 's problem . If P1 P2 P3 is a 
triangle whose largest angle is less than 120°, there is a point 
Q inside the triangle so that the lines Q P1, Q P2, and Q P3 
make equal 120° angles with one another. Show that the sum 
of the distances from the vertices of the triangle to a point Pi s 

minimum when P = Q. H int: First show that if P = (x, y ) 
and P; = (x; , y; ), then 

d I p P; I = cos 0; and 
dx 

d lPP;I . 
0 --- = Stn ;, 

dy 

where 0; is the angle between P;? and the positive direction 
of the x-ax is. Hence, show that the minimal point P satisfies 
two trigonometric equations involving 01, 02, and 03. Then 
try to show that any two of those angles differ by ±2ir / 3. 
Where should P be taken if the triangle has an angle of 120° 
or greater? 
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Multiple 
Integration 
, , "Do you know what a mathematician is?" Lord Kelvin asked a class. 

He then stepped to the board and wrote 

1
00 

2 
e- x dx = ,Ji. 

-oo 

Putting his finger on what he had written, he turned to the class. "A 
mathematician is one to whom that is as obvious as that 'twice two 
makes four' is to you." 

807 

'' William Thomson Kelvin 1824-1907 
anecdote from Men of Mathematics by E. Bell 

I n trod LI Ct I.On 1n this chapt.er we extend the c.oncept of the defin!te .inte
gral to functions of several vanables. Defined as linuts of 

Riemann sums, like the one-dimensional definite integral, such multiple integrals can 
be evaluated using successive single definite integrals. They are used to represent and 
calculate quantitie s specified in terms of densities in regions of the plane or spaces of 
higher dimension. In the simple st instance, the volume of a three-dimensional region 
is given by a double integral of its height over the two-dimensional plane region that 
is its base. 

• 
Double Integrals 

-----
z 

y 

X 

Figure 14.1 A solid region S lying above 
domain D in the xy-plane and below the 
surface z = f (x, y) 

The definition of the definite integral , J: f(x) dx, is motivated by the standard area 
problem, namely, the problem of finding the area of the plane region bounded by the 
curve y = f(x), the x-axis, and the lines x = a and x = b. Similarly, we can motivate 
the double integral of a function of two variables over a domain D in the plane by 
means of the standard volume problem of finding the volume of the three-dimen sional 
region S bounded by the surface z = f(x, y), the xy-p lane, and the cylinder para11el 
to the z-axis passing through the boundary of D. (See Figure 14.1. D is caJled the 
domain of integration .) We will call such a three-dimensional region S a "solid," 
although we are not implying that it is fiUed with any particular substance. We will 
define the double integral off (x , y) over the domain D, 

fl f(x, y) dA, 

in such a way that its value will give the volume of the solid S whenever D is a 
"reasona ble" domain and f is a "reasonable " function with positive values. 
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Figure 14.2 A partition of D (the large 
shaded rectangle) into smaller rectangles 
Rij (1 _::=: i _::=: m , l _::=: j _::== n) 

Let us start with the case where D is a closed rect angle with sides parallel to the 
coordinate axes in the xy-plane, and f is a bounded function on D. If D consists of 
the points (x, y) such that a S x S b and c S y S d , we can form a partition P of 
D into small rectangles by partitioning each of the intervals [a, b] and [c, d], say by 

points 

a= xo < x, < x2 < · · · < Xm - 1 < Xm = b, 

C = YO < YI < Y2 < · · · < Yn- 1 < Y11 = d . 

The partition P of D then consists of the mn rectangles R;j (I S i Sm, 1 S j S n) , 
consisting of points (x , y) for whkh x; - 1 S x S x ; and Yj- 1 S y S Yj. (See 
Figure 14.2.) 

Yn d= 

y n- l 

Yj 

y j - 1 

Y3 

Y2 

Y I 

y 

C= YO 

(x' 
• 1 ~,Y;2) 

R11 
• (x*' Iv~.)• (x; l ,Yi 1) 

xo XJ x2 
=a 

The rectangle RiJ has area 

X3 

and diameter (i .e., diagonal length) 

' mn • 
llx* . . \ 

R; j • 

x;j ,Y~) 

Xi - I x; x,,,_ , Xm 

=b 

diam(R;j) = j(t,.x;) 2 + (t,.yj) 2 = j(x; - X;-1) 2 + (yj - Yj- 1)2. 

X 

The norm of the partition P is the largest of these subrectangle diameters: 

II PII = max diam(Rij) , 
1-.s_i -s_m 
lS;) :Sn 

Now we pick an arbitrary point (x0, Y;j ) in each of the rectangles RiJ and form the 
Riemann sum 

m n 

R(f , P) = LL f (x0, y0) t,. A;j, 
i=I j = I 

which is the sum of mn terms , one for each rectangle in the partition . (Here, the 
double summation indicates the sum as i goes from 1 to m of terms, each of which 
is itself a sum as j goes from l to n.) The term corresponding to rectangle Rij is, if 
f (x0, Y;j) ~ 0, the volume of the rectangular box whose base is Rij and whose height 

is the value off at (x0, Y;j). (See Figure 14.3.) Therefore, for positive functions f , 
the Riemann sum R(f, P) approximates the volume above D and under the graph of 
f. The double integral off over D is defined to be the limit of such Riemann sums , 
provided the limit exists as II P II - 0 independently of how the points (x0, y0) are 
chosen. We make this precise in the following definition. 
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Figure 14.3 A rectang ular box above 

rectangle Rij. The Riem ann sum is a sum 

of volumes of such boxes 

DEFINITION 

I 

y 

I 

• • 
0.5 

( ¼,¾) (¾,¾) 

• • 
(¼,¼) (¾,¼) 

0.5 I X 

Figure 14.4 The partitioned square of 
Example l 

SECTION 14. l: Double Integrals 809 

z 

z = f(x, y) 

y 

X 

The double integral over a rectangle 

We say that f is integrable over the rectangle D and has double integral 

I= fl f(x , y) dA , 

if for every positive number E there exists a number o depending on E , such that 

IR(f,P)-11 < € 

holds for every partition P of D satisfying II P II < o and for all choices of the 
points (x0, y0) in the subrectangle s of P . 

The dA that appears in the expression for the double integral is an area element. It 
represents the limit of the t-.A = l-.x t-.y in the Riemann sum and can also be written 
dx dy or dy dx, the order being unimportant. When we evaluate double integral s by 
iteration in the next section, d A will be replaced with a product of differentials dx and 
dy, and the order will be important. 

As is true for function s of one variable, function s that are continuous on D are 
integrable on D. Of course, many bounded but discontinuou s function s are also 
integrable , but an exact description of the class of integrable functions is beyond the 
scope of this text. 

EXAMPLE 1 Let D be the square O ::S x ::S 1, 0 ::Sy ::S 1. Use a Riemann sum 
correspond ing to the partition of D into four smaller square s with 

point s selected at the centre of each to find an approximate value for 

I l (x2 + y) dA. 

Solution The required partition Pi s formed by the lines x = 1/ 2 and y = l / 2, which 
divide D into four squares, each of area t-. A = I/ 4. The centres of these squares are the 
points(¼ , ¼),(¼,¾) ,(¾,¼ ) , and (¾, ¾) . (See Figure 14.4.) Therefore, the required 
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y 

X 

Figure 14.5 Bounded domain D is a 
subset of rectangle R 

DEFINITION 

I 

THEOREM 

I 

approximation is 

ff (x 2 + y)dA ~ R(x 2 + y, P) = (_!_ + ~) ~ + (_!_ + ~) ~ 
}j D 16 4 4 16 4 4 

(9 ')l (9 3)1 13 + 16 + 4 4 + 16 + 4 4 = 16 = 0·8125· 

Double Integrals over More General Domains 
It is often necessary to use double integrals of bounded functions f (x, y) over domains 
that are not rectangles. If the domain D is bounded, we can choose a rectangle R 
with sides parallel to the coordinate axes such that D is contained inside R . (See 
Figure 14.5.) If f (x, y) is defined on D, we can extend its domain to be R by defining 
f(x, y) = 0 for points in R that are outside of D. The integral off over D can then 
be defined to be the integral of the extended function over the rectangle R. 

If f(x, y) is defined and bounded on domain D, let J be the extension off that 
is zero everywhere outside D: 

](x, y) = { t,ex, y), if (x, y) belongs to D 
if (x, y) does not belong to D . 

If D is a bounded domain, then it is contained in some rectangle R with sides 
parallel to the coordinate axes. If J is integrable over R, we say that f is 
integrable over D and define the double integral of f over D to be 

f/
0 

f(x, y)dA = f L J(x, y)dA. 

This definition makes sense because the values of J in the part of R outside of D are 
all zero, so do not contribute anything to the value of the integral. However, even if 
f is continuous on D , J will not be continuous on R unless f(x, y) -+ 0 as (x, y) 
approaches the boundary of D . Nevertheless , if f and D are "well-behaved," the 
integral will exist. We cannot delve too deep ly into what constitutes well-behaved, but 
assert, without proof, the following theorem that will assure us that most of the double 
integrals we encounter do, in fact, exist. 

If f is continuous on a closed, bounded domain D whose boundary consists of finitely 
many curves of finite length , then f is integrable on D. 

According to Theorem 2 of Section 13.1, a continuous function is bounded if its domain 
is closed and bounded. Generally , however, it is not necessary to restrict our domains 
to be closed. If D is a bounded domain and int(D) is its interior (an open set), and if 
f is integrable on D, then 

ff f(x, y) dA = f ( f(x, y) dA. 
j j D j lint(D) 

We will discuss improper double integrals of unbounded functions or over unbounded 
domains in Section 14.3. 

Properties of the Double Integral 
Some properties of double integrals are analogous to properties of the one-dimensional 
definite integral and require little comment: if f and g are integrable over D, and if L 
and M are constants , then 
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(a) I l f (x, y) dA = 0 if D has zero area. 

(b) Area of a domain: I l o I dA = area of D (because it is the volume 

of a cylinder with base D and height l ). 

(c) Integrals representing volumes: 

If f(x, y) ::::_ 0 on D , then / l f(x , y) dA = V ::::_ 0, where V is 

the volume of the solid lying vertically above D and below the surface 
z = f (x, y). 

(d) If f(x,y) :SO on D , then ll f(x,y)dA = - V :S 0, where Vis 

the volume of the solid lying vertically below D and above the surface 
z = f(x, y) . 

(e) Linear dependence on the integrand: 

I l ( Lf(x, y)+Mg(x, y)) dA =LI l f(x, y) dA+M I l g(x, y) dA. 

(f) Inequalities are preserved: 

If f(x, y) :S g(x, y ) on D , then I l f(x , y ) dA ::SI l o g(x, y) dA. 

(g) The triangle inequality: Ill f(x, y) dA I :S I l lf(x , y)I dA . 

(h) Additivity of domains: If D 1, D 2, .. . , Dk are nonoverlapping domains 
on each of which f is integrable, then f is integrable over the union 
D = D1 U D2 U · · · U Dk and 

k 

[[ f(x, y)d A = L [[. f(x, y)dA. 
ll o J=t ll o, 

Nonoverlapping domains can share boundary points but have no interior points in 
common . 

Double Integrals by Inspection 
As yet, we have not said anything about how to evaluate a double integral. The main 
technique for doing this, called iteration, will be developed in the next section, but it is 
worth pointing out that double integrals can sometimes be evaluated using symmetry 
arguments or by interpreting them as volumes that we already know. 

EXAM p LE 2 If R is the rectangle a ::S x ::s b, c :s y ::s d , then 

Ii 3 d A = 3 x area of R = 3 (b - a) (d - c). 

Here, the integrand is f (x, y) = 3, and the integral is equal to the volume of the solid 
box of height 3 whose base is the rectangle R. (See Figure 14.6.) 

EXAMPLE 3 Evaluate/ = f [ (sinx + y3 + 4) dA . 
J} x2+y2s1 

Solution The integral can be expressed as the sum of three integrals by property (e) 
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y 
x2 + y2 = I 

X 

Figure 14.7 The disk is symmetric about 
both coordinate axes 

EXERCISES 14.1 
y 

2 

1 

I 2 

Figure 14.8 

Exercises 1-6 refer to the double integral 

I= !L(5- x - y)dA, 

of double integrals: 

I = { { sin x d A + { { y3 d A + { { 4 d A 
}lx 2+y2~ 1 }lx 2+y2~1 JJ x2+y2~1 

= /1 + /2 + '3. 

The domain of integration (Figure 14.7) is a circular disk of radius l centred at the 
origin. Since f (x, y) = sin xis an odd function of x, its graph bounds as much volume 
below the xy-plane in the region x < 0 as it doe s above the xy- plane in the region 
x > 0. These two contributions to the double integral cancel , so /1 = 0. Note that 
symmetry of both the domain and the integrand is necessary for this argument. 

Similarly, Ii = 0 becau se y 3 is an odd function and D is symmetric about the 
x-axis. 

Finally, 

I) = fl 4 d A = 4 x area of D = 4n. 

Thus, I = 0 + 0 + 4n = 4n. 

EXAM p LE 4 If D is the disk of Example 3, the integral 

represents the volume of a hemj sphere of radius 1 and so has the value 2n /3. 

When evaluating double integrals, always be alert for sit uation s such as those in the 
above examples. You can save much time by not trying to calculate an integral whose 
value should be obvious without calculation. 

3 X 

1. (x0, Y;j) is the upper-left corner of each square. 

2. (x0, Y;j) is the upper-right corner of each square. 

3. (x0, y0) is the lower-left corner of each square. 

4. (x0, y0) is the lower-right corner of each square. 

5. (x0, y0) is the centre of each square. 

6. Evaluate / by interpreting it as a volume. 

In Exercises 7-10, D is the disk x 2 + y2 :::: 25, and P is the 
partition of the square -5 :::: x ::: 5, -5 :::: y ::: 5 into one 
hundred I x I squares, as shown in Figure 14.9. Approximate 
the double integral 

J = JL t(x,y)dA, 

where D is the rectangle O :::: x ::: 3, 0 :::: y ::: 2. P is the 
partition of D into six squares of side l as shown in Figure 14.8. 
In Exercises 1-5, calculate the Riemann sums for I 
corresponding to the given choices of points (x;j, y0). 

where f (x, y) = 1 by calculating the Riemann sums R(f, P) 
corresponding to the indicated choice of points in the small 
squares. Hint: Using symmetry will make the job easier. 
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In Exercises 13-22, evaluate the given double integral by 
inspection . 

13. fl dA , where R is the rectangle -1::: x:::: 3, 

- 4 ::: y:::: I 

14. fl (x + 3) dA , where D is the half-disk 

0 ::: y:::: ,J4-x 2 

15. f i (x + y) dA, where T is the parallelogram having the 

points (2, 2), ( 1, -1) , (-2, -2), and (-1 , 1) as vertices 

16. ff (x3 cos(y2)+ 3siny-ir)dA 
j f lxl+lyl:o I 

17. ff (4x2y 3 -x+5)dA 
} f x2+y2s_ t 

18. f f Ja 2 -x 2 - y 2 dA 
} } x2+y2 9 2 

19. {{ (a - Jx 2 + y2)dA 

7. (x0, y0) is the corner of each square closest to the origin. 
} } x2+y2:oa2 

20. Ifs (x + y)dA, where Sis thes quareO ::: x:::: a , O::: y:::: a 8. (x0, y0) is the corner of each square farthest from the origin. 

9. (x'(j, Y'(j) is the centre of each square. 

10. Evaluate J . 

88 11. Repeat Exercise 5 using the integrand ex instead of 
5 -x - y. 

21. f i ( 1 - x - y) d A , where T is the triangle with vertices 

(0, 0) , ( 1, 0) , and (0, 1) 

22. fl J b2 - y2 dA , where R is the rectangle 

0 :':: X ::':: a, Q :':: y ::':: b 
88 12. Repeat Exercise 9 using f (x, y) = x 2 + y2 instead of 

f (x , y) = l. 

Iteration of Double Integrals in Cartesian Coordinates 
The existence of the double integral ffo f(x, y) dA depends on f and the domain D . 
As we shall see, evaluation of double integrals is easiest when the domain of integration 
is of simple type. 

y 

D 

y = c(x) 

a b X X 

Figure 14.1 O A y-s imple domain Figure 14.11 An x-simple domain 

We say that the domain D in the xy -plane is y-simple if it is bounded by two vertical 
lines x = a and x = b , and two continuous graphs y = c(x) and y = d(x) between 
these lines. (See Figure 14.10.) Lines parallel to the y-axis intersect a y-simple 
domain in an interval (possibly a single point) if at all. Similarly, D is x-s imple if it is 
bounded by horizontal lines y =cand y = d, and two continuous graphs x = a(y) 
and x = b(y) between these lines. (See Figure 14.11.) Many of the domains over 
which we will take integrals are y-simple , x-simple, or both. For example, rectangles , 
triangles, and disks are both x-simple and y-simple. Those domains that are neither 
one nor the other will usually be unions of finitely many nonoverlapping subdomains 
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y 

X 

Figure 14.12 A regular domain 

RELAX! Do not be confused by 
the position of the dx in the 
formula(*)- Although up until 
now we have been in the habit of 
writing the integral of a function 
A (x) from x = a to x = b in the 

form 1b A(x) dx, there is no 

reason we can not write the dx 
before instead of after the A(x): 

1b A(x)dx = 1b dx A(x) . 

When A (x) is itself an integral 
in a different variable, as it is in 
( * ), writing the dx closer to its 
own integral sign can be useful. 
It is still understood that the y 
integral must be done first as its 
integrand and limits can both 
depend on x so the result will be 
a function A (x) of x. 

Figure 14.13 

(a) In integrals over y-simple 
domains, slices should be 
perpendicular to the x-axis 

(b) In integrals over x-simple 
domains, slices should be 
perpendicular to the y-axis 

X 

that are both x-simple and y-simple . We will call such domain s regular. The shaded 
region in Figure 14.12 is divided into four subregions, each of which is both x -simple 
and y-simple. 

It can be shown that a bounded , continuous function f (x, y) is integrable over a 
bounded x -simple or y-s imple domain and, therefore , over any regular domain. 

Unlike the examples in the previous sec tion , most double integrals cannot be 
evaluated by inspection. We need a technique for evaluating double integrals similar to 
the technique for evaluating single definite integral s in terms of antiderivatives. Since 
the double integral represents a volume, we can evaluate it for simple domains by a 
slicing technique . 

Suppose , for instance , that D is y-s imple and is bounded by x = a, x = b, 
y = c(x ) , and y = d(x), as shown in Figure 14.13(a ). Then JJD f(x, y) dA repre sents 
(at least for positive f) the volume of the solid region inside the vertical cylinder 
through the boundary of D and between the xy-plane and the surface z = f (x, y) . 
Consider the cross-section of this solid in the vertical plane perpendicular to the x-axis 
at position x. Note that x is constant in that plane . If we use the projections of the y

and z-axes onto the plane as coordinate axes there , the cross-section is a plane region 
bounded by vertic al lines y = c(x) and y = d(x), by the horizontal line z = 0, and by 
the curve z = f (x, y) . The area of the cross-section is therefore given by 

l
d(x) 

A(x) = f(x, y) dy . 
c(x) 

The double integral ff n f (x, y) dA is obtained by summin g the volumes of "thin " 
slices of area A(x) and thickne ss dx betw ee n x = a and x =ba nd is therefore g iven 
by 

{ { f (x, y) dA = lb A(x) dx = lb (l d(x) f(x, y) dy) dx. 
11 D a a c(x) 

Notationally , it is common to omit the large parenthese s and w1ite 

11, l
b l d(x) 

f(x, y) dA = f(x, y) d y dx, 
D a c(x) 

or 

11, l b l d(x) 
f (x, y) dA = dx f (x, y) dy. 

D a c(x) 

The latter form(*) shows more clearly which variable corresponds to which limit s of 
integration. 

z z 

y y 

X 

(a) (b) 
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THEOREM 

I 

In scientific literature, double 
integrals and integrals in higher 
dimensional spaces are often 
represented with a single 
integral sign, for instance, 

l f(x, y) dx dy . 

We will use multiple integral 
signs in Chapters 14-16, but 
will use single integral signs in 
Chapter 17, where integrals in 
JR" are considered. 

y 

2 r-------, 

Q 
y 

: 
X 

Figure 14.14 The horizontal line through 
Q indicates iteration with the inner 
integral in the x direction 

SECTION 14.2: Iteration of Double Integrals in Cartesian Coordinates 815 

The expressions on the right-hand sides of the above formulas are called iterated 
integral s. Iteration is the process of reducing the problem of evaluating a double (or 
multiple) integral to one of evaluating two (or more) successive single definite integral s. 
In the above iteration , the integral 

i
d(x) 

f(x,y)dy 
c(x) 

is called the inner integral since it must be evaluated first. It is evaluated using standard 
technique s, treating x as a constant. The result of this evaluation is a function of x 
alone (note that both the integrand and the limit s of the inner integral can depend on 
x) and is the integrand of the outer integral in which x is the variable of integration . 

For double integral s over x-si mple domain s, we can slice perpendicularly to the 
y-axis and obtain an iterated integral with the outer integral in the y direction . (See 
Figure 14.13(b).) We summarize the above discussion in the following theorem whose 
formal proof we will , however , not give. 

Iteration of doubl e integrals 

If f(x, y) is continuous on the bounded y-simple domain D given by a S x Sb and 
c(x) Sy S d(x), then 

1lr l b i d (x) 
f(x , y) dA = dx f( x, y) dy . 

D a c(x) 

Similarly , if f is continuou on the x-s irnple domain D given by c < y < d and 
a(y) S x S b(y), then 

llr id l b(y) 
f(x, y) dA = dy f(x , y) dx . 

D c a(y) 

Remark The symbol dA in the double integral is replaced in the iterated integral s by 
the dx and the dy. Accordingly, dA is frequently written dx dy or dy dx even in the 
double integral. The three expressions 

fl f(x, y)dxdy, fj
0

J(x,y)dydx, and flt( x,y) dA 

all stand for the double integral off over D . Only when the double integral is iterated 
does the order of dx and dy become important. Later in this chapter we will itera te 
doub le integral s in polar coordinates, and dA will take the form r dr d0. 

It is not always necessary to make a three-dimen sional sketch of the solid volume 
represented by a double integral. In order to iterate the integral properly (in one 
direction or the other) it is usually sufficient to make a sketch of the domain D over 
which the integral is taken. The direction of iteration can be shown by a line along 
which the inner integral is taken . The following examples illustrate this. 

EXAMPLE 1 Find the volume of the solid lying above the square Q defined by 
0 S x S l and l S y S 2 and below the plane z = 4 - x - y. 

Solution The square Q is both x-s imple and y-simple, so the double integral giving 
the volume can be iterated in either direction. We will do it both ways just for practice . 
The horizontal line at height y in Figure 14.14 suggests that we first integrate with 
respect to x along this line (from O to 1) and then integrate the result with respect to y 
from l to 2. Iterating the double integral in this direction , we calculate 
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y 

2 ...---~~ 

Q 

X X 

Figure 14.15 The vertical line through Q 

indicates iteration with the inner integra l 
in the y direction 

y 

( I , I) 

X X 

Figure 14.16 The triangular domain T 

with vertical line indicating itera tion with 

inner integral in the y direction 

Volume above Q = f JQ (4 - x - y) dA 

= f 2 dy la I (4 - X - y) dx 

/

2 2 1x=l 
= dy (4x-::__-xy) 

I 2 x=O 
{2 7 

= 1, (2 - y) dy 

( 7y y2)12 

= 2 - 2 1 

= 2 cubic units. 

Using the opposite iteration , as illustrated in Figure 14.15, we calculate 

Volume above Q = fl ( 4 - x - y) d A 

= la I dx f \4 - X - y) dy 

= {' dx(4 y-xy-Y
2

)1y=
2 

lo 2 y=I 

= fa' a-x)d x 

= ( s; -x
2

2

) I~ = 2 cubic units . 

It is comforting to get the same answer both ways! Note that because Q is a rectangle 
with sides parallel to the coordinate axes, the limits of the inner integrals do not depend 
on the variables of the outer integrals in either iteration . This cannot be expected to 
happen with more general domains . 

EXAM p LE 2 Evaluate/ i xy dA over the triangle T with vertices (0, 0), (1, 0), 

and (1, 1). 

Solution The triangle Tis shown in Figure 14.16. It is both x-s imple and y-simple. 
Using the iteration corresponding to slicin g in the direction shown in the figure, we 
obtain: 

Ji xydA = fa' dx fox xydy 

= r' dxCy2)1 y=x 
lo 2 y=O 

= [1 x3 dx = x411 
lo 2 8 0 

1 

8 
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(I , I) 

X 

Figure 14.17 The triangular domain T 

with horizontal line indicating iteration 
with inner integral in the x direction 

y 

X 

Figure 14.18 The region corresponding to 
the iterated integral in Example 3 

SECTION 14.2: Iteration of Double Integrals in Cartesian Coordinates 817 

Iteration in the other direction (Figure 14.17) leads to the same value: 

fir xydA = fo
1 

dy ii xydx 

= r1 dy cx2)1x=I 
lo 2 x =y 

11 y 2 = -(l-y)d y 
o 2 

= (:2 - y84)1~ 1 

8 

In both of the examples above, the double integral could be evaluated easily using 
either possible iteration. (We did them both ways just to illustrate that fact.) It often 
occurs, however, that a double integral is easily evaluated if iterated in one direction 
and very difficult, or impossible, if iterated in the other direction. Sometimes you will 
even encounter iterated integrals whose evaluation requires that they be expressed as 
double integrals and then reiterated in the opposite direction. 

EXAM p LE 3 Eva! uate the iterated integral I = r I dx f I eY
3 

dy. 
lo .fi 

Solution We cannot antidifferentiate eY
3 

to evaluate the inner integral in this iteration , 
so we express I as a double integral and identify the region over which it is taken: 

I= I lo eY3 dA, 

where Dis the region shown in Figure 14.18. Reiterating with the x integration on the 
inside we get 

I= fo1 

dy lay2 ey3 dx 

{I [Y2 
= lo ey3 dy lo dx 

= r 1 y2ey3 dy = ei 11 e - 1 
lo 3 0 3 

The following is an example of the calculation of the volume of a somewhat awkward 
solid. Even though it is not always necessary to sketch solids to find their volumes, you 
are encouraged to sketch them whenever possible. When we encounter triple integrals 
over three-dimensional regions later in this chapter, it will usually be necessary to 
sketch the regions. Get as much practice as you can. 

EXAM p LE 4 Sketch and find the volume of the solid bounded by the planes 
y = 0, z = 0, and z = a - x + y and the parabolic cylinder 

y = a - (x2 / a), where a is a positive constant. 

Solution The solid is shown in Figure 14.19. Its base is the parabolic segment Din 
the xy-plane bounded by y = 0 and y = a - (x2 / a), so the volume of the solid is 
given by 

V= ffo(a-x+y)dA= ffoca+y)dA. 

(Note how we used symmetry to drop the x term from the integrand. This term is an 
odd function of x, and Dis symmetric about the y-axis.) Iterating the double integral 
in the direction suggested by the slice shown in the figure, we obtain 
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Figure 14.19 The solid in Example 4, 
sliced perpendicularly to the x-axis 

z 

X 

x2 
y=a- -

a 

f
a lo a-(x 2/a) 

V = dx (a+ y) dy 
- a 0 

f a ( Y2 ) 1y=a-(x
2

/ a) 
= ay+- dx 

- a 2 y=O 

= f° [ a2 
- x 2 + ~ ( a2 

- 2x 2 + X:) J dx 1-a 2 a 

= 2 [° [~a2 
- 2x 2 + ~ ] dx lo 2 2a 2 

= (3a 2x - 4x 3 +~)la 
3 5a2 

0 

4 1 28 
= 3a 3 

- - a 3 + - a3 = - a3 cubic units. 
3 5 15 

y 

Remark Maple 's int routine can be nested to evaluate iterated double (or multiple ) 
integrals symbolically . For instance, the iterated integral for the volume V calculated 
in Example 4 above can be calculated via the Maple command 

> V = int(int(a+y , y=O .. a - x A2/ a) , x=-a .. a) ; 

28 3 V=-a. 
15 

Reca ll that "int" has an inert fo rm "Int ," which prints the integra l without attemptin g 
to evaluate it symbolically. For instance, we can print an equat ion for the reiterated 
integral in the solution of Example 3 using the command 

> Int ( Int (exp(yA3) , x=O . . yA2) , y=O .. 1) 

= int(int(exp( yA3 ) , x=O .. yA2),y=O .. l) ; 

1
' 1y2 J 1 I 

e<Y ) dx dy = - e - -
o o 3 3 

If you want Mapl e to approximate an iterated integral without first tryin g to evaluate it 
symbolically, just ask it to eval f the inert form. 

> evalf (I nt(Int(exp(yA3) , x=O . . yA2) , y= O .. l)) ; 

.5727606095 
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Of course, Maple can't evaluate all integrals in symbolic form. If we replace exp(y 3) 

in the iterated integral above with exp(x 3) , recent versions of Maple will just return the 
inert form as the answer, being unable to calculate the inner integral. 

> Int(Int(exp(x A3) , x=O .. yA2 ) , y=O .. 1) 

=int(int(exp(x A3) , x=O .. y A2) , y=O . . l) ; 

Again, we can force numerical approximation by using eva lf on the inert form. 

> Int(Int(exp(x A3) , x= O .. y A2) , y=O . . 1) 

=evalf(Int(Int(exp(x A3) , x=O .. y A2) , y=O .. l)) ; 

fl [y2 
lo lo /x

3
) dx dy = .3668032540 

In recent versions of Maple it is not nece ssary to use the inert form of the integral 
with evalf, but some earlier versions could produ ce stra nge values (e.g., complex 
numbers for values of evidently real integrals) if you did not use the inert form. Software 

like Maple is constantly being revi sed and tweaked so that in unusual circumstances 
different versions of the software can lead to different results. 

EXERCISES 14.2 

In Exercises 1-4 , calculate the given iterated integrals. 

1. fo1 

dx fox (xy + y2)dy 

3. {" f X COSY dy dX 
lo -x 

2. la I lay (xy + y2) dx dy 

In Exercises 5-14 , evaluate the double integrals by iteration. 

5. fl (x2 + y2) dA, where R is the rectangle Os x s a, 

0 Sy Sb 

6. fl x2y2 dA , where R is the rectangle of Exercise 5 

7. f fs (sinx +cosy) dA, where Sis the square 

0 S x S n/ 2,0 Sy S n/ 2 

8. f i (x - 3y) dA , where Tis the triangle with vertices (0, 0) , 

(a, 0), and (0, b) 

9. fl xy2 dA , where R is the finite region in the first quadrant 

bounded by the curves y = x2 and x = y2 

10. fl x cosy dA , where D is the finite region in the first 

quadrant bounded by the coordinate axes and the curve 
y = 1 - x2 

11. / fo 1nx dA , where Dis the finite region in the first quadrant 

bounded by the line 2x + 2 y = 5 and the hyperbola x y = l 

12. f i J a 2 - y2 dA , where T is the triangle with vertices 

(0, 0) , (a, 0), and (a, a) 

13. fl ~ eY dA, where R is the region 

0 :'.:: X :'.:: 1, x2 :'.:: y :'.:: X 

14. { { ~ dA, where T is the triangle with vertices (0, 0) , llr l +x 
(1, 0), and (1, 1) 

In Exercises 15-18, sketch the domain of integration and evaluate 
the given iterated integrals. 

15. fol dy ii e_x2 dx 17!/ 2 1 7!/ 2 sin x 
16. dy -dx 

0 y X 

17. r1 dx 11 

Ady lo x X + Y 
(,1. > 0) 

I x l/3 

18. fo dx 1 Hdy 

In Exercises 19-28, find the volumes of the indicated solids. 

19. Under z = 1 - x2 and above the region OS x S I , 
0 :'.:: y :'.:: X 

20. Under z = I - x 2 and above the region Os y s 1, 
O sxsy 

21. Under z = 1 - x2 - y2 and above the region x ~ 0, y ~ 0, 
x+y:::l 

22. Under z = l - y2 and above z = x2 

23. Under the surface z = 1/ (x + y) and above the region in the 
xy- plane bounded by x = I, x = 2, y = 0, and y = x 

24. Under the surface z = x 2 sin(y 4 ) and above the triangle in 
the xy -plane with vertices (0, 0), (0, n 114), and (n 114 , n 114) 

25. Above the xy -plane and under the surface 
z = 1 - x2 - 2y2 
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26. Above the triangle with vertices (0, 0), (a, 0) , and (0, b), and 
under the plane z = 2 - (x / a) - (y / b) 

0 30. Let F ' (x) = f (x) and G' (x) = g (x) on the interval 
a :'S x :'Sb. Let T be the triangle with vertices (a , a), (b, a), 
and (b , b). By iteratin g §7 f (x)g(y) dA in both directions , 
show that 

27. Inside the two cylinders x 2 + y2 = a2 and y 2 + z2 = a2 

28. Inside the cylinder x2 + 2y2 = 8, above the plane z = y - 4, 
and below the plane z = 8 - x 1b f (x)G(x) dx 

0 29. Suppose that f (x, t) and f1 (x, t) are continuous on the 
rectangle a :'S x :'S band c :'S t :'S d. Let 

(I 

= F(b)G(b) - F(a)G(a) -lb g(y)F(y)dy. 
(I 

g(x)= 1d f(x , t)dt and G(x)= 1d f1(x,t)dt. (This is an alternative derivation of the formula for 
integrat ion by parts.) 

Show that g'(x) = G(x) for a < x < b. Hint: Evaluate J: G (u) du by reversing the order of iteration. Then 
differentiate the result. This is a different version of 
Theorem 6 of Section 13.6. 

ii 31. Use Map le's int routine or similar routines in other computer 
algebra systems to evaluate the iterated integrals in 
Exercises 1-4 or the iterated integrals you constructed in the 
remaining exercises above. 

Improper Integrals and a Mean-Value Theorem 

y 

X 

y = -x 

Figure 14.20 An unbounded sector of the 
plane 

To simplify matters, the definition of the double integral given in Section 14. l required 

that the domain D be bounded and that the integrand f be bounded on D. As in 

the single -variable case, improper double integrals can arise if either the domain of 
integration is unbounded or the integrand is unbounded near any point of the domain 
or its boundary. 

Improper Integrals of Positive Functions 
An improper integral of a function .f satisfying f(x , y) :::: 0 on the domain D must 

either exist (i.e., converge to a finite value) or be infinite (diverge to infinity) . Conver
gence or divergence of improper double integrals of such nonnegative functions can 
be determined by iterating them and determining the convergence or divergence of any 

single improper integrals that result. 

EXAMPLE 1 Evaluate/= fl e-x
2 

dA. Here , R is the region where x :::: 0 

and -x :::, y :S x. (See Figure 14.20.) 

Solution We iterate with the outer integral in the X direction: 

loo f x 2 
I= dx e-x dy 

0 -x 

lo
oo 2 f x = e-x dx dy 

0 -x 

= 2 fo00 

xe -x
2 

dx. 

This is an improper integral that can be expressed as a limjt: 

l = 2 Jim r xe -x
2 

dx 
r -+OO lo 

= 2 lim (-~e-..r2
) I,. 

r-+oo 2 0 
.2 = lim (1 - e- , ) = 1. 

r-+oo 

The given integral converges; its value is 1. 
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y 
(1, 1) 1 

y = -
X 

X 

Figure 14.21 The domain of the integrand 

in Example 2 

y 

(1, 1) 

X 

I 
Figure 14.22 The function 

2 
is 

(x + y ) 
unbounded on D 

SECTION 14.3: Improper Integrals and a Mean-Value Theorem 821 

EXAMPLE 2 If Dis the region lying above the x-axis , under the curve y = 1/ x, 
and to the right of the line x = 1, determine whether the double 

integral 

converges or diverges. 

Solution The region Dis sketched in Figure 14.21. We have 

It happens that this integral can be evaluated exactly (see Exerci se 28 below), but we 
are only asked to determine whether it converge s, and that is more easily accompli shed 
by estimating it. Since O < ln(l + u) < u if u > 0, we have 

llr dA ioo I 0 < -- < 2 dx = 1. 
0 x+ y 1 x 

Therefore, the given integral converge s, and its value lies between O and 1. 

EXAMPLE 3 Evaluate [ [ 
1 

2 
dA, where D is the region O :S x < 1, 

}Jo (x + y) 
0 :S y =s x 2

. 

Solution The integral is improper because the integrand is unbounded as (x, y) 
approaches (0, 0), a boundary point of D . (See Figure 14.22.) Nevertheless , iteration 
leads to a proper integral: 

lh 1 11 1x2 

1 --~dA = Jim dx --~d y 
D (x + Y )2 c-+ 0+ c o (x + y )2 

I 1 1y=x2 
= Jim [ dx (- -- ) 

c-+ 0+ Jc X + Y y=O 

= Jim - - --- dx 1
1 

( 1 1 ) 
c-+ 0+ c x x 2 + x 

11 1 I 
= -- dx = ln(x + 1)1 = ln2 . 

0 X + 1 0 

EXAM p LE 4 Determine the convergence or divergence of / = [ [ d A , where 
}Jo xy 

Dis the bounded region in the first quadrant lying between the line 
y = x and the parabola y = x 2 . 
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y 

1 
Figure 14.23 - is unbounded 

xy 
on the domain D 

(I , l) 

X 

Solution The domain D is shown in Figure 14.23. Again, the integral is improper 
because the integrand 1/ (xy) is unbounded as (x , y) approaches the boundary point 
(0, 0). We have 

I= [[ dA = (1 dx r dy 
J Jo xy Jo x Jx2 Y 

= -(In x - In x 2) dx = - - dx. ii 1 ii lnx 

0 X O X 

If we substitute x = e- 1 in this integral , we obtain 

10 -t 100 
I= - -=-(-e- 1)dt = tdt , 

00 e I 0 

which diverges to infinity. 

Remark In each of the examples above, the integrand was nonnegative on the domain 
of integration. Nonpositive integrands could have been handled similarly, but we cannot 
deal here with the convergence of general improper double integrals with integrands 
f (x, y) that take both positive and negative values on the domain D of the integral. 
We remark, however, that such an integral cannot converge unless 

jfeJ(x,y)dA 

is finite for every bounded , regular subdomain E of D. We cannot, in general, determine 
the convergence of the given integral by looking at the convergence of iterations. The 
double integral may diverge even if its iterations converge. (See Exercise 21 below.) 
In fact, opposite iterations may even give different values. This happens because of 
cancellation of infinite volumes of opposite sign. (Similar behaviour in one dimension 

is exemplified by the integral f I dx / x, which does not exist, although it represents 
the difference between "equal" but infinite areas .) It can be shown (for a large class 
of functions containing, for example, continuous functions) that an improper double 
integral of f(x, y) over D converges if the integral of lf(x, y)I over D converges: 

fl lf(x, y)I dA converges ~fl f(x, y) dA converges . 

In this case any iterations will converge to the same value. Such double integrals are 
called absolutely convergent by analogy with absolutely convergent infinite series. 

A Mean-Value Theorem for Double Integrals 
Let D be a set in the xy -plane that is closed and bounded and has positive area 
A = ff O dA . Suppose that f(x, y) is continuous on D . Then there exist points 
(x1, YI) and (x2, y2) in D where f assumes minimum and maximum values (see 
Theorem 2 of Section 13 .1); that is, 

for all points (x, y) in D. If we integrate this inequality over D , we obtain 

f(x1,y1)A= flf( x 1, Y1)dA 

S flf(x ,y)dAS flf(x2 ,Y 2)dA=f(x2,Y2)A. 
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Therefore , dividing by A, we find that the number 

f=± flt( x,y) dA 

lies between the minimum and maximum values off on D : 

A set D in the plane is said to be connected if any two points in it can be joined by 
a continuous parametric curve x = x(t), y = y(t), (0 .::: t .::: l) , lying in D. Suppose 
this curve join s (x1, YI) (where t = 0) and (x2, y2) (where t = 1). Let g(t) satisfy 

g(t) = f(x(t), y(t)), 0.::: t.::: 1. 

Then g is continuou s and takes the values f(x1, Yi) at t = 0 and f(x 2, y2) at t = l. 
By the Intermediate-Value Theorem there exists a number to between O and 1 such that 
J = g(to) = f(xo, yo), where xo = x(to) and YO = y( to). Thus , we have found a 
point (xo, yo) in D such that 

1 
{ { f(x, y) dA = f (xo , Yo). 

area of D }JD 

We have therefore proved the following version of the Mean-Value Theorem . 

A Mean-Value Theorem for double integrals 

If the function f (x , y) is continuous on a closed, bounded, connected set D in the 
xy -plane, then there exists a point (xo, yo) in D such that 

f /
0 

f (x, y) dA = f (xo, Yo) x (area of D) . 

By analogy with the definition of average value for one-variable functions , we make 
the following definition : 

The average value or mean value of an integrable function f(x, y) over the set 
D is the number 

j = area ~f D fl f(x, y) dA . 

If f (x, y) ~ 0 on D, then the cylinder with base D and constant height J has volume 
equal to that of the solid region lying above D and below the surface z = f (x , y) . It 
is often very useful to interpret a double integral in terms of the average value of the 
function which is its integrand . 

EXAM p LE 5 The average value of x over a domain D having area A is 

i =±fl xdA. 

Of course, i is just the x-coordinate of the centroid of the region D. 

EXAM p LE 6 A large number of point s (x , y) are chosen at random in the triangle 
T with vertices (0, 0) , (1, 0) , and (l, 1). What is the approximate 

average value of x 2 + y2 for these points ? 
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EX E R C I S ES 14.3 

Solution The approximate average val ue of x 2 + y2 for the randomly chosen point s 
w ill be the average valu e of that function over the triangle, nam ely, 

-.
1
- ff (x 2 +y2)dA =2 [1 dx t( x 2 + y2)dy 

l / 2 ll r l o lo 

= 2 x 2y + - y3 dx = - x 3 dx = - . i i ( 1 )l y=x glol 2 
O 3 y=O 3 O 3 

EXAM p LE 7 Let (a, b) be an interior point of a domain D on which f (x, y) is 
continuous. For suffi cientl y small po sitive r , the closed circular 

di sk D, with centre at (a , b) and rad ius r is contained in D. Show that 

Jim~ {{ f(x , y)dA=f(a,b) . 
r -+O 7r r 11 D, 

Solution If D, is contained in D, then by Theorem 3 

~ { { f(x, y ) dA = f (xo, Yo) 
nr llo, 

for some point (xo , Yo) in D,. As r -+ 0, the point (xo, Yo) appro ac he s (a, b). Sinc e 

f is contin uous at (a , b) , we have f(xo, yo)-+ f(a , b). Thus, 

lim~ {{ f( x ,y)dA=f(a,b) . 
r-+Onr }J o, 

In Exercises 1- 12, deter mine whether the given integral 
converges or diverges. Try to evaluate those that converge. 

10. { { 
2 
cl A 

2
, where T is the region in Exercise 9 

JJT X + Y 

1. f JQ e- x-y dA, where Q is the first quadran t of the xy- plane 

2. { { 
2
d A 

2 
, where Q is the first quadrant of the 

}} Q ( l+ x )( l +y) 
xy -plane 

3. { { ~ dA, where Sis the strip O < y < 1 in the 
J}sl+x 
xy -plane 

4. { { _ I _ dA over the triangle T with vertices (0, 0) , (l , I ) , 
}Jr x..jy 
and (1, 2) 

5. { { x
2

2 
+ y2 

2 
dA , where Q is the first quadrant of 

}} Q(l+x)(l+y) 
the x y-plane 

6. r r l d A ' where H is the half-strip O ::=: X < 00 , 
}}Hl +x+y 
O < y < I 

7. f JR.2 e- (lxl+lyl) dA 8. f /R2 e-l x+yl dA 

9. f i x1
3 

e-y/x dA, where Tis the region satisfying 

x ::: l and O _::=: y _::=: x 

D 11. f JQ e-xy dA , where Q is the first quadrant of the xy-plane 

12. rr .!.. sin.!.. dA , where R is the region 2/ 11: ::=: X < 00, 
}JR X X 
0 _::=: y _::=: 1/ x 

13. Eva luate 

I- --11 dA 

- S X + y ' 

where S is the square O _::=: x _::=: 1, 0 _::=: y _::=: I , 

(a) by direct iteration of the double integra l, 

(b) by using the symme try of the integrand and the domain 
to write 

/ -2 --1I dA 

- TX+ y ' 

where T is the triangle with vertices (0, 0), (1, 0) , and 
( I , I ). 

14. Find the volume of the solid lying above the square S of 
Exerc ise 13 and under the surface z = 2xy / (x 2 + y 2). 
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In Exercises 15- 20, a and b are given real numbers , Dk is the 
region O 5 x 5 l , 0 5 y 5 xk, and Rk is the region l 5 x < oo, 
0 5 y 5 xk. Find all real values of k for which the given integral 
converges. 

15. !Lk ~: 
17. f lk xa dA 

19. f lk x
0

/ dA 

D 21. Evaluate both itera tion s of the improper integral 

rr x - y 
JJs (x + y )3 dA , 

where Sis the square O < x < 1, 0 < y < 1. Show that the 
above improper double integral does not exist, by considering 

1i x-y 
--~

3 
dA , 

T (x + y) 

where T is that part of the square S lying under the line 
X = y . 

In Exercises 22-24, find the average value of the given function 
over the given region. 

22. x 2 over the rectangl e a 5 x 5 b, c 5 y 5 d 

23. x 2 + y 2 over the triangle O 5 x 5 a , 0 5 y 5 a - x 

24. 1/ x over the region O 5 x 5 1, x 2 5 y 5 ..jx 
25. Find the average distance from points in the quarter-di sk 

x 2 + y2 5 a2, x 2: 0, y 2: 0, to the line x + y = 0. 

SECTION 14.4: Double Integrals in Polar Coordinates 825 

26. Doe s f (x, y ) = x have an average value over the region 
1 

0 < x < oo, 0 < y < --
2 

? If so, what is it? - - - I +x 

27. Does J(x, y) = xy have an average value over the region 
1 

0 < x < oo, 0 < y < --
2 

? If so, what is it? 
- - - 1 +x 

D 28. Find the exact value of the integral in Example 2. Hint: 

Integrate by parts in Ji°'' In ( 1 + (I / x 2)) dx. 

8 29. Let (a, b) be an interior point of a domain Don which the 
function f(x, y) is continuous. For small enough h2 + k2 

the rectangle Rhk with vertices (a, b), (a+ h, b), (a, b + k), 
and (a+ h, b + k) is contained in D. Show that 

. 
1 11 hm - f (x, y) = f(a, b) . 

(h ,k)-(0 ,0) hk Rhk 

Hint: See Example 7. 

8 30. (Another proof of equality of mixed partials) Suppose 
that Ji 2 (x, y) and h 1 (x , y) are continuous in a 
neighbourhood of the point (a, b). Without assuming the 
equality of these mixed partial derivative s, show that 

fl !12(x,y)dA = fl hi(x,y)dA, 

where R is the rectangle with vertices (a , b), (a+ h, b), 
(a, b + k), and (a + h, b + k) and h2 + k2 is sufficiently 
small. Now use the result of Exercise 29 to show that 
!12(a, b) = h1 (a, b). (This reprove s Theorem 1 of 
Sect ion 12.4. However, in that theorem we only assumed 
continuity of the mixed partials at (a, b). Here , we assume 
the continuity at all points sufficiently near (a, b).) 

Double Integrals in Polar Coordinates 

y 

0 

.·· 

r .... ...-

[r,0] 
.... , (x ,y ) 

X X 

Figure 14.24 Polar -Car tesian conversions 

For many application s of double integrals, either the domain of integration , the inte
grand function , or both may be more easily expressed in terms of polar coordinates 
than in terms of Cartesian coordinates. Recall that a point P with Cartesian coordinates 
(x, y) can also be located by its polar coordinates [r , 0], where r is the distance from 
P to the origin O, and 0 is the angle OP makes with the positive direction of the 
x-ax is. (Positive angles 0 are measured counterclockwi se.) The polar and Cartesian 
coordinates of P are related by the tran formation (see Figure 14.24) 

x = r cos 0, 

y = r sin 0, 

r2 = x2 + y2, 
tan0 = y / x. 

Consider the problem of finding the volume V of the solid region lying above the 
xy-plane and beneath the paraboloid z = 1 - x 2 - y2 . Since the paraboloid intersects 
the xy-plane in the circle x 2 + y2 = 1, the volume is given in Cartesian coordinates by 

1I f l !~ V = (l -x 2 - y2)dA = dx (l -x 2 -y2)dy. 
x2+y 2.'.::I - 1 - ~ 
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Figure 14.25 

Evaluating this iterated integral would require considerable effort. However, we can 
express the same volume in terms of polar coordinates as 

V = ff (1 - r2)dA. 
Jl,~1 

In order to iterate this integral, we have to know the form that the area element dA 
takes in polar coordinates. 

y y 

y + dy ·························---~ dy 

y ····························: dx 1 

(a) dA = dx dy in Cartesian coordinates x x + dx X r r + dr X 

(b) dA = r dr d0 in polar coordinates (a) (b) 

y 

x2 + y2 = I 

X 

In the Car tesian formula for V, the area element dA = dx dy represents the area 
of the "infinitesimal " region bounded by the coordinate lines at x, x + dx, y, and 
y + dy. (See Figure 14.25(a).) In the polar formula, the area element dA should 
represent the area of the "infinite simal" region bounded by the coordinate circles with 
radii r and r + dr, and coordinate rays from the origin at angles 0 and 0 + d0. 
(See Figure 14.25(b) .) Observe that dA is approximately the area of a rectangle with 
dimensions dr and r d0. The error in this approximation becomes negligible compared 
with the size of d A as dr and d0 approach zero. Thus, in transforming a double integral 
between Cartesian and polar coordinates, the area element transforms according to the 
formula 

dx dy = dA = r dr d0. 

In order to iterate the polar form of the double integral for V considered above, we 
can regard the domain of integration as a set in a plane having Cartesian coordinates r 
and 0. In the xy Cartesian plane the domain is a disk r S 1 (see Figure 14.26), but in 
the r0 Cartesian plane (with perpendicular r- and 0-axes) the domain is the rectangle 
R specified by O S r S 1 and O S 0 S 2n:. (See Figure 14.27 .) The area element 

Figure 14.26 The domain in the xy-plane in the r0-plane is d A* = dr d0, so area is not preserved under the transformation to 
polar coordinates (dA = r dA *) . Thus, the polar integral for V is really a Cartesian 
integral in the r0-plane, with integrand modified by the inclusion of an extra factor r to 
compensate for the change of area. It can be evaluated by standard iteration methods: 

rl- r =____,I 

_ R le~ 2ir 

Figure 14.27 
0 

The domain in the r0-plane 

V = fl (1- r2)rdA * = fo2,, d0 fo1 

(1- r2)rdr 

f2,r(r2 r4)11 n: 
= Jo 2 - 4 o d0 = 2 units 3. 

Remark It is not necessary to sketc h the region R in the r0-plane. We are used 
to thinking of polar coordinates in terms of distances and angles in the xy-plane and 
can easily understand from looking at the disk in Figure 14.26 that the iteration of the 
integral in polar coordinates corresponds to O S 0 S 2n: and O S r S 1. That is , we 
should be able to write the iteration 

V = fo2,, d0 lo \1 - r 2)r dr 

directly from consideration of the domain of integration in the xy -plane. 
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y 

X 

Figure 14.28 Region R corresponds to a 
rectangle in the r0-plane 

y 

r = f(0) 

_ _____ ,,,_..--····---······ 
a 

X 
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EXAMPLE 1 If R is that part of the annulus O < a 2 S x 2 + y2 S b2 lying in the 
first quadrant and below the line y = x, evaluate 

l=f1;:dA. 

Solution Figure 14.28 shows the region R. It is specifie d in polar coordinates by 
0 S 0 S n / 4anda S r Sb. Since 

y2 

x2 

we have 

r 2 sin2 0 
2 2 = tan2 0, 

r cos 0 

r14 r I = lo tan
2
0 d0 la r dr 

1 1,r/4 = -(b 2 
- a2

) (sec20 - 1) d0 
2 o 

= -(b 2 - a 2)(tan0 - 0) 
1 l,r/4 
2 0 

1 2 2 ( n) 4-n 2 2 = -(b - a ) 1 - - = --(b - a ). 
2 4 8 

EXAM p LE 2 (Area of a polar region) Derive the formula for the area of the 
polar region R bounded by the curve r = f (0) and the rays 0 = a 

and 0 = {J. (See Figure 14.29.) 

Solution The area A of R is numericaJly equal to the volume of a cylinder of height 
1 above the region R: 

A= fl dxdy = fl rdrd0 

= [P d0 [ f(O)rdr =~ f p(!(0))2d0. 
la lo 2 la 

Figure 14.29 A standard area problem for Observe that the inner integral in the iteration involve s integrating r along the ray 
polar coordinates specified by 0 from Oto f (0). 

There is no firm rule as to whether one should or should not convert a double integral 
from Cartesian to polar coordinates. In Example l above, the conversion was strong ly 
suggested by the shape of the domain but was also indicated by the fact that the 
integrand , y2 /x2, becomes a function of 0 alone when converted to polar coordinates. 
It is usually wise to switch to polar coordinates if the switch simplifie s the iteration 
(i.e., if the domain is "simpler" when expressed in terms of polar coordinates), even if 
the form of the integrand is made more complicated. 

EXAMPLE 3 Find the volume of the solid lying in the first octant, inside the 
cylinder x 2 + y2 = a2, and under the plane z = y. 

Solution The solid is shown in Figure 14.30. The base is a quarter disk, which is 
expressed in polar coordinates by the inequalities O S 0 S n / 2 and O S r S a. The 
height is given by z = y = r sin 0. The solid has volume 

1
,r/2 1a 1,r/2 1a 1 

V= d0 (rsin0)rdr= sin0d0 r2 dr=-a 3 units3. 
0 0 O O 3 
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Figure 14.30 This volume is easily 
calculated using iteration in polar 
coordinates 

z 
(0 , a, a) 

y 

The following example establishes the value of a definite integral that plays a very 
important role in probability theory and statistics. (See the quotation on the first page 
of this chapter.) It is interesting that this single-variable integral cannot be evaluated 
by the techniques of single-variable calculus. 

EXAM p LE 4 (A Very Important Integral) Show that 

J
oo 

2 
e- x dx = ,.Ji. 

-00 

Solution The improper integral (call it /) converges , and its value does not depend 
on what symbol we use for the variable of integration. Therefore , we can express the 
square of the integral as a product of two identical integrals but with their variables of 
integration named differently . We then interpret this product as an improper double 
integral and reiterate it in polar coordinates: 

Thu s, / = .Ji as asserted . 

Note that the r integral in the iteration above is a convergent improper integral; it 
was evaluated with the aid of the substitution u = r 2 . 

As our final example of iteration in polar coordinates , let us try something a little more 
demanding . 

EXAM p LE 5 Find the volume of the solid region lying inside both the sphere 

x 2 + y 2 + z2 = 4a2 and the cylinder x 2 + y2 = 2ay, where a > 0. 

Solution The sphere is centred at the origin and has radius 2a. The equation of the 
cylinder becomes 

x 2 + (y - a)2 = a 2 
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Figure 14.31 The first octant part of the 
intersection of the cylinder x 2 + y2 = 2ay 

and the sphere x2 + y2 + z2 = 4a2 

SECTION 14.4: Double Integrals in Polar Coordinates 829 

if we complete the square in the y terms. Thus, it is a vertical circular cylinder of 
radius a having its axis along the vertical line through (0, a, 0). The z-axis lies on the 
cylinder. One-quarter of the required volume lies in the first octant. This part is shown 
in Figure 14.31. 

z 

2a 

x2 + y2 + z2 = 4a2 

y 

X 2a 

x2 + y2 = 2ay 

If we use polar coordinates in the xy -plane, then the sphere has equation 
r2 + z2 = 4a2 and the cylinder has equation r2 = 2ar sin 0 or, more simply, 
r = 2a sin 0. The first octant portion of the volume lies above the region speci
fied by the inequalitie s O S 0 S n: / 2 and O S r S 2a sin 0. Therefore , the total 
volume is 

{" /2 r 2asi n0 
V = 4 lo d0 lo J 4a2 

- r2 r dr Let u = 4a2 - r 2 

= 2 f"12 
d0 r4a

2 

.ju du 
lo 14a2cos20 

411'/2 = - (8a3 - 8a 3 cos3 0) d0 
3 o 

Let v = sin 0 

16 3 32 3 11 2 = -n:a - -a (l- v )dv 
3 3 o 
16 3 64 3 16 3 . . = -n:a - -a = -(3n: - 4)a cubic uruts. 
3 9 9 

Change of Variables in Double Integrals 
The transformation of a double integral to polar coordinates is just a special case of 
a general change of variables formula for double integrals. Suppose that x and y are 
expressed as functions of two other variables u and v by the equations 

x=x(u,v) 

y = y(u, v). 

We regard these equations as defining a transformation (or mapping) from points 
(u, v) in a uv-Cartesian plane to points (x, y) in the xy -plane. (See Figure 14.32.) We 
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V 

(uo, vo) 
\ 

\ 
VO -----

s 

uo u 

y 
(xo, Yo) 

X 

Figure 14.32 Under the transformation 

{
x = x( u,v) 

the lines u = uo and 
y = y(u,v) 

v = vo in the uv-plane get mapped to the 

{
x=x( uo,v) 

curves and 
y = y( uo,v) 

{ 
x = x( u, vo) 

in the xy-plane, which we 
y = y( u, vo) 

still label as u = uo and v = vo. The point 
(uo, vo) is mapped to the point (xo, Yo). 

say that the transformation is one-to-one from the set S in the uv-plane onto the set D 

in the xy-plane provided: 

(i) every point in S gets mapped to a point in D, 

(ii) every point in Di s the image of a point in S, and 

(iii) different points in S get mapped to different points in D. 

If the transfor mation is one-to-one, the defining equations can be solved for u and v as 
functions of x and y, and the resulting inverse transformation , 

u = u(x, y) 

v = v(x, y), 

is one-to-one from D onto S. 

Let us assume that the functions x(u, v) and y( u , v) have continuous first partial 
derivatives and that the Jacobian determinant 

a(x, y) i=-0 at (u , v). 
a (u,v) 

As noted in Section 12.8, the Implicit Function Theorem implies that the transformation 
is one-to-one near (u, v) and the inverse transformation also has continuo us first partial 
derivatives and nonzero Jacobian satisfying 

a (u,v) 

a(x , y) 

1 
a(x, y) 

a (u, v) 

on D. 

EXAM p LE 6 The tran sfor mation x = r cos 0, y = r sin 0 to polar coordinates 
has Jacobian 

o (x,y) = lcos0 -rsin01-r 
a( r, 0) sin0 rcos0 - · 

Near any point except the origin (where r = 0) the transformation is one-to -one . (In 
fact, it is one-to-one from any set in the r0-plane that does not contain more than one 
point where r = 0 and lies in, say, the strip O ~ 0 < 2n: .) 

A one-to-one tran sformation can be used to tran sform the double integral 

flt(x ,y)dA 

to a double integral over the corresponding set S in the uv-plane. Under the trans
formation , the integrand f(x, y) become s g(u, v) = f(x(u, v), y(u, v) ). We must 
discover how to express the area element dA = dx dy in terms of the area element 
du dv in the uv-plane. 

If the value of u is fixed , say u = c, the equations 

x = x(c, v) and y = y(c, v) 

define a parametric curve (with v as parameter) in the xy -plane . This curve is called a 
u-curve corresponding to the value u = c. Similarly, for fixed v = c the equations 

x = x(u, c) and y = y(u, c) 

define a parametric curve (with parameter u) cal led a v-curve . Consider the differ
ential area element bound ed by the u-curves corresponding to nearby values u and 
u + du and the v-curves corresponding to nearby values v and v + d v . Since these 
curves are smooth , for small values of du and dv the area element is approximately a 
parallelogram, and its area is approximately 

dA = IPQ X PR [, 

where P , Q, and Rare the points shown in Figure 14.33. The error in this approxima
tion becomes negligible compared with dA as du and d v approach zero. 
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Figure 14.33 The image in the 
xy-plane of the area element du dv in the 
uv-plane 

THEOREM 

I 
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y 

u +du 

X 

Now PQ = dx i + dy j , where 

ax ax 
dx = -du+-dv 

au av 

ay ay 
and dy =-du+ -dv. 

au av 

However, dv = 0 along the v-curve P Q, so 

~ ax . ay . 
rl,!, = -dui+ -duJ. 

au au 

Similarly , 

~ ax . ay . 
f'K = -dvi+-dvJ. 

av av 

Hence , 

j k 

dA = I ax du ay du 
au au 

0 l=l a(x,y)ldudv; 
a(u, v) 

axdv ay dv 0 
av av 

that is, the absolute value of the Jacobian a(x , y) /a (u, v) is the ratio between corre
sponding area elements in the xy-p lane and the uv-plane: 

I 
a(x , y) I dA = dxdy = -(-- dudv. a u, v) 

The following theorem summarizes the change of variables procedure for a double 
integral. 

Change of variables formula for double integrals 

Let x = x( u, v), y = y (u, v) be a one-to-one transformation from a domain Sin the 
uv-plane onto a domain D in the xy -plane. Suppo se that the functions x and y, and 
their first partial derivative s with respect to u and v, are continuous in S. If f (x, y) is 
integrable on D , and if g(u , v) = f(x(u, v), y( u, v)), then g is integrable on Sand 

fl f(x,y)dxdy = ffs g(u , v)l : ~::~;1 dud v . 

Remark It is not necessary that Sor D be closed or that the transformation be one-to
one on the boundary of S. The transformation to polar coordi nates maps the rectangle 
0 < r < l , 0 ::=: 0 < 2n one-to-one onto the punctured disk O < x 2 + y2 < l and, as 
in the first example in this section, we can transform an integral over the closed disk 
x 2 + y2 ::=: 1 to one over the closed rectangle O ::=: r ::=: 1, 0 ::=: 0 ::=: 2n. 
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y 

X 

Figure 14.34 The region D of Example 8 

V 

----------o 
2/3 

1/3 ---------

1/2 u 

Figure 14.35 The transformed region R 
for Example 8 

y 

y=x 

2 X 

Figure 14.36 Domain D, Example 9 
V 

R 

2 3 4 u 

Figure 14.37 Region R, Example 9 

EXAMPLE 7 Use an appropriate change of variables to find the area of the elliptic 
disk E given by 

x2 y2 
a2 + b2 :S I. 

Solution Under the transformation x = au, y = bv, the elliptic disk Eis the one-to
one image of the circular disk D given by u2 + v 2 ::; 1. Assuming a > 0 and b > 0, 
we have 

dxdy = 1:~::~;1 dudv = II~ ~ lld udv =abdudv. 

Therefore, the area of E is given by 

f le 1 dx dy = f lo ab du dv = ab x (area of D) = n; ab square units. 

It is often tempting to try to use the change of variable formula to transform the domain 
of a double integral into a rectangle so that iteration will be easy. As the following 
example shows, this usually involves defining the inverse transformation (u and v in 
terms of x and y). Remember that inverse transformations have reciprocal Jacobians . 

EXAMPLE 8 Find the area of the finite plane region bounded by the four parabo
las y = x 2, y = 2x 2, x = y 2, and x = 3y 2. 

Solution The region, call it D, is sketched in Figure 14.34. Let 

x2 y2 
u = - and v - -

y X 

Then the region D corresponds to the rectangle R in the uv-plane given by 
½ :S u :S 1 and ½ :S v ::; 1. (See Figure 14.35.) Since 

a(u,v ) =I 2x / y -x2 /y2 1=4-l=3 
a(x, y) -y 2 / x 2 2y/x ' 

we have 

l
a (x,y)I=~ 
a( u,v) 3 

and so the area of D is given by 

r r dx dy = r r ~ du dv = ~ X ~ X ~ = ~ square units. 
jjD jjR 3 3 2 3 9 

EXAM p LE 9 Evaluate I = f lo ~ dx dy, where D is the shaded region in 

Figure 14.36. 

Solution We use the change of variables u = X 2 + 4 y2 , V = y I X, so that the region 
R in the uv plane that corresponds to D is the rectan gle O :S u ::; 4, 0 :S v ::; 1. (See 
Figure 14.37 .) Since 

a(u, v) I 2x 
a(x, y) = -y / x 2 

8y y 2 

I 
2 

l / x =2+8x 2 =2+8v , 

a(x, y) I 
we have --- = 2 , and so 

a(u, v) 2 + 8v 

J = { { V du dv = {
4 

du { I V dv W = 2+8v 2, dw = 
J JR 2 + 8v2 lo lo 2 + 8v2 

l6v dv 411 
dw I 1 =- 0-=-(ln10-In2)=-ln5. 

16 2 w 4 4 
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Figure 14.38 The domain T of 
Example 10 

V 

2 
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X 

LI 

Figure 14.39 The transformed region R 

for Example 10 

y 

1.5 

1.0+------, 

0.5 D 

0.5 1.0 1.5 X -0.5 

Figure 14.40 
Example 11 

The square domain D of 

- 0.5 

V 

1.5 

l.O +----.----, 

0.5 R ~ 

0.5 1.0 l.5 u 

Figure 14.41 The square S and its left 
half, the rectangle R, for Example 11 
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EXAMPLE 10 Evaluate 

I= !£(x+ y)
3

dx dy 

over the triangle T with vertice s (0, 0) , (l , l) , and (2, 0). 

Solution The triangle is shown in Figure 14.3S. The transformati on u = y - x, 
v = y + x is linear so its image in the uv-plane is also a triangle R, this one with 
vertices (0, 0), (0, 2) , and (- 2, 2). (See Figure 14.39.) Since 

a(u , V) = 1-1 l I 
a(x , y) 1 1 = - 2, 

we have 

l
a(x,y)I I 

dxd y = -(-- dud v = -dud v 
a u, v) 2 

and we can calculate / as 

I = - v3 du dv = - v3 dv du = - v4 dv = - . 1 lI l 12 Jo l 1
2 

16 
2 R 2 0 -v 2 0 5 

The following example shows what can happen if a transform ation of the dom ain of a 
double integral is not one-to-one . 

EXAMPLE 11 

the transformation 

x = 4u - 4u 2
, 

Let D be the square O :::: x :::: I , 0 :::: y ::::: I in the xy- plane, and let 
S be the square O :::: u ::::: 1, 0 :::: v ::::: 1 in the uv-plane. Show that 

y = v 

maps S onto D, and use it to transform the integral / = / l dx dy. Compare the 

value of/ with that of the transformed integral. 

Solution Since x = 4u - 4u 2 = 1 - (1 - 2u)2, the minimum value of x on the 
interval O :::: u ::::: I is O (at u = 0 and u = 1), and the maximum value is 1 (at u = ½), 
Therefore , x = 4u - 4u 2 maps the interv al O :::: u ::::: l onto the interval O :::: x :::: I . 
Since y = v clearly maps O :::: v ::::: 1 onto O :::: y ::::: 1, the given transformati on maps 
S onto D . Since 

dx dy = I a(x , y) I du dv = 11
4 - Su Ol I I du dv = 14 - Sul du dv, 

a(u ,v ) 0 

transforming I leads to the integral 

l = Ifs 14 - Sul du dv = 4 la I 

dv fo
1 

11 - 2ul du= S la 112 

(1 - 2u) du = 2. 

However, / = / l dx dy = area of D = I. The reason that J =/= I is that the 

transformation is not one-to-one from S onto D; it actually maps S onto D twice . The 
rectangle R defined by O :::: u ::::: ½ and O :::: v ::::: I (i.e., the left half of S) is mapped 
one-to-one onto D by the transformation , so the appropriat e transform ed integral is 
ff R 14 - Sul du dv, which is equal to/. 
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834 CHAPTER 14 Multiple Integration 

EX E R C I S ES 14.4 
In Exercises 1-6, eva luate the given double integral over the disk 
D given by x 2 + y2 :::: a2

, where a > 0. 

1. fl (x2 + y2) dA 2. ff
0

J x 2 +y 2 dA 

3. fl Jx2 1+ y2 dA 
4. fl lxldA 

5. f l x2
dA 6. fl x 2

y2dA 

In Exercises 7- l 0, evaluate the given double integral ove r the 
quarter-disk Q given by x ::: 0, y ::: 0, and x2 + y2 :::: ct2, where 
a > 0. 

8. ff Q (x + y) d A 

9. f fQ ex2+y2 dA 10. f fQ x227y 2 dA 

11. Evaluate f ls (x + y) dA , where Sis the reg ion in the first 

quadra nt lyin g inside the disk x 2 + y2 :::: a2 and under the 
line y = ...;'3x. 

12. Find f ls x dA , where S is the disk segment x 2 + y 2 
:::: 2, 

X ::'.: [. 

13. Evaluate/ J. (x2 + y2) dA , where Tis the triangle with 

vertices (0 , 0), (1 , 0) , and (1, 1). 

14. Evaluate [ [ 1n(x2 + y2) dA. 
J} x2+y2:<:cl 

15. Find the average distance from the origin to point s in the disk 
x2 + y2:::: a2. 

16. Find the average value of e-<x
2
+y2) over the annular region 

0 < a ::::Jx 2 +y 2 ::::b. 
17. For what values of k, and to what value, doe s the integral 

[[ 
2 

dA 
2 

k conver ge? 
} J x2+yi:<:cl (x + y ) 

18. For what values of k, and to what value, does the integral 

[ [ d A converge? 
}j ~_i (1 +x 2 + y 2)k 

19. Evaluate fl xy dA, wher e Di s the plane region satisfying 

x ::: 0, 0 :::: y :::: x, and x 2 + y2:::: a2 . 

20. Eva luate f fc yd A, wher e C is the upper half of the cardioid 

disk r :::: I + cos 0. 

21. Find the volume lying between the para boloid s 
z = x 2 + y2 and 3z = 4 - x 2 

- y2. 
22. Find the vo lume lying inside both the sphere 

x 2 + y2 + z2 = a2 and the cylind er x 2 + y2 = ax. 

23. Find the volume lying inside both the sphere 
x 2 + y2 + z2 = 2a 2 and the cylinder x 2 + y2 = a 2

. 

24. Find the volume of the region lyin g above the xy- plane , 
inside the cylinder x 2 + y2 = 4 and below the plane 

Z = X + y + 4. 

D 25. Find the volume of the region lying inside all thre e of the 
circular cylinders x 2 + y2 = a2, x 2 + z2 = a2, and 
y2 + z2 = a2. Hint: Make a good sketch of the first octant 
part of the region , and use symmetry whenever possible. 

26. Find the volume of the region lying inside the circular 
cylinder x 2 + y2 = 2y and inside the parabolic cylinder 
z2 = y. 

D 27. Many point s are chosen at random in the disk 
x 2 + y2 :::: 1. Find the approximate average value of the 
distance from these point s to the nearest side of the smallest 
square that contain s the disk. 

D 28. Find the avera ge value of x over the segment of the disk 
x 2 + y2 :::: 4 lyin g to the right of x = 1. What is the centroid 
of the segment? 

29. Find the volume enclo sed by the ellipsoid 

30. Find the volume of the region in the first octant below the 
parabo loid 

x2 y2 
z- l - ---- a2 b2. 

Hint : Use the chan ge of variables x = au, y = bv. 

D 31. Evaluate [[ ex+y dA. 
}J lxl+ly l9 

32. Find fl (x 2 + y2) d A , where P is the parallelogram 

bounded by the lines x + y = 1, x + y = 2, 3x + 4y = 5, 

and 3x + 4 y = 6. 

33. Find the area of the region in the first quadrant bounded by 
the curves xy = l , xy = 4, y = x, and y = 2x. 

34. Eva luate fl (x2 + y2) d A, where R is the region in the first 

quadrant bounded by y = 0, y = x, xy = 1, and 
x2 -y2 = 1. 

D 35. Let T be the triangle with vertices (0, 0) , (1, 0) , and (0, 1 ). 

Evaluate the integral f i e(y-x) / (y+x) dA, 

(a) by transforming to polar coordinates, and 

(b) by using the transformation u = y - x, v = y + x. 

36. Use the method of Example 7 to find the area of the region 
inside the ellip se 4x 2 + 9y 2 = 36 and above the line 
2x + 3y = 6. 

8 37. (The error function) The erro r function , Erf(x) , is defined 
for X ::'.: 0 by 

2 r 2 

Erf(x) = ..Jii Jo e-
1 

dt . 

( )

2 
4 [" /

4
( .2 2 ) Showthat Erf(x) =; Jo 1 -e - x f cosO d0. 

Hence deduce that Erf(x) ::: J 1 - e - x
2

. 
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8 38. (The gamma and beta functions) The gamma function 
f(x) and the beta function B(x , y) are defined by 

(a) f(x) = 2 fo00 

s2x- le-s
2 

ds , (x > 0), 

r(x) = fo
00 

tx- le - 1 dt, (x > 0), (b) r G) = Jir, r (D = ~Jir, 
(c) If x > 0 and y > 0, then 

B(x, y) = fo' tx - l (1- t)Y- 1 dt , (x > 0, y > 0). 

The gamma function satisfies f" /2 
B(x, y) = 2 Jo cos2x-I 0 sin2Y- l 0 d0 , 

r(x + 1) = xf(x) and 

r(n + !) = n!, (n = 0, ! , 2, . .. ). 

Deduce the following further properties of these functions: (d) B( ) = f(x)f(y). 
x,y r(x+ y) 

• 
Triple Integrals 

-----

Again, we remark that triple and 
other multiple integrals are often 
represented with a single 
integral sign, for example, 

l f (x, y, z) dx dy dz, 

in scientific literature, and in 
Chapter 17 of this book. 

Now that we have seen how to extend definite integration to two-dimensional domains, 
the extension to three (or more) dimensions is straightforward. For a bounded function 
f(x, y, z) defined on a rectangular box B (xo S x S x1, Yo Sy Sy ,, zo S z S z 1), 
the triple integral off over B, 

ff l f(x, y, z)dV or ff Is f(x , y, z)dxdydz, 

can be defined as a suitable limit of Riemann sums corresponding to partitions of B 
into subboxes by planes parallel to each of the coordinate planes. We omit the details . 
Triple integrals over more general domains are defined by extending the function to be 
zero outside the domain and integrating over a rectangular box containing the domain . 

All the propertie s of double integrals mentioned in Section 14.1 have analogues 
for triple integrals. In particular, a continuous function is integrable over a closed , 
bounded domain. If f (x, y, z) = l on the domain D , then the triple integral gives the 
volume of D: 

Volume of D = f fl dV. 

The triple integral of a positive function f (x, y, z) can be interpreted as the "hypervol
ume" (i.e., the four-dimensiona l volume) of a region in 4-space having the set D as its 
three-dimensional "base" and having its top on the hypersurface w = f(x, y, z). This 
is not a particularly useful interpretation; many more useful ones arise in applications . 
For instance, if p(x , y, z) represents the density (mass per unit volume) at position 
(x , y, z) in a substance occupying the domain D in 3-space, then the mass m of the 
solid is the "sum" of mass elements dm = p(x, y, z) dV occupying volume elements 
dV: 

mass= fflp(x ,y,z)dV. 

Some triple integrals can be evaluated by inspection, using symmetry and known 
volumes. 

EXAMPLE 1 Evaluate 

ff f (2 + x - sin z) d V. 
} } J x2+y 2+ z2~a2 
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Figure 14.42 

(a) The iteration in Example 2 

(b) The iteration in Example 3 

Solution The domain of integration is the ball of radius a centred at the origin. The 
integral of 2 over this ball is twice the ball 's volume, that is, 8n-a3 / 3. The integrals of x 
and sin z over the ball are both zero , since both function s are odd in one of the variables 
and the domain is symmetric about each coordinate plane . (For instance , for every 
volume element d V in the half of the ball where x > 0, there is a corresponding element 
in the other half where x has the same size but the opposite sign. The contributions 
from these two elements cancel one another.) Thus, 

{{{ . (2 + x - sin z) dV = ~n-a3 + 0 + 0 = ~n-a3 . l l lx2+y2+z29 2 3 3 

Most triple integrals are evaluated by an iteration procedure similar to that used for 
double integrals. We slice the domain D with a plane parallel to one of the coordinate 
plane s, double integrate the function with respect to two variables over that slice , and 
then integrate the result with respect to the remaining variable. Some examples should 
clarify the procedure. 

EXAMPLE 2 Let B be the rectangular box O S x S a, 0 S y S b, 0 S z S c. 
Evaluate 

I= ff l (xi+ z
3
)dV . 

Solution As indicated in Figure 14.42(a), we will slice with planes perpendicular to 
the z-axis , so the z integral will be outermost in the iteration . The slices are rectangles, 
so the double integrals over them can be immediately iterated also. We do it with the 
y integral outer and the x integral inner, as suggested by the line shown in the slice. 

r r t ' 
I = lo dz lo dy lo (xi + z3

) dx 

= dz dy :::...l'._ + x z3 
In

c lob ( 2 2 ) 1x=a 
0 0 2 x=O 

r r (a 2y2 ) = lo dz lo - 2- +a z3 dy 

= d z ~ + ayz 3 

In
c ( 2 3 ) 1y=b 

0 6 y=O 

r (a 2b3 ) = lo -
6

- + abz
3 

d z 

= (a2
b

3z + abz
4

) 1z=c = a
2
b

3
c + abc

4
. 

6 4 z=O 6 4 

z z 

C 

y y 

X 

(a) (b) 

www.konkur.in



SECTION 14.5: Triple Integrals 837 

EXAMPLE 3 If T is the tetrahedron with vertices (0, 0, 0), (1 , 0, 0), (0, 1, 0), 

and (0 , 0 , l) , evaluate/= ff fr ydV. 

Solution The tetrahedron is shown in Figure 14.42(b). The plane slice in the plane 
normal to the x-axis at position x is the triangle T (x ) shown in that figure; x is constant 
and y and z are variables in the slice. The double integral of y over T (x ) is a function 
of x. We evaluate it by integrating first in the z direction and then in the y direction as 
suggested by the vertical line shown in the slice: 

1t 1
1-x 11-x-y 

y dA = dy yd z 
T ~) 0 0 

r'-x 
= lo y (l - x -y )d y 

y 2 y3 , ,-x 1 
3 = (o - x )- - - ) = - (1 - x) . 

2 3 0 6 

The value of the triple integral / is the integral of this expression with respect to the 
remaining variable x, to sum the contribution s from all such slice s between x = 0 and 
X = J: 

I= [' ~(l - x) 3 dx = _ _2_(1- x )4 1

1 

= 
1 

lo 6 24 0 24 

In the above solution we carried out the iteration in two steps in order to show the 
procedure clearly. In practice , triple integrals are iterated in one step , with no explicit 
mention made of the double integral over the slice. Thus, using the iteration suggested 
by Figure 14.42(b), we would immediately write 

11 11-x 11-x-y 
I= dx dy yd z. 

0 0 0 

The evaluation proceeds as above , starting with the right (i.e ., inner ) integral, followed 
by the middle integral and then the left (outer) integral. The triple integral represent s 
the "sum " of element s y d V over the three-dimensional region T. The above iteration 
corresponds to "summing " (i.e ., integrating) first along a vertical line (the z integral ), 
then summing these one-dimensional sums in the y direction to get the double sum of 
all elements in the plane slice , and finally summin g these doubl e sums in the x direction 
to add up the contributions from all the slice s. The iteration can be carried out in other 
directions; there are six possible iterations corre sponding to different orders of doing 
the x , y, and z integrals. The other five are 

11 11-x 11-x-z 
I = dx dz y dy, 

0 0 0 

11 11-y 11-x-y 
I= dy dx y dz, 

0 0 0 

11 11-y 
1
1-y-z 

I= dy dz y dx, 
0 0 0 

11 11-z 11-x-z 
I = d z dx y dy, 

0 0 0 

11 11-z 11-y-z 
I= dz dy y dx. 

0 0 0 
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Figure 14.43 The volume above a 
paraboloid and under a slanting plane 

You should verify these by drawing diagrams analogous to Figure l 4.42(b ). Of course, 
all six iterations give the same result. 

It is sometimes difficult to visualize the region of 3-space over which a given triple 
integral is taken . In such situations try to determine the projection of that region on 
one or other of the coordinate planes. For instance, if a region R is bounded by two 
surfaces with given equation s, combining these equations to eliminate one variable 
will yield the equation of a cylinder (not necessarily circular) with axis parallel to the 
axis of the eliminated variable. This cylinder will then determine the projection of R 
onto the coordinate plane perpendicular to that axis. The following example illustrates 
the use of this technique to find a volume bounded by two surfaces. The volume is 
expressed as a triple integral with unit integrand. 

EXAMPLE 4 Find the volume of the region R lying below the plane z = 3 - 2y 
and above the paraboloid z = x 2 + y 2

. 

Solution The region R is shown in Figure 14.43. The two surfaces bounding R 
intersect on the vertical cylinder x 2 + y2 = 3 - 2y, or x 2 + (y + 1)2 = 4. If Dis the 
circular disk in which this cylinder intersects the xy-plane, then partial iteration gives 

V = {{[ dV = {{ dxdy {
3

-
2

y dz. 
jjjR jjD lx2+y2 

Figure 14.43 shows a slice of R corresponding to a further iteration of the double 
integral over D : 

f I f .J3 -2y-y
2 

1 3-2y 
V = dy ~ __ dx dz , 

-3 -.J3-2y-y2 x2+y2 

but there is an easier way to iterate the double integral. Since D is a circular disk of 
radius 2 and centre (0, -1) , we can use polar coordinates with centre at that point (i.e., 
x = r cos 0, y = -1 + r sin0). Thus, 

V =fl (3-2y-x 2 
- y2)dx dy 

= Jl(4- x 2 -(y+l) 2)dxdy 

= fo21r d0 fo
2 

(4 - r2)r dr = 211: ( 2r2 
- r:) 1: = 811: cubic units . 

z 

z = 3 - 2y 

z = x2 + y2 

y 
X 
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Figure 14.44 

(a) The solid region for the triple integral 
in Example 5 sliced corresponding to 
the given iteration 

(b) The same solid sliced to conform to 
the desired iteration 

SECTION 14.5: Triple Integrals 839 

As was the case for double integrals , it is sometimes necessary to reiterate a given 
iterated integral so that the integration s are performed in a different order. This task 
is most easily accomplished if we can translate the given iteration into a sketch of the 
region of integration. The ability to deduce the shape of the region from the limits in 
the iterated integral is a skill that you can acquire with a little practice. You should first 
determine the projection of the region on a coordinate plane, namely, the plane of the 
two variables in the outer integrals of the given iteration. 

It is al o possible to reiterate an iterated integral in a different order by manipulating 
the limits of integration algebraically. We will illustrate both approaches (graphical 
and algebraic) in the following examples. 

EXAM p LE 5 Express the iterated integral 

as a triple integral, and sketch the region over which it is taken. Reiterate the integral 
in such a way that the integrations are performed in the order: first y , then z, then x 
(i.e., the opposite order to the given iteration). 

Solution We express / as an uniterated triple integral : 

I= ff l f(x, y , z) dV. 

The outer integral in the given iteration shows that the region R lies between the planes 
y = 0 and y = l. For each such value of y, z must lie between y and l. Therefore , 
R lies below the plane z = 1 and above the plane z = y, and the projection of R onto 
the yz-plane is the triangle with vertice (0, 0, 0), (0, 0, l), and (0, 1, 1). Through any 
point (0, y , z) in this triangle, a line parallel to the x-axis intersects R between x = 0 
and x = z. Thus, the solid is bounded by the five planes x = 0, y = 0, z = 1, y = z , 
and z = x. It is sketched in Figure 14.44(a), with slice and line corresponding to the 
given iteration. 

z z 

(1,0, I} ( 1,0, 1) 

y 

X X 

(a) (b) 

The required iteration corresponds to the slice and line shown in Figure 14.44(b). 
Therefore, it is 

I= fo1 

dx 11 

dz foz f(x,y,z)dy. 
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EXERCISES 14.5 

EXAM p LE 6 Use algebra to write an iteration of the integral 

I= fo
1 

dx f 1 

dy 1Y f(x,y,z)dz 

with the order of integration s reversed. 

Solution From the given iterat ion we can write three sets of inequalities satisfied by 
the outer variable x, the middl e variable y, and the inner variable z. We write these in 
order as follows: 

Os xs l 

xsysl 

xszsy 

inequ alities for x 

inequalities for y 

inequalities for z. 

Note that the limits for each variable can be constant or can depend only on variables 
whose inequalitie s are on line s above the line for that variable . (In this case , the limits 
for x must both be constant , those for y can depend on x, and those for z can depend 
on both x and y.) This is a requirement for iterated integral s; outer integrals cannot 
depend on the variables of integrat ion of the inner integra ls. 

We want to construct an equiv alent set of inequ alities with those for z on the top 
line , then tho se for y, then those for x on the bottom line. The limit s for z must be 
constants. From the inequ alities above we determine that O S x S z and z S y S 1. 
Thu s z must satisfy O S z S 1. The inequalitie s for y can depend on z . Since z S y 
and y S 1, we have z S y S 1. Fi nail y, the limits for x can depend on both y and z . 
We have O S x, x S y, and x S z . Since we have already determined that z S y, we 
must have O S x S z. Thu s, the revised inequalities are 

0 S z S 1 

z S y S 1 

O sxsz 

inequ alities for z 

inequ alities for y 

inequalities for x 

and the required iteration is 

I= fo
1

d z 11

dy fo z f(x,y, z )dx. 

In Exercises l - 12, evaluate the triple integrals over the indicated 
region. Be alert for simplifications and auspicious orders of 
iteration. 

4. ff l x d V, over the tetrahedron bounded by the coordinate 

X y Z 
planes and the plane - + - + - = 1 

1. ff l ( I + 2x - 3y)dV, over the box -a ::: x::: a, 

-b :": y :": b, -C :": Z :": C 

2. ff la xyzd V , over the box B given by O::: x::: l , 

-2 ::: y ::: 0, 1 ::: z ::: 4 

3. ff l (3 + 2x y) d V , over the solid hemispherical dome D 

given by x2 + y2 + z2 
::: 4 and z c::: 0 

a b C 

5. ff l (x2 + y2) d V, over the cube O ::: x, y, z ::: 1 

6. ff l (x2 + y2 + z2) d V, over the cube of Exercise 5 

7. ff l (x y + z2) dV , over the set O::: z::: I - lxl - lyl 

S. ff l yz2e-xy z dV, over the cube O::: x, y, z::: 1 
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9. ff l sin(n y3) d V, over the pyramid with vertices (0, 0, 0), 

(0, 1, 0), (1, 1, 0), (1, 1, 1), and (0, 1, 1) 

10. ff l y dV, over that part of the cube O S x, y, z _:s l lying 

above the plane y + z = l and below the plane 
x+y+ z =2 

11. 

12. 

{ { { l 
3 

d V, over the region bounded by the six 111 R (x + y + z) 
planes z = 1, z = 2, y = 0, y = z, x = 0, and x = y + z 

ff l cos x cos y cos z d V, over the tetrahedron defined by 

X c".: 0, y c".: 0, Z c".: 0, and X + y + Z _'.S 7r 

13. Evaluate// frw.
3 

e-x
2

-
2i- 3

z
2 

d V . Hint : Use the result of 

Example 4 of Section 14.4. 

14. Find the volume of the region lying inside the cylinder 
x2 + 4y 2 = 4, above the xy-plane, and below the plane 
Z = 2 + X. 

15. Find ff l x dV , where Tis the tetrahedron bounded by the 

planes x = 1, y = 1, z = 1, and x + y + z = 2. 

16. Sketch the region R in the first octant of 3-space that has 
finite volume and is bounded by the surfaces x = 0, z = 0, 
x + y = l , and z = y2. Write six different iterations of the 
triple integral off (x, y, z) over R. 

In Exercises 17-2 0, express the given iterated integral a a triple 
integral and sketch the region over which it is taken. Reiterate the 
integral, so that the outermost integral is with respect to x and the 
innermost is with respect to z. 

17. fo1 

dz fo'-z dy fo1 

f(x, y, z)dx 

SECTION 14.6: Change of Variables in Triple Integrals 841 

18. f dz [ dy lay f(x, y, z)dx 

19. 
f I 11 rx-z lo dz z dx lo f (x, y, z) dy 

20. r' dy { ~ dz j' f(x,y,z)dx 
lo lo y2+z2 

21. Repeat Exercise 17 using the method of Example 6. 

22. Repeat Exercise 18 using the method of Example 6. 

23. Repeat Exercise 19 using the method of Example 6. 

24. Repeat Exercise 20 using the method of Example 6. 

25. Rework Example 5 using the method of Example 6. 

26. Rework Example 6 using the method of Example 5. 

In Exercises 27-28, evaluate the given iterated integral by 
reiterating it in a different order. (You will need to make a good 
sketch of the region.) 

D 27. fo
1 

dz 11 

dx L' ex
3 

dy 

1
1 11

-x j' sin(nz) D 28. dx dy ---dz 
o o y z(2 - z) 

8 29. Define the average value of an integrable function f (x , y, z) 
over a region R of 3-space. Find the average value of 
x 2 + y2 + z2 over the cube OS x S 1, 0 Sy S 1, 
Oszs l. 

8 30. State a Mean-Value Theorem for triple integrals analogous to 
Theorem 3 of Section 14.3. Use it to prove that if f(x, y, z) 
is continuous near the point (a, b, c) and if B, (a, b, c) is the 
ball of radius E centred at (a, b, c), then 

Jim~ {{{ f(x, y,z )dV = f(a,b,c). 
f--+0 47rE 111 B,(a,b,c) 

Change of Variables in Triple Integrals 
The change of variables formula for a double integral extends to triple (and higher-
order) integrals. Con side r the transformation 

x = x(u, v, w), 

y = y(u, v, w), 

z = z (u, v, w), 

where x, y, and z have continuous first partial derivatives with respect to u, v , and w. 
Near any point where the Jacobian a(x, y, z) /a (u, v, w) is nonzero , the transformation 
scales volume elements according to the formula 

l

a (x ,y,z ) I 
dV = dxdyd z = ( dudvdw . 

a u,v,w) 

Thus, if the transformation is one-to-one from a domain S in uv w-space onto a domain 
D in xyz-space, and if 

g(u, v, w) = f(x(u, v , w) , y(u, v, w), z (u, v, w)), 
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X 

z 

d 

X 
0 ',,, [ , 

then 

ffl f (x,y,z )d x dy dz = fffs g (u ,v, w) 1:c~::,·~1 dud v d w . 

The proof is similar to that of the two-dimensional case given in Section 14.4. See 
Exerci se 21 at the end of this sect ion . 

EXAMPLE 1 Under the change of variables x = au, y = bv , z = cw, where 
a , b, c > 0, the solid ellipsoid E given by 

x2 y2 z2 
-+-+- < ] a2 b2 c2 -

become s the ball B given by u 2 + v 2 + w2 ::: 1. The Jacobian of this transformation is 

a(x,y, z) 

a (u,v,w ) 

a O 0 
0 b O = abc , 
0 0 C 

so the volume of the ellipsoid is given by 

Volume of E = ff l dx dy dz 

= ff l abc du dv dw = abc x (Volume of B) 

4 
= ·rr abc cubic units . 

Cylindrical Coordinates 
In Section 10.6 we introduced the system of cylindrical coordinates r, 0, z in 3-space, 
related to Cartesian coordinates by the transformation 

x =rcos0, y =r sin 0, z = z. 

The geo metric significance of the se coordinates are shown in Figure 14.45, and the 
coordinate surfac es are illustrated in Figure 14.46. 

P=( x,y ,z ) 
= [r,0 ,z ] 

I ,z 

z 
cylinder r = constant ---t--- -

-------- ',, N 
Y ------ 'l i -- ... 

y 

Figure 14.45 The cylindrical coordinates of a point Figure 14.46 The coordinate surfaces for cylindrical 
coordinates 

As noted previou sly, cy lindrical coordinates lend themselves to representing do
main s that are bound ed by such surfac es and , in general, to problems with axial 
symmetry (around the z-axis ). 
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Figure 14.47 The volume element in 
cylindrical coordinates 

X 

Figure 14.48 

z 

z=I 

y 

SECTION 14.6: Change of Variables in Triple Integrals 843 

The volume element in cylindrical coordinates is 

dV = rdrd0d z, 

which is easily seen by examining the infinite simal "box" bounded by the coordinate 
surfaces corresponding to values r , r + dr , 0, 0 + d0, z, and z + dz (see Figure 14.47) 
or by calculating the Jacobian 

a(x,y,z) lc?s00 ---- = sin 
a(r, 0, z) 0 

X 

-r sin 0 
r cos0 

0 

z 

y 

EXAM p LE 2 Evaluate / / l (x2 + /) d V over the first octant region bounded 

by the cylinders x 2 + y2 = 1 and x 2 + y2 = 4 and the plane s 
Z = 0, Z = 1, X = 0, and X = y. 

Solution In terms of cylindrical coordinates, the region is bounded by r = I , r = 2, 
0 = n: / 4, 0 = n: / 2, z = 0, and z = l. (See Figure 14.48. It is a rectangular coordinate 
box in r0z-space.) Since the integrand is x2 + y2 = ,2, the integral is 

Thi s integral would have been much more difficult to evaluate using Cartesian coordi
nates. 

EXAMPLE 3 Use a triple integral to find the volume of the solid region inside 
the sphere x2 + y2 + z2 = 6 and above the paraboloid z = x2 + y2. 

Solution One-quarter of the required volume lies in the first octant. (See region R in 
Figure 14.49. ) The two surface s intersect on the vertical cylinder 

6 - x2 - y2 = z2 = (x2 + y2)2' 

or, in terms of cylindrical coordinates , 6 - , 2 = , 4, that is, 

,4 + ,2 - 6 = 0 

(r2 + 3)(r 2 
- 2) = 0. 
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z 

y 

X 

Figure 14.49 This figure shows 
one-quarter of the solid region R and its 
projection , one-quarter of the disk D in 
the xy-plane for Example 3 

z 

X 

The only relevant solution to this equation is r = ,.Ji. Thus, the required volume lies 
above the disk D of radius ,./2 centred at the origin in the xy-plane . The total volume 
V of the region is 

rrr r2
" r./'i f~ 

V= lllRdV= lo d0 lo rdr ,2 dz 

r./'i 
=2n lo (r~-r

3
) dr 

2 3 2 r 
[ 

1 4]1./2 = 2n - 3 ( 6 - r ) I - 4 o 

= 2n - - - - 1 = -(6.J6- 11) cubic units. 
[

6v'6 8 J 2n 
3 3 3 

Spherical Coordinates 
Also introduced in Section 10.6 is the system of spherical coordinates related to Carte
sian coordinates x, y, z, and cylindrical coordinates r, 0, z by the equations 

x = R sin¢ cos 0 

y = R sin ¢ sin 0 

z = Reos¢, 

R2 = x2 + y2 + z2 = r2 + z2' 

r = J x 2 + y2 = R sin¢, 

r Jx2+y2 
tan¢ = - = ---- and 

z z 
tan0 = 2:'.. 

X 

These relationships are illustraded in Figure 14.50, and the coordinate surfaces in 
spherical coordinates are illustrated in Figure 14.51. 

P=(x , y , z) 
= [R , ¢>, 0] P = [R ,¢>,0] 

y 
X 

z 

y 

0 = constant 
vertical half-plane 

Figure 14.50 The spherical coordin ates of a point Figure 14.51 The coordinate surfaces for spherical 
coordinat es 

The volume element in spherical coordinates is 

dV = R2 sin¢dRd¢d0. 

To see this, observe that the infinitesimal coordinate box bounded by the coordinate 
surfaces corresponding to values R, R +dR, ¢ , ¢ + dcp, 0, and 0 +d0 has dimensions 
dR, Rd¢, and Rsin¢d0 . (See Figure 14.52.) Alternatively , the Jacobian of the 
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Figure 14.52 The volume element in 
spherical coordinates 

SECTION 14.6: Change of Variables in Triple Integrals 845 

transformation can be calculated: 

o(x, y, z) · ,1, • 0 R ,1, • 0 R · ,1, 0 

I 

sin ¢ cos 0 R cos¢ cos 0 - R sin ¢ sin 01 
---- = Sill 'f' Sill COS 'f' Sill Sill 'f' COS 
8 ( R, ¢, 8) cos¢ - R sin¢ 0 

,1, I R cos¢ cos 0 - R sin¢ sin 01 = cos'f' 
R cos¢ sin 0 R sin¢ cos 0 

R . ,1, I sin¢ cos 0 - R sin¢ sin 01 + Sill 'f' . ,1, • 0 R . ,1, 0 srn 'f' sm Sill 'f' cos 

= cos¢(R 2 sin¢cos¢) + Rsin¢(Rsin 2 ¢) 

= R2 sin¢. 

Spherical coordinates are suited to problems involving spherical symmetry and, in 
particular, to regions bounded by spheres centred at the origin, circular cones with axes 
along the z-axis, and vertical planes containing the z-axis. 

z 

0 

[R ,ql,0] _\<-'-'···' 
qi --~/ qi ,,,,,,, 

.. <<·· .... ,,,,•· d V= R2 sin qld R dqldO 
, ...... 

y 

X 

EXAM p LE 4 A solid half-ball Hof radius a has density p (mass per unit volume) 
depending on the distance R from the centre of the base disk. The 

density is given by p = k(2a- R), where k is a constant. Find the mass of the half-ball . 

Solution Choosing coordinates with origin at the centre of the base, and so that the 
half-ball lies above the xy-plane , we calculate the mass mas follows: 

m =II l k(2a - R)dV = Ill k(2a - R) R
2 

sin¢dR d¢d0 

= k fo2

1r d0 fo,r/2 
sin¢ d¢ fo0 

(2a - R) R 2 dR 

= 2kn x 1 x (
2

a R 3 - ~R 4)1a = ~11:ka4 units. 
3 4 0 6 

Remark In the above example, both the integrand and the region of integration 
exhibited spherical symmetry, so the choice of spherical coordinates to carry out the 
integration was most appropriate. The mass could have been evaluated in cylindrical 
coordinates. The iteration in that system is 

(Jr [° {~ 
m = lo- d0 lo rdr lo k(2a -Jr2 + 22) dz 
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Figure 14.53 A so lid ball wit h a 

cylindrica l hole through it 

and is difficult to evaluate. It is even more difficult in Cartesian coordinates: 

{° r .Ja 2-x2 r .Ja 2-x2-y2 

m = 4 lo dx lo dy l o k ( 2a _ J x2 + y2 + z2) d z. 

The choice of coordinate sys tem can grea tly affec t the difficulty of computation of a 
multiple integral. 

Many problems will have element s of spherical and axial symmetry. In such 
cases it may not be clear whether it would be better to use spheric al or cylindrical 
coord inates. In such doubtful cases the integrand is usually the best guide. Use 
cylindrical or spherical coordinates according to whether the integrand involves x 2 + y2 

orx 2 +y2+ z2. 
z 

y 

X 

x2 + y2 = a2 

EXAMPLE 5 The moment of inertia abo ut the z-axis of a solid of density p 
occupying the region R is given by the integral 

I= ff l (x2 + y2)pdV . 

(See Section 14.7 .) Calculate that moment of inertia for a solid of unit density occupying 
the region inside the sphere x 2 + y2 + z2 = 4a 2 and outside the cylinder x 2 + y2 = a2. 

Solution See Figure 14.53. In terms of spherical coordinates the required moment 
of inertia is 

I= 2 f
2
" d0 f"

12 
sin ef>def> f

2
a R2 sin2 ¢ R2 dR. 

lo l n/6 la/ sin</> 
In terms of cylindrical coordinates it is 

12n 12a 1~ 
I = 2 d0 r dr r2 d z . 

0 a 0 

The latter formula looks somew hat eas ier to evaluate . We continue with it. Evaluating 
the 0 and z integrals, we get 

I= 41r 12
a r 3) 4a 2 - r2 dr. 

Making the substitution u = 4a 2 - r2, du = -2r dr , we obtain 

13a2 ( u3/2 u5/2) 13a2 44 
I= 21r (4a 2 - u).../udu = 21r 4a 2- - - = -v'3na 5

. 
o 3/ 2 5/ 2 o 5 
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EXERCISES 14.6 
In Exercises 1-9 , find the volumes of the indicated regions. 

1. Inside the cone z = J x2 + y2 and inside the sphere 
x2 + y2 + z2 = a2 

2. Above the surface z = (x2 + y2)114 and inside the sphere 

x2 + y2 + z2 = 2 

3. Between the paraboloids z = 10 - x2 - y2 and 
z = 2(x 2 + y 2 - 1) 

4. Inside the paraboloid z = x2 + y2 and inside the sphere 
x2 + y2 + z2 = 12 

5. Above the xy -plane , inside the cone z = 2a - J x2 + y2, 
and inside the cylinder x2 + y2 = 2ay 

6. Above the xy -plane , under the paraboloid z = 1 - x2 - y2, 
and in the wedge - x s y s v'3x 

7. In the first octant , between the planes y = 0 and y = x, and 

· ·ct h lli ·d x
2 

y2 z
2 

1 H. U h ms1 e t e e pso1 a2 + b2 + c2 = . mt: set e 

change of variables suggested in Example 1. 
x2 y2 z2 

8. Bounded by the hyperboloid a2 + b2 - c2 = 1 and the 

planes z = -c and z = c 
9. Above the xy-plane and below the paraboloid 

x2 y2 
z =l----

a2 b2 

10. Evaluate ff£ (x 2 + y2 + z2) dV , where R is the cylinder 

0 s x 2 + y 2 S a2
, 0 S z S h. 

11. Find f J la (x 2 + y2) d V, where B is the ball given by 

x2 + y2 + z2 s a2 . 

12. Find ff la (x
2 + y2 + z2) dV , where Bis the ball of 

Exercise 11. 

13. Find J J l (x2 + y2 + z2
) d V, where R is the region that lies 

above the cone z = cJ x2 + y2 and inside the sphere 
x2 + y2 + z2 = a2. 

14. Evaluate J J £ (x 2 + y2) dV over the region R of 

Exercise 13. 

15. Find ff£ z d V, over the region R satisfying 

x 2 + y2 s z s J2 - x 2 - y 2 . 

SECTION 14.7: Applications of Multiple Integrals 847 

16. Find ff£ x d V and ff£ z d V, over that part of the 

hemisphere O s z s J a2 - x2 - y2 that lies in the first 
octant. 

D 17. Find !fl xdV and JJ l zdV overthatpartofthecone 

that lies in the first octant. 

D 18. Find the volume of the region inside the ellipsoid 

x2 y2 z2 
a2 + b2 + c2 = l and above the plane z = b - y. 

19. Show that for cylindrical coo rdinates the Lapla ce equation 

is given by 

a2u 1 au 1 a2u a2u 
-+--+ --+- -0 ar 2 r ar r 2 802 az 2 - . 

D 20. Show that in spherical coordinates the Lapl ace equatio n is 
given by 

D 21. If x, y, and z are function s of u, v, and w with continuous 
first partial derivative s and nonvarushing Jacobian at 
(u, v , w), show that they map an infinitesimal volume 
element in uvw-space bounded by the coordinate planes u, 
u + du , v, v + dv, w, and w + dw into an infinitesi mal 
"parallelepiped " in xyz-space having volume 

I 
a (x,y ,z) I 

dxd ydz = ( dudvdw. 
a u, v,w) 

Hint: Adapt the two-dimen sional argument given in 
Section 14.4. What three vectors from the point 
P = (x(u, v, w), y( u , v, w), z (u , v, w)) span the 
parallelepiped? 

• 
Applications of Multiple Integrals 

-----
When we express the volume V of a region R in 3-space as an integral , 

V = Ill dV, 
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Figure 14.54 The surface area element 
dS on the surface z = f(x, y) is sec y 
times as large as its vertical projection dA 
onto the xy-plane 

we are regarding Vas a "sum" of infinjteJy many infinitesimal elements of volume , that 
is, as the limit of the sum of volumes of smaller and smaller nonoverlapping subregions 
into which we subdivide R . Trus idea of representing sums of infinitesimal elements 
of quantities by integrals has many applications. 

For examp le, if a rigid body of constant density p glcm 3 occup ies a volume V cm3, 

then its mass ism = p V g. If the density is not constant but varies continuou sly over 
the region R of 3-space occupied by the rigid body, say p = p(x , y, z), we can still 
regard the density as being constant on an infinitesimal element of R having volume 
d V . The mass of this element is therefore dm = p (x, y, z) d V, and the mass of the 
whole body is calculated by integrating these mass elements over R: 

m =ff l p(x, y, z) dV. 

Similar formulas apply when the rigid body is one- or two-dimensional, and its density 
is given in units of mass per unit length or per unit area. In such cases single or double 
integrals are needed to sum the individual elements of mass. All this works because 
mass is "additive"; that is, the mass of a composite object is the sum of the masses of 
the parts that comprise the object. The surface areas, gravitat ional forces , moments , 
and energies we consider in this section all have this additiv ity property. 

The Surface Area of a Graph 
We can use a double integral over a domain D in the xy-plane to add up surface area 
elements and thereby calculate the total area of the surface -8 with equation z = f (x, y ) 
defined for (x , y) in D. We assume that f has continuous first partial derivatives in D , 
so that -8 is smooth and has a nonvertical tangent plane at P = ( x, y, f (x, y)) for any 
(x , y) in D. The vector 

n = - !1 (x , y) i - h(x, y)j + k 

is an upward normal to -8 at P. An area element dA at position (x, y) in the xy -plane 
has a vertical projection onto -8 whose area dS is sec y times the area dA , where y is 
the angle between n and k. (See Figure 14.54.) 

X 

Since 

cos y 

we have 

nek 

lnllkl 

z 

k 

z = f(x , y) 

y 

dy 
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dS = (az)2 (az)2 

1 + ax + ay dA. 

Therefore , the area of .& is 

S= fl 

EXAMPLE 1 Find the area of that part of the hyperbolic paraboloid z = x2 - y2 
that lies inside the cylinder x 2 + y2 = a2 . 

Solution Since az / ax = 2x and az/ay = -2y, the surface area element is 

dS = Ji +4x 2 + 4y 2 dA = J1 +4r 2 rdrd0. 

The required surface area is the integral of dS over the disk r S a: 

[2,r [° 
S = lo d0 lo J 1 + 4r

2 
r dr Let u =I+ 4r 2 

1 f 1+4a 2 
= (2n)- .Ju du 

8 J 

(
2 ) I 1+4a

2 

= ~ 3 u3 / 2 I = i ( (1 + 4a2)3 /2 - 1) square units. 

The Gravitational Attraction of a Disk 
Newton's universal law of gravitation asserts that two point masses mi and m2, sepa
rated by a distances , attract one another with a force 

km1m 2 
F=--2- , 

s 

k being a universal constant. The force on each mass is directed toward the other, along 
the line joining the two masses. Suppose that a flat disk D of radius a, occupying 
the region x 2 + y2 S a2 of the xy-plane, has constant areal density (J (units of mass 
per unit area). Let us calculate the total force of attraction that this disk exerts upon a 
mass m located at the point (0, 0, b) on the positive z-axis. The total force is a vector 
quantity. Although the various mass elements on the disk are in different directions 
from the mass m, symmetry indicates that the net force will be in the direction toward 
the centre of the disk, that is, toward the origin. Thus, the total force will be - Fk , 
where F is the magnitude of the force. 

We wi11 calculate F by integrating the vertical component d F of the force of 
attraction on m due to the mass (J dA in an area element dA on the disk. If the area 
element is at the point with polar coordinates [r , 0], and if the line from this point to 
(0, 0, b) makes angle If/ with the z-axis as shown in Figure 14.55, then the vertical 
component of the force of attraction of the mass element (J d A on m is 

km(JdA dA 
d F = 2 2 cos If/ = km(J b ( 2 2 312 . r +b r +b) 
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Figure 14.55 Each mass element a d A 

attracts m along a different line 

z 

y 

Accordingly, the total vertical force of attraction of the disk on m is 

F =kmCJb {{ ( 2 d\ 3/ 2 llDr+b) 
= kmCJ b {2" d0 { a r dr 

lo lo (r 2 + b 2) 3/ 2 

a2+1,2 
= 71:kmCJb { u- 312 du 

lb 2 

Let u = r 2 + b2 

l

a2+b2 

= 1r:kmCJb (-;) = 21r:kmCJ (1 - b ) . 
yU b2 Ja 2 + b2 

Remark If we let a approach infinity in the above formula, we obtain the formula 
F = 271: kmCJ for the force of attraction of a plane of areal density CJ on a mass m 
located at distance b from the plane . Observe that F does not depend on b. Try to 
reason on physical grounds why this should be so. 

Remark The force of attraction on a point mass due to suitably symme tric solid 
objects (such as balls, cylinders, and cones) having constant density p (units of mass 
per unit volume) can be found by integrating elements of force contributed by thin, 
disk-shaped slices of the solid. See Exercises 14--17. 

Moments and Centres of Mass 
The centre of mass of a rigid body is that point (fixed in the body) at which the body 
can be supported so that in the presence of a constant gravitational field it will not 
experience any unbalanced torques that will cause it to rotate. The torques experienced 
by a mass element dm in the body can be expressed in terms of the moments of dm 
about the three coordinate planes. If the body occupies a region R in 3-space and has 
continuous volume density p (x , y, z), then the mass element d m = p (x, y , z) d V that 
occupies the volume element cl V is said to have moments (x - xo) dm, (y - yo) dm, 
and (z - zo) dm about the planes x = xo, y = yo, and z = zo, respectively. Thus, the 
total moments of the body about these three planes are 

Mx=xo =ff l (x - xo)p(x, y , z) dV = Mx=O - xom 

My=yo =ff l (y - Yo)p(x , y, z) dV = My=O - yom 

Mz=zo = !Ji (z - zo)p(x , y, z)dV = Mz=O - zom, 
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where m = JffR p dV is the mass of the body and Mx=O, My=O, and Mz=O are the 
moment s about the coordinate planes x = 0, y = 0, and z = 0, respectively. The 
centre of mass P = (x, ji, z) of the body is that point for which Mx=i, My=y, and 
Mz=z are all equal to zero. Thus, 

Centre of mass 

The centre of mass of a solid occupying region R of 3-space and having 
continuous density p(x, y, z) (units of mass per unit volume) is the point 
(x, ji, z) with coordinates given by 

- My=O ff l yp dV 

y=-m =----,--,,111~Rp-dV, 

These formulas can be combined into a single vector formula for the position vector 
r = ii+ jij + zk of the centre of mass in terms of the position vector r = xi+ yj + zk 
of an arbitrary point in R, 

m 

where the integral of the vector function p r is understood to mean the vector whose 
components are the integrals of the components of p r . 

Remark Similar expressions hold for distributions of mass over regions in the plane 
or over intervals on a line . We use the appropriate areal or line densities and double or 
single definite integrals. 

Remark If the density is constant, it cancels out of the expressions for the centre of 
mass. In this case the centre of mass is a geometr ic property of the region R and is 
called the centro id or centre of gravity of that region. 

EXAMPLE 2 Find the centroid of the tetrahedron T bounded by the coordinate 
planes and the plane 

X y Z 
-+-+-=!. 
a b C 

Solution The density is assumed to be constant , so we may take it to be unity. The 
mass of Tis thus equal to its volume: m = V = abc / 6. The moment of T about the 
yz-p lane is (see Figure 14.56): 

Mx=O =ff l xdV 

la 1b (I-~) 1 c(l-~-,i) 
= x dx dy d z 

0 0 0 
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Figure 14.56 Iteration diagram for a triple 
integral over the tetrahedron of Example 2 

z 

C 

b 

y 

X 

t [ b( I -!.) 

= e lo x dx lo a ( 1 - ~ - fl dy 

la [ 2Jly=b(J-!.) 
= e X ( l - ~) y - ~ a dx 

O a 2b y=O 

be [a ( x )2 
= 2 lo x I - ; dx 

= be [x2 _ ~ x3 + ~ ] la 
2 2 3 a 4a2 

0 

(
ab C) Thu s, i = Mx=ol m = a / 4. By symmetry , the centroid of Tis 4, 4, 4 . 

EXAM p LE 3 Find the centre of mass of a solid occupying the region S that 
satisfies x ::: 0, y ::: 0, z ::: 0, and x 2 + y2 + z2 _:::: a2 , if the density 

at distance R from the origin is k R. 

Solution The mass of the solid is distributed symmetrically in the first octant part of 
the ball R _:::: a so that the centre of mass, (.x, ji, z), must satisfy x = y = z. The mass 
of the solid is 

1r [ [ [" /2 [" /2 t 7Cka4 
m = ll s kRdV = lo d0 lo sin</)d</J lo (kR)R

2
dR = - 8-. 

The moment about the xy- plane is 

Mz=O = Ills zkRdV = llfs(kR)Rcos </)R
2

sin </)dRd </)d0 

= - d0 sin(2¢) d</J R4 dR = --. k 1"/2 1,r/2 la kn:a5 

2 o o o 20 

kn:a
5 

/kn: a
4 

2a (2a 2a 2a) Hence, z = 20 -
8

- = 5 , and the centre of mass is 5 , 5 , 5 . 
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Moment of Inertia 
The kinetic energy of a particle of mass m moving with speed v is 

l 
KE= -mv 2 . 

2 

The mass of the particle measures its inertia , which is twice the energy it has when its 
speed is one unit. 

If the particle is moving in a circle of radius D, its motion can be described in 
terms of its angular speed, Q, measured in radians per unit time . In one revolution 
the particle travels a distance 2n D in time 2n / Q. Thus , its (translational) speed v is 
related to its angular speed by 

V =OD. 

Suppose that a rigid body is rotating with angular speed Q about an axis L. If (at some 
instant) the body occupies a region Rand has density p = p(x , y , z), then each mass 
element dm = p dV in the body has kinetic energy 

l 1 
dKE= -v 2 dm = -pQ 2 D2 dV 

2 2 ' 

where D = D(x , y , z) is the perpendicular distance from the volume element dV to 
the axis of rotation L. The total kinetic energy of the rotating body is therefore 

where 

/ is called the moment of inertia of the rotating body about the axis L . The moment 
of inertia plays the same role in the expression for kinetic energy of rotation (in term s 
of angular speed) that the mass doe in the expression for kinetic energy of translation 
(in terms of linear speed) . The moment of inertia is twice the kinetic energy of the 
body when it is rotating with unit angular speed . 

If the entire mass of the rotating body were concentrated at a distance Do from the 
axis of rotation , then its kinetic energy would be ½mD5Q2 . The radius of gyration b 
is the value of Do for which this energy is equal to the actual kinetic energy ½ /Q 2 of 

the rotating body. Thus, mb 2 = I , and the radius of gyration is 

EX A M p LE 4 (The acceleration of a rolling ball) 

(a) Find the moment of inertia and radius of gyration of a solid ball of radius a and 
constant density p about a diameter of that ball . 

(b) With what linear acceleration will the ball roll (without slipping) down a plane 
inclined at angle a to the horizontal ? 
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Figure 14.57 The actual velocity and the 
vertical velocity of a ball rolling down an 
incline as in Example 4 

Solution 
(a) We take the z-ax is as the diameter and integrate in cylindrical coordinates over the 

ball B of radius a centred at the origin. Since the density p is constant, we have 

I= p I I l r2dV 

= p {211: d0 { a r3 dr f Ja2-r2 d z 
lo lo -Ja2- r2 

Let u = a 2 - r 2 

? 

2 2 la- 8 = 2n p (-a2 u 3/ 2 - -u5!2) = - n pas. 
3 5 0 15 

Since the mass of the ball ism= ~ npa 3, the radius of gyration is 

(b) We can determine the acceleration of the ball by using conservation of total (kinetic 
plus potential) energy. When the ball is rolling down the plane with speed v, its 
centre is moving with speed v and losing height at a rate v sin a.. (See Figure 14.57 .) 
Since the ball is not slipping , it is rotating about a horizontal axis through its centre 
with angular speed Q = v / a. Hence , its kinetic energy (due to translation and 
rotation) is 

KE=~ mv 2 + ~ !0 2 

2 2 
1 2 1 2 2 v

2 7 2 = - mv + - - ma - = - mv 
2 2 5 a2 10 

When the centre of the ball is at height h (above some reference height), the ball has 
(gravitational) potential energy 

PE= mgh. 

(This is the work that must be done against a constant gravitational force F = mg to 
raise it to height h .) Since total energy is conserved, 

7 
- mv 2 + mgh = constant. 
10 
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EXERCISES 14.7 
Surface area problems 

SECTION 14.7: Applications of Multiple Integrals 855 

Differentiatin g with respect to time t, we obtain 

7 dv dh 7 dv 
0 = -m2v- +mg-= -mv- -mgvsina. 

10 dt dt 5 dt 

dv 5 
Thus, the ball rolls down the incline with acceleration - = - g sin a . 

dt 7 

Remark Integrals of higher multiplicity. Just like higher order derivatives , it is 
easy to imagine the need for multiple integrations beyond just triple integrals. For 
instance, in physics we must consider both position and momentum of a particle to 
understand its behaviour. Each of these requires three coordinates, so a total of six 
coordinates are needed. Integrals may have to be taken over all six . 

Suppose we know that the number of particle s per unit interval in three space coor
dinates, xi , x2, x3 and per unit momentum in three momentum coordinates, Pl, p2, p 3 
is N(x1 , x2, x3, Pl , P2, p 3) . If the energy , E(p1 , P2, p 3), per particle is defined by its 
momentum then the total energy of the system of particles is given by the repeated 
integral , 

where the domain of integration is over the entire six dimensional space . Clearly , this 
notation is a bit clumsy. 

Of course, we don ' t stop with six dimensions. The numbers of integrations can be 
arbitrarily large. In kinetic theory, for example, one may imagine spaces where there 
are six coordinates for every particle. If the number of particles is typically very large 
(e.g., 1023) , integral s over that space might involve 6 x 1023 integration s. Clearly , 
writing an integration sign for each coordinate is not just clumsy , it is impo sible and 
pointless in such cases . 

One alternative is to represent the integral of function f (x) = f (x , , x2, .. . , x,1) 

over a domain D in n dimensional space as 

f · · · l f (x) dx or f · · · l f( x )dV , 

where dx = dV = dx i dx2 · · · dx 11• But the dots really don't convey anything new, 
so the integral is often written 

l f(x)dV , or even f f(x) dV , 

where the space and domain of the integration are simply described in the surrounding 
text. This is the common approach for all types of integral s in advanced texts. However , 
for introductory material with three or fewer iterations of integration, it remains helpful 
to denote numbers of integrations involved symbolically . 

2. The part of the plane 5z = 3x - 4 y inside the elliptic 

Use double integrals to calculate the areas of the surfaces in 
Exercises 1-9. 

cylinder x 2 + 4y2 = 4 

3. The hemisphere z = J a2 - x 2 - y2 

1. The part of the plane z = 2x + 2y inside the cylinder 
x 2 + y2 = 1 

4. The half-ellipsoidal surface z = 2) 1 - x2 - y2 

S. The conical surface 3z2 = x2 + y 2 , O.::: z .::: 2 
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6. The paraboloid z = 1 - x 2 - y2 in the first octant 

7. The part of the surface z = y2 above the triangle with 
vertices (0, 0) , (0, 1), and (1, 1) 

8. The part of the surface z = .Jx above the region O S x S 1, 
Os ys.Jx 

9. The part of the cylindrical surface x 2 + z2 = 4 that lies 
above the region O S x S 2, 0 S y S x 

10. Show that the paits of the surfaces z = 2xy and z = x 2 + y 2 

that lie in the same vertical cylinder have the same area. 

gg 11. Show that the area S of the part of the paraboloid 
z = ½ (x2 + y2) lying above the square -1 S x S 1, 
-1 S y S l is given by 

8 [" /4 2n 
S = 3 Jo (1 + sec

2 
0)

312 
d0 - 3 , 

and use numerical methods to evaluate the area to 3 decimal 
places. 

z 

X 
y 

Figure 14.58 

D 12. The canopy shown in Figure 14.58 is the part of the 
hemisphere of radius ../2 centred at the origin that lies above 
the squai·e -1 S x :S 1, - I S y S 1. Find its area . Hint: It 
is possible to get an exact solution by first finding the area of 
the part of the sphere x 2 + y2 + z2 = 2 that lies above the 
plane z = 1. If you do the problem directly by integrating 
the surface area element over the square , you may encounter 
an integral that you can ' t evaluate exactly , and you will have 
to use numerical methods. 

Mass and gravitational attraction 

13. Find the mass of a spherical planet of radius a whose density 
at distance R from the centre is p = A/ (B + R2

). 

In Exercises 14-17, find the gravitational attraction that the given 
object exerts on a mass m located at (0, 0, b). Assume the object 
has constant density p. In each case you can obtain the answer by 
integrating the contributions made by disks of thickness dz, 
making use of the formula for the attraction exerted by the disk 
obtained in the text. 

14. The ball x 2 + y2 + z2 S a 2 , where a < b 

15. The cylinder x 2 + y2 S a2 , 0 S z S h, where h < b 

16. The cone O S z Sb - (~) / a 

17. The half-ball O S z S )a 2 - x 2 - y2, where a < b 

Centres of mass and centroids 

18. Find the centre of mass of an object occupying the cube 
0 S x , y, z Sa with density given by p = x 2 + y2 + z2 . 

Find the centroids of the regions in Exercises 19-22. 

19. The prism x:::: 0, y:::: 0, x + y S 1, 0 S z S l 

20. The unbounded region O S z s e-<x
2

+Y
2

) 

21. The first octant part of the ball x 2 + y 2 + z2 s a2 

22. The region inside the cube OS x, y, z S 1 and under the 
plane x + y + z = 2 

Moments of inertia 

23. Explain in phys ical terms why the acceleration of the ball 
rolling down the incline in Examp le 4 does not approach g 
(the acceleration due to gravity) as the angle of incline , a, 
approaches 90°. 

Find the moments of inertia and radii of gyration of the solid 
objects in Exercises 24-32. Assume constant density in all cases . 

24. A circular cylinder of base radius a and height h about the 
axis of the cylinder 

25. A circular cylinder of base radius a and height h about a 
diameter of the base of the cylinder 

26. A right circular cone of base radius a and height h about the 
axis of the cone 

27. A 1ight circu lar cone of base radius a and height h about a 
diameter of the base of the cone 

28. A cube of edge length a about an edge of the cube 

29. A cube of edge length a about a diagonal of a face of the 
cube 

30. A cube of edge length a about a diagonal of the cube 

31. The rectangular box - a S x S a, -b S y S b, -c S z S c 
about the z-axis 

32. The region between the two concentric cylinders 
x 2 + y2 = a2 and x 2 + y2 = b2 (where O < a < b) and 
between z = 0 and z = c about the z-axis 

33. A ball of radius a has constant density p. A cylindrical hole 
of radius b < a is drilled through the centre of the ball. Find 
the mass of the remaining part of the ball and its moment of 
inerti a about the axis of the hole . 

34. With what acceleration will a solid cylinder of base radi us a, 
height h, and constant density p roll (without slipping) down 
a plane inclined at angle a to the horizontal? 

35. Repeat Exercise 34 for the ball with the cylindrica l hole in 
Exercise 33. Assume that the axis of the hole remains 
horizontal while the ball rolls. 

D 36. A rigid pendulum of mass m swings about point A on a 
horizontal axis. Its moment of inertia about that axis is I. 
The centre of mass C of the pendulum is at distance a from 
A . When the pendulum hangs at rest, C is directly under A. 
(Why?) Suppose the pendulum is swinging. Let 0 = 0(t) 
measure the angular displacement of the line AC from the 
vertical at time t. (0 = 0 when the pendulum is in its rest 
position.) Use a conservat ion of energy argument simi lar to 
that in Example 4 to show that 

1 (d0)2 

- I - - mga cos 0 = constant 
2 cit 

and, hence, differentiating with respect to t , that 

d20 mga . 
-+--sm0=0. 
dt 2 I 
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This is a nonlinear differential equation, and it is not easily 
solved. However, for sma ll oscillations (101 small) we can 
use the approximation sin 0 ~ 0. In this case the differential 
equation is that of simp le harmonic motion. What is the 
period? 

0 37. Let Lo be a stra ight line passing through the centre of mass 
of a rigid body B of mass m. Let Lk be a straig ht Line 
parallel to and k units distant from Lo. If Io and h are the 
moment s of inertia of B about Lo and Lk, respective ly, show 
that h = Io+ k2m. Hence, a body always has sma llest 
moment of inert ia about an axis through its centre of mass. 
Hint: Assume that the z-ax is co incides with Lo and that Lk 
passes throu gh the point (k, 0, 0). 

D 38. Rees tabli sh the expression for the total kinetic energy of the 
rolling ball in Example 4 by regardi ng the ball at any instant 

CHAPTER REVIEW 
Key Ideas 
• What do the following terms and phrases mean? 

o a Riem ann sum for f (x , y) on a .:::: x .:::: b, c.:::: y .:::: d 

o f (x, y) is integrable on a .:::: x .:::: b, c .:::: y .:::: d 

o the double integra l off (x , y ) over a .:::: x .:::: b, c .:::: y .:::: cl 

o iteration of a double integra l 

o the average value off (x, y ) over region R 

o the area element in polar coordinates 

o a triple integral 

o the volume element in cylindrical coordin ates 

o the volume element in spherica l coordinat es 

o the surface area of the graph of z = f (x, y) 

o the moment of inertia of a solid about an axis 

• Describe how to change variables in a double integral. 

• How do you calculate the centroid of a solid region? 

• How do you calculate the moment of inertia of a solid 
about an axis? 

Review Exercises 

1. Evaluate fl (x + y) d A, over the first-quadrant region lying 

under x = y2 and above y = x 2. 

2. Evaluate fl (x 2 + y2) cl A , where P is the parallelogran1 with 

vertices (0, 0), (2, 0) , (3, 1) , and (1, 1). 

3. Find f ls (y / x) dA, where Sis the part of thediskx 2 + y 2 .:::: 4 

in the first quadrant and under the line y = x. 

4. Consider the iterated integral 

1J3 j ~ 2 2 I = dy e-x - y dx. 
0 y/J'l 

CHAPTER REVIEW 857 

as rotating about a horizontal line through its point of contact 
with the inclined plane. Use the result of Exercise 37. 

D 39. (Products of inertia) A rigid body with density p is placed 
with its centre of mass at the origin and occupie s a region R 
of 3-space . Suppose the six second moment s Pxx, Pyy, Pzz, 
Pxy, Pxz, and Pyz are all known , where 

Pxx = ff l x
2
pdV , Pxy = ff l x ypdV , 

(There exist tables giving these six moment s for bodies of 
many tandard shapes. They are called products of inertia.) 
Show how to express the moment of inertia of the body about 
any axis through the origi n in term of these six second 
moment s. (If this result is combined with that of Exerci se 37, 
the moment of inertia about any axis can be found .) 

(a) Write I as a double integral fl e-x
2-i dA , and sketch 

the region R over which the double integral is taken . 

(b) Write I as an iterated integral with the order of integra
tions reversed from that of the given iteration. 

(c) Write I as an iterated integral in polar coord inates . 

(d) Evaluate /. 

5. Find the constant k > 0 such that the volume of the region 
lying inside the sphere x 2 + y2 + z2 = a2 and above the cone 

z = kJ x2 + y2 is one-q uarter of the volume contained by the 
whole sphere. 

6. Reiterate the integral 

r2 e r6 r./6-Y 
I= Jo dy Jo f(x ,y )d x + }

2 
cly Jo f (x,y )d x 

with the y integral on the inside. 

7. Let J = lo I 

dz foz cly lay J(x , y, z) dx. Expre ss J as an 

iterated integral where the integrations are to be performed in 
the following order: fir t z, then y, then x. 

8. An object in the shape of a right-circular cone has height 10 m 
and base radius 5 m. Its density is proportional to the square 
of the distance from the base and equals 3,000 kg/m 3 at the 
vertex. 

(a) Find the mass of the object. 

(b) Expre s the moment of inertia of the object about its 
centra l axis as an iterated integral . 

9. Findtheaveragevalueof J(t) = l a e-x
2 

dxovertheinterval 

0.::: t .:::: a. 

10. Find the average value of the function f (x, y) = L x + y J over 
the quarter-disk x ::: 0, y ::: 0, x 2 + y2 .:::: 4. (Reca ll that Lx J 
denotes the grea test integer less than or equa l to x .) 
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11. Let D be the smaller of the two so lid regions bounded by the 
surfaces 

x2+y2 
z = --- and x 2 + y2 + z2 = 6a2

, 
a 

where a is a positive con stant. Find J J J
0 

(x 2 + y2) d V. 

12. Find the moment of inertia about the z-axis of a so lid V of 
density I if V is specifi ed by the inequa lities 

0 :s: z :s: J x 2 + y2 and x 2 + y2 :s: 2ay, where a > 0. 

13. The rectang ular solid O :S: x :S: I , 0 :S: y :S: 2, 0 :S: z :S: I is 
cut into two pieces by the plane 2x + y + z = 2. Let D be 
the piece that includes the origin . Find the volum e of D and 
z, the z-coo rdinate of the centroid of D. 

14. A solid S consists of those point s (x, y, z) that lie in the first 
octant and satisfy x + y + 2z :S: 2 and y + z :S: I . Find the 
volume of Sa nd the x -coordin ate of its centroid. 

15. Find J Jfs z d V, where S is the port ion of the first octant that 

is above the plane x + y - z = I and below the plane z = I . 

16. Find the area of that part of the plane z = 2x that lies inside 
the paraboloid z = x 2 + y 2 . 

~g 17. Find the area of that part of the paraboloid z = x2 + y2 that 
lies below the plane z = 2x. Express the answer as a single 
integral , and evaluate it to 3 deci mal places . 

D 18. Find the volume of the smaller of the two regions into which 
the plane x + y + z = I divides the interior of the ellipso id 
x 2 + 4 y2 + 9z2 = 36. Hint : First change variables so that the 
ellipsoid becomes a ball. Then replace the plane by a plane 
with a simp ler equation passing the same distance from the 
ongm . 

Challenging Problems 
1. The plane (x / a) + (y / b) + (z/ c) = 1 (where a > 0, b > 0, 

and c > 0) divides the sol id ellipso id 

x2 y2 z2 
-+-+ - < l a2 b2 c2 -

into two unequal pieces. Find the volume of the smaller 
piece. 

2. Findtheareaofthepartoftheplane(x / a) + (y / b) + (z/ c) = l 
(where a > 0, b > 0, and c > 0) that lies inside the ellipsoid 

x2 y2 z2 
-+-+-< I. a2 b2 c2 -

3. (a) Expand 1/ (l -xy) as a geometric series, and hence show 
that 

lo
t lot t 

00 
1 -- dxdy- -

o o l - xy - ; n2 · 

(b) Similarly, express the following integrals as sums of 

se~:; s: { I { I _l_ dx dy, 

lo lo I +xy 

(ii) r' {' {' - 1
- dx dydz, 

lo lo lo l - xyz 

(iii) {' {' {' --
1-dxdydz. 

lo lo lo I + xyz 

D 4. Let P be the parall e lepiped bound ed by the three pair s of 
parallel planes a • r = 0, a • r = d1 > 0, b • r = 0, 
b • r = d2 > 0, c • r = 0, and c • r = d3 > 0, where a, b, 
and car e constant vectors, and r =x i+ yj + zk. Show that 

ff[ (a er )(b er )(c er )dxdydz = _( d_,_d2_d_J)_
2

-
111P 81ae(bxc)I. 

Hint: Make the change of variables u = a• r, v = b • r , 
W = C • r. 

i 5. A hole whose cross-section is a square of side 2 is punched 
through the middle of a ball of radius 2 . Find the volum e of 
the remaining part of the ba ll. 

D 6. Find the volume bounded by the surface with equation 
x2/3 + y2/3 + 22;3 = a2/3. 

D 7. Find the volume bounded by the surface 

lxl 113 + IYl113 + lzl113 = lal 113. 
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Vector Fields 
, , "Take some more tea," the March Hare said to Alice, very earnestly. 

"I've had nothing yet," Alice replied, in an offended tone, "so I can't 
take more." 
"You mean you can't take less," said the Hatter: "it's very easy to take 
more than nothing." 

859 

'' Lewis Carroll (Charles Lutwidge Dodgson) 1832-1898 
from Alice's Adventures in Wonderland 

I n trod U Ct '1 Q n This chapter and the next are concerned mainly with 
vector-valued functions of a vector variable , typically 

function s whose domains and ranges lie in the plane or in 3-space. Such functions 
are frequently called vector fi elds. Applications of vector fields often involve integrals 
taken , not along axes or over regions in the plane or 3-space , but rather over curves 
and surfaces. We will introduce such line and surface integrals in this chapter. The 
next chapter will be devoted to developing versions of the Fundamental Theorem of 
Calculus for integrals of vector fields. 

• 
Vector and Scalar Fields 

-- ---
A function whose domain and range are subsets of Euclidean 3-space, JR3, is called 
a vector field . Thus, a vector field F associa tes a vector F(x, y, z) with each point 
(x, y , z) in its domain. The three compo nents of F are scalar-valued (real-valued) 
function s F, (x, y, z), F2(x, y, z), and F3(x, y , z), and F(x, y , z) can be expressed in 
terms of the standard basis in JR3 as 

F(x, y, z) = Fi (x, y, z)i + Fi(x, y, z)j + F3(x, y , z)k. 

(Note that the subscripts here represent components of a vector, not partial derivatives.) 
If F3(x, y , z) = 0 and Fi and F2 are independent of z, then F reduce s to 

F(x, y) = F1 (x, y) i + F2(x, y)j 

and so is called a plane vector field , or a vector field in thex y-plane. We will frequently 
make use of position vectors in the arguments of vector fields. The position vector of 
(x, y, z) is r = xi+ yj +z k, and we can writeF(r) as a shorthand forF( x, y, z). In the 
context of discussion of vector fields, a scalar-valued function of a vector variable (i.e., 
a function of several real variables as considered in the context of Chapters 12-14) is 
frequently called a sca lar field . Thus, the components of a vector field are scalar fields. 

Many of the results we prove about vector fields require that the field be smooth 
in some sense. We will call a vector field smooth wherever its compone nt scalar fields 
have continuou s partial derivatives of all orders . (For most purposes, however, second 
order would be sufficient.) 

www.konkur.in



860 CHAPTER l5 Vector Fields 

.,. ... \ \, \ i J 

.... ..,. 
"" \ \ ! I 

..... ',. '... \ l I 

...... - "" ~ / 
-+ -+ - - • Po 

- _. - / / ~ 
,,,. / /' I l \ 

.,, ,,, / I I \ 

" 
,,, I t t t ' 

Vector fields arise in many situations in applied mathematics . Let us list some: 

(a) The gravitational field F(x, y, z) due to some object is the force of attraction that 
the object exerts on a unit mass located at position (x, y, z). 

(b) The electrostatic force field E(x , y, z) due to an electrically charged object is the 
electrical force that the object exerts on a unit charge at position (x, y, z). (The 
force may be either an attraction or a repulsion .) 

(c) The velocity field v(x , y, z) in a moving fluid (or solid) is the velocity of motion 
of the particle at position (x, y, z). If the motion is not "steady state," then the 
velocity field will also depend on time: v = v(x, y, z, t). 

(d) The gradient V f (x, y, z) of any scalar field f gives the direction and magnitude of 
the greatest rate of increa se off at (x, y, z). In particular , a temperature gradient, 
VT (x , y, z), is a vector field giving the direction and magnitude of the greatest rate 
of increase of temperature Tat the point (x , y , z) in a heat-conducting medium . 
Pressure gradients provid e similar information about the variation of pres sure in 
a fluid such as an air mass or an ocean . 

(e) The unit radial and unit transverse vectors rand 0 are examples of vector fields in 
the xy -plane. Both are defined at all points of the plane except the origin. 

EXAMPLE 1 (The gravitationa l field of a point mass) The gravitational force 
field due to a point mass m located at point Po having position 

vector ro is 

- km 
F( x, y, z) = F(r) = --~ (r - ro) 

Ir - rol3 

(x - xo)i + (y - yo)j + (z - zo)k 
= -km 3/ 2' 

( (x - xo)2 + (y - yo)2 + (z - zo)2) 

where k > 0 is a con stant. F points toward the point ro and has magnitude 

IFI = km/ Ir - rol2. 

Some vectors in a plane section of the field are shown graphically in Figure 15.1. Each 
represent s the value of the field at the position of its tail. The lengths of the vectors 
indicate that the strength of the force increases the closer you get to Po. However , 
the vectors have a schematic meaning relative to each other; they do not imply actual 
distances in the plane. 
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Figure 15.1 The gravitational field of a point mass Figure 15.2 The velocity field of a rigid body rotating 
located at Po about the z-axis 
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Figure 15.3 The velocity field and some 
streamlines of wind blowing over a hill 

SECTION I 5.1: Vector and Scalar Fields 861 

Remark The electrostatic field F due to a point charge q at Po is given by the same 
formula as the gravitational field above, except with -m replaced by q. The reason 
for the oppos ite sign is that like charges repel each other whereas masses attract each 
other. 

EXAMPLE 2 The velocity field of a solid rotating about the z-axis with angular 
velocity Q = Qk is 

v(x , y, z) = v(r) = Q x r = -Qyi + ili j. 

Being the same in all planes normal to the z-axis , v can be regarded as a plane vector 
field. Some vectors of the field are shown in Figure 15.2. 

Field Lines (Integral Curves, Trajectories, Streamlines) 
The graphic al representation s of vector fields such as those shown in Figures 15.1 and 
15.2 and the wind velocity field over a hill shown in Figure 15.3 suggest a pattern of 
motion through space or in the plane . Whether or not the field is a velocity field, we 
can interpret it as such and ask what path will be followed by a corresponding particle, 
initially at some point , whose velocity is given by the field. The path will be a curve 
to which the field is tangent at every point. Such curves are called field lines , integral 
curves, or trajectories for the given vector field. In the spec ific case where the vector 
field gives the velocity in a fluid flow, the field lines are also called streamlines or flow 
lines of the flow; some of these are shown for the air flow in Figure 15.3. For a force 
field, the field lines are called lines of force . 
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- - - .,,...,. 1/" -+ 
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I -
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The field lines of F do not depend on the magnitude of Fat any point but only on 

the direction of the field. If the field bne through some point has parametric equation 
r = r (t) , then its tangent vector dr / dt must be parallel to F(r(t)) for all t. Thus , 

d r 
dt = l (t)F(r(t)) . 

For some vector field , this differential equation can be integrated to find the field lines. 
If we break the equation into components, 

dx 
- = l (t)F, (x , y, z), 
dt 

dy 
- = l (t)F 2(x, y, z), 
dt 

dz - = l(t) F3(x, y, z) , 
dt 

we can obtain equivalent differential expressio ns for l(t ) dt and hence write the dif
feren tial equation for the field lines in the form 

dx dy dz 
F1 (x, y, z) 

www.konkur.in



862 CHAPTER 15 Vector Fields 

If multiplication of these differential equations by some function puts them in the form 

P(x) dx = Q(y) dy = R(z) dz, 

then we can integrate all three expressions to find the field lines. 

EXAM p LE 3 Find the field lines of the gravitational force field of Example 1: 

F( ) 
_ -k (x - xo)i + (y - yo)j + (z - zo)k 

x , y , z - m 312 -
( (x - xo)2 + (y - yo)2 + (z - zo)2) 

Solution The vector in the numerator of the fraction gives the direction of F. There
fore, the field lines satisfy the system 

dx 

X -Xo 

dy 

y- YO 

dz 

z - zo 

Integrating all three expressions leads to 

In Ix - xol + In C1 = In IY - Yol + In C2 = In lz - zol + ln C3, 

or, on taking exponentials , 

This represents two families of planes all passing through Po = (xo, yo, zo). The field 
lines are the intersections of planes from each of the families, so they are straight lines 
through the point Po. (This is a two-parameter family of lines; any one of the constants 
C; that is nonzero can be divided out of the equations above .) The nature of the field 
lines should also be apparent from the plot of the vector field in Figure 15. l. 

EXAMPLE 4 Find the field lines of the velocity field v 
Example 2. 

Solution The field lines satisfy the differential equation 

dx dy 

- y X 

Q(-yi + xj) of 

We can separate variables in this equation to get x dx = -y dy. Integration then gives 
x2/ 2 = -y 2/ 2 + C/ 2, or x2 + y2 = C. Thus , the field lines are circles centred at 
the origin in the xy-plane , as is also apparent from the vector field plot in Figure 15.2. 
If we regard v as a vector field in 3-space , we find that the field lines are horizontal 
circles centred on the z-axis: 

Our ability to find field lines depends on our ability to solve differential equations and, 
in 3-space , systems of differential equations. 

EXAMPLE 5 Find the field lines of F = xzi + 2x 2zj + x2k. 

dx dy dz Solution The field lines satisfy - = - 2- = - 2 , or, equivalently 
XZ 2x Z X 

dy = 2xdx and dy = 2zdz. 

The field lines are the curves of intersection of the two families y = x2 + C1 and 
y = z2 + C2 of parabobc cylinder s. 
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Figure 15.4 

(a) The vector field F = r + 0 
(b) Field lines of F = r + 0 

SECTION 15. I : Vector and Scalar Fields 863 

Vector Fields in Polar Coordinates 
A vector field in the plane can be expressed in terms of polar coordinates in the form 

F = F(r , 0) = F,(r, 0)r + F0(r, 0)0, 

where r and 6, defined everywhere except at the origin by 

r= cos0 i +s in0j 

0 = - sin0i + cos0 j , 

are unit vectors in the direction of increasing r and 0 at [r, 0]. Note that dr / d0 = 0 
and that 0 is just r rotated 90° counterclockwise. Also note that we are using F,. and 
F0 to denote the components of F with respect to the basis {r, 0}; the subscripts do 
not indicate partial derivatives. Here , F, (r, 0) is called the radial component of F, and 
F0 (r, 0) is called the transverse compon ent. 

A curve with polar equation r = r(0) can be expressed in vector parametr ic form, 

r = rr, 
as we did in Section 11.6. This curve is a field line of F if its differential tangent vector 

A dr 0 A 0 A 

dr = dr r + r d
0 

d = dr r + rd 9 

is parallel to the field vector F(r , 0) at any point except the origin , that is, if r = f (0) 
satisfies the differential equation 

dr 

F,(r, 0) 

rd0 

F0(r, 0). 

In specific cases we can find the field lines by solving this equation. 

EXAMPLE 6 Sketch the vector field F(r, 0) = r + 0, and find its field lines. 
Sketch several field lines. 

Solution At each point [r , 0], the field vector bisects the angle between r and 0, 
making a counterclockwi se angle of 45° with r. All of the vectors in the field have the 
same length, ,,/2. Some of them are shown in Figure 15.4(a) . They suggest that the field 
lines will spiral outward from the origin. Since F,. (r, 0) = F0(r, 0) = 1 for this field, 
the field lines satisfy dr = r d0, or, dividing by d0, dr / d0 = r. This is the differential 
equation of exponential growth and has solution r = K e8 , or, equivalently , r = e8+a, 
where a. = In K is a constant. Several such curves are shown in Figure 15.4(b). 
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Nonlinear Systems and Liapunov Functions 
Many differential equations that arise in applications are nonlinear and cannot easily be 
solved. However, such an equation can sometimes be associated with a vector field in 
such a way that useful information about the behaviour of solutions of the differential 
equat ion can be obtained by examining the vector field . 

An example is the Van der Pol equation x" - µ (1- x 2)x 1 + x = 0, which arises in 
connection with electrical circuits, where the independent variable on which x depends 
is time. If we take the constantµ = - I , this equation can be rewritten as a first-order 
syste m of equations by substituting x' = y. The first-order system is 

I
x' = y 

y' = - x + y(x 2 - 1), 

and is associated with the vector field 

F = x' i + y' j = y i + ( (-x + y(x 2 
- 1)) j. 

We examine what the structure of this field implies about the solutions (x, y) of the 
linear system and hence about the Van der Pol equation. 

One definitive property that fields and their associated trajectorie s have is the 
location and nature of "fixed point s," which are the zeros of the vector field, or critical 
points of the first-order system. Since the "velocity " F(x, y) = 0 = Oi + Oj there , 
movement along trajectories must stop at those point s. Fixed point s provide important 
insight into the solution s of differential equations and their visualization, helping us to 
have confidence in approximate solution methods. A key property of a fixed point is 
whether it is stable or not. Generally speaking, stability of a fixed point mean s that all 
trajectories near a fixed point trap any "particle" travelling on them so that it remains 
near the fixed point (weak stability), or, more stringently, so that it approaches the fixed 
point (asymptotic stability). For the case of the Van der Pol equation, (x, y) = (0, 0) 
is clearly a fixed point. 

Can we determine whether the fixed points of fields are stable or not , without 
solving the differential equations, and without resorting to approximate methods such 
as those used with computers? One powerful method for doing so is to use a Liapunov 
function in conjunction with the vector field. A Liapunov function is a positive 
function V (x, y) that is decrea sing toward the fixed point and that vanishes at the 
fixed point. One can always define many such function s for any point , but a Liapunov 
function must not only decrease, but must decrease along every trajectory of the vector 
field approaching the fixed point. Thu s, for weak stability , we require dV / dt = 
V V • F ::S O near the fixed point , and for asymptotic stability , we require dV / dt < 0 
near the fixed point. Since VV is an outward normal to level curves of V that surround 
the fixed point , it follows for asymptotic stability that F point s inward , across level 
curves of the Liapunov function , and thus "particles " moving along its trajectories get 
trapped in successively smaller domains surrounding the fixed point as t increases . 
Clearly , if the de1ivative is positive instead of negative , the fixed point is certai nly 
unstable. 

The mere existence of a Liapunov function with a negative derivative along tra
jectories of a vector field confirms stability of a fixed point. The entire test depends 
on a matter of existence. If a Liapunov function is not found , this does not prove or 
disprove stability . 

EXAM p LE 7 (A Liapunov function for a Van der Pol equation) Show that 
the point (O, 0) is an asymptotically stable fixed point of the Van 

der Pol vector field ( case µ = - I) given above . 

Solution Substituting (x, y ) = (0, 0) into the vector field expressions of the Van der 
Pol equation, yields , F = x' i + y'j = y i + (-x + y(x 2 - l))j = Oi + Oj = 0, which 
confirms that (0, 0) is a fixed point. 
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EXERCISES 15.1 

SECTION 15.1: Vector and Scalar Fields 865 

Note that a poor guess at a Liapunov function would be V (x, y) = 2x 2 + y 2. 
While it is positive and vanishes at (0, 0) , it fails to meet the requir ement that its time 
derivative is alway s negative near (0, 0): for instance , at points (2y, y) arbitrarily close 
to (0, 0) , we have 

dV 
- = 4xy + 2y(-x + y(x 2 - 1)) = 2y2 + 8y4 > 0. 
dt 

We can do better with V(x, y) = x 2 + y 2. In this case, 

:~ = 2xx' + 2yy' = 2xy + 2y(-x + y(x 2 - 1)) = 2y2(x 2 - 1) S 0 

whenever x 2 < 1. Thi s shows that the fixed point (0, 0) is at least weakly stable, but it 
doe s not imply asymptotic stability beca use dV / dt = 0 if y = 0. 

We could try something more general, like V(x, y) = ax 2 + bxy + cy 2 and 
attempt to choose the values of a > 0, c > 0, and b satisfying b2 < 4ac (why?) so 
that whenever (x , y) is sufficiently close (but not equal) to (0, 0) , we have d V / dt < 0. 
It turn s out that we can make V (x, y) = x 2 + xy + y 2 work . For this V, we have 

( 
y ) 2 3y2 

V(x, y) = x + 2 + 4 > 0 if(x, y) =I= (0, 0) 

dV dx dx dy dy 
- = 2x - + y - + X - + 2y -
dt dt dt dt dt 

= 2xy + y2 - x 2 + xy(x 2 - 1) - 2xy + 2y2(x2 - 1). 

1 3 3 
If x 2 < 4, then -1 S x 2 -1 S - 4, xy(x 2 - 1) S lxllYI, and 2y2(x2 -1) S - 2 y2. 

Hence , 

dV 1 2 2 ( IYl)2 y2 
- <--y -x +lxllyl=- lxl+- -- < 0 
dt - 2 2 4 ' 

unle ss (x, y) = (0, 0). Thus, (0, 0) is asym ptoticall y stab le. 

Remark Sometimes the searc h for Liapunov functions can be very difficult, involving 
the use of computer s to searc h for and then test candidate functions. 

In Exercises 1- 8, sketch the given plane vector field and 
determine its field lines. 

13. v(x, y, z) = xz i + yz j + xk 

14. v(x, y, z) = exY'(x i + y2j + zk) 

1. F(x ,y) = xi+ xj 

3. F(x , y) = yi + xj 

5. F(x , y) = ex i + e-x j 

7. F(x , y) = V ln(x2 + y2) 

2. F(x, y) = x i + yj 

4. F( x,y) =i +s in x j 

6. F(x, y) = V(x2 
- y) 

8. F(x, y) = cos y i - cos x j 

In Exercises 9-16 , describe the streamlines of the given velocity 
fields. 

9. v(x, y, z) = yi - yj - yk 

10. v(x, y, z) = xi + yj - x k 

11. v(x,y,z )= y i -x j + k 
x i + yj 

12. v(x, y, z) = (1 + z2)(x2 + y2) 

15. v(x, y) = x 2i - yj 

D 16. v(x , y) =x i+ (x + y)j Hint: Let y = xv(x). 

In Exercises 17-20, determine the field lines of the given polar 
vector field . 

17. F=r +r O 18. F = r+00 

19. F = 2r + 00 20. F = rr - 0 
21. Consider the Van der Pol equation with p = 1, so the 

corresponding vector field is F = y i + (-x + y( l - x2))j. 
Use V(x , y) = x 2 - xy + y2 as in Example 7 to determine 
the stability of the the fixed point (0, 0). 

www.konkur.in



866 CHAPTER 15 Vector Fields 

22. Consider the vector field of the Van der Pol equation when 
µ = 0. Use the Liapunov function , V (x, y) = x2 + y2 , to 
attempt to determine the stability of the fixed point (0,0). 
Explain the result. 

V' occur on one nulcline (i.e., y = 0). Write an expression 
for another nulcline of the Yan der Pol vector field of 
Example 7. 

24. Give an alternative solution to Example 7 by using the fact 
that the simpler Liapunov function in the previous exercise is 
given by V = r2 in polar coordinates. Show explicitly that 
all traj ectories of the Van der Pol field (forµ = - l) crossing 
the x axis stop moving toward (0, 0), by showing that r(t) 
has a critical point. Then classify the associated critical point 
of r(t) to demonstrate asymptotic stability. 

23. In Example 7, using the simpler Liapunov function, 
V(x , y) = x2 + y2, we found V' = 2y2(x2 - I) ::: 0. This 
was not sufficient to establish asymptotic stability in itself 
because V' = 0 occurs when y = 0. Zeros of V' form a 
curve, in this case given by the entire x axis, which all occur 
when x' = 0. Curves defined by one component of the 
vector field vanishing are known as nulclines. The zeros of 

• 
Conservative Fields 

-----
Since the gradient of a scalar field is a vector field , it is natural to ask whether every 
vector field is the gradient of a sca lar field . Given a vector field F(x, y, z), doe s there 

DEFINITION 

I 

exist a sca lar field ¢, (x, y, z) such that 

a¢, . a¢, . a¢, 
F(x , y, z) = V ¢,(x, y, z) = -1 + -J + -k ? 

ax ay az 

The answer in general is "no ." Only spec ial vector fields can be written in this way. 

If F(x , y, z) = V ¢, (x , y, z) in a domain D, then we say that F is a conservative 
vector field in D , and we call the function ¢, a (scalar) potential for F on D . 
Similar definitions hold in the plane or in n- space . 

Like antiderivatives, potential s are not determined uniquely ; arbitrary constants can be 
added to them. Note that F is conservative in a domain D if and only if F = V ¢, at 
every point of D; the potenti al ¢, cannot have any singular points in D. 

The equation F1 (x , y, z) dx+ F2 (x , y, z) dy+ F3 (x, y, z) d z = 0 is called an exact 
differential equation if the left side is the differential of a scalar function ¢, (x, y, z): 

d ¢, = Fi (x , y, z) dx + F2(x, y, z) dy + F3(x , y, z) d z. 

In thi s case the differential equation has solutions given by ¢, (x, y, z) = C (constant). 
(See Section 17.2 for a discuss ion of exact equation s in the plane.) Observe that the 
differential equation is exact if and only if the vector field F = F1 i + Fz.j + F3k is 
conservative and that ¢, is the potential of F. 

Being sca lar fields rather than vector fields, potential s for conservative vector fields 
are easier to manipulate algebraica lly than the vector fields themselves. For instance , 
a sum of potential function s is the pot ential function for the sum of the corresponding 
vector fields . A vector field can always be computed from its potential function by 
taking the gradient. 

EXAM p LE l (The gravitational field of a point mass is conservative) Show 
that the gravitational field F(r) = -km( r - ro)/ lr - rol3 of Ex

ample 1 in Section 15. l is conservative wherever it is defin ed (i.e., everywhere in IR3 

except at ro), by showing that 

km 
¢,(x, y, z) = I 

r - ro 

is a potential function for F . 

km 

J(x - xo)2 + (y - Yo)2 + (z - zo)2 
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Solution Observe that 

acp = -km(x - xo) = -km( x - xo) = Fi (r) 

ax ( (x - xo)2 + (y - Yo)2 + (z - zo)2 )3 /2 Ir - ro l3 ' 

and similar formulas hold for the other partial derivatives of ¢. It follows that 
Vcp(x,y,z) = F(x , y, z) for (x, y,z ) f=-(xo, Yo, zo), and Fis conservative except 
at ro. 

Remark It is not necessary to write the expression km / Ir - rol in terms of the 
components of r - ro as we did in Example 1 in order to calculate its partial derivatives. 
Here is a useful formula for the derivative of the length of a vector function F with 
respect to a variable x : 

Fe (~F) 
~ IFI = ax 
ax IFI 

To see why this is true , express IFI = .JF • F , and calculate its derivative using the 
Chain Rule and the Product Rule: 

Compare this with the derivative of an absolute value of a function of one variable: 

:x lf(x)I = sgn(f(x)) J'(x) = l~~:~I J ' (x ). 

In the context of Example 1, we have 

a km -km a -km (r - ro) • i - --- = -----c- -Ir - rol = -----c- ----

ax Ir - rol Ir - rol 2 ax Ir - ro l2 Ir - rol 

with similar expressions for the other partials of km / Ir - rol -

-km(x -xo) 

Ir - rol 3 

EXAMPLE 2 Show that the velocity field v = -O yi+Oxj ofrigid body rotation 
about the z-axis (see Example 2 of Section 15.1) is not con servative 

if n t=-o. 

Solution There are two ways to show that no potential for v can exist. One way is to 
try to find a potential ¢ (x, y) for the vector field. We require 

a¢ 
-=-O y 
ax 

and 

The first of these equations implies that cp(x, y) = -Ox y +Ci (y ). (We have integrated 
with respect to x; the constant can still depend on y .) Similarly , the second equation 
implies that cp(x, y ) = Oxy + C2(x) . Therefore, we must have - ili y + C 1 (y ) = 
Oxy + C2(x), or 20x y = C 1 (y) - C2(x) for all (x , y ). This is not possible for any 
choice of the single-variable functions C 1 (y ) and C2 (x ) unless n = 0. 

Alternatively, ifv has a potential¢, then we can form the mixed partial derivatives 
of¢ from the two equations above and get 

and 
a21> 
---n ax ay - . 
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BEWARE! Do not confuse this 
necessary condition with a 
sufficient condition to 
guarantee that F is conservative. 
We will show later that more 
than just 8 F1/8y = 8 F2/8 x on 
D is necessary to guarantee that 
Fis conservative on D. 

This is not possible if n i= 0 because the smoothness of v implies that its potential 
should be smooth , so the mixed partials should be equal. Thus, no such¢ can exist; v 
is not conservative. 

Example 2 suggest s a condition that must be satisfied by any conservative plane vector 
field. 

Necessary condition for a conservative plane vector field 

If F(x, y) = F1 (x, y) i + F2(x , y)j is a conservative vector field in a domain 
D of the xy-plane, then the condition 

a a 
-Fi(x , y) = -F 2(x, y) 
ay ax 

must be satisfied at all points of D. 

To see this , observe that 

. . F ,I., a¢ . a¢ . 
F11 + F2.J = =Vy , = -1 + - J 

ax ay 

implie s the two scalar equations 

and 

and since the mixed partial de1ivatives of¢ should be equal, 

A similar condition obtains for vector fields in 3-space. 

Necessary conditions for a conservative vector field in 3-space 

If F(x, y, z) = F, (x , y, z)i + F2(x , y, z)j + F3(x , y, z)k is a conservative 
vector field in a domain Din 3-space, then we must have, everywhere in D, 

= ax' = ax' 

Equipotential Surfaces and Curves 
If cp(x , y, z) is a potential function for the conservative vector field F, then the level 
su,fa ces cp(x , y, z) = C of¢ are called equipotential surfaces of F. Since F = V¢ 
is normal to these surfaces (wherever it does not vanish), the field lines of F always 
intersect the equipotential surfaces at right angles . For instance, the equipotential 
surfaces of the gravitational force field of a point mass are spheres centred at the point ; 
these sphere s are normal to the field lines, which are straight lines passing thro ugh the 
point. Similarly, for a conservative plane vector field, the level curves of the potential 
function are called equipotential curves of the vector field. They are the orthogonal 
trajectories of the field lines ; that is, they intersect the field lines at right angles . 

EXAMPLE 3 Show that the vector field F(x, y) = x i - yj is conservative and 
find a potential function for it. Describe the field lines and the 

equipotential curves. 
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Figure 15.5 The field lines (black) and 
equipotential curves (colour) for the field 
F = x i - yj 
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Solution Since aF1/a y = 0 = 8F2/a x everywhere in JR2
, we would expect F to be 

conservative. Any potential function ¢ must satisfy 

a¢ 
- = F1 =X 
ax 

and 
a¢ 
- = F2 = -y. 
ay 

The first of the e equations gives 

¢(x, y) = f x dx = ~ x 2 + C1 (y). 

Observe that , since the integral is taken with respect to x, the "constant" of integration 
is allowed to depend on the other variable. Now we use the second equation to get 

a¢ ' ( -y = - = c, y) =? 
ay 

1 2 
C 1 (y) = - 2 y + C2. 

Thus, F is conservative and, for any constant C2, 

x2 _ y2 
¢(x, y) = 

2 
+ C2 

is a potential function for F. The field lines of F satisfy 

dx dy 
=? lnl xl =-lnl yl+ lnC 3 =? xy =C 3. 

X y 

The field lines of Far e thus rectangular hyperbolas with the coordinate axes as asymp
totes. The equipotential curves constitute another family of rectangular hyperbolas, 
x2 - y2 = C4 , with the lines x = ±y as asymptotes. Curves of the two families 
intersect at right angles. (See Figure 15.5.) Note, however, that F does not specify a 
direction at the origin and the orthogonality breaks down there; in fact, neither family 
has a unique curve through that point. 

Remark In the above examp le we constructed the potential ¢ by first integrat ing 
3¢/ax = F1. We could equally well have started by integrating 3¢/ay = F2, in 
which case the constant of integration would have depend ed on x . In the end, the same 
¢ would have emerged. 

EXAMPLE 4 Decide whether the vector field 

F = (xy - sin z)i + (~ x2 - e;)j + c: - xcosz )k 

is conservative in D = {(x, y, z) : z f. O}, and find a potential if it is. 
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Solution Note that F is not defined when z = 0. However, since 

aF, aF2 
-=x=-, 
ay ax 

a ~ aA a~ 
- = -cos z =-,and 
az ax az 

F may still be conservative in domain s not intersecting the xy-plane z = 0. If so, its 
potential ¢ should satisfy 

a¢ . - = xy-sm z 
ax ' 

8¢ I 2 - = -x 
ay 2 

From the first equation of ( * ) , 

eY 

z 
and 

8rp eY 
- = - -xcosz. 
az z2 

¢ (x, y, z) = f (xy - sin z) dx = ~ x 2 y - x sin z + C, (y, z). 

(Again, note that the constant of integration can be a function of any parameters of 
the integrand; it is constant only with respect to the variable of integration.) Using the 
second equation of ( *), we obtain 

1 . 2 eY 8¢ I 2 8C1 (y , z) 
-x - - = - = -x + ---- . 
2 z ay 2 ay 

Thus , 

I eY eY 
c, (y, z) = - - dy = - - + C2(z) 

z z 

and 

1 2 eY 
¢(x, y, z) = - x y - x sin z - - + C2(z). 

2 z 

Finally, using the third equation of(*), 

eY 8rp eY I 

- -xcos z = - = -xcos z + - + C2 (z). 
z2 az z2 

Thus , C2'(z) = 0 and C2(z) = C (a constant). Indeed , Fis conservative and, for any 
constant C, 

1 2 . eY 
¢(x, y, z) = 2 x y - x sm z - -;- + C 

is a potential function for Fin the given domain D. C may have different values in the 
two regions z > 0 and z < 0 whose union constitutes D. 

Remark If, in the above solution , the differential equation for C 1 (y, z) had involved 
x or if that for C2(z) had involved either x or y, we would not have been able to find 
¢. This did not happ en because of the three conditions on the partials of F1, F2, and 
F3 verified at the outset. 

Remark The existence of a potential for a vector field depends on the topology of 
the domain of the field (i.e., whether the domain has holes in it and what kind of 
holes) as well as on the structure of the components of the field itself. (Even if the 
necessary condition s given above are satisfied, a vector field may not be conservative 
in a domain that has holes.) We will be probing further into the nature of conservative 
vector fields in Section 15.4 and in the next chapter; we will eventually show that the 
above necessary conditions are also sufficient to guarantee that F is conservative if the 
domain of F satisfies certain conditions. At this point , however, we give an example 
in which a plane vector field fails to be conservative on a domain where the necessary 
condition is, nevertheless , satisfied. 
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EXAMPLE 5 For (x, y) =/= (0, 0) , define a vector field F(x, y) and a scalar field 
0(x, y) as follows: 

F(x, Y) = ( x 2-: y2 ) i + (x2: y2 ) j 

0(x, y) = the polar angle 0 of (x, y) such that O :S 0 < 2n. 

Thu s, x = r cos0( x, y) and y = r sin0( x, y), where r2 = x 2 + y 2. Verify the 
following: 

a a 
(a) -Fi(x, y ) = -F 2(x, y) for (x, y) =/= (0, 0). 

ay ax 

(b) V0(x, y) = F(x, y) for all (x, y) =I= (0, 0) such that O < 0 < 2n. 

(c) Fis not conservativ e on the whole xy- plane excluding the origin. 

Solution 
-y X 

(a) We have Fi = 2 2 and F2 = 2 2 . Thus , 
X +y X +y 

a a ( y ) y
2 

- x
2 

a ( x ) -F, (x y)=- ---- =---=-
ay ' ay x2 + y2 (x2 + y2)2 ax x2 + y2 

a = -F2(x, y) 
ax 

for all (x , y) =I= (0, 0) . 

(b) Differentiate the equations x = r cos0 and y = r sin0 implicitly with respect to 
x to obtain 

ax ar ae 
1 = - = - cos 0 - r sin 0-

ax ax ax' 
ay ar . ae 

0 = - = - sm 0 + rcos0- . 
ax ax ax 

Eliminating ar I ax from this pair of equations and solving for ae I ax leads to 

ae 

ax 

r sin0 
---= 

r2 
y 

2 2 = Fi. 
X + y 

Similarly , differenti ation with respect to y produces 

ae 

ay 

X 

2 2 = F2. 
X + y 

These formula hold only if O < 0 < 2n ; 0 is not even continuous on the po itive 
x -axis; if x > 0, then 

lim 0(x , y) = 0 
y---+0+ 

but lim 0(x , y) = 2n. 
y---+0-

Thu s, V 0 = F hold s everywhere in the plane, except at point s (x, 0) where x 2'.: 0. 

(c) Suppo se that F is conservative on the whole plane excluding the origin. Then 
F = Vcp there , for some scalar function cp(x, y). Then V(0 - ¢) = 0 for 
0 < 0 < 2n , and 0 - cf> = C (constant), or 0 = cf>+ C. The left side of 
this equation is discontinuou s along the positive x-ax is but the right side is not. 
Therefore, the two sides cannot be equal. Thi s contradiction shows that F cannot 
be conservative on the whole plane, excludin g the origin. 
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Remark Observe that the origin (0, 0) is a hole in the domain of F in the above 
example . While F satisfies the necessary condition for being conservative everywhere 
except at thjs hole, you must remove from the domain of F a half-line (ray), or, more 
generally, a curve from the origin to infinity in order to get a potential function for 
F. F is not conservative on any domain containing a curve that surrounds the origin. 
Exercises 22-24 of Section 15.4 will shed further light on this situation. 

Sources, Sinks, and Dipoles 
Imagine that 3-space is filled with an incompressible fluid emitted by a point source 
at the origin at a volume rate dV / cit = 4nm. (We say that the origin is a source of 
strength m.) By symmetry, the fluid flows outward on radial lines from the origin with 
equal speed at equal distances from the origin in all directions, and the fluid emitted at 
the origin at some instant t = 0 will at later time t be spread over a spherical surface of 
radius r = r(t). All the fluid inside that sphere was emitted in the time interval [0, t], 
so we have 

4 

3 nr 3 = 4nmt. 

Differentiating this equation with respect to t we obtain r 2 (dr / cit) = m, and the 
outward speed of the fluid at distance r from the origin is v (r) = m / r 2 . The velocity 
field of the moving fluid is therefore 

r m 
v(r) = v(r)- = -r. 

lrl r 3 

This velocity field is conservative (except at the origin) and has potential 

m 
¢(r) = --. 

r 

A sink is a negative source. A sink of strength m at the origin (which annihilates 
or sucks up fluid at a rate cl V / cit = 4n m) has velocity field and potential given by 

m 
v(r) = --r 

r3 
and 

m 
¢(r) = - . 

r 

The potentials or velocity fields of sources or sinks located at other points are 
obtained by translation of these formulas; for instance , the velocity field of a source of 
strength m at the point with position vector ro is 

v(r) = -V ( m ) = m 
3 

(r - ro). 
lr-rol lr-rol 

This should be compared with the gravitational force field due to a mass m at the origin. 
The two are the same except for sign and a constant related to units of measurement. 
For this reason we regard a point mass as a sink for its own gravitational field. Similarly, 
the electrostatic field due to a point charge q at ro is the field of a source (or sink if 
q < 0) of strength proportional to q; if units of measurement are suitably chosen we 
have 

E(r) = -V ( q ) = q 
3 

(r - ro). 
Ir - rol Ir - rol 

In general , the field lines of a vector field converge at a source or sink of that field. 

A dipole is a system consisting of a source and a sink of equal strength m separated 
by a short distance£. The productµ = mf is called the dipole moment, and the line 
containing the source and sink is called the axis of the dipole. Real physical dipoles, 
such as magnets, are frequently modelled by ideal dipoles that are the limits of such 
real dipoles as m -+ oo and e -+ 0 in such a way that the dipole moment µ remains 
constant. 
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Figure 15.6 Streamline s of a dipole 

EXAMPLE 6 

SECTION 15.2: Conservative Fields 873 

Calculate the velocity field, v(x, y, z), associated with a dipole of 
momentµ located at the origin and having axis along the z-axis. 

Solution We start with a source of strength m at position (0, 0, t/ 2) and a sink of 
strength m at (0, 0, -e / 2). The potential of this system is 

¢( r) = -m (--1 __ -__ l __ ) 
Ir - ½tkl Ir + ½tkl · 

The potential of the ideal dipole is the limit of the potential of this system as m -+ oo 

and f-+ 0 in SUCh a way that mf = JL: 

¢( r) = lim -m 2 2 
( 
Ir + .1 Ck I - Ir - .1 tk I ) 

t-+O Ir+ lt kl Ir - lt kl 
mi=µ 2 2 

= _ _I!:_ lim Ir+ ½tkl - Ir - ½tkl 
lr l2 t---'>0 f 

(now use l 'H6pital 's Rule and the rule for differentiating lengths of vectors) 

(r + ½tk) • ½k (r - ½tk) • (-½k) 
= _ _I!:_ Jim -~ lr_+_2~

1 
e_k-'-1 ----'-I r_----=-½t_k-'-l _ 

lrl2 e.....,,o 

= __ µ_ Jim ( ½z + ¼t + ½z - ¼t) 
lrl2 e.....,,o Ir+ ½tkl Ir - ½tkl 
µ z 

-i;p· 

The required velocity field is the gradient of this potential. We have 

a¢ 

ax 
3 µ z r • i 
----
lr l4 lrl 

a¢ 3µy z 

ay Iris 

3µx z 

lrl5 

a¢ µ 3pz2 µ(2z 2 -x 2 -y 2) - = - - + -- = - ------'-
az lrl3 Iris lr l5 

v(r) = V¢( r) = 4(3 xzi+ 3yzj + (2z2 -x 2 -y2) k). 
lr l 

Some streamli nes for a plane cross-sec tion containing the z-axis are shown in Figure 15.6. 
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EXE RC IS ES 15.2 

In Exercises 1-6, determine whether the given vector field is 
conservative, and find a potential if it is. 

1. F(x , y , z) = x i - 2yj + 3zk 

2. F(x , y , z) = yi + xj + z2k 
xi- yj x i+ yj 

3. F(x , y) = -
2
--

2 
4. F(x , y) = -

2
- -

2 X + y X +y 

5. F(x , y , z) = (2x y - z2)i + (2yz + x2)j - (2zx - /)k 
2 2 2 

6. F(x,y , z)=e x+y+z (x z i+yzj+xyk) 

7. Find the three-dimensional vector field with potential 
1 

¢(r) = Ir - rol2 · 

8. Calculate V In lrl, where r =x i + yj + zk. 

D 9. Show that the vector field 

2x . 2y . x2 + y2 
F(x,y ,z ) = -•+ - J - --k 

z z z2 

is conservative, and find its potential. Describe the 
equipotential surfaces. Find the field lines of F. 

D 10. Repeat Exercise 9 for the field 

2x 2y ( x
2 +y2) F(x,y ,z )=-i+ -j+ 1---

2
- k. 

z z z 

D 11. Find the velocity field due to two sources of strength m, one 
located at (0, 0, t) and the other at (0, 0, - t). Where is the 
velocity zero ? Find the velocity at any point (x , y, 0) in the 
xy -plane. Where in the xy-plane is the speed greatest ? 

D 12. Find the velocity field for a system consisting of a source of 
strength 2 at the origin and a sink of strength 1 at (0, 0, 1). 
Show that the velocity is vertical at all points of a certain 
sphere. Sketch the streamline s of the flow. 

Exercises 13-18 provide an ana lysis of two-dimensional sources 
and dipoles similar to that developed for three dimensions in the 
text. 

13. In 3-space filled with an incompressible fluid , we say that the 
z-axis is a line source of strength m if every interval .6.z 
along that axis emits fluid at volume rate dV / dt = 2n: m.6.z . 
The fluid then spreads out symmetrica lly in all directions 
perpendicular to the z-axis. Show that the velocity field of 
the flow is 

m 
V = -

2
--

2 
(x i+ yj). 

X + y 

14. The flow in Exercise 13 is two-dimensional because v 
depends only on x and y and has no component in the z 
direction . Regarded as a plane vector field, it is the field of a 
two-dimensional point source of strength m located at the 
origin (i.e ., fluid is emitted at the origin at the areal rate 
dA / dt = 2n:m). Show that the vector field is conservative , 
and find a potential function ¢ (x , y) for it. 

D 15. Find the potential , ¢, and the field , F = V ¢, for a 
two-dimensional dipole at the origin , with axi s in the y 
direction and dipole momentµ. Such a dipole is the limit of 
a system cons isting of a source of strength mat (0, f/ 2) and 
a sink of strength m at (0, -e / 2) , as e ---+ 0 and m ---+ oo 
such that me =µ . 

16. Show that the equipotential curves of the two-dimensiona l 
dipole in Exercise 15 are circles tangent to the x-axis at the 
origin. 

D 17. Show that the stream lin es (field lines) of the two-dimensional 
dipol e in Exerci ses 15 and 16 are circles tangent to the y-axi s 
at the origin. Hint: It is possible to do this geometrically. If 
you choo se to do it by setting up a differential equation , you 
may find the change of dependent variable 

y = vx, 
dy dv 
- =v +x 
dx dx 

useful for integrating the equation. 

D 18. Show that the velocity field of a line source of strength 2m 
can be found by integrating the (three-dimensiona l) velocity 
field of a point sourc e of strength m dz at (0 , 0 , z) over the 
whole z-axis. Why doe s the integral corre spond to a line 
source of strength 2m rather than strength m ? Can the 
potential of the line source be obtai ned by integrating the 
potentials of the point sources? 

19. Show that the gradient of a function expre ssed in term s of 
polar coordinates in the plane is 

8¢, l 8¢ , 
V cp(r , 0) = -r+ - -0. 

8r r 80 

(Thi s is a repeat of Exerci se 16 in Section 12.7 .) 

20. Use the result of Exerci se 19 to show that a necessary 
condition for the vector field 

F(r , 0) = F, (r, 0)i: + Fe (r, 0)0 

(expre ssed in term s of polar coordinates) to be conservative 
is that 

8F, 8Fe 
- -r-- = Fe. 
80 8, 

21. Show that F = r sin 20r + r cos 200 is con servative , and find 
a potential for it. 

22. For what values of the con stants a and (J is the vector field 

F = r 2 cos 0i: + a, P sin 00 

con servative? Find a potential for Fifa and (J have these 
value s. 
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• 
Line Integrals 

-----

The definite integral, J: f (x) dx, represents the total amount of a quantity distributed 
along the x-axis between a and b in terms of the line density, f (x), of that quantity 
at point x. The amount of the quantity in an infinitesimal interval of length dx at 
x is f(x) dx, and the integral adds up these infinitesimal contributions (or elements) 
to give the total amount of the quantity. Similarly, the integrals ff v f(x , y) dA and 
.DJR f(x, y, z)dV represent the total amounts of quantities distributed over regions 
D in the plane and R in 3-space in terms of the areal or volume densities of these 
quantities. 

It may happen that a quantity is distributed with specified line density along a curve 
in the plane or in 3-space, or with specified areal density over a su,face in 3-space . 
In such cases we require line integrals or su,face integrals to add up the contributing 
elements and calculate the total quantity. We examine line integrals in this section and 
the next and surface integrals in Sections 15.5 and 15.6. 

Let e be a bounded, continuous parametric curve in JR3. Recall (from Section 11.1) 
that e is a smooth curve if it has a parametrization of the form 

r = r(t) = x(t)i + y (t)j + z(t)k , t in interval / , 

with "velocity" vector v = dr / dt continuous and nonzero. We will call ea smooth 
arc if it is a smooth curve with finite parameter interval / = [a, b ]. 

In Section 11.3 we saw how to calculate the length of e by subdividing it into 
short arcs using points corresponding to parameter values 

a= to < t, < t2 < · · · < tn- 1 < t,, = b, 

adding up the lengths I 6. r;I = Ir; - r;-1 I of line segments joining these points , and 
taking the limit as the maximum distance between adjacent points approached zero. 
The length was denoted 

and is a special example of a line integral along e having integrand 1. 

The line integral of a general function f(x, y, z) can be defined similarly. We 
choose a point (x7, y7, z7) on the ith subarc and form the Riemann sum 

11 

Sn = L f(x 7, Y7, z7) I 6.r;I . 
i=I 

If this sum has a limit as max I 6.r; I -+ 0, independent of the particular choices of the 
points (x7 , y;*, z7), then we call this limit the line integral off along e and denote it 

l f(x, y, z) ds. 

If e is a smooth arc and if f is continuous on e , then the limit will certainly exist; 
its value is given by a definite integral of a continuous function , as shown in the next 
paragraph. It will also exist (for continuous f) if e is piecewise smooth, consisting 
of finitely many smooth arcs linked end to end; in this case the line integral off along 
e is the sum of the line integrals of f along each of the smooth arcs. Improper line 
integrals can also be considered, where f has discontinuities or where the length of a 
curve is not finite. 
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Evaluating Line Integrals 
The length of C? was evaluated by expressing the arc length element ds = ldr / dtl dt 
in terms of a parametrization r = r(t) , (a S t S b) of the curve, and integrating this 
from t = a to t = b: 

length of C? = l ds = 1b I:; I dt. 

More general line integrals are evaluated similarly: 

l f(x, y, z) ds = 1b f(r(t)) 1~;1 dt. 

Of course , all of the above discus sion applies equally well to line integrals of functions 
f (x, y) along curves C? in the xy-plane. 

Remark It should be noted that the value of the line integral of a function f along 
a curve C? depends on f and C? but not on the particular way C? is parametrized . If 
r = r* (u ) , a S u S fJ, is another parametrization of the same smooth curve C?, then 
any point r(t) on C? can be expressed in terms of the new parametrization as r* (u ) , 
where u depends on t : u = u(t). If r*(u) traces C? in the same direction as r(t) , then 
u(a) = a, u(b) = fJ, and du / dt 2'.'. O; ifr *(u) traces C? in the opposite direction, then 
u(a) = /J, u(b) = a, and du / dt S 0. In either event, 

lb ldrl lb ldr * du I 1/J ldr * I f(r(t)) - dt = f(r *(u(t))) - - dt = f(r *(u)) - du. 
a dt a du dt a. du 

Thus , the line integral is independent of param etrization of the curve C?. The following 
example illustrates this fact. 

EXAM p LE 1 Evaluate / = l (x2 + y 2
) ds , where C? is the straight line from the 

origin to the point (2, 1). 

Solution C? can be parametrized x = 2t , y = t , for O s t s 1, that is, 

r = 2ti + tj, 0 St S 1, so that ds = I~; I dt = 12i + jl dt = Js dt. 

Thus, we have 

I= (4t 2 + t2)Js dt = sJs t2 dt = - . 11 11 s.Js 
o o 3 

EXAMPLE 2 A circle of radius a > 0 has centre at the origin in the xy-plane. 
Let C? be the half of this circle lying in the half-plane y 2'.'. 0. Use 

two different parametrization s of C? to find the moment of C? about y = 0. 

Solution We are asked to calculate l y ds. 

C? can be parametrized as r = a cos ti+ a sin tj , (0 S t S n: ) . Therefore, 

dr . . . - = -a sm ti + a cos tJ 
dt 

and 

and the moment of C? about y = 0 is 

1:;1 =a , 

lyds = lo" asintadt = -a 2 cost [ = 2a2
. 
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e can also be parametrized r =xi+ ,J a2 - x 2j, (-a .::: x .::: a), for which we have 

dr . X • 
- - l - ---====J 
dx - ,J a2 _ x 2 ' 

1::1 =/l+ a2~x 2 = ,Ja 2a_x 2 · 

Thus, the moment of e about y = 0 is 

{ y ds = fa J a2 - x 2 a dx = a f a dx = 2a2. 
le - a ,Ja 2 -x 2 - a 

It is comforting to get the same answer using different parametrizations. Unlike the 
line integrals of vector fields considered in the next section , the line integrals of scalar 
fields considered here do not depend on the direction (orientation) of e. The two 
parametrizations of the semicircle were in opposite directions but still gave the same 
result. 

Line integrals frequently lead to definite integrals that are very difficult or impossible 
to evaluate without using numerical techniques. Only very simple curves and ones 
that have been contrived to lead to simple expressions for ds are amenable to exact 
calculation of line integrals . 

EXAM p LE 3 Find the centroid of the circular helix e given by 

r = a cost i + a sin t j + bt k, 0 .::: t .::: 27r. 

Solution As we observed in Example6 of Section 11.3, for this helix ds = ,J a2 + b2 dt. 
On the helix we have z = bt , so its moment about z = 0 is 

Mz=O = L z ds = bJ a2 + b2 fo2

ir tdt = 27r2b) a2 + b2. 

Since the helix has length L = 27r.Ja 2 + b2, the z-component of its centroid is 
Mz=OI L = 7r b. The moment of the helix about x = 0 is 

Mx=O = L x ds = a) a2 + b2 fo2ir cost dt = 0, 

My=o= Lyds=a)a 2 +b 2 fo2

ir sintdt=O. 

Thus, the centroid is (0, 0, 7r b ) . 

Sometimes a curve, along which a line integral is to be taken, is specified as the inter
section of two surfaces with given equations. It is normally necessary to parametrize 
the curve in order to evaluate a line integral. Recall from Section 11.3 that if one of 
the surfaces is a cylinder paralJel to one of the coordinate axes , it is usually easiest to 
begin by parametrizing that cylinder. (Otherwise , combine the equations to eliminate 
one variable and thus obtain such a cylinder on which the curve lies .) 

EXAM p LE 4 Find the mass of a wire lying along the first octant part e of the 
curve of intersection of the elJiptic paraboloid z = 2 - x2 - 2y 2 

and the parabolic cylinder z = x2 between (0, 1, 0) and (1, 0, 1) (see Figure 15.7) if 
the density of the wire at position (x , y, z) is o(x, y , z) = xy . 

Solution We need a convenient parametrization of e. Since the curve e lies on 
the cylinder z = x 2 and x goes from O to 1, we can let x = t and z = t2. Thus , 
2y 2 = 2 - x 2 - z = 2 - 2t 2, so y2 = 1 - t2. Since e lies in the first octant, it can be 
parametrized by 
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Figure 15.7 The curve of intersection of 
z = x 2 and z = 2 - x2 - 2y 2 

EXE RC IS ES 15.3 

z 

X y 

X = t, y=~, z = t2, (0 S t S 1). 

Then dx/dt = 1, dy / dt = -t / ~, and dz / dt = 2t, so 

ds = 
t 2 Ji + 4t 2 - 4t 4 

l + --2 +4t 2 dt = ~ dt . 
1 - t I - t 2 

Hence, the mass of the wire is 

1 1
1 J1+4t 2 -4t 4 

m= xyds= t~ ~ dt 
e o l - t2 

= fa 
1 

tJ l + 4t 2 - 4t4 dt Let u = t 2 

= - J1 +4u -4u 2 du 1 1' 
2 0 

= - J2 - (2u - 1)2 du 1 11 
2 o 

Let v = 2u - 1 

= - J2 - v2 dv = - J2 - v2 dv 1 f 1 l 11 
4 -1 2 o 

=~(~+D=n;2. 
(The final integral above was evaluated by interpreting it as the area of part of a 
circle. You are invited to supply the detail s. It can also be done by the substitution 
v = ../2.sinw.) 

In Exercises 1-2 evaluate the given line integral over the 
specified curve e. 

3. Show that the curve e given by 

r = a cost sin ti+ a sin2 t j + a cost k, (0 S t S ½ ), 
1. l (x + y) ds , r = ati + btj + ctk , 0 St Sm . 

2. l y ds, r = t2i + tj + t2k, 0 St s m. 

lies on a sphere centred at the origin. Find l z ds . 

4. Let e be the conical helix with parametric equations 

x = tcost, y = tsint, z = t, (0 St S 2n). Find l zds. 
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5. Find the mass of a wire along the curve 

r = 3ti + 3t2j + 2t 3k , (0 :S I :": ] ) , 

if the density at r(t) is I + t g/unit length. 

6. Show that the curve e in Example 4 also has parametrization 
x = cost, y = sin t, z = cos2 t, (0 ::: t :S 7C / 2), and 
recalculate the mass of the wire in that example using this 
parametrization . 

7. Find the moment of inertia about the z-axis (i.e., the value of 

c5 l (x2 + y2) ds) , for a wire of constant density c5 lying 

along the curve C?: r = e1 cos ti + e1 sin tj + t k, from t = 0 
tot = 21C. 

8. Evaluate l ez ds, where e is the curve in Exercise 7. 

9. Find l x 2 ds along the line of intersection of the two planes 

x - y + z = 0 and x + y + 2z = 0, from the origin to the 
point (3, l, -2). 

10. Find l J 1 + 4x2z2 ds , where e is the curve of intersection 

of the surfaces x2 + z2 = l and y = x2 . 

11. Find the mass and centre of mass of a wire bent in the shape 
of the circular helix x = cost, y = sin t, z = t , 
(0 ::: I ::: 2TC ) , if the wire has line density given by 
c5(x, y, z) = z. 

12. Repeat Exercise 11 for the part of the wire corresponding to 
0 :": I :": 7C. 

13. Find the moment of inertia about the y-ax is of the curve 
x = e1

, y = ./21, z = e- 1
, (0 ::: I ::: l) , that is, 

l (x2 + z2)ds. 
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14. Find the centroid of the curve in Exercise 13. 

D 15. Find l x ds along the first octant part of the curve of 

intersection of the cylinder x 2 + y2 = a2 and the plane 
z = x. 

D 16. Find l z ds along the part of the curve x2 + y2 + z2 = 1, 

x + y = 1, where z :::: 0. 

D 17. Find l (
2

y2 ~
1
)312 , whereC?istheparabola 

z2 = x 2 + y2 , x + z = l. Hint: Use y = t as parameter. 
18. Express as a definite integral, but do not try to evaluate, the 

value of l xyz ds , where e is the curve y = x2
, z = y2 

from (0, 0, 0) to (2, 4, 16). 

D 19. The function 

is called the elliptic integral function of the second 
kind . The complete elliptic integral of the second kind is 
the function E (k) = E (k, 1C / 2). In terms of these function , 
ex pre s the length of one complete revolution of the elliptic 
helix 

X = a COS t, y = bsint , z = ct, 

where O < a < b. What is the length of that part of the helix 
lying between t = 0 and t = T, where O < T < 1C / 2? 

D 20. Evaluate [ ~, where L is the entire straight line with 
Jl X + Y 

equation Ax+ By = C, (C -:f. 0). Hint: Use the symmetry 
of the integrand to replace the Line with a line having a 
simpler equation but giving the same value to the integral. 

• 
Line Integrals of Vector Fields 

-----
In elementary physics the work done by a constant force of magnitude F in moving 
an object a distanced is defined to be the product of F and d: W = Fd. There 
is, however, a catch to this; it is under stoo d that the force is exerted in the direction 
of motion of the object. If the object moves in a direction different from that of the 
force (because of some other forces acting on it), then the work done by the particular 
force is the product of the distance moved and the component of the force in the 
direction of motion . For instance , the work done by gravity in causing a 10 kg crate to 
slide 5 m down a ramp inclined at 45 ° to the horizontal is W = SOg/ ./2 N-m (where 
g = 9.8 mls 2), since the scalar projection of the 10g N gravitational force on the crate 
in the direction of the ramp is I Og / ./2 N. 

The work done by a variable force F(x, y, z) = F(r), which depends continuously 
on position, in moving an object along a smooth curve e is the integral of work elements 
dW. The element dW corresponding to arc length element ds at position r one is ds 
times the tangential component of the force F(r) along e in the direction of motion 
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Figure 15.8 d W = JFJ cos 0 ds 

= F • Td s 

(see Figure 15.8); since T = dr / ds is the unit tangent toe, 

dW = F(r) • T ds = F • dr. 

Thus , the total work done by Fin moving the object along e is 

W = l F • T ds = l F • dr = l Fi dx + F2 dy + F3 d z. 

In general , if F = F1i + F2j + F3k is a continuous vector field, and e is an oriented 
smooth curve, then the line integral of the tangential component of F along e is 

L F • dr = L F • T ds 

= l F1 (x, y, z) dx + F2(x, y, z) dy + F3(x, y, z) dz. 

Such a line integral is sometimes called, somewhat improperly, the line integral of F 
along e. (It is not the line integral of F, which should have a vector value, but rather 
the line integral of the tangential component of F, which has a scalar value.) Unlike 
the line integral considered in the previous section, this line integral depends on the 
direction of the orientation of C; reversing the direction of e causes this line integral 
to change sign. 

If e is a closed curve, the line integral of the tangential component of F around e 
is also called the circulation of F around e. The fact that the curve is closed is often 
indicated by a small circle drawn on the integral sign; 

i F • dr denotes the circulation of F around the closed curve e. 

Like the line integrals studied in the previous section, a line integral of a continuous 
vector field is converted into an ordinary definite integral by using a parametrization of 
thepathofintegration . Forasmootharcr = r(t ) = x(t) i+ y(t) j+ z(t) k, (a ::: t :::: b) , 
we have 

1. lb dr 
F e dr = Fe -dt 

C a dt 

= l b [F,( x(t),y(t) , z( t)): : + F2(x(t),y(t),z(t)):~ 

+ F3 ( x(t), y(t) , z (t)) ~;] dt. 

Althou gh this type of line integral changes sign if the orientation of e is reversed , it 
is otherwise independent of the particular parametriz ation used for e. Again , a line 
integral over a piecewise smooth path is the sum of the line integral s over the individual 
smooth arcs constituting that path . 

EXAMPLE 1 

l Fedr 

Let F(x, y) = y2i + 2xyj. Evaluate the line integral 

from (0, 0) to (1, 1) along 

(a) the straight line y = x, 

(b) the curve y = x 2 , and 

(c) the piecewise smooth path consisting of the straight line segments from (0, 0) to 
(0, 1) and from (0, 1) to (1, 1). 
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y 

(c) 

X 

Figure 15.9 Three paths from (0, 0) to 
(1, 1) 

y 

X 

Figure 15.10 Two paths from ( 1, 0) to 
(0, -1) 
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Solution The three path s are shown in Figure 15.9. The straight path (a) can be 
parametrized r = ti+ tj , 0 S t S 1. Thu s, dr = dti + dtj and 

F • dr = (t 2i + 2t 2j) • (i + j )dt = 3t2 dt . 

Therefore, 

The parabolic path (b) can be parametrized r ti + t2j, 0 _s t < 1, so that 
dr = dti + 2t dtj. Thu s, 

F • dr = (t4 i + 2t 3j) • (i + 2tj ) dt = 5t4 dt , 

and 

The third path (c) is made up of two seg ment s, and we parametrize each separate ly. 
Let us use y as the parameter on the vertical segment (where x = 0 and dx = 0) and 
x as the parameter on the horizontal segment (where y = 1 and dy = 0) : 

l F • dr = l y2 dx + 2xy dy 

= fo'<o)d y+ fo
1

(1)d x =l. 

In view of these result s, we might ask whether fc F • dr is the same along every path 
from (0, 0) to (1, 1). 

EXAM p LE 2 Let F = yi - xj . Find fc F • dr from (1, 0) to (0 , -1) along 

(a) the straig ht line segment joinin g these points and 

(b) three-quarter s of the circle of unit radius centred at the origin and traversed coun
terclockwise. 

Solution Both path s are shown in Figure 15.10. The straight path (a) can be par a
metrized : 

r = (1 - t) i - tj , O _st _sl. 

Thus , dr = -dt i - dtj , and 

lF • dr= fo
1

((-t)(-dt) -(1-t)(-dt))= fo' dt=l. 

The circular path (b) can be parametrized: 

r = cos t i + sin t j, 
3n 

0 <t < -- - 2' 

so that dr = - sin t dti +co st dtj. Therefore, 
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DEFINITION 

I 

DEFINITION 

I 
y 

D 

X 

Figure 15.11 A simply connected 
domain 

F • dr = - sin2 t dt - cos2 t dt = -dt , 

and we have 

[ [ 3,r/2 3ir 
le F • dr = - lo dt = -2. 

In this case the line integral depends on the path from (1, 0) to (0, -1) along which 
the integral is taken. 

Some readers may have noticed that in Example I above the vector field F is con
servative, while in Example 2 it is not. Theorem I below confirms the link between 
independence of path for a line integral of the tangential component of a vector field 
and the existence of a scalar potential function for that field . This and subsequent 
theorems require specific assumptions on the nature of the domain of the vector field 
F, so we need to formulate some topological definitions. 

Connected and Simply Connected Domains 
Recall that a set Sin the plane (or in 3-space) is open if every point in Sis the centre of 
a disk (or a ball) having positive radius and contained in S. If Sis open and Bis a set 
(possibly empty) of boundary points of S, then the set D =SUB is called a domain. 
A domain cannot contain isolated points. It may be closed, but it must have interior 
points near any of its boundary points. (See Section 10.1 for a discussion of open and 
closed sets and interior and boundary points .) 

A domain D is said to be connected , if every pair of point s P and Q in D can be 
joined by a piecewise smooth curve lying in D. 

For instance, the set of points (x , y) in the plane satisfying x > 0, y > 0, and 
x 2 + y2 :S 4 is a connected domain , but the set of points satisfying Ix I > I is not 
connected. (There is no path from (-2, 0) to (2, 0) lying entirely in Ix I > 1.) The set 
of points (x , y, z) in 3-space satisfying O < z < l is a connected domain, but the set 
satisfying z =I= 0 is not. 

A closed curve is simple if it has no self-intersections other than beginning and 
ending at the same point. (For example, a circle is a simple closed curve.) Imagine an 
elastic band stretched in the shape of such a curve. If the elastic is infinitely shrinkable, 
it can contract down to a single point. 

A simply connected domain D is a connected domain in which every simple 
closed curve can be continuously shrunk to a point in D without any part ever 
passing out of D. 

y 

Figure 15.12 A connected domain 
that is not simply connected 

X 

y 

Figure 15.13 A domain that is not 
connected 

X 
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THEOREM 

I 

Figure 15.14 Ci - C2 = C1 + (-C2) is a 
closed curve 

SECTION 15.4: Line Integrals of Vector Fields 883 

Figure 15.11 shows a simply connected domain in the plane. Figure 15.12 shows a 
connected but not simply connected domain. (A closed curve surrounding the hole 
cannot be shrunk to a point without passing out of D .) The domain in Figure 15.13 is 
not even connected. It has two components; points in different components cannot be 
joined by a curve that lies in D. 

In the plane, a simply connected domain D can have no holes, not even a hole 
consisting of a single point. The interior of every non-self-intersecting closed curve 
in such a domain D lies in D. For instance , the domain of the function 1/ (x2 + y 2) is 
not simply connected because the origin does not belong to it. (The origin is a "hole" 
in that domain.) In 3-space, a simply connected domain can have holes . The set of all 
points in JR3 different from the origin is simply connected , as is the exterior of a ball. 
But the set of all points in JR3 satisfying x 2 + y2 > 0 is not simply connected . Neither 
is the interior of a doughnut (a torus) . In general , each of the following conditions 
characterizes simply connected domains D: 

(i) Any simple closed curve in Dis the boundary of a "surface" lying in D. 

(ii) If ei and e2 are two curves in D having the same endpoints , then e1 

can be continuously deformed into e2, while remaining in D throughout the 
deformation process. 

Independence of Path 

Inde pendence of path 

Let D be an open, connected domain , and let F be a smooth vector field defined on D. 
Then the following three statements are equivalent in the sense that, if any one of them 
is true, so are the other two: 

(a) F is conservative in D. 

(b) t F • dr = 0 for every piecewise smooth, closed curve e in D. 

( c) Given any two points Po and P1 in D, l F edr has the same value for all piecewise 

smooth curves in D starting at Po and ending at Pi . 

PROOF We will show that (a) implies (b), that (b) implies (c), and that (c) implies 
(a). It then follows that any one implies the other two. 

Suppose (a) is true. Then F = V ¢; for some scalar potential function¢; defined in 
D. Therefore, 

F e dr= (
84\+ B</>j+ Bq;k) • (dxi+d y j+d zk) 
Bx By Bz 

a¢ a¢> a¢ 
= -dx + -d y + - dz = dq;. 

ax By Bz 

If e is any piecewise smooth, closed curve, parametrized , say, by r r(t), 
(a S t S b), then r(a) = r(b), and 

1 l
b dq;(r(t)) 

F • dr = --dt = ¢(r(b)) - q;(r(a)) = 0. 
e a dt 

Thus, (a) implies (b). 

Now suppose (b) is true . Let Po and P1 be two points in D, and let e, and e2 be 
two piecewise smooth curves in D from Po to P1. Let e = e1 - e2 denote the closed 
curve going from Po to P1 along e1 and then back to Po along e2 in the opposite 
direction. (See Figure 15.14.) Since we are assuming that (b) is true, we have 

0 = J.. F • dr = [ F • dr - [ F • dr . 
Je lei le2 
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z 

X 

Figure 15.15 A special path 
from Po to P1 

Therefore, 

[ F • dr = [ F • dr , 
lei le2 

and we have proved that (b) implies (c). 

Finally, suppose that (c) is true. Let Po = (xo, yo, zo) be a fixed point in the 
domain D, and let P = (x, y, z) be an arbitrary point in that domain . Define a function 
¢ by 

cp(x,y,z)= feF • dr, 

where e is some piecewise smooth curve in D from Po to P . (Under the hypotheses 
of the theorem such a curve exists, and, since we are assuming (c), the integral has the 
same value for all such curves. Therefore,¢ is well defined in D .) We will show that 
V ¢ = F and thus establish that Fis conservative and has potential ¢. 

It is sufficient to show that a¢ / ax = F1 (x, y, z); the other two components are 
treated similarly. Since D is open, there is a ball of positive radius centred at P and 
contained in D . Pick a point (x1, y, z) in this ball having x 1 < x. Note that the line 
from this point to P is parallel to the x-axis. Since we are free to choose the curve 
e in the integral defining ¢, let us choose it to consist of two segments: e1, which 
is piecewise smooth and goes from (xo, YO, zo) to (x1, y , z), and e2, a straight line 
segment from (x1, y, z) to (x, y, z) . (See Figure 15.15.) Then 

cp(x, y, z)= [ F e dr+ [ F e dr. 
lei l e2 

The first integral does not depend on x, so its derivative with respect to x is zero. The 
straight line path for the second integral is parametrized by r = ti + yj + zk, where 
x 1 .:::: t .:::: x so dr = dti. By the Fundamental Theorem of Calculus, 

a¢ a [. a lx - = - F e dr= - F1(t, y,z )dt = F1(x,y, z), 
ax ax e2 ax XJ 

which is what we wanted. Thus, F = V ¢ is conservative, and (c) implies (a). 

Remark It is very easy to evaluate the line integral of the tangential component of a 
conservative vector field along a curve e, when you know a potential for F. IfF = V ¢ , 
and e goes from Po to P1 , then 

feF • dr= ld ¢ = ¢(P 1)-¢( Po). 

As noted above, the value of the integral depends only on the endpoints of e. 

Remark In the next chapter we will add another item to the list of three conditions 
shown to be equivalent in Theorem I , provided that the domain D is simply connected. 
For such a domain, each of the above three conditions in the theorem is equivalent to 

aF1 aF2 
---, 
ay ax 

and 

We already know that these equations are satisfied on a domain where Fis conservative . 
Theorem 4 of Section 16.2 states that if these three equations hold on a simply connected 
domain, then F is conservative on that domain . 
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EXAMPLE 3 For what values of the constants A and B is the vector field 

F = Ax sin(ir y)i + (x 2 cos(ir y ) + Bye- z)j + y2e- zk 

conservative? For this choice of A and B , evaluate l F • dr, where C? is 

(a) the curve r = cos ti+ sin 2tj + sin2 tk , (0 :S t :S 2ir ) , and 

(b) the curve of intersection of the paraboloid z = x2 + 4y 2 and the plane 
z = 3x - 2y from (0, 0, 0) to (1, 1/ 2, 2). 

Solution F cannot be conservative unless 

aF1 aF2 a F, aF3 

ay ax ' az ax ' 
and 

that is, unless 

Airxcos(iry) = 2xcos(ir y) , 0 = 0, and - Bye -z = 2ye- z . 

Thus, we require that A = 2/ ir and B = -2. In this case, it is easily checked that 

x2 sin(ir y) 2 F = Vcp, where cp(x, y, z) = --- - y e- z. 
7l" 

For the curve (a) we have r(O) = i = r(2ir ) , so this curve is a closed curve, and 

l F • dr = i Vcp • dr = 0. 

Since the curve (b) starts at (0, 0, 0) and ends at (1, 1/ 2, 2) , we have 

1 (x2sin(ir y) 2 - ) l(I, t/2,2) 1 1 
F • dr = ---- - y e z = - - -

2
. 

e ir (O,o,o) ir 4e 

The following example shows how to exploit the fact that 

l F e dr 

is easily evaluated for conservative F, even if the F we want to integrate isn ' t quite 
conservative . 

EXAMPLE 4 Evaluate I = i (ex sin y + 3y )dx + (ex cosy+ 2x - 2y)dy coun

terclockwise around the ellipse 4x 2 + y 2 = 4. 

Solution I = i F . dr , where F is the vector field 

F = ( ex sin y + 3 y ) i + ( ex cos y + 2x - 2 y )j. 
This vector field is not conservative, but it would be if the 3y term in F 1 were 2y 
instead ; specifically, if 

cp(x, y) = ex sin y + 2xy - y2, 

then F = V cf>+y i, the sum of a conservative part and a nonconservative part. Therefore , 
we have 

I= i Vcp e dr+ i y dx . 

The first integral is zero since V cf> is conservative and C? is closed . For the second 
integral we parametrize C? by x = cost , y = 2 sin t , (0 :S t :S 2ir ), and obtain 

J [ 2
,r [

2
1r 1 - cos(2t) 

I= Jeydx = -2 10 sin2 tdt = -2 10 2 
dt = -2ir. 
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EX E R C I S ES 15.4 
In Exercises 1-6 , evaluate the line integra l of the tangential 
compo nent of the given vector field along the given curve. 

1. F(x, y) = x yi - x 2j along y = x 2 from (0, 0) to (1, 1) 

2. F(x , y) = cosx i - yj along y = sin x from (0, 0) to (ir , 0) 

3. F(x , y, z) = yi + zj - xk along the straight line from 
(0, 0 , 0) to (1, 1, 1) 

4. F(x , y , z) = zi - yj + 2xk along the curve x = t, y = t 2 , 

z = t 3 from (0, 0, 0) to (1, 1, 1) 

5. F(x , y, z) = y zi + x zj + xyk from (-1 , 0, 0) to (1, 0, 0) 
along either direction of the curve of intersection of the 
cylinder x 2 + y2 = 1 and the plane z = y 

6. F(x, y , z) = (x - z)i + (y - z)j - (x + y)k along the 
polygonal path from (0, 0, 0) to (1, 0, 0) to (1, 1, 0) to 
(1, 1, 1) 

7. Find the work done by the force field 

F = (x + y) i + (x - z)j + (z - y)k 

in moving an object from (1, 0, -1) to (0, -2 , 3) along any 
smooth curve . 

8. Evaluate i x 2 y2 dx + x 3 y dy counterclockwi se around the 

square with vertices (0, 0) , (1, 0) , (1, 1), and (0, !) . 

9. Evaluat e 

l ex+y sin( y + z) dx + ex+y ( sin(y + z) + cos(y + z)) dy 

+ ex+y cos( y + z) d z 

along the straight line segment from (0,0,0) to (1, ¼, ¼ ). 
10. The field F = (ax y + z)i + x 2j + (bx + 2z)k is conservative. 

Find a and b, and find a potential for F. Also, evaluate 
J e F • dr , where C: is the curve from (1, 1, 0) to (0, 0, 3) that 
lies on the intersection of the surfaces 2x + y + z = 3 and 
9x 2 + 9y 2 + 2z2 = 18 in the octant x c:: 0, y c:: 0, z c:: 0. 

11. Determine the values of A and B for which the vector field 

F = Ax In z i + By2z j + ( xz
2 

+ y3) k 

is conservative . If C: is the straight line from (1, 1, 1) to 
(2, 1, 2), find 

fe 2x ln z dx + 2y2z dy + y3 d z . 

12. Find the work done by the force field 

F = (y2 cosx + z3)i + (2y sin x - 4)j + (3x z2 + 2)k 

in moving a particle along the curve x = sin- 1 t , y = 1 - 2t, 
z = 3t - 1, (O s t s 1). 

13. If C: is the intersection of z = ln(l + x) and y = x from 
(O, 0 , 0) to (1, 1, ln 2), evaluate 

8 14. Is each of the following sets a domain ? a connected domain ? 
a simply connected domain ? 

(a) the set of point s (x, y) in the plane such that x > 0 and 
y:::: 0 

(b) the set of point s (x, y) in the plane such that x = 0 and 
y:::: 0 

( c) the set of points (x, y ) in the plane such that x =I= 0 and 
y> O 

(d) the set of points (x , y, z) in 3-space such that 
x 2 > 1 

(e) the set of points (x, y , z) in 3-space such that 
x 2 + y2 > 1 

(f) the set of points (x , y, z) in 3-space such that 
x2 + y2 + z2 > 1 

In Exerci ses 15-19 , evaluate the closed line integrals 

(a) i x dy, (b) 

around the given curves , all oriented counterclockwise . 

15. The circle x 2 + y2 = a 2 

x2 y2 
16. The ellipse a 2 + b2 = 1 

17. The boundary of the half-disk x 2 + y2 s a 2, y c:: 0 

18. The boundary of the square with vertices (0, 0) , (1, 0) , 
(] , I) , and (0, 1) 

19. The triangle with vertices (0, 0), (a , 0) , and (0, b) 

20. On the basis of your results for Exercises 15-19, guess the 
values of the closed line integrals 

(a) i x dy, (b) 

for any non-self-intersecting closed curve in the xy-plane. 
Prove your guess in the case that C: bounds a region of the 
plane that is both x -simple and y-simple . (See Section 14.2.) 

21. If f and g are scalar fields with continuous first partia l 
derivative s in a connected dom ain D , show that 

l J V g • dr + l g V f • dr = f(Q) g (Q) - f(P)g(P) 

for any piecewis e smooth curve in D from P to Q. 

22. Evaluat e 

~ J -y dx + xd y 
2ir re x2 + y2 

(a) counterclockwise around the circle x 2 + y2 = a 2 , 

(b) clockwise around the square with vertices (-1, -1 ), 
(-1 , 1), (1, 1), and (1, -1) , 

(c) counterc lockw ise around the boundary of the region 
l s x 2 + y 2 s 4, y c:: 0. 
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0 23. Review Example 5 in Section 15.2 in which it was shown that the other. As in Example 5 of Section 15.2, it happens that 

:y C2 ~\2) = :x C2 : y2) . '70 y • X • 
v = --2-- 2 •+-2-- 2J· 

X + y X + y 

for all (x, y ) I= (0, 0). Why does this result, together with 
that of Exercise 22, not contradict the final assertion in the 
remark following Theorem 1? 

If, in addition, e is a closed curve, show that 

D 24. (Windin g numb er) Let e be a piecewise smooth curve in 
the x y -plane that does not pass through the origin. Let 

( 1 t xd y - y dx 
w e)=-

2ir e x2 + y2 

0 = 0(x , y ) be the polar angle coordinate of the point 
P = (x , y) on e, not restricted to an interval of length 2ir, 
but varying continuously as P moves from one end of e to 

has an integer value. w is called the winding number of e 
about the origin. 

• 
Surfaces and Surface Integrals 

-----
This sectio n and the next are devoted to integrals of functions defined over surfaces in 
3-space . Before we can begin , it is necessary to make more precise just what is meant 

DEFINITION 

I 

Figure 15.16 A parametric surface ,8 

defined on parameter region R. The 
contour curves on -8 correspond to the 
rulings of R 

by the term "surface. " Until now we have been treating surfaces in an intuitive way, 
either as the graphs of functions f (x, y) or as the graphs of equations f (x , y , z) = 0. 

A smooth curve is a one-dim ensional object because points on it can be located 
by giving one coordinate (for instance, the distance from an endpoint). Therefore , the 
curve can be defined as the range of a vector-valued function of one real variable. A 
surface is a two-dimensional object; points on it can be located by using two coordinat es, 
and it can be defined as the range of a vector-valued function of two real variable s. We 
will call certain such functions parametric surfaces. 

Parametric Surfaces 

A parametric surface in 3-space is a continuous function r defined on some 
rectangle R given by a :S u ::S b, c :S v ::S din the uv -plane and having values in 
3-space: 

r (u, v) = x(u , v) i + y(u , v)j + z (u , v)k , (u , v)inR. 

z 

V 

C 

u 
a b 

y 
X 

Actually, we think of the range of the function r(u, v) as being the parametric surface . 
It is a set -8 of points (x, y, z) in 3-space whose position vectors are the vectors r(u, v) 
for (u, v) in R . (See Figure 15.16.) If r is one-to-one, then the surface does not intersect 
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itself. In this case r maps the boundary of the rectangle R (the four edges) onto a curve 
in 3-space, which we call the boundary of the parametric surface. The requirem ent 
that R be a rectangl e is made only to simplify the discussion. Any connected, closed , 
bounded set in the uv-plane, having well-defined area and consisting of an open set 
together with its boundary points , would do as well. Thus , we will from time to time 
consider parametric surfaces over closed disks, triangles, or other such domains in the 
uv-plane. Being the range of a continuous function defined on a closed, bounded set, 
a parametric surface is always bounded in 3-space. 

EXAMPLE 1 The graph of z = f(x , y) , where f has the rectangle R as its 
domain, can be represented as the parametric surface 

r = r(u , v) = ui + vj + f(u, v) k 

for (u, v) in R. Its scalar parametric equations are 

X = U, y = v, z = f(u , v), (u,v)inR . 

For such graphs it is sometimes convenient to identify the uv-plane with the xy-plane 
and write the equation of the surface in the form 

r =xi+ yj + f(x , y) k, (x, y) in R . 

EXAMPLE 2 Describe the surface 

r = a cos u sin v i+ a sin u sin v j + a cos v k, (0 S u S 21e, 0 S v S 1C / 2) , 

where a > 0. What is its boundary ? 

Solution Observe that if X = a cos u sin V , y = a sin u sin V , and z = a cos V, then 
x 2 + y2 + z2 = a 2 . Thus, the given parametric surface lies on the sphere of radius 
a centred at the origin. (Observe that u and v are the spherical coordinates 0 and ¢ 
on the sphere.) The restrictions on u and v allow (x, y) to be any point in the disk 
x2 + y2 S a 2 but force z 2: 0. Thus, the surface is the upper half of the sphere. The 
given parametrization is one-to-one on the open rectangle O < u < 211:, 0 < v < n / 2, 
but not on the closed rectangle, since the edges u = 0 and u = 211: get mapped onto the 
same points, and the entire edge v = 0 collapses to a single point. The boundary of the 
surface is still the circle x2 + y2 = a 2, z = 0, and corresponds to the edge v = 1e / 2 of 
the rectangle. 

Remark Surface parametrizations that are one-to-one only in the interior of the 
parameter domain R are still reasonable represe ntations of the surface. However, as in 
Example 2, the boundary of the surface may be obtained from only part of the boundary 
of R, or there may be no boundary at all, in which case the surface is called a closed 
surface. For example, if the domain of r in Example 2 is extended to allow O s v s n , 
then the surface becomes the entire sphere of radius a centred at the origin . The sphere 
is a closed surface , having no boundary curves. 

Remark Like parametriza tions of curves, parametrizations of surfaces are not unique . 
The hemisphere in Example 2 can also be parametriz ed: 

r(u, v) = ui + vj + J a 2 - u2 - v2k for u2 +v 2 S a 2
. 

Here, the domain of r is a closed disk of radius a. 
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EXAM p LE 3 (A tube around a curve) If r = F(t) , a :::; t :::; b, is a parametric 
curve e in 3-space having unit normal N(t) and binormal B(t) , 

then the parametric surface 

r = F(u) +scosvN(u) +ssinvB(u), a S u S b, 0 S v S 2n:, 

is a tube-shaped surface of radius s centred along the curve e. (Wby?) Figure 15.17 
shows such a tube , having radius s = 0.25, around the curve 

r = ( 1 + 0 .3 cos(3t)) ( cos(2t)i + sin(2t)j) + 0.35 sin(3t) k, 0 St S 2n:. 

trefoil knot This closed curve is called a trefoil knot. 

Figure 15.18 A composite surface 
obtained by joining five smooth 
parametric surfaces (squares) in pairs 
along edges. The four unpaired edges at 
the tops of the side faces make up the 
boundary of the composite surface 

Figure 15.19 A partition of a parametric 

Composite Surfaces 
If two parametric surfaces are joined together along part or all of their boundary curves, 
the result is called a composite surface , or, thinking geometrically, just a surface. For 
example, a sphere can be obtained by joining two hemispheres along their boundary 
circles. In general, composite surfaces can be obtained by joining a finite number 
of parametric surfaces pairwise along edges. The surface of a cube consists of the 
six square faces joined in pairs along the edges of the cube. This surface is closed 
since there are no unjoined edges to comprise the boundary. If the top square face is 
removed, the remaining five form the surface of a cubical box with no top. The top 
edges of the four side faces now constitute the boundary of this composite surface. 
(See Figure 15.18.) 

Surface Integrals 
In order to define integrals of functions defined on a surface as limits of Riemann sums, 
we need to refer to the areas of regions on the surface . It is more difficult to define 
the area of a curved surface than it is to define the length of a curve. However, you 
will likely have a good idea of what area means for a region lying in a plane , and we 
examined briefly the problem of finding the area of the graph of a function f(x, y) 
in Section 14.7. We will avoid difficulties by assuming that all the surfaces we will 
encounter are "smoo th enough" that they can be subdivided into small pieces each of 
which is approximately planar. We can then approximate the surface area of each piece 
by a plane area and add up the approximations to get a Riemann sum approximation 
to the area of the whole surface. We will make more precise definitions of "smooth 
surface" and "surface area" later in this section. For the moment, we assume the reader 
has an intuitive feel for what they mean. 

z 

y 

surface into many nonoverlapping pieces x 

www.konkur.in



890 CHAPTER 15 Vector Fields 

DEFINITION 

I 

Figure 15.20 An area element dS on a 
parametric surface 

Let -8 be a smooth surface of finite area in JR3, and let f(x, y , z) be a bounded 
function defined at all points of -8. If we subdivide -8 into small, nonoverlapping pieces, 
say -8,, -82, ... , .&n, where -8; has area Ii S; (see Figure 15 .19), we can form a Riema nn 
sum Rn for f on -8 by choosing arbitrary points (x; , Yi, Zi) in .&i and letting 

11 

R11 = L f(x;, Yi, z;) liS;. 
i = I 

If such Riemann sums have a uniqu e limit as the diameters of all the pieces -8; approach 
zero , independently of how the points (xi , y; , z;) are chosen, then we say that f is 
integrable on -8 and ca ll the limit the surface integral off over -8, denoting it by 

f i f(x, y, z) dS. 

Smooth Surfaces, Normals, and Area Elements 
A surface is smooth if it has a uniqu e tangent plane at any non boundary point P. A 
nonzero vector n normal to that tangent plane at P is said to be normal to the surface 
at P . The following somewhat technical definition makes this precise. 

A set -8 in 3-space is a smooth surface if any point P in -8 has a neighbourhood 
N (an open ball of positive radius centred at P) that is the domain of a smooth 
function g(x , y , z) satisfying: 

(i) N n S = {Q E N : g (Q) = 0} and 

(ii) V g(Q) f. 0, if Q is in N n S. 

For example, the cone x 2 + y2 = z2 , with the origin removed, is a smooth surface. 
Note that V (x 2 + y 2 - z2) = 0 at the origin , and the cone is not smoo th there , since it 
does not have a uniqu e tangent plane . 

A parametr ic surface cannot satisfy the condition of the smoothness definition 
at its boundary point s but will be called smooth if that condition is satisfied at all 
nonboundary point s. 

We can find the normal to a smooth parametric surface defined on paramete r 
domai n R as follows. If (uo, vo) is a point in the interior of R, then r = r(u , vo) and 
r = r(uo , v) are two curves on -8, intersecting at ro = r (uo, vo) and having , at that 
point, tangent vectors (see Figure 15.20) 

arl 
au (uo,vo) 

and 

r (uo + du , v) 

arl 
av (110,voi' 

ar 
- dv 
av _ _. :..------ -

r (u , vo + du) 
r (u , vo) 
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respectively. Assuming these two tangent vectors are not parallel , their cross product 
n, which is not zero, is normal to ,8 at ro. Furthermore , the area element on ,8 bounded 
by the four curves r = r(uo , v ), r = r(uo +du , v ), r = r(u , vo), and r = r(u , vo +dv) 
is an infinitesimal parallelogram spanned by the vectors (ar/a u) du and (ar/a v) dv 
(at (uo, vo)), and hence has area 

dS = 1 ar X ar l dudv. 
au av 

Let us express the normal vector n and the area element d S in terms of the components 
of r . Since 

ar ax . ay . az - = -1+-J+-k and 
a r ax . ay . az - = - 1+-J+ - k, 

au au au au av av av av 

the normal vector to ,8 at r(u , v) is 

i j k 
ar ar ax ~ az 

n = au X av = au au au 
ax ~ az 
av av av 

= a(y,z \+ a(z,x )j+ a(x,y) k. 
a(u,v) a (u,v) a(u,v) 

Also , the area element at a point r(u , v) on the surface is given by 

I 
a r ar I dS = - x - dudv 
au av 

(
a(y,z) )2 + ( a (z,x ))2 + ( a (x,y))2 dudv. 
a(u,v) a(u,v) a(u,v ) 

The area of the surface itself is the "sum" of these area elements: 

Area of ,8 = f i dS . 

In general, the surface integral of a function J (r) = J(x, y, z) over the surface ,8 

defined by the parametric equations r = r(u, v) for (u, v) in the domain D of the 
uv-plane is given by 

fi fdS= flf(r(u ,v)) 1:: x ::1 dudv 

=fl f(x(u , v), y(u, v), z (u, v)) 

X (
a (y,z )) 2 + ( a (z,x) ) 2 + ( a(x,y) ) 2 dudv . 
a(u,v ) a(u,v) a(u,v ) 

EXAM p LE 4 The graph z = g (x , y) of a function g with continuous first partial 
derivatives in a domain D of the xy- plane can be regarded as a 

parametric surface ,8 with parametrization 

X = U, y = v, 

In this case , 

a(y,z) 
a(u, v) = -g, (u , v), 

z = g(u, v), (u, v) in D. 

a(z, x) 
-a( ) = -g2(u, v), 

u,v 
and 

a(x,y) _ 1 
a(u, v) - , 
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Figure 15.21 The surface area element 
dS and its projection onto the xy-plane 

z 
k 

X 

Figure 15.22 dS = .J'idxdy on this 
cone 

and, since the parameter region coincides with the domain D of g, the surface integral 
of f(x, y, z) over -8 can be expressed as a double integral over D: 

f lf(x, y, z) dS 

=fl f (x, Y, g(x, y)) J 1 + (g1 (x, y))
2 + (g2(x, y))

2 
dx dy. 

As observed in Section 14.7, this formula can also be justified geometrically. The 
vector n = -g 1 (x , y) i - g2(x, y)j + k is normal to -8 and makes angle y with the 
positive z-axis , where 

n•k 1 
cosy= -- = ---;::===========· 

lnl J1 + (g1 (x, y) )2 + (g2(x , y))2 

z 

X 

The surface area element dS must have area 1/ cos y times the area dx dy of its 
perpendicular projection onto the xy -plane . (See Figure 15.21.) 

Evaluating Surface Integrals 
We illustrate the use of the formulas given above for dS in calculating surface integrals. 

EXAM p LE 5 Evaluate / l z d S over the conical surface z = J x2 + y2 between 

z = 0 and z = 1. 

Solution Since z2 = x 2 + y 2 on the surface -8, we have az / ax = x / z and az / ay = 
y / z. Therefore , 

x2 y2 J 22 + 22 
dS = 1 + 2 + 2 dxdy = -- 2 -dxd y = v'ldxdy . 

z z z 

(Note that we could have anticipated this result, since the normal to the cone always 
makes an angle of y = 45° with the positive z-axis; see Figure 15.22. Therefore, 

dS = dx dy / cos45 ° = ./2dx dy.) Since z = Jx 2 + y 2 = r on the conical surface, 
it is easiest to carry out the integration in polar coordinates: 

{[ zdS = J2 {{ z dxdy 
ll J llxz+yz~1 

= v'2 f 2
rc d0 [1 r 2 dr = 2./2n. 

lo lo 3 
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EXAMPLE 6 Find the moment of inertia about the z-axis of the parametric 
surface x = 2uv, y = u2 - v2 , z = u2 + v 2 , where u2 + v 2 ::=: 1. 

Solution We are asked to find / i (x 2 + y2) d S. We have 

a(x, y) = 12v 
a (u, v) 2u 

a(z ,x) = 12u 
a(u,v) 2v 

a(y, z) = I 2u 
a( u ,v) 2u 

2u I 2 2 _ 2v = -4(u +v ) , 

~: I = 4(u2 - v2), 

-2 v I lv = 8uv. 

Therefore, the surface area element on -8 is given by 

d S = 4./ (u2 + v2) 2 + (u2 - v2) 2 + 4u 2v2 du dv 

= 4./2(u 4 + v4 + 2u 2v 2) du dv = 4h(u 2 + v 2
) du dv. 

Now x 2 + y 2 = 4u2v 2 + (u2 - v2)2 = (u2 + v2) 2 . Thus, 

r2rc r1 
= 4.J2 lo d0 lo r 6 

r dr (using polar coordinates) 

=v'27C. 

This is the required moment of inertia . 

Even though most surfaces we encounter can be easily parametrized , it is usually 
possible to obtain the surface area element dS geometrically rather than relying on the 
parametric formula . As we have seen above, if a surface has a one-to-one projection 
onto a region in the xy-plane, then the area element d S on the surface can be expressed 
as 

I 
1 I 101 dS = -- dxdy = --d xdy, 

cosy ln•kl 

where y is the angle between the normal vector n to -8 and the positive z-axis. Thi s 
formula is useful no matter how we obtain n. 

Consider a surface -8 with equation of the form G(x , y, z) = 0. As we discovered 
in Section 12.7, if G has continuous first partial derivative s that do not all vanish at a 
point (x, y, z) on -8, then the nonzero vector 

n = VG( x, y, z) 

is normal to -8 at that point. Since n • k = G3 (x, y, z), if -8 has a one-to-one projection 
onto the domain D in the xy-plane, then 

dS = I VG( x, y, z) I dx dy, 
G3(x, y, z) 

and the surface integral off (x, y, z) over -8 can be expressed as a double integral over 
the domain D : 
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Figure 15.23 An area element on a 
cylinder. The z-coordinate has already 
been integrated 

1I 1lr ( )I
VG(x,y,z)I 

f(x, y, z) dS = f x, Y,. g(x, y) ( dx dy . 
.& o G3 x, Y, z) 

Of course, there are analogous formulas for area elements of surfaces (and integrals 
over surfaces) with one-to-one projections onto the xz-plane or the yz -plane . (G 3 is 
replaced by G2 and G 1, respectively.) 

EXAMPLE 7 Find the moment about z = 0, that is, Ji z dS, where J is the 

hyperbolic bowl z2 = 1 + x2 + y2 between the planes z = l and 
z = .Js. 

Solution -8 is given by G(x, y, z) = 0, where G(x, y, z) = x 2 + y2 - z2 + 1. It lies 
above the disk x 2 + y2 :S 4 in the xy -plane . We have VG = 2xi + 2yj - 2zk, and 
G3 = -2 z. Hence , on J , we have 

J4x 2 + 4y 2 + 4z2 
/ 

z dS = z ------ dx dy =l + 2(x 2 + y 2) dx dy , 
2z 

and the required moment is 

[ [ z dS = [ [. J l + 2(x 2 + y 2) dx dy 
JJ.a J} x2+y2~4 

= d0 JI+ 2r 2 r dr =-(I+ 2r 2
)

3
/
2 = -. lo

2
ir lo2 

n [2 26n 
o o 3 O 3 

The next example illustrates a technique that can often reduce the effort needed to 
integrate over a cylindrical surface. 

X 

EXAMPLE 8 

z 

2a 

x2 + y2 + z2 = 4a2 

y 

Find the area of that part of the cylinder x 2 + y 2 = 2ay that lies 
inside the sphere x 2 + y 2 + z2 = 4a 2 . 

Solution One quarter of the required area lies in the first octant. (See Figure 15.23.) 
Since the cylinder is generated by vertical lines , we can express an area element dS on 
it in terms of the length element ds along the curve C in the xy-plane having equation 
x 2 + y 2 = 2ay: 

dS = zds = /4a2 - x 2 - y 2 ds . 
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Figure 15.24 The attraction of a sphere 

SECTION 15.5: Surfaces and Surface Integrals 895 

In expressing dS this way, we have already integrated dz , so only a single integral is 
needed to sum these area elements. Again , it is convenient to use polar coordinates 
in the xy-plane. In terms of polar coordinates, the curve e has equation r = 2a sin 0. 
Thus dr / d0 = 2aco 0 and ds = Jr 2 + (dr / d0) 2 d0 = 2ad0. Therefore, the total 
surface area of that part of the cylinder that lies inside the sphere is given by 

{" /2 
A= 4 lo J4a 2 - r2 2ad0 

{" /2 
= 8a lo J 4a2 

- 4a2 sin2 0 d0 

{" /2 
= 16a2 lo co 0 d0 = I6a 2 square unit . 

Remark The area calculated in Example 8 can also be calculated by projecting the 
cylindrical surface in Figure 15.23 into the yz-plane. (This is the only coordinate plane 
you can use. Why?) See Exercise 6 below. 

In spherical coordinates, ¢ and 0 can be used as parameters on the spherical surface 
R = a. The area element on that surface can therefore be expressed in terms of these 
coordinates: 

Area element on the sphere R = a : dS = a2 sin ¢ d¢ d0 . 

(See Figure 14.52 in Section 14.6 and Exercise 2 below.) 

EXAMPLE 9 Find Ji z2 dS over the hemisphere z = Ja 2 
- x2 

- y2
. 

Solution Since z = a cos¢ and the hemisphere corresponds to O s 0 s 2n , and 
'TC 

0 S ¢ S 2, we have 

Ji z2 dS = fo
2

11: d0 1 n:/
2 

a2 cos2 ¢a 2 sin¢d ¢ 

( 
I )111:/

2 
2na

4 

= 2na
4 -3 cos

3 
¢ 0 3 

Finally, if a composite surface J is composed of smooth parametric su,fac es joined 
pairwise along their edges , then we call J a piecewise smooth surface. The surface 
integral of a function f over a piecewise smooth surface J is the sum of the surface 
integral s off over the individual smooth surfaces comprising -8. We will encounter an 
example of this in the next section. 

The Attraction of a Spherical Shell 
In Section 14.7 we calculated the gravitational attraction of a disk in the xy- plane on 
a mass m located at position (0, 0, b) on the z-axis. Here , we undertake a similar 
calculation of the attractive force exerted on m by a spherical shell of radius a and areal 
density a (units of mass per unit area) centred at the origin . This calculation would 
be more difficult if we tried to do it by integrating the vertical component of the force 
on m as we did in Section 14.7. It is greatly simplified if, instead, we use an integral 
to find the total gravitational potential <l> (0, 0, z) due to the sphere at position (0, 0, z) 
and then calculate the force on mas F = mV<l>(O, 0, b). 

By the Cosine Law, the distance from the point with spherical coordinates [a,¢, 0] 
to the point (0, 0, z) on the positive z-axis (see Figure 15.24) is 

D = Ja 2 + z2 - 2az cos¢. 
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The area element dS = a 2 sin <f>d<f>d0 at [a,¢ , 0] has mass dm 
gravitational potential at (0, 0, z) (see Example 1 in Section 15.2) is 

(0 0 
k dm kaa 2 sin¢ d</> d0 

d<l> , , z) = -- = ----;======= 
D Ja 2 +z 2 -2azcos¢ 

a dS , and its 

For the total potential at (0, 0, z) due to the sphere, we integrate d<l> over the surface of 
thesphere. Makingthechangeofvariablesu = a2+z2-2a z cos¢ , du = 2az sin<f>d</>, 
we obtain 

<1>(0, 0, z) = kaa 2 f
2

7[ d0 r ----;===si=n=</>=d=</>== 
lo lo Ja 2 + z2 - 2azcos¢ 

= 2n:kaa 2 - -i(z+ a) 2 1 du 

(z- a)2 ,Ju 2az 

211:kaa l(z+ a)2 
=--Ju 

Z (z- a)2 

= -- z + a - lz - al = 211:kaa( ) {4n:kaa 2/z 
z 411:kaa 

if z > a 
if z < a. 

The potential is constant inside the sphere and decrea ses proportionally to 1/z outside. 
The force on a mass m located at (0, 0, b) is, therefore , 

F = mV<l>(O, 0, b) = { ~(4n:kmaa2 / b2)k if b > a 
if b < a. 

We are led to the somewhat surprising result that, if the mass m is anywhere inside the 
sphere , the net force of attraction of the sphere on it is zero. This is to be expected at 
the centre of the sphere, but away from the centre it appears that the larger forces due 
to parts of the sphere close to m are exactly cancelled by smaller forces due to parts 
farther away ; these farther parts have larger area and therefore larger total mass . If m 

is outside the sphere, the sphere attracts it with a force of magnitude 

kmM 
F = ~ ' 

where M = 4n: a a 2 is the total mass of the sphere . Thi s is the same force that would 
be exerted by a point mass with the same mass as the sphere and located at the centre 
of the sphere. 

Remark A solid ball of constant density, or density depending only on the distance 
from the centre (for instance, a planet) , can be regarded as being made up of mass 
elements that are concentric sphere s of constant density . Therefore, the attraction of 
such a ball on a mass m located outside the ball will also be the same as if the whole 
mass of the ball were concentrated at its centre. However , the attraction on a mass m 

located somewhere inside the ball will be that produced by only the part of the ball 
that is closer to the centre than m is. The maximum force of attraction will occur when 
m is right at the surface of the ball. If the density is constant, the magnitude of the 
force increases linearly with the distance from the centre (why?) up to the surface 
and then decrease s with the square of the distance as m recedes from the ball. (See 
Figure 15.25 .) 
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force of attraction 

Figure 15.25 The force of attraction of a 
homogeneous solid ball on a particle 
located at varying distances from the 

centre of the ball 

radius of ball distance from 
centre of ball 

Remark All of the above discussion also holds for the electrostatic attraction or 
repulsion of a point charge by a uniform charge density over a spherical shell, which is 
also governed by an inverse square law. In particular, there is no net electrostatic force 
on a charge located inside the shell. 

EXE RC IS ES 15.5 
1. Verify that on the curve with polar equation r = g(0) the arc 

length element is given by 

ds = j(g(0)) 2 + (g ' (0)) 2 d0. 

What is the area element on the vertical cylinder given in 
terms of cylindrical coordinates by r = g(0)? 

2. Verify that on the spherical surface x 2 + y2 + z2 = a2 the 
area element is given in terms of spherical coordinates by 
dS = a2 sincpdcpd0. 

3. Find the area of the part of the plane Ax+ By+ Cz = D 
lying inside the elliptic cylinder 

4. Find the area of the part of the sphere x 2 + y2 + z2 = 4a2 

that lies inside the cylinder x 2 + y 2 = 2ay. 

5. State formulas for the surface area element dS for the surface 
with equation F(x, y, z) = 0 valid for the case where the 
surface has a one-to-one projection on (a) the xz-plane and 
(b) the yz-plane . 

6. Repeat the area calculation of Example 8 by projecting the 
part of the surface shown in Figure 15.23 onto the yz-plane 
and using the formula in Exercise 5(b) . 

7. Find Ji x dS over the part of the parabolic cylinder 

z = x2 / 2 that lies inside the first octant part of the cylinder 
x2 + y2 = 1. 

8. Find the area of the part of the cone z2 = x2 + y 2 that lies 
inside the cylinder x 2 + y 2 = 2ay . 

9. Find the area of the part of the cylinder x 2 + y 2 = 2ay that 
lies outside the cone z2 = x2 + y2. 

10. Find the area of the part of the cylinder x 2 + z2 = a2 that 
lies inside the cylinder y 2 + z2 = a2 . 

0 11. A circular cylinder of radius a is circumscribed about a 
sphere of radius a so that the cylinder is tangent to the sphere 
along the equator. Two planes, each perpendicular to the axis 
of the cylinder , intersect the sphere and the cylinder in 
circle s. Show that the area of that part of the sphere between 
the two planes is equal to the area of the part of the cyhnder 
between the two planes. Thus, the area of the part of a sphere 
between two parallel planes that intersect it depends only on 
the radius of the sphere and the distance between the planes, 
and not on the particular position of the planes. 

D 12. Let O < a < b. In terms of the elliptic integral functions 
defined in Exercise 19 of Section 15.3, find the area of that 
part of each of the cylinder s x2 + z2 = a2 and y2 + z2 = b2 

that lies inside the other cylinder . 

13. Find Ji y dS, where -8 is the part of the plane z = l + y 

that lies inside the cone z = J 2(x 2 + y2) . 

14. Find Ji y dS , where -8 is the part of the cone 

z = J 2(x 2 + y2) that lies below the plane z = 1 + y . 

15. Find Ji xz dS, where -8 is the part of the surface z = x 2 that 

Lies in the first octant of 3-space and inside the paraboloid 
z =l-3 x 2 - y2. 

16. Find the mass of the part of the surface z = ,J2iy that lies 
above the region O :::: x :::: 5, 0 :::: y :::: 2, if the areal density 
of the surface is a(x , y, z) = kz. 

17. Find the total charge on the surface 

r = e" cos vi + e" sin v j + uk, (0 :::: u :::: 1, 0 :::: v :::: ir) , 

if the charge density on the surface is ,5 = .JI + e211• 

Exercises 18-19 concern spheroids, which are ellipsoids with 
two of their three semi-axes equal, say a = b: 

x2 y2 z2 

2+2+ 2 =1. a a c 
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D 18. Find the surface area of a prolate spheroid, where D 24. Find the gravitational attraction of a hemispherical shell of 
radius a and constant areal density CJ on a mass m located at 
the centre of the base of the hemjsphere . 

0 < a < c. A prolate spheroid has its two shorter semi-axes 
equal, like an American "pro football." 

D 19. Find the surface area of an oblate sphero id, where 0 25. Find the gravitational attraction of a circular cylindrical shell 
of radius a, height h, and constant areal density CJ on a mass 
m located on the axis of the cylinder b units above the base. 

0 < c < a. An oblate spheroid has its two longer semi-axes 
equal , like the earth. 

D 20. Describe the parametric surface 

x = auco s v , y = au sinv , z = bu, 

In Exercises 26-28 , find the moment of inertia and radius of 
gyration of the given object about the given axis. Assume 
constant areal density CJ in each case. 

(0 .'.Su .'.S 1, 0 .'.S v .'.S 2ir) , and find its area. 

26. A cylindrical shell of radius a and height h about the axis of 
the cylinder 

D 21. Evaluate ff ( 
2 

~ S 
2 312

, where :Pi s the plane with 
}J/P X + y + z ) 

27. A spherical shell of radius a about a diameter 

28. A right-circular conical shell of base radius a and height h 
about the axjs of the cone equation Ax + By + Cz = D, (D f= 0). 

22. A spherical shell of radius a is centred at the origin. Find the 
centroid of that part of the sphere that lies in the first octant. 

29. With what acceleration will the spherical shell of Exercise 27 
roll down a plane inclined at angle o. to the horizontal ? 
(Compare your result with that of Example 4(b) of 23. Find the centre of mass of a right-circular conical shell of 

base radius a, height h, and constant areal density CJ. Section 14.7.) 

Oriented Surfaces and Flux Integrals 
Surface integrals of normal components of vector fields play a very important role in 
vector calcul us, simjlar to the role played by line integral s of tangential components 
of vector fields. Before we consider such surface integrals we need to define the 
orientation of a surface. 

Oriented Surfaces 
A smooth surface Jin 3-space is said to be orientable if there exists a unit vector field 
N(P) defined on J that varies continuo usly as P ranges over J and that is everywher e 
normal to J. Any such vector field N(P) deterrujnes an orientation of J . The surfac e 
must have two sides since N(P) can have on ly one value at each point P. The side out 
of which N points is called the positive side; the other side is the negative side. An 
oriented surface is a smoot h surface together with a particular choice of orienting unit 
normal vector field N(P). 

For example , if we define Non the smooth surface z = f(x , y) by 

N- - f,( x, y)i-fz( x, y)j + k 
- -J;::::i =+=c=1,=cx=,=y)=)2=+= u=2=(x=, y=)=)2' 

then the top of the surface is the positive side. (See Figure 15.26 .) 

A smooth or piecewise smooth surface may be closed (i.e., it may have no bound
ary) , or it may have one or more boundary curves. (The unit normal vector field N(P ) 
need not be defined at points of the boundary curves.) 

An oriented surface J induces an orientation on any of its boundary curves C?; if 
we stand on the positive side of the surface J and walk aro und C? in the direction of its 
orientation, then J will be on our left side . (See Figure 15.26(a) and (b).) 
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Figure 15.26 The boundary 
curves of an oriented surface are 
themselves oriented with the sUJface 
on the left 

z 

N 

X 
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z z 

y y 
X X 

(a) (b) 

A piecewise smooth smface is orientable if, whenever two smooth component 
surfaces join along a common boundary curve e, they induce opposite orientations 
along e. This forces the normal N to be on the same side of adjacent components. 
For instance , the surface of a cube is a piecewise smoot h, closed surface, consisting of 
six smooth surfaces (the square faces) joined along edges. (See Figure 15.27.) If all of 
the faces are oriented so that their normal N point out of the cube (or if they all point 
into the cube), then the surface of the cube itself i oriented. 

y 

Figure 15.27 The surface of the cube is orientable; 
adjacent faces induce opposite orientations on their 
common edge 

Figure 15.28 The Mobius band is not orientable; it has 
only one "side" 

Not every surface can be oriented, even if it appears smoo th. An orientable surface 
must have two sides. For example, a Mobius band, consisting of a strip of paper with 
ends joined together to form a loop , but with one end given a half twi t before the 
ends are joined, has only one side (make one and see), so it cannot be oriented. (See 
Figure 15.28.) If a nonzero vector is moved around the band, starting at point P, so 
that it is always normal to the surface, then it can return to its starting po ition pointing 
in the opposite direction. 

The Flux of a Vector Field Across a Surface 
Suppose 3-space is filled with an incompre ssible fluid that flows with velocity field v. 
Let -8 be an imaginary , smooth, oriented surface in 3-space . (We say -8 is imaginary 
because it does not impede the motion of the fluid; it is fixed in space and the fluid can 
move freely through it.) We calculate the rate at which fluid flows across -8. Let dS be 
a small area element at point P on the smface. The fluid crossing that element betwee n 
time t and time t + dt occupies a cylinder of base area dS and height lv(P)I dt cos 0, 
where 0 is the angle between v(P) and the normal N(P). (See Figure 15.29.) This 
cylinder has (signed) volume v(P) • N(P) dS dt. The rate at which fluid crosses dS is 

www.konkur.in



900 CHAPTER 15 Vector Fields 

Figure 15.29 The fluid crossing dS in 
time dt fills the tube 

DEFINITION 

I 

v(P) • N(P) dS, and the total rate at which it crosses -8 is given by the surface integral 

or Ji vedS, 

where we use dS to represent the vector surface area element N dS. 
z 

N 
vdt 

y 

X 

Flux of a vector field across an oriented surface 

Given any continuous vector field F, the flux of F across the orientable surface -8 
is integral of the normal component of F over -8, 

or 

When the surface is closed , the flux integra l can be denoted by 

fiF•NdS or Ii F e dS. 

In this case we refer to the flux of F out of -8 if N is the unit exterior normal, and the 
flux into -8 if N is the unit interior normal. 

EXAMPLE 1 Find the flux of the vector field F = mr/ lrl3 out of a sphere -8 of 
radius a centred at the origin. (Here r = x i+ yj + zk.) 

Solution Since F is the field associated with a source of strength m at the origin 
(which produces 4n m unit s of fluid per unit time at the origin), the answer must be 
4n m. Let us calculate it anyway. We use spherical coordinates. At any point r on 
the sphere , with spherical coordinates [a,¢, 0], the unit outward normal is r = r/ lr l. 
Since the vector field is F = mr / a 2 on the sphere, and since an area element is 
d S = a 2 sin ¢ d¢ d0 , the flux of F out of the sphere is 

EXAMPLE 2 Calculate the total flux of F = x i + yj + zk outward through the 
surface of the so lid cylinder x 2 + y 2 ::: a 2 , -h ::: z ::: h. 
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Figure 15.30 The three components of 
the surface of a solid cylinder with their 
outward normals 
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Solution The cylinder is shown in Figure 15.30. Its surface consists of top and 
bottom disks and the cylindrical side wall. We calculate the flux of F out of each. 
Naturally , we use cylindrical coordinates. On the top disk we have z = h, N = k, and 
dS = r dr d0. Therefore , F • N dS = hr dr d0 and 

(( FeNdS=h f
2

,r d0 (a rdr=11:a 2h . 
JJwp k k 

On the bottom disk we have z 
F • N dS = hr dr d0 and 

-h , N -k , and dS 

(( F e NdS= (( F e NdS=11:a 2h. 
J l oouom J lt op 

On the cylindrical wall F = a cos 0 i + a sin 0 j + zk, N 
dS = a d0 dz. Thu s, F • N dS = a2 d0 d z and 

(( F e NdS=a 2 f
2

,r de J" d z =411:a2h. 
J J cylwall Jo - I, 

r dr d0 . Therefore , 

cos 0 i + sin 0 j , and 

The total flux of F out of the surface -8 of the cylinder is the sum of these three 
contributions: 

Ji F • N dS = 611:a2h. 

Calculating Flux Integrals 
If -8 is a parametric surface given by r = r (u, v) for (u , v) in domain Din the uv-plane, 
then, as shown in the previou s section , the vector 

n= ar x ar = a (y, z) i+ a (z,x ) j+ a(x ,y ) k 
au av a (u, v) a (u, v) a(u, v) 

is normal to -8, and dS = lnl du dv is an area element on -8. Accordingly , the vector 
area element for -8 is 

A n 
dS = NdS = ±- lnl dudv = ±ndudv, 

lnl 

where the sign must be chosen to reflect the desired orientation of -8. The flux of 
F = F1 (x, y, z) i + F2(x, y, z)j + F3(x , y, z) k through -8 is given by 

f i F • dS = ±fl F • ( :: x :: ) du dv 

= ± ({ (F1 B(y, z) + F2 a(z, x) + F3 a(x, y) ) du dv. 
}jD 8(u,v) B(u,v) 8(u,v) 

There are, of course , simpler versions of these formulas for surfaces of special 
type s. For instance , let -8 be a smooth, oriented surface with a one-to-one projection 
onto a domain D in the xy- plane, and with equation of the fom1 G (x, y, z) = 0. In 
Section 15.5 we showed that the surface area element on -8 could be written in the form 

dS= , ~~, dxdy , 

and hence surface integra ls over -8 could be reduced to double integrals over the domain 
D. Flux integrals can be treated likewise. Depending on the orientation of -8, the unit 
normal N can be written as 

A VG 
N=±--. 

IVGI 
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Thus, the vector area element dS can be written 

dS=NdS=± VG( x,y,z) dxdy. 
G3(x, y, z) 

The sign must be chosen to give -8 the desired orientation. If G3 > 0 and we want the 
positive side of -8 to face upward , we should use the+ sign. Of course , similar formulas 
apply for surfaces with one-to-one projections onto the other coordinate planes. 

EXAMPLE 3 Find the flux of zi + x 2k upward through that part of the surface 
z = x 2 + y2 lying above the square R defined by -1 ::: x ::: l and 

-1:::y:::l. 

Solution For F(x, y, z) = z - x 2 - y2 we have VF= -2xi - 2yj + k and F3 = 1. 
Thu s, 

dS = (-2xi- 2yj + k)d x dy, 

and the required flux is 

Ji (zi + x
2
k) • dS =fl (-2x(x

2 
+ y2) + x

2
) dx dy 

= f I dx f 1 

(x2 
- 2x 3 

- 2xy2) dy 
- I - I 

= f 1 

2x
2

dx = ~-
- 1 3 

(Two of the three terms in the double integral had zero integrals becau se of symmetry.) 

For a surface -8 with equation z = f (x, y) we have 

af. af . 
--I--J+k 

A ax ay 
N = ±--;:::========= and 

1 + (:~r + (::r 
dS= ( af )

2 

( af)
2 

1 + ax + ay dx dy, 

so that the vector area element on -8 is given by 

dS = N dS = ± (- af i - aJ j + k) dx d y. 
ax ay 

Again , the + sign corresponds to an upward normal. 

EXAMPLE 4 

3-space . 

Find the flux of F = yi - xj + 4k upward through -8, where -8 is 
the part of the surface z = 1 - x2 - y2 lying in the first octant of 

Solution The vector area element corresponding to the upward normal on -8 is 

dS = (-a\_ az j + k) dx dy = (2x i + 2yj + k) dx dy . 
ax ay 

The projection of -8 onto the xy-p lane is the quarter-circular disk Q given by x 2+y2 ::: 1, 
x :::: 0, and y ::: 0. Thus , the flux of F upward through -8 is 

f i F • dS = f lo (2xy - 2xy + 4) dx dy 

= 4 x (area of Q) = n:. 
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EXAMPLE 5 
2xi + 2yj 

Find the flux of F = 
2 2 

+ k downward through the surface 
X + y 

-8 defined parametrically by 

r = u cos vi+ u sin vj + u2k , 

Solution First we calculate dS: 

(Q :::'. U S 1, 0 :::'. V S 2n:). 

ar . . . 2 k - =cosv1+smvJ+ u 
au 
ar . . . - = -u Sill VI+ U COS VJ 
av 

ar ar 2 2 • 2 2 . • k 
- X - = - U COSVl - U SIO VJ + U . 
au av 

Since u ::: 0 on -8, the latt er expression is an upward normal. We want a downward 
normal , so we use 

dS = (2u2 cos vi + 2u2 sin vj - uk) du dv. 

On -8 we have 

2xi + 2yj 2u cos v i + 2u sin vj 
F = 2 2 + k = 2 + k, 

X + y U 

so the downward flux of F through -8 is 

EXE RC IS ES 15.6 
1. Find the flux of F = xi + zj out of the tetrahedron bounded 

by the coordinate planes and the plane x + 2y + 3z = 6. 

2. Find the flux of F =xi+ yj + zk outward across the sphere 
x2 + y2 + z2 = a2. 

3. Find the flux of the vector field of Exercise 2 out of the 
surface of the box O::: x .::: a, 0 ::: y .::: b, 0 ::: z .::: c. 

4. Find the flux of the vector field F = yi + zk out across the 
boundary of the solid cone O ::: z .::: l - J x2 + y2. 

5. Find the flux of F = xi+ yj + zk upward through the part of 
the surface z = a - x2 - y2 lying above plane z = b < a. 

6. Find the flux of F = xi + xj + k upward through the part of 
the surface z = x2 - y2 inside the cylinder x2 + y2 = a2. 

7. Find the flux of F = y3i + z2j + xk downward through the 
part of the surface z = 4 - x2 - y2 that lies above the plane 
z =2x+I. 

8. Find the flux of F = z2k upward through the part of the 
sphere x 2 + y2 + z2 = a 2 in the first octant of 3-space. 

9. Find the flux of F = xi + yj upward through the part of the 
surface z = 2 - x2 - 2y2 that lies above the xy- plane. 

10. Find the flux ofF = 2xi + yj + zk upward through the 

surface r = u2vi + uv2j + v3k , (0::: u .::: 1, 0 ::: v .::: I). 

11. Find the flux of F = x i + yj + z2k upward through the 
surface u cos v i + u sin v j + u k, (0 ::: u .::: 2, 0 ::: v .::: n ). 

12. Find the flux of F = yz i - xz j + (x2 + y2)k upward through 
the surface r = e" cos v i + e" sin v j + u k, where O ::: u .::: 1 
and O::: v.::: n. 

13. Find the flux of F = mr / lr l3 out of the surface of the cube 
-a.:::x,y,z.:::a . 

D 14. Find the flux of the vector field of Exercise 13 out of the box 
1 ::: x, y, z .::: 2. Note: This problem can be solved very 
easily using the Divergence Theorem of Section 16.4; the 
required flux is, in fact, zero. However, the object here is to 
do it by direct calculation of the surface integrals involved, 
and as such it is quite difficult. By symmetry, it is sufficient 
to evaluate the net flux out of the cube through any one of the 
three pairs of opposite faces ; that is, you must calculate the 
flux through only two faces, say z = I and z = 2. Be 
prepared to work very hard to evaluate these integrals! When 
they are done, you may find the identities 

2arctana = arctan (2a / (J - a2)) and 

arctan a+ arctan (1/a)n / 2 useful for showing that the net 
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flux is zero. 

15. Define the flux of a plane vector field across a piecewise 
smooth curve. Find the flux of F =xi+ yj outward across 

(a) the circ le x2 + y2 = a2, and 

(b) the boundary of the square -1 S x, y S l. 

16. Find the flux of F = - (xi + yj ) / (x2 + y2) inward across 
each of the two curves in the previous exercise. 

CHAPTER REVIEW 
Key Ideas 
• What do the following terms and phrases mean? 

o vector field 

o scalar field 

o field line 

o conservative field 

o scalar potential 

o equipotential 

o a source 

o a dipole 

o connected domain 

o simply connected 

o parametric surface 

o orientable surface 

o the line integral off along curve e 
o the line integral of the tangential component of F along e 
o the flux of a vector field through a urface 

• How are the field lines of a conservative field related to 
its equipotential curves or surfaces? 

• How is a line integral of a scalar field calculated? 
• How is a line integral of the tangential component of a 

vector field calculated? 

• When is a line integral between two points independent 
of the path joining those points? 

• How is a surface integral of a scalar field calculated? 
• How do you calculate the flux of a vector field through 

a surface? 

Review Exercises 
1. Find { ~ ds, where e is the curve 

le Y 

X = t, y = 2e1, Z = e21, ( - 1 S t S l ). 

2. Let e be the part of the curve of intersection of the surfaces 
z = x + y2 and y = 2x from the origin to the point (2, 4 , I 8) . 

Evaluate fe 2y dx + x dy + 2dz. 

3. Find fi x dS , where ,8 is that part of the cone z = Jx2 + y2 

in the region OS x S l - y2 . 

17. If ,8 is a smooth, oriented surface in 3-space and N is the unit 
vector field determining the orientati on of ,8, show that the 

flux ofN across ,8 is the area of ,8. 

D 18. The Divergence Theorem presented in Section 16.4 implies 
that the flux of a constant vector field across any oriented, 
piecew ise smooth, closed surface is zero. Prove this now for 
(a) a rectangular box, and (b) a sphere. 

4. Find f i xyzdSovert hepar t of thepl anex+y+z = I lying 

in the first octant. 

5. Find the flux of x 2y i - IOxy2j upward through the surface 
Z = xy, 0 S X S l , 0 SY S l. 

6. Find the flux of x i + yj + zk downward through the part of 
the plane x + 2y + 3z = 6 lying in the first octant. 

7. A bead of mass m slides down a wire in the shape of the curve 
x = a sin t , y = a cost, z = bt, where O S t S for. 

(a) What is the work done by the grav itational force 
F = -mg k on the bead during its descent? 

(b) What is the work done aga inst a resistance of constant 
magnitude R which directly opposes the motion of the 
bead during its descent? 

8. For what values of the constants a, b, and c can you detennin e 
the value of the integral / of the tangential component of 
F = (axy+3y z) i+( x 2 +3xz+by 2 z)j +(bxy+cy 3)k along 
a curve from (0, 1, -1) to (2, 1, 1) without knowing exact ly 
which curve? What is the value of the integra l? 

9. Let F = (x2 / y) i + yj + k. 

(a) Find the field line of F that passes through (I, 1, 0) and 
show that it also passes through (e, e, I). 

(b) Find l F • d r , where e is the part of the field line in (a) 

from ( I , 1, 0) to (e, e, I). 

10. Consider the vector fields 

F = (1 + x)ex+ yj + (xex+ y + 2y)j - 2zk , 

G = ( I + x)ex+ yj + (xex+ y + 2z)j - 2y k. 

(a) Show that Fi s conservative by finding a potential for it. 

(b) Evaluate l G • dr , where e is given by 

r = (l - t)e1i + tj + 2t k , (0 St S l) , 

by taking advantage of the similarity between F and G. 

11. Find a plane vector field F(x , y) that satisfies the follow ing 
conditio ns: 

(i) The field lines of Far e the curves xy = C. 

(ii) IF (x, y)I = L if (x, y) i=-(0, 0). 

(iii) F(i, 1) = (i - j )/ .Jz. 

(iv) Fi s continuous except at (0, 0). 
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12. Let ,8 be the part of the surface of the cylinder y2 + z2 = 16 
that l.ies in the first octant and between the planes x = 0 and 
x = 5. Find the flux of3 z2,d -x j - yk away from the x-ax is 
through -8. 

Challenging Problems 
D 1. Find the centroid of the surface 

r = (2 + cos v)(cos ui + sin uj) + sin vk , 

where O ::: u ::: 27r and O ::: v ::: 7r. Describe this surface . 

D 2. A smooth surface ,8 is given parametrically by 

r = (cos 2u)(2 + v cos u) i 

+ (sin 2u)(2 + v cos u)j + v sin uk, 

CHAPTER REVIEW 905 

where O ::: u ::: 27r and -1 ::: v < 1. Show that for every 
smooth vector field Fon ,8, 

where N = N(u, v) is a unit normal vector field on ,8 that 
depends continuously on (u, v ). How do you explain this? 
Hint: Try to describe what the surface ,8 looks like. 

D 3. Recalculate the gravitational force exerted by a sphere of ra
dius a and areal density a centred at the origin on a point 
mass located at (0, 0, b) by directly integrating the vertical 
component of the force due to an area element dS, rather 
than by integrating the potential as we did in the last part of 
Section 15.5. You will have to be quite creative in dealing 
with the resulting integral. 
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Vector Ca lcu I us 

'' Mathematicians are like Frenchmen: whenever you 
say something to them, they translate it into their 
own language, and at once it is something entirely 
different. 

'' Johann Wolfgang von Goethe 1749-1832 
from Maxims and Reflections, 1829 

I n trod LI Ct ·1 On rn this chapter we develop two- and three-dimensiona l 
analogue s of the one-dimen sional Fundamental Theorem 

of Calc ulus. These analogues - Green 's Theorem , Gauss's Divergence Theorem , and 
Stokes's Theorem- are of great importance both theoretically and in applications . 
They are phrased in terms of certain differential operators, divergence and curl, which 
are related to the gradient operator enco untered in Section 12.7. The operators are 
introduced and their properties are derived in Sections 16. l and 16.2. The rest of the 
chapter deals with the generalizat ions of the Fundamental Theorem of Calculus and 
their applications. 

• 
Gradient, Divergence, and Curl 

-----
First-order information about the rate of change of a three-dimensio nal scalar field, 
f(x , y, z), is contai ned in the three first partial derivatives aJ /a x , aJ /a y , and 8f/8z . 
The gradie nt, 

grad f(x,y,z) = V f(x,y,z) = af i + af j + af k, 
ax ay az 

collect s this information into a single vector-valued "derivative" off. We will develop 
simi lar ways of conveying information about the rate of change of vector fields . 

First-order information about the rate of change of the vector field 

F(x , y, z) = F1 (x , y, z)i + F2(x, y, z)j + F3(x , y, z)k 

is contained in nine first partial derivatives , three for each of the three components of 
the vector field F: 
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differential operator F • V. 
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SECTION 16.1: Gradient, Divergence, and Curl 907 

0F 1 0F 1 0F 1 
OX oy oz 
0F2 0F2 0F2 
ox oy az 

0F3 0F3 0F3 
ox oy az· 

(Again, we stress that F1, F2, and F3 denote the compone nts of F, not partial deriva
tives.) Two special combinations of these derivative s organize this info rmation in 
particularly useful ways, as the gradient does for scalar fields. These are the diver
gence of F (div F) and the curl of F (curl F), defined as follows: 

Divergence and curl 

div F = V • F = 0 F1 + 0 Fi + 0 F3 ' 
ox oy oz 

curlF = V x F 

= ( 0F3 _ 0F2) i + ( 0F1 _ 0F3)j + ( 0F2 _ 0F1) k 
oy oz oz ox ox oy 

j k 
o o o 
ox oy oz 
F1 F2 F3 

Note that the divergence of a vector field is a scalar field, while the curl is another 
vector field. Also observe the notation V • F and V x F, which we will sometimes use 
instead of div F and curl F. This makes use of the vector differential operator 

V . o . a k a =I - +J-+ -, ax ay az 

frequently called del or nabla . Just as the gradie nt of the sca lar field f can be regarded 
as formal scalar multiplication of V and f, so also can the divergence and curl of F 
be regarded as formal dot and cross p roducts of V with F. When using V the order of 
"factors" is important; the quantities on which V acts must appear to the right of V . 
For instance, V • F and F • V do not mean the same thing ; the former is a scalar field 
and the latter is a scalar differential operator: 

o o o 
F • V = F1 - + F2 - + F3 - . 

ox oy oz 

EXAM p LE 1 Find the divergence and curl of the vector field 

F = xyi + (y2 
- z2)j + yzk. 

Solution We have 

o o o 
divF = V • F =-(xy) + -(y2 - z2) + -(yz) = y + 2y + y = 4y, 

ox oy oz 

j k 
o a o 

curl F = V X F = OX oy oz 
xy y2 - z2 yz 

= [~(yz) - ~(y2 - z2)] i + [~(xy) - ~(yz)] j 
ay az oz ox 

+ - (y - z)- -(xy) k= 3zi -x k. [
o 2 2 o ] 
ox oy 
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The divergence and curl of a two-dimen sional vector field can also be defined: if 
F(x, y) = F1 (x, y) i + F2(x, y)j , then 

divF = aF1 + a F2' 
ax ay 

curlF= - - - k. (
a F2 a F1) 
ax ay 

Note that the curl of a two-dimensional vector field is still a 3-vector and is perpendicular 
to the plane of the field. Although div and grad are defined in all dimensions, curl is 
defined only in three dimensions and in the plane (provided we allow values in three 
dimensions). 

EXAM p LE 2 Find the divergence and curl of F = xe Yi - ye x j. 

Solution We have 

divF = V • F = !_(xe>') + !_(-yex) = eY - ex, 
ax ay 

curlF = V x F = (!_(- yex) - !_(xeY) ) k 
ax ay 

= -(yex + xe Y)k . 

Interpretation of the Divergence 
The value of the divergence of a vector field Fat point Pis , loosely speaking, a measure 
of the rate at which the field "diverges" or "spread s away" from P . This spreading 
away can be measured by the flux out of a small closed surface surrounding P. For 
instance , div F(P) is the limit of the flux per unit volume out of smaller and smaller 
spheres centred at P . 

The divergence as flux density 

If N is the unit outward normal on the sphere ,8f of radius € centred at point P , and if 
F is a smooth three-dimensional vector field, then 

3 i ~ divF (P) = Jim - -
3 

FeN dS . 
E->0+ 4n€ ,8, 

PROOF Without loss of generality we assume that P is at the origin. We want to 
expand F = F 1 i + Fij + F3k in a Taylor series about the origin (a Maclaurin series). 
As shown in Section 12.9 for a function of two variables, the Maclaurin series for a 
scalar-valued function of three variables takes the form 

aJ I af I af I f(x, y, z) = f(O, 0, 0) + - x + - y + - z + · · ·, 
ax co,o,o) ay co,o,o) az co,o,o) 

where".· ." represents terms of second and higher degree in x, y, and z. If we apply 
this formula to the components of F, we obtain 

F(x , y, z) = Fo + Fxo x + Fyo y + Fzo z + · · · , 
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where 

Fo = F(O, 0, 0) 

F aF J ( a Fi. aF2 . a F3 )J xo=- = -1+-J+-k 
ax (0,0,0) ax ax ax (0,0,0) 

F aFJ ( a F1. aF2. aF3 )J yo=- = -1+-J+-k 
ay co,o,oi ay ay ay co,o,o) 

aF J ( a Fi . a F2 . a F3 ) J 

Fzo = az co,o,oJ = ~ · + ~ J + ~k co,o,o/ 

again , the ".··" represents the second- and higher-degree terms in x , y, and z. The unit 
normal on -80 is N =(xi+ yj + zk)/ €, so we have 

h 1 ( F • N=; Fo• ix+Fo • j y +F o• k z 

+ F xO • ix 
2 + F xO • j x y + F xo • k x Z 

+ F yO • ix y + F yO • j y2 + F yO • k y Z 

+ Fzo • i x z + Fzo • j yz + Fzo • k z2 + · · -). 

We integrate each term within the parentheses over -80 • By symmetry , 

J{ x dS = J{ y dS = J{ z dS = 0, 
Jf.s, Jf.s, Jf.s, 

J{ xy dS = J{ x z dS = J{ yz dS = 0. 
Jf.s, Jf.s, Jf.s, 

Also, by symmetry, 

and the higher-degree terms have surface integrals involving € 5 and higher power s. 
Thu s, 

3 ff. h 

-- 3 F • Nd S = F xO • i + F yO • j + F zO • k + € ( • · · ) 
4n-€ -8, 

= V • F(O, 0 , 0) + €( .. ·) 

-+ V • F(O, 0 , 0) 

as € -+ o+. This is what we wanted to show. 

Remark The spheres -80 in the above theorem can be replaced by other contracting 
families of piecewise smooth surfaces. For instance, if B is the surface of a rectangular 
box with dimensions Llx, fly, and Llz containing P , then 

divF(P)= Jim 
1 J{

8
FeNdS. 

Lix ,Liy, Liz~ o Llxfl y fl z lft 

See Exercise 12 below. 
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Remark In two dimensions , the value div F(P) represents the limiting flux per unit 
area outward across small, non-self-intersecti ng closed curves that enclose P. See 
Exercise 13 at the end of this section. 

Let us return again to the interpretation of a vector field as a velocity field of a 
moving incompressible fluid. If the total flux of the velocity field outward across the 
boundary surface of a domain is positive (or negative), then the fluid must be produced 
(or annihilated) within that domain. 

The vector field F = xi+ yj + zk of Example 2 in Section 15.6 has constant 
divergence, V • F = 3. In that example we showed that the flux of F out of a certain 
cylinder of base radius a and height 2h is 6n:a2 h, which is three times the volume of 
the cylinder. Exercises 2 and 3 of Section 15.6 confirm similar results for the flux of F 
out of other domains. This leads to another interpretation for the divergence: div F(P) 
is the source strength per unit volume of F at P. With this interpretation, we would 
expect, even for a vector field F with nonconstant divergence, that the total flux of F 
out of the surface -8 of a domain D would be equal to the total source strength of F 
within D; that is, 

!AF•NdS = ff/
0 

VeFdV. 

This is the Divergence Theorem , whjch we will prove in Section 16.4. 

EXAM p LE 3 Verify that the vector field F = mr / lrl3
, due to a source of strength 

m at (0, 0, 0), has zero divergence at all points in JR.3 except the 
origin. What would you expect to be the total flux of F outward across the boundary 
surface of a domain D if the origin lies outside D? if the origin is inside D? 

Solution Since 

F(x ,y,z )= ~(x i +y j + zk) , where r 2 = x 2 +y2+ z2, 

and since ar/ ax = x / r , we have 

a F1 =m!_(~)=mr
3

- 3xr
2

(f) =mr
2

-3x
2 

ax ax r3 r6 r5 

Similarly, 

a F2 r 2 -3y 2 
-=m---
ay r5 

and 
aF3 r 2 - 3z2 
-=m ---
az r 5 

Adding these up, we get V • F(x, y, z) = 0 if r > 0. 

If the origin lies outside the domain D , then the source density of Fin Dis zero, 
so we would expect the total flux of Fout of D to be zero . If the origin lies inside D, 
then D contains a source of strength m (producing 4n: m cubic units of fluid per unit 
time) , so we would expect the flux out of D to be 4n: m. See Examp le l of Section 15.6 
and also Exercises 13 and 14 of that section for spec ific examples. 

Distributions and Delta Functions 
If t(x ) represents the line density (mass per unit length) of mass distributed on the 
x-axis, then the total mass so distributed is 

m = 1_: t(x) dx . 
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Now suppose that the only mass on the axis is a "point mass " m = I located at the 
origin . Then at all other points x =f= 0, the density is t(x) = 0, but we must still have 

1_: t(x)dx = m = 1, 

so t(O) must be infinite. This is an ideal situation , a mathematical model. No real 
function l'(x) can have such properties ; if a function is zero everywhere except at a 
sing le point, then any integral of that function will be zero. (Why ?) (A lso, no real mass 
can occupy just a single point.) Neverthele ss, it is very useful to model real, isolated 
masses as point masse s and to model their densitie s using generalized functions (also 
called distributions ). 

We can think of the density of a point mass 1 at x = 0 as the limit of large densities 
concentrated on small intervals. For instance , if 

d (x) = {n/2 iflx l:::: 1/ n 
" 0 1flx l > 1/ n 

(see Figure 16.1), then for any smooth function f(x) defined on JR. we have 

loo n ll / 11 
d,,(x) f(x) dx = - f(x) dx. 

-00 2 - l/ 11 

Replace f (x) in the integral on the right with its Maclaurin series: 

f' (0) f" (0) 
f(x) = f(O) + -

1 
,- x + ~x 2 + ... . 

Since 

11/ 11 xk dx = { 2/ ((k + l)nk+I) 

- 1/ n 0 

if k is even 
if k is odd, 

we can take the limit as n ---+ oo and obtain 

Jim 100 

dn(x) f(x) dx = f(O) . 
n~oo _

00 

The Dirac distribution c5(x) (also called the Dirac delta function, although it 
is really not a function) is the "limit " of the sequence d11 (x) as n ---+ oo. It is 
defined by the requirement that 

1_: c5(x)f(x) dx = f(O) 

for every smooth function f (x). 

A forma l change of variables shows that the delta function also satisfies 

1_: c5(x - t)f(t) dt = f( x ). 

EXAM p LE 4 In view of the fact that F(r) = mr/ lrl3 satisfies div F(x, y, z) = O 
for (x, y, z) =f= (0, 0, 0) but produces a flux of 4n: m out of any 

sphere centred at the origin, we can regard divF (x, y, z) as a distribution 

divF (x, y, z) = 4n:mc5(x)c5(y)c5(z). 
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In particular, integrating this distribution against f (x, y, z) = l over JR3, we have 

ff/JR3 divF(x,y, z)dV =4nm L: b(x)d x L: b(y)dy L: b(z)dz 

=4nm. 

The integral can equally well be taken over any domain in JR3 that contains the origin 
in its interior, and the result will be the same. If the origin is outside the domain, the 
result will be zero. We will reexamine this situation after establishing the Divergence 
Theorem in Section 16.4. 

A formal study of distributions is beyond the scope of this book; refer to more advanced 
textbooks on differential equations and engineering mathematics. 

Interpretation of the Curl 
Roughly speaking, curl F( P) measures the extent to which the vector field F "swirls" 
around P . 

EXAM p LE 5 Consider the velocity field 

V = -Q yi +Q xj 

of a solid rotating with angular speed n about the z-axis, that is, with angular velocity 
Q = Qk. (See Figure 15.2 in Section 15.1.) Calculate the circulation of this field 
around a circle eE in the xy-plane centred at any point (xo, yo), having radius f, and 
oriented counterclockwi se. What is the relationship between this circulation and the 
curl of v? 

Solution The indicated circle has parametrization 

r = (xo + f cos t)i + (yo + f sin t)j , (0::: t ::; 2n) , 

and the circulation of v around it is given by 

J v e dr= f
2

" (-n(yo+fsint)(-fsint)+n(xo+fcost)(fcost))dt re, lo 

{2" 
= lo ( Qf( yo sin t + xo cost)+ 0€ 2

) dt 

= 2Qnf 2 . 

Since 

curlv = V xv= ( ~ (Qx) - ~ (-Q y))k = 2Qk = 2Q, ax ay 

the circulation is the product of (curl v) • k and the area bounded by eE. Note that this 
circulation is constant for circle s of any fixed radius; it does not depend on the position 
of the centre . 

The calculations in the example above suggest that the curl of a vector field is a measure 
of the circulation per unit area in planes normal to the curl. A more precise version 
of this conjecture is stated in Theorem 2 below. We will not prove this theorem now 
because a proof at this stage would be quite complicated . (However, see Exercise 14 
below for a special case.) A simple proof can be based on Stokes's Theorem; see 
Exercise 13 in Section 16.5. 
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Figure 16.2 Illustrating Theorem 2 

Figure 16.3 The paddle wheel is not only 

carried along but is set rotating by the flow 
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The curl as circulation density 

IfF is a smooth vector field and eE is a circle of radius E centred at point P and bounding 
a disk ,8€ with unit normal N (and orientation inherited from eE; see Figure 16.2), then 

l i ~ Jim - 2 F • dr = N • curlF(P). 
€--+O+ 7r E e, 

Example 5 also suggests the following definition for the local angular velocity of a 
moving fluid: 

The local angular velocity at point P in a fluid moving with velocity field 
v(P) is given by 

1 
Q(P) = 2curl v(P). 

Theorem 2 states that the local angular velocity Q(P) is that vector whose component 
in the direction of any unit vector N is one-half of the limiting circulation per unit area 
around the (oriented) boundary circles of small circular disks centred at P and having 
normal N. 

Not all vector fields with nonzero curl appear to circulate. The velocity field for 
the rigid body rotation considered in Example 5 appears to circulate around the axis of 
rotation, but the circulation around a circle in a plane perpendicular to that axis turned 
out to be independent of the position of the circle; it depended onJy on its area. The 
circle need not even surround the axis of rotation . The following examp le investigates 
a fluid velocity field whose streamlines are straight lines but that still has nonzero , 
constant curl and, therefore, constant local angular velocity. 
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EXAM p LE S Consider the velocity field v = xj of a fluid moving in the xy -
plane. Evidently, particles of fluid are moving along lines parallel 

to the y-axis. However, curl v(x, y ) = k, and Q(x, y) = ½k. A small "paddle wheel" 
of radius E (see Figure 16.3) placed with its centre at position (x, y) in the fluid will 
be carried along with the fluid at velocity xj but will also be set rotating with angular 
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EX E R C I S ES 16.1 

velocit y Q(x , y) = ½k, whi ch is ind epe ndent of its po sition. Th is angular ve locit y is 
du e to the fac t that the veloci ty of the fluid along the right side of the wheel excee ds 

that along the lef t side. 

In Exercises 1- 11, calculate div F and curl F for the given 
vector fields. 

D 13. Let F be a smooth two-dimensional vector field. If el is the 
circle of radius E centred at the origin, and N is the unit 
outward normal to el, show that 

1. F = xi + yj 2. F = yi +x j 

3. F = yi +zj +x k 4. F = yzi +x zj +xy k 

5. F= xi +x k 6. F = xy2i - yz2j + zx 2k 
\ i , lim -

2 
F • N ds = div F(O, 0). 

l-->O+ 7r:E e, 
7. F = f (x) i + g(y) j + h(z)k 8. F = f (z)i - f (z)j 

9. F( r, 0) = ri + sin 0j , where (r , 0) are polar coordinates in 
the plane D 14. Prove Theore m 2 in the special case that el is the circle in 

the x y-plane with parametrizatio n x = E cos 0, y = E sin 0, 
(O ::: 0 ::: 2n) . In this case N = k. Hint: Expand F(x, y, z) 
in a vector Taylor series about the origin as in the proof of 
Theore m 1, and calculate the circulation of indiv idual terms 
around el . 

10. F = r = cos0 i + sin 0j 

11. F = 9 = -s in 0i + cos0 j 

D 12. Let F be a smooth, three-dimensional vector field. If B a, b,c 

is the surface of the box -a ::: x ::: a, -b ::: y ::: b, 
- c ::: z ::: c, with outward normal N, show that 

lim -- F • N dS = V • F (O, 0 , 0). \ 11 , 
a ,b,c-->O+ Sabe Ba,b,c 

Some Identities Involving Grad, Div, and Curl 

Th ere are numerou s identiti es invo lving the fun ctions 

af . af . af 
grad f(x, y, z) = V f(x , y, z) = - 1 + - J + - k , 

ax ay az 

. a ~ a ~ a ~ 
d1v F (x,y ,z ) = V • F(x, y ,z ) = - + - + - , 

ax ay az 

i j k 
a a a 

curl F (x, y, z) = V x F(x, y , z) = ax ay az , 

F1 F2 F3 

and the Laplacian operator , V 2 = V • V , defined for a scalar field ¢ by 

a2¢ a2¢ a2¢ 
V 2 ¢ = V • V ¢ = div grad ¢ = - 2 + - 2 + - 2 , 

ax ay az 

and fo r a vector field F = F1 i + Fzj + F3k by 
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(The Laplacian operator, V 2 = (a2/ax2) + (a2 ;ay2) + (a2/az2), is denoted by t:,. in 
some books.) Recall that a function ¢ is called harmonic in a domain D if V 2¢ = 0 
throughout D . (See Section 12.4.) 

We collect the most important identities together in the following theorem. Most 
of them are forms of the Product Rule. We will prove a few of the identities to illustrate 
the techniques involved (mostly brute-force calculation) and leave the rest as exercises. 
Note that two of the identities involve quantities like (G • V)F; this represents the 
vector obtained by applying the scalar differential operator G • V to the vector field F: 

aF aF aF 
(G • V)F = G 1 - + G2 - + G3 - . 

ax ay az 

Vector differential identities 

Let¢ and If/ be scalar fields and F and G be vector fields, all assumed to be sufficiently 
smooth that all the partial derivatives in the identities are continuous. Then the following 
identities hold: 

(a) V(<plf!)=<pVlfl+lf!Vrp 

(b) V • (r/JF) = (V</J) • F + </J(V • F) 

(c) V x (</>F) = (V</J) x F+</J(V x F) 

(d) V . (F X G) = (V X F) . G - F . (V X G) 

(e) V x (F x G) = (V • G)F + (G • V)F - (V • F)G - (F • V)G 

(f) V (F • G) = F x (V x G) + G x (V x F) + (F • V)G + (G • V)F 

(g) V • (V x F) = 0 (div curl = 0) 

(h) V x (V</J) = 0 (curl grad = 0) 

00 Vx~x~=V~ e ~-V~ 

(curl curl = grad div - Laplacian) 

Identities (a)-(f) are versions of the Product Rule and are first-order identities involving 
only one application of V. Identities (g)-(i) are second-order identities. Identities (g) 
and (h) are equivalent to the equality of mixed partial derivatives and are especially 
important for the understanding of div and curl. 

PROOF We will prove only identities (c) , (e), and (g). The remaining proofs are 
similar to these. 

(c) The first component (i component) of V x (</>F) is 

The first two terms on the right constitute the first component of (V ¢) x F, and 
the last two terms constitute the first component of <p (V x F). Therefore , the 
first components of both sides of identity (c) are equal. The equality of the other 
components follows similarly. 

(e) Again, it is sufficient to show that the first components of the vectors on both sides 
of the identity are equal. To calculate the first component of V x (F x G) we need 
the second and third components of F x G, which are 
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The first component of V x (F x G) is therefore 

The first components of the four terms on the right side of identity (e) are 

When we add up all the terms in these four expressions, some cancel out and we 
are left with the same terms as in the first component of V x (F x G). 

(g) This is a straightforward calculation involving the equality of mixed partia l deriva
tives: 

V e (V x F)=- --- +- ---a ( aF3 aF2) a ( aF1 aF3) 
ax ay az ay az ax 
+ ~ ( aF2 _ aF1) 

az ax ay 
a2 F3 a2 F 2 a2 F1 a2 F3 a2 F2 a2 F1 

=-----+-----+-----axay axaz ayaz ayax azax azay 
=0. 

Remark Two triple product identitie s for vector s were previously presented in Exer
cises 18 and 23 of Sectio n I 0.3: 

a • (b x c) = b • (c x a)= c •(ax b) , 

a x (b x c) = (a • c)b - (a• b)c. 

While these are usefu l identities, they cannot be used to give simpler proofs of the 
identities in Theorem 3 by replacing one or other of the vectors with V. (Why?) 

Scalar and Vector Potentials 
Two special terms are used to describe vector fields for whjch either the divergence or 
the curl is identica lly zero. 

Solenoidal and irrotational vector fields 

A vector field Fis called solenoidal in a domain D if div F = 0 in D. 
A vector field F is called irrotational in a domain D if curl F = 0 in D . 
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Figure 16.4 The line segment from Po to 
any point in D lies in D 

SECTIO N 16.2: Some Identities Involving Grad, Div, and Curl 917 

Part (h) of Theorem 3 say that F = grad ¢ ===} curl F = 0. Thus , 

Every conservative vector field is irrotational. 

Part (g) of Theorem 3 says that F = curl G ===} div F = 0. Thus , 

The curl of any vector field is solenoidal. 

The converses of these assertion s hold if the domain of F satisfies certain conditions. 

IfF is a smooth , irrotational vector field on a simply connected domain D , then F = V ¢ 
for some scalar potential function defined on D , so Fi s conservative. 

If F is a smooth , solenoidal vector field on a domain D with the property that every 
closed surface in D bounds a domain contained in D, then F = curl G for some vector 
field G defined on D . Such a vector field G is called a vector potential of the vector 
field F. 

We cannot prove these results in their full generalit y at this point. However, both 
theorems have simple proof s in the special case where the domain D is star-like. A 
star-like domain is one for which there exi ts a point Po such that the line segment 
from Po to any point P in D lies wholly in D. (See Figure 16.4.) Both proofs are 
constructive in that they tell you how to find a potenti al. 

Proof of Theorem 4 for star-like domains. Without loss of generality , we can assume 
that Po is the origin . If P = (x, y, z) is any point in D, then the straight line segment 

r(t) = txi + tyj + tzk , (0 ::: t S 1), 

from Po to P lies in D. Define the function ¢ on D by 

1
1 dr 

</>(x, y, z) = F(r(t)) • - dt 
O dt 

= lo 1 

(x F1 (<;, 11, () + y F2(<;, 11, () + z F3(<;, 11, () ) dt , 

where <; = tx, 11 = ty , and ( = tz . We calculate a¢/ax, making use of the fact that 
curl F = 0 to replace (a/a<;)F2(<;, 11, () with (a/a 17) F1 (<:, 17, () and (a/a<;)F3(<;, 17, () 
with (a/a() F, (<;, 11, (): 

a¢ 1' ( aF, aF2 a F3) - = Fi( <;, 17,() +t x- + ty - + tz - dt 
ax o a<: a<: a<: 

1
1 

( aF, a F, a F,) = Fi( <;, 17, () + tx- + ty - + t z - dt 
o a<: a11 at; 

= fo' :t (t Fi( <;, 11, 0) dt 

= (t Fi (tx, ty, tz)) I~= Fi (x, y, z). 

Similarly, a¢ /a y = F2 and a¢ /a z = F3. Thus V</J = F. 

The details of the proof of Theorem 5 for star-like domains are similar to those of 
Theorem 4, and we relegate the proof to Exercise 18 below. 
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Note that vector potentials , when they exist, are very non unique. Since curl grad¢ 
is identically zero (Theorem 3(h)), an arbitrary conservative field can be added to G 
without changing the value of curl G. The following example illustrates just how 
much freedom you have in making simplifyin g assumptions when trying to find a 
vector potential. 

EXAMPLE 1 Show thatthe vector field F = (x 2 + yz) i -2y(x +z)j + (xy +z 2)k 
is solenoidal in JR3 and find a vector potenti al for it. 

Solution Since div F = 2x - 2(x + z) + 2z = 0 in JR3
, F is solenoidal. A vector 

potential G for F must satisfy curl G = F; that is , 

aG3 aG2 2 -- - -- = X + yz, 
ay az 

a G1 aG3 - - - = -2 xy -2 yz, 
az ax 

aG2 aG1 2 
-- - -- = xy + z 
ax ay 

The three components of G have nine independent first partial derivatives, so there are 
nine "degrees of freedom" involved in their determination. The three equations above 
use up three of these nine degrees of freedom . That leaves six. Let us try to find a 
solution G with G2 = 0 identically. Thi s means that all three first partials of G2 are 
zero, so we have used up three degree s of freedom in making this assumption. We have 
three left. The first equation now implie s that 

G3 = f (x 2 + yz) dy = x 2
y + ~ lz + M(x , z). 

(Since we were integrating with respect to y, the constant of integration can still depend 
on x and z.) We make a second simplifyin g assumption , that M (x, z) = 0. This uses 
up two more degrees of freedom , leaving one . From the second equation we have 

aG1 aG3 -- = -- - 2xy - 2y z = 2xy - 2x y - 2y z = -2y z, 
az ax 

so 

G1 = -2 / yzdz = -y z2 + N(x, y). 

We cannot assume that N (x, y) = 0 identically becau se that would require two degrees 
of freedom and we have only one. However , the third equation implies 

2 a G1 2 aN 
xy + z =---= z 

ay ay 

Thus , (a/ay )N( x, y) = -xy; observe that the terms involving z have cancelled out. 
Thi s happened because div F = 0. Had F not been solenoidal, we could not have 
determined N as a function of x and y only from the above equation . As it is, however , 
we have 

N(x, y) = - f xydy = -~ xy2 + P (x). 

We can use our last degree of freedom to choose P( x) to be identically zero and hence 
obtain 

G = - (yz2 + xt )i + (x2y + y:z)k 
as the required vector potential for F. You can check that curl G = F. Of course, 
other choices of simplifying assumptions would have led to very different functions G, 
which would have been equally correct. 

In theoretical physic s any particular choice of curl free term added to G is called a 
"gauge ," and there is an elaborate theory known as "gauge theory," which explores the 
relative merits of such gauges and their relationships to each other. 
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Maple Calculations 
The Maple VectorCalculus package defines routine s for creating a vector field as well 
as calculating the gradient of a scalar field and the divergences and curl of a vector 
field. It will also calculate the Laplacian of a scalar or vector field and allow the use of 
the "del" operator in dot and cross products. Some of these capabilities are restricted 
to 3-dimensional vector fields. Let us begin by loading the package and declaring the 
type of coordinate system we will use and the names of the coordinates: 

> with(VectorCalculus) : 
> SetCoordinates( ' cartesian ' [x , y , z]) ; 

cartesian x ,y,z 

Setting the coordinat es at the outset means we don ' t have to do it every time we call 
one of the procedure s for handling vector fields, such as the Gradient procedure, 
which we illustrated at the end of Section 12.7. To calculate the gradient of a scalar 
expression in the variables x, y, and z, we could simply enter 

> f : = xA2 + x*y - zA3 ; G : = Gradient(f) ; 

f := x2 + xy - z3 

G := (2x + y) ex + x ey - 3z2 ez 

Maple shows that the result G is a vector field rather than just a vector by placing 
bars over the basis vectors. Maple treats vector fields and vectors as different kinds of 
objects; you can, for example, add two vector fields or two vectors, but you can't add a 
vector to a vector field. A vector field is a vector-valued function of a vector variable. 
To evaluate a vector field at a particular vector, you use the eval VF procedure: 

> evalVF(G , <1 , 1 , 1>) ; 

You can define a vector field F with the Vect o rField procedure: 

> F : = VectorField(<x*y , 2*y*z , 3*x*z>) ; 

F := x y ex + 2 y z ey + 3 x z ez 

Then we can calculate the divergence or curl of F by using the Divergence or Curl 
procedures, or by dot or cross products with the Del operator: 

> Di vergence(F) ; Del . F ; 

y+2z +3 x 

y+2 z +3x 

> Curl(F) ; Del &x F ; 

-2ye x -3zey-Xe z 

We can verify the identities in Theorem 3 by using arbitrary scalar and vector 
fields: 

> H : = VectorField(<u(x , y , z) , v(x , y , z) , w(x , y , z ) >) ; 

H := u(x, y, z) ex + v(x, y, z) ey + w(x, y, z) e2 

> Divergence(Curl(H)) ; Curl(Gradient(u(x , y , z ) ) ; 

0 

0 ex is VectorCalculus' s way of denoting the zero vector field. 
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920 CHAPTER 16 Vector Calculus 

> Curl(Curl(H) ) - Gradient(Divergence(H)) + Laplacian(H) ; 

Oex 

VectorCalculus also has procedure s for finding the scalar potential of an irrotational 
vector field and the vector potential of a solenoidal vector field : 

> ScalarPotential(VectorField(<x , y , z>)) ; 

1 1 1 
-x2 + - y2 + -z2 
2 2 2 

> VectorPotential(VectorField(<xA2 , -x*y , -x*z>)) ; 

- 2 -- x y z ex - x z ey 

Neither procedure gives any output if you fail to feed it a vector field satisfying the 
appropriate condition (irrotational or solenoidal). 

Finally, let us note that VectorCalculus is quite happy to deal with coordinate 
systems other than ' carte s i an ' [ x , y , z J . For instance , 

> SetCoordinates( ' cylindrical ' [r , theta , z)) ; 

cylindri cal, ,0,z 

> Laplacian(u(r , theta , z)) ; 

a2 

(
a ) ( a2 ) a02 u(r , 0 ,z ) ( a2 ) - u(r, 0 , z) + r -

2 
u(r , 0 , z) + ..=....c... ____ + r -

2 
u(r, 0, z) 

ar ar r az 

r 

which is not written as neatly as we would like , but is correct. Similarly, we can 
use coordinate system s ' spherical ' [rho , phi , theta ) in 3-space and also 
' polar ' [ r, t h eta J in the plane . 

EXE RC IS ES 16.2 
1. Prove part (a) of Theorem 3. In particular, if V • F = 0 and V x F = 0, then 

2. Prove part (b) of Theorem 3. 

3. Prove part (d) of Theorem 3. V x (F x r) = F + V (Fer). 

4. Prove part (f) of Theorem 3. 

5. Prove part (h) of Theorem 3. 

6. Prove part (i) of Theorem 3. 12. If ¢ and If/ are harmonic functions , show that ¢ V If/ - 1/f V ¢ 

7. Given that the field lines of the vector field F(x, y, z) are 
is solenoidal . 

parallel straight lines, can you conclude anything about 13. If ¢ and If/ are smooth scalar fields, show that 

div F? about curl F? 

8. Let r = xi+ yj + zk and let c be a constant vector. Show V X (¢Vlfl) = -V X (1f!V¢) = V¢ X Vljl. 
that V • (c x r) = 0, V x (c x r) = 2c, and V (c • r) = c. 

9. Let r = xi + yj + zk and let r = lr l. If f is a differenti able 
function of one variable, show that 14. Verify the identity 

V • (f(r)r) = rJ' (r) + 3f(r) . 
v • (1cv g x v h)) = v f • (V g x v h) 

Find f (r) if f (r)r is solenoidal for r f=. 0. 

10. If the smooth vector field F is both irrotational and 
for smooth scalar fields f , g , and h . 

solenoidal on JR3, show that the three components of F and 
the scalar potential for F are all harmonic functions in JR3. 15. If the vector fields F and G are smooth and conservative , 

11. If r = xi + yj + zk and Fis smooth , show that 
show that F x G is solenoidal. Find a vector potential for 
F X G. 

V x (F x r) = F - (V • F)r + V (Fer) - r x (V x F). 16. Find a vector potential for F = -yi + xj . 
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17. Show that F = x e2Zi + y e2Zj - e2Zk is a solenoidal vector 
field, and find a vector potential for it. 

check the first components of curl G and F. Proceed in a 
manner similar to the proof of Theorem 4. 

D 18. Suppose div F = 0 in a domain D any point P of which can 
by joined to the origin by a straight line segment in D. Let 

i 19. Use the Maple VectorCalculus package to verify the 
identities (a)- (f) of Theorem 3. Hint: For expressions of the 
form (F • V)G you will have to use r = txi + tyj + tzk , (0 :'.:: t :'.:: 1), be a parametrization of the 

line segment from the origin to (x , y , z) in D . If 

1
1 dr 

G( x, y, z) = tF(r(t)) x - dt , 
O d t 

show that curl G = F throughout D. Hint: It is enough to 

> F[l]*diff(G , x)+F[2]*diff(G , y) 
> +F[3]*diff(G , z) 

becau e Del cannot be applied to a vector field except via a 
dot or cross product. 

• 
Green's Theorem in the Plane i -----

The Fundamental Theorem of Calculu s, 

y 

Figure 16.5 A plane domain with 
positively oriented boundary 

X 

1b d 
- f (x ) dx = f (b) - f (a) , 

a dx 

expresse s the integral , taken over the interval [a , b ], of the derivative of a single -variable 
function , f, as a sum of values of that function at the oriented boundary of the interval 
[a, b], that is, at the two endpoints a and b, the former providing a negative contribution 
and the latter a positi ve one. The line integral of a conservative vector field over a 
curve e from A to B , 

fe V ¢ • dr = ¢ (B) - ¢ (A) , 

has a similar interpretation ; V ¢ is a derivative , and the curve e, although lying in 
a two- or three-dimension al space , is intrinsically a one -dimensional object, and the 
point s A and B constitute its boundary. 

Green 's Theorem is a two-dimen sional version of the Fundamental Theorem of 
Calculus that expresses the double integral of a certain kind of derivative of a two
dimensional vector field F(x, y ), namely , the k-component of curlF , over a region 
R in the xy -plane as a line integral (i.e. , a "sum") of the tangential component of F 
around the curve e which is the oriented boundary of R: 

f L curlF • kdA = fe F • dr , 

or, more explicitly , 

1i (aF2 aF1) f - - - dxd y = F1(x, y )d x + F2(x, y )dy. 
R ax ay e 

For this formula to hold , e must be the oriented boundary of R considered as a surface 
with orientation provided by N = k. Thu s, e is oriented with R on the left as we 
move around e in the direction of its orientation. We will call such a curve positively 
oriented with respect to R. In particular , if e is a simple closed curve bounding R, then 
e is oriented counterclockwi se. Of cour se, R may have holes , and the boundaries of 
the holes will be oriented cl_?ckwise. In any cas~, the unit tangent T and unit exterior 
(pointing out of R) normal Non e satisfy N = T x k. See Figure 16.5. 
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THEOREM 

I 
y 

R2 

X 

Figure 16.6 Green's Theorem holds for 
the unjon of RI and R2 if it holds for each 

of those regions 

y 
y = g(x) 

b X 

,i: .u· 8F1 Figure 16.7 :re F1 dx = - R - dA 
ay 

for this y-simple region R 

Green's Theorem 

Let R be a regular, closed region in the xy -plane whose boundary , e, consists of one or 
more piecewise smooth, simple closed curves that are positively oriented with respect 
to R . If F = F1 (x, y )i + F2 (x, y )j is a smooth vector field on R, then 

i 1h (aF2 aF1 ) F1(x,y)dx+F2(x,y)dy= - -- dA. 
e R ax ay 

PROOF Recall that a regular region can be divided into nonoverlapping subregions 
that are both x -simple and y-sim ple. (See Section 14.2.) When two such regions share 
a common boundary curve, they induce opposite orientations on that curve , so the 
sum of the line integrals over the boundaries of the subregions is just the line integral 
over the boundary of the whole region. (See Figure 16.6.) The double integrals over 
the subregions also add to give the double integral over the whole region. It therefore 
suffices to show that the formula holds for a region R that is both x -simple and y-simple. 

Since R is y-simple, it is specified by inequalities of the form a :S x :S b, 
f(x) :S y S g(x), with the bottom boundary y = f(x) oriented left to right and the 
upper boundary y = g(x) oriented right to left. (See Figure 16.7.) Thus, 

1i 
a F1 lb 1g(x) aF , 

- -dxdy = - dx -dy 
R ay a f(x) ay 

= f\-F1 (x, g(x)) + F1 (x, f(x))) dx . le, 
On the other hand, since dx = 0 on the vertical sides of R, and the top boundary is 
traversed from b to a, we have 

Similarly , since R is x-simple, 1 F2 dy = ff aFz dx dy, so 
fe }JR ax 

i 1i (a F2 a F1) F1(x,y)dx+F2(x,y)dy = --- dA. 
e R ax ay 

EXAMPLE 1 

F =xj, 

(Area bounded by a simp le closed curve) For any of the three 
vector fields 

F = -yi, and 
I 

F= 2(-yi+xj) , 

we have (aF2/ax ) - (a F, /a y) = l. If e is a positively oriented, piecewise smooth, 
simple closed curve bounding a region R in the plane, then , by Green's Theorem, 

£xdy = -feydx = ~ fexdy -ydx =fl ldA = area of R . 

EXAMPLE 2 Use the result of the previous example to calculate the area of the 
elliptic disk bounded by the curve e given by 

r = 3(cost + sint) i + 2(sint - cost)j, 0 St S 21r. 
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X 

Figure 16.8 The origin does not lie in R, 

SECTION 16.3: Green's Theorem in the Plane 923 

Solution The parametrization of e gives 

x = 3(cos t + sin t) , 

dx = 3(- sint +cost) dt , 

y = 2(sin t - cost), 

dy = 2(cos t + sin t) dt, 

so that x dy - y dx = 6( (cost+ sin t) 2 + (sin t - cos t)2) dt = 12dt . Thus, by the 
third formula for the area given in the previou s example, the disk has 

area= ! [ x dy - y dx 
2 le 
1 i2,r 

=- l2dt=l2n 
2 o 

square units. 

EXAMPLE 3 Evaluate/= fe(x - y3)dx + (y3 
+ x

3
)dy, 

where e is the positively oriented boundary of the quarter-di sk Q: 
0 :::: x 2 + y2 .:::: a2, x 2:: 0, y 2:: 0. 

Solution We use Green 's Theorem to calculate/: 

I= 11
[ (.!_(y3 + x3) - .!_(x - y3)) dA JQ ax ay 

= 3 / IQ (x 2 + y2) dA = 3 fo"
12 

dB foa r3 dr = ~na 4
. 

EXAMPLE 4 Let e be a positively oriented, simple closed curve in the xy-p lane, 
bounding a region Rand not passing through the origin. Show that 

J- ydx+xdy ={o 
re x2 + y2 2n 

if the origin is outside R 
if the origin is inside R. 

Solution First, if (x, y) =I (O, 0) , then , by direct calculation, 

:x (x2:y 2)- :y (x 2~\ 2) =O. 

If the origin is not in R, then Green's Theorem implies that 

fe -yx~x+\: dy = fl [ :x ( x2: y2 )- :Y ( x2 ~\2)] dx dy = O. 

Now suppose the origin is in R. Since it is assumed that the origin is not on e, it must 
be an interior point of R. The interior of R is open, so there exists E > 0 such that the 
circle e, of radius E centred at the origin is in the interior of R. Let e, be oriented 
negatively (clockwise ). By direct calculation (see Exercise 22(a) of Section 15.4) it is 
easily shown that 

i - ydx + xdy 
-------2n e, x2 + y2 - . 

Together e and e, form the positively oriented boundary of a region R 1 that excludes 
the origin . (See Figure 16.8.) So, by Green's Theorem , 

i - y dx+ xdy i -ydx+xdy -----+ ---=----,--=0 e x2 + y2 e, x2 + y2 . 

The desired result now follows: 

i -ydx+xd y i -ydx+xd y 
----=- ----=-(-2n)=2n . e x2 + y2 e, x2 + y2 
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THEOREM 

I 
y 

X 

Figure 16.9 N = T x k 

EXE RC IS ES 16.3 

The Two-Dimensional Divergence Theorem 
The following theorem is an alternative formulat ion of the two-dimensional Funda

mental Theorem of Calculus . In this case we express the double integral of div F (a 
derivative of F) over R as a single integral of the outward normal component of F on 

the boundary C of R . 

The Divergence Theorem in the Plane 

Let R be a regular, closed region in the xy- plane whose boundary , e, consists of one 
or more piecewise smooth, simple closed curves . Let N denote the unit outward (from 
R) normal field one. IfF = F1 (x, y)i + F2(x, y)j is a smooth vector field on R, then 

fl divFdA = feF •Nds. 

PROOF As observed in the second paragraph of this section, N T x k, where 

T is the unit tangent field in the positive direction on e. If T = T1 i + T2j, then 

N = T2i - Tij. (See Figure 16.9.) Now let G be the vector field with components 

G 1 = - F2 and G2 = F1. Then G • T = F • N and, by Green 's Theorem, 

1. Eval uate le (sin x + 3y2) dx + (2x - e-Y
2

) dy, where e is 

the boundary of the half-di sk x 2 + y2 :S: a2 , y :::. 0, oriented 
counterclockwise. 

two-dimensional Divergence Theorem to prove Green's 
Theorem . 

7. Sketch the plane curve e: r = sin ti+ sin 2t j, (0 :s: t :s: 2ir ). 

Evaluate fe F • dr, where F = yex
2
i + x3eY j. 

2. Evaluate fe (x 2 
- xy) dx + (xy - y2) dy clockwise around 

the triangle with vertices (O, 0), (I, 1), and (2, 0). 

3. Evaluate fe ( x sin (y2) - y2) dx + ( x 2 
y cos(y2) + 3x) dy, 

where e is the counterclockwise boundary of the trapezoid 
with vertices (O, -2) , (1, -1) , (1, 1), and (0, 2). 

4. Eva luate fe x 2 y dx - x y2 dy , where e is the clockwise 

boundary of the region O :s: y :s: .J9 - x 2 . 

5. Use a line integral to find the plane area enclosed by the 
curve r = a cos3 ti + b sin3 t j , (0 :S: t :S: 2ir ). 

6. We deduced the two-dimensional Divergence Theorem from 
Green's Theorem. Reverse the argument and use the 

8. If e is the positively oriented boundary of a plane region R 
having area A and centroid (i, ji), interpret geometrically the 

line integral fe F • dr, where (a) F = x2j, (b) F = xy i, 

and (c) F = y2i + 3xyj. 

D 9. (Average values of harmonic functions) If u(x, y) is 
harmonic in a domain containing a disk of radius r with 
boundary C,., then the average value of u around the circle is 
the value of u at the centre. Prove this by showing that the 
derivative of the average value with respect tor is zero using 
the Divergence Theorem and the harmonicity of u, and the 
fact that the limit of the average value as r -;. 0 is the value 
of u at the centre. 
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. _ T_h_e_D_iv_er_g_en_c_e _Th_e_or_e_m_in_3-_S_pa_c_e __________ _ 
The Divergence Theorem (also called Gauss's Theorem) is one of two important 
versions of the Fundamental Theorem of Calculus in JR3. (The other is Stokes 's 
Theorem , presented in the next section.) 

THEOREM 

I 

,8* 

In the Divergence Theorem , the integral of the derivative div F = V • F over 
a domain in 3-space is expressed as the flux of F out of the surface of that domain . 
It therefore closely resembles the two-dimensional version, Theorem 7, given in the 
previous section . The theorem holds for a general class of domains in JR3 that are 
bounded by piecewise smooth closed surfaces. However, we wiU restrict our statement 
and proof of the theorem to domains of a special type. Extending the concept of an 
x -simple plane domain defined in Section 14.2, we say the three-dimensional domain 
D is x-simple if it is bounded by a piecewise smooth surface ,8 and if every straight 
line parallel to the x-axis and passing through an interior point of D meets ,8 at exactly 
two points. Similar definitions hold for y-simple and z-simple, and we call the domain 
D regular if it is a union of finitely many, nonoverlapping subdomains , each of which 
is x-simple , y-simple, and z-simple. 

The Divergence Theorem (Gauss's Theorem) 

Let D be a regular , three-dimensional domain whose boundary ,8 is an oriented , closed 
surface with unit normal field N pointing out of D. IfF is a smooth vector field defined 
on D , then 

ff l divFdV = tF • NdS. 

z 

k 

N 
z =g(x ,y ) 

X V 
y 

Figure 16.10 A union of abutting domains Figure 16.11 A z-simple domain 

PROOF Since the domain D is a union of finitely many nonoverlapping domains 
that are x-simple, y-simple, and z-simple, it is sufficient to prove the theorem for a 
subdomain of D with this property. To see this, suppose, for instance, that D and ,8 are 
each divided into two parts , D1 and D2, and ,81 and -82, by a surface ,8* slicing through 
D. (See Figure 16.10.) ,8* is part of the boundary of both D1 and D2, but the exterior 
normals , NI and N2, of the two subdomains point in opposite directions on either side 
of ,8*. If the formula in the theorem holds for both subdomains, 
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then, adding these equations , we get 

[[[ divFdV= Ji FeNdS= Ji FeNdS ; 
j j j D Jf-&1u-82 Jf-& 

the contribution s from -8* cancel out because on that surface N2 = -N1. 
For the rest of this proof we assume, therefore, that D is x-, y-, and z-simple . 

Since D is z-simple, it lies between the graphs of two functions defined on a region 
R in the xy -plane; if (x, y, z) is in D, then (x, y) is in Rand f(x, y) ::::: z::::: g(x, y). 
(See Figure 16.11.) We have 

lit 8 F3 ih ! g(x,y) a F3 
-dV = dxd y -dz 

D az R f(x ,y) az 

= f JR (F 3(x , Y, g(x , y) ) - F3(x , y, f( x, y ))) dx dy . 

Now 

Only the last term involves F3, and it can be split into three integral s, over the top 
surface z = g(x, y), the bottom surface z = f (x , y), and vertical side wall lying above 
the boundary of R: 

J{ F3(x,y,z) k•NdS = ( {{ + {{ + {{ )F3( x,y,z )k•NdS . 
Jf-& J Jt op J }bott om J J s,de 

On the side wall, k • N = 0, so that integral is zero . On the top surface, z = g(x, y), 
and the vector area element is 

A ( ag . ag . ) NdS = --1 - -J + k dxdy. 
ax ay 

Accordingly, 

/LP F3(x , y, z) k • N dS = f JR F3(x , y, g(x, y)) dx dy. 

Similarly, we have 

{{ F3(x ,y,z )k •N dS=- {{ F3(x,y,f (x,y))d xdy; 
}}bottom }JR 

the negative sign occurs because N points down rather than up on the bottom . Thus , 
we have shown that 

/fl 8~ 3 
dV = !£F3keNdS. 

Similarly , because D is also x-si mple and y-s imple, 

/fl 8; 1 
dV = /£ F 1 ieNdS 

ff£ 8~
2 

dV = f£ F2j . N dS. 

Adding these three results, we get 

ff l divF dV = f£F•NdS. 

The Divergence Theorem can be used in both directions to simplify explicit calculation s 
of surface integrals or volumes. We give examples of each. 
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EXAM p LE 1 Let F = bx y 2 i + bx 2 yj + (x 2 + y2)z2k, and let -8 be the closed 
surface bounding the soljd cylinder R defined by x 2 + y2 :s a2 

and O :S z :S b. Find fl F • dS. 

Solution By the Divergence Theorem , 

flF • dS =ff l divFdV = /fl (x 2 + y2)(b + 2z)dV 

EXAMPLE 2 Evaluate fl (x 2 +y2) dS, where -8 is the spherex 2 +y 2 +z 2 = a2
. 

Use the Divergence Theorem. 

Solution On -8 we have 

N = ~ = _x_i _+_y_j_+_z_k. 
a a 

We would like to choose F so that F • N = x 2 + y2. Observe that F = a (xi + yj) will 
do. If B is the ball bounded by -8, then 

flcx2
+ y2)dS = flF•NdS= Iii divFdV 

=ff L 2adV = (2a)i7ra
3 = ~7ra

4
. 

EXAM p LE 3 By using the Divergence Theorem with F = xi+ yj+ zk, calculate 
the volume of a cone having base area A and height h . The base 

can be any smoothly bounded plane region . 

Solution Let the vertex of the cone be at the origin and the base in the plane z = h 
as shown in Figure 16.12. The solid cone Chas surface consisting of two parts: the 
conical wall -8 and the base region D that has area A. Since F(x, y, z) points directly 
away from the origin at any point (x , y, z) -:p (0, 0, 0) , we have F • N = 0 on -8. On 
D, we have N = k and z = h, so F • N = z = h on the base of the cone. Since 
div F(x, y, z) = l + 1 + 1 = 3, we have, by the Divergence Theorem , 

3V =ff i divFdV = f LF•NdS + fl FeNdS 
=O+h fldS=Ah . 

Thus , V = ½ Ah , the well-known formul a for the volume of a cone. 
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z z 

y 

y 

X 
X 

Figure 16.12 A cone with an arbitrarily shaped base Figure 16.13 A solid domain with a spherical cavity 

z 

a y 

X 

Figure 16.14 The boundary of domain D 
has five faces, one curved and four planar 

EXAMPLE 4 

flF•NdS , 

Let ,8 be the surface of an arbitrary regular domain D in 3-space 
that contains the origin in its interior . Find 

where F(r) = mr/ lrl3 and N is the unit outward normal on -8. (See Figure 16.13.) 

Solution Since F and , therefore , div F are undefined at the origin , we cannot apply 
the Divergence Theorem directl y. To overcome this problem we use a little trick. Let 
,8* be a small sphere centred at the origin bounding a ball contained wholly in D. (See 
Figure 16.13.) Let N* be the unit normal on ,8* pointing into the sphere, and let D* be 
that part of D that lies outside -8*. As shown in Example 3 of Section 16.1, div F = 0 
on D*. Also, 

J[ F•N *dS =-4;,rm 
Jf-5• 

is the flux of F inward through the sphere ,8*. (See Example 1 of Section 15.6.) 
Therefore , 

0 = ff l. div F d V = fl F • Nd S + fl . F • N* d S 

= flF • NdS -4;,rm , 

soflF•NdS=41rm. 

EXAMPLE 5 Find the flux of F = xi+ y2j + zk upward through the first octant 
part ,8 of the cylindrical surface x 2 + z2 = a2, 0 :S y :s b. 

Solution -8 is one of five surfaces that form the boundary of the solid region D shown 
in Figure 16.14. The other four surfaces are planar: ,81 lies in the plane z = 0, -82 
lies in the plane x = 0, -83 lies in the plane y = 0, and ,84 lies in the plane y = b. 
Orie!_lt all these surface s with norm al N pointing out of D . On -81 we have N = -;:-k, so 
F • N = - z = 0 on -8 1 . Sirnilarl y, F • N = 0 on -82 and -83. On ,84, y = b and N = j, 
so F • N = y2 = b2 there . If -8rot denotes the whole boundary of D, then 

J[ FeNdS= {{ F e NdS+o+o+o+jrf F e NdS 
~~ lli h 

fr { A 1ra2b2 

= } ,5FeNdS+-
4
- . 
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On the other hand , by the Divergence Theorem , 

!A,o, FeNdS = !fl divF dV = !fl (2+2 y)dV = 2V +2V y, 

where V = 7C a2 b / 4 is the volume of D, and ji = b / 2 is they-coordinate of the centroid 
of D. Combining these results , the flux of F upward through ,8 is 

FeNdS=-- 1+- -- - =--. 1l. ~ 21Ca
2b ( b) 1Ca

2 b2 
1Ca

2b 
,8 4 2 4 2 

Among the example s above, Example 4 is the most significant and the one that best 
represents the way that the Divergence Theorem is used in practice. It is predominantl y 
a theoretical tool , rather than a tool for calculation. We will look at some appli cations 
in Section 16.6. 

Variants of the Divergence Theorem 
Other versions of the Fundamental Theorem of Calculu s can be derived from the 
Divergence Theorem. Two are given in the following theorem. 

If D satisfies the conditions of the Divergence Theorem and has surface -8, and if Fi s 
a smooth vector field and ¢> is a smooth scalar field , then 

(a) ff l curlFdV = -!AF x NdS, 

(b) //lgradef>dV = fA<!>NdS. 

PROOF Observe that both of these form ulas are equation s of vectors. They are 
derived by applying the Divergence Theorem to F x c and ef>c, respectively , where c 
is an arbitrary constant vector . We give the detail s for formula (a) and leave (b) as an 
exercise. 

Using Theorem 3(d), we calculate 

V • (F x c) = (V x F) • c - F • (V x c) = (V x F) • c. 

Also, by the scalar triple product identity (see Exercise 18 of Section 10.3), 

(F x c) • N = (N x F) • c = -(F x N) • c. 

Ther efore, 

(!fl curlFdV + !AF x Nds) •c 

=ff l (V x F) ec dV - fA<F x c) eNdS 

=ff l div (F x c)dV - fl(F x c) eN.dS = O. 

Since c is arbitrary, the vector in the large parentheses must be the zero vector. (If 
c • a = 0 for every vector c, then a = 0.) This establishes formula (a). 
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EX E R C I S ES 16.4 
In Exercise s 1--4, use the Divergence Theorem to calculate the 
flux of the given vector field out of the sphere ,S with equation 
x2 + y2 + z2 = a2 , where a > 0. 

1. F = xi - 2yj + 4zk 2. F = ye 2 i + x2e2j + xyk 

3. F = (x2 + y2)i + (y2 - z2)j + zk 

4. F = x 3i + 3yz2j + (3y2z + x2)k 

In Exercises 5-8 , evaluate the flux of F = x 2i + y 2j + z2 k 
outward acro ss the boundary of the given solid region. 

5. The ball (x - 2)2 + y2 + (z - 3)2 S 9 

6. The solid ellipsoid x 2 + y2 + 4( z - 1)2 s 4 

7. The tetrahedron x + y + z S 3, x :::. 0, y :::. 0, z :::. 0 

8. The cylinder x 2 + y2 S 2y, 0 S z S 4 

9. Let A be the area of a region D forming part of the surface of 
a sphere of radius R centred at the origin, and let V be the 
volume of the solid cone C consisting of all points on line 
segments joining the centre of the sphere to point s in D. 

1 
Show that V = -AR by apply ing the Divergence Theorem 

3 
to F =.xi+ yj + zk. 

10. Let ¢ (x, y, z) = .xy + z2. Find the flux of V¢ upward 
throu gh the triangular planar surface ,S with vertices at 
(a , 0 , 0) , (O, b, 0), and (0 , 0 , c). 

11. A conical domain with vertex (0, 0, b) and axis along the 
z-axis has as base a disk of radius a in the .x y-plane. Find the 
flux of 

F = (x + y2)i + (3x 2y + y3 - x 3)j + (z + l)k 

upward through the conical part of the surface of the domain. 

12. Find the flux of F = (y + .xz)i + (y + y z)j - (2x + z2)k 
upward through the first octant pa.rt of the phere 
x2 + y2 + z2 = a2. 

13. Let D be the region .x2 + y2 + z2 S 4a2, .x2 + y2 :::. a2 . The 
surface ,S of D consists of a cylindr ical part, ,S 1, and a 
spherical part , -82. Evaluate the flux of 

F = (.x + yz)i + (y - .xz)j + (z - ex sin y)k 

out of D through (a) the who le surface ,S, (b) the surface -81, 
and ( c) the surface -82. 

14. Evaluate f L (3.xz2i - xj - yk) • N dS , where ,Sis that part 

of the cylinder y2 + z2 = I that lies in the first octant and 
between the planes x = 0 and .x = I. 

15. A solid region R has volume V and centroid at the point 
(i,y ,z ) . Find the flux of 

F = (x 2 -.x - 2y)i + (2y2 +3y- z)j-( z2 -4 z +.x y)k 

out of R through its surface. 

16. The plane x + y + z = 0 divides the cube - I S x S 1, 
- I S y S 1, - I S z S l into two part s. Let the lower part 
(with one vertex at (- 1, - 1, - 1 )) be D. Sketch D . Note 
that it has seven faces , one of which is hexagonal. Find the 
flux of F =xi+ yj + zk out of D through each of its faces . 

17. LetF = (x 2 + y +2+ z2)i + (ex
2 

+ y2)j + (3 +x)k. Let 
a > 0, and let ,S be the part of the spherical surface 
.x2 + y2 + z2 = 2az + 3a2 that is above the xy-plane. Find 
the flux of F outward across ,S. 

18. A pile of wet sand havin g total volume Sir covers the disk 
x2 + y2 s I, z = 0. The momentum of water vapour is 
given by F = grad ¢+ µcurl G, where¢ = x 2 - y2 + z2 is 
the water co ncentration , G = ½ (-y 3i + x 3j + z3k) , andµ is 
a constant. Find the flux of F upward through the top surface 
of the sand pile . 

In Exercises 19- 29, Dis a three-dimensional domain satisfying 

the conditions of the Divergence Theorem, and ,Sis its surface. N 
is the unit outward (from D ) normal field on ,S. The functions ¢ 
and If/ are smooth sca lar fields on D. Also, 8¢ / on denotes the 

first directional derivative of¢ in the direction of N at any point 
on ,S: 

8¢ A 

- = V¢eN. 
on 

9 19. Show that fl curl F • Nd S = 0, where Fis an arbitrary 

smoot h vector field. 

9 20. Show that the volume V of D is given by 

V = - (xi+ yj + zk) • N dS. 1 i A 

3 ,8 

9 21. If D has volume V, show that 

r = - '-· J{ (x 2 + y2 + z2)N dS 
2V Jf,5 

is the position vector of the centre of gravity of D. 

9 22. Show that fl V cp x NdS = 0. 

9 23. If F is a smooth vector field on D, show that 

f!L cpdivFdV + f!L V cpe FdV = fl ¢F e NdS. 

Hint: Use Theorem 3(b) from Section 16.2. 

Properties of the Laplacian operator 

24. If V 2¢ = 0 in D and ¢(x, y , z) = 0 on ,S, show that 
cp(x, y , z) = 0 in D. Hint: Let F = V ¢ in Exercise 23. 

9 25. (Uniqueness for the Dirichlet problem) The Dirichlet 
problem for the Laplacian operator is the boundary-value 
problem 

{ 
V 2u(x,y ,z ): f(x , y, z) 

u(x , y, z) - g(x, y, z) 

on D 

on ,S, 

where f and g are given functions defined on D and ,S, 

respectively. Show that this problem can have at most one 
solution u(x , y, z). Hint: Suppose there a.re two solutions , u 
and v , and apply Exercise 24 to their difference¢= u - v . 
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9 26. (The Neumann problem) If V 2 </J = O in D and 
a</Jjan = 0 on -8, show that V </J(x, y, z) = 0 on D. The 
Neumann problem for the Laplacian operator is the 
boundary-value problem 

9 29. By applying the Divergence Theorem to F = <pc, where c is 
an arbitrary constant vector, show that 

ff l VcpdV = fl <jJNdS. 

I :
2

u(x,y,z ) = f(x , y,z) 

an u(x , y , z) = g( x, y , z) 

on D 

on -8, 

where f and g are given functions defined on D and -8, 
respectively. Show that, if D is connected, then any two 
solutions of the Neumann problem must differ by a constant 
on D . 

0 30. Let Po be a fixed point, and for each f > 0 let Df be a 
domain with boundary .Sf satisfying the conditions of the 
Divergence Theorem . Suppose that the maximum distance 
from Po to points P in Df approaches zero as f -+ 0+. If 
Df has volume vol(Df ), show that 

9 27. Verify that !fl V 2
cpdV = fi.s :: dS. 

9 28. Verify that 

1 ffi. A lirn -(- F • N dS = div F(Po) . 
f~o + vol Df ) -8, 

This generalizes Theorem I of Section 16.1. 

• 
Stokes's Theorem · -----

Ifwe regard a region R in the xy-plane as a surface in 3-space with normal field N = k, 
the Green 's Theorem formula can be written in the form 

THEOREM 

I 

feFedr= fl curlFeNdS. 

Stokes's Theorem given below generalizes this to nonplanar surfaces. 

Stokes's Theorem 

Let ,8 be a piecewise smooth, oriented surface in 3-space, having unit normal field 
N and boundary e consisting of one or more piecewise smooth, closed curves with 
orientation inherited from ,8. If F is a smooth vector field defined on an open set 
containing ,8, then 

feF • dr= /LcurlF e NdS . 

PROOF An argument similar to those given in the proofs of Green 's Theorem and the 
Divergence Theorem shows that if -8 is decomposed into finitely many nonoverlapping 
subsurfaces, then it is sufficient to prove that the formula above holds for each of 
them. (If subsurfaces -81 and -82 meet along the curve e* , then e* inherits opposite 
orientations as part of the boundaries of -81 and -82, so the line integrals along e* cancel 
out. See Figure 16.lS(a) .) We can subdivide ,8 into enough smooth subsurfaces that 
each one has a one-to-one normal projection onto a coordinate plane. We will establish 
the formula for one such subsurface, which we will now call ,8. 
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Figure 16.15 

(a) Stokes's Theorem holds for a 
composite surface comprised of 
nonoverlapping subsurfaces for 
which it is true 

(b) A surface with a one-to-one 
projection on the xy-plane 

z 

z = g(x, y) 

y 

X 

(a) (b) 

Without loss of generality , assume that ,8 has a one-to-one normal projection onto the 
xy -plane and that its normal field N points upward . Therefore , on -8, z is a smooth 
function of x and y, say z = g (x , y ), defined for (x , y) in a region R of the xy-plane. 
The boundaries e of ,8 and C?* of R are both oriented counterclockwise as seen from a 
point high on the z-axis . (See Figure 16.15(b).) The normal field on ,8 is 

ag . ag. 
--1 - -J+k 

N = ax ay 

1 + (::r + (:~r 
and the surface area element on ,8 is expressed m terms of the area element 
dA = dx dy in the xy-plane as 

dS = 1 + (:!r + (:~r dA. 

Therefore , 

[[ ~ [[ [(aF3 aF2) ( ag) ( aF, aF3) ( ag) 
JJ.scurlFeNdS= }JR ay - az - ax + az- ax - ay 

+ ( aF2 _ aF, )] dA. 
ax ay 

. ag ag 
Smee z = g(x , y) one, we have dz = - dx + - dy . Thus, 

ax ay 

fe F • dr = fe [F,(x , y , z)dx + F2(x, y, z)dy 

+ F3(x, y, z) ( ag dx + ag dy)] 
ax ay 

= fe ([F, (x , y , z) + F3(x , y, z) !! J dx 

+ [F2(x,y,z )+6(x,y , z) : ~] dy). 

We now apply Green 's Theorem in the xy -plane to obtain 

fe F • dr = fl ( :x [F2(x , y, z) + F3(x, y, z) : ~ J 

-~ [F, (x, y, z) + F3 (x, y, z) ag ]) dA 
ay ax 

= [[ ( aF2 + aF2 a8 + aF3 ag + aF3 ag ag + F
3 

a
2
g 

jj R ax az ax ax ay az ax ay ax ay 

_ aF1 _ aF, ag _ aF3 a8 _ aF3 ag ag _ F
3 

a2g ) dA. 
ay az ay ay ax az ay ax ayax 
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Figure 16.16 C? is the intersection of a 
vertical cylinder and an oblique plane 

z 

N 

k 

y 

Figure 16.17 Part of a sphere and a disk 
with the same boundary 

SECTION 16.5: Stokes's Theorem 933 

Observe that four terms in the final integrand cancel out, and the remaining terms are 
equal to the terms in the expression for ff.& curl F • N dS calculated above. Therefore , 
the proof is complete. 

Remark If curl F = 0 on a domain D with the property that every piecewi se smooth , 
non-se lf-inter secting, closed curve in D is the boundary of a piecewi se smooth surface 
in D , then Stokes 's Theorem assures us that fe F • dr = 0 for every such curve 
<.':; therefore F must be conservative. A simply connected domain D does have the 
property specified above. We will not attempt a formal proof of this topological fact 
here, but it should seem plausible if you recall the definition of simple connectedness. 
A closed curve e in a simply connected domain D must be able to shrink to a point in 
D without ever passing out of D. In so shrinking , it traces out a surface in D. This is 
why Theorem 4 of Section 16.2 is valid for simply connected domains. 

EXAM p LE 1 Evaluate fe F • dr, where F = -y 3i + x3j - z3k, and e is the 
curve of intersection of the cylinder x2 + y2 = 1 and the plane 

2x + 2 y + z = 3 oriented so as to have a counterclockwise projection onto the xy -plane. 

Solution e is the oriented boundar y of an elliptic disk -8 that lies in the plane 2x + 
2y + z = 3 and has the circular disk R: x2 + y2 :::: 1 as projection onto the xy- plane . 
(See Figure 16.16.) On -8 we have 

N dS = (2i + 2j + k) dx dy. 

Also, 

i j k 
a a a 

= 3(x 2 + y2)k. curlF= ax ay az 
-y3 x3 -z3 

Thus, by Stokes's Theorem , 

feF • dr= /lcurlF e NdS 

= fl 3(x 2 + y2) dx dy = 2n lo 1 

3r 2 r dr = 
3
; . 

As with the Divergence Theorem , the principal importance of Stokes 's Theorem is as 
a theoretical tool. However , it can also simplify the calculation of circulation integrals 
such as the one in the previou s example. It is not difficult to imagine integrals whose 
evaluation would be impossibly difficult without the use of Stokes's Theorem or the 
Divergence Theorem. In the following example we use Stokes's Theorem twice, but 
the result could be obtained ju st as easily by using the Divergenc e Theorem . 

EXAM p LE 2 Find I = fl curl F • N dS , where -8 is that part of the sphere 

x2 + y2 + (z - 2)2 = 8 that lies above the xy- plane , N is the unit 
outward normal field on -8, and 

F = y2 cosxz i + x3eYZj - e- xyzk. 

Solution The boundary , e, of -8 is the circle x2 + y2 = 4 in the xy -plane , oriented 
counterclockwise as seen from the positive z-axis. (See Figure 16.17.) This curve is 
also the oriented boundary of the plane disk D: x2 + y2 :::: 4, z = 0, with normal field 
N = k. Thus , two application s of Stokes's Theorem give 

I= /lcurlF e NdS= feF • dr= J/
0 

curlF e kdA. 

www.konkur.in



934 CHAPTER 16 Vector Calculus 

EXE R C IS ES 16.5 

On D we have 

curlF • k = (!_ (x3eYz) - !_ (i cosxz)) I 
ax ay z=O 

=3 x 2 -2y. 

By symmetry , / l y dA = 0, so 

Remark A surface -8 satisfying the conditions of Stokes's Theorem may no longer 
do so if a single point is removed from it. An isolated boundary point of a surface is 
not an orientable curve , and Stoke s's Theorem may therefore break down for such a 
surface . Consider , for example, the vector field 

0 y . X • 
F = - = ----1+---J 

r x2 + y2 x2 + y2 ' 

which is defin ed on the pun ctured disk D satisfying O < x 2 + y 2 s a2 . (See Example 4 
in Section 16.3 .) If Dis oriented with upward normal k, then its boundary consists of 
the oriented , smoot h , closed curve , e, given by x = a cos 0, y = a sin 0, (0 S 0 S 27r ), 
and the isolated point (0, 0) . We have 

1 [2
1[ (- sin0 cos0 ·) . . . Je F • dr = Jo -a- i + -a-J • (-a sm0 1 + a cos0J) d0 

r 21r 
= Jo (sin

2 0 + cos
2 0) d0 = 27r. 

However , 

curl F = - --- - -[ a ( x ) a ( 
ax x 2 + y 2 ay 

y )] k - 0 
x2 + y2 -

identically on D . Thus , 

fl curlFeNdS=O, 

and the concl usio n of Stokes 's Theorem fails in this case. 

1. Evaluate fe xy dx + yz dy + zx dz around the triangle with 

vertices (1, 0, 0), (0, l , 0) , and (0, 0, l) , oriented clockwise 
as seen from the point (1, l , 1). 

3. Evaluate J l curl F • N dS, where ,8 is the hemisphere 

x2 + y2 + z2 = a2 , z ::": 0 with outward normal, and 
F = 3yi - 2xzj + (x 2 - y2) k. 

2. Evaluate £ y dx - x dy + z2 dz around the curve e of 

intersection of the cylinders z = y2 and x2 + y 2 = 4, 
oriented counterclockwise as seen from a point high on the 
z-axis. 

4. Evaluate J l curlF • N dS, where ,8 is the surface 

x2 + y 2 + 2(z - 1)2 = 6, z :::: 0, N is the unit outward (away 
from the origin) normal on -8, and 
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5. Use Stokes 's Theorem to show that 

fey dx + z dy + x dz = ..Jj n a2, 

where e is the suitab ly oriented intersection of the surfaces 
x 2 + y2 + z2 = a2 and x + y + z = 0. 

6. Evaluate fe F • dr arou nd the curve 

r = cost i + sin t j + sin 2t k, (0 ::: t ::: 2n), 

where 

Hint: Show that e lies on the surface z = 2xy. 

7. Find the circulation of F = -yi + x2 j + zk around the 
oriented boundary of the part of the paraboloid 
z = 9 - x 2 - y2 lying above the xy-plane and having normal 
field pointing upward. 

8. Evaluate fe F • dr, where 

F = yex i + (x2 + ex)j + z2ezk , 

and e is the curve 

r(t) = (1 + cost) i + (1 + sint) j + (1-cost - sint)k 

for O ::: t ::: 2n . Hint: Use Stokes 's Theorem, observing that 
e lies in a certain plane and has a circle as its projection onto 
the xy -plane. The integral can also be evaluated by using the 
techniques of Section 15.4. 

9. Let e, be the straight line joining (-1 , 0, 0) to (1, 0, 0), and 
let e 2 be the semicircle x2 + y2 = 1, z = 0, y :::: 0. Let -8 be 
a smooth surface joining e, to e2 having upward normal , 
and let 

F = (ax 2 
- z)i + (xy + y3 + z)j + fJi(z + l)k. 

SECTION 16.6: Some Physical Appljcations of Vector Calculus 935 

Find the values of a and fJ for which / = / l F • dS i 

independent of the choice of -8, and find the value of/ for 
these values of a and /J. 

10. Let ebe the curve (x - 1)2 +4y2 = 16, 2x + y + z = 3, 
or iented co unterc lockwi se when viewed from high on the 
z-axis. Let 

F = (z2 + y2 + sinx 2)i + (2xy + z)j ) + (x z + 2yz )k. 

Evaluate fe F • d r . 

8 11. If e is the oriented boundary of surface -8, and¢ and If! are 
arbitrary smooth scalar fields, show that 

fe ¢ V lfl • dr = - fe If! V ¢ • dr 

= Jl<V¢xVl/f)•NdS. 

I V ¢ x V If/ solenoidal ? Find a vector potential for it. 

8 12. Let e be a piecewise smooth, simp le closed plane curve in 
JR3, which lies in a plane with unit normal N = ai + bj + ck 
and has orientation inherited from that of the plane. Show 
that the plane area enc losed by e i 

~ J (bz - cy) dx + (ex - az) dy + (ay - bx) dz . 
2 re 

8 13. Use Stokes 's Theorem to prove Theorem 2 of Section 16.1. 

Some Physical Applications of Vector Calculus 
In this section we will show how the theory developed in this chapter can be used 
to model concrete applied mathematic al problems. We will look at two areas of 
application-fluid dynamics and electromagnetism-and will develop a few of the 
fundamental vector equations underlyin g these disciplines . Our purpose is to illustrate 
the techniques of vector calculus in applied contexts, rather than to provide any complete 
or even coherent introductions to the disciplines themselves. 

0 Fluid Dynamics 
Suppose that a region of 3-space is filled with a fluid (liquid or gas) in motion. Two 
approaches can be taken to describe the motion. We could attempt to determine the 
position , r = r(a, b, c, t) at any time t, of a "particle" of fluid that was located at 
the point (a, b, c) at time t = 0. This is the Lagrange approach. Alternatively, we 
could attempt to determine the velocity, v(x , y, z, t), the density, p(x, y, z, t), and 
other physical variables such as the pressure, p (x, y, z, t), at any ti me t at any point 
(x, y, z) in the region occupied by the fluid. This is the Euler approach. 
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We will examine the latter method and describe how the Divergence Theorem 
can be used to translate so me fundamental physical laws into equivalent mathematical 
equations. We assume throughout that the velocity, den sity, and pressure vary smoothly 
in all their variables and that the fluid is an ideal fluid, that is, nonviscous (it doesn't 
stick to itself) , homogeneous, and isotropic (it has the same properties at all points 
and in all directions). Such properties are not always shared by real fluids, so we are 
dealing with a simp lified mathematical model that does not always co1Tespond exactly 
to the behaviour of real fluids . 

Consider an imaginary clo sed surface -8 in the fluid , bounding a domain D . We 
call -8 " imaginary " because it is not a barrier that impedes the flow of the fluid in any 
way; it is just a means to concentrate our attention on a particular part of the fluid. It is 
fixed in space and does not move with the fluid. Let us assume that the fluid is being 
neither created nor destroyed anywhere (in particular, there are no sources or sinks), so 
the law of conservation of mass tell s us that the rate of change of the mass of fluid in 
D equals the rate at which fluid enters D across -8. 

The mass of fluid in volume element d V located at position (x, y, z) at time t is 
p(x , y, z, t) dV, so the mass in D at time tis .Df D p dV. This mass changes at rate 

As we noted in Section 15.6 , the volume of fluid passing out of D through area 
element dS at position (x, y, z) in the interval from time t to t + dt is given by 
v(x, y, z, t) • N dS dt , where N is the unit normal at (x , y, z) on -8 pointing out of D . 
Hence , the mass cro ssing dS outward in that time interval is pv • N dS dt, and the rate 
at which mass is flowing out of D across -8 at time t is 

The rate at which mass is flowing into D is the negativ e of the above rate . Since mass 
is conserved, we must have 

ff l: dV = -/Apv • NdS = - f fl div(pv)dV , 

where we have used the Divergence Theorem to replace the surface integral with a 
volume integral. Thus, 

!!JD(: +div(pv)) dV = 0. 

This equation must hold for any domain D in the fluid. 

If a continuous function f sa tisfies .Df D f (P) d V = 0 for every domain D, then 
f(P) = 0 at all points P, for if there were a point Po such that f(Po) f= 0 (say 
f (Po) > 0) , then , by continuity , f would be positive at all points in some sufficiently 
small ball B centred at Po, and .Df8 J( P) d V would be greater than 0. Applying this 
prin ciple , we must have 

op + div (pv) = 0 
at 

throughout the fluid. This is called the equation of continuity for the fluid. It is 
equivalent to co nserv ation of mass. Observe that if the fluid is incompressible then p 
is a constant, independent of both time and spatial position . In this case op/ at = 0, 
and div (pv) = p div v. Therefore , the equation of continuity for an incompressible 
fluid is simp ly 
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divv=O. 

The motion of the fluid is governed by Newton 's Second Law, which asserts that the 
rate of change of momentum of any part of the fluid is equal to the sum of the forces 
applied to that part. Again , let us consider the part of the fluid in a domain D. At any 
time t its momentum is .DJ O pv d V and is changing at the rate 

I I l :/pv)dV. 
This change is due partly to momentum crossing -8 into or out of D (the momentum of 
the fluid crossing -8), partly to the pressure exerted on the fluid in D by the fluid outside , 
and partly to any external body forces (such as gravity or electromagnetic forces) acting 
on the fluid . Let us examine each of these causes in turn . 

Momentum is transferred across -8 into D at the rate 

-f£ v(pv • N) dS. 
The pressure on the fluid in D is exerted across -8 in the direction of the inward normal 
-N . Thus, this part of the force on the fluid in Dis 

-f£pNdS. 
The body forces are best expressed in terms of the force density (force per unit mass), 
F. The total body force on the fluid in Dis therefore 

lllpFdV. 
Newton 's Second Law now implies that 

Ill :/pv)dV = -IA v(pv•N)dS-IApNdS+ lllpFdV. 
Again, we would like to convert the surface integrals to triple integrals over D . If we 
use the results of Exercise 29 of Section 16.4 and Exercise 2 below, we get 

IA pNdS = Ill V pdV, 
IA v(pv•N)dS= lll(p(v•V)v+vdiv(pv))dv. 

Accordingly , we have 

lll(P:; +v: +vdiv(pv)+p(v • V)v+Vp-pF)dv =0. 

The second and third terms in the integrand cancel out by virtue of the continuity 
equation. Since D is arbitrary, we must therefore have 

av 
p-+p(v • V)v= -Vp+pF. ai 

This is the equation of motion of the fluid. Observe that it is not a linear partial 
differential equation; the second term on the left is not linear in v. 
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Electromagnetism 
In 3-space there are defined two vector fields that determine the electric and magnetic 
forces that would be experienced by a unit charge at a particular point if it is moving 
with unit speed. (These vector fields are determined by electric charges and currents 
present in the space.) A charge qo at position r =xi+ yj + zk moving with velocity 
vo experience s an electric force qoE(r), where E is the electric field, and a magnetic 
force qovo x B(r) , where Bis the magnetic field. We will look briefly at each of these 
fields but will initially restrict ourselves to considering static situations . Electric fields 
produced by static charge distributions and magnetic fields produced by static electric 
currents do not depend on time. Later we will consider the interaction between the two 
fields when they are time-dependent. 

0 Electrostatics 
Experimental evidence shows that the value of the electric field at any point r is the 
vector sum of the fields caused by any elements of charge located in 3-space. A "point 
charge" q at position s = c;'i + 17j + ( k generates the electric field 

q r -s 
E(r )= - --

41rEo Ir - sl3 (Coulomb's Law), 

where Eo ~ 8.85 x 10- 12 coulombs 2/N -m2 is a physical constant called the permittivity 
of free space. This is just the field due to a point source of strength q / 41r Eo at s. Except 
at r = s the field is conservative, with potential 

q 1 
¢(r)= - --- , 

4uo lr-sl 

so for r f=. s we have curl E = 0. Also div E = 0, except at r = s where it is infinite ; 
in terms of the Dirac distribution , divE = (q/ Eo)p(x - c;')p(y - 17)p(z - (). (See 
Section 16.1.) The flux of E outward across the surface ,8 of any region R containing 
q is 

J{ E eN dS = !L, 
Jf,8 EQ 

by analogy with Example 4 of Section 16.4. 

Given a charg e distribution of density p (c;, 17, () in 3-space (so that the charge in 
volume element d V = de;' d 17 d( at s is dq = p d V), the flux of E out of ,8 due to the 
charge in R is 

If we apply the Divergence Theorem to the surface integral , we obtain 

Ill (divE- ~) dV = 0, 

and since R is an arbitrary region , 

divE = !!.__ 
EQ 

This is the differential form of Gauss 's Law. See Exercise 3 below. 

The potential due to a charge distribution of density p (s) in the region R is 
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If pi s continuous and vanishes outside a bounded region , the triple integral is convergent 
everywhere (see Exercise 4 below) , so E = V ¢ is conservative throughout 3-space. 
Thus , at all points, 

curlE = 0. 

Since div E = div V ¢ = V 2¢, the potential¢ satisfies Poisson 's equation 

In particular, ¢ is harmonic in regions of space where no charge is distributed . 

0 Magnetostatics 

z 

If ·-.. a ·-.. 

ds 

(0, 0, () 

Figure 16. 18 The magnetic field due to 
current in a vertical filament 

Magnetic fields are produced by moving charges, that is, by currents . Suppose that 
a constant electric current , / , is flowing in a filament along the curve :F. It has been 
determined experimentally that the magnetic fields produced at position r = xi+ yj + zk 
by the elements of current di = Id s along the filament add vectorially and that the 
element at position s = c;;'i + 17j + ( k produce s the field 

dB(r) = µof ds x (r - s) 
4n Ir - sl3 

(the Biot-Savart Law), 

where µo ~ 1.26 x 10- 6 N/ampere 2 is a physical constant called the permeability of 
free space , and ds = T ds, T being the unit tangent to Tin the direction of the current. 
U oder the reasonable assumption that charge is not created or destroyed anywhere, the 
filament T must form a closed circuit, and the total magnetic field at r due to the current 
flowing in the circuit is 

B = µof J.. ds x (r - s) 
4n fr Ir - sl3 

Let A be the vector field defined by 

A(r) = µof J.. ~ 
4n f.rlr- sl' 

for all r not on the filament :F. If we make use of the fact that 

V Cr~ sl) = - I:-=-s~3 ' 

and the vector identity V x (¢F) = (V ¢) x F + ¢ (V x F) (with F the vector ds, which 
does not depend on r), we can calculate the curl of A : 

µof t, ( 1 ) µof t, r - s V x A = - V -- x ds = - ---
3 

x ds = B(r). 
4n r Ir - sl 4a r Ir - sl 

Thus, A is a vector potential for B, and div B = 0 at point s off the filament. We can 
also verify by calculation that curl B = 0 off the filament. (See Exercises 9-11 below.) 

Imagine a circuit consisting of a straight filament along the z-axis with return at 
infinite distance. The field B at a finite point will then ju st be due to the current along 
the z-axis, where the current f is flowing in the direction of k, say. The currents in all 
elements ds produce, at r , fields in the same direction, normal to the plane containing r 
and the z-axis. (See Figure 16.18.) Therefore , the field strength B = IBI at a distance 
a from the z-axis is obtained by integratin g the elements 

dB= _µo_f ~-si_n_0_d_( ~ 
4n a 2 + (( - z)2 

µof ad( 

4n (a2 + (( _ z)2)3!2 · 
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We have 

µofa !00 
d( 

B = ~ -oo (a2 + (( - z)2)3/2 
(Let ( - z = a tan ¢.) 

µof f 1e/
2 µof = - cos¢d¢ = -. 

4na -1e / 2 2na 

The field Jines of Bare evidently horizontal circles centred on the z-axis . If ea is such 
a circle , having radius a, then the circulation of B around ea is 

i µof 
B • dr = -- 2na = µof. ea 2na 

Observe that the circulation calculated above is independent of a. In fact, if e is any 
closed curve that encircles the z-axis once counterclockwise (as seen from above), then 
C? and -C?a comprise the oriented boundary of a washer-like surface -8 with a hole 
in it through which the filament passes . Since curl B = 0 on -8, Stokes's Theorem 
guarantees that 

J B • dr = J B • dr = µof. re rea 
Furthermore , when e is very small (and therefore very close to the filament) , most of 
the contribution to the circulation of B around it comes from the part of the filament 
that is very close to e. It therefore does not matter whether the filament is straight or 
infinitely long. For any closed-loop filament carrying a current , the circulation of the 
magnetic field around the oriented boundary of a surface through which the filament 
passes is equal to µo times the current flowing in the loop. This is Ampere's Circuital 
Law. The surface is oriented with normal on the side out of which the current is 
flowing. 

Now let us replace the filament with a more general current specified by a vector 
density, J. This means that at any point s the current is flowing in the direction J(s) 
and that the current crossing an area element dS with unit normal N is J • N dS. The 
circulation of B around the boundary e of surface -8 is equal to the total current flowing 
across -8, so 

iB•dr=µo JLJ•NdS . 

By using Stokes 's Theorem , we can replace the line integral with another surface 
integral and so obtain 

f L (curlB - µoJ) • N dS = 0. 

Since -8 is arbitrary, we must have, at all points , 

curlB = µoJ, 

which is the pointwi se version of Ampere's Circuital Law. It can be readily checked 
that , if 

A(r) = µo [[[ J(s) dV , 
4n J J JR Ir - sl 

then B = curl A (so that A is a vector potential for the magnetic field B). Here , R is 
the region of 3-space where J is nonzero. If J is continuous and vanishes outside a 
bounded set, then the triple integral converges for all r (see Exercise 4 below), and B 
is everywhere solenoidal: 

divB = 0. 
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0 Maxwell's Equations 
The four equations obtained above for static electric and magnetic fields, 

divE = p/ Eo 
curlE = 0 

divB = 0 

curlB = µoJ, 

require some modification if the fields E and B depend on time. Gauss 's Law div E = 
p / Eo remains valid, as does div B = 0, which expresses the fact that there are no known 
magnetic sources or sinks (i.e., magnetic monopoles). The field lines of B must be 
closed curves. 

It was observed by Michael Faraday that the circulation of an electric field around 
a simple closed curve e corresponds to a change in the magnetic flux 

through any oriented surface ,8 having boundary e, accordi ng to the fonnula 

d<I> = _ J E e dr . 
dt re 

Applying Stokes 's Theorem to the line integral , we obtain 

{{ curlE e NdS= J E e dr=-!!_ ff BeNdS=- ff aB eN dS. 
ll-8 re dt 11-8 lh at 

Since ,8 is arbitrary, we obtain the differential form of Faraday 's Law: 

aB 
curlE = -at 

The electric field is irrotational only if the magnetic field is constant in time. 

The differential form of Ampere 's Law, curl B = µo J, also requires modification . 
If the elect1ic field depends on time, then so will the current density J. Assuming 
conservation of charge (charges are not produced or destroyed) , we can show, by an 
argument identical to that used to obtain the continuity equation for fluid motion earlier 
in this section, that the rate of change of charge density satisfies 

ap = -divJ. 
at 

(See Exercise 5 below.) This is inconsistent with Ampere's Law because div curl B = 
0, while div J f. 0 when p depends on time. Note, however, that p = Eodiv E implies 
that 

. ap . aE 
- div J = - = Eod1v - , ai at 

so div (J + EoaE/at) = 0. This suggests that, for the nonstatic case, Ampere's Law 
becomes 

aE 
curlB = µoJ + 110Eo- , at 

which indicates (as was discovered by Maxwell) that magnetic fields are not just 
produced by currents , but also by changing electric fields. 

Together, the four equations 

divE = p/ Eo 
aB 

curlE = -
at 

divB = 0 

aE 
curlB = µoJ + µoEoat 
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are known as Maxwe ll's equation s. They govern the way electr ic and mag netic 

fields are produced in 3-space by th e presence of c harges and c urr ent s. Ob se rve th at 

,JiioEo = 1/ c2 , where c ~ 2.99 x 108 mis, w hic h is the speed of light in a vac uum . 

(See Exercise 15.) 

EXE RC IS ES 16.6 
8 1. (Archimedes' princip le) A solid occupying region R with 

surface ,8 is immersed in a liquid of constant density p. The 
pressure at depth h in the liquid is pgh, so the pressure 
satisfies V p = pg, where g is the (vector) constant 
acceleration of gravity. Over each surface element dS on ,8 

the pressure of the fluid exerts a force -pN dS on the solid. 

(a) Show that the resultant "buoyancy force" on the solid is 

B = - ff l pgdV. 

Thus , the buoyancy force has the same magnitude as, 
and opposite direction to, the we ight of the liquid 
displaced by the solid. This is Archimedes ' princip le . 

(b) Extend the above res ult to the case whe re the solid is 
on ly partly submerged in the fluid. 

2. By breaking the vector F(G • N) into its separate 
components and apply ing the Divergence Theorem to each 
separately, show that 

fl F(G • N)dS = !fl (F divG + (G • V)F) dV , 

where N is the unit outward norma l on the surface ,8 of the 
domain D. 

8 3. (Gauss's Law) Show that the flux of the electric field E 
outward tlu·ough a closed surface ,8 in 3-space is 1/ Eo times 
the total charge enc losed by ,8. 

4. Ifs= <;'i + 17j + ( k and f (¢', '7, n is continuous on JR3 and 
vanishes out side a bounded region, show that, for any fixed r, 

ff f _lf_.(_¢',_'7_,_(_) I cl¢' cir, ct( :s constant. 
JJ}JR3 lr-sl 

This shows that the potentia ls for the electric and magnetic 
fields corresponding to conti nuous charge and current 
densities that vanish outside bounded regions exist 
everywhere in JR3 . Hint: Without loss of general.ity you can 
assume r = 0 and use spher ical coordinates. 

5. The electric charge dens ity, p, in 3-space depend s on time as 
well as position if charge is moving around . The motion is 
described by the current density, J. Derive the cont inui ty 
equation 

op d" - = - JVJ at 
from the fact that charge is conserved. 

6. If b is a constant vector , show that 

( 
l ) r - b 

V Ir - bl = - Ir - bl3 . 

7. If a and b are co nstant vectors, show that for r =I= b, 

( 
r - b ) div a x ---

3 
= 0. 

Ir - bl 

Hint: Use ide ntities (d) and (h) from Theorem 3 of 
Sect ion 16.2. 

8. Use the result of Exe rcise 7 to give an alternative proof that 

JV --- -- =0. d
. f, ds x (r - s) 

:F Ir - sl3 

No te that div refe rs to the r variable. 

9. If a and b are constant vectors, show that for r =/= b, 

( 
r - b) r - b curl ax ---

3 
=-( a• V)---

3
. 

Ir - bl Ir - bl 

Hint: Use identit y (e) from Theore m 3 of Sec tion 16.2. 

10. lf F is any smooth vec tor field, show that 

f /ds • V)F(s) = 0 

aro und any closed loop :F. Hint: The gradients of the 
compone nts of F are conserva tive. 

11. Verify that if r does not lie on :F, then 

cur ---~-= . I i ds x (r - s) 
0 

:r Ir - sl3 

Here, curl is take n with respec t to the r variable. 

12. Verify the for mula curl A = B, where A is the magnetic 
vector pote ntial defined in terms of the steady-s tate current 
density J. 

13. If A is the vector potent ial for the magnetic field produced by 
a steady current in a closed-loop filame nt, show that 
div A = 0 off the filament. 

14. If A is the vector po tential for the magne tic field produced by 
a stea dy, continuous curre nt density, show that div A = 0 
everyw here. Hence, show that A satisfies the vecto r Poisson 
equation V 2 A= - J. 

15. Show that in a regio n of space containing no charges (p = 0) 
and no currents (J = 0), both U = E and U = B satisfy the 
wave equation 

a2u = 2n2u 
l C V , ot 

where c = ,J l / (Eoµo) ~ 3 x 108 mis. 
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16. As shown in this section, the static versions of Maxwell's 
equations needed revision when the fields E and B were 
allowed to depend on time. Show that the expression 

direction of the negative temperature gradient and at a rate 
proportional to the size of that gradient. Thus, the rate of 
flow of heat energy across a surface element d S with normal 
N is -kVT • N dS , where k is also a constant depending on 
the material of the solid (the coefficient of thermal 
conductivity). Use "conservation of heat energy" to show 
that for any region R with surface -8 within the solid 

E = - V ¢ is no longer consistent with Maxwell's equations 
because the E field is no longer irrotational. Why does 
curl A = B continue to hold? 

17. While the nonstatic Maxwell equations are not compatible 
with E = - \7 ¢, show that they are compatible with the 
equation pc rrr aT dV=kJ{ VTeNdS , 

aA 
E=-\7¢--. at 

jjjR at Jf-& 

0 18. (Heat flow in 3-space) The internal energy, E, of a volume 
element d V within a homogeneous solid is pcT d V, where p 
and c are constants (the density and specific heat of the solid 
material), and T = T(x , y, z, t) is the temperature at time t 
at position (x, y , z) in the solid. Heat always flows in the 

where N is the unit outward normal on -8. Hence, show that 
heat flow within the solid is governed by the partial 
differential equation 

• 
Orthogonal Curvilinear Coordinates 

-----
In this optional section we will derive formulas for the gradient of a scalar field and 
the divergence and curl of a vector field in terms of coordinate systems more general 
than the Cartesian coordinate system used in the earlier sectio ns of this chapter. In 
particular , we will express these quantities in terms of the cylindrical and spherical 
coordinate systems introduced in Section 14.6. 

We denote by xy z-space the usual system of Cartesian coordinates (x, y, z) in JR3. 

A different system of coordinates [ u, v, w] in x y z-space can be defined by a continuous 
transformation of the form 

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w). 

If the transformation is one-to-one from a region D in uvw-space onto a region R in 
xy z-space , then a point Pin R can be represented by a triple [u, v, w], the (Cartiesian) 
coordinates of the unique point Q in uvw-space that the transformation maps to P. 
In this case we say that the transformation defines a curvilinear coordinate system 
in Rand call [u, v , w] the curvilinear coordinates of P with respect to that system. 
Note that [u , v , w] are Cartesian coordinates in their own space (uvw-space); they are 
curvilinear coordinates in xy z-space . 

Typically, we relax the requirement that the transformation defining a curvilinear 
coordinate system be one-to-one, that is, that every point P in R should have a unique 
set of curvilinear coordinates. It is reasonable to require the transformation to be only 
locally one-to-one. Thus, there may be more than one point Q that gets mapped to a 
point P by the transformation, but only one in any suitably small subregion of D . For 
example , in the plane polar coordinate system 

x = r cos 0, y = r sin 0, 

the transformation is locally one-to-one from D, the half of the r0-plane where O < r < 
oo, to the region R consisting of all points in the xy -plane except the origin. Although, 
say, [1, 0] and [1, 21r] are polar coordinates of the same point in the xy- plane , they are 
not close together in D. Observe, however, that there is still a problem with the origin, 
which can be represented by [O, 0] for any 0. Since the transformation is not even 
locally one-to-one at r = 0, we regard the origin of the xy-plane as a singular point 
for the polar coordinate system in the plane. 
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EXAMPLE 1 The cylindrical coordinate system [r, 0, z] in IR?.3 is defined by the 
transformation 

x = r cos 0, y=rsin0, z = z, 
where r ::: 0. (See Section 10.6.) This transformation maps the half-space D given 
by r > 0 onto all of xyz-space excluding the z-axis, and it is locally one-to-one. We 
regard [r, 0, z] as cylindrical polar coordinates in all of xyz-space but call points on the 
z-axis singular points of the system since the points [O, 0, z] are identical for any 0. 

EXAMPLE 2 The spherical coordinate system [ R, ¢ , 0] is defined by the 
transformation 

x = R sin¢ cos 0, y = R sin ¢ sin 0, z = Reos¢, 

where R ::: 0 and O ::::: ¢ ::::: n:. (See Section 10.6.) The transformation maps the 
region D in R¢0-space given by R > 0, 0 < ¢ < n: in a locally one-to-one way onto 
xy z-space excluding the z-axis. The point with Cartesian coordinates (0, 0, z) can be 
represented by the spherical coordinates [O, ¢, 0] for arbitrary ¢ and 0 if z = 0, by 
[z, 0, 0] for arbitrary 0 if z > 0, and by [I z I, n:, 0] for arbitrary 0 if z < 0. Thus, all 
points of the z-axis are singular for the spherical coordinate system. 

Coordinate Surfaces and Coordinate Curves 
Let [u, v , w] be a curvilinear coordinate system in xy z-space, and let Po be a non
singular point for the system. Thus, the transformation 

x = x(u, v, w), y = y(u, v , w) , z = z(u, v , w) 

is locally one-to-one near Po. Let Po have curvilinear coordinates [uo, vo, wo]. The 
plane with equation u = uo in uvw-space gets mapped by the transformation to a 
surface in xyz-space passing through Po. We call this surface au-surface and still refer 
to it by the equation u = uo; it has parametric equations 

x = x(uo, v , w), y = y(uo, v, w), z = z(uo, v , w) 

with parameters v and w. Similarly, the v-surface v = vo and the w-surface w = wo 
pass through Po; they are the images of the planes v = vo and w = wo in uvw-space . 

Orthogonal curvilinear coordinates 

We say that [u , v , w] is an orthogonal curvilinear coordinate system in 
xyz -space if, for every nonsingular point Po in xyz -space, each of the three 
coordinate surfaces u = uo, v = vo, and w = wo intersects the other two at 
Po at right angles. 

It is tacitly assumed that the coordinate surfaces are smooth at all nonsingular points, 
so we are really assuming that their normal vectors are mutually perpendic ular. 
Figure 16.19 shows the coordinate surfaces through Po for a typical orthogonal curvi
linear coordinate system. 

Pairs of coordinate surfaces through a point intersect along a coordinate curve 
through that point. For example, the coordinate surfaces v = vo and w = w0 intersect 
along the u-curve with parametric equations 

x = x(u , vo, wo), y = y(u, vo, wo), and z = z(u, vo, wo), 

where the parameter is u. A unit vector ii tangent to the u-curve through Po is normal 
to the coordinate surface u = uo there. Similar statements hold for unit vectors v 
and w. For an orthogonal curvilinear coordinate system, the three vectors ii, v, and w 
form a basis of mutually perpendicular unit vectors at any nonsingular point Po. (See 
Figure 16.19.) We call this basis the local basis at Po. 
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w = wo 

y 

X 

EXAMPLE 3 For the cylindrical coordinate system (see Figure I 6.20) , the coor
dinate surfaces are: 

circular cylinders with ax.is along the z-axis 
vertical half-plane s radiating from the z-axis 
horizontal planes 

The coordinate curves are: 
horizontal straight half-lines radiating from the z-axis 
horizontal circles with centres on the z-axis 
vertical straight lines 

z 

Cr-surfaces), 
(0-surfaces), 
(z-surfaces). 

Cr-curves), 
(0-c urves), 
(z-curves). 

cylinder r = constant 
-- t--, ,-___ 

P = [R,</>,0] 

X 

Figure 16.20 The coordinate surfaces for cylindrical 
coordinates 

Figure 16.21 The coordinate surfaces for spherical 
coordinates 

EXAM p LE 4 For the spherical coordinate system (see Figure 16.21), the coor-
dinate surfaces are: 

spheres centred at the origin 
vertical circular cones with vertices at the origin 
vertical half-planes radiating from the z-axis 

The coordinate curves are: 
half-lines radiating from the origin 
vertical semicircles with centres at the origin 
horizontal circles with centres on the z-axis 

CR-surfaces), 
(¢-surfaces), 
(0-surfaces). 

CR-curves), 
(¢-curves), 
(0-curves). 

www.konkur.in



946 CHAPTER 16 Vector Calculu s 

Scale Factors and Differential Elements 
For the rest of this section we assume that [u, v, w] are orthogonal curvilinear coordi
nates in xyz-space defined via the transformation 

x = x(u , v, w), y = y(u, v, w), z = z(u, v, w). 

We also assume that the coordinate surfaces are smooth at any nonsingular point and 
that the local basi s vectors u, v, and w at any such point form a right-handed triad. This 
is the case for both cylindrical and spherical coordinates. For spherical coordinates, this 
is the reason we chose the order of the coordinates as [ R, ¢, 0], rather than [ R, 0, ¢] . 

The position vector of a point P in xyz -space can be expressed in terms of the 
curvilinear coordinates: 

r = x(u, v, w)i + y(u, v, w)j + z(u, v, w)k. 

If we hold v = vo and w = wo fixed and let u vary, then r = r(u , vo, wo) defines a 
u-curve in xyz-space. At any point P on this curve, the vector 

ar ax. ay . az 
- =-1+-J+-k 
au au au au 

is tangent to the u-curve at P. In general, the three vectors 

ar 
au ' 

ar 
av' 

and 
ar 
aw 

are tangent, respectively, to the u-curve, the v-curve , and thew-curve through P. They 
are also normal , respectively, to the u-surface, the v-surface, and thew-surface through 
P, so they are mutually perpendicular . (See Figure 16.19.) The lengths of these tangent 
vectors are called the scale factors of the coordinate system. 

The scale factors of the orthogon al curvilinear coordinate system [u, v , w] 
are the three function s 

The scale factors are nonzero at a nonsingular point P of the coordinate system, so 
the local basis at P can be obtained by dividing the tangent vectors to the coordinate 
curves by their lengths . As noted previously , we denote the local basis vectors by u, v, 
and w. Thus , 

ar A 

- =h 11U, 
au 

ar A 

- = hvv , av 
and 

ar A 

-=hww. aw 

The basis vectors u, v, and w will form a right-handed triad provided we have chosen 
a suitable order for the coordinates u, v, and w. 

EXAM p LE 5 For cylindrical coordinates we have r = r cos 0i + r sin 0j + zk, 
so 

ar 0 · . 0. - = COS I + Sln J, 
ar 

ar . 0· 0. - = -r srn 1 + r cos J, 
a0 

ar 
and - = k . 

az 

Thus , the scale factors for the cylindrical coordinate system are given by 

hr=l!~l=l, h0=1:;1=r, and hz=1::1=l, 
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and the local basis consists of the vectors 

r = cos 0 i + sin 0 j , 9 = - sin 0 i + cos 0 j , z = k. 

See Figure 16.22. The local basis is right-handed. 

z 
z 

y 

X 

y 
X 

Figure 16.22 The local basis for cylindrical 
coordinates Figure 16.23 The local basis for spherical coordinates 

EXAM p LE 6 For spherical coordi nates we have 

r = R sin ¢ cos 0 i + R sin ¢ sin 0j + R cos ¢k. 

Thus, the tangent vectors to the coordinate curves are 

ar - = sin ¢ cos 0 i + sin ¢ sin 0 j + cos ¢ k, aR 
ar 
- = R cos¢cos0 i + R cos¢s in 0 j - R sin¢ k , 
a¢ 
ar - = -R sin ¢ sin 0 i + R sin ¢ cos 0 j , 
a0 

and the scale factors are given by 

h R =I:; I= 1, h¢ =I:; I= R, I 
ar I . and ho = ae = R sm ¢ . 

The local basis consists of the vectors 

R = sin ¢ cos 0 i + sin ¢ sin 0 j +cos¢ k 

~ = cos¢ cos 0 i + cos¢ sin 0 j - sin ¢ k 

9 = - sin 0 i + cos 0 j . 

See Figure 16.23. The local basis is right-handed. 

The volume element in an orthogonal curvilinear coordinate system is the volume of an 
infinjtesimal coordinate box bounded by pairs of u-, v-, and w- urfaces corresponding 
to values u and u +du, v and v +dv, and wa nd w +dw, respective ly. See Figure 16.24. 
Since these coordinate surfaces are assumed smooth, and since they intersect at right 
angles, the coordinate box is rectangular, and is spanned by the vectors 

ar A ar A ar A 

-du=hu du u, - dv= h0 dvv, and -dw=hwdww. 
au av aw 
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Therefore, the volume element is given by 

dV = hu h vh w du d v dw . 

[u, v , w +dw ] 

Figure 16.24 The volume element for 
orthogonal curvilinear coordinates 

h w dww 
dV 

[u , v + dv , 

[u, v, w] 

[u +du, v , w] 

Furthermore, the surface area elements on the u-, v-, and w-surfaces are the areas of 
the appropriate faces of the coordinate box: 

Area elements on coordinate surfaces 

dSu = h vh w dv d w , dS v = huh w du d w, dS w = huhv d u dv. 

The arc length elements along the u-, v- , and w-coordinate curves are the edges of the 
coordinate box: 

Arc length elements on coordinate curves 

dsu = h ,, d u , ds v = hv dv , ds w = h wd w . 

EXAM p LE 7 For cylindrical coordinates, the volume element, as shown 10 

Section 14.6, is 

dV = h,h0h z dr d0 d z = r dr d0 dz . 

The surface area elements on the cylinder r = constant, the half-plane 0 = constant, and 
the plane z = constant are, respectively, 

dS, = r d0 dz, dS0 = dr dz, and dS z = r dr d0 . 

EXAM p LE 8 For spherical coordinates, the volume element , as developed in 
Section 14.6, is 

dV = hRh cph0dRd¢d0 = R 2 sin¢dRd¢d0. 

The area element on the sphere R = constant is 

dSR = hcph0 d¢d0 = R 2 sin¢d¢d0. 

The area element on the cone ¢ = constant is 

dS cp = hRh0dRd0 = Rsin¢dRd0. 

The area element on the half-plane 0 = constant is 

dS0 = hRhcp dR d¢ = R dR d</J. 
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Grad, Div, and Curl in Orthogonal Curvilinear Coordinates 
The gradient V f of a scalar field f can be expressed in terms of the local basis at any 
point P with curvilinear coordinates [u , v, w] in the form 

In order to determine the coefficients!,, , f v, and f w in this formula, we will compare 
two expressions for the directional derivative off along an arbitrary curve in xyz-s pace. 

If the curve e has parametrization r = r(s) in terms of arc length, then the 
directional derivative off along e is given by 

df aJ du af dv aJ dw -=--+--+-- . 
ds au ds av ds aw ds 

On the other hand , this directional derivative is also given by df / ds = V f • T, where 
Tis the unit tangent vector toe. We have 

A dr ar du ar dv ar dw 
T=-=- -+--+ --

ds au ds av ds aw ds 
du A dv A dw A 

= hu - u +hv - v+h w - w. 
ds ds ds 

Thus, 

df A du dv dw 
- = V f • T = fuhu - + fvhv - + fwhw -. 
ds ds ds ds 

Comparing these two expressions for df / ds along e, we see that 

aJ 
fuhu = au , 

af 
fwhw = -. 

aw 

Therefore , we have shown that 

The gradient in orthogonal curvilinear coordinates 

1 af A 1 af A 1 aJ A 

VJ= --u+- -v + ---w . 
hu au hv av hw aw 

EXAMPLE 9 In terms of cylindrical coordinates , the gradient of the scalar field 
f(r , 0, z) is 

af A 1 aJ A aJ 
V f(r , 0, z) = - r + - - 8 + -k. 

ar r a0 az 

EXAMPLE 10 In terms of spherical coordinate s, the gradient of the scalar field 
f( R,¢;,0) is 

af A 1 aJ A 1 af A 

v f( R,¢;, B) = aR R+ R a¢; cl>+ R sinc/J ae 0· 

Now consider a vector field F expressed in terms of the curvilinear coordinates: 

F(u, v , w) = Fu(u , v, w)u + F0 (u, v, w)v + Fw(u, v, w)w. 
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The flux of Fout of the infinitesimal coordinate box of Figure 16.24 is the sum of the 
fluxes of F out of the three pairs of opposite surfaces of the box. The flux out of the 
u-surfaces corresponding to u and u + du is 

F(u + du, v , w) • udSu - F(u , v , w) • udSu 

= (Fu(u + du, v, w)h 0 (u + du , v , w)h w(u + du , v, w) 

- F,,(u, v, w)h 0 (u , v , w)h w(u, v , w)) dv dw 

a = -(h vh wFu)dudvdw. 
au 

Similar expressions hold for the fluxes out of the other pairs of coordinate surfaces. 

The divergence at P of F is the flux per unit volume out of the infinitesimal 
coordinate box at P . Thus, it is given by 

The divergence in orthogonal curvilinear coordinate s 

div F(u, v, w) = l [ !_(hvhwF 11(u, v, w)) 
huh uhw au 

EXAMPLE 11 

a a J + -(h,,h wFu(u, V, w)) + -(h,.hvFw(u, v, w)) . 
av aw 

For cylindrical coordinates, h,. = hz = l , and he = r. Thus, the 
divergence of F = F,.r + Fe0 + Fzk is 

. 1[a a a ] d1vF = - -(rF,.) +-F e + -(rF z) 
r or ae oz 
aF,. 1 1 a Fe a Fz 

= -+-F,.+--+- . 
ar r r ae az 

EXAMPLE 12 For spherical coordinates, hR = 1, h¢, = R, and he = R sin¢. 

The divergence of the vector field F = FRR. + F,t,~ + F08 is 

To calculate the curl of a vector field expressed in terms of orthogonal curvi
linear coordinates we can make use of some previously obtained vector identities . 
First , observe that the gradient of the scalar field f(u , v, w) = u is fi/ h,,, so that 
fi = hu V u. Similarly, v = hv Vv and w = h w Vw. Therefore, the vector field 

can be written in the form 

F = Fuhu V u + Fvhu Vv + Fwhw V w . 
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Using the identity curl (JV g) = V f x V g (see Exercise 13 of Section 16.2), we can 
calculate the curl of each term in the expression above. We have 

curl (Fuhu Vu)= V(Fuhu) X Vu 

= --(Fuhu) U + -- (F,,hu) V + -- (F11h 11)w x -[ 
1 a A 1 a A 1 a A] ii 

hu au hv av h w aw hu 

1 a A 1 a ( A = -- --(F,,h 11)v - --- F11h,,)w 
h11hw a w h11hv av 

= --- --(F 11h11)(hvv) - -(F,,h 11) h ww) . 1 [a ~ a ( A] 
huh vh w aw av 

We have used the facts that u x u = 0, v x u = -w, and w x u = v to obtain 
the result above. This is why we assumed that the curvilinear coordinate system was 
right-handed . 

Corresponding expressions can be calculated for the other two terms in the formula 
for curl F. Combining the three terms, we conclude that the curl of 

is given by 

The curl in orthogonal curvilinear coordinates 

hu ii 
1 a 

curlF (u, v, w) = ---
huhvhw au 

EXAMPLE 13 

1 
curlF = -

r 

For cylindrical coordinate s, the curl of F = F,.r + F08 + Fzk is 
given by 

r r0 k 
a a a 

-
ar a0 az 
F,. rF0 Fz 

= ( ~ a Fz _ a F0 ) r + ( a F,. _ a Fz ) ij + ( a F0 + F0 _ ~ a F,. ) k. 
r a0 az az ar ar r r a0 

EXAMPLE 14 For spherical coordinates , the curl of F = FRR. + F¢~ + F08 is 
given by 

ft Rel> R sin¢ 0 
1 a 

curlF = 2 a R R sin¢ 

a a 
a¢ a0 

FR R F¢ R sin </JF0 

= - 1
- [ !._(sin¢F0) - a F¢ ] R 

R sin ¢ o<p 80 

+ -~ -[ aFR - sin ¢.!___(RF0)] ~ 
R smcp 80 BR 

+ _!_ [ .!___(R F¢) - a FR J 0 
R BR o<p 
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= - .- (cos¢>)F0 + (sin </>)- - - R 1 [ aF0 aF¢,J ~ 
R sm </> a¢> ae 

EX E R C I S ES 16.7 
In Exercises 1-2, calculate the gradients of the given sca lar fields 
expressed in term s of cylindrical or spherical coordinates. 

1. f (r, 0, z) = r0z 2. f(R , ¢ , 0) = R¢0 

In Exercises 3-8, calculate div F and curl F for the given vector 
fields expressed in terms of cylindrical coordinates or spherical 
coordinates. 

3. F(r , 0, z) = rr 4. F(r , 0, z) = r9 

5. F(R , ¢, 0) = sin¢ R 6. F(R ,¢,0)= R~ 

7. F(R, ¢,0) = RO 8. F(R ,¢, 0) = R2R 
9. Let x = x(u, v ), y = y(u , v) define orthogonal curvilinear 

coordinates (u, v) in the xy-plane. Find the scale factors, 
local basis vectors, and area element for the syste m of 
coordinates (u , v ) . 

10. Continuing Exercise 9, express the gradient of a scalar field 
f (u, v) and the divergence and curl of a vector field F(u, v) 
in terms of the curvilinear coordin ates. 

11. Express the gradient of the scalar field f (r, 0) and the 
divergence and curl of a vector field F(r , 0) in term s of plane 
polar coordinates (r , 0) . 

12. The transformation x = a cosh u cos v , y = a sinh u sin v 
defines elliptical coordinates in the xy-plane. This 
coordinate sys tem has singular points at x = ±a, y = 0. 

I 

CHAPTER REVIEW 
Key Ideas 
• What do the following terms mean? 

<> the divergence of a vector field F 

<> the curl of a vector field F 

<> F is solenoidal 

<> F is irrotational 

<> a scalar potential 

<> a vector potential 

<> orthogonal curvilinear coordinates 

• State the following theorems: 

<> the Divergence Theorem 

o Green 's Theorem 

+- .- - - (sin</>)Fe - (R sin </>)- cl> l [aFR aF0] ~ 
R sin¢> ae aR 

1 [ aF¢, aFRJ ~ +- F¢,+ R--- 8. 
R aR a¢> 

(a) Show that the u-curve s, u = con stant, are ellipses with 
foci at the singular point s. 

(b) Show that the u-curves, v = constant, are hyperbolas 
with foci at the singular points . 

(c) Show that the u-curve and the v-curve through a 
nonsingular point intersect at right angles . 

(d) Find the scale factors h 11 and hv and the area element dA 
for the elliptical coordinate syste m. 

13. Describe the coordinate surfaces and coordinate curves of the 
sys tem of elliptical cylindrical coordinates in xy z-space 
defined by 

14. 

15. 

16. 

x = a cosh u cos v, y = a sinh u sin v, z = z. 

The Laplacian V 2 f of a sca lar field f can be calculated as 
div V f. Use this method to calculate the Laplacian of the 
function f (r, 0, z) expressed in terms of cylindrical 
coord inates. (This repeats Exercise 19 of Section 14.6.) 

Calculate the Laplacian V 2 f = div V f for the function 
f (R , ¢, 0) , expressed in term s of spherical coordinates . 
(Thi s repeats Exercise 20 of Section 14.6 but is now much 
easier.) 

Calculate the Laplacian V 2 f = div V f for a function 
f (u , v, w) expressed in terms of arbitrary orthogonal 
curvilinear coordinates (u , v, w). 

o Stoke s's Theorem 

Review Exercises 
1. If F = x 2zi + (y2z + 3y)j + x 2k, find the flux of F across 

the part of the ellipsoid x 2 + y2 + 4z2 = 16, where z :::O: 0, 
oriented with upward normal. 

2. Let ,8 be the part of the cylinder x 2 + y2 = 2ax between the 
horizont al planes z = 0 and z = b, where b > 0. Find the 
flux of F =xi+ cos(z 2)j + ezk outward through -8. 

3. Find fc/3y2 + 2xey2)dx + (2x2yey2)dy counterclockwise 

around the boundary of the parallelogram with vertices (0, 0) , 
(2, 0) , (3, 1), and (1, 1). 
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4. IfF = -z i+xj+ yk, what are the po ssible values of fe F edr 

around circles of radius a in the plane 2x + y + 2z = 7? 

5. Let F be a smooth vector field in 3-space and suppose that, 
for every a > 0, the flux of F out of the sphere of rad ius a 
centred at the origin is n: (a3 + 2a4 ). Find the divergence of F 
at the origin. 

6. Let F = - yi + x cos(l - x 2 - y2)j + yz k. Find the flux of 
curl F upward through a surface who se boundar y is the curve 
x2 + y2 = 1, z = 2. 

7. LetF(r) = r 2r , wherer = x i+ yj+ zk andr = lrl . For what 
value(s) of ,1, is F solen oidal on an open subset of 3-space? Is 
F solenoidal on all of 3-spac e for any value of A? 

8. Given that F satisfies curl F = µF on 3-space , where µ is a 
nonzero constant , show that V 2F + µ 2F = 0. 

9. Let P be a pol yhedr on in 3-s pace having n planar faces, F 1, 
F2, .. . , Fn. Let N; be normal to F; in the direction outward 
from P, and let N; have length equal to the area of face F;. 
Show that 

n 

L N; = 0. 
i = I 

Also, state a version of this re sult for a plane pol ygo n P. 

10. Around what simple, closed curve C in the xy -plane doe s the 
vector field 

F = (2y 3 
- 3y + x/)i + (x - x 3 + x 2y)j 

have the greatest circulation? 

11. Through what closed , oriented surface in JR3 doe s the vector 
field 

F = (4x + 2x 3z)i - y (x 2 + z2)j - (3x 2z2 + 4/z) k 

have the greatest flux? 

12. Find the maximum value of 

t Fedr , 

where F = xy2i + (3z - xy 2)j + (4y - x 2y) k , and C is 
a simple clo sed curve in the plane x + y + z = 1 oriented 
co unterclockwi se as see n from high on the z-axis. What curve 
C gives this maximum ? 

Challenging Problems 
8 1. (The expanding universe ) Let v be the large-sca le velocity 

field of matter in the universe. (Large-scale mean s on the 
sca le of intergalactic dist ances; small -scale motion such as 
that of planetary systems about their suns, and even stars 
about galactic centres , has been averaged out. ) Assume that 
vis a smooth vector field . According to prese nt astronomical 
theory , the distance between any two point s is increa sing , and 
the rate of increase is proportion al to the distance between the 
points. The constant of proportion ality , C, is caJled Hubble's 
constant. In terms of v , if r1 and r 2 are two point s, then 

Show that div v is constant , and find the value of the constant 
in term s of Hubbl e 's cons tant. Hint: Find the flux of v(r) out 
of a sphere of radiu s E centred at r1 and take the limit as E 

approaches zero. 

CHAPTER REVJEW 953 

8 2. (Solid angle) Two rays from a point P determine an angle 
at P whose measure in radians is equa l to the length of the 
arc of the circle of radius l with centre at P lying between the 
two rays. Similarl y, an arbitrarily shaped half-cone K with 
vertex at P det ermi nes a solid angle at P whose measure 
in steradians (stereo + radians) is the area of that part of 
the sphere of radius 1 with centre at P lying within K. For 
example, the first octa nt of JR3 is a half-cone with vertex at the 
origin. It deter mine s a sol id angle at the orig in mea ut-ing 

l 7T: 
4n: x 8 = 2 sterad ians, 

since the area of the unit sphere is 4n:. (See Figure 16.25. ) 

p 

Figure 16.25 

(a) Fi nd the stera dian measure of the solid ang le at the vertex 
of a right-circ ular half-cone whose generators make ang le 
a with its centra l axis. 

(b) If a smooth, or iented surface intersects the genera l half
cone K but not at its vertex P, let ,8 be the part of the 
surface lying within K. Orient ,8 with nomial pointin g 
away from P . Show that the steradian measure of the 
so lid angle at P determined by K is the flux of r / lr l3 

thro ugh -8, where r is the vector from P to the point 
(x, y, z). 

Integrals over moving domain s 

By the Fundamental Theorem of Calculus , the derivative with 
respect to tim e t of an integral off (x , t) over a "moving interval " 
[a(t) , b(t)] is g iven by 

ct 1 bCr) 1/JCr) a 
- J(x , t) dx = - J(x , t) dx 
cit a (t ) a( t) at 

db da 
+ J(b(t) , t)dt - f(a(t), t) dt . 
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The next three problems, suggested by Luigi Quartapelle of the 
Politecnico di Milano, provide various extensions of this one
dimensional result to higher dimensions. The calculations are 
somewhat lengthy, so you may want to get some help from Maple 

or another computer algebra system. i 
D 3. (Rate of change of circulation along a moving curve) 

(a) Let F(r, t) be a smooth vector field in R3 depending on a 
parameter t, and let 

G(s , t) = F(r(s , t), t) = F(x(s, t), y(s, t) , z(x, t), t), 

where r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k has contin
uous partial derivatives of second order . Show that 

!_ (G• or) -!_ (G• or) 
at as as at 

= - • - + (V X F) X - • - . 
aF or ( or) or 
at as at as 

Here, the curl V x F is taken with respect to the position 
vector r. 

(b) For fixed t (which you can think of as time) , r = r(s , t) , 
(a :::: s :::: b ), represents parametric ally a curve C1 in R3 . 

The curve moves as t varies; the velocity of any point on 
C1 is vc(s, t) = or/at. Show that 

!!._ f F • dr = f oF • dr + f ( (V x F) x vc ) • dr 
dt le, le, at le, 

+ F(r(b , t), r) • vc(b, t) - F(r(a , t), t) • vc (a , t). 

Hint: Write 

- F • dr = - G • - ds d 1 lb a ( or) 
dt c, a at OS 

l b [ a ( or) - - G•-
a OS at 

+ (!__ (G • or) - !_ (G • or))] ds. 
at as as at 

Now use the result of (a). 

D 4. (Rate of change of flux through a moving surface) Let 
S1 be a moving surface in R3 smoothly parametrized (for each 
t) by 

r = r(u, v, t) = x(u, v, t)i + y(u, v, t)j + z(u, v, t)k, 

where (u , v) belongs to a parameter region R in the uv-plane . 
Let F(r, t) = F1 i + F2j + F3k be a smooth 3-vector function , 
and let G(u , v, t) = F(r(u, v, t), t). 
(a) Show that 

!__ (G• [ or x or])- !_ (G• [ or x or]) 
at OU av OU at av 

_ !_ (G• [ or x or]) 
av OU at 

=- • - X - + (V. F)- • - X - . 
aF [ or or] or [ or or] 
at OU av at OU av 

(b) If C, is the boundary of S1 with orientation corresponding 
to that of S1, use Green 's Theorem to show that 

JL [:u ( G• [!; x : :]) 

+!__ (G• [ or x or])] dudv 
av OU at 

= 1 (F x or)• dr. 
Jc, at 

(c) Combine the results of (a) and (b) to show that 

!!._ {{ F e NdS 
dt JJs, 
= ff oF •N dS+ ff (V eF)v s •NdS 

ll s, at lls, 
+ J (F x vc ) • dr, 

Jc, 

where Vs = or/at on S1 is the velocity of S1, vc = or/at 
on C1 is the velocity of C1 , and N is the unit normal field 
on S1 corresponding to its orientation. 

D 5. (Rate of change of integrals over moving volumes) Let 
S1 be the position at time t of a smooth , closed surface in R3 

that varies smoothly with t and bounds at any time t a region 
D,. If N(r , t) denotes the unit outward (from D1) normal field 
on S1, and vs(r , t) is the velocity of the point r on S1 at time 
t, show that 

!!._ ff f f dV = ff f of dV + J[ Jvs • NdS 
dt }}Jo, JJJo, at Jfs, 

holds for smooth function s f (r , t). Hint : Let t:iD1 consist of 
the point s through which S1 passes as t increases to t + M . 
The volume element d V in t:i D1 can be expressed in terms of 
the area element dS on S, by 

dV=v • NdSM. 

Show that 

_!_[ff{ f(r , t+M)dV - ff[ f(r , t)dv] 
M JJJo,+e>, JJJo, 
=ff l , f(r , t + t:i~~ - f(r , t) dV 

+_!_ ff[ f(r , t)dV 
t:it J J J t;.D , 

11I 
f (r , t + t:it) - f (r , t) + -------dV , 

1';0, t:it 

and show that the last integral-+ 0 as t:it -+ 0. 
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Differential Forms 
and Exterior Ca lcu I us 

'' The miracle of the appropriateness of the language of mathematics 
for the formulation of the laws of physics is a wonderful gift which we 
neither understand nor deserve. 

955 

'' Eugene P. Wigner 1902-1995 
from The Unreasonable Effectiveness of Mathematics in the Natural Sciences, (1960) 

Int rod U Ct I, Q n In S. P. Thompson 's classic 1914 text, Calculus Made 
Easy (2nd ed.), he playfully described the "d" in a dif

ferential as a "dreadful" symbol. He concluded it was best to think of "d" as an 
operation that takes "a little bit of." Thus, the ubiquitous intuition about differentials 
being vaguely "small" has a long history that belies the historical , but ultimately suc
cessful , struggle of mathematicians to escape from "infinitesimals." Our definitions 
of differentials in Sections 2.2 and 12.6 made it quite clear that differentials are just 
new independent and dependent variables that can have any values, not just small 
ones. It is only when we have used differentials to approximate the changes in values 
of functions that we have thought of differential s as small in order that the errors in 
the approximation s be small. We have also seen differential s used in contexts where 
smallness is neither implied nor desirable , for example, in the applications in Sections 
12.6 and 13.9. 

This chapter focuses on differential s and develops a new kind of "calculus " called 
exterior calculus that enables differential s to play a much greater role in applications in 
the physical and other sciences . It amounts to a rethink of how calculus is traditionally 
done . Sections 17.1 and 17.2 set up the mechanics of "k-forms" and "differential 
forms," (which are fields of k-forms analogous to vector fields) and the operators 
"wedge product" and "exterior derivative" that act on them. These are analogous to 
differential calculus, while the remaining three Sections 17 .3-17 .5 constitute a rethink 
of integration . Section 17 .3 defines manifolds and bridges the classical multiple integral 
to integrals of differential forms . A central issue in integration is orientation , which 
differential forms naturally take into account in any dimension. This is the subject 
of Section 17.4. Section 17 .5 revisits the classical integration theorems of advanced 
calculus, showing them in a unified light in the Generalized Stokes Theorem. 

Differentials and Vectors 
Differentials have properties similar to vectors. Consider the differential of the function 
J(x, y, z) and its gradient VJ: 

dJ = aJ dx + aJ dy + aJ dz 
ax ay az 

VJ = aJ + aJ j + aJ k. 
ax ay az 
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Other than representing the 
dreaded "little bit of area," dA 
has no meaning; it is not the 
differential of anything, and 
neither is dx dy. 

The expression for df appears to expand df as a linear combination of "basis vectors" 
dx , dy , and dz, which play the same role as i, j and k do in the expression for V f; 
they both imply direction as well as magnitude . We will come to regard differentials 
as elements of vector spaces in this chapter. 

The idea of a differential having direction (orientation) is implicit in the definition 

of the definite integral in Chapter 5. J; f (x) dx is the integral of the differential form 
f (x) dx over the interval [a, b J oriented from a to b. Reversing this orientation results 

in the integral changing sign: J: f (x) dx = - J: f (x) dx. Our definitions of double 
and triple integrals in Chapter 14 involved no such "built-in " concept of orientation; 
for instance, we treated the area element in JR.2 as dA = dx dy = dy dx. This meant 
that the orientation concept had to be artificially built in to the statements of two- and 
three-dimen sional versions of the Fundamental Theorem of Calculus in Chapter 16. 
This deficiency will be remedied in this chapter by the introduction of a new kind of 
product (the wedge product) , where we will replace the inadequate product dx dy with 
dx I\ dy, which is antisymmetric in the sense that dy I\ dx = -dx I\ dy . This will , 
in turn , make it possibl e to define integral s over "manifolds " of any dimension and 
obtain a single version of the Fundamental Theorem of Calculus that applies in any 
dimension . 

Derivatives versus Differentials 
It is a peculiarity of the conventional language that, except in special cases , when 
we speak of differential equations we are actually speaking of equations between 
derivatives and not equation s betwe en differentials . Exterior calculus inverts this. The 
exterior derivative defined in Section 17 .2 is properly a kind of differential and not a 
derivative as the term is conventionally used in calculus . The exterior derivative (i.e., 
"d") , together with the notion of products of forms , allows for a new kind of object. 
One can, loosely speaking, take the differential of a differential in a meaningful way. 
This is something completely new. By forrning independent bases in their own vector 
spaces , k-forms retain the ability to "separate " (into components) that vector s have . 
Thus , differential equations can be replaced by equivalent equations in differential s of 
k-forms. 

• 
k-Forms 

---- -

DEFINITION 

I 

In this section, we develop the notion of forms and their product s, known as wedge 
product s. Let the n vectors e1 = (1, 0, 0 , .. . , 0), e2 = (0, 1, 0, . .. , 0) , . . . , and 
en = (0, 0 , 0 , .. . , 1) be the standard basis for the n-dimensional real vector space JR.n. 
A function that maps a real vector space into JR. is called a "function al." In physical 
examples , such as integral s for energy, function als are commonly encountered on 
vector spaces of functions (infinite dimensional function spaces), but in the following 
definition we introduce a function al on the finite dimensional vector space JR.n. 

A real-valued function¢ defined on JR.n is called a I-form (or a linear functio nal) 
on JR.11 if , whenever x and y belong to JR.n and a and b are real numbers , then 

¢(ax+ by) = a¢(x) + bcp(y). 

For example, if x = x I e 1 + x2 e2 + · · · + x 11 en , then the function ¢ defined by 

¢( x) = a1x1 + a2x2 + · · · + anxn =a • x 

is a ]-form on JR.n for any a E JR.n. In fact, every 1-form on JR.n is of this type, because , 
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DEFINITION 

I 

We have now departed from the 
convention up to this point of 
depicting differentials on both 
sides of any equality. It is not 
necessary that a 1-form be the 
differential of some function. 
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if</> is an arbitrary 1-form on R n and we let a; = </> ( e;) , then by linearity, 

The set of all 1-forms on R" is denoted A 1 (R") and is a real vector space called 
the dual space of R". If</> and If/ are I -forms and 0 = u</> + v 1/f, where u and v are real 
numbers, then, as noted above , </>(x) =a • x, and 1/f(x) = b • x for certain n-vectors a 
and b, so 

0(x) = u¢(x) + Vlfl(X) = ua • x + vb • x = (ua +vb) • x, 

and 0 is a 1-form corresponding to the vector ua + vb. 

Now we make an important definition that appears to give "differentials" a new 
role to play, rather than just being new independent and dependent variables in a 
differentiation process. Being a vector space, A1 (R") must itself have a basis . 

Differentials as basis vectors for 1-forms 

For 1 ::: i ::: n , let dx; be the 1-form that assign s to v E Rn its ith component v;: 

dx;(v) = v; for all v E R" . 

Since any 1-form </> on R n can be written in the form 

n n 

</>(v) = L </>(e;) v; = L </>(e;) dx;(v) , 
i=l i= l 

n 

we can therefore write </> = L </> ( e;) dx; . 
i=l 

Thus, the differentials dx; for 1 ::: i ::: n constitute a basis for A 1 (R n), which 
we will call the standard basis. A 1 (R" ) must therefore also be an n-dimensional 
vector space. 

Bilinear Forms and 2-Forms 
The Cartesian Product R" x R" = { (x , y ) : x , y E R" } is a vector space of dimension 
2n. A bilinear form </> on R" is a map from R" x R n into R such that</> (x, y) is linear 
in x for each fixed y and linear in y for each fixed x; that is, 

</>(ax+ by, z) = af (x, z) + b</>(y, z) 

</>(x, ay + bz) = a</>(x, y) + b</>(x, z) 

holds for all a, b E R and all x, y, z E R". 

EXAMPLE 1 If x E R" and y E R" are row vectors (so that the transpose yT is 
a column vector) , and if .A, = (aij) is a real n x n matrix, then 

n 11 

</>(x, y) = x .A. yT = LL x , a;J YJ 
i = l J= l 

is a bilinear form on R". In fact , every bilinear </> form on R" can be expressed in this 
way, where aiJ = </>(e;, e1). 
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DEFINITION 

II 

THEOREM 

I 

A 2-form on ]Rn is a bilinear form on ]Rn that is also antisymmetric (or skew
symmetric) in the sense that for every (x, y) E ]R11 x ]Rn, 

¢(y, x) = -¢( x, y) . 

The set of all such 2-forms on JR11 is denoted A2(1R11
) and is a vector space. 

EXAMPLE 2 Let ¢ and If be two I-forms on JR11
, (i .e., ¢ and If belong to 

A1 (JR11
)). Then the expression c; = ¢I\ If defined by 

I 
¢( x) 

c;(x, y) = (¢ I\ l/l)(x, y) = l/l(x) :~~~I= c/>(X)l/f(Y) - c/>(Y)l/f(X) 

is bilinear and antisymmetric, and so is a 2-form on JR11
• (This follows at once from 

properties of the determin ant.) The symbol /\ is called a wedge product. This wedge 
product is a function of two vectors. (Later we will encounter wedge products that 
have more than two arguments.) For example, in term s of elementary I-forms, 

I
x· 

(dx; I\ dx1 )(x, y) = x~ 

Note that the antisymmetric propert y of the wedge product implies that¢ I\¢ = 0 
(the zero 2-form) for any ¢ E A 1 (JR11

). 

Let¢ E A2(1R11
), and let x = I:7=1 x;e; and y = L j= l y1e1 belong to JR11

• If 
aiJ = ¢( e;, e1 ), then the number s aiJ satisfy a1; = - aiJ and a;; = O; that is, the matri x 
(a;1) is antisymmetric . Therefore, we have, using the bilinearity of¢, 

n n n n 

¢( x, y) =LL x; YJ ¢( e;, e1) =LL a;1 x; YJ 
i=l J=l i=l J=I 

L (aiJ x; YJ - a;J XJ y;) = L aiJ (dx; I\ dx1 )(x , y) . 
l::::i <J::::11 l ::::i <}::on 

Moreover , if Ll ::::i<J::::n aij dx; I\ dx1(x, y) = 0 for all choices of n-vectors x and y, 
then , taking x = e; and y = e1, we obtain aiJ = 0 for all choices of i and j satisfying 
1 ::: i < j S n. Thus, we have proved the following: 

The elementary 2-forms dx; I\ dxJ, where 1 ::: i < j S n, constitute a basis for 

(
n) n(n - 1) 

A2 (1R11
), which is therefo re a real vector space having dimension 

2 
= 

2 
. 

While we have been explicitly stating the functional dependence on two vectors x 
and y to this point , we will take this as under stood unless explicitly needed. 

EXAMPLE 3 Let¢ and If be two 1-forms on JR3, say, 

</> = a I dx 1 + a2 dx z + a3 dx 3 

1/f =b1d x1 +b2dx2+b 3dx3. 

Expand the 2-form ¢ I\ If in term s of the three basi s vectors dxz I\ dx3, dx3 I\ dx1 
(which is just - dx1 I\ dx3), and dxi I\ dx2 of A2(1R3). What vector in JR3 does 
the result correspond to if we regard the three basis vectors above as corresponding to 
i = e1 , j = e2 , and k = e 3 in JR3? 
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DEFINITION 

This use of sgn to denote the 
sign for an even or odd 
permutation should not be 
confused with the signum 
function of Section P.5, neither 
should 7C, the permutation, be 
confused with the number 1r . 

I 
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Solution We have 

¢ I\ If!= a1b1 dx1 I\ dx 1 + a1b2 dx1 I\ dx2 + a1b3 dx1 I\ dx3 

+ a2b1 dx2 I\ dx1 + a2b2 dx 2 I\ dx2 + a2b3 dx 2 I\ dx3 

+ a3bi dx 3 I\ dx1 + a3b2 dx3 I\ dx2 + a3b3 dx 3 I\ dx3 

= (a2h - a3b2) dx2 I\ dx3 + (a3b 1 - a 1 b3) dx3 I\ dx 1 

+(a1b 2 -a 2b1)d x 1 I\ dx2. 

The coefficients here are those of the cross product of a = a 1 i + ai,j + a3k and 
b = b1i + b2j + b3k in IR3. Thus, the wedge produ ct mapping of A 1 (IR3) x A 1 (IR3) 
into A2 (IR3) corresponds to the cross product mappi ng of IR3 x IR3 into IR3. 

Remark Note that n = 3 is a unique case in that it is the only one with the bases for 
A2(IR11

) and A1 (IR.11
) having the same dimen sion . In a sense, thi s is what make s cross 

products possible in IR3 . 

k-Forms 

A k-form on IR11 is a multilinear antisymmetric functional ¢ defined on the 
Cartesian product (IR11l = IR.11 x IR" x · · · x IR.11 (k factors IR.11

). That is,¢ map s 
(IR"l into IR and satisfies the two conditions: 

(a) multilinearity: ¢(v1, .. . , vk) is linear in each of the vectors v; with the 
other s held fixed . 

¢(v1' . .. ' Vi- I, (au+ bw) , Vi+ I, . .. ' Vk) 

= a¢(v1 , ... , Vi-1, u, V;+ J, ... , Vk) 

+ hep (VI , . .. , V; - I , W, Vi+ I , ... , Vk) 

for all real numbers a and b and vectors u and w in !Rn, and 

(b) antisymmetry: if any two arguments of¢ have their pos itions sw itched , the 
value of ¢ changes sign. 

¢(v1 , ... , V;, ... , VJ, .. . Vk) = - ¢ (v1, ... , Vj, ... , V; , . . . Vk) , 

The vector space of all k-form s on IR.11 is denoted A k (IR.11
). 

If k > 2, we need to extend the notion of antisymmetry to allow for exchange s involving 
more than two arguments. We call a rearran gement of the numbers { 1, 2, 3, ... , k) a 
permutation . Such permutation s can always be constr ucted by success ive reversa ls 
of pairs of the numbers . The reversal (ij) exchanges the number s i and j (where 
j -I= i) . For example, the rearrangement 1C that maps {l , 2, 3) to (2, 3, 1) can be 
regarded as first switcrung 1 and 2 (producing (2, 1, 3}) and then switcrung 1 and 3 
to get {2, 3, 1). 7C can be regarded as repre senting a sequenc e of rever sa ls to achieve 
the rearrangement. We describe 11: as the "product " of these reversal s: 11: = (12)(13), 
where (12) and (13) depict the specific reversa ls for a particular rearrangement. Of 
course , such a representation is not unique; it is also true that 11: = (13) (23). However, 
if a permutation 11: can be expressed as a produ ct of an even (or odd) number of 
reversals , then all ways of expressing it as a product of reversals will involve an even 
(or odd) number , and we say that the permutation itself is even (or odd). Accordingly , 
we define the sign of the permutation 11: as 

sgn (11:) = { ~l 
if 11: is an even permutation 
if 11: is an odd permutation . 
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It follows that the antisymmetry property of a k-form ¢ can be generaljzed as follows: 
if n: is any permutation of the numbers { 1, 2, ... , k}, then 

¢(v " (l), v"(2) . . . , V"(k)) = sgn (n:) ¢(v1 , v2, .. . , vk). 

We can now extend the definjtion of the wedge product to allow fork factors. Let 
dx; be the 1-form introduced earlier in this section: dx; (x) = x; for all x E ]Rn. We 
define the elementary k-forms 

dx; 1 (v1) dx; 1 (v2) dx; 1 (vk) 

(dx; 1 I\ dx;2 I\· ·· I\ dx;k)(v1, v2, ... , vk) = 
dx; 2 (v1) dx;2 (v2) dx; 2(vk) 

dx;k (v1) dx;k (v2) dx;k (vk) 

VJi1 v2;1 Vki1 
VJi2 v2;2 Vki2 

VJ;k v2;k Vkik 

Remark While the above formula makes sense for all positive integers k, the resulting 
determinant will be zero if k > n. Since there are only n distinct I-forms dx;, if k > n 
at least two of the subscripts i 1, i2, ... , h will be equal and so the determinant will 
have at least two identical rows . The same applies fork S n; if any two of the factors 
in dx; 1 I\ dx;2 I\ · · · I\ dx;k are identical, then the wedge product is the zero k-form. 

Remark Fork s n, let the numbers i I' i2, . .. ' ik satisfy 1 :::: i 1 < i2 < ... < ik s n. 
If n: is a permutation of those numbers, then 

As observed earlier for 2-forms, the collection of all wedge products of the form dx; 1 /\ 
dx;2 I\ · · · I\ dx; k, where i 1, i2, . .. , ik , satisfy l ::S i 1 < i2 < · · · < ik ::S n, constitute 

a basis for Ak(JRn), which therefore has dimension (n) = n! . In particular, 
k (n-k)!k! 

A,, (JR") has dimension l; it is spanned by the single form dx 1 I\ dx2 I\··· I\ dx,,. 

The wedge product of an arbitrary k-form ¢ and l'-form 1/f can now be calculated 
using the bases of Ak(JR") and Ae(IR"). If 

then 

¢ = L a; 1;2 .. ;kdx;1 I\ dx; 2 I\··· I\ dx;k 
l ::,i1 <i2···<ik:":ll 

1/f = L bjih-··j edXj1 I\ dx h I\··· I\ dxj e, 
l:::j1 <h··<je:::n 

l :::i1 < ··· < ik ~ ll 
l~iJ < "·< je :S.n 

The result is a (k + l')- form. Any terms on the right side for which one of the dx;s is 
identical to one of the dxjs will be zero. This will happen to all terms if k + l' > n. 

Assuming that¢ , ¢1, and ¢2 are k-forms, that 1/f is an l'-form, that xis an m-form , 
and that a and b are real numbers, then the wedge product has the following properties: 

(a) It is linear in each of its arguments : 

(a¢1 + b¢2) I\ 1/f = a ¢1 I\ 1/f + b ¢2 I\ 1/f. 
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(b) It is associative: 

so this triple product can be written unambiguou sly as </> I\ If/ I\ x, 
(c) It is skew-comm utati ve : 

</> I\ If! = ( - l le If! I\ </>. 

EXAMPLE 4 We summarize the description of all k-form s on JR3 as follows: 

(a) I-forms A 1 (JR3) has dimension 3. It consists of forms of the type 

(b) 2-forms A2 (JR3) also has dimension 3. It consists of forms of the type 

( c) 3-forms A3 (IR3) has dimension l . It consists of forms of the type 

X = c dx, I\ dx2 I\ dx3, where c E JR. 

(d) higher-order forms If k ::: 4, then Ak(JR3) = {0}, the zero k-form that maps a 
k-tuple of vectors in JR3 to the number 0. 

EX A M p L E 5 Calculate and simplify ef> I\ If/, where 

¢ = a , dxi + a2 dx2 + a3 dx 3 E A1 (IR3), 

If/ = b1 dx2 I\ dx3 + b2 dx 3 I\ dx1 + b3 dx, I\ dx 2 E A2(IR3). 

Interpret the result in terms of the vectors a = a I i + ai,j + a3 k and b = b Ii+ bi.i + b3 k 
in JR3. 

Solution By linearity and skew-symmetry, we have 

</> I\ If/ = a, bi dx, I\ dx2 I\ dx3 + a1b2 dx, I\ dx3 I\ dx1 + a1b3 dxi I\ dx1 I\ dx 2 

+ a2b1 dx2 I\ dx2 I\ dx3 + a2bi dx2 I\ dx3 I\ dx, + a2b3 dx2 I\ dx , I\ dx 2 

+ a3b1 dx3 I\ dx2 I\ dx 3 + a3b2 dx 3 I\ dx3 I\ dx1 + a3b3 dx3 I\ dx , I\ dx 2 

= (a , bi + a2b2 + a3b3) dx , I\ dx2 I\ dx3 

= (a • b) dx, I\ dx2 I\ dx3. 

As a map from A 1 (IR3) x A2 (JR3) into A3 (JR3), the wedge product corresponds to the 
dot product in JR3. 

Forms on a Vector Space 
Everything said above about forms on ]Rn can be applied to any n-dimensional real 
vector space provided we redefine the elementary forms so that dx; (v) selects the 
ith component of the vector v E V with respect to some particular basis of V. For 
our purposes, we will be mainly interested in the case where V is an m-dimens ional 
subspace of JR", where m < n. In this case, it is possible to restrict the elementary 
forms dxi , I\· ·· I\ dx;k in J\k(IR") so that they apply only to vectors in V. In this 
restriction, there will generally be fewer independent forms, because Ak (V) will have 
smaller dimension (;) than Ak (!Rn). 
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EXERCISES 17.1 

For example , the set of points (x , y , z) in IR3 satisfying x - y + z = 0 constitutes a 
2-dimensional subspace V of IR3

. Clearly, VJ = (a, b, b - a) and v2 = (p, q, q - p) 
belong to V. However, observe that the restrictions to V of three elementary 2-forms in 
A2(IR3) evaluate at these vectors to give dx /\dy(vi, v2) = aq-bp, dx /\dz( v1 , v2) = 
aq - bp, dy I\ d z (v1, v2) = aq - bp. There is only one independent elementary form 

in A2(V) , which has dimension O) = 1. 

In Exercises 1-4 calculate and simplify the wedge product of the product of reversals. 
given forms</> and If!. Write the dx;s in the answers in increasing 
subscript order. 

8 6. Verify that if </> is a k-form and If/ is an £-form, then 
</> I\ If/= (-1 /tl/f I\¢> . 

1. ¢ = ai dx2 I\ dx 3 + a2 dx 3 I\ dx4 + a3 dx4 I\ dx1 

If/ = b1 dx1 I\ dx2 + b2 dx 3 I\ dx4 
7. Let u = ( I , l , 0, 0) , v = (I , 0, 1, 0), and w = (1,0,0, 1) in 

R4
. Evaluate (a) dxi /\ dx2(u, v) 

2. </> = dx2 I\ dx 3 I\ dx4 

If/ = dx1 + dx 3 + dx4 

3. ¢ = dx1 + 2 dx 2 + 3 dx3 + 4 dx4 + 5 dxs 

(b) dxi I\ dx2 I\ dx3( u , v, w) 

(c) dx 3 I\ dx4 I\ dxi (u, v, w) 

(d) dx 3 I\ dx2 I\ dx4(u, v, w) 

If! = dx1 I\ dx2 I\ dx3 I\ dx4 + 2 dx2 I\ dx3 I\ dx4 I\ dxs 8. Let e;, (I :s i :s 4) be the standard basis vectors for R4 . Let 

4. </> = a1 dx1 + a2 dx2 + a3dx3 + a4 dx4 

If/ = bi dx2 I\ dx3 + b2 dx3 I\ dx4 + b3 dx4 I\ dxi + b4 dxi I\ dx2 
v1 = ei + 2e2 + 3e3 - 4e4 

v3 = 3ei - 4e2 

v2 = 2e i + 3e2 - 4e3 

V4 = 4ei 5. For what values of k is the permutation 11: that maps 
{l , 2, . .. , k) to {2, 3, ... , k, 1) even? odd? Express 11: as a 

Evaluate ¢(vi, ... , v4) if</>= dx1 I\ dx2 I\ dx3 I\ dx4. 

Differential Forms and the Exterior Derivative 

DEFINITION 

I 

Just as we extended the notion of vector to define vector fields as vector-valued functions 
of position in a domain in IR2 or IR3, so we can also extend the notion of k-form to 
define k-form fields as k-form-v alued functions of position in a domain in !Rn. These 
fields will be called differential forms. 

Fork ::: 1, a differential k-form on a domain D (an open set) in !Rn is a smooth 
function <l> from D into J\k(!Rn). Thus , for each x E D, <l>(x) is a k-form on !Rn 
that can be expressed as a linear combination of the the (:) standard basis vectors 
of J\k(!Rn). The coefficients of this linear combination (i.e., the coefficients of 
<l>(x)) will be smooth real-valued functions of x: 

<l>(x) = 

A differential 0-form on D is a smooth real-valued function f on D . 

For simplicity, we take "smooth" to mean that the coefficients have continuous 
partial derivatives of all orders (or at least all orders we need to calculate in a 
given situation). 

Fork ::: 0, we denote the set of all differential k-forms on D by :Fi (D). 

EXAMPLE 1 A differential 1-form on D C !Rn can be expressed as 
II 

<l>(x) = La;( x 1, x2, ... , Xn) dx;, 
i=I 
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DEFINITION 

I 
In ordinary calculus "d" denotes 
the differential of a function 
(i.e., of a 0-form). Here we have 
extended "d " to apply to any 
differential form to give a new 
form of one higher order. Do 
not confuse "d" with " D," 
which can represent a derivative 
in ordinary calculus. 
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where the coefficients a; are functions of x E D. Of course, for any x E D, <D(x) is a 
I -form on )Rn, whose value at v E ]Rn is given by 

n n 

<D(x)(v) = I:>i (x) dx; (v) = La; (x) v; = a(x) • v, 
i=l i=l 

where a(x) is then-vector field with components a; (x). 

More generally, if qi is the differential k-form on D given by 

qi= qi(x) = 

where the coefficients a; 1;2 ... ;k are functions of x E D, then the value of qi(x) at the 
sequence of vectors {v 1, v2, ... , vd in JR" is 

qi(x)(v1 , ... , vk) = 

D1i1 D2i1 Vki1 

I: a;1 iz·· ·ik (x) 
VJiz D2i2 Vkiz 

I S i1 <iz <···<ikSn 

Vi;k D2ik Vkik 

The wedge product of k-forms extends in the obvious way (pointwise on D) to 
differential k-forms with the added requirement that if f is a differential 0-form on D, 
then f I\ <D = f <D for any differential k-form <D; the coefficients off I\ <Dare just the 
coefficients of <D multiplied by f . Observe that for any two differential forms <D and 
qi, and any differential 0-form f, we have 

(f <D) I\ qi = f (<D /\ qi) = <D /\ (fqi). 

The Exterior Derivative 
The following definition is centra l to the study of differential forms; in a sense it 
justifies our use of the symbols dx; in the bases of the spaces of k-forms, and the use 
of the term "differential k-form " to describe a form-field. 

The exterior derivative of a differential 0-form (that is, a function) f on domain 
DC )Rn is the differential I-form df given by 

n aJ 
df(x) = I:- dx; . 

i=l ax; 

If <D is an arbitrary differential k-form on D: 

<D(x) = 

then its exterior derivative, d<D, is the differential (k + 1)-form given by 

d<D(x) = 

The exterior differential operator d maps :Fk(D) into :Fk+l (D). 
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THEOREM 

I 
d 2 f = ddf makes no sense in 
terms of classical differentials. 
It is only in the context of 
wedge products and differential 
forms that d2 makes sense. d2 

maps every differential k-form 
to the zero (k + 2)-form. 

It is worth stressing that the exterior derivative of a differential 0-form f coincides 
with the ordinary differential of f. The coefficients of d f are just those of the gradient 
grad(!) . If v E !Rn, then 

n af n aJ 
df (x)(v) = L - dx; (v) = I:- v; = grad (f) • v, 

i = l ax; i=l ax; 

illustrating again that a 1-form on !Rn is just a dot product with a fixed vector. But it is 
more remarkable that it yields a clear meaning to the differential of a differential. This 
is something completely new. 

Properties of the exterior derivative If <D and 'P are differential k-forms and n is a 
differential f form on domain D c !Rn, and if a and b are real numbers, then 

(a) d(a<D + b'P) = ad<D + bd'P; that is, the operator dis linear from :Fk(D) into 
:Fk+1(D). 

(b) d(<D A n) = (d<D) A n+ (-ll <DA (dO); (a Product Rule) . 

(c) d2<D = d(d<D) = {0}, the zero differential form. That is, d2 = 0. 

PROOF The proofs of parts (a) and (b) are elementary, and left as exercises for the 
reader. For (c) we proceed as follows. If <Dis a differential k-form, then <D(x) is a sum 
of terms of the form a(x) dx; 1 A d.x;2 A ... A dx;k. By part (a), it is sufficient to prove 
that d2<D is zero for any one such term. We have 

The expression in the large parentheses is zero because the smoothness assumption on 
partial derivatives of a implies that 

and dxe A dxj = -dxj A dx e. 

Remark The power of wedge products and exterior derivatives begins to become 
evident in the above proof, which holds only if the d-operator has been applied twice 
to a differential form. It is clear that the exterior derivative of a general differential 
form is not necessarily zero. We will, of course , have d<D = 0 if <D is a differential 
n-form on !Rn. (Why?) 

EXAM p LE 2 Let <D = F1 dx + F2 dy + F3 dz belong to :F1 (JR3). Calculate and 
simplify d<D. What does the result correspond to if we identify 

<D with the vector field F = F1 i + F2j + F3k and the differentia l 2-form d<D with 
the vector field having components that are the coefficients of dy A dz, dz A dx , and 
dx A dy? 

Solution Here we are using (x, y, z) instead of (x 1, x2, x3) as coordinates in JR3. We 
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have 

d<I> = dF1 I\ dx + dF2 I\ dy + dF 3 I\ d z 

a F1 a F1 aF1 = - dx I\ dx + - dy I\ dx + - d z I\ dx 
ax ay az 

a~ a ~ a ~ + - dx I\ dy + - dy I\ dy + - d z I\ dy 
ax ay az 

aF3 a F3 a F3 
+-dx /\ d z+-dy/\dz+ -d z/\ d z 

ax ay az 

(
aF3 a F2) ( a F1 a F3) = --- dy /\ d z + --- d z/\ dx 
ay az az ax 

+ ( aF2 _ a F1) dx I\ dy. 
ax ay 

Thus, d maps :F1 (ffi.3) into :F2 (ffi.3) by taking the differential I-form F1 dx+ F2dy + F3d z 
into the differential 2-form whose coefficien ts are the components of the vector field 
curlF , where F = F1i + Fij + F3k. 

EXAMPLE 3 Let 'I'= F1 dy A d z + F2 d z A dx + F3 dx A dy belong to :F2 (R3
). 

Calculate and simplify d'P. What is the coefficient of dx I\ dy I\ dz 
in terms of the vector field F = F1 i + Fij + F3k? 

Solution We have 

d'P = dF1 I\ dy I\ d z + dF 2 I\ dz I\ dx + dF3 I\ dx I\ dy 

a ~ a ~ a ~ = - dx I\ dy I\ d z + - dy I\ dy I\ d z + - d z I\ dy I\ d z 
ax ay az 

a~ a~ a ~ + - dx I\ dz I\ dx + - dy I\ dz I\ dx + - d z I\ d z I\ dx 
ax ay az 

ah ah ah + - dx I\ dx I\ dy + - dy I\ dx I\ dy + - d z I\ dx I\ dy 
ax ay az 

(
a F1 aF2 a F3) = - + - + - dx I\ dy I\ dz 
ax ay az 

= (div F) dx I\ dy I\ d z . 

Here d maps :F2 (ffi.3) into :F3 (ffi.3) by taking the differential 2-form with coefficients 
F1, F2, and F3 to the 3-form with coefficient the divergence of the vector field 
F1i + Fij + F3k. 

EXAM p LE 4 In Section 12.6 we encountered the Gibbs form of the equation of 
state for a thermodynamical system. For a system involving onJy 

one type of molecule it is 

dE = T dS - P dV + µ dN, 

aE a E a E 
where Eis energy; - is temperature , T ; -- is pressure, P; and - is the chemical 

a s a v a N 
potential , µ . Here V is volume, S is entropy, and N is the number of molecul es. Take 

the exterior derivative of this 1-form to find the Maxwell relation aP - aT of 
as a v 

Example 4 in Section 12.8 . 
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Solution Here we are using (S, V, N) instead of (x 1, x2, x3) as independent variables. 
Following Example 2, 

0 = d2 E = dT I\ dS - dP I\ dV + dµ I\ dN 

aT aT ar = - dS I\ dS + - dV I\ dS + - dN I\ dS 
as av aN 

aP aP aP 
- -dS /\ dV - -dV A dV - -dN A dV 

as av aN 

+ aµ dS I\ dN + aµ dV I\ dN + aµ dN I\ dN 
as av aN 

=( aµ+ aP) dV /\ dN+ (ar - aµ) dN /\dS 
av aN aN as 

-( aP + ar) dS /\ dV. 
as a v 

Since the wedge products in the final line above are linearly independent, we conclude 
that 

aT 

aN 

aµ 

as ' 

aµ aP 

av aN 

The first of these is the Maxwell relation from Example 4 of Section 12.8. The other 
two are additional relations not previously mentioned because Maxwell relations are 
traditionally used for fixed N , but they are no Jess valid. 

1-Forms and Legendre Transformations 
As we saw in Chapter 12, thermodynamic variables come in conjugate pairs. For S, V, 
and N in the energy 1-form in Example 4, T, - P, and µ are the respective conjugate 
variables . A conjugate variable is defined here as the function in front of the differential 
of that variable that ensures the product has a positive sign. In Section 12.6 we found 
that Legendre transformations , such as F = E - TS , led to 1-forms in a new quantity, 
which was the exterior derivative of a zero-form in a new set of variables. Clearly, 

dF = dE - T dS - SdT = -S dT - P dV + µ dN , 

so that Fis a function of T , V , and N , instead of S, V , and N . The conjugate variables 
are now -S, -P , andµ. Note that the Legendre transformation introduces a sign 
change for the new conjugate variable . See Section 12.6 for details. 

Once we realize that, we can use Legendre transformations of E to construct a 
0-form that depends on any three of the six variables S, V, N, T, P, and ft that we may 
choose , provided the three chosen variables do not include a variable and its conjugate 
(and we account for the sign change due to Legendre transforma tions) . It is easy to 
generate any of the many Maxwell relations using the properties of the wedge product 
and the exterior derivative. Note that it is only necessary to know that the 0-form 
exists and how many variables have been swapped between independent variables 
and conjugate variables, not what the new function is specifically, because d2 will 
eliminate it. d2 = 0 helps explain why thermodynamics potentials, as these Legendre 
transformation s of energy are known , are better understood for their propert ies under 
differential operations than for their actual values. 

Deducing more Maxwell relations employing wedge products and exterior deriva
tives is a topic for the exercises . 

Maxwell's Equations Revisited 
James Clerk Maxwell is most famous for his four differential equations governing elec
tromagnetism , which are known as Maxwell's equations and are described in Section 
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16.6. These are not to be confused with the Maxwell relations of thermodynamics. 
Maxwell 's equations are four partial differential equations in the magnetic field vector 
B and the electric field vector E: 

p 
VeE=

fo 
1 aE 

V xB=µoJ+-
c2 at 

VeB=O 
aB 

V xE=- 
at' 

where p and J are charge density and charge current density (i.e., current per unit area) 
respectively, fo and µo are constants , and c = 1/ ,jEoµo is the speed of light. 

EXAMPLE 5 Consider the two 2-forms constructed from the six components of 
B and E within JR4 (known in physics as "space-time ") as follows: 

F =B x dy I\ dz + By dz I\ dx + Bz dx I\ dy + Ex dx I\ dt + Ey dy I\ dt 

+ Ez dz I\ dt 

Ex Ey Ez 
G = 2 dy I\ dz+ 2 dz I\ dx + 2 dx I\ dy - Bx dx I\ dt - By dy I\ dt 

C C C 

- Bz dz I\ dt 

Show that the equation d F = 0 is equivalent to the last two Maxwell equations above. 
The first two Maxwell equations are related to G in a somewhat more complicated 
way. (See Exercise 17 for the details, and Exercise 18 for further implications of this 
approach .) 

Solution 

dF =d(B x dy I\ dz + By dz I\ dx + Bz dx I\ dy + Ex dx I\ dt + Ey dy I\ dt 

+ Ez dz I\ dt) 

(
aBx aBx aBx aBx ) = -dt + -dx + -d y + -dz I\ dy I\ dz + ... 
at ax ay az 

There are six such terms in total. In each case only two terms in the brackets will 
survive when wedged with the associated 2-from because no wedge factors are repeated. 
Grouping the surviving terms, we obtain only four distinct 3-forms in the expansion of 
dF, namely, 

(
aBx aBy aBz ) ( aBx aEz aEy ) - + - + - dx I\ dy I\ dz + - + - - - dt I\ dy I\ dz 
ax ay az at ay az 

(
aBy aE , aEz ) ( aBz a Ey aEx ) + - + - · - - dt I\ dz I\ dx + - + - - - dt I\ dx I\ dy 
at az ax at ax ay 

The coefficients for the respective 3-forms vanish if the latter two of Maxwell 's equa
tions hold. The first coefficient vanishes because V • B = 0 while the remaining three 
represent the components of V x E + aB/a t . Thus, the latter two Maxwell equations 
are equivalent to d F = 0. The remaining two Maxwell equations can be expressed in 
the form dG = H, where H will be determined in Exercise 17. 

Closed and Exact Forms 
A differential k-form <l> is said to be closed if d<l> = 0 (the zero (k + 1)-form). 
Depending on the context , closed forms are analogous to irrotational or solenoidal 
vector fields. Since d2 = 0, every exterior derivative is a closed form. 
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A differential k-form <Dis exact if <D = d'I' for some (k - 1)-form 'I' . Fork = l , 
exact forms are analogous to conservative vector field s. 

Every exact diff erential form is clo sed. Dependin g on the domain of the form , the 
converse of thi s statement may or may not be true . It is true for a smooth differential 
k-form (where k 2:: 1) defined on a dom ain in JRk that can be shrunk to a point. We will 
not attempt to prove thi s here . A slightly weaker ver sion is stated below for star- like 
domains. (See the di scussion following Theorem s 4 and 5 in Section 16.2.) 

THEOREM 

II 
Poincare's Lemma Let <D be a smooth clo sed diff erential k-form defined on a star
like domain D in JRk. Then <D is exac t on D . 

We will not attempt a full proof of thi s theorem either, but suggest a proof for the 
special ca se k = l in Exercise 14 below . 

EXERCISES 17 .2 
In Exercises 1-4 calculate the exterior derivatives of the given 
differential forms. 

1. <l> = x 2 dx + y2 d z in JR3. 

2. f = x e2Y sin(3z) in JR3. 

3. 'I' = x1 dx 2 I\ dx3 + x2 dx i I\ dx4 + (x3 + X4) dx1 I\ d x2 in 
JR4. 

4. 0 = x1x2x 3 dx1 I\ dx3 I\ dxs + x 3x4x5 dx2 I\ dx4 I\ dx 5. 

5. Let <D be the following differential l-form: 
<l> = e2Y sin(3z) dx + 2x e2Y sin(3z) dy + 3x e2Y cos(3z) d z . 
Directly calculate d<l>. Why are you not surprised at the 
result ? (See Exerc ise 2.) 

6. Repeat the previous exercise for the differential 3-form 
<l> = x1x3 dx1 /\ dx2 /\ d x3 /\ dxs +x4x5 dx2 /\ dx 3 /\ dX4 /\ dx5. 
(See Exercise 4. ) 

7. Verify Theorem 2 (a). 8. Verify Theorem 2 (b). 

8 9. Generalize part (b) of Theorem 2 to a wedge product 
<l> I\ 'I' I\ 0 of a differential k-form <l>, e-form 'f , and 
m-form 0 . 

8 10. (A Leibniz Rule) Generalize the previous exercise to the 
wedge product <l> 1 /\ <l>2 /\ · · · /\ <1>111, where <l>; is a 
differential k;-form for 1 5 i 5 m. 

8 11. What vector differential identity (see Theorem 3 of Section 
16.2) follows immediately from applying Theorem 2(c) and 
Example 2 to the differential 0-form f on JR3 ? 

8 12. What vector differential identity (see Theorem 3 of Section 
16.2) follows immediatel y from applying Theorem 2(c) and 
Example 3 to the differential I-form F1 dx + F2dy + F3d z 
on JR3? 

Exerci ses 13- 14 set up the proof of Poincare's Lemma for 
differential I-form s on star-like domains in JRk. 

8 13. Let <I> = I::}=1 a ; (x) dx; be a differential I-form in JRk. If 
d<I> = 0, the zero differential 2-form on JRk, show that 

aa; (x) 

axj 

aa1(x) 

ax; 
for l 5 i,j 5 k. 

8 14. Let D be a domain in JRk which is star-like with respect to a 
point xo . (See the discussion following Theorems 4 and 5 in 
Section 16.2.) If <I>= I::7=1 a;(x) dx; is a differential 1-form 
in D that satisfies d<l> = 0, show that <I> = df for some 

15. 

16. 

17. 

18. 

19. 

differential 0-form f. Hint: Specifically, show that the 
function f defined for x E D by 

I k 

f( x)= 1 L x;a; (x o+t( x-x o))dt 
O i = I 

satisfie df = <I>. 

The thermodynamic variables (S , V, N) and their respective 
conjugates (T , - P, µ) were presented following Example 4. 
Use the wedge product structure and the fact that Legendre 
transformations (Section 12.6) ensure that an exact I-form 
exists for any three variables selected from either set, 
exc luding conjugate pairs, to detennin e how many equations 
between partial derivatives (i.e., Maxwell relations) are 
possible in the sense of Example 4 . 

Use exterior calculus and Legendre transformation 
considerations to generate Maxwell relations corresponding 
to the following wedge products: 

(a) dT I\ d N 

(c) dT I\ - dP 

(e) -dP /\ dS 

(b) dS /\ dµ 

(d) dT I\ dV 

(a) Find the exterior derivative of G from Examp le 5. 

(b) Find a 3-form, H , such that the equation dG = H 
implies the first two Maxwell equations listed above 
Example 5. Under what physical conditions is G a closed 
2-form ? What does this imply about d F = O? 

(Conservation of charge) Take the exterior derivative of 
dG = H to find a differential equation in charge density p 
and charge current density J only, which expresses 
conservation of charge. Use the fact that µ01::oc2 = 1. 

According to Exercise 17 in Section 16.6, the vector 
potential A and the scalar potential , ¢ satisfied 
E = - V¢ - ~~ and B = V x A in the fully time-varyin g 
case . The components of A and ¢ may be combined to form 
a "four vector" in space-time known as an " electromagnetic 
four-potential": (Ax , Ay, Az, -¢) . AI-form is naturally 
created from the components of the four-potential, and the 
physical units in the potential equation for E suggest the 
following configuration: 

1/f = -¢dt + Ax dx + Ay d y + Az d z. 
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Show that d 1/f = F and thus that d F = 0. fact that the elementary 2-forms from which F and G are 
constructed form a basis in the six-dimensional vector space 
of 2-forms in 4 variables, show that the vectors F and G, 
having the same components as the coefficients of F and G 
respectively, satisfy F • G = 0. Thus F and G are 
orthogonal, and in this sense the first two of Maxwell's 
equations listed above Example 5 may be regarded as 
orthogonal to, and hence independent of, the remaining two. 

20. (The connection between F and G) Instead of using 
(x, y, z, t) as coordinates in space-time, it is considered 
more physically natural to use coordinates like (x , y, z , ct) 
all four of which have the same units (length). (Note: in 
theoretical physics, it is sometimes convenient to choose 
physical units so that c = l to avoid this issue.) Express the 
2-forms F and G using coordinate ct instead oft . Using the 

• 
Integration on Manifolds 

-----

This is a departure from notation 
in classical integral calculus 
because the "d" is hidden in <D. 

DEFINITION 

I 

Thi s section introduces the language of manifold s. It also introduce s parametriz ations 
to link integra ls of differ ential forms to specific iterated integral s. While the concept s 
of vector calculus were adequate for extending the Fundamental Theorem of Calculu s 
to functions in JR2 and JR3, they do not lend themselves to higher-dimen sional problem s. 
The natural setting for integra tion in JR11 (which we will not encounter until Section 
17.4) is the integral of a differe ntial k-form Cl> over a k-dimensional manifold M: 

f M Cl>. 

A brief discussion of manifolds in JR11 and their tangent and normal space was given 
in Section 13.4. We amplify this furth er here. 

Smooth Manifolds 
The grap h of a function f from !Rm into JR" is the set of all points (x, y) E JR111 x JR11 = 
JRm+n satisfying y = f (x) . The graph is smoo th if all first-order partial derivatives of 
all n components off exist and are continuous. (See Section 12.6 for a brief discussion 
of such functions.) 

We need to introduce a general term like "manifold " becau se term s like "curve " 
and "surface" , which worked in three or fewer dimensions, do not encompass all 
the smooth objects in higher dimen sio ns. Roughly speaki ng, a smooth manifold of 
dim ension k in JR11 (where m :S n) is a subset M of !R11 that is loca lly the graph of a 
smooth (n - k)-vector-valued function of k variables. To be more precise, 

A subset M of JR11 is a smooth manifold of dimension k :s n , or, more simply, 
a k-manifold in JR11

, if for every point x E M ther e exists an open set U in JR11 

containing x, and a smooth fun ction f from U into JR11-k such that the following 
two conditions hold: 

i) the part of M inside U is specifie d by the equation f(x) = 0, and 

ii) the linear transfor mation Df(x) from JR" into JR11-k given by the Jacobian 
matrix 

a(f,' .. . ' fn -k ) 

a(x1, ... , Xn) ( 

aJ, 
ax, 

af~ -k 

ax, 

aJ, ) ax,, 

a1,;_k 
ax n 

is onto !Rn-k. (Thi s is equivalent to asserti ng that the rows of the Jacobian 
matrix are linearly independent. ) 
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Strictly speaking, the two ways 
of describing smooth manifolds 
given at the right need only 
apply locally to pieces of the 
manifold rather than to the 
manifold as a whole. More 
about this in the next section. 

EXAM p LE 1 (a) The graph y = f (x1, x2, ... , Xn) of a smooth real -valued 
function f is a smooth n-manifold in JRn+I, that is, a smooth 

hyper surface in JRn+I. 

(b) An open set M in IR" is a smooth n-manifold in !Rn. Since M. is open, we can 
take U = M and use the trivial function f (x) = 0 from M. n V into {O}, the 
zero-dimensional subspace of JR11

• 

( c) Although x 1 / 3 is not a smooth function on IR, the curve y = x 1 / 3 is a smooth 
I-manifold in JR2 because it coincides with the curve x = y3, and y 3 is a smooth 
function on R 

(d) The sphere S with equation x2 + y2 + z2 = 1 is a smooth 2-manifold in JR3. Any 
point on the sphere is the centre of an open ball V whose radius is sufficiently 
small that the projection of V onto at least one of the coordinate planes, say the 
plane x = 0, lies inside S. The inter section V n Swill then be given by one of the 
two equations x = ±J 1 - y 2 - z2 and will be smooth. 

There are two ways a smooth k-manifold M. in !Rn can be described : 

(a) By requiring that its point s x = (x,, ... , xn) satisfy a set of n - k independent 
equations in (x1, .. . , Xn): 

f(x, , x2, ... , Xn) = 0, where f = (f,, h, .. . !,1-k). 

This was the method used to describe the constraint manifold in Section 13.4. 
Each equation repre sents an (n - 1)-dimen sional surface in IR" and so reduces the 
dimension by 1. The equations are independent if the gradients V (f; ), (1 :::: i :::: 
n - k) are linearly independent at every point x E M.. In this case, the dimension 
will be reduced by n - k and so it will be k. 

(b) By using a parametrization , that is, a mapping x = p(u) from an open set V c !Rk 
into IR" that satisfies 

i) p(u) is one-to-one from U onto M , and 

ii) the linear transformation Dp( u) from !Rk into IR" with Jacobian matrix 

( 
a(x,, ... ,xn) ( : :: : :~) 

J u) = ---- = : : 
8 (u I, ... , Uk) a· a· 

Xn Xn 
- -
8u I 8uk 

is one-to-one. (See Section 12.6. This condition require s that the n x k 
matrix J (u) have k linearly independent columns for each u E V .) Later 
in this section we will relax these conditions to allow slightly less restrictive 
parametrizations to be used for integration purposes . 

Both description s have their good and bad features. For the equations description , 
it is easy to check whether a given point lies on the manifold, but hard to find a point 
on it. For the parametric description , it is easy to find points on the manifold but hard 
to check whether a given point lies on it. 

EXAM p LE 2 Consider the two equations f (x, y , z) = x2 + z2 
- 1 = O and 

g(x, y, z) = x + y + z - 1 = 0 in JR3
. Since V(f) = 2xi + 2zk 

and V (g) = i + j + k are never linearly dependent , the two equations define a smooth 
manifold of dimen sion 3 - 2 = 1, that is, a smooth curve in JR3. (If you think about it 
for a moment , you will realize that this curve is an ellipse.) 

EXAMPLE 3 Show that the following parametric equations define a smooth 2-
manifold in IR4

. 
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BEWARE! lnth erestoft his 
section, we are going to revert to 
the classic approach (from 
Chapter 14) to multiple integrals 
of functions as limits of 
Riemann sums, and extend them 
to JR". In so doing we will be 
writing volume elements d V11 as 
though they had meaning as 
differentials , which they do not. 
In Section 17.4, we wi II climb 
back on the wagon and properly 
define the integral of a 
differential form over a 
manifold . 

It is easier to write 

than it is to write 

ff ··· l f(x)dV,,. 

'-..,.--' 
II 
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Solution The Jacobian matrix of the transformation x = p(u) is 

ax 1 ax , 

au1 au2 
ax2 ax2 n 2~2) l= au, au2 
ax3 ax3 1 . 

au, au2 0 
ax4 ax4 

au, au2 

Since all the partial s in J are continuous , the transformation is smooth. Since all but one 
of them is positive on the square (0, 1) x (O, 1), it is easily seen that the transformation 
is one-to-one; different points (u 1, u2) in the square give different points in IR4

• Finally, 
since the last two rows of J are linearly independent for every (u 1, u2), the range of 
the linear transformation Dp(u) having matrix J is a two-dimensional subspace of IR4

. 

Thus, the range of the transformation is a 2-manifold in IR4 . 

At every point x on a smooth k-manifold M in !Rn there will exist a k-dimensional 
tangent space Tx(M) consisting of all vectors in IR'' that are tangent to M at x, and 
also an (n - k)-dimensional normal space Nx(M) consisting of all vectors in !Rn that 
are normal to the tangent space, and therefore to .M at x. 

For a manifold specified by n - k equations Ji (x) = 0, 1 S i S n - k, the normal 
space will be spanned by then - k gradient vectors of the function s Ji evaluated at x. 

For manifold s specified by a parametrization x(u) , the tangent space at xi s spanned 
by the k-vectors ax/a ui , (1 S i S k). 

Integration in n Dimensions 
The definition of a double integral given in Section 14. l ( or a triple integral in Section 
14.5) can be extended to integrals of real-valued function s J(x) = J(x,, x2, ... , x 11) 

over suitable domain s in !Rn. First, we consider the rectangular domain R = {x E IR11 
: 

ai S x; S bi, 1 S i S n}, which we consider to haven-volume II;'= 1 (bi - a;). If 
J is continuous on R , we define the integral of J over R to be the limit of a suitable 
Riemann sum: 

N j J(x) dV 11 = lim L J(xi) voln(Ri), 
R i=I 

where the sum is taken over a partition of R into N subrectangle s Ri of volume vol,, (Ri) 
and Xi is a point in Ri. The limit is taken as N -+ oo in such a way that the maximum 
dimension of the hyperrectangle s Ri approaches zero. Note that we use a single integral 
sign rather than an n-fold one, which is rather too awkward. 

If J is defined in a domain D c IR11 that is "sufficiently nice," we can find a 
hyperrectangle R containing D and define 

l J(x) dVn = l f(x) dV 11, 

where j is defined to be J(x) if x E D and O otherwise. Even if J is continuou s on D , 
it will likely be discontinuous on the boundary aD of D , so "How nice is sufficiently 
nice?" is a question that will have to be answered. 

Some simple integrals over domains in IR" can be evaluated by the technique of 
iteration used to evaluate double and triple integrals in Chapter 14. 
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DEFINITION 

II 

The "n-vol ume element" dVn that we warned about in this chapter's introduction , 
is also written as dx or dx, dx2 ... dx,, sometim es. The latter notation is perhap s 
even more unsatisfactory than d V11, as it suggests the differential of a vector, which it 
certa inly is not. How ever, it doe s indicate what var iables are being integrated , which is 
usefu l in this context. Another popular alternative, (never used in this book , including 
here) is to write dn x. This also has its problem s, as we are not speaking of an n-fold 
exte rior derivative of x. 

EXAMPLE 4 Eva luate /Q x, x2 · · · X n d x over the hyp ercube 

Q = {x E IR.11 
: 0 .::: x; .::: 1, 0 .::: i S n). 

Solution This integral iterates into n identical single integrals: 

f Q XI x2 · · · Xn dx = lo I XI dx I lo I x2 dx2 · · · lo I Xn dxn = ( ~) 
11 

Sets of k-Volume Zero 
We are used to manifolds having zero area in IR2 (e.g., curves), or zero volume in JR3, 
(e.g. , curves and surfaces) . In higher di men ions we have no such classical terminology 
for describing the "vo lume" of manifold s or their subsets , that may be zero in higher 
dim ensional spaces. Accordingly, we make the following definition . 

Sets of k-volume zero in IR.11 Let 1 .::: k .::: n. For eac h positive integer m, let 
Q 111 be a partition of IR.11 into n-d imensional cubes eac h havin g edge length I ; 2m. 
If S is a bound ed subset of IR.11 we say that S has k-volume O if 

1 
lim '°"' - =0 . 

m.---->oo ~ 2km 
QEQm 
Qn S,"0 

The sum is taken over only tho se cubes Q E Q111 that contain points of S. 

If S is unbound ed, let S, = {x E S : lx l S r) . We say that S has k-volume 
zero if S, has k-volume zero for every positiver. 

It can be shown that a smoo th m-manifold in !Rn has k-volume O provided m < k .::: n. 

If the boundary a D of a bounded open set D c IR.11 is a smooth (n - 1 )-manifold in 
IR.11

, then a D has n-volume zero and wi ll co ntribut e nothing to the integral of a function 
f cont inuou s on the closed , bounded set D U 8 D . Thus f D f (x) d V11 will exist in this 
case. 

Parametrizing and Integrating over a Smooth Manifold 
In order to define integrals over a smooth k-manifold M. in IR.11

, where k < n (such 
as , for exa mple , curve s in IR2 and JR3 , and surfaces in JR3), we need to parametrize 
the manifold using a smoot h, one-to-o ne mappin g from an open set in !Rk onto M. 
This approach generali zes the technique used to evaluat e line and surface integrals in 
Chapter 15. 

Unfortun ate ly, the definition of parame trization given earlier in this section is 
a bit too restrictive; it rules out, for exam ple, the parametrization x = cos u cos v, 

y = cos u sin v, z = sin u, 0 .::: u .::: 7r, -7r < v .::: 7r of the sphere x 2 + y2 + z 2 = l in 
IR3

. We can fix this by slightly easing the restrictions on parametrizations as follows . 
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Smooth parametrization of a manifold 
Let M C !Rn be a smooth, k-manifold in IR". Let U be a subset of !Rk having 
boundary au with k-volume 0. Let S be a subset of U with k-volume Osuch that 
U - S = {x E U : x ¢:. S} is open in !Rk. Suppose p is a mapping from U into 
!Rn satisfying the following conditions: 

i) p(S) has k-volume 0, 

ii) MC p(U) , 

iii) p(U - S) C M, 

iv) pi s one-to-one and differentiable on U - S, and 

v) the derivative Dp(u) is one-to-one from !Rk onto the tangent space Tp(u) (M). 

Then we say that p is a smooth parametrization of M over U, and that it is a 
strict parametrizatio n over U - S. 

These conditions are satisfied for the parametrization of the unit sphere in the paragraph 
preceding the definition if we take U = {(u, v) : 0 Su Sn:, -n: < v Sn:} and 
S={(u,v): u=Ooru=n:orv=n:}. 

As was done for surface integrals in Section 15.5, we can evaluate an integral of a 
function f (x) of n variables defined on a k-manifold Min IR" by transforming it into an 
integral of a function of k variables over a domain in !Rk. We do this by using a smooth 
parametrization x = p(u) . A differential volume element dVk( u) = du, du2 ... duk 
at point u E JRk is a k-dimensional rectangular box with corner at u span ned by the 
vectors du, e1, du2 e2, ... , duk ek. The derivative Dp (u) transforms this volume 
element to a k-dimensional paralle logram in the tangent space Tp(u) (M), the k-volume 
of which provides the volume element dVk (p(u)) on Mat p(u). 

k-Parallelograms A k-parallelogram at y E IR" spanned by the k vectors 
VJ, ... , Vk is the set P{(v1 , ... , Vk) of points x E !Rn such that 

k 

x=y+ I::t ;V;, whereO < t; < 1, 1 Sisk. 
i=l 

P{ (v,, ... , Vk) is a k-manifold in IR". 

Remark The k-volume of P{(v 1, ... , vk) is given by ,JGk(v 1, . . • , vk) , where 

v,. v, 
Vt • V2 

See Exercises 7-9 for a suggestion on how to prove this fact. In particular , if n = k, 
so that the vectors v; are all in !Rk, then the k-volume of P{(v 1, ... , vk) is given by 
ldet(A)I, where A is the k x k square matrix whose columns are the components of the 
vectors v; , 

because Gk (v1, ... , Vk) = det(A TA) = ( det(A) )2. 
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The derivative of the transformation x = p(u) is the linear transformation of !Rk 
to the tangent space Tp (u) (M) given by then x k Jacobian matrix 

( 

ax 1 

au1 
( 

a(x1, ... , x,,) 
Ju)=----= : 

a(uJ, ... ,uk) a ·-
X n 

au I 

ax1) 
a~k . 

ax,, 

auk 

The columns of this matrix are the k vectors that span the k-parallelogram, which 
is the image of the k-cube spanned by the standard basis vectors in !Rk under the 
parametrization p. It follows that the k volume element at p(u) on M is given by 

or, since the matrix J (u)T J (u) is a square k x k matrix that has the same elements as 
the determinant Gk, 

dVk(p( u)) = J det(J (u)T J (u)) dui du2 · · · duk. 

Now suppose we want to integrate a function f(x) = f (x1, x2, .. . , x,,) over a 
smooth k-manifold M parametrized by the mapping pas described in Def'inition 9. We 
want to transform the integral of f over M to an equivalent integral of f (p(u)) over 

U in !Rk. Since p(S) has k-volume 0, it is sufficient to integrate g over U - S, where 
p is one-to-one and differentiable. Thus , 

1 f (x) dVk(x) = { f (p (u)) J det(J( u)T J( u)) du. 
M l u-s 

In particular , the k-volume of the k-manifold M is given by 

f Jdet(J(u)T J(u)) du. 
l u- s 

The same simplification observed above (when n = k) for the volume of a 
k-parallelogram in !Rk occurs if the k-manifold is "flat," that is, if it is an open subset 
of !Rk. In this case, the parametrization p(u) is just a transformation of coordinates in 
!Rk, and the Jacobian matrix of the derivative Dp(u) is ju st a k x k square matrix J (u) , 
whose determinant is equal to that of its transpose. It follows that 

det(J(u? J(u)) = (det(J(u)))
2 

and so the transformed volume element is 

I 
a(x 1, x2, ... , xk) I 

ldet(J( u)I du = ( dui du2 · · · duk. a UJ , U2, ... , Uk) 

This is just the k-dimensional analogue of the general change-of-variables area and 
volume elements for double and triple integrals given in Sections 14.4 and 14.6. 
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EXERCISES 17 .3 

In Exercises 1-4 find the k-volumes of the k-parallelograms in 
JR4 spanned by the vectors with the given components. 

1. k=2,v1 =(1,2,l,O),v2=(2, - l ,O,- l) 

2. k = 2, v, = (1, 1, I , 1), V2 = (1, -1, - 1, 0) 

3. k = 3, v 1 = (1, I , 0, 0), v2 = (0, 1, I, 0) , v3 = (O, 0, I, l ) 

4. k = 4, V1 = (I , 0, 0, 0), V2 = (I, 1, 0, 0), V3 = (0, 0, l , 1), 
V4 = (1,0, [, 0) 

5. Find f .M (xi + x2) dV2 (x), where .M is the 2-manifold in JR4 

given parametrically by x = (u 1 + u2, u 1 - u2, uf, 1 + u2) 
for O < u 1 < 1, 0 < u2 < 1. 

6. Find J.M J 1 + xf + x5 d V2 (x), where .M is the 2-manifold 

in JR4 given parametrically by 

x = (u, cos(u2), .J3u1, u1 sin (u.2), u2) forO < u, < 1, 

0 < u2 < 7r/ 2. 

Exercises 7-9 provide a proof of the claim made concerning the 
k-volume of a k-parallelogram in JR" following Definiti on 10. 
They concern the determinant function Gk(v1, ... , vk) defined 
there. 

7. If v, , v2, ... , Vk are k vectors in JR", where n c": k, and Mis 
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then x k matrix whose jth column consists of the 
component s ofvj , show that det(M T M) = Gk (v, , . .. , vk). 

8. Show that the 2-volume (i.e., area A) of the parallelogram 
spanned by the vectors v, and v2 is given by 
A = .JG2(v1, v2). 

D 9. Complete the proof of the formula for the k-volume of a 
k-parallelogram spanned by the vectors v 1, •• • , Vk by 
induction on k. The case k = I is trivial , and the case k = 2 
is done in the previous exercise. A (k + 1)-parallelogram has 
2(k + 1) faces , each of which is a k-parallelogram . The 
(k + !)-volume of the (k + 1)-parallelogram i the k-volume 
of one of its faces (say, spanned by v, , ... , vk) multiplied by 
the length h of the perpendicular projection of the remainin g 
edge vk+ I onto the k-dimensional subspace containing that 
face. You will find Cramer 's Rule (Theorem 6 of Section 
10.7) usefu l in finding h2. 

8 10. Let <I> be the k-form <I> = dx; 1 /\ dx;2 I\ · · · I\ dx;k, 
1 .::: i, < i2 < · · · < ik .::: n. Show that the k-volume of the 
projection P of the k-parallelogram in JR" panned by the 
vectors v1, v2, ... , vk in JR" onto the k-dimensional 
coordinate plane in R" spanned by e; 1, e;2 , ... , e;k is given 
by l<l>(v1, v2, ... , vk)I. 

Orientations, Boundaries, and Integration of Forms 

DEFINITION 

Ill 

Oriented Manifolds 
As noted at the beginning of thjs chapter , it was the fact that an interval on the real line 

has a natural orientation (left to right) that enabled us to formulate the Fundamental 
Theorem of Calculu s for functions of one variable . We now examine how to specify 

the orientation of a manjfold . 

If V is a k-dimensional vector space , then any nonzero k-form won V defines an 
orientation for V. Any k-dimensional vector space has only two orientations. 
Since Ak(V) is one dimensional, any nonzero k-form on V will be a multiple of 

OJ by a nonzero real number , either po itive or negative . The positive multiples 

of w provide the same orientation for V as w; the negative multiples provide the 

oppos ite orientation for V. 

For example, w = dx1 I\ dx2 I\ · · · I\ dx 11 provides an orientation for IR11 that give s the 

value +1 to the standard basis e1, e2, . . . , e11• If n = 3, thjs orientation is shared by 

any basi s sa tisfying the "right-hand-rule. " (See Section 10.1.) We usually refer to the 

orientation of !R11 given by was the "positive " orientation . 

The tangent space Tx(.M.) at any point x on a smooth, k-manifold in IR11 is itself a 

k-dimensional vector subspace of !R11 and so has one of two possible orientations. If we 

can select a non-zero k-form on each such subspace in a way that varies smoothly with 

x, they will constitute a smooth k-form field on .M., which then orients the manifold. 
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When we say that an oriented 
point is +x or -x, we don't 
intend the orientation signs "+" 
or"-" to mean scalar 
multiplication of the vector x by 
1 or - 1. Rather, we mean that 
the value of a function f at +x 
is f (x), while the value off at 
-xis - f (x). This will be 
important when we evaluate the 
"integral" (i.e., sum) of a 0-form 
over the oriented boundary of an 
interval [a, b] later in this 
chapter. 

Supose that at each x on the k-manifold M , there exists a nonzero k-form CVx that 
varies smoothly with x and orients the tangent space Tx(M) , then we say that M 
is orientable and that the differential k-form field cv(x) = Wx orients M. 

EXAM p LE 1 (Orienting a curve in JRn) A smooth curve (I-manifold) e3 in 
JR.n is orientable if there exists a nonvanishing, smoothly varying 

tangent vector field t(x) on e. Since the tangent space Tx(e3) is one-dimensional, 
the differential 1-form whose value at any x on e and any v E JR" is given by 
cv(x)(v) = t(x) • v orients e. It specifies the positive direction of e3 at x as the direction 
of t(x) . The opposite (negative) direction would be specified by the nonvanishing 
tangent field -t(x). 

EXAM p LE 2 (Orienting a hypersurface in JR") A smooth (n - 1)-manifold 
M in JR" (also called a hypersurface) is orientable if there exists a 

nonvanishing , smoothly varying normal vector field n(x) on M. For instance, if M is 
specified by the single equation g(x) = 0, and grad g(x) f=. 0 anywhere on M, then 
n(x) = grad g(x) can provide an orientation for M . Since the tangent space Tx(M) to 
Mat x has dimension n - 1, any n - 1 linearly independent vectors VJ, v2, ... , Vn - 1 

in Tx(M) will be perpendicular ton, and the differential (n - 1)-form 

cv(x)(v1, v2, ... , v11_ 1)= n(x) V1 v11_ , 

orients M . It specifies a "positive side" of M, out of which n(x) points, and a negative 
side, out of which -n(x) points. 

EXAM p LE 3 (Orienting an open set in JR11
) An open set M in ]R

11 is an 
n-manifold. At any point x E M, the tangent space Tx(M) = JR.11 

and the normal space is zero-dimensional subspace {O}. For any vectors v1, v2, . .. , v11 

in JR.11
, the differential n-form 

dx 1 I\ dx2 I\··· I\ dx,,(v, , v2, ... , v,,) = v1 v2 v11 

orients M. 

It is useful to regard a single point x in JR" as a 0-dimensional manifold. In this 
case choosing an orientation comes down to choosing a sign to attach to the point. One 
orientation of xis +x ; the opposite orientation is -x. 

Not every smooth manifold is orientable. The Mobius band illustrated in Section 
15.6 has only one side and is not orientable. 

The following example illustrates how you can orient a k-manifold Min JR", where 
1 < k < n - 1. The idea is to find a basis of n - k vectors for the normal space at an 
arbitrary point x on M and use them to define a differential k-form that orients M. 

EXAMPLE 4 Find an orientation for the 2-manifold M in JR.4 specified by the 
equations f (x) = x 1 + x3 = 0 and g(x) = x2 - xJ = 0. 

Solution At any point x satisfying the two equation s, the vectors grad f = e1 + e3 
and grad g = e2 - 2x4e4 are normal to M and are clearly linearly independent. Thus, 
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they span the 2-dimension al normal space to Mat x. If u and v are linearly independent 
vectors in the tangent space Tx(M), then the differential 2-form 

1 0 
0 I 

co(x)(u, v) = 
1 0 
0 -2x 4 

u, v, 
u2 v2 
U3 V3 

U4 V4 

defines an orientation for M. Observe the first two columns are the components of 
the two independent normal s, and the determinant depends smooth ly on x. To verify 
that it is never zero , observe that the vectors t = e1 - e3 and w = 2x4e2 + e4 are 
perpendicular to each other and to each of the two norm als. They must therefore span 
the 2-dimensional tangent space to M at x. Direct calculation show s that 

w(x)( t, w) = -2(1 + 4x}) < 0 

for all x. If u = at+ /Jw and v = y t + ow, where ao - /Jy f= 0 so that u and v are 
linearly independent , then 

1 0 at, + /Jw, y t, + ow, 

w(x)( u, v) = 0 1 at 2 + /Jw2 y t2 + ow2 
1 0 at3 + /Jw3 y t3 + OW3 
0 -2x4 at4 + /Jw4 y t4 + OW4 
1 0 t, w, 

1 0 0 0 
0 1 t2 w2 0 1 0 0 
1 0 !3 W3 

0 0 
= -(2 + 4x})(ao - /Jy ), 

a y 
0 -2x4 {4 W4 

0 0 fJ 0 

since the determinant of a product is the product of the determinants. The result is 
nonzero and has constant sign for all x E M, o co orients M . If ao - /Jy < 0, the 
positive orientation will be given by using the ordered pair (t, w) as a basis for the 
tange nt space Tx(M). Otherwi se, use (w, t) . 

Pieces-with-Boundary of a Manifold 
The extension of the Fundamental Theorem of Calculus (the Generali zed Stokes The
orem) that we will develop in the next sectio n relates the integral of the exterior 
derivative d<D of a differential (k - 1)-form (J.) over a subset M of an oriented 
k-manifold in JR" to the integral of <D over the suitably oriented boundary BM of 
S: J M d <D = faM <D. We must now clarify some of these terms, in particular , the kind 
of set M must be to enable the evaluation of integrals over its boundary. Boundari es 
of open sets can be very pathological , and we will have to restrict them some how. 

A manifold M in JR" does not itself contain any boundary point s, but a subset M 
of M can have a boundary contained in M. Specifically , the boundary BM of Min 
M consists of all points x E M such that every open set U c JR11 containing x also 
contains points y f= x in M and point s y f= x that are in M but not in M. The boundary 
may or may not be a subset of M. 

EXAM p LE 5 (a) The sphere x 2 + y2 + z2 = 1 in JR3 (a smooth 2-manifold) has 
no boundary , but its upper hemispher e (the subset H of the sphere 

where z ::: 0) bas a boundary a H consisting of all point s on the circle x2 + y2 = 1, 
z = 0. For this example, the boundary is a smooth manifold of dimen sion 1, and H 
contains its boundary. 

(b) All of JR2 is a 2-manifold M in JR2. It has no boundary , but the square subset 
Q = {(x, y) E JR2 : 0 _::::: x _:s 1, 0 _::::: y _:s l} doe s have a boundary. 8 Q consists of all 
points on the four edge s of square. This boundary is not a smooth manifold , but if we 
omit the four corners of the square, each of the remaining straig ht line segments is a 
I -dime nsional manifold in JR2. Again , 8 Q c Q. 
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It would be nice if we only had to deal with boundaries that are smooth, but such an 
assumption is too restrictive for our purposes. 

Smooth and nonsmooth boundary points Let M be a subset of a k-manifo ld 
.Min IR11

• A point x on the boundary aM is a smooth boundary point of M if 
there exists an open set U c IR" containing x, a smooth function f mapping U 
into IR"- k, and a smooth function g mapping U into IR, such that: 

i) .M n U = {y E U : f(y) = 0), 

ii) M n U = {y E U : f(y) = 0 and g(y) ::: 0), and 

iii) Ifh(x) = (f(x), g(x)), then Dh(x) maps IR" onto IR"-k+ 1• 

The set of aU smooth boundary points of M constitutes the smooth boundary 
of M . The points of a M that are not smooth boundary points constitute the 
nonsmooth boundary of M. 

Remark The smooth boundary of a subset M of a smooth k-manifo ld in IR" consists 
of one or more smooth (k - !)-manifolds in IR". 

A piece-with-boundary of a k-manifold .M in IR" is a closed (in IR") subset M 
of .M satisfying 

i) the non smooth part of the boundary of M has (k - 1 )-volume zero , and 

ii) for every point x E 3M , there is an open set U c IR" such that {y E 

aM n U) has finite (k - !)-volume . 

Evidently , both of the subsets in Example 5 above are pieces-with-boundary of their 
respective manifolds. The smooth boundary of the hemi sphere in part (a) is the whole 
circle . 1 The smooth boundary of the square region in part (b) consists of the four sides 
of the square excluding the corner points which are nonsmooth boundary points. 

The tangent space to the smooth boundary a M of a piece-with-boundary M of 
k-manifold .M at x is a (k - 1 )-dimensional subspace of the k-dimensional tangent 
space to .M at x. Therefore , there exists a I -dimen sional space which is tangent to .M 
at x but normal to aM at x. This normal space is spanned by grad g(x) where g is 
the function in the definition of smooth boundary. Since g(x) = 0 and g(y) ::: 0 for 
y E M, grad g (x) is a normal pointing into Mand -gra d g(x) is an outward pointing 
normal. (Note that condition (iii) of Definition I 3 guarantees that grad g(x) /. 0.) We 
alway s use an outer normal to orient the smooth boundary of M, describing the result 
as the orientation inherited from the orientation of M . 

Inherited orientation of the smooth boundar y If M is a piece-with-boundary 
of an oriented (by cv) k-manifold in IR11

, the (k - 1 )-dimensional smooth boundary 
of M inherits the orientation acv given by the differential (k - 1 )-form 

8cv(x)(v1 , ... , vk- 1) = cv(x)(n(x), v, , . . . , vk- 1), 

where n(x) is a normal field on the smooth part of 3M that points out of M. 

We have already seen this situation when considering Green's Theorem in IR2 , Stokes' 
Theorem in JR3, and the Divergence Theorem in both IR2 and IR3 in Chapter 16. The 
following examples confirm that the definition above gives the same result as the 
orientations used there. 

1 Like some other term s used here, "piece-with-boundary" was introduced by John 
and Barbara Hubbard in their text Vector Calculus, Linear Algebra, and Differential 

Forms , 2nd ed ., Prentice Hall, 2002. 
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Figure 17 .1 The orientation of e inherited 
from the standard orientation of R 
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X 

Figure 17 .2 Boundary orientation 
inherited from the orientation of a smooth 
surface in IE.3. 
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X 

Figure 17 .3 Orientation of 3 faces of a 
cube in IE.3, and of their edges 
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A region R in JR.2 bounded by one or more piecewise smooth 
EXAM p LE 6 closed curves e is a piece-with-boundary of the 2-manifold lR.2 . If 

we assume that JR.2 is oriented by the 2-form OJ = dx I\ dy so that OJ(i, j) = 1, then 
OJ(n, t) will be positive whenever n is an outward (from R) normal to e and t is a 
tangent toe in the direction of the orientation of e. See Figure 17.l. The positive 

0 

direction of e given by t is 90 counterclockwise from the outward normal. 

EXAM p LE 7 Let -8 be a smooth surface (2-manifold) in JR.3
. Let n = n Ii+ nij + 

n3k be a nonvanishing , smoothly varying normal vector field on -8. 
As suggested in Example 2 above, -8 can be oriented with the differential 2-form 

I 

n1(x) 
0J(x)(v1, v2) = n2(x) 

n3(x) 

for v1 and v2 in the tangent space to -8 at x. 

If S is a piece-with-boundary of -8 having smooth boundary consi sting of piece s of 
curves (I-manifolds), the boundary as inherit s the orientation given by the differential 
I -form 80J(x)(v) = OJ(x)(n out, v) , where nout is an outward (from S) normal to the 
smooth boundary at x and v is tangent to that boundary . It follows that 80J(x)(v) is 
the value of the 3 x 3 determinant whose columns , in order, are the components of the 
normal field n orienting -8, the components of Dout (which is tangent to -8 but normal to 
the boundary of S), and the components of v. Assuming that JR.3 has the standard basis, 

y the vectors n, Dout, and v form a right-handed-triad , so the boundary orientation is such 
that if we stand erect on the smooth boundary of S (head upward in the direction of n), 
facing out of S (i.e., in the direction of Dout), then the positive direction of the boundary 
of S will be to our left. See Figure 17 .2. 

EXAM p LE B Consider a cube Q in JR.3 with the standard orientation given by 
OJ= dx/\dy/\ dz. aQ consists of6 square faces (smooth boundary) 

and 12 edges together with their endpoints (nonsmooth boundary). Each square face is 
oriented with an outward normal n inherit ed from OJ. In turn , each square face induces 
an orientation on its four edges. That orientation is counterclockwise as seen from a 
point outside the cube in the direction of the normal for that face . Note that every 
edge of the cube is part of the smooth boundar y of two of the square faces and those 
faces induce opposite orientation s on that edge. See Figure 17.3. This "cancellation" 
suggests the observation that the boundary of a boundary of a piece-with-boundary is 
empty. 

We can calculate the orientation of the six faces of the cube. The front face of the 
cube in Figure 17 .3 has normal n = i. Accordingly , its orientation is given by 

::~ :~~ I 
V13 V23 

= v12v23 -v1 3v22 = dy I\ dz(v1, v2). 

On the other hand , the normal for the back face is - i so the orientation for that face is 

Observe that the sum of the front and back orientations is 0. A similar situation holds 
for the sum of the orientations of the left and right side square faces, and the top and 
bottom square faces. See Exercise 1 and Exercise 2. 
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DEFINITION 

I 

When the smooth boundary of a piece-with-boundary of a smooth, oriented 
k-manifold consists of several disjoint pieces-with-boundary of (k - !)-manifolds, 
together with some nonsmooth sets where these (k - 1)-dimensional pieces join in 
pair s, as is the case in Example 8, it is useful to write the smooth boundary as a "sum" 
of these disjoint pieces , each with its proper orientation, given by a+ or - sign. 

EXAM p LE 9 Denote by Q; (he,, ... , hek) the k-cube in !Rk having edge length 
h > 0, one corner at y, and spanned by the given multiples of the 

standard basis vectors in !Rk. (This is by analogy with the definition of a k-parallelogram 
given in Definition 10.) The cube shown in Figure 17.3 is Qij(hi, hj, hk). The cube 

Q;(he, , .. . , hek) has smooth oriented boundary consi sting of 2k cubes of dimension 
(k - 1) oriented by the direction of their outward normals . The boundary cubes come 
in pairs of opposite ones ; for example, the pair with normals ±eJ are (using a hat~ to 
indicate a missing component) 

and these have orientations given by 

( . h h- - h ) - ( I) J-1 1 k- 1 ( . ) OJ e1 , e 1, ... , e1 , ... , ek - - i OJ e 1, . .. , e1 , ... , ek , and 

(- · ! h- - h )--(-l)j-lhk - l ( · ) w e1 , ie 1, . . . , e1 , .. . , ek - w e 1 , . . . , e1 , ... , ek . 

The factors ( - 1 )i - 1 account for the fact that j - 1 simple transpositions and needed 
to move the normal s +e J and -ej into the missing positions in these orientations so 
they are consistent with the standard positive orientation w of !Rk and therefore of the 
given k-cube. Accordingly , the smooth oriented boundary of Q;(tie, , ... , hek) can be 
expressed as the sum 

a Q;( he 1, •• • , hek) 

k 

= ~) - 1)J- J ( Q~+he/ he1 , ... , ~ , ... , hek) - Q~- 1(he 1, ... , ~ ' ... , hek)) . 
}= I 

Remark A similar formula holds for the oriented boundary of a k-paralle logram in 
IR\ just replace the Qs with Ps and the vectors aej with VJ, 1 .:::: j .:::: k. 

Integrating a Differential Form over a Manifold 
As we did for functions in Section 17 .3, we are going to define the integral of a smooth 
differential k-form over a smooth k-manifold in !Rn by using a parametrization of the 
manifold over a set in !Rk. Now, however , the orientation of the manifold must be 
preserved by the parametrization. 

Orientation preserving parametrizations Let .M c !Rn be a smooth 
k-manifold in IR" oriented by the differential k-form w(x). Suppose p is a 
smooth parametrization of .M over a subset U c !Rk, and that it is strict on U - S 
where S c U has k-volume zero (as specified in Definition 9 in Section 17.3). 
We say that pis orientation preserving if for all u E U - S, 

w(p(u)) ( ap(u) , a p(u) , ... , a p(u)) > O. 
au, au2 auk 

If the inequality above is reversed , we say p is orientation reversing. 
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The definition of the integral of a differential k-form over a k-manifold is similar 
to that of a function over a manifold given in the previous section except that the k-form 
now plays the role of both the integrand and the volume element. 

Integration of a differential k-form over a k-manifo ld 
Let p, mapping U c !Rk into IR11

, be an orientation preserving, smooth parametriza
tion of the k-manifold M C !R11 oriented by the differential k-form m. If <1> is a 
smooth differential k-form defined in an open et in IR11 containing M, we define 
the integral of <1> over M as 

The following is a trivial , but important , example. 

EXAMPLE 10 If <1> = f (x,, .. . , Xk) dx, I\ · · · I\ dxk and Mis a k-manifold (an 
open set) in !Rk, show that 

f M <1> = f M f(x,, x2, ... , Xk) dx, dx2 · · · dxk, 

Solution We use the identity parametrization p(u) given by x; = p; (u) = u;, o that 
ap(u) /a u; e;, the ith standard basis vector in !Rk. Observe that 
dx 1 I\ · · · I\ dx 11(e1, ... , ek) = 1 (the determinant of the k x k identity matrix), 
so we have 

JM <1> = JM f( u, , u2, ... , u11)du1 du2 ···du" 

which is the desired result if we replace the u; s with x; 's. 

EXAMPLE 11 Let p(u) be a parametrization of an (n -1 )-manifold (hypersurface) 
-8 in IR11 over a domain U c IR11

-
1. Show that 

II ( ~ ) '°' ( );_ 1 a x1, ... ,x;, ... ,x 11 
n = ~ -1 -------- e; 

i=I a(u1, .. ,,un - l) 

is normal to -8 at p(u) , and that 

dS = dVn-l = In! dui du2 ... du11- l 

is the "area element" (actually (n - l) volume element ) on -8 expressed in terms of the 
parameter s u. The case n = 3 of this result was proved in Section 15.5. 

Solution The vector n given by ( *) is ju st the expansion in minors about the first row 
of the determinant 

e, e2 en 
ax , ax2 ax,, 

-
au, au, au1 

ax 1 ax2 ax,, 
au,,_ , aun- 1 au,,_ , 
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EX E R C I S ES 17 .4 

The vectors v; = (ax / au;) are the last n - 1 rows of the above determinant and 
are linearly independent and tangent to ,8 at p(u) . Hence , n is normal to each of 
tho se vectors and so to ,8. Also , the n - l tangent vectors v; du; span an (n - 1)
dimen sional parallelo gra m that is the area element on ,8 at p(u) corresponding to 

the element dui du 2 ... dun-I in JR"- 1. This parallelogram has (n - 1)-volume 
dS= lnldu1du2 . .. dun-I in lR11

-
1

• 

Remark If ,8 = aM. where M. is an n-dimensional oriented manifold (open set) in 
JR11 with the standard orientation, then n is the norm al on ,8 pointing outward from M.. 
In thi s case, if Fis a vector field in JR11 and N = n/ lnl is the unit outward normal field 
on ,8, then 

F • N dS = F • ndu1 du 2 · · · du11- I 

II a( ~ ) '°"( i- l ( ( ) x , , ... ,x;, ... ,x,, = L, -1) F; p u) ( du1 du 2 · · · du,, _ , 
i=I a UJ , ... ,U;-1) 

is the flux of Fout of M. through the (n - 1) volume element dS . 

Exercises 1-4 refer to faces of the cube Q in JR3 considered in 
Example 8. 

Is the parametrization 
(x 1,x 2, x3, x4) = x = p(u) = (u,, -u , , u2 , -u2) 
orientation preserving for .M.? If not, give an example of a 
parametrization that would be. 

1. Show that the orientation of the top face of Q is given by 
dx I\ dy. What is the orientation of the bottom face? 

2. Show that the orientation of the right face of Q is given by 
dx I\ dz= -dz I\ dx. What is the orientation of the left 
face? 

3. Review the calculation of the orientations of the front and 
back faces of the cube Q in Example 8. Show that 

4. As in the previous exercise, reexpress the orientations of the 
top and bottom faces of Q from Exercise 1 and the right and 
left faces of Q from Exercise 2 as differenti al I-forms 
evaluated at the cross product of v I and v2. 

5. The 2-manifold .M. in JR4 given by the equations x , + x2 = 0 
and x3 + x4 = 0, where O < x 1 < 1 and O < x3 < 1, has 
normals e1 + e2 and e3 + e4. It is oriented by the 2-form 

1 0 v ,1 v21 

w(v1, v2) = 1 0 v12 v22 
0 v13 v23 
0 V J4 V24 

6. Using the orientation preserving parametrization for the 

manifold .M. of the previous exercise, evaluate J.M. <I> where 

<1> = x2x4 dx1 I\ dx3. 

D 7. Let S be a piece-with-boundary of a smooth hypersurface 
((k - !)-manifold) in JRk given by equation 
x; =g;(x, , ... ,X; - 1,x; +1, ... ,xk)- Let 
<I>= dx1 I\ ·· · I\ dx;-1 I\ dx; +1 I\ ··· I\ dxk. Show that fs <I> 
is (apart from sign due to the orientation of S) the 
(k - !)-v olume of the projection of Son the coordinate 
hyperplane x; = 0. 

D 8. Let M be a convex open set in JRk with boundary aM , and let 
<I> be a constant (k - 1)-form on JRk (i.e., all its coefficients 
are constant) . Show that faM <I>= 0. Hint: For each i , M 
can be described as lying between two surfaces of the form 
considered in the previous exercise, both of which have the 
same projection M; on x; = 0. 

• 
The Generalized Stokes Theorem 

---- -
Th e previous four sec tion s have developed much new machinery , forms and differential 
forms, the exterior deri vative , manifolds and their boundaries and orientations, and 
integral s of function s and differential forms over manifold s and their boundaries . 
This has all been done with one ultimate goal in mind-namely , the provision of a 
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Again, we stress that if the 
oriented boundary of BM 
consists of the oriented points 
-a and +b, then 

r f = + f (b) - J(a), laM 

not f(b) + f(-a) . 

I 
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generalized version of the Fundamental Theorem of Calculus that holds and appears 
the same in any number of dimensions. Without further ado, here it is. 

The Generalized Stokes Theorem (GST) If M is a closed, bounded, piece-with
boundary of an oriented k-manifold M inJRn, and <1> is a smooth differential (k-1)-form 
defined in an open set containing M, then 

{ d<l> = { <l>, 
jM laM 

where aM has the orientation inherited from M. It is understood that the boundary 
integral is really taken over the smooth part of the boundary aM. 

Remark While we will not prove this theorem in its full generality here, we will 
prove it for a significant special case from which the general case can, with some 
effort, be deduced. We will also give a somewhat handwavin g argument that should 
convince you of the validity of the general case. Then we will show how the major 
theorems of vector calculus are all special cases of the Generalized Stokes Theorem. 

Remark The requirement that M be bounded is not necessarily restrictive. If M is 
the union of non-overlapping , bounded pieces-with-boundary of M we can add the 
results of the theorem applied to the individual pieces to get the integral of d<l> over the 
whole piece. Where two pieces abut along parts of their boundarie s, those parts will 
have opposite orientations inherited from M , so their contributions to the sum of the 
boundary integrals will cancel, leaving only the contributions from the parts that are 
part of the boundary of the union. If M is unbound ed but the sums taken over those 
bounded pieces contained in the ball of radius r in JR" approac h limits as r -+ oo, the 
GST will still hold for M. 

Remark Let us confirm that the Fundamental Theorem of Calculus really is a special 
case of the Generalized Stokes Theorem. Let M = [a, b] be a subset of the I-manifold 
JR oriented from a to b. The boundary aM of M consists of the two points a and b, each 
of which is a 0-dimen sional manifold; in this case the "outward" (from M) direction is 
+ at band - at a. Thus aM = {-a, +b). If f is a smooth function (0-form) on M , 
then its exterior derivative is df = J ' (x) dx. We have 

{b J'(x)dx = { df = { f = (+f(b)) + (-f(a)) = f(b)-f(a). 
la JM laM 

Proof of Theorem 4 for a k-Cube 
Let <1> be a differential (k - 1)-form on JRk. Then 

k 

<1> = L a;(xi, .. . , Xk) dx1 I\ ··· I\ dx; I\ ··· I\ dxk, 
i=I 

where , again, the hat~indicate s a missing factor. The exterior derivative of <1> is the 
differential k-form given by 

d<l> = t (t aai dx1) I\ dx1 I\ ··· I\ ;f;; I\ · · · I\ dxk. 
i= I )=I axJ 

The only nonzero terms in this double sum are those for which j = i, so we have 

k aa; -
d<l> = I:- dx; I\ dx1 I\··· I\ dx; I\··· I\ dxk 

i=I ax; 

k 
" i- l aa; = L.., ( -1) - dx 1 /\ · · · /\ dx; I\ · · · I\ dxk, 
i=I ax; 
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since i - l reversals are required to move dx; from the front of the list to fill in the 
missing ith position . 

Now let Q = Q;(/ie 1, ... , hek) be the cube of edge length h in IRk described in 
Example 9 in Section 17.4. Then 

by the result of Example l O in Section 17.4. Let Q; be the projection of Q on the 
coordinate plane with normal e; , that is, Q; = {x E IRk : x; = 0 YJ ::S x1 ::S YJ +h , j =/= 
i) . We can iterate the above integral to obta in 

[ k [ 1~~ 
Jr d<D = I) -l)i - l Jr dx1 ... dx; ... dx,, 

Q i=I Q; Yi 

k 

= I) - l)i-l f (a ;(x 1, ... , y; + h, ... ,xk) 
i=I Q; 

aa; 
-d x; 
ax; 

-a;( x1, .. . ,y ;, ... ,xk) )dx1 ... ,J?; ... dxk 

becau se the k pairs of (k - 1)-cube faces of the oriented boundary aQ of Qare given 
by 

k 

I )-1i- 1 
( Q~~),e/he1 , ... , he;, ... , hek) - Q~- I (he1, ... , he;, ... , hek) ). 

i= I 

Remark Although the proof above was carried out for a k-cube in IR\ the result 
extends to a k-cube in IR". If the cube is spanned by k mutuall y perpendicular unit 
vectors , an invertible linear transformation of coordinate s in IR" can be found that maps 
those vectors to the first k basis vector s e1, ... , ek so that the coordi nates of x E Q 
satisfy x; = constant in Q for i > k. If <D is a (k - 1)-form on Q, its coeffic ients 
will not vary with those coo rdinat es, and those of its exterior derivative d<D will be a 
multiple of dx1 /\ · · · /\ dxk, 

Remark If the coefficien ts of the differential (k - 1) form <Dare smooth, and if, for 
all sma ll h > 0, the k-cube { Q1i} has edge length h and contains the pointy , then 

Jim -i [ <D = lim -i [ d<D = d<D(y). (t) 
h-->O h l aQ,, h-->O h J Q,, 

Some writers use (t) as the definition of the exterior de1ivative d<D. Since Q1i has 
k-volume hk, the seco nd equality is not surprisi ng. But the (k - 1)-cubes (2k of 
them) that form a Qk have total (k - 1 )-volume 2khk- 1

, so it is more surprising that 
lim1,_,o( l / hk) faQ,, <D shou ld be finite. 

Completing the Proof 
While we will not give a detailed proof of the GST here , we will make several obser
vation s about extendin g the proof to wider classes of domains. 

(a) The proof above extend s with minima l change to k-dimensio nal rectangles . 

(b) An invertibl e linear transformation can map a k-parallelogram in IR" to a k-cube, 
so the GST hold s fork-parallelograms. 
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(c) Let M be a piece-with-boundary of a k-manifold. If M is a union of non
overlapping k-cube s (or k-rectangle s), then f M d<l> will be the sum of the integrals 
over those cubes. However , where two such cube s abut along parts of their smooth 
boundarie s, they induce opposite orientations, so that those contributions to the 
boundary integral of <l> will cancel and the sum of the integrals over the boundarie s 
of the cubes will reduce to the boundary integral on a M. 

This suggests that we can approximate M by nonoverlapping cubes of small edge 
length h and obtain 

r d<l> ~ I: j d<l> = I: r <l> ~ r <l>. c*) 
JM ; Q; ; l aQ l aM 

The error in the first approximation in ( *) appro aches O as h -+ 0 because the 
number of cubes near the boundary grows of order h -( n-l), while the volume 
of each decrea ses of order h11

• The error in the second approximation in ( *) 
cannot be similarly argued to decrease with h becau se the (k - 1 ) -volumes of the 
uncanceled part s of the boundarie s of the cubes may remain relatively larger than 
the (k - 1)-volume of aM. However, we can exploit the assumed smoothne ss 
of <l> to compen sate for this. Expanding (the coefficients of) <l> in Taylor series 
about a pointy near the boundary aM we obtain <l>(x) = <l>o(Y) + O(lx - yl) for 
x near y. If we can fill the region betwe en aM and the set of cubes used above 
to approximate f M d<l> with convex sets of diameter of order h abutting the cubes 
and numbering of order h -( n- l), and use the fact that the integral of <l>o over the 
boundary of such convex sets is zero (see Exercise 8 in the previou s section), we 
can still have the error in the second approximation decreasing of order h. 

(d) Strict parametrization Let U be an open set in !Rk and let x = p(u) be a one
to-one, orientation -preserving parametrization over U of a subset of M contai ning 
the closed piece-w ith-boundary M. Suppo se that M = p(Q), where Q is a clo sed 
k-cube in U with edges parallel to the standard basi vectors in !Rk, and that 
aM = p( a Q). If <l> is a smooth differential (k - 1)-form on M , then 

{ d<l> = j d<l> ( ap(u), ap(u), ... , ap(u) ) du, du2 · · · duk, 
JM Q au1 au2 auk 

The 2k faces of Q consist of k pair s B; of (k - 1)-dimen sional cubes, with 
orientation inherited from Q, and such that the coordinate x; is constant in each 
cube of the pair B;. It follows that 

laM <l> 

= tc-ii -1 r <l> ( ap(u), ... , 8p(u), . .. , ap(u) ) du, .. ,du;, .. duk 
i=l j B; au1 au; auk 

= laM <l>. 

EXAM p LE 1 Evaluate the integral of the differential form 

<l> = (xf + x}) dx 1 I\ dx2 I\ dx3 + (xf + x5) dx2 I\ dx3 I\ dx4 

over the oriented boundary of the spheric al cylinder C in IR4 consisting of those point s 
x satisfying (x1 + 1)2 + xJ + x} s 9 and Os x4 s l. 

Solution Direct evaluation of the integral of <l> by parametrizing the "cy lindrical 
wall" (x1 + 1)2 + xJ + x} = 9, 0 s x4 s 1, and then doing the same with the ends of 

the cylinder, (x1 + 1)2 + xJ + x} s 9, x4 = 0 or x4 = 1, while not impossib le, would 
be somewhat time consuming . It is much easier to use the GST. Observe that 

d<l> = 2x4 dx4 I\ dx1 I\ dx2 I\ dx3 + 2x1 dx , I\ dx2 I\ dx3 I\ dx4 

= 2(x , - x4) dx1 I\ dx2 I\ dx3 I\ dx4. 
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When integrating a function 
times an orienting differential 
k-form in ~ k , the wedge 
products can be dropped. (See 
Example 10 in Section 17.4.) 
The integral is a normal k-fold 
integral that can be iterated by 
the usual techniques. 

Since dx 1 I\ · · · I\ dx4 provides the standard orientation for JR4, we have 

where B is the ball in JR3 with with centre at (-1 , 0, 0) and radius 3, having volume 

4 3 
VB= -1r3 = 361r. 

3 

The integral of x 1 over B is VB times the xi -coordinate of the centroid (i .e., the centre) 
of B. Accordingly, 

r = (2)(361r)(-l) r1 dx4 - (2)(3fa) r1 X4dX4 = -IQ81r. 
kc h h 

Sometimes it is helpful to use the GST to evaluate the integral of a form over only part 
of the surface of a region . 

EXAMPLE 2 Let<D= yz dx/\ dy+ zxdy /\ d z +xyd z/\ dx . Evaluatefp<D , 
where P is the part of the plane x + y + z = l lying in the first 

octant of JR3. Assume that P is oriented with upward normal. 

Solution S is part of the boundary of the tetrahedron T with vertices at (0 , 0, 0), 
(1, 0, 0), (0, 1, 0) , and (0, 0, 1). The other three parts of the boundary of T are triangles 
in the three coordinate planes . Observe <D = 0 on each of those three triangles. (For 
instance , on z = 0 we have d z = 0, so all three terms of <Dare zero.) Since the assumed 
normal on P is outward from T , we have 

r <D = r <D = r d<D = r (y + z + x ) dx I\ dy I\ d z . 
jp laT jT jT 

By symmetry, 

I, f 1
1 11-z 11-y-z 1 

<D = 3 z dx dy d z = 3 z dz dy dx = - . 
P T O O O 8 

(We have omitted the details of evaluating the iterated integral.) 

The Classical Theorems of Vector Calculus 

EXAM p LE 3 Line integrals of conservative fields Let C be a piece-with-
boundary of a smooth curve ( I-manifold) in IR" oriented so that C 

runs from a to b. Let f be continuously differentiable on an open set containing C . 
Let T be the unit tangent vector field on C in the direction of its orientation , and let ds 
be the arc length element on C. Then 

i grad f • T ds = f(b) - f(a). 
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Solution Let <D be the 0-form f (x) so that 

n aJ 
d<D = I:-dxi. 

i= I axi 

If C is parametrized by x = p(u) for u E [a, b] with p (a) = a and p (b) = b, then 
T(x) = (dx / du)/Jdx / dul and ds = Jdx/ duJ du, so that 

1 ~ 1. dx grad f • T ds = grad f( p (u)) • - du 
C [a,b] du 

= t { af( p (u)) dx; du 

1=1 l[ a,b] axi du 

=f d<D= { <D=+f( b)+(-f( a))=f( b)-f( a) , 
c lac 

since ac is the 0-manjfold consisting of the two oriented points +b and -a . 

EXAM p LE 4 Stokes's Theorem and Green's Theorem Let S be a piece-with-
boundary of a smooth surface (2-manifold) in JR3, oriented with 

unit normal field N, and let C be the piecewise-smooth, closed bounding curve of S with 
inherited orientation given by a unit tangent field T. LetF = F1 (x) i+ F2(x) j + F3(x) k 
have components that are continuously differentiable in an open set in IR3 containing 
S. If dS and ds denote the area element on Sand the arc length element on C, then 

ls curl F • Nd S = L F • T ds. 

Solution Let <D = F1 dx + F2 dy + F3 d z. As shown in Example 2 in Section 17 .2, 

(
a F3 a F2) ( aF1 aF3) d<D = - - - dy I\ dz + - - - d z I\ dx 
ay az az ax 

+ ( a F2 _ a F1) dx I\ dy , 
ax ay 

while curl F has the same components as d <D has coefficients; 

(
a F3 a F2) . ( a F1 a F3) . ( a F2 aF1) curlF= --- 1+ --- J+ --- k. 
ay az az ax ax ay 

Now suppose x = Pt (u, v), y = p2(u , v ), z = p3(u, v) is a smoot h, orientation
preserving parametrization of S over a set U in IR2 (the uv-plane). Then 

(
ay ay ) ( az az ) dy I\ d z = - du + - dv I\ - du + - dv 
au av au av 

(
ay az az ay ) a (y, z) 

= au av - au av du I\ dv = a(u,v) du I\ dv . 

Similarly, 

a(z,x) a (x,y) 
dz I\ dx = -(-- du I\ dv and dx I\ dy = -(-- du I\ dv. 

a u ,v) a u,v) 

By Example 11 in Section 17.4, a normal vector and surface area element on S are 
given by 

a (y, z) . a (z, x) . a(x, y) k 
0= --- 1+--J+---

a(u,v) a (u,v) a (u ,v ) 

dS = Joi du dv. 
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Thus, d<D = curl F • n du I\ dv = curl F • NdS and 

ls FeNdS = ls d<D = i <D 

by the OST. 

Now let x(t) = x (t)i + y (t)j + z(t)k , a ::: t ::: b be an orientation-preserving 
parametrization of C . Since C is a closed curve, x(a) = x(b). The unit tangent vector 
in the direction of C is T(t ) = (dx / dt)/ldx / dtl and the arc length element on C is 
ldx / dtl . Accordingly , 

dx dy d z dx h 

<D = F1 - dt + Fi - dt + F1 - dt = F • - dt = F • Tds 
dt dt dt dt 

and 

{ <D=1 bF(x(t)) • dxdt= f FeTds . 
le a dt le 

Remark Green 's Theorem in JR2 is ju st a special case of Stokes's Theorem where S 
and C lie in the xy-plane, F is independent of z, and F3 = 0. 

EXAM p LE 5 The Divergence Theorem Let M be an open set in ]Rn , equipped 
with the standard orientation dx 1 /\· • ·/\ dxn, and having a piecewise 

smooth (n - ])-dimen sional boundary manifold BM equipped with an outward unit 
normal field N. IfF = I::'.'=1 F;(x) e; is a smooth vector field defined on M , show that 
the OST implies 

{ divF(x)dx= { F e NdS , 
jM laM 

n 8F(x) 
where divF(x) = I:-- 1

- and dS is the "area" ((n - 1)-volume) element on BM. 
j= I 8Xj 

Solution Let <D = I:7= 1 ( - 1 )i - t F; (x) dx 1 • • • ch; · · · dx n be a differential (n - 1 )
form on JR". Then we have 

d<I> = t(-l)i - I (t BF; dxj) I\ dx1 · · ·dx; · · · dx,, 
i = I j= l Bxl 

~ · 1 aFi -= L_..(-1) 1
- -dx j I\ dx, · · · dx; 

i = I ax; 
· · · dx,, 

( 

11 

a Fi) = L. - . dx, dx2 · · · dxn 
i= I ax, 

= ( div F) dx I dx2 · · · dx,,. 

Thus , 

JM divFd x , dx2 · · · dxn = JM <D. 

On the other hand, if aM has a smooth parametrization x = p(u) over a domain 
U c JR11

-
1, then using the formulas for the normal n and surface area element dS given 

in Example 11 in Section 17.4, we have 

FeNdS=F•ndui · · · du,,_1 

II a( ~ ) '°'( i - 1 ( ( ) X [ , . . . , x; , . .. , Xn = L... -1) F; p u) -------du1 
i = l a(u I, .. . , Un- I) 

· · ·dun - I· 
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But thi s latter ex press io n is ju st the p ara metri ze d ver sio n of <D, sinc e 

- 8 (x 1, . . . , Xj, . .. , Xn) 
dx , I\ · · ·I\ dx; I\· ·· I\ dx 11 = -------- d u l • • • dun - I· 

8(u 1, . . . , Un-!) 

Thu s, r F . N d S = r <D a nd the Di verge nce Th eo re m holds in IR11
• 

laM laM 

EXERCISES 17.5 
1. If <1> is a con stant differential (k - 1)-form defined in a 

neighbourhood of a smooth k-m anifold .M in R ", show that 

G 2. 

f <l> = 0 for any piece- with-b ound ary M of .M. The OST laM 
gives a simple proo f of this asse rtion , first made under 
restrictiv e conditi ons on M in Exe rcise 8 in Section 17 .4. 

k ·- 1 -Let <1> = L i= I (- 1)' x ; d x 1 I\··· I\ dx ; I\ · · · I\ dxk and let 
M be a piece-with -bound ary of a k- mani fold in R" (where 
n :::: k). Show that the k-vo lume Vk (M) of Mis given by 

In Exe rcises 3-6, find the integra l of the given differentia l form <1> 

over the oriented boundary of the given domain D . 

3. <1> = xdy I\ d z+ yz dx I\ d z, 
D = {(x, y , z) E R 3 : 1 ::: x, y, z,::: l} 

4. <1> = (x1 +x}) dx 2/\ dX3/\ dx 4+ (x}+x3x4)dx1 /\ dX3/\ dx 4, 

D = {x E R4 
: 0 ::: x; ::: i , 1 ::: i ::: 4}. 

5. <1> = xf dx 2 I\ dx 3 I\ dx 4 - Xi dx3 I\ dx4 I\ dx1 

+ x3 dx4 I\ dx, I\ dx 2, 

D = {x E R4 
: xf + Xi ::: 4 , x5 + x} ::: 9}. 

6. <1> = (x? +···+xi) dx, I\ dx3 I\ dx4 I\ dxs I\ dx6, D = 
{x E R6 : x1,x2:::: 0, XJ +x2::: 1, 0 ::: x3 , x4,x5 , X6::: l}. 
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Ordinary 
Differentia I Equations 
, , In order to solve this differential equation you look 

at it until the solution occurs to you. 

'' 
, , Science is a differential equation. 

boundary condition. 

George Polya 1887-1985 
from How to Solve It Princeton, 1945 

Religion is a 

'' Alan Turing 1912-1954 
quoted in Theories of Everything by J. D. Barrow 

I n trod LI Ct I, 0 n A differential equatio~ (m DE) is an equation that_ in
volves one or more denvat1ves of an unknown funct10n. 

Solving the differential equa tion mean s finding a function (or every such function) that 
satisfies the differential equation. 

Many physical laws and relationships between quantities studied in various scien
tific discip lines are expressed mathematically as differential equation s. For example, 
Newton's Second Law of Motion (F = ma) states that the position x( t) at time t of 
an object of constant mass m subjected to a force F(t) must satisfy the differential 
equation (equation of motion): 

d2x 
m-

2 
= F(t). 

dt 

Similarly, the biom ass m(t) at time t of a bacteri al culture growing in a uniformly 
supportin g medium change s at a rate proportional to the biomas s: 

dm 
- = km(t) , 
dt 

which is the differentia l equatio n of exponential growth (or, if k < 0, exponential 
decay). Because differential equations arise so extensively in the abstract modelling of 
concrete phenomena, such equations and techniques for solving them are at the heart 
of applied mathematic s. Indeed , most of the existing mathematical literature is either 
directly involved with differential equations or is motivated by problems arising in 
the study of such equations. Because of this , we have introduced various differenti al 
equation s, term s for their description , and techniques for their solution at several place s 
in the development of calculus throughout this book . Thi s final chapter provides a more 
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unified framework for a brief introduction to the study of ordinary differential equations. 
Some material from earlier sections (notably Section s 7.9 and 3.7) forms a natural part 
of this chapter; you will be referred back to these sections at the appropriate time. This 
chapter is, of necessity , relatively short. Students of mathematics and its applications 
usually take one or more full courses on differential equations, and even then hardly 
scratch the surface of the subject. 

Classifying Differential Equations 
Differential equations are classified in several ways. The most significant classification 
is based on the number of variables with respect to which derivatives appear in the 
equation. An ordinary differential equation (ODE) is one that involves derivatives 
with respect to only one variable. Both of the examples given above are ordinary 
differential equations. A partial differential equation (PDE) is one that involves 
partial derivatives of the unknown function with respect to more than one variable. For 
example, the one-dimensional wave equation 

a2u a2u 
- = C2 -
at2 ax 2 

models the lateral displacement u(x, t) at position x at time t of a stretched vibrating 
string. (See Section 12.4.) We will not discuss partial differential equations in thi 
chapter. 

Differential equations are also classified with respect to order. The order of a 
differential equation is the order of the highest-order derivative present in the equation. 
The one-dimensional wave equation is a second-order PDE . The following example 
records the order of two ODEs. 

EXAMPLE 1 
d2y 
- 2 + x 3y = sinx 
dx 

d3y (d y)2 d2y 
-+4x - =y-+e Y 
dx 3 dx dx 2 

has order 2, 

has order 3. 

Like any equation, a differential equation can be written in the form F = 0, where 
F is a function. For an ODE, the function F can depend on the independent variable 
(usually called x or t), the unknown function (usually y), and any derivatives of the 
unknown function up to the order of the equation. For instance, an nth-order ODE can 
be written in the form 

F( . I II (n)) _ 0 x,y,y,y , . .. ,y - . 

An important special class of differential equations consists of those that are linear . 
An nth-order linear ODE has the form 

an(x)/nl(x) + a11_ , (x)y<n-l)(x) + · · · 
+a2(x)y 11(x) +a,(x)y'(x) +ao(x)y(x) = f(x). 

Each term in the expression on the left side is the product of a coefficient that is 
a function of x, and a second factor that is either y or one of the derivative of y. 
The term on the right does not depend on y; it is called the nonhomogeneous term. 
Observe that no term on the left side involves any power of y or its derivatives other 
than the first power, and y and its derivatives are never multiplied together. 

A linear ODE is said to be homogeneous if all of its terms involve the unknown 
function y, that is , if f (x) = 0. If f (x) is not identically zero, the equation is 
nonhomogeneous. 
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THEOREM 

I 

THEOREM 

I 

d2y 
EXAMPLE 2 In Example 1 the first DE, -

2 
+ x 3 y = sin x, is linear. Here, 

dx 
the coefficients are a2(x) = 1, a, (x) = 0, ao(x) = x3, and the 

nonhomogeneous term is f (x) = sin x. Although it can be written in the form 

d3y (dy) 2 d2y ' - + 4x - - y - - e) = 0 
dx 3 dx dx 2 ' 

the second equation is not linear (we say it is nonlinear) because the second term 
involves the square of a derivative of y, the third term involves the product of y and 
one of its derivatives , and the fourth term is not y times a function of x. The equation 

d3y d2y dy 
(1 + x 2

)- + sin x - - 4- + y = 0 
dx 3 dx 2 dx 

is a linear equation of order 3. The coefficients are a3 (x) = 1 + x 2, a2 (x) = sin x, 
a, (x) = -4, and ao(x) = 1. Since f(x) = 0, this equation is homogeneous. 

The following theorem states that any linear combination of solutions of a linear, 
homogeneous DE is also a solution. This is an extremely important fact about linear, 
homogeneous DEs. 

If y = y , (x) and y = y2(x) are two solutions of the linear, homogeneous DE 

then so is the linear combination 

y = Ay, (x) + By2(x) 

for any values of the constants A and B . 

PROOF We are given that 

(n) (n- l) 11 1 0 
any 1 + a,,_, y 1 + · · · + a2y, + a1Y1 + aoyi = 

(n) (n-l) 11 1 0 
any2 + an-IY 2 + · · · + a2Y2 + a,ri + aoy2 = . 

and 

Multiplying the first equation by A and the second by B and adding the two gives 

(A (n) + B (11)) + (A (n- l ) + B (n- 1)) an Yi Y2 a11- l Yi Y2 

+ · · · + a2(Ay;' + Byf) + a, (Ay; +By~)+ ao(AYL + By 2) = 0. 

Thus , y = Ay1 (x) + By2 (x) is also a solution of the equation. 

The same kind of proof can be used to verify the following theorem . 

If y = Yl (x) is a solution of the linear, homogeneous equation 

and y = Y2 (x) is a solution of the Linear, nonhomogeneou s equation 

an/n) +a 11-1/n-l) + · · · +a2Y 11 +a1 y' +ao y = f(x), 

then y = YI (x) + y2(x) is also a solution of the same linear, nonhomogeneous equation . 

We will make extensive use of the two theorems above when we discuss second-order 
linear equations in Sections 18.4-18.6 . 
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EXAM p LE 3 Verify that y = sin 2x and y = cos 2x satisfy the DE y" +4y = O. 
Find a solution y (x) of that DE that satisfies the initial conditions 

y (O) = 2 and y' (O) = -4. 

Solution If y = sin 2x , then y" = .!!_ (2 cos 2x ) = -4 sin 2x = - 4 y . Thus, 
dx 

y " + 4y = 0. A similar calculation shows that y = cos 2x also satisfies the DE . Since 
the DE is linear and homogeneou s, the function 

y = A sin 2x + B cos 2x 

is a solution for any values of the con stants A and B. We want y (O) = 2, so we need 
2 = A sin O + B cos O = B. Thus B = 2. Also , 

y ' = 2A cos 2x - 2B sin 2x. 

We want y' (O) = -4 , so -4 = 2A cos O - 2B sin O = 2A . Thu s, A = -2 and the 
required solution is y = - 2 sin 2x + 2 cos 2x. 

Remark Let Pn(r) be the nth-degree polynomial in the variable r given by 

with coefficient s depending on the variable x . We can write the nth-order linear ODE 
with coefficients ak(x), (0 .:S k _:s n) , and nonhomogeneou s term f( x ) in the form 

Pn(D )y(x) = f(x), 

where D stands for the differential operator d / dx. The left side of the equation above 
denotes the application of the nth-order differential operator 

to the function y (x ) . For example , 

It is often useful to write linear DEs in term s of differential operator s in this way. 

Remark Unfortunately , the term homo geneous is used in more than one way in the 
study of differential equation s. Certain ODE s that are not necessarily linear are called 
homogeneous for a different reason than the one applying for linear equations above. 
We will encounter equations of this type in Section 18.2. 

In Exercises 1-10 , state the order of the given DE, and whether it 
is linear or nonlinear. If it is linear , is it homogeneous or 
nonhomogeneous ? 

5. y " + x sin x y' = y 

d 3y d y 

6. y" + 4y 1 
- 3y = 2y2 

dx 
dy 

1. - = Sy 
dx 

dy 
3. y dx = X 

d 2y 
2. - 2 +x = y 

dx 

4. y"' + xy' = x sinx 

7. - +t - + t2y = t 3 

dt 3 dt 
8. cos x - + x sin t = 0 

dt 

1 
10. x 2y " + exy' = -

y 
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11. Verify that y = cos x and y = sin x are solutions of the DE 
y" + y = 0. Are any of the following functions solutions? 
(a) sin x - cos x, (b) sin(x + 3), (c) sin 2x. Justify your 
answers. 

12. Verify that y = ex and y = ex are solutions of the DE 
y" - y = 0. Are any of the following functions solutions? 
(a) coshx = ½(ex+ e-x), (b) cosx, (c) xe. Justify your 
answers. 

13. y 1 = cos(kx) is a solution of y" + k2y = 0. Guess and 
verify another solution y2 that is not a multiple of YI . Then 
find a solution that satisfies y( n / k) = 3 and y' (n / k) = 3. 

14. y 1 = ekx is a solution of y" - k2y = 0. Guess and verify 
another solution Y2 that is not a multiple of YI. Then find a 

solution that satisfies y (l) = 0 and y' (l) = 2. 

15. Find a solution of y" + y = 0 that satisfies y (n / 2) = 2y(O) 
and y(n / 4) = 3. Hint : See Exercise 11. 

16. Find two values of r such that y = e'x is a solution of 
y" - y' - 2y = 0. Then find a solution of the equation that 
satisfies y(O) = 1, y' (0) = 2. 

17. Verify that y = x is a solution of y" + y = x, and find a 
solution y of this DE that satisfies y (n) = 1 and y' (n) = 0. 
Hint: Use Exercise 11 and Theorem 2. 

18. Verify that y = -e is a solution of y" - y = e, and find a 
solution y of this DE that satisfies y (I) = 0 and y' (1) = 1. 
Hint : Use Exercise 12 and Theorem 2. 

. _ S_o_lv_in_g _Fi_rs_t-_O_rd_er_E_q_ua_t_io_ns __ __ _______ _ 
In thi s section we will develop tec hnique s for solving severa l types of first-or der ODEs , 
specifically, 

l . separable equations, 

2. linear equations, 

3. homogeneou s eq uations, and 

4. exact equations. 

Most first-order equation s are of the form 

dy 
- = f(x, y) . 
dx 

Solvin g such differenti al equations typically involves integration; indee d, the process 
of so lving a DE is called integrating the DE. Nevertheless, solving DEs is usually more 
complicated than ju st wr itin g down an integral and evaluati ng it. The only kind of DE 
that can be solved that way is the simple st kind of first -order, Linear DE that can be 
wr itten in the form 

:~ = f(x). 

The so lution is then ju st the antiderivative off: 

y = f f(x)dx. 

Separable Equations 
The next simp lest kind of equation to solve is a so-ca lled separable equation. A 
separab le equation is one of the form 

dy 
dx = f( x )g( y ) , 

where the derivative dy / dx is a product of a function of x alone times a functio n of y 
alone, rather than a mor e ge neral function of the two variab les x and y . 

A thorough discussion of separable equations with examples and exercises 
can be found in Section 7.9; we will not repeat it here. H you have not 
studied that material, please do so now. 
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First-Order Linear Equations 
A first-order linear differential equation is one of the type 

dy 
dx + p( x)y = q (x), 

where p(x) and q(x) are given functions , which we as ume to be continuous . The 
equation is homogeneous (in the sense described in Section 18.1) provided that q (x) is 
0 for all x. In that case, the given linear equation is separable: 

dy - = -p(x)dx, 
y 

whic h can be solved by integrating both sides. Nonhomogeneous first-order linear 
equations can be solved by a proced ure involving the calculation of an integrating 
facto r. 

The technique for solving first-order linear differential equations, along 
with several examples and exercises, can be found in Section 7.9. If you 
have not studied that material, please do so now. 

First-Order Homogeneous Equations 
A first-order DE of the form 

dy - f ( ~ ) 
dx X 

is said to be homogeneous. This is a different use of the tenn homogeneous from that 
in the previous section, which applied only to linear equations. Here , homogeneous 
refers to the fact that y / x, and therefore g(x, y) = f( y / x) is homogeneous of degree 0 
in the sense described after Example 7 in Section 12.5. Such a homogeneous equation 
can be transformed into a separab le equation (and therefore solved) by means of a 
change of dependent variable. If we set 

y 
V = -, 

X 

then we have 

or equivalently 

dy dv 
- = v+x- , 
dx dx 

y = xv(x) , 

and the original different ial equation transforms into 

dv 

dx 

f(v) - V 

X 

which is separab le. 

EXAMPLE 1 Solve the equation 

dy x 2 + xy 
dx xy + y 2 · 

Solution The equation is homogeneous. (Divide the numerator and denominator of 
the right-hand side by x 2 to see this.) If y = vx the equation becomes 

dv I+ v I 
v+x-=-- = -

dx v + v2 v' 
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or 

dv l - v2 

x- = -- . 
dx V 

Separating variables and integrat ing, we calc ulat e 

I ~ = f dx Let u = l - v2 

I -v 2 x _~I du= I dx 
2 U X 

- ln lul = 2 ln lxl + C1 = In C2x2 (Ci = In C2) 

l 2 
- =C 2x 
lul 

2 C3 
11 - v I= x 2 

1
1- y2 I= C3 . 

x2 x 2 

The solution is best expressed in the form x 2 - y2 = C4 . However, near point s where 
y f= 0, the equation can be solved fo r y as a function of x . 

Exact Equations 
A first-order differential equation expresse d in differential for m as 

M(x, y) dx + N(x, y) dy = 0, 

h. h · · I dy M(x , y ) . .d b "f h I f h d .d . h w 1c 1s eqmva ent to - = - ---, 1s sa1 to e exact 1 t e e t- an s1 e 1s t e 
dx N( x, y) 

differential of a function ¢ (x, y) : 

d</J(x, y) = M(x, y) dx + N(x, y) dy. 

The function ¢ is called an integral function of the differ ential equation. The level 
curves ¢ (x, y) = C of ¢ are the solution curves of the differential equation . For 
examp le, the differential equat ion 

x dx + y dy = 0 

has solution curves given by 

x 2 + y2 = C 

since d( x 2 + y2) = 2(x dx + y dy) = 0. 

Remark The co nditi on that the differential equation M dx + N dy = 0 should be 
exact is just the condition that the vector field 

F = M(x , y) i + N( x, y) j 

should be conservative ; the integral function of the differe ntial equation is then the 
potential fu nction of the vector field. (See Section 15.2.) 

A necessary condition for the exactness of the DE M dx + N dy = 0 is that 

aM aN 
ay ax' 
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h. · h th · d · 1 d · · a
2
¢ d a

2
¢ f h · 1 f · t 1s JU St says t at e m1xe partia envat1ves -- an -- o t e mtegra unction 

axay ayax 
¢ must be equal. 

Once you know that an equation is exact, you can often guess the integral function. 
In any event , ¢ can always be found by the same method used to find the potential of a 
conserv ative vector field in Section 15.2. 

EXAM p LE 2 Verify that the DE 

(2x + sin y - ye-x) dx + (x cosy+ cosy+ e-x) dy = 0 

is exact and find its solution curves. 

Solution Here , M = 2x + sin y - ye-x and N = x cosy +cosy + e-x. Since 

aM aN - = cosy-e -x 
ay ax, 

the DE is exact. We want to find¢ so that 

a¢ M 2 . -x d - = = x + sm y - ye an 
ax 

a¢ - = N = x cos y + cos y + e - x. 
ay 

Integrate the first equation with respect to x, being carefu l to allow the constant of 
integration to depend on y : 

cp(x, y) = f (2x + sin y - ye-x ) dx = x 2 + x sin y + ye-x + c, (y). 

Now substitute this expression into the second equation: 

xcosy+cosy+e-x = a¢ = x cosy+e-x +C\(y) . 
ay 

Thus , c;( y ) = cosy, and C1(y) = sin y + C2. (It is becau se the original DE wa 
exact that the equation for c; (y) turned out to be independent of x; this had to happen 
or we could not have found C1 as a function of y only.) Choosing C2 = 0, we find that 
¢ (x , y ) = x 2 + x sin y + ye-x + sin y is an integral function for the given DE. The 
solution curve s for the DE are the level curves 

x 2 + x sin y + ye-x + sin y = C. 

Integrating Factors 
Any ordinary differential equation of order 1 and degree 1 can be expressed in differ
ential form: M dx + N dy = 0. However, this latter equation will usually not be exact. 
It may be possible to multiply the equation by an integrating factor µ( x, y) so that 
the resulting equation 

Jt(x, y) M( x, y) dx + µ(x , y) N(x, y) dy = 0 

is exact. In general , such integratin g factors are difficult to find; they must satisfy the 
partial differential equation 

aµ aµ ( aN aM) 
M( x, y) ay - N(x , y ) ax = µ(x, y ) ~ - ay , 
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EXE RC IS ES 18.2 

which follows from the necessary condition for exactness stated above. We will not 
try to solve this equation here. 

Sometimes it happens that a differential equation ha s an integrating factor depend
ing on only one of the two variables. Suppose, for instance , that µ (x) is an integrating 
factor for M dx + N dy = 0. Thenµ (x) must satisfy the ordinary differential equation 

dµ ( aM aN) N (x, y) - = µ (x) - - - , 
dx ay ax 

or 

aM aN 

1 dµ ay ax 
----= 
µ(x) dx N(x, y) . 

This equation can be solved (by integration) for µ as a function of x alone provided 
that the right-hand side is independent of y. 

EXAMPLE 3 Show that (x + y2) dx + xy dy = 0 has an integrating factor 
depending only on x, find it , and solve the equation. 

Solution Here M = x + y2 and N = xy. Since 

aM aN 

ay ax 

N(x, y) 

2y - y 

xy 

1 

X 

does not depend on y, the equation has an integrating factor depending only on x. This 
factor is given by dµ / µ = dx / x. Evidently,µ = x is a suitable integrating factor; if 
we multiply the given differenti al equation by x, we obtain 

(

x 3 x2y2 ) 
0 = (x 2 +xy2)d x +x 2y dy = d 3 + -

2
- . 

The solution is therefore 2x 3 + 3x 2 y2 = C. 

Remark Of course, it may be possible to find an integrating factor depending on 
y instead of x. See Exercises 17- 19 below . It is also possible to look for integrat
ing factors that depend on specific combinations of x and y, for instance, xy. See 
Exerci se 20. 

See Section 7.9 for exercises on separable equations and linear 
equations. 

slope 2x/ (l + y 2). 

8. Repeat Problem 7 for the point (1, 3) and slope l + (2y / x). 
Solve the homogeneous differential equations in Exercises 1- 6. 

1. 
dy x+y 

2. 
dy xy 

dx x - y dx x2 + 2y2 

3. 
dy x2 + xy + y2 

4. 
dy x 3 + 3xy 2 

dx x2 dx 3x2y + y3 

5. X dy = y + X cos2 ( ~ ) 6. dy = ~ - e- y/x 
dx x dx x 

7. Find an equation of the curve in the xy -plane that passes 
through the point (2, 3) and has, at every point (x , y) on it, 

9. Show that the change of variables c; = x - xo, 17 = y - YO 
transforms the equation 

dy ax +by+ c 

dx ex+ fy + g 

into the homogeneous equation 

d17 ac; + b17 
de; ec; + f17 ' 
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provided (xo, yo) is the solution of the system 

ax +by+ c = 0 

integrating factor of the form µ (y ), and what DE must the 
integrating factor satisfy? 

ex+ fy +g = 0. 18. Find an integrating factor of the form µ (y) for the equation 

10. Use the techniq ue of Exercise 9 to solve the equation 2y2(x + y2) dx + xy(x + 6y2) dy = 0, 
dy X + 2y -4 

dx 2x - y - 3 
Show that the DEs in Exercises 11- 14 are exact, and solve them. 

and hence solve the equation. Hint : See Exercise 17. 

11. (xy 2 + y)dx + (x 2y +x)dy = 0 

12. (ex sin y + 2x) dx + (ex cosy+ 2y) dy = 0 

19. Find an integrating factor of the form µ (y) for the equation 
y dx - (2x + y 3 eY) dy = 0, and hence solve the equation . 
Hint : See Exercise 17. 

13. exy (l + xy) dx + x 2exy dy = 0 

14. ( 2x + 1 - ;: ) dx + ; dy = 0 

Show that the DEs in Exercises 15- 16 admit integrating factors 
that are functions of x alone . Then solve the equations. 

20. What condition must the coefficients M(x , y) and N( x, y) 
satisfy if the equation M dx + N dy = 0 is to have an 
integrating factor of the form µ(xy), and what DE must the 
integrating factor satisfy? 

21. Find an integrating factor of the form µ (xy) for the equation 

15. (x2 +2y)dx -xdy = 0 

16. (xex+xlny+y)dx+(xy
2 

+xlnx+xsin y )d y =O ( y2) (x sinx ) 
X COS X + ~ dx - - y- + y dy = 0, 

17. What condition must the coefficients M(x , y) and N(x, y) 
satisfy if the equation M dx + N dy = 0 is to have an and hence solve the equation . Hint: See Exercise 20. 

Existence, Uniqueness, and Numerical Methods 
A general first-order differential equation of the form 

dy 
dx = f(x , y) 

specifies a slope f (x , y) at every point (x, y) in the domain of f , and therefore 
represents a slope field. Such a slope field can be represented graphically by drawing 
short line segments of the indicated slope at many points in the xy-plane. Slope fields 
resem ble vector fields, but the segments are usually drawn having the same length and 
without arrowheads . Figure 18.1 portrays the slope field for the differential equation 

dy 
- =x - y. 
dx 

Solving a typical initial-value problem 

d = f(x,y) ! 
dy 

Y;o) = Yo 

involves finding a function y = </J(x) such that 

</J'(x) = f(x, </J(x)) and </J(xo) = YO· 

The graph of the equation y = </J (x) is a curve passing through (xo, yo) that is tangent to 
the slope-fi eld at each point. Such curves are called solution curves of the differential 
equa tion . Figure 18.1 shows four solution curves for y' = x - y correspondi ng to the 
initial conditions y(O) = C, where C = -2, -1, 0, and 1. 
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1000 CHAPTER 18 Ordinary Differential Equations 

Figure 18.1 The slope field for the DE 
y' = x - y and four solution curves for 
this DE 
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The DE y' = x - y is linear and can be solved explicitly by the method of 
Section 18.2. Indeed, the soluti on satisfy ing y( O) = C is y = x - 1 + (C + l) e-x . 
Most differential equations of the form y' = f (x, y) cannot be solved for y as an 
explicit function of x, so we must use numeric al appro ximation method s to find the 
value of a soluti on functi on ¢ (x) at particular point s. 

Existence and Uniqueness of Solutions 
Even if we cannot calculate an explicit soluti on of an initial-valu e problem, it is 
imp ortant to know when the probl em has a solution and whether that solution is 
uniqu e. 

An existence and uniquene ss theorem for first-order initial-value problems 

Supp ose that f (x, y) and h(x, y) = (8/ 8y)f (x, y) are continuou s on a rectangle R of 
the form a _:::: x _:::: b, c _:::: y _:::: d, containing the point (xo, Yo) in its interior. Then there 
exists a number b > 0 and a uniqu e function ¢ (x) defined and having a continuous 
derivative on the interval (xo-b, xo + b) such that cp(xo) = yo and ¢' (x ) = f (x , cp(x )) 
for xo - b < x < xo + b. In other words, the initial- value probl em 

I 
dy 

dx 
y (xo) 

f (x, y) 

= YO 

has a uniqu e solution on (xo - b, xo + b). 

We give only an outline of the proof here. Any soluti on y = cp(x) of the initial-value 
probl em ( *) must also satisfy the integral equation 

¢(x) = YO+ f x J (t, cp(t)) dt, 
xo 

and, conversely, any solution of the integral equation (**) must also satisfy the initial
value problem (*) . A sequence of approxim ation s ¢11(x) to a solution of(**) can be 
constructed as follow s: 

¢o(x) = Yo 

<Pn+I (x) = YO+ tr f(t, <Pn(t)) dt 
xo 

for n=0 , 1, 2, . . . 
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Figure 18.2 The solution to y' = y 2, 

y(O) = l is the part of the curve 
y = l / ( 1 - x) to the left of the vertical 
asymptote at x = 1 

SECT ION 18.3: Existence , Uniquene ss, and Numerical Methods 1001 

(These are called Picard iterations.) The proof of Theorem 3 involves showing that 

Jim ¢ 11(x) = ¢(x) 
n~oo 

exists on an interval (xo - b, xo + J) and that the resulting limit ¢ (x) satisfies the 
integral equation(**). The detail s can be fo und in more advanced texts on differential 
equations and analysis. 

Remark Some initial-value problems can have non uniqu e solutions. For example, 
the function y 1 (x) = x 3 and y2(x) = 0 both satisfy the initial-va lue problem 

I dy = 3y2f3 
dx 

y(O) = 0. 

In this case f (x, y) = 3y 213 is continuous on the whole xy-plane. However , 
aJ / ay = 2y - 113 is not continuous on the x-ax is and is therefore not continuous 
on any rectangle containing (0, 0) in its interior. The conditions of Theorem 3 are not 
sat isfied, and the initial-value problem has a solution but not a unique one . 

Remark The unique soluti on y = ¢ (x) to the initial-value problem (*)guaranteed by 
Theorem 3 may not be defined on the whole interval [a , b] because it can "escape " from 
the recta ngle R through the top or bottom edges. Even if f(x, y) and (a/ ay )f(x , y ) 
are continuous on the whole xy-p lane, the olution may not be defined on the who le 
real line. For example, 

1 
y = -- satisfies the initi al-value problem 

1-x I 
dy ? 
- = y 
dx 
y (O) = I 

but only for x < 1. Starting from (0, 1), we can follow the sol ution curve as far as we 
want to the left of x = 0, but to the right of x = 0 the curve recedes to oo as x -+ 1-. 
(See Figure 18.2.) It makes no sense to regard the part of the curve to the right of x = l 
as part of the soluti on curve to the initial-val ue problem. 

Numerical Methods 
Suppose that the conditions of Theorem 3 are satisfied, so we know that the initial-value 
problem 

d = f(x,y) I 
dy 

ytxo) = Yo 

has a uniqu e solution y = ¢(x) on some interval containingxo. Even if we cannot solve 
the differential equation and find <f>(x) exp licit ly, we can still try to find approximate 
values y11 for¢ (xn) at a sequence of points 

XO, X i =X O+ h, X2 =XO+ 2h, X3 =XO+ 3h, 

start ing at xo. Her e, h > 0 (or h < 0) is called the step size of the approximation 
scheme . In the remainder of this section we wi 11 describe three methods for constructing 
the approximations {y11 }: 

I . the Euler method, 

2. the improved Euler method, and 

3. the fourth-order Run ge-K utta method. 

Each of these methods starts with the given value of yo and provides a formula for 
constructing Y11+ 1 when you know y11• The three methods are listed above in increasing 
order of the complexit y of their formulas, but the more complicated formulas produce 
much better approximations for any given step size h. 
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The Euler method involves approximating the solution curve y = cp(x) by a 
polygonal line (a sequence of straight line segments joined end to end), where each 
segme nt has horizontal length hand slope determined by the value of f(x , y) at the 
end of the previous segment. Thus , if x,, = xo + nh , then 

YI =YO+ f (xo, Yo)h 

Y2 =YI+ f(x, , Y1)h 

Y3 = Y2 + f (x2, y2)h 

and, in general, 

Iteration formulas for Euler 's method 

Xn+l = Xn + h, Yn+l = Yn + hf (x,,, Yn)-

EXAMPLE 1 Use Euler's method to find approx imate values for the solution of 
the initial-value problem 

I 
dy 
- =x -y 
dx 

y( O) = 1 

on the interval [0, l] using 

(a) 5 steps of size h = 0.2, and 

(b) IOstepsofs izeh=O.l. 

Calculate the error at each step , given that the problem (which involves a linear equation 
and so can be solved explicitly) has solution y = ¢ (x) = x - 1 + 2e-x . 

Solution 
(a) Here we have f( x, y) = x - y, xo = 0, Yo= 1, and h = 0.2, so that 

n 
x,, = s' Yn+l = Yn + 0.2(x,, - y,,), 

and the error is e,, = cp(x,,) - y11 for n = 0, 1, 2, 3, 4, and 5. The results of 
the calculation, which was done easi ly using a comp uter spread sheet program, are 
presented in Table l. 

Table 1. Euler approximations with h = 0.2 

n x,, Yn f (xn, Yn) Yn+l en = </J(x,,) - Yn 

0 0.0 1.000 000 -1.000000 0.800000 0.000000 
I 0.2 0.800000 -0.600000 0.680000 0.037 462 
2 0.4 0.680000 -0.280000 0.624000 0.060640 
3 0.6 0.624000 -0 .024000 0.619200 0.073 623 
4 0.8 0.619200 0. 180 800 0.655 360 0.079458 
5 1.0 0.655 360 0.344640 0.080399 

The exact solution y = cp(x) and the polygonal line representing the Euler approxima
tion are shown in Figure 18.3. The approximation lies below the solution curve, as is 
reflected in the positive values in the last column of Table 1, representing the error at 
each step. 

(b) Here we have h = 0.1, so that 

n 
X --

11 - 10 ' Yn+l = y,, + O.l( x,, - y11) 

for n = 0, l, ... , 10. Again we present the results in tabular form: 
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Figure 18.3 The solution y = ¢ (x) to 
y' = x - y , y(O) = 1 and an Euler 
approximation to it on [0, l] with step size 
h = 0.2 
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y 

0.9 

0.8 

0.7 

Table 2. 

n 

0 

2 
3 
4 
5 
6 
7 
8 
9 

10 

y = rp(x) = x - I + 2e-x 

0.2 0.4 0.6 

Euler approximation s with h = 0.1 

Xn y,, f( xn, y,,) 

0.0 1.000000 -1.000000 
0.1 0.900000 -0.800000 
0.2 0.820000 -0.620000 
0.3 0.758 000 -0.458000 
0.4 0.712200 -0.312200 
0.5 0.680980 -0.180980 
0.6 0.662 882 -0.062882 
0.7 0.656594 0.043406 
0.8 0.660934 0.139066 
0.9 0.674 841 0.225 159 
1.0 0.697 357 0.302643 

0.8 1.0 

Yn+I en = ¢(x11) - Yn 

0.900000 0.000000 
0.820000 0.009675 
0.758000 0.017 462 
0.712200 0.023 636 
0.680980 0.028 440 
0.662882 0.032081 
0.656594 0.034 741 
0.660934 0.036 577 
0.674841 0.037 724 
0.697 357 0.038 298 

0.038402 

Observe that the error at the end of the first step is about one-quarter of the error at the 
end of the first step in part (a), but the final error at x = 1 is only about half as large as 
in part (a). This behaviour is characteristic of Euler 's method. 

If we decrease the step size h, it takes more steps (n = Ix - xol/ h) to get from 
the starting point xo to a particular value x where we want to know the value of the 
solution. For Euler 's method it can be hown that the error at each step decreases on 
average proportionally to h2, but the errors can accumulate from step to step, so the 
error at x can be expected to decrease proportionally to nh 2 = Ix - xolh. This is 
consistent with the results of Example 1. Decrea sing h and so increasing n is costly 
in terms of computing resource s, so we would like to find ways of reducing the error 
without decreasing the step size. Thi s is similar to developing better techniques than 
the Trapezoid Rule for evaluating definite integral s numerically. 

The improved Euler method is a step in this direction. The accuracy of the Euler 
method is hampered by the fact that the slope of each segment in the approximating 
polygonal line is determined by the value of f (x, y) at one endpoint of the segment. 
Since f varies along the segment, we would expect to do better by using , say, the 
average value of f(x , y ) at the two ends of the segment, that is, by calculating Yn+I 
from the formula 

+h
f (xn , Yn) + f (xn+I, Yn+l) 

Yn+I = Yn 
2 

· 
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Unfortunately, Yn+l appears on both sides of this equation , and we can't usually solve 
the equation for Yn+ 1. We can get around this difficulty by replacing Yn+ 1 on the right 
side by its Euler approximation Yn + hf(x,, , Yn). The resulting formula is the basis for 
the improved Euler method. 

Iteration formulas for the improved Euler method 

Xn+l = Xn + h 

Un+I = Yn +hf (xn, y,,) 

+ h 
f(x11, Yn) + f(xn+l, U11+ 1) 

Yn+I = Yn 
2 

· 

EXAM p LE 2 Use the improved Euler method with h = 0.2 to find approximate 
values for the solution to the initial-value problem of Example l 

on (0, l]. Compare the errors with those obtained by the Euler method . 

Solution Table 3 summarizes the calculation of five steps of the improved Euler 
method for f (x, y) = x - y, xo = 0, and Yo = 1. 

Table 3. Improved Euler approximations with h = 0.2 

n Xn Yn u,,+1 Yn+I e,, = </J(xn) - y,, 

0 0.0 1.000000 0.800000 0.840000 0.000000 
l 0.2 0.840000 0.712000 0.744 800 -0 .002538 
2 0.4 0.744 800 0.675 840 0.702 736 -0.004160 
3 0.6 0.702736 0.682189 0.704244 -0 .005 113 
4 0.8 0.704244 0.723 395 0.741480 -0.005586 
5 1.0 0.741480 0.793 184 -0.005 721 

Observe that the errors are considerably less than one-tenth those obtained in 
Example l(a). Of course, more calculations are necessary at each step, but the number 
of evaluations off (x, y) required is only twice the number required for Example l(a). 
As for numerical integration, if f is complicated, it is these function evaluations that 
constitute most of the computational "cost" of computing numerical solutions. 

Remark It can be shown for well-behaved functions f that the error at each step 
in the improved Euler method is bounded by a multiple of h3 rather than h2 as for 
the (unimproved) Euler method . Thus the cumulative error at x can be bounded by a 
constant times Ix - xo lh2 . If Example 2 is repeated with 10 steps of size h = 0.1, the 
error at n = 10 (i.e ., at x = 1) is - 0.001 323, which is about one-fourth the size of the 
error at x = l with h = 0.2. 

The fourth-order Runge-Kutta method further improves upon the improved 
Euler method, but at the expense of requiring more complicated calculations at each 
step. It requires four evaluations off (x , y) at each step, but the error at each step is 
less than a constant times h5 , so the cumulative error decreases like h4 as h decreases . 
Like the improved Euler method, this method involves calculating a certain kind of 
average slope for each segment in the polygonal approximation to the solution to the 
initial-value problem. We present the appropriate formulas below but cannot derive 
them here. 

www.konkur.in



SECTION 18.3: Existence, Uniqueness, and Numerical Methods 1005 

Iteration formulas for the Runge-Kutta method 

Xn+I = Xn + h 

Pn = f(xn, Yn) 

qn = f ( Xn + i, Yn + i Pn) 

rn = f (xn + i,Yn + iqn ) 

Sn = f (Xn + h, Yn + hrn) 

Pn + 2qn + 2rn + Sn 
Yn+l = Yn + h 

6 

EXAMPLE 3 Use the fourth-order Runge-Kutta method with h = 0.2 to find 
approximate values for the solution to the initial-value problem of 

Example 1 on [0, l] . Compare the errors with those obtained by the Euler and improved 
Euler methods. 

Solution Table 4 summarize s the calculation of five steps of the Runge-Kutta method 
for f(x , y ) = x - y, xo = 0, and YO= 1 according to the formula s above. The table 
does not show the values of the intermediate quantities Pn, qn, r n, and Sn, but columns 
for these quantities were included in the spreadsheet in which the calculation s were 
made. 

Table 4. Fourth-order Runge-Kutta approximations with h = 0.2 

n Xn Yn e,, = </J(xn) - Yn 

0 0.0 1.000000 0.0000000 
1 0.2 0.837 467 -0.0000052 
2 0.4 0.740649 -0 .0000085 
3 0.6 0.697 634 -0 .0000104 
4 0.8 0.698 669 -0.0000113 
5 1.0 0.735 770 -0 .0000116 

The errors here are about 1/500 of the size of the errors obtained with the improved 
Euler method and about 1/7,000 of the size of the errors obtained with the Euler 
method. This great improvement was achieved at the expense of doubling the number 
of function evaluations required in the improved Euler method and quadrupling the 
number required in the Euler method. If we use 10 steps of size h = 0.1 in the 
Runge-Kutta method, the error at x = I is reduced to -6.664 82 x 1 o-7 , which is less 
than 1/16 of its value when h = 0.2. 

Our final example shows what can happen with numerical approximations to a solution 
that is unbounded. 

EXAMPLE 4 

I y ' =y2 
y(O) = 1 

Obtain approximations at x = 0.4, x 
solutions to the initial-value problem 

0.8, and X 1.0 for 

using all three methods described above, and using step sizes h = 0.2, h = 0.1, and 
h = 0.05 for each method . What do the results suggest about the values of the solution 
at these points? Compare the results with the actual solution y = 1/ (1 - x) . 
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Solution The various approximations are calculated using the vario us formulas de
scribed above for f(x , y ) = y2 , xo = 0, and yo = 1. The results are presented in 
Table 5 . 

Table 5. Comparing meth ods and step sizes for y' = y2, y(O) = l 

h = 0.2 h =0 .l h = 0.05 

Euler 

X = 0.4 1.488 000 1.557 797 1.605 224 
X = 0.8 2.676449 3.239 652 3.793197 
X = 1.0 4 . 109124 6.128 898 9.552668 

Improved Euler 

X = 0.4 1.640092 1.658 736 1.664515 
X = 0.8 4.190396 4.677726 4.897 519 
X = J.0 11.878 846 22.290765 43.114668 

Runge-Kutta 
X = 0.4 1.666 473 1.666 653 1.666 666 
X = 0.8 4.965 008 4.996663 4.999 751 

X = 1.0 41.016 258 81.996 399 163.983 395 

Little useful information can be read from the Eu ler results. The improved Euler 
resu lts suggest that the soluti on exists at x = 0.4 and x = 0.8, but likely not at x = 1. 
The Runge-Kutta results confirm this and sugg est that y (0.4) = 5/ 3 and y(0.8) = 5, 
which are the correct values provided by the actual solution y = 1/ (I - x). They also 
suggest very stro ngly that the solution "blows up" at (or near) x = 1. 

EX E R C I S ES 18.3 
A computer is almost essential for doing most of these exercises. 
The calculations are easily done with a spreadsheet program in 
which formulas for calculating the various quantitie s involved 
can be replicated down columns to automate the iteration process. 

i 1. Use the Euler method with step sizes (a) h = 0.2 , (b) 
h = 0.1 , and (c) h = 0.05 to approximate y(2) given that 
y ' = x + y and y(l) = 0. 

i 2. Repeat Exercise 1 using the improved Euler method. 

i 3. Repeat Exercise l using the Runge-Kutta method. 

i 4. Use the Euler method with step sizes (a) h = 0.2 and (b) 
h = 0.1 to approximate y(2) given that y' = xe-Y and 
y (O) = 0. 

i 5. Repeat Exercise 4 using the improved Euler method. 

i 6. Repeat Exercise 4 using the Runge-Kutta method. 

i 7. Use the Euler method with (a) h = 0.2, (b) h = 0.1 , and (c) 
h = 0.05 to approxi mate y (l) given that y' = cos y and 
y (O) = 0. 

i 8. Repeat Exerc ise 7 using the improved Euler method. 

i 9. Repeat Exercise 7 using the Runge-Kutta method . 

i 10. Use the Eu ler method with (a) h = 0.2, (b) h = 0.1 , and (c) 
h = 0.05 to approximate y(l) given that y' = cos(x 2) and 
y (O) = 0. 

i 11. Repeat Exercise 10 using the improved Euler method. 

i 12. Repeat Exercise 10 using the Runge- Kutta method . 

Solve the integral equations in Exercises 13-14 by rephrasing 
them as initial-value problems. 

13. r( )2 dy y (x) = 2 + Ji y (t) dt. Hint: Find dx and y (l). 

14. l
x du 

u(x ) = l + 3 t2i1(t) dt. Hint : Find - and u(2). 
2 dx 

15. The methods of this section can be used to approximate 
definite integra ls numerically . For example, 

I= lb f(x)dx 

is given by I = y(b) , where 

y' = f (x ) , and y (a) = 0. 

Show that one step of the Runge-Kutta method with 
h = b - a gives the same result for / as Simpson's Rule 
(Section 6.7) with two subintervals of length h/ 2. 

16. If ¢ (0) = A c::: 0 and </>'(x) c::: kif>(x) on [0, X] , where k > 0 
and X > 0 are constants , show that if>(x) c::: Aekx on [O, X]. 
Hint: Calculate (d / dx)(</>(x)/ ekx) . 

D 17. Consider the three initial-value problems 

(A) u' =u 2 u(O)=l 

(B) 

(C) 

y' = X + y2 

v' =I + u2 

y (O) = 1 

u(O) = I 

(a) Show that the solution of (B) remains between the 
solutions of (A) and (C) on any interval [O, X] where 
solutions of all three problems exist. Hint: We must 
have u(x) c::: I , y(x) c::: I , and u(x) c::: 1 on [O, X]. 
(Why?) Apply the result of Exercise 16 to if> = y - u 
and to</>= v - y . 
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(b) Find explicit solutions for problems (A) and (C). What 
can you conclude about the solution to problem (B)? 

i (c) Use the Runge-Kutta method with h = 0.05, h = 0.02, 
and h = 0.01 to approximate the solution to (B) on 
[O, I]. What can you conclude now? 

Differential Equations of Second Order 
The general second-order ordinary differential equation is of the form 

(
d

2
y dy ) 

F dx2' dx'y,x =0 

for some function F of four variables . When such an equation can be solved explicitly 
for y as a function of x , the solution typically involves two integrations and therefore 
two arbitrary constants. A unique solution usually results from prescribing the values 
of the so lution y and its first derivative y' = dy / dx at a particular point. Such a 
prescription constitutes an initial-value problem for the second-order equation. 

Equations Reducible to First Order 
A second-order equation of the form 

F (d2;, dy ,x) = 0 
dx dx 

that does not involv e the unknown function y explicitly (except through its derivatives) 
can be reduced to a first-order equation by a change of dependent variable; if v = 
dy / dx, then the equation can be written 

F (~: , v, x) = 0. 

This first-order equation in v may be amenable to the techniques described in earlier 
sections. If an explicit solution v = v(x) can be found and integrated , then the function 

y = f v(x) dx 

is an exp licit solution of the given equation. 

EXAMPLE 1 Solve the initial-value problem 

d2; = X (c[y)2' 
dx dx 

y (O) = l , y' (O) = - 2. 

Solution If we let v = dy / dx , the given differential equation becomes 

dv 2 - =xv 
dx ' 

which is a separable first-order equation. Thus , 

dv 
- =xdx 
v2 

l x 2 Ci 
--=-+-

v 2 2 
2 

v=----
x2 +c,. 
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The initi al condition y'( O) = -2 implies that v(O) = -2 and so C1 = 1. Therefore , 

f dx I 
y = -2 -- = -2 tan - x + C2. 

x 2 + 1 

The initial condition y(O) = 1 implies that C2 
initial-value problem is y = I - 2 tan - 1 x. 

A seco nd-order equation of the form 

(
d

2
y dy ) 

F -2 , - , Y =0 
dx dx 

1, so the solution of the given 

that does not explicitly involve the independent variable x can be reduced to a first
order equation by a change of both dependent and independent variables. Again let 
v = d y / dx, but regard v as a function of y rather than x; v = v (y ) . Then 

d2y dv dv dy dv 
-=-=--=v-
dx2 dx dy dx dy 

by the Chain Rule . Hence , the given differential equation becomes 

which is a first-order equation for v as a function of y. If this equatio n can be 
solved for v = v(y), there still remain s the problem of solvin g the separable equation 
(dy / dx) = v(y) for y as a function of x. 

d2y (d y ) 2 EXAMPLE 2 Solve the equation y -
2 

= -
dx dx 

Solution The change of variable dy / dx = v(y) leads to the equation 

dv 2 
yv dy = V , 

which is separable, dv /v = dy / y, and has solution v = C,y. The equation 

dy 
-=C1y 
dx 

is agai n separable and lead s to 

dy 
- = C,dx 
y 

In JyJ = C,x + C2 

y = ± eC1x+C 2 = c3eCix. 

Second-Order Linear Equations 
The mo st frequently encountered ordinary differential equations arising in applications 
are seco nd-order linear equations. The general second-order linear equation is of the 
form 

d2y dy 
a2(x)- 2 + a1 (x)- + ao(x)y = f(x). 

dx dx 
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As remarked in Section 18.1 , if f(x) = 0 identically , then we say that the equation is 
homogeneous . If the coefficient a2 (x ), a, (x ), and ao(x) are continuous on an interval 
and a2 (x) -:f=. 0 there , then the homogeneou s equation 

d 2 y dy 
a2(x)- 2 + a1 (x)- + ao(x)y = 0 

dx dx 

has a general solution of the form 

where y1 (x) and Y2 (x) are two independent solutions , that is, two solutions with the 
property that C1y1 (x) + C2y2(x) = 0 for all x in the interval only if C1 = C2 = 0. 
(We will not prove this here.) 

Whenever one solution, y 1 (x), of a homogeneous linear second-order equation is 
known, another independent solution (and therefore the general solution) can be found 
by substituting y = v(x)y1 (x) into the differential equation. This leads to a first-order , 
linear , separable equation for v'. 

EXAMPLE 3 Show that YI = e- 2x is a solution of y" + 4y ' + 4y = 0, and find 
the general solution of this equation. 

Solution Since y; = -2e -2x and y;' = 4e -2x, we have 

so YI is indeed a solution of the given differential equation. To find the general solution , 
try y = y1v = e- 2xv(x). We have 

y' = -2e - 2xv + e-2xv' 

y" = 4e - 2xv - 4e - 2xv' + e- 2xv 11
• 

Substituting these expressions into the given DE , we obtain 

0 = y" + 4 y ' + 4 y 

= e- 2x(4v - 4v ' + v" - 8v + 4v ' + 4v) = e-2xv". 

Thus, y = YI v is a solution provided v" (x) = 0. This equation for v has the general 
solution v = C1 + C2x, so the given equation has the general solution 

where Y2 = xe - 2x is a seco nd so lution of the DE, independent of y1. 

By Theorem 2 of Section 18.1, the general solution of the seco nd-order , linear , 
nonhomogeneou s equation (wit h f(x) -:f=. 0) is of the form 

Y = Yp(x) + y1i(x), 

where Yp (x) is any particular solution of the nonhomogeneous equation, and Yh (x) is the 
general solution (as described above) of the corresponding homogeneous equation. In 
Section 18.6 we will discuss the solution of nonhomogeneous linear equations. First , 
however, in Section 18.5 we concentrate on some special classes of homogeneous, 
linear equations. 
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EX E R C I S ES 18.4 
1. Show that y = ex is a solution of y" - 3y' + 2y = 0, and 

find the general solution of this DE. 

2. Show that y = e-2x is a solution of y" - y' - 6y = 0, and 
find the general solution of this DE. 

3. Show that y = x is a solution of x 2y" + 2xy ' - 2y = 0 on 
the interval (0, oo), and find the general solution on this 
interval. 

4. Show that y = x2 is a solution of x 2y11 
- 3xy' + 4y = 0 on 

the interval (0, oo) , and find the general solution on this 
interval. 

5. Show that y = x is a solution of the differential equation 
x 2y 11 

- (2x + x2)y' + (2 + x)y = 0, and find the general 
solution of this equati on. 

6. Show that y = x - 112 cos x is a solution of the Bessel 
equation with v = 1/ 2: 

x2y" +x y' + ( xz -i) y = 0. 

Find the general solution of this equation. 

First-order systems 
7. A system of n first-order, linear, differential equations inn 

unknown functions YI, Y2, · · · , Yn is written 

y\ = a 11 (x) y , + a12(x)y 2 + · · · + a1,,(x)yn + ! 1 (x) 

y; = a21 (x) y 1 + a22(x) y2 + · · · + a2n(x)yn + !z(x) 

y~ = an1 (x)y1 + an2(x)y 2 + · · · + a1111(X)Y11 + J,,(x) . 

Such a system is called an n x n first-order linear system 
and can be rewritten in vector-matrix form as 
y' = .A(x) y + f (x) , where 

(

y 1(x) ) 
y (x) = : , 

y,,(x ) 
( 

!1 (x)) 
f (x) = : , 

fn(x) 

·. :: a 1,h) ) . 

a1111 (x) 

Show that the second-order, linear equation 
y" + a, (x )y ' + ao(x) y = J(x) can be transfo rmed into a 
2 x 2 first-order system with YI = y and yz = y' having 

.A(x) = ( -a~(x) -a ~ (x))' f (x) = (Ax))· 
8. Generalize Exercise 7 to transform an n th-order linear 

equation 

y<nl+a11_ 1 (x)/ 11
-

1l +a11-2 (x) y(n-Z)+ · +ao(x)y = J(x) 

into an n x n first-order system. 

9. If .A is an n x n constant matrix, and if there exists a scalar A. 
and a nonzero constant vector v for which .Av = A. v, show 
that y = C 1 eh v is a solution of the homogeneous system 
y' = .Ay. 

lo S . 12 - A. 1 1 · f • how that the deterrrunant 
2 3 

_ A. 1s zero or two 

distinct values of k For each of these values find a nonzero 
. fi . . (2 l) 1 vector v that sat1s es the cond1t1on 

2 3 
v = 11.v. Hence, 

solve the system 

y\ = 2y1 + Y2, y~ = 2y1 + 3yz. 

Linear Differential Equations with Constant Coefficients 
A differential equation of the form 

ay" + b y' + cy =O , (*) 

where a, b, and c are constants and a -I 0, is said to be a linear, homogeneous, 
second-o rder equation with constant coefficients . 

A thorough discussion of technique s for solving such equations, together 
with examples , exercises, and applications to the study of simple and 
damped harmonic motion, can be found in Section 3.7; we will not repeat 
that discussion here. If you have not studied it, please do so now. 
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We will, however , extend the treatment to cover linear , constant coefficient differ
ential equations of higher order . 

Constant-Coefficient Equations of Higher Order 
Because in most applications of equation ( *) the dependent variable represents time , 
we will, as we did in Section 3.7, regard y as a function oft rather than x, so that 
the prime symbol(') denotes the derivative d / dt. The basic result of Section 3.7 was 
that the function y = err was a solution of ( *) provided that r satisfies the auxiliary 
equation 

ar 2 +br+c=0. (**) 

The auxiliary equation is quadratic and can have either 

(a) two distinct real root s, r1 and r2 (if b2 > 4ac) , in which case ( *) has general 
solution y = C I eri 1 + C2er2 1 , 

(b) a single repeated real root r (if b2 = 4ac ), in which case ( *) has general solution 
y = (C1 + C2t)ert , or 

(c) a pair of complex conjugate roots, r = k ± iw with k and w real (if b2 < 4ac), in 
which case ( *) has general solution y = ekt ( C 1 cos(wt) + C2 sin (wt)) . 

The situation is analogous for higher-order linear , homogeneous DEs with constant 
coefficients. We describe the procedure without offering any proofs. If 

is a polynomial of degree n with constant coefficients a1, (0 S j S n) , and an =I= 0, 
then the DE 

Pn(D) y = 0, (t ) 

where D = d / dt can be solved by substituting y = ere and obtaining the auxiliary 
equation Pn (r) = 0. This polynomial equation has n roots (see Appendix. II) some of 
which may be equal and some or all of which can be complex. If the coefficients of the 
polynomial Pn (r) are all real then any complex roots must occur in complex conjugate 
pairs k ± iw (with the same multiplicity) , where k and ware real. 

The general solution of (t ) can be expressed as a Linear combination of n inde
pendent particular solutions 

y = C1y1 (t) + C2y2(t) + · · · + CnY11(t), 

where the CJ are arbitrary constants . The independent solutions YI, Y2, . .. , y11 are 
constructed as follows : 

I . If r1 is a k-fold real root of the auxiliary equation (i.e. , if (r - r1 l is a factor of 
P,,(r)), then 

are k independent solutions of (t). 

2. If r = a + ib and r = a - ib (where a and b are real) constitute a k-fold pair 
of complex conjugate roots of the auxiliary equation (i.e., if [(r - a)2 + b2i is a 
factor of Pn (r) ), then 

eat cos bt , 

eat sin bt, 

tear cosbt , 

teat sin bt, 

are 2k independent solutions of (t ). 

tk- 1 ear cos bt , 

l- 1 eat sin bt 
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EXAMPLE 1 Solve (a) yC4l - 16y = 0 and (b) yC5l - 2yC4l + yC3l 0. 

Solution The auxil iary equation for (a) is r4 - 16 = 0, which factors down to 
(r - 2)(r + 2)(r 2 + 4) = 0 and, hence, has roots r = 2, -2, 2i, and -2i. Thus, the 
DE (a) has general solution 

y = C 1e
21 + C2e - 21 + C3 cos(2t) + C4 sin(2t) 

for arbitrary constants C1, C2, C3, and C4. 

The auxiliary equation for (b) is r5 - 2r 4 + r3, which factors to r3(r - 1)2 = 0, 
and so has roots r = 0, 0, 0, 1, 1. The general solution of the DE (b) is 

y = C1 + C2t + C3t 2 + C4e1 + Cste1 , 

where C 1, ... , Cs are arbitrary constants. 

EXAMPLE 2 What are the order and the general solution of the constant-coefficient, 
linear, homogeneous DE whose auxiliary equation is 

(r + 4)3(r 2 + 4r + 13)2 = 0? 

Solution The auxiliary equation has degree 7 so the DE is of seventh order. Since 
r 2 + 4r + 13 = (r + 2) 2 + 9, which has roots -2 ± 3i, the DE must have the general 
solution 

y =C1e - 41 + C2te -41 + C3t2e-4t 

+ C4e- 21 cos(3t) + Cse- 21 sin(3t) + C6fe- 21 cos(3t) + C7te - 21 sin(3t). 

Euler (Equidimensional) Equations 
A homogeneous, linear equation of the form 

2 d2y dy 
ax - 2 + bx - + cy = 0 

dx dx 

is called an Euler equation or an equidimensional equation, the latter term being 
appropriate since all the terms in the equation have the same dimension (i.e., they 
are measured in the same unit s), provided that the constants a, b, and c all have the 
same dimension . The coefficients of an Euler equation are not constant, but there is a 
technique for solving the se equations that is similar to that for solving equations with 
constant coefficients, so we include a brief discussion of these equations in this section. 
As in the case of constant coefficient equations, we assume that the constants a, b, and 
c are real numbers and that a f. 0. Even so, the leading coefficient , ax 2 , does vanish at 
x = 0 ( which is ca lled a singular point of the equation), and this can cause solutions 
to fail to be defined at x = 0. We will solve the equation in the interval x > 0; the 
same solution will also hold for x < 0 provided we replace x by lxl in the solution. 

Let us search for sol ution s in x > 0 given by powers of x; if 

y = x r, dy r- 1 
- =rx 
dx 

then the Euler equation becomes 

(ar(r - 1) + br + c)x' = 0 . 

d2y 
- = r(r - l)x '- 2 

dx 2 ' 

This will be satisfied for all x > 0, provided that r satisfies the auxiliary equation 
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ar(r - 1) + br + c = 0 or, equivalently, ar 2 + (b - a)r + c = 0. 

As for constant coefficient equations , there are three possibilities. 

CASE I. If (b - a)2 ::=:: 4ac, then the auxiliary equation has two real roots: 

a-b+.j(b-a) 2 -4ac 
r1 = 

2a 

a-b-.j(b-a) 2 -4a c 
r2 = 

2a 

In this case, the Euler equation has the general solution 

(x > 0). 

The general solution is usually quoted in the form 

which is valid in any interval not containjng x = 0 and may even be valid on intervals 
containing the origin if, for example , r, and r2 are nonnegative integers. 

EXAM p LE 3 Solve the initial-value problem 

2x 2 y 11 
- xy ' - 2y = 0, y (l) = 5, y' (l) = 0. 

Solution The auxiliary equation is 2r(r - 1) -r - 2 = 0 , that is, 2r 2 - 3r - 2 = 0, or 
(r - 2)(2r + 1) = 0, and has roots r = 2 and r = -(1 / 2). Thus, the general solution 
of the differential equation (valid for x > 0) is 

The initial conditions imply that 

5 = y(l) = C1 + C2 and 
I . 1 

0 = y (1) = 2C1 - 2 C2. 

Therefore, Ci = 1 and C2 = 4, and the initial-value problem has solution 

(x > 0) . 

CASE II. If (b - a) 2 = 4ac, then the auxiliary equation has one double root , 
namely, the root r = (a - b) / 2a. It is left to the reader to verify that in this ca e the 
transformation y = x,. v (x) leads to the ge neral solution 

(x > 0) , 

or, more generally, 

Y = Cilxlr + C2lxlr ln lxl, (x ¥ 0). 

CASE ID. If (b - a)2 < 4ac, then the auxiliary equation has complex conjugate 
roots : 

r =a± if], where 
a-b 

a=--
2a ' 

fJ = .j4ac - (b - a) 2 

2a 
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EXE R C I SES 18.5 

The correspo nding powers x,. can be expresse d in real form in a manner similar to that 
used for co nstant coefficien t equation s; we have 

xa± i/J = e( a± i/J) ln x = ea lnx [co s(,Bln x) ± i sin(,Bln x) ] 

= xa cos(,B In x) ± ixa sin(,B In x ). 

Accordingly, the Euler equatio n has the ge neral so lution 

EXAMPLE 4 Solve the DE x 2 y" - 3xy' + 13y = 0. 

Solution The DE has the auxmar y equation r(r - 1) - 3r + 13 = 0, that is , r2 -

4r + 13 = 0, which has roots r = 2 ± 3i. The DE , therefore , has the general solution 

y = C1x 2 cos(3 ln lxl) + C2x 2 sin(3ln lxl). 

Remark Euler equations can be transformed into constant coefficient equations by 
using a simp le change of variable. See Exercise 14 for the details. 

Exercises involving the solution of second-order, linear, 
homogeneous equations with constant coefficients can be found 
at the end of Section 3.7. 

11. x 2y" +xy' = 0 12. x 2y" +xy' + y = 0 

D 13. Solve the DE x3 y'" + xy' - y = 0 in the interval x > 0. 

14. Show that the change of variables x = e1
, z (t) = y(e 1

), 

transforms the Euler equation Find general solutions of the DEs in Exercises 1-4. 

1. y 111 
- 4y " + 3/ = 0 

2. y<4) - 2y" + y = 0 3. y<4l + 2y " + y = 0 

4. y<4
) + 4y<3l + 6y" + 4/ + y = 0 

5. Show that y = e21 is a solution of 

y"'-2y'-4y =0 

(where' denotes d / dt), and find the general solution of this 
DE. 

d 2y dy 
ax2 - 2 + bx - + cy = 0 

dx dx 

into the constant coefficient equation 

d2z dz 
a - + (b - a)-+ cz = 0. 

dt 2 dt 

6. Write the general solution of the linear, constant-coefficient 
DE having auxiliary equation (r2 - r - 2)2(r 2 - 4)2 = 0. 

15. Use the transformation x = e1 of the previous exercise to 
solve the Euler equation 

Find general solutions to the Euler equations in Exercises 7- 12. 
2 d2y dy 

7. x 2y"-xy'+y=0 

9. x 2y" + xy' - y = 0 

8. x 2y" - xy' - 3y = 0 

10. x 2y"-xy'+5y =0 

X - - X - + 2y = 0, 
dx 2 dx 

(x > 0) . 

. _ N_o_n_ho_m_o_ge_n_e_ou_s_L_in_ea_r_E_q_ua_t_io_ns __________ _ 
We now consider the problem of solving the nonhomogeneous second -order differential 
equatio n 

d 2 y dy 
a2(x) - 2 + a1 (x)- + ao(x)y = f(x). 

dx dx 
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We assume that two independent solutions, YL (x) and Y2 (x ), of the corresponding 
homogeneous equation 

d 2y dy 
a2(x) dx 2 + ai (x ) dx + ao(x)y = 0 

are known . The function Yh(x) = C1y1(x) + C2Y2(x), which is the general solu
tion of the homogeneous equation , is called the complementary function for the 
nonhomogeneous equation. Theorem 2 of Section 18.1 suggests that the general solu
tion of the nonhomogeneous equation is of the form 

y = Yp(x) + Yh(x ) = Yp(x) + C, y , (x) + C2y2(x ) , 

where Yp(x) is any particular solution of the nonhomogeneous equation. All we 
need to do is find one solution of the nonhomogeneous equation, and we can write the 
general solution. 

There are two common methods for finding a particular solution Yp of the 
nonhomogeneous equation ( *): 

1. the method of undetermined coefficients, and 

2. the method of variation of parameters . 

The first of these hardly warrants being called a method; it just involves making 
an educated guess about the form of the solution as a sum of terms with unknown 
coefficients and substituting this guess into the equation to determine the coefficients. 
This method works well for simple DEs, especially ones with constant coefficients . 
The nature of the guess depends on the nonhomogeneous term f(x), but can also be 
affected by the solution of the corresponding homogeneous equation . A few examples 
will illustrate the ideas involved. 

EXAMPLE 1 Find the general solution of y " + y 1 
- 2y = 4x. 

Solution Because the nonhomogeneous term f (x) = 4x is a first-degree polynomial, 
we "guess" that a particular solution can be found that is also such a polynomial. Thus, 
we try 

y =Ax+ B, y' = A , y" =0 . 

Substituting these expressions into the given DE, we obtain 

0 + A - 2(Ax + B) = 4x or 

-(2A + 4)x + (A - 2B) = 0. 

This latter equation will be satisfied for all x provided 2A + 4 = 0 and A - 2B = 0. 
Thus , we require A = -2 and B = -1 ; a particular solution of the given DE is 

Yµ(x) = -2x - 1. 

Since the corresponding homogeneous equation y " + y' - 2 y = 0 has auxiliary equation 
r 2 + r - 2 = 0 with roots r = 1 and r = -2, the given DE has the general solution 

y = Yµ(x) + C, ex + C2e- 2
x = -2x - 1 + C1ex + C2e- 2x . 

EXAM p L E 2 Find general solutions of the equations ( where I denotes d / d t) 

(a) y"+4y=sint, 

(b) y" + 4y = sin(2t) , 

(c) y" + 4y = sin t + sin(2t). 
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Solution 
(a) Let us look for a particular solution of the form 

y = A sin t + B cost 

y' = A cos t - B sin t 

y" = -A sint- Bcost . 

so that 

Substit uting these expressio ns into the DE y" + 4y = sin t , we get 

-A sint - Bcost +4A sint +4Bcost = sint , 

which is satisfied for all x if3A = I and 3 B = 0. Thu s A = 1/ 3 and B = 0. Since 
the homogeneous equation y" + 4y = 0 has general solution y = C 1 cos(2t) + 
C2 sin(2t), the given nonhomogeneous equation has the general solution 

1 
y = - sin t + Ci cos(2t) + C2 sin(2t). 

3 

(b) Motivated by our success in part (a), we might be tempted to try for a particular 
solution of the form y = A sin(2t) + B cos(2t), but that won' t work, because this 
function is a solut ion of the homogeneous equation, so we would get y" + 4y = 0 
for any choice of A and B. In this case it is useful to try 

y = At sin(2t) + Bt cos(2t). 

We have 

y' = A sin(2t) + 2At cos(2t) + B cos(2t) - 2Bt sin(2t) 

= (A - 2Bt) sin(2t) + (B + 2At) cos(2t) 

y" = -2 B sin(2t) + 2(A - 2Bt) cos(2 t) + 2A cos(2t) 

- 2(B + 2At) sin(2t) 

= - 4(B + At) sin(2t) + 4(A - Bt) cos(2t). 

Substitut ing into y" + 4 y = sin(2t) leads to 

-4(B + At) sin(2t) + 4(A - Bt) cos(2t) + 4At sin(2t) + 4Bt cos(2t) 

= sin(2t) . 

Observe that the terms involving t sin(2t) and t cos(2t) cancel out, and we are left 
with 

-4B sin(2t) + 4A cos(2t) = sin(2t), 

which is satisfied for all x if A = 0 and B = - l / 4. Hence, the general solution 
for part (b) is 

1 . 
y = - 4t cos(2t) + C1 cos(2t) + C2 sm(2t). 

(c) Since the homogeneous equatio n is the same for (a), (b), and (c), and the non
homogeneous term in equation (c) is the sum of the nonhomogeneous terms in 
equations (a) and (b), the sum of particular solutions of (a) and (b) is a particular 
solution of (c). (This is because the equation is lin ear.) Thus , the general solution 
of equation (c) is 

1 . 1 . 
y = - sm t - -t cos(2t) + C1 cos(2t) + C2 sm(2t). 

3 4 
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We summarize the appropriate forms to try for particular solutions of constant
coefficient equations as follows: 

Trial solutions for constant-coefficient equations 

Let An(x), B11(x) , and P,,(x) denote the nth-degree polynomials 

A,,(x) = ao + a1x + a2x2 + · · · + a,,x" 

B11(x) = bo + b1x + b2x2 + · · · + b,,x" 

P11(x) =PO+ pix+ p2x 2 + · · · + PnX". 

To find a particular solution Yp (x) of the second-order linear, constant
coefficient, nonhomogeneous DE 

d 2y dy 
a2- 2 + a1 - + aoy = f(x), 

dx dx 

use the following forms: 

lf f(x) = P11(x) , try Yp = X
111 A 11(x). 

Iff(x) = P11(x)erx, try Yp =x 111A11(x)erx . 

lf f(x) = P,,(x)er x cos(kx),try Yp = x 111erx[An(x) cos(kx)+B 11(x) sin(kx)]. 

If f(x) = P11(x)er x sin(kx), try Yp = x 111erx[A 11(x) cos(kx)+B 11(x) sin(kx)], 

where m is the smallest of the integers 0, I, and 2, that ensures that no term 
of Yp is a solution of the corresponding homogeneous equation 

d 2y dy 
a2- 2 + a, - + aoy = 0. 

dx dx 

Resonance 
For A > 0, A i- 1, the solution y;. (t) of the initial-value problem 

I 
y" + y = sin(Jt) 

y (O) = 0 

y'( O) = 1 

can be determined by first looking for a particular solution of the DE having the form 
y = A sin(Jt), and then adding the complem entary function y = B cost + C sin t . 
The calculations give A= l / (1 - J 2) , B = 0, C = (1 - A - J 2)/ (l - J 2), so 

( 
sin(Jt) + (I - A - J..2) sin t 

y;. t)= 1-J..2 

For Jc = 1 the nonhomo geneous term in the DE is a solution of the 
homogeneous equation y" + y = 0, so we must try for a particular solution of the form 
y = At cost + B t sin t. In this case, the solution of the initial-value problem is 

( 
3 sin t - t cost 

YI t) = 
2 

. 

(This solution can also be found by calculating lim;.-* 1 y;, (t) using l'H6pital's Rule.) 
Observe that this solution is unbounded ; the amplitude of the oscillations becomes 
larger and larger as t increases. In contrast , the solutions y;, (t) for J.. i- 1 are bounded 
for all t, although they can become quite large for some values oft if Jc is close to 1. 
The graphs of the solutions yo_9(t), Y0.95 (t), and y , (t) on the interval - IO :S t :S 100 
are shown in Figure 18.4. 
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Figure 18.4 Resonance 

The phenomenon illustrated here is called resonance . Vibrating mechanical sys
tems have natural frequencies at which they will vibrate. If you try to force them to 
vibrate at a different frequency , the amplitude of the vibrations will themselves vary 
sinuso idally over time , producing an effect known as beats . The amplitudes of the 
beats can grow quite large, and the period of the beats lengthens as the forcing fre
quency approaches the natural frequency of the system . If the system has no resistive 
damping (the one illustrated here has no damping) , then forcing vibrations at the natural 
frequency will cause the system to vibrate at ever increasing amplitudes. 

As a concrete example , if you push a child on a swing , the swing will rise highest 
if your pushes are timed to have the same frequency as the natural frequency of the 
swing. Resonance is used in the design of tuning circuits of radios; the circuit is tuned 
(ususally by a variable capacitor) so that its natural frequency of oscillation is the 
frequency of the station being tuned in. The circuit then responds much more strongly 
to the signal received from that station than to others on different frequencies. 

y 
Yl (t) 

40 
Y0.95 (t) 

30 I 20 

10 

- 20 

- 30 

-40 

Variation of Parameters 
A more formal method for finding a particular solution Yp (x) of the nonhomogeneous 
equation 

d2y dy 
a2(x) dx 2 + a, (x) dx + ao(x)y = f(x) , 

when we know two independent solutions, YJ (x) and y2(x) , of the corresponding 
homogeneous equation is to replace the constant s in the complementary function by 
functions , that is, search for Yp in the form 

Requiring Yp to satisfy the given nonhomogeneous DE (*) provides one equation that 
must be satisfied by the two unknown functions u1 and u2. We are free to require them 
to satisfy a second equation also . To simplify the calculations below, we choose this 
second equation to be 

u'1 (x)Yl (x) + u; (x) y2(x ) = 0. 

Now we have 

y; = U
1
tYl + UlY~ + u;y 2 + U2Y; = ui y~ + U2Y; 

II I I II I I II 
Yp = u,y, + u1Y1 + U2Y2 + u2Y2· 
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Substituting these expressions into the given DE, we obtain 

a2(u'1yi + u;y2) + u 1 (a2y;
1 + a1yi + aoy1) + u2(a2yI + a 1 Y2 + aoy2) 

= a2(u 'tY; + u;y 2) = f(x), 

because Yt and Y2 satisfy the homo geneous equation. Therefore , u'1 and u; satisfy the 
pair of equations 

u'1 (x)yi (x) + u;(x)y2(x) = 0, 

u~ (x)y; (x) + u;(x)y 2(x) = f((x). 
a2 x) 

We can solve these two equations for the unknown functions u'1 and u; by Cramer' s 
Rule (Theorem 6 of Section 10.7), or otherwise , and obtain 

, Y2(x) f(x) 
UI -- ----

- W(x) a2(x)' 
, YI (x) f(x) 

u -----
2 - W(x) a2(x) ' 

where W(x), called the Wronskian of YI and Y2, is the determinant 

W(x) = I YI (x) y; (x) 
Y2(x) I 
Y2(x) . 

Then u I and u2 can be found by integration. 

EXAM p LE 3 Find the general solution of y" + y = tan x. 

Solution The homogeneous equation y" + y = 0 has general solution 

y1, = C1 cosx + C2 sin x. 

A particular solution Yp (x) of the nonhomogeneou s equation can be found in the form 

Yp = u1 (x) cosx + u2(x) sin x, 

where u I and u2 satisfy 

u~ (x) cos x + u; (x) sin x = 0 

- u'1 (x) sinx + u; (x) cosx = tan x. 

Solving these equations for u'1 (x) and u;(x), we obtain 

, sin2 x 
u 1(x) = ---, 

cosx 

Therefore , 

u; (x) = sin x . 

u 1 (x) = -! sin
2 

x dx = f (cosx - secx)dx = sin x - ln( secx + tanx) 
cosx 

u2(x) = -co sx. 

Hence, Yp = sin x cos x - cos x ln(sec x + tan x) - cos x sin x = - cos x ln(sec x + 
tan x) is a particular solution of the nonhomogeneou s equation , and the genera l solution 
is 

y = C1 cosx + C2 sin x - cosx ln( secx + tan x). 

Note that no arbitrary constants were included when we integrat ed u~ and u; to produc e 
u I and u2 as they would have produced terms in the general solution that are already 
included in y1,. 
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EXERCISES 18.6 

Remark This method for so lving the nonhomogen eous eq uation is called the method 
of variation of parameters . It is complete ly general and ex tends to higher-order 
equatio ns in a reasonable way, but it can be computationally somewhat difficult. We 
wou ld not likely have been ab le to "guess" the form of the parti cular solution in the 
above examp le, so we could not have used the method discussed earlier in this section 
to so lve this equat ion . 

Maple Calculations 
Maple has a dsol ve routine for so lving (some) differentia l equation s and initial-valu e 
problems. This routine takes as input a DE and, if desired , initi al conditions for it. We 
illustrate for the equation y" + 2y' + Sy = 25t + 20 (ass umin g that the independent 
variab le is t): 

> DE : = (D@@2) (y) (t)+2*D(y ) ( t ) +5*y(t)=25*t+20 ; 

DE := DC2){y)(t) + 2D (y)(t) + 5y(t) = 25t + 20 

> dsolve (DE, y ( t )); 

y(t) = eC- t) sin(2t) _C2 + eC- t) cos (2t) _CI + 2 + St 

Note Maple's use of _C I and _C2 for arb itrary constants. For an initial-value problem 
we supply the DE and its initial conditi ons to dsol ve as a single list or set argument 
enclosed in square brackets or braces: 

> dsolve( [DE , y(0)=3 , D(y) (0) = -2) , y(t )); 

y(t) = -3e( - t) sin(2t) + eC-r) cos(2t) + 2 + St 

You might think that this out put indi cates that y has been defined as a function oft and 
you can find a decimal value for , say, y(l) by giving the input evalf ( y ( 1) ) . But 
this won't work. In fact , the output of the dsol ve is just an equ atio n with left side the 
symbol y( t). We can, however, use this output to define y as a function oft as follows: 

> y : = unapply(op(2 , %) , t) ; 

y := t---+ -3e(-t) sin(2t) + e(-r) cos(2t) + 2 + St 

The op ( 2 , % ) in the unapply co mmand refers to the seco nd operand of the prev ious 
result (i.e., the right side of equation output from the dsol ve) . unapply ( f , t) 
converts an expressio n f to a function oft. To confirm: 

> evalf(y ( l ) ) ; 

5.843372646 

Find genera l solutions for the nonhomogeneou s equations in 
Exerc ises 1- 12 by the method of undetermined coefficie nts. 

14. Repeat Exerc ise 4 using the method of variation of 
parameter s. 

1. y" + y' - 2y = 1 2. y 11 + y' -2y = X 

3. y" + y' - 2y = e-x 4. y" + y' - 2y = ex 

5. y" +2y' +Sy =x 2 6. y" +4y = x 2 

7. y" - y' - 6y = e-2x 8. y" +4y' +4y = e- 2x 

9. y" + 2y ' + 2y = ex sin x 10. y 11 + 2y' + 2y = e-x sin x 

11. y" + y I = 4 + 2x + e-x 12. y" + 2y' + y = xe-x 

13. Repeat Exe rcise 3 usLng the method of variation of 
parameters . 

15. Find a particular solution of the form y = Ax 2 for the Euler 
equation x2 y'' + xy' - y = x 2, and hence obtain the genera l 
solution of this equation on the interval (0, oo). 

16. For what values of r can the Euler equation 
x 2 y" + x y' - y = x,. be solved by the method of Exercise 
15? Find a particular solution fo r each such r . 

17. Try to guess the form of a particular solution for 
x 2 y" + xy ' - y = x, and hence obta in the general solution 
fo r this equation on the interval (0, oo). 
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In Exercises 18-20 find the general solution on the interval 
(0, oo) of the given DE using variation of parameters. 

Exercise 5 of Section 18.4) to find the general solution of this 
nonhomogeneous equation. 

18. x 2y" +xy' - y = x 
II I ex 

19. y - 2y + y = -
X 

22. Consider the nonhomogeneous, Bessel equation 

20. 

21. 

e- 2x 
y" +4y' +4y = - 2-

x 
x2y " + xy ' + (x2 _ ~) y = x3f2_ 

Consider the nonhomogeneous, linear equation 

x 2y" - (2x + x 2)y' + (2 +x)y = x 3. 

Use the fact that YI (x) = x and y2(x) = xex are independent 
solutions of the corresponding homogeneous equation (see 

Use the fact that y 1 (x) = x - 112 cosx and 
Y2(x) = x - 112 sinx are independent solutions of the 
corre ponding homogeneous equation (see Exercise 6 of 
Section 18.4) to find the general solution of this 
nonhomogeneous equation. 

Series Solutions of Differential Equations 
In Section 18.5 we developed a recipe for solving second-order, linear, homogeneou s 
differential equations with constant coefficients: 

ay" + by' + cy = 0 

and Euler equations of the form 

ax 2y" + bxy' + cy = 0. 

Many of the second-order, linear , homogeneous differential equations that arise in 
applications do not have constant coefficients and are not of Euler type. If the coefficient 
functions of such an equation are sufficiently well-behaved, we can often find solutions 
in the form of power series (Taylor serie ) . Such series solutions are frequently used 
to define new functions, whose propertie s are deduced partly from the fact that they 
solve particular differential equations. For example, Be sse l functions of order v (Greek 
"nu") are defined to be certain series solutions of Bessel 's differential equation 

x 2y" + xy' + (x2 
- v2)y = 0. 

Series solutions for seco nd-order homogeneous linear differential equations are most 
easily found near an ordinary point of the equation. This is a point x = a such that 
the equation can be expressed in the form 

y" + p(x)y ' + q(x)y = 0, 

where the functions p(x) and q (x) are analytic at x = a. (Recall that a function f is 
analytic at x = a if f (x) can be expressed as the sum of its Taylor series in powers of 
x - a in an interval of positive radius centred at x = a.) Thus, we assume 

00 

p(x) = L Pn(x - at, 
n=O 

00 

q(x) = Lqn( X - a)\ 
n=O 

with both series converging in some interval of the form a - R < x < a + R. 
Frequently p(x) and q(x) are polynomials , so they are ana lytic everywhere. A change 
of independent variable i; = x - a will put the point x = a at the origin i; = 0, so we 
can assume that a = 0. 

The following example illustrates the technique of series solution around an 
ordinary point. 
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EXAMPLE 1 Find two independent series solutions in powers of x fo r the Her
mite equation 

y" -2x y' +vy =0. 

For what values of v does the equation have a polynomial solution? 

Solution We try for a power series solution of the form 

00 

Y = L anx" = ao + a Ix + a2x2 + a3x 3 + ... , 
n=O 

00 

y' = L na,,xn - 1 
n=l 

00 00 

so that 

y " = L n(n - l)anx" - 2 = I:cn + 2)(n + l)a11+2x11. 
n=2 n=O 

(We have replaced n by n + 2 in order to get x" in the sum for y " .) We substitute these 
expressions into the differential equation to ge t 

00 00 00 

L(n + 2)(n + l)an +2X11 
- 2 I:na 11X

11 + V L GnX11 = 0 
n=O n=I n=O 

00 

or 2a2 + vao + L[ (n + 2)(n + I)an+2 - (2n - v)a 11 Jxn = 0. 
n=I 

This identity holds for all x provided that the coefficient of every powe r of x vanishes; 
that is, 

vao 
a2 = - 2 , 

(2n - v)a,, 
a,,+z = (n + 2)(n + l)' (n = 1, 2, · .. ) . 

The latter of these formu las is called a recurrence relation. 

We can choose ao and a 1 to have any values ; then the above co nditions dete rmin e 
all the remaining coefficients a,,, (n ?'.". 2). We can get one so lutio n by choo sing, for 
instance , a0 = l and a 1 = 0. Then , by the recurrence relat ion, 

a3 = 0, as = 0, a7 = 0, and 

V 
a2 = - -

2 
(4 - v)a2 v(4 - v) v(4 - v) 

a4 = 
4 X 3 2 x 3 x 4 4! 

(8 - v)a4 v(4 - v)(8 - v) 
G6 = 

6 X 5 6! 

The pattern is obvious here: 

v(4 - v)(8 - v) · · · (4n -4 - v) 
a211 = -

(2n)! 
(n = l , 2, · · ·). 

One solution to the Hermite equation is 

_ ~ _ v(4 - v)(8 - v) · · · (4n - 4 - v) 211 
YI - l + ~ (2 ) I X . 

n=I n · 
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We observe that if v = 4n for some non-negative integer n, then YI is an even 
polynomial of degree 2n , because a211+2 = 0 and all subsequent even coefficients 
therefore also vanish. 

The second solution , Y2, can be found in the same way, by choo sing ao = 0 and 
a1 = I. It is 

Loo (2 - v)(6 - v) · · · (4n - 2 - v) 2 1 
Y - X + ------------ X n+ 2

- (2n+l)! ' 
n= l 

and it is an odd polynomial of degree 2n + 1 if v = 4n + 2. 

Both of the se series solutions converge for all x . The ratio test can be applied 
directly to the recurrence relation. Since consecutive nonzero terms of each series are 
of the form a11x

11 and a11+2x 11+2, we calculate 

I. n+2 I I? 1· 11+2 I 12 1· ----- o 
I 
a x

11

+2 l I a I I 2n - v I p = 1m ---- = x - 1m - - = x ,m = 
11--+oo a11x 11 11--+oo a11 11--+oo (n + 2)(n + I) 

for every x , so the serie s converges by the ratio test. 

If x = a is not an ordinary point of the equation 

y " + p(x) y' + q(x) y = 0, 

then it is called a singular point of that equation. This means that at least one of 
the functions p( x ) and q(x) is not analytic at x = a. If , however , (x - a)p(x) and 
(x - a)2q(x) are analytic at x = a , then the singular point is said to be a regular 
singular point. For example , the origin x = 0 is a regular singular point of Bessel's 
equation, 

x 2y " + x y' + (x 2 - v2)y = 0, 

since p( x ) = I / x and q(x) = (x 2 - v2) / x 2 satisfy xp( x ) = 1 and x 2q(x) = x 2 - v2, 
which are both polynomials and therefore analytic. 

The solutions of differential equations are usually not analytic at singular points. 
However, it is still possible to find at least one series solution about such a point. The 
method involves searching for a series solution of the form xµ times a power series ; 
that is, 

00 00 

y = (x -a) 11 I:a 11(x -a)"= I:a 11(x -a) 11+µ, where ao =fa 0. 
n=O n=O 

Substitution into the differential equation produces a quadratic indicial equation , 
which determines one or two values of µ for which such solutions can be found, and 
a recurrence relation enabling the coefficients a,, to be calculated for n 2: l . If the 
indicial roots are not equal and do not differ by an integer , two independent solutions 
can be calculated . If the indicial roots are equal or differ by an integer, one such 
solution can be calculated (corresponding to the larger indicial root), but finding a 
second independent solution (and so the general solution) requires techniques beyond 
the scope of this book. The reader is referred to standard texts on differential equations 
for more discussion and examples. We will content ourselves here with one final 
example. 

EXAMPLE 2 Find one solution , in powers of x, of Bessel's equation of order 
v = 1, namely , 

x 2y" + xy' + (x 2 - l)y = 0. 
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Solution We try 

00 

y = La,, xµ+n 
n=O 

00 

y' = L(µ + n)a,,xµ +n- 1 
n=O 

00 

y" = L(µ +n)(µ +n - l)a 11xµ +n- 2. 
n=O 

Substituting these expressions into the Bessel equation, we get 

00 

L[ ((µ + n)(µ + n - 1) + (µ + n) - l)a,,x " + a11x
11+2J = 0 

n=O 
00 00 

L[(µ +n) 2 - 1Ja11x
11 + Lan -2 X11 = 0 

n=O n=2 
00 

(µ 2 - l)ao + ((µ + 1)2 
- l)a1x + I: [((µ +n) 2 - l)a 11 +an-2Jx 11 = 0. 

n=2 

All of the terms must vanish. Since ao f. 0 (we may take ao = 1), we obtain 

µ 2 
- 1 = 0, 

[(µ + 1)2 
- l]a1 = 0, 

an-2 
a,, = - (µ + n )2 - 1 , (n ::: 2). 

the indicia l equation 

the recurrence relation 

Evidentlyµ = ± l ; therefore a1 = 0. If we take f..l = 1, then the recurrence relation is 
a11 = -a 11-2/(n)(n + 2). Thus, 

a3 = 0, a5 = 0, a7 = 0, 

-1 
az = 2 X 4' 

1 
a4-----

-2x4x4x6' 

Again the pattern is obvious: 

(-W 
a2n = 22"n!(n + l)! ' 

-1 
a6 = --------

2 x 4 x 4 x 6 x 6 x 8' 

and one solution of the Bessel equation of order 1 is 

~ (-l)" 211+1 
y = L., 2211n!(n + l)! x · 

n=O 

By the ratio test, this series converges for all x. 

Remark Observe that if we tried to calculate a seco nd solution using µ = -1, we 
would get the recurrence relation 

an-2 
a,, = - n(n - 2)' 

and we would be unable to calculate a2. This shows what can happen if the indicial 
roots differ by an integer. 
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EXE R C IS ES 18.7 
1. Find the general solution of y 11 = (x - l )2 y in the form of a 

power series y = L~o Gn (x - Ir . 
2. Find the general solution of y 11 = xy in the form of a power 

series y = L ~o a11x 11 with ao and a1 arbitrary. 

3. Solve the initial-value problem 

l y
11 + xy' + 2y = 0 

y(O) = I 
y'(O) = 2. 

4. Find the solution of y 11 + xy' + y = 0 that satisfies y(O) = l 
and y' (0) = 0. 

CHAPTER REVIEW . 
Key Ideas 
• What do the following phrases mean? 

o an ord inary DE o a partial DE 

o the general solution of a DE 

o a linear combination of solutions of a DE 

o the order of a DE 

o a separab le DE 

o an integrating factor 

o an Euler equation 

• Describe how to solve: 

o a separab le DE 

o a linear DE 

<> an exact DE 

<> a constant coefficient DE 

<> an aux iliary equation 

<> a first-order, linear DE 

<> a homogeneous, first-order DE 

<> a consta nt coefficient DE <> an Eu ler equation 
• What conditions imply that an initial-value problem for 

a first-order DE has a unique solution near the initial 
point? 

• Describe the following methods for solving first-order 
DEs numericall y: 

<> the Eu ler method o the improved Euler method 

<> the fourth-order Runge-K utta method 

• Describe the following methods for solving a nonhomo
geneous, linear DE: 

o undetermined coefficients <> variation of parameter s 

• What are an ordinary point and a regular singular 
point of a linear, second-order DE? Describe how series 
can be used to solve such an equation near such a point. 

Review Exercises 
Find the general 
Exercises 1-16. 

dy 

solutions of the differential equations in 

1. - = 2xy 
dx 

dy 
3. - =X +2y 

dx 

2 dy -y . 
. - = e smx 

dx 

4. 
dy x2 + y2 

dx 2xy 

CHAPTER REVIEW 1025 

5. Find the first three nonzero terms in a power series solution 
in powers of x for the initial-valu e problem 
y" + (sinx)y = 0, y(O) = l , y'(O) = 0. 

6. Find the solution , in powers of x, for the initial-value 
problem 

(I - x2)y" - xy' + 9y = 0, y (O) = 0, y'( O) = 1. 

7. Find two power series solutions in powers of x for 
3xy 11 + 2y' + y = 0. 

8. Find one power series solution for the Bessel equation of 
order v = 0, that is, the equation xy" + y' + xy = 0. 

5. 
dy x+y 

dx y-x 

7. d
2
y =(dyy 

dt 2 dt 

dy 
6. 

dx X +e Y 

9. 4y " - 4y' + 5y = 0 10. 2x 2y" + y = 0 

2 d2y dy 
11. t dt 2 - t dt + 5y = 0 

12. d
3
y + Sd

2
y + 16dy = 0 

dt 3 dt 2 dt 

13. 
d2y dy 3 
- - 5- + 6y = ex+ e x 
dx 2 dx 

14. 
d2y dy 2x 
- -5-+6 y =Xe 
dx 2 dx 

d2y 
16. x- - 2y = x 3 

dx 2 

Solve the initial-value problems in Exercises 17-26 . I dy ,, j"'-'' 17. dx = y2 18. dx - x 2 

y (2) = 1 y (2) = 1 

! dy xy r 19. dx = x 2 + y 2 20. 
- + (cosx)y = 2cosx 
dx 

y(O) = 1 y( ir) = 1 I ,"+ly'+2yd I y" + 2y' +(I+ • ')y ~ 0 
21. y (O) = I 22. y (l) = 0 

y' (O) = 2 y' (l)=ir 

I'" + JOy' + 25y ~ 0 I x'y'' - 3:y ' +4y ~ 0 
23. y (I) = e- 5 24. y(e) = e 

y'(l)=O y'(e)=O 
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I 
d2y 
- +4 y = 8e 21 

dt 2 

25. y(O) = I 

y'(O) = -2 1

2d 2y +sdy -3y=6+7ex /2 30. 
dx 2 dx 

26. y( O) = 0 

y'( O) = l 

27. For what values of the constants A and Bis the equation 

[(x + A)ex sin y +cosy] dx + x[ex cosy+ B sin y ] dy = 0 

exact? What is the general solution of the equation if A and 
B have these values? 

28. Find a value of n for which x" is an integrating factor for 

(x 2 + 3y2)dx +xydy = 0, 

and solve the equation. 

29. Show that y = x is a solution of 

x 2y" - x(2 + x cot x )y' + (2 + x cotx)y = 0, 

and find the general solution of this equation. 

31. 

Use the method of variation of parameters and the result of 
Exercise 29 to find the general solution of the nonhomoge
neous equatio n 

x 2 y" - x(2 + x cotx) y' + (2 + x cotx) y = x 3 sin x. 

a . 
Suppose that f (x, y ) and - f (x, y) are continuous on 

ay 
the whole xy-p lane and that f (x, y) is bounded there , say 
lf(x , y)I ::, K. Show that no solution of y' = f(x, y) can 
have a vertical asymptote. Describe the region in the plane in 
which the solution to the initial-value problem 

{ 

y' = f( x,y ) 

y(xo) = YO 

must remain. 
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Complex Numbers 
, , Old Macdonald had a farm, 

Minus E-squared 0. 

'' 

A-1 

a mathematically simplified children's song 

Many of the problems to which mathematics is applied involve the solution of equations. 
Over the centuries the number system had to be expanded many times to provide 
solutions for more and more kinds of equations. The natural numbers 

N = (1, 2, 3, 4, ... } 

are inadequate for the solutions of equations of the form 

x +n = m, (m, n E N). 

Zero and negative numbers can be added to create the integers 

Z = { . .. , -3 , -2 , -1 , 0, 1, 2, 3, ... } 

in which that equation has the solution x = m - n even if m < n. (Historically, this 
extension of the number system came much later than some of those mentioned below.) 
Some equations of the form 

nx =m, (m, n E Z , n =I= 0), 

cannot be solved in the integers. Another extension is made to include numbers of the 
form m/ n, thus producing the set of rational numbers 

Q = { ~ : m , n E Z, n =I= 0}. 

Every linear equation 

ax= b, (a , b E Q, a =I= 0), 

has a solution x = b/ a in Q, but the quadratic equation 

x
2 = 2 

has no solution in Q, as was shown in Section P. l . Another extension enriches the 
rational numbers to the real number s JR in which some equations like x 2 = 2 have 
solutions. However, other quadratic equations, for instance, 

x 2 = -1 

do not have solutions, even in the real numbers, so the extension process is not comp lete. 
In order to be able to solve any quadratic equation, we need to extend the real number 
system to a larger set, which we call the complex number system. In this appendix 
we will define complex numbers and develop some of their basic properties. 
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DEFINITION 

I 

DEFINITION 

I 

Definition of Complex Numbers 
We begin by defining the symbol i, ca lled the imaginary unit, 1 to have the property 

i2 = - 1. 

Thu s, we could also call i the square root of - 1 and denote it .J=T. Of course, i is 
not a real number ; no real number has a negative square . 

A complex number is an express ion of the form 

a+bi or a+ ib , 

where a and b are real numbers, and i is the imaginary unit. 

For exa mple , 3 + 2i , ; - j i, i 1r = 0 + i 1r, and -3 = -3 + Oi are all comp lex numbers. 
The last of these examp les shows that every real number can be regarded as a comp lex 
numb er. (We will normally use a + bi unless b is a comp licated expression , in which 
case we will write a + i b instead. Either form is acceptable.) 

It is often convenient to represent a comp lex number by a single letter ; w and z 
are frequently used for this purp ose . If a, b, x, and y are real numbers, and 

w = a +bi and Z = X + y i , 

then we can refer to the complex numbers w and z. Note that w = z if and only if 
a = x and b = y . Of special importance are the complex number s 

1 = I +Oi, and i = 0 + Ii . 

If z = x + y i is a complex number (where x and y are real) , we cal l x the real 
part of z and denote it Re (z). We call y the imaginary part of z and denote it 
Im (z): 

Re( z) = Re(x + yi) = x, Im (z) = Im (x + yi) = y. 

Note that both the real and imaginary parts of a complex number are real numb ers: 

Re (3 - Si)= 3 Im(3 - Si)= -5 

Re (2i) = Re (0 + 2i) = 0 Im (2i) = Im (0 + 2i) = 2 

Re ( - 7) = Re ( - 7 + Oi) = - 7 Im ( - 7) = Im ( - 7 + Oi) = 0. 

Graphical Representation of Complex Numbers 
Since complex number s are constructed from pairs of real number s (their real and 
imaginary parts), it is natural to represent comp lex number s graphically as points in 
a Cartesian plane. We use the point with coord inates (a, b) to represent the complex 
number w = a + ib . In particular, the origin (0, 0) represent s the complex number 
0, the point (1, 0) represents the complex number 1 = 1 + Oi, and the point (0, 1) 
represents the point i = 0 + Ii. (See Figure I.1 .) 

1 In some fields, for example, electrical engineering, the imaginary unit is denoted j instead 
of i. Like "negative," "surd," and "irrational," the term "imaginary" suggests the distrust that 
greeted the new kinds of numbers when they were first introduced. 
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Figure I. 1 An Argand diagram 
representing the complex plane 

DEFINITION 

I 
DEFINITION 

I 
y 

.. • w = a +bi 

lwl_ ......... / 
, .. ···· 

.. ···· 
....... ...- arg(w) 

X 

Figure 1.2 The modulus and argument of 
a complex number 
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y 

• l + i • 2+ i 

0 

- 2 X 

• - 2- i - i 

- 2i • 2- 2i 

Such a represen tation of complex numbers as points in a plane is called an Argand 
diagram. Since each complex number is represented by a unique point in the plane , 
the set of all complex numbers is often referred to as the complex plane. The symbol 
<C is used to represent the set of all complex number s and , equivalently, the complex 
plane : 

<C= {x+yi: x, y, E IR}. 

The point s on the x -axis of the complex plane correspond to real number (x = x +Oi), 
so the x-ax is is called the real axis. The points on the y-ax is correspond to pure 
imaginar y number s (yi = 0 + yi), so the y-axis is called the imaginary axis. 

It can be helpful to use the polar coordinates of a point in the complex plane . 

The distance from the origin to the point (a, b) corresponding to the complex 
number w = a+ bi is called the modulus of w and is denoted by I w I or la+ bi I: 

lwl = la+bil =Ja 2 +b 2 . 

If the line from the origin to (a , b) makes angle 0 with the positive direction of 
the real axis (with positive angles measured counterclockwise), then we call 0 
an argument of the complex number w = a+ bi and denote it by arg (w) or 
arg (a+ bi) . (See Figure I.2.) 

The modulus of a complex number is always real and nonnegative. It is positive unless 
the complex number is 0. Modulus plays a similar role for complex number s that 
absolute value does for real number s. Indeed, sometimes modulus is called absolute 
value. 

Arguments of complex number s a.re not unique. If w = a + bi -/= 0, then any 
two possible values for arg (w) differ by an integer multiple of 211:. The symbol 
arg (w) actually represents not a single number, but a set of numbers. When we write 
arg (w) = 0, we are aying that the set arg (w) contains all number s of the form 
0 + 2kn:, where k is an integer. Similarly, the stateme nt arg (z) = arg (w) says that 
two sets are identical. 

If w =a+ bi, where a= Re (w) i= 0, then 

b 
tan arg (w) = tan arg (a+ bi)=-. 

a 

This means that tan 0 = b / a for every 0 in the set arg ( w). 
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y 

.. ·· .. · .. ..z ... ··• l + i 

_./J2 
.. · 

2 X 

fi -2 i 
- l -2 i 

Figure 1.3 Some complex numbers with 
their moduli 

BEWARE! Review the 
cautionary remark at the end of 
the discussion of the arctangent 
function in Section 3.5; different 
programs implement the 
two-variable arctangent using 
different notations and/or order 
of variables. 

DEFINITION 

y 

I 
• w=a+ bi .... : 

.. ·· : 
.·· : .... -~· t 

. · : 

x ..... . 
·· .. : 

·-- w=a - bi 

X 

Figure 1.4 A complex number and its 
conjugate are mirror images of each other 
in the real axis 

It is sometime s convenient to restrict 0 = arg ( w) to an interval oflength 2n:, say, 
the interva l O _::::: 0 < 2n:, or -n: < 0 _::::: n:, so that nonzero complex number s will have 
unique arguments. We will call the value of arg (w) in the interval -n: < 0 _::::: n: the 
principal argument of w and denote it Arg (w). Every complex number w except 0 
has a unique princip al argument Arg (w). 

EXAMPLE 1 
121 = 2 

(Some moduli and principal arguments ) See Figure 1.3. 

11 +ii= v'2 
Ii i = 1 

I - 2il = 2 

l-v'3 +i1= 2 

Arg (2) = 0 

Arg (1 + i) = n:/ 4 

Arg (i) = n: / 2 

Arg(-2i) = -n: / 2 

Arg (-v'3 + i) = Sn: / 6 

1- 1- 2il = v1s Arg(-l -2i) = -n: +tan - 1(2). 

Remark If z = x + yi and Re(z) = x > 0, then Arg( z) = tan- 1(y / x) . Many 
computer spreadshe ets and mathematical software package s implement a two-variable 
arctan function denoted atan2(x , y) which gives the polar angle of (x, y) in the interval 
( -n: , n:]. Thus , 

Arg (x + y i) = atan2(x , y ). 

Given the modulu s r = lwl and any value of the argume nt 0 = arg (w) of a complex 
number w = a + bi, we have a = r cos 0 and b = r sin 0, so w can be expressed in 
term s of its modulus and argument as 

w = r cos 0 + i r sin 0. 

The expressio n on the right side is called the polar representation of w. 

The conjugate or complex conjugate of a complex number w = a +bi is another 
comp lex number, denoted w , given by 

w =a-bi . 

EXAMPLE 2 2 - 3i = 2 + 3i , 3 = 3, 

Observe that 

Re (w) = Re (w) 

Im (w) = -Im (w) 

lwl=lwl 

arg (w) = - arg ( w) . 

2i = - 2i. 

In an Argand diagram the point w is the reflection of the point w in the real axis. (See 
Figure 1.4.) 

Note that w is real (Im (w) = 0) if and only ifw = w. Also , w is pure imaginary 
(Re (w) = 0) if and only if w = -w. (Here , -w = -a - bi if w =a+ bi .) 

Complex Arithmetic 
Like real numbers, complex number s can be added, subtracted, multiplied , and divided. 
Two complex numbers are added or subtracted as though they are two-dimensional 
vectors whose components are their real and imaginary parts. 

www.konkur.in



w+z 

X 

-z 

Figure 1.5 Complex numbers are added 
and subtracted vectorially. Observe the 
parallelograms 
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The sum and difference of complex numbers 

If w =a+ bi and z = x + yi, where a, b, x, and y are rea l numb ers, then 

w + z = (a+ x) + (b + y)i 

w - z = (a - x) + (b - y) i . 

In an Argand diagram the points w + z and w - z are the points whose position vectors 
are, respectively , the sum and difference of the position vectors of the points w and 
z. (See Figure 1.5.) In particular , the complex number a + bi is the sum of the real 
number a = a + Oi and the pure imaginary number bi = 0 + bi. 

Complex addition obeys the same rules as real addition: if w,, w2, and w3 are 
three complex numbers, the following are easily verified: 

WI + W2 = Wz + WI 

(w, + w2) + W3 = w, + (w2 + w3) 

lw1 ± w2I :S lw1 I+ lw2I 

Addition is commutative. 

Addition is associative. 

the triangle inequality 

Note that lw1 - w2I is the distance between the two points w1 and w2 in the complex 
plane . Thus , the triangle inequality says that in the triangle with vertices w1, =r=w2 and 
0, the length of one side is less than the sum of the other two. 

It is also easily verified that the conjugate of a sum (or difference) is the sum (or 
difference) of the conjugates: 

w + z =w+ z . 

EXAMPLE J (a)Ifw=2+3iand z =4 -5i,then 

w + z = (2 + 4) + (3 - 5)i = 6 - 2i 

w - z = (2 - 4) + (3 - (-5))i = -2 + 8i. 

(b) 3i+(l-2i)-(2+3i)+5=4-2i . 

Multiplication of the complex numbers w = a + bi and z = x + y i is carried out by 
formally multiplying the binomial expressions and replacing i2 by -1 : 

wz = (a+ bi)( x + yi) =ax+ ayi + bxi + byi 2 

= (ax - by)+ (ay + bx)i. 

The product of complex numbers 

If w =a+ bi and z = x + yi, where a , b, x, and y are real numb ers, then 

wz = (ax - by)+ (ay + bx) i . 

EXAMPLE 4 (a) (2 + 3i)(l - 2i) = 2 - 4i + 3i - 6i 2 = 8 - i. 

(b) i(5-4i)=5i-4i 2 =4+5i. 

(c) (a+ bi)(a - bi)= a2 - abi + abi - b2i2 = a2 + b2. 

Part (c) of the example above shows that the square of the modulus of a complex 
number is the product of that number with its complex conjugate: 

www.konkur.in



A-6 APPENDIX I Complex Numbers 

Figure 1.6 The argument of a product is 
the sum of the arguments of the factors 

WW = /w/2 . 

Complex multiplication shares many properties with real multiplication. In particular, 
if w 1, w2, and w3 are complex number s, then 

WJW2 = W2W1 

(w1 w2)w3 = w, (w2w3) 

W J (w2 + w3) = WJ w2 + WJ W3 

Multiplication is commutative. 

Multiplication is associative . 

Multiplication distribute s over addition. 

The conjugate of a product is the product of the conjugates: 

wz = w z . 

To see this, let w =a+ bi and z = x + yi. Then 

wz = (ax - by)+ (ay + bx)i 

= (ax - by) - (ay + bx)i 

= (a - bi)(x - y i) = w z. 

It is particularly easy to determine the product of complex numbers expressed in polar 
form. If 

w = r(cos0 + i sin0) and z = s(coscp + i sin ¢), 

where r = /wl, 0 = arg (w), s = lz/, and¢= arg (z), then 

wz = rs(cos0 + i sin0)(cos cp + i sin¢) 

= rs((cos0 cos </J - sin0 sin ¢)+ i(sin0 cos¢+ cos0 sin¢)) 

= rs(cos(0 + ¢) + i sin(0 + ¢)). 

(See Figure 1.6.) Since arguments are only determined up to integer multiples of 211:, 
we have proved that 

The modulus and argument of a product 

lwz / = lwl/ z / and arg (wz) = arg (w) + arg (z). 

The second of these equations says that the set arg (wz) consists of all numbers 0 + ¢, 
where 0 belongs to the set arg (w) and </J to the set arg (z) . 

y 

wz 

w 

0 

X 

More generally, if w1, w2, ... , w,, are complex numbers , then 

/w1w2 ···w,,/ = lw1llw2/···/w,,I 
arg (w1w2 · · · w11) = arg (w1) + arg (w2) + · · · + arg (w,,). 
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Figure 1.7 Multiplication by i 
corresponds to counterclockwise rotation 

by 90° 
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Multiplication of a complex number by i has a particularly simple geometric inter
pretation in an Argand diagram. Since Ii I = 1 and arg (i) = 1r / 2, multiplication 
of w = a + bi by i leaves the modulus of w unchanged but increases its argument 
by 1r /2. (See Figure 1.7.) Thus, multiplication by i rotates the position vector of w 
counterclockwise by 90° about the origin. 

Let z = cos0 + i sin 0. Then lzl = 1 and arg (z) = 0. Since the modulus of 
a product is the product of the moduli of the factors and the argument of a product 
is the sum of the arguments of the factors , we have lznl = lz ln = 1 and arg (z") = 
n arg (z) = n0. Thus , 

z11 = cosn0 + i sinn0, 

and we have proved de Moivre 's Theorem. 

TH E O R E M de Moivre's Theo rem I (cos8 + i sine)"= cosn8 + i sinn8 

Remark Much of the study of complex-valued functions of a complex variable is 
beyond the scope of this book . However, in Appendix II we will introduce a complex 
version of the exponential function having the following property: if z = x + iy (where 
x and y are real), then 

Thus, the modulus of ez is eRe (z), and Im (z) is a value of arg (ez). In this context , de 
Moivre 's Theorem ju st says 

(ei0t = ein0. 

EXAMPLE 5 Express (1 + i) 5 in the form a+ bi. 

Solution Since I (1 + i) 5 I = 11 + i 15 = (-/2)5 
= 4.J2, and 

57r 
arg ((1 + i) 5) = 5 arg (1 + i) = 4 , we have 

de Moivre's Theorem can be used to generate trigonometric identities for multiples of 
an angle. For example, for n = 2 we have 

cos 20 + i sin 20 = ( cos 0 + i sin 0)2 = cos2 0 - sin2 0 + 2i cos 0 sin 0. 

Thus, cos 20 = cos2 0 - sin2 0, and sin 20 = 2 sin 0 cos 0. 

The reciprocal of the nonzero complex number w = a + bi can be calculated 
by multiplying the numerator and denominator of the reciprocal expression by the 
conjugate of w: 

_ 1 1 1 a - bi 
w = - = - -=------

w a+ bi (a+ bi)(a - bi) 

a -bi 
a 2 +b 2 

Since lwl = lw/, and arg (w) = - arg (w), we have 

1

1 I 1w1 1 
; = lwl2 = ~ and arg (~) = -arg(w). 

w 
lwl2 . 
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The quotient z/ w of two comp lex numbers z = x + y i and w = a+ bi is the product 
of z and 1/ w, so 

z 
w 

We have 

zw 

lwl2 

(x + y i)(a - bi) xa + yb + i( ya - xb) 

a2 + b2 a2 + b2 

The modulus and argument of a quotient 

1~1 = ~ and 
w lwl 

arg (~) = arg( z)- arg(w). 

The set arg (z/ w) consists of all numbers 0 - ¢ where 0 belongs to the set arg (z) and 
¢to the set arg(w). 

l 

EXAMPLE 6 Simplify 
2 + 3i 

(a)--. 
4-t 

and (b) r,,· 
I+ iv3 

Solution 
2 + 3i 

(a) 
4- i 

(b) 1 + i./3 

(2 + 3i)(4 + i) 8 - 3 + (2 + 12)i 5 14 
(4-i)(4+i) 42 +1 2 =u + ui. 

i(l - i./3) ./3 + i ./3 l . 
------- = --- = - + - l 

(l+i./3)(1-i./3) 12 +3 4 4. 

Alternatively, since 11 + i./31 = 2 and arg(l + i./3) = tan- 1 ./3 = 
l 7C 7C 7C 

quotie nt in (b) has modulus 2 and argument 2 - 3 = 6. Thus , 

Roots of Complex Numbers 

7C 
- the 3, 

If a is a positive real number, there are two distinct real numbers whose square is a. 
These are usually denoted 

../a (the positive square root of a) and 

-../a (the negative square root of a). 

Every nonzero complex number z = x + yi (where x 2 + y2 > 0) also has two square 
roots ; if w1 is a complex number such that wJ = z , then w2 = -w1 also satisfies 
w~ = z. Again, we would like to single out one of these roots and call it .jz. 

Let r = lz l, so that r > 0. Let 0 = Arg (z). Thus , -7r < 0 S 7r. Since 

z = r(cos0 + i sin0) , 

the complex number 

clearly satisfies w2 = z. We call this w the principal square root of z and denote it 
./z. The two solut ions of the equation w2 = z are, thus, w = ./z and w = - .jz. 

Observe that the real part of ./z is always nonnegative, since cos(0 / 2) ~ 0 for 
-7r / 2 < 0 S 7r / 2. In this interval sin(0 / 2) = 0 only if 0 = 0, in which case ./z is 
real and positive. 
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Figure 1.8 The cube roots of unity 

z • 

WJ 

y 

Figure 1.9 The five 5th roots of z 

X 

X 
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EXAMPLE 7 (a) ,J4 = ,J4(cos O + i sin 0) = 2. 

(b) -JT=Jl(cos~+isin~)=cos~+isin~= ~+ ~i . 

(c) F,IT = J4 [cos(-~)+ i sin(-~) J = 2 [cos(-~)+ i sin( -~) J 
= .Ji, - i .Ji,. 

1 ..J3 2n . . 2n n . . n 1 ..J3 . 
(d) --+i-= cos-+1 sm-=cos-+1sm-=-+-1. 

2 2 3 3 3 3 2 2 

Given a nonzero complex number z, we can find n distinct complex numbers w 
that satisfy w" = z . These n numbers are called nth roots of z . For example , if 
z = l = cos O + i sin 0, then each of the numbers 

w, = 1 

2n .. 2n 
w2 = cos - + t sin -

n n 
41r . . 41r 

w3 = cos - + t sm -
n n 

6n . . 6n 
W4 = cos - + 1 sm -

n n 

2(n - l)1r . . 2(n - l)n 
w11 =cos---- + t sm ----

n n 

satisfies w" = 1 so is an nth root of l. (These numbers are usually caJled the nth 
roots of unity.) Figure 1.8 shows the three cube roots of 1. Observe that they are at the 
three vertices of an equilateral triangle with centre at the origin and one vertex at 1. In 
general, then nth roots of unity lie on a circle of radius 1 centred at the origin, and at 
the vertices of a regular n-sided polygon with one vertex at 1. 

If z is any nonzero complex number, and 0 is the principal argument of z (-n < 
0 .::: 1r ) , then the number 

w1 = lzl1111 (cos~+ i sin~) 
n n 

is called the principal nth root of z . All the nth roots of z are on the circle of radius 
lzl I / n centred at the origin and are at the vertices of a regular n-sided polygon with one 
vertex at w, . (See Figure I.9.) The other nth roots are 

I/ ( 0 + 2n 0 + 2n) w 2 = lzl 11 cos --- + i sin ---
n n 

1; ( 0 + 4n 0 + 4n) 
w 3 = lzl II cos --n- + i sin --n-

1/ n ( 0 + 2(n - l)n . . 0 + 2(n - l)n) 
Wn = lzl cos------+tsm- -- --- . 

n n 

We can obtain all n of the nth roots of z by multiplying the principal nth root by the 
nth roots of unity. 
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EXAM p LE 8 Find the 4th roots of -4. Sketch them in an Argand diagram. 

y 

Solution Since I - 411
/
4 = ,/2 and arg (-4) = n , the principal 4th root of -4 is 

w1 =h(cos~ +isin~) = 1 +i. 

- 4 The other three 4th root s are at the vertices of a square with centre at the origin and 

one vertex at 1 + i. (See Figure I.10.) Thus the other roots are 

w2 = -1 + i , 

Figure 1.10 The four 4th roots of -4 

EXERCISES: APPENDIX I 
In Exercises 1-4, find the real and imaginary parts (Re (z) and 
Im (z)) of the given complex numb ers z, and sketch the position 
of each number in the complex plane (i.e., in an Argand diagram). 

1. z = - 5 + 2i 

3. z=-n:i 

2. z = 4- i 

4. z = -6 

In Exerci ses 5-15 , find the modulu s r = lzl and the principal 
argument 0 = Arg (z) of each given complex number z, and 
express z in terms of rand 0. 

5. z = -1 + i 6. z = -2 

7. z = 3i 8. z = -Si 

9. z = 1 + 2i 10. z = -2+ i 

11. z = -3 -4i 12. z = 3 - 4i 

13. z =-v13-i 14. z = --v13 - 3i 
411: 411: 

15. z = 3 cos - + 3i sin -
5 5 

16. If Arg (z) = 3n:/ 4 and Arg (w) = n:/ 2, find Arg (zw). 

17. If Arg (z) = -511: / 6 and Arg (w) = n: / 4 , find Arg (z/ w ). 

In Exercises 18-23 , express in the form z = x + y i the complex 
number z whose modulu s and argument are given . 

18. lz l = 2, arg (z) = n: 19. lzl = 5, 
3 

arg( z)=tan - 1

4 

20. lzl = 1, 
311: 

arg( z) = 4 21. lzl = n:, 
71: 

arg (z) = 6 
l 

22. lz l = 0, 
71: 

arg (z) = 1 23. lzl = 2, arg (z) = --
3 

In Exercises 24-27 , find the complex conjugates of the given 
complex numbers. 

24. 5 + 3i 

26. 4i 

25. -3 - 5i 

27. 2- i 

Describe geometrically ( or make a sketch of) the set of point s z in 
the complex plane satisfying the given equations or inequalities 
in Exercises 28-33 . 

28. lzl = 2 29. lz l .:::: 2 

30. iz - 2i I s 3 31. lz - 3 + 4i I s 5 

W3 = -1 - i , W4 = 1-i . 

71: 711: 
32. arg z = 3 33. n: .:::: arg (z) .:::: 4 
Simplify the expressions in Exercises 34-43 . 

34. (2 + 5i) + (3 - i) 

36. (4 + i)(4 - i) 

38. (a+ bi)(2a - bi) 

2-i 
40. 

2+ i 

1 + i 
42. 

i(2 + 3i) 

44. Prove that z + w = z + w. 

45. Prove that(~)= ! . 

35. i - (3 - 2i) + (7 - 3i) 

37. (I + i)(2 - 3i) 

39. (2 + i) 3 

1 + 3i 
41. 

2-i 

43. (1 + 2i)(2 - 3i) 
(2 - i)(3 + 2i) 

46. Express each of the complex numbers z = 3 + i ...;'3 and 
w = - 1 + i ...;'3 in polar form (i.e. , in terms of its modulus 
and argument ). Use these expressions to calculate zw and 
z/ w. 

47. Repeat Exercise 46 for z = -1 + i and w = 3i . 

48. Use de Moivre's Theorem to find a trigonometric identity for 
cos 30 in terms of cos 0 and one for sin 30 in terms of sin 0. 

49. Describe the solution s, if any, of the equations (a) z = 2/ z 
and (b)z = -2 / z. 

50. For positive rea l number s a and b it is always true that 
./ab = ..ja.fij. Does a similar identity hold for y'zw, where 
z and w are complex numbers? Hint: Consider z = w = -1 . 

51. Find the three cube roots of -1. 

52. Find the three cube roots of -8i. 

53. Find the three cube roots of - I + i. 
54. Find all the fourth roots of 4. 

55. Find all complex solutions of the equation 
z4 + 1 - i...;'3 = 0. 

56. Find all solution s of z5 + a5 = 0, where a is a positive real 
number. 

D 57. Show that the sum of then nth roots of unity is zero . Hint: 
Show that these roots are all power s of the principal root. 

www.konkur.in



DEFINITION 

I 

Complex Functions 
, , The shortest path between two truths 1n the real domain passes 

through the complex domain. 

A-11 

'' Jacques Hadamard 1865-1963 
quoted in The Mathematical Intelligencer, v 13, 1991 

Most of this book is concerned with developing the properties of real functions , that is, 
function s of one or more real variables, havin g values that are them selves real numbers 
or vectors with real compo nents. The definit ion of function given in Section P.4 can be 
paraphra sed to allow for complex-valued functions of a complex variable. 

A complex function f is a rule that assigns a uniqu e complex number f (z) 
to each number z in some set of comp lex numbers (ca!Jed the domain of the 
function ). 

Typicall y, we will use z = x + yi to denote a general point in the domain of a complex 
function and w = u + vi to denot e the value of the function at z; if w = f (z), then the 
real and imaginary parts of w (u = Re ( w) and v = Im (w )) are real-valued functions 
of z, and hence real- valued functions of the two real variables x and y: 

u = u(x , y), v = v(x, y) . 

For example, the complex function f(z) = z2, whose domain is the whole comp lex 
plane C, assigns the value z2 to the complex number z. If w = z2 (where w = u + vi 
and z = x + y i), then 

u + vi = (x + yi) 2 = x 2 - y2 + 2xyi, 

so that 

u = Re (z2) = x 2 
- y2 and V = lm (z2) = 2xy. 

It is not convenient to draw the graph of a comp lex function. The grap h of w = f (z) 
would have to be drawn in a four-dimensional (real) space, since two dimen sions 
(a z-plane) are required for the independent variable, and two more dimensions 
(a w-plane) are requir ed for the depe ndent variable. Instead, we can graphica!Jy 
repre sent the beha viour of a complex function w = f (z) by drawing the z-plane and 
the w-plane separately, and showing the image in the w-p lane of certain, appropriat ely 
chosen sets of point s in the z-plane. For example, Figure II . I illustrates the fact that 
for the function w = z2 the image of the quarter-disk lz l s a, 0 s arg (z) s ½ is 
the half-di sk I w I s a2 , 0 S arg ( w) S 7T:. To see why this is so, observe that if 
z = r(cos 0 + i sin 0), then w = r 2 (cos 20 + i sin 20). Thus , the function maps the 
circle lzl = r onto the circle lwl = r 2 and the radial line arg (z) = 0 onto the radial 
line arg (w) = 20. 
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Figure 11.1 The function w = z2 maps a 
quarter-disk of radius a to a half-disk of 
radius a 2 by squaring the modulus and 
doubling the argument of each point z 

DEFINITION 

I 

DEFINITION 

I 

y 
W = z2 V 

arg (w) = 20 

arg (z) = 0 

lzl = r a X fwl =r 2 a2 u 

z-plane w-plane 

Limits and Continuity 
The concepts of limit and co ntinuit y catTy over from real functions to complex function s 
in an obvious way providing we use lz1 - z2I as the distance between the complex 
numbers z I and z2. We say that 

Jim f (z) = Ji. 
z--> zo 

provided we can ensure that If (z) - Ai is as small as we wish by takin g z suffic iently 
clo se to zo. Formally , 

We say that f (z) tends to the limit A as z appro aches zo, and we write 

lim f( z) = A, 
z--> zo 

if for every positive real number E there exists a posi tive real number i5 (dependin g 
on E), such that 

o < lz - zo I < J lf( z) - Al < E. 

The complex function f( z) is continuous at z = zo if lim2__. 20 f (z) exist s and 
equal s f (zo). 

All the laws of limits and contin uity apply as for real functions . Polynomials , that is, 
functions of the form 

P( z) = ao + a1z + a2z2 + · · · + a,,z" , 

are continuous at every point of the complex plane. Ration al fun ctions, that is, functions 
of the form 

P( z) 
R( z) = Q(z), 

where P( z) and Q(z) are polynomials, are co ntinuou s eve rywhere exce pt at points 
where Q( z) = 0. Integer powers z" are continu ous except at the origin if n < 0. The 
situation for fractiona l powers is more complicated. For exa mple , ,Jz (the principal 
square root) is cont inuous except at point s z = x < 0. The functi on f (z) = z is 
continuou s everywhere, because 

lz - zol = lz - zol = lz - zol. 
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The Complex Derivative 
The definition of derivative is the same as for real functions: 

The complex function f is differentiabl e at z and has derivative f' (z) there, 
provided 

lim f( z + h) - f( z) = J'( z) 
h ->O h 

exists. 

Note, however, that in this definition h is a complex number . The limit must exist no 
matter how h approaches O in the complex plane. This fact has profound implications. 
The existence of a derivative in this sense forces the function f to be much better 
behaved than is necessary for a differentiable real function. For example, it can be 
shown that if f ' (z) exists for all z in an open region D in C, then f has derivatives of 
all orders throughout D. Moreover , such a function is the sum of its Taylor series 

( , ( !" (zo) 2 
f z) = f(zo) + f (zo) z - zo) + -

2
,-(z - zo) + · · · 

about any point zo in D; the series has positive radius of convergence Rand converges 
in the disk lz - zol < R . For this reason , complex function s that are differentiable 
on open sets in C are usually called analytic functions. It is beyond the scope of this 
introductory appendix to prove these assertions. They are proved in courses and texts 
on complex analysis. 

The usual differentiation rules apply: 

d 
dz (Af( z) + Bg( z)) = AJ'( z) + Bg' (z) 

d ( ) / I dz f (z)g( z) = f (z)g( z) + f (z)g (z) 

!_ (f( z)) = g( z)f ' (z) - f( z)g ' (z) 

dz g( z) (g( z)) 2 

:z f(g( z)) = J'(g( z))g ' (z). 

As one would expect, the derivative off (z) = z" is f ' (z) = nzn- l. 

EXAM p LE 1 Show that the function f (z) = z is not differentiable at any point. 

Solution We have 

!' (z) = Jim z + h - z 
h->0 h 

. z +h- z h 
= hm -- --=Jim- . 

h->0 h h->0 h 

Buth / h = l if h is real , and h./ h = - I if h is pure imaginary. Since there are real 
and pure imaginary number s arbitrarily close to 0, the limit above does not exist, so 
f' (z) does not exist. 

The following theorem links the existence of the derivative of a complex function f (z) 
with certain properties of its real and imaginary parts u(x, y) and v(x, y). 
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The Cauchy-Riemann equations 

If f( z) = u(x, y) + iv(x, y) is differentiable at z = x + yi, then u and v satisfy the 
Cauchy-Riemann equations 

au av 

ax ay ' 

av 

ax 

au 

ay 

Conversely, if u and v are sufficiently smooth (say, if they have continuous second 
partial derivatives near (x, y) ), and if u and v satisfy the Cauchy-Riemann equations 
at (x , y), then f is differentiable at z = x + y i and 

! '( ) au . av z =- + z- . 
ax ax 

PROOF First, assume that f is differenti able at z. Letting h = s + ti , we have 

J'(z) = lim f( z + h) - f( z) 
h---+0 h 

. [u( x + s,y+t)-u(x,y) .v(x+s,y+t)-v(x ,y )] = hm . +1 . . 
(s,r)---+(0,0) s+i t s+it 

The limit must be independent of the path along which h approaches 0. Letting t = 0, 
so that h = s approaches O along the real axis, we obtain 

' ( . [ u(x + s, y) - u(x , y) . v(x + s, y) - v(x, y)J au . av 
f z) = hm ------- + z - ------ = - + z -. 

s---+0 s s ax ax 

Similarly, lettin g s = 0, so that h = ti approaches O along the imaginary axis, we 
obtain 

'( . [u( x,y+t) -u(x ,y) .v(x,y +t)- v(x,y) ] 
f z)= lim . +1----.---

r---+O lt it 

. [ v(x, y + t) - v(x, y) . u(x, y + t) - u(x , y)J = hm -------- - z --- -----
t---+0 t t 

av au 
= - -i-. 

ay ay 

Equating these two expressions for f ' (z) , we see that 

au av 

ax ay ' 

av 

ax 

au 

ay 

To prove the converse, we use the result of Exercise 22 of Section 12.6 . Since u and v 
are assumed to have continuous seco nd partial derivatives , we must have 

au au 2 2 
u(x + s, y + t) - u(x , y) = s- + t- + O(s + t ) 

ax ay 
av av 2 2 v(x + s , y + t) - v(x, y) = s- + t- + O(s + t ) , 
ax ay 

where we have used the Big-0 notation (see Definition 9 of Section 4 .10) ; the expression 
O(A) denote s a term satisfying I O(A)I S K IAI for some constant K. Thus , if u and v 
satisfy the Cauchy - Riemann equations, then 

s - + t - + i s - + t- + 0 (s + t ) au au ( av av) 2 2 

f(z + h) - f( z) ax ay ax ay 

h s + it 
au av 

(s +it) - + i(s + it) -
ax ax + O(Js 2 + t2) 

s + it 
au av ~ 

= - + i - + O(v s2 + t 2) . 
ax ax 
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Thus, we may let h = s + ti approach O and obtain 

/ au , av 
f (z) = - +1 - . 

ax ax 

It follows immediately from the Cauchy-Riemann equations that the real and imaginary 
parts of a differentiable complex function are real harmonic functions : 

(See Exercise 15 of Section 12.4.) 

The Exponential Function 
Consider the function 

f (z) = ex cosy+ iex sin y, 

where z = x + yi. The real and imaginary parts off (z) , 

u(x, y) = Re (f( z)) = ex cosy 

satisfy the Cauchy-Riemann equations 

and v(x, y) = Im (f(z)) = ex sin y, 

au X av - = e cosy= -
ax ay 

and 
av X , au 
- = e Slll y = - -
ax ay 

everywhere in the z-plane. Therefore , f (z) is differentiable (analytic) everywhere and 
satisfies 

I au av f (z) = - + i- = ex cosy+ iex sin y = f (z). 
ax ax 

Evidently f (O) = 1, and f( z) = ex if z = xis a real number. It is therefore natural to 
denote the function f (z) as the exponential function ez. 

The complex exponential function 

for Z = X + y i . 

In particular, if z = yi is pure imaginary, then 

eYi = cos y + i sin y, 

a fact that can also be obtained by separating the real and imaginary parts of the 
Maclaurin series for eYi: 

= cos y + i sin y. 

Observe that 

lez I = J e2x ( cos2 y + sin2 y) = ex, 

arg (ez) = arg (eYi) = arg (cosy+ i sin y) = y, 

ez = ex cosy - iex sin y = ex cos(-y) + iex sin(-y) = ez. 

www.konkur.in



A-16 APPEND[)( II Comp lex Functions 

Figure 11.2 Under the exponential 

function w = ez, vertical lines get mapped 
to circles centred at the origin, and 
horizontal lines get mapped to half-lines 
radiating from the origin 

In summ ary: 

Propertie s of the exponential function 

If z = x + yi then ez = ez . Also, 

Re (ez) = ex cosy, 

Im (ez) = ex sin y, 

lezl = ex ' 

arg (ez) = y. 

EXAMPLE 2 Sketch the image in the w-p lane of the rectangle 
R : a :::: x :::: b, c :::: y :::: d in the z-plane under the 

transformation w = e~. 

Solution The vertica l lines x = a and x = b get mapp ed to the concentric circle s 
I w I = e0 and I w I = eb. The horizo ntal Ii nes y = c and y = d get mapped to the radial 
lines arg ( w) = c and arg ( w) = d. Thus , the rectangle R gets mapped to the polar 
region P shown in Figure II.2. 

}' 

z-plane w-plane 

arg(w) = c 

X II 

a b e" 

Note that if d - c :": 2n, then the image of R will be the entire ann ular region 
e0 

:::: lwl:::: eh, which may be covered more than once . The expo nential function ez is 
periodic with period 2n i: 

for all z, 

and is therefore not one-to-one on the whole comp lex plane. However , w = ez is 
one-to-one from any horizont al strip of the form 

-00 < X < 00, C < y :'.:: C + 2n 

onto the who le w-p lane exc ludin g the origin. 

The Fundamental Theorem of Algebra 
As observed at the beginning of Appe ndix I, extending the number sys tem to include 
complex numbers allows larger classes of equati ons to have solutions. We concl ude this 
append ix by verifying that polynomial equations always have so lution s in the complex 
numbers . 

A complex polynomial of degree n is a function of the form 

where ao, a 1, •• . , an are comp lex numbers and a,, 'I 0. The number s a; (0 :::: i :::: n) 
are ca lled the coefficients of the polynomial. If they are all real numbers , then Pn (x) 
is called a real polynomi al. 
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A complex number zo that satisfies the equation P(zo) = 0 is called a zero or root 
of the polynomial. Every polynomial of degree 1 has a zero: if a, -:/= 0, then a, z + ao 
has zero z = -ao / a,. This zero is real if a, and ao are both real. 

Similarly, every complex polynomial of degree 2 has two zeros. If the polynomial 
is given by 

(where a2 -:/= 0), then the zeros are given by the quadratic formula 

-a, -)af- 4a2ao 
z = z, = 

2a2 
and 

In this case , P2 (z) has two linear factors: 

Even if af - 4a 2ao = 0, so that z , = z2, we still regard the polynomial as having two 
(equal) zeros, one corresponding to each factor. If the coefficient s ao, a1, and a2 are 
all real number s, the zeros will be real provided af 2: 4a 2ao. When real coefficients 

satisfy af < 4a 2ao then the zeros are complex, in fact , complex conjugates: z2 = zT. 

EXAMPLE 3 Solve the equation z2 + 2i z - (1 + i) = 0. 

Solution The zero of this equation are 

-2i ± .J-4 + 4(1 + i) 
z= 

2 

= -i ± .Ji 
l + i 1 

= -i ± .J2 = .J2(1 + (1 - .J2)i) or 
1 

- .J2(1 + (1 + h)i). 

The Fundamental Theorem of Algebra asserts that every complex polynomi al of posi
tive degree has a complex zero. 

The Fundamental Theorem of Algebra 

If P (z) = a,, zn +an- I zn- I + · · ·+a I z + ao is a complex polynomial of degree n 2: 1, 
then there exists a complex number z, such that P (z 1) = 0. 

PROOF (We will only give an informal sketch of the proof.) We can assume that the 
coefficient of z" in P(z) is a11 = l, since we can divide the equation P(z) = 0 by an 
without changing its solutions . We can also ass ume that ao -:j::. O; if ao = 0, then z = 0 
is certainly a zero of P(z). Thus , we deal with the polynomial 

P(z) = zn + Q(z), 

where Q(z) is a polynomial of degree Jess than n having a nonzero constant term. If 
R is sufficiently large , then I Q( z)I will be Jess than R11 for all numbers z satisfying 
lz l = R. As z moves around the circle lz l = R in the z-plane , w = z" moves around 
the circle lwl = R" in thew-plane (n times). Since the distance from z" to P(z) is 
equal to IP (z) - zn I = IQ (z) I < R", it follows that the image of the circle lz I = R 
under the transformation w = P(z) is a curve that winds around the origin n times . 
(If you walk around a circle of radius r n times, with your dog on a leash of length 
less than r, and your dog returns to his starting point , then he must also go around the 
centre of the circle n times.) This situation is illustrated for the particular case 

P(z) = z3 + z2 - iz + 1, lz l = 2 
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Figure 11.3 The image of the circle I z I = 2 
winds around the origin in the w-plane 
three times, but the image of lzl = 0.3 
does not wind around the 01;gin at all 

in Figure II.3. The image of lzl = 2 is the large curve in the w-plane that winds 
around the origin three times . As R decreases , the curve traced out by w = P(z) for 
lzl = R changes continuously . For R close to 0, it is a small curve staying close to the 
con stant term ao of P(z). For small enough R the curve will not enclose the origin. 
(In Figure II.3 the image of lzl = 0.3 is the small curve staying close to the point 1 in 
thew-plane. ) Thus , for some value of R, say R = R1, the curve must pass through 
the origin. That is , there must be a complex number z,, with lz1 I = R1, such that 

P(z1) = 0. 

V 

u 

lwl = 8 

Remark The above proof suggests that there should be n such solutions of the 
equation P(z) = O; the curve has to go from winding around the origin n times to 
winding around the origin O times as R decreases toward 0. We can establish this as 

follow s. P( z,) = 0 implies that z - z, is a factor of P(z): 

P( z) = (z - z1)P11-1(z) , 

where P,,_ 1 is a polynomial of degree n - I. If n > 1, then P,,_ 1 must also have a 
zero , z2, by the Fundamental Theorem. We can continue this argument inductively to 
obtain n zeros and factor P( z) into a product of the constant a,, and n linear factors: 

P( z) = a,,(z - z,)( z - z2) · · · (z - z,,). 

Of cour se, some of the zeros can be equal. 

Remark If P is a real polynomial, that is, one whose coefficients are all real numbers, 
then P( z) = P(z). Therefore , if z, is a nonreal zero of P(z), then so is z2 = zT: 

P(z2) = P(zT) = P( z,) = 0 = 0. 

Real polynomial s can have complex zeros, but they must always occur in complex 
conjugate pair s. Every real polynomial of odd degree must have at least one real zero. 

EXAMPLE 4 Show that z 1 = - i is a zero of the polynomial 
P(z) = z4 + Sz3 + 7z2 + Sz + 6, and find all the other zeros of 

this polynomial. 

Solution First observe that P( z 1) = P(-i) = 1 + Si - 7 - Si+ 6 = 0, so z, = -i 
is indeed a zero. Since the coefficients of P (z) are real , z2 = i must also be a zero . 
Thus, z + i and z - i are factors of P(z), and so is 

(z + i)( z - i) = z2 + 1. 

Dividin g P( z) by z2 + 1, we obtain 

P(z) 2 z2 + 
1 

= z + Sz + 6 = (z + 2)(z + 3). 

Thu s, the four zeros of P( z) are z , = -i , z2 = i , Z3 = -2 , and Z4 = -3. 
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In Exercises 1- 12, the z-plane region D consists of the complex 
numbers z = x + y i that satisfy the given conditions. Describe 
(or sketch ) the image R of Din the w-plane under the given 
function w = f (z). 

1. Q :':: X :'::: 1, Q :':: y :'::: 2; W = z. 

2. x + y = I; w = z. 
n 3n 

3. I ::: lz l::: 2, 2 ::: arg z ::: 4 ; w = z2
. 

4. 0 ::: Jz l:::2, 0 ::: arg (z) ::: "I; w= z3
. 

n 
5. 0 < Jz l ::: 2, 0 ::: arg (z) ::: 2; w = ~ -

n n 
6. - < arg( z) < -· w = -i z . 

4 - - 3 ' 
n 

7. arg( z)=- 3 ; w= .Jz. 

8. X = ] ; W = z2
. 9. y = l ; w= z2. 

10. X = [; W - -
z 

n n 
11. -oo < x < oo -< y <- · w=e 2

• '4 - - 2' 

12. Q < X < '.:_, Q < y < CX); W = ei :. 
2 

In Exercises 13-16 , verify that the real and imaginary parts of 
each function f (z) satisfy the Cauchy- Riemann equations , and 
thus find f ' (z). 

13. f(z)= z2. 14. f( z)= z3 . 

15. f( z) = ~- 16. f( z) = ez
2

• 

z 
17. Use the fact that eYi =cos y + i sin y (for real y) to show that 

cos y = --
2

-- and 
eYi - e-y i 

sin y = - ---
2i 

Exercise 16 suggests that we define complex functions 

cos z = --2- - and 
ezi _ e-z i 

sin z = ----
2i 

as well as extend the definitions of the hyperbolic function s to 

ez + e-z 
cosh z = 

2 
and 

ez - e-z 
sinh z =---

2 
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Exercises 18-26 develop properties of these functions and 
relation ships between them . 

18. Show that cos z and sin z are periodic with period 2n, and 
that cosh z and sinh z are periodic with period 2n i. 

19. Show that (d/ dz) sin z = cos z and (d/ dz) cos z = - sin z. 
What are the derivatives of sinh z and cosh z? 

20. Verify the identities cos z = co h(i z) and 
sin z = -i sinh(i z). What are the corresponding identities 
for cosh z and sinh(z) in terms of cos and sin? 

21. Find all complex zeros of cos z (i.e., all solutions of 
cos z =O). 

22. Find all complex zeros of sin z. 
23. Find all complex zeros of cosh z and sinh z. 

24. Show that Re (cosh z) = cosh x cos y and 
Im (cosh z) = sinh x sin y. 

25. Find the real and imaginary parts of sinh z. 

26. Find the real and imaginary parts of cos z and sin z. 
Find the zeros of the polynomials in Exercises 27- 32. 

27. P( z) = z2 + 2i z 28. P( z) = z2 - 2z + i 

29. P( z) = z2 + 2z + 5 30. P( z) = z2 
- 2i z - J 

31. P( z) = z3 - 3i z2 
- 2z 32. P( z) = z4 

- 2z2 + 4 

33. The polynomial P( z) = z4 + I has two pairs of complex 
conjugate zeros. Find them, and hence express P( z) as a 
product of two quadratic factors with real coefficients. 

In Exercises 34-36, check that the given number z, is a zero of 
the given polynomial , and find all the zeros of the polynomial . 

34. P( z) = z4 
- 4z3 + 12z2 

- 16z + l6 ; z , = l - ../3 i . 

35 . P( z) = z5 + 3z4 + 4z3 + 4z2 + 3z + I ; z , = i. 

36. P( z) = z5 - 2z4 - 8z3 + 8z2 + 3I z - 30; 
z ,=-2+i. 

37. Show that the image of the circle lzl = 2 under the mapping 
w = z4 + z3 - 2i z - 3 winds around the origin in the 
w-plane four times. 
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Continuous Functions 
'' Geometry may sometimes appear to take the lead over analysis, but in 

fact precedes it only as a servant goes before his master to clear the 
path and light him on the way. The interval between the two is as wide 
as between empiricism and science, as between the understanding 
and the reason, or as between the finite and the infinite. 

'' J. J. Sylvester 1814-1897 
from Philosophic Magazine, 1866 

The development of calculus depends in an essential way on the concept of the limit 
of a function and thereby on properties of the real number system. In Chapter 1 we 
presented these notions in an intuitive way and did not attempt to prove them except 
in Section 1.5, where the formal definition of limit was given and used to verify some 
elementary limits and prove some simple properties of limits. 

Many of the results on limits and continuity of functions stated in Chapter 1 may 
seem quite obvio us; most students and users of calculus are not bothered by applying 
them without proof. Nevertheless , mathematics is a highly logical and rigorous dis
cipline, and any statement, however obvious, that cannot be proved by strict ly logical 
arguments from acceptable assumptions must be considered suspect. In this appendix 
we build upon the formal definition of limit given in Section 1.5 and combine it with 
the notion of completeness of the real number system first encountered in Section P. l 
to give formal proofs of the very important results about continuous functions stated in 
Theorems 8 and 9 of Section 1 .4, the Max-Min Theorem and the Intermediate-Value 
Theorem. Most of our development of calculus in this book depends essentially on 
these two theorems . 

The branch of mathematics that deals with proofs such as these is called math
ematical analysis. This subject is usually not pursued by students in introductory 
calculus courses but is postponed to higher years and studied by students in majors or 
honours programs in mathematics. It is hoped that some of this material will be of 
value to honours-level calculus courses and individual students with a deeper interest 
in understanding calculus. 

Limits of Functions 
At the heart of mathematical analysis is the formal definition of limit, Definition 8 in 
Section 1.5, which we restate as follows: 

The formal definition of limit 

We say that limx-->a f(x) = L if for every positive number E there exists a 
positive number o, depending on E (i.e., o = o(E)), such that 

0 < Ix - a I < i5 ==> I/ (x) - LI < E. 

Section 1.5 was marked "optional " because understanding the material presented 
there was not essential for learning calcu lus. However, that material is an essential 
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Figure 111.1 f is continuous on the 
intervals [a, b], (b, c), [c, d], and (d , e] 

THEOREM 

I 
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prerequi site for this appendix. It is highly recommended that you go back to Section 1.5 
and read it carefully, paying special attention to Examples 2 and 4, and attempt at least 
Exercise s 31-36. These exercises provide proofs for the standard laws of limits stated 
in Section 1.2. 

Continuous Functions 
Consider the following definitions of continuity , which are equivalent to those given in 
Section 1.4. 

Continuity of a function at a point 

A function f , defined on an open interval containing the point a, is said to be 
continuous at the point a if 

Jim f(x) = f(a); 
x~a 

that is, if for every E > 0 there exists o > 0 such that if Ix - al < o, then 
lf(x) - f(a)I < E. 

Continuity of a function on an interval 

A function f is continuous on an interval if it is continuous at every point of 
that interval. In the case of an endpoint of a closed interval , f need only be 
continuous on one side . Thus, f is continuous on the interval [a , b] if 

lim f(t) = f(x) 
l °'X 

for each x satisfying a < x < b, and 

lim f(t) = f(a) 
t"'a+ 

and lim f(t) = f(b). 
t"' b-

These concepts are illustrated in Figure ill. l. 

Some important results about continuous functions are collected in Theorems 6 
and 7 of Section 1.4, which we restate here: 

y 

nv~ 
: : : : : 
I I I I : 

a b C d e X 

Combining continuous functions 

(a) If f and g are continuous at the point a, then so are f + g, f - g, f g, and , if 
g(a) =I= 0, f / g . 

(b) If f is continuous at the point Land iflimx"' a g(x) = L, then we have 

lim f(g(x)) = f(L) = f( lim g(x)). 
x~a x~ a 

In particular, if g is continuous at the point a (so that L = g(a)) , then 
limx"'a f(g(x)) = f(g(a)), that is, f o g(x) = f(g(x)) is continuo us at x = a. 
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DEFINITION 

I 

(c) The functions f (x) = C (consta nt) and g(x) = x are continuous on the whole 
real line. 

(d) For any rational numb er r the function f (x) = x,. is continuous at every real 
number where it is defined. 

PROOF Part (a) is ju st a restatement of various rul es for combining limit s; for example, 

Jim f(x)g(x) = ( lim f(x))( lim g(x)) = f(a)g(a). 
x-a x- a x- a 

Part (b) can be prov ed as foJJows. Let E > 0 be given . Since f is continuous at L , 
there exists k > 0 such that lf(g(x)) - f(L)I < E whenever lg(x) - LI < k . Sinc e 
lim x- a g(x) = L, there exists i5 > 0 suc h that ifO < Ix -al < i5, then lg(x)- LI < k. 
Hence, ifO < Ix -al < i5, then lf(g(x)) - f(L)I < E, and limx -a f(g(x)) = f( L). 

The proofs of (c) and (d) are left to the student in Exe rcise s 3-9 at the end of thi s 
appendix. 

Completeness and Sequential Limits 

A real number u is said to be an upper bound for a nonempty set S of real 
numb ers if x S u for every x in S. 
The number u * is ca lled the least upper bound or supremum of S if u* is an 
upp er bound for Sand u* S u for every upp er bound u of S. The supremum of 
Sis usually denoted sup(S). 
Similarly, e is a lower bound for S if e S x for every x in S. The number e* 
is the greatest lower bound or infimum of S if e* is a lower bound for S and 

e S e* for every lower bound e of S . The infimum of Sis denoted inf(S). 

EXAMPLE 1 Set S1 = [2,3) and S2 = (2,oo). Any number u :"'. 3 is an 
upp er bound for S1. S2 ha s no upp er bound ; we say that it is 

not bounded above. The least upper bound of S1 is sup (S1) = 3. Any real number 
e S 2 is a lower bound for both S1 and S2. The greatest lower bound of each set is 2: 
inf (S1) = inf(S2) = 2. Note that the least upp er bound and greatest lower bound of a 
set may or may not belong to that set. 

We now recaJI the comp leteness axiom for the real numb er sys tem , which we di scusse d 
bri efly in Section P. l. 

The completeness axiom for the real numbers 

A nonempty set of real numbers that has an upper bound must have a least 
upper bound . 
Equivalently , a nonempty set of real numbers having a lower bound must have 
a greate st lower bound . 

We stress that this is an axiom to be ass umed without proof. It cannot be deduced 
from the more elementary algebraic and order properties of the real numbers . Thes e 
other properties are shared by the ratio nal number s, a set that is not co mplete. Th e 
completeness axiom is essential for the proof of the mo st important results about 
continuous functions, in particular, for the Max-Min Theorem and the Intermediate
Value Theorem. Before attempting these proofs, howev er , we must develop a little 

more machinery. 

In Section 9.1 we stated a version of the comp lete ness axiom that pertain s to 
sequences of real numbers; specifica lly, that an increas ing sequence that is bounded 
above converges to a limit. We begin by verifying that this follow s from the version 
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stated above. (Both statements are, in fact, equivalent.) As noted in Section 9.1, the 
sequence 

{xn) = {xi , x2, x3, ... ) 

is a function on the positive integers, that is, x 11 = x( n) . We say that the sequence 
converges to the limit L, and we write lim x,, = L, if the corresponding function x(t) 
satisfies lim1--+oo x(t) = Las defined above. More formally, 

Limit of a sequence 

We say that lim x,, = L if for every positive number f there exists a positive 
number N = N(E) such that lx11 - LI < f holds whenever n 2:. N. 

If {x,,} is an increasing sequence that is bounded above, that is, 

and Xn SK torn= 1, 2, 3, ... , 

then Jim x,, = L exists. (Equivalently, if {x,,} is decreasing and bounded below, then 
lim x11 exists.) 

PROOF Let {x,,} be increasing and bounded above . The set S of real numbers x 11 ha 
an upper bound , K , and so has a least upper bound , say L = sup(S). Thus,x 11 S L 
for every n, and if E > 0, then there exists a positive integer N such that XN > L - f. 

(Otherwise, L - f would be an upper bound for S that is lower than the least upper 
bound.) If n 2:. N, then we have L - f < XN S x 11 S L, so Ix,, - LI < E. Thus, 
lim x 11 = L . The proof for a decreasing sequence that is bounded below is similar. 

If a S x 11 S b for each n, and if lim x 11 = L, then a S L S b. 

PROOF Suppose that L > b. Let E = L - b. Since Jim x 11 = L, there exists n such 
that lx11 - LI < E. Thus, x11 > L - E = L - (L - b) = b, which is a contradiction, 
since we are given that x,, S b. Thus, L S b. A similar argument shows that L 2:. a. 

If f is continuous on [a, b ], if a S x,, S b for each n, and if Jim x 11 

lim f (x,,) = f(L). 
L, then 

The proof is similar to that of Theorem l(b), and is left as Exercise 15 at the end of 
this appendix. 

Continuous Functions on a Closed, Finite Interval 
We are now in a position to prove the main results about continuous functions on 
closed , finite intervals. 

The Boundedness Theorem 

If f is continuo us on [a, b ], then f is bounded there ; that is, there exists a constant K 
such that lf(x)I S Kif a S x Sb. 

PROOF We show that f is bounded above; a similar proof shows that f is bounded 
below. For each positive integer n let S11 be the set of points x in [a, b] such that 
f(x) > n: 

Sn = {x : a S x Sb and f(x) > n). 

We would like to show that S11 is empty for some n. It would then follow that f (x) S n 
for all x in [a , b]; that is, n would be an upper bound for f on [a, b]. 
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Figure 111.2 The set S,, 

THEOREM 

I 

THEOREM 

I 

Suppose, to the contrary, that Sn is nonempty for every n. We will show that 
this leads to a contradiction . Since S11 is bounded below (a is a lower bound) , by 
comp leteness Sn has a greatest lower bound; call it x 11• (See Figure III.2 .) Evidently, 
a S x 11• Since f (x) > n at some point of [a, b] and f is continuous at that point , 
f(x) > n on some interval contained in [a, b]. Hence, x 11 < b. It follows that 
f(x 11) 2:: n . (If f (x,,) < n, then by continuity f(x) < n for some distance to the right 
of x 11, and Xn could not be the greatest lower bound of S,,.) 

y 

a Xn b 
X 

For each n we have Sn+ 1 C Sn. Therefore, x 11+ 1 2:: x 11 and {xn} is an increasing 
sequence . Bein g bounded above (b is an upper bound ) this sequence converges , by 
Theorem 2. Let lim Xn = L. By Theorem 3, a S L S b. Since f is continuous at L , 
lim f(x 11) = f (L) exists by Theorem 4. But since f (xn) 2:: n, Jim f(x 11) cannot exist. 
This contradict ion comp letes the proof. 

The Max-Min Theorem 

If f is continuous on [a, b ], then there are point s v and u in [a , b] such that for any x 
in [a , b] we have 

f(v) ::':: f(x) ::':: f(u); 

that is, f assumes maximum and minimum values on [a , b]. 

PROOF By Theorem 5 we know that the set S = {f (x) : a S x S b} has an 
upper bound and, therefore, by the completeness axiom, a least upper bound. Call 
this least upper bound M. Suppose that there exists no point u in [a , b] such that 
f(u) = M . Then by Theorem l(a), 1/ (M - f(x)) is continuou s on [a, b]. By 
Theorem 5, there exists a cons tant K such that 1/ (M - f (x)) S K for all x in [a, b]. 
Thus f (x) ::::: M - I / K , which contradicts the fact that M is the least upper bound for 
the values off. Hence, there must exist some point u in [a, b] such that f (u) = M. 
Since Mis an upper bound for the values off on [a, b], we have f(x) S f (u) = M 
for all x in [a, b] . 

The proof that there must exist a point v in [a, b] such that f (x) 2:: f (v) for all x 
in [a, b] is similar. 

The Intermediate-Value Theorem 

If f is cont inuous on [a, b] ands is a real number lying between the number s f(a) 
and f(b), then there exists a point c in [a, b] such that f(c) = s . 

PROOF To be specific, we assume that f(a) < s < f(b). (The proof for the case 
f(a) > s > f(b) is simi lar.) Let S = {x: a S x S b and f(x) S s}. Sis nonempty 
(a belongs to S) and bounded above (b is an upper bound) , so by completenes s S has 
a least upper bound; call it c. 

Suppose that f (c) > s. Then cf=- a and, by continuity , f(x) > so n some interval 
(c - o, c] where o > 0. But this says c - o is an upper bound for Slower than the least 
upper bound, which is impossible. Thus f (c) S s . 
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Suppose f(c) < s. Then cf.band, by continuity, f(x) < son some interval of 

the form [c, c + J) for some J > 0. But this says that [c, c + J) C S, which contradicts 

the fact that c is an upper bound for S. Hence we cannot have f(c) < s. Therefore, 

f(c) = s. 

For more discussion of these theorems and some applications, see Section 1.4. 

EXERCISES: APPENDIX Ill 

1. Let a < b < c and suppose that f (x) :::: g(x) for a :::: x :::: c . 

Iflimx--+b f(x) =Land limx --+bg(x) = M, prove that 
L:::: M. Hint: Assume that L > Mand deduce that 
f (x) > g(x) for all x sufficiently near b. This contradicts 
the condition that f (x) ::: g(x) for a :::: x ::: b. 

2. If f (x) ::: Kon the intervals [a, b) and (b, c], and if 
limx-->b f(x) = L, prove that L::: K. 

3. Use the formal definition of limit to prove that 
limx-->0+ x,. = 0 for any positive, rational number r. 

Prove the assertions in Exercises 4-9. 

4. f(x) = C (constant) and g(x) = x are both continuous on 
the whole real line. 

5. Every polynomial is continuous on the whole real line . 

6. A rational function (quotient of polynomials) is continuous 
everywhere except where the denominator is 0. 

7. If n is a positive integer and a > 0, then f (x) = x 1111 is 
continuous at x = a. 

8. If r = m / n is a rational number, then g(x) = x' is 

continuous at every point a > 0. 

9. If r = m/ n, where m and n are integers and n is odd, show 
that g(x) = x' is continuous at every point a < 0. If r ~ 0, 
show that g is continuous at O also. 

10. Prove that f (x ) = lxl is continuous on the real Line. 

Use the definitions from Chapter 3 for the functions in 
Exercises 11-14 to show that these functions are continuous 
on their respective domains. 

11. sinx 

13. lnx 

15. Prove Theorem 4. 

12. cosx 

14. ex 

16. Suppose that every function that is continuou and bounded 
on [a, b] must assume a maximum value and a minimum 
value on that interval. Without using Theorem 5, prove that 
every function f that is continuous on [a, b] must be 
bounded on that interval. Hint: Show that g(t) = t / (1 + !ti) 
is continuous and increasing on the real line. Then consider 

g(!(x)). 
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The Riemann Integral 

'' It seems to be expected of every pilgrim up the slopes of the 
mathematical Parnassus, that he will at some point or other of his 
journey sit down and invent a definite integral or two towards the 
increase of the common stock. 

'' J. J. Sylvester 1814-1897 

In Section 5.3 we defined the definite integral J: f (x) dx of a function f that is contin
uous on the finite , closed interv al [a, b ] . The integral was defined as a kind of "limit " 
of Riemann sums formed by partitioning the interval [a, b] into small subinterv als. In 
this appendix we will reformulate the definition of the integral so that it can be used for 
function s that are not necessar ily continuous; in the following discussion we assume 
only that f is bounded on [a , b ]. Later we will prove Theorem 2 of Section 5.3, which 
asserts that any continuou s function is integrable. 

Recall that a partition P of [a, b] is a finite, ordered set of point s 
P = {xo, x , , x2, .. . , Xn), where a= xo < x, < x2 < · ·· < Xn- 1 < Xn = b. Such 
a partition subdivide s [a,b] into n subint ervals [xo,x ,] , [x1,x2], ... , [Xn- 1,Xn] , 
where n = n(P) depend s on the partition . The length of the )th subint erva l [Xj- l , Xj] 
is l:ixj = Xj - Xj-1 · 

Suppose that the function f is bounded on [a, b]. Given any partition P , then sets 
Sj = {f(x) : XJ-1 ::: x ::: XJ} have least upper bound s M1 and greatest lower bounds 
m1, (1::: j::: n) , so that 

on 

We define upper and lower Riemann sums for f correspondi ng to the partition P to be 

n(P) 
U (f, P) = L Mj l:ixj and 

}= I 

n(P) 

L(f , P) = L m1 Lix1. 
j=l 

(See Figure IV. l .) Note that if f is conti nuous on [a , b ], then m1 and MJ are, in fact , the 
minimum and maximum values off over [XJ- 1, XJ] (by Theorem 6 of Appe ndix III) ; 
that is, m1 = f(LJ) and MJ = f(uj), where f(LJ)::: f(x)::: f(u1) for XJ-l ::: x::: XJ· 

If P is any partiti on of [a, b] and we create a new partition P * by addin g new 
subdivision point s to those of P , thus subdividing the subinterval s of P into smaller 
ones , then we call P* a refinement of P . 
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y y 

U(f , P) 

XQ X] x2 x3 x X 

If P * is a refinement of P, then L(f , P*):::: L(f , P) and U(f , P *) S U(f , P) . 

PROOF If Sand T are sets of real numbers, and S c T, then any lower bound (or 
upper bound) of T is also a lower bound (or upper bound) of S. Hence , the greate st 
lower bound of S is at least as large as that of T , and the least upper bound of S is no 
greater than that of T. 

Let P be a given partition of [a, b] and form a new partition P' by adding one 
subdivision point to those of P , say, the point k dividing the jth subinterval [Xj - 1, Xj ] 
of Pinto two subintervals [Xj - t,k] and [k ,x j]. (See FigureIV.2. ) Let mj, mi, 

and m'j be the greate st lower bounds of the sets of values of f (x ) on the intervals 

[Xj-t , Xj], [Xj-1 , k] , and [k , Xj], respectively. Then mj S mi and mj S m'j. Thus, 

mj(xj - Xj - t) S m/k - Xj - 1) + m'j (xj - k) , so L(f , P) S L(f , P '). 

If P * is a refinement of P , it can be obtained by adding one point at a time to 
those of P and thus L(f , P) S L(f , P *) . We can prove that U(f , P) 2: U(f , P *) in 
a similar manner. 

y 

, · · ·· ···· ···:·· ···· · ·····:······ t ·· ,L 
: : : ' J ; : ! m1= m; 
' ' ' 

Xj - 1 k X 

If P and P' are any two partitions of [a , b], then L(f , P) S U(f , P ') . 

PROOF Combine the subdivision points of P and P' to form a new partition P *, 
which is a refinement of both P and P ' . Then by Theorem 1, 

L(f, P) S L(f , P *) S U(f , P *) S U(f , P '). 

No lower sum can exceed any upper sum. 

Theorem 2 shows that the set of values of L(f , P) for fixed f and various partitions P of 
[a, b] is a bounded set; any upper sum is an upper bound for this set. By completene ss, 
the set has a least upper bound, which we shall denote /*. Thus, L(f , P) S I* for 
any partition P. Similarly, there exists a greatest lower bound I * for the set of values 
of U(f, P) corresponding to different partitions P . It follows that I* S / *. (See 
Exercise 4 at the end of this appendix .) 
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U(f, P) 

I- ! I I+! 2 X 

Figure IV.3 Constructing a small upper 
sum for a nonnegative function that is 
positive at only one point 

The Riemann integral 

If f is bounded on [a, b] and ' * = / *, then we say that f is Riemann integrable, 
or simply integrable on [a , b ] , and denote by 

{'1 la f(x)dx =I * = I * 

the (Riemann) integral off on [a, b ] . 

The following theorem provide s a convenient test for determining whether a given 
bounded function is integrable: 

The bounded function f is integrable on [a , b] if and only if for every positive number 
E there exists a partition P of [a , b] such that U(f, P) - L(f, P) < E. 

PROOF Suppose that for every E > 0 there exists a partition P of [a, b] suc h that 
U(.f , P) - L(f , P) < E, then 

/ * S U(f , P) < L(f , P) + E S l* +E. 

Since/ * < /* + E must hold for every E > 0, it follows that/ * ::, /*. Since we already 
know that/ * ::::. / *, we have/ * = / * and f is integrable on [a , b]. 

Conversely , if I * = I* and E > 0 are given , we can find a partition P' such 

that L(f , P ') > '* - E / 2, and another partition P" such that U (f, P ") < I* + 
E/ 2 . If P is a common refinement of P' and P", then by Theorem l we have that 
U(f , P) - L(f , P) S U(f , P") - L(f , P ') < (E/ 2) + (E/ 2) = E, as required. 

Let f (x) = { 0 if O ::S x < 1 or I < x S 2 
EXAMPLE 1 1 If x = 1. 

Show that f is integrable on [0, 2] and find f0
2 

J(x) dx . 

Solution Let E > O be given. Let P = (0, 1 - E/ 3, l + E/ 3, 2}. Then L(f, P) = 0 
since f (x) = 0 at points of each of these subintervals into which P subdivides [O, 2]. 
(SeeFigureIV.3 .) Sincef(l) = l , wehave 

U (f , P) = 0 ( 1 - i) + l ( 23E) + 0 ( 2 - ( 1 + i)) = 23E . 

Hence , U (f , P) - L(f , P) < E and f is integrable on [O, 2]. Since L(f, P) = 0 for 

every partition, f0
2 

f (x) dx =I * = 0. 

EXAMPLE 2 

f( x) = { t 
Let f (x ) be defined on [O, 1] by 

if x is rational 
if x is irration al. 

Show that f is not integrable on [0, l]. 

PROOF Every subinterval of [O, 1] having positive length contains both rational and 
irrational numbers. Hence , for any partition P of [0, l] we have L(f, P) = 0 and 
U (f , P) = 1. Thu s, / * = 0 and / * = 1, so f is not integrable on [O, l]. 
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Uniform Continuity 
When we assert that a function f is continuous on the interval / , we imply that for 
every x in that interval and every E > 0, we can find a positive number J (depending on 
both x and E) such that lf(y) - f(x)I < E whenever IY - xi < Jand y lies in/. If it 
is possible to find a such a number J independent of x and so depending only on E such 
that If (y) - f(x)I < E holds whenever x and y belong to/ and satisfy IY - xi < J, 
we say that that f is uniformly continuous on the interval /. Such is the case for a 
closed finite interval. 

If f is continuous on the closed , finite interva l [a, b ], then f is uniformly continuous 
on that interval. 

PROOF Let E > 0 be given. Define numbers Xn in [a, b] and subsets S,1 of [a, b] as 
follows: 

XI= a 

S1 = {x: x1 < x S b and 1/(x) - f(x1)I::: i-}. 

If S1 is empty, stop; otherwise, let 

x2 = the greatest lower bound of Si 

S2 = {x: x2 < x S b and lf(x) - f( x2)I 2: ~} . 

If S2 is empty, stop; otherw ise, proceed to define x3 and S3 analogously. We proceed 
in this way as long as we can; if x11 and Sn have been defined and Sn i not empty, we 
define 

x"+ I = the greatest lower bound of Sn 

Sn+I = {x: X11+1 < x Sb and lf(x) - f( xn+1)I 2: ~}. 

At any stage where S11 is not empty, the continuity off at x 11 assures us that x 11+1 > x 11 
and lf(x11+1) - f (xn)I = E/ 3. 

We must consider two possibilities for the above procedure: either S11 is empty for 
some n, or Sn is nonempty for every n. 

Suppose Sn is nonempty for every n . Then we have constructed an infinite , 
increasing sequence {x11) in [a , b] that, being bounded above (by b), must have 
a limit by completeness (Theorem 2 of Appendix II). Let Jim x11 = x *. We have a S 
x * S b. Since f is continuous at x *, there exists J > 0 such that 
lf(x) - f(x*)I < E/ 8 whenever Ix - x *I < J and x lies in [a , b]. Since Limx11 = x *, 
there exists a positive integer N such that lx11 - x * I < J whenever n ::: N. For such n 
we have 

~ = lf(x11+J) - f(xn)I = lf(x11+ 1) - f (x*) + f (x *) - f(xn)I 

S lf( x11+ 1) - f (x*)I + lf(x11) - f(x *)I 
E E E 

< s + s = 4' 

which is clearly impossible. Thus, Sn must, in fact, be empty for some n. 

Suppose that SN is empty. Thus, Sn is nonempty for n < N, and the procedure 
for defining x11 stops with XN. Since SN- I is not empty , XN < b. In this case define 
XN+I =band let 

J = min{x2 - X[, X3 - x2, ... , XN+I - XN ). 
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The minimum of a finite set of positive number s is a positive number , so o > 0 . If x lie s 
in [a, b], then x lie s in one of the interva ls [x1, x2], [x2, x3], .. . , [xN , XN+iJ- Suppo se 
x lie s in [xk, Xk+,]. If y is in [a, b] and IY - x I < a, then y lies in either the same 
subinterval as x or in an adj acent one; that is, y lies in [xj, Xj+i], where j = k - 1, k, 
or k + 1. Thus, 

lf(y) - f(x)I = lf(y) - f(xj) + f(xj) - f(xk) + f(xk) - f(x) I 

S lf(y) - f(xj)I + lf(xj) - f(xk)I + lf( xk) - f(x)I 
E E E 

< 3 + 3 + 3 = E, 

which was to be proved. 

THEOREM 

We are now in a position to prove that a co ntinuou s function is inte gra ble . 

If f is co ntinu ous on [a, b], then f is integrable on [a , b]. 

I PROOF By Theorem 4, f is uniformly conti nu ous on [a , b]. Let E > 0 be given . Let 
o > 0 be suc h that If (x)- f (y)I < E) (b-a) whe never Ix - yl < o and x and y belon g 
to [a , b]. Choose a partition P = {xo, x,, ... , Xn} of [a , b] fo r which each subinterval 
[Xj- 1, Xj] ha s length 11xj < o. T hen the grea test lower bound, mj , and the lea st upp er 
bound , Mj, of the set of values of f(x) on [Xj-1, Xj] satisfy Mj - mj < E/ (b - a). 
Accordingly, 

€ n(P) € 

U(f , P) - L(f , P) < -- L 11xj = -- (b - a)= E. 
b-a. b-a 

j=l 

Thus f is integra ble on [a , b ], as asse rted. 

E X E R C I S E S : A P P E N D I X IV 

{ 
l if O < X < [ .. 

1. Let J(x) = 
0 

if 
1 

-:;: x ; 2 . Prove that J 1s integrable on 

[O, 2] and find the value of JJ f (x) dx. 

2. Letf(x) = { l ifx = 1/ n., n. = I , 2, 3, . . . 
0 for all other values of x . 

Show that f is integrable over [O, l] and find the value of the 

integral f0
1 

J(x) dx. 

D 3. Let J(x) = 1/ n. if x = m/ n, where m, n are integers having 
no common factors, and let f (x) = 0 if x is an irrational 
number. Thus , J(l / 2) = 1/ 2, J(l / 3) = J(2 / 3) = 1/ 3, 
f (1/ 4) = f (3/ 4) = l / 4, etc . Show that f is integrable on 

[O, l] and find Jd f(x) dx. Hint: Show that for any E > 0, 
only finitely many points of the graph off over [O, 1] lie 
above the line y = E. 

4. Prove that/ * and / * defined in the paragraph following 
Theorem 2 satisfy /* :=:: / * as claimed there. 

Properties of the Riemann Integral 

In Exercises 5-8 , you a.re asked to provide proofs of properties of 
the Riemann integral that were stated for the definite integral of a 
continuous function in Theorem 3 of Section 5.4. 

5. Prove that if J and g are bounded and integrable on [a, b], 
and A and B are constants, then Af + Bg is integrable on 

[a,b]and 

l b 1b lb a (Af( x)+ Bg( x) )dx = A a J(x)dx+ B a g(x)dx. 

6. Prove that if f is bounded and integrable on an interval 
containi ng a, b, and c, then 

1b J(x) dx + 1c f(x) dx = 1c J(x) dx. 

7. Prove that if f and g are bounded and integrable on the 
interval [a , b] (where a < b) and J(x) ::: g(x) for 
a :=:: x :=:: b, then 

l b J(x)dx ::: lb g(x)dx . 
a a 

Also, if Ill is bounded and integrable on [a, b], 

11b J(x)dxl ::0: 1b lf(x)l dx 

8. If J is bounded and integrable on [-a, a] , where a > 0, then 
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(a) if f is an odd function, then /_ ': f (x) dx = 0, or 

(b) if f is an even function, then 

10. Show directly from the definition of uniform continuity 
(without using Theorem 5 of Appendix ill) that a function f 
uniformly continuous on a closed, finite interval is 
necessarily bounded there. 

1(/ 1" f (x) dx = 2 f (x) dx. 
- a 0 

11. If f is bounded and integrable on [a , b ], prove that 

9. Use the definition of uniform continuity given in the 
paragraph preceding Theorem 4 to prove that f (x) = .Jx is 
uniformly continuous on [O, I]. Do not use Theorem 4 itself. 

F(x) = .ft: f(t)dt is uniformly continuous on [a, b]. (If f 
were continuous, we would have a stronger result; F would 
be differentiable on (a, b) and F'(x) = f(x) (which is the 
Fundamental Theorem of Calculus).) 

Doing Calculus with Maple 
, , I think, therefore I am. 

'' 
, , Al [Artificial Intelligences] think, 

therefore I am. 

'' 

Rene Descartes 1596-1650 
Discourse on Method 

David Braue 
APC Magazine, November 2003 

Computer algebra systems like Maple and Mathematica are capable of doing most 
of the tedious calculations involved in doing calculu , especially the very intensive 
calculations required by many applied problems. (They cannot, of course, do the 
thinking for you; you must still fully understand what you are doing and what are 
the limitations of such programs.) Throughout this text we have inserted material 
illustrating how to use Maple to do common calculus-oriented calculations . These 
insertions range in length from single paragraphs and remarks to entire sections. To 
help you locate the Maple material appropriate for specific topics, we include below a 
list pointing to the text sections containing Maple examples and the page where they 
occur. 

Note, however, that this material assumes you are familiar with the basics of 
starting a Maple session , preferably with a graphical user inte1face which typically 
displays the prompt > when it is waiting for your input. In this book the input is 
shown in colour. It normally concludes with a semicolon (;) followed by press ing the 
<e nter > key, which we omit from our examples. The output is typically printed by 
Maple centred in the window; we show it in black. For instance , 

> factor(xA2-x-2) ; 

(x+l)(x-2) 
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A-32 APPENDIX V Doing Calcu lus with Maple 

Output can be supressed by using a colon (:) instead of a semicolon at the end of the 
input. 

The authors used Maple 10 for preparing the Maple examples in this edition . They 
should work equally well in later editions. These examples are by no means complete 
or exhaustive. For a more complete treatment of Maple as a tool for doing calculus, 
the authors highly recommend the excellent Maple lab manual Calculus: The Maple 
Way, written by Professor Robert Israel of the University of British Columbia. Like 
this book, it is published by Pearson Canada under the Addison-Wesley logo. 

List of Maple Examples and Discussion 

Topic Section Page(s) 

Defining and Graphing Functions P.4 30-32 

Calculating with Trigonometric Functions P.7 54-55 

Calculating Limits- A Numerical Monster 1.2 65-66 

Calculating Limits 1.3 77-78 

Solving Equations with f solve 1.4 86 

Finding Derivatives 2.4 118-119 

Higher-Order Derivatives 2.6 130 

Derivatives of Implicit Function s 2.9 147 

Inverse Tangent Functions 3.5 196 

Graph Plotting 4.7 253-258 

Roundoff Error and Truncation 4.11 282-284 

Calculating Sums 5.1 293 

Integrating Functions 6.4 357-358 

Numerical Integration-Higher-Order Methods 6.8 385-386 

Plotting Parametric Curves 8.2 471 

Plotting Polar Curves 8.5 487-488 

Infinite Series 9.5 536 

Vector and Matrix Calculations 10.8 612-620 

Velocity, Acceleration, Curvature, Torsion 11.5 656-657 

Three-Dimensional Graphing 12.1 676-677 

Partial Derivatives 12.4 692-693 

Higher-Order Partial Derivatives 12.5 702 

The Jacobian Matrix 12.6 711 

Gradients 12.7 725 

Taylor Polynomial s 12.9 740-741 

Constrained Extrema 13.4 771-773 

Multivariable Newton 's Method 13.8 794-798 

Double Integrals 14.2 818-819 

Gradient, Divergence, Curl, Laplacian 16.2 919-920 

Solving DEs with dsol ve 18.6 1020 

in Calculus of Several Variables only 18.6 1034 
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ANSWERS TO ODD-NUMBERED EXERCISES A-33 

Answers to 
Odd-Numbered Exercises 

Chapter P 

Preliminaries 

Section P.1 (page 1 OJ 

1. 0.2 3. 4/ 33 

5. 1 / 7 = 0.142857 , 2/ 7 = 0.285714, 
3/ 7 = 0.428571 , 4/ 7 = 0.571428 , 
5/ 7 = 0.714285 , 6/ 7 = 0.857142 

7.[0 ,5] 9.(-oo ,- 6) U (-5 ,oo) 

11. (-2 , oo) 13. (-oo , -2) 

15. (-oo, 5/ 4] 

19. ( -00, 5 / 3) U (2, oo) 

23. ( - 2, 0) U (2, oo) 

27. X = -3, 3 

31. s = -1 / 3, 17/ 3 

35. [-1 , 3] 

39. [O, 4] 

17. (0, oo) 

21. [O, 2] 

25. [-2, 0) u [4, oo) 

29.t=-1 / 2, -9 / 2 

33. (- 2, 2) 

37. (~ , 3) 
41. x > 1 

43. true if a :::: 0, false if a < 0 

Section P.2 (page 16) 

1. !ix = 4, !iy = -3, dist= 5 

3. !ix = -4 , !iy = -4, dist = 4.J2 

5. (2, -4) 
7. circle, centre (0, 0) , radiu s 1 

9. point s inside and on circle , centre (0, 0), radius 1 

11. points on and above the parabola y = x 2 

13. (a) X = -2, (b) y = 5/ 3 

15. y = X +2 
19.above 

23. y = (7 - X) / 3 

17. y=2x+b 

21. y = 3x / 2 

25. y = Jl- 2x 

27. 4, 3, 

y 

29. Jl, -2 / -/3 

31. (a) y = X - 1, (b) y = - X + 3 

33. (2, -3) 37. 5 

X 

X 

39. $23, 000 43. (-2, -2) 

45. (½(x1 + 2x2), ½CY1 + 2y2)) 

47. circle , centre (2, 0), radius 4 

49. perp. if k = -8 , parallel if k = 1/ 2 

Section P.3 (page 22) 

1. x2 + y2 = 16 

5. (1, 0) , 2 

3. x 2 + y 2 + 4x = 5 

7. (1, -2), 3 

9. exterior of circle, centre (0, 0) , radius 1 

11. closed disk , centre (-1 , 0) , radius 2 

13. washer shaped region between the circles of radius 1 
and 2 centred at (O, 0) 

15. first quadrant region lying inside the two circle s of 
radius 1 having centres at (1, 0) and (O, 1) 

17. x 2 + y2 + 2x - 4y < 1 19. x 2 + y2 < 2, x :::: 1 

21. x 2 = 16y 23. y2 = 8x 
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A-34 ANSWERS TO ODD-NUMBERED EXERCISES 

25. (0, 1/ 2), y = -1 / 2 

y = - 1/ 2 X 

27. (-1, 0), X = 1 

x= l 

X 

29.(a)y =x 2 - 3,(b)y = (x-4)2 ,( c)y = (x-3)2+3, 
(d) y = (x - 4)2 - 2 

31. y = .J(x / 3) + 1 

35. y = -(x + 1)2 

39.(2,7) , (1, 4) 

33. y = .J(3x / 2) + 1 

37. y = (x - 2)2 - 2 

41.(4 ,-3), (-4,3) 

43. ellipse, centre (0, 0), semiaxes 2, 1 

y 

x2 
-+/=I 
4 

2 
X 

45. ellipse, centre (3, -2), semiaxes 3, 2 

y 

X 

• 
(3, -2) 

(x - 3)2 (y + 2)2 

---+---=I 
9 4 

47. hyperbola , centre (0, 0), asymptotes x = ±2y, vertices 
(±2, 0) 

y 

X = -2y 

49. rectangular hyperbola, asymptotes x = 0 and y = 0, 
vertices (2, -2) and (-2, 2) 

51. (a) reflecting the graph in the y-axis, (b) reflecting the 
graph in the x -axis 

53. 

y 

-1 X 

-I 
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Section P.4 (page 32) 

1. D(f) = 'R., :R(f) = [1, oo) 

3. D(G) = (-oo, 4J, :R(g) = [0, oo) 

5. D(h) = (-oo , 2), :R(h) = (-oo, oo) 

7. Only (ii) is the graph of a function. Vertical lines can 
meet the others more than once. 

11. even, sym. about y-axis 13. odd, sym. about (0, 0) 

15. sym. about (2, 0) 17. sym. aboutx = 3 

19. even, sym. about y-axis 
21. no symmetry 

23. 

27. 

31. 

35. 

X = -2! 

\ 

y 

y 

y 

X 

y = I -x 3 

2 
y=x+2 

X 

(2, 2) 

y=f(x)+2 

X 

39. D = [O, 2J, :R = [2, 3J 
41. D = [-2 , OJ, :R = [O, lJ 

43. D = [O, 2J, :R = [-1 , OJ 

25. 

29. 

y 

33. 

37. 

X 

X 

X 

X X 

y = x+ I 

X 

ANSWERS TO ODD-NUMBERED EXERCISES A-35 

y 

- ] X 

Y = -f(x) 

y 

y = f(4 -x) 
(3 I) 

X 

45. D = [2, 4J, :R = [O, lJ 47. [-0.18, 0.68] 

49. y = 3/ 2 
51. (2, 1), y = X - l , y = 3 - X 

53. f(x) = 0 

Section P.5 (page 38) 

1. The domains off+ g, f- g, Jg, and g/ f are [l, oo). 

3. 

5. 

The domain off /g is (1, oo). 
(f+g)(x) =x+,Jx=T 
(f - g)(x) = X - ,Jx="T 
(fg)(x) = xFx"=I 
(f / g)(x) = x / Fx"=l 
(g/ f)(x) = Fx"=l / x 

y 

.. ~.· , .. 
r 

.•I .·, 
, •' I 

,• I 

y =x .. ······ / 
• " I 

, • ' I 

.// ···/ ' 

y=\····· 

X 

X 

7. (a) 2, (b) 22, (c) x 2 + 2, (d) x 2 + lOx + 22, (e) 5, (f) 
-2 , (g) x + 10, (h) x 4 - 6x2 + 6 

9. (a) (x - 1)/ x, x =/= 0, 1, 
(b) 1/ (1 - Fx"=l) on [l , 2) U (2, oo), 
(c) Jx / (l - x), on [O, 1) 

(d) J Fx"=I - 1, on [2, oo) 

11.( x+1)2 13.x 2 

15. 1/ (x - 1) 19. D = [O, 2J, :R = [O, 2J 
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y 

X 

21. D = [O, 1], :R = [0, l] 
23. D = [- 4, OJ, :R = [l, 2] 

y 

25. 

y 

(1/ 2, I) 
y = f (2x) 

X 

27. (a) A = 0, B arbitrary, or A = 1, B = 0 
(b) A= -1, B arbitrary, or A= 1, B = 0 

29. all integers 
31. 

33 . J2, g2, f o f, f o g, g o f are even 
Jg, f / g, g/ f, go g are odd 

X 

f + g is neither, unless either f (x) = 0 or g(x) = 0. 

Section P.6 (page 45) 

1. roots -5 and -2; (x + 5)(x + 2) 

3. roots -1 ± i; (x + 1 - i) (x + 1 + i) 

5. roots 1/ 2 (double) and -1 / 2 (double); (2x - 1)2(2x + 
1)2 

7 roots-I !±-!3 i· (x+l) (x _ ! + -J3 i) (x _ ! - -J3 i) • '2 2 ' 2 2 2 2 

9. roots 1 (triple) and - 1 triple; (x - 1)3 (x + 1)3 

11. roots -2, i, -i, I+ ../3i, I -../3i; (x + 2)(x - i)(x + 
i)(x - 1 - ../3i)(x - 1 + ../3i) 

13. all real numbers 
15. all real numbers except O and - I 

2x-l x+6 
17. x + x2 - 2 19. x - 2 + x2 + 2x 

21. P(x) = (x 2 - 2x + 2)(x 2 + 2x + 2) 

Section P.7 (page 57) 

1. -1 / ..Ji. 

5. (../3 - 1)/ (2..Ji.) 

9. - COSX 

17. 3 sin x - 4 sin3 x 

3 . ../3 / 2 

7. - cosx 

11.1 / (sinxcosx) 

19. perio d n 

~ 
21. period 2 

y y = sin(nx) 

23. 

25. cos0 = - 4/ 5, tan 0 = - 3/ 4 

27. sin 0 = - 2..Ji./ 3, tan 0 = -2 ..Ji. 

29. cos0 = -../3 / 2, tan 0 = 1/../3 

31. a = 1, b = ../3 33. b = 5/ ../3 , c = 10/ ../3 

35. a = bta n A 

39. c = bsec A 

43. sin B = 3/ (4..Ji.) 

47. 6/ (1 + ../3) 

37. a = bcotB 

41. sin A = ,./c 2 - b2/c 

45. sin B = .Jill / 16 

49. b = 4 sin 40° / sin 70° ~ 2.736 

51. approx. 16.98 m 

Chapter 1 
Limits and Continuity 

Section 1.1 (page 63) 

1. ((t + h)2 - t2
) / h mis 

5. -3 m/s, 3 m/s, 0 mis 

3. 4 mis 

7. to the left, stopped, to the right 

9. height 2, moving down 
11. - I ft/s, weight moving downward 

13. day 45 

Section 1.2 (page 71) 

1. (a) 1, (b) 0, (c) 1 3. 1 

5. 0 7. 1 

9. 2/ 3 11. 0 

13. 0 15. does not exist 

17. 1/ 6 19.0 

21. -1 23. does not exist 

25. 2 27.3 / 8 

29. -1 / 2 31. 8/ 3 
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33. 1/ 4 35. 1/ ../2 

37.2x 39.-l / x2 

41. l / (2Jx) 43. 1 

45. 1/ 2 47. 1 

49.0 51. 2 

53. does not exist 55. does not exist 

57. -1 / (2a) 59.0 

61. -2 63. 1r
2 

65. (a) 0, (b) 8, (c) 9, (d) - 3 

67.5 69. 1 

71. 0.7071 73. limx->0 f (x) = 0 

75.2 
77. x 113 < x 3 on (-1 , 0) and (I , oo), 

x 113 > x 3 on (-oo , -1 ) and (0, 1), 
limx->a h(x) = a for a= -1 , 0, and 1 

Section 1.3 (page 78) 

1. 1/ 2 

5.0 

3. -3 / 5 

7. -3 

9. -2 / -/3 

13. + oo 

17. -00 

21. oo 

25.oo 

11. does not exist 

15.0 

19. - 00 

23. - 00 

27. -../2 / 4 

29. -2 31. -1 

33. horiz: y = 0, y = -l , vert: x = 0 

35. 1 

39. -00 

43. -1 

47.3 

51. 1 

37. 1 

41. 2 

45. l 

49. does not exist 

53. C(t) has a limit at every real t except at the integer s. 
lim1_. 10 _ C(t) = C(to) everywhere, but 

r C( ) { C(to) if to not integral 
Iill t-> to+ t = C(to) + 1.5 if to an integer 

y 

$6.00 

$4.50 

$3.00 

$1.50 o---- y = C(t ) 

I 2 3 4 

55. (a) B, (b) A, (c) A, (d) A 

ANSWERS TO ODD-NUMBERED EXE RCISES A-37 

Section 1.4 (page 87) 
1. at - 2, right cont. and cont., at -1 disc. , at O disc. but 

left cont., at 1 disc. and right cont., at 2 disc . 

3. no abs . max, abs . min O 5. no 

7. cont. everywhere 
9. cont. everywhere except at x = 0, disc. at x = 0 

11. cont. everywher e except at the integer s, discontinuou s 
but left-continuou s at the integer s 

13. 4, X + 2 15. 1/ 5, (t - 2) / (t + 2) 

17. k = 8 19. no max, min =0 

21. 16 23.5 

25. f positive on (-1 , 0) and (1, oo); f negative on 
(- oo, -1) and (0, 1) 

21. f positive on (-oo , -2) , (-1 , 1) and (2, oo); f nega-
tive on (- 2, -1) and (1, 2) 

35. max 1.593 at -0.831 , min -0 .756 at 0.629 

37. max 31/ 3 ~ 10.333 at x = 3, min 4.762 at x = 1.260 

39. 0.682 
41. - 0.6367326508 , 1.409624004 

Section 1.5 (page 92) 
1. between 12 °C and 20 °C 

3. (1.99, 2.01) 

1. o = 0.01 

5. (0.81 , 1.21) 

9. o ~ 0.0165 

Review Exercises (page 93) 

1. 13 3. 12 

5.4 

9. does not exist 

13. 12-/3 

17. doe s not exist 

21. -oo 

25. does not exist 

29.2 

33. disc. and left cont. at 2 

7. doe s not exist 

11. -00 

15.0 

19. -1 / 3 

23.oo 

27.0 

31. no disc. 

35. disc. and right cont. at x = l 

37. no disc . 

Challenging Problems (page 94) 

1. to the right 

5. 3 

Chapter 2 
Differentiation 

Section 2.1 (page 100) 

1. y = 3x - l 

5. y = 12x + 24 

9. x -4 y = - 2 

3. -1 / 4 

1.T , F,T , F, F 

3. y = 8x - 13 

7. x -4 y = -5 

11.y = 2xox -x 5 
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13.no 15. yes, x = -2 

17. yes,x =O 
19. (a) 3a2 ; (b) y = 3x - 2 and y = 3x + 2 

21. (1, 1), (-1 , 1) 23. k = 3/ 4 

25. horiz. tangent at (0, 0) , (3, 108), (5, 0) 

27. horiz. tangent at (-0.5 , 1.25) , no tangents at (-1, 1) 
and (1, - l) 

29. horiz . tangent at (0, - I) 

31. no, consider y = x 213 at (0, 0) 

Section 2.2 (page 107) 

1. 

y 

y = J'(x) 
----0 0---

X 

3. 

5. on [-2 , 2) except at x = - I and x = 1 

X 

7. slope positive fo r x < 1.5, negative for x > 1.5; hori
zontal tangent at x = 1.5 

9. singular points at x = -1, 0, 1, hor izontal tangents at 
about x = ±0 .57 

11. (a) y' = 2x - 3, (b) dy = (2x - 3)dx 

13. (a) J'(x) = 3x 2, (b) df(x) = 3x 2 dx 

I 4 4 
15. (a) g (x) = - (

2 
+ x) 2 , (b) dg( x) = (

2 
+ x) 2 dx 

I 1 . ( 1 
17. (a) F (t) = ~' (b) dF t) = ~dt 

v2t + l v2t + 1 

19. (a) y' = l - x\, (b) d y = ( 1 - x
1
2 ) dx 

1 X ( X 
21. (a) F (x) = (l +x 2 ) 312 ,( b)dF x) = - (I +x 2)312 dx 

/ l l 
23. (a) y = - 2( 1 + x)3/2' (b) d y = - 2(1 + x)3/2 dx 

25. Define f (0) = 0, f is not differentiable at 0 

27. at x = -1 and x = -2 
29. 

f(x) - /(2) f (x) - f (2) 
X X 

x -2 x-2 

l.9 - 0.26316 2. 1 -0.238 10 
1.99 -0.2 5126 2.01 -0.24876 
1.999 - 0.25013 2.001 -0.24988 
1.9999 -0.2500 1 2.0001 -0.24999 

:X (~) lx=2 = - ~ 
31. X - 6y = -15 

2 2(2a + 1) 
33. y = - 2-- - 2 )2 (t - a) 

a + a (a + a 

35. 22t 21, all t 37. -(l/3)x- 413, x =f. 0 

39.(119 / 4)s 11514,s~O 41. - 16 

l 
43. 1/ (8./2) 45. y = a2x - a3 + -

a 
47. y = 6x - 9 and y = -2x - 1 

1 
49. r,_ 53. J ' (x) = ½ x- 2/ 3 

2v2 

Section 2.3 (page 115) 

1. 6x - 5 3. 2Ax + B 

5. ½s4 
- ½s2 

7. ½t-2 /3 + ½t -3 /4 + it-4 /5 

9. x2/3 + x-8 /5 11. _5_ - 'lJx - 2-x3/2 
2./i 2 6 

2x +5 
13 - ---=-----=-

. (x2 + 5x) 2 

7r 2 
15. 

2 (2- rrt) 

17. (4x2 - 3) / x 4 

19. -t - 312 + (l / 2)r - 112 + (3/ 2),Jt 

24 
21.-- -~ 

(3 + 4x) 2 

ad - be 
25. ? 

(ex+ d) -

l 
23. -- -

,Jt( L - ,Jt)2 

27. 10 + 70x + 150x2 + 96x 3 

1 
29. 2x(Jx + 1)(5x 213 - 2) + ,r;;(x2 + 4)(5x 213 - 2) 

2....,x 
10 

+-x - '13(x2 + 4)( ./i + 1) 
3 

3 
6x + I 

l. (6x2 + 2x + 1)2 

35. 20 

1 
39. ---

18./2 

43. (1, 2) and (-1, - 2) 

b2x 
47. y =b - 4 

33. - 1 

1 
37. --

2 

41. y = 4x - 6 

49. y = l2x - 16, y = 3x + 2 

5I. x/Jx2'+'1 

Section 2.4 (page 120) 

1. 12(2x + 3)5 

30 ( 3) - II 5. - 2+ -
t2 t 

9. -2xsg n (1 - x 2 ) 

-3 

3. -20x(4 - x2) 9 

12 
7

· (5 - 4x) 2 

{ 
8 if X > 1/ 4 

ll. 0 if X < 1/ 4 

13. Fx+4 
2J3x + 4(2 + 3x + 4)2 

5 ( l ) ( 1 ) -8 /3 ~.- - 1- 2 u+--
3 (u - 1) u - I 
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17. 

y 

y = 4x + l4x 

23. (5 - 2x)f'(Sx - x 2) 
25. J'(x) 

,J3 + 2f (x) 

1 / r:: 
27 . .Ji,! (3 + 2-vx) 

29. 15/'(4 - St)f '(2 - 3/(4 - St)) 

3 
31. r,;, 

2v2 
33. 102 

35. -6 ( 1 - -1t-(3x )4 ( (3x )5 - 2 r 312
) 

X (x + ((3x) 5 - 2r 1/2) -7 

37. y = 2312 - ./i(x + 1) 39. y = ,b + 1~2 (x + 2) 

x(x 4 + 2x2 - 2) 
41. (x2 + 1)5/2 

43. 857,592 

45. no; yes; both function s are equal to x2. 

Section 2.5 (page 125) 

3. -3 sin 3x 

7. 3 csc2 (4 - 3x) 

11. 21r x cos(1r x 2) 

5. 1r sec2 1r x 

9. r sin(s - rx) 

-sinx 
13,-= == 

2,Jl + COS X 

15. -(1 + cos x) sin(x + sin x) 

17. (31r / 2) sin2(1r x / 2) cos(1r x / 2) 

19. a cos 2at 

23. sec2 x - csc2 x 

21. 2 cos(2x) + 2 sin(2x) 

25. tan2 x 

27.-tsint 29.l / (l+cosx) 

31. 2x cos(3x) - 3x2 sin(3x) 

33. 2x[sec(x 2) tan2(x2) + sec3(x2)] 

35. - sec2 t sin(tan t) cos(cos(tan t)) 

39. y =1r -X, y = X-7[ 
41. y = l - (x - 1r)/ 4, y =I+ 4(x - 1r) 

l 7[ 
43. y = ./2 + 

180
./2 (x - 45) 

45. ±(1r / 4, 1) 49. yes, (1r, 1r) 

51. yes, (21r/ 3, (21r/ 3) + v'3), (41r/3, (41r/ 3) - v'3) 

53.2 55. l 

57. 1/ 2 
59. infinitely many, 0.336508 , 0.161228 

X 

ANSWERS TO ODD-NUMBERED EXERCISES A-39 

Section 2.6 (page 130) 

I 
y' =-14(3-2x) 6

, 

1. y" =l68(3-2x) 5 , 

y"' = -1680(3 - 2x) 4 

I 
y' = - 12(x - l) - 3 , 

3. y" = 36(x - 1)-4, 

y'" = - 144(x - 1)- 5 

5. y" = -~x-5 /3 - ix-7 /3 

1 

y' = ½x-2/3 + ½x-4 / 3' 

Y"' _ .!.Qx-8/3 + ~x- 10/3 
- 27 27 

I 
y' = ~x3/2 + ~x- I/2 

7. y" = -'j-xl/2 _ ¾x-3 /2 

y'" = ljx- l/2 + ~x-5 /2 

9. y' = sec2 x, y" = 2 sec2 x tan x, y"' = 4 sec2 x tan2 x+ 
2 sec4 x 

11. y' = -2 x sin(x2), y" = -2 sin(x2) - 4x2 cos(x 2) , 

y"' = -12x cos(x 2) + 8x3 sin(x 2) 

13. (-l) 11n!x -{n+ l) 15. n!(2 - x)-( n+ I) 

17. (-l)"n!b"(a + bx)-( 11+1) 

19. JC") = { (- lla
11 

cos(ax) if n = 2k where 
(-l)k+ 1a" sin(ax) if n = 2k + 1 

k = 0, 1, 2, ... 

21. j<11
) = (-1/[a"x sin(ax) - na 11

-
1 cos(ax) ] if 

n = 2k, or (-l/[a 11 x cos(ax) + na 11
-

1 sin(ax)] if 
n = 2k + 1, where k = 0, 1, 2, ... 

1 X 3 X 5 X · · · X (2n -3) 11( -{2 n-l )/ 2 
23. --- -----'- ---'-3 1- 3x) , 

211 

(n = 2, 3, . .. ) 

Section 2. 7 (page 136) 

1. -0.0025 , 0.4975 3. -1 / 40 , - 1/ 40 

5.4 % 7. -4 % 

9. 1% 11.6 % 

13. 8 ft2/ft 
15. I/ .JnA units/square unit 

17. lfor m3/m 

19. dC = ~ length units/area unit 
dA YA 

21. (a) 10,500 Umin, 3,500 Umin , (b) 7,000 Umin 

23. decrea ses at 1/ 8 pound/mi 

25. (a) $300, (b) C(lOI) - C(lOO) = $299.50 

27. (a) - $2.00, (b) $9. 11 

Section 2.8 (page 143) 

a+b 
1. c=--

2 
9. Iner. x > 0, deer. x < 0 

11. Iner. on (-oo , -4) and (0, oo ), deer. on (-4, 0) 

www.konkur.in



A-40 ANSWERS TO ODD-NUMBERED EXE RCISES 

13. inc. on (- oo, -~) and (~ oo) dee on v'3 v13' , . 

(-~. ~) 
15. inc. on ( -2, 0) and (2, oo); dee. on ( -oo, -2) and 

(0, 2) 
17. inc. on (-oo, 3) and (5, oo); dee. on (3, 5) 

19. inc. on (-oo, oo) 23. 0.535898, 7.464102 

25. 0, -0.518784 

Section 2.9 (page 148) 

1.1 -y 2x+y 
2 i 2 +x 3y -x 

5
_ 2 - 2xy 3 

7 
_ 3x 2 + 2xy 

3x2y2 +1 · x 2 +4y 

9. 2x+3y=5 11. y=x 

13. y = 1- -
4

- (x - ~) 
4-11: 4 

15. y =2- x 17. 2(y - l) 
(1 - x) 2 

19
_ (2 - 6y)(l - 3x2)2 _ 6x 

(3y 2 - 2y) 3 3y2 - 2y 

21. - a2 / y3 23. 0 

25. -26 

Section 2.1 O (page 154) 

1. 5x + C 3. ~x 312 + C 

5. ¼x4 +C 7. -cosx+C 

9. a2x - ½x3 + C 11. 1x 312 + ~x 413 + C 

13 I 4 1 3 I 2 • 12x - 6x + 2x - x + C 

I -1 
15. 2 sin(2x) + C 17. -- + C 

l+ x 

19. ½ (2x + 3)312 + C 21. - cos(x 2) + C 

23. tanx - x + C 25. (x + sin x cosx) / 2 + C 

21. y = ½x2 - 2x + 3, all x 

29. y = 2x 312 - 15, (x > 0) 
A B 

31. y = 3 (x 3 - 1) + 2 (x 2 
- 1) + C(x - 1) + l , (all x) 

33. y = sin x + (3/ 2), (all x) 

35. y = 1 + tan X, -71: / 2 < X < 71: / 2 
37. y = x 2 + 5x - 3, (all x) 

X S X 2 
39. y = - - - + 8 (all x) 

20 2 ' 
41. y = 1 +x - cosx , (allx) 

1 
43. y = 3x - - , (x > 0) 

X 

7,fi. 18 
45. y = - - + - , (x > 0) 

2 ,ft. 

Section 2.11 (page 160) 

1. (a) t > 2, (b) t < 2, (c) all t, (d) not , 
(e) t > 2, (f) t < 2, (g) 2, (h) 0 

3.(a)t < - 2/ v'3o rt > 2/ v'3, 
(b) -2 / v'3 < t < 2/ v'3, (c) t > 0, (d) t < 0, 
(e) t > 2/ v'3 or -2 / v'3 < t < 0, 
(t) t < -2 / v'3 or O < t < 2/ v'3, 
(g) ±l2 / v'3 att = ±2 / v'3, (h) 12 

5. ace = 9.8 rn/s2 downward at all times; 
max height= 4.9 m; ball strikes ground at 9.8 mis 

7. time 27.8 s; distance 771.6 m 

9. 4h m, hvo mis 11. 400 ft 

if O < t ::: 2 13. 0.8331~ 

15.v = 4 if2 < t < 8 
20 - 2t if 8 < t < 10 

v is continuous for O < t < 10. 

a= 0 if2 < t < 8 1
2 if O < t < 2 

-2 if 8 < t < 10 
a is contin uous except at t = 2 and t = 8. 
Maximum velocity 4 is attained for 2 ::: t ::: 8. 

17. 7 s 19. 448 ft 

Review Exercises (page 161 J 

1. l 8x + 6 3. -1 

5. 611: X + 12y = 6v'3 + 71: 

7. cosx - 1 
(x - sin x) 2 

11. - 20 sec2 0 tan 0 13. 20x 19 

15. - v'3 17. - 2xf ' (3 - x 2) 

19. 2f ' (2x) J g (x / 2) + J(2x) g' (x / 2) 
4Jg(x / 2) 

21. f'(x + (g(x))2)(1 + 2g(x)g ' (x)) 

23. cosx f ' (sinx)g( cosx) - sin x f(s in x)g ' (cosx) 

25. 7x + lOy = 24 

29. 2 tan x + 3 sec x + C 

x 3 1 
21. - - - +c 

3 X 

31. 4x 3 + 3x 4 - 7 

33. /1 = x sin x + cosx + C, h = sin x - x cosx + C 

35. y = 3x 
37. point s k11: and k11: / (n + 1) where k is any integer 

39. (O, 0) , (±l / .J2 , 1/ 2), dist. = v'3 / 2 units 

41. (a) k = g / R 43. 15.3 m 

45. 80 ft/s or about 55 mph 

Challenging Problems (page 162) 

3. (a) 0, (b) 3/8, (c) 12, (d) - 48, (e) 3/7, (f) 21 

13. f (m) = C - (m - B)2 / (4A) 

17. (a) 3b2 > 8ac 
19. (a) 3 s, (b) t = 7 s, (c) t = 12 s, (d) about 13.07 rn/s2 , 

(e) 197.5 m, (f) 60.3 m. 
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Chapter 3 
Transcendental Functions 

Section 3.1 (page 169) 
1.f- 1(x)= x+ l 

:D(f - 1) = ffe..(f) = ffe..(/- t) = :D(f) = IR 

3. 1-1(x) = x 2 + 1, :D(/ - 1) = ffe..(/) = [0, oo), 
ffe..(f-1) = :D(f) = [I , oo) 

5. 1- 1(x) = x' l3 

:D(/ - 1) = ffe..(/) = ffe..(/- 1) = :D(f) = IR 

7. 1- 1 (x) = -,jx, :D(f - 1) = ffe..(f) = [O, oo), 
ffe..(/- 1) = :D(f) = (-oo , 0] 

1 
9. 1- 1 (x) = - - I, :D(f - 1

) = ffe..(f) = {x: x =I= O}, 
X 

ffe..(/- l) = :D(f) = {x: X =/= -1} 
1 -x 

11. 1- 1(x) = --, 
2+x 

/D(/ - I) = ffe..(/) = {x: X =/= -2}, 
ffe..(/- I) = /D(/) = {x : X =/= -1} 

13. g - 1 (x) = 1- 1 (x + 2) 15. k - 1 (x) = 1- 1 
( - ~) 

17. p - 1(x) = 1- 1 
(~ - 1) 

19.r - 1(x)=i (3 - / - 1 (1;x)) 

21. 1- 1(x) = { v'x-=-1 
X - 1 

23. h- 1 (x) = { J~ 
vl-x 

25. g- 1(1) = 2 

31. 2.23362 

if X > = l 
if X < l 

if X C:: 1 
if X < 1 

29. u-1
) ' c2) = 114 

33. IR, 1 
35. c = I, a, b arbitrary, ora = b = 0, c = - 1. 

37.no 

Section 3.2 (page 174) 

1. v} 

5. 3 

9. x 

13. l 

3. x 6 

7. -2x 

11. I 

15. 2 

17. loga (x 4 + 4x 2 + 3) 19. 4.728804 .. . 

21. x = (iog10 5)/ (iog10(4/ 5)) ~ -7.212567 
23. X = 3 l / 5 = lQ(lo glO 3)/ 5 ~ 1.24573 

29. 1/ 2 
33. oo 

Section 3.3 (page 182) 

1. ~ 

5. - 3x 

31. 0 

3.x 5 

64 
7.ln-

81 
In 2 

ll. x = ln(3/ 2) 

ANSWERS TO ODD-NUMBERED EXERCISES A-41 

ln5 - 91n 2 
13. x=----

21n2 

17. 3 < X < 7 / 2 

21. (1 - 2x )e- 2x 

ex 
25. --

1 + ex 

15. 0 < X < 2 

19. 5e5x 

23.-
3
-

3x -2 
ex - e- x 

27. ---
2 

29. ex+e' 

1 
33.- 

x ln x 

31. ex(sinx+co x) 

35. 2x lnx 

37. (2In5)5 2x+l 

b 
41. ---

(bs + c) Ina 

43. x.fi ()x (½ lnx + l)) 
45. sec x 47. - --;::: :;;::::====;;: 

J x2 +a 2 
49. JC11)(x) = eax(nan-l + a"x), n = I , 2, 3, ... 

2 2 2 51. y' = 2xex , y" = 2(1 + 2x )e x , 

y"' = 4(3x + 2x 3)ex
2

, yC4) = 4(3 + I 2x 2 + 4x 4 )ex
2 

53. J'(x) = x x
2
+1(2 1nx + l), 

g'(x) = xx x xx (1nx + (lnx)2 + ~) ; 

g grows more rapidly than does f. 

, ( l I I 1 ) 55 · l (x) = l (x) x - 1 + x - 2 + x - 3 + x - 4 

I 556 I 1 
57. f (2) = 3675' f (I)= 6 
59. f inc. for x < 1, dee. for x > l 

y l--( ~, 1/ e) -

71 
X 

61. y = ex 63. y = 2e In 2(x - 1) 

65. -l / e2 

67. f'(x) = (A+ B) cos ln x + (B - A) sin lnx , 
X . J cos lnx dx = 2(cos In x + sm lnx), 
X f sinln xdx = 2(sinln x - coslnx) 

69. (a) F2B ,- 2A (x); (b) - 2ex (cos x + sin x ) 

Section 3.4 (page 189) 

1.0 

5.0 

9.5 66 

13. 160.85 years 

17. $7,557.84 

21. about 142 

3. 2 

7.0 

11. 29.15 years 

15. 4,139 g 

19. about 14.7 years 
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A-42 ANSWERS TO ODD-NUMBERED EXERCISES 

23. (a) f(x) = Cebx - (a / b), 
(b) y = (yo+ (a / b))ebx - (a / b) 

25. 22 .35 °C 27. 6.84 mjn 

31. (O, -(1 / k) ln(yo/ (yo - L))) , solution ~ -oo 

33. about 7,67 1 cases, growing at about 3,028 cases/wee k 

Section 3.5 (page 198) 

1. 1r / 3 
5. 0.7 

7[ 

9. 2 + 0.2 

13. -v'I - x 2 

~ 
17. --

x 

3. - 1r/ 4 

7. -7[ / 3 

11. 2;Js 
1 

15. ---
v'l+? 

1 
19.---;:::== = 

-v'2 + X - x 2 

-sgna 
21.--;::== = = 

) a2 -( x- b) 2 

- I t 23. tan t + --
2 1 + t 

25. 2x tan- 1 x + 1 
.JI - 4x 2 sin- 1 2x - 2~ sin- 1 x 

27. ~-~ 2 ~.JI - 4x 2 (sin- 1 2x) 

X 
29.---;=== = = = = 

) (1 - x 4) sin- I x 2 

7[ - 2 
33.--

7[ - I 
d - I ! 

37. -C SC X = - ----
dx lxl-~ 

y 

~ J,,r/ ~'. - - e- - \ ,, 

~ 

~ (- l ,,r / 2) 
7[ 

39. tan- 1x+coC 1x=- 2 forx < 0 

X 

41. cont. everywhere , differentiable except at n1r for inte
gers n 

43. continuou s and differentiable everyw here except at odd 
multiples of 1r / 2 

y = cos- 1 (cos x) Y y = tan- 1(tan x ) 

X 

(
x - 1) 31r 

49.tan - 1 x+ l - tan- 1 x= 4 on(-oo , - l) 

51. J'(x) = 1-sgn (cosx) 

y 

(,r,,r ) 

X 

" 2 

y= x- sin- 1(sin x) 

(-,r ,- ,r) 

I - I X 7[ 
53. y = - tan - + 2 - -

3 3 12 
. - I X 55. y = 4 srn 5 

Section 3.6 (page 203) 
tanh x + tanh y 

3. tanh( x + y) = -----
1 + tanh x tanh y 
tanh x - tanh y 

tanh (x - y) = --- --
1 - tanh x tanh y 

d . - I l 
5. -s111h (x) = ~, 

dx vx 2 + 1 
d - I 1 

-cos h (x) = ~, 
dx vx 2 - I 
d - J l 

- tanh (x) = --, 
dx 1 - x 2 

f ~ = sinh- 1(x)+C, 

f ~ = cosh-
1
(x) + C (x > 1), 

f ___!!:!_
2 

= tanh - I (x) + C ( -1 < x < l) 
l - X 

x 2 - I x 2 + l x 2 - l 
7. (a) - -; (b) --; (c) -

2
-- ; (d) x 2 

2x 2x x+ l 

9. domain (O, !] ,ra nge [0, oo), derivative -1 / (x~) 

y 

y = Sech- 1 x 

I X 

11. fA , B = gA + B,A - 8 ; g c, D = f (C+ D)/ 2,(C - D)/ 2 
vo 

13. y = yo cosh k( x - a)+ - sinhk( x - a) 
k 

Section 3.7 (page 210) 

1. y = Ae - 5' + B e- 21 3. y = A + B e- 21 

5. y = (A + Bt)e - 41 

7. y = (A cost + B sin t)e 31 
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9. y = (A cos 2t + B sin 2t)e - 1 

11. y = (A cos v'2,t + B sin v'2t)e - 1 

13. y = ;er/2 + te-31 

15. y = e- 21(2cos t + 6sint) 

25. y = fa sin(lOt), circ freq 10, freq d~, per ~~, amp fo 
33. y = e3- 1 [2cos(2(t - 3)) + sin(2(t - 3))) 

C b 
35. y = k 2 (1 - cos(kx) + a cos(kx ) + k sin(kx) 

Review Exercises (page 211) 

1. 1/ 3 3. both limits are 0 

5. max 1/ ffe, min -1 / ffe 

7. f(x) = 3e(x 2/ 2)-2 

9. (a) about 13.863 %, (b) about 68 days 

11. e2x 13. y=x 

15. 13.8165% approx. 
17. cos - 1x = ½-sin- 1x,coc 1x = sgnxsi n- 1(1/ .J:x2+i), 

csc - 1x = sin- 1(1/x) 
19. 15 °C 

Challenging Problems (page 212) 

Chapter 4 
More Applications of Differentiation 

Section 4.1 (page 218) 

1. 32 cm2/min 
3. increasing at 160n- cm2/s 

5. (a) 1/ (6n-r) km/hr, (b) 1/(6.J;rX) km/hr 

7. 1/ (180n-) emfs 9. 2 cm2/s 

11. increasing at 2 cm3 /s 13. increas ing at rate 12 

15. increasing at rate 2/ v'S 

17. 45.)3 km/h 19 11 mis, 5/6 mis 

21. 100 tons/day 23. 16Jt min after 3:00 

25. 1 / (I 8n-) m/min 
27. 9/ (6250n-) m/min , 4.64 m 

29. 8 m/min 31. dee . at 126.9 km/h 

33. 1/8 units/s 35 . .J3 / 16 m!min 

37. (a) down at 24/125 mis, (b) right at 7/125 mis 

39. dee. at 0.0197 rad/s 

Section 4.2 (page 221) 

1. 0.351734 

5. 0.45340 

9. 0.453397651516 

41. 0.047 rad/s 

3. 0.95025 

7. 1.41421356237 

11. l.64809536561 , 2.352392647658 

13.0 .510973429389 

ANSWERS TO ODD-NUMBERED EXERCISES A-43 

15. infinitely many, 4.49340945791 

19. max 1, min -0 .11063967219 ... 

21. x1 = -a , x2 = a = xo. Look for a root half way 
between xo and x 1 

23. Xn = ( -1 / 2t -+ 0 (root) as n -+ oo. 

Section 4.3 (page 233) 

1. 3/ 4 3.a / b 

5. 1 7. I 

9.0 11. -3 / 2 

13. 1 15. -1 / 2 

17. oo 19. 2/ n-

21. -2 23.a 

25. 1 27. -1 / 2 

29. e- 2 31.0 

33. J"(x) 

Section 4.4 (page239) 

1. abs min 1 at x = -1 ; abs max 3 at x = 1 

3. abs min 1 at x = -1 ; no max 

5. abs min -1 atx = 0; abs max 8 atx = 3; Joe max 3 at 
X =-2 

7. abs min a3 + a - 4 at x = a; abs max b3 + b - 4 at 
x=b 

9. abs max b5 + b3 + 2b at x = b; no min value 

11. no max or min value s 
13. max 3 at x = -2 , min Oat x = I 

15. abs max I at x = 0; no min value 

17. no max or min value 
19. Joe max at x = -1; loc min at x 

7·~ X 

(J,-4) 

21. loc max at x = ¾; Joe min at x = 1; critical point x = 0 
is neither max nor min 

y 

I 

y=x 3(x- I)2 
X 

23. loc max at x = -1 and x = 1/ v'S; Joe min at x = J 
and x = - 1/ v'S 

X 
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A-44 ANSW ERS TO ODD-NUMBER ED EXERCISES 

25. abs min at x = 0 

....... ........... ........ .... v=.I ············ ··········· ·· . I ~ ~ J: I 
X 

27. Joe min at CP x = -1 and endpoint SP x = ./2; 
loc max at CP x = I and endpoint SP x = -./2 

_v 

I X 

y = x) 2 -x 2 

n n 
29. locmax atx = 2nn - -; loc min atx = 2nn +- (n = 

3 3 
0, ± 1, ±2, ... ) 

y 

,' 
,' 

I , 
I/ 

, 1 
, I 

Si, 
3 

, 
// y=x 

X 

31. loc max at CP x = .,,13/ 2 and endpoint SP x = - I; 
loc min at CP x = -.,,13/ 2 and endpoint SP x = l 

y 

-13 
)3 I x 

T 

y = 2x - sin- 1 x 

33. abs max at x = 1/ In 2 

y 

X 

35. abs max at x = e 

y 
(e, 1/ e) 

lnx 
y=

x 

37. loc max at CP x = O; abs min at SPs 
X = ±1 

- I 

X 

X 

39. abs max at CPs x = (2n + l)n / 2; abs min at SPs 
x = nn (n = 0, ±1 , ±2, .. . ) 

41. no max or min 

45. has min, no max 

Section 4.5 (page 244) 

1. concave down on (0, oo) 

3. concave up on IR 

43. max 2, min - 2 

47. yes, no 

5. concave down on ( -1, 0) and (I , oo); concave up on 
(-oo, -1) and (0, l); inflection x = -1, 0, l 

7. concave down on (-1 , l) ; concave up on (-oo, -1) 
and (l, oo); inflection x = ±1 

9. concave down on (-2, -2 / ./5) and (2/ ./5, 2); con
cave up on (-oo, -2) , (-2 / ./5 , 2/./5) and (2, oo); 
inflection x = ±2 , ±2 / ./5 

11. concave down on (2nn, (2n + l)n); concave up on 
((2n- l)n , 2nn), (n = 0, ±1 , ±2, ... ); inflectionx = 
nn 

13. concave down on (nn, (n + ½)n ); 

concave up on ( (n - ½ )n, nn); inflection x = nn / 2, 
(n = 0, ±1, ±2, ... ) 

15. concave down on (0, oo), up on (-oo, O); inflection 
x=O 

17. concave down on (-I / ./2, 1/ ./2), up on (-oo, -1 / ./2) 
and (1/ ./2, oo); inflection x = ±1 / ./2 

19. concave down on (-oo, -1) and (1, oo); cone up on 
(-1, l); inflection x = ±1 

21. concave down on (-oo, 4), up on (4, oo); inflection 
x=4 

23. no concavity, no inflections 

25. loc min at x = 2; Joe max at x = ~ 
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27. loc min at x = 1/ _if3; loc max at - 1/ .if3 
29. loc max at x = 1; loc min at x = -1 (both abs) 

31. loc (and abs) min atx = 1/ e 

33. loc min at x = O; inflections at x = ±2 (not discernible 
by Second Derivative Test) 

35. abs min at x = O; abs max at x = ±l / ./2 
39. If n is even, fn has a min and g11 has a max at x = 0. 

If n is odd both have inflections at x = 0. 

Section 4.6 (page 252) 

1. (a) g, (b) f" , (c) f, (d) J' 
3. (a) k(x) , (b) g(x) , (c) f(x) , (d) h(x) 

5. 

y 

2 

- I 

7. 

y 

9. 

y 

X 

X 

11. 

13. 

15. 

17. 

ANSWERS TO ODD-NUMBERED EXERCISES A-45 

~ I 
( J. n_)! 

-2,4 ( 

:-1 

y 

y 

: y 

x 3 

y =l +x 

I 
y = 2 -x 2 

x 2 
y= - 

x 2 - I 

2,1) 
. ' . ---------· -·. -----.......... ... ... .... .. -~-------------------------

-J'J 

' ' ' ' ' ' ' ' - 1: :1 

y 

.///?/ 

,/3 X 

x 3 
y =--

x1 + l 

X 

X 

X 
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A-46 ANSWERS TO ODD-NUMBERED EXERCISES 

19. 25. 

21. 

23. 

y 

,•: 
.··: 

.. ·· : 
.·· : 

/A 

X 

x 2 - 4 
y =-

x+ I 

X 

x 3 - 4x 
y=~ 

:~ / 
I ( v'S_.y;f) 
: ,•' 

; ,.-y· =x : ,,' 
:,,' 
,: 

X 

x5 
y =~-~ 

(x2 - 1)2 

27. 

29. 

31. 

y ,,-~1 
- 2

1U 2/ ~ 

(- 1,3) 

-..ti. 

y 

y 

2,r 
3 

X 

x 3 - 3x2 + 1 
y= 

x3 

········ y- 1··········· 

( 1,- 1) 

y = x + 2s in x 

4,r X 

3 

X 

(-1,-¼) 
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33. 

35. 

y 

37. 

39. 

y 

(- 1, 1/ e) 

- (I - b b 

e,¼) 

ln x 
y=

x 

l 
y=- --

)4-x2 

e3/ 2 

y 

1/ 2 

y 

- I 

(1, 1/ e) 

a X 

X 

I X 

41. y = 0. Curve crosses asymptote at x = nn: for every 
integer n . 

Section 4.7 (page 258) 

5. 10 -324 

A SWERS TO ODD-NUMBERED EXERCISES A-47 

Section 4.8 (page 264) 

1.49 / 4 3. 20 and 40 

5. 71.45 11. R2 sq. units 

13. 2ab units2 15. 50 cm2 

17. width 8 + 10./2 m, height 4 + 5./2 m 

19. rebate $250 21. point 5 km east of A 

25. (a) 0 m, (b) n:/ (4 + 11:) m 

27. 8.J3 units 
29. [ (a213 + b213) 3 + c2J 112 

units 

31. 3112 / 2 113 units 
2R fi 

33. height .JJ' radius y 3 R units 

35. base 2m x 2m, height 1 m 
20 10 

37. width -- m, height -- m 
4+n 4+n 

41. width R, depth ./JR 43. Q = 3L / 8 

45. 750 cars 

3.J]a 

5000 
47. -- m2 ; semicircle 

11: 

49. -
4

-cm 

Section 4.9 (page 272) 

1. 6x - 9 3. 2 - (x/ 4) 

5. (7 - 2x) / 27 7. 11: - X 

9. (1/ 4) + (.J3 / 2)(x - (n / 6)) 

11. about 8 cm2 13. about 62.8 mi 

15 . .Js6:::::: ~:::::: 7.071429, error< 0, 

!error! < 27~:::::: 0.0003644, (7.07106, 7.071429) 

17. ~5 :::::: ~, error < 0, I error I < 2~ 36 , (3.03635, 3.03704) 

19. cos 46° :::::: ~ (1 - ~) :::::: 0.694765 , error < 0, 
-v2 180 

!error! < 
1
,r;;- (~)

2
, (0.694658, 0.694765) 

2-v2 180 
21. sin(3.14):::::: n - 3.14, error < 0, 

I error I < (11: - 3.14) 3 / 2 < 2.02 x 10- 9, 

(11: - 3.14 - (11: - 3.14) 3 / 2, 11: - 3.14) 

23. (7 .07106, 7.07108 ), .Js6:::::: 7.07107 

25. (0.80891, 0.80921), ~:::::: 0.80906 

27. 3 :'S f(3) :'S 13/ 4 
29. g( l. 8) :::::: 0.6 , !error! < 0.0208 

31. about 1005 cm3 

Section 4.1 O (page 280) 
1 

1. 1 - x + ½x2 
- -x 3 + t4:x4 

6 
x - 2 (x - 2)2 (x - 3)3 

3. ln 2 + -- - --- + -- -
2 8 24 

x - 4 (x - 4)2 3(x - 4)3 

5· 2 +-4 -- 64 + 1536 

(x - 2)4 

64 

www.konkur.in



A-48 ANSWERS TO ODD-NUMBERED EXERC ISES 

I l l ? (-1)'1 
7. P,, (x) = 3 - 9 (x - 1) + 

27 
(x - I)- - · · · + 

311
+ 1 (x -

1y 
9. x 113 ~ 2 + 12(x - 8) - 2~8 (x - 8)2, 9 113 ~ 2.07986, 

0 < error ::; 5/ (81 x 256), 
2.07986 < 9113 < 2.08010 
1 l 

11. - ~ 1-( x- l)+(x- 1)2, - ~ 0.9804 , -( 0.02)3 ::: 
X 1.02 

1 
error < 0, 0.980392::: l.0

2 
< 0.9804 

13. ex ~ l + x + ½x2, e-O.S ~ 0.625, 

-¼(0.5) 3 ::; error < 0, 0.604 ::; e-o.s < 0.625 

x3 xs x7 
15. sin x = x - - + - - - + R7· 

. 3! 5! 7! ' 
Slll C 8 

R1 = - x for some c between O and x 
8! 

17. sin x=-
1 

[1+( x -~)-_!_(x-~)2 
.,/2 4 2! 4 

-~ (x - ~)3 
+ ~ (x - ~)4

] + R4· 
3! 4 4! 4 ' 

COS C ( 7r )5 where R4 = -- x - - for some c between x 
5! 4 

and 1r/ 4 
(x- 1)2 (x- 1)3 (x-11) 4 

19. ln x = (x - I ) -
2 

+ 
3 4 

(x- 1)5 (x-1) 6 

+ 5 - 6 + R6; 

(x - 1)7 

where R6 = 
7

c
7 

for some c between 1 and x 

I 3 9 9 
21. -

3 
+ -

3 
(x + 1) + -

3 
(x + 1)2 + -

3 
(x + 1)3 

e e ~ ~ 

23. x 2 - ½x4 25. l - 2x 2 + 4x 4 - 8x6 

27. P11(x) = 0 ifO::; n:::; 2; P11(x) = x 3 ifn :::: 3 
x3 xs x211+1 

29. X + 3! + 5! + ... + (2n + l)! 

x 2 x 3 x " 
31. e -x = I - x + - - - + · · · + (- 1) 11

- + R · 
2! 3! n! 11

' 

e-X x 11+1 

where R11 = (- l )11+ 1 -- - for some X between 0 
(n + l)! 

and x; 
I I 1 l 
- ~ - - - + · · · + - ~ 0.36788 
e 2! 3! 8! 

33. I - 2x + x 2 (f is its own best quadratic approximation ; 
(error= 0). g(x) ~ 4 + 3x + 2x 2; erro r = x3; 

g'" (c) 
since g"'(x) = 6 = 3!, therefore error= -

3
!-x3; no 

improvement is possible. 

35. P11(x) = 1 + 2x + 3x 2 + · · · + (n + l)x 11 

Section 4.11 (page 284) 

1. No. No. 

Review Exercises (page 285) 

1. 6%/ min 
3. (a) - 1,600 ohms/min, (b) - 1,350 ohms/min 

5. 2,000 7. 321r R 3 / 81 un3 

9. 9000 cm3 11. approx 0.057 rad/s 

13. about 9.69465 cm 15. 2.06 % 

17. ¼ + 0.0475 ~ 0.83290 , leno rl < 0.00011 

19. 0, 1.4055636328 
21. approx. (- 1.1462, 0.3178) 

Challenging Problems (page 286) 
dx k 3 3 1. (a) dt = 3(x0 - x ), (b) Vo/ 2 

3. (b) 11 
5. (c) yo (l - (t / T ))2, (d) (1 - (1/ .Ji))T 

7. P2 (3 - 2.Ji) / 4 
9. (a) cos- 1 (ri / r 1)2, (b) cos- 1 (rz/ r 1) 4 . 

11. approx 921 cm3 

Chapter 5 
Integration 

Section 5.1 (page 293) 

1. 13 + 23 + 33 + 43 3. 3 + 32 + 33 + · · · + 3" 
(-2) 3 (-2) 4 (-2) 5 (-2)" 

5. - 12- + ~ + ~ + . .. + (n - 2)2 

7. L7=s i 

"' " i 11. L.. i=Ox 

15. I:] ~~ sin(i - I) 

1r(1r" - 1) 
19. ----3 n 

7[ - l 

23.400 

27. -4,9 49 

33. n / (n + l) 
Section 5.2 (page 299) 

1. 3/2 sq. units 

5. 26/3 sq. units 

9. 4 sq. units 

13. 3/ (2 ln 2) sq. units 

9. Lf!2c-1ii2 

13. L'.1=1c-1/- 1; i2 
17. n(n + 1)(2n + 7)/ 6 

21. ln(n !) 

25. (x211+1 + 1)/ (x + 1) 

31. 2111 
- 1 

3. 6 sq. units 

7. 15 sq. units 

11. 32/3 sq. units 

15. ln(b/ a), follows from definition of In 

17.0 19.1r/ 4 

Section 5.3 (page 305) 

1. L (f, Pg)= 7/ 4, U(f , Pg)= 9/ 4 

e4 - 1 
3. L(f , P4) = e2 (e _ l ) ~ 4.22, 

e4 - 1 
U(f , P4) = -- ~ 11.48 

e(e - 1) 

5. L(f, P6) = i(l + -h) ~ 1.43, 

U(f, P6) = i(3 + -h) ~ 2.48 
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n - l n+l 1 1 
7. L(f, P,,) = -- , U(f, Pn) = -- ,J0 xdx = -

2n 2n 2 
(n - 1)2 (n + 1)2 

9. L(f , Pn) = 4n2 , U(f, P,,) = 4n2 , 

I 3 1 f0 x dx = -
4 

11. f0
1 ,Jx dx 13. f0" sin x dx 

15. Jd tan- 1 x dx 

Section 5.4 (page 310) 

1.0 

5. (b2 
- a2)/ 2 

9.0 

13.0 

17. 16 

21. (4 + 3n )/ 12 

25. ln 3 

29. 1 

33. 1 

37. ~ -J3 

41. 3/4 

Section 5.5 (page 316) 

1. 4 

5.9 

2 - ,Ji, 
9. 2-/2 

13. e" - e-" 

17.n / 2 

21. ½ sq. units 

25. ¼ sq. units 

29. f2_ sq. units 

33.3 

37. e - 1 

3.8 

7.n 

11.2n 

15. (2n + 3J3) / 6 

19.3 2/ 3 

23. ln 2 

27.4 

31. n /2 

35. 11 / 6 

39.41 / 2 

43. k = J 

3. 1 

1. so; 

11. (1/ -/2) - (1/ 2) 

15. (ae - 1)/ ln a 
n 

19. 3 

23 32 · . 3 sq. umt s 

27. ½ sq. units 

31. 2n sq. units 

35. 1 
sin x 

39.-
x 

sin x 2 cost 
41. -2 - - 43. --2 

X l+t 

45. (cosx) / (2,Jx) 47. f(x) = n e"<x-l) 

49. l / x 2 is not continuous ( or even defined) at x = 0 so the 
Fundamental Theorem cannot be applied over [-1 , 1]. 
Since 1/ x 2 > 0 on its domain, we would expect the 
integral to be positive if it exists at all. (It doesn't.) 

51. F( x) has a maximum value at x = 1 but no minimum 
value. 

53.2 

ANSWERS TO ODD-NUMBERED EXERCISES A-49 

Section 5.6 (page 324) 

1. -½e5-2x + C 

5. - ~(4x 2 + 1)- 4 + C 

9. ½ tan- 1 (½ sin x) + C 

3. ij(3x + 4) 312 + C 

7. ½ex
2 + C 

11. 2 ln lex/2 - e- x/2 I + C = ln lex - 2 + e-x I + C 

13. -lJ4 - 5s + C 

17. - ln (1 + e-x) + C 

X +3 
21 ltan- 1 -- + C 

• 2 2 

23. ½ cos8 x - t cos6 x + C 

1 
25. -- cos3 ax+ C 

3a 

15. ½ sin- 1 c;) + C 

19. -½(lncosx) 2 + C 

27 5 J • 2 3 . 4 I . 32 C . 16x - 4 sm x + 64 sin x + 48 sm x + 
29. ½ sec5 x + C 

31. j( tan x) 312 + ~(tan x) 712 + C 

33. i sinx - ¼ sin(2 sin x) + 3
1
2 sin(4sin x) + C 

35. ½ tan 3 x + C 

37. -~ csc9 x + ~ csc7 x - ½ csc5 x + C 

39. 1}.JT? + j 41. 3n / 16 

43. ln2 45. 2, 2(-/2- 1) 

47. n / 32 sq . units 

Section 5. 7 (page 328) 

1 . 
1. 6 sq. umts 

125 
5. 12 sq. units 

9 5 . . 
12 

sq. umts 

7r 1 
13. - - - sq. units 

2 3 

17. 2-/2 sq. units 

21. (n / 8) - In -/2 sq. units 

64 . 
3. 3 sq. uruts 

1 . 
7. 2 sq. umts 

15 
11. 8 - 2 ln 2 sq. units 

4 
15. 3 sq. units 

19. 1 - n / 4 sq. units 

23. (4n / 3) - 2 ln(2 + -J3) sq. units 

25. (4/ n) - 1 sq. units 
4 . 

27. 3 sq. umts 

e . 
29. 2 - 1 sq. umts 

Review Exercises (page 329) 

1. sum is n(n + 2) / (n + 1)2 

3.20 / 3 5.4n 

7.0 9.2 

11. sin(t 2) 13. -4 esin(4s) 

15. f(x) = -½e<312)(l-x ) 17. 9/ 2 sq. units 

19. 3/ 10 sq . units 21. (3,J3 / 4) - 1 sq. units 

www.konkur.in



A-50 ANSWERS TO ODD-NUMBERED EXERCISES 

23. (¾ sin(2x 3 +I)+ C 25. 98/ 3 

27. (n-/ 8) - (l / 2)tan - 1 (1/ 2) 

29. -cos ,J2sTI + C 31. min -n- / 4, no max 

v'3-I v'3+1 
35. XJ = 

2
y'3 , X2 = 

2
y'3 

Challenging Problems (page 330) 

Chapter 6 
Techniques of Integration 

Section 6.1 (page 337) 

1. x sin x + cos x + C 
1 2 2 

3. -x 2 sin n-x + 2 x cosn-x - 3 sin n-x + C 
7r 7r 7r 

5. ¼x4 1nx - -kx4 + C 

7. x tan- 1 x - ½ ln(l + x 2) + C 

9. (½x2 - ¼) sin- 1 x + ¼x~ + C 

11. i h + } ln(l + h) 
13. 13e2x (2 sin 3x - 3 cos 3x) + C 

15. ln(2 + v'3) - i 17. x tan x - In I sec xi+ C 

19. ~[cos(]nx) + sin(lnx)] + C 

21. lnx(ln(lnx) - 1) + C 

23. xcos- 1 x -~ + C 
2n- ;;:; 

25. 3 - ln(2 + v3) 

27. ½(x2 + 1) (tan- 1 x)
2 

- x tan- 1 x + ½ ln(l + x2) + C 

1 + e-7[ 
29. --- square units 

2 
31. !,, = x(]n x)" - nln - 1, 

!4 = x [(lnx) 4 - 4(lnx) 3 + 12(lnx)2 - 24(]nx) + 24J+c 
1 . 

11
_ 1 n - l 

33. I,,= - - sm x cosx + --ln-2, 
n n 

Sx [ 1 . s s · 3 s · J '6 = 16 - cos x 6 sm x + 24 sm x + 16 sm x + C, 

h = - cos x [ t sin6 x + fs-sin4 x + fs sin2 x + ~ ] + C 
X 2n - 3 

35.f ,,= 2 2 2 1+ 2 In -I, 2a (n - l)(x + a ) 11
- 2a (n - 1) 

X 3x 3 I X 
!3 = -----+-- -- +-tan - -+c 

4a 2(x 2 + a2)2 8a4 (x 2 + a2) 8a5 a 
37. Any conditions which guarantee that 

f(b)g ' (b) - J ' (b)g(b) = f(a)g ' (a) - J'(a)g(a) 
will suffice. 

Section 6.2 (page 346) 

1. In f2x - 31 + C 
X 2 

3. - - - In fn-x + 21 + C 
7r 7r 2 

5. ~ ln Ix - 31 + C 7. ~ In I a+ x I+ C 
6 x+3 2a a-x 

9. x - 1 ln Ix+ 21 + ½ In Ix - 1 I+ C 

11. 3 ln Ix + 1 I - 2 ln Ix I + C 
1 

13.---+c 
3(1 - 3x) 

I 13 I 
15. - 9x -

54 
ln 12 - 3xl + 6 ln !xi+ C 

1 fx2 -a 2
1 

17. 2a 2 In x2 + C 

19. x + i In Ix - al - i ln(x 2 +ax+ a2) 

a 1 2x+a 
- -tan - --+C 

v'3 v'3a 
21. ½ In !xi - ½ In Ix - 11 +¾In Ix - 31 + C 

23. ~ In Ix + 11- x . + C 
4 X - l 2(x 2 - 1) 

25. ~ In Ix - 31 + ~ + _ l_ + C 
27 x 9x 6x 2 

X I X l 
27. - - - In le - 21 - - -- + K 

4 4 2(eX - 2) 
A B 3 D Ex+ F 

29. -- + --- + --- + -- + ----
x - l (x-1) 2 (x-1) 3 x+I x 2 +x+l 

A B C D 
31. x-4+- - +- -~+ --~+--

x + 2 (x + 2)2 (x + 2)3 x - 2 

Section 6.3 (page 353) 

1. ½ sin- 1 (2x) + C 

3 9 . - I X I ~9 2 C • 2 sm - - 2xv '::I - x~ + 
3 

.Jg - x2 
5. - ---+C 

9x 
X 

7 -.J9 - x 2 + sin- 1 - + C . 3 

9. 1(9 + x 2)312 - 9.J9 + x 2 + C 

I X 
11.?--;:::==+c 

a- .Ja2 _ x2 

13. x - sin - I '.: + C 
.Ja2 - x2 a 

J I X 
15.-sec - -+c 

2 2 
x+l 

17. ½ tan- 1 
-- + C 

3 

1 1 2x+l 1 2x+l 
19. -tan- --+- ----+c 

32 2 16 4x 2 + 4x + 5 
X - a J 

21. a sin- 1 -- - v2ax -x 2 + C 
a 

3-x 
23. -----;== =:::;;: + C 

4.J3 - 2x - x 2 

3 _ 1 3x 3 + Sx 
25. 8 tan x + ( 2 2 + C 

8 l + X ) 

27. l Jn (1 + ~) - l 1n !xi - ../f=x2 + C 
2 2 2x2 

29. 2.jx - 4 ln(2 + .jx) + C 
31. ~x? /6 _ ~xS /6 + ~x2f3 + 2xl f2 

- 3x 113 - 6x 116 + 3 ln(l + x 113) + 6 tan- 1 x 116 + C 

7r v'3 
33. - - - 35. n-/ 3 

6 8 
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t - 1 
37. 2 - ¼ ln it+ 11 + ½ ln(t 2 + 1) + C 

4(t + l) 

I 11-.J1-x2 1 l ((2+~)
2

) 
39. 3 ln x + 12 ln 3 + x2 + C 

41.-- -+- ln ---- +c 1 I 11--Jf+x21 
-Jf+x2 2 1 + -Jf+x2 
2 _ 1 (2tan(0 / 2)+ I) 

43 . .,/3tan .,/3 +c 

2 _ 1 (tan(0 / 2)) 
45 . .Js tan .Js + C 

9 I l 
47. - tan - 1 - - - square unit s 

2../2 ~ 2 

49. a2 cos- 1 
( ~) - b.J a2 - b2 square unjts 

51. - sin- 1 - - sin- 1 - - 12 ln - square units 25 ( 4 3) 4 
2 5 5 3 

In(Y + .J 1 + Y2) . 
53 . 

2 
sq. UllltS 

Section 6.4 (page 359) 

3 . 
1. 

25
e3x sm(4x) + C 

3. - ( x24 + x2 + 1) e_x2 + C 
x.Jx 2 -2 ~ 

9. 
2 

+ In Ix + v x~ - 21 + C 

11. -.J3t 2 + 5/ (5t) + C 
13. (x 5 / 3125)(625(1nx) 4 - 500(1nx) 3 + 300(1nx) 2 

- 120ln x + 24) + C 

15. (l / 6)(2 x 2 -x - 3).J-2x---x~2 - (l/2)sin - 1 ( I - x) + C 

17. (x - 2)/(4.J4x - x 2) + C 

Section 6.5 (page 367) 

1. 1/ 2 

5. 3 X 21/ 3 

9. 3 

13. 1/ 2 

17.2 

21.0 

25. 2 In 2 square units 

31. diverges to oo 

35. diverges to oo 

39 . diverges 

3. 1/ 2 

7. 3/ 2 

11. 7r 

15. diverge s to oo 

19. diverge s 

23. 1 sq. unit 

29.2 

33. converges 

37. diverge s to oo 

41. diverges to oo 

ANSWERS TO ODD-NUMBERED EXERCISES A-51 

Section 6.6 (page 375) 

1. T4 = 4.75 , 
M4 = 4.625, 
Ts = 4.6875 , 
Ms = 4.65625, 
T16 = 4.671875 , 
Actual errors: 
I - T4 ~ -0.0833333 , 
I - M4 ~ 0.0416667 , 
I - Ts ~ -0.0208333, 
I - Ms~ 0.0104167 , 
I - T16 ~ -0.0052083 
Error estimates: 
II - T4I .:s 0.0833 334, 
II - M4I .:S 0.0416667 , 
II - Tsl .:S 0.0208334 , 
II - Msl s 0.0104167 , 
II - T16l S 0.0052084 

3. T4 = 0.9871158 , 
M4 = 1.0064545 , 
Ts = 0.9967852 , 
Ms = 1.0016082 , 
T16 = 0.9991967 , 
Actual errors: 
I - T4 ~ 0.0128842 , 
I - M4 ~ -0.0064545, 
I - Ts ~ 0.0032148 , 
I - Ms ~ -0 .0016082, 
I - T16 ~ 0.0008033 
Error estimates: 
II - T4J S 0.020 186, 
II - M4I .:s 0.010093 , 
II - Tsl S 0.005047 , 
I/ - M g I S 0.00252 3, 
II - T16I s 0 .001262 

5. T4 = 46 , Ts = 46 .7 
7. T4 = 3, 000 km2 , Ts = 3, 400 km 2 

9. T4 ~ 2.02622, M4 ~ 2.03236, 
T8 ~ 2.02929, Ms ~ 2.02982, 
T16 ~ 2.029555 

11. Ms~ 1.3714136 , T16 ~ 1.3704366 , I ~ 1.371 

Section 6.7 (page 380) 

1. S4 = Ss = / , Errors= 0 
3. S4 ~ 1.0001346 , Ss ~ 1.0000083 , 

I - S4 ~ -0.0001346 , I - Ss ~ -0.0000083 

5. 46.93 
7. For f(x) = e-x : 

II - S4I s 0.000022 , II - Ssl s 0.0000014 ; 
for f(x) = sinx, 
II - S4J S 0.00021 , 
II - Ssl S 0.000013 

9. S4 ~ 2.0343333, Ss ~ 2.0303133, 
S16 ~ 2.0296433 
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A-52 ANSWERS TO ODD-NUMBERED EXERCISES 

Section 6.8 (page 386) 

i i udu 
13 --
• o 1 + u3 

3. J ,r/2 es in 0 d0, 
- ,r/2 1

1 e l - 112 + eu2_, 
or 2 ~ du 

o 2 - u2 

dv i
i 

5.4 --;====c=====c====:= 
O Jc2 - v2)(2 - 2v2 + v4) 

7. T2 ~ 0.603553 T4 ~ 0.643283 , 
Ts ~ 0.658130 , T16 ~ 0.663581 ; 
Errors: I - T2 ~ 0.0631 , I - T4 ~ 0.0234 , 
I - Ts ~ 0.0085, I - T16 ~ 0.0031. 
Errors do not decrease like 1 / n2 because the second 
derivative off (x ) = .Jx is not bounded on [0, l]. 

9. I ~ 0.74684 with error less than 10-4; seven terms of 
the series are needed. 

11. A= 1, u = 1/ -v'3 
13. A = 5/ 9, B = 8/ 9, u = .j3js 
15. R1 ~ 0.7471805 , R2 ~ 0.7468337 , 

R3 ~ 0.7468241 , I ~ 0.746824 
2h 

17. R2 = -(7 yo + 32y1 + 12y2 + 32y3 + 7y4) 
45 

Review Exercises on Techniques of Integration (page 388) 

1. ~ ln Ix + 21 - ¾ ln 12x + 11 + C 

3. -4
1 sin4 x - -6

1 sin6 x + C 5. ~ In 1

2
x -

1 
I + C 

4 2x + 1 

7. -- - -- + 9. ½ (5x3 - 2)
113 + C 

1 (vl-x2)3 

c 
3 X 

1 - IX X 
11. T6 tan 2 + 8(4 + x2) + C 

13. -
1
- (2x~/l +4 x + ln(2x + v'1+4X)) + C 

21n 2 

15. ¼ tan4 x + ¼ tan6 x + C 

17. -e-x (~ cos 2x + ½ sin2 x ) + C 

19. ~ (cos(3ln x) + 3sin(3lnx)) + C 
10 

21. ¼ (ln(l + x 2
) )

2 + C 

1 x x.J 2 - x 2 
23. sin- - - - --+c 

./2 2 

1 ( I I I ) 25
' 64 - 7(4x + 1)7 + 4(4x + 1)8 - 9(4x + 1)9 +c 

27. -¼ cos4 x + ¼ cos3 4x - fr5 cos5 4x + C 

29. -½ ln(2 e-x + 1) + C 

31. -½ sin2 x - 2sin x - 4ln(2 - sin x) + C 

Jf=x2 
33. --- +c 

X 

35. fg(I - 4x2)312 - rt;.Jl - 4x 2 + C 

37 . .Jx2+l + ln(x + .Jx2+1) + C 

39. x +½In lxl + 1 In Ix - 31 - i In Ix+ 31 + C 

41 _..!_ cos10 x + 1. cos12 x - 1- cos14 x + C ' 10 6 14 

1 1 lx +l-./2 1 43. - In lx2 + 2x - 11 - r,; In ./2 + C 
2 2..,;2 X + 1 + 2 

45 1.x 3 sin- 1 2x + 1-.J1 - 4x 2 - 1-(1 - 4x2)312 + C ' 3 24 72 

47. ,is (3x - sin(4x) + A sin(8x)) 

49 tan- 1 .Jx + C • 2 

x2 1 1 15 
51. - - 2x + - In lx l + - + - In Ix + 2 1 + C 

2 4 2x 4 

53. -½ cos(2 ln x) + C 55. ½ exp(2 tan- 1 x) + C 

57. ¼(In(3 + x2))
2 

+ C 59. ½{sin- 1 (x / 2))
2 

+ C 

61 . .Jx 2 + 6x + 10 - 2ln( x + 3 + .Jx 2 + 6x + 10) + C 

2 I C 
63. 5(2 + x2)5/2 - 3(2 + x2)3/2 + 

65. ¥x 716 - ix 516 + 2.,/x. - 6x 116 + 6tan - 1 x 116 + C 

67. jx312 - x + 4.,/x - 4 ln(l + .Jx.) + C 

1 
69. 2(4 - x2) + C 

71. ½x3 tan- 1 x - ¼x2 + ¼ ln(l + x2) + C 

73. - ln ----- + C 1 13 tan(x / 2)- I I 
5 tan(x / 2) + 3 

75. ½ In I tan(x/ 2)1- ¼(tan- 1(x/ 2))
2 

+ C 

= ~ (in 11 - cos x I - 1 - cos x) + C 
4 1 + cos x I + cos x 

77. 2.,/x - 2 tan- 1 .,/x + C 
l 2 4 2 2 79. 2x + 3 In Ix - 21 - 3 ln(x + 2x + 4) 

4 I X + l 
+- tan- --+c 

.J3 .J3 

Review Exercises (Other) (page 389) 

1.1 = ½(xex cosx + (x - l) ex sin x) , 

J = ½(o - x )ex cos x + x ex sin x) 

3. diverges to oo 5. -4 / 9 

9. 367,000 m3 

11. Ts = 1.61800 , Ss = 1.62092, I ~ 1.62 

13. (a) T4 = 5.526 , S4 = 5.504 ; (b) Ss = 5.504; (c) 
Yes, because S4 = Ss, and Simpson's Rule is exact for 
cubic s. 

Challenging Problems (page 389) 
1 22 1 22 1 

1. (c) I = 630 ' 7 - 630 < 1r: < 7 - 1260. 

I _ 1 (2x+l) 1 _ 1 (2 x -1) 
3. (a) .J3 tan .J3 + .J3tan .J3 , 

(b) -
1
-tan - 1 ( hx + 1) + ~tan - I ( hx - 1) 

./2 ..,;2 
7. (a) a = 7 / 90, b = 16/ 45, c = 2/ 15. 

(b) one interval: approx 0.6321208750 , two intervals: 
approx 0.6321205638 , true val: 0.6321205588 
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Chapter 7 
Applications of Integration 

Section 7.1 (page 399) 
n . 3n 

1. -
5 

cu. units 3. - cu. units 
10 

16n 8n . 
5. (a) 15 cu. units, (b) 3 cu. umts 

2h 108n 
7. (a) 2 cu. units , (b) -

5
- cu. units 

15n n 2 
9. (a) 4 - 8 cu. units , (b) n (2 - In 2) cu. units 

10n 
11. -

3
- cu. units 13. about 35% 

nh ( 2 2 2a
3

) 15. 3 b - 3a + b cu. units 

17. ~(a - b)2 (2a + b) cu. units 

4nab 2 

19. -
3
- cu. units 

(b) 2n cu. units 21. (a) n / 2 cu. units , 

23. k > 2 

27. about 1, 537 cu. units 

25. yes; no; a2b/ 2 cm3 

29. 8192n / 105 cu . units 

h sin a. 
31.R=---

sin a. + cos 2a. 

Section 7.2 (page 403) 

1. 6 m3 3. n / 3 units3 

5. 132 ft3 7. na 2h/ 2 cm3 

16r 3 

9. 3z2 sq. units 11. -
3

- cu. units 

13. 72n cm3 

16, 000 
17. -

3
- cu. units 

15. n r2 (a + b)/ 2 cu. units 

19. 12nJ2 in3 

21. approx 97.28 cm3 

Section 7.3 (page 41 OJ 

1. 2.Js units 3. 52/ 3 units 

5. (2/ 27)(13 3/ 2 - 8) units 7. 6 units 

9. (e2 + 1)/ 4 units 11. sinh a units. 

13 . .Ju+ ¼ Jn(4 + .Ju) units 

15. 6a units 17. 1.0338 units 

19. 1.0581 
21. (103/ 2 - l)n / 27 sq. units 

23 __ 64_n [ -( 1_3_/ 4_)
5_12_-_l __ ( 1_3_/ 4_) 

3
_1_

2 
_-_l J 

81 5 3 
sq. units 

25. 2n ( J2 + ln(l + J2)) sq. units 

27. 2n (
2

1

5
: + ln4) sq. unit s 

29. 4n 2ab sq. units 

ANSWERS TO ODD- UMBERED EXERCISES A-53 

( 
ln(2+ .J3) 31. 8n 1 + 

2
.J3 sq. units 

33. s = ~ J4+ n 2£ (~) 
7[ 4 + 7r2 

35. k > - 1 
37. (a) 1r cu. units; (c) "Cove ring" a surface with paint 

require s putting on a layer of constant thickness . Far 
enough to the right , the horn is thinn er than any pre
scribed constant , so it can contain less paint than would 
be necessary to paint its surface. 

Section 7.4 (page 417) 

2L L 
1. mass - ; centre of mass at s = -

7[ 2 
_ _ 4a 

3. m=¼na oa 2 ; x=y=-
3n 

256k _ 16 
5. m = ~ ; i = 0, y = 7 

ka 3 2a a 
7· m. = 2; i = 3' 5i = 2 
9. m = J; a(x)(g(x) - f(x)) dx ; 

Mx=O = J; x a( x)(g(x)- f(x)) dx , i = Mx=o/ m , 

My=O = ½ J; a( x) ((g(x)) 2 - (f(x))2) dx, 

ji = My=ol m 

11. Mas s is in R4 kg.The cenu·e of mass is along the line 
through the centre of the ball perpendicular to the plane , 
at a distance R / 10 m from the cenu·e of the ball on the 
side opposite the plane. 

13. m = ½npoa4; i = l6a / (l5n) , ji = 0, z = 8a / 15 

15.m = ½kna3; i =0 , 

17. about 5.57C / k312 

Section 7.5 (page 422) 

1. (~ , 4r) 
3n 3n 

3a 
y = -

2n 

( 
J2-l n ) 3

• ln( l + J2) ' 8 ln(l + J2) 

( 
9.J3 - 4n) 5. 0, r,:, 
4n - 3v3 

7. (~ -~) 
9 ' 3 

9. The centroid is on the axis of symmetry of the hemi
sphere half way between the base plane and the vertex . 

11. The centroid is on the axis of the cone, one quarter of 
the cone's height above the base plane. 

13. (~ ~) 
2' 8 

17. (8/ 9, 11/ 9) 

21. (1, -2) 

25. (0 .71377 , 0.26053) 

15. (: , :) 

19. (0, 2/ (3(n + 2))) 

Sn 
23. 3 cu. units 

27. (1, i) 
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A-54 ANSWERS TO ODD -NUMBERED EXERCISES 

29 
__ M x= O __ M y =O 

.x - -A-,Y- -A-, 

where A= 1d (g(y) - f(y)) dy , 

M x= O = ½ 1d ((g(y))2 - (f(y)) 2) dy, 

M y= O = 1d y (g( y) - f(y)) dy 

31. diamond or ientation , edge upward 

Section 7.6 (page 429) 
1. (a) 235,200 N, (b) 352,8 00 N 

3. 6.12 x 108 N 

7. 7.056 x 105 N·m 

9. 2450,rn 3 (a+ 
8;i) N·m 

11. 19,600 XR 3 N-m 
3 

Section 7.7 (page 433) 

1. $ 1 l , 000 

5. $9,063.46 

9. $50,000 

13. $64,872.10 

17. about 23,300, $11,890 

Section 7.8 (page 445) 

1. no more than $2.47 

5. 8.92 x 106 N 

3. $8(Fx - ln(l + Fx)) 

7. $5,865.64 

11. $ 11,477 .55 

15. J[ e-,t( r) P(t) dt 

3. $6 .81 

5. fl :::::;; 3 .5833, a = 1.7059, Pr (X :S 3) = 0.4833 

7. (a) eight triples (x, y, z) where x, y, z E {H , T) 
(b) Pr(H , H , H) = 0.166375, Pr(H , H, T) = 
Pr(H , T, H) = Pr(T , H , H) = 0.136125, Pr(H, T, T) = 
Pr(T , H , T) = Pr(T , T, H) = 0.111375,Pr(T, T, T) = 
0 .091125 
(c) f(O) = 0.911125, f(l) = 0.334125 , f(2) = 
0.408375 , f (3) = 0.166375 
(d) 0.908875 , (e) 1.650000 

2 2 1 l 
9. (a)-, (b) µ = 2, a = -, a = r;:;' 

9 2 -v2 
8 

(c) 
9
v12 :::::;; 0 .63 

3 ? 3 {3 
11. (a) 3, (b)p=4,a-= 80 ' a=vso ' 

69 {3 
cc) 

20 
v 80 :::::;; o.668 

1 2 I (T 
13.(a)6 (b)Jt = 2,a = 

20
,a = VW' 

7 
(c) ~ :::::;; 0.626 

5-v5 
2 _ 1 ~ 2 _n-2 

15. (a) c ' (b) p - c ~ 0.0.564, a - - -, 
-v n -v n 2n 

a = R:::::;; 0.426 , (c) Pr:::::; 0.68 

19. (a) 0, (b) e- 3 :::::;; 0.05 , (c) :::::;; 0.046 

21. approximately 0.006 

Section 7.9 (page 453) 

1. y2 = Cx 

5. Y = Ce 1212 

Ce 2x - 1 
7. y = ±1, y = - 2-

Ce x + 1 

9. y = -In(ce - 21 -½) 
13.y = ~+ce- 2x 

17. y = (l + e 1- 101)/ l0 

21. y = .J4 + x 2 

25.b 

3.x 3 - y3 = C 

11. y = x 3 + Cx 2 

15. y = X - 1 + Ce -x 

19. y = (x + 2)e 1/x 

2x 
23. y = -- , (x > 0) 

l+x 

27. If a = b the given solution is indeterminate 0/ 0; in this 
case the solution is x = a2kt / (l + akt). 

29. V = {mg, V = {mg e
2

~
1 

- I , V ---+ {mg 
v T v T e2~1 + 1 v T 

31. the hyperbolas x 2 - y2 = C 

Review Exercises (page 454) 

1. about 833 
3. a :::::;; 1.1904, b :::::;; 0.0476 

5. a= 2.1773 

9. about 27,726 N,cm 

13. $8, 798.85 

7· (3~' 3!) 
11. y = 4(x - 1 )3 

Challenging Problems (page 455) 

1. (b) ln2 / (2n), (c) n / (4k(k 2 + 1)) 

3. y = (r/ h3)x 3 - 3(r / h2)x 2 + 3(r / h)x 

5. b = -a = 27 / 2 7. 1/ n 

9. (a) S(a, a , c) = 2na 2+--;=== In ---- . 2nac
2 

(a+ .Ja
2 

- c
2

) 

.Ja2-c 2 c 

2na
2
c (c) (b) S(a , c, c) = 2nc 2 + ----===cos - 1 

- . 
.Ja2-c2 a 

b -c a-b 
(c) S(a, b, c) :::::;; -- S(a, a, c) + --S(a , c, c). 

a-c a-c 
(d) S(3 , 2, 1) :::::;; 49.595. 

Chapter 8 
Conics, Parametric Curves, and Polar Curves 

Section 8.1 (page 468) 

1. (x2 / 5) + (y2 / 9) = 1 

5. 3y 2 -x 2 = 3 

3. (x - 2)2 = 16 - 4y 

7. single point ( -1 , 0) 

www.konkur.in



y 

(-1 ,0) 

X 

9. ellipse, centre (0, 2) 
11. parabola, vertex (-1 , -4 ) 

13. hyperbol a, centre ( -~, 1) 
asymptote s 
2x+3 = ± 2312 (y- I) 

y 

15. ellip se, centre (1, - 1) 

y 

X 

X 

17. y 2 - 8y = l6x or y2 - 8y = - 4x 

19. rectan gular hyperbola, centre (1, - 1), 
semiaxes a = b = h, 
eccentricity h, 
foci (h + 1, h- 1), 
(- h + 1, - h- 1), 
asymptotesx = l ,y = -1 

y 

y 

X 

ANSWE RS TO ODD-NUMBERED EXERCISES A-55 

21. ellipse, centre (0,0), 
semi-axes a = 2, b = 1, 

foci± (2ft, -ft) 
y 

Section 8.2 (page 474) 

1. y = (x - 1)2/4 

y 

X =] +21 
y = 12 

X 

-00 < I < 00 

3. y = (1/ x) - l 

y 

( 1/ 4,3) 

X = 1/ t 
y=t- 1 
0 < t < 4 

X 

-f~:- J. ________________ _ 

x2 y2 
7. -+- = I 

9 16 

l =- 1 l=l 

X 

5. x2 + y2 = 9 

y 

X 

X 

x = 3 sin 2t 
y = 3co s2t 
0 :5 I :5 7r / 3 
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A-56 ANSWERS TO ODD -NUMBERED EXERCISES 

9. x2/3 + y2/3 = I 

y 

1=0 

X = COS
3 I 

y = sin3 
1 

0 < I < 21r 
11. the right half of the hyp~rbola x 2 - y2 = I 

13. the curve starts at the origin and spirals twice counter
clockwi se around the origin to end at ( 4n , 0) 

15. x = m/ 2, y = m2 / 4, (-oo < m < oo) 

17. x = a sect, y = a sint; 
y2 = a2(x2-a 2)/x 2 

19. x 3 + y 3 = 3xy 

y 

Section 8.3 (page 479) 

1. vertical at (1, -4) 

t-- -

X 

3. horizontal at (0, -16) and (8, 16); vertical at (- 1, -11) 

5. horizontal at (0, 1), vertical at (± 1/ .Je, l / e) 

7. horiz. at (0, ±1), vert. at (±1, 1/ ,h) and (±1 , -1 / ,h) 

9. -3 / 4 11. -1 / 2 

13. x = t - 2, y = 4t - 2 15. slope s ± l 
17. not smooth at t = 0 
19. not smooth at t = 0 

21. 23 . 
y 

X = t 3 - 3t 
2 

Y = l + t 2 
1=0 

l= - 1 

l=i 

1=2 

25 . 

y 

1=27C 

Section 8.4 (page 483) 

1. 4,h - 2 units 3. 6a units 

5. i ((l + n 2) 312 - 1) units 

7. 4 units 9. 8a units 

11. 2,hn(J + 2e") / S sq. units 

13. 72n(l + ,h) / 15 sq. units 

15. 256/ 15 sq. units 
y 

X = t 3 -4t 
y = 12 

17. 1/ 6 sq. units 
y 

19. 9n / 2 sq. unjts 

y 

23 . 32na 3 / LOS cu. units 

Section 8.5 (page 489) 

X 

x = sin4 r 
y = COS

4 t 

0 ~ t ~ 1r / 2 

x = (2 + sin 1) cost 
y = (2 + sint) sin I 
0 ~ t ~ 21r 

X 

1. x = 3, vertica l straight line 

3. 3y - 4x = 5, straight line 

X 

X 

www.konkur.in



5. 2xy = 1, rectangular hyperbola 

7. y = x 2 - x, a parabola 
9. y2 = 1 + 2x, a parabola 

11. x 2 - 3y 2 - Sy = 4, a hyperbola 

13. 15. 

y 

17. 

)' 

X 

r = l + sin 0 

19. 

y 

X 

r = l + 2co s0 

y 

r = cos3 0 

r = 2 + cos 0 ,,-' ,r / 6 

X 

21. 

y 

25. the origin and [.}3 / 2, n / 3] 

27. the origin and [3/ 2, ±1r / 3] 

29. asymptote y = l, 
r = 1 / ( 0 - a) has 
asymptote(co s a) y-( sin a) x = 1 

)' 

31. x = f(0) cos 0 , y = f(0) sin0 

39. ln01 = 1/ 01, point (-0.108461 , 0.556676) ; ln0 2 = 
- 1/ (02 + 1r), point (-0 .182488, - 0.178606) 

X 

X 

ANSWERS TO ODD- UMBERED EXERCISES A-57 

Section 8.6 (page 493) 

1. 1r2 sq. units 
y 

r = .,/0 

X 

3. a2 sq. units 
)' 

rr/ 4 

X 

r2 = a2 cos 20 

5. 1r / 2 sq. units 
y 

9. n / 4 sq. units 

r = cos 40 

y 
: ,r/ 3 

7. 2 + (n / 4) sq. units 
y 

r = l - cos 0 

11. 1r - ~J3 sq. units 
y 

. 2,r/ 3 

r = I +2cos0 

Fl+a2 13. - - - (ea" - e-arr) units 
a 

17. 67.5°, - 22.5° 
19. 90° at (0,0), 

±45 ° at ( l - -
1
- 7!___) ./2, ' 4 , 

±135 ° at (1 + ~ , 
5
;) 

21. horizontal at ( ± '}, .J2), vertical at (2, 0) and the origin 

23. horizontal at (0, 0), (~./2, ± tan- 1 ./2), 
(~./2, 1r ± tan- 1 ./2), 
vertical at (0, f ), (~./2, ± tan- 1(1/ ./2)), 
(~./2, , 7r ± tan- I (1/ ./2)) 

25. horizontal at (4, -½), (1, t ), (1, 5J) , 
vertical at (3, -t ), (3, - 5J ), no tangent at (0, ½) 

Review Exercises (page 494) 
1. ellipse, foci (±1, 0), semj-major axis ./2, semi-minor 

axis 1 
3. parabola, vertex (4, I), focus (15/ 4, 1) 

5. straight line from (0, 2) to (2, 0) 

X 
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A-58 ANSWERS TO ODD-NUMBERED EXERCISES 

7. the parabola y = x 2 - l left to right 

9. firstquadrantpartofellipse 16x2 +y2 = 16from (1, 0) 
to (0, 4) 

11. horizontal tangents at (2, ±2) (i.e . t = ± 1) 
vertical tangent at (4, 0) (i.e . t = 0) 

y 
t= - 1 

t=O 

X 

13. horizontal tangent at (0, 0) (i.e . t = 0) 
vertical tangents at (2, -1) and ( - 2, 1) 
(i.e . t = ±1) 

15. 1/ 2 sq. units 

y 

17. 1 + e2 units 

y 

X 

r = I + cos20 
X 

X 

19. r = 0 21. r = 1 + cos 20 
23. r = 1 + 2 cos 20 

y 

r = l + 2co s 20 

X 

25. rr: + (3.J3 / 4) sq. units 27. (rr: - 3) / 2 sq. units 

Challenging Problems (page 494) 

1. 16ir sec 0 cm2 5. 40rr:/ 3 ft3 

7. about 84.65 minutes 
9. r 2 = cos(20) is the inner curve; area between curves 

is 1/3 sq. units 

Chapter 9 
Sequences, Series, and Power Series 

Section 9.1 (page 503) 
1. bounded, positive, increasing, convergent to 2 

3. bounded, positive, convergent to 4 

5. bounded below, positive, increasing , divergent to infin
ity 

7. bounded below, positive, increasing, divergent to infin
ity 

9. bounded, positive , decreasing, convergent to 0 

11. divergent 13. divergent 

15. oo 17.0 

19. l 21. e- 3 

23. 0 25. 1/ 2 

27.0 29.0 

31. lim,,-. 00 a,, = 5 
33. If {a,,} is (ultimately) decreasing, then either it is 

bounded below, and therefore converge nt, or else it is 
unbounded below and therefore divergent to negative 
infinity . 

Section 9.2 (page 510) 
1 

1. -
2 

1 

3. (2 + rr:)8((2 + rr:)2 - 1) 

25 
5. --

4, 416 

9. diverges to oo 

1 
13. -

3 
17. div. to oo 

21. 14 m 

8e4 

7. - 
e-2 
3 

11.-
4 

15. div. to oo 

19. diverges 

25. If {an) is ultim ately negative, then the series Lan must 
either converge (if its partial sums are bounded below), 
or diverge to -oo (if its partial sums are not bounded 
below). 

(-It 
27. false, e.g. I: -y-
31. true 

Section 9.3 (page 520) 

1. converges 

5. converges 

9. converges 

13. diverge s to oo 

17. converges 

21. converges 

25. converges 

29. true 

3. diverges to oo 

7. diverges to oo 

11. diverges to oo 

15. converges 

19. diverges to oo 

23. converges 

1 1 
27. Sn+ 3 < s < Sn+ - 3 ; n = 6 

3(n + 1) - - 3n 
2 2 

29. Sn + ~ :S s :S Sn + r.:; n = 63 
vn + 1 vn 

n+2 
31. 0 < s - s < -- --- -- · n = 4 

n - 2n(n+ 1)!(2n+3)' 

2n(4n 2 + 6n + 2) 
33. 0 < s - Sn :': (2n)!(4n2 + 6n) ; n = 4 
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39. converges , a,:1" -+ (l / e) < 1 

41. no info from ratio test, but series diverges to infinity 
since all terms excee d l. 

2 I 
43. (b) s S k(l _ k) , k = 2' 

([ + k) 11+ I n +2 - .Jn2+3 
(c) O < s - s,, < 211k(l - k)' k = 2(n - l) 
for n ::: 2 

45. (a) 10, (b) 5, (c) 0.765 

Section 9.4 (page 526) 

1. conv. conditionally 

5. diverge s 

9. conv. conditionall y 

13.999 

3. conv. conditionally 

7. conv. absolute ly 

11. diverges 

15. 13 

17. converges absolutely if -1 < x < I , condition ally if 
x = - 1, diverges elsewhere 

19. converges absolutely if O < x < 2, conditionally if 
x = 2, diverges elsewhere 

21. converges absolutely if -2 < x < 2, conditionally if 
x = -2 , diverges elsewhere 

23. converges absolutely if-; < x < ½, conditionall y if 

x = -; , diverges elsewhere 

25. AST does not apply directly, but doe s if we remove all 
the O term s; series conver ges condi tionally 

(-1 )11 
27. (a) false, e.g. a11 = -- , 

n 
sin(nn / 2) 

(b) false , e.g. a,, =- --, (see Exerc ise 25), 
n 

(c) true 
29. converges absolutely for - 1 < x < I , conditionally if 

x = -1 , diverges elsewhere 

Section 9.5 (page 536) 
1. centre 0, radiu s 1, interv al ( -1 , 1) 

3. centre -2, radius 2, interval [- 4, 0) 

5. centre ~, radius ½, interval (1 , 2) 

7. centre 0, radius oo, interval ( -oo, oo) 

9 1 -~ (n+ l )(n+2) 11 (- l l) 
. 3 -L x, < x < 

( l -x) n=O 2 

1 ~ 11 
11. (1 _ x) 2 = ~(n + J)x , (-l <x< l ) 

1 ~n + l II 

13. (2 - X )2 = ~ 211+2 X ' 
(-2 < x < 2) 

x" 
15. ln (2-x)= ln2 -I:~ 12 ,,n , (- 2sx < 2) 

l ~n+l( 11 
17. x2 = L 211+2 x + 2) ' 

n=O 
(- 4 < X < 0) 

x3 oo 
19. ---,, = ~ 211 x211+3 

l - 2x 2 L ' 
n=O 

21. (-¼, ¼) ; 
1 +4x 

ANSWERS TO ODD-NUMBERED EXERC ISES A-59 

23. [-1 , 1); ½ if X = 0, 
1 I 1 

-- ln (l - x) - - - - otherwise 
x 3 x2 2x 

2 
25. ( -1, I) ; 

2 2 (1 - X ) 

29. ir
2 (n + 1)/ (n - 1)3 

Section 9.6 (page 545) 

27. 3/ 4 

31.1n (3/ 2) 

3"e 
1 e3x+ 1 = '°' 00 

- x" (all x) • L11=0 I , n. 

3. sin (x - ~) 
1 oo [ x2" x211+l J 

= .Ji ?;(-l)
11 

- (2n)! + (2n + I)! ' (allx) 

2 . (X) '°' oo (-1)" 2n+3 ( II ) 
5. X Sin 3 = L11=0 3211+ I (2n + 1) ! X ' a X 

(-1)"2211 
7 sin xcosx='°' 00 ---x 211+ 1 (allx) 

• L11 = 0 (2n + 1)! ' 
1 3 00 

9. 1 ::2 = l-x2+ L (-l)"(x211-1 +x2"), 
11=2 

(-1 < X < 1) 
1 + X 00 X211- l 

11. In 
1 

_ x = 2 L 
2

n _ 
1

, (-1 < x < 1) 
11=1 

x4n+ 2 

13. cosh x - cosx = 2 L~o ( ) , (all x) 
4n+2 ! 

(-1)"2" 
15 e- 2x = e2 I: 00 

--- (x + l)" (all x) · 11=0 n! , 

(-1yi+1 
17. cosx = L~o (

2
n)! (x - n)

2
\ (all x) 

(-1 )'1- I 
19. ln 4 + L ~J 

4
"n (x - 2)1', (- 2 < x S 6) 

21. sin x - cosx = 
00 (-1 )" ( n)2n + l 

.Ji.I:n=0(2n+l)! x-4 ' (allx) 

1 lLn+l( 11 ( 23. - = - - - X + 2) - 4 < X < 0) 
x2 4 211 ' 

n=O 

25. (x - 1) + I:~ 2 ~- l )'1 (x - l )" , (0 S x S 2) 
n n - 1) 

x2 5x4 

27.1 +-+-
2 24 

X x 2 

31. l + - - -
2 8 

x2 x3 
29.x+ - - -

2 6 

2 
33. ex (all x) 

ex - e-x sinh x 
35. --- = -- if X =fa 0, 1 if X = 0 

2x X 

37 . (a) l +x+x 2, (b)3+3(x-l)+(x-J) 2 

Section 9. 7 (page 549) 

1 7 
1. 720 (0 .2) 

5. 3.32011 

9. - 0 .10533 

13. 1.54306 

3. 1.22140 

7. 0.99619 

11. 0.42262 
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A-60 ANSWERS TO ODD-NUMBERED EXERC ISES 

-" oo (- I )" x2n+I (all x) 15· J(x) - L...n=O (2n + 1)(2n + I)! ' 

( ) '°' oo ( - l )" n+ I (-1 :'.S X .:'.S I ) 
17. K X = L...n =O (n + l) 2 X ' 

" (X) (- 1)" 411+1 
19. M(x) = L...n=O (2n + 1)(4n + I) x ' 

(- 1 .::sxs l) 

21. 0.946 23. 2 

25. -3 / 25 27. 0 

Section 9.8 (page 554) 

t.v'f+x 

(-1)" - I ] X 3 X 5 X · · · X (2n - 3) 
I 

" oo ..:..__..:.._ ____ ____ __ xn 
. + L...11=1 2"n! 
lxl < 1 

3. ,J4 +x 
x Loo 1 1 x 3 x 5 x · · · x (2n - 3) 17 =2+-+2 (- 1)'1-

3 
x, 

4 2 "n! 
11=2 

(-4 < X .:'.S 4) 
5. I:~ 0 (n + l)x", lxl < 1 

7r ~ I x 3 x 5 x · · · x (2n - 1) 211+1 (- I < 7· 2-x- ~ 2"n!(2n + 1) x ' 
n= I 

X < 1) 

Section 9.9 (page 560) 

1. 27r / 3 3. 7r 

5. 21:~ 1 (- 1 )11
-

1 (sin (nt)) / n 

I Loo (2cos((2n - 1)7rt) (- 1)" sin (n7rt) ) 
7 - - ----'-'------- + 

· 4 (2n - 1)27r2 n7r 
n=I 

9. I (-! )" 
11. 2 I:°:.-1 -- sin(,rnt) 

"- nn 
13. 7r 2 / 8 

Review Exercises (page 561) 

1. conv. to 0 

5. Jjmn-->oo an = ./2 

9.2 

13. converges 

3. div. to oo 

7. 4./2 /(./2 - 1) 

11. converges 

15. conve rges 

17. conv. abs. 19. co nv.co nd . 

21. conv. abs. for x in (-1, 5) , cond . for x = -1 , div. else-
where 

23. 1.202 

25. L ~ox"/3 11+1
, lxl < 3 

27. J + I:~ 1(-J)'' - 1x 211/ (ne 11
), -Je < x S Je 

29. x + L ~ I (-1)"2 211- 1x 211+1 / (2n)!, all x 

00 (-1) 11 1 x 4 x 7 x · · · x (3n - 2)x 11 

31. (L/ 2) + L n=l 2 X 24" n! , 

-8 < X .:'.S 8 
33. I:~ 0 (-l)''(x - 7r)"/ 7r11+1

, 0 < x < 27r 

35. l + 2x + 3x 2 + ~x 3 37. 1 - ½x2 + f4X
4 

39 { COS ,fi if X ::': 0 
· cos h .jfxf if x < 0 

43. ln(e/ (e - 1)) 45. 1/ 14 

47. 3, 0.49386 
2 

49. L ~ , - sin(nt) 
n 

Challenging Problems (page 562) 

5. (c) l .645 
2 2 rx 12 7. (a) oo, (c) e-x , (d) f (x) = ex JO e- dt 

Chapter 10 
Vectors and Coordinate Geometry in 3-Space 

Section 10.1 (page 569) 

1. 3 unit s ~-~ 3 . ../6 uruts 

5. lzl unit s; Jy2 + z2 unit s 

7.co s- 1(-4 / 9) ~ 116.39° 

9. -/3 / 2 sq. uruts 11. ~ units 

13. the half-space containing the origin and bounded by 
the plane passing throu gh (0, -1 , 0) perpendicular to 
the y- axis. 

15. the vertical plane (parallel to the z-axi s) passing 
through ( 1, 0 , 0) and (0, 1, 0). 

17. the sphere of radius 2 centred at (1, -2 , 3) . 

19. the solid circular cy linder of radiu s 2 with axis along 
the x -axis. 

21. the parabolic cylinder generated by tran slating the 
parabola z = y 2 in the yz- plane in the direction of 
the x-ax is . 

23 . the plane through the points (6, 0, 0), (0, 3, 0) and 
(0, 0, 2). 

25. the straight line throu gh (1, 0, 0) and (1, 1, 1). 

27 . the circle in which the sphere of radius 2 centred at 
the origin inter sec ts the sphere of radius 2 with centre 
(2, 0, 0) . 

29. the ellipse in which the plane z = x inter sec ts the 
c ircular cylinder of radius 1 and axis along the 
z-axis. 

31. the part of the solid circul ar cylinder of radius l and 
axis along the z-axis lying above or on the plane z = y . 

33 . bdry (0, 0) and x 2 + y2 = l ; interior= S; S open 

35 . bdry of S is S; interior empty ; Sis closed 

37 . bdry - the spher es x 2 + y 2 + z2 = 1 and 
x2 + y2 + 2

2 = 4 ; interior - point s between these 
spheres; S is closed 

39 . bdry of S is S, namely the line x = y = z; interior is 
empty ; S closed 

Section 10.2 (page 578) 

1. (a) 3i - 2j , (b) -3 i + 2j , 
(c) 2i - 5j , (d) -2i + 4j ,(e) -i - 2j , (f) 4i + j , (g) 
- 7i + 20j , (h) 2i - (5/ 3)j 

www.konkur.in



3. a) 6i - 10k, 8j , -3i + 20j + 5k 
b) 5./2 , 5./2 
c) shi ± sfl j - }i k d) 18 

e) cos- 1(9/ 25) ~ 68.9° f) 18/ 5./2 
g) (27 / 25)i + (36/ 25)j - (9 / 5)k 

9. from southwest at 50./2 km/h . 

11. head at angle 0 to the east of AC, where 
3 

0 = sin- 1 - ==::::;: 
2v1l + 4k2 

The trip is not possible if k < ¼.Js. If k > ¼.Js there 
is a second possible heading , n - 0, but the trip will 
take longer. 

13. t = 2 
15. cos- 1(2/ .J6) ~ 35.26° , 90° 

17. (i + j + k)/v'3 
19. ). = 1/ 2, midpoint, ). = 2/ 3, 2/3 of way from P1 to 

P2,). = -1, P1 is midway between this point and P2. 

21. plane through point with position vector (b/ lal2)a per-
pendicular to a. 

23. X = 2i - 3j - 4k 
25. (lulv + lvlu)/ j lulv + lvlui 

31. u = (w • a/ lal2)a, v = w - u 
33. x = (a+ Ku) / (2r) , y = (a - Ku) / (2s) , where K = 

Jl al2 - 4rst and u is any unit vector 

35. about 12.373 m 37. about 19 rn 

Section 10.3 (page 586) 

1. Si + l 3j + 7k 

5. ±½(2i - 2j + k) 

17.k = -6 

3 . .J6 sq. units 

15. 4/ 3 cubic units 

x • (v x w) x • (w x u) x • (u x v) 
19. J = - ---, µ = --- -, v = --- -

u • (v x w) u • (v x w) u • (v x w) 
21. u x (v x w) = -2 i + 7j-4k , (u xv) x w = i+9j+9k ; 

the first is in the plane of v and w, the second is in the 
plane of u and v. 

Section 10.4 (page 594) 
1. a) x 2 + y2 + z2 = z2

; b) x + y + z = x + y + z; 
c) x2 + y2 + z2 = -1 

3. X - y + 2z = 0 5. 7x + 5 y - Z = 12 

7. x- 5y -3 z =-7 9. x+6y-5z= l7 

11. (r, - r2) • [(r1 - r3) x (r, - r4)] = 0 

13. planes passing through the line x = 0, y + z 1 
(except the plane y + z = 1 itself) 

15. r = (1 + 2t)i + (2 - 3t)j + (3 - 4t)k , 
(-oo < t < oo) 
X = l + 2t , y = 2 - 3t , Z = 3 - 4t , ( -00 < t < 00) 
x-l y-2 z -3 

-- --
2 -3 -4 

17.r=t(7i -6 j - 5k) ; x=7t, y =-6t , 
z = -St ; x / 7 = - y / 6 = - z/ 5 

19. r = i + 2j - k + t( i + j + k); 
x=l+t, y =2+t , z =-l+t; 
x- l= y -2= z +l 

ANSWERS TO ODD-NUMBERED EXERCISES A-61 

21 x-4 _ y_ _ 7 ·-=s- 3, z -
25. r ; =I= rj, (i , j = 1, .. ·, 4, i =I= j), 

v = (r, - r2) x (r 3 - r4) =I= 0, (r1 - r3) • v = 0. 

27. 7./2 / 10 units 29. 18/ M units 

31. all lines parallel to the xy -plane and passing through 
(xo, Yo, zo). 

33. (x , y, z) satisfies the quadratic if either 
A, x + B, y + C1z = D1 or A2x + B2y + C2z = D2. 

Section 10.5 (page 598) 

1. ellipsoid centred at the origin with semiaxes 6, 3 and 2 
along the x -, y - and z-axes respectively . 

3. sphere with centre (1, -2 , 3) and radius 1/ ./2. 

5. elliptic paraboloid with vertex at the origin, axis along 
the z-axis, and cross-section x 2 + 2y2 = 1 in the plane 
z = l. 

7. hyperboloid of two sheets with vertices (±2 , 0, 0) and 
circular cross-sections in planes x = c, (c2 > 4). 

9. hyperbolic paraboloid - same as z = x2 - y2 but 
rotated 45° about the z-axis (counterclockwi se as seen 
from above). 

11. hyperbolic cylinder parallel to the y-axis, intersecting 
the xz-p lane in the hyperbo la (x 2 / 4) - z2 = 1. 

13. parabolic cylinder parallel to the y-axis. 

15. circular cone with vertex (2, 3, 1 ), vertical axis, and 
semi-vertical angle 45° . 

17. circle in the plane x + y + z = 1 having centre 
(l / 3, 1/ 3, 1/ 3) and radius .jTT73. 

19. a parabola in the plane z = l + x having vertex at 
(-1 / 2, 0, l / 2) and axis along the line z = 1 + x, 
y = 0. 

21. i -~ = l ( 1 - ~) , i + ~ = ± ( 1 + ~); 
r _ : = µ (1 + ::.) , r +: = 2-(1 - ::.) 
b c ab c µ a 

23. a= i ± k (or any multiple) 

Section 10.6 (page 602) 

1. cylindrical: [2./2 , -n / 4, l]; spherical [3, cos- 1 (1/ 3), -n / 4] 

3. Cartesian: (-v'3, 3, 2) ; cylindrical: [2v'3, 2n / 3, 2] 

5. the half-plane x = 0, y > 0 

7. the xy-pla ne 
9. the circular cylinder of radius 4 with axis along the 

z-axis 
11. the xy-plane 
13. sphere of radius 1 with centre (0, 0, 1) 

Section 10. 7 (page 611) 

··O] 3_ ( aw + by ax + bz ) 
cw+ dy ex+ dz 

S.AA
7 -n 3 2 

1) A'-G 
2 3 

D 
3 2 1 2 
2 2 0 

0 0 
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A-62 ANSWERS TO ODD-NUMBERED EXERCISES 

7.36 

19. X = l , y = 2, Z = 3 

(

1 - 1 
17. 0 l 

0 0 

21. x , = 1, x2=2, x3=-l , x4=-2 

23. neg. def . 25. pos. def. 

27. indefinite 

Section 10.8 (page 620) 

1. 2 units 
~ sp : =(U , V)->DotPro duct( 

U, Normalize(V , 2 ),conjugate=false) 

7. ang : = (u, v ) -> evalf( 
(180/Pi)*V ectorAngle (U, V)) 

9. Vo lT:=(U,V , W) ->(l/6)*abs( 
DotProduct (U, (V &x W) , conjugat e=false)) 

11. (u, v, x, y, z) = (1, 0, -1 , 3, 2) 

13. -935 

[ 

9 -36 
15. -36 192 

30 - 180 

30 J -180 
180 

Review Exercises (page 621) 

1. plane parallel to y-axis through (3, 0, 0) and (0, 0, 1) 

3. all points on or above the plane through the origin with 
normal i + j + k 

5. circular paraboloid with vertex at (0, 1, 0) and axis 
along the y-axis , opening in the direction of increasing 
y 

7. hyperbolic paraboloid 
9. points inside the ellipsoid with vertices at (±2, 0, 0), 

(0, ±2, 0, and (0, 0, ±1) 
11. cone with axis along the x-ax is, vertex at the origin , 

and elliptical cross -sections perpendicular to its axis 
13. oblique circu lar cone (elliptic cone). Cross-sections in 

horizontal planes z = k are circles of radius l with 
centres at (k, 0, k) 

15. horizontal line through (0, 0, 3) and (2, -1 , 3) 

17. circle of radius l centred at ( 1, 1, l) in plane normal to 
i +j + k 

19. 2x - y + 3z = 0 21. 2x +Sy+ 3z = 2 

23. 7 X + 4 y - 8z = 6 
25. r = (2 + 3t) i + (1 + t)j - (l + 2t)k 

27.x= 3t, y =-2t , z =4t 

29. (r 2 - r1) x (r3 -r,) = 0 

::: :~~)1 rru~ 0 
0 

-2 

35. pos. def. 

Challenging Problems (page 621) 

5. condition: a • b = 0, 
b x a 

x = - 2- + ta (for any scalar t) 
lal 

Chapter 11 
Vector Functions and Curves 

Section 11.1 (page 629) 

1. v = j , v = I, a= 0, path is the line x = 1, z = 0 

3. v = 2tj+ k, v = -l4t 2 + 1, a= 2j , path is the parabola 
y = z2, in the yz -plane 

5. v = 2ti - 2tj, v = 2./2t, a = 2i - 2j , path is the 
straight half-line x + y = 0, z = l, (x 2:: 0) 

7. v = -a sin ti+ a cos tj + ck, v = ,J a2 + c2, 
a = -a cos ti - a sin tj , path is a circular helix 

9. v = -3 sin ti - 4 sin t j + 5 cost k, v = 5, a = -r, 
path is the circle of intersection of the plane 4x = 3 y 
with the sphere x2 + y2 + z2 = 25 

11. a = v = r, v = ,J a 2 + b2 + c2 e1
, path is the straight 

. X y Z 
line - = - = -

a b C 

13. V = -(e - t COS e1 + sin e1) i 
+c-e- 1 sin e1 + cos e1)j - e1k 

v = ,J1 + e - 21 + e2r 

a= [(e- 1 
- e1

) cos e1 + sin e1]i 
+[(e - 1 - e1)sine 1 -cos e1]j- e1k 

The path is a spiral lying on the surface 
z = -L / Jx2 + y2 

15. a = -31r 2 i - 41r 2j 17 . .JJ,72(-i + j - 2k) 

19. V = 2i + 4j + 4k, a = - ~ (2i + j - 2k) 

d du 
29. -(u x (v x w)) = - x (v x w) 

dt dt 
dv dw 

+ux(dtxw)+ux(vxdt) 

31. u'" • (u x u') 
33. r = roe21, a = 4roe 21; the path is a straight line through 

the origin in the direction of ro 
1 - e-c t g . 

35. r = ro + ---Vo - 2 (ct + e- ct - l)k 
C C 

Section 11.2 (page 636) 

e - l e2 - l 
1. --, 2 

e e 
3. r = cos ti+ sin tj + k; the curve is a circle of radius l 

in the plane z = l 
7r2 R 

5. 4 .76° west of south; n towards the ground, where 

R is the radius of the earth 
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7. (a) tangential only, 90° counterclockwise from v. 
(b) tangential only, 90° clockwise from v. 
(c) normal only 

9. 16.0 hours, 52.7° 

Section 11.3 (page 643) 

1. x = .J a 2 - t2 , y = t, 0 S t S a 

3. x = a sin 0, y = -a cos 0, f :=: 0 S 7r 

5. r = - 2t i + tj + 4t 2k 
7. r = 3 cos ti+ 3 sin tj + 3(cos t + sin t)k 

9. r = (1 + 2cost)i- 2(1 - sint) j 
+ (9 + 4 cost - 8 sin t)k 

t2 
- 1 t 2 + 1 

11. Choice (b) leads tor= -
2
-i + tj + -

2
-k , which 

represents the whole parabola. Choices (a) and (c) 
lead to separate parametrizations for the halves y ::: 0 
and y :=: 0 of the parabola . For (a) these are r = 
ti± .JI+'Tt"j + (I + t)k , (t ::: -1/ 2) 

13. (17v'l7 - 16./2) / 27 units 

f T .J 4a 2t4 + b2t2 + c2 
15. ------- dt units; 

I t 
a(T 2 - 1) + c ln T units 

17. 1r.J2 + 4n 2 + ln(./2.n +.JI+ 2n 2) units 

19. ,J2e 47r + 1 - ../3 + ½ ln e
4
~+l-er 

-½ ln(2 - ../3) units 

21. straight line segments from (0, 0) to (l, 1), then to 
(0, 2) 

23. r = .J A2+IB2+c2 (As i + Bsj + Csk) 

25. r = a ( 1 - ; ) 
312 

i + a ( f) 312 
j + b ( 1 - ~) k, 

0::: s SK, K = (.J9a 2 + 16b2)/ 2 

Section 11.4 (page 651) 

I. t = .J1+ 161,2+s1,4 (i - 4tj + 9t2k) 

3. T = ~(cos 2ti + sin 2tj - sin tk) 
l +sin 2 r 

Section 11.5 (page 657) 

1. 1/ 2, 27 / 2 3. 27 / (4./2) 

5. t = (i + 2j) / .J5 , N = (-2 i + j) / .J5, :s = k 
A l 2 

7. T = --;::===(i + tj + t k), 
.J1 + t2 + t4 

A 1 2 
B = -====(t i -2t j + k), 

.Jr 4 + 4t 2 + 1 
A -(t + 2t 3)i + (I - t4)j + (t3 + 2t)k 
N---;====-====--

- .Jt 4 +4t 2 +1.Jl+t 2 +t 4 ' 
,j t4 + 4t 2 + l 2 

K = ----- ! = ----
(t4 + t2 + 1)312 ' t4 + 4t 2 + l 

9. K(t) = 1/ ./2 , r(t) = 0, curve is a circle in the plane 
y + z = 4, having centre (2, 1, 3) and radius ./2 

ANSWERS TO ODD-NUMBERED EXERC ISES A-63 

11. (a) t = i, 
A 2j - k 
N= ,Js , 

A j + 2k ~ 
B = ,Js , K = v 5, r = 0 

(b) T= ft u- }i k), B= ~C- i +2 j +2./2k), 

N = - 59(6i+j+ ./2 k) , K = 2f9, r = _6~ 

13. max a / b2, min b/ a 2 

15. K = e: 
312 

,r = (x - l - e2x) i + (2ex + e-x) j 
(1 + e X) 

17. - 3 -
2,./'ia,, 

21. r = -4x 3i + (3x2 + ½)j 

23. f(x) = ½0 5x - I0 x 3 + 3x 5) 

Section 11.6 (page 666) 

3. velocity: 1/ ./2, 1/ ./2; acceleration: -e- 0 / 2, e- 0 / 2. 

5. la,I = vl c~ + rl3) 
7. 42,777 km, the equatorial plane 

9. 4~ 13. 3/ 4 

15. (1/ 2) - (E/ n) 
19. r = A secw(0 - 0o), w2 = l - (k/ h2) if k < h2 , 

r = 1/ (A + B0) ifk = h2
, 

r = A ew/J + B e-w/J , w2 = (k / h2) - 1, if k > h2 ; 

there are no bounded orbits that do not approach the 
origin except in the case k = h 2 if B = 0 when there are 
circular orbits. (Now aren't you glad gravitation is an 
inverse square rather than an inverse cube attraction?) 

21. centre C/~ 1, 0} 

asymptotes in directions 0 = ± cos- 1 ( - ~); 

. . e 
senu-tran sverse axis a = € 2 _ 

1 
; 

e 
semi-conjugate axis b = ~; 

E2 - l 
. ff 

semi-focal separat10n c = f 2 _ 
1

. 

Review Exercises (page 668) 

3. V = 2(i + 2j + 2k) , a= (8/ 3)(-2i - j + 2k) 

5. K = r = ./2 / (e1 + e- 1)2 

9. 4a(l - cos(T / 2)) units 
11. r c(t) = a(t - sin t)i + a(l - cos t)j 

13. p = sin ¢ cos 0i +sin ¢ sin 0j + cos ¢k right-handed 

~ = cos ¢ cos 0i + cos¢ sin 0j - sin ¢ k 

0 = - sin0i + cos0j 
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A-64 ANSWERS TO ODD-NUMBERED EXERCISES 

Challenging Problems (page 669) 

- j + k "" -5 l. (a) Q _Q .Ji ,Q "' 7.272 x 10 . 

(b) ac = -./iQvi. 
(c) about 15.5 cm west of P. 

3. 
(c)v(t) = (vo-(vo • k) k)cos(wt)+ (vo x k) sin(wt)+ 
(vo • k)k. 
(d) Straight line if vo is parallel to k, circle if vo is 
perpendicular to k. 

5. (a) y = (48 + 24x 2 - x4)/ 64 
;;:, 1r: vt 

7. (a) Yes, time n:a/ (v-v L), (b) ¢ = - - ;;:,• 
2 a-v2 

0 = ln [ sec (a~)+ tan (a~) J 
(c) infinitely often 

Chapter 12 
Partial Differentiation 

Section 12.1 (page 677) 

1. all (x , y ) with x -::/= y 3. all (x, y ) except (0, 0) 

5. all (x , y ) satisfying 4x 2 + 9y2 2: 36 

7. all (x, y ) with x y > -1 
9. all (x, y, z) except (0, 0 , 0) 

11. z = f (x, y) = x 13. z = f(x , y) = y2 

y 

X y 
X 

15. f(x, y) = Jx 2 + y 2 17. f (x , y) = lxl + lyl 

y 
X X 

19. J(x , y) =x - y = C 21.f( x,y )= xy =C 

y 

y 

X 

~~ 
~~ 

x -y 
23. f( x, y ) = -- = C 25. f(x, y ) = xe -Y = C 

x + y 

y y 

X 

27. At B , because the contours are closer together there 

29. a plane containing the y-axis, sloping uphill in the x 

direction 
31. a right-circu lar cone with base in the xy-plane and 

vertex at height 5 on the z-axis 
33. No, different curves of the family must not intersect in 

the region. 

35. (a) J x 2 + y2, (b) (x2 + y2)1f4, 

(c) x2 + y2, (d) e../xZ+yz 

37. spheres centred at the origin 

39. circular cylinders with axis along the z-axis 

41. regular octahedra with vertices on the coordinate axes 

Section 12.2 (page 682) 

1. 2 3. does not exist 

5. -1 7. 0 

9. does not exist 11.0 

13. f(O , 0) = I 
15. all (x , y ) such that x -::/= ±y; yes; yes f(x , x) = 2~ 

makes f continuous at (x, x) for x f. O; no, f has no 
continuous extension to the line x + y = 0. 

17.no,yes 19, a = C = 0, b -j. 0 

23. a surface having no tears in it, meeting vertical lines 
through points of the region exactly once 

Section 12.3 (page 689) 

1. !1 (x , y ) = !1 (3, 2) = 1, h (x, y ) = h.(3 , 2) = -1 
3. J, = 3x2y4z s, h = 4x 3y3z5, h = 5x 3y4z4 

All three vanish at (0, -1 , -1) . 

5 
az _ - y az x 

. ax - x2 + y2, By x2 + y2 , 
az I az l 

At( - J, l) :a x=-2 , By 2 

x cos(x.Jy) 
7. !1 = .jycos(x.jy) , h = ---- , 

2.Jy 
At(n: / 3, 4):f1=-l , h=-n: / 24 
aw aw 

9. - = y ln z x (Y ln z- l ), - = lnx lnzx Y ln z 
Bx By ' 
aw y lnx y ln z 
-=--x 
az z 

aw aw aw 2 
At (e, 2, e): - = - = 2e , - - e 

ax az ay - · 
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11. / 1 (0, 0 = 2, h( O, 0) = -1 / 3 

13. z = -4x - 2y - 3; ,.!l = ~ = z:} 

15. Z = ~ (1 - X ~ 7r + ~6 (y - 4)} 
x- n- y -4 z - l / v'2 

- 1 / 4v'2 n-/ l 6v'2 - 1 
17 _ 2 3x 4y . x- 1 _ y-2 _ z- l/ 5 

' z - 5 + 25 - 25' - 3- - ~ - - 25 

19. z = ln5 + ~(x - 1) - ~(y + 2); 
x- 1 y +2 z -ln5 

2/ 5 - 4/ 5 -1 
x + y n- n-

21. z = -
2

- - 4 ; 2(x - 1) = 2(y + 1) = - z - 4 
23. (0, 0) , ( I , !) , (- 1, -1 ) 

33. w = f (a , b, c) + / 1 (a , b, c)(x - a)+ fz (a , b, c) (y -
b) + h (a, b, c)(z - c) 

35 . .J7 / 4 units 
37. / 1 (0 , 0) = 1, h (O, 0) does not exist. 

39 . f is continuous at (0 , O); /1 and hare not. 

Section 12.4 (page 694) 

a2z a2z a2z 
5. ax2 = -ye x, ax ay = e>'- ex, ay 2 = xe >' 

7. 27, 10, x 2ex>'(x z sin x z - (3 + xy) cosxz ) 

19. u (x, y, z , t) = t -3 /2e-( x2+y2+z2)/4t 

Section 12.5 (page 704) 

aw 
1. at = f 1g2 + h h2 + h k2 

az , 
3. - = g , h 1 + gzf h, 

au 
d W t / 

5. dz= f 1g 1h + f 1g2 + h h + h, 

aw I - f h ' f az x - 2 + 3, 

aw 
azlx,y = h 
az - Sy 

7. -=-- - -- -
ax l 3x 2 - 2x y + 2y2 

9. 2f 1(2x,3y) 11. 2xfz(y 2,x 2) 

13. dT / dt = e- 1 (/ '( t) - f( t )) ; dT / dt = 0 if f(t) = e1
: 

in this case the decrease in T with time (at fixed dept h) 
is exactl y balanced by the increase in T with depth. 

15. 4/11 + 12/1 2 + 9!22, 6/ 11 +5 / 12- 6!22, 
9 f 11 - 12 f I 2 + 4 f22 

AN SW ERS TO ODD-NUMBERED EXERC ISES A-65 

17. /1 cos s - h sin s+ /11 t cos s sin s 
+ /1 2 t ( cos2 s - sin2 s) - /22 t sin s cos s 

19. h + 2y 2 !12 + x yfi 2 - 4x y/3 1 - 2x2 /32; 
all derivatives at (y2, x y, -x 2) 

27. I:,;1,j= I x; Xj f;j(x 1, · · · , x ,,) = k(k-1) f( x 1, · · · , x,, ) 

31. u(x, y) = f (x + ct) 

Section 12.6 (page 714) 

1. 6.9 3. 0.0814 

5. 2.967 
7. d z = 2xe 3Y dx + 3x 2e3Y dy, 8.76 

9• d F = x dx + y dy + z d z, 3_ 1 
Jx2 + Y +2 + z2 

11. (a) 3%, (b) 2%, (c) 1 % 13. 8.88 ft2 

15. 169 m, 24 m, most sensitive to angle at B 

17. ( c?s0 - r sin0 ) 
srn 0 r cos0 

19. ( _
2;z 2~ -:/z), (5.99 , 3.98) 

27. f* (p) = p2/4 
*( 2p (3) 29. f p) = 1 - 3 - In p 

Section 12. 7 (page 725) 

1. 4i + 2j ; z = 4x + 2y - 3; 2x + y = 3 

3. (3i - 4j )/ 25; 3x - 4y - 25z + 10 = O; 
3x - 4y + 5 = 0 

5. (2i - 4j ) / 5; 2x - 4y - 5z = 10 - 5 ln 5; x - 2y = 5 

7. x+ y- 3z =- 3 9 . .J3 y + z = .J3 + n-/ 3 

4 
11. ,js 13. J - 2.)3 

17. in directions makin g angles -30 ° or - 150° with posi
tive x-ax is; no; - j . 

19. 7i - j 
21 . a) 

b) in direction - i - j 
c) 4-v'2k deg/u nit time 
d) 12k/ -Js deg/unit time 
e) x 2y = - 4 
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A-66 ANSWERS TO ODD-NUMBERED EXERC ISES 

23. 3x 2 - 2y2 = 10 25. -4 / 3 

27. i - 2j + k 
33. DvCDvf) = vf fll+vU22+v5!33+2 v1v2f12+2v1v 3f13 

+2v2v 3f23-
This is the second derivative of f as measured by an 
observer moving with velocity v. 

a2r (aT) 35. - 2 + 2Dv(r) - + Da (t) T + Dv(l)CDv(r)T) 
at at 

Section 12.B (page 736) 

x4 + 3xy2 2 3 
1. -

3 3 
, y =/= 0, y =I= -4x 

y +4x y 

3xy 4 + x z 
3. 2 , y =/= 0, X =/= 2y z 

xy - 2y z 

x -2t 2w 2 7 
__ aG/a x,a G-1-o 

5. 2 , w =/= 2xy r 
2xy - w ac ; au au 

v2H2 + wH3 
9 ~--- u2Hi + tH3 =/= 0, 

• - u2 Hi + t H3 ' 
all derivatives at Cu2w , v 2t , wt) 
2w - 4y J l 1 

ll. 4x - w' 4x =I= w 13' 6' 2' 6' 2 ' 6 
15. r; al] points except the orig in 

17. -3 / 2 
19. _ a(F, G, H) ; a(F , G, H) 

aCy,z ,w) a (x, z, w) 

acF, G, H) / a(F , G, H) 
21. 15; 

a(x2,x3 , x5) acx1,x3,x5) 

23. 2(u + v), -2 , 0 

31. s = 
3:k (1n [ ~:~ (:f13] + I) 

S = 3:k (in [ 2n::kT (: y/3] + ~) 

Section 12.9 (page 742) 

00 II 2n 
1. " (-1 )" ~ 

L.,, 211+ I 
n=O 
oo x2n+ I Cy + l)2n + l 

3. I: C-1)11
-- --

11=0 2n + 1 
00 11 1 

5. LL _ __ x2k y2n- 2k 
n= Ok=O k!Cn - k)! 

7. ½ - ¼(x - 2) + ½CY - 1) + ~(x - 2)2 

-½Cx - 2)Cy - 1) + ½CY - 1)2 
- YGCx - 2)3 

+¾Cx - 2)2 Cy - 1) - ¾Cx - 2)(y - 1)2 + ½(y - 1)3 

9. x + y2- ~ 
11. 1- Cy -1) + (y- 1)2- ½(x - f)2 

13. -x - x 2 - C5/ 6)x3 

x 2y 2x2 8xy 8y2 
15. - - - - - - - - - -

3 3 27 27 27 

[(2n)!] 3 

17. Cn!)2 

Review Exercises (page 743) 
1. 

3. 

y 

4y 2 
x+- =C 

X 

X 

5. cont. except on lines x = ± y; can be extended to x = y 
except at the origin; if f (0, 0) = 0 then Ji (0, 0) = 
hCO, 0) = l 

7. (a) ax + by + 4cz = 16, 
(b) the circle z = 1, x2 + y 2 = 12, (c) ±(2 , 2, -v12) 

9. 7,500 m2 , 7.213% 
11. (a) -l / J2, (b) dir. of ±( i + 3j - 4k, (c) dir. of 

-7i + Sj + 2k 
15. (a) au/ ax = -5 , au/ay = 1, (b) - 1.13 

Challenging Problems (page 744) 

Chapter 13 
Applications of Partial Derivatives 

Section 13.1 (page 752) 

1. (2, -1) , loc. (abs) min. 
3. CO, 0), saddle pt; (1, 1), loc. min. 

5. C -4 , 2), loc . max. 
7. CO, nn) , n = 0, ±l , ±2 , ··· , all saddle points 

9. CO, a) , (a > 0), loc min; CO, a), (a < 0), loc max; 
CO, 0) saddle point ; C±l, l / J2), Joe. (abs) max; 
C±l , -1 / J2) , Joe. (abs) min . 

11. c3- l/3, 0), saddle pt. 
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13. max at (x, x), min at (x, -x), x =f. 0 

15. (-1 , -1) , (1, -1), (-1, l) ,sa ddlepts; (-3 , -3),loc. 
min. 

17. (I, l , ½),sa ddle pt. 

19. (0, 0) ,-saddle pt; (h, }i), (- h, -h), loc. (abs) 

max; (h, -J2), (-h' J2), loc. (abs) min. 

21. max e- 312 / 2,J2, min -e - 312 / 2,J2; f is continuous 
everywhere, and f(x, y, z)---+ 0 as 
x2 + y2 + z2 ---+ oo. 

23. L 3 / 108 cu. units 25. 8abc / (3v'3) cu . units 

27. CPs are (.Jin} , -.Jin3) and (-.Jin3, .Jin3). 

29. f does not have a local minimum at (0, O); the second 
derivative test is inconclu sive (B 2 = AC) . 

Section 13.2 (page 758) 

1. max 5/ 4, min - 2 
3. max (,J2- 1)/ 2, min -(,J2 + 1)/ 2. 

5. max 2/ 3./3, min O 7. max 1, min - 1 

9. max 1/ ,je, min - 1/ ,je 11. max 4/9, min -4 / 9 

13. no limit; yes, max f = e- 1 (at all points of the curve 
xy = 1) 

15. $625,000, $733,333 

17. max 37/2 at (7/4 ,5) 
19. 6667 kg deluxe, 6667 kg standard 

Section 13.3 (page 765) 

1. 84,375 3. 1 unit 

5. max 4 units, min 2 units 

7, a = ±,,/3 , b = ±2./3, C = ±v'3 

9. max 8, min -8 11 . ../7 units 

13. max 2, min -2 15. max 7, min -1 

2.J6 . I I 2 17. -
3
- umts 19. 6 x 3 x 3 

21. width = ( ~ ~) 
113

, depth = 3 x width, 

5 
height = - x width 

2 

23. max 1, min -½ 
27. Method will not fail if V f = 0 at extreme point ; but 

we will have). = 0. 

Section 13.4 (page 775) 

3. local and absolute minimum 10 

5. P = (0, 0, 0, 1, 2, -2 ) has saddle behaviour. Local 
minima at Q, R = (±.J6 / 2, 3/ 2, ±.J6 / 4 , 7 / 4 , 1/ 2, -1 / 2). 
Distance ../7 / 4. 

Section 13.5 (page 781) 

1. at (x, y) where x = (I::;'=1 x;) / n, ji = (I: ;'=1 y;) / n 

3. a= (I::;'=I y;ex;) / (I::?=1 e2x;) 

A SWERS TO ODD-NUMBERED EXERCISES A-67 

5. If A= I:>;2, B = L:XiYi, C = LXi , D = z:= y;2, 
E = L Yi, F = LXi Zi, G = L YiZi, 
and H = L Zi, then 

I
A B Cl 

I:!.= B D E , 
C E n 

1 IF 
a= I). ~ 

l I A F CI b=-B GE , 
I:!. C H n 

7. U e linear regression to fit 17 = a + bx to the data 
(x;, In y; ). Then p = e0

, q = b. These are not the 
same values as would be obtained by minimizing the 
expression I:( y; - peq x;)2. 

9. Use linear regression to fit 17 = a + b( to the data 

(x;, ;: ). Then p = a, q = b. Not the same as 

minimizing I::( y; - px; - qx;2) 2. 
11. Use linear regression to fit 17 = a + b( to the data 

(e- 2x;, ~ ) . Then p = a, q = b. Not the same as 
ex, 

minimizin g I::( y; - pe x; -qe-x;) 2. Other answer s are 
possible. 

13. If A= I::x;4, B = I::x;3, C = I:: x;2, D = I:: x;, 
H = I: x;2y;, I = I:x;y;, and J L Yi, then 

!i=I; ~ ;I, a=!I~ ~ ;I, 
C D n J D n 

b~ 11~ ! ~I· c ~ 11~ i J: 
15.a = 5/ 6, I= 1/ 252 
17. a= 15/ 16, b = -1 / 16, I= 1/ 448 

19. a= ;~ (1r2 - 16), b = ~~ (20 - 1r2) 

21. ak = ¾ J; f(x) cos kx dx, (k = 0, 1, 2, · · ·) 
23 _ ± ~ oo cos((2k+l)x). - X 

• 7r ,r L., k=O (2k+J)2 , 

Section 13.6 (page 790) 
(-l}"n! 

1. (x+J)'• + I 3. 2-fii (,Jy - .fi) 

5 2x . (6x
2-;2J 

' (I +x 2)2 ' ( i+x ) 

7. {x, assume x > O; ~; 1!:s 

9. n! 

13. y = x 2 

17, y = X - ¼ 

11. f(x) = ft e-
12

12 dt 

15. x 2 + y 2 = 1 

19. no 

21. no; a line of singular points 

23. x2 + y2 + z2 = 1 
2 

25. y = x - E sin(1rx) + ir~ sin(21rx) + · · · 
27, y = ½ - ~ EX - 1h65E2X2 + .. . 
29 ,,..., l 1 1 "' 1 1 

' X "" - lOOe - 3000Qe2 ' Y "' - 30000e 2 

Section 13.7 (page 794) 

1. (0.797105 , 2.219107) 
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A-68 ANSWERS TO ODD-NUMBERED EXERCISES 

3. (±0.2500305 , ±3 .9995 115), 
(± 1.9920783 , ±0. 50 19883) 

5. (0.3727730, 0.364 1994) , (- 1.414 1606, - 0.9877577 ) 

7 _ 1\.1 _ 1\.2 . x - xo - e;, Y - YO - t;;, Z = zo - ~3
, 

where t,. = a(f, g, h) J 

a(x , y, z) (xo,Yo,zo) 
f 

and I',.; is I',. with the ith column replaced with g 
h 

9. 18 iterations near (0, 0) , 4 iterations near (1, l ); the 
two curves are tangent at (0,Q), but not at (1, 1). 

Section 13.8 (page 799) 
1. (±.45304 , .81204, ±.36789), (± .96897, .17751 , ± .17200) 

3. local and abso lute max 0.81042 at (- 0 .33853, - 0.52062) ; 
local and abso lute min - 0.66572 at (0.1331 9, 0.53682) 

5. -4.5937 

Review Exercises (page 805) 
1. (0, 0) sadd le pt. , (1, - 1) Joe. min. 

3. (2/ 3, 4/ 3) Joe. min; (2, -4) and (-1, 2) saddle points 

5. yes, 2, on the sphere x2 + y 2 + z2 = l 

7. max I/ (4e), min -l / (4e) 

9. (a) L 2 / 48 cm2 , (b) L 2 / 16 cm2 

11. 41r sq. units 13. l61r cu. units 

15. 1,688 widgets, $2.00 each 

17. y ~ -2x - EXe- 2x + E2 x 2e- 4x 

Challenging Problems (page 805) 
3. 1 In(l +x 2)tan - 1x 

Chapter 14 
Multiple Integration 

Section 14.1 (page 812) 

1. 15 3. 2 1 

5. 15 7. 96 

9. 80 11. 36.6258 

13. 20 15. 0 

17. 51r 19. irt 
21. i 

Section 14.2 (page 819) 

1. 5/ 24 3. 4 

5 ab(a 2+b2) 
• 3 7. 7r 

9. f6 11. ¥ ln 2- ~ 

13. e22 

15. ~ ( 1 - ~) ; region is a triangle with vertices (0, 0) , 

(1, 0) and (1, 1) 

7r 
17. -; region is a triangle with vertices (0, 0) , (0, 1) and 

4). 
(1, 1) 

19. 1/ 4 cu. units 

23. In 2 cu. units 

27. 16{ cu. units 

Section 14.3 (page 824) 

1. converges to l 

5. diverges to oo 

1 
9. converges to 1 - -

e 

13. converges to 2 ln 2 

21. 1 / 3 cu. units 

25. 
2

~ cu. units 

3. converges to 1r / 2 

7. converges to 4 

11. diverges to oo 

15. k > a - l 

17. k < - l -a 
l +a 

19. k > - -- (provided b > -1 ) 
l+b 

1 l 
21. - , - - ( different answers are possible becau se the dou-

2 2 
ble integral does not exist.) 

a2 4.,/2:a 
23. - 25. - -

3 31r 
27. yes, l / (21r) 

Section 14.4 (page 834) 

1. 1ra4 /2 
5. 1ra4 / 4 

2 
9. 1r(e0 

- 1)/ 4 

17. k < l ; l:k 

3. 21ra 

7.a 3/ 3 

11. (v'3~ 1)a3 

2a 
15.-

3 
a 4 

19. -
16 

21 2n: · 23 4n:(2v'2- l)a 3 . . 3 cu. units . 3 cu. units 

25. 16( 1 - (I / .,/2) ] a3 cu. units 

4_,/2 
27. I - - units 

31r 

31. 2a sinh a 

35. ¾Ce - e- 1) 

Section 14.5 (page 840) 

l. 8abc 

5. 2/ 3 

9. 2/ (31r) 

13. 1rfi 

29. 1 1r abc cu . units 

33. 3 
~
12 sq. units 

3. lfa 

7. 1/ 15 

11. f6 ln 2 

15. 1/ 8 
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(1, 1,0) 

X 

19. f0
1 

dx ft dy ft -y f(x, y, z) d z 

X 

27. (e - 1)/ 3 

29. f = - 1
- {{{ f dV; l 

vol(R)}}JR 

Section 14.6 (page 847) 

1. ~ n:a3 (1 - -12) cu. units 

( 1, 1,0) 

)' 

y 

32 
3. 24n: cu. units 5. (2n: - 9 )a

3 cu. units. 

abc I a . b 
7. - tan- - cu. umts 9. 1e~ cu. units 

3 b 

8n:a5 

11.--
15 

7n: 
15.-

12 

Section 14.7 (page 855) 

1. 3n: sq. units 

5. 24n:/ v'3 sq. units 

13 _2n:_a_s (1 -__ c_) 
. 5 Jc2+l 

3. 2n: a2 sq. units 

7. (5v'5 - 1)/ 12 sq. units 

9. 4 sq. units 11. 5.123 

13.4n:A[a-.jiitan - 1 (-!Js)] units 

15. 2n:kmp(h + Ja 2 + (b - h) 2 - .J~a.,_..2-+-b"""2) 

17. 2n:kmp(h + Ja 2 + (b - h) 2 - .Ja 2 + b2) 

19 ( I l J ) 21 ( 3a 3a 3a ) 
· 3, 3, 2 · 8' 8' 8 

ANSWERS TO ODD-NUMBERED EXERCISES A-69 

23. The model still involves angular acceleration to spin 
the ball-it doesn't just fall. Part of the gravitatio nal 
energy goes to producing this spin even in the limiting 
case. 

25. I= n:pa2h (';
2 
+ ~), -_(h2 a2 )1 / 2 

D- 3+,r 

27 I _ 1epa
2
h (2h 2+3a2

) 
• - 3 20 ' 

- -( 2h2+3a2) 1/2 
D - 20 

_ 5a 5p - _ 15 29. I - 12 , D - y 12 a 

31. I= ~pa bc(a 2 + b2), D = J 02 tb2 

33. m = 4f p(a 2 - b2)312, I= ¾m(2a2 + 3b2) 

5 2 . 
35 a gs m a 

• 7a2+3b2 
39. The moment of inertia about the line 

r (t) = At i + Btj + Ct k is 

Review Exercises (page 857) 

1. 3/ 10 3. ln 2 

5. k = 1/ v'3 

7. [1 dx [1 dy f I f(x ,y,z )dz 
Jo lx y 

9. (1 - e- 02
)/ (2a) 11. ~; (18-05 - 41)a 5 

13. vol = 7 /12, z = 11/28 15. 17 / 24 

i r 12 [ J 17. 6 }0 
(1 + 16 cos2 0) 312 - 1 d0 ~ 7 .904 sq. units 

Challenging Problems (page 858) 

1. n:abc (~ -
9

~) cu. units 

3. (b) (i) I: ~ 1(- 1)'1- 11/ n2, (ii) L ~ I l / n3, (iii) 
I: ~ 1c-1)" - 11/ n3 

5. 4 - tan- 1 (.J2) + 
3

3

2 
tan- 1 

(~)- i(7n: + 2-h) 

~ 18.9348 cu. units 

7. a 3 / 2 10 cu. units 
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A-70 ANSWERS TO ODD-NUMBERED EXERCISES 

Chapter 15 

Vector Fields 

Section 15.1 (page 865) 

1. field lines: y = x +C 

y 

/ / ,, / 
// / " // ,, / 
// / " / / ,, / 
// / " 

// ,, / 
// / " / / ,, / 
// / " / / ,, / 
// / " 

3. field lines: y2 = x 2+c 

y 

/ / _..,. / 

\ ""' 
'-,. --.. 

I ,,,. / I 
\ \ '-.. ...... 

! ,, t I 
\ \ \ ... 

\ " '\ \ 
I I I " \ ' ' \ 
I I / 

,,,, 

" \ -' // / .--

5. fieldlin es : y = -½ e- 2x+c 

y 

t t I ,,., .,.,. - -
r t t I ,,., .,.,. - -
r t t I ,,., .,.,. - -
r t t I ,,., .,.,. - -
r t t I ,,., .,.,. - -
r t t I ,,., .,.,. - -

X 

X 

X 

7. field lines: y = Cx 

,. " " " ~ t t , , ,, 
" " 

,. ... ,._ "' \ \ ~,,. ,. 

. ~ "''~ '/ ,,,. ,.,. .. ,. 

. .... -__ ..___ 
,............ __ .. + 

+ ,._ ::0 ~--... . X 

+ ... ....... .... ... .. 
,. 

" ,., JI' I I ~ "' " ~ .. 
,. " .... 

' .. 
9. streamlines are lines para llel to i - j - k 

11. streamlin es : x 2 + y2 = a 2, x = a sin( 2 - b) (spiral s) 

13. y = C1x, 2x = 22 + C2 

15. y =C e l/x 17. r = B +C 

19. r = ce 2 21. unstable 
I • X 

23. y = 0 Ol y = x2 _ 
1 

Section 15.2 (page 874) 

x 2 322 
1. conservative; 2 - y2 + 2 
3. not co nservative 
5. co nservative; x 2 y + y 2 2 - 22 x 

7 _ 2 r- ro 
· lr- rol4 

9. (x2 + y2)/ 2; equip ote ntial surfaces are paraboloid s 

2 = C( x 2+ y2); field linesa ree llip sesx 2+ y2 +2 22 = A, 
y = Bx in vertica l planes through the origin 

m(x i + yj + (2 - t )k) m(x i + yj + (2 + e)k) 
ll. V = [x2 + y2 + (2 _ {)2]3/2 + [x2 + y2 + (2 + {)2]3/2' 

. . 2m( x i + yj) 
v = 0 only at the on gm ; v(x, y, 0) = (x 2 + y2 + e2) 3;2 ; 

speed maximum on the circle x 2 + y2 = e2 / 2, 2 = 0 

15. ¢ = - ~{' F = p( 2xy i+,~2 - x2)j )' (r 2 = x 2 + y2) 

21. ¢ = ½r2 sin 20 

Section 15.3 (page 878) 

1 (a+b)J a2+b2+c2 2 
• 2 m 3. ~ (.J2 + ln(l + .J2) ) 

5. 8 gm 
7. i ((2e4" + 1)3/2 - 33/2) 

9. 3../14 
11. m = 2.J21C 2 , (0, - 1 / 7r, 47r / 3) 

13. (e6 + 3e4 - 3e2 - l)/ (3e3) 

15. (.J2+ 1n(.J2+ l ))a 2/ 2 

17.7r/ .J2 
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19. 4./ b2 + c2 E 
2 2 

; 
( 

b2 -a 2) 
b +c 

J b2 + c2 E 2 2 , T 
( 

b2 _ a2 ) 

b + c 

Section 15.4 (page 886) 

1. -1 / 4 

5.0 

9. el +(n / 4) 

11. A = 2, B = 3; 4ln2 - ½ 

3. 1/ 2 

7. 19/ 2 

13. -13 / 2 15. a) 1ra2, b) -1ra 2 

1ra2 1ra2 
17. a) 2 , b) - 2 19. a) ab / 2, b) -ab / 2 

23. The plane with origin removed is not simp ly connected . 

Section 15.5 (page 897) 

1. dS = ds d z = J (g(0)) 2 + (g' (0)) 2 d0 d z 

na b,J A2+ B2+ C2 . 
3. ICI sq. unit s (C =I= 0) 

5. (a) dS = IV F / F2I dx d z , (b) dS = IV FI F i I dy d z 

7. t 
13. 21r 

9. 16a 2 sq . units 

15. 1/ 96 

17. 1r(3e + e3 - 4) / 3 

19. 21ra2 + --;::::== ln ---- sq. unit s 21rac
2 

(a+.Ja
2

-c 2) 
.Ja2-c 2 c 

21. 21r.J A2 + B2 + C2/ IDI 
23. one-third of the way from the base to the vertex on the 

axis 

25. 21rkama ( 1 
- -

1
-) 

.J a2+(b- h)2 ,Ja 2+b2 

8 4 . - /2 27. I = 3 1raa , D = y 3 a 

29. ¾ g sin a 

Section 15.6 (page 903) 

1. 6 3.3abc 

5. 1r (3a2 - 4ab + b2) / 2 7. 47r 

9. 2-/2.1r 11. 41r/ 3 

13. 41rm 15. a) 21r a2 , b) 8 

Review Exercises (page 904) 

1. (3e / 2) - (3 / (2e)) 3. 8-/2. / 15 

5. 1 
7. (a) 61rmgb, (b) 61r R.Ja 2 + b2 

9. (b) e2 11. (xi - yj )/ Jx 2 + y2 

ANSWERS TO ODD-NUMB ERED EXERCIS ES A-71 

Challenging Problems (page 904) 

1. centroid (0, 0, 2/ 1r); upper half of the surfac e of the 
torus obtained by rotating the circle (x - 2)2 + z2 = 1, 
y = 0, about the z-axis 

Chapter 16 
Vector Calculus 

Section 16.1 (page 914) 

1. divF = 2, curl F = 0 
3.divF=O , curlF=-i-j-k 

5. divF = 1, curlF = -j 
7. div F = f ' (x) + g' (y) + h' (z) , curl F = 0 

9. div F = cos 0 ( l + ~ cos 0} 
curl F = - sin 0 ( I + ~ cos 0) k 

11. div F = 0; curlF = (1/ r)k 

Section 16.2 (page 920) 

7. div F can have any value, curl F must be norm al to F 

9. f (r) = cr - 3 

15. If F = V ¢ and G = V If/ then V x ( ¢ V If/) = F x G. 

17. G = ye 22i + xye22k is one possible vector potential. 

Section 16.3 (page 924) 

l. 1ra2 -4a 3 

31rab 
5. -

8
- sq. unit s 

7. 0 

Section 16.4 (page 930) 

1. 41ra3 

5. 3607r 

y 

11. ~1ra2b + -ro1ra4b + 1ra2 

3.9 

r= (sin r)i+ (sin 2t)j 

3. (4/ 3)1ra 3 

7.81 / 4 

X 

13. (a) 12,.J31ra 3 , (b) -4..J31ra 3, (c) 16..J31ra 3 
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A-72 ANSWERS TO ODD-NUMBERED EXERCISES 

15. ( 6 + 2.x + 4 y - 2z) V 

Section 16.5 (page 934) 

1. 1/2 

17.911:a2 

3. -311:a2 

7. 911: 
9. a.=-½, fJ = -3, I= -i11: 

11. yes , ¢ V lfl 

Section 16. 7 (page 952) 

1. V f = 0zr + z0 + r0k 3. divF = 2, curlF = 0 
2 sin¢ cos¢ A 

5. divF = -- curlF = ---0 
R ' R 

7. divF = 0, curlF = cot¢R- 2~ 

9. scale factors : hu = I :: I, h v = I :: I 
• A 1 ar A 1 ar 

local basis: u = --, v = --
hu au h v av 

area element: dA = huhv du dv 
af A I ar A 

11. V f (r, 0) = ar r + -;: ae 0 

aF,. I I aF0 
VeF(r,0) = - + - F,. + --

ar r r ae 

VxF (r,0)= -+- F0 - -- k (
0F0 I 1 aF,.) 
ar r r ae 

13. u-surfaces: vertical elliptic cylinders with foca l axes at 

X = ±a, y = 0 
v-surfaces: vertical hyperbolic cylinders with focal 
axes at x = ±a, y = 0 
z-surfaces: horizontal planes 
u-curves: horizontal hyperbolas with foci x = ±a, 
y =O 
v-c urves: horizontal ellipses with foci x = ±a, 
y =O 
z-cu rves: vertical straight lines 

a2 f 2 aJ 1 a2 f 
15· v f = a R 2 + R a R + R 2 a¢ 2 

cot¢af I a2J +---+-----
R2 a¢ R2 sin2 ¢ ae 2 

Review Exercises (page 952) 

1. 12811: 

5.3 / 4 

3. -6 

7. A = -3, no 

11. the ellipso id x 2 + 4y 2 + z2 = 4 with outward normal 

Challenging Problems (page 953) 

1. divv = 3C 

Chapter 17 
Differential Forms and Exterior Calculus 

Section 17.1 (page 962) 

3. ¢ I\ 'If = 7 dx1 I\ dx2 I\ dx3 I\ dx4 I\ dxs 

5. 11: = (12)(13)(14) · · · (lk) is odd (even) if k is even 
(odd) 

7. (a) -1, (b) I , (c) 1, (d) -1 

Section 17.2 (page 968) 

1. d<J> = 2y dy I\ dz 
3. d'P = 2 dx 1 I\ dx 2 I\ d x3 

5. 0, the zero differential 2-form 

9. d(<J> I\ 'P I\ 0) = (d<l>) I\ 'I' I\ 0 + (-1 /<l> /\ (d'P) /\ 
0 + (-Jl+ e<J> /\ 'I' /\ (d0) 

11. curl grad f = 0 

Section 17.3 (page 975) 

1. 6 square units 

5 . ..!.. (18.fis - 6v'6) 
18 

Section 17.4 (page 982) 

1. wbottom = -dx I\ dy 

3. 2 cubic units 

5. no; x = (u2, -u 2, u 1, -u 1) is orien tation preserving 
(non- unique answer) 

Section 11.5 (page 989) 

3. 1/ 2 

Chapter 18 

5. 25211:2 

Ordinary Differential Equations 

Section 18.1 (page 993) 

1. 1, linear, homogeneous 3. 1, nonlinear 

5. 2, linear , homogeneous 
7. 3, linear , nonhomogeneous 

9. 4, linear , homogeneous 
11. (a) and (b) are solutions, (c) is not 

13. Y2 = sin(kx) , y = -3(cos(kx) + (3/ k) sin(kx)) 

15. y = .J2(cosx + 2sinx) 

17. y = x + sin x + (11: - l)cosx 

Section 18.2 (page 998) 

1. 2 tan- 1 (y/x ) = ln (x2 + y2) + C 

3. y = x tan( ln Jxl + C) 5. y = xta n- 1 (In JCxl) 

7. y 3 + 3y - 3x 2 = 24 11. 2xy + x 2y 2 = C 

13. xexy = C 15. ln Jxl - Y2 = C 
X 

1 (aN aM) 17. - - - - must depend only on y 
M ax ay 

1 (aN aM) 19. - - - - must depend only on y . 
M ax ay 
x - y 2eY = Cy 2 
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aN aM 
---

21. _!_ _dp = ax ay must depend only on xy; 
p dx xM -yN 
_sm_x _ ~ = C 

y X 

Section 18.3 (page 1006) 

1. (a) 1.97664, (b) 2.187485, (c) 2.306595 

3. (a) 2.436502 , (b) 2.436559 , (c) 2.436563 

5. (a) 1.097897 , (b) 1.098401 

7. (a) 0.89441 , (b) 0.87996, (c) 0.872831 

9. (a) 0.865766 , (b) 0.865769 , (c) 0.865769 

11. (a) 0.898914 , (b) 0.903122, (c) 0.904174 

13. y = 2/ (3 - 2x) 
17. (b) u = 1/ (1- x), v = tan(x + ¼)- y(x) is defined at 

leaston [0, 1l:/ 4) and satisfies 1/ (1-x) :S y(x) =s tan(x+ ¼) 
there. 

Section 18.4 (page 1010) 

Section 18.5 (page 1014) 

1. y = C1 + C2e1 + C3e31 

3. y = C1 cost+ C2 sin t + C3t cost+ C4t sin t 

5. y = CI e21 + C2e- 1 cost + C3e- 1 sin t 

7. y =Ax+B x ln x 

11.y=A+Bln x 

B 
9. y =Ax+ -

X 

13. y = C1x + C2xlnx + C3x(lnx)2 

15. y = C 1x cos(ln x) + C2x sin(ln x) 

Section 18.6 (page 1020) 

I X ? ,· 1. y = -- + C1e + C2e- -, 
2 

3. y = -~ e-x + C1ex + C2e- 2x 
2 

5 _ 2 4x x
2 C -x (2 ) C -x · (2 ) • Y- -ffi-25+5+ 1e COS X + 2e SIO X 

1 
7. y = --xe -2 x + C1e-2x + C2e3x 

5 
1 

9. y = 8ex(sin x - cosx) + e- x(C1 cosx + C2 sinx) 

11. y = 2x + x 2 - xe-x + C1 + C2e -x 

x 2 x 2 C2 
15. Yp = 3 , y = 3 + C1x + ~ 

1 C2 
17. y = -x lnx + Cix + -

2 X 

19. y = C2ex + C2x ex + xex In x 

21. y = - x 2 + C1x + C2xex 

ANSWERS TO ODD-NUMBERED EXERC ISES A-73 

Section 18. 7 (page 1025) 

( 

00 (x _ 1 )4k ) 

l. Y = ao 1 +?; 4(k!)(3)(7) ... (4k - 1) 

( 

(x _ 1)4k+ I ) 
+al X - l + 6 4(k!)(5)(9) · · · (4k + 1) 

3. y = .....--00 (-1)11 __ · x2n + __ x2n+ I 
[ 

2
11
nl 1 J 

~n =O (2n)! 211-ln! 

5 1 I 3 I 5 • y = - 6x + ,20x + ... 
oo (-1/xk 

7. YI = 1 + '°' --------6 (k!)(2)(5)(8) . . . (3k - 1) ' 

t/ 3 ( ~ (-llxk ) 
y2 = x l + 6 (k!)(4)(7) · · · (3k + 1) 

Review Exercises (page 1025) 

2 X 1 
3. y = Ce x - - - -

2 4 

5. x 2 + 2xy - y 2 = C 7. y = Ci - In Jt + C2J 

9. y = exf2(C2 cosx + C2 sinx) 

11. y = c, t cos(2 ln Jtl) + C2t sin(2 ln Jtl) 

13. y = ½ex + xe3x + C1 e2x + C2e3x 

15. y = x 2 - 4x + 6 + c, e-x + C2xe -X 

17. y = (x 3 - 7)1/3 19. y = ex2/2y2 

21. y = 4e - 1 - 3e - 21 23. y = (St - 4)e - 51 

25. y = e21 - 2 sin(2t ) 
27.A=l , B=-l, x(exsi n y+cosy)=C 

29. y = C,x + C2x cosx 

Appendix I Complex Numbers 
(page A-10) 

1. m(z) = -5 , ~ (z) = 2 

5. lz l = -/2, 0 = 31l:/ 4 

9. lz l = .Js, 0 = tan- 12 

3. m(z) = O, ~ (z) = -1(; 

7. lzl = 3, 0 = 1l: / 2 

11. lz l = 5, 0 = -1(; + tan - 1 (4/ 3) 

13. lz l = 2, 0 = -1l:/ 6 15. lz l = 3, 0 = 41l:/ S 

17. ll1l:/ 12 

21 ,r . ./3 + !!. . 
• 2 2 I 

25. -3 + Si 

19. 4 + 3i 

23. ¼ - ~3i 
27. 2 + i 

29. closed disk , radius 2, centre 0 

31. closed disk, radius 5, centre 3 - 4i 

33. closed plane sector lying under y = 0 and to the left of 
y = -x 

35. 4 37. 5 - i 

39. 2 + l li 
43. 1 

z 1 + i 
47 . zw = -3 - 3i, - = --

w 3 
49. (a) circle lz l = -/2, (b) no solutions 
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A-74 ANSWERS TO ODD-NUMBERED EXERCISES 

51. - 1, ½ ± f i 
53. 2116(cos0 + i sin0) where 0 = n / 4, lln / 12, 19n/ 12 

55. ±21 /4 ( 1 + ½i)' ±21 /4 (½-f i) 

Appendix II Complex Functions 
(page A-19) 

1. 0 .::: m(w).::: I , -2.::: ~(w ) .::: 0 
3n 

3. I .::: lwl.::: 4, n.::: argw .'.:: 2 
l 71: 

5. - < I w I < 00 - - < arbo w < 0 2- ' 2- -

7. arg (w) = Sn / 6 9. parabola v2 = 4u + 4 

11. u ::o: 0, v ::o: u 13. f ' (z) = 2z 

15. f'(z) = -l / z2 

19. !!:_ sinh z = cosh z, !!:_ cosh z = sinh z 
dz dz 

71: 
21. z = 2 + kn, (k E Z) 

23. zeros of cosh z: z = i ( ~ + kn) (k E Z) 

zeros of sinh z: z = kn i (k E Z) 
25. m (sinh z) = sinh x cosy, ~ (sinh z) = cosh x sin y 

27. z = 0, -2i 29. z = - 1 ± 2i 

31. z = 0, i, 2i 
l ± i -l±i 

33. z = ./2 , z = ./2 

z4 + 1 = cz2 + hz + l)( z2 
- h z + 1) 

35. z = - 1, -1, -1 , i, -i 
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Abel's theorem, 533 
Absolute convergence , 521 
Absolute maximum, 83, 233, 746 
Absolute minimum , 83, 233 , 746 
Absolute value, 7 
Acceleration, 127, 156, 625 

centripetal, 625, 634, 653 
coriolis, 634 
normal , 653 
of a rolling ball, 853 
polar components of, 662 
tangential , 653 

Addition formulas, 51 
Addition 

of functions , 33 
of vectors, 570 

Algebraic function , 164 
Alternating sequence, 497 
Alternating series bounds , 523 
Alternating series test, 522 
Ampere 's circuital law, 940 
Amplitude, 207 
Analytic function , 538, 693, A-13 
Angle convention, 47 
Angle 

between vectors , 577 
Angular momentum, 632 
Angular speed, 631, 853 
Angular speed, 853 
Angular velocity, 631 
Anticyclone , 635 
Antiderivative, 149 
Antisymmetric form , 957 
Aphelion, 664 
Approximation 

linear, 267 
of definite integrals using series, 547 
of functions using series, 546 
of improper integrals , 38 l 
of small changes , 130 
tangent plane, 705 
with Taylor polynomials, 741 

Arc 
smooth, 875 

Arc length, 405 
on a circ le, 47 
of a parametric curve, 479 
of a polar curve, 492 

Arc length element, 405, 640 
on a coordinate curve, 948 
for a parametric curve, 479 
for a polar curve, 493 

Index 

Arc-length parametrization, 642 
Arccos, 195 
Arccot, 197 
Arccsc , 197 
Archimedes' principle, 942 
Arcsec , 196 
Arcsin, 190 
Arctan, 193 
Area element 

in polar coordinates, 826 
for transformed coordinates, 831 
of a surface of revolution , 409 
on a coordinate surface , 948 
on a surface, 891 

Area 
between two curves , 325 
bounded by a simple, closed curve, 922 
element, 326 
in polar coordinates, 492 
of a circular sector, 47 
of a circle, 62 
of a conical surface , 411 
of a plane region, 294, 325 
of a polar region, 827 
of a sphere, 409 
of a surface of revolution , 409 
of a torus, 411 
bounded by a parametric curve , 480 

Argand 
diagram, A-3 

Argument 
of a comp lex number, A-3 

Associative, 604 
Astroid, 475 
Asymptote, 73, 246 

horizontal, 73, 246 
oblique, 247 
of a hyperbola, 22, 464 
vertical, 246 

Asymptotic series , 563 
Atan and atan2, 195 
Attraction 

of a disk, 849 
Auxiliary equation, 204, 1011, 1013 
Average rate of change, 132 
Average, 775 
Average value 

of a function, 309, 823 
Average velocity, 59, 154, 624 
Axes 

coordinate, 11 
of an ellipse, 21 

Axiom of completeness , A-22 
Axis 

major, 21 
minor, 21 
of a dipole, 872 
of a parabola, 19,459 

Ball 
n-dimensional volume, 456 
open,569 
volume of, 393 

Banking a curve, 653 
Base, 170 
Ba ic area problem , 295 
Basis, 571 , 572 

local, 944 
orthonormal, 579 

Bessel 's equation, 1021 
Beta function , 834 
Big-0 notation, 277 
Biharmonic function, 695 
Bilinear form, 957 
Binomial coefficients, 554 
Binomial series , 551 
Binomial theorem , 550, 554 
Binormal, 647 
Biot-Savart law, 939 
Bisection Method, 86 
Bound 

for a sequence, 497 
Boundary , 5 
Boundary point , 569, 746 

of a parametric surface , 887 
of a subset of a manifold , 977 

Bounded function, A-26 
Bounded region, 360 
Bounded et, 746 
Boundedne ss theorem, A-23 
Brachistochrone, 473 
Branche s of a hyperbola, 22 
Buffon 's needle problem, 456 

Cance!Jation identity , 166 
Cardioid, 486 
Cartesian coordinates , 11, 565 
Cartesian plane, 11 
CAST rule, 53 
Catenary, 574 
Cauchy product, 530 
Cauchy-Riemann equations, 695, A-14 
Cavalieri 's principle, 403 
Celsius , 17 
Central force, 662 
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A-76 INDEX 

Centre 
of a circle , 17 
of convergence , 528 
of curvature, 647 
of mass, 414 , 850 
of an ellipse, 462 
of gravity, 851 
of a hyperbola , 464 

Centrifugal force, 634 
Centripetal acceleration , 625, 634, 653 
Centroid, 418,851 

of a triangle , 419 
Chain Rule , 116, 696 

as matrix multiplication, 710 
proofof , 119 
several variable proof, 707 

Change of variables 
in a double integral , 831 
in a triple integral , 841 

Chaos, 225 
Circle, 17 

osculating , 647 
Circular frequency, 207 
Circular helix, 641, 648 
Circulation, 880 

along a moving curve , 953 
Closed curve, 638 
Closed disk, 18 
Closed interval, 5 
Closed surface , 888 
Closed differential form, 967 
Clothoid , 668 
Coefficient 

of a polynomial , 39 
Colatitude, 601 
Column vector, 603 
Common ratio , 505 
Commutative, 604 
Comparison test 

for series , 5 14 
limit form, 515 

Comparison theorem 
for improper integrals, 366 

Complement 
of a set, 569 

Complementary angles , 49 
Complementary function , 1015 
Complete elliptic integral, 408 
Completeness 

of the real numbers, 4, 501, A-22 
Completing the square , 343 
Complex arithmetic, A-4 
Complex conjugate, A-4 
Complex exponential function, A- I 5 
Complex function, A-11 

derivative of, A-12 
differentiable, A-12 

Complex limit, A-12 
Complex number, A-1 
Complex plane, A-3 
Complex polynomial, A-16 
Component 

of a vector, 573 
of a cross product, 580 
radial , transverse , 661 

Composite function , 35 
Composite surface , 889 
Composition 

Composition of functions, 35 
Compound interest, 186 
Concavity , 240 

of a parametric curve, 477 
Conditional convergence , 522 
Cone , 400, 595 
Conic, 458 

classifying a, 466 
in polar coordinates , 488 

Conjugate axis , 464 
Conjugate hyperbola , 464 
Conjugate 

of a complex number, A-4 
Connected curve, 85 
Connected domain , 882 
Conservation of energy, 428 , 665 
Conservation of mass, 936 
Conservative field, 866, 916 , 996 

necessary conditions, 867 
Conservative force, 428 
Constant coefficient DE, 1010 
Constant of integration , 149 
Constraint manifold , 766 
Constraint, 752 

equation, 758 
inequality, 758 

Continuity 
at an interior point, 79 
right and left, 80 
at an endpoint , 80 
on an interval, 80, A-21 
of a differentiable function , 109 
at a point, 681, A-21 
uniform , A-28 

Continuou s extension, 82 
Continuous function , 80, A-21 
Continuou s random variable, 438 
Contour , 674 
Convergence 

absolute, 521 
conditional, 522 
improving, 520, 562 
of sequences , 498 
of a series, 505 
of Fourier series, 557 

Convergent improper integral , 361 
Convex set, 756 
Coordinate axes, 11 
Coordinate curve , 944 
Coordinate plane, 566 
Coordinat e smface, 944 
Coordinate system 

Cartesian, 565 
rotating , 632 

Coordinates 
of a point in 3-space , 565 

Coriolis acceleration , 634 
Corioli s effect, 636 
Corioli s force, 634 
Cosecant , 53 
Cosh function, 198 
Cosine law, 56 
Cosine, 47 
Cost function, 761, 776 
Cotangent, 53 
Coth, 201 
Coulomb 's law, 938 
Cramer's rule , 608 

Critical point , 133, 141,746 
Cross product , 580 

properties of, 581 
as a determinant, 584 

Csch, 200 
Cumulative distribution function, 443 
Curl,906 , 914 

as circulation density, 912 
in curvilinear coordinates , 951 
in cylindrical coordinates, 951 
in spherical coordinates , 951 

Curvature, 645, 647 
Curve , 623, 636 

closed , 638 
coordinate , 944 
equipotential, 868 
integral , 861 
parametric, 469 
piecewise smooth , 641, 875 
simple closed, 638 

Curve sketching , 248 
smooth , 638, 405 

Curvilinear coordinates , 943 
orthogonal , 944 

Cusp , 98 
Cycloid , 472 
Cycloid , 668 
Cyclone , 635 
Cylinder, 391, 595 
Cylindric al coordinates , 598, 943 
Cylindric al shells , 396 

Damped harmonic motion, 210 
de Moivre' s theorem , A-7 
Decimal point , 255 
Decrea sing function , 139 
Decreasing sequence , 497 
Definite integral , 302 
Definite quadratic form, 610 
Degree 

of a polynomial , 39, 338 
Del, 906 
Delta function , 911 
Density, 411 

probability, 438, 439 
Dependent variable, 24 
Derivative 

directional , 717 
exterior, 963 
of a complex-valued function, A-12 
of a composition of functions, 116 
left and right, 101 
of a function , 100 
of a product , 110 
of a reciprocal , 112 
of a quotient , 113 
of a transformation, 710 
of an inverse function , 168 
of cosine, 122 
of sine, 122 
of the absolute value function, 104 
of trigonometric functions, 124 
second and higher order, 127 

Determinant, 582, 604 
properties of, 583 

Difference quotient , 97 
Differentiable function , I 00 

of a complex variable , A-12 
of several variables, 706 

www.konkur.in



Differentiable 
transformation, 710 
vector-valued function , 624 

Differential element, 393 
Differential equation, 151 

constant coefficient linear, 203, 1010 
Euler, 1012 
equidimensional, l O 12 
exact , 996 
first-order , linear, 449 , 991 , 994 
general solution , 151 
homogeneous, 991 
linear, 99 I 
nonhomogen eous linear, 991, 1014 
order of, 151 
of exponential growth or decay, 185 
of logistic growth , 187 
of simple harmonic motion , 128, 207 
particular solution, 151 
ordinary , 991 
partial, 685, 693, 99 l 
reducible , I 007 
second order , I 007, I 008 
separable , 446 , 994 
solution using series, 1021 

Differenti al Form, 955, 962 
closed, 967 
exact, 967 

Differential operator , 993 
Differential, 302, 955 

of a variable , l06 
using for approximation , 131 
in several variables , 708 

Differentials 
determinin g independent variables, 712 

Differentiation rules, 109 
for vector functions , 627 

Differentiation, 101 
following motion , 722 
graphical, 101 
implicit , 144 
logarithmic, 180 
of power series, 531 
through an integral , 783 

Diffusion equation, 695 
Dipole, 872 

moment of, 872 
Dirac 

distribution , 911 
delta function, 9 11 

Direction cosine, 579 
Direction of a vector, 590 
Directional derivative, 717 
Directrix 

of a parabola , 19, 459 
of an ellipse , 463 

Dirichlet problem , 930 
Discontinuity 

removabl e, 82 
Discontinuou s function , 79 
Discount rate, 431 
Discrete map, 221 
Discriminant , 204 

of a quadratic , 43 
Disk 

open or closed , 18 
open , 569 

Distance 
between points, 12 
between two lines, 593 
from a point to a curve, 163 
from a point to a line, 592 
from a point to a plane , 592 
from a point to a surface, 688 
in 3-space, 565 
inn-space , 568 

Distribution , 91 l 
Divergence theorem , 910, 925, 987 

in the plane, 923 
variants of, 929 

Divergence , 906, 914 
as flux density , 908 
in curvilinear coordinates , 950 
in cylindrical coordinates, 950 
in spherical coordinates , 950 
of a sequence, 499 
of a series, 505 

Divergent improper integral , 361 
Division Algorithm, 40 
Division of functions , 33 
Domain convention , 25, 671 
Domain , 671, 882 

of a function , 24 
of integrat ion, 807 
y-s imple, 813 
x-s imple, 813 
regular, 813 

Domain, 882 
simply connected, 882 
star-like , 917 

Dot product of vectors, 576 
Double integral , 808 

over a bounded domain, 810 
properties of, 810 

Double tangent , 330 
Double-angle formulas, 52 
Doubling time, 185 
Dummy variable, 302 

Eccentricity 
of an ellipse, 462 

Eigenvalue, 610 
Eigenvector, 610 
Elasticity , 135 
Electric field, 937 
Electrostatics , 938 
Element 

of area, 326 
of arc length, 405, 479 , 493 , 640 
of area on a surface, 409 
of mass, 411 
of moment , 414 
of mass, 848 
of surface area, 848 
of volume, 393, 947 
of work, 879 

Elementary k-form, 959 
EUipse, 21,461 

circumference of, 408 
in polar coordinates, 659 
parametric equation s of, 470 

Ellipsoid, 596 
approximating surface area, 457 
volume of, 403 

Elliptic integral function, 408, 879 
Empirical regression line , 778 

Endpoint , 5, 79 
Energy 

potential, 427 , 854 
kinetic , 428 , 852 
con ervatio n of, 428 

Enb·opy, 712 , 799 
Envelope, 163, 786 
Epicycloid , 475 
Equation of continuity, 936 
Equation of motion 

of a fluid, 937 
Equation 

of a circle , 18 
of a plane, 588 
of state , 712 

Equations 
of lines, 591 

INDEX A-77 

Equidimensional equation , 10 I 2 
Equipotential curve , 868 
Equipotential surface, 868 
Error bound 

Simpson 's rule , 378 
trapezoid and midpoint rules, 373 

Error function , 360 
Error function , 834 
Error 

round-off , 3 1 
in linear approximation , 269 

Escape velocity, 428 
Euclidean space 

of n dimensions , 456, 568 
Euler equation , 1012 
Euler method , 1001 

improved , l 003 
Euler 's theorem , 700 
Evaluation symbo l, 105, 312 
Even function , 28 
Even permutation, 959 
Evolute , 653 
Exact differential equation , 996 
Exact differential form, 967 
Existence theorem , 86 
Expanding universe, 953 
Expecta tion, 436 , 440 
Exponent , 170 

laws, 171 
Exponential distribution, 439 
Exponential function, 170, 176 

growth rate, 183 
Exponenti al growth and decay, 184 
Extension of a Function, 82 
Extensive variable , 7 12 
Exterior Derivative , 963 
Exterior point , 569 
Extreme value problem 

constrained, 752 
Extreme value, 234 
Extreme-value problems, 260 

Factorial, 127 
Farenheit, 17 
Fibonacci sequence, 497 
Field lines, 861 
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Field 
conservative, 866 
electrosta tic, 860 
gradien t, 860 
gravitational , 859 
scalar, 859 
slope, 999 
vector, 859 
velocity, 860 

First derivative test, 236 
First-order linear DE, 449 
Fixed point, 220 

of a vector field, 864 
theorem , 222 

Floating-point number, 256 
Flow line, 861 
Fluid dynamic s, 935 
Flux, 900 

through a moving surface, 954 
Focal property 

of a parabola , 461 
of an ellipse, 462 
of a hyperbola , 465 

Focus 
of an ellipse, 462 
of a hyperbola , 463 
of a parabola, l 9, 459 

Folium of Descartes, 474 
Force 

centra l, 662 
centrifugal, 634 
corio lis, 634 
on a dam, 424 

I-Form, 956 
2-Form, 957 
Form 

antisymmetric, 957 
bilinear, 957 
differential, 955, 962 
on a vector space, 961 

Fomier coefficients, 556 
Fomier cosine series, 559, 780 
Fourier series, 555, 779, 805 

convergence, 557 
Fourier sine series , 559 , 780 

sine series, 780 
Frenet frame, 648 
Frenet-Serret formulas, 650 
Frequency, 207 
Function , 24 

domain convention , 25 
analytic, 538, A-13 
arccos, inverse cosine , 195 
arccot , inverse cotangent, 197 
arccsc, inverse cosecant , 197 
arcsec, inverse secant , 196 
arcsin, 190 
arctan, 193 
atan and atan2, 195 
biharmonic , 695 
bounded , A-26 
complex exponential , A-15 
complex-valued , A-11 
composition, 35 
concave up or down, 240 
continuous, 79, 80, A-21 
cosecant , 53 
cosh, hyperbolic cosine , 198 

Functio n ( continued) 
cosine, 47 
cotangent, 53 
even, 28 
expone ntial, 170, 176 
from n-space to m-space, 709 
gamma, 368 
general exponent ial, 179 
graph of, 26, 672 
greatest integer, 37, 78 
harmonic , 693 
Heaviside, 36 
hyperbolic, 198, 200 
identity, 166 
increasing and decreas ing, 139 
integrable, 302, 810, A-28 
inverse hyperbolic, 201 
inverse sine, 190 
inverse tangent, 193 
inverse, 165 
Lagrange, 759 
least integer, 37 
left continuous , 80 
natural logarithm, 174 
objective, 756 
odd,28 
of several variables, 671 
one-to-one, l 64 
periodic, 49 
periodic, 555 
piecewise defined, 36 
posit ively homogeneo us, 700 
power, 170 
probability density, 439 
probabi lity, 435 
rational, 248, 338 
right cont inuous, 80 
secant, 53 
self-inverse, 167 
signum, 36 
sine, 47 
sinh, hyperbolic sine, 198 
square root, 25 
tangent, 53 
trigonometr ic, 47, 53 
trigonometric, 53 
uniformly continuous, A-28 
vector-valued, 623 
linear, 956 

Fundamen tal Theorem of Algebra, 41, A-17 
Fundamen tal Theorem of Calculus, 3 11, 956 
Fundamenta l Theorem of Space Curves, 650 

Gamma function , 368, 834 
Gauge Theory, 9 18 
Gauss 's law, 942 
Gauss's theorem , 925 
Gauss ian approximation, 386 
Genera l exponentia l, 179 
General power rule, I 03, 147 
General solution of a DE, 151 
Genera lized function, 9 10 
Genera lized mean-value theorem , 142 
Genera lized Stokes Theorem , 982 
Geometr ic bounds for series, 518 
Geometr ic series, 505 
Gibbs equation , 713 
Global maximum, 746 
Global minimum, 746 

Gradient vector, 716 
geometric properties of, 720 
in higher dimensions, 723 

Gradient , 716 , 906, 914 
in curvilinear coordinates , 949 
in cylindrical coordinates, 949 
in spherical coordinates, 949 

Graph 
of a function, 26, 672, 675 
scaling, 20 
shifting, 20 

Gravitational attraction 
of a ball, 896 
of a spherical shell , 895 

Gravitational field 
of a point mass, 860 

Greatest integer function, 37, 78 
Greatest lower bound , A-22 
Green's Theorem, 987 
Growth of exponentials and logarithms , 183 
Growth 

logistic, 187 

Half-angle formulas, 52 
Half-life, 185 
Half-open interval, 5 
Hamilton's theorem, 664 
Hanging cables, 574 
Harmonic function, 693, A-15 
Harmonic series, 508 
Heat equation, 695, 943 
Heaviside function, 36, 80 
Helix,641,648 
Hessian matrix, 748 
Higher-order derivatives, 127 
Homogeneous function, 700 
Homogeneous differential equation, 203, 

450 , 991, 995 
l'H6pital's rules , 229 
Hooke's law, 206, 405 
Horizontal asymptote, 73, 246 
Hubble 's constant , 953 
Hyperbola , 22, 463 

conjugate , 464 
rectangular, 22, 464 

Hyperbolic function , 198, 200 
Hyperboloid , 597 
Hypersurface, 672, 675 
Hypocyclo id, 474 
Hypocycloid, 475, 475 

ldeal gas, 730 
Identity function, 166 
Identity matrix, 606 
Imaginary axis, A-3 
Imaginary part, A-2 
Imaginary unit, A-1 
Implicit differentiation , 144 
Impli cit function theorem, 146, 608, 733 
Implicit function, 727 
Improper integral 

converges, 361 
diverges, 361 
double, 820 
type I, 361 
type II, 363 

Inclination of a line, 14 
Incompressible fluid, 936 
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Increasing function , 139 
Increasin g sequence, 497 
Increment , 12 
Indefinite integral , 149 
Indefinite quadratic form , 610 
Independence of path, 883 
Independent variable , 24 
Indetermjnate form, 228 

limit calculation using series , 548 
Index of summation , 290 
Indicial equation, I 023 
Induced orientation , 898 
Induction, 110 
Inequality 

rules for, 4 
Inertia 

moment of, 853 
lnfimum, A-22 
Infinite limit , 75, 92 
Infirute sequence, 496 
Infinite series , 290 , 504 
Infirute series , 504 
Infinitesimal , J 06 
Infiruty, 73 
Inflection point, 241 
Inherited orientation 

of a boundary, 978 
Initial-value problem , 151 
Inner product , 576 
Instantaneou s rate of change , 132 
Instantaneous velocity, 60 
Integer, 4, A-1 
Integrabl e function , 302, 810, 890, A-28 
Integral bounds for series, 512 
Integral curves, 861 
Integral equation , 316, 447, 785 
Integral function 

of an exact differential equation , 996 
Integral of a function 

over a parametri zed manifold, 974 
Integral remainder 

for Taylor's theorem , 544 
Integral sign, 149 
Integral test, 511 
Integral 

definite , 302 
double, 807 
evaluating using Maple , 356 
improper, 820 
indefinjte, 149 
iterated , 814 
line, 875 
over a moving volume, 954 
proper, 360 
Riemann , 304 
sign, 302 
surface , 890 
triple , 835 

Integrand , 302 
Integrating factor, 450 , 997 
Integration of a k-form 

over a k-marufold , 980 
Integration 

by parts, 332 
lirruts of, 302 
numerical , 369 
of power series, 531 
using tables, 358 

Intensive variable , 712 
Intercept, 15 
Interest rate 

effective and norrunal, 187 
Interest, 186 
Interior point , 79, 569 
Intermed iate-Value property, 84 

of a derivative, 106 
Intermediate-Va lue theorem , 84, A-24 
Intersection of intervals, 7 
Interval , 5 

half-open, 5 
of convergence , 528 
open or closed , 5 

Intrinsic parametrization , 642 
Inverse cosecant, 197 
Inverse cosine, 195 
Inverse cotangent , 197 
Inverse function, 165 

properties of, 166 
Inverse hyperbolic function , 20 l 
Inverse hyperbolic substitution , 350 
Inverse matrix, 606 
Inverse secant substitution , 349 
Inverse secant , 196 
Inverse sine substitution , 347 
Inverse sine, 190 
Inverse substitution 

hyperbo lic , 350 
Inverse tangent substitution , 348 
Inverse tangent, 193 
Invertible matrix, 605 
Involute 

of a circle, 473 
Irrationality of 11:, 562 
Irrationality of e, 562 
IrrotationaJ vector field, 916 
Isolated point , 679 
Iterated integral, 814 
Iteration 

in polar coordinates , 826 
of a double integral , 814 

Jacobian deterrrunant, 73 J, 830 
Jacobian matrix, 709, 970 

k-Form, 959 
elementary , 959 

k-Parallelogram, 973 
k-Volume zero , 971 
Kepler 's laws, 659 
Kepler, 659 
Kjnetic energy, 428, 852 
Kuhn-Tucker condition, 774 

l'Hopital 's rules, 229 
Lagrange function , 759 
Lagrange multiplier , 76 l 
Lagrange remainder, 275, 544 
Laplace equation , 693 

in polar coordinates , 702 
in spherical coordinates , 744 

Laplacian operator , 914 
Latus rectum , 468 
Least integer function, 37 
Least squares method, 776 
Least upper bound , A-22 
Left continuous function, 80 
Left limit, 68, 91 
Legendre transformation, 713, 966 

Leibniz notation, 105 
Leibruz rule, 554 
Lemniscate, 487 
Length 

of a curve, 639 
of a vector, 570 

Level curve, 673 
Level surface , 675 
Liapunov function, 864 
Lirrut, 60 

at infinity, 73, 91 

INDEX A-79 

formal definition , 89, A-20 
infinite, 75 
informal definition, 66 
of a complex-valued function, A-12 
of a function of 2 variables, 679 
of a sequence, 498 
of a sequence , A-23 
of integration , 302 
of summation, 290 
one-sided , 68 
right and left, 68, 90 
rules for calculating, 69 

Line integral, 875 
independence of parametrization, 876 
independence of path , 883 
of a conservative field, 986 
of a vector field, 880 

Line of force, 861 
Line, 13 

in 3-space, 590 
normal , 686 

Linear algebra, 602 
Linear approximation, 267 
Linear combination , 571 
Linear dependence , 605 
Linear differential equation, 203, 991 
Linear equation , 220, 607 
Linear equations 

solution with Maple, 619 
Linear function, 756 
Linear Functional, 956 
Linear independence , 606 
Linear programming, 756 
Linear regression , 778 
Linear transformation, 607 
Linearization , 267 

in several variables , 705 
Lissajou s figure, 475 
Local basis , 944 
Local maximum, 234, 746 
Local minimum, 234, 746 
Logarithm , 171 

general, 180 
growth rate, I 83 
laws, 172 

Logarithmic differentiation , 180 
Logistic equation , 187 
Logistic growth, 187,431 
Logistic map, 226 
Longitude , 60 l 
Lower bound, A-22 

for a sequence, 497 

Mach cone , 788 
Maclaurin polynomial, 273 
Maclaurin series, 538 
Magnetic field, 937 
Magnetostatics, 939 
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Magnitude, 7 
of a vector, 570 

Main diagonal , 606 
Major axis, 2 1, 462 
Manifo ld, 766 

oriented , 975 
smooth, 969 

Maple, A-3 1 
3-dimensiona l plots, 676 
calculating derivatives with, 118 
calculation of Taylor polynomials , 740 
Chain rule calculations, 70 I 
evaluating integrals, 356 
fsolve , 794 
Gradient, 725 
graphing functions, 30 
implicit differentiation using, 14 7 
iterated integrals, 818 
Jacobian matrix, 711 
Linear Algebra package, 612 
manipulation of matrices, 617 
partial derivatives in, 692 
solution of DEs and IVPs, JO l 9 
solution of linear systems, 619 
topics list, A-32 
trigonometric functions, 54 
VectorCalculus package , 616 
vectors , 6 I 3 

Margina l, 134 
Mass element, 411, 848 
Mathematical induction , 110 
Matrix, 603 

calculations with Maple, 617 
identity, 606 
inverse , 606 
invertible, 605 
multiplication, 603 
representation , 607 
singular , 605 
symmetric , 603 

Max-min problem s, 260 
Max-Min theorem , 83, A-24 
Maximum property 

of entropy, 801 
Maximum, 233 

absolute, 233, 746 
absolute, 83 
global, 746 
local, 234, 746 
relative, 746 

Maxwe ll relation, 731 , 965 
Maxwell's equations, 942, 966 
Mean value 

of a function , 309, 823 
Mean-Value theorem, 137, 706 

for double integrals, 823 
for integrals , 308 
genera lized, 142 

Mean , 440, 775 
of a random variable, 436 

Method of Lagrange multiplier s, 761 
Method of least squares , 776 
Method of partial fractions , 341 
Method of substitution , 318 
Method of Undetennined Coefficients, 354 
MG graphics software, 673 
Midpoint rule, 372 

error estimate , 373 

Minimum 
absolute, 83, 233, 746 
globa l, 746 
local, 234, 746 
relative, 746 

Minor axis, 21,462 
Mixed partial derivatives 

equality of, 691 
Modulus 

of a complex number, A-3 
Mobius band, 899 
Moment element, 414 
Moment of inertia, 853 
Moment, 418, 850 
Momentum , 630 

angular, 632 
Monotonic sequence , 497 
Monster 

numerical, 32 
Multiindices, 553 
Multinomial coefficient, 553 
Multinomial theorem, 552 
Multiple integrals 

notation for higher multiplicities , 855 
Multiplication 

of functions, 33 
of matrices , 603 
of vectors by scalars , 571 

Multiplicity of a root, 41 
Mutually perpendicular , 565 

nth root of a complex number, A-9 
Nabla , 906 
Nappe, 458 
Natural logarithm, 17 4 

properties , 175 
Natural number, 4 , A-1 
Negative definite , 610 
Neighbourhood, 569 
Neumann problem , 930 
Newton quotient, 97 
Newton's Method, 220, 223 

error bounds , 227 
for systems, 791 
formula for, 223 
using a spreadsheet , 793 

Newton 's law of cooling , 185 
Non-self-intersecting curve, 638 
Nondecreasing function , 139 
Nonhomogeneous , 1014 

linear differential equation , 990 
Nonincreasing function , 139 
Nonlinear programmin g, 774 
Nonsmooth boundary 

of a manifold, 978 
Norm 

of a partition, 300 
Normal acceleration , 653 
Normal distribution 

general, 443 
standard, 442 

Normal line, 99, 686 
Normal space 

to a manifold, 970 
Normal vector, 587, 686 

to a surface , 848, 891 
Normal unit vector, 645 
Notation 

for multiple integrals , 855 

Number 
complex, A-1 
floating-point, 256 
natural, A-1 
rational , A- I 
real, A-l 

Numerical integration , 369 
by Simpson 's rule, 377 
by the midpoint rule, 372 
by the trapezoid rule, 370 
Gaussian approximation, 386 
Romberg method , 382 

Numerical method 
for solving DEs, 1001 

Numerical monster, 32 

Objective function, 756, 761, 776 
Oblate spheroid, 411 , 897 
Oblique asymptote, 247 
Octant , 566 
Odd function , 28 
Odd permutation, 959 
One-sided limit , 68 
One-to-one function, 164 
Open ball, 569 
Open disk, 18, 569 
Open interval , 5 
Open set, 569 
Order 

of a differential equation, 151,991 
Ordinary point, 1020 
Orientable surface, 898 
Orientation preserving transformation, 980 
Orientation 

inherited by a boundary, 978 
of a coordinate system, 565 
of a curve, 638, 880 
of a manifold , 975 
of a point , 976 
of a vector space , 975 

Oriented surface, 898 
Origin , 565 

of coordinates, 11 
Orthogonal curvilinear coordinates, 944 
Orthogonal trajectory, 868 
Orthonormal basis, 579 
Osculating circle , 647 
Osculating plane, 647 

p-Integrals , 364 
p-series , 512 
Pappus's theorem , 42 l 
Parabola , 19, 459 
Paraboloid , 596 
Parallelepiped , 584 
Parameter , 469 
Parametric curve , 469 

slope of a , 476 
smooth , 476 

Parametric equations, 469 
of a line, 590, 470 

Parametric surface, 887 
boundary of, 887 

Parametrization , 471 
arc-length , 642 
intrinsic , 642 
of a curve , 638 
of a manifold, 969, 972 
of the intersection of two surfaces, 877 
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Partial derivative 
equality of mixed, 691 
first-order, 683 
higher-order, 690, 70 I 
mixed, 690 
pure, 690 

Partial differential equation, 685, 693 
Partial fraction 

decomposition, 341, 345 
Partial fractions 

method of, 340 
Partial sum of a series, 504 
Particular solution 

of a DE, 151, 1015 
Partition , 300, 807, A-26 
Pascal's Principle , 424 
Pencil of planes, 589 
Percenta ge change, 131 
Perihelion , 664 
Period , 207 

fundamental, 555 
Permutation , 959 
Perturbation, 789 
Phase-shift , 207 
Picard iteration, 1001 
Piece-with-boundary 

of a manifold , 976 
Piecewise continuou function 

definite integra l of, 309 
Piecewise defined function, 36 
Piecewise smooth curve, 641,875 
Plane curve, 471 
Plane 

equation of, 588 
in 3-space, 587 
osculating, 647 
tangent, 686 

Planeta ry motion , 659 
Poincare's Lemm a, 967 
Point-slope equation, 15 
Poiseuille's law, 136 
Polar axis, 483 
Polar coordinates, 483 
Polar graph of a function , 485 
Polar representation 

of a complex number, A-4 
Pole , 483 
Polygon, 295 
Polynomial, 39, 338 

complex, A-16 
Position vector, 571, 623 
Positive definite, 610 
Positive series, 510 
Positively homogeneous function, 700 
Potential energy, 427, 854 
Potentia l 

for a conservative field, 866 
vector, 917 

Power function, 170 
Power series, 527 

continuity of, 533 
differentiation of, 531 
integrat ion of, 531 
operations on, 529 

Present value, 43 1 
Pressure, 423 
Primary trigonometric function , 53 
Principal nth root , A-9 

Princip al argument, A-3 
Principal square root, A-8 
Prism, 39 1 
Probability density funct ion, 438 , 439 
Probability function, 435 
Probabilit y, 434 
Product of inertia, 857 
Product rule, 110 
Product 

of complex numbers, A-5 
Projectile, 625 
Projection of a vector, 577 
Prolate cycloid , 474 
Prolate spheroid , 411, 897 
Proper integral, 360 
Pyramid , 400 
Pythagore an identity, 48 

Quadrant, 11 
Quadratic equation, 220 
Quadratic form, 610 
Quadratic formula , A-17 
Quadric surface, 595 
Quotient rule, 113 
Quotient 

of comp lex numbers, A-7 

Radial component, 661 
Radian, 46 
Radius of convergence, 528 
Radius of gyration, 853 
Radius 

of a circ le, 17 
of curvature, 645 

Radix point, 255 
Random variable 

continuous,435,438 
discrete, 435 

Range , 24, 671 
Rate of change, 132 

average, 132 
instantaneous, 132 
seen by a moving observer, 722 

Ratio test, 517, 562 
Rational function , 39, 248 , 338 
Rational number, 4, A- I 
Real axis, A-3 
Real Line, 3 
Real numbers, 3, A-1 

complete ness of, 4 
Real part, A-2 
Rearrangement of series, 525 
Reciprocal rule, 112 
Reciproca l 

of a complex number, A-7 
Rectangular hyperbol a, 22, 464 
Rectifiable curve, 405, 639 
Recurrence relation, 1022 
Reduction formula, 336 
Refinement 

of a partition , 30 l , A-26 
Reflection 

by a hyperbola , 465 
by a line, 29,460 
by a parabola , 20, 461 
by an ellipse, 462 

Region 
bounded,360 

Regression line , 778 

Regress ion, 778 
Regular domain, 8 13, 925 
Regular singular point, 1022 
Related rates, 2 14 
Relative change, 131 
Relative maximum, 746 
Relative minimum , 746 
Removable discontinuity , 82 
Representation 

INDEX A-81 

of a function by series, 537 
Re onance , IO 16 
Richardson extrapo lation, 382 
Riemann integra l, 304, A-28 
Riemann sum, 889 

for a doub le integral, 808 
general, 303 
upper and lower, 300, A-26 

Right circular cylinder, 392 
Right continuous function , 80 
Right limit, 68, 90 
Right-circular cone, 458 

axis, 458 
nappe,458 
semi-vertica l angle, 458 
vertex, 458 

Rise, 13 
Rolle' s Theorem, 141 
Romberg integrat ion, 382 
Root of an equatio n, 223 
Root test, 5 18 
Root 

of a polynomial , 41 
of an equation, 85 

Rotating frame, 632 
Roundoff error, 3 1, 281 
Row vector, 603 
Ruled surface, 596 
Rules for inequalities, 4 
Run, 13 
Runge-K utta method, 1004 

Saddle point, 747 
Sample space, 434 
Scalar field, 859 
Scalar multiplication, 571 
Scalar potential, 866 
Scalar product, 576 
Scalar projection , 577 
Scalar triple product, 584 
Scale facto rs, 946 
Scaling, 20 
Secant line, 6 1, 96 
Secant function , 53 
Sech,200 
Second derivative test, 243, 748 

for constrained extrema, 767 
Second derivative, 127 
Secondary trigonometric function , 53 
Sector of a circle, 47 
Self-inverse, 167 
Semi-conjugate axis, 464 
Semi-focal separation 

of a hyperbola, 464 
of an ellipse, 462 

Serni-latus rectum, 468 
Semi-majo r axis, 462 
Semi-minor axis, 462 
Semi-tran sverse axis, 464 
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A-82 INDEX 

Semidefinite 
positive or negative , 610 

Sensitivity, 133 
Separable differential equation, 446, 994 
Sequence ,496 

bounded,497 
convergent , 498 
divergent , 499 
of partial sums , 504 

Series, 504 
asymptotic , 563 
Fourier, 555 , 779 
geometric , 505 
harmonic, 508 
Maclaurin , 538 
positive , 510 
power, 527 
representation of a function , 537 
solutions of a DE, 1021 
Taylor, 538 
telescoping, 507 

Set 
bounded , 746 
convex, 756 
open,569 

Shell 
cylindrica l, 396 
spherical, 412 

Shift , 20 
Sigma notation , 289 
Sign 

of a permutation , 959 
Signum function, 36 
Simple closed curve , 638,882 
Simple harmonic motion , 128, 206 

differential equation of, 207 
Simply connected domain, 882 
Simpson's rule, 377 
Sine law, 56 
Sine, 47 
Singular matrix , 605 
Singular point, 101, 746 

of a DE, 1023 
of an Euler equation , 1012 

Sinh function , 198 
Sink, 872 
Sketching graphs , 248 
Slicing , 392 

volumes by, 400 
Slope field, 998 
Slope 

of a curve, 98 
of a parametric curve, 476 
of a polar curve , 490 

Smooth 
arc, 875 
boundary of a manifold, 977 
curve , 98, 405 638 
manifold , 969 
parametric curve, 476 
surface , 890 

Snell 's law, 266 
Solenoidal vector field, 916 
Solid angle, 953 
Solution curve, 999 

of a differential equation , 996 

Solution 
of a differential equation , 151 

Solve routines, 227 
Source , 871 
Speed, 155, 624 

angular , 631, 853 
Sphere, 595 

area of, 409 
Spherical coordinates, 600, 944 
Spheroid , 411, 897 
Spline, 456 
Square root function , 25 
Square root rule , 115 
Squeeze theorem, 70 
Stability 

of a floating object, 423 
Stadard basis, 571 

in n-space, 578 
Standard deviation , 437 , 440 
Standard volume problem, 807 
Star-like domain, 917 
State 

equation of, 712 
function , 712 

Statistical weight, 799 
Steiner's problem, 805 
Steradian , 953 
Stirling's Formula, 546 
Stokes Theorem , 931, 987 

Generalized, 982 
Straight line, 13 

parametric equations of, 470 
point-slope equation, 15 
slope-intercept equation, 15 
two intercept equation , 17 

Streamline, 86 l 
Strict parametr ization 

of a manifold , 972 
Subspace, 606 
Substitution 

in a definite integral, 320 
method of, 318 

Subtraction of functions , 33 
Sum of a series, 505 
Summation by parts, 562 
Summation formulas , 291 
Sunrise and Sunset, 636 
Supplementary angles , 49 
Supremum, A-22 
Surface area element , 409 , 848 

vector, 900 
Surface area, 480 
Surface integral, 890 
Surface , 672 

closed , 888 
composite, 889 
coordinate, 944 
equipotential, 868 
of revolution , 408 
oriented, 898 
parametric, 887 
ruled, 596 
smooth, 890 

Symmetric matrix , 603 
System 

of equations, 728 
finding roots with Maple , 794 

Tail of a series, 509 

Tan 0 / 2 substitution , 352 
Tangent line, 61 

non-vertical , 97 
to a parametric curve, 477 
vertical , 98 

Tangent plane, 686 
approximat ion using, 705 
equation of, 687 

Tangent space 
to a manifold , 970 

Tangent-line approximation, 267 
Tangent 

function, 53 
unit vector, 644 

Tangential acceleration, 653 
Tanh, 200 
Tautochrone, 473 
Taylor approximation 

of implicit functions , 741 
Taylor polynomial, 273, 738 

Taylor series, 538 
multivariable , 738 

Taylor 's Formula, 275 
approximating integrals with, 38 1 
for multivariables , 738 

Taylor's Theorem , 275 
integral remainder , 544 
Lagrange remainder , 544 

Telescoping series, 507 
Tetrahedron , 586 
Thermodynamics , 712,730 
Time-shift, 207 
Topographic map, 673 
Topology, 568 
Torque, 632 
Torricelli 's law, 287 
Torsion, 648 
Torus, 396 
Track design , 654 
Tractr ix curve, 457 
Trajectory 

of a vector field, 861 
Transcendental function, 164 
Transcendental number, 177 
Transformation , 709 , 841 

inverse, 830 
of plane coordinates, 829 

Transpose, 603 
Transverse axis, 464 
Transverse component, 661 
Trapezoid rule, 370 

error estimate, 373 
Trapezoid , 370 
Trefoil knot, 889 
Triang le inequality, 8, 579, 810 

for the definite integral , 306 
Trigonometric function, 53 
Trigonometric polynomial, 779 
Trigonometry , 55 
Triple integral , 835 
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Triple product 
scalar, 584 
vector, 587 

Truncation error, 28 l 
Tube 

around a curve, 888 

Ultimate 
property of a sequence, 498 

Undetermined coefficients, 354 
method of, 1015 

Uniform continuity, A-28 
Uniform distribution, 438 
Union, 7 
Unit binormal , 647 
Unit normal field 

to a surface, 898 
Unit normal , 645 
Unit principal normal , 645 
Unit tangent vector, 644 
Upper bound , A-22 

for a sequence, 497 

Van derPol equat ion, 864 
Variable of integration , 302 
Variable 

extensive, 712 
intensive, 7 12 
of a function, 24 

Variance, 437,440 
Variation of parameters 

method of, 1018 
Vector addition , 570 

Vector area element 
on a surface, 900 

Vector field, 859 
conservative, 916 
in polar coordinates, 863 
irrotational, 9 16 
smooth, 859 
solenoidal, 9 16 
trajectories, 861 

Vector-valued funct ion, 623 
Vector, 570 

calculations with Maple, 613 
cross product , 580 
differential identities, 915 
dot product , 576 
in n-space, 578 
normal, 686 
position, 572 
potential , 917 
projection , 577 
row or column , 603 
triple product, 587 

Velocity field 
ofa rotating solid, 861 

Velocity, 127, 155, 624 
angular, 631 
average , 59, 154, 624 
escape, 428 
instantaneous, 60 
polar components of, 662 

Vertex 
of a hyperbol a, 464 
of a parabo la, 19 
of a parabo la, 459 

Vertical asymptote , 246 

Vertical tangent line, 98 
Volume element, 393, 947 

INDEX A-83 

in cylindrical coord inates, 842 
in spherical coordinates, 844 

Volume 
by slicing, 392, 400 
of a k-para llelogram, 973 
of a ball, 393 
of a cone, 394 
of a genera l cone, 927 
of a torus, 397 
of an ellipsoid, 403 

Wallis Product , 338 
Wave equation, 694 
Wave 

spherically expand ing, 744 
Wedge Product , 958, 960 
Winding number , 887 
Witch of Agnesi, 475 
Work, 425, 879 

element of, 879 

x-s imple domain, 813 
x-s imple domain, 925 

y-s imple domain, 8 13 
y-s imple domain , 925 

z-simp le domain, 925 
Zero vector, 57 I 
Zero 

of a funct ion, 223, 791 
of a polynom ial, 41 
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INTEGRATION RULES _________ _ 

J (Af( x ) + Bg(x)) dx = A J f(x) dx +B J g(x) dx 

J j'(g(x))g ' (x)dx = J(g(x)) + C 

J U(x)dV(x) = U(x) V(x) - J V(x)dU(x) 

1b J'(x) dx = J(b) - J(a) 
a 

d 1x - f(t) dt = J(x) 
dx a 

ELEMENTARY INTEGRALS _______ _ 

J
xr dx = - 1

-xr+l + C if r 'F - 1 
r+ l 

J d: = In Ix I + C 
J ex dx =ex+ C 

Jaxdx = ~+c 
Ina 

J sinx dx = - COSX + C 

f cosxdx=si n x+C 

J sec2 xdx = tanx + C 

J csc2 x dx = - cot x + C 

J sec x tan x dx = sec x + C 

J csc x cot x dx = - csc x + C 

J tan x dx = In I sec x I + C 

J cot xdx= ln ls inxl+C 

J secxdx = In I secx + tan xi+ C 

J cscx dx = In I cscx - cot xi+ C 

J dx = sin- l ~ + C (a > 0, lxl < a) 
.Ja2 _ x2 a 

J c/x l - I X --- = -. tan - + C (a > 0) 
a2 + x 2 a a 

J a2 ~ x2 = 2Ia In I: ~: I + C (a > 0) 

J dx =~sec - 1 1~1+ c (a > O, lxl > a) 
x.Jx 2 -a 2 a a 

TRIGONOMETRIC INTEGRALS _____ _______ _ 

J sin2 x dx = ~ - ~ sin 2x + C 

J cos2 x dx =~+~sin 2x + C 
2 4 

J tan2 x dx = tan x - x + C 

J cot2 x dx = - cotx - x + C 

J sec3 x dx = i sec x tan x + i In I sec x + tan x I + C 

J csc3 x d x = - ~ csc x cot x + ~ In I csc x - cot x I + C 
2 2 

J sin(a - b)x sin(a +b)x 2 2 
sin ax sinbxdx = ---- - ( + C if a 'F b 

2(a - b) 2 a +b) 

J 

sin(a - b)x sin(a + b)x 2 2 
cos ax cos bx dx = -- - - + ( + C if a 'F b 

2(a - b) 2 a+ b) 

J 

cos(a - b)x cos(a + b)x 2 2 
sin axcosbxdx= ----- ( +Cifa ib 

2(a - b) 2 a+ b) 

/
sin" xdx = -~si n"- 1 x cosx + n - l / sin"- 2 xdx 

ll ll 

J 
cos" x dx = ~ cos11

-
1 x sinx + 

11 
-

1 
/ cos"- 2 x dx 

n n 

J 
tan" xdx = -

1
- tan"- 1 x -! tan"- 2 xdx if n 'F I 

n - l 

J 
cot" xdx = 2 cot"- 1 x -f co 111

-
2 xdx if n 'F I 

n - 1 

J sec" xdx = -
1
-s ec"- 2 x tanx + 

11 
-

2 J sec11
-

2 xdx if n 'FI 
n - I n - l 

J 
csc11 xdx = 2 csc"- 2 x cotx + n -

2 f csc"- 2 xdx if n 'F I 
n - I n - l 

J sin11
-

1 x cos111+1 x n - l J 
sin11 x cos111 x dx = ---- -- - + -- · sin11

-
2 x cos"' xdx if n 'F - m 

n + m n+m 

J sin11+1 x cos'"- 1 x m - I J 
sin11 x cos111 x dx = --- - -- + -- sin" x cos"'- 2 x dx if m 'F -n 

n+m n+m 

j x sin x dx = sin x - x cos x + C 

J x cosxdx = cosx +x sinx + C 

J x 11 sinx dx = -x" cosx + n J x"- 1 cosx dx 

J x" cosx dx = x 11 sin x - n J x 11
-

1 sinx dx 
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INTEGRALS INVOLVING .Jx 2 ±a 2 (a > O) ______ _ 

(If .J x2 - a2, assume x > a > 0.) 

J x2 ± a 2 dx = -J x2 ± a2 ± - In Ix+ J x2 ± a21 + C f X a 2 

2 2 

f ~ = In Ix+ J x2 ± a2
1 + C 

vx2 ±a2 

j ~ dx= Jx2+a2-a ln la+~l+c 

f .Jx2 - a2 ~ .Jx2 - a2 
--- dx = vx 2 -a 2 -a tan- 1---+C 

X a 

x 2Jx 2 ±a 2dx = -(2x 2 ±a 2)Jx 2 ±a 2 - - In Ix+ Jx 2 ±a 2
1 + C f X ~ 

8 8 

f x 2 x a2 

~ dx = -Jx 2 ±a 2 =t= - In Ix+ Jx 2 ±a 21 + C 
v x· :1: a· 2 2 

f 
.j x2 ± a2 .j x2 ± a2 ~ 
--2- dx = ----+ !n ix + vx 2 ±a 2

1 +c 
X X 

f dx .Jx 2 ± a2 

-- - - = =i=-~- + c 
x2.Jx2 ±a2 a2x 

---- = ---- + C f dx ±x 

(x2 ± a2)3/2 a2.J x2 ± a2 

(x2 ± a2)3/2 dx = _.:(2x2 ± 5a2)J x2 ± a 2 + - In Ix+ Jx 2 ± a21 + C f X 3a4 

8 8 

INTEGRALS INVOLVING .Ja 2 - x 2 (a > 0, lxl < a) ____ _ 

Ja 2 -x 2dx = -Ja 2 - x2 + - sin- 1- + C f X a2 X 

2 2 a 

f .Ja2-x2 ~ la+.Ja2-x21 
x dx = v a 2 - x 2 - a In x + C 

~==dx = --Ja 2 -x 2 + -s in- 1- + C f x 2 x a 2 x 

.Ja2-x2 2 2 a 

x 2J a2 -x 2 dx = -(2x 2 - a2))a 2 -x 2 + - sin- 1- + C f X a4 
X 

8 8 a 
.Ja2 -x2 

2 +c a X f dx 

x2.Ja2 - x2 -

- -=--dx = - --- - sin- 1- + C f .Ja2-x2 .Ja2-x2 x 

x 2 x a 

f dx =-~ In 1-a_+_v_a_2 ___ x_2 I+ C 
x.Ja 2 - x2 a x 

f ~ =--x--+C 
(a2 _ x2)3/2 a2.J a2 _ x2 

f (a2 - x2)312 dx = ::csa 2 - 2x2)J a2 - x2 + 
3
a

4 

sin- 1 ::_ + C 
8 8 a 

INTEGRALS OF INVERSE TRIGONOMETRIC FUNCTIONS __ 

j sin- 1xdx =xs in- 1x+~+C 

f tan- 1x dx = x tan- 1x - ~ In( ! +x 2) + C 

f sec- 1xdx=xsec- 1x- ln lx+~ l +C (x> 1) 

f x sin- 1 x dx = ~(2x 2 - l )s in- 1x + ::j 1 - x 2 + C 
4 4 

f x tan- 1xdx = ~(x 2 + l )tan- 1x - :: + C 
2 2 

f xsec - 1xdx=x
2

2 
sec- 1x-~~+C (x > 1) 

f xn+I I f x11+I 
x 11 sin- 1 x dx = --s in- 1x-- - ,,--------,, dx+C if n i= -I 

11 + I 11 + l v J - x2 

f x11+I I f x"+ ' 
x 11 tan- 1xdx = -- tan- 1x--- ---

2 
dx+ C if 11 i= - I 

n+ l n+ I l +x 

f x11+I I f x11 
x" sec- 1xdx = --sec - 1x--- r,,-, dx+C (n f= - 1, x > 

n + 1 n + I v x · - 1 

EXPONENTIAL AND LOGARITHMIC INTEGRALS __ 

f xex dx = (x - l )ex + C 

f x"ex dx = x"ex - n f x" - lex dx 

j lnxdx=x lnx-x+C 

f 
x 11+1 x 11+ 1 

x" lnxdx = -- lnx - -(-- 2 + C, (11 i= - 1) 
n + I 11+ 1) 

f x"(l nx) 111 dx = xn+I (lnx)"'-__'.'.:_ f x" (lnx)m- l dx (n -/=- 1) 
n+ I n+ I f eax sin bx dx = a/: b2 (a sin bx - b cos bx)+ C 

f eax cos bx dx = 
2
eax 2 (a cos bx+ b sin bx)+ C 

a +b 

INTEGRALS OF HYPERBOLIC FUNCTIONS ___ _ 

j sinh x dx = cosh x + C 

f cosh x dx = sinh x + C 

f tanhxdx = ln(coshx) + C 

f cothx dx = In I sinh x I + C 

f sechx dx = 2tan- 1 (ex)+ C 

f cschx dx = In lranh i I+ C 

f sinh2 x dx = ~ sinh 2x - i + C 

f cosh2 x dx = ~ sinh 2x + :: + C 
4 2 f tanh2xdx = x - tanhx + C 

j coth2 x dx = x - cothx + C 

j sech2x dx = tanhx + C 

j csch2 x dx = -cothx + C 

f sechx tanhx dx = -sec hx + C 

f cschx cothx dx = -cschx + C 
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VECTOR IDENTITIES ------------------------------------
lf u =u1 i+uij+u 3k 

v = v, i + vij + v3k 

w= w1i +w2.i+w3 k 

then (dot product) u • v = u1v1 + u2v2 + u3v3 

(cross product ) u xv = I u\ l 2 uk3 I= (u2v3 - u3v2)i + (u3v1 - u1v3)j + (u1v2 - u2vi) k 
Vi V2 V3 

length of u = lul = ~ = j uf + u~ + u~ angle between u and v = cos - 1 ( 
0 

• v) 
lullvl 

triple product identities u • (v x w) = v • (w x u) = w • (u x v) u x (v x w) = (u • w)v - (u • v)w 

IDENTITIES INVOLVING GRADIENT, DIVERGENCE, CURL, AND LAPLACIAN _______________ _ 

V = i !_ + j !_ + k !_ ("del" or "nab la" operator) 
ax ay az 

a</) . a</) . a</) 
V <j)(x ,y,z ) = grad <j)(x,y,z) = -1+-J+ - k 

ax ay az 

F(x,y,z) = F,( x,y,z) i + F2(x,y,z )j + F3(x, y,z ) k 

aF, aF2 aF3 
V • F (x, y, z) = div F(x, y , z) = - + - + -ax ay az 

j k 

v a a a xF (x ,y,z) =c urIF (x,y,z)= ax ay az 

F1 F2 F3 

= ( a F3 _ a F2 ) i + ( a F, _ a F3 ) j + ( a F2 _ a Fi ) k 
ay az az ax ax ay 

V (r/J1/I) = </JV l/f + 1/fV<P V • (F X G) = (V X F) • G - F. (V X G) 

V • (</JF) = (V <P) • F + ¢ (V • F) V x (F x G) = F(V • G) - G (V • F) - (F • V )G + (G • V )F 

V x (</JF) = (V</J) x F+</J(V x F) V (F • G) = F x (V x G) + G x (V x F) + (F • V )G + (G • V )F 

V x (V</J) = 0 ( curl grad = 0) Ve(VxF)=O ( div curl = 0) 

2 • a2¢ a2
<fJ a2</) 

V <jJ(x, y, z) = V • V <jJ(x, y, z) = d1vgrad ¢ = - 2 + - 2 + - 2 ax ay az 
V x (V x F) = V (V • F) - V 2F (curl curl = grad div - laplacian) 

VERSIONS OF THE FUNDAMENTAL THEOREM OF CALCULUS ____________________ _ 

1b J ' (t) dt = J(b) - J(a) (the one-dimensional Fundamental Theorem ) 

l grad ¢ • dr = ¢ (r(b)) - ¢ (r(a)) if C is the curve r = r (t), (a s t s b). 

[ [ ( a F2 - a Fi ) d A = 1 F • dr = 1 F1 (x , y) dx + F2 (x, y) dy where C is the positively oriented boundary of R (Green 's Theorem) 
]JR ax ay re re 
Jfs curl F • N dS = t F • dr = t Fi (x, y, z) dx + F2(x , y, z) dy + F3(x, y, z) dz where C is the oriented boundary of S. (Stokes's Theorem) 

Three-dimensional versions: S is the closed boundary of D, with outward normal N 

J J L div F d V = fi F • Nd S Divergence Theorem JJ/
0 

curlFdV = - fi F x NdS 

JJ L grad <jJdV = fi <jJNdS. 

FORMULAS RELATING TO CURVES IN 3-SPACE _________________________ _ 

Curve : r = r(t) = x(t) i + y(t)j + z(t) k 

Arc length: s = 1' v dt 
to 

' V 
Unit tangent: T = -

V 

Iv x al 
Curvature: K = --

3 
-

V 

The Frenet-Serret formula s: 
dt , 
-=KN 
ds ' 

dr , 
Velocity: v = - = vT 

dt 

dv d2r 
Acceleration: a= dt = dt 2 

, V X a 
Binormal: B = -

Iv x al 
1 

Radius of curvature: p = -
K 

d'N ' ' 
- =-K T+,B 
ds ' 

dB , 
- = -, N 
ds 

ds 
Speed: v = lvl = -

dt 

dv , 2 , 
Tangential and normal components: a= - T+v KN 

dt 

- - - dT / dt 
Normal: N = B x T = -,--

ldT / dtl 

. (v x a)• (da/ dt) 
Torsion: r = 

2 Iv x al 
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ORTHOGONAL CURVILINEAR COORDINATES _____________ ____ ____ ___ __ _ 

transformation: x = x( u, v, w), y = y(u, v, w), z = z(u, v, w) 

scale factors: h.11 = I: : I , hv = I:: I , hw = I:: I 

volume element: d V = h.11h.0 hw du dv dw 

scalar field: J(u , v, w) 

. ..., 1 aJ, 1 aJ, 1 aJ , 
grad ient: v f = - - u + - - v + - - w 

h11 au hv av hw aw 

position vector: r = x(u, u, w)i + y(u, v, w)j + z(u, v, w)k 

, 1 ar 
local basis: u = - - , 

h.11 au 

, 1 ar 
V = hv av, 

vector field: F(u, v, w) = F11(u, v, w)u + F0 (u, v, w)v + Fw(u, v, w),v 

divergence: VeF = --
1- [~ (h.,JiwF") + ~ (h."hwFv) + ~ (h11hvFw)] 

h11hvhw au av aw 

h11ii hvv hww 
I 

curl : V x F = --- a a a 
h.11h,,hw au av aw 

F11h11 F0 h" Fwhw 

PLANE POLAR COORDINATES------- --- -------------- - - - -- -- --
transformation: x = r cos0 , y = rs in 0 

scale factors : h, = I: ~ I= l , ho= I: ; I = r 

area element: dA = r dr d0 

scalar field: J( r, 0) 

aJ, 1 aJ, 
gradient: V f = - r + - - 0 

ar r a0 

. 2 a2 f , af I a2 f 
laplac1an: V f = - +-- + --

ar2 r ar r 2 a02 

position vector: r = r cos 0 i + r sin 0 j 

local basis: r = cos 0i + sin 0j , 9 = - sin 0i + cos 0j 

vector field: F (r, 0) = F,( r, 0) r + Fe(r, 0) 9 

aF, I 1 aF0 
divergence: V • F = - + - F,. + - -

ar r r a0 

curl: V x F = - + - - - - k [
aFo F0 I aF, J 
ar r r a0 

CYLINDRICAL COORDINATES---- ----- ----- ----- ----- --- - -- -
transfo rmation: x = r cos 0, y = r sin 0, z = z 

sca le factors: h,. = I: ~ I = l , h0 = I:; I = r, h, = I:: I = 1 

volume element: d V = r dr d0 dz 

scalar field: J( r, 0, z) 

. aJ , 1 aJ, aJ 
gradient: V f = - r +- - 0 + - k 

ar r a0 az 

. 2 a2 J I aJ , a2 J a2 J 
laplacian: V f = - + - - + - - + -

. ar2 r ar r 2 a02 az2 

position vector: r = r cos 0 i + r sin 0 j + zk 

local basis: r = cos0 i + sin 0j , 9 = -s in 0i + cos0 j , z = k 

surface area element (on r = a) : dS = a d0 dz 

vector field: F(r, 0, z) = F,(r, 0, z)r + Fo(r, 0, z)0 + F, (r, 0, z)k 

. a F, I I a Fo a F, 
divergence: V • F = - + - F,. + - - + -

ar r r a0 az 

r r9 k 

curl: V x F = ~ a a a 
r ar a0 az 

F, rFo F, 

SPHERICAL COORDINATES ______ ___________________________ _ 
transformation: x =ps in ¢,cos0 , y =ps in ¢,s in 0, z =pcos¢, position vector: r = p sin¢, cos 0 i + p sin¢, sin 0 j + p cos ¢,k 

scale factors: hp = I:; I = 1, '1¢ = I:; I = P, ho = I:; I = P sin ¢, 

local basis: p = sin¢, cos 0 i +s in ¢, sin 0 j +cos¢, k, ~ = cos¢, cos 0 i +cos¢, sin 0 j - sin¢, k, 9 = - sin 0 i + cos 0 j 

volume element: d V = p2 sin ¢, dp d¢, dB 

sca lar field: f(p , ¢,, 0) 

gradient: V f = aJ p + ~ aJ ~ + - '- aJ 9 
ap p a¢, p sin ¢, a0 

. 2 a2J 2 aJ I a2J cot¢,af I a2J 
laplac1an: V f = -+--+--+---+--.--

ap2 P ap P2 a¢,2 P2 a¢, P2 s 1112 ¢, a02 

surface area element (on p = a ): dS = a 2 sin ¢, d0 d¢, 

vector field: F(p, ¢,, 0) = Fp(P, ¢,, 0) p + F,,(p, ¢,, 0)~ + Fo(p, ¢,, 0) 9 

. aFP 2 1 aF,, cot ¢, I aF0 d1vergence : V • F = - + - F + - - + -- F,, + -- -
ap p P p a¢, p p sin ¢, a0 

p p~ p sin ¢,9 

curl: V x F = --
1
-

a a a 
p 2 sin ¢, ap a¢, a0 

Fp pF,, ps i11¢,F0 
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