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Il Differentiation Rules

1. Constant: ic =0 2. Constant Multiple: icf()c) = cf'(x)
dx dx
d d
3. Sum: . [fx) = g)] =f'(x) = g'(x) 4. Product: . fgx) = f(0)g'(x) + gx) f'(x)
) d fix)  gL)f'(x) — flx)g'(x) .. d ) )
5. Quotient: dr gt (e 6. Chain: af(g(x)) = f(g(x))g"(x)
d _ d _
7. Power: — x" = nx""! 8. Power: —[g)]" = n[g®)]"'g'(x)
dx dx

Il Derivatives of Functions

Trigonometric:
9. —sinx = cosx 10. —cosx = —sinx 11. —tanx = sec’x
dx dx dx
d ) d d
12. —cotx = —csc™x 13. —secx = secxtanx 14. —cscx = —cscxcotx
dx dx dx
Inverse trigonometric:
d ., 1 d o 1 d o 1
15. I sin” x = o 16. I cos x = —m 17. I tan  x = I+ 2
d 1 d 1 d 1
18. —cot™'x = — 19. —sec 'x=——— 20. —cs¢c lx= —— 1 ——
dx o 1+ x2 dx * Va2 — 1 dx * Va2 — 1
Hyperbolic:
21. —sinh x = cosh x 22. —cosh x = sinh x 23. — tanh x = sech®x
dx dx dx
d ) d d
24. —cothx = —csch”x 25. —sech x = —sech x tanh x 26. — cschx = —csch x coth x
dx dx dx
Inverse hyperbolic:
d 1 d 1 d 1
27. —sinh ' x = ——— 28. —cosh 'x = —— 29. —tanh 'x = — <1
dx 2+ dx X2 =1 dx I —x
d d 1 d 1
30. —coth 'x = x> 1 3. —sech'x = ———— 32. —csch'x= —+——
gy ot = |x| 7 Sech oo 7 Sseh |x\\/x2T1
Exponential:
d d
33. —e*=¢" 34. —b* = b*(Inb
dx ¢ ¢ dx (Inb)
Logarithmic:
d 1 d 1
35. —1 = — 36. — 1 = —
o Ty dx 2T X(n b)

Of an integral:

d(" d(’ &
37. —| g dt = g(x) 38. —| g, ndt = | —gx, dr
dx a dx a a 0x
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Preface

In courses such as calculus or differential equations, the content is fairly standardized
but the content of a course entitled engineering mathematics often varies considerably
between two different academic institutions. Therefore a text entitled Advanced Engi-
neering Mathematics is a compendium of many mathematical topics, all of which are
loosely related by the expedient of either being needed or useful in courses in science and
engineering or in subsequent careers in these areas. There is literally no upper bound to
the number of topics that could be included in a text such as this. Consequently, this book
represents the author’s opinion of what constitutes engineering mathematics.

Il Content of the Text

For flexibility in topic selection this text is divided into five major parts. As can be seen
from the titles of these various parts it should be obvious that it is my belief that the
backbone of science/engineering related mathematics is the theory and applications of
ordinary and partial differential equations.

Part 1: Ordinary Differential Equations (Chapters 1-6)

The six chapters in Part 1 constitute a complete short course in ordinary differential equa-
tions. These chapters, with some modifications, correspond to Chapters 1, 2, 3, 4, 5, 6,
7, and 9 in the text A First Course in Differential Equations with Modeling Applications,
Eleventh Edition, by Dennis G. Zill (Cengage Learning). In Chapter 2 the focus is on
methods for solving first-order differential equations and their applications. Chapter 3
deals mainly with linear second-order differential equations and their applications. Chap-
ter 4 is devoted to the solution of differential equations and systems of differential equa-
tions by the important Laplace transform.

Part 2: Vectors, Matrices, and Vector Calculus (Chapters 7-9)

Chapter 7, Vectors, and Chapter 9, Vector Calculus, include the standard topics that are
usually covered in the third semester of a calculus sequence: vectors in 2- and 3-space,
vector functions, directional derivatives, line integrals, double and triple integrals, surface
integrals, Green’s theorem, Stokes’ theorem, and the divergence theorem. In Section 7.6
the vector concept is generalized; by defining vectors analytically we lose their geometric
interpretation but keep many of their properties in n-dimensional and infinite-dimensional
vector spaces. Chapter 8, Matrices, is an introduction to systems of algebraic equations,
determinants, and matrix algebra, with special emphasis on those types of matrices that

xi
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are useful in solving systems of linear differential equations. Optional sections on cryp-
tography, error correcting codes, the method of least squares, and discrete compartmental
models are presented as applications of matrix algebra.

Part 3: Systems of Differential Equations (Chapters 10 and 11)

There are two chapters in Part 3. Chapter 10, Systems of Linear Differential Equations,
and Chapter 11, Systems of Nonlinear Differential Equations, draw heavily on the matrix
material presented in Chapter 8 of Part 2. In Chapter 10, systems of linear first-order
equations are solved utilizing the concepts of eigenvalues and eigenvectors, diagonaliza-
tion, and by means of a matrix exponential function. In Chapter 11, qualitative aspects of
autonomous linear and nonlinear systems are considered in depth.

Part 4: Partial Differential Equations (Chapters 12-16)

The core material on Fourier series and boundary-value problems involving second-order
partial differential equations was originally drawn from the text Differential Equations with
Boundary-Value Problems, Ninth Edition, by Dennis G. Zill (Cengage Learning). In Chapter
12, Orthogonal Functions and Fourier Series, the fundamental topics of sets of orthogonal
functions and expansions of functions in terms of an infinite series of orthogonal functions
are presented. These topics are then utilized in Chapters 13 and 14 where boundary-value
problems in rectangular, polar, cylindrical, and spherical coordinates are solved using the
method of separation of variables. In Chapter 15, Integral Transform Method, boundary-
value problems are solved by means of the Laplace and Fourier integral transforms.

Part 5: Complex Analysis (Chapters 17-20)

The final four chapters of the hardbound text cover topics ranging from the basic complex
number system through applications of conformal mappings in the solution of Dirichlet’s prob-
lem. This material by itself could easily serve as a one quarter introductory course in complex
variables. This material was taken from Complex Analysis: A First Course with Applications,
Third Edition, by Dennis G. Zill and Patrick D. Shanahan (Jones & Bartlett Learning).

Additional Online Material: Probability and Statistics (Chapters 21 and 22)

These final two chapters cover the basic rudiments of probability and statistics and can obtained
as either a PDF download on the accompanying Student Companion Website and Projects
Center or as part of a custom publication. For more information on how to access these addi-
tional chapters, please contact your Account Specialist at go.jblearning.com/findmyrep.

Il Design of the Text

For the benefit of those instructors and students who have not used the preceding edition,
a word about the design of the text is in order. Each chapter opens with its own table of
contents and a brief introduction to the material covered in that chapter. Because of the
great number of figures, definitions, and theorems throughout this text, I use a double-
decimal numeration system. For example, the interpretation of “Figure 1.2.3” is

Chapter Section of Chapter 1
1.2.3 <« Third figure in Section 1.2
I think that this kind of numeration makes it easier to find, say, a theorem or figure when it is

referred to in a later section or chapter. In addition, to better link a figure with the text, the first

xii Preface
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textual reference to each figure is done in the same font style and color as the figure number.
For example, the first reference to the second figure in Section 5.7 is given as FIGURE 5.7.2 and
all subsequent references to that figure are written in the tradition style Figure 5.7.2.

Il Key Features of the Sixth Edition

* The principal goal of this revision was to add many new, and I feel interesting,
problems and applications throughout the text. For example, Sawing Wood in
Exercises 2.8, Bending of a Circular Plate in Exercises 3.6, Spring Pendulum in
Chapter 3 in Review, and Cooling Fin in Exercises 5.3 are new to this edition. Also,
the application problems

Air Exchange, Exercises 2.7
Potassium-40 Decay, Exercises 2.9
Potassium-Argon Dating, Exercises 2.9
Invasion of the Marine Toads, Chapter 2 in Review
Temperature of a Fluid, Exercises 3.6
Blowing in the Wind, Exercises 3.9
The Caught Pendulum, Exercises 3.11
The Paris Guns, Chapter 3 in Review
contributed to the last edition were left in place.

* Throughout the text I have given a greater emphasis to the concepts of piecewise-
linear differential equations and solutions that involve integral-defined functions.

* The superposition principle has been added to the discussion in Section 13.4,
Wave Equation.

» To improve its clarity, Section 13.6, Nonhomogeneous Boundary-Value Problems,
has been rewritten.

* Modified Bessel functions are given a greater emphasis in Section 14.2, Cylindrical
Coordinates.

Il Supplements
For Instructors

* Complete Solutions Manual (CSM) by Warren S. Wright and Roberto Martinez
* Test Bank
e Slides in PowerPoint format
* Image Bank
* WebAssign: WebAssign is a flexible and fully customizable online instructional
system that puts powerful tools in the hands of teachers, enabling them to deploy
assignments, instantly assess individual student performance, and realize their
teaching goals. Much more than just a homework grading system, WebAssign
delivers secure online testing, customizable precoded questions directly from
exercises in this textbook, and unparalleled customer service. Instructors who
adopt this program for their classroom use will have access to a digital version
of this textbook. Students who purchase an access code for WebAssign will also
have access to the digital version of the printed text.
With WebAssign instructors can:
¢ Create and distribute algorithmic assignments using questions specific to this
textbook
* Grade, record, and analyze student responses and performance instantly
» Offer more practice exercises, quizzes, and homework
* Upload resources to share and communicate with students seamlessly

Preface xiii
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xiv Preface

For more detailed information and to sign up for free faculty access, please
visit webassign.com. For information on how students can purchase access to
WebAssign bundled with this textbook, please contact your Jones and Bartlett
account representative at go.jblearning.com/findmyrep.

Designated instructor materials are for qualified instructors only. Jones & Bartlett
Learning reserves the right to evaluate all requests. For detailed information and to
request access to instructor resources, please visit go.jblearning.com/ZillAEM6e.

For Students

* A WebAssign Student Access Code can be bundled with a copy of this text at a dis-
count when requested by the adopting instructor. It may also be purchased separately
online when WebAssign is required by the student’s instructor or institution. The
student access code provides the student with access to his or her specific classroom
assignments in WebAssign and access to a digital version of this text.

* A Student Solutions Manual (SSM) prepared by Warren S. Wright and Roberto
Martinez provides a solution to every third problem from the text.

* Access to the Student Companion Website and Projects Center, available at
go.jblearning.com/ZillAEM6e, is included with each new copy of the text. This
site includes the following resources to enhance student learning:

* Chapter 21 Probability

* Chapter 22 Statistics

* Additional projects and essays that appeared in earlier editions of this text,
including:

Two Properties of the Sphere

Vibration Control: Vibration Isolation

Vibration Control: Vibration Absorbers

Minimal Surfaces

Road Mirages

Two Ports in Electrical Circuits

The Hydrogen Atom

Instabilities of Numerical Methods

A Matrix Model for Environmental Life Cycle Assessment

Steady Transonic Flow Past Thin Airfoils

Making Waves: Convection, Diffusion, and Traffic Flow

When Differential Equations Invaded Geometry: Inverse Tangent Problem
of the 17" Century

Tricky Time: The Isochrones of Huygens and Leibniz

The Uncertainty Inequality in Signal Processing

Traffic Flow

Temperature Dependence of Resistivity

Fraunhofer Diffraction by a Circular Aperture

The Collapse of the Tacoma Narrow Bridge: A Modern Viewpoint

Atmospheric Drag and the Decay of Satellite Orbits

Forebody Drag of Bluff Bodies

Il Acknowledgments

The task of compiling a text this size is, to say the least, difficult and many people have
put much time and energy into this revision. So I would like to take this opportunity
to express my sincerest appreciation to everyone—most of them unknown to me—at
Jones & Bartlett Learning and at Aptara, Inc. who were involved in the publication of this
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edition. A special word of thanks goes to my editor Laura Pagluica and production editor
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4

m‘ Definitions and Terminology

INTRODUCTION The words differential and equation certainly suggest solving some kind
of equation that contains derivatives. But before you start solving anything, you must learn some
of the basic defintions and terminology of the subject.

Il A Definition The derivative dyldx of a function y = ¢(x) is itself another function ¢'(x)

0.1¢ is differentiable on the interval

0.1

found by an appropriate rule. For example, the functiony = e

0.1x°

(— 00, 00), and its derivative is dy/dx = 0.2xe”* . If we replace ™" in the last equation by the

symbol y, we obtain

dy

— = 0.2xy. 1

dx Y a
Now imagine that a friend of yours simply hands you the differential equation in (1), and that
you have no idea how it was constructed. Your friend asks: “What is the function represented by
the symbol y?” You are now face-to-face with one of the basic problems in a course in differen-
tial equations:

How do you solve such an equation for the unknown function y = ¢(x)?

The problem is loosely equivalent to the familiar reverse problem of differential calculus: Given
a derivative, find an antiderivative.

Before proceeding any further, let us give a more precise definition of the concept of a dif-
ferential equation.

Definition1.1.1  Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to
one or more independent variables, is said to be a differential equation (DE).

In order to talk about them, we will classify a differential equation by type, order, and linearity.

Il Classification by Type If a differential equation contains only ordinary derivatives of
one or more functions with respect to a single independent variable it is said to be an ordinary
differential equation (ODE). An equation involving only partial derivatives of one or more
functions of two or more independent variables is called a partial differential equation (PDE).
Our first example illustrates several of each type of differential equation.

Types of Differential Equations

(a) The equations

an ODE can contain more
than one dependent variable

\: \
dy d* dy dx dy
—+6y=¢e ", —+——12y =0, d —+—=3x+2 2
ax T a a7 A
are examples of ordinary differential equations.
(b) The equations
Fu 9 Pu u w9 d
Puiuso Bty o b g
0x ay ax ot ot dy ox

are examples of partial differential equations. Notice in the third equation that there are two
dependent variables and two independent variables in the PDE. This indicates that « and v

must be functions of two or more independent variables. =

CHAPTER 1 Introduction to Differential Equations
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IH Notation Throughout this text, ordinary derivatives will be written using either the Leibniz
notation dy/dx, d*yldx*, d*yldx’, ..., or the prime notation y’, y”, y”, .... Using the latter nota-
tion, the first two differential equations in (2) can be written a little more compactly as
y' +6y=e"andy” +y" — 12y = 0, respectively. Actually, the prime notation is used to denote
only the first three derivatives; the fourth derivative is written y* instead of y””. In general, the
nth derivative is d"y/dx" or y™. Although less convenient to write and to typeset, the Leibniz
notation has an advantage over the prime notation in that it clearly displays both the dependent
and independent variables. For example, in the differential equation d*x/dt* + 16x = 0, it is im-
mediately seen that the symbol x now represents a dependent variable, whereas the independent
variable is ¢. You should also be aware that in physical sciences and engineering, Newton’s dot
notation (derogatively referred to by some as the “flyspeck” notation) is sometimes used to
denote derivatives with respect to time z. Thus the differential equation d”s/dt> = —32 becomes
s = —32. Partial derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, the first and second equations in (3) can be written, in turn, as
Uy + uy, = 0and u,, = u, — u,

Il Classification by Order The order of a differential equation (ODE or PDE) is the
order of the highest derivative in the equation.

Order of a Differential Equation

The differential equations

highest order highest order
\ \:
d? <dy>3 atu du
— +5\—)] —4dy=e, 2—7+—=0
dx? dx Y axt o’

are examples of a second-order ordinary differential equation and a fourth-order partial dif-

ferential equation, respectively. =

A first-order ordinary differential equation is sometimes written in the differential form

M(x, y)dx + N(x,y)dy = 0.

Differential Form of a First-Order ODE

If we assume that y is the dependent variable in a first-order ODE, then recall from calculus
that the differential dy is defined to be dy = y'dx.

(a) By dividing by the differential dx an alternative form of the equation (y — x)dx +
4xdy = 0is given by

L a® oy valenty 4x® ¢y =
y— X xdx = or equivalently xaix y = x
(b) By multiplying the differential equation
dy
6 +x*+y2=0
Xydx X y

by dx we see that the equation has the alternative differential form
2+ y)dx + 6xydy = 0. =
In symbols, we can express an nth-order ordinary differential equation in one dependent vari-

able by the general form

Fx,y,y,...,y") =0, (4)

where F is a real-valued function of n + 2 variables: x, y, y', ..., y(”). For both practical and
theoretical reasons, we shall also make the assumption hereafter that it is possible to solve an

1.1 Definitions and Terminology | 5
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6

Remember these two >
characteristics of a
linear ODE.

ordinary differential equation in the form (4) uniquely for the highest derivative y" in terms of
the remaining n + 1 variables. The differential equation
d"y
dx n

= £, v,y 5, YD), (5)

where f1is a real-valued continuous function, is referred to as the normal form of (4). Thus, when
it suits our purposes, we shall use the normal forms

’7

dy
— = f(x,y) and

I = flx,y,y")

E

to represent general first- and second-order ordinary differential equations.

DEATEYS  Normal Form of an ODE

(a) By solving for the derivative dy/dx the normal form of the first-order differential equation

dy .ody x—y
dx— +y = cA .
oo YT Y i 4x

(b) By solving for the derivative y” the normal form of the second-order differential
equation

Y=y +6y=0 is y' =y — 6y =

Il Classification by Linearity An nth-order ordinary differential equation (4) is said to
be linear in the variable y if F is linear in y, ', ..., y*. This means that an nth-order ODE is
linear when (4) is a,(x)y™ + a,_,(x)y" " + - + a,(x)y’ + ap(x)y — g(x) = Oor

n n—1

an(x) . + a, - l(x) ?
dx"

dx"~ 1 ot al(x) + a()('x)y = g()C) (6)

Two important special cases of (6) are linear first-order (» = 1) and linear second-order
(n = 2) ODEs.
a’y d 2y
al(x) + ap(x)y = glx) and a7(x) + al(x) + agx)y = g(x). (7)

In the additive combination on the left-hand side of (6) we see that the characteristic two proper-
ties of a linear ODE are

» The dependent variable y and all its derivatives y’, y”, ..., y" are of the first degree; that
is, the power of each term involving y is 1

e The coefficients ay, a;, ..., a, of y, ¥, ..., y™ depend at most on the independent
variable x.

A nonlinear ordinary differential equation is simply one that is not linear. If the coefficients
of y,y’,..., y™ contain the dependent variable y or its derivatives or if powers of y, y', ...,
y", such as (y')?, appear in the equation, then the DE is nonlinear. Also, nonlinear functions
of the dependent variable or its derivatives, such as sin y or ¢’ cannot appear in a linear
equation.

EXAMPLE 5 Linear and Nonlinear Differential Equations

(a) The equations

,dy dy
(v —xdx +4xdy =0, y" =2y +y=0, x’—3+3x——5y=e¢"
dx? dx
are, in turn, examples of linear first-, second-, and third-order ordinary differential equations.
We have just demonstrated in part (a) of Example 3 that the first equation is linear in y by
writing it in the alternative form 4xy’ + y = x.

CHAPTER 1 Introduction to Differential Equations
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(b) The equations

nonlinear term: nonlinear term: nonlinear term:
coefficient depends on y nonlinear function of y power not 1
{ { {
2 4
y o d’y
1 —yy' + 2y =¢, — + siny = 0, — +y' =0,
(1 =y y e y ot Ty

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations,

respectively. =
IH Solution As stated before, one of our goals in this course is to solve—or find solutions

of—differential equations. The concept of a solution of an ordinary differential equation is
defined next.

Definition 1.1.2  Solution of an ODE

Any function ¢, defined on an interval / and possessing at least n derivatives that are con-
tinuous on /, which when substituted into an nth-order ordinary differential equation reduces
the equation to an identity, is said to be a solution of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a function ¢
that possesses at least n derivatives and

F(x, p(x), ¢' (%), ..., " (x)) = 0 for all x in L.

We say that ¢ satisfies the differential equation on /. For our purposes, we shall also assume that

a solution ¢ is a real-valued function. In our initial discussion we have already seen that y = ¢%!*

is a solution of dy/dx = 0.2xy on the interval (— co, o).
Occasionally it will be convenient to denote a solution by the alternative symbol y(x).

IH Interval of Definition You can’t think solution of an ordinary differential equation
without simultaneously thinking inferval. The interval I in Definition 1.1.2 is variously called
the interval of definition, the interval of validity, or the domain of the solution and can be an
open interval (a, b), a closed interval [a, b], an infinite interval (a, co), and so on.

EXAMPLE 6 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on the interval
(— o0, ).

dy
@ =%y = (b)y' =2y +y=0; y=xc

SOLUTION  One way of verifying that the given function is a solution is to see, after substi-
tuting, whether each side of the equation is the same for every x in the interval (— oo, c0).

dy x? x3
a) F left-hand side: > = 4-"— =
(a) From eft anszedx 16 7
aN12 JER
ight-hand side: xy'* = <x> =x=7
right-hand side: xy AT =
we see that each side of the equation is the same for every real number x. Note that y'/? = 1x” is,

by definition, the nonnegative square root of 1xx*.
(b) From the derivatives y' = xe* + ¢" and y" = xe* + 2¢* we have for every real number x,

left-hand side: y" — 2y" +y = (xe* + 2¢*) — 2(xe¢* + €°) + x¢* =0
right-hand side: 0. =

Note, too, that in Example 6 each differential equation possesses the constant solution y = 0,
defined on (— oo, c0). A solution of a differential equation that is identically zero on an interval
1 is said to be a trivial solution.

1.1 Definitions and Terminology | 7
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(b) Solution y = 1/x, (0, o)

FIGURE 1.1.1 Example 7 illustrates
the difference between the function
y = 1/x and the solution y = 1/x

8

Il Solution Curve The graph of a solution ¢ of an ODE is called a solution curve. Since
¢ is a differentiable function, it is continuous on its interval / of definition. Thus there may be a
difference between the graph of the function ¢ and the graph of the solution ¢. Put another way,
the domain of the function ¢ does not need to be the same as the interval I of definition (or
domain) of the solution ¢.

Function vs. Solution

EXAMPLE 7

(a) Considered simply as a function, the domain of y = 1/x is the set of all real numbers x
except 0. When we graph y = 1/x, we plot points in the xy-plane corresponding to a judicious
sampling of numbers taken from its domain. The rational function y = 1/x is discontinuous
at 0, and its graph, in a neighborhood of the origin, is given in FIGURE 1.1.1(a). The function
y = 1/x is not differentiable at x = 0 since the y-axis (whose equation is x = 0) is a vertical
asymptote of the graph.

(b) Now y = 1/x s also a solution of the linear first-order differential equation xy’ +y = 0
(verify). But when we say y = 1/x is a solution of this DE we mean it is a function defined on
an interval I on which it is differentiable and satisfies the equation. In other words,
y = l/x is a solution of the DE on any interval not containing 0, such as (—3, —1), (%, 10),
(=00, 0), or (0, co0). Because the solution curves defined by y = 1/x on the intervals (=3, —1)
and on (3, 10) are simply segments or pieces of the solution curves defined by
y = 1/xon (—o0, 0) and (0, 00), respectively, it makes sense to take the interval I to be as large
as possible. Thus we would take I to be either (— oo, 0) or (0, co). The solution curve on the

interval (0, co) is shown in Figure 1.1.1(b). =

1 Explicit and Implicit Solutions You should be familiar with the terms explicit and
implicit functions from your study of calculus. A solution in which the dependent variable is
expressed solely in terms of the independent variable and constants is said to be an explicit solution.
For our purposes, let us think of an explicit solution as an explicit formula y = ¢(x) that we can
manipulate, evaluate, and differentiate using the standard rules. We have just seen in the last two
examples that y = xx* y = xe*, and y = 1/x are, in turn, explicit solutions of dy/dx = xy"?,
y'—=2y" +y=0,and xy’ + y = 0. Moreover, the trivial solution y = 0 is an explicit solution
of all three equations. We shall see when we get down to the business of actually solving some
ordinary differential equations that methods of solution do not always lead directly to an explicit
solution y = ¢(x). This is particularly true when attempting to solve nonlinear first-order dif-
ferential equations. Often we have to be content with a relation or expression G(x, y) = 0 that
defines a solution ¢ implicitly.

Definition 1.1.3

Implicit Solution of an ODE

A relation G(x, y) = 0is said to be an implicit solution of an ordinary differential equation (4)
on an interval / provided there exists at least one function ¢ that satisfies the relation as well
as the differential equation on /.

It is beyond the scope of this course to investigate the conditions under which a relation
G(x,y) = O defines a differentiable function ¢. So we shall assume that if the formal implementa-
tion of a method of solution leads to a relation G(x, y) = 0, then there exists at least one function
¢ that satisfies both the relation (that is, G(x, ¢(x)) = 0) and the differential equation on an in-
terval /. If the implicit solution G(x, y) = 0 is fairly simple, we may be able to solve for y in terms
of x and obtain one or more explicit solutions. See (iv) in the Remarks.

EXAMPLE 8 Verification of an Implicit Solution

The relation x> + y* = 25 is an implicit solution of the nonlinear differential equation

dy X
-~ _ _Z 8
i y (8)

CHAPTER 1 Introduction to Differential Equations
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FIGURE 1.1.3 Some solutions of
xy' —y=x*sinx

c>0

c=0

c<0

on the interval defined by —5 < x < 5. By implicit differentiation we obtain

%xz—i—%yz:%% or 2x+2y%=0. (9)
Solving the last equation in (9) for the symbol dy/dx gives (8). Moreover, solving x* + y* = 25
for y in terms of x yields y = =\/25 — x% The two functions y = ¢,(x) = V25 — x*and
y = ¢y(x) = —\V/25 — x?satisfy the relation (thatis, x* + ¢7 = 25 and x* + ¢3 = 25) and are
explicit solutions defined on the interval (—5, 5). The solution curves given in FIGURE 1.1.2(b)
and 1.1.2(c) are segments of the graph of the implicit solution in Figure 1.1.2(a).

y
5
X
-5 5
(a) Implicit solution (b) Explicit solution (c) Explicit solution
X2+y2=25 ¥ =V25-22,-5<x<5 Y, =V25-x2,-5<x<5

FIGURE 1.1.2 An implicit solution and two explicit solutions in Example 8 =

Any relation of the form x> + y> — ¢ = 0 formally satisfies (8) for any constant c. However,
it is understood that the relation should always make sense in the real number system; thus, for
example, we cannot say that x> + y* + 25 = 0 is an implicit solution of the equation. Why not?

Because the distinction between an explicit solution and an implicit solution should be intui-
tively clear, we will not belabor the issue by always saying, “Here is an explicit (implicit)
solution.”

Il Families of Solutions The study of differential equations is similar to that of integral
calculus. When evaluating an antiderivative or indefinite integral in calculus, we use a single constant
¢ of integration. Analogously, when solving a first-order differential equation F(x, y, y") = 0, we
usually obtain a solution containing a single arbitrary constant or parameter c. A solution contain-
ing an arbitrary constant represents a set G(x, y, ¢) = 0 of solutions called a one-parameter
family of solutions. When solving an nth-order differential equation F(x, y,y’, ..., ") = 0, we
seek an n-parameter family of solutions G(x, y, ¢, ¢, ..., ¢,) = 0. This means that a single
differential equation can possess an infinite number of solutions corresponding to the unlim-
ited number of choices for the parameter(s). A solution of a differential equation that is free
of arbitrary parameters is called a particular solution. For example, the one-parameter family
y = cx — x cos x is an explicit solution of the linear first-order equation xy’ — y = x> sin x on the
interval (— oo, 0o) (verify). FIGURE 1.1.3, obtained using graphing software, shows the graphs of
some of the solutions in this family. The solution y = —x cos x, the red curve in the figure, is a
particular solution corresponding to ¢ = 0. Similarly, on the interval (— oo, ),y = ¢;e* + ¢ xe”
is a two-parameter family of solutions (verify) of the linear second-order equation y” — 2y" +y =0
in part (b) of Example 6. Some particular solutions of the equation are the trivial solution
y=0(c;=¢,=0),y=xe"(c;=0,c,=1),y = 5¢" — 2xe" (¢, =5, ¢, = —2), and so on.

In all the preceding examples, we have used x and y to denote the independent and dependent
variables, respectively. But you should become accustomed to seeing and working with other
symbols to denote these variables. For example, we could denote the independent variable by ¢
and the dependent variable by x.

Using Different Symbols

The functions x = ¢, cos 4¢ and x = ¢, sin 4¢, where ¢, and ¢, are arbitrary constants or
parameters, are both solutions of the linear differential equation

X"+ 16x = 0.

1.1 Definitions and Terminology | 9
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For x = ¢, cos 4t, the first two derivatives with respect to t are x’ = —4c¢,sin 4f and

" _—

X" = —16c, cos 4. Substituting x” and x then gives
X"+ 16x = —16¢, cos 4t + 16(c,cos 4t) = 0.
In like manner, for x = ¢, sin 4f we have x” = —16¢, sin 4t, and so
X"+ 16x = —16¢,sin 4t + 16(c,sin 41) = 0.
Finally, it is straightforward to verify that the linear combination of solutions for the two-

parameter family x = ¢, cos 4¢ + ¢, sin 4t is also a solution of the differential equation. =

The next example shows that a solution of a differential equation can be a piecewise-defined
function.

g o PEATETET A Piecewise-Defined Solution

You should verify that the one-parameter family y = cx* is a one-parameter family of solutions
x of the linear differential equation xy’ — 4y = 0 on the interval (— oo, co). See FIGURE 1.1.4(a).
The piecewise-defined differentiable function

—x* x<0
y = 4

x%, x=0

(a)

is a particular solution of the equation but cannot be obtained from the family y = cx* by a
:(1) single choice of c; the solution is constructed from the family by choosing ¢ = —1 forx < 0
- and ¢ = 1 for x = 0. See Figure 1.1.4(b). =

IH Sing ular Solution Sometimes a differential equation possesses a solution that is not a
member of a family of solutions of the equation; that is, a solution that cannot be obtained by
specializing any of the parameters in the family of solutions. Such an extra solution is called a

() singular solution. For example, we have seen that y = 1xx* and y = 0 are solutions of the dif-
FIGURE 114 Some solutions of ferential equation dy/dx = xy"? on (— oo, 0o0). In Section 2.2 we shall demonstrate, by actually
xy' — 4y = 0 in Example 10 solving it, that the differential equation dy/dx = xy“ 2 possesses the one-parameter family of
solutions y = (jx* + ¢)?, ¢ = 0. When ¢ = 0, the resulting particular solution is y = =x*. But
notice that the trivial solution y = 0 is a singular solution since it is not a member of the family
y = (3x* + ¢)%; there is no way of assigning a value to the constant ¢ to obtain y = 0.

1 Systems of Differential Equations Up to this point we have been discussing sin-
gle differential equations containing one unknown function. But often in theory, as well as in
many applications, we must deal with systems of differential equations. A system of ordinary
differential equations is two or more equations involving the derivatives of two or more unknown
functions of a single independent variable. For example, if x and y denote dependent variables
and 7 the independent variable, then a system of two first-order differential equations is given by

@ f(t, x, y)

Y

dy (10)
o 8(t, x, y).

A solution of a system such as (10) is a pair of differentiable functions x = ¢ (1), y = ¢,(t)
defined on a common interval / that satisfy each equation of the system on this interval. See
Problems 41 and 42 in Exercises 1.1.

|
REMARKS

() It might not be apparent whether a first-order ODE written in differential form M(x, y) dx +
N(x, y) dy = 0 is linear or nonlinear because there is nothing in this form that tells us which
symbol denotes the dependent variable. See Problems 9 and 10 in Exercises 1.1.

(it) We will see in the chapters that follow that a solution of a differential equation may involve
an integral-defined function. One way of defining a function F of a single variable x by
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means of a definite integral is

F(x) = J g(1) dt. (11)
If the integrand g in (11) is continuous on an interval [a, b] and a = x = b, then the derivative
form of the Fundamental Theorem of Calculus states that F is differentiable on (a, b) and

X

d
F'(x) = dx,[ g dt = g(x). (12)

The integral in (11) is often nonelementary, that is, an integral of a function g that does
not have an elementary-function antiderivative. Elementary functions include the familiar
functions studied in a typical precalculus course:

constant, polynomial, rational, exponential, logarithmic, trigonometric, and inverse
trigonometric functions,

as well as rational powers of these functions, finite combinations of these functions using
addition, subtraction, multiplication, division, and function compositions. For example, even

thoughe ™, V1 + ¢, and cos  are elementary functions, the integrals fe ™ dt, [N1 + 1 dt,
and [cos t* dt are nonelementary. See Problems 25-28 in Exercises 1.1.

(iii) Although the concept of a solution of a differential equation has been emphasized in this
section, you should be aware that a DE does not necessarily have to possess a solution. See
Problem 43 in Exercises 1.1. The question of whether a solution exists will be touched on in
the next section.

(iv) A few last words about implicit solutions of differential equations are in order. In Example 8
we were able to solve the relation x* + y* = 25 for y in terms of x to get two explicit solutions,
d,(x) = V25 — x? and ¢,(x) = — V25 — x?, of the differential equation (8). But don’t
read too much into this one example. Unless it is easy, obvious, or important, or you are in-
structed to, there is usually no need to try to solve an implicit solution G(x, y) = O for y ex-
plicitly in terms of x. Also do not misinterpret the second sentence following Definition 1.1.3.
An implicit solution G(x, y) = 0 can define a perfectly good differentiable function ¢ that is
a solution of a DE, but yet we may not be able to solve G(x, y) = 0 using analytical methods
such as algebra. The solution curve of ¢» may be a segment or piece of the graph of G(x, y) = 0.
See Problems 49 and 50 in Exercises 1.1.

(v) If every solution of an nth-order ODE F(x, y, y’, ..., y(”)) = (O on an interval / can be obtained
from an n-parameter family G(x, y, ¢, ¢,, ..., ¢,) = 0 by appropriate choices of the parameters
¢, i =1,2,..., n, we then say that the family is the general solution of the DE. In solving
linear ODEs, we shall impose relatively simple restrictions on the coefficients of the equation;
with these restrictions one can be assured that not only does a solution exist on an interval but
also that a family of solutions yields all possible solutions. Nonlinear equations, with the
exception of some first-order DEs, are usually difficult or even impossible to solve in terms
of familiar elementary functions. Furthermore, if we happen to obtain a family of solutions
for a nonlinear equation, it is not evident whether this family contains all solutions. On a
practical level, then, the designation “general solution” is applied only to linear DEs. Don’t
be concerned about this concept at this point but store the words general solution in the back
of your mind—we will come back to this notion in Section 2.3 and again in Chapter 3.

m DCIRARER]  Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1-8, state the order of the given ordinary 3. 5D =3y +6y=0
differential equation. Determine whether the equation is linear
linear by matching it with (6 d’u  du
or nonlinear by matching it with (6). 4, F—¢—d—+u:cos(r+u)
r r

1. (1 —x)y" —4xy’ + 5y =cosx
d’y (dy>4 d%y (dy>2
2 x——=— (=] +y=0 5.~ =1+ (=
* dx Y dx? dx

1.1 Definitions and Terminology | 11
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6 @ — _i
dr? R?
1. (sin B)y"” — (cos )y’ =2
8. x— (1 —4Hi+x=0

In Problems 9 and 10, determine whether the given first-order
differential equation is linear in the indicated dependent
variable by matching it with the first differential equation
given in (7).

9. (y* — l)dx + xdy = 0;iny; in x
10. udv + (v +uv — ue"ydu = 0;inv;inu

In Problems 11-14, verify that the indicated function is an
explicit solution of the given differential equation. Assume
an appropriate interval / of definition for each solution.

M. 2y +y=0;, y=e"
d
12 % +20y=24; y=8— S

13. y/ =6y +13y=0; y=e"cos2x
14. y" +y =tanx; y= —(cosx)In(sec x + tan x)

In Problems 15-18, verify that the indicated function y = ¢(x)
is an explicit solution of the given first-order differential
equation. Proceed as in Example 7, by considering ¢ simply

as a function, give its domain. Then by considering ¢ as a
solution of the differential equation, give at least one interval /
of definition.

5. 6y —x)y =y—x+8, y=x+4Vx+2
16. y) =25+ y* y=>5tan5x

17. vy =2x% y=1/4—x)

18. 2y’ =y’cosx; y=(1—sinx) 2

In Problems 19 and 20, verify that the indicated expression is
an implicit solution of the given first-order differential equation.
Find at least one explicit solution y = ¢(x) in each case. Use a
graphing utility to obtain the graph of an explicit solution.

Give an interval / of definition of each solution ¢.

19, & X — (1 - 2X); 1 <2X_ 1) '

=X - —2X); In =
dt X -1

2. 2xydx + (X —y)dy=0;, -2y +y' =1

In Problems 21-24, verify that the indicated family of functions
is a solution of the given differential equation. Assume an
appropriate interval I of definition for each solution.

dp ce'

2. “-=p1-P; P=—"—
dt ( ) 1 + ce

d >
22. dl + 4dxy = 8x: y = 2 — 14 ce™™
X

d? d
23. E)z) - 4d7yc +4y =0, y= clezx + szeZ)c
dy d’y  dy
24. x3 7dx3 + 2x? 7dx2 — xjdx +y= 12x%

y=cx '+ x4 cx Inx + 447

12 | CHAPTER1 Introduction to Differential Equations

In Problems 25-28, use (12) to verify that the indicated function
is a solution of the given differential equation. Assume an
appropriate interval  of definition of each solution.

d X, =3t
25. xl —3xy=1 y= e3xJ ¢ dt
dx 1 t

d “cos t
26. 2xl —y=2xcosx; y= \/);J ——dt

dx LVt

2dl _ o _ é & “sin ¢
2]. x + xy = 10sinx; y + —dt
dx X X ), ot

dy PR [
28. —+2xy=1;, y=e " +e | e dt
dx o

29. Verify that the piecewise-defined function
—-x2, x<0
y = 2 -
xX°, x=0
is a solution of the differential equation xy’ — 2y = 0 on the
interval (— oo, 00).

30. In Example 8 we saw that y = ¢,(x) = V25 — x? and

y = ¢,(x) = —V/25 — x? are solutions of dy/dx = —x/y
on the interval (=35, 5). Explain why the piecewise-defined

function
_{\/25—x2, —5<x<0
YTl-V25 -, 0=x<5

is not a solution of the differential equation on the interval
(—5,5).

In Problems 31-34, find values of m so that the function y = ¢"™*
is a solution of the given differential equation.

3. y +2y=0 32. 3y =4y
B. Y =5 +6y=0 3. 2y"+9y —5y=0

In Problems 35 and 36, find values of m so that the function
y = x" is a solution of the given differential equation.

3B ' +2y =0 36. %y —Txy’ + 15y =0

In Problems 3740, use the concept thaty = ¢, —co < x < o0,
is a constant function if and only if y’ = 0 to determine whether
the given differential equation possesses constant solutions.

37. 3xy' + 5y =10 38 y=y"+2y—3
9. (y—1py' =1 40. y' +4y" + 6y =10
In Problems 41 and 42, verify that the indicated pair of functions

is a solution of the given system of differential equations on the
interval (— oo, 00).

dx d’x
M., —=x+3 8. — =4y + ¢
dt Y dr? Y
dy dzy
— = 5x + 3y; — = 4x — ¢
dt Y dr?
x=e ¥+ 3e% x = cos2t + sin2¢ + e,
y=—e 2+ 5¢% y = —cos 2t — sin 2t — Le'
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Discussion Problems

43. Make up a differential equation that does not possess any real
solutions.

44. Make up a differential equation that you feel confident pos-
sesses only the trivial solution y = 0. Explain your reasoning.

45. What function do you know from calculus is such that its first
derivative is itself? Its first derivative is a constant multiple k
of itself? Write each answer in the form of a first-order dif-
ferential equation with a solution.

46. What function (or functions) do you know from calculus is
such that its second derivative is itself? Its second derivative
is the negative of itself? Write each answer in the form of a
second-order differential equation with a solution.

47. Given that y = sin x is an explicit solution of the first-order
differential equation dy/dx = \/1 — y*.Find an interval I of
definition. [Hint: I is not the interval (— oo, 00).]

48. Discuss why it makes intuitive sense to presume that the lin-
ear differential equation y” + 2y’ + 4y = 5 sin t has a solution
of the formy = Asint + Bcost, where A and B are constants.
Then find specific constants A and B so thaty = Asint + Bcos ¢
is a particular solution of the DE.

In Problems 49 and 50, the given figure represents the graph

of an implicit solution G(x, y) = 0 of a differential equation
dyldx = f(x, y). In each case the relation G(x, y) = 0 implicitly
defines several solutions of the DE. Carefully reproduce each
figure on a piece of paper. Use different colored pencils to mark
off segments, or pieces, on each graph that correspond to graphs
of solutions. Keep in mind that a solution ¢» must be a function
and differentiable. Use the solution curve to estimate the
interval I of definition of each solution ¢.

49. V1 50. Y

FIGURE 1.1.5 Graph for
Problem 49

FIGURE 1.1.6 Graph for
Problem 50

51. The graphs of the members of the one-parameter family
x* + y® = 3cxy are called folia of Descartes. Verify that this
family is an implicit solution of the first-order differential
equation

dy yo* —2x)
dx )C(Zy3 - X%

52. The graph in FIGURE 1.1.6 is the member of the family of folia
in Problem 51 corresponding to ¢ = 1. Discuss: How can
the DE in Problem 51 help in finding points on the graph of
x* + y® = 3xy where the tangent line is vertical? How does
knowing where a tangent line is vertical help in determining

an interval / of definition of a solution ¢ of the DE? Carry out
your ideas and compare with your estimates of the intervals in
Problem 50.

53. In Example 8, the largest interval I over which the explicit
solutions y = ¢,(x) and y = ¢,(x) are defined is the open
interval (—35, 5). Why can’t the interval [ of definition be the
closed interval [—5, 5]?

54. In Problem 21, a one-parameter family of solutions of the DE
P’ = P(1 — P)is given. Does any solution curve pass through
the point (0, 3)? Through the point (0, 1)?

55. Discuss, and illustrate with examples, how to solve differen-
tial equations of the forms dy/dx = f(x) and d*y/dx* = f(x).

56. The differential equation x(y')*> — 4y’ — 12x* = 0 has the form
given in (4). Determine whether the equation can be put into
the normal form dy/dx = f(x, y).

57. The normal form (5) of an nth-order differential equation
is equivalent to (4) whenever both forms have exactly the
same solutions. Make up a first-order differential equation
for which F(x, y, y") = 0is not equivalent to the normal form
dyldx = f(x, y).

58. Find alinear second-order differential equation F(x, y,y’,y") =0
for which y = ¢,x + ¢,x” is a two-parameter family of solu-
tions. Make sure that your equation is free of the arbitrary
parameters c¢; and c,.

Qualitative information about a solution y = ¢(x) of a
differential equation can often be obtained from the equation
itself. Before working Problems 59-62, recall the geometric
significance of the derivatives dy/dx and d>y/dx’.
59. Consider the differential equation dy/dx = e,
(a) Explain why a solution of the DE must be an increasing
function on any interval of the x-axis.

(b) What are lim dy/dx and limdy/dx? What does this

X— — 00 X—>00

suggest about a solution curve as x — *oo?

(¢) Determine an interval over which a solution curve is concave
down and an interval over which the curve is concave up.

(d) Sketch the graph of a solution y = ¢(x) of the differential
equation whose shape is suggested by parts (a)—(c).

60. Consider the differential equation dy/dx =5 — y.

(a) Either by inspection, or by the method suggested in
Problems 37—40, find a constant solution of the DE.

(b) Using only the differential equation, find intervals on the
y-axis on which a nonconstant solution y = ¢(x) is in-
creasing. Find intervals on the y-axis on which y = ¢(x)
is decreasing.

61. Consider the differential equation dy/dx = y(a — by), where

a and b are positive constants.

(a) Either by inspection, or by the method suggested in
Problems 37—40, find two constant solutions of the DE.

(b) Using only the differential equation, find intervals on the
y-axis on which a nonconstant solution y = ¢(x) is
increasing. On which y = ¢(x) is decreasing.

(¢) Usingonly the differential equation, explain why y = a/2b
is the y-coordinate of a point of inflection of the graph of
a nonconstant solution y = ¢(x).

1.1 Definitions and Terminology | 13
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(d) On the same coordinate axes, sketch the graphs of the two Computer Lab Assignments
constant solutions found in part (a). These constant solu-
tions partition the xy-plane into three regions. In each re-
gion, sketch the graph of a nonconstant solution y = ¢(x)
whose shape is suggested by the results in parts (b) and (c).

In Problems 63 and 64, use a CAS to compute all derivatives
and to carry out the simplifications needed to verify that the
indicated function is a particular solution of the given differen-
tial equation.

63. y¥ — 20y” + 158y" — 580y’ + 841y = 0;

y = xe>* cos 2x

62. Consider the differential equation y’ = y* + 4.
(a) Explain why there exist no constant solutions of the DE.
(b) Describe the graph of a solution y = ¢(x). For example,
can a solution curve have any relative extrema? 64. x°y" + 2x%y" + 20xy’ — 78y = 0;
(¢) Explain why y = 0 is the y-coordinate of a point of inflec-
tion of a solution curve. y =120
(d) Sketch the graph of a solution y = ¢(x) of the differential
equation whose shape is suggested by parts (a)—(c).

INTRODUCTION We are often interested in problems in which we seek a solution y(x) of a
differential equation so that y(x) satisfies prescribed side conditions—that is, conditions that are
imposed on the unknown y(x) or on its derivatives. In this section we examine one such problem
called an initial-value problem.

cos(5 Inx) _ 3 sin(5 Inx)
X X

Initial-Value Problems

Il Initial-Value Problem On some interval I containing x,, the problem

n

d"y
— ' (n—1)
I Sy, y' YY) (1)

Solve:

Subject to: y(x) = Yo, ¥' (Xg) = y1,---, " (x0) = ¥, 1,

where y,, v, ... ,y,_; are arbitrarily specified real constants, is called an initial-value problem (IVP).
The values of y(x) and its first n—1 derivatives at a single point x,: y(xo) = g, ¥'(xX0) = Y15 -+ »
¥ D(xy) = y,_,, are called initial conditions (IC).

Il First- and Second-Order IVPs The problem given in (1) is also called an nth-order
initial-value problem. For example,

soluti dy
y solutions of the DE Solve: ; = f(x, y) o)
i Subject to:  y(xy) = ¥,
I . a4y ,
and Solve: i JFe, v, vh) a)
X
Subject to: y(xo) = yo. y'(xo) = yi
FIGURE 1.2.1 First-order IVP are first- and second-order initial-value problems, respectively. These two problems are easy
to interpret in geometric terms. For (2) we are seeking a solution of the differential equation on
y solutions of the DE an interval / containing x, so that a solution curve passes through the prescribed point (x,, y,).
l\j/ See FIGURE 1.2.1. For (3) we want to find a solution of the differential equation whose graph not
M only passes through (x,, y,) but passes through so that the slope of the curve at this point is y;.
m=y, Se§ FIGUBE 1..2.2. The term initial condition derives from physical systems Where the indf:pendent
% Varlal?le is time t. and where y(to). = o and .y’.(t.o) =N represent, respectively, the position and
- y’ velocity of an object at some beginning, or initial, time ¢,.
E | S(?lv1ng an nthjorderllmtlal-yalue prqblem fr.equently e.nt?uls using an n-parameter famlly. of
solutions of the given differential equation to find n specialized constants so that the resulting
FIGURE 1.2.2 Second-order IVP particular solution of the equation also “fits”—that is, satisfies—the n initial conditions.

14 | CHAPTER1 Introduction to Differential Equations
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FIGURE 1.2.3 Solutio
Example 1

\ (1,-2)

ns of IVPs in

N

(a) Function defined for all x

exceptx =+

Y

1

(

0,-1)

(b) Solution defined on interval
containing x =0

FIGURE 1.2.4 Graphs

of function and

solution of IVP in Example 2

EXAMPLE 1 First-Order IVPs

(a) Itis readily verified that y = ce* is a one-parameter family of solutions of the simple
first-order equation y’ = y on the interval (— oo, o). If we specify an initial condition, say,
y(0) = 3, then substituting x = 0, y = 3 in the family determines the constant 3 = ce’ = c.

Thus the function y = 3¢" is a solution of the initial-value problem

y =y y0) =3.

(b) Now if we demand that a solution of the differential equation pass through the point
(1, —2) rather than (0, 3), then y(1) = —2 will yield =2 = ce or ¢ = —2¢"". The function
y = —2¢" " is a solution of the initial-value problem

y =y, yl)= -2
The graphs of these two solutions are shown in blue in FIGURE 1.2.3. =

The next example illustrates another first-order initial-value problem. In this example, notice
how the interval / of definition of the solution y(x) depends on the initial condition y(x,) = .

RETETPIN  Interval / of Definition of a Solution

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family of solutions
of the first-order differential equation y’ + 2xy*> = 0is y = 1/(x*> + ¢). If we impose the initial
condition y(0) = —1, then substituting x = 0 and y = —1 into the family of solutions gives
—1=1/corc= —1.Thus,y = 1/(x* — 1). We now emphasize the following three distinctions.

* Considered as a function, the domain of y = 1/(x* — 1) is the set of real numbers x for
which y(x) is defined; this is the set of all real numbers except x = —1 and
x = 1. See FIGURE 1.2.4(a).

 Considered as a solution of the differential equation y' + 2xy* = 0, the interval I
of definition of y = 1/(x> — 1) could be taken to be any interval over which y(x) is
defined and differentiable. As can be seen in Figure 1.2.4(a), the largest intervals on which
y= 1/(x*> — 1) is a solution are (—oco, —1), (—1, 1), and (1, 00).

* Considered as a solution of the initial-value problemy' + 2xy* = 0, y(0) = —1, the interval
I of definition of y = 1/(x* — 1) could be taken to be any interval over which y(x) is defined,
differentiable, and contains the initial point x = O; the largest interval for which this is true
is (-1, 1). See Figure 1.2.4(b). =

See Problems 3—6 in Exercises 1.2 for a continuation of Example 2.

Second-Order IVP

In Example 9 of Section 1.1 we saw that x = ¢, cos 4¢ + ¢, sin 4¢ is a two-parameter family
of solutions of x” + 16x = 0. Find a solution of the initial-value problem

X"+ 16x =0, x(w/2)= -2, x'(@w/2)=1. (4)

SOLUTION We firstapply x(7/2) = —2 to the given family of solutions: ¢, cos 27 + ¢, sin 27 =
—2. Since cos 277 = 1 and sin 277 = 0, we find that ¢;, = —2. We next apply x'(7/2) = 1 to
the one-parameter family x(f) = —2 cos 4t + ¢, sin 4¢. Differentiating and then setting
t =m/2and x" = 1 gives 8 sin 277 + 4c, cos 27 = 1, from which we see that ¢, = ;. Hence

x = —2cos 4t + | sin 4t is a solution of (4). =

Il Existence and Uniqueness Two fundamental questions arise in considering an initial-
value problem:

Does a solution of the problem exist? If a solution exists, is it unique?
For a first-order initial-value problem such as (2), we ask:

Does the differential equation dy/dx = f(x, y) possess solutions?

Existence { Do any of the solution curves pass through the point (x, yo)?

When can we be certain that there is precisely one solution curve passing through

Uniqueness -
the point (xy, y)?

1.2 Initial-Value Problems | 15
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Note that in Examples 1 and 3, the phrase “a solution” is used rather than “the solution” of the
problem. The indefinite article “a” is used deliberately to suggest the possibility that other solu-
tions may exist. At this point it has not been demonstrated that there is a single solution of each
problem. The next example illustrates an initial-value problem with two solutions.

EXAMPLE 4 An IVP Can Have Several Solutions

Each of the functions y = 0 and y = x* satisfies the differential equation dy/dx = xy"? and
the initial condition y(0) = 0, and so the initial-value problem dy/dx = xy"?, y(0) = 0, has at
FIGURE 1.2.5 Two solutions of the same least two solutions. As illustrated in FIGURE 1.2.5, the graphs of both functions pass through
IVP in Example 4 the same point (0, 0). =

Within the safe confines of a formal course in differential equations one can be fairly con-
fident that most differential equations will have solutions and that solutions of initial-value
problems will probably be unique. Real life, however, is not so idyllic. Thus it is desirable to
know in advance of trying to solve an initial-value problem whether a solution exists and, when
it does, whether it is the only solution of the problem. Since we are going to consider first-
order differential equations in the next two chapters, we state here without proof a straight-
forward theorem that gives conditions that are sufficient to guarantee the existence and
uniqueness of a solution of a first-order initial-value problem of the form given in (2). We
shall wait until Chapter 3 to address the question of existence and uniqueness of a second-order
initial-value problem.

y
d - Theorem 1.2.1 Existence of a Unique Solution
Let R be a rectangular region in the xy-plane defined by a = x = b, ¢ = y = d, that contains
/ the point (x,, y,) in its interior. If f(x, y) and df/dy are continuous on R, then there exists some
‘/(x;yo) interval 1,: (xo, — h, x, + h), h > 0, contained in [a, b], and a unique function y(x) defined on
. I, that is a solution of the initial-value problem (2).
x The foregoing result is one of the most popular existence and uniqueness theorems for first-
a |l«—Ilh—1 b . . . o L. .
order differential equations, because the criteria of continuity of f(x, y) and 9f/dy are relatively
FIGURE 1.2.6 Rectangular region R easy to check. The geometry of Theorem 1.2.1 is illustrated in FIGURE 1.2.6.

EXAMPLE 5 Example 4 Revisited

We saw in Example 4 that the differential equation dy/dx = xy'* possesses at least two solu-
tions whose graphs pass through (0, 0). Inspection of the functions
af X

= xy!/2 A
f(x’ Y) Xy and ay 2y1/2

shows that they are continuous in the upper half-plane defined by y > 0. Hence Theorem 1.2.1
enables us to conclude that through any point (x, y,), ¥y > 0, in the upper half-plane there
is some interval centered at x, on which the given differential equation has a unique
solution. Thus, for example, even without solving it we know that there exists some
interval centered at 2 on which the initial-value problem dy/dx = xy"? y(2) = 1, has a

unique solution. =

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the initial-value
problems y' =y, y(0) = 3,andy’ =y, y(1) = —2, other thany = 3e* and y = —2¢™!, respec-
tively. This follows from the fact that f(x, y) = y and df/dy = 1 are continuous throughout the
entire xy-plane. It can be further shown that the interval 7/ on which each solution is defined
is (=00, 00).

Il Interval of Existence/Uniqueness Suppose y(x) represents a solution of the
initial-value problem (2). The following three sets on the real x-axis may not be the same:
the domain of the function y(x), the interval I over which the solution y(x) is defined or ex-
ists, and the interval [, of existence and uniqueness. In Example 7 of Section 1.1 we illustrated

16 | CHAPTER1 Introduction to Differential Equations



www.konkur.in

the difference between the domain of a function and the interval I of definition. Now suppose
(%9, ¥o) 1s a point in the interior of the rectangular region R in Theorem 1.2.1. It turns out that the
continuity of the function f(x, y) on R by itself is sufficient to guarantee the existence of at least
one solution of dy/dx = f(x, y), y(x,) = ¥y, defined on some interval I. The interval I of definition
for this initial-value problem is usually taken to be the largest interval containing x, over which
the solution y(x) is defined and differentiable. The interval I depends on both f(x, y) and the
initial condition y(x;) = y,. See Problems 31-34 in Exercises 1.2. The extra condition of continu-
ity of the first partial derivative df/dy on R enables us to say that not only does a solution exist
on some interval [, containing x,, but it also is the only solution satisfying y(x,) = y,. However,
Theorem 1.2.1 does not give any indication of the sizes of the intervals I and I; the interval I of
definition need not be as wide as the region R and the interval I, of existence and uniqueness
may not be as large as I. The number 4 > 0 that defines the interval I,: (x, — h, x, + h), could
be very small, and so it is best to think that the solution y(x) is unique in a local sense, that is, a
solution defined near the point (x,, y,). See Problem 50 in Exercises 1.2.

|
REMARKS

(i) The conditions in Theorem 1.2.1 are sufficient but not necessary. When f(x, y) and df/dy
are continuous on a rectangular region R, it must always follow that a solution of (2) exists
and is unique whenever (x, y,) is a point interior to R. However, if the conditions stated
in the hypotheses of Theorem 1.2.1 do not hold, then anything could happen: Problem (2)
may still have a solution and this solution may be unique, or (2) may have several solutions,
or it may have no solution at all. A rereading of Example 4 reveals that the hypotheses of
Theorem 1.2.1 do not hold on the line y = 0 for the differential equation dy/dx = xy"?, and
S0 it is not surprising, as we saw in Example 4 of this section, that there are two solutions
defined on a common interval (—#, k) satisfying y(0) = 0. On the other hand, the hypotheses
of Theorem 1.2.1 do not hold on the line y = 1 for the differential equation dy/dx = |y — 1I.
Nevertheless, it can be proved that the solution of the initial-value problem dy/dx = 1y — 1I,
y(0) = 1, is unique. Can you guess this solution?

(i7) You are encouraged to read, think about, work, and then keep in mind Problem 49 in
Exercises 1.2.
|

m DCIRARER]  Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2, y = 1/(1 + c¢,e™) is a one-parameter family 9. x(m/6) = %, x'(mwl6) =0
of solutions of the first-order DE y' = y — y*. Find a solution of 10. x(7/4) = V2, x'(w/4) =2\2
the first-order IVP consisting of this differential equation and

the given initial condition.

In Problems 11-14,y = c,e* + c,e™ is a two-parameter family
of solutions of the second-order DE y” — y = 0. Find a solution

— 1 1) =

1 y0) =3 2 y(=h=2 of the second-order IVP consisting of this differential equation
In Problems 3-6, y = 1/(x* + ¢) is a one-parameter family of and the given initial conditions.
solutions of the first-order DE y’ + 2xy* = 0. Find a solution 1. y0)=1, y'(0)=2 12 y(1) =0, y(1)=e
of the first-order IVP consisting of this differential equation and 13. y(—=1)=5, y(-1)=-5 14 y0)=0, y'(©0)=0

the given initial condition. Give the largest interval / over which
the solution is defined.

In Problems 15 and 16, determine by inspection at least two
solutions of the given first-order IVP.

— _1
3y@)= 4 y(=2)=3 15. y' =3y*3, y(0)=0 16. xy' =2y, y(0)=0
— N — _

5. »(0) = 5. Y® 4 In Problems 17-24, determine a region of the xy-plane for which
In Problems 7-10, x = ¢, cos ¢ + ¢, sin ¢ is a two-parameter the given differential equation would have a unique solution
family of solutions of the second-order DE x” + x = 0. Find a whose graph passes through a point (xo, yo) in the region.
solution of the second-order IVP consisting of this differential 17 dl _ 23 18 ﬂ = Vay
equation and the given initial conditions. " dx y " dx y

7. x(0) = —1, dy dy

19. x— = 2. ——y=x

8. x(m/2) =0, PR x

1.2 Initial-Value Problems | 17
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21. (4 — yHy' =x?
23. (x> + yY)y' =y?

2. (1+y)y =x*
2 (y—x)y =y+ux

In Problems 25-28, determine whether Theorem 1.2.1 guaran-

tees that the differential equation y’ = Vy? — 9 possesses a
unique solution through the given point.

25. (1,4) 26. (5,3)
21. (2,-3) 28. (—1,1)
29. (a) By inspection, find a one-parameter family of solutions

30.

31.

32,

33.

(b)

()

(a)

(b)

()

(b)

(a)

(b)

(a)

(b)

18

of the differential equation xy" = y. Verify that each mem-
ber of the family is a solution of the initial-value problem
xy' =y, y(0) = 0.

Explain part (a) by determining a region R in the xy-plane
for which the differential equation xy’ = y would have a
unique solution through a point (x,, y,) in R.

Verify that the piecewise-defined function

0,
y =

X,
satisfies the condition y(0) = 0. Determine whether this
function is also a solution of the initial-value problem in
part (a).
Verify that y = tan (x + ¢) is a one-parameter family of
solutions of the differential equation y’ = 1 + y%,

x <0
x=0

Since f(x, y) = 1 + y* and 9f/dy = 2y are continuous
everywhere, the region R in Theorem 1.2.1 can be taken
to be the entire xy-plane. Use the family of solutions in
part (a) to find an explicit solution of the first-order initial-
value problem y’ = 1 + y%, y(0) = 0. Even though x, = 0
is in the interval (—2, 2), explain why the solution is not
defined on this interval.

Determine the largest interval / of definition for the solu-
tion of the initial-value problem in part (b).

Verify that y = —1/(x + ¢) is a one-parameter family of
solutions of the differential equation y’ = y*.

Since f(x, y) = y* and 9f/dy = 2y are continuous every-
where, the region R in Theorem 1.2.1 can be taken to be
the entire xy-plane. Find a solution from the family in
part (a) that satisfies y(0) = 1. Find a solution from the
family in part (a) that satisfies y(0) = — 1. Determine the
largest interval I of definition for the solution of each
initial-value problem.

Find a solution from the family in part (a) of Problem 31
that satisfies y' = y%, y(0) = y,, where y, # 0. Explain
why the largest interval / of definition for this solution is
either (—oo, 1/yy) or (1/y,, o).

Determine the largest interval I of definition for the
solution of the first-order initial-value problem y’ = y?,
¥(0) = 0.

Verify that 3x* — y? = ¢ is a one-parameter family of
solutions of the differential equation ydy/dx = 3x.

By hand, sketch the graph of the implicit solution
3x* — y* = 3. Find all explicit solutions y = ¢(x) of the
DE in part (a) defined by this relation. Give the interval /
of definition of each explicit solution.

| CHAPTER 1 Introduction to Differential Equations
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34. (a)

(b)

The point (—2, 3) is on the graph of 3x*> — y* = 3, but
which of the explicit solutions in part (b) satisfies
W(=2)=3?

Use the family of solutions in part (a) of Problem 33 to
find an implicit solution of the initial-value problem
ydyldx = 3x,y(2) = —4. Then, by hand, sketch the graph
of the explicit solution of this problem and give its inter-
val I of definition.

Are there any explicit solutions of y dy/dx = 3x that pass
through the origin?

In Problems 35-38, the graph of a member of a family of solu-
tions of a second-order differential equation d?y/dx* = f(x, y, y')
is given. Match the solution curve with at least one pair of the
following initial conditions.

(a)
()

y)=1,y'(1) = -2
y)=1,y'(1) =2

b) y=1)=0,y(-1)=—4
@ y(0)=—1,y'(0) =2

(e y0)=—-1y(0)=0 (&) y0)=—-4,y(0)=-2
35. 36. ¥
5<>
%@5 X
sl
FIGURE 1.2.7 Graph for FIGURE 1.2.8 Graph for
Problem 35 Problem 36
31. 38. y
5

FIGURE 1.2.9 Graph for
Problem 37

FIGURE 1.2.10 Graph for
Problem 38

In Problems 3944,y = ¢, cos 3x + ¢, sin 3x is a two-parameter
family of solutions of the second-order DE y” + 9y = 0. If pos-
sible, find a solution of the differential equation that satisfies the
given side conditions. The conditions specified at two different
points are called boundary conditions.

39. y(0) =0, y(w/6) = —1
M. y'(0)=0,y (@4 =0
43. y(0) =0, y(m) =4

40. y(0)=0,y(m) =0
42. y0)=1,y'(m) =5
. y'(w/3)=1,y'(m) =0

Discussion Problems

In Problems 45 and 46, use Problem 55 in Exercises 1.1 and (2)
and (3) of this section.

45. Find a function y = f(x) whose graph at each point (x, y) has
the slope given by 8¢** + 6x and has the y-intercept (0, 9).
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46.

47.

49,

50.

FIGURE 1.3.1 Da Vinci’s apparatus for
determining the speed of falling body

Find a function y = f(x) whose second derivative is y" =
12x — 2 at each point (x, y) on its graph and y = —x + 5Sis
tangent to the graph at the point corresponding to x = 1.
Consider the initial-value problem y’ = x — 2y, y(0) = 3.
Determine which of the two curves shown in FIGURE 1.2.11 is
the only plausible solution curve. Explain your reasoning.

—x

1

FIGURE 1.2.11 Graph for Problem 47

Determine a plausible value of x,, for which the graph of the
solution of the initial-value problem y’ + 2y = 3x — 6, y(x,) =0
is tangent to the x-axis at (x,, 0). Explain your reasoning.
Suppose that the first-order differential equation dy/dx = f(x, y)
possesses a one-parameter family of solutions and that f(x, y)
satisfies the hypotheses of Theorem 1.2.1 in some rectangular
region R of the xy-plane. Explain why two different solution
curves cannot intersect or be tangent to each other at a point
(X0, o) in R.

The functions

y(x) = ,1*6x4, —o00 < x < 00

51.

0, x<0
d =
an &) {116x4, x=0

have the same domain but are clearly different. See FIGURES 1.2.12(a)
and 1.2.12(b), respectively. Show that both functions are solu-
tions of the initial-value problem dy/dx = xy"?, y(2) = 1 on the
interval (—oo, c0). Resolve the apparent contradiction between
this fact and the last sentence in Example 5.

) | @D

(a) (b)
FIGURE 1.2.12 Two solutions of the IVP in Problem 50

Show that

|7
X = | —/—dt
o Vi + 1

is an implicit solution of the initial-value problem

d?y

2—= =3y =0, y0) =0,y(0) = 1.
PR ¥(0) y'(0)

Assume that y = 0. [Hint: The integral is nonelementary. See
(i) in the Remarks at the end of Section 1.1.]

m‘ Differential Equations as Mathematical Models

INTRODUCTION

!
I

/

In this section we introduce the notion of a mathematical model. Roughly
speaking, a mathematical model is a mathematical description of something. This description could
be as simple as a function. For example, Leonardo da Vinci (1452-1519) was able to deduce the
speed v of a falling body by a examining a sequence. Leonardo allowed water drops to fall, at equally
spaced intervals of time, between two boards covered with blotting paper. When a spring mechanism
was disengaged, the boards were clapped together. See FIGURE 1.3.1. By carefully examining the
sequence of water blots, Leonardo discovered that the distances between consecutive drops increased
in “a continuous arithmetic proportion.” In this manner he discovered the formula v = gt.

Although there are many kinds of mathematical models, in this section we focus only on dif-
ferential equations and discuss some specific differential-equation models in biology, physics,
and chemistry. Once we have studied some methods for solving DEs, in Chapters 2 and 3 we
return to, and solve, some of these models.

IH Mathematical Models It is often desirable to describe the behavior of some real-life
system or phenomenon, whether physical, sociological, or even economic, in mathematical terms.

The mathematical description of a system or a phenomenon is called a mathematical model and
is constructed with certain goals in mind. For example, we may wish to understand the mecha-
nisms of a certain ecosystem by studying the growth of animal populations in that system, or we
may wish to date fossils by means of analyzing the decay of a radioactive substance either in the
fossil or in the stratum in which it was discovered.

Construction of a mathematical model of a system starts with identification of the variables that
are responsible for changing the system. We may choose not to incorporate all these variables into
the model at first. In this first step we are specifying the level of resolution of the model. Next,
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we make a set of reasonable assumptions or hypotheses about the system we are trying to describe.
These assumptions will also include any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with low-resolution models.
For example, you may already be aware that in modeling the motion of a body falling near the surface
of the Earth, the retarding force of air friction, is sometimes ignored in beginning physics courses;
but if you are a scientist whose job it is to accurately predict the flight path of a long-range projectile,
air resistance and other factors such as the curvature of the Earth have to be taken into account.

Since the assumptions made about a system frequently involve a rate of change of one or more
of the variables, the mathematical depiction of all these assumptions may be one or more equa-
tions involving derivatives. In other words, the mathematical model may be a differential equation
or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equation or a
system of differential equations, we are faced with the not insignificant problem of trying to solve
it. If we can solve it, then we deem the model to be reasonable if its solution is consistent with
either experimental data or known facts about the behavior of the system. But if the predictions
produced by the solution are poor, we can either increase the level of resolution of the model or
make alternative assumptions about the mechanisms for change in the system. The steps of the
modeling process are then repeated as shown in FIGURE 1.3.2.

Assumptions Express assumptions Mathematical
and hypotheses in terms of DEs formulation

If necessary, J

alter assumptions

. . Solve the DEs
or increase resolution

of the model l

Check model Display predictions Obtain
predictions with D of the model <] sol t'(;n‘
known facts (e.g., graphically) utons

FIGURE 1.3.2 Steps in the modeling process

Of course, by increasing the resolution we add to the complexity of the mathematical model and
increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time 7. A solution of
the model then gives the state of the system; in other words, for appropriate values of 7, the values
of the dependent variable (or variables) describe the system in the past, present, and future.

IH Population Dynamics One of the earliest attempts to model human population growth
by means of mathematics was by the English economist Thomas Malthus (1776—-1834) in 1798.
Basically, the idea of the Malthusian model is the assumption that the rate at which a population
of a country grows at a certain time is proportional* to the total population of the country at that
time. In other words, the more people there are at time 7, the more there are going to be in the
future. In mathematical terms, if P(f) denotes the total population at time ¢, then this assumption
can be expressed as

diocP or di:kP, (1)

dt dt
where k is a constant of proportionality. This simple model, which fails to take into account many
factors (immigration and emigration, for example) that can influence human populations to either
grow or decline, nevertheless turned out to be fairly accurate in predicting the population of the
United States during the years 1790-1860. Populations that grow at a rate described by (1) are
rare; nevertheless, (1) is still used to model growth of small populations over short intervals of
time, for example, bacteria growing in a petri dish.

*If two quantities # and v are proportional, we write u o v. This means one quantity is a constant multiple
of the other: u = kv.
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IH Radioactive Decay The nucleus of an atom consists of combinations of protons and
neutrons. Many of these combinations of protons and neutrons are unstable; that is, the atoms
decay or transmute into the atoms of another substance. Such nuclei are said to be radioactive.
For example, over time, the highly radioactive radium, Ra-226, transmutes into the radioactive
gas radon, Rn-222. In modeling the phenomenon of radioactive decay, it is assumed that the
rate dA/dt at which the nuclei of a substance decays is proportional to the amount (more precisely,
the number of nuclei) A(7) of the substance remaining at time ¢:

dA dA

— xA o — =

dt dt
Of course equations (1) and (2) are exactly the same; the difference is only in the interpretation
of the symbols and the constants of proportionality. For growth, as we expect in (1), K > 0, and
in the case of (2) and decay, k£ < 0.

The model (1) for growth can be seen as the equation dS/dt = rS, which describes the growth of
capital S when an annual rate of interest  is compounded continuously. The model (2) for decay also
occurs in a biological setting, such as determining the half-life of a drug—the time that it takes for
50% of a drug to be eliminated from a body by excretion or metabolism. In chemistry, the decay
model (2) appears as the mathematical description of a first-order chemical reaction. The point is this:

KA. (2)

A single differential equation can serve as a mathematical model for many different
phenomena.

Mathematical models are often accompanied by certain side conditions. For example, in (1)
and (2) we would expect to know, in turn, an initial population P, and an initial amount of radio-
active substance A that is on hand. If this initial point in time is taken to be # = 0, then we know
that P(0) = Pyand A(0) = A,. In other words, a mathematical model can consist of either an initial-
value problem or, as we shall see later in Section 3.9, a boundary-value problem.

Il Newton’s Law of Cooling/Warming According to Newton’s empirical law of
cooling—or warming—the rate at which the temperature of a body changes is proportional to the
difference between the temperature of the body and the temperature of the surrounding medium,
the so-called ambient temperature. If 7(f) represents the temperature of a body at time ¢, 7,, the
temperature of the surrounding medium, and d7/dt the rate at which the temperature of the body
changes, then Newton’s law of cooling/warming translates into the mathematical statement

T—T, ar KT — T,) (3)
— x T — or — = - ,
dt m dt m

where k is a constant of proportionality. In either case, cooling or warming, if 7, is a constant,
it stands to reason that £ < 0.

] Spread of a Disease A contagious disease—for example, a flu virus—is spread through-
out a community by people coming into contact with other people. Let x(#) denote the number
of people who have contracted the disease and y(f) the number of people who have not yet been
exposed. It seems reasonable to assume that the rate dx/dr at which the disease spreads is pro-
portional to the number of encounters or interactions between these two groups of people. If we
assume that the number of interactions is jointly proportional to x(¢) and y(#), that is, proportional
to the product xy, then

dx

ARk (4)
where k is the usual constant of proportionality. Suppose a small community has a fixed population
of n people. If one infected person is introduced into this community, then it could be argued that x(7)
and y() are related by x + y = n + 1. Using this last equation to eliminate y in (4) gives us the model

% =kx(n + 1 — x). (5)

An obvious initial condition accompanying equation (5) is x(0) = 1.

Il Chemical Reactions The disintegration of a radioactive substance, governed by the
differential equation (2), is said to be a first-order reaction. In chemistry, a few reactions follow
this same empirical law: If the molecules of substance A decompose into smaller molecules, it
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input rate of brine
3 gal/min

constant
300 gal

output rate of brine
3 gal/min

FIGURE 1.3.3 Mixing tank

22

is a natural assumption that the rate at which this decomposition takes place is proportional to
the amount of the first substance that has not undergone conversion; that is, if X(#) is the amount
of substance A remaining at any time, then dX/dt = kX, where k is a negative constant since X is
decreasing. An example of a first-order chemical reaction is the conversion of z-butyl chloride
into #-butyl alcohol:

(CHj;);CCl1 + NaOH — (CHj3);COH + NaCl.
Only the concentration of the #-butyl chloride controls the rate of reaction. But in the reaction
CH;Cl1 + NaOH — CH;0H + NaCl,

for every molecule of methyl chloride, one molecule of sodium hydroxide is consumed, thus
forming one molecule of methyl alcohol and one molecule of sodium chloride. In this case the
rate at which the reaction proceeds is proportional to the product of the remaining concentrations
of CH;Cl and of NaOH. If X denotes the amount of CH;OH formed and « and (3 are the given
amounts of the first two chemicals A and B, then the instantaneous amounts not converted to
chemical C are @« — X and B8 — X, respectively. Hence the rate of formation of C is given by

dX
— = kla — (B — X), (6)
dt
where k is a constant of proportionality. A reaction whose model is equation (6) is said to be
second order.

IH Mixtures The mixing of two salt solutions of differing concentrations gives rise to a first-
order differential equation for the amount of salt contained in the mixture. Let us suppose that a
large mixing tank initially holds 300 gallons of brine (that is, water in which a certain number
of pounds of salt has been dissolved). Another brine solution is pumped into the large tank at a
rate of 3 gallons per minute; the concentration of the salt in this inflow is 2 pounds of salt per
gallon. When the solution in the tank is well stirred, it is pumped out at the same rate as the enter-
ing solution. See FIGURE 1.3.3. If A(7) denotes the amount of salt (measured in pounds) in the tank
at time ¢, then the rate at which A(7) changes is a net rate:

dA input rate output rate)
i = = Ry — Ry 7
dt ( of salt ) < of salt " out 0

The input rate R;, at which the salt enters the tank is the product of the inflow concentration of
salt and the inflow rate of fluid. Note that R;, is measured in pounds per minute:

concentration
of salt input rate input rate
in inflow of brine of salt
\ \ \

R;, = (21b/gal) - (3 gal/min) = (6 Ib/min).

Now, since the solution is being pumped out of the tank at the same rate that it is pumped in, the
number of gallons of brine in the tank at time ¢ is a constant 300 gallons. Hence the concentration
of the salt in the tank, as well as in the outflow, is ¢(f) = A(#)/300 Ib/gal, and so the output rate
R, of saltis

concentration

of salt output rate output rate
in outflow of brine of salt
1 \: 1
R, = (A(t) b/ l) (3 gal/min) = @lb/ i
out 300 ga gal/min 100 min.
The net rate (7) then becomes
dA A dA 1
Loe-" o T4 _a=s (8)
dt 100 dt 100

If r,, and r,,, denote general input and output rates of the brine solutions,* respectively, then
there are three possibilities: r;, = 7,,,, 7jy > ¥, and r;, < r,,,. In the analysis leading to (8) we

*Don’t confuse these symbols with R;, and R,,,,, which are input and output rates of salt.
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FIGURE 1.3.4 Water draining from a tank

00000
L
(10) L
| |
Il
C
(a) LRC-series circuit

Inductor
inductance L: henrys (h)

voltage drop across: L%

—0—

L

Resistor
resistance R: ohms (£2)
voltage drop across: iR

Capacitor
capacitance C: farads (f)

voltage drop across: éq

|
P — ||
C

(b) Symbols and voltage drops

FIGURE 1.3.5 Current i(7) and charge ¢(1)
are measured in amperes (A) and
coulombs (C), respectively

have assumed that r;, = r,,,. In the latter two cases, the number of gallons of brine in the tank is

either increasing (r;, > r,,,) or decreasing (r;, < r,,,,) at the net rate r;, — r,,,. See Problems 10-12

mn mn out*

in Exercises 1.3.

Il Draining a Tank In hydrodynamics, Torricelli’s law states that the speed v of efflux of
water through a sharp-edged hole at the bottom of a tank filled to a depth / is the same as the
speed that a body (in this case a drop of water) would acquire in falling freely from a height #;
that is, v = V2gh, where g is the acceleration due to gravity. This last expression comes from
equating the kinetic energy 3mv? with the potential energy mgh and solving for v. Suppose a tank
filled with water is allowed to drain through a hole under the influence of gravity. We would like
to find the depth 4 of water remaining in the tank at time 7. Consider the tank shown in FIGURE 1.3.4.
If the area of the hole is A, (in ft?) and the speed of the water leaving the tank is v = V2gh

(in ft/s), then the volume of water leaving the tank per second is A, \/2gh (in ft*/s). Thus if V(z)
denotes the volume of water in the tank at time 7,

av _

dl - _Ah v Q'gh’ (9)

where the minus sign indicates that V is decreasing. Note here that we are ignoring the possibil-
ity of friction at the hole that might cause a reduction of the rate of flow there. Now if the tank
is such that the volume of water in it at time # can be written V() = A, h, where A, (in ft?) is the
constant area of the upper surface of the water (see Figure 1.3.4), then dV/dt = A, dh/dt. Substituting
this last expression into (9) gives us the desired differential equation for the height of the water
at time #:

dh_ A,

2gh. 10
o 2 8 (10)

w
It is interesting to note that (10) remains valid even when A, is not constant. In this case we must
express the upper surface area of the water as a function of &; that is, A, = A(h). See Problem 14
in Exercises 1.3.

IH Series Circuits Consider the single-loop LRC-series circuit containing an inductor, resis-
tor, and capacitor shown in FIGURE 1.3.5(a). The current in a circuit after a switch is closed is denoted
by i(#); the charge on a capacitor at time ¢ is denoted by ¢(¢). The letters L, R, and C are known
as inductance, resistance, and capacitance, respectively, and are generally constants. Now ac-
cording to Kirchhoff’s second law, the impressed voltage E(f) on a closed loop must equal the
sum of the voltage drops in the loop. Figure 1.3.5(b) also shows the symbols and the formulas
for the respective voltage drops across an inductor, a resistor, and a capacitor. Since current i(f)
is related to charge g(¢) on the capacitor by i = dg/dt, by adding the three voltage drops

Inductor Resistor Capacitor
di d’ d. 1

L2121 g=-re
dt dt dt c

1
L— +R— + —q=EQ. (11)
We will examine a differential equation analogous to (11) in great detail in Section 3.8.

] Falling Bodies In constructing a mathematical model of the motion of a body moving
in a force field, one often starts with Newton’s second law of motion. Recall from elementary
physics that Newton’s first law of motion states that a body will either remain at rest or will
continue to move with a constant velocity unless acted upon by an external force. In each case
this is equivalent to saying that when the sum of the forces F = X F,—that is, the net or resul-
tant force—acting on the body is zero, then the acceleration a of the body is zero. Newton’s
second law of motion indicates that when the net force acting on a body is not zero, then the
net force is proportional to its acceleration a, or more precisely, F' = ma, where m is the mass
of the body.
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Now suppose a rock is tossed upward from a roof of a building as illustrated in FIGURE 1.3.6.
What is the position s(7) of the rock relative to the ground at time 7? The acceleration of the rock
is the second derivative d’s/dt>. If we assume that the upward direction is positive and that no
force acts on the rock other than the force of gravity, then Newton’s second law gives

d*s d’s
MEZ —mg or E = —4&. (12)
In other words, the net force is simply the weight ' = F; = —W of the rock near the surface of

the Earth. Recall that the magnitude of the weight is W = mg, where m is the mass of the body
and g is the acceleration due to gravity. The minus sign in (12) is used because the weight of the
rock is a force directed downward, which is opposite to the positive direction. If the height of the
FIGURE 1.3.6 Position of rock measured  building is s, and the initial velocity of the rock is vy, then s is determined from the second-order
from ground level initial-value problem

d’s ,
5= =8 50) =55 5(0) = v, (13)
dt

kv Although we have not stressed solutions of the equations we have constructed, we note that (13)
can be solved by integrating the constant —g twice with respect to . The initial conditions de-
termine the two constants of integration. You might recognize the solution of (13) from elemen-

l o tary physics as the formula s(f) = —3 gt> + vyt + s,.

positive
direction air resistance

Il Falling Bodies and Air Resistance Prior to the famous experiment by Italian
mathematician and physicist Galileo Galilei (1564-1642) from the Leaning Tower of Pisa, it
was generally believed that heavier objects in free fall, such as a cannonball, fell with a greater

g acceleration than lighter objects, such as a feather. Obviously a cannonball and a feather, when
FIGURE 1.3.7 Falling body of mass m dropped simultaneously from the same height, do fall at different rates, but it is not because a
cannonball is heavier. The difference in rates is due to air resistance. The resistive force of air
was ignored in the model given in (13). Under some circumstances a falling body of mass
m—such as a feather with low density and irregular shape—encounters air resistance propor-
tional to its instantaneous velocity v. If we take, in this circumstance, the positive direction to
be oriented downward, then the net force acting on the mass is given by F = F| + F, = mg — kv,
where the weight F; = mg of the body is a force acting in the positive direction and air resis-
tance F, = —kv is a force, called viscous damping, or drag, acting in the opposite or upward
direction. See FIGURE 1.3.7. Now since v is related to acceleration a by a = dv/dt, Newton’s second
law becomes F = ma = mdv/dt. By equating the net force to this form of Newton’s second law,
we obtain a first-order differential equation for the velocity v(¢) of the body at time ¢,

d

LA_’_\_J_I_:_\ Here £ is a positive constant of proportionality called the drag coefficient. If s(7) is the distance

gravity

(a) Telephone wires

— = = the body falls in time ¢ from its initial point of release, then v = ds/dt and a = dv/dt = d*s/dt*.
— In terms of s, (14) is a second-order differential equation
(b) Suspension bridge
FIGURE 1.3.8 Cabl ded b d’s P as T (15)
3. m— =mg — k— or m— — = mg.
ables suspende etween d[2 g dt dl2 dt 8

vertical supports

Il Suspended Cables Suppose a flexible cable, wire, or heavy rope is suspended between

two vertical supports. Physical examples of this could be a long telephone wire strung between

y two posts as shown in red in FIGURE 1.3.8(a), or one of the two cables supporting the roadbed of a

suspension bridge shown in red in Figure 1.3.8(b). Our goal is to construct a mathematical model
that describes the shape that such a cable assumes.

) P, Ko To begin, let’s agree to examine only a portion or element of the cable between its lowest point

e 2050 p and any arbitrary point P,. As drawn in blue in FIGURE 1.3.9, this element of the cable is the

T, curve in a rectangular coordinate system with the y-axis chosen to pass through the lowest point

©.a) P, on the curve and the x-axis chosen a units below P,. Three forces are acting on the cable: the

X tensions T, and T, in the cable that are tangent to the cable at P; and P,, respectively, and the

portion W of the total vertical load between the points P, and P,. Let T, = IT,|,

FIGURE 1.3.9 Element of cable T, = 1T,l, and W = W] denote the magnitudes of these vectors. Now the tension T, resolves

T, sin 6

W

(x,0)
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into horizontal and vertical components (scalar quantities) 7, cos 6 and 7;, sin 6. Because of static

equilibrium, we can write

T, = T,cosf and W = T,siné.

By dividing the last equation by the first, we eliminate 7, and get tan 6 = W/T. But since

dyldx = tan 0, we arrive at

dy _w

T ?] (16)

This simple first-order differential equation serves as a model for both the shape of a flexible wire
such as a telephone wire hanging under its own weight as well as the shape of the cables that
support the roadbed. We will come back to equation (16) in Exercises 2.2 and in Section 3.11.

REMARKS

Each example in this section has described a dynamical system: a system that changes or evolves
with the flow of time 7. Since the study of dynamical systems is a branch of mathematics currently
in vogue, we shall occasionally relate the terminology of that field to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-dependent variables,
called state variables, together with a rule that enables us to determine (without ambiguity) the
state of the system (this may be past, present, or future states) in terms of a state prescribed
at some time #,. Dynamical systems are classified as either discrete-time systems or continuous-time
systems. In this course we shall be concerned only with continuous-time dynamical systems—
systems in which all variables are defined over a continuous range of time. The rule or the
mathematical model in a continuous-time dynamical system is a differential equation or a system
of differential equations. The state of the system at a time 7 is the value of the state variables at
that time; the specified state of the system at a time £, is simply the initial conditions that ac-
company the mathematical model. The solution of the initial-value problem is referred to as the
response of the system. For example, in the preceding case of radioactive decay, the rule is
dA/dt = kA. Now if the quantity of a radioactive substance at some time f, is known, say
A(t)) = A, then by solving the rule, the response of the system for # = ¢, is found to be
A(t) = Ape’ " (see Section 2.7). The response A(?) is the single-state variable for this system.
In the case of the rock tossed from the roof of the building, the response of the system, the solu-
tion of the differential equation d’s/dt> = —g subject to the initial state s(0) = s,, s'(0) = vy, is
the function s() = —3gt> + vyt + 5o, 0 = ¢ = T, where the symbol T represents the time when
the rock hits the ground. The state variables are s(7) and s’(¢), which are, respectively, the vertical
position of the rock above ground and its velocity at time ¢. The acceleration s”(¢) is not a state
variable since we only have to know any initial position and initial velocity at a time 7, to uniquely
determine the rock’s position s(z) and velocity s'(¢) = v(¢) for any time in the interval [7,, T']. The
acceleration s”(f) = a(?) is, of course, given by the differential equation s"(r) = —g,0 <t <T.

One last point: Not every system studied in this text is a dynamical system. We shall also
examine some static systems in which the model is a differential equation.

m DCIRARR]  Answers to selected odd-numbered problems begin on page ANS-1.

Population Dynamics

that the rate at which the population changes is a net rate—that

1. Under the same assumptions underlying the model in (1), de-

is, the difference between the rate of births and the rate of
deaths in the community. Determine a model for the popula-

termine a differential equation governing the growing popula-
tion P(f) of a country when individuals are allowed to immigrate
into the country at a constant rate r > 0. What is the differen-
tial equation for the population P() of the country when indi-
viduals are allowed to emigrate at a constant rate r > 0?

. The population model given in (1) fails to take death into
consideration; the growth rate equals the birth rate. In another
model of a changing population of a community, it is assumed

tion P(¢) if both the birth rate and the death rate are proportional
to the population present at time .

. Using the concept of a net rate introduced in Problem 2, de-

termine a differential equation governing a population P() if
the birth rate is proportional to the population present at time
¢ but the death ra