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Functions, Graphs,
and Models
tury French scholar

I René Descartes is

perhaps better remembered
today as a philosopher than
as a mathematician. But
most of us are familiar
with the “Cartesian plane”
in which the location of a
point P is specified by its
coordinates (x, y).

As a  schoolboy
Descartes was often per-
mitted to sleep late because
of allegedly poor health. He claimed that he always
thought most clearly about philosophy, science, and math-
ematics while he was lying comfortably in bed on cold
mornings. After graduating from college, where he stud-
ied law (apparently with little enthusiasm), Descartes trav-
eled with various armies for a number of years, but more
as a gentleman soldier than as a professional military man.

In 1637, after finally settling down (in Holland),
Descartes published his famous philosophical treatise Dis-
course on the Method (of Reasoning Well and Seeking
Truth in the Sciences). One of three appendices to this
work sets forth his new “analytic” approach to geometry.
His principal idea (published almost simultaneously by his
countryman Pierre de Fermat) was the correspondence be-
tween an equation and its graph, generally a curve in the
plane. The equation could be used to study the curve and
vice versa.

he seventeenth-cen-

René Descartes (1596-1650)

From Chapter 1 of Calculus, Early Transcendentals, Seventh Edition.
Copyright © 2008 by Pearson Education, Inc. All rights reserved.

Suppose that we want to solve the equation
f(x) = 0. Its solutions are the intersection points of the
graph of y = f(x) with the x-axis, so an accurate picture
of the curve shows the number and approximate locations
of the solutions of the equation. For instance, the graph

pe it o]
has three x-intercepts, showing that the equation
X =3x"+1=0

has three real solutions—one between —1 and O, one
between O and 1, and one between 2 and 3. A mod-
ern graphing calculator or computer program can approx-
imate these solutions more accurately by magnifying the
regions in which they are located. For instance, the mag-
nified center region shows that the corresponding solution
is x & 0.65.

0.8

-4 0.6

The graph y = x3 — 3x2 4+ 1

C. Henry Edwards, David E. Penney.



www.konkur.in

2 CHAPTER 1 Functions, Graphs, and Models

. 1.1 FUNCTIONS AND MATHEMATICAL MODELING

FIGURE 1.1.1 Circle: area
A=mnr?

FIGURE 1.1.2 Sphere: volume

V= %nr3, surface area § = 47r2.

, circumference C = 27r.

Calculus is one of the supreme accomplishments of the human intellect. This math-
ematical discipline stems largely from the seventeenth-century investigations of Isaac
Newton (1642—-1727) and Gottfried Wilhelm Leibniz (1646—-1716). Yet some of its
ideas date back to the time of Archimedes (287-212 B.C.) and originated in cultures
as diverse as those of Greece, Egypt, Babylonia, India, China, and Japan. Many of the
scientific discoveries that have shaped our civilization during the past three centuries
would have been impossible without the use of calculus.

The principal objective of calculus is the analysis of problems of change (of mo-
tion, for example) and of content (the computation of area and volume, for instance).
These problems are fundamental because we live in a world of ceaseless change, filled
with bodies in motion and phenomena of ebb and flow. Consequently, calculus remains
a vibrant subject, and today this body of conceptual understanding and computational
technique continues to serve as the principal quantitative language of science and tech-
nology.

Functions

Most applications of calculus involve the use of real numbers or variables to describe
changing quantities. The key to the mathematical analysis of a geometric or scientific
situation is typically the recognition of relationships among the variables that describe
the situation. Such a relationship may be a formula that expresses one variable as a
function of another. For example:

« The area A of a circle of radius r is given by A = 7r? (Fig. 1.1.1). The volume
V and surface area S of a sphere of radius r are given by

V= %nr3 and S =4xr?,

respectively (Fig. 1.1.2).
o After # seconds (s) a body that has been dropped from rest has fallen a distance

s =1gt?
feet (ft) and has speed v = gt feet per second (ft/s), where g ~ 32 ft/s? is

gravitational acceleration.

o The volume V (in liters, L) of 3 grams (g) of carbon dioxide at 27°C is given in
terms of its pressure p in atmospheres (atm) by V = 1.68/p.

DEFINITION Function
A real-valued function f defined on a set D of real numbers is a rule that assigns
to each number x in D exactly one real number, denoted by f(x).

The set D of all numbers for which f(x) is defined is called the domain (or
domain of definition) of the function f. The number f(x), read “ f of x,” is called the
value of the function f at the number (or point) x. The set of all values y = f(x) is
called the range of f. That is, the range of f is the set

{y:y= f(x) forsomex in D}.

In this section we will be concerned more with the domain of a function than with its
range.

EXAMPLE 1 The squaring function defined by

) =x?

assigns to each real number x its square x>. Because every real number can be squared,
the domain of f is the set R of all real numbers. But only nonnegative numbers are
squares. Moreover, if a > 0, then a = (a)?> = f(y/a), so a is a square. Hence
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FIGURE 1.1.3 A “function
machine.”

f)

Functions and Mathematical Modeling SECTION 1.1 3

the range of the squaring function f is the set {y : y = 0} of all nonnegative real
numbers. —)

Functions can be described in various ways. A symbolic description of the func-
tion f is provided by a formula that specifies how to compute the number f (x) in terms
of the number x. Thus the symbol f( ) may be regarded as an operation that is to be
performed whenever a number or expression is inserted between the parentheses.

EXAMPLE 2 The formula
fx)=x>+x-3 1)

defines a function f whose domain is the entire real line R. Some typical values of f
are f(—2) = —1, f(0) = =3, and f(3) = 9. Some other values of the function f are

fA) =44+4-3=17,
fle)=c*+c-3,
fQ+h=Q+h*+Q2+h) -3
=@4+4h+h*)+Q2+h)—3=h>+514+3, and
f(=t) = (=) +(=1tH) =3 =1*—1* - 3. S )

When we describe the function f by writing a formula y = f(x), we call x the
independent variable and y the dependent variable because the value of y depends—
through f—upon the choice of x. As the independent variable x changes, or varies,
then so does the dependent variable y. The way that y varies is determined by the rule
of the function f. For example, if f is the function of Eq. (1), then y = —1 when
x=-2,y=—-3whenx =0,and y =9 when x = 3.

You may find it useful to visualize the dependence of the value y = f(x) on x by
thinking of the function f as a kind of machine that accepts as input a number x and
then produces as output the number f(x), perhaps displayed or printed (Fig. 1.1.3).

One such machine is the square root key of a simple pocket calculator. When
a nonnegative number x is entered and this key is pressed, the calculator displays (an
approximation to) the number /x. Note that the domain of this square root function
f(x) = /x is the set [0, +00) of all nonnegative real numbers, because no negative
number has a real square root. The range of f is also the set of all nonnegative real
numbers, because the symbol ,/x always denotes the nonnegative square root of x. The
calculator illustrates its “knowledge” of the domain by displaying an error message if
we ask it to calculate the square root of a negative number (or perhaps a complex
number, if it’s a more sophisticated calculator).

EXAMPLE 3 Not every function has a rule expressible as a simple one-part formula
such as f(x) = 4/x. For instance, if we write

B x2 if x 20,
X) =
J—x ifx <O,

then we have defined a perfectly good function with domain R. Some of its values are

h(—4) = 2, h(0) = 0, and h(2) = 4. By contrast, the function g in Example 4 is

defined initially by means of a verbal description rather than by means of formulas.
—

EXAMPLE 4 For each real number x, let g(x) denote the greatest integer that is less
than or equal to x. For instance, g(2.5) = 2, g(0) =0, g(—3.5) = —4, and g(w) = 3.
If n is an integer, then g(x) = n for every number x such that n < x < n + 1. This
function g is called the greatest integer function and is often denoted by

gx) = [[x].
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Thus [2.5] = 2, [-3.5] = —4, and [[x] = 3. Note that although [x] is defined
for all x, the range of the greatest integer function is not all of R, but the set Z of all
integers. ]

The name of a function need not be a single letter such as f or g. For instance,
think of the trigonometric functions sin(x) and cos(x) with the names sin and cos.

EXAMPLE 5 Another descriptive name for the greatest integer function of Exam-
ple 4 is

FLOOR(x) = [x]. ()

(We think of the integer n as the “floor” beneath the real numbers lying between n and
n + 1.) Similarly, we may use ROUND(x) to name the familiar function that “rounds
off” the real number x to the nearest integer n, except that ROUND(x) = n + 1 if
x=n+ % (so we “round upward” in case of ambiguity). Round off enough different
numbers to convince yourself that

ROUND(x) = FLOOR (x + 1) @A)

for all x.

Closely related to the FLOOR and ROUND functions is the “ceiling function” used
by the U.S. Postal Service; CEILING(x) denotes the least integer that is not less than
the number x. In 2006 the postage rate for a first-class letter was 39¢ for the first ounce
and 24¢ for each additional ounce or fraction thereof. For a letter weighing w > 0
ounces, the number of “additional ounces” involved is CEILING(w) — 1. Therefore the
postage s(w) due on this letter is given by

s(w) =39+ 24 - [CEILING(w) — 1] = 15 4+ 24 - CEILING(w). I )

Domains and Intervals

The function f and the value or expression f(x) are different in the same sense that a
machine and its output are different. Nevertheless, it is common to use an expression
like “the function f(x) = x2” to define a function merely by writing its formula. In
this situation the domain of the function is not specified. Then, by convention, the
domain of the function f is the set of all real numbers x for which the expression
f(x) makes sense and produces a real number y. For instance, the domain of the
function h(x) = 1/x is the set of all nonzero real numbers (because 1/x is defined
precisely when x # 0).

\ .
+ An open interval

A closed interval

= ml
[

A half-open interval

0,15
£ = T + A half-open interval
- - An unbounded interval
[3- )
- An unbounded interval
(=,2)

FIGURE 1.1.4 Some examples of intervals of real
numbers.

Domains of functions frequently are described in terms of intervals of real num-
bers (Fig. 1.1.4). (Interval notation is reviewed in Appendix A.) Recall that a closed
interval [a, b] contains both its endpoints x = a and x = b, whereas the open inter-
val (a, b) contains neither endpoint. Each of the half-open intervals [, b) and (a, b]
contains exactly one of its two endpoints. The unbounded interval [a, co) contains
its endpoint x = a, whereas (—o00, a) does not. The previously mentioned domain of
h(x) = 1/x is the union of the unbounded intervals (—oo, 0) and (0, 00).
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FIGURE 1.1.5 The domain of
g(x) =1/(2x + 4) is the union of
two unbounded open intervals.

X

FIGURE 1.1.6 The box of
Example 8.
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EXAMPLE 6 Find the domain of the function g(x) =

2x +4

Solution Division by zero is not allowed, so the value g(x) is defined precisely when
2x +4 # 0. This is true when 2x # —4, and thus when x %= —2. Hence the domain
of g is the set {x : x # 2}, which is the union of the two unbounded open intervals
(=00, —2) and (-2, 00), shown in Fig. 1.1.5. ]

R — 1

EXAMPLE 7 Find the domain of h(x) = ——.

V2x +4

Solution Now it is necessary not only that the quantity 2x 44 be nonzero, but also that
it be positive, in order that the square root +/2x + 4 is defined. But 2x + 4 > 0 when
2x > —4, and thus when x > —2. Hence the domain of % is the single unbounded
open interval (—2, 00). N ]

Mathematical Modeling

The investigation of an applied problem often hinges on defining a function that cap-
tures the essence of a geometrical or physical situation. Examples 8 and 9 illustrate
this process.

EXAMPLE 8 A rectangular box with a square base has volume 125. Express its total
surface area A as a function of the edge length x of its base.

Solution The first step is to draw a sketch and to label the relevant dimensions. Fig-
ure 1.1.6 shows a rectangular box with square base of edge length x and with height y.
We are given that the volume of the box is

V = xzy = 125. @)

Both the top and the bottom of the box have area x? and each of its four vertical sides
has area xy, so its total surface area is

A =2x + dxy. ®)

But this is a formula for A in terms of the two variables x and y rather than a function
of the single variable x. To eliminate y and thereby obtain A in terms of x alone, we
solve Eq. (4) for y = 125/x? and then substitute this result in Eq. (5) to obtain

125 500

A:2x2+4x-—2_2x2+
X X

Thus the surface area is given as a function of the edge length x by

500
A(x)=2x2+7, 0<x < +4o0. (6)

It is necessary to specify the domain because negative values of x make sense in the
Sformula in (5) but do not belong in the domain of the function A. Because every x > 0
determines such a box, the domain does, in fact, include all positive real numbers.

— )

COMMENT In Example 8 our goal was to express the dependent variable A as a func-
tion of the independent variable x. Initially, the geometric situation provided us instead
with

1. The formula in Eq. (5) expressing A in terms of both x and the additional variable

y, and

2. The relation in Eq. (4) between x and y, which we used to eliminate y and
thereby express A as a function of x alone.

We will see that this is a common pattern in many different applied problems, such as
the one that follows.
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$5/ft

y | $5/ft $5/1t

$1/ft

X

FIGURE 1.1.7 The animal pen.

Wall

The Animal Pen Problem You must build a rectangular holding pen for animals. To
save material, you will use an existing wall as one of its four sides. The fence for
the other three sides costs $5/ft, and you must spend $1/ft to paint the portion of the
wall that forms the fourth side of the pen. If you have a total of $180 to spend, what
dimensions will maximize the area of the pen you can build?

Figure 1.1.7 shows the animal pen and its dimensions x and y, along with the
cost per foot of each of its four sides. When we are confronted with a verbally stated
applied problem such as this, our first question is, How on earth do we get started on
it? The function concept is the key to getting a handle on such a situation. If we can
express the quantity to be maximized—the dependent variable—as a function of some
independent variable, then we have something tangible to do: Find the maximum value
attained by the function. Geometrically, what is the highest point on that function’s
graph?

EXAMPLE 9 In connection with the animal pen problem, express the area A of the
pen as a function of the length x of its wall side.
Solution The area A of the rectangular pen of length x and width y is

A = xy. (7)

When we multiply the length of each side in Fig. 1.1.7 by its cost per foot and then add
the results, we find that the total cost C of the pen is

C=x+4+5y+5x+5y =6x+ 10y.

So
6x + 10y = 180, ®)

because we are given C = 180. Choosing x to be the independent variable, we use
the relation in Eq. (8) to eliminate the additional variable y from the area formula in
Eq. (7). We solve Eq. (8) for y and substitute the result

y= 1—10(180—6x): %(30—x) ©)]
in Eq. (7). Thus we obtain the desired function
A(x) = 2(30x — x?)

that expresses the area A as a function of the length x.

In addition to this formula for the function A, we must also specify its domain.
Only if x > 0 will actual rectangles be produced, but we find it convenient to include
the value x = 0 as well. This value of x corresponds to a “degenerate rectangle” of
base length zero and height

y=13-30=18,

a consequence of Eq. (9). For similar reasons, we have the restriction y = 0. Because
y=32(30—x),

it follows that x < 30. Thus the complete definition of the area function is

A(x) =2(30x —x?), 0=x <30 (10)
—

COMMENT The domain of a function is a necessary part of its definition, and for
each function we must specify the domain of values of the independent variable. In
applications, we use the values of the independent variable that are relevant to the
problem at hand.
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Example 9 illustrates an important part of the solution of a typical applied
problem—the formulation of a mathematical model of the physical situation under
study. The area function A(x) defined in (10) provides a mathematical model of the

animal pen problem. The shape of the optimal animal pen can be determined by finding
X A(x) . ) . . . ..
the maximum value attained by the function A on its domain of definition.
0
5 75 Numerical Investigation
10 120 Armed with the result of Example 9, we might attack the animal pen problem by calcu-
15 135« lating a table of values of the area function A(x) in Eq. (10). Such a table is shown in
20 120 Fig. 1.1.8. The data in this table suggest strongly that the maximum areais A = 135 ft?,
25 75 attained with side length x = 15 ft, in which case Eq. (9) yields y = 9 ft. This conjec-
30 0 ture appears to be corroborated by the more refined data shown in Fig. 1.1.9.

Thus it seems that the animal pen with maximal area (costing $180) is x = 15 ft
FIGURE 1.1.8 Area A(x)ofapen  long and y = 9 ft wide. The tables in Figs. 1.1.8 and 1.1.9 show only integral values
with side of length x. of x, however, and it is quite possible that the length x of the pen of maximal area is
not an integer. Consequently, numerical tables alone do not settle the matter. A new
mathematical idea is needed in order to prove that A(15) = 135 is the maximum value

x A(x) of
A(x) =230x —x?»), 0=x=<30

10 120

11 125.4 for all x in its domain. We attack this problem again in Section 1.2.

12 129.6

13 132.6 Tabulation of Functions

14 134.4 Many scientific and graphing calculators allow the user to program a given function for

15 135 <« repeated evaluation, and thereby to painlessly compute tables like those in Figs. 1.1.8

16 134.4 and 1.1.9. For instance, Figs. 1.1.10 and 1.1.11 show displays of a calculator prepared

17 132.6 to calculate values of the dependent variable

18 129.6 2

19 1554 yi=A) = @3/5C0x —x7),

20 120 and Fig. 1.1.12 shows the calculator’s resulting version of the table in Fig. 1.1.9.

The use of a calculator or computer to tabulate values of a function is a simple

FIGURE 1.1.9 Further indication technique with surprisingly many applications. Here we illustrate a method of solving
that x = 15 yields maximal area approximately an equation of the form f(x) = 0 by repeated tabulation of values f (x)
A =135. of the function f.

As a specific example, suppose that we ask what value of x in Eq. (10) yields an
animal pen of area A = 100. Then we need to solve the equation

A(x) = 2(30x — x?) = 100,
which is equivalent to the equation
f(x) =230x —x%) — 100 = 0. 11

This is a quadratic equation that could be solved using the quadratic formula of basic
algebra, but we want to take a more direct, numerical approach. The reason is that the

b Texas INSTRUMENTS 7/-83

@ Texas INSTRUMENTS 7/-83

FIGURE 1.1.10 A calculator FIGURE 1.1.11 The table setup. FIGURE 1.1.12 The resulting table.
programmed to evaluate
A(x) = (3/5)(30x — x2).
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FIGURE 1.1.13 Values of f(x) on

(5, 10].

numerical approach is applicable even when no simple formula (such as the quadratic
formula) is available.

The data in Fig. 1.1.8 suggest that one value of x for which A(x) = 100 lies
somewhere between x = 5 and x = 10 and that a second such value lies between
x = 20 and x = 25. Indeed, substitution in Eq. (11) yields

f(6)=-25<0 and f(10) =20 > 0.

The fact that f(x) is negative at one endpoint of the interval [S, 10] but positive at the
other endpoint suggests that f(x) is zero somewhere between x = 5 and x = 10.

To see where, we tabulate values of f(x) on [5, 10]. In the table of Fig. 1.1.13
we see that f(7) < 0 and f(8) > 0, so we focus next on the interval [7, 8]. Tabu-
lating f(x) on [7, 8] gives the table of Fig. 1.1.14, where we see that f(7.3) < 0 and
f(1.4) > 0.

We therefore tabulate f(x) once more, this time on the interval [7.3,7.4]. In
Fig. 1.1.15 we see that

f(7.36) % —0.02 and f(7.37) ~ 0.07.

Because f(7.36) is considerably closer to zero than is f(7.37), we conclude that the
desired solution of Eq. (11) is given approximately by x &~ 7.36, accurate to two dec-
imal places. If greater accuracy were needed, we could continue to tabulate f(x) on
smaller and smaller intervals.

If we were to begin with the interval [20, 25] and proceed similarly, we would
find the second value x & 22.64 such that f(x) = 0. (You should do this for practice.)

Finally, let’s calculate the corresponding values of the width y of the animal pen
such that A = xy = 100:

o If x =~ 7.36, then y ~ 13.59.
o If x = 22.64, then y & 4.42.

Thus, under the cost constraint of the animal pen problem, we can construct either a
7.36-ft by 13.59-ft or a 22.64-ft by 4.42-ft rectangle, both of area 100 ft>.

The layout of Figs. 1.1.13 through 1.1.15 suggests the idea of repeated tabulation
as a process of successive numerical magnification. This method of repeated tabulation
can be applied to a wide range of equations of the form f(x) = 0. If the interval [a, b]
contains a solution and the endpoint values f(a) and f(b) differ in sign, then we can
approximate this solution by tabulating values on successively smaller subintervals.
Problems 57 through 66 and the project at the end of this section are applications of
this concrete numerical method for the approximate solution of equations.

% Jx) 2 fx)

70 ~3.400 T 130 —0.5740

7.1 —2.446 e 7.31 —0.4817

72 1504 7.32 —0.3894

73 ~0574 | 7.33 —0.2973

T 74 0344 7.34 —0.2054
75 1250 N | 735 01135 |
. 7.6 2.144 736 ~0.0218 __
7.7 3.026 | 737 00699 |

7.8 3.896 7.38 0.1614

79 4.754 7.39 0.2527

8.0 5.600 N 7.40 0.3440
FIGURE 1.1.14 Values of f(x) on [7, 8]. FIGURE 1.1.15 Values of f(x) on

[7.3,7.4].
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1.1 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.
2.

3.

10.

Isaac Newton was born in the 18th century.

A function is a rule that assigns to each real number in its domain one and only
one real number.

The value of the function f at the number x in its domain is commonly denoted

by f(x).

. If the domain of the function f is not specified, then it is the set of all real

numbers.

. The function giving the surface area A as a function of the edge length x of the

box of Example 8 is given by

600
Ax) =2x>+ —, 0<x < +oo.
X

. In the animal pen problem (Example 9), the maximum area is attained when the

length x of the wall side is 18 ft.

. The interval (a, b) is said to be open because it contains neither of its endpoints

a and b.

. The domain of f(x) = 4/x does not include the number x = —4.
. The domain of the function A(x) = %(30x — x2) is the set of all real numbers.

There is no good reason why the domain of the animal pen function in Eq. (10)
is restricted to the interval 0 < x < 30.

1.1 CONCEPTS: QUESTIONS AND DISCUSSION

1.

Can a function have the same value at two different points? Can it have two
different values at the same point x?

. Explain the difference between a dependent variable and an independent variable.

A change in one both causes and determines a change in the other. Which one is
the “controlling variable”?

What is the difference between an open interval and a closed interval? Is every
interval on the real line either open or closed? Justify your answer.

Suppose that S is a set of real numbers. Is there a function whose domain of
definition is precisely the set S? Is there a function defined on the whole real line
whose range is precisely the set S? Is there a function that has the value 1 at each
point of S and the value 0 at each point of the real line R not in S?

. Figure 1.1.6 shows a box with square base and height y. Which of the following

two formulas would suffice to define the volume V of this box as a function of
y?

(@) V =x%y; (b) V =y(10 —2y)*

Discuss the difference between a formula and a function.

. In the following table, y is a function of x. Determine whether or not x is a

function of y.
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1.1 PROBLEMS

In Problems I through 4, find and simplify each of the following
values: (a) f(=a); (b) f(a™"); (¢) f(Ja); (d) f(a®).

1. f(x):% 2. f(x)=x>+5
3. f(x)=ﬁ 4. f(x) =+/14+x>+x*

In Problems 5 through 10, find all values of a such that g(a) = 5.

5. gx)=3x+4

7. g(x) =+/x24+16
9. g(x) =~/x +25

In Problems 11 through 16, compute and then simplify the quan-
tity f(a+h) — f(a).

1. f(x) =3x—2

6. g(x) = T

8. g(x)=x-3
10. g(x) =2x> —x + 4

12, f(x)=1—-2x

13. f(x) = x? 4. f(x) =x*+2x
1 2
15. f(X) = ; 16. f(x) = x—-|-1

In Problems 17 through 20, find the range of values of the given
function.

17. f(x) = { Ixl
0 ifx=0
18. f(x) = [3x]
exceeding x.)
19. f(x) = (=1
20.

if x #0;

(Recall that [x] is the largest integer not

f(x) is the first-class postage (in cents) for a letter mailed in
the United States and weighing x ounces, 0 < x < 12. As of
January 8, 2006 the postage rate for such a letter was 39¢ for
the first ounce plus 24¢ for each additional ounce or fraction
thereof.

In Problems 21 through 35, find the largest domain (of real
numbers) on which the given formula determines a (real-valued)
function.

21. f(x) =10 —x? 22, f(x)=x>+5

2. f() =i 24. g(t) = (Vi)
25. f(x)=+3x-5 26. g(t) =/t +4
1
27. f(t) =1 =2t 28. _
fo) =+ g(x) T
2 2
29. = — 30. g(t) =, ——
fx) Ep g T
1
31. f(x) =+x249 32. h(z) = —
-z
x+1
3B, f)=v4—x 34, f(x) = :
x —
t
35. g(t) = —
SAARATT
36. Express the area A of a square as a function of its perime-
ter P.

37. Express the circumference C of a circle as a function of its
area A.

38. Express the volume V of a sphere as a function of its surface
area S.

39. Given: 0°C is the same as 32°F, and a temperature change
of 1°C is the same as a change of 1.8°F. Express the Celsius
temperature C as a function of the Fahrenheit temperature F'.

40. Show that if a rectangle has base x and perimeter 100
(Fig. 1.1.16), then its area A is given by the function

A(x) =x(50—x), 0=<x<50.

X

FIGURE 1.1.16 A = xy
(Problem 40).

41. A rectangle with base of length x is inscribed in a circle of
radius 2 (Fig 1.1.17). Express the area A of the rectangle as
a function of x.

D=

N =

FIGURE 1.1.17 A =xy
(Problem 41).

42. An oil field containing 20 wells has been producing 4000
barrels of oil daily. For each new well that is drilled, the
daily production of each well decreases by 5 barrels per day.
Write the total daily production of the oil field as a function
of the number x of new wells drilled.

43. Suppose that a rectangular box has volume 324 cm? and a
square base of edge length x centimeters. The material for
the base of the box costs 2¢/ cm?, and the material for its top
and four sides costs 1¢/cm?. Express the total cost of the

box as a function of x. See Fig. 1.1.18.

X

FIGURE 1.1.18 V = x2y
(Problem 43).
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44. A rectangle of fixed perimeter 36 is rotated around one of
its sides S to generate a right circular cylinder. Express the
volume V of this cylinder as a function of the length x of the
side S. See Fig. 1.1.19.

FIGURE 1.1.19 V = wxy? (Problem 44).

45. A right circular cylinder has volume 1000 in.? and the radius
of its base is r inches. Express the total surface area A of the
cylinder as a function of r. See Fig. 1.1.20.

FIGURE 1.1.20 V =
r2h (Problem 45).

46. A rectangular box has total surface area 600 cm’? and a
square base with edge length x centimeters. Express the vol-
ume V of the box as a function of x.

47. An open-topped box is to be made from a square piece of
cardboard of edge length 50 in. First, four small squares,
each of edge length x inches, are cut from the corners of
the cardboard (Fig. 1.1.21). Then the four resulting flaps are
turned up—folded along the dotted lines—to form the four
sides of the box, which will thus have a square base and a
depth of x inches (Fig. 1.1.22). Express its volume V as a
function of x.

[ 50 i
T T Y
| ]
| ]
— ——
| |
| |
| |
| | 50
| |
| |
| |
I J —
| ] T
| ] X
1 1 Yy
[P DE— JE—

FIGURE 1.1.21 Fold the
edges up to make a box
(Problem 47).
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|

X

|

FIGURE 1.1.22 The box of
Problem 47.

48. Continue Problem 40 by numerically investigating the area
of a rectangle of perimeter 100. What dimensions (length
and width) would appear to maximize the area of such a rect-
angle?

49. Determine numerically the number of new oil wells that
should be drilled to maximize the total daily production of
the oil field of Problem 42.

50. Investigate numerically the total surface area A of the rect-
angular box of Example 8. Assuming that both x = 1 and
y 2 1, what dimensions x and y would appear to mini-
mize A?

Problems 51 through 56 deal with the functions CEILING,
FLOOR, and ROUND of Example 5.

51. Show that CEILING(x) = —FLOOR(—x) for all x.

52. Suppose that £ is a constant. What is the range of the func-
tion g(x) = ROUND(kx)?

53. What is the range of the function g(x) = II—OROUND(IOx)?

54. Recalling that 7 ~ 3.14159, note that ﬁROUND(lOOn) =
3.14. Hence define (in terms of ROUND) a function
ROUND2(x) that gives the value of x rounded accurate to

two decimal places.

55. Define a function ROUND4(x) that gives the value of
x rounded accurate to four decimal places, so that
ROUND4(7r) = 3.1416.

56. Define a function CHOP4(x) that “chops off” (or discards)
all decimal places of x beyond the fourth one, so that
CHOP4(mr) = 3.1415.

In Problems 57 through 66, a quadratic equation ax*+bx—+c = 0
and an interval [ p, q] containing one of its solutions are given.
Use the method of repeated tabulation to approximate this solu-
tion with two digits correct or correctly rounded to the right of
the decimal. Check that your result agrees with one of the two
solutions given by the quadratic formula,

—b+ /b> —4ac
X = —2(1 .
57. x> =3x+1=0, [0,1]
58. x> =3x+1=0, [2,3]
59. x> 4+2x—4=0, [1,2]
60. x2+2x —4=0, [—4, —3]
61. 2x> —7x+4=0, [0,1]
62. 2x> —Tx+4=0, [2,3]
63. x> —1lx +25=0, [3,4]
64. x> — 11x +25=0, [7,8]
65. 3x2+23x —45=0, [I,2]
66. 3x>+23x —45=0, [-10, 9]

11
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1.1 INVESTIGATION: Designing a Wading Pool

Starting with a given rectangular piece of tin, you are to design a wading pool in the
manner indicated by Figs. 1.1.21 and 1.1.22. Your task is to investigate the maximal
volume pool that can be constructed, and how to construct a wading pool of specified
volume.

For your own personal wading pool, start with a square piece of tin of size a x b
feet, where a and b < a are the two largest digits in your student ID number. You need
to determine the corner notch edge length x so that the wading pool you construct will
have the largest possible volume V. Start by expressing the box’s volume V = f(x)
as a function of its height x, and then use the method of repeated tabulation to find
the maximum value V,,,, (rounded off accurate to 2 decimal places) attained by the
function f(x) on the interval [0, b/2]. (Why is this the appropriate domain of f?7)

For a second investigation, suppose you decide instead that you want your pool
to have exactly half the maximum possible volume V,,,,. Note first that a tabulation
of f(x) on the interval [0, b/2] indicates that this is true for two different values of x.
Find each of them (rounded off accurate to 3 decimal places).

Write up the results of your investigations in the form of a carefully organized
report consisting of complete sentences (plus pertinent equations and data tables) ex-
plaining your results in detail, and telling precisely what you did to solve your prob-
lems.

. 1.2 GRAPHS OF EQUATIONS AND FUNCTIONS

y

FIGURE 1.2.1 A line with
y-intercept b and inclination angle ¢.

Graphs and equations of straight lines in the xy-coordinate plane are reviewed in Ap-
pendix B. Recall the slope-intercept equation

y=mx+b (€))]

of the straight line with slope m = tan ¢, angle of inclination ¢, and y-intercept b
(Fig. 1.2.1). The “rise over run” definition

_rise Ay  y»m—»

= = = 2
m run Ax  xy — X )

of the slope (Fig. 1.2.2) leads to the point-slope equation
y — Yo = m(x — Xo) 3)

of the straight line with slope m that passes through the point (x¢, yo)—see Fig. 1.2.3.
In either case a point (x, y) in the xy-plane lies on the line if and only if its coordinates
x and y satisfy the indicated equation.

(xo, Y())

¥ =Yo=m(x - xp)

/ N X
FIGURE 1.2.2 Slope FIGURE 1.2.3 The line through
A .
m=tan¢ = A_y (x0, yo) with slope m.
X
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FIGURE 1.2.4 Parallel lines have
the same slope m = tan ¢.

FIGURE 1.2.5 The graph of the

equation x2 + y = (x2 4 y? — 2x)2.

Py (x5, ¥,)

P(xy,y7) X=X

FIGURE 1.2.6 The Pythagorean
theorem implies the distance
formula

d=+(x2—x1)2+ (2 — y)2

(x, y)

FIGURE 1.2.7 A translated circle.
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If Ay = 0in Eq. (2), then m = 0 and the line is horizontal. If Ax = 0, then
the line is vertical and (because we cannot divide by zero) the slope of the line is not
defined. Thus:

« Horizontal lines have slope zero.
« Vertical lines have no defined slope at all.

EXAMPLE 1 Write an equation of the line L that passes through the point P (3, 5)
and is parallel to the line having equation y = 2x — 4.

Solution The two parallel lines have the same angle of inclination ¢ (Fig. 1.2.4) and
therefore have the same slope m. Comparing the given equation y = 2x — 4 with the
slope-intercept equation in (1), we see that m = 2. The point-slope equation therefore
gives

y—5=2(x—3)

—alternatively, y = 2x — 1, for an equation of the line L. — )

Equations (1) and (3) can both be put into the form of the general linear equation
Ax + By =C. 4)

Conversely, if B # 0, then we can divide the terms in Eq. (4) by B and solve for y,
thereby obtaining the slope-intercept equation of a straight line. If A = 0, then the
resulting equation has the form y = H, the equation of a horizontal line with slope
zero. If B = 0 but A # 0, then Eq. (4) can be solved for x = K, the equation of a
vertical line (having no slope at all). In summary, we see that if the coefficients A and
B are not both zero, then Eq. (4) is the equation of some straight line in the plane.

Graphs of More General Equations
A straight line is a simple example of the graph of an equation. By contrast, a
computer-graphing program produced the exotic curve shown in Fig. 1.2.5 when asked
to picture the set of all points (x, y) satisfying the equation

X242 = (2 4yt —2x)2

Both a straight line and this complicated curve are examples of graphs of equations.

DEFINITION Graph of an Equation
The graph of an equation in two variables x and y is the set of all points (x, y) in
the plane that satisfy the equation.

For example, the distance formula of Fig. 1.2.6 tells us that the graph of the
equation

x2+y2=r? ®)

is the circle of radius r centered at the origin (0, 0). More generally, the graph of the
equation

(x =)+ —k?=r? (6)

is the circle of radius r with center (%, k). This also follows from the distance formula,
because the distance between the points (x, y) and (4, k) in Fig. 1.2.7 is r.

13
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(x+h y+k)
L]

(x, )

FIGURE 1.2.8 Translating a point.

FIGURE 1.2.9 The circle of
Example 3.

EXAMPLE 2 The equation of the circle with center (3, 4) and radius 10 is
(x —3)? + (y —4)? = 100,
which may also be written in the form

x4y —6x -8y —75=0. S )

Translates of Graphs

Suppose that the xy-plane is shifted rigidly (or translated) by moving each point A
units to the right and k units upward. (A negative value of 4 or k corresponds to a
leftward or downward movement.) That is, each point (x, y) of the plane is moved to
the point (x + 4, y +k); see Fig. 1.2.8. Then the circle with radius r and center (0, 0) is
translated to the circle with radius r and center (/, k). Thus the general circle described
by Eq. (6) is a translate of the origin-centered circle. Note that the equation of the
translated circle is obtained from the original equation by replacing x with x — & and
y with y — k. This observation illustrates a general principle that describes equations
of translated (or “shifted”) graphs.

Translation Principle

When the graph of an equation is translated % units to the right and k units up-
ward, the equation of the translated curve is obtained from the original equation by
replacing x with x — & and y with y — k.

Observe that we can write the equation of a translated circle in Eq. (6) in the
general form

2+ y*+ax+by=c. (7)

What, then, can we do when we encounter an equation already of the form in Eq. (7)?
We first recognize that the graph is likely to be a circle. If so, we can discover its center
and radius by the technique of completing the square. To do so, we note that

2 < " a>2 a?
x“+ax=(x+=<) ——,
2 4
which shows that x> + ax can be made into the perfect square (x 4 %a)2 by adding to
it the square of half the coefficient of x.
EXAMPLE 3 Find the center and radius of the circle that has the equation
x2 4+ y? —dx + 6y = 12.

Solution We complete the square separately for each of the variables x and y. This
gives

(P —dx+4H+ (G +6y+9) =12+4+49;
(x —2)* 4+ (y +3)* =25.

Hence the circle—shown in Fig. 1.2.9—has center (2, —3) and radius 5. Solving the
last equation for y gives

y=-3+25—-(x—2)>2
Thus the whole circle consists of the graphs of the rwo equations

y=-3+v25-(x—2)?

and
y=-3—v25—(x—2)2
that describe its upper and lower semicircles. — 9
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FIGURE 1.2.11 The graph of the
absolute value function y = |x| of
Example 4.
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Graphs of Functions

The graph of a function is a special case of the graph of an equation.

DEFINITION Graph of a Function
The graph of the function f is the graph of the equation y = f(x).

Thus the graph of the function f is the set of all points in the plane that have the
form (x, f(x)), where x is in the domain of f. (See Fig. 1.2.10.) Because the second
coordinate of such a point is uniquely determined by its first coordinate, we obtain the
following useful principle:

y
(x3,f(x3))

(. fx)) (X9, f(x2)) y=f)

/

|
|
|
:
1 fx)
|
|
|
|
|
|
|

FIGURE 1.2.10 The graph of the function f.

The Vertical Line Test
Each vertical line through a point in the domain of a function meets its graph in
exactly one point.

Thus no vertical line can intersect the graph of a function in more than one point.
For instance, it follows that the curve in Fig. 1.2.5 cannot be the graph of a function,
although it is the graph of an equation. Similarly, a circle cannot be the graph of a
function.

EXAMPLE 4 Construct the graph of the absolute value function f(x) = |x]|.

Solution Recall that

| = x ifx =0,
M=1-x ifx <o0.

So the graph of y = |x| consists of the right half of the line y = x together with the
left half of the line y = —x, as shown in Fig. 1.2.11. —

EXAMPLE 5 Sketch the graph of the reciprocal function
1
fx)=—-.
X

Solution Let’s examine four natural cases.

1. When x is positive and numerically large, f(x) is small and positive.

2. When x is positive and near zero, f(x) is large and positive.

3. When x is negative and numerically small (negative and close to zero), f(x) is
large and negative.

4. When x is large and negative (x is negative but |x| is large), f(x) is small and
negative (negative and close to zero).

15
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FIGURE 1.2.12 The graph of the
reciprocal function y = 1/x of

Example 5.
y
3 [ ——
2 —)
- =
L1 NI
3 2 -1 1 2 3 X
—_1
—) 2
...% 3+

FIGURE 1.2.13 The graph of the
greatest integer function f(x) = [[x]l

of Example 6.

16

To get started with the graph, we can plot a few points, such as
(11 1)’ (_17 _1)’ (57 %)’ (%3

The locations of these points, together with the four cases just discussed, suggest that
the actual graph resembles the one shown in Fig. 1.2.12. I

5). (-5 1), and (=1, -5)

Figure 1.2.12 exhibits a “gap,” or “discontinuity,” in the graph of y = 1/x at
x = 0. Indeed, the gap is called an infinite discontinuity because y increases without
bound as x approaches zero from the right, whereas y decreases without bound as x
approaches zero from the left. This phenomenon generally is signaled by the presence
of denominators that are zero at certain values of x, as in the case of the functions

x2’

1
fO) =1 and f(x)=
— X

which we ask you to graph in the problems.

EXAMPLE 6 Figure 1.2.13 shows the graph of the greatest integer function f(x) =
[x] in Example 4 in Section 1.1. Note the “jumps” that occur at integral values of x.
On calculators, the greatest integer function is sometimes denoted by [INT]; in some
programming languages, it is called FLOOR. — )

EXAMPLE 7 Graph the function with the formula

f)=x—[x]—3.

Solution Recall that [x]] = n, where n is the greatest integer not exceeding x—thus
n < x < n+ 1. Hence if n is an integer, then

1 1
This implies that the point (n, —%) lies on the graph of f for each integer n. Next, if
n < x < n+ 1 (where, again, n is an integer), then

f(x):x—n—%.

Because y = x—n —% has as its graph a straight line of slope 1, it follows that the graph
of f takes the form shown in Fig. 1.2.14. This sawtooth function is another example of
a discontinuous function. The values of x where the value of f(x) makes a jump are
called points of discontinuity of the function f. Thus the points of discontinuity of
the sawtooth function are the integers. As x approaches the integer n from the left, the
value of f(x) approaches —I—%, but f(x) abruptly jumps to the value —% whenx =n. A
precise definition of continuity and discontinuity for functions appears in Section 2.4.
Figure 1.2.15 shows a graphing calculator prepared to graph the sawtooth function.
— )

Texas INSTRUMENTS 7/-83

B

FIGURE 1.2.14 The graph of the
sawtooth function f(x) = x —
[x] — % of Example 7.

FIGURE 1.2.15 A graphing
calculator prepared to graph the
sawtooth function of Example 7.
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FIGURE 1.2.17 The graph of the
parabola x = y* of Example 9.
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Parabolas

The graph of a quadratic function of the form
f(x)=ax’>+bx+c (a#0) (6]
is a parabola whose shape resembles that of the particular parabola in Example 8.

EXAMPLE 8 Construct the graph of the parabola y = x°.

Solution We plot some points in a short table of values.

X 3| -2]-1]0]1]2]3

y=x>| 9| 4, 1,0]1]|4|9

When we draw a smooth curve through these points, we obtain the curve shown in
Fig. 1.2.16. — )

(-3,9) 3,9

(-2,4) 2,4

-1, 1 (1,1

0,0 .

FIGURE 1.2.16 The graph of the
parabola y = x? of Example 8.

The parabola y = —x? would look similar to the one in Fig. 1.2.16 but would
open downward instead of upward. More generally, the graph of the equation

y = ax? (&)

is a parabola with its vertex at the origin, provided that @ # 0. This parabola opens
upward if @ > 0 and downward if a < 0. [For the time being, we may regard the vertex
of a parabola as the point at which it “changes direction.” The vertex of a parabola of
the form y = ax? (a # 0) is always at the origin. A precise definition of the vertex of
a parabola appears in Chapter 9.]

EXAMPLE 9 Construct the graphs of the functions f(x) = 4/x and g(x) = —/x.

Solution After plotting and connecting points satisfying y = #./x, we obtain the
parabola y> = x shown in Fig. 1.2.17. This parabola opens to the right. The upper
half is the graph of f(x) = 4/x, the lower half is the graph of g(x) = —./x. Thus the
union of the graphs of these two functions is the graph of the single equation y*> = x.
(Compare this with the circle of Example 3.) More generally, the graph of the equation

x = by? (10)

is a parabola with its vertex at the origin, provided that b # 0. This parabola opens to
the right if » > 0 (as in Fig. 1.2.17), but to the left if b < 0. —

17
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1,-3)

FIGURE 1.2.20 The parabola
y = 2x% — 4x — 1 of Example 10.

18

The size of the coefficient a in Eq. (9) [or of b in Eq. (10)] determines the “width”
of the parabola; its sign determines the direction in which the parabola opens. Specif-
ically, the larger @ > O is, the steeper the curve rises and hence the narrower the
parabola is. (See Fig. 1.2.18.)

a=1/4 NG N PP S

M M M M (h’ k)
2 0 2 =
X

FIGURE 1.2.18 Parabolas with FIGURE 1.2.19 A translated
different widths. parabola.

The parabola in Fig. 1.2.19 has the shape of the “standard parabola” in Example
8, but its vertex is located at the point (4, k). In the indicated uv-coordinate system,
the equation of this parabola is v = u?, in analogy with Eq. (9) with @ = 1. But the
uv-coordinates and x y-coordinates are related as follows:

u=x—h, v=y—k.

Hence the xy-coordinate equation of this parabola is
y—k=(x—h)?> 1)

Thus when the parabola y = x? is translated / units to the right and & units upward,
the equation in (11) of the translated parabola is obtained by replacing x with x — i
and y with y — k. This is another instance of the translation principle that we observed
in connection with circles.

More generally, the graph of any equation of the form

y=ax>+bx+c (a#0) (12)

can be recognized as a translated parabola by first completing the square in x to obtain
an equation of the form

y —k =a(x — h)>. (13)
The graph of this equation is a parabola with its vertex at (&, k).

EXAMPLE 10 Determine the shape of the graph of the equation
y =2x>—4x — 1. (14)
Solution If we complete the square in x, Eq. (14) takes the form

y=2(x2=2x+1)—3;
y+3=2(x—1)7>

Hence the graph of Eq. (14) is the parabola shown in Fig. 1.2.20. It opens upward and
its vertex is at (1, —3). —
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$5/1ft
y | $5/6t $5/6t| y
$1/ft
X ‘Wall

FIGURE 1.2.21 The animal pen.

Highest point
150~ (15, 135 _ Horizontal

tangent line

50—/ A= %(30)( —x2)

10 20 30 x

FIGURE 1.2.26 The graph of
A(x) = 2(30x — x?) for 0 < x <30.
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Applications of Quadratic Functions

In Section 1.1 we saw that a certain type of applied problem may call for us to find the
maximum or minimum attained by a certain function f. If the function f is a quadratic
function as in Eq. (8), then the graph of y = f(x) is a parabola. In this case the
maximum (or minimum) value of f(x) corresponds to the highest (or lowest) point of
the parabola. We can therefore find this maximum (or minimum) value graphically—at
least approximately—by zooming in on the vertex of the parabola.

For instance, recall the animal pen problem of Section 1.1. In Example 9 there
we saw that the area A of the pen (see Fig. 1.2.21) is given as a function of its base
length x by

A(x) =2(30x —x%), 0=x = 30. (15)

Figure 1.2.22 shows the graph y = A(x), and Figs. 1.2.23, 1.2.24, and 1.2.25 show
successive magnifications of the region near the high point (vertex) of the parabola.
The dashed rectangle in each figure is the viewing window for the next. Figure 1.2.25
makes it seem that the maximum area of the pen is A(15) = 135. It is clear from the
figure that the maximum value of A(x) is within 0.001 of A = 135.

200 N N N N N 140
160 136
1201 132
y y
80 128
40k 124/
0 120 M M M M
10 12 14 16 18 20
X
FIGURE 1.2.22 The graph y = A(x). FIGURE 1.2.23 The first zoom.
136 135.01
135.6
1352+
y y 135
134.8} -
1344
134 2 : 5 134.99 : i :
14 14.5 15 15.5 16 149 14.95 15 15.05 15.1
X X
FIGURE 1.2.24 The second zoom. FIGURE 1.2.25 The third zoom.

We can verify by completing the square as in Example 10 that the maximum
value is precisely A(15) = 135:

A= —3(x?—30x) = —3(x? — 30x + 225 — 225)
= —3(x? = 30x +225) + 135;
that is,
A-135=—-3(x—15"% (16)

It follows from Eq. (16) that the graph of Eq. (15) is the parabola shown in
Fig. 1.2.26, which opens downward from its vertex (15, 135). This proves that the
maximum value of A(x) on the interval [0, 30] is the value A(15) = 135, as both our
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x=x(t)
60—

FIGURE 1.2.27 The graph of the
position function x () in
Example 11.

numerical investigations in Section 1.1 and our graphical investigations here suggest.
And when we glance at Eq. (16) in the form

A(x) =135 — 3(x — 15)2,

it’s clear and unarguable that the maximum possible value of 135 — %uz is 135 when
u = x — 15 = O—that is, when x = 15.

The technique of completing the square is quite limited: It can be used to find
maximum or minimum values only of quadratic functions. One of the goals in calculus
is to develop a more general technique that can be applied to a far wider variety of
functions.

The basis of this more general technique lies in the following observation. Visual
inspection of the graph of

A(x) = 2(30x — x?)

in Fig. 1.2.26 suggests that the line tangent to the curve at its highest point is horizontal.
If we knew that the tangent line to a graph at its highest point must be horizontal, then
our problem would reduce to showing that (15, 135) is the only point of the graph of
y = A(x) at which the tangent line is horizontal.

But what do we mean by the tangent line to an arbitrary curve? We pursue this
question in Section 2.1. The answer will open the door to the possibility of finding the
maximum and minimum values of a wide variety of functions.

Graphic, Numeric, and Symbolic Viewpoints

An equation y = f(x) provides a symbolic description of the function f. A table
of values of f (like those in Section 1.1) is a numeric representation of the function,
whereas this section deals largely with graphic representations of functions. Interesting
applications often involve looking at the same function from at least two of these three
viewpoints.

EXAMPLE 11 Suppose that a car begins (at time ¢+ = 0 hours) in Athens, Georgia
(position x = 0 miles) and travels to Atlanta (position x = 60) with a constant speed
of 60 mi/h. The car stays in Atlanta for exactly one hour, then returns to Athens,
again with a constant speed of 60 mi/h. Describe the car’s “position function” both
graphically and symbolically.

Solution It’s fairly clear that x = 60¢ during the 1-hour trip from Athens to Atlanta;
for instance, after t = % hour the car has traveled halfway, so x = 30 = % - 60. During
the next hour, 1 < ¢ < 2, the car’s position is constant, x = 60. And perhaps you can
see that during the return trip of the third hour, 2 < ¢ < 3, the car’s position is given by

x =60 —60(t —2) = 180 — 60¢

(so that x(2) = 60 and x(3) = 0). Thus the position function x(¢) is defined symboli-
cally by

60t ifo<r<1,
x(t) = {60 ifl <t <2,
180 — 60r if2 <t < 3.

The domain of this function is the ¢-interval [0, 3] and its graph is shown in Fig. 1.2.27,
where we denote both the function and the dependent variable by the same symbol x
(an abuse of notation that’s not uncommon in applications). —
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EXAMPLE 12 During the decade of the 1980s the population P (in thousands) of a

small but rapidly growing city was recorded in the following table.

Year | 1980 | 1982 | 1984 | 1986 | 1988 | 1990

t 0 2 4 6 8 10

P 27.00 | 29.61 | 32.48 | 35.62 | 39.07 | 42.85

Estimate the population of this city in the year 1987.

Solution Figure 1.2.28 shows a graph of the population function P(¢) obtained by

connecting the six given data points (¢, P(¢)) with a smooth curve. A careful measure-
FIGURE 1.2.28 The population ment of the height of the point on this curve at which ¢+ = 7 yields the approximate
function of Example 12. population P (7) &~ 37.4 (thousand) of the city in 1987. ]

1.2 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.

h s we

S

10.

Parallel lines, if not vertical, have the same slope.

The line with equation y = 3x — 5 has slope 3 and y-intercept 5.

The graph of the equation (x — 2)> + (y + 3)? = 25 is a circle.

The graph of the function f is defined to be the graph of the equation y = f(x).

If the number a on the x-axis is in the domain of the function f, then the vertical
line through a meets the graph of f in exactly one point.

The graph of y = |x| has a discontinuity at x = 0.

. The graph of the “sawtooth function” of Example 7 has a discontinuity at each

integral value of x.
If a # 0, then the graph of y = ax? is a parabola with its vertex at the origin.

. The graph of y = 2x%> — 4x — 1 (Example 10) is a parabola opening upward and

having its vertex at the point (1, —3).

The position formula x(¢) in Example 11 is not a function because its rule is
expressed in three parts.

1.2 CONCEPTS: QUESTIONS AND DISCUSSION

1.

Two general forms of equations of straight lines are reviewed at the beginning
of this section. Describe a straight line for which the slope-intercept equation
would be the one more convenient to use in writing an equation of the line. Then
describe a line for which the point-slope equation would be more convenient.

. (a) What is the difference between a line that has slope zero and a line that has

no slope? If two lines are perpendicular and one of them has slope zero, what is
the slope of the other line? (b) Let L; and L, be two perpendicular lines having
slopes m | and m,, respectively. Theorem 2 in Appendix B asserts that L, and
L, are perpendicular if and only if mm, = —1. Is this assertion true in case L,
is the x-axis and L, is the y-axis? Or is there an oversight in the statement of
Theorem 2 in Appendix B?

. (a) Sketch the graph of the equation |x| + |y| = 1. Is this graph the graph of

some function? Justify your answer. (b) Repeat part (a), but with the equation
[x+yl =1

(a) Suppose that f is a function such that f(x) > O for all real x. Discuss the
question of whether the graph of the given equation is the graph of some function.

i) Y=/ @; G Iyl=fo); Gi) y=I[f)l
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(b) Repeat part (a), but assume that f(x) < 0 for all x. (c) Repeat part (a), but
assume that f has both positive and negative values. For instance, sketch the
graphs of the equations in (i), (ii), and (iii) if f(x) = x> — 1.

5. Newspaper articles often describe or refer to functions (either explicitly or im-
plicitly) but rarely contain equations. Find and discuss examples of numeric and
graphic representations of functions in a typical issue of your local newspaper.
Also see if you can find a reference to a function that is described verbally but
without either a graphic or a numeric representation.

1.2 PROBLEMS

In Problems 1 through 10, write an equation of the line L de-
scribed and sketch its graph.

1. L passes through the origin and the point (2, 3).

L is vertical and has x-intercept 7.

L is horizontal and passes through (3, —5).

L has x-intercept 2 and y-intercept —3.

L passes through (2, —3) and (5, 3).

L passes through (—1, —4) and has slope %

L passes through (4, 2) and has angle of inclination 135°.
L has slope 6 and y-intercept 7.

LA AUE LD

L passes through (1, 5) and is parallel to the line with equa-
tion 2x + y = 10.

[y
&

L passes through (—2,4) and is perpendicular to the line
with equation x + 2y = 17.

Sketch the translated circles in Problems 11 through 16. Indicate
the center and radius of each.

11, x>+ y?> = 4x

13. 24+ y> +2x +2y =2
14. x> 4 y> +10x — 20y +100 =0
15. 222 +2y> +2x — 2y =1

16. 9x> +9y?> —6x — 12y =11

12. X2 4+y2+6y=0

Sketch the translated parabolas in Problems 17 through 22. In-
dicate the vertex of each.

17. y=x>—6x +9 18. y =16 — x>
19. y=x*+2x+4 20. 2y = x> —4x +8
21. y = 5x2 +20x +23 22, y=x —x?

The graph of the equation (x — h)> + (y — k)?> = C is a circle
if C > 0, is the single point (h, k) if C = 0, and contains no
points if C < 0. (Why?) Identify the graphs of the equations in
Problems 23 through 26. If the graph is a circle, give its center
and radius.

23. x24+y?—6x+8y =0

24, x>+ y2—2x+2y+2=0

25, x2+y?+2x +6y+20=0

26. 2x* +2y? —2x+6y+5=0

Sketch the graphs of the functions in Problems 27 through 50.

Take into account the domain of definition of each function, and
plot points as necessary.

27. f(x)=2—-5x, —-1=xZ21

28. f(x)=2—5x, 0=<x<2
29. f(x) =10 — x? 30. f(x)=1+2x>
31. f(x) =x° 32. f(x) =x*
33, f(x) =4 —x2 34. f(x) = —+/9 — x2
35 f0) =+vx*=9 36. f(x) = _lix
1
3 f0=— B f)=
__ 1 11
39, f(x) = P 40. f(x) =
IR pa— 2 foy= -
SR T I = o ey
43. f(x) =1 —x 44, f(x):\/llTx
1
45. - 46. —2x -2
S. f(x) NoTEs 6. f(x)=2x —2|
47. f(x) = |x| +x 48. f(x) = |x — 3|
49. f(x) = [2x + 5| 50. f(x):{ljcz' ig;g

Sketch graphs of the functions given in Problems 51 through 56.
Indicate any points of discontinuity.

0 ifx <O,
S fo = {1 ifx >0
52. f(x) = 1 if x is an integer,
- S = 0 otherwise
x—1
53. f(x) =[2x] 54. f(x) = | 0
x —

55. f(x) =[xl — x 56. f(x) = [x] + [—x] + 1

In Problems 57 through 64, use a graphing calculator or com-
puter to find (by zooming) the highest or lowest (as appropriate)
point P on the given parabola. Determine the coordinates of P
with two digits to the right of the decimal correct or correctly
rounded. Then verify your result by completing the square to find
the actual vertex of the parabola.

57. y=2x>—6x+7

58. y=2x>—10x + 11
59. y =4x> — 18x +22
60. y =5x> —32x +49
61. y = —32 +36x — 8x?
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62. y = —53 — 34x — 5x2
63. y =3 — 8x — 3x? 64. y = —28 + 34x — 9x?

In Problems 65 through 68, use the method of completing the
square to graph the appropriate function and thereby determine
the maximum or minimum value requested.

65. If aball is thrown straight upward with initial velocity 96 ft/s,
then its height 7 seconds later is y = 967 — 16¢* (ft). Deter-
mine the maximum height that the ball attains.

66. Find the maximum possible area of the rectangle described
in Problem 40 of Section 1.1.

67. Find the maximum possible value of the product of two pos-
itive numbers whose sum is 50.

68. In Problem 42 of Section 1.1, you were asked to express
the daily production of a specific oil field as a function
P = f(x) of the number x of new oil wells drilled. Con-
struct the graph of f and use it to find the value of x that
maximizes P.

In Problems 69 through 72 write a symbolic description of the
function whose graph is pictured. You may use the greatest inte-
ger function of Examples 6 and 7 (if needed).

69. Figure 1.2.29

3 (2,3)

(-2,

2 (-1,0) 1 2 3 x

FIGURE 1.2.29 Problem 69.
70. Figure 1.2.30

3
(=2,2) (2,2)

INO)
| | | | | |

(-3,0) -2 -1 1 2 3 4 5%

FIGURE 1.2.30 Problem 70.
71. Figure 1.2.31

y
3 -—
2 H
= =
| | Nl | | |
-1 7 2 X
Ot — — |
H—Z—

FIGURE 1.2.31 Problem 71.

72.
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Figure 1.2.32

y
o—) 2+
D
I I T
-4 -3 2 -1 1 2 3 4 X
-1+ OH
2+

FIGURE 1.2.32 Problem 72.

Each of Problems 73 through 76 describes a trip you made along
a straight road connecting two cities 120 miles apart. Sketch the
graph of the distance x from your starting point (in miles) as a
Sunction of the time t elapsed (in hours). Also describe the func-
tion x(t) symbolically.

73.

74.

75.

76.

77.

78.

79.

80.

You traveled for one hour at 45 mi/h, then realized you were
going to be late, and therefore traveled at 75 mi/h for the next
hour.

You traveled for one hour at 60 mi/h, stopped for a half hour
while a herd of caribou crossed the road, then drove on to-
ward your destination for the next hour at 60 mi/h.

You traveled for one hour at 60 mi/h, were suddenly engulfed
in a dense fog, and drove back home at 30 mi/h.

You traveled for a half hour at 60 mi/h, suddenly remem-
bered you had left your wallet at home, drove back at 60 mi/h
to get it, and finally drove for two hours at 60 mi/h toward
your original destination.

Suppose that the cost C of printing a pamphlet of at most
100 pages is a linear function of the number p of pages it
contains. It costs $1.70 to print a pamphlet with 34 pages,
whereas a pamphlet with 79 pages costs $3.05. (a) Express
C as a function of p. Use this function to find the cost of
printing a pamphlet with 50 pages. (b) Sketch the straight
line graph of the function C(p). Tell what the slope and the
C-intercept of this line mean—perhaps in terms of the “fixed
cost” to set up the press for printing and the “marginal cost”
of each additional page printed.

Suppose that the cost C of renting a car for a day is a linear
function of the number x of miles you drive that day. On day
1 you drove 207 miles and the cost was $99.45. On day 2
you drove 149 miles and the cost was $79.15. (a) Express C
as a function of x. Use this function to find the cost for day 3
if you drove 175 miles. (b) Sketch the straight line graph of
the function C(x). Tell what the slope and the C-intercept of
this line mean—perhaps in terms of fixed and marginal costs
as in Problem 77.

For a Federal Express letter weighing at most one pound sent
to a certain destination, the charge C is $8.00 for the first 8
ounces plus 80¢ for each additional ounce or fraction thereof.
Sketch the graph of this function C of the total number x of
ounces, and describe it symbolically in terms of the greatest
integer function of Examples 6 and 7.

In a certain city, the charge C for a taxi trip of at most
20 miles is $3.00 for the first 2 miles (or fraction thereof),
plus 50¢ for each half-mile (or part thereof) up to a total
of 10 miles, plus 50¢ for each mile (or part thereof) over

23
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10 miles. Sketch the graph of this function C of the num- relating the lengths x and y indicated in Fig. 1.2.33.
ber x of miles and describe it symbolically in terms of the The graph of Eq. (17) is a translated rectangular hyper-
greatest integer function of Examples 6 and 7. bola, while the graph of Eq. (18) is a translated parabola

81. The volume V (in liters) of a sample of 3 g of carbon diox- (Fig. 1.2.34). You can use a graphing calculator or computer
ide at 27°C was measured as a function of its pressure p (in to locate the pertinent point(s) of intersection of these two
atmospheres) with the results shown in the following table: graphs.

p | 025 | 1.00 | 2.50 | 4.00 @ 6.00

V672 168 067 042 027

Sketch the graph of the function V (p) and use the graph to
estimate the volumes of the gas sample at pressures of 0.5

and 5 atmospheres. FIGURE 1.2.33 The broken tree.
82. The average temperature 7 (in °F) in Athens, Georgia was
measured at two-month intervals, with the results shown in (y + 10)2 = 2500 — 100x

the following table:

Date | Jul 15 | Sep 15 | Nov 15 | Jan 15 | Mar 15 | May 15

T | 791 | 702 | 523 | 434 | 522 70.1

Sketch the graph of T as a function of the number of days (25, -10)
after July 15. Then use your graph to estimate the average

temperature on October 15 and on April 15. -40
83. A 50-ft tree stands 10 ft from a fence 10 feet high. The tree is -60

suddenly “broken” part of the way up. You are to determine 05510 15 20 25 30
the height of the break so that the tree falls with its trunk X
barely touching the top of the fence when the tip of the tree
strikes the ground on the other side of the fence. The key is FIGURE 1.2.34 The hyperbola and
the use of simple geometry to derive the equations parabola in the broken tree
100 mvestigation.
= —, 17
Y=T"To a7
(y + 10)* = 2500 — 100x (18)

' 1.3 POLYNOMIALS AND ALGEBRAIC FUNCTIONS

In this section and the next we briefly survey a variety of functions that are used in ap-
plications of calculus to describe and model changing phenomena in the world around
us. Our viewpoint here is largely graphical. The objective is for you to attain a gen-

> eral understanding of major differences between different types of functions. In later
4 chapters we use calculus to investigate further the graphs presented here.
3
Y2 Power Functions

1 A function of the form f(x) = x* (where k is a constant) is called a power function.
0 If k = 0 then we have the constant function f(x) = 1. The shape of the graph of a
power function with exponent k = n, a positive integer, depends on whether # is even

15 - 0 : » orodd.

X

FIGURE 1.3.1 Graphs of power EXAMPLE 1 The graphs of the even-degree power functions x2, x4, x6, ... all “cup
functions of even degree upward,” as indicated in Fig. 1.3.1. If n > 2 is an even integer then the graph y = x”"
(Example 1). resembles the parabola y = x?, but is flatter near the origin and steeper when |x| > 1.
The graphs of the odd-degree power functions x!, x*, x°, ... all go “from south-

west to northeast,” as indicated in Fig. 1.3.2. If n > 3 is an odd integer then the graph
y = x" resembles that of y = x3, but again is flatter near the origin and steeper when
|x| > 1. _

24
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FIGURE 1.3.2 Graphs of power

functions of odd degree (Example 1).

S = N Wk W

S = N W kW

-5 0
X

1
FIGURE 1.3.4 y =

X

3"
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Note that all the power function graphs in Figs. 1.3.1 and 1.3.2 pass through the
origin, through the point (1, 1), and either through (—1, 1) or (—1, —1), depending on
whether n is even or odd. In either case, x" increases numerically (either positively or
negatively) as x does. Would you agree that the notation

. . +oo asx — —oo ifniseven,
X' = 400 as x — 400, x5 — . .
—00 asx — —oo ifnisodd

(with the arrow signifying “goes to”) provides a convenient and suggestive description
of the general features, when |x| becomes large, of the graphs in Figs. 1.3.1 and 1.3.2?
The graph y = x* may have a quite different appearance if the exponent k is
not a positive integer. If k is a negative integer—say, k = —m where m is a positive
integer—then
1
— vk mm
J)=x"=x ’”—x7,
so in this case the power function is the reciprocal of a function like those in Example 1.
Figures 1.3.3 and 1.3.4 show the graphs of

1 1
y=x == and y=x2=—

respectively. Observe that O is not in the domain of such a function. Moreover, the
reciprocal of a number close to zero is very large in magnitude, which explains the
behavior of these graphs near zero: In both graphs, |y| is very large—so the point
(x, y) is either very high or very low—when x is close to zero.

The graph y = x* may be undefined if x < 0 and k is not an integer. In the
simplest such case, when k is irrational, we do not attempt to define xkifx <0, so
the graph of x* exists only for x > 0.

The situation is still more complicated if the exponent k is not an integer. We
do not (at present) attempt to define the expression x¥ if k is irrational—that is, not a
quotient of integers. But if k = m/n is rational, with the integers m and n having no
common integral factor larger than 1, then we can write

and thereby interpret f(x) = x* as a “root function.” If n is odd then /x™ is defined
for all real x if m is positive and for all nonzero values of x if m is negative. But if n is
even and m is odd, then the root &/x" is not defined for negative x values.

The typical behavior of such root functions is illustrated by the graphs of y =
x2 = /x and y = x'/* = Jx shown in Figs. 1.3.5 and 1.3.6. The square root \/x_
is defined only for x = 0. The cube root /x is defined for all x, but observe that its
graph appears to be tangent to the y-axis at the origin.

3 3
2.5 3
2 y=Vx
2
y 1 Yy 0
0
0.5 2
-1 -3
-1-050 051 152253 -5 0 5
X X

FIGURE 1.3.5 y = x!/2, FIGURE 1.3.6 y = x!/3,
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Combinations of Functions

Many varied and complicated functions can be assembled out of simple “building-
block functions.” Here we discuss some of the ways of combining functions to obtain
new ones.

Suppose that f and g are functions and that c is a fixed real number. The (scalar)
multiple cf, the sum f + g, the difference /' — g, the product f - g, and the quotient
f/g are the new functions with the following formulas:

(cHx) =c- f(x), 1
(f +8)(x) = f(x) +gx), 2
(f —9)x) = f(x) — gx), 3
(f-8)x) = f(x)-g(x), and C))
Eo=a ®

The combinations in Egs. (2) through (4) are defined for every number x that lies both
in the domain of f and in the domain of g. In Eq. (5§) we must also require that

g(x) #0.

EXAMPLE 2 Let f(x) =x?>+ 1and g(x) = x — 1. Then:

Gx) =30+ 1),
f+® =@ +D+x—1)=x"+x,
f-9®) ="+ —(x—1)=x"—x+2,
(f- 9@ =@*+Dx—-D=x—x>4+x—-1, and

2
(i)(x)=x LILI NI N
g x—1

EXAMPLE 3 If f(x) = /1 —x forx < 1and g(x) = /1 +x forx = —1, then
the sum and product of f and g are defined where both f and g are defined. Thus the
domain of both

fX)+gx)=+1—x +4/1+x

and

f@) g =vI—xVT+x =1 -x2

is the closed interval [—1, 1]. But the domain of the quotient

f(x)_«/l—x _\/1—x
gx)  JT+x Vi+x

is the half-open interval (—1, 1], because g(—1) = 0. _

The results of algebraic operations can sometimes be visualized with the aid of
geometric interpretations of the operations. Figures 1.3.7 through 1.3.10 show the
results of various operations involving the function f(x) = 20x*(x*> — 1)>. Adding a
constant simply shifts the graph vertically, as in Fig. 1.3.7, which shows y = f(x) +¢
for c = —2, 0, 2, and 4. Multiplication by a positive constant ¢ expands (if ¢ > 1)
or contracts (if 0 < ¢ < 1) the graph in the vertical direction, as in Fig. 1.3.8, which
shows y = cf (x) for ¢ = 1, 2, and 3. Figure 1.3.9 shows y = f(x) and the parabola
y = 2x2, whereas Fig. 1.3.10 shows the graph y = 2x? + f(x), obtained by adding
the ordinates of the two curves.
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c=3
8 c=4 g
6 7 c=2
c=2 6
y ! y 3
2 c=0 4
3
0 JAN VA 2
VAVAY !
-2 Cc=- 0
2-15-1-050 05 1 1.5 2 g5 105005 1 152
X X
FIGURE 1.3.7 y = 20x2(x2 — 1)2 FIGURE 1.3.8 y =
+cforc=-2,0,2,4. c-20x%(x? — 1)> forc = 1,2, 3.
y =20x2(x2 - 1)2 y =2x2+20x2 (x2 - 1)2
6 6
5 5
4 4
3 3
y y
2 2
1 1
0 0
y =2x2 y =2x2
g5 105005 1 15 2 95105005 1 152
X X
FIGURE 1.3.9 y = 2x2 and FIGURE 1.3.10 y = 2x% and
y =20x2(x% — 1)2. y =2x2 +20x%(x2 — 1)2.
Polynomials
A polynomial of degree n is a function of the form
pP(x) = apx" + a1 X"+ -+ ax? +arx +ag (6)
where the coefficients ag, ai, ... ,a, are fixed real numbers and a, # 0. Thus an

nth-degree polynomial is a sum of constant multiples of the power functions
L, x, x3 ..., x"Loxn

A first-degree polynomial is simply a linear function a;x + ap whose graph is a
straight line. A second-degree polynomial is a quadratic function whose graph y =
a>x*> 4+ ayx + ay is a parabola (see Section 1.2).

Recall that a zero of the function f is a solution of the equation

fx) =0.

Is it obvious to you that the zeros of f(x) are precisely the x-intercepts of the graph

y=f®)?

Indeed, a major reason for being interested in the graph of a function is to see the
number and approximate locations of its zeros.

A key to understanding graphs of higher-degree polynomials is the fundamental
theorem of algebra. It states that every nth-degree polynomial has n zeros (possibly
complex, possibly repeated). It follows that an nth-degree polynomial has no more
than n distinct real zeros.
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FIGURE 1.3.11 f(x) =
x3 —3x2 4+ 1 has three real zeros
(Example 4).

FIGURE 1.3.12 f(x) =
x* — 4x2 + x + 1 has four real zeros
(Example 4).

28

EXAMPLE 4 Figures 1.3.11 and 1.3.12 exhibit polynomials that both have the max-
imum number of real zeros allowed by the fundamental theorem of algebra. But the
graphs of power functions in Figs. 1.3.1 and 1.3.2 show that a high-degree polynomial
may have only a single real zero. And the quadratic function

f)=x>+4x+13=(x+2)>49

has no real zeros at all. (Why not?) Figure 1.3.7 includes graphs of sixth-degree
polynomials having six, three, or no zeros. Indeed, an nth-degree polynomial can have
any number of zeros from O to n if n is even (from 1 to n if n is odd). S

A polynomial behaves “near infinity”’—that is, outside an interval on the x-axis
containing its real zeros—in much the same way as a power function of the same
degree. If p(x) is a polynomial of odd degree, then y = p(x) goes in opposite (ver-
tical) directions as x goes to —oo and to +oo (like the cubic polynomial graph in
Fig. 1.3.11). But if p(x) is a polynomial of even degree, then y = p(x) goes in the
same (vertical) direction as x goes to —oo and to +oo (like the 4th-degree polynomial
graph in Fig. 1.3.12).

Between the extremes to the left and right, where |x| is large, an nth-degree
polynomial has at most n — 1 “bends”—like the 2 bends of the 3rd-degree polynomial
graph in Fig. 1.3.11 and the 3 bends of the 4th-degree polynomial graph in Fig. 1.3.12.
In Chapter 4 we will use calculus to see why this is so (and to make precise the notion
of a “bend” in a curve).

Calculator/Computer Graphing

A typical calculator or computer graphing utility shows (on its graphics screen or mon-
itor) only that portion of a graph y = f(x) that lies within a selected rectangular
viewing window of the form

{x,y):a<x<b and c=y=d}.

The parts of the graph that lie outside this viewing window remain unseen (Fig. 1.3.13).
With a calculator the maximum and minimum x- and y-values may be entered explic-
itly in a form such as

Xmin =a Ymin =c¢
Xmax =b Ymax =d

Frequently the user must specify the x-range [a, b] and the y-range [c, d] carefully so
that the viewing window will show the desired portion of the graph. The calculator or
computer’s “default window” may provide only a starting point.

FIGURE 1.3.13 The viewing window a <x <b,c <y <d.

EXAMPLE 5 Construct a graph that exhibits the principal features of the cubic poly-
nomial

v = x4+ 12x% + 5x — 66. @)
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-10 -5 0 5

X

FIGURE 1.3.14 y = x> + 12x2 +
5x — 66 with viewing window
—10£x<10,—10< y £ 10.

1000
800
600
400
200

Yy 0

-200
-400
-600
-800
-1000

5 0 5
X

10 15

FIGURE 1.3.17 y =

x2 = 1)(x — 10)(x — 10.1) with
viewing window —5 < x < 15,
—1000 < y £1000.

0.5

\V

10
X

10.5

FIGURE 1.3.18 y =

*x2 = D(x — 10)(x — 10.1) with
viewing window 9.5 < x £10.5,
—l=y=sL

10
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Solution We anticipate a graph that looks somewhat like the cubic graph in
Fig. 1.3.11, one that goes “from southwest to northeast,” perhaps with a couple of
bends in between. But when we enter Eq. (7) in a typical graphing calculator with
default viewing window —10 < x < 10, —10 £ y < 10, we get the result shown in
Fig. 1.3.14. Evidently our viewing window is not large enough to show the expected
behavior.

20 200
15 150
10 100
5 50
y o y 0
5 -50
-10 -100
29071510 5 0 5 10 15 20 20961510 5 0 5 10 15 20
X X

FIGURE 1.3.16 y = x> + 12x% +
5x — 66 with viewing window
—20 < x £20, —200 < y <200.

FIGURE 1.3.15 y = x3 + 12x2 +
5x — 66 with viewing window
—20< x <20, —20< y £20.

Doubling each dimension of the viewing window, we get the result in Fig. 1.3.15.
Now we see the three zeros that a cubic polynomial can have, as well as some possi-
bility of two bends, but it appears that magnification in the y-direction is indicated.
Perhaps we need a y-range measuring in the hundreds rather than the tens. With the
viewing window —20 < x < 20, —200 £ y < 200 we finally get the satisfying graph
shown in Fig. 1.3.16.

Once we have zoomed out to see the “big picture,” we can zoom in on points
of interest. For instance, Fig. 1.3.16 indicates “zoom boxes” locating the three zeros
of the polynomial in (7). Apparently these zeros are located at or near the points
x = —11, x = =3, and x = 2. Each can be approximated graphically as closely as
you please (subject to the limitations of your computer) by the method of successive
magnifications. (See if you can convince yourself that these three zeros are exactly the
indicated integers. How could you verify that this actually is true?) N

EXAMPLE 6 Investigate the graph of the quartic (fourth-degree) polynomial
F(x) = x> =1D(x —10)(x — 10.1) = x* — (20.1)x> + 100x> + (20.1)x — 101. (8)

Solution Here we know the zeros x = —1, 1, 10, and 10.1 in advance, so it makes
sense to choose an x-range that includes all four. Noting that f(0) = —101, we suspect
that a y-range measuring in the hundreds is indicated. Thus with the viewing window
—5=<x =15, —-1000 £ y < 1000, we get the attractive graph in Fig. 1.3.17. Observe
that with its three bends it resembles the quartic graph in Fig. 1.3.12.

But now the behavior of the graph near the point x = 10 is unclear. Does it dip
beneath the x-axis or not? We select the viewing window 9.5 < x £ 10.5, -1 <y <1
to magnify this area and get the result in Fig. 1.3.18. This is a case where it appears that
different plots on different scales are required to show all the behavior of the graph.

— )

Our graphs in Examples 5 and 6 exhibit the maximum possible number of zeros
and bends for the polynomials in Egs. (7) and (8), so we are fairly confident that our
investigations reveal the main qualitative features of the graphs of these polynomials.
But only with the calculus techniques of Chapter 4 can we be certain of the structure of
a graph. For instance, a polynomial graph can exhibit fewer than the maximum possible
number of bends, but at this stage we cannot be certain that more bends are not hidden
somewhere, perhaps visible only on a scale different from that of the viewing window
we have selected.

29
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Rational Functions

Just as a rational number is a quotient of two integers, a rational function is a quotient

fx) =——= ®

of two polynomials p(x) and g (x). Graphs of rational functions and polynomials have
several features in common. For instance, a rational function has only a finite number
of zeros, because f(x) in Eq. (9) can be zero only when the numerator polynomial
p(x) is zero. Similarly, the graph of a rational function has only a finite number of
bends.

But the denominator polynomial ¢ (x) in Eq. (9) may have a zero at a point x = a
where the numerator is nonzero. In this case the value of f(x) will be very large in
magnitude when x is close to a. This observation implies that the graph of a rational
function may have a feature that no polynomial graph can have—an asymptote.

EXAMPLE 7 Figure 1.3.19 shows the graph of the rational function

x+2)x—1)
&)= ——"7T——. (10)
x(x+DHx—2)
Note the x-intercepts x = —2 and x = 1, corresponding to the zeros of the numerator

(x +2)(x — 1). The vertical lines x = —1, x = 0, and x = 2 shown in the graph
correspond to the zeros of the denominator x(x + 1)(x — 2). These vertical lines are
asymptotes of the graph of f. —

8t 8 i \_/

4t ! 4 1
y 0 3 Y 0 3

af 3 -4 :

8t n -8 3

4 2 0 4 2 0 2 4
X X

FIGURE 1.3.19 The graph of the FIGURE 1.3.20 The graph of the
rational function in Eq. (10) rational function in Eq. (11)
(Example 7). (Example 8).

EXAMPLE 8 Figure 1.3.20 shows the graph of the rational function

_x(x+2)(x—1)

X) = . 11
Fe) x+Dx—-2) (1n
The x-intercepts x = —2, x = 0, and x = 1 correspond to the zeros of the numerator,
whereas the asymptotes x = —1 and x = 2 correspond to the zeros of the denominator.
— )

It should be clear that—by counting x-intercepts and asymptotes—you could
match the rational functions in Eqs. (10) and (11) with their graphs in Figs. 1.3.19 and
1.3.20 without knowing in advance which was which.
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3 Algebraic Functions
2.5
5 An algebraic function is one whose formula can be constructed beginning with power
functions and applying the algebraic operations of addition, subtraction, multiplication
15 by a real number, multiplication, division, and/or root-taking. Thus polynomials and
¥l rational functions are algebraic functions. But whereas every polynomial is defined ev-
0.5 erywhere on the real line, and every rational function is defined everywhere except at
0 the (finitely many) real zeros of its denominator (which correspond to vertical asymp-
05 totes), the domain of definition of an algebraic function may be quite limited. For
1 instance, Figs. 1.3.21 and 1.3.22 show the graphs of the algebraic functions
3 2 -1 0 1 2 3
X
fx)=+v16—x* and g(x)=+vx2—16
FIGURE 1.3.21 y = v/16 — x* on
[-2,2]. on the bounded and unbounded intervals (respectively) where they are defined.
The graph of every polynomial or rational function looks “smooth” at every point
30 where it is defined, but the graph of an algebraic function may exhibit “corners” or
25 sharp “cusps” where it does not look smooth. For instance, look at the graphs in
20 Figs. 1.3.23 and 1.3.24 of the algebraic functions
, 1(5) F)=~+x2=|x| and g(x) = vx2(x — 2).
5 In Chapter 3 we will use concepts of calculus to say precisely what is meant by a
0 smooth graph.
5 Figure 1.3.25 shows the graphs of the two algebraic functions defined by
-10
~20-15-10°-5°0 510 15 20 y = £(0.2969/x — 0.126x — 0.3516x* + 0.2843x” — 0.10151x*).  (12)
FIGURE 1.3.22 y =+/x2— 16on  The loop describes the cross-sectional profile of the NASA 0012 airfoil as designed by
(=00, 4] U [4, 00). aeronautical engineers.
5 5 1
4 4
0.5
3 3
Yy 2 y 2 Yy 0
1 1
-0.5
0 0
%0 0 1 2 3 S0 1 2 3 45 T o5 1 15 2
X X X
FIGURE 1.3.23 y = |x| witha FIGURE 1.3.24 y = J/x2(x —2)2 FIGURE 1.3.25 y =
“corner” at the origin. with “cusps” at (0, 0) and (2, 0). +(0.2969/x — 0.126x —

0.3516x2+0.2843x3 —0.10151x%).

1.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If x is close to zero, then so is x 3.

2. If m and n are positive integers and x > 0, then x™/" = J/x™.

3. The product f - g of the functions f and g is defined as follows: (f - g)(x) =
F) - g ).

If f(x) =+/1—xandg(x) =+/1+ x, then the domain of f/gis[—1, 1].

If p(x) = x> 4+ x¥? — x2 4 1, then p(x) is a polynomial.

The quotient of any two functions is known as a rational function.

If f(x) = |x|, then f is an algebraic function because f(x) = Vx2.

AR

31
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8. The graph of the rational function
x(x+2)(x—1)
x+DHx—-2)

has three x-intercepts and two vertical asymptotes.

fx) =

9. The graph shown in Fig. 1.3.25 is not the graph of a function.

10. If p(x) is a polynomial of high degree, then as x — 400, either p(x) — 400
or p(x) — —oo.

1.3 CONCEPTS: QUESTIONS AND DISCUSSION

1. In each of the following eight cases, give an example of a function as described
or explain why no such function exists.

(a) A polynomial function of degree less than 2 whose graph lies entirely above
the x-axis.

(b) A polynomial of positive degree whose graph lies entirely beneath the x-axis.

(c) A polynomial of positive degree and with positive leading coefficient whose
graph lies entirely below the x-axis (the leading coefficient of a polynomial
is the coefficient of its term of highest degree).

(d) A polynomial of odd degree with negative leading coefficient whose graph
does not intersect the x-axis.

(e) A polynomial whose graph lies entirely between the lines y = —l and y = 1.

(f) A polynomial whose graph contains points above the line y = 1 and below
the line y = —1, but contains no points between those two lines.

(g) A rational function that has both positive and negative values but is never
zZero.

(h) A nonconstant rational function that is never zero and has no vertical asymp-
tote.

2. In each of the following five cases write the formula of a specific function as
described. Also sketch a typical graph of such a function (not necessarily the
same one you defined symbolically).

(a) A quadratic polynomial with no real zeros.
(b) A cubic polynomial with exactly one real zero x # O.
(c) A cubic polynomial with exactly two distinct real zeros.
(d) A quartic polynomial with exactly two distinct real zeros.
(e) A quartic polynomial with exactly three distinct real zeros.
3. Which of the following algebraic functions agrees with some polynomial func-
tion?
@ f(x)=+x2+2x+1 (b) f(x) =+~x*+4x+4
© fx) =@ —1)3 @) f(x) = (x—2)?

1.3 PROBLEMS

In Problems 1 through 6, find f + g, f - g, and f/g, and give the 4. fx)=+~x+1, gx)=+5—x
domain of definition of each of these new functions.

b ZE L s = S50 = VIR s=
A= 8= 6 foy= Tl o tl
3 S =VE g =Vi—2 0= 2 sw=E

32
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In Problems 7 through 12, match the given polynomial with its
graph among those shown in Figs. 1.3.26 through 1.3.31. Do not
use a graphing calculator or a computer. Instead, consider the
degree of the polynomial, its indicated number of zeros, and its
behavior for |x| large.

7. f(x) =x>—-3x+1

8. f(x)=1+4x — x>

9. f(x) =x*—5x>+13x+1
10. f(x) =2x3 —10x3 +6x — 1
11. f(x) =16 +2x* — x*

12. f(x) =x>+x

FIGURE 1.3.30

FIGURE 1.3.31

In Problems 13 through 16, use the vertical asymptotes of the
given rational function (rather than a graphing calculator or
computer) to match it with its graph among those shown in
Figs. 1.3.32 through 1.3.35.

X
B[O = ey MW= 5
241
15, /() = 5 16. f(x) = ; J_rl
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4 4
|
2 | : 2
| |
v 0 | | y 0
| |
2f | 2
| |
4 4
4 0 4 4 2 0 2 4
X X
FIGURE 1.3.32 FIGURE 1.3.33
T
4 4 |
| |
2 i | 2 |
| | |
1 1 1
Y0 | | y o_\ |
2 (1) 2 l
|
-4 -4
4 2 0 2 4 4 2 0 2 4
X X
FIGURE 1.3.34 FIGURE 1.3.35

In Problems 17 through 20, use primarily the domain of defini-
tion of the given algebraic function (rather than a graphing cal-
culator or computer) to match it with its graph among those in
Figs. 1.3.36 through 1.3.39.

17. f(x) = x4/x +2 18. f(x) = +/2x — x2
19. f(x) = +/x*—2x 20. f(x) =2vx%—2x

3 4

2

[

1 0 1 2 3 -2 0 2 4
X X
FIGURE 1.3.36 FIGURE 1.3.37
4 6
4
2
y y 2
0
0
2 _
20 2 S
X X
FIGURE 1.3.38 FIGURE 1.3.39

In Problems 21 through 30 use a graphing calculator or com-
puter to determine one or more appropriate viewing windows to
exhibit the principal features of the graph y = f(x). In partic-
ular, determine thereby the number of real solutions of the equa-
tion f(x) = 0 and the approximate location (to the nearest inte-
ger) of each of these solutions.

21. f(x)=x*—-3x+1
22, f(x)=x>—3x+2
23, f(x)=x>—3x+3
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24,
25.
26.
27.
28.
29.
30.

CHAPTER 1 Functions, Graphs, and Models

f)=2x*—6x34+10x — 5
f)=2x*—6x>+10x — 6

f) =2x* —6x> +10x — 7

f(x) = x* —50x — 100

f(x) = x*+20x* — 50x — 30

f(x) = x> + 5x* — 100x> — 200x% + 2500x — 3500
f(x) = x® —250x* +2500x2 — 2500

In Problems 31 through 37, determine how the graph 'y = f(x)
changes when the value of ¢ is changed within the given interval.
With a graphing calculator or computer you should be able to
plot graphs with different values of ¢ on the same screen.

31.
32.
33.
34.
35.

36.

37.

fx)=x*=3x4+c¢, =55c¢<5
fx)=x>+cx, =55c¢<5
f@) =x>+cx?, —55c¢<5
f@)=x*+cx?, —55c¢<5

f)=x"+cx*+x, =55c¢<5
fx) =

ﬁ, 1§C§10
cXx

2
5 1<c¢<£10, xin(—c,c)
—x

fx) =

2

38.

39.

Use the graphical method of repeated magnifications to find
both the length and the maximum width of the airfoil shown
in Fig. 1.3.25. Determine each accurate to three decimal
places.

A 12-ft ladder leans across a 5-ft fence and touches a high
wall located 3 ft behind the fence. You are to find the dis-
tance from the foot of the ladder to the bottom of the fence.
The key is the use of simple geometry to derive the equations
xy=15 and x+3)>+ (G +5> =144
relating the lengths x and y indicated in Fig. 1.3.40. Can
you eliminate y to find a quartic polynomial equation that x
must satisfy? If so, then you can use a graphing calculator
or computer to approximate the possible values of x by the
method of repeated magnification.

[P

=3 —f—x—H Ground

FIGURE 1.3.40 The leaning ladder.

. 1.4 TRANSCENDENTAL FUNCTIONS

Continuing the survey of elementary functions begun in Section 1.3, we now review
briefly the most familiar nonalgebraic functions that are studied in calculus. These
include the trigonometric functions that are used to model periodic phenomena—
phenomena of ebb and flow, involving quantities that oscillate with the passage of
time—and the exponential and logarithmic functions that are used to model phenom-
ena of growth and decay—involving quantities that either increase steadily or decrease
steadily as time passes. We also introduce composition of functions, a new way (in
addition to the algebraic operations of Section 1.3) of combining familiar functions to

form new ones.

Trigonometric Functions

A review of trigonometry is included in Appendix C. In elementary trigonometry a
trigonometric function such as sin A, cos A, or tan A ordinarily is first defined as a
function of an angle A in a right triangle. But here a trigonometric function of a real
number x corresponds to that function of an angle measuring x radians. Thus

1
T ﬁ T sm6 1
coS—=—, and tan—=— = —
6 2 T3
cosg

because /6 is the radian measure of an angle of 30°. Recall that

SO

180
lrad = — deg and
T

7 radians = 180 degrees,

(¢Y)

4
1 deg = — rad.
180



www.konkur.in

80

60

= T=613+(17.9) cos%t

FIGURE 1.4.4 Average daily
temperature in Athens, Georgia, ¢
months after July 15 (Example 2).
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2 2

FIGURE 1.4.1 y =sinx. FIGURE 1.4.2 y = cosx.
Figures 1.4.1 and 1.4.2 show the graphs y = sinx and y = cosx of the sine
and cosine functions, respectively. The value of each oscillates between +1 and —1,
exhibiting the characteristic periodicity of the trigonometric functions:
sin(x +27) =sinx and cos(x 4+ 27w) = cosx 2)
for all x.

If we translate the graph y = cosx by 7/2 units to the right, we get the graph
y = sinx. This observation corresponds to the familiar relation

cos (x — %) = cos (% — x) = sinx. 3)

EXAMPLE 1 Figure 1.4.3 shows the translated sine curve obtained by translating the
origin to the point (1, 2). Its equation is obtained upon replacing x and y in y = sinx
with x — 1 and y — 2, respectively:
y—2=sin(x — 1); thatis,
y=2+4sin(x — 1).

X

FIGURE 1.4.3 The translated sine curve
y —2=sin(x — 1).

The world around us is full of quantities that oscillate like the trigonometric func-
tions. Think of the alternation of day and night, the endless repetition of the seasons,
the monthly cycle of the moon, the rise and fall of the tides, the beat of your heart.

EXAMPLE 2 Figure 1.4.4 shows the cosine-like behavior of temperatures in Athens,
Georgia. The average temperature 7 (in °F) during a 24-hr day ¢+ months after July 15
is given approximately by

t
T =T@) =613+ 17.9cos %. @
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For instance, on a typical October 15 (three months after July 15) the average temper-
ature is

3
T(3) = 61.3 + 17.9 cos %T —613 (°F)

because cos(37/6) = cos(ir/2) = 0. Thus the “midpoint” of fall weather in Athens—
when the average daily temperature is midway between summer’s high and winter’s
low—occurs about three weeks after the official beginning of fall (on or about Septem-
ber 22). Note also that

t t
T(t+12) = 61.3 + 17.9 cos (% T 2n) — 61.3 + 17.9 cos <%> =T

(why?), in agreement with the yearly 12-month cycle of average weather. I

The periodicity and oscillatory behavior of the trigonometric functions make
them quite unlike polynomial functions. Because

sinnr =0 and cos(2n + 1)% -0 (5)
forn =0,1,2,3,..., we see that the simple trigonometric equations
sinx =0 and cosx =0 (6)

have infinitely many solutions. In contrast, a polynomial equation can have only a finite
number of solutions.

Figure 1.4.5 shows the graph of y = tanx. The x-intercepts correspond to the
zeros of the numerator sin x in the relation

sin x

)

tanx = s
COS X

whereas the vertical asymptotes correspond to the zeros of the denominator cos x. Ob-
serve the “infinite gaps” in the graph y = tan x at these odd-integral multiples of /2.
We call these gaps discontinuities, phenomena we discuss further in Chapter 2.

-2

4

FIGURE 1.4.5 y =tanx.

Composition of Functions

Many varied and complex functions can be “put together” by using quite simple
“building-block” functions. In addition to adding, subtracting, multiplying, or dividing
two given functions, we can also combine functions by letting one function act on the
output of the other.
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l

S = flg(x) = h(x)

FIGURE 1.4.6 The composition of

f and g.

200
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DEFINITION Composition of Functions
The composition of the two functions f and g is the function &7 = f o g defined by

h(x) = f(g(x)) @®)

for all x in the domain of g such that u = g(x) is in the domain of f. (The right-
hand side in Eq. (8) is read “ f of g of x.”)

Thus the output u = g(x) of the function g is used as the input to the function f
(Fig. 1.4.6). We sometimes refer to g as the inner function and to f as the outer
function in Eq. (8).

EXAMPLE 3 If f(x) = /x and g(x) = 1 — x2, then

fgx) =v1—x2 for|x| 1,

whereas
g(f(x))zl—(\/;)zzl—x forx = 0. ]

The f(g(x)) notation for compositions is most commonly used in ordinary com-
putations, whereas the f o g notation emphasizes that the composition may be regarded
as a new kind of combination of the functions f and g. But Example 3 shows that fog
is quite unlike the product fg of the two functions f and g, for

fog#golf,

whereas fg = gf (because f(x) - g(x) = g(x) - f(x) whenever f(x) and g(x) are
defined). So remember that composition is quite different in character from ordinary
multiplication of functions.

EXAMPLE 4 If
fx) = x> and g(x) = cosx,
then the functions
f)gkx) = x2cos x,
fgx)) = cos’x = (cosx)?, and
g(f(x)) = cosx? = cos(x?)

are defined for all x. Figures 1.4.7 through 1.4.9 illustrate vividly how different these
three functions are. —

EXAMPLE 5 Given the function h(x) = (x> + 4)*?, find two functions f and g
such that 2(x) = f(g(x)).

-100

-200

FIGURE 1.4.7 y = x%cosx FIGURE 1.4.8 y = cos®x FIGURE 1.4.9 y = cos x2

(Example 4).

(Example 4). (Example 4).

37
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Yy 4

FIGURE 1.4.10 Increasing
exponential functions y = 2* and
y = 10".

Solution It is technically correct—but useless—simply to let g(x) = x and f(u) =

(u? 4+ 4)3/%. We seek a nontrivial answer here. To calculate (x> + 4)3/?, we must first

calculate x? + 4. So we choose g(x) = x? + 4 as the inner function. The last step is to

raise u = g(x) to the power %, so we take f(u) = u’/? as the outer function. Thus if
fx) = x3?  and glx) = x>+ 4,

then f(g(x)) = f(x* +4) = (x> + 4% = h(x). —

Exponential Functions

An exponential function is a function of the form

f&x) =a”, ®

where the base a is a fixed positive real number—a constant. Note the difference
between an exponential function and a power function. In the power function x”, the
variable x is raised to a constant power; in the exponential function a*, a constant is
raised to a variable power.

Many computers and programmable calculators use the notation a /A X to denote
the exponential a* (a few use a 1 x). If @ > 1, then the graph y = a* looks much like
those in Fig. 1.4.10, which shows y = 2* and y = 10*. The graph of an exponential
function with base a, a > 1, lies entirely above the x-axis and rises steadily from
left to right. Therefore, such a graph is nothing like the graph of a polynomial or
trigonometric function. The larger the base a, the more rapid the rate at which the
curve y = a” rises (for x > 0). Thus y = 10* climbs more steeply than y = 2*.

EXAMPLE 6 Every exponential function (with base @ > 1) increases very rapidly
when x is large. The following table comparing values of x? with 2* exhibits vividly
the rapid rate of increase of the exponential function 2*, even compared with the power
function x2, which increases at a more restrained rate as x increases.

X x? 2%

10 100 1024

20 400 1048576

30 900 1073741824

40 1600 1099511627776

50 2500 1125899906842624

60 3600 1152921504606846976

70 4900 1180591620717411303424

80 6400 1208925819614629174706176

90 8100 1237940039285380274899124224
100 10000 1267650600228229401496703205376

The comparison between x? and 2* for smaller values of x is interesting in a different
way. The graphs of y = x? and y = 2* in Fig. 1.4.11 indicate that the equation
x? = 2* has three solutions between x = —2 and x = 5. Is it clear to you that x = 2
and x = 4 are exact solutions? The “zoom” shown in Fig. 1.4.12 indicates that the
negative solution is a bit less than —0.75. Perhaps you can zoom once more and find
the value of this negative solution accurate to at least two decimal places. — 9

If we replace x in Eq. (9) with —x, we get the function a™*. Its graph y = a™*
falls from left to right if @ > 1. Figure 1.4.13 shows the graphs y =3 and y = 77".

Whereas trigonometric functions are used to describe periodic phenomena of ebb
and flow, exponential functions are used to describe natural processes of steady growth
or steady decline.
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FIGURE 1.4.11 y = x? and FIGURE 1.4.12 A magnification FIGURE 1.4.13 Decreasing
y =2% of 1.4.11 showing the negative exponential functions y = 37* and
solution. y="7".
EXAMPLE 7 Let P(t) denote the number of rodents after + months in a certain pro-
lific population that doubles every month. If there are P(0) = 10 rodents initially, then
there are
e P(1) = 10- 2! = 20 rodents after 1 month,
e P(2) = 10 - 2% = 40 rodents after 2 months,
« P(3) = 10-2° = 80 rodents after 3 months,
and so forth. Thus the rodent population after + months is given by the exponential
function
P(t) =102 10)
if ¢ is a nonnegative integer. Under appropriate conditions, Eq. (10) gives an accurate
approximation to the rodent population even when ¢ is not an integer. For instance, this
formula predicts that after r = 4% months, there will be
P(4.5) =10-2% ~ 226.27 ~ 226 rodents. )
EXAMPLE 8 Suppose that you invest $5000 in a money-market account that pays
8% interest compounded annually. This means that the amount in the account is mul-
tiplied by 1.08 at the end of each year. Let A(¢) denote the amount in your account at
the end of ¢ years. Then,
o A(1) =5000-1.08" ($5400.00) after 1 yr,
e A(2) =5000-1.08% ($5832.00) after 2 yr,
120007 A= 10.000 « A(3) =5000-1.08° ($6298.56) after 3 yr,
A 8000 and so on. Thus after ¢ years (# a nonnegative integer), the amount in your account is
= 5000 08! given by the exponential function
40007 A(t) = 5000 - 1.08'. (11)
0 Figure 1.4.14 shows the graph A(r) = 5000 - 1.08" as well as the horizontal line

FIGURE 1.4.14 The graph for
Example 8.

10

A = 10,000. From this graph we see, for instance, that the amount in the account
has doubled (to $10,000) after approximately t = 9 yr. We could approximate the
“doubling time” more accurately by magnifying the graph near the intersection of the
horizontal line and the rising curve. —

Example 9 exhibits a function that combines the steady decrease of an exponen-
tial function with negative exponent with the oscillation of a trigonometric function.

EXAMPLE 9 The function
y() =3-2""cosdnt (12)

39
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FIGURE 1.4.15 (1) =
3-27"cos4mt (Example 9).
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FIGURE 1.4.16 The common and
natural logarithm functions.
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FIGURE 1.4.17 %xl/s passes log x.

1.5

FIGURE 1.4.18 logx passes %xl/s.

might describe the amplitude y, in inches, of the up-and-down vibrations of a car with
very poor shock absorbers 7 seconds after it hits a deep pothole. Can you see that
Eq. (12) describes an initial (¢t = 0) amplitude of 3 inches that halves every second,
while two complete up-and-down oscillations occur every second? (The factor 3 - 27/
is the decreasing amplitude of the vibrations, while the function cos 47r¢ has period %
s.) Figure 1.4.15 shows the graph of y(¢). The curve described in Eq. (12) oscillates
between the two curves y(z) = +3 - 277, It appears that the car’s vibrations subside
and are negligible after 7 or 8 seconds. —

Logarithmic Functions

In analogy with the inverse trigonometric functions that you may have seen in
trigonometry, logarithms are “inverse” to exponential functions. The base a logarithm
of the positive number x is the power to which a must be raised to get x. That is,

y=log,x if a’ =x. 13)

The key on most calculators gives the base 10 (common) logarithm log,, x. The
key gives the natural logarithm

Inx =log, x,
where e is a special irrational number:

e = 2.71828182845904523536. . . .

You’ll see the significance of this strange-looking base in Chapter 3.

Figure 1.4.16 shows the graphs y = Inx and y = log;,x. Both graphs pass
through the point (1, 0) and rise steadily (though slowly) from left to right. Because
exponential functions never take on zero or negative values, neither zero nor any neg-
ative number is in the domain of any logarithmic function.

The facts that log;, 100,000 = 5 and log;, 1,000,000 = 6 indicate that the
function logx = log,, x increases quite slowly as x increases. Whereas Example 6
above illustrates the fact that an exponential function ¢* (with a > 1) increases more
rapidly than any power function as x — oo, Example 10 illustrates the fact that a
logarithmic function increases more slowly than any power function.

EXAMPLE 10 In the following table we compare the rate of growth of the power
function f(x) = %xl/ 3 with that of the logarithm function g(x) = log x.

X fx)=1x'5 gx) =logx
20000 3.62390 4.30103
40000 4.16277 4.60206
60000 4.51440 477815
80000 478176 4.90309

100000 5 5

120000 5.18569 5.07918
140000 5.34805 5.14613
160000 5.49280 5.20412
180000 5.62373 5.25527
200000 5.74349 5.30103

It appears here and in Fig. 1.4.17 that log x is smaller than x'/5 when x > 100,000.
Figure 1.4.18 shows that logx initially is smaller than 1x'/, but “catches up and
passes” 1x!/° somewhere around (although a bit less than) x = 5. Then 1x!/° in turn

catches up and passes log x at x = 100,000. When x = 10°°, %xl/s = 5,000,000,000,
but the value of log x is only 50. — 9
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Transcendental Equations

The trigonometric, exponential, and logarithmic functions are called transcendental
functions. As we saw in Egs. (5) and (6), an equation that includes transcendental
functions can have infinitely many solutions. But it also may have only a finite number
of solutions. Determining whether the number of solutions is finite or infinite can be
difficult. One approach is to write the given equation in the form

fx) =g, (14)

where both the functions f and g are readily graphed. Then the real solutions of
Eq. (14) correspond to the intersections of the two graphs y = f(x) and y = g(x).

EXAMPLE 11 The single point of intersection of the graphs y = x and y = cosx,
shown in Fig. 1.4.19, indicates that the equation
X =cosx

has only a single solution. Moreover, from the graph you can glean the additional
information that the solution lies in the interval (0, 1). _

X X
FIGURE 1.4.19 Solving the FIGURE 1.4.20 Solving the
equation x = cos x of Example 11. equation 1 — x = 3 cos x of
Example 12.

EXAMPLE 12 The graphs of y = 1 — x and y = 3 cosx are shown in Fig. 1.4.20.
In contrast with Example 11, there are three points of intersection of the graphs. This
makes it clear that the equation

1—x=3cosx

has one negative solution and two positive solutions. They could be approximated by
(separately) zooming in on the three intersection points. —

Can You Believe What You See on Your Calculator/Computer Screen?

The examples we give next show that the short answer to this question is “not always.”
One reason is that a typical graphing calculator or simple computer program plots only
a finite number of equally spaced points on the curve y = f(x),a < x < b, joining the
selected points with straight line segments. If the plotted points are sufficiently close,
then the resulting graph may look to the unaided eye like a smooth curve, but it may
miss some essential features that would be revealed if more points were plotted.

EXAMPLE 13 A l-ampere alternating current with frequency 60 Hz (Hertz; cycles
per second) is described by the function
I(t) = sin 1207¢. (15)

The absolute value |/ ()| gives the magnitude (in amperes) of the current at time ¢,
which flows in one direction when / > 0 the opposite direction when / < 0. A simple

41
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FIGURE 1.4.21 On the interval FIGURE 1.4.22 On the interval FIGURE 1.4.23 On the interval
[—1, 1] it’s wrong. [—1/2, 1/2] it’s bizarre. [—1/30, 1/30] it’s correct!

-1 '”-.~,..w”'

-0.5 0 0.5
t

FIGURE 1.4.24 Individual plotted
points that are joined by line
segments in Fig. 1.4.22.

computer program was used to plot the alleged graphs of 7(¢) shown in Figs. 1.4.21
through 1.4.23. The graph in Fig. 1.4.21 is plotted on the interval —1 < ¢ < 1,
where we should see 120 complete oscillations because the period of /(¢) in Eq. (15)
is 1/60 s. But instead the figure shows exactly one oscillation, so something has gone
badly wrong. The graph in Fig. 1.4.22 is plotted on the interval —% <t < %, and
whatever it is has gone from merely wrong to outright bizarre. Finally, in Fig. 1.4.23
the graph is plotted on the interval — % <t < % of length 64—0, so we should see exactly
4 complete oscillations. And indeed we do, so we’ve finally got a correct graph of the
current function in Eq. (15). N

Here’s an explanation of what went wrong at first in Example 13. The computer
was programmed to plot values at exactly 120 equally spaced points of the interval
desired. So in Fig. 1.4.21 we’re plotting only 1 point per cycle—not nearly enough to
capture the actual shape of the curve—and only 2 points per cycle in Fig. 1.4.22. Butin
Fig. 1.4.23 we’re plotting 30 points per cycle, and this gives an accurate representation
of the actual graph.

The incorrect graph in Fig. 1.4.21—which seems to portray an oscillation with
the incorrect period of 2 s, instead of the correct % s—is an example of the phe-
nomenon of aliasing. Another example of aliasing, occasionally seen in old Western
movies, is the wagon wheel that appears to rotate slowly in the wrong direction.

REMARK The aliasing phenomenon exhibited in Figs. 1.4.21 and 1.4.22 is heavily
dependent on the precise number of points being plotted. A plotting device (such
as graphing calculator) that uses a fixed number of plotting points is susceptible to
aliasing. More sophisticated graphing utilities may avoid aliasing by using a variable
number of nonuniformly spaced plotting points.

Figure 1.4.22 consists largely of line segments joining consecutive points that are
far apart. Figure 1.4.24 shows how that incorrect graph came about; points 1, 3, 5, 7,
..., 117,119 in the interval [—0.5, 0.5] are plotted in red, whereas points 2, 4, 6, ... ,
118, 120 are plotted in blue. Now you can see what happened when the computer
plotted line segments joining point 1 to point 2, point 2 to point 3, and so forth.

One moral of Example 13 is that it pays to know what you’re looking for in a
graph. If the graph looks markedly different in windows of different sizes, this is a
clue that something’s wrong.

Whereas in Example 13 we got anomalous results by plotting the graph in win-
dows of different sizes, the next example illustrates a situation where we must plot
graphs on different scales in order to see the whole picture.

EXAMPLE 14 Now suppose that a high-frequency (6000 Hz) current of 0.01 ampere
is added to the current in Eq. (15), so the resulting current is described by

I(t) =sin 1207t + (0.01) sin 120007 ¢. (16)
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t t x 10-4
FIGURE 1.4.25 [(t) = FIGURE 1.4.26 [(t) =
sin 1207r¢ + 0.01 sin 1200077 ¢ on the sin 12077t + 0.01 sin 12000777 on the
interval —1/60 < <1/60. interval —1/2400 < ¢ < 1/2400.

L

0 =1 = %, we get the graph shown in

Fig. 1.4.25. Tt looks like two cycles of the original current in (15), although the plot is
perhaps a bit “fuzzy.” To see the effect of the added second term in Eq. (16) we must
plot the graph on a much magnified scale, as in Fig. 1.4.26. The “fuzz” in Fig. 1.4.25
has now been magnified to show clearly the high-frequency oscillations with period

_L
6000

S. )

1.4 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.
2.
3.

N=2N- B - N7 B N

For every real number x, sin(x + 27) = sin x.
The equation cos x = 0 has no solutions.

The composition & = f o g of the functions f and g has the formula i(x) =
J(g(x)).

. If f and g are functions, then fog =go f.

. If f(x) = x? and g(x) = cosx, then f(g(x)) = cos(x?).
. If f(x) =27, then f(x) > —o0as x — —o0.

. The statement y = log, x means that a” = x.

. To the number of digits shown, e ~ 2.71828.

. The equation x = cos x has infinitely many real solutions.
10.

If x > 100,000, then log x < x'/°.

1.4 CONCEPTS: QUESTIONS AND DISCUSSION
Each of the following items describes a particular population numbering P (¢) at time ¢.
Tell whether you think the function P(¢) seems more likely to be a linear, quadratic,
polynomial, root, rational, trigonometric, exponential, or logarithmic function of 7. In
each case write a specific function satisfying the given description.

1.
2.
3.

The population triples every five years.
The population increases by the same amount each year.

The population oscillates every five years between a maximum of 120 and a
minimum of 80.

. The population decreases for a time, reaches a minimum value, then increases

thereafter (getting larger and larger as time goes on).

. The population increases for a time and reaches a maximum value, then decreases

for a time and reaches a minimum value, and thereafter increases (becoming
larger and larger).

43
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6. The population increases each year, but by a smaller percentage than it increased

in the preceding year.

7. The population decreases by the same percentage each year.

8. The population increases for a time, reaches a maximum value, and decreases
thereafter (apparently dying out) with P(¢) approaching zero as ¢ increases.

1.4 PROBLEMS

In Problems 1 through 10, match the given function with its graph
among those shown in Figs. 1.4.27 through 1.4.36. Try to do this
without using your graphing calculator or computer.

1. f(x)=2" -1 2. f(x)=2-37"

3. f(x)=14cosx 4. f(x) =2 —2sinx

5. f(x) =1+2cosx 6. f(x) =2 —sinx

T ) =5 8. f(x)= IOfx

9. f(x):licriojfx 10. f(x) = 2~ sin 10x

4 5

3 4

2 3
SVAVIIVANR:

ot 1

1 0

20 5 0 5 10 o 3 0 5 10

x X

FIGURE 1.4.27 FIGURE 1.4.28
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FIGURE 1.4.31 FIGURE 1.4.32
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FIGURE 1.4.35 FIGURE 1.4.36

In Problems 11 through 20, find f(g(x)) and g(f(x)).
1. f(x)=1—x%gx) =2x+3

12. f(x) =—17, g(x) = |x]|

13. f(x) =+/x2-3,g(x) =x243

14, fx)=x2+1,gkx) = e

15. f(x)=x*—4,g(x)=Jx+4
16. f(x) = /x, g(x) = cosx

17. f(x) =sinx, g(x) = x3

18. f(x) =sinx, g(x) = cosx

19. f(x) =14x2 g(x) =tanx
20. f(x) =1—x?% g(x) =sinx

In Problems 21 through 30, find a function of the form f(x) = x*
(you must specify k) and a function g such that f(g(x)) = h(x).

21. h(x) = (24 3x)? 22. h(x) = (@4 —x)3
23. h(x) = /2x —x2 24. h(x) = (1 +xH"
25, h(x) = (5 — x%)3? 26. h(x) =/ (4x — 6)*
1
27. h(x) = m 28. h(x) = 7o
1 1
29. h(x) = 7)( 0 30. h(x) = 7(1 e
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In Problems 3140, use a graphing calculator or computer to de-

termine the number of real solutions by inspecting the graph of

the given equation.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.

43.

4.

45.

x =2
x+1=3cosx

x —1=3cosx

x =5cosx
x =7cosx
2logpx =cosx (x > 0)
log;px =cosx (x > 0)

x? =10cosx
x2 =100sinx

x =5cosx + 10log;px (x > 0)

Consider the population of Example 7 in this section, which
starts with 10 rodents and doubles every month. Determine
graphically (that is, by zooming) how long it will take this
population to grow to 100 rodents. (Assume that each month
is 30 days long and obtain an answer correct to the nearest
day.)

Consider the money-market account of Example 8, which
pays 8% annually. Determine graphically how long it will
take the initial investment of $5000 to triple.

In 1980 the population P of Mexico was 67.4 million and
was growing at the rate of 2.6% per year. If the population
continues to grow at this rate, then ¢ years after 1980 it will
be P(t) = 67.4 - (1.026)" (millions). Determine graphically
how long it will take the population of Mexico to double.

Suppose that the amount A of ozone in the atmosphere de-
creases at the rate of 0.25% per year, so that after ¢ years
the amount remaining is A(t) = A((0.9975)", where A de-
notes the initial amount. Determine graphically how long it
will take for only half the original amount of ozone to be left.
Does the numerical value of A affect this answer?

The nuclear accident at Chernobyl left the surrounding re-
gion contaminated with strontium-90, which initially was
emitting radiation at approximately 12 times the level safe
for human habitation. When an atom of strontium-90 emits
radiation, it decays to a nonradioactive isotope. In this way,

46.

47.

48.

49.
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about 2.5% of the strontium-90 disappears each year. Then
the amount of radiation left after ¢+ years will be A(r) =
12 - (0.975)" (measured in “safe units” of radiation). De-
termine graphically how long (after the original accident) it
will be until the region measures only 1 safe unit, and it is
therefore safe for humans to return.

Refer to Example 6 of this section; determine graphically
the value (accurate to three decimal places) of the negative
solution of the equation x> = 2*.

Refer to Example 10 of this section; determine graphically
the value (accurate to three decimal places) of the solution
near x = 5 of the equation log,,x = Jx'/°.

The equation x!° = 3* has three real solutions. Graphically
approximate each of them accurate to two decimal places.

You land your space ship on a spherical asteroid between
Earth and Mars. Your copilot walks 1000 feet away along the
asteroid’s smooth surface carrying a 10-ft rod and thereby
vanishes over the horizon. When she places one end of the
rod on the ground and holds it straight up and down, you—
lying flat on the ground—can just barely see the tip of the
rod. Use this information to find the radius R of this aster-
oid (in miles). The key will be to derive a pair of equations
relating R and the angle 6 indicated in Fig. 1.4.37. (Think
of the right triangle shown there and of the relationship be-
tween circular arc length and subtended central angle.) You
can then attempt to solve these equations graphically. You
should find plenty of solutions. But which of them gives the

radius of the asteroid?
1000 ft
6

FIGURE 1.4.37 The asteroid
problem.

' 1.5 PREVIEW: WHAT IS CALCULUS?

Surely this question is on your mind as you begin a study of calculus that may extend
over two or three terms. Following our review of functions and graphs in Sections 1.1
through 1.4, we can preview here at least the next several chapters, where the central
concepts of calculus are developed.

The Two Fundamental Problems

The body of computational technique that constitutes “the calculus” revolves around
two fundamental geometric problems that people have been investigating for more than
2000 years. Each problem involves the graph y = f(x) of a given function.

The first fundamental problem is this: What do we mean by the line tangent to
the curve y = f(x) at a given point? The word fangent stems from the Latin word
tangens, for “touching.” Thus a line tangent to a curve is one that “just touches” the
curve. Lines tangent to circles (Fig. 1.5.1) are well known from elementary geometry.
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FIGURE 1.5.3 What is the slope of
the line L tangent to the graph
y = f(x) at the point P(x, f(x))?

46

4
y=x
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4 (1
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=2x-1
L Y=
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X

FIGURE 1.5.1 The tangent FIGURE 1.5.2 The line tangent
line L touches the circle at to the parabola y = x? at the point
the point P. (1, 1).

Figure 1.5.2 shows the line tangent to the parabola y = x? at the point (1,1). We
will see in Section 2.1 that this particular tangent line has slope 2, so its point-slope
equation is

y—1=2.-(x—1); thatis, y=2x—1.

Our first problem is how to find tangent lines in more general cases.

The Tangent Problem
Given a point P(x, f(x)) on the curve y = f(x), how do we calculate the slope of
the tangent line at P (Fig. 1.5.3)?

We begin to explore the answer to this question in Chapter 2. If we denote by
m(x) the slope of the tangent line at P(x, f(x)), then m is a new function. It might
informally be called a slope-predictor for the curve y = f(x). In calculus this slope-
predictor function is called the derivative of the function f. In Chapter 3 we learn to
calculate derivatives of a variety of functions, and in both Chapter 3 and Chapter 4 we
see numerous applications of derivatives in solving real-world problems. These three
chapters introduce part of calculus called differential calculus.

The tangent problem is a geometric problem—a purely mathematical question.
But its answer (in the form of derivatives) is the key to the solution of diverse applied
problems in many scientific and technical areas. Examples 1 and 2 may suggest to you
the connections that are the key to the pivotal role of calculus in science and technology.

EXAMPLE 1 Suppose that you're driving a car along a long, straight road
(Fig. 1.5.4). If f(¢) denotes the distance (in miles) the car has traveled at time ¢ (in
hours), then the slope of the line tangent to the curve y = f(¢) at the point (¢, f(¢))
(Fig. 1.5.5) is the velocity (in miles per hour) of the car at time 7. N ]

Distance

Distance f(7) .
Start Time ¢ Time t
FIGURE 1.5.4 A car on a straight FIGURE 1.5.5 The slope of the
road (Example 1). tangent line at the point (7, f(¢)) is

the velocity at the time ¢ (Example 1).
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Population

Time

FIGURE 1.5.6 The rate of growth
of f(¢) at the time ¢ is the slope of
the tangent line at the point (¢, f())
(Example 2).
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EXAMPLE 2 Suppose that f(¢) denotes the number of people in the United States
who have a certain serious disease at time ¢ (measured in days from the beginning of
the year). Then the slope of the line tangent to the curve y = f(¢) at the point (¢, f(¢))
(Fig. 1.5.6) is the rate of growth (the number of persons newly affected per day) of the
diseased population at time ¢. S

NOTE The truth of the statements made in these two examples is not obvious. To
understand such things is one reason you study calculus! We return to the concepts of
velocity and rate of change at the beginning of Chapter 3.

Here we will be content with the observation that the slopes of the tangent lines
in Examples 1 and 2 at least have the correct units. If in the time-distance plane of
Example 1 we measure time ¢ (on the horizontal axis) in seconds and distance y (on
the vertical axis) in feet (or meters), then the slope (ratio of rise to run) of a straight
line has the dimensions of feet (or meters) per second—the proper units for velocity
(Fig. 1.5.7). Similarly, if in the #y-plane of Example 2 time ¢ is measured in months and
y is measured in persons, then the slope of a straight line has the proper units of persons
per month for measuring the rate of growth of the afflicted population (Fig. 1.5.8).

y (ft) y (persons)

persons
month

Slope units: % Slope units:

} Rise

\
} Rise (ft) | (persons)
" Run(s) Run (months)
1(s) t (months)
FIGURE 1.5.7 Here slope has the FIGURE 1.5.8 Here slope has the
dimensions of velocity (ft/s). dimensions of rate of change of

population.

The second fundamental problem of calculus is the problem of area. Given the
graph y = f(x), what is the area between this graph and the x-axis over the interval
[a, b]?

The Area Problem
If f(x) = 0 for x in the interval [a, b], how do we calculate the area A of the plane

region that lies between the curve y = f(x) and the x-axis over the interval [a, b]
(Fig. 1.5.9)?

a b x
FIGURE 1.5.9 The area problem.

We begin to explore the answer to this second question in Chapter 5. In calculus
the area A is called an integral of the function f. Chapters 5 and 6 are devoted to the
calculation and application of integrals. These two chapters introduce the other part of
calculus, which is called integral calculus.

Like the tangent problem, the area problem is a purely mathematical question, but
its answer (in the form of integrals) has extensive ramifications of practical importance.
Examples 3 and 4 have an obvious kinship with Examples 1 and 2.
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y=f@

Velocity

Area A

b Timet

)

FIGURE 1.5.10 The area A under
the velocity curve is equal to the
distance traveled during the time
interval a <t < b (Example 3).

y=f@

Rate of change

Area A

b Time ¢

Q

FIGURE 1.5.11 The area A under
the rate-of-change curve is equal to
the net change in the population
fromtimes =atot =b
(Example 4).

EXAMPLE 3 If f(t) denotes the velocity of a car at time ¢, then the area under the

curve y = f(¢) over the time interval [a, b] is equal to the distance traveled by the car
between time t = a and time ¢ = b (Fig. 1.5.10). R

EXAMPLE 4 If f(t) denotes the rate of growth of a diseased population at time
t, then the area under the curve y = f(¢) over the time interval [a, b] is equal to
the net change in the size of this population between time t = a and time t = b
(Fig. 1.5.11). — 9

When we discuss integrals in Chapter 5, you will learn why the statements in
Examples 3 and 4 are true.

The Fundamental Relationship

Examples 1 and 3 are two sides of a certain coin: There is an “inverse relationship”
between the distance traveled and the velocity of a moving car. Examples 2 and 4
exhibit a similar relationship between the size of a population and its rate of change.

Both the distance/velocity relationship and the size/rate-of-change relationship
illustrated by Examples 1 through 4 are consequences of a deep and fundamental re-
lationship between the tangent problem and the area problem. This more general re-
lationship is described by the fundamental theorem of calculus, which we discuss in
Chapter 5. It was discovered in 1666 by Isaac Newton at the age of 23 while he was still
a student at Cambridge University. A few years later it was discovered independently
by Gottfried Wilhelm Leibniz, who was then a German diplomat in Paris who studied
mathematics privately. Although the tangent problem and the area problem had, even
then, been around for almost 2000 years, and much progress on separate solutions had
been made by predecessors of Newton and Leibniz, their joint discovery of the funda-
mental relationship between the area and tangent problems made them famous as “the
inventors of the calculus.”

Applications of Calculus

So calculus centers around the computation and application of derivatives and inte-
grals—that is, of tangent line slopes and areas under graphs. Throughout this textbook,
you will see concrete applications of calculus to different areas of science and technol-
ogy. The following list of a dozen such applications gives just a brief indication of the
extraordinary range and real-world power of calculus.

« Suppose that you make and sell tents. How can you make the biggest tent from a
given amount of cloth and thereby maximize your profit? (Section 3.6)

» You throw into a lake a cork ball that has one-fourth the density of water. How
deep will it sink in the water? (Section 3.10)

o A driver involved in an accident claims he was going only 25 mi/h. Can you de-
termine from his skid marks the actual speed of his car at the time of the accident?
(Section 5.2)

e The great pyramid of Khufu at Gizeh, Egypt, was built well over 4000 years
ago. No personnel records from the construction remain, but nevertheless we can
calculate the approximate number of laborers involved. (Section 6.5)

» Suppose that you win the Florida lottery and decide to use part of your winnings

to purchase a “perpetual annuity” that will pay you and your heirs (and theirs,

ad infinitum) $10,000 per year. What is a fair price for an insurance company to

charge you for such an annuity? (Section 7.8)

If the earth’s population continues to grow at its present rate, when will there be

“standing room only”? (Section 8.1)

o The factories polluting Lake Erie are forced to cease dumping wastes into the
lake immediately. How long will it take for natural processes to restore the lake
to an acceptable level of purity? (Section 8.4)
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« In 1845 the Belgian demographer Verhulst used calculus to predict accurately the
course of U.S. population growth (to within 1%) well into the twentieth century,
long after his death. How? (Section 8.5)

o What explains the fact that a well-positioned reporter can eavesdrop on a quiet
conversation between two diplomats 50 feet away in the Whispering Gallery of

the U.S. Senate, even if this conversation is inaudible to others in the same room?
(Section 9.6)

o Suppose that Paul and Mary alternately toss a fair six-sided die in turn until one
wins the pot by getting the first “six.” How advantageous is it to be the one who
tosses first? (Section 10.3)

» How can a submarine traveling in darkness beneath the polar icecap keep accu-
rate track of its position without being in radio contact with the rest of the world?
(Section 11.5)

» Suppose that your club is designing an unpowered race car for the annual down-
hill derby. You have a choice of solid wheels, bicycle wheels with thin spokes,
or even solid spherical wheels (like giant ball bearings). Can you determine
(without time-consuming experimentation) which will make the race car go the
fastest? (Section 13.5)

o Some bullets have flattened tips. Is it possible that an artillery shell with a
flat-tipped “nose cone” may experience less air resistance—and therefore travel
farther—than a shell with a smoothly rounded tip? (Section 14.5)

1.5 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.

The tangent problem is the problem of finding the slope of the straight line tan-
gent to the graph of y = f(x) at the point P of the graph.

2. The area problem is the problem of finding the area of the plane region above the

x-axis and below the graph of the function y = f(x) = 0fora < x < b.

3. The fundamental theorem of calculus was discovered by Newton and, indepen-

dently, by Leibniz.

4. The slope of the line tangent to the graph of y = x? at the point (1, 1) is 4.
5. If a straight line touches or intersects a curve at exactly one point, then it is

tangent to the curve at that point.

6. If a straight line touches or intersects a curve at more than one point, then it

cannot be tangent to the curve at any of those points.

7. A function that predicts the slope of the line tangent to the graph of the function

f at the point (x, f(x)) is called the derivative of f.

8. The computation of area is one topic studied in integral calculus.
9. The relation between distance and velocity has nothing to do with calculus.
10. The fundamental theorem of calculus shows that the tangent problem and the

area problem are related.
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' CHAPTER 1: REVIEW

Understanding: Concepts and Definitions
Refer to the listed pages to review the concepts and definitions in this chapter that you need to understand.

Section Pages

1.1 The definition of a function. ... ... ... ... .. .. 2
The domain and range of a function . ......... ... . ... . ... ... ... ... ... 2
Dependent and independent variables. . ........ ... ... o 3
Open and closed interval notation . ............... ... ... .. i i 4
What is a formula vs. whatis arelation ........ ... ... .. ... .. . . 5
The idea of a mathematical model . . ........ .. .. .. ... . .. .. .. 7

1.2 Slope-intercept and point-slope equations of straight lines . ...................... ... 12
The graph of an equation . .. ... .. . 13
Circles and translates of graphs . ......... ... . . . 13-14
The graph of a function . ... .. .. . 15
The vertical line test for graphs of functions .. ........... .. ... .. .. o oL 15
Discontinuities of functions. . ............ ... 16
Parabolas and graphs of quadratic functions .. ..... ... . ... ... L 17-18
Graphic, numeric, and symbolic representations of functions........................ 20

1.3 The definition of a power function. ........ ... .. ... .. . oo 24
Algebraic combinations of functions. . .......... ... .. o L oo 26
The definition of a polynomial . ... ... . .. .. . . . 27
The definition of a rational function . ...... ... ... ... .. .. 30
The definition of an algebraic function......... ... ... .. ... ... ... ... .. ... 31

1.4 The sine and cosine functions and their graphs.......... ... .. ... .. ... .. .. .. 35
The definition of the composition of two functions . ................................ 37
The definition of an exponential function. ........... ... ... .. .. .. .. .. 38
The definition of a logarithmic function. ... ... .. ... ... .. ... ... ... ... ... ... 40

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
1.1 Simplifying functional expressions ........... ... ... .. . il 13,15
Finding the domain of a function defined by aformula . .......... ... ... ... ... ... 25,29, 33
Writing formulas for functions described verbally............ . ... ... ... ... ... . ... 37,39, 41, 43,45
Numerical solution of equations by repeated tabulation . ......................... ... 59, 60
1.2 Writing the equation of a given straightline . .......... .. ... .. .. ... .. .. .. ... 1,5,9
Sketching the graph of a circle with given equation . ............. .. .. ... .. ... ... 13,15
Sketching a parabola with given equation . ......... ... ... .. ... oo oL 19
Identifying and sketching the graph of a given function........... ... ... ... ... .. .. 33,37, 39, 45, 49
Algebraic and graphical investigation of high and low points.................. ... .. 57, 61
1.3  Finding formulas for algebraic combinations of functions........................... 1,5
Identifying the graph of a polynomial by determining its number of zeros . ........... 7,11
and its behavior for |x| large
Identifying the graph of a rational function by determining its asymptotes ............ 13,15
and its behavior for |x| large
Finding graphically the number of real zeros of a polynomial ....................... 21, 23, 25, 39
1.4 Matching graphs and equations of trigonometric and exponential functions........... 1,3,5,7
Finding the formula for the composition f(g(x)) of two given functions f and g .. ... 11, 15, 17, 19

Finding graphically the number of real solutions of a given transcendental equation . .. 31, 33, 35, 39
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@ MISCELLANEOUS PROBLEMS

In Problems 1 through 10, find the domain of definition of the
function with the given formula.

1
1. f(x) =+/x—4 2. f(x):m
X
3 f0 =5 40 =5
x+1
5. f(x) = (1 + \/;)3 6. f(x) = m
1
7. f(X) =*\/2—3X 8. f(x): \/97_—)(2
9. fxX)=(x—=2)4—x) 10. f(x)=V(x —=2)4—x)
11. In accord with Boyle’s law, the pressure p (Ib/in.?) and vol-

12.

13.

14.

15.

16.

17.

18.

ume V (in.%) of a certain gas satisfy the condition pV = 800.
What is the range of possible values of p, given 100 £ V <
200?

The relationship between the Fahrenheit temperature F and
the Celsius temperature C is given by

F=32+1C.

If the temperature on a given day ranges from a low of 70°F
to a high of 90°F, what is the range of temperature in degrees
Celsius?

An electric circuit contains a battery that supplies E volts in
series with a resistance of R ohms (Fig. 1.MP.1). Then the
current of / amperes that flows in the circuit satisfies Ohm’s
law, E = IR. If E = 100 and 25 < R < 50, what is the
range of possible values of 1?

—_—
Current:  amperes

Battery: Resistance:
E volts R ohms

FIGURE 1.MP.1 The simple electric
circuit of Problem 13.

The period T (in seconds) of a simple pendulum of length L
(in feet) is given by T = 2w /L /32. If 3 < L < 4, what is
the range of possible values of 7°?

Express the volume V of a cube as a function of its total
surface area S.

The height of a certain right circular cylinder is equal to its
radius. Express its total surface area A (including both ends)
as a function of its volume V.

Express the area A of an equilateral triangle as a function of
its perimeter P.

A piece of wire 100 in. long is cut into two pieces of lengths
x and 100 — x. The first piece is bent into the shape of a
square, the second into the shape of a circle. Express as a
function of x the sum A of the areas of the square and circle.

In Problems 19 through 24, write an equation of the straight line
L described.

19.

L passes through (—3, 5) and (1, 13).

20. L passes through (4, —1) and has slope —3.
21. L has slope % and y-intercept —5.

22. L passes through (2, —3) and is parallel to the line with
equation 3x — 2y = 4.

23. L passes through (—3,7) and is perpendicular to the line
with equation y — 2x = 10. (Appendix B reviews slopes of
perpendicular lines.)

24. L is the perpendicular bisector of the segment joining
(1, —=5) and (3, —1).

In Problems 25 through 34, match the given function with its
graph among those shown in Figs. 1.MP.2 through 1.MP.11. Do
this without using your graphing calculator or computer. In-
stead, rely on your knowledge of the general characteristics of
polynomial, rational, algebraic, trigonometric, exponential, and
logarithmic functions.

2 2
15 s
1
05 1
Yy 0 yo,sJ\
0.5 0
-1
15 05
2 -1
2 0 2 4 6 8 10 -0 -5 0 5 10
X X
FIGURE 1.MP.2 FIGURE 1.MP.3
15
60
40 10
20 5
Y 0 Yy 0
2 NS
-40
-10
-60
-5 0 5 '1§1o -5 0 5 10
X X
FIGURE 1.MP.4 FIGURE 1.MP.5
5 10
4
3
2
| /\ 5
Yo y
-1
) 0
3
-4
-5 -
-5 0 5 s 0 5
X X
FIGURE 1.MP.6 FIGURE 1.MP.7
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1

— N W A W

Y:E\/ VY, yj

3 -6

-4 -8

G0 5 0 5 10 % 0 5
X X

FIGURE 1.MP.8 FIGURE 1.MP.9

5 10
4 3
3 6
2 4
1 2
Yy 0 Yy 0
-1 2
2 -4
3 -6
-4 -8

-3 0 5 -105 0 5

X X

FIGURE 1.MP.10
25. f(x) =2 —2x —x?

FIGURE 1.MP.11
26. f(x) =x>—4x>+5

27. f(x) =x*—4x>+5 28. f(x):%
x>?—x—6
29. f(x)=2; 30. f(x) =+8+2x —x?
x2—x+6

3. fr)=2"—1
33, f(x) =1+ 3sinx

32. f(x) =log,,(x +1)
34. f(x) =x+3sinx

Sketch the graphs of the equations and functions given in Prob-
lems 35 through 44.

35. 2x =5y =7 36. |x —y|=1
37. x? 4 y? =2x 38. x24+y? =4y —6x 43
39, y=2x2—4x — 1 40. y =4x — x?
1 1
41. = — 42. =
F ) P Fx) 1
43. f(x) = |x — 3| 44, FO) = |x =3+ |x +2|

45. Apply the triangle inequality (of Appendix A) twice to show
that

la+b+c| = la|l+|b] + |c|
for arbitrary real numbers a, b, and c.

46. Write a = (a — b) + b to deduce from the triangle inequality
(of Appendix A) that

lal = 1b] < la — b]
for arbitrary real numbers a and b.

47. Solve the inequality x> —x —6 > 0. [ Suggestion: Conclude
from the factorization

X—x—6=x-3)(x+2)

that the quantities x — 3 and x + 2 must be either both pos-
itive or both negative for the inequality to hold. Consider

PHOTO CREDITS
1 Corbis/Bettmann

the two cases separately to conclude that the solution set is
(=00, =2) U (3, +09). |

Use the method of Problem 47 to solve the inequalities in Prob-
lems 48 through 50.

48. x?—3x+2<0
50. 2x > 15 — x?

49, x> —2x—-8>0

The remaining problems require the use of an appropriate cal-
culator or computer. In Problems 51 through 56, use either the
method of repeated tabulation or the method of successive zooms
(or both) to find the two roots (with three digits to the right
of the decimal point correct or correctly rounded) of the given
quadratic equation. You may check your work with the aid of the
quadratic formula and an ordinary calculator.

51. x> —5x—7=0 52. 3x2—10x — 11 =0

53. 4x2—14x +11=0 54, 5x24+24x —35=0

55. 8x2+33x —36 =0 56. 9x% +74x — 156 =0

In Problems 57 through 62, apply either the method of repeated
tabulation or the method of successive zooms (or both) to find the

lowest point on the given parabola. You may check your work by
completing the square.

57. y=x>—-5x+7 58. y =3x>—10x + 11

59. y =4x> — 14x + 11 60. y = 5x>+24x + 35

61. y = 8x>+33x +35 62. y = 9x? 4 74x + 156

63. Figure 1.MP.12 shows a 10-cm by 7-cm portrait that includes
a border of width x on the top and bottom and of width 2x
on either side. The area of the border is itself 20 cm®. Use
either repeated tabulation or successive zooms to find x.

#X

2x

10 cm

FIGURE 1.MP.12 The bordered portrait
of Problem 63.

64. A mail-order catalog lists a 60-in. by 35-in. tablecloth that
shrinks 7% in area when first washed. The catalog descrip-
tion also implies that the length and width will both decrease
by the same amount x. Use numerical (tabulation) or graph-
ical (zoom) methods to find x.

Determine graphically the number of real solutions of each equa-
tion in Problems 65 through 70.

65. x> —7x+3=0

66. x* —3x2+4x—-5=0
67. sinx = x> —3x + 1
68. cosx =x* —x

69. cosx =log,,x

70. 107 =log,yx



The modern com-
puter program-
ming language Ada

is named in honor of
Ada Byron, daughter of
the English poet Lord
Byron. Her interest in sci-
ence and mathematics led
her around 1840 to study
the Difference Engine, a
gear-based mechanical cal-
culator that the mathe-
matician Charles Babbage
had built to compute ta-
bles of values of functions.
By then he was designing his much more advanced
Analytic Engine, an elaborate computing machine that
would have been far ahead of its time if it had been com-
pleted. In 1843 Ada Byron wrote a series of brief essays
explaining the planned operation of the Analytical Engine
and its underlying mathematical principles. She included a
prototype “computer program” to illustrate how its calcu-
lations were to be “programmed” in advance, using a deck
of punched cards to specify its instructions.

Ada Byron (1815-1852)

L -

t.q_-,—.-_

The Difference Engine

Calculus has been called “the calculating engine par
excellence.” But in our own time the study and applica-
tions of calculus have been reshaped by electronic com-
puters. Throughout this book we illustrate concepts of cal-
culus by means of graphic, numeric, and symbolic results
generated by computers. In Chapter 2 we exploit compu-
tational technology systematically in the investigation of
limits.

Grace Murray Hopper (1906-1992)

Almost exactly a century after the death of Ada By-
ron, the first modern computer compiler (for translation
of human-language programs into machine-language in-
structions) was developed by Grace Murray Hopper. As a
mathematician and U.S. Navy officer, Hopper had worked
with the very first modern electronic computers developed
during and immediately after World War II. In 1967 she
was recalled to active duty to lead efforts to standardize
the computer language COBOL for the Navy. In 1985 at
the age of 79, she became Rear Admiral Grace Hopper.
In 1986 she was retired—as the Navy’s oldest commis-
sioned officer on active duty—in a ceremony held aboard
the U.S.S. Constitution, the Navy’s oldest commissioned
warship.

From Chapter 2 of Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.

Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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. 2.1 TANGENT LINES AND SLOPE PREDICTORS

FIGURE 2.1.1 The line tangent to
the circle at the point P is
perpendicular to the radius OP.

In Sections 1.2 and 1.5 we saw that certain applied problems raise the question of what
is meant by the tangent line at a specified point of a general curve y = f(x). In this
section we see that this “tangent-line problem” leads to the limit concept, which we
pursue further in Section 2.2.

In elementary geometry the line tangent to a circle at a point P is defined as the
straight line through P that is perpendicular to the radius (OP) to that point (Fig. 2.1.1).
A general graph y = f(x) has no radius for us to use, but the line tangent to the graph
at the point P should be the straight line through P that has—in some sense—the same
direction at P as the curve itself. Because a line’s “direction” is determined by its
slope, our plan for defining a line tangent to a curve amounts to finding an appropriate
“slope-prediction formula” that will give the proper slope of the tangent line. Example
1 illustrates this approach in the case of one of the simplest of all nonstraight curves,

the parabola with equation y = x2.

EXAMPLE 1 Determine the slope of the line L tangent to the parabola y = x at the
point P(a, a?).

Solution Figure 2.1.2 shows the parabola y = x? and a typical point P(a, a*) on it.
The figure also shows a visual guess of the direction of the desired tangent line L at P.
We must find the slope of L.

\ P(a, a?)

FIGURE 2.1.2 The tangent line at P should have the
same direction as the curve does at P (Example 1).

We cannot immediately calculate the slope of L, because we know the coordi-
nates of only one point P(a, a®) of L. Hence we begin with another line whose slope
we can compute. Figure 2.1.3 shows the secant line K that passes through the point
P and the nearby point Q(b, b*) of the parabola y = x2. Let us write

h=Ax=b-—a

for the difference of the x-coordinates of P and Q. (The notation Ax is as old as
calculus itself, and it means now what it did 300 years ago: an increment, or change,
in the value of x.) Then the coordinates of Q are given by the formulas

b=a+h and b*=(a+h)
Hence the difference in the y-coordinates of P and Q is
Ay:bz—a2 = (a + h)* — da°.

Because P and Q are two different points, we can use the definition of slope to calcu-
late the slope m p¢ of the secant line K through P and Q. If you change the value of
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X

FIGURE 2.1.3 The secant line K passes
through the two points P and Q, which we can
use to determine its slope (Example 1).

h = Ax, you change the line K and thereby change its slope. Therefore, m po depends
on h:

Ay (a+h)?—a?

PO = AT Tt h) —a

_ (@ +2ah+h*) —a®>  2ah+h*  hQa+h) D
B h R R

Because % is nonzero, we may cancel it in the final fraction. Thus we find that the slope
of the secant line K is given by

mpo =2a + h. (2)

Now imagine what happens as you move the point Q along the curve closer and
closer to the point P. (This situation corresponds to /& approaching zero.) The line K
still passes through P and Q, but it pivots around the fixed point P. As h approaches
zero, the secant line K comes closer to coinciding with the tangent line L. This phe-
nomenon is suggested in Fig. 2.1.4, which shows the secant line K approaching the
tangent line L.

Our idea is to define the tangent line L as the limiting position of the secant line
K. To see precisely what this means, examine what happens to the slope of K as K

FIGURE 2.1.4 Ash — 0, Q approaches P,
and K moves into coincidence with the tangent
line L (Example 1).
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pivots into coincidence with L:

As h approaches zero,

Q approaches P, and so

K approaches L; meanwhile,

the slope of K approaches the slope of L.

Hence our question is this: As the number /& approaches zero, what value does
the slope mpo = 2a + h approach? We can state this question of the “limiting value”
of 2a + h by writing

lim(2a + h) = ? A3)
h—0

Here, “lim” is an abbreviation for the word “limit,” and “A — 0” is an abbrevia-
tion for the phrase “h approaches zero.” Thus Eq. (3) asks, “What is the limit of 2a +
as h approaches zero?”

For any specific value of @ we can investigate this question numerically by calcu-
lating values of 2a 4 & with values of 4 that become closer and closer to zero—such as
the values h = 0.1, h = —0.01, A = 0.001, 7 = —0.0001, ... , or the values 7 = 0.5,
h =0.1,h =0.05,h = 0.01, ... . For instance, the tables of values in Figs. 2.1.5 and
2.1.6 indicate that with @ = 1 and a = —2 we should conclude that

IimR2+h)=2 and Ilim(—4+h) = —4.
h—0 h—0

More generally, it seems clear from the table in Fig. 2.1.7 that

limmpg = lim(2a + h) = 2a. ()]
h—0 h—0
h —4+h
0.5 -3.5
h 2+h
+ 0.1 -39 h 2a +h
0.1 2.1 0.05 —3.95
001 | 201 001 | —3.99 8'8(1) | ia ig‘gél
0.001 2.001 0.005 | —3.995 ’ “ '
0.0001 | 2.0002 0.001 | —3.999 : :
\: | \ \ \ \:
0 2 0 —4 0 2a
FIGURE 2.1.5 As FIGURE 2.1.6 As FIGURE 2.1.7 As
h — 0 (first column), h — 0 (first h — 0 (first column),
2 + h approaches 2 column), —4 + h 2a + h approaches 2a
(second column). approaches —4 (second column)

(second column). (Example 1).

This, finally, answers our original question: The slope m = m(a) of the line tangent to
the parabola y = x? at the point (a, a?) is given by

m=2a. 5)
_ D

The formula in Eq. (5) is a “slope predictor” for (lines tangent to) the parabola
y = x%. Once we know the slope of the line tangent to the curve at a given point of
the curve, we can then use the point-slope formula to write an equation of this tangent
line.

EXAMPLE 2 Witha = 1, the slope predictor in Eq. (5) gives m = 2 for the slope of
the line tangent to y = x? at the point (1, 1). Hence an equation of this line is

y—1=2(x—-1); thatis, y=2x —1.
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With a = —3, Eq. (5) gives m = —6 as the slope of the line tangent at (—3, 9), so an
equation of the line tangent to the curve at this point is

y—9=—6(x+3); thatis, y = —6x —9. — 9

In Fig. 2.1.8 the parabola y = x? and its tangent line y = 2x — 1 passing through
(1, 1) are both graphed. The relationship between the curve and its tangent line is such
that as we “zoom in” on the point of tangency, successive magnifications show less
and less of a difference between the curve and the tangent line. This phenomenon is
illustrated in Figs. 2.1.9 through 2.1.11.

y
-1 0 2 4 0.6 0.8 1 1.2 14
X X
FIGURE 2.1.8 The parabola FIGURE 2.1.9 First
y = x? and its tangent line at magnification.
P(1,1).
12 : : :
.......... 1.04
11 .......... k .......... 4444444444 .......... 102 |
y 1 y 1
09 i o 098
.......... 096 ; . :
0‘8 / : : : M M M M
0.8 0.9 1 1.1 1.2 096 098 1 1.02 1.04
X
FIGURE 2.1.10 Second FIGURE 2.1.11 Can you see the
magnification. difference?

REMARK In Example 1 we proceeded as though the concept of a tangent line to a
curve were self-evident. The actual meaning of the slope-predictor result m = 2a in
Eq. (5) is this: Whatever is meant by the line tangent to the parabola y = x? at the
point P(a, a?), it can only be the unique straight line through P with slope m = 2a.
Thus we must define the line tangent to y = x? at P to be the line whose point-slope
equation is y — a®> = 2a(x — a). Pictures like those in Figs. 2.1.8 through 2.1.11
certainly support our conviction that this definition is the correct one.

More General Slope Predictors

The general case of the line tangent to a curve y = f(x) is scarcely more complicated
than the special case y = x? of Example 1. Given the function f, suppose that we
want to find the slope of the line L tangent to y = f(x) at the point P(a, f(a)). As
indicated in Fig. 2.1.12, let K be the secant line passing through the point P and the
nearby point Q(a + h, f(a + h)) on the graph. The slope of this secant line is the
difference quotient

_ A _ fat+h - f@

= - (with i # 0). (6)

mPQ
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Slope: m(a)

y=f) O +h, fa+h)

Ay=fla+h -f(a)

Ay =fla+h) = f(a)

I
I
I
I
! | |
A | o
| Ax=h ! | |
I I I I
I I I I
I I I I
I I I I
I I I I
| | | |
/ a a+h x 7 | a a+h X
y=fx)
FIGURE 2.1.12 Ash — 0, Q — P, and the slope of K FIGURE 2.1.13 The slope of the tangent line
approaches the slope of the tangent line L. at (a, f(a))is

. fla+h)— f(a)
m(a) = lim ———.
h—0 h
We now force Q to approach the fixed point P along the curve y = f(x) by making &
approach zero. We ask whether m p approaches some limiting value m as h — 0. If
S0, we write
. fla+h)— f(a)
m = lim
h—0 h

and conclude that this number m is the slope of the line tangent to the graph y = f(x)
at the point (a, f(a)). Actually, this slope depends on a and we can indicate this by
writing

i L e iE)) )
h—0 h

If we can express the limiting value on the right explicitly in terms of a, then Eq. (7)

yields a slope predictor for lines tangent to the curve y = f(x). In this case the line

tangent to the curve at the point P(a, f(a)) is defined to be the straight line through P

that has slope m,. This tangent line is indicated in Fig. 2.1.13.

In Chapter 3 we will acknowledge the fact that the slope m, is somehow ‘“de-
rived” from the function f by calling this number the derivative of the function f
at the point a. Indeed, much of Chapter 3 will be devoted to methods of calculating
derivatives of various familiar functions. Most of these methods are based on the limit
techniques of Sections 2.2 and 2.3, but the case of quadratic functions is sufficiently
simple for inclusion here. Recall from Section 1.2 that the graph of any quadratic
function is a parabola that opens either upward or downward.

THEOREM Parabolas and Tangent Lines
Consider the parabola y = f(x) where

f)=px®+qx+r ®)

(with p # 0). Then the line tangent to this parabola at the point P(a, f(a)) has
slope

mq =2pa+q. ®

Proof The slope of the secant line given in (6) may be simplified as follows:

fla+h = f@ _[pla+h)’+qla+h) +rl—Ipa*+qa+r]

h B h
_ [p(a@®+2ah+1*) +q(a+h)+r]—[pa*+qa+r] _ 2pah+ ph®>+qh
B h B h ’

me =
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(c, )
N

(3,0 .

FIGURE 2.1.14 The normal line N
from the point (3, 0) to the point
(¢, ¢®) on the parabola y = x2.

Normal line,
slope: —1/m

y =1

/ ~N X
Tangent line,

slope: m

FIGURE 2.1.15 The tangent line
and normal line through the point P
on a curve.
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and therefore
mpo = 2pa +qg+ ph.

The numbers p, g, and a are fixed, so as 1 — 0 the product ph approaches zero, much
as in our computations in Example 1. Thus

my, = }llir%me = }llirr(l)(Zpa +q + ph) =2pa +q,
as claimed in Eq. (9). *

REMARK 1 Thus the formula m, = 2pa + g provides a ready slope predictor for
lines tangent to the parabola with equation

y=px2—|-qx+r.

Given the coefficients p, ¢, r, and the number a, we need only substitute in this slope-
predictor formula to obtain the slope m,, of the line tangent to the parabola at the point
where x = a. We need not repeat the computational steps that were carried out in the
derivation of the slope-predictor formula.

REMARK 2 If we replace a with x we get the slope-predictor function
m(x) =2px +gq. (10)

Here m is a function whose value m(x) at x is the slope of the line tangent to the
parabola y = f(x) at the point P(x, f(x)). Perhaps the visual scheme

f) = px* + gqx + r
! ! Lol
mkx) = 2px + g + 0

makes this slope predictor easy for you to remember.

EXAMPLE 3 Find an equation of the line tangent to the parabola y = 2x%> — 3x 4 5
at the point where x = —1.

Solution Here we have p = 2, ¢ = —3, r = 5, and the y-coordinate of our point is
2.(=1)> =3 - (=1) 4+ 5 = 10. Then Eq. (10) gives the slope predictor

m(x) =2 -2x 4+ (=3) =4x — 3,

so the slope of the line tangent to the parabola at the point (—1, 10) is m(—1) =
4. (—1) — 3 = —7. The point-slope equation of this tangent line is therefore

y—10= (=7 (x + 1); thatis, y = —7x+ 3. N

Normal Lines

How would you find the point P (c, ¢?) that lies on the parabola y = x? and is closest
to the point (3, 0)? Intuitively, the line segment N with endpoints (3, 0) and P should
be perpendicular, or normal, to the parabola’s tangent line at P (Fig. 2.1.14). But if the
slope of the tangent line is m, then—by Theorem 2 in Appendix B—the slope of the
normal line is

iy = — L (11)
m

(Theorem 2 tells us that if two perpendicular lines have nonzero slopes m; and m,,
then mm, = —1.) More precisely, the normal line at a point P of a curve where the
tangent line has slope m is defined to be the line through P with slope my = —1/m
(Fig. 2.1.15). Consequently, the parabolic slope predictor in (9) enables us to write
equations of lines normal to parabolas as easily as equations of tangent lines.
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EXAMPLE 4 In Example 3 we found that the line tangent to the parabola y = 2x* —
3x + 5 at the point P(—1, 10) has slope —7. Therefore the slope of the line normal to

that parabola at P ismy = —1/(=7) = % So the point-slope equation of the normal
line is
y—10=1(x+1);  thatis, y=1x+7Z. —
X
$5/4t The Animal Pen Problem Completed

Now we can apply our newfound knowledge of slope-predictor formulas to wrap up

v |35t $5/t|y our continuing discussion of the animal pen problem of Section 1.1. In Example 9
there we found that the area A of the pen (see Fig. 2.1.16) is given as a function of its
base length x by

$1/ft
* wal A(x) = 2(30x —x?) = —2x? 4+ 18x (12)
FIGURE 2.1.16 The animal pen. for 0 < x < 30. Therefore our problem is to find the maximum value of A(x) for x in

the closed interval [0, 30].
Let us accept as intuitively obvious—we will see a proof in Chapter 3—the fact
that the maximum value of A(x) occurs at the high point where the line tangent to the

y
_ ‘ parabola y = A(x) is horizontal, as indicated in Fig. 2.1.17. But the function A(x) in
1sok H‘(gl};esg’s";m ' Eq. (12) is quadratic with p = —% and g = 18 (compare (12) with (8)). Therefore the
; Eﬁgjﬁ?ﬁe slope predictor in (10) implies that the slope of the tangent line at an arbitrary point
ook (x, A(x)) of the parabola is given by
y=A) m:m(x)=2px+q=—gx+18.
500
We ask when m = 0 and find that this happens when
1|0 2|0 30 x —§x+ 18 =0,
and thus when x = 15. In agreement with the result found by algebraic methods in

Section 1.2, we find that the maximum possible area of the pen is
FIGURE 2.1.17 The graph of

y=A@x),0=x =30 A(15) =2(30-15-15%) =135 (f").

Numerical Investigation of Slopes

Suppose that you are given the function f and a specific numerical value of a. You can
then use a calculator to investigate the value

o flath) - f@
m = lim

13
h—0 h ( )

of the slope of the line tangent to the curve y = f(x) at the point (a, f(a)). Simply
calculate the values of the difference quotient

fla+hn - f

? (14)

with successively smaller nonzero values of & to see whether a limiting numerical value
is apparent.

EXAMPLE 5 Find by numerical investigation (an approximation to) the line tangent
to the graph of

f()f)=)€+l (15)
X

at the point (2, %).
60
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KR BREARS
48SX SCIENTIFIC EXPANDABLE

Q’ Texas INSTRUMENTS 71-83 %’ Texas INSTRUMENTS 71-83

FIGURE 2.1.18 A calculator FIGURE 2.1.19 Approximating FIGURE 2.1.20 A calculator
prepared to calculate i fla+h)— f(a) prepared to compute
fla+h — f(a) with P h : f+h—fx)

h h ’

f(x)=x+l.
X

Solution Figure 2.1.18 shows a TI calculator prepared to calculate the difference
quotient in Eq. (14) with the function f in Eq. (15). As indicated in Fig. 2.1.19,
successive values of this quotient can then be calculated by brief “one-liners.” Figure
2.1.20 shows an HP calculator prepared to define the same quotient; then evaluation of
the expression 'M(2,0.0001)" yields the approximate value m =~ 0.75001. In this

5 5 way we get the table shown in Fig. 2.1.21, which suggests that the slope of the line
h fC+nm-f@ tangent to the graph of f(x) at the point (2, %) ism = %. If so, then the tangent line at
h this point has the point-slope equation
0.1 0.76190 s s ' , .,
0.01 0.75124 y-2=3x=2;  thatis, y=gx+1
0.001 0.75012 Our numerical investigation does not constitute a rigorous proof that this actually is
0.0001 0.75001 the desired tangent line, but Figs. 2.1.22 and 2.1.23 showing the computer-generated
0.00001 0.75000 oraphs
\ b
0 : + : d ) +1
2 =x+— an = —x
4 Y X Y 4
FIGURE 2.1.21 Numerical are strong evidence that we’ve got it right. (Do you agree?) _ D

investigation of the limit in (13) with

f(x):x+l,a:2.
X

y
FIGURE 2.1.22 The curve and its FIGURE 2.1.23 The curve and its
tangent line (Example 5). tangent line magnified near (2, %).

2.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.
1. The straight line through (a, a®) and (a + h, (a + h)?) has slope 2a + h.
2. The straight line tangent to the graph of f(x) = x? at the point (a, a?) has slope
2a.
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10.

. The straight line tangent to the graph of y = f(x) at the point (a, f(a)) has

slope
fla+h) — fla)
. .

. The straight line tangent to the parabola f(x) = px? + gx + r at the point

(a, f(a)) has slope 2pa + q.

. If the nonvertical lines L; and L, have slopes m| and m,, respectively, and L,

and L, are perpendicular, then mm, = 1.

. Every horizontal line has slope zero.
. To find the highest point on the graph of y = A(x) = —%xz + 18x, find where

the line tangent to the graph has slope zero.

. The slope-predictor for A(x) = —%xz + 18x ism(x) = 2x + 18.
. An equation of the straight line tangent to the graph of y = 2x> — 3x + 5 at the

point (—1, 10) is y = 3x — 7.
Example 5 shows how to find the slope-predictor for the function f(x) = x°.

2.1 CONCEPTS: QUESTIONS AND DISCUSSION

1.

2.

3.

What is the slope-predictor function for the straight line with equation y = 17x —
21?

Can two different parabolas with equations of the form y = px? + gx + r have
the same slope-predictor function?

The vertex of the parabola with equation y = px? 4+ gx +r is its highest point (if
p < 0) or its lowest point (if p > 0). As indicated in Fig. 2.1.17, it is apparent
that this vertex is the single point of the parabola at which the tangent line is
horizontal. Is it true—for any given curve y = f(x)—that a point on the graph
at which the tangent line is horizontal is either the highest or the lowest point on

the graph?

2.1 PROBLEMS

In Problems 1 through 14, first apply the slope-predictor formula
in (10) for quadratic functions to write the slope m(a) of the line
tangent to 'y = f(x) at the point where x = a. Then write
an equation of the line tangent to the graph of f at the point

@2, f2).

1. f(x)=5 2. f(x)=x

3. f(x) = x? 4, f(x) =1—2x?

5. f(x)=4x =5 6. f(x)=7—-3x

7. f(x) =2x>—-3x+4 8 f(x) =5-3x—x?
9. f(x) =2x(x+3) 10. f(x) =3x(5—x)
11. f(x):2x—(lx—0>2 12. f(x)=4— (3x +2)°

13 f(x) = Qx+1)2—dx 14, f(x) = 2x+3)2—(2x—3)>

In Problems 15 through 24, find all points of the curve y = f(x)
at which the tangent line is horizontal.

15. y =10 — x? 16. y = 10x — x?

17. y=x?—-2x+1 18. y=x2+x-2
X \2

19. y—x — (E) 20. y = x(100 — x)

21, y=(x +3)(x = 5) 22. y=(x —5)*

2
23. y = 70x — x2 24. y=1oo<1—lx—0)

In Problems 25 through 35, use the slope-predictor formula for
quadratic functions as necessary. In Problems 25 through 27,
write equations for both the line tangent to, and the line normal
to, the curve y = f(x) at the given point P.

25. y =x2% P(=2,4)
26. y=5—1x—2x% P(—1,4)
27. y =2x>+3x —5; P(2,9)

28. Prove that the line tangent to the parabola y = x? at the
point (xg, yo) intersects the x-axis at the point (xy/2, 0). See
Fig. 2.1.24.

FIGURE 2.1.24 The parabola and
tangent line of Problem 28.
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29. If aball is thrown straight upward with initial velocity 96 ft/s,
then its height ¢ seconds later is y(t) = 96t — 16t feet. De-
termine the maximum height the ball attains by finding the
point in the parabola y(f) = 96t — 16¢> where the tangent
line is horizontal.

30. According to Problem 40 of Section 1.1, the area of a rect-
angle with base of length x and perimeter 100 is A(x) =
x(50 — x). Find the maximum possible area of this rectangle
by finding the point on the parabola A = x (50 — x) at which
the tangent line is horizontal.

31. Find the maximum possible value of the product of two pos-
itive numbers whose sum is 50.

32. Suppose that a projectile is fired at an angle of 45° from the
horizontal. Its initial position is the origin in the xy-plane,
and its initial velocity is 100+/2 ft/s (Fig. 2.1.25). Then its
trajectory will be the part of the parabola y = x — (x/25)? for
which y = 0. (a) How far does the projectile travel (horizon-
tally) before it hits the ground? (b) What is the maximum
height above the ground that the projectile attains?

e

FIGURE 2.1.25 The trajectory of the projectile of
Problem 32.

33. One of the two lines that pass through the point (3, 0) and
are tangent to the parabola y = x? is the x-axis. Find an
equation for the other line. (Suggestion: First find the value
of the number a shown in Fig. 2.1.26.)

/3,0 x

FIGURE 2.1.26 Two lines tangent
to the parabola of Problem 33.

34. Write equations for the two straight lines that pass through
the point (2, 5) and are tangent to the parabola y = 4x — x2.

(Suggestion: Draw a figure like Fig. 2.1.26.)

35. Between Examples 3 and 4 we raised—but did not answer—
the question of how to locate the point on the graph of

Tangent Lines and Slope Predictors SECTION 2.1 63

y = x? closest to the point (3, 0). It’s now time for you to
find that point. (Suggestion: Draw a figure like Fig. 2.1.26.
The cubic equation you should obtain has one solution that
is apparent by inspection.)

Let P(a, f(a)) be a fixed point on the graph of y = f(x).
If h > 0O, then Q(a + h, f(a + h)) lies to the right, and
R(a — h, f(a — h)) lies to the left, of P. Does Fig. 2.1.27 make
it appear plausible—for h > 0 and h very small—that the slope

h) — —h 1
Mgy = flat )2hf(a ) = E(mPQ‘I'mRP)

is generally an especially good approximation to the slope m of
the line tangent to the graph at P? In particular, the “symmetric
difference quotient” my is generally a better approximation to
m than either the standard right-hand difference quotient

_ fa+h— f@
mro =T

or the left-hand difference quotient

fla) = fla—h)
p .

mpgp =

In Problems 36 through 48, use a calculator or computer to
investigate numerically the slope m of the line tangent to the
given graph at P(a, f(a)) by calculating both mpy and mpggo
for h = 0.1, 0.01, 0.001, ... . Check the resulting value of m by
plotting both the graph of y = f(x) and the alleged tangent line.

y y=fx

Q(a+h, f(a+h)

R(a—h, f(a—h)

a+h x

FIGURE 2.1.27 Three different
approximations to the slope of a
tangent line.

36. f(x) =x%*a=—1 37. f(x)=x*a=2
38. f(x)=x*a=-1 39. f(x) =+ /x;a=1
40. f(x)=+/x;a=4 41. f(x):%;a:l
42. f(x):%;a:—% 43. f(x) =cosx;a=0

f(x) =cosx;a = Lo

44. f(x) =sinl0rx;a =0 4S5. 1
46. f(x) =sin10mx;a = % 47. f(x) =+/25—x%2;a=0

48. f(x) =+/25—x%*;a=3
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2.1 INVESTIGATION: Numerical Slope Approximations

In each of the problems listed below, it is known that the slope m of the tangent line to
the graph y = f(x) at the fixed point P(a, f(a)) is either an integer or the reciprocal
of a single-digit integer. Use this fact to determine m numerically by using a graphing
facility (calculator or computer) with which you can “grab” the xy-coordinates of a
selected point on the graph. Suppose you “zoom in” on the point P, and at the kth zoom
record the coordinates (x;, y;) and (x,, y;) of two points located on either side of P
(as indicated in Fig. 2.1.28). Then you can approximate the value of m by calculating
the value of the difference quotient

N Ay Y2 — )1
o~ . = . mp=—= .
0 1 2 3 Ax X7 — X
X
After enough zooms, it should be clear what rational value the approximate slopes
FIGURE 2.1.28 Points on either mi, my, ..., are approaching,
side of P.

1. f(x) =x% P=P(-2,4); m(-2)="?

2 f) =% P=P0,1); m(l)=?
1

3. f(x)= ;; P=P2,1/2); m2)="?

1
X
5. fx) =+/x2-9; P=P(5,4); m®B) ="?
6. f(x)= %sing; P = P(3, 3«/§/2n); m(3) =7

4. f(x)= —z; P =P(—4,3/4); m(—4) =?

' 2.2 THE LIMIT CONCEPT

In Section 2.1 we defined the slope m of the line tangent to the graph y = f(x) at the
point P(a, f(a)) to be

o fla+h - f@
m = lim .
h—0 h

@

The graph that motivated this definition is repeated in Fig. 2.2.1, with a + h relabeled
as x (so that h = x — a). We see that x approaches a as h approaches zero, so Eq. (1)
can be written in the form

f&x) = fla)

m = lim (2)
x—a X —a
y
O(x, f(x))

.

1/ = fla)=fla+h) - fla)

| |
—x—a=h—»
|

A

|
|
| |

a x=a+h X

FIGURE 2.2.1 The slope m at P(a, f(a)) can be
defined in this way: m = lim M.

x—a X —a
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X‘B
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19 B

FIGURE 2.2.2 Graphical
interpretation of the limit concept.
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Thus the computation of m amounts to the determination of the limit, as x approaches
a, of the function

_ W —f@

X —da

g(x) 3

In order to develop general methods for calculating such limits, we need to in-
vestigate more fully the meaning of the statement

lim f(x) = L. @

This is read “the limit of f(x) as x approaches a is L.” We sometimes write Eq. (4) in
the concise form

f(x) > L as x — a.

The function f need not be defined at the point x = a in order for us to discuss
the limit of f ata. The actual value of f (a)—if any—actually is immaterial. It suffices
for f(x) to be defined for all points other than a in some neighborhood of a—that is,
for all x # a is some open interval containing a. This is exactly the situation for the
function in Eq. (3), which is defined except at a (where the denominator is zero). The
following statement presents the meaning of Eq. (4) in intuitive language.

Idea of the Limit

We say that the number L is the limit of f(x) as x approaches a provided that we can
make the number f(x) as close to L as we please merely by choosing x sufficiently
near, though not equal to, the number a.

What this means, roughly, is that f(x) tends to get closer and closer to L as x
gets closer and closer to a. Once we decide how close to L we want f(x) to be, it is
necessary that f(x) be that close to L for all x sufficiently close to (but not equal to) a.

Figure 2.2.2 shows a graphical interpretation of the limit concept. As x ap-
proaches a (from either side), the point (x, f(x)) on the graph y = f(x) must ap-
proach the point (a, L).

In this section we explore the idea of the limit, mainly through the investigation
of specific examples. A precise statement of the definition of the limit appears in
Section 2.3.

P —— X

EXAMPLE 1 Investigate the value of lim .
x—=3x+2

Investigation This is an investigation (rather than a solution) because numerical cal-

culations may strongly suggest the value of a limit but cannot establish its value with

certainty. The table in Fig. 2.2.3 gives values of

x—1
x+2°

correct to six rounded decimal places, for values of x that approach 3 (but are not equal
to 3). The first and third columns of the table show values of x that approach 3 both
from the left and from the right.

Now examine the table—read down the columns for x, because down is the ta-
ble’s direction for “approaches”—to see what happens to the corresponding values of
f(x). The data clearly suggest that

fx) =

x—1 2
= —. Q
x+2 5

lim
x—3

REMARK 1 The graph of f(x) = (x — 1)/(x + 2) in Fig. 2.2.4 reinforces our guess
that f(x) is near % when x is near 3. For still more reinforcement you can use a
graphing calculator or computer to zoom in on the point on the graph where x = 3.
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x—1 x—1
X X
x+2 x 42
2 0.250000 4 0.500000 ’ r
2.9 0.387755 3.1 0.411765
2.99 0.398798 3.01 0.401198
2.999 0.399880 3.001 0.400120 05
2.9999 0.399988 3.0001 0.400012 '
\ \ \ \ N ,
3 0.4 3 0.4 0 1 2 3 4 5 6
X
FIGURE 2.2.3 Investigating the limit in Example 1. FIGURE 2.2.4 The limit in
Example 1.
REMARK 2 Note that we did not simply substitute the value x = 3 into the function
f(x) = (x —1)/(x + 2) to obtain the apparent value % = 0.4 of the limit. Although
such substitution would produce the correct answer in this particular case, in many
limits it produces either an incorrect answer or no answer at all. (See Examples 2 and
3 and Problems 19 through 36 and 47 through 56.)
R — . . x2—4
EXAMPLE 2 Investigate the value of lim ———.
x—>2x24x—6
Investigation The numerical data shown in Fig. 2.2.5 certainly suggest that
, x2—4 4
lim ——— = —. — )
x—=2x2+x—-6 5
x> —4 x> —4
X —— X ——
x24+x—6 x24+x—6
1 0.750000 3 0.833333
1.5 0.777778 2.5 0.818182
1.9 0.795918 2.1 0.803922
1.99 0.799599 2.01 0.800399
1.999 0.799960 2.001 0.800040
1.9999 0.799996 2.0001 0.800004
\ \ \ \
2 0.8 2 0.8
FIGURE 2.2.5 Investigating the limit in Example 2.
s REMARK The function
2
—4
«(2.12) ) = >
| ] f x24x—6
y =y 0.8 r/voﬁ_ is not defined at x = 2, so we cannot merely substitute 2 for x. But if we let
E YT rx—6 x2—4
0.5 5 T if x # 2,
| g=1 T
0 —_ - ifx =2,
005 1 152 25 3 35 4 5
X

then g(x) is defined at x = 2 (and agrees with f(x) elsewhere). Is it clear to you that
f and g must have the same limit at x = 2? Figure 2.2.6 shows the graph y = g(x),
including the isolated point (2, 1.2) on its graph.

FIGURE 2.2.6 The limit in
Example 2.
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; Jt+25-5
t
1.0 0.099020
0.5 0.099505
0.1 0.099900

0.05 0.099950
0.01 0.099990
0.005 0.099995

{ =
0 0.1

FIGURE 2.2.7 Investigating the
limit in Example 3.

EXAMPLE 3 Investigate the value of lim
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VE+25-5

t—0 1

Investigation Here we cannot make a guess by substituting = 0 because the frac-
tion

g =

Jt+25-5
t

is not defined when ¢ = 0. But the numerical data shown in Fig. 2.2.7 indicate that

NVt +2 —5_ 1
. =

lim .
10

t—0
We can attempt to corroborate this result graphically by zooming in on the point (1, %).
The plot shown in Fig. 2.2.8 does not contradict the indicated limit, but somehow is
unconvincing because it “goes too far”” and suggests (incorrectly!) that g(r) = 11—0 for
t # 0. The problem is that the scale on the y-axis is too coarse. The magnification
shown in Fig. 2.2.9 does appear to substantiate the limiting value of %. I

| 0.101
0.5 b l 0.1005
g Vur2s-s
t /N 0, 1/10)
Y= o
0.5 0.0995
¥ 0.099

-1 -0.5 0 0.5 1 1 -0.5 0 0.5 1
t t

FIGURE 2.2.8 Graph of FIGURE 2.2.9 Graph of

JE+25-5 Vi+25-5
g(t):%for g(t):;forfl§t§ +1,

—1strs+1,-1sys + 1. 0.099 <y <0.101.

REMARK Can you see that, upon dividing each number in the second column of
Fig. 2.2.7 by 10000, one might well suspect that

Vt+25-5

I —0? Wrong!
5 100007 (Wrongl)

In fact, the value of this limit (as we will see in Example 13) is exactly 107> = 0.00001,
not zero. This fact constitutes a warning that numerical investigations of limits are not
conclusive.

The numerical investigation in Example 3 is incomplete because the table in
Fig. 2.2.7 shows values of the function g(#) on only one side of the point r = 0.
But in order that lim,_,, f(x) = L, it is necessary for f(x) to approach L both as x
approaches a from the left and as x approaches a from the right. If f(x) approaches
different values as x approaches a from different sides, then lim,_,, f(x) does not
exist. In Section 2.3 we discuss such one-sided limits in more detail.

EXAMPLE 4 Investigate lin}) f(x), given
x—

f(x):iz{ 1 ifx >0,
x| —1

ifx <O.
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+1

FIGURE 2.2.10 The graph of
fx) = ﬁ (Example 4).
X

i
|

‘F(O) =0 x

FIGURE 2.2.11 The graph of the
function F of Example 5.

Solution From the graph of f shown in Fig. 2.2.10, it is apparent that f(x) — 1 as
x — 0 from the right and that f(x) — —1 as x — 0 from the left. In particular, there
are positive values of x as close to zero as we please such that f(x) = 1 and negative
values of x equally close to zero such that f(x) = —1. Hence we cannot make f(x)
as close as we please to any single value of L merely by choosing x sufficiently close
to zero. Therefore,

lim * does not exist. — )
x—0 |x|
In Example 5 the value obtained by substituting x = a in F(x) to find

lim,_,, F(x) is incorrect.
EXAMPLE 5 Evaluate lirr(l) F (x) where
x—>

1 ifx #0,

Fxy= {0 if x = 0.

The graph of F is shown in Fig. 2.2.11.

Solution The fact that F(x) = 1 for every value of x # 0 in any neighborhood of
zero implies that

lim F(x) = 1.
x—0

But note that the value of the limit at x = 0 is not equal to the functional value
F(0) = 0 there. —

The Limit Laws

Numerical investigations such as those in Examples 1 through 3 provide us with an
intuitive feeling for limits and typically suggest the correct value of a limit. But most
limit computations are based neither on merely suggestive (and imprecise) numerical
estimates nor on direct (but difficult) applications of the definition of limit. Instead,
such computations are performed most easily and naturally with the aid of the /imit
laws that we give next. These “laws” actually are theorems, whose proofs (based on
the precise definition of the limit) are included in Appendix D.

Constant Law
If f(x) = C, where C is a constant [so f(x) is a constant function], then

lim f(x) = lim C = C. 5)
Sum Law
If both of the limits
lim f(x) =L and Ilimg(kx)=M
exist, then

lim [ £(x) % g(0)] = [ lim £()| + [ lim g(0)] = L& M. ©)

(The limit of a sum is the sum of the limits; the limit of a difference is the difference
of the limits.)
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Product Law
If both of the limits

lim f(x) =L and limg(x) =M
exist, then
lim[ ()00l = | lim £(0 | lim g(0)] = L. %)

(The limit of a product is the product of the limits.)

Quotient Law
If both of the limits

lim f(x) =L and Ilimgkx)=M
exist and if M # 0, then

lim f(x)
lim f) _ xa _ £_ ®)
x—ag(x)  limg(x) M

(The limit of a quotient is the quotient of the limits, provided that the limit of the
denominator is not zero.)

Root Law
If n is a positive integer and if @ > O for even values of n, then
lim J/x = ¥a. ©))

The case n = 1 of the root law is obvious:

limx = a. (10)

X—a

Examples 6 and 7 show how the limit laws can be used to evaluate limits of
polynomials and rational functions.

EXAMPLE 6
lim (x + 24 +4) = <lin%x2> + <lin% 2x> + (111% 4)

2
- (nmx) +2(limx>+<lin§4>:32+2-3+4=19_

x—3 x—3
_
EXAMPLE 7
acys _ m@eey
lim — = — 5
=3 x4+ 2x +4 11rr§(x +2x +4)
2-345 11
+ R

T 342344 19

NOTE In Examples 6 and 7, we systematically applied the limit laws until we could
simply substitute 3 for lim,_,3 x at the final step. To determine the limit of a quotient
of polynomials, we must verify before this final step that the limit of the denominator
is not zero. If the denominator limit is zero, then the limit may fail to exist.

EXAMPLE 8 Investigate lim ———.
a1 (x — 1)2
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Solution Because lim,_,;(x — 1)?> = 0, we cannot apply the quotient law. Moreover,
we can make 1/(x — 1)? arbitrarily large by choosing x sufficiently close to 1. Hence
1/(x — 1)? cannot approach any (finite) number L as x approaches 1. Therefore, the
limit in this example does not exist. You can see the geometric reason if you examine
the graph of y = 1/(x — 1)? in Fig. 2.2.12. As x — 1, the corresponding point (x, y)
ascends the curve near the vertical line x = 1. It must therefore leave the indicated
¥ i what y=L-¢ strip between the two horizontal lines x = L — ¢ and x = L + ¢ that bracket the
proposed limit L. Thus, the point (x, y) cannot approach the point (1, L) as x — 1.

|
|
| >
I
: EXAMPLE 9 Investigate li -4
nvestigate lim ——
x=1 & =2 x24+x—6
FIGURE 2.2.12 The graph of Solution We cannot immediately apply the quotient law (as we did in Example 7)

because the denominator approaches zero as x approaches 2. If the numerator were
approaching some number other than zero as x — 2, then the limit would fail to exist
(as in Example 8). But here the numerator does approach zero, so there is a possibility
that a factor of the numerator can be canceled with the same factor of the denominator,
thus removing the zero-denominator problem. Indeed,

1
y= 71)2 (Example 8).

(x —

. x> —4 =2 +2)
lim ——— =lim —-+——=
x=>2x24+x—-6 2 (x—2)(x+3)
— lim x—|—2 4
x—>2x+3 5'

We can cancel the factor x — 2 because it is nonzero: x # 2 when we evaluate the limit
as x approaches 2. Moreover, this verifies the numerical limit of 0.8 that we found in
Example 2. D

Substitution of Limits

It is tempting to write

lim vx2+9= /[ lim ()c2 +9)

x——4 x——4
=/(=4)?+9=+v25=5. (11)

But can we simply “move the limit inside the radical” in Eq. (11)? To analyze this
question, let us write

f(x)=+x and g(x)=x>+09.

Then the function that appears in Eq. (11) is the composite function

fgx) =gx) =vx2+

(Recall that the left-hand expression in this equation is read “f of g of x.”) Hence our
question is whether or not

lim f(g(x)) = f( lim g(x)).

The next limit law answers this question in the affirmative, provided that the “outside
function” f meets a certain condition; if so, then the limit of the composite function
f(g(x)) as x — a may be found by substituting into the function f the limit of g(x)
asx — a.
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Substitution Law Limits of Compositions
Suppose that
lim g(x) = L and that linl fx)= f(L).

Then
lim f(g(x)) = £( lim g(¥)) = f(L). (12)

Thus the condition under which Eq. (12) holds is that the limit of the outer func-
tion f notonly exists at x = L, but also is equal to the “expected” value of f—namely,
f(L). In particular, because

lim (x> +9) =25 and lim x =+25=35,
x——4 x—25
this condition is satisfied in Eq. (11). Hence the computations shown there are valid.

In this section we use only the following special case of the substitution law.

With f(x) = x'/", where n is a positive integer, Eq. (12) takes the form

)}1_1}(11 Jgx) = n }1_1)1‘11 g(x), 13)

under the assumption that the limit of g(x) exists as x — a (and is positive if n is
even). With g(x) = x™, where m is a positive integer, Eq. (13) in turn yields
m/n

lim x
X—a

= am/"’ (14)

with the condition that @ > 0 if n is even. Equations (13) and (14) may be regarded
as generalized root laws. Example 10 illustrates the use of these special cases of the
substitution law.

EXAMPLE 10

lim C/ 3Vx3 +204/x = \% lim (3232 +20/x') [using Eq. (13)]
1/3
= ( lin}t 332 4 lirI}t ZOﬁ) [using the sum law]
= (3-42+20v4)" [using Eq. (14)]
= (24 +40)'7 = J64 = 4. _

Slope-Predictor Functions
Our discussion of limits began with the slope
fla+h) — fla)

o = li 15
" hl—% h 13

of the line tangent to the graph y = f(x) at the point (a, f(a)). The lines tangent
to y = f(x) at different points have different slopes. Thus if we replace a with x in
Eq. (15), we get a new function defined by

Jx+h—f)

; (16)

) =i

This function m may be regarded as a “slope predictor” for lines tangent to the graph
y = f(x). Itis a new function derived from the original function f(x), and in Chap-
ter 3 we will call it the derivative of f.
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20

10 y=2x+4

y=x2+4x-12

10 5 0 5 10
X

FIGURE 2.2.13 The parabola
y = x2 4+ 4x — 12 and its slope
predictor m(x) = 2x + 4.

EXAMPLE 11 In Section 2.1 we saw that the line tangent to the graph y = px? +
gx + r at the point where x = a has slope m, = 2pa + q. Hence the slope-predictor
function for the quadratic function

f@) =px*+qx +r 17)
is the linear function

m(x) =2px +gq. (18)

Figure 2.2.13 illustrates the case p = 1, ¢ = 4, r = —12. It is worth noting that the
x-intercept where m(x) = 0 corresponds to the point of the parabola y = f(x) where
the tangent line is horizontal. —

The slope-predictor definition in Eq. (16) calls for us to carry out the following
four steps.

1. Write the definition of m(x).

2. Substitute into this definition the formula of the given function f.
3. Make algebraic simplifications until Step 4 can be carried out.

4. Determine the value of the limit as 7 — O.

Note that x may be thought of as a constant throughout this computation—it is /4 that
is the variable in this four-step process.

EXAMPLE 12 Find the slope-predictor function for the function
1
FOo =x+ -
X
that was investigated numerically in Example 5 of Section 2.1.

Solution The first two steps in the preceding list yield

1 1
S - f) (r+n i) - (+3)
0 h '

=1
m(x) h1—> h—0 h

We cancel the two copies of x in the numerator and proceed to simplify algebraically,
first finding a common denominator in the numerator:

1 1
h+ -
m(x) = lim __Xx+h X
h—0 h
. hx+hx+x—(x+h)
= lim
h—0 h(x + h)x
h(x+h)x —h

= lim
h—0  h(x + h)x

Now we can divide numerator and denominator by 4 (because 4 # 0) and finally apply
the sum, product, and quotient laws to evaluate the limit as 7 — 0:

. h(x+hx—nh
m(x)=Ilm—
h—0  h(x + h)x
B (x—l—h))c—l_x2—1_1 1
>0 (x+h)x  x2 x2

For instance, the slope of the line tangent to
1
y=x+-
X

at the point (2, %) ism(2) = % (thus verifying the result in Example 5 of Section 2.1).
N
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Example 13 illustrates an algebraic procedure often used in “preparing” func-
tions before taking limits. This procedure can be applied when roots are present and
resembles the simple computation

R SA R e
V5-V2 o V5-V2 V542

_N5HV2 V5 HV2
S 5—-2 3 '

EXAMPLE 13 Find the slope-predictor function for the function f(x) = /x.

Solution

—”x_'_hh_‘/; (19)

m(x) = lim
h—0

To prepare the fraction for evaluation of the limit, we first multiply the numerator and
denominator by the conjugate ~/x +h + \/x of the numerator:

VXFh =YX Vxth 4 Jx
h ENEw
— lim (x+h)—x
O h(xF b+ E)

mte) = fn

1
= lim —————.
h=0/x +h + x
Thus

m(x) = (20)

1
2Jx
(In the final step we used the sum, quotient, and root laws—we did not simply substi-
tute O for A.) _

Note that if we equate the right-hand sides of Egs. (19) and (20) and take x = 25,
then we get the limit in Example 3:

. A25+h -5 1
lim —mmM = —.
h—0 h 10

(The ¢ in Example 3 has been replaced here with #.) And if we divide both sides by
10000 we find that

. V254+h =5
1m =
h—0  10000Ah 100000

as claimed in the remark following Example 3.

= 0.00001,

2.2 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose that the function f is given together with the point P(a, f(a)) on its
graph. Then the slope of the straight line tangent to the graph of f at the point P

is
fx)— f(a)
B

—da

gx) =

2. Suppose that the function f is given together with the point P(a, f(a)) on its
graph. Then the slope of the straight line tangent to the graph of f at the point
P is the limiting value, as x approaches a, of the function g(x) defined in the
preceding item.
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3. To say that lim g(x) = L means that g(x) can be made arbitrarily close to the
X—a

number L merely by ensuring that x is sufficiently close to (but not equal to) the

number a.
4. lim x¥ =6.
5. 100 = —5 =% then lim g(x) = ¢2)
. = —— then lim = )
8 2+x—6 x—>2g X 8
6. If f(x) = |x_| then lin}) f(x) does not exist because f(0) is undefined.
X xX—>
7.1 P =10 X7 en lim Pl =0,
0 ifx =0, x—0
8. If lim f(x) = L and lim g(x) = M, then lim f(x)-g(x) =L - M.
. B . B f@ L
9. If lim f(x) = L and lim g(x) = M, then lim = —.
x—a x—a x—a g(_x) M

10. It follows from the limit laws that lin% V25 —x2 =4,

2.2 CONCEPTS: QUESTIONS AND DISCUSSION

1. The sum, product, and quotient laws imply that if the limits

lim f(x) and  lim g(x) @1

both exist, then the limit
lim[ f (1) © g(x)] (22)
also exists—with the symbol © denoting either +, —, x, or = (and assuming

in the case of division that lim,_,, g(x) # 0). Can you produce examples—
in all four cases—of functions such that neither of the limits in (21) exists, but
nevertheless the limit in (22) does exist? It may help to review the examples of
nonexisting limits in this section.

2. Can you produce examples of functions f and g such that both
;i_rgg(x) =b and ii_lgf(x) =c
exist, but
lim f(g(x)) # f( lim g(x))?

If so, why does this not contradict the substitution law of limits?

2.2 PROBLEMS

2 3 2 10
Apply the limit laws of this section to evaluate the limits in Prob- 7. lim @+ 1D 8. lim Gz"+2z+1)
lems 1 through 18. Justify each step by citing the appropriate =3 (x3 —25) -1 (23 +5)3
fimit la: 9. lim v4x + 5 10. 1im /27— /5
1. limGx? +7x — 12) x=l y=>4
x—3 T+ 8
11. lim(x> — 1)? 12. lim ,/——
2. 1im2(x3 —3x245) X3 ——4\ 25 — 12
o 23
i < im /363 + 41 — 5
3 lim(? = DT+ 7x - 4) 13. ll—r’%z—\/Z_z 14. 1im V/31° + 41 =5
. —— .3 3
4. lim (=3 + 3) (7 + 2 +5) 15, Jim vi(w =2) 16. lim vt +1)

2 292+ 2 4 1/3
. lim x 6. lim 12 17. lim \3/f2 18. lim (%)
=1 x24+x+1 —-2 12+ 4 =2\ (x —2) y—5 6y —3
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In Problems 19 through 28, note first that the numerator and de-
nominator have a common algebraic factor (as in Example 9).
Use this fact to help evaluate the given limit.

1 12—
19. lim —~ 11 20. lim 2
sl x2—x =2 -3 t—3
21 x-2 492 — 1
21, lim 2 TX 2 2. lim —2
x—>1x2—4x 43 y—>-1/24y2 + 8y + 3
246t+9 24
23, lim % +° 24, lim— "
--3 t2—-9 x—23x2 —2x — 8
2)2 3 —9¢
25, fim &2 26. lim
—-274—16 -3 12 —-9
3.1 3427
27. lim = 28. Y+
x—1 x4 —1 y—>-3 y2 — 9

In Problems 29 through 36, evaluate those limits that exist.

11 11
29, lim X3 30. lim 2+1 2
x—3 x —3 t—0 t
) 3
31. lim — 32, fim o= V*

33. lim ——— 34.

Vi+4-2 , 1( 1 1)

t—0 t =0 h \ \/9 +h 3
216 V1 — /1=
35. lim ~ 36, lim YL TX¥ - VI=x
x—4 2 — ﬁ x—0 X

In Problems 37 through 46, use the four-step process illustrated
in Examples 12 and 13 to find a slope-predictor function for the
given function f(x). Then write an equation for the line tangent
to the curve y = f(x) at the point where x = 2.

37. f(x) =x3 38. f(x)= )lc
1 1
39. f(x) = ; 40. f(x) = m
41. f(x) = 2 42, fx)= ——
x—1 x—1
_ 1 _ 2.3
B0 = —— M f0) =24
2
45. f(x) =2x 15 46. f(x) = xi 1

In Problems 47 through 56, the actual value of the given limit
lim,_,, f(x) is a rational number that is a ratio of two single-
digit integers. Guess this limit on the basis of a numerical investi-
gation in which you calculate f(x) forx = a=+0.1, x = a£0.05,
x =a=£0.01, x = a=£0.005, and so on. Use other similar values
of x near a as you wish.

1+x)?2—1 4
47, fim LFH =1 48. lim ~
x—0 X x—1 X — 1
/ _ 3/2 _
49, lim YX 273 50. lim *__ %
x—0 X x—=4 X — 4
-1 _ _ —1
sLdime |2 M s i @Y —G=0
x—=0 X (2 —+ x)3 4 x—=0 X
53, lim o* 54, Tim - %%
x—=0 X x—=0 x2
o 1Y\
55. lim = _om* 56. lim 1+ —
x—=0 x3 x—0 |x|

The Limit Concept SECTION 2.2 75

57. In contrast with the rational-valued limits in Problems 47
through 56, the value of the limit

lir%(l +x)x

is the famous irrational number e (of Chapter 3), whose
three-place decimal approximation is e & 2.718. Numeri-
cally investigate this limit to approximate e accurate to five
decimal places. Corroborate this value graphically by zoom-
ing in on the y-intercept of the curve y = (1 4 x)"/*.

58. Verify graphically the limit

. sinx
lim —
x—>0 X

of Problem 53 by zooming in on the y-intercept of the curve
y = (sinx)/x.

59. Investigate the limit

. X —tanx
lim ——
x—=0 x3

both numerically and graphically. Determine its value accu-
rate to four decimal places.

60. The value of

sin 2x

im
x—0 tan 5x

is the ratio of two single-digit integers. Determine this value
both numerically and graphically.

61. Calculate the value of
LT
f(x) =sin —
X

— 1 11 1
forx_2,4,8, -

the value of

.. What do you now conjecture to be

. . T
lim sin —?
x—0 X
Next calculate f(x) forx = 3, 3, %, &, ... . Now what do
you conclude?
62. To investigate the limit of f(x) = sinx + 107 cosx as

x — 0, set your graphing calculator or computer to display
exactly four digits to the right of the decimal point. After
calculating f(x) with x = 0.1, 0.001, 0.00001, 0.0000001,

., what do you conclude? (Your answer may depend on
how your particular calculator works.) Now zoom in on the
y-intercept of the curve y = f(x) sufficiently to show that
the value of the limit is nonzero. What is it?

63. Investigate numerically or graphically (or both) the value of

the limit
1\
lim (log,, — .
fi%((’gm |x|>

The actual value of this limit is zero, so you’ll see that your
calculator or computer cannot always be believed.
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64. (a) Show that the slope of the line tangent to the graph of results substantiate the fact that L = 1n 10, the value pro-

y = 10* at the point (0, 1) is the number

duced by the key on your calculator? (b) Show that
the slope-predictor function for lines tangent to the graph

o
L = lim 10 1_ y = 10" is m(x) = L - 10*. Corroborate this fact by using a
h=0 calculator or computer to plot the graph of y = 10 and its
Investigate this limit numerically and graphically. Do your predicted tangent lines at several different points.

2.2 INVESTIGATION: Limits, Slopes, and Logarithms

8

6

<
5]

(UY)

y=aX

y=L@)x+1

-0.5 0
X

0.5

FIGURE 2.2.14 The graph of
y = a* and its tangent line at the
point (0, 1).

Generalize the result in Problem 64 of this section. First refer to Fig. 2.2.14. Then
suppose that a is a positive constant. Show that the slope of the line tangent to the
graph of y = a* at the point (0, 1) is the number

h

a p—
L(a)=1 ) 1
(@) = lim W e}
(Note how the notation of functions is used in Eq. (1) to emphasize the dependence of
the slope on the base constant a.) Next choose at random a pair of positive integers a
and b and investigate the numerical values of L(a), L(b), and L(ab). Are your results
consistent with the fact that

L(ab) = L(a) + L(b), 2)
in analogy with the law of logarithms
logab = loga + log b? A3)

At this point the connection between Eqgs. (2) and (3) is surely an enigma rather than
an explanation. The mystery will be explained in Section 3.8, in which we study
natural logarithms. For now, use the key on your calculator to find Ina, In b, and
In ab; compare these with your earlier values of L(a), L(b), and L(ab). You can also
follow up these investigations with a computer algebra system: Use it to attempt to
evaluate the limit in Eq. (1) symbolically, and then compare the symbolic result with
your numerical results.

@ 2.3 MORE ABOUT LIMITS

y

x24+y2=

P(cos 6, sin 6)

’R(l,O)

FIGURE 2.3.1 An angle 6.

X

To investigate limits of trigonometric functions, we begin with Fig. 2.3.1, which shows
an angle 6 with its vertex at the origin, its initial side along the positive x-axis, and its
terminal side intersecting the unit circle at the point P. By the definition of the sine and
cosine functions, the coordinates of P are P(cos#, sin6). From geometry we see that,
as & — 0, the point P(cos @, sin) approaches the point R(1, 0). Hence cosf — 1
and sinf — 0 as & — O through positive values. A similar picture gives the same
result for negative values of 6, so we see that

limcos =1 and limsind = 0. (1)
0—0 0—0

Equation (1) says simply that the limits of the functions cos 6 and sin6 as 6 — 0 are
equal to their respective values at @ = 0: cos0 = 1 and sin0 = 0.

The limit of the quotient (sin#)/0 as & — 0 plays a special role in the calculus
of trigonometric functions. For instance, it is needed to find slopes of lines tangent to
trigonometric graphs such as y = cosx and y = sin x.

Note that the value of the quotient (sin#)/6 is not defined when 6 = 0. (Why
not?) But a calculator set in radian mode provides us with the numerical evidence
shown in Fig. 2.3.2. This table strongly suggests that the limit of (sinf)/6 is 1 as
6 — 0. This conclusion is supported by the graph of y = (sinx)/x shown in Fig. 2.3.3,
where it appears that the point (x, y) on the curve is near (0, 1) when x is near zero.
Later in this section we provide a proof of the following result.
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P sin 6
%
+1.0 0.84147
+0.5 0.95885
+0.1 0.99833
+0.05 0.99958
+0.01 0.99998
4+0.005 1.00000 y
40.001 1.00000
] 1
0 1 10 -5 0 5 10
X
FIGURE 2.3.2 The numerical data FIGURE 2.3.3 y = ﬂ for
t that li ﬂ =1 x #0 *
suggest thal 61310 g =1 .

THEOREM 1 The Basic Trigonometric Limit
sin
lim 208 )

x—0 X

As in Examples 1 and 2, many other trigonometric limits can be reduced to the
one in Theorem 1.

EXAMPLE 1 Show that

.1 —cosx
lim —— =0. 3)

x—0 X

Solution We multiply the numerator and denominator in Eq. (3) by the “conjugate”

1 4+ cos x of the numerator 1 — cos x. Then we apply the identity 1 — cos> x = sin” x.
This gives
. 1 —cosx . l—cosx 14cosx . sin® x
lim —— = lim . =lim ——
x—0 X x—0 X 1+cosx x—0x(1+cosx)
. i 0
= (1im 228 (im 2 )= 2 o,
=0 X x—0 1+ cosx 1+1
In the last step we used al// the limits in Egs. (1) and (2). N
S — . tan3x
EXAMPLE 2 Evaluate lim
x—0 X
Solution
. tan3x . tan3x . tan@
lim =3 lim =3 lim (0@ =3x)
x—=0 X x—0 3x 6—-0 6
. sin @ sin &
=3{ lim because tanf =
6—0 6 cos O cos b
. sin@ . 1 o
=3 lim — ) [ lim (by the product law of limits)
6—0 0 6—0 cos 6
1
=3.1-—=3.
1

We used the fact that tan6& = (sinf)/(cos#) as well as some of the limits in Egs. (1)
and (2). S
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Example 3 constitutes a warning: The results of a numerical investigation can be
X sin =~ misleading unless they are interpreted with care.
X
1 0 EXAMPLE 3 The numerical data shown in the table of Fig. 2.3.4 suggest that the
05 0 limit
0.1 0
T
0.05 0 lim sin — C))
0.01 0 =0 x
0.005 0 . . .
0.001 0 has the value zero. But it appears in the graph of y = sin(;r/x) (for x # 0), shown
: in Fig. 2.3.5, that the value of sin(7/x) oscillates infinitely often between +1 and —1

as x — 0. Indeed, this fact follows from the periodicity of the sine function, because
7 /x increases without bound as x — 0. Hence sin(sr/x) cannot approach zero (or any
other number) as x — 0. Therefore the limit in (4) does not exist.

We can explain the potentially misleading results tabulated in Fig. 2.3.4 as fol-
lows: Each value of x shown there just happens to be of the form 1/n, the reciprocal
y = sin(1/x) of an integer. Therefore,

FIGURE 2.3.4 Do you think that
lim sin - = 0 (Example 3)?
x—0 X

4 . T .
sin — =sin— =sinnw =0
X 1/n

for every nonzero integer n. But with a different selection of “trial values” of x, we
might have obtained the results shown in Fig. 2.3.6, which immediately suggest the
nonexistence of the limit in (4). N

-1 -0.5 0 0.5 1
X

FIGURE 2.3.5 The graph of The Squeeze Law of Limits

y= Sin% shows infinite oscillation A final property of limits that we will need is the squeeze law (also known as the
as x — 0 (Example 3). “sandwich theorem”). It is related to the fact that taking limits preserves inequalities
among functions.

Figure 2.3.7 illustrates how and why the squeeze law works and how it got its
name. The idea is that g(x) is trapped between f(x) and & (x) near a; both f(x) and

x | sin™ h(x) approach the same limit L, so g(x) must approach L as well. A formal proof of
X the squeeze law can be found in Appendix D.
;0 Hl
2 -1 Squeeze Law
o 41 Suppose that f(x) < g(x) < h(x) for all x # a in some neighborhood of a and
121 also that
o L lim f(x) = L = lim h(x).
L +1 X—>a X—>a
10201 Then
ws | L lim g(x) = L
X—a

FIGURE 2.3.6 Verify the entries in as well.
the second column (Example 3).

EXAMPLE 4 Figures 2.3.8 and 2.3.9 show two views of the graph of the function g
¥y =h(x) defined for x # 0 by

1
g(x) = xsin —.
X

LE==77777 I
|
=/ | As in Example 3, sin(1/x) oscillates infinitely often between +1 and —1 as x — 0.
| Therefore the graph y = g(x) bounces back and forth between the lines y = +x and
:l ¥y = —x. Because [sin(1/x)| < 1 for all x # 0,
1
;IGURIT(Z.BJ How the squeeze —|x| £ xsin— < +|x]
w works. X

78
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02

0.2 A : N
02 -0.1 0 0.1 0.2

FIGURE 2.3.8 The graph of FIGURE 2.3.9 The graph

! magnified near the origin
g(x) = xsin p forx #0 (Ex%imple 4). £
(Example 4).

for all x # 0. Moreover, £|x| — 0 as x — 0, so with f(x) = —|x| and h(x) = +|x]|,
it follows from the squeeze law of limits that

1
lim x sin — = 0. (5)

x—0 X
—

QUESTION Why doesn’t the limit in Eq. (5) follow from the product law of limits
with f(x) = x and g(x) = sin(1/x)?

One-Sided Limits

In Example 4 of Section 2.2 we examined the function

y
1 X 1 ifx > 0;
f(x)_m_:—l if x < 0.

X

-1 The graph of y = f(x) is shown in Fig. 2.3.10. We argued that the limit of f(x) as
x — 0 does not exist because f (x) approaches +1 as x approaches zero from the right,
whereas f(x) — —1 as x approaches zero from the left. A natural way of describing

FIGURE 2.3.10 The graph of this situation is to say that at x = 0 the right-hand limit of f(x) is +1 and the left-hand
) = ﬁ again. limit of f(x)is —1.
X

Here we define and investigate such one-sided limits. Their definitions will be
stated initially in the informal language we used in Section 2.2 to describe the “idea of
the limit.” To define the right-hand limit of f(x) at x = a, we must assume that f is
defined on an open interval immediately to the right of a. To define the left-hand limit,
we must assume that f is defined on an open interval immediately to the left of a.

The Right-Hand Limit of a Function
Suppose that f is defined on the interval (a, ¢) immediately to the right of a. Then
we say that the number L is the right-hand limit of f(x) as x approaches a (from
the right), and we write

lim f(x) =L, 6)

x—at

provided that we can make the number f(x) as close to L as we please merely by
choosing the point x in (a, c) sufficiently close to a.

We may describe the right-hand limit in Eq. (6) by saying that f(x) — L as
x — a™; that is, as x approaches a from the right. The symbol a* denotes the right-
hand, or “positive,” side of the number a (which may be positive, negative, or zero).

79
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y=fx)

(a)

(b)

FIGURE 2.3.11 (a) The right- hand
limit of f(x) is L. (b) The left-hand
limit of f(x)is L.

4+ ]
3 @O
2+ @O
1 e=o
| | | | | | |
-3 -2 -1 1 2 3 4 52X
o0 ]
@O —) —
[ ] -3+

FIGURE 2.3.12 The graph of the
greatest integer function f(x) = [x]
(Example 5).

For instance, we see in Fig. 2.3.10 that

lim il =+1 7)
x—0t X
because |x|/x is equal to +1 for all x to the right of zero. See Fig. 2.3.11(a) for a more
general geometric interpretation of right-hand limits.

The Left-Hand Limit of a Function
Suppose that f is defined on the interval (¢, @) immediately to the left of a. Then
we say that the number L is the left-hand limit of f(x) as x approaches a (from
the left), and we write

lim f(x) =1L, 3

X—a

provided that we can make the number f(x) as close to L as we please merely by
choosing the point x in (c, a) sufficiently close to a.

We may describe the left-hand limit in Eq. (8) by saying that f(x) — L as
x — a~; thatis, as x approaches a from the left. The symbol a™ denotes the left-hand
or “negative” side of a.
For instance, we see in Fig. 2.3.10 that
lim I =—1 9
x—>0" X
because |x|/x is equal to —1 for all x to the left of zero. See Fig. 2.3.11(b) for a more
general geometric interpretation of left-hand limits.
In Example 4 of Section 2.2 we argued (in essence) that, because the limits in
Egs. (7) and (9) are not equal, the corresponding two-sided limit
lim X!
im —
x—>0 Xx
does not exist. More generally, Theorem 2 (next) follows from careful consideration
of the definitions of all the limits involved.

THEOREM 2 One-Sided Limits and Two-Sided Limits
Suppose that the function f is defined for x # a in a neighborhood of the point a.
Then the two-sided limit

lim f(x)
X—a
exists and is equal to the number L if and only if the one-sided limits

lim+ f(x) and lim f(x)

X—a xX—a—

both exist and are equal to L.

Theorem 2 is particularly useful in showing that certain (two-sided) limits do not
exist, frequently by showing that the left-hand and right-hand limits are not equal to
each other.

EXAMPLE 5 The graph of the greatest integer function f(x) = [x] is shown in
Fig. 2.3.12. It should be apparent that if a is not an integer, then

1im+[[x]] = lim [[x]] = Iim[[x]] = [a].

X—a X—a
But if @ = n, an integer, then

limi[[x]] =n—1 and lim [[x] =n.
Because these left-hand and right-hand limits are not equal, it follows from Theorem 2
that the limit of f(x) = [[x]] does not exist as x approaches an integer 7. —
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FIGURE 2.3.13 y = f(x)
(Example 7).
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EXAMPLE 6 According to the root law in Section 2.2,

lim v/x =+/a ifa>0.

X—a
But the limit of f(x) = 4/x as x — 0~ is not defined because the square root of a
negative number is undefined. Hence f is undefined on every open interval containing
zero. What we can say in the case a = 0 is that

lim /x =0,
x—0t
and that the left-hand limit
lim /x
x—0~
does not exist. _ )

To each of the limit laws in Section 2.2 there correspond two one-sided limit
laws—a right-hand version and a left-hand version. You may apply these one-sided
limit laws in the same way you apply the two-sided limit laws in the evaluation of
limits.

EXAMPLE 7 Figure 2.3.13 shows the graph of the function f defined by

x?2 ifx <0;
= 1
Fx) xsin— ifx > 0.
X
Clearly
lim f(x)=0 and lim f(x)=0
x—>0~ x—>07F
by a one-sided version of the squeeze law (as in Example 4). It therefore follows from
Theorem 2 that
liH(l) fx)=0. S

EXAMPLE 8 Upon applying the appropriate one-sided limit laws, we find that

2 lim x?
lim +\/9—x2)=L+ lim (9 — x2
x—=>37 <)C2 +1 lim (.Xz +1) x—>3*( )
x—>3"
9 9
LV Py
9+1 + 10
Note that the two-sided limit at 3 is not defined because +/9 — x2 is not defined when
x > 3. _ D

Existence of Tangent Lines

Recall that the slope of the line tangent to the graph y = f(x) at the point P(a, f(a))
is defined to be

L f) - f@
m = lll’Il ——
x—a X —a

(10)

provided that this (two-sided) limit exists. In this case an equation of the line tangent
to the graph y = f(x) at P(a, f(a)) is

y—fla)=m(x —a).

If the limit in (10) does not exist, then we say that the curve y = f(x) does not have a
tangent line at the point P. The following example gives perhaps the simplest example
of a function whose graph has a tangent line everywhere except at a single isolated
point.

81
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y=lx|

FIGURE 2.3.14 The graph of
f(x) = |x| has a corner point
at (0, 0).

__

FIGURE 2.3.15 The graph of the

function f(x) =

(x = D2

FIGURE 2.3.16 The graph of the

function f(x) = —.
X

EXAMPLE 9 Show that the graph y = |x| has no tangent line at the origin.

Solution Figure 2.3.14 shows the graph of the function f(x) = |x|. The sharp corner
at the point (0, 0) makes it intuitively clear that there can be no tangent line there—
surely no single straight line can be a good approximation to the shape of the graph at
the origin. To verify this intuitive observation, note that when @ = 0 we have

fla+h —fl@ _|hl _ {—1 ifh <0,

h h +1 ifh > 0.

Hence the left-hand limit of the quotient is —1, whereas the right-hand limit is +1.
Therefore the two-sided limit in (10) does not exist, so the graph y = |x| has no
tangent line at the origin, where a = 0. _ )

QUESTION Does Fig. 2.3.14 make it clear to you that for f(x) = |x| and a # 0, the
value of the “slope limit” in (10) is given by

_ —1 ifa <O;
M=V4 ifa > 0?

It follows (as is apparent from Fig. 2.3.14) that the line y = x is tangent to the graph
y = |x| at any point of the graph to the right of the origin, and that the line y = —x is
the tangent line at any point of the graph to the left of the origin.

Infinite Limits

In Example 8 of Section 2.2, we investigated the function f(x) = 1/(x — 1)?; the
graph of f is shown in Fig. 2.3.15. The value of f(x) increases without bound (that
is, eventually exceeds any preassigned number) as x approaches 1 either from the right
or from the left. This situation can be described by writing

1 1
Iim — =400 = lim ——, 11
xs1- (x — 1)2 + 1t (x — 1)2 (1)

and we say that each of these one-sided limits is equal to “plus infinity.”

CAUTION The expression

1

e 42

does not mean that there exists an “infinite real number” denoted by +oo—there does
not! Neither does it mean that the limit on the left-hand side in Eq. (12) exists—it does
not! Instead, Eq. (12) is just a convenient way of saying why the right-hand limit in
Eq. (12) does not exist: because the quantity 1/(x — 2)? increases without bound as
x — 1T

With similar provisos we may write

lim — = 13

lim G 17 +00 (13)
despite the fact that the (two-sided) limit in Eq. (13) does not exist. The expression in
Eq. (13) is merely a convenient way of saying that the limit in Eq. (13) does not exist
because 1/(x — 1)? increases without bound as x — 1 from either side.

Now consider the function f(x) = 1/x; its graph is shown in Fig. 2.3.16.
This function increases without bound as x approaches zero from the right but de-
creases without bound—it becomes less than any preassigned negative number—as x
approaches zero from the left. We therefore write
1

1
Iim — =—-00 and lim — = 4o0. (14)
x—=0" X x—0t X



www.konkur.in

10 T T
I
\
5 ! y_2x+1
| x—1
\\\
,,,,, R
=2
y 0 : !
[
\
\
-5 f
\
\
Ix=1
- |
1% 5 0 5 10

FIGURE 2.3.18 Graph of

2. 1
foy=210
x—1

2
1.5

1
0.5 M

y 0
-0.5
-1
-1.5
-2

012345678910
X

FIGURE 2.3.19 Graph of
f(x) =logx.
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There is no shorthand for the two-sided limit in this case. We may say only that

.1 .
lim — does not exist.
x—0 X

EXAMPLE 10 Investigate the behavior of the function

2x + 1
x —1

fx) =
near the point x = 1, where the limit of f(x) does not exist.

Solution First we look at the behavior of f(x) just to the right of the number 1. If x
is greater than 1 but close to 1, then 2x + 1 is close to 3 and x — 1 is a small positive
number. In this case the quotient (2x + 1)/(x — 1) is a large positive number, and the
closer x is to 1, the larger this positive quotient will be. For such x, f(x) increases
without bound as x approaches 1 from the right. That is,

2x—|—1_

lim +00, (15)
x—1t x —1
as the data in Fig. 2.3.17 suggest.
2x + 1 2x + 1
X X
x—1 x—1
1.1 32 0.9 —28
1.01 302 0.99 —298
1.001 3002 0.999 —2998
1.0001 30002 0.9999 —29998
" \ \ |
1 400 1 —00

2
FIGURE 2.3.17 The behavior of f(x) = —

X
near 1 (Example 10).

If instead x is less than 1 but still close to 1, then 2x + 1 is still close to 3, but now
x — 1 is a negative number close to zero. In this case the quotient 2x +1)/(x — 1) isa
(numerically) large negative number and decreases without bound as x — 1~. Hence

we conclude that ) :
im 20 - (16)
r—1- x—1

The results in Eqgs. (15) and (16) provide a concise description of the behavior of
f(x) = 2x + 1)/(x — 1) near the point x = 1. (See Fig. 2.3.18.) Finally, to re-
main consistent with Theorem 2 on one-sided and two-sided limits, we do not write

o 2x+1
lim =00
x—1 x—l

(Wrong!)

Do you see, however, that it would be correct to write

2x + 1

X —

lim
x—1

= 400? —

EXAMPLE 11 The graph of f(x) = log,,x is shown in Fig. 2.3.19. The graph
makes it clear that

lim log,yx = —o0.
x—0t £10

But the left-hand limit of f(x) at x = 0 does not exist because log;, x is not defined if
x 0. .
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y=21/x

y:2”" forx >0

forx <0

<«
bbbl 0w e W,

S5-4-3-2-101223435
X

FIGURE 2.3.20 Graph of

fx) =2/~
y
— 2+yr=1
S
P
sin@ tanf
0 o J 0 \
cosf i R X

FIGURE 2.3.21 Aid to the proof of
the basic trigonometric limit.

EXAMPLE 12 Look at the graph of y = 2* in Fig. 1.4.10 to see that

1
lim — = —oco implies that  lim 2Y/* =0
x—=0" X x—0~

(because 2" — 0 as t — —o0), whereas

1
lim — = oo impliesthat lim 2% = 0o
x—0t X x—>07F

(because 2! — 400 as t — —+00). These one-sided limits of 2!/* at x = 0 are
illustrated in Fig. 2.3.20. —

The Basic Trigonometric Limit

We now provide a geometric proof that

ing
i . — 1), 17)
9—0 @

Proof Figure 2.3.21 shows the angle 6, the triangles OPQ and ORS, and the circular
sector OPR that contains the triangle OPQ and is contained in the triangle ORS. Hence

area(AOPQ) < area(sector OPR) < area(AORS).

In terms of 0, this means that

1 . 1 1 sin 6

—sinfcosf < -0 < —tanf = .

2 2 2 2cos0
Here we use the standard formula for the area of a triangle to obtain the area of AOPQ
and AORS. We also use the fact that the area of a circular sector in a circle of radius

ris A = %r29 if the sector is subtended by a central angle of 6 radians; here, r = 1.

If0 < 6 < m/2, then we can divide each member of the last inequality by % sinf to
obtain

1
cosfh) < — < .
sin O cos b

We take reciprocals, which reverses the inequalities:

sinf 1
cosfh < — < .
0 cos
Now we apply the squeeze law of limits with
sin 0 1
f(6) =cosb, g0) = —, and h(0) = .
0 cos 6

Because it is clear from Eq. (1) (at the beginning of this section) that f(6) and h(0)
both approach 1 as & — 0T, so does g(f) = (sinf)/0. This geometric argument
shows that (sin#)/60 — 1 for positive values of 6 that approach zero. But the same
result follows for negative values of 6, because sin(—8) = — sinf. So we have proved
Eq. (17). *

The Precise Definition of the Limit

When we say that f(x) approaches the limiting value L as x approaches a, we imply
that the behavior of the variable x controls the behavior of the value f(x). As x
approaches a, this forces the value of f(x) to approach L. In Section 2.2 we said that
lim,_,, f(x) = L provided that we can make f(x) as close to L as we please merely
by choosing x sufficiently close to a (though not equal to a).

But how close is “sufficiently close”? We can say how close to L we want f(x)
to be by prescribing an error tolerance. Then the question is this: How close to ¢ must
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x be in order to force the numerical difference | f (x) — L|—the “discrepancy” between
f(x) and L—to be less than the prescribed error tolerance. For instance:

» How close to @ must x be to guarantee that | f(x) — L| < 0.1?
» How close to @ must x be to guarantee that | f(x) — L| < 0.01?
o How close to a must x be to guarantee that | f(x) — L| < 0.001?

For any given error tolerance—however small it may be—we need to determine how
close to a (but not equal to a) the variable x must be in order to satisfy that error
tolerance.

EXAMPLE 13 Suppose that a = 2 and f(x) = 5x — 3. We could easily use the
limit laws to show that lim,_,,(5x — 3) = 7, so that L = 7. But let’s instead begin
afresh. We note first that

|f(x)— L =|5x=3)—T7]=15x—10| =5 |x — 2|
Thus |(5x — 3) — 7| is always 5 times |x — 2|. It follows that

« If |x — 2| < 0.02 then [5x — 10| =5 - |x — 2| < 5-(0.02) = 0.1.
e If |x — 2] < 0.002 then |5x — 10] = 5 - |x — 2| < 5 - (0.002) = 0.01.
e If |x — 2| < 0.0002 then |5x — 10| = 5 - |x — 2| < 5 - (0.0002) = 0.001.

More generally, we need only divide any given error tolerance € > 0 by 5 to get the
“variance” in x that works:

It |x—2|<§ then |(5x—3)—7|:5~|x—2|<5-§:e. (18)

Thus we can force f(x) = 5x — 3 to be within € of L = 7 merely by requiring
that x be within €/5 of @ = 2. In this example it is also harmless if x = 2 as well—in
which case [(5x — 3) — 7| = O—but we include the requirement that x # 2 by writing
0 < |x — 2| < €/5. Finally, if we write 6 = €/5 for this variance in x that forces an
acceptable discrepancy in f(x) = 5x — 3, we conclude from (18) that

|[6x —3) —7| <€ forall x suchthat 0 < |x —2| <. 19
— 9

The exact meaning of limits was debated vigorously—sometimes acrimoni-
ously—during the 17th and 18th centuries. The condition in (19) illustrates the precise
definition of the limit that was finally formulated by the German mathematician Karl
Weierstrass (1815-1897) and is the definition accepted to this day.

DEFINITION The Limit

Suppose that f(x) is defined in an open interval containing the point a (except
possibly not at a itself). Then we say that the number L is the limit of f(x) as x
approaches a—and we write

lim f(x) =L

—provided that the following criterion is satisfied: Given any number € > 0, there
exists a corresponding number 6 > 0 such that

|f(x) —L| <e forall xsuchthat 0 < |x —al| < 8. (20)
The condition in (20) can be rewritten in the form
If O<|x—al<é then |f(x)—L|<e,
or even more simply in the form

0<|x—a|l <5 impliesthat |f(x)—L| <e. (21)
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y
x=a-0
L+e€
) S — —
|
|
|
L ; L
—€ + y=L—¢€
|
|
a-0 a a+d X

FIGURE 2.3.22 Geometric illustration of the
limit definition.

Figure 2.3.22 illustrates this definition, which for obvious reasons is often called
the “epsilon-delta” definition of limits. The points on the graph of y = f(x) that
satisfy the inequality |f(x) — L| < e are those that lie between the horizontal lines
y = L —€eand y = L 4 €. The points on this graph that satisfy the inequality
|x —a| < & are those that lie between the vertical lines x = ¢ — § and x = a + 6.
Consequently, the definition of the limit implies that lim,_,, f(x) = L if and only if
the following statement is true:

Suppose that the two horizontal lines y = L — € and y = L 4 € (with € > () are
given. Then it is possible to choose two vertical lines x =a —dandx =a +§
(with 6 > 0) so that every point (with x # a) on the graph of y = f(x) that lies
between the two vertical lines must also lie between the two horizontal lines.

Figure 2.3.22 suggests that the closer together are the two horizontal lines, the
closer together the two vertical lines will need to be. This is precisely what we mean
by “making f(x) closer to L by making x closer to a.”

Application of the epsilon-delta definition of limits to establish a limit is usually
a two-step process:

e Given € > 0, we first analyze the first inequality |f(x) — L| < € in (20) to
estimate or deduce a value of § > 0 that works.

« Then we attempt to prove that this value of § works—that is, prove that 0 <
|x —a| < & implies that |f (x) — L| < €.

EXAMPLE 14 Use the epsilon-delta definition of limits to prove that
lim(13x — 29) = 10.
x—3

Solution Our analysis of the first inequality in (20) consists of noting that it takes the
form

[(13x —29) — 10| = [13x = 39| =13 - |x — 3| < ¢,
which boils down to |[x — 3| < €/13. This leads us to guess—on the basis of rather

strong circumstantial evidence—that the value § = €/13 will work. To prove this, we
need only note that if § = €/13, then

0<|x—3] <§é implies that |(13x—29)—10|:13-|x—3|<13-16—326.

Thus 0 < |x — 3| < § implies that [(13x — 29) — 10| < ¢, as desired. _
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EXAMPLE 15 Use the epsilon-delta definition of limits to prove that lim, ¢ &/x =

0.

Solution Our analysis of the first inequality in (20) consists of noting that it takes the
form

|95 = 0] = | 97| = VAT <<,

which can be simplified to |x| < €3. This leads us to guess that the value § = € will
work. To prove this, we need only note that if § = €3, then

0<l|x—0] <8 impliesthat |J/x —0|= /x| < Ve =e.
Thus 0 < |x — 0] < § implies that |.&/x — 0| < €, as desired. ]

Given a value of € > 0, it is frequently more difficult to guess a value of §
that works than to prove that it does; see Problems 75-84 and this section’s project
for additional practice. In Appendix D we use the epsilon-delta definition of limits to
establish rigorously the laws of limits.

2.3 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

sin x

1. lim — = 1.
x—>0 X
1— 0
2. 1im — B 2
x—0 X 0
tan 3 tan 3
3. tim P g B3 s
y—0 y y—0
4. If x is any real number, then —|x| < x < |x|.
5. If f(x) = —, then lim f(x) = land lim f(x) = —1.
|x| x—07F x—>0"
6. Let g(x) = [[x] (the greatest integer function). Then lin% g(x) does not exist
X—>3

because the left-hand limit of g(x) at x = 3 is not equal to the right-hand limit
of g(x)atx = 3.
7. There is no line tangent to the graph of f(x) = |x| at (0, 0).
1

8. lim — =0.
x—0 X

1 .
9. lim - does not exist.
x—>0 X

1
10. lim — = +o0.
x—0 x2

2.3 CONCEPTS: QUESTIONS AND DISCUSSION

1. We have interpreted the statement lim,_,, f(x) = L to mean (roughly) that
“f(x) tends to get closer and closer to L as x gets closer and closer to a.” What
would be meant by the statement that “ f (x) gets steadily closer to L as x gets
steadily closer to a”? State it precisely, something along the lines that *“ f(x) is
still closer to L whenever x is still closer to a” (which is still not sufficiently pre-
cise). Does this follow from the statement that lim,_,, f(x) = L? It may help to
think about the oscillatory function of Example 4.

2. Formulate precise epsilon-delta definitions of one-sided limits, as well as an M-
delta definition of the infinite limit lim,_,, f(x) = +o0o. The latter definition
should involve the inequality f(x) > M; illustrate it with a figure that is similar
to Fig. 2.3.22, but involves only a single horizontal line.
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2.3 PROBLEMS

Find the trigonometric limits in Problems 1 through 24. If you
have a graphing calculator or a computer with graphing facility,
verify that graphical evidence supports your answer.

2 2
0
1. lim — 2. lim 22
6—0 sin @ 40 @2
1 —cos@ tan @
3. lim — 7 4. lim 27
NG) 02 6—0 @
2t in(262
5. lim—— 6. 1im S12%)
1—0 (sint) — ¢ -0 6
7. lim sin S5x 8. lim sin 2z
=0 X =0 7 COS 32
i 1 —cos?2
9, lim 0¥ 10. lim —%~*
x—0 X x—0 X
1 in 36)?
11. lim - sin & 12. 1im &3
=0 X 3 6—0 62 cos6
1-— tan 3
13. lim — % 14. lim —22%
x—0  sinx x—0 tan Sx
in 20
15. lim x sec x csc x 16. lim s
x—0 6—0 0
1 —cosf in> 0
17. lim — %Y 18. lim 20
-0 @sinf 6—-0 O
t tan 2
19. lim —2% 20. lim 2=
=0 sin 2z x—0 3x
—t
21. lim x cot3x 22. lim ! - anx
x—0 x—0 sSin x
1 t in2
23. lim — sin’( ~ 24. lim 222Y
1—0 12 2 x—0 sin Sx

Use the squeeze law of limits to find the limits in Problems 25
through 28. Also illustrate each of these limits by graphing the
functions f, g, and h (in the notation of the squeeze law) on the
same screen.

1
25. lim x” cos 10x 26. lim x” sin —
X

x—0 x—0

1
27. lim x” cos —

lim x” cos T
Use one-sided limit laws to find the limits in Problems 29 through
48 or to determine that they do not exist.

29. lim (3 - JVx) 30. lim (4 4 3x%?)
x—0

1
28. lim </ sin —
x—0 X

x—0t
31. lim vx —1 32. lim v4 —x
x—>1" x—>4-
33. lim+ Vx2—4 34, lim+ 9 —x2
x—>2 x—3
35. lim /x(5 —x) 36. lim xv/4 — x2
x—>5— x—27

4
* 38. lim v6—x—x2

37. lim
x—4t x—4 x——3
x—=5 16 — x?
39, 40. lim ——
o x =5 e 16— x2
Vxr—6x+9 -2
4. fim Y2 4. lim -~
x—3+ x—3 x—>2t x2 —5x +6
2 — 77—
43. lim —> 44. lim >
x—2F IX — 2| x—=7" |x — 7|

2

45. lim 46. lim
x—1+ 1 —x x—0- X — |x|
/(5 —x)? ) 4+x
47. lim ——— 48. 1 T
st S—x o /(4 + x)2

For each of the functions in Problems 49 through 58, there is ex-
actly one point a where both the right-hand and left-hand limits
of f(x) fail to exist. Describe (as in Example 10) the behavior of
f(x) for x near a.

49. f(x>=ﬁ 50. f(x)=3ix

5L (0 =2 J_ri 52. fx) = 25x—_x5

53, f(x) = lxjrx; 5. f(x) = ()6_175)2
55. f(x) = ('11 :;)'2 56. f(x) = xzile 9
57. f(x) = % 58, f0) = x 3x1+2

In Problems 59 and 60, find the left-hand and right-hand limits of
f(x) at a = 2. Does the two-sided limit of f exist there? Sketch

the graph of y = f(x).

50 /()= 24
. X) =
x—2|
4
— 1
60. fx)= S T16
x—2

Problems 61 through 68, do the following:
(a) Sketch the graph of the given function f.
(b) For each integer n, evaluate the one-sided limits

Alimi f(x) and lim+ f(x)

in terms of n.
(c) Determine those values of a for which lim f(x) exists.
X—a

Recall that [ x]] denote the greatest integer that does not exceed x.

2 if x is not an int ;
61 Fx) = 1 X Ts no 'an integer
24 (=1)* if x is an integer.
62. f(x) = x if x is not an integer;
S = 0 if x is an integer.

63. f(x)=[10x]
64. f(x) = (—DI

1
65. f(x):x—[[x]]—i

66. f(x)= |[§]]
67. f(x) =[x+ [—xI
M if x #0;

0 if x = 0.

68. f(x) =

1
69. If g(x) = E[[le]], the value of x to one decimal place

rounded down, sketch the graph of g and determine the val-
ues of a such that lim g(x) exists.

X—a
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70. The sign function sgn(x) is defined as follows: 76. 1er;(17x —35) =50
X oifx #£0; 77. lim /x = 0  Suggestion: First formulate a precise
sgn(x) = {(l)xl ifx =0 ;;s();lon—delta definition of right-hand limits.
, . . 78. limx? =0
Use the sign function to define two functions f and g whose x=0
limits as x — 0 do not exist, but such that 79. }Ln% x> =4  Suggestion: Note that

(a) l_in(l)[f(x) + g(x)] does exist;
(b) liII(l) f(x)-g(x) does exist.

71. Let

2 if x is rational;

if x is irrational.

X
fx) = {0
Use the squeeze law of limits to show that lir% flx) =

f)=0.
72. Sketch the graph of the function

for x # 0. Then determine whether or not lirr(l) f(x) exists.

In Problems 73 and 74, first examine the value of f(x) on inter-
vals of the form

80.

81.

x2—4] = |x 42| |x —2|.

Then argue that if we agree to choose § < 1, then |x —2| < §
will imply that [x +2| < 5. (Why?) Then show that it works
to choose § to be the smaller of the two numbers 1 and €/5.

1in;(x2 —5x —4) =10 Suggestion: Note that

|2 — 5x —4) — 10| = |x +2| - |x — 7.

Then argue that if we agree to choose § < 1, then |[x —7| < §
will imply that [x + 2| < 10. (Why?)

_linllo(ZX2 — 13x —25) =45  Suggestion: Write

|(2x? — 13x — 25) — 45| = [2x + 7| - |x — 10].

Then argue that if we agree to choose § < 1, then [x — 10| <

<x < — 6 will imply that |2x + 7| < 29. (Why?)
n+l n 82. limx* =8 Suggestion: First verify that

where n is an integer. Then determine whether or not 1in(1) f(x)
X—>

exists. If your graphing calculator or computer has a greatest in-
teger (or “floor”) function, graph f to corroborate your answer.

1 1
73. f(x)=x- H:—i” 74. f(x) =x*- H:—i”
x X

In Problems 75 through 84, use the epsilon-delta definition of
limits to prove the given equation.

75. lim3(7x —-9)=-30

83.

84.

Ix3 — 8] =[x +2x + 4| |x —2|.

Then argue that if we agree to choose § < 1, then |[x —2| < §
will imply that |x% + 2x + 4| < 19. (Why?)

Generalize the approach of Problem 79 to prove that

lim x? = a°.

X—a

Generalize the approach of Problem 82 to prove that

lim x° = &°.

X—a

2.3 INVESTIGATION: Numerical Epsilon-Delta Limits

Figure 2.3.23 shows a steadily rising graph y = f(x) that passes through the
point (a, L). Given a single numerical value of ¢ > 0, we can illustrate the limit
lim,_,, f(x) = L by solving the equations f(x) = L = € graphically or numerically
for the indicated values x; to the left of a such that f(x;) = L — € and x; to the right of
a such that f(x;) = L + €. If § > 0 is chosen smaller than either of the two indicated
distances §; = a — x| and 6, = x; — a, then the figure suggests that

0<|x—a|l <5 impliesthat |f(x)— L] <e. (21)
You should understand that an actual proof that lim,_,, f(x) = L must show that,
given any € > 0 whatsoever, there exists a § > 0 that works for this e—meaning that
the implication in (21) holds.

Doing it for a single value of € does not constitute a proof, but doing it for several
successively smaller values of € can be instructive and perhaps convincing. Suppose,
for example, that

f(x) = x>+ 5x% + 10x + 98,

a=3, and L = 200.

Then, for a particular fixed value of € > 0, you can use a calculator or computer
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FIGURE 2.3.23 Finding § = min(d;, 62)
graphically.
algebra system to solve the equations
x4+ 5x% +10x +98 =200 — e and x° + 5x* + 10x + 98 = 200 + €

numerically for the solutions x; and x; near 3. Withe = 1, € = 0.2, and € = 0.04 you
should obtain the following results.

€ X1 X2 81 82 )

1 2.98503 | 3.01488 | 0.01497 | 0.01488 | 0.01
0.2 2.99701 | 3.00298 | 0.00299 | 0.00298 | 0.002
0.04 | 2.99940 | 3.00060 | 0.00060 | 0.00060 | 0.0005

In the final column, each value of § is (for safety) chosen a bit smaller than either &,
or &, to be sure that it works with the corresponding value of €. You might try a still
smaller value such as € = 0.001 to find a corresponding value of § that works. Then
carry out a similar investigation to “verify ” numerically a polynomial limit of your
own selection.

' 2.4 THE CONCEPT OF CONTINUITY

Anyone can see a drastic difference between the graphs in Figs. 2.4.1 and 2.4.2. Fig-
ure 2.4.1 is intended to suggest that the graph y = f(x) can be traced with a continuous
motion—without any jumps—of the pen from left to right. But in Fig. 2.4.2 the pen
must make a sudden jump at x = a.

The concept of continuity isolates the property that the function f of Fig. 2.4.1
possesses but that the function g of Fig. 2.4.2 lacks. We first define continuity of a
function at a single point.

y Yy
y=1®) \/
y=g(x)

/1T
s

N

/7 a X
FIGURE 2.4.1 A continuous graph. FIGURE 2.4.2 A graph that is not
continuous.
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y 0
fx)=1/(x-2)

4 0 4
X

FIGURE 2.4.3 The function

f(x) =1/(x — 2) has an infinite
discontinuity at x = 2 (Example 1).

(0, 1)

0,-1)
(not on the graph)

FIGURE 2.4.4 The function g has a
finite jump discontinuity at x = 0
(Example 2).

y=h(x)

yo <7 10,00~

-10 -5 0 5 10

FIGURE 2.4.5 The point (0, 0) is
on the graph; the point (0, 1) is not
(Example 3).
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DEFINITION Continuity at a Point

Suppose that the function f is defined in a neighborhood of a. We say that f is
continuous at a provided that lim,_,, f(x) exists and, moreover, that the value of
this limit is f(a). In other words, f is continuous at a provided that

lim f(x) = f(a). 1)

Briefly, continuity of f at a means this:
The limit of f at a is equal to the value of f there.

Another way to put it is this: The limit of f at a is the “expected” value—the value
that you would assign if you knew the values of f for x # a in a neighborhood of a
and you knew f to be “predictable.” Alternatively, continuity of f at a means this:
When x is close to a, f(x) is close to f(a).

Analysis of the definition of continuity shows us that to be continuous at the point
a, the function f must satisfy the following three conditions:

1. The function f must be defined at a [so that f(a) exists].
2. The limit of f(x) as x approaches a must exist.
3. The numbers in conditions 1 and 2 must be equal:

lim f(x) = f(a).

If any one of these conditions is not satisfied, then f is not continuous at a.
Examples 1 through 3 illustrate these three possibilities for discontinuity at a point. If
the function f is not continuous at a, then we say that it is discontinuous there, or that
a is a discontinuity of f. Intuitively, a discontinuity of f is a point where the graph
of f hasa “gap,” or “jump,” of some sort.

EXAMPLE 1 Figure 2.4.3 shows the graph of the function f defined by
1
f(x) = ——= forx #2.
x—2

Because f is not defined at the point x = 2, it is not continuous there. Moreover, f
has what might be called an infinite discontinuity at x = 2. — )

EXAMPLE 2 Figure 2.4.4 shows the graph of the function g defined by

+1 if x 2 0;

§(x) = sgn(x) = {—1 if x < 0.

Its left-hand and right-hand limits at x = O are unequal, so g(x) has no limit as x — 0.
Consequently, the function g is not continuous at x = 0; it has what might be called a
finite jump discontinuity there. —

EXAMPLE 3 Figure 2.4.5 shows the graph of the function £ defined by

sin x if x £ 0
i .
hx) =1 «x AR
0 if x =0.
Because we saw in Section 2.3 that
lim 2(x) = lim 2% — 1,
x—0 x—=0 X

whereas 1 (0) = 0, we see that the limit and the value of & at x = 0 are not equal. Thus
the function / is not continuous there. As x moves from negative values through x = 0
to positive values, the value of 4 (x) jumps from “near 1” to zero and back again.

— )
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///%}////X

FIGURE 2.4.6 The “sawtooth
function” of Example 4.

The discontinuity at the origin in Example 3 is an example of a removable dis-
continuity. The point a where the function f is discontinuous is called a removable
discontinuity provided that there exists a function F such that

e F(x) = f(x) for all x # a in the domain of definition of f, and
« This new function F' is continuous at a.

The original function f may or may not be defined at a, but in any event the graphs
of f and F differ only at x = a. Sometimes it is simpler to speak of “old” and “new”
versions of the same function f. Thus we might say that a removable discontinu-
ity of a function is one that can be removed by suitable definition—or, if necessary,
redefinition—of the function at that single point.

REMARK The discontinuity at the origin of the function / in Example 3 is removable.
The reason is that if we change the original value 4(0) = 0 to 2(0) = 1, then

. . sinx
limA(x) = lim —— =1 = h(0),
x—0 h—0 X

so h is now continuous at x = (0. By contrast, the discontinuities in the sawtooth
function f of the next example are not removable, because we see genuine jumps or
gaps in the graph that obviously cannot be removed simply by changing the values of
f at these discontinuities.

EXAMPLE 4 Figure 2.4.6 shows the graph of the function f defined by
fx) =x—[x].

As before, [x] denotes the largest integer no greater than x. If x = n, an integer, then
[n]] = n, so f(n) = 0. On the open interval (n, n 4 1), the graph of f is linear and
has slope 1. It should be clear that f is

» Continuous at x if x is not an integer;

« Discontinuous at each integer point on the x-axis. —

Combinations of Continuous Functions

Frequently we are most interested in functions that are continuous. Suppose that the
function f is defined on an open interval or a union of open intervals. Then we say
simply that f is continuous if it is continuous at each point of its domain of definition.
It follows readily from the limit laws in Section 2.2 that any constant multiple,
sum, difference, or product of continuous functions is continuous. That is, if ¢ is a
constant and the functions f and g are continuous at a, then so are the functions

cf, f+s, f—g and f-g.
For instance, if f and g are continuous at a, then
im[ £ (0 + g0l = (1im £(0) + ( lim () = f(@ + g(@),

so it follows that the sum f + g is also continuous at a.

EXAMPLE 5 Because f(x) = x and constant-valued functions are clearly continu-
ous everywhere, it follows that the cubic polynomial function

f)=x=3x"+1=x-x-x+(=3)-x-x+1
is continuous everywhere. >

More generally, it follows in a similar way that every polynomial function

p(x) = b,x" + bn_1x”_1 +---+bi1x + by
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4
y=1/(x-2)?
y 0
-4
-4 0 4

X

FIGURE 2.4.7 The function
F(x) = 1/(x — 2)? has an infinite
discontinuity at x = 2.

4
0
y —
4
4 0 4

X

FIGURE 2.4.8 In Example 6, the
graph y = F(x) consists of the
graph y = f(x) with the single point
(2, 1) adjoined.
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is continuous at each point of the real line. In short, every polynomial is continuous
everywhere.
If p(x) and ¢ (x) are polynomials, then the quotient law for limits and the conti-
nuity of polynomials imply that
peo  ImPe)
wagx)  limg(x)  gq(a)

provided that g (a) # 0. Thus every rational function

fx) = 26 #))
q(x)

is continuous wherever it is defined—that is, wherever the denominator polynomial is
nonzero. More generally, the quotient of any two continuous functions is continuous at
every point where the denominator is nonzero.

At a point x = a where the denominator in Eq. (2) is zero, g(a) = 0, there are
two possibilities:

o If p(a) # 0, then f has an infinite discontinuity (as in Figs. 2.4.3 and 2.4.7) at
X =a.
o Otherwise, f may have a removable discontinuity at x = a.

EXAMPLE 6 Suppose that

x—2

_ 3
x2—3x 42 ©)

fx) =

We factor the denominator: x> — 3x +2 = (x — 1)(x — 2). This shows that f is
not defined at x = 1 and at x = 2. Thus the rational function defined in Eq. (3) is
continuous except at these two points. Because cancellation gives

x—2 B 1
x2—=3x+2 x-1

fx) =

except at the single point x = 2, the new function
1
F(x)=—— “)
x—1

agrees with f(x) if x # 2 but is continuous at x = 2 also, where F'(2) = 1. Thus f
has a removable discontinuity at x = 2; the discontinuity at x = 1 is not removable.
(See Fig. 2.4.8.) ]

Continuity of Trigonometric Functions
At the beginning of Section 2.3 we noted that

li =1 lim sinx = 0.
Lim cosx and Lim sin x 0 5)

Because cos 0 = 1 and sin 0 = 0, the sine and cosine functions are continuous at x = 0
by definition. But this fact implies that they are continuous everywhere.

THEOREM 1 Continuity of Sine and Cosine
The functions f(x) = sinx and g(x) = cos x are continuous functions of x on the
whole real line.
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Proof We give the proof only for sinx; the proof for cosx is similar. (See Prob-
lem 67.) We want to show that lim,_,, sinx = sina for every real number a. If we
write x = a + h, sothat h = x —a, then h — 0 as x — a. Thus we need only show
that

lim sin(a 4+ h) = sina.
h—0

But the addition formula for the sine function yields

%in}) sin(a + h) = Airrg)(sina cos h + cosasinh)

(sina) ( lim cos h) + (cos a)( lim sin h)
h—0 h—0
= sina
as desired; we used the limits in Eq. (5) in the last step. *

REMARK It now follows that the function

sin x

(6

tanx =
COS X

is continuous except where cos x = 0—that is, except when x is an odd integral multi-
ple of /2. As illustrated in Fig. 2.4.9, tan x has an infinite discontinuity at each such
point.

4 : | y=tanx [
2 E E E
y o K3 T 3
2: 2: 2

2 ! ! !
4 [

-4 -2 0 2 4 6

FIGURE 2.4.9 The function tan x has
infinite discontinuities at x = +mw/2,
+37/2,....

Composition of Continuous Functions

Recall from Section 1.4 that the composition of the two functions f and g is the
function h = f o g defined by

h(x) = f(g(x))

for all x in the domain of g such that u = g(x) is in the domain of f. Theorem 2
implies that functions built by forming compositions of continuous functions are them-
selves continuous.

THEOREM 2  Continuity of Compositions
The composition of two continuous functions is continuous. More precisely, if g is
continuous at @ and f is continuous at g(a), then f o g is continuous at a.
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FIGURE 2.4.10 The graph

-

x =17
x24+2x+2

>2/3
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Proof The continuity of g at a means that g(x) — g(a) as x — a, and the continuity
of f at g(a) implies that f(x) — f(g(a)) as x — g(a). Hence the substitution law
for limits (Section 2.2) yields

lim £(g(x) = £(lim (1)) = f(g(@)),
as desired. *

Recall from the root law in Section 2.2 that

lim ¢/x = {/a

X—a

under the conditions that » is an integer and that @ > 0 if n is even. Thus the nth-root
function f(x) = J/x is continuous everywhere if n is odd; f is continuous for x > 0
if n is even.

We may combine this result with Theorem 2. Then we see that a root of a con-
tinuous function is continuous wherever it is defined. That is, the composition

h(x) = Y/g00) =lg)]""

of f(x) = ¥/x and the function g(x) is continuous at a if g is, assuming that g(a) > 0
if n is even (so that /g(a) is defined).

EXAMPLE 7 Show that the function

x—7 \”
ro=(+1553)

is continuous on the whole real line.
Solution Note first that the denominator

2 4+2=x+D>+1

is never zero, because its smallest value (when x = —1) is 0> + 1 = 1. Hence the
rational function
@) x =17
rx) = ————
x24+2x+2

is defined and continuous everywhere. It then follows from Theorem 2 and the
continuity of the cube root function that

f) =P ={r@?

is continuous everywhere—as suggested by its graph in Fig. 2.4.10, where we see a
high point apparently near the point (—1, 4) and the single point (7, 0) where the curve
touches the x-axis. —

EXAMPLE 8 (a) The exponential function f(x) = 2¥ is continuous everywhere,
and therefore so is the composition 4(x) = 25"* of f and the sine function. Refer to
Fig. 2.4.11, where we see high and low points on the graph of y = 2" corresponding
to the high and low points on the graph of y = sinx. (b) By contrast, the tangent
function tan x has infinite discontinuities at odd integral multiples of 77 /2 (as shown in
Fig. 2.4.9), and we see corresponding discontinuities in the composition i (x) = 22"~
when we look at the graph in Fig. 2.4.12. These discontinuities are interesting in that,
if a is an odd integral multiple of /2, then

lim A(x) = lim 2™ = 400,
X—a X—a
whereas
lim A(x) = lim 2%"* =0. N
x—at x—at
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$5/1t
v |$5/4t $5/ft| y
$1/ft
X Wall

FIGURE 2.4.13 The animal pen.
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FIGURE 2.4.11 The function A (x) = 25"% is FIGURE 2.4.12 The function i(x) = 2"~
continuous everywhere. has infinite discontinuities.

The function A (x) = 2™~ of Example 8(b) illustrates the concept of one-sided
continuity. It is convenient to say that the function f is

o continuous from the left at ¢ if lim = f(a), and is

xX—a~
 continuous from the right at ¢ if lim = f(a).
Suppose we define the “augmented function” H by H(x) = 2“"* unless x is an odd
integral multiple a of /2, in which case H(a) = 0. Then it follows from Example
8(b) that H is continuous from the right at a, but is not continuous from the left at a.
Of course, a function is automatically continuous at a point if it is continuous from
both sides there.

REMARK We have observed that the function f(x) = 4/x is continuous for x > 0.
However, f is not continuous at x = 0 because /x is not defined for x < 0, so lir% Jx
x—

does not exist. However, lim /x =0 = «/6, so the function f is continuous from the
x—0

right at 0. Thus /x is continuous from the right where it is only defined on the right.
Hence it is sometimes said—by a slight “abuse of terminology”—that the function /x
is continuous wherever it is defined.

Continuous Functions on Closed Intervals

An applied problem typically involves a function whose domain is a closed interval.
For example, in the animal pen problem of Section 1.1, we found that the area A of the
rectangular pen in Fig. 2.4.13 was expressed as a function of its base length x by

A= f(x)=3x(30 —x).

Although this formula for f is meaningful for all x, only values in the closed interval
[0, 30] correspond to actual rectangles, so only such values are pertinent to the animal
pen problem.

The function f defined on the closed interval [a, b] is said to be continuous on
[a, b] provided that

o f is continuous at each point of the open interval (a, b),
o f is continuous from the right at the left-hand endpoint a, and
» f is continuous from the left at the right-hand endpoint b.

The last two conditions imply that, at each endpoint, the value of the function is equal
to its limit from within the interval. For instance, every polynomial is continuous on
every closed interval. The square root function f(x) = 4/x is continuous from the
right at 0 because lim,_, o+ v/x = 0 = /0. Therefore f is continuous on the closed
interval [0, 1] even though f is not defined for x < 0.
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(=1,0) *

FIGURE 2.4.15 This discontinuous
function does not have the
intermediate value property
(Example 9).
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Continuous functions defined on closed intervals have very special properties.
For example, every such function has the intermediate value property of Theorem 3.
(A proof of this theorem is given in Appendix E.) We suggested earlier that continuity
of a function is related to the possibility of tracing its graph without lifting the pen
from the paper. Theorem 3, the intermediate value theorem, expresses this fact with
precision.

THEOREM 3 Intermediate Value Property

Suppose that the function f is continuous on the closed interval [a, b]. Then f(x)
assumes every intermediate value between f(a) and f(b). That is, if K is any
number between f(a) and f(b), then there exists at least one number c in (a, b)
such that f(c) = K.

Figure 2.4.14 shows the graph of a typical continuous function f whose domain
is the closed interval [a, b]. The number K is located on the y-axis, somewhere be-
tween f(a) and f(b). In the figure f(a) < f(b), but this is not important. The
horizontal line through K must cross the graph of f somewhere, and the x-coordinate
of the point where graph and line meet yields the value of c. The number c is the one
whose existence is guaranteed by the intermediate value property of the continuous
function f.

|
|
f(@ ————/

| |
| |
| |
| |
a c

|
|
|
|
|
|
|
|
|
|
|
|
b

FIGURE 2.4.14 The continuous function f attains
the intermediate value K atx = c.

Thus the intermediate value theorem implies that each horizontal line meeting
the y-axis between f(a) and f(b) must cross the graph of the continuous function f
somewhere. This is a way of saying that the graph has no gaps or jumps, suggesting
that the idea of being able to trace such a graph without lifting the pen from the paper
is accurate.

EXAMPLE 9 The discontinuous function defined on [—1, 1] as

0 if x <O,
foo = {1 it x>0
does not attain the intermediate value % See Fig. 2.4.15. I

Existence of Solutions of Equations

An important application of the intermediate value theorem is the verification of the
existence of solutions of equations written in the form

Fx) =0. (7)

EXAMPLE 10 You could attempt to approximate the number V2 graphically by
zooming in on the intersection of the parabola y = x> — 2 with the positive x-axis

97
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FIGURE 2.4.16 The graph of
f(x) = x? — 2 (Example 10).

\ X

Solution

FIGURE 2.4.17 The solution of the
equation f(x) = 0.

—_

AEhALoOoN A ®OS

FIGURE 2.4.18 The equation
x3 —x —2 =0 of Example 11
appears to have a solution

somewhere between x = 1 and

x =2.
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(Fig. 2.4.16). The x-coordinate of the intersection yields the positive solution of the
equation

fx)y=x>-2=0. 8)

Perhaps it makes no sense to zoom in on this point unless we know that it’s “really
there.” But we can see from Eq. (8) that

f(H)=-1<0, whereas f(2) =2 > 0.

We note that the function f is continuous on [1, 2] (it is continuous everywhere) and
that K = 0 is an intermediate value of f on the interval [1, 2]. Therefore, it follows
from Theorem 3 that f(c) = ¢? — 2 = 0 for some number ¢ in (1, 2)—that is, that

2 =2.

This number c is the desired square root of 2. Thus it is the intermediate value property
of continuous functions that guarantees the existence of the number +/2: There is a real
number whose square is 2. I

As indicated in Fig. 2.4.17, the solutions of Eq. (7) are simply the points where
the graph y = f(x) crosses the x-axis. Suppose that f is continuous and that we
can find a closed interval [a, b] (such as the interval [1, 2] of Example 10) such that
the value of f is positive at one endpoint of [a, b] and negative at the other. That is,
suppose that f(x) changes sign on the closed interval [a, b]. Then the intermediate
value property ensures that f(x) = 0 at some point of [a, D].

EXAMPLE 11 The graph y = x> — x — 2 shown in Fig. 2.4.18 indicates that the
equation

f@)=x*-x-2=0

has a solution somewhere between x = 1 and x = 2. Apply the intermediate value
theorem to show that this actually is so.

Solution The function f(x) is continuous on [1, 2] because it is a polynomial and,
therefore, is continuous everywhere. Because f(1) = —2 and f(2) = +4, the inter-
mediate value theorem implies that every number between —2 and +4 is a value of
f(x)on[1,2]. In particular,

—2=f(1) <0 < f(2) = +4,

so the intermediate value property of f implies that f attains the value O at some
number ¢ between x = 1 and x = 2. That is,

floy=ct—c—-2=0,
s0 x = c is a solution in (1, 2) of the equation x> —x — 2 = 0. _

The following example shows that not every suspected root of an equation
f(x) = 0 that seems to be visible on a computer-plotted figure is actually there. In-
deed, a graphing calculator or computer ordinarily is programmed to plot close but
isolated points on the desired graph y = f(x) and then join these points with line
segments so short that the result looks like a smooth curve. In effect, the computer is
assuming that the function f is continuous, whether or not it actually is continuous.

EXAMPLE 12 Figure 2.4.19 shows a computer plot of the graph of the function

_10-[[1000x ]| — 4995
B 10000
The graph y = f(x) appears indistinguishable from the line y = x — %, and in par-

ticular it appears that the equation f(x) = 0 has the solution x = 1. But when we
zoom in near this alleged solution we see the graph shown in Fig. 2.4.20. Now we see

f)

M)
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1 0.01 _
0.008 | -
0.006 1 -
05 0.004 -
) 0.002 | -
y 0 2 y 0 ==
-0.002 -
05 -0.004 -
- . -0.006 -
y =1(x) -
-0.008 1 —
1 0.01E
-0.5 0 0.5 1 049 0495 05 0505 0.51
X X
FIGURE 2.4.19 The graph FIGURE 2.4.20 The graph in
y = f(x) of Example 12 appears to Example 12 jumps across the
have x-intercept x = 0.5. x-axis—there is no x-intercept.

that the function f is discontinuous, and actually “jumps” across the x-axis without
intersecting it. Thus the equation f(x) = 0 has no solution at all. —

2.4 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If the limit of the function f at x = a exists and is equal to f(a), then f is
continuous at x = a.

1
2. If f(x) = P then f is not continuous at x = 2.
X —

sinx .
if x # 0,

1 if x =0,

3. If h(x) = then % is continuous at x = 0.

. Every polynomial function is continuous at every real number.
. Every rational function is continuous wherever it is defined.

. The sine and cosine functions are continuous on the entire real line.

4
5
6. If f is continuous at x = a, then lim f(x) = f(a).
X—a
7
8. The composition f o g of the continuous functions f and g is continuous.
9

. The function f is said to be continuous on the closed and bounded interval [a, b]
provided that f is continuous on (a, b) and, morever,

lim f(0)=f(@ and  lim f(x) = f(b).

10. If f is continuous on the interval [a, b] and K is between f(a) and f(b), then
K = f(c) for some number c in (a, b).

2.4 CONCEPTS: QUESTIONS AND DISCUSSION

1. Suppose that a < b < c. If the function f is continuous both on the closed
interval [a, b] and on the closed interval [b, c], does it follow that f is continuous
on [a, c]? If f is continuous on the closed interval [n, n 4+ 1] for every integer n,
does it follow that f is continuous on the entire real line?

2. Suppose that the function f is continuous everywhere and that the composition
f(g(x)) is continuous at x = a. Does it follow that g(x) is continuous at a?
Suggestion: Consider the possibility that f(x) = |x]|.

3. Suppose that p(x) is a polynomial of odd degree with positive leading coeffi-
cient. Then its graph y = p(x) “heads southwest in the third quadrant” and
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“northeast in the first quadrant.” Can you state more precisely what these intu-
itive statements mean? Why does it follow that the equation p(x) = 0 always
has at least one solution?

4. If 10¢ = y, then we call the number L the base 10 logarithm of y and write
L = logy. Assume that the exponential function f(x) = 10* is continuous
everywhere (it is!) and—as suggested by its graph in Fig. 1.4.10—it has both
arbitrarily large positive values and values arbitrarily close to zero. Then explain
why the intermediate value theorem implies that every positive number has a base

10 logarithm.

2.4 PROBLEMS

In Problems 1 through 8, apply the limit laws and the theorems
of this section to show that the given function is continuous for
all x.

1. f(x)=2x>—7x>+13

2. f(x) =7x—2x +1)°
3

3. f(x) = g 32, g0) = ——
X cos 6
33. f(x) =— 34. f(x) =+/sinx
sin 2x
1
35. =si 36. G(u) = ———
Sf(x) = sin|x| (u) T cons

3 g = o 4 g0 = 5

C 8 T e B AL S M

5. h(x) = v/x2+4x +5 6. h(x) =+/1—5x
L

7. fr) = — % 8. g(x) = V1 —sin’x
1+ cos?x

In Problems 9 through 14, apply the limit laws and the theorems
of this section to show that the given function is continuous on
the indicated interval.

1
. = — —1
9. f(x) r1 57
x—1
10. f(x)=x2_4, 2 <x<?2
1. g)=+9—42, -3<:1<3
12. h(z) =+/(z—1)@B—-2z2), 1<z<3

ol —lﬂ<x<lf[
2 2

13. f(x) = ,
cos X
14. g(t) = /1 — 2sint,

In Problems 15 through 36, tell where the given function is con-
tinuous. Recall that when the domain of a function is not speci-
fied, it is the set of all real numbers for which the formula of the

1 1
—67'(<I<E7T

function is meaningful.

15. f(x) =2x + J/x

1
16. g(x) = x>+ —
X

17. f(x) = xl? 18. f(1) = %

19. f(x) = ﬁ 20. 5) = 1_1

21, f(x) = li:; 22. h(x) = xz;flrl
23. f(x) = );2:4 2. f(1) =+ 10
25. f(x) = 3?_’1 2. Fu) =3 — i
2. f0) = 8. [ =92
29. f(x) = J%ﬂ 30. f(x) =\/i::;i
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In Problems 37 through 48, find the points where the given func-
tion is not defined and is therefore not continuous. For each such
point a, tell whether or not this discontinuity is removable.

X t
37. = 38. f(t)) = ——
f® = f0) = 5
x—2 u+1
. = 4. = —-—-
39. f(x) 4 0. G(u) P p—-
lx — 1]
41. = 42. h(x) =
T =10 =Gy
x —17
43. =
=5
x24+5x+6
44. =
g(x) )
—x ifx <O
. fx) = x? ifx>0
x+1 ifx <1;
4. JO=13_1 ifx>1
l+x* ifx <O
47. = {si
FOy=qsinxy 2o
X
1 —cosx .
48 Fo =" ifx <0
x? ifx >0

In Problems 49 through 52, find a value of the constant ¢ so that
the function f(x) is continuous for all x.

x+c ifx <0,
B TOD=14" ifxz0
2x +c¢ ifx £3,
50. = -
ALY 2c—x ifx >3
5L (o) — c* —x? ifx <0,
T = gm0 ifxz0
A—x3 ifx <,
52. = -
f® csinx ifx >m

In Problems 53 through 58, apply the intermediate value prop-
erty of continuous functions to show that the given equation has
a solution in the given interval.
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53. x2—5=0on[2,3]

54, x> +x+1=0o0n[-1,0]
55. x> —=3x2+1=00n]0, 1]
56. x> =5o0n[1,2]

57. x*4+2x —1=00n]0, 1]

58. x> —5x3+3=0o0n[-3, -2]

In Problems 59 and 60, show that the given equation has three
distinct roots by calculating the values of the left-hand side at
x =-3,-2,—1,0, 1, 2, and 3 and then applying the intermedi-
ate value property of continuous functions on appropriate closed
intervals.

59. x3—4x+1=0 60. x> —3x2+1=0

61. Suppose that you accept a job now (time ¢ = 0) at an an-
nual salary of $25, 000 and are promised a 6% raise at the
end of each year of employment. Explain why your salary in
thousands of dollars after ¢ years is given by the formula

S(1) =25 - (1.06)11,

Graph this function for the first 5 years and comment on its
continuity.

62. Suppose that you accept the same job as in Problem 61, but
now are promised a 1.5% raise at the end of each quarter
(three months). (a) Write a formula for your salary (in thou-
sands of dollars) after ¢ years. (b) Graph this new salary
function and comment on its continuity. (c) Which is the
better deal, the promised salary of Problem 61 or the one of
this problem?

63. Suppose that f and g are two functions both continuous on
the interval [a, b], and such that f(a) = g(b) = p and
f(b) = gla) = q where p # ¢q. Sketch typical graphs
of two such functions. Then apply the intermediate value
theorem to the function 4(x) = f(x) — g(x) to show that
f(c) = g(c) at some point ¢ of (a, b).

64. Suppose that today you leave your home in Estes Park, CO
at 1 .M. and drive to Grand Lake, arriving at 2 P.M. Tomor-
row you leave your destination in Grand Lake at 1 P.M. and
retrace the same route, arriving home at 2 P.M. Use Prob-
lem 63 as a suggestion to show that at some instant between
1 and 2 P.M. you are at precisely the same point on the road
both days. What must you assume about the functions de-
scribing your location as a function of time each day?

65. Apply the intermediate value property of continuous func-
tions to show that every positive number a has a square root.
That is, given a > 0, prove that there exists a number r such
that r? = a.

66. Apply the intermediate value property to prove that every
real number has a cube root.

67. Show that the cosine function is continuous on the set of all
real numbers. (Suggestion: Alter the proof of Theorem 1 of
the continuity of the sine function.)

68. Determine where the function f(x) = x+[[x] is continuous.

69. Suppose that f(x) = 0 if x is a rational number, whereas
f(x) = 1if x is irrational. Prove that f is discontinuous at
every real number.

70. Suppose that f(x) = 0 if x is a rational number, whereas
f(x) = x?if x is irrational. Prove that f is continuous only
at the single point x = 0.
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71. Figure 2.4.21 suggests that the equation x = cos x has a so-
lution in the interval (0, 7/2). Use the intermediate value
theorem to show that this is true. Then use your calculator
to approximate this solution accurate to two decimal places.

1
Y=Cos/
> 0

FIGURE 2.4.21 The graphs y = x
and y = cos x (Problem 71).

72. Figure 2.4.22 suggests that the equation x = —5cosx has
at least three distinct solutions. Use the intermediate value
theorem to show that this is true. Then use your calculator to
approximate each of these solutions accurate to two decimal

places.

st

6 =
40

WA

y 0
AVAURY
4t

-6f y=-5cos x
-8t

8§ -6-4-2 02 46 8
X

FIGURE 2.4.22 The graphs y = x
and y = —5cos x (Problem 72).

Investigate the continuity of each of the functions defined in Prob-
lems 73 through 78. For each discontinuity, determine whether
the given function is continuous from the right and whether it is

continuous from the left. Use a graphing calculator or computer
if you find it helpful.

73. f(x) =2 ifx #0; £(0) =0
74. f(x)=2"""ifx £0; £(0) =0

75 f() = —ifx £0: F(0) = 1

1421/«
1 .
76. f(x) = W if x #0, f(O) =1
77. f(x) = T4omr where meaningful;

f(x) = 1 otherwise

78. f(x) = T2 where meaningful;

f(x) = 0 otherwise
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@ cHAPTER 2: REVIEW

Understanding: Concepts and Definitions
Refer to the listed pages to review the concepts and definitions in this chapter that you need to understand.

Section Pages

2.1 The relation between secant lines and tangent lines. .. ........... .. ... .. .. ... ... 55
The difference quotient of a function fatapointx =a............................ 57
The slope of a tangent line as a limit of difference quotients. .................... .. .. 58
The slope formula for the tangent line at a point on a parabola ................ ... .. 58-59
The relation between tangent and normal linestoacurve . .......................... 59

2.2 Theslope at (a, f(a)) asalimitaseitherh — Oorx — a ......................... 64
The idea of the limitof f(x)asx — a ........ ... ... . ... ... . . . ... ..., 65
The constant, sum, product, quotient, and root laws of limits ... ............. ... .. .. 68-69
The substitution law and limits of compositions. ............... ... ... ... .......... 71
The four-step process for finding slope-predictor functions. ......................... 72

2.3 The basic trigonometric limit . .............. .. . L 77
The squeeze law of limits .. ... ... 78
Right-hand and left-hand limits . ....... ... ... . . . . . 79-80
The relation between one-sided and two-sided limits .. .......... ... .. ... ... ... .. 80
Existence of tangent lines .. ......... ... . 81
Infinite limits of functions . .. ... ... .. . . 82
The precise definition of the limit .. ... ... ... .. ... . . oo 85

2.4 Continuity of a function ata point.......... ... i 91
Removable discontinuities of functions . ........... ... .. ... oo i 92
Continuity of combinations, polynomials and rational functions . .................. .. 93
Continuity of trigonometric functions. ............ .. ... .. .. i 93
Continuity of compositions of continuous functions . ................. . ... . ... ... 94
Continuity of a function on a closed interval . ......... ... ... ... ... .. ... ... ... 96
The intermediate value property of continuous functions. ........................... 97
Existence of solutions of equations .. ............... ... 97

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems

2.1 Finding the equation of the tangent line at a point on a parabola..................... 9,11
Find the point(s) on a curve where the tangent line is horizontal . . ......... ... ... .. .. 17,21
Finding equations of both tangent and normal linestoacurve....................... 25,27
Solving applied problems by finding high points on parabolas....................... 29, 31
Numerically investigating the slope of a tangent line atapoint . ..................... 37,41, 45

2.2 Using limit laws to evaluate limits of functions . ............. ... ... ... ... ... . ... 3,7, 11
Finding limits of quotients after algebraic simplification............................ 21, 25, 31, 35
Using the four-step process to find a slope-predictor function .................. ... .. 37,41, 45
Investigating a limit numerically ......... ... .. . . 47,49, 55

2.3 Using limit laws to evaluate trigonometric limits........... ... .. ... ... ... ... ... 1,3,9,11, 13,25
Using the one-sided limit laws to evaluate limits . .................. ... ... ... .. ..., 29, 35, 39, 43, 45
Determining behavior where one-sided limits fail toexist..................... ... .. 49, 51, 55
Using the precise definition to establish a limit . ........... .. ... ... ... .. ... .. 75,79

2.4 Using limit laws to establish continuity of functions.............. ... ... ... ... . ... 3,5,7,9,11,13
Determining where a given function is continuous . ................................ 17,21, 23, 25, 31
Determining whether or not a discontinuity is removable .. ................. ... .... 37,139, 43, 45, 47
Applying the intermediate value property to locate solutions . ................. ... .. 53,55
Numerical investigation of continuity at a given point .............................. 73,75

102



www.konkur.in

Chapter 2 Miscellaneous Problems 103

@ MISCELLANEOUS PROBLEMS

Apply the limit laws to evaluate the limits in Problems 1 through
40 or to show that the indicated limit does not exist, as appropri-
ate.

1. lir%(xz —3x+4) 2. liml(3 —x+x%)
3. 1112(4 —xHlo 4, 1111}()62 +x—=DY
N ) 2x
ST L rep——
2 _
7. limx ! 8. lim i
=1 1—x x—>2x24+x—-2
246t +9 4x — x3
9. fim — 1O +7 10. lim —~— %
—-3 9 —1¢2 10 3x + x2
2241
11 lim(x> — 13 12, Tim | =T
x—3 x—2 2x
5x 41\ 4
13, 1im | 25F 14. lim —>
x—3 x2—8 X—>1x2+2X—3
Jx+2-3
15, lim Y220 16. lim (x — Vx> —1)
x—17 x =17 x 1t
1 |
1 —
17. fim Y13+« 3 18. lim —
x——4 x+4 x—>l+|]_x|
2 2
19. lim —— % 20. lim -~
=2 N4 — 4x + x2 x—>-27 |x + 2|
x—4

22. lim Vx2 -9

x—3~

21.

1m
x—4+ |X — 4|

23. lim V4 — x? 24.

lim ——
x—-=3 (x —+ 3)2

x—2t
2
25. lim —" 26. lim
=2 (x —2)2 x>1-x — 1
-2
27. lim 28 lim — -~
x—=3tx —3 x—1- x2=3x+2
1 25 — x?
29. lim L 30. lim oY
x—1= (x — 1)3 x—>5t x2 — 10x + 25
in3 tan 5
31 lim S22 32, lim 2%
x—=0 X x—0 X
in3 tan 2
33. lim 22t 34. lim 22t
x—0 sin 2x x—0 tan 3x
1-— 3
35. lim — 36. lim — 7%
x—0+ sin \/x >0 2x
1-— 3
37. lim — 2% 38. lim x> cotx cscx
x—0 2_x2 x—0

39, Tim sec 2x tan 2x 0.

x—0 X

lim x2 cot? 3x

x—0

In Problems 41 through 46, apply your knowledge of lines tan-
gent to parabolas (Section 2.1) to write a slope-predictor formula
for the given curve y = f(x). Then write an equation for the line
tangent to y = f(x) at the point (1, f(1)).

41. f(x) =3+ 2x? 42. f(x) =x —5x2

43. f(x) =3x*+4x -5 4. f(x) =1-—2x —3x?

X x\2
5. f@=6-Dex-1 46 f0)=3-(3)
In Problems 47 through 53, use the “four-step process” of Sec-

tion 2.3 to find a slope-predictor formula for the graph y = f(x).

47. f(x) =2x*+3x 48. f(x) =x —x3
9. F0) =5 50. /(1) = 3
1 X
5L f)=x -~ 2. ()= —
53, =210
x —1

54. Find a slope-predictor formula for the graph
F(x) =3x — x4+ |2x + 3]

at the points where a tangent line exists. Find the point (or
points) where no tangent line exists. Sketch the graph of f.

55. Write equations of the two lines through (3, 4) that are tan-
gent to the parabola y = x2. (Suggestion: Let (a, a*) denote
either point of tangencys; first solve for a.)

56. Write an equation for the circle with center (2, 3) that is tan-
gent to the line with equation x + y + 3 = 0.

In Problems 57 through 60, explain why each function is contin-
uous wherever it is defined by the given formula. For each point
a where f is not defined by the formula, tell whether a value can
be assigned to f(a) in such a way as to make f continuous at a.

- 1—
57. f(x) = 1_;2 58. f(x) = (2_7;)2
2 -2 21
59. f(x) = % 60. f(x)= |;_ 1|

61. Apply the intermediate value property of continuous func-
tions to prove that the equation x> + x = 1 has a solution.

62. Apply the intermediate value property of continuous func-
tions to prove that the equation x*> — 4x2 + 1 = 0 has three
different solutions.

63. Show that there is a number x between 0 and /2 such that
X = COSX.

64. Show that there is a number x between 7/2 and 7 such
that tanx = —x. (Suggestion: First sketch the graphs of
y=tanx and y = —x.)

65. Find how many straight lines through the point (12, ) are
normal to the graph of y = x? and find the slope of each.
(Suggestion: The cubic equation you should obtain has one
root evident by inspection.)
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66. A circle of radius r is dropped into the parabola y = x2. If
r is too large, the circle will not fall all the way to the bot-
tom; if 7 is sufficiently small, the circle will touch the para-
bola at its vertex (0, 0). (See Fig. 2.MP.1.) Find the largest
value of r so that the circle will touch the vertex of the

parabola.

FIGURE 2.MP.1 If the circle
is too large, it cannot touch the
bottom of the parabola
(Problem 66).

PHOTO CREDITS
p. 53 (top left) Getty Images, Inc.-Hulton Archive Photos; (bottom left) Courtesy of International Business
Machines Corporation. Unauthorized use not permitted. (right) Navy Visual News Service/U.S. Navy

News Photo
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saac Newton was born
Iin a rural English farm-
ing village on Christmas
Day in 1642, three months
after his father’s death.
When the boy was three,
his mother remarried and
left him with his grand-
mother.  Nothing known
about his childhood and
early schooling hinted that
his life and work would
constitute a turning point
in the history of humanity.
But due to the influence of an uncle who suspected
hidden potential in young Isaac, Newton was able to en-
ter Cambridge University in 1661. During the years 1665
and 1666, when Cambridge closed because of the bubonic
plague then sweeping Europe, he returned to his country
home and there laid the foundations for the three tower-
ing achievements of his scientific career—the invention of
the calculus, the discovery of the spectrum of colors in
light, and the theory of gravitation. Of these two years he
later wrote that “in those days I was in the prime of my
age of invention and minded mathematics and philosophy
more than at any time since.” Indeed, his thirties were
devoted more to smoky chemical (and even alchemical)
experiments than to serious mathematical investigations.
In his forties, while a mathematics professor at
Cambridge, Newton wrote the Principia Mathematica
(1687), perhaps the single most influential scientific trea-
tise ever published. In it he applied the concepts of the
calculus to explore the workings of the universe, includ-
ing the motions of the earth, moon, and planets about the
sun. A student is said to have remarked, “There goes the
man that wrote a book that neither he nor anyone else un-
derstands.” But it established for Newton such fame that
upon his death in 1727 he was buried alongside his coun-
try’s greats in Westminster Abbey with such pomp that the
French philosopher Voltaire remarked, “I have seen a pro-
fessor of mathematics . . . buried like a king who had done
good to his subjects.”

Isaac Newton (1642-1727)

Shortly after his Cambridge graduation in 1665,
Newton discovered a new method for solving an equa-
tion of the form f(x) = 0. Unlike special methods such
as the quadratic formula that apply only to equations of
special form, Newton’s method can be used to approxi-
mate numerical solutions of virtually any equation. In Sec-
tion 3.10 we present an iterative formulation of Newton’s
method that is especially adaptable to calculators and com-
puters. There we describe how the combination of New-
ton’s method with modern computer graphics has led to the
generation of striking fractal images associated with the
science of chaos. The pictures here result from the appli-
cation of a complex-number version of Newton’s method
to the simple equation x> + 1 = 0.

From Chapter 3 of Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.

Copyright © 2008 by Pearson Education, Inc. All rights reserved.



www.konkur.in

106

106 CHAPTER 3 The Derivative

. 3.1 THE DERIVATIVE AND RATES OF CHANGE

Y y=fv)

Slope m = f'(a)

(a, f(a))

|
|
|
|
|
|
|
|
a

FIGURE 3.1.1 The geometric
motivation for the definition of the
derivative.

I

|
I

| fla+h)—fla)

I =f(x) - f(a)

i
-------- 4
: h=x-a i
! 1

a x=a+h X

FIGURE 3.1.2 The notation in
Eq. (3).

In Section 2.1 we saw that the line tangent to the curve y = f(x) (Fig. 3.1.1) at the
point P(a, f(a)) has slope
h) —
m = ma) = lim 24T /@ (1)
h—0 h

provided that this limit exists. As in the slope-prediction formulas of Section 2.2, we
get a new function f’—the derivative of the original function f—when we replace the
constant a in (1) with the independent variable x.

DEFINITION The Derivative
The derivative of the function f is the function f’ defined by

fx+h) - f)
h

2

fix) = }1113%
for all x for which this limit exists.

It is important to understand that when the limit in (2) is evaluated, we hold x
fixed while & approaches zero. When we are specifically interested in the value f’(a)
of the derivative f” at the number x = a, we sometimes rewrite Eq. (2) in the form

fath—f@ _ . f&)=f@

h x—a X —a

D . T
fi(@ = lim 3
The second limit in Eq. (3) is obtained from the first by writing x = a + h, h =
x — a, and by noting that x — a as h — 0 (Fig. 3.1.2). The statement that these
equivalent limits exist can be abbreviated as “ f'(a) exists.” In this case we say that the
function f is differentiable at x = a. The process of finding the derivative f’ is called
differentiation of f.

However it is found, the derivative f” is a slope predictor for lines tangent to the
graph y = f(x) of the original function f (Fig. 3.1.1).

The Derivative as Slope Predictor
The slope m of the line tangent to the graph y = f(x) at the point (a, f(a)) where
x=alis

m = f'(a). C))
Application of the point-slope formula gives
y—fl@=f'@a)- (x—-a €))

as an equation of this tangent line.

Differentiating a given function f by direct evaluation of the limit in Eq. (3)
involves carrying out four steps:

1. Write the definition in Eq. (2) of the derivative.

2. Substitute the expressions f(x + h) and f(x) as determined by the particular
function f.

3. Simplify the result by algebraic methods until it is possible to . . .
4. Apply appropriate limit laws to finally evaluate the limit.

In Section 2.2 we used this same “four-step process” to calculate several slope-
predictor functions—that is, derivatives. The limit calculations of Examples 12 and 13
in Section 2.2—where we found the derivatives of the functions

f(X)=X+)lC and  f(x) = x
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3
2
X

1 73
y 0

-1

-2 =X

yx+3
_33 -2 -1 0 1 2 3

FIGURE 3.1.3 The tangent line
y = %x to the curve y = x/(x + 3)
at the origin.

y = (px) +(qx)+r
\ \ \
m(x)=2(px)+ q +0

FIGURE 3.1.4 Termwise
construction of the slope-predictor
function m(x) = 2px + ¢ for a
parabola y = px? + ¢gx + r. Note
that the exponent 2 in the quadratic
term px2 comes “down out
front”—yielding the linear term

2 px—while the linear term gx
simply yields the constant ¢, and the
constant term r just “disappears.”
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—illustrate algebraic simplification techniques that frequently are useful in the evalu-
ation of derivatives directly from the definition in Eq. (2).

EXAMPLE 1 First apply the definition of the derivative directly to differentiate the
function

N X
J = x+3

Then find the line tangent to the graph of f at the origin, where f(0) = 0.

Solution Steps 1 and 2 above give

x+h X
" _
) = tim LEFD SOy, G+ x5
h—0 h h—0 h
Then an algebraic simplification suggested by the common-denominator calculation

a c ad — bc

b d_  bd _ ad—bc

h h  hbd

yields

, o x+h)x+3)—x(x+h+3)
f(x) =lim
h—0 hi(x+h+3)(x+3)
3h 3

= lim = lim
h—0h(x+h+3)(x+3) r0x+h+3)(x+3)
3

B (Jim +h+3)( lime +3)

We therefore find finally that

3 3
x+3)x+3) (43?2

Substituting @ = 0, £(0) = 0, and f'(0) = 1 in Eq. (5) gives the equation y = 1x of
the line tangent to the graph y = x/(x + 3) at the origin (0, 0) (Fig. 3.1.3). R

) =

Even when the function f is rather simple, this four-step process for computing
f/ directly from the definition of the derivative can be time consuming. Also, Step 3
may require considerable ingenuity. Moreover, it would be very repetitious to con-
tinue to rely on this process. To avoid tedium, we want a fast, easy, short method for
computing f'(x).

That new method is one focus of this chapter: the development of systematic
methods (“rules”) for differentiating those functions that occur most frequently. Such
functions include polynomials, rational functions, the trigonometric functions sin x and
cos x, and combinations of such functions. Once we establish these general differenti-
ation rules, we can apply them formally, almost mechanically, to compute derivatives.
Only rarely should we need to return to the definition of the derivative.

Figure 3.1.4 illustrates the slope-predictor function for a parabola that we ex-
hibited in Eq. (10) of Section 2.1. Restated in the language of derivatives, this is an
example of a “differentiation rule.”

RULE Differentiation of Quadratic Functions
The derivative of the quadratic function

f(x)=ax>+bx +c¢ (6)

is the linear function

f'(x) =2ax +b. @)

107
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60

32
50 y=3x"—4x+5

40
30
20

yy 10 y decreasing Yy increasing

'<0 '>0
_10 y y
—20
=30 y' =6x—-4

—40

-5 0 5
X

FIGURE 3.1.5 Note that the curve
y = f(x) is falling (from left to
right) where the derivative f’(x) is
negative, and is rising where the
derivative is positive.

Note that this rule works in the same way no matter whether we denote the coef-
ficients by a, b, and c as in Eqs. (6) and (7), or by p, ¢, and r as in Fig. 3.1.4.

It may be instructive to derive the differentiation formula in (7) directly from the
definition of the derivative:

fx+h) - fk)

f'x) = lim

h
i la(x + h)? +b(x + h) +c] — [ax? + bx + c]
=l h
_ 1 (ax? 4+ 2ahx + ah® + bx + bh + ¢) — (ax*> + bx +¢)
) h
~ 2ahx + ah® + bh

= lim

h—0 h

= %iné(Zax + ah + b).

Therefore
f'(x) =2ax + b.

Once we know this rule, we need never again apply the definition of the derivative to
differentiate a quadratic function.

EXAMPLE 2 (a)If f(x) = 3x>—4x +5, we can apply Eq. (7) to write the derivative
immediately, without going through the four-step process:

F(x) =2-(3x) + (—4) = 6x — 4.

Figure 3.1.5 compares the graph of f with that of its derivative f’.
(b) Similarly, if g(¢) = 2t — 5¢, then

g0 =@2)+2-(=5t)=2—10r. >

It makes no difference what the name for the function is or whether we write x
or t for the independent variable. This flexibility is valuable—in general, it is such
adaptability that makes mathematics applicable to virtually every other branch of hu-
man knowledge. In any case, you should learn every differentiation rule in a form
independent of the notation used to state it.

We develop additional differentiation rules in Sections 3.2 through 3.4. First,
however, we must introduce new notation and a new interpretation of the derivative.

Differential Notation

An important alternative notation for the derivative originates from the early custom of
writing Ax in place of & (because & = Ax is an increment in x) and

Ay = f(x + Ax) — f(x)

for the resulting change (or increment) in y. The slope of the secant line K of Fig. 3.1.6
is then

Ay f+Ax) - f(x)
Msee = — = ’

Ax Ax

and the slope of the tangent line is
d
m=—-—= lim . ()]
Hence, if y = f(x), we often write

dy
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Secant
line K

/ X

FIGURE 3.1.6 Origin of the dy/dx notation.

(The so-called differentials dy and dx are discussed carefully in Chapter 4.) The sym-
bols f’(x) and dy/dx for the derivative of the function y = f(x) are used almost
interchangeably in mathematics and its applications, so you need to be familiar with
both versions of the notation. You also need to know that dy/dx is a single symbol
representing the derivative; it is not the quotient of two separate quantities dy and dx.

EXAMPLE 2 (Continued) If y = ax? 4+ bx + c, then the derivative in Eq. (7) in
differential notation takes the form

dy
— =2 b.
I ax +

Consequently,

d
if y:3x2—4x+5, then —y=6x—4;
dx

d
if z=2r—52, then d—j:Z—lOt. B

The letter d in the notation dy/dx stands for the word “differential.”” Whether we
write dy/dx or dz/dt, the dependent variable appears “upstairs” and the independent
variable “downstairs.”

Rates of Change

The derivative of a function serves as a slope predictor for straight lines tangent to
the graph of that function. Now we introduce the equally important interpretation of
the derivative of a function as the rate of change of that function with respect to the
independent variable.

We begin with the instantaneous rate of change of a function whose independent
variable is time . Suppose that Q is a quantity that varies with time ¢, and write
O = f(t) for the value of Q at time ¢. For example, Q might be

« The size of a population (such as kangaroos, people, or bacteria);

e The number of dollars in a bank account;

o The volume of a balloon being inflated;

o The amount of water in a reservoir with variable inflow and outflow;
e The amount of a chemical product produced in a reaction; or

» The distance traveled ¢ hours after the beginning of a journey.

The change in Q from time 7 to time 7 + At is the increment

AQ = f(t+ A1) — f(1).

109
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dQ

Slope: —,
P dt

the instantaneous

rate of change of

0 =1 ot

FIGURE 3.1.8 The relation
between the tangent line at (¢, f(¢))
and the instantaneous rate of change
of f atr.

Slope % > 0: curve rising

Q increasing

|
|
|
1
t

FIGURE 3.1.9 Quantity
increasing—derivative positive.

Slope % < 0: curve falling

Q decreasing |

i \\\
FIGURE 3.1.10 Quantity
decreasing—derivative negative.

110

The average rate of change of Q (per unit of time) is, by definition, the ratio of the
change AQ in Q to the change At in ¢. Thus it is the quotient

&Zf(t—f—Al‘)—f(t) (10)
At At
illustrated in Fig. 3.1.7.
Q
A0 (1+ A1, f(1 + Ap)

Slope: Ar

:AQ =ft+An—f(1)
________ J' _l_ (the change in Q)
— At —
(the change in 1)

/ ' 1 +At t

(& f0)

Q=f07/

FIGURE 3.1.7 Average rate of change as a slope.

We define the instantaneous rate of change of QO (per unit of time) to be the
limit of this average rate as At — 0. That is, the instantaneous rate of change of Q is

pAQ L S+ AD — FO)
im — = lim .

(1)
At—0 At At—0 At

But the right-hand limit in Eq. (11) is simply the derivative f'(¢). So we see that the
instantaneous rate of change of Q = f(¢) is the derivative

dQ
dr
To interpret intuitively the concept of instantaneous rate of change, think of the
point P (¢, f(¢)) moving along the graph of the function Q = f(¢). As Q changes with
time ¢, the point P moves along the curve. But suppose that suddenly, at the instant 7,
the point P begins to follow a straight-line path—Ilike a whirling particle suddenly cut
loose from its string. Then the new path of P would appear as in Fig. 3.1.8. The dashed
curve in the figure corresponds to the “originally planned” behavior of Q (before P
decided to fly off along the straight-line path). But the straight-line path of P (of
constant slope) corresponds to the quantity Q “changing at a constant rate.” Because
the straight line is tangent to the graph Q = f(¢), we can interpret d Q/dt as the
instantaneous rate of change of the quantity Q at the instant ¢:

f'@. (12)

The instantaneous rate of change of Q = f(¢) at time ¢ is equal to the slope of
the line tangent to the curve Q = f(¢) at the point (¢, f(¢)).

We can draw additional important conclusions. Because a positive slope corre-
sponds to a rising tangent line and a negative slope corresponds to a falling tangent line
(as in Figs. 3.1.9 and 3.1.10), we say that

. ) . d
Q isincreasing at time ¢ if d—? > 0;

dQ

Q isdecreasing at time ¢ if I < 0.

13)

NOTE The meaning of the phrase “Q = f(¢) is increasing over (or during) the time
interval from't = a tot = b” should be intuitively clear. The expressions in (13) give
us a way to make precise what we mean by “Q = f(¢) is increasing at time t’—that is,
at the instant 7. Note also that the fact that a function is increasing at some instant does
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FIGURE 3.1.11 The draining tank

Volume V(z)

\%/

Rate V'(z)

of Example 3.
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not necessarily imply that it continues to increase throughout some interval of time;
this question is discussed in Section 4.3.

EXAMPLE 3 The cylindrical tank in Fig. 3.1.11 has a vertical axis and is initially
filled with 600 gal of water. This tank takes 60 min to empty after a drain in its bottom
is opened. Suppose that the drain is opened at time t = 0. Suppose also that the
volume V of water remaining in the tank after  minutes is

V(1) = 160 — 1)? = 600 — 207 + L1

gallons. Find the instantaneous rate at which water is flowing out of the tank at time
t = 15 (min) and at time ¢ = 45 (min). Also find the average rate at which water flows
out of the tank during the half hour from ¢ = 15 to t = 45.

Solution The instantaneous rate of change of the volume V (¢) of water in the tank is
given by the derivative
dv

— =20+ i1
dt *3

At the instants = 15 and r = 45 we obtain
V/(15) = 20+ 5 - 15=—15

and
V'(45) = =20+ 1 -45 = 5.

The units here are gallons per minute (gal/min). The fact that V'(15) and V'(45)
are negative is consistent with the observation that V is a decreasing function of ¢
(as t increases, V decreases). One way to indicate this is to say that after 15 min,
the water is flowing out of the tank at 15 gal/min; after 45 min, the water is flowing
out at 5 gal/min. The instantaneous rate of change of V at¢ = 15 is —15 gal/min,
and the instantaneous rate of change of V att = 45 is —5 gal/min. We could have
predicted the units, because AV /At is a ratio of gallons to minutes, and therefore its
limit V'(¢) = dV /dt must be expressed in the same units.

During the time interval of length A7 = 30 min from time ¢t = 15 to time ¢ = 45,
the average rate of change of the volume V (¢) is

AV V(45 —-V(1)5)

At 45— 15
1(60 — 45) — L(60 — 15)>  —300
o 45— 15 30

Each numerator in the last equation is measured in gallons—this is especially apparent
when you examine the second numerator—and each denominator is measured in min-
utes. Hence the ratio in the last fraction is a ratio of gallons to minutes, so the average
rate of change of the volume V of water in the tank is —10 gal/min. Thus the average
rate of flow of water out of the tank during this half-hour interval is 10 gal/min. _____ b

Our examples of functions up to this point have been restricted to those with for-
mulas or verbal descriptions. Scientists and engineers often work with tables of values
obtained from observations or experiments. Example 4 shows how the instantaneous
rate of change of such a tabulated function can be estimated.

EXAMPLE 4 The table in Fig. 3.1.12 gives the U.S. population P (in millions) in the
nineteenth century at 10-year intervals. Estimate the instantaneous rate of population
growth in 1850.

Solution We take r = 0 (yr) in 1800, so t = 50 corresponds to the year 1850. In
Fig. 3.1.13 we have plotted the given data and then added a freehand sketch of a smooth
curve that fits these data.

We can hope that this curve fitting the data is a good approximation to the true
graph of the unknown function P = f(¢). The instantaneous rate of change d P /dt in

111
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|
| |
x=0 x=f(1)
FIGURE 3.1.14 The particle in
motion is at the point x = f(¢) at
time ¢.

U.S. Population
t Year (Millions)
0 1800 53
10 1810 7.2
20 1820 9.6 P (millions)
30 1830 12.9
40 1840 17.1 sor
50 1850 23.2 60|
60 1860 314
70 1870 38.6 40 -
80 1880 50.2 ol (50,23.2)
90 1890 63.0
100 1900 76.2 . . t (year)
1800 1850 1900
FIGURE 3.1.12 Data for Example 4. FIGURE 3.1.13 A smooth curve that fits the data

of Fig. 3.1.12 well (Example 4).

1850 is then the slope of the tangent line at the point (50, 23.2). We draw the tangent
line as accurately as we can by visual inspection and then measure the base and height
of the triangle in Fig. 3.1.13. In this way we approximate the slope of the tangent at
t =50 as

dP 36

—~—=0.72

dt 50
millions of people per year (in 1850). Although there was no national census in 1851,
we would expect the U.S. population then to have been approximately 23.2 + 0.7 =
23.9 million. —)

Velocity and Acceleration

Suppose that a particle moves along a horizontal straight line, with its location x at
time ¢ given by its position function x = f(¢). Thus we make the line of motion a
coordinate axis with an origin and a positive direction; f(¢) is merely the x-coordinate
of the moving particle at time ¢ (Fig. 3.1.14).

Think of the time interval from ¢ to ¢t + At. The particle moves from position
f(t) to position f (¢ + At) during this interval. Its displacement is then the increment

Ax = f(t + Ar) — f(1).

We calculate the average velocity of the particle during this time interval exactly as we
would calculate average speed on a long motor trip: We divide the distance by the time
to obtain an average speed in miles per hour. In this case we divide the displacement
of the particle by the elapsed time to obtain the average velocity

Ax _ f+An— f(@)
At At ’

V=

(14)

(The overbar is a standard symbol that usually connotes an average of some sort.) We
define the instantaneous velocity v of the particle at the time 7 to be the limit of the
average velocity v as At — 0. That is,

. Ax . fa+ A — f(@)
v= lim — = lim .

(5)
At—0 At At—0 At
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y=y(t) — Time ¢

y =0 —— Ground level

FIGURE 3.1.16 Vertical motion
with position function y(z).

y increasing y decreasing
b Ly
v=> 0 v=0< 0

FIGURE 3.1.17 Upward motion
and downward motion.
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We recognize the limit on the right in Eq. (15)—it is the definition of the deriva-
tive of f at time ¢. Therefore, the velocity of the moving particle at time ¢ is simply

v = ‘;—;‘ = f'@). (16)

Thus velocity is instantaneous rate of change of position. The velocity of a mov-
ing particle may be positive or negative, depending on whether the particle is moving
in the positive or negative direction along the line of motion. We define the speed of
the particle to be the absolute value |v| of the velocity.

EXAMPLE 5 Figure 3.1.15 shows a car moving along the (horizontal) x-axis. Sup-
pose that its position (in feet) at time # (in seconds) is given by

x(1) = 5t + 100.

-

v=0 v=100
|

| T
| I I
0 x =100 x =600

x (ft)
FIGURE 3.1.15 The car of Example 5.

Then its velocity at time ¢ is
v(t) = x'(t) = 10r.

Because x(0) = 100 and v(0) = 0, the car starts at time = 0 from rest—uv(0) = 0—
at the point x = 100. Substituting t = 10, we see that x(10) = 600 and v(10) = 100,
so after 10 s the car has traveled 500 ft (from its starting point x = 100), and its speed
then is 100 ft/s. _

Vertical Motion

In the case of vertical motion—such as that of a ball thrown straight upward—it is
common to denote the position function by y(#) rather than by x(¢). Typically, y(¢)
denotes the height above the ground at time ¢, as in Fig. 3.1.16. But velocity is still the
derivative of position:

dy

Upward motion with y increasing corresponds to positive velocity, v > 0 (Fig. 3.1.17).
Downward motion with y decreasing corresponds to negative velocity, v < 0.

The case of vertical motion under the influence of constant gravity is of special
interest. If a particle is projected straight upward from an initial height yo (ft) above
the ground at time ¢+ = 0 (s) and with initial velocity vy (ft/s) and if air resistance is
negligible, then its height y (in feet above the ground) at time ¢ is given by a formula
known from physics,

y(t) = —1gt> + vot + yp. 17)

Here g denotes the acceleration due to the force of gravity. Near the surface of the
earth, g is nearly constant, so we assume that it is exactly constant, and at the surface
of the earth, g ~ 32 ft/s?, or g ~ 9.8 m/s.

If we differentiate y with respect to time ¢, we obtain the velocity of the particle
at time 7:

dy
v(r) — gt + v (18)
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y
=7
y=1
v=0
M
Start: Impact:
t=0 t="?
¥ =0 y=0
vy =96 v="?

FIGURE 3.1.18 Data for the ball of
Example 6.

200
v=-32t+96
150 y= 1612 +96t
i
100 |
sV |
50 !
Y Y
inc. \! dec.
0 v>0 Y 0 \
S0 32 4 6 3
t

FIGURE 3.1.19 Note that the ball
is rising when its velocity v > 0,
falling when v < 0, and is at its apex
when v = 0.

The acceleration of the particle is defined to be the instantaneous time rate of
change (derivative) of its velocity:

dv
a=— g 19)

Your intuition should tell you that a body projected upward in this way will reach its
maximum height at the instant that its velocity becomes zero—when v(¢) = 0. (We
shall see in Section 3.5 why this is true.)

EXAMPLE 6 Find the maximum height attained by a ball thrown straight upward
from the ground with initial velocity vy = +96 ft/s. Also find the velocity with which
it hits the ground upon its return.

Solution To begin the solution of a motion problem such as this, we sketch a diagram
like Fig. 3.1.18, indicating both the given data and the data that are unknown at the time
instants in question. Here we focus on the time ¢+ = 0 when the ball leaves the ground
(y = 0), the unknown time when it reaches its maximum height with velocity v = 0,
and the unknown time when it returns to the ground.

We begin by substituting yo = 0, vop = 96, and g = 32 in Eq. (17). Then the
height of the ball at time # (so long as it remains aloft) is given by

y(t) = —16t> + 96¢.
Then differentiation gives its velocity at time ¢,
v(t) = y'(t) = =32t +96
(see Fig. 3.1.19). The ball attains its maximum height when v = 0; that is, when
v(t) = =32t +96 = 0.

This occurs when t = 3 (s). Substituting #+ = 3 in the height function y(¢) gives the
maximum height of the ball,

Ymax = ¥(3) = =16 - (3)* +96 - (3) = 144 (fv).
The ball returns to the ground when y(#) = 0. The equation
y(t) = —161> + 96t = —16t(t — 6) =0

has the two solutions t = 0 and ¢+ = 6. Thus the ball returns to the ground at time
t = 6. The velocity with which it strikes the ground is

v(t) = (=32)(6) +96 = =96 (ft/s). — 9

Other Rates of Change

The derivative of any function—not merely a function of time—may be interpreted as
its instantaneous rate of change with respect to the independent variable. If y = f(x),
then the average rate of change of y (per unit change in x) on the interval [x, x + Ax]
is the quotient

Ay  f+Ax) - fx)
Ax Ax ’

The instantaneous rate of change of y with respect to x is the limit, as Ax — 0, of
the average rate of change. Thus the instantaneous rate of change of y with respect to
X is
A d
m =2 =2 _ . (20)

Ax—0 Ax dx
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FIGURE 3.1.20 The square of
Example 7:

A+ AA = (x 4+ Ax)%;

AA = 2xAx + (Ax)%:
AA 5 _
E =2x + AX,
dA

— = 2x.
dx

800
700
600
500
400

y 300
200
100

-100 /
-200

4 =2 0 2 4 6

FIGURE 3.1.21 Correspondence
between the function graph

y = f(x) and the derivative graph
y=f'(x.
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Example 7 illustrates the fact that a dependent variable may sometimes be ex-
pressed as two different functions of two different independent variables. The deriva-
tives of these functions are then rates of change of the dependent variable with respect
to the two different independent variables.

EXAMPLE 7 The area of a square with edge length x centimeters is A = x2, so the
derivative of A with respect to x,

dA

i oy 21
T x (21)

is the rate of change of its area A with respect to x. (See the computations in Fig. 3.1.20.)
The units of d A /dx are square centimeters per centimeter. Now suppose that the edge
length of the square is increasing with time: x = 5¢, with time ¢ in seconds. Then the
area of the square at time ¢ is

A = (51)* = 25¢°.
The derivative of A with respect to ¢ is

dA
— =2-25t = 50¢;

dt @2)

this is the rate of change of A with respect to time ¢, with units of square centimeters
per second. For instance, when ¢ = 10 (so x = 50), the values of the two derivatives
of A in Egs. (21) and (22) are

dA 2
- =2-50=100 (cm“/cm)
dx [,_s

and
dA
il =50-10=7500 (cm?/s).
dt {,_yo

Thus A is increasing at the rate of 100 cm? per cm increase in x, and at the rate of 500
cm? per second increase in ¢. I

The notation d A/dt for the derivative suffers from the minor inconvenience of
not providing a “place” to substitute a particular value of ¢, such as + = 10. The last
lines of Example 7 illustrate one way around this difficulty.

Just as we can speak of whether the quantity Q(¢) is increasing or decreasing at
time ¢ = a—according as Q'(a) > 0 or Q'(a) < 0—we can ask whether the function
y = f(x) is an increasing or decreasing function of x. Thinking of rising tangent lines
with positive slopes, and falling tangent lines with negative slopes, we say in analogy
with (13) that

if f'(a) > 0;
if £/(a) < 0.

y is increasing at the point x = a
y is decreasing at the point x = a

EXAMPLE 8 Figure 3.1.21 shows the graphs y = f(x) of a function and y = f'(x)
of its derivative. Observe that

e y = f(x) has a horizontal tangent line at points where f’(x) = 0;
o f(x) is increasing on open intervals where f'(x) > 0; and
e f(x) is decreasing on open intervals where f’(x) < 0.
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3.1 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.

10.

The derivative of the function f is the function f’ with the rule

fx+h) - fkx)
h

for those values of x for which the limit exists.

f'x) = lim

. If f’(a) exists, then there is a straight line tangent to the graph of f at the point

P(a, f(a)), and its slope is f’(a).

. If p, g, and r are constants and f(x) = px*> + gx +r, then f'(x) =2px +q.

d
If y = f(x), then it is acceptable to write d—y as an alternative notation for f'(x);
x

d
thatis: If y = f(x), then d—y — ().
X

. If Q0 = Q(¢) is a function of time ¢, then the average rate of change of Q over

o+ Ar) — 0(1)
At '

the time interval [z, t + Atr]is

. If O = Q(x) is a function of x, then the instantaneous rate of change of Q with

Q(x+h) —0W)
; .

respect to x is Q'(x) = lim
h—0

. If a particle moves along a straight line with position x(¢) at time ¢ and velocity

v(¢) at time ¢, then v/ (¢) = x(¢).

. If a particle moves along a straight line with velocity v(¢) at time ¢, then its

acceleration a(¢) at time ¢ is defined to be a(t) = v'(¢).

. If QO = f(¢) is a function of time ¢, then Q is increasing at the instant ¢ if

f'@®) > 0.
If y = f(x) is a function of x, then y is decreasing at x provided that f'(x) < 0.

3.1 CONCEPTS: QUESTIONS AND DISCUSSION

1.

2.

3.

The slope line in Fig. 3.1.5 looks as if it might be tangent to the parabola. Is it? If
not, what’s a simple way you could alter the equation of the parabola—without
changing its slope line—in order to ensure that the line will be tangent to the
altered parabola?

When a ball is tossed straight upward, it may appear to hover at the apex of its
trajectory for a brief period of time. Does it?

You are pulled over by a policeman who claims that you did not stop properly
at a stop sign. You argue that as you braked your car, its velocity was zero at a
certain instant before you removed your foot from the brake pedal and proceeded
through the intersection. The policeman replies that you nevertheless did not
come to a full stop—that he is certain your velocity did not remain zero for even
a hundredth of a second. What’s the cause of this disagreement? Explain it with
such convincing clarity that the judge will let you off without you paying a fine.

The ball of Example 6 took the same amount of time to rise from the ground to
its highest point as to fall back to the ground. Is this always the case for a ball
governed by Eqgs. (17) and (18) of this section? Suggestion: In lieu of a blizzard
of algebra, think about the symmetry of the parabola in Fig. 3.1.19.

3.1 PROBLEMS

In Problems 1 through 10, find the indicated derivative by using 1. f(x) =4x —5;find f'(x).

the differentiation rule in Egs. (6) and (7):

2. g(t) = 100 — 162; find g'(¢).

If f(x)=ax*+bx+c,  then f'(x)="2ax+b. 3. h(z) = 2(25 — 7); find ' (2).
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4. f(x) = 16— 49x; find f'(x).

5. y =2x>+3x — 17; find dy/dx.

6. x = 16t — 100¢?; find dx /dt.

7. z = 5u® —3u; find dz/du.

8. v =5y(100 — y); find dv/dy.

9. x = =5y + 17y + 300; find dx/dy.

10. u = 7t> 4 13¢; find du/dt.

In Problems 11 through 20, apply the definition of the derivative
(as in Example 1) to find f'(x).

1. f(x)=2x—1 12. f(x)=2—3x
13, f(x) =x2+5 14. f(x) =3 — 222
15 (@)= 53— 16. f(x) = ﬁ
17. f(x)=+2x +1 18. f(x) = \/%
19. f(0) = =5 20. f(x) = ifi

In Problems 21 through 25, the position function x = f(t) of
a particle moving in a horizontal straight line is given. Find its
location x when its velocity v is zero.

21. x = 100 — 16¢? 22. x = —16¢* + 160z + 25

23. x = —16t> + 807 — 1 24. x = 100¢% + 50

25. x = 100 — 20 — 5¢*

In Problems 26 through 29, the height y(t) (in feet at time t sec-
onds) of a ball thrown vertically upward is given. Find the maxi-
mum height that the ball attains.

26. y = —16t* + 160t 27. y = —16t* + 64t

28. y=—1612+ 128t +25 29. y = —16¢2 + 96t + 50

In Problems 30 through 35 (Figs. 3.1.22 through 3.1.27), match
the given graph of the function f with that of its derivative, which
appears among those in Fig. 3.1.28, parts (a) through (f).

30. Figure 3.1.22

5 5
4 4
3 3
2 2
1 1
0 y 0

31. Figure 3.1.23

y
-1 -1
) -2
-3 -3
-4 -4
35 0 5 35 0 5
X X
FIGURE 3.1.22 FIGURE 3.1.23

The Derivative and Rates of Change SECTION 3.1 117

32. Figure 3.1.24

33. Figure 3.1.25

5 5
4 4
3 3
2 2
1 1
-1 \/ -1
-2 )
-3 -3
-4 -4
-5 0 s 0 5
X X
FIGURE 3.1.24 FIGURE 3.1.25

34. Figure 3.1.26

35. Figure 3.1.27

-3 -3 /
—4 —4
25 0 _25 0 5
X X
FIGURE 3.1.26 FIGURE 3.1.27
5 5
4 4
3 3
2 2
1 1
y 0 y 0
-1 -1
-2 -2
-3 -3
—4 -4

|
w
=}

|
w
o

|
w
o

FIGURE 3.1.28(e)

35 0 5
X

FIGURE 3.1.28(b)

5
4
3
2
1
y 0 —
-1
2
3
—4
35 0 5

>

|
w
o
w

FIGURE 3.1.28(f)
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36. The Celsius temperature C is given in terms of the Fahren-
heit temperature F by C = g(F — 32). Find the rate of
change of C with respect to F and the rate of change of F
with respect to C.

37. Find the rate of change of the area A of a circle with respect
to its circumference C.

38. A stone dropped into a pond at time # = 0 s causes a circular
ripple that travels out from the point of impact at 5 m/s. At
what rate (in square meters per second) is the area within the
circle increasing when t = 10?

39. A car is traveling at 100 ft/s when the driver suddenly ap-
plies the brakes (x = 0, ¢+ = 0). The position function of the
skidding car is x(¢) = 100t — 5¢>. How far and for how long
does the car skid before it comes to a stop?

40. A water bucket containing 10 gal of water develops a leak
at time ¢t = 0, and the volume V of water in the bucket ¢
seconds later is given by

PN
V() =10 (l — m)

until the bucket is empty at time + = 100. (a) At what
rate is water leaking from the bucket after exactly 1 min
has passed? (b) When is the instantaneous rate of change
of V equal to the average rate of change of V from ¢ = 0 to
t =100?

41. A population of chipmunks moves into a new region at time
t = 0. At time ¢ (in months), the population numbers

P(t) = 100[1 + (0.3)¢ + (0.04)72].

(a) How long does it take for this population to double its
initial size P(0)? (b) What is the rate of growth of the popu-
lation when P = 2007?

42. The following data describe the growth of the population P
(in thousands) of Gotham City during a 10-year period. Use
the graphical method of Example 4 to estimate its rate of
growth in 1989.

Year | 1984 | 1986 | 1988 | 1990 | 1992 | 1994

P 265 293 324 | 358 395 427

43. The following data give the distance x in feet traveled by an
accelerating car (that starts from rest at time t = 0) in the
first t seconds. Use the graphical method of Example 4 to

X

FIGURE 3.1.29 The cube of
Problem 44—volume V = x3,
surface area § = 6x2.

FIGURE 3.1.30 The sphere of
Problem 45—volume V = g—‘nr*,
surface area § = 47r2.

estimate its speed (in miles per hour) when ¢ = 20 and again
when ¢ = 40.

t 0| 10 | 20 30 40 50 60

x | 0] 224 | 810 | 1655 | 2686 | 3850 | 5109

In Problems 44 through 49, use the fact (proved in Section 3.2)
that the derivative of y = ax® + bx* 4+ cx + d is dy/dx =
3ax? + 2bx +c.

44. Prove that the rate of change of the volume V of a cube with
respect to its edge length x is equal to half the surface area
A of the cube (Fig. 3.1.29).

45. Show that the rate of change of the volume V of a sphere
with respect to its radius R is equal to its surface area S
(Fig. 3.1.30).

46. The height i of a certain cylinder whose height changes is
always twice its radius r. Show that the rate of change of its
volume V with respect to r is equal to its total surface area
S (Fig. 3.1.31).

47. A spherical balloon with an initial radius r of 5 in. be-
gins to leak at time t = 0, and its radius ¢ seconds later is
r = (60 —1)/12 in. At what rate (in cubic inches per sec-
ond) is air leaking from the balloon when ¢ = 30?

48. The volume V (in liters) of 3 g of CO, at 27°C is given
in terms of its pressure p (in atmospheres) by the formula
V = 1.68/p. What is the rate of change of V with respect
to p when p = 2 (atm)? (Suggestion: Use the fact that the
derivative of f(x) = ¢/x is f'(x) = —c/x? if ¢ is a con-
stant; you can establish this by using the definition of the
derivative.)

49. As a snowball with an initial radius of 12 cm melts, its radius
decreases at a constant rate. It begins to melt when r = 0 (h)
and takes 12 h to disappear. (a) What is its rate of change of
volume when t = 6? (b) What is its average rate of change
of volume from¢ =3tot = 9?

50. A ball thrown vertically upward at time r = 0 (s) with ini-
tial velocity 96 ft/s and with initial height 112 ft has height
function y(t) = —16¢> + 96¢ + 112. (a) What is the max-
imum height attained by the ball? (b) When and with what
impact speed does the ball hit the ground?

51. A spaceship approaching touchdown on the planet Gzyx
has height y (meters) at time ¢ (seconds) given by y =
100 — 100¢ +25¢>. When and with what speed does it hit the
ground?

FIGURE 3.1.31 The cylinder of
Problem 46—volume V = 7r2h,
surface area S = 2712 + 27rh.
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52.

53.

The population (in thousands) of the city Metropolis is given
by

P(t) = 100[1 + (0.04) + (0.003)¢?],

with ¢ in years and with =0 corresponding to 1980.
(a) What was the rate of change of P in 1986? (b) What
was the average rate of change of P from 1983 to 1988?

Suppose that during the 1990s the population P of a small
city was given by

P(t) = 1041 — 0.1¢* + 0.006¢°

(with ¢ in years and P in thousands). Taking t = 0 on Jan-
uary 1, 1990, find the time(s) during the 1990s at which the
instantaneous rate of change of this population was equal to
its average rate of change during the whole decade. (Use the
differentiation formulas given in the instructions for Prob-
lems 44-49.)

Problems 54 through 60 involve the left-hand and right-hand
derivatives of f at a that are defined by

and

(assuming these limits exist).

flat+h) — f(a)

’ = 1
f@= h

flat+h — f(a)
—

Then f'(a) exists if and only

’ = i
fol@ =l

both the left-hand and right-hand derivatives exist and f' (a) =
fi(@.

4.

55.

56.

57.

58.

59.

60.
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(a) Find 7 (0) and f}(0) given f(x) = |x|. (b) The func-
tion f(x) = |12x — 101] is differentiable except at a single

point. What is this point, and what are the values of its left-
hand and right-hand derivatives of f there?

Sketch the graph of the given function f and determine if it
is differentiable at x = 0:
x ifx <O,

@ f00) = {2x

ifx > 0;
x?  ifx <0,
w)f@)z{mﬁ ifx > 0.

Investigate the differentiability of the function f defined by

2x + 1

4x — x?

ifx <1,

f@):[ ifx > 1.

Investigate the differentiability of the function f defined by

11 + 6x — x?
x2 —6x +29

if x <3,
f“)_{ if x > 3.
Sketch the graph of the function f(x) = x-|x| and show that
it is differentiable everywhere. Can you write a single (one-
part) formula that gives the value of f’(x) both for x > 0
and for x < 0?

Sketch the graph of the function f(x) = x+|x|. Then inves-
tigate its differentiability. Find the derivative f’(x) where
it exists; find the one-sided derivatives at the points where
f'(x) does not exist.

Repeat Problem 59, except with the function f(x) =
x - (x 4+ |x)).

. 3.2 BASIC DIFFERENTIATION RULES

Here we begin our systematic development of formal rules for finding the derivative f”

FIGURE 3.2.1
machine” D,.

of the function f:

F/(x) = lim

Jx+h) - fx)

? (¢Y)

Some alternative notation for derivatives will be helpful.
When we interpreted the derivative in Section 3.1 as a rate of change, we found

D, f(x) = f'(x)

dy .
dx T Ax—0 Ax

lim

it useful to employ the dependent-independent variable notation

y=fx),
This led to the “differential notation”

Ax =h, Ay= f(x+ Ax)— f(x). 2)
Ay _ lim S+ Ax) = f(x) 3)
Ax—0 Ax

for the derivative. When you use this notation, remember that the symbol dy/dx is

simply another notation for the derivative f'(x); it is not the quotient of two separate

The “differentiation ~ entities dy and dx.

A third notation is sometimes used for the derivative f’(x); itis D, f(x). Here,

think of D, as a “machine” that operates on the function f to produce its derivative
D, f with respect to x (Fig. 3.2.1). Thus we can write the derivative 3x? of y =
f(x) = x3 in any of three ways:

ey 4y
fx)=-"-=

D, x> = 3x2.
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Slope zero

120

FIGURE 3.2.2 The derivative of a
constant-valued function is zero
(Theorem 1).

These three notations for the derivative—the function notation f’(x), the differential
notation dy/dx, and the operator notation D, f (x)—are used almost interchangeably
in mathematical and scientific writing, so you need to be familiar with each.

The Derivative of a Constant

Our first differentiation rule says that the derivative of a constant function is identi-
cally zero. Geometry makes this obvious, because the graph of a constant function is
a horizontal straight line that is its own tangent line, with slope zero at every point
(Fig. 3.2.2).

THEOREM 1 Derivative of a Constant
If f(x) = c (a constant) for all x, then f’(x) = O for all x. That is,

dc
— =D,c=0. 4
Ix c €))

Proof Because f(x + h) = f(x) = c, we see that

Iy — - 0
JEAR =) iy €= im 2 =, .
h h—0 h h—0 h

f'x) = lim

The Power Rule

As motivation for the next rule, consider the following list of derivatives, all of which
have already appeared in the text (or as problems). The first two are special cases of
the formula D, (ax? + bx + ¢) = 2ax + b.

Dx =1

D.x?=2x=2-x!

D.x® =3 x? (Problem 37, Section 2.2)
1 1 1 s .
Di—=Dx  =——=—-1-x (Problem 38, Section 2.2)
X x2
1 s 2 _3 .
Dx—2 =Dx "= -5 = —2-x (Problem 39, Section 2.2)
X X
1 1
Divx=Dx'? = — =_.x"Y2  (Example 13, Section 2.2)

Each of these formulas fits the simple pattern
D,x" = nx"" 1, 5)

in which the exponent n is simultaneously placed before the variable and, in the expo-
nent, is decreased by 1. Thus it appears that the blanks in the pattern

D xU =["]xb-1

can be filled with any (single) integer you please, or even the fraction % But Eq. (5)—
inferred from the preceding list of derivatives—is as yet only a conjecture. Never-
theless, many discoveries in mathematics are made by detecting such patterns, then
proving that they hold universally.

Eventually we shall see that the formula in Eq. (5), called the power rule, is
valid for all real numbers n. At this time we give a proof only for the case in which the
exponent n is a positive integer.
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THEOREM 2 Power Rule for a Positive Integer n
If n is a positive integer and f(x) = x", then

f'(x) = nx""1. (6)

Proof For a positive integer n, the identity
P'—a"=b—-—a)B" '+ 0" Pa+b" a4+ ba" T 4"
is easy to verify by multiplication. Thus, if b # a, then

b" —a"

- :bn—l+bn—2a+bn—3a2+“'+ban—2+an—l'
—da

Because each of the n terms on the right-hand side approaches a”~!' as b — a, this
tells us that

by various limit laws. Now letb = x +handa = x,sothath =b —a. Thenh — 0
as b — a, and hence

f/(x) — %l_rf(l) (x—}—hh# — nx" 7

This establishes Theorem 2. L 4
We need not always use the same symbols x and n for the independent variable
and the constant exponent in the power rule. For instance,

D" =mt"™' and D,ZF =kZ*!.

If it is perfectly clear what the independent variable is, the subscript may be dropped
from D, (or D,, or D;), as in Example 1.

EXAMPLE 1 Dx’ = 7x°, Dt'7 = 1719, Dz'%0 = 100z%. N

The Derivative of a Linear Combination

To use the power rule to differentiate polynomials, we need to know how to differenti-
ate linear combinations. A linear combination of the functions f and g is a function
of the form af + bg where a and b are constants. It follows from the sum and product
laws for limits that

lim [af (v) + bg(0)] = a (lim £(0)) + b (lim g(x)) ®)

provided that the two limits on the right in Eq. (8) both exist. The formula in Eq. (8) is
called the linearity property of the limit operation. It implies an analogous linearity
property of differentiation.

THEOREM 3 Derivative of a Linear Combination
If f and g are differentiable functions and a and b are fixed real numbers, then
Dylaf (x) + bg(x)] = a[Dx f (x)] + b[Dxg(x)]. (&)
With u = f(x) and v = g(x), this takes the form
d(au + bv) du dv
— —=ua b

— —. 9
dx dx dx )
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Proof The linearity property of limits immediately gives

Dolaf () + bg()] = lim laf(x +h) +bg(x +:)] —laf (x) + bg(x)]

. <1im Jx+h - f(X)) b (lim gx+h) —g(X))

h—0 h h—0 h
= alDy f(x)] + bID,g(x)],

as desired. .

Now take a = c and b = 0 in Eq. (9). The result is

Dylcf (x)] = Dy f (x); (10)
alternatively,
d(cu) du
=c— 10’
dx “dx’ 1)

Thus the derivative of a constant multiple of a function is the same constant multiple
of its derivative.

EXAMPLE 2
(@) D,(16x% = 16-6x> = 96x°.
(b) If f(z) = 72°, then f'(z) = 21Z>.
d
(c) d—(99u1°0) = 9900u"°. B
u

Next, take a = b = 1 in Eq. (9). We find that

Dy[f(x) +g(x)] = [Dx f(x)] + [Drg(x)]. (11

In differential notation,

du+v) du +dv
dx  dx dx’

1r)

Thus the derivative of the sum of two functions is the sum of their derivatives. Similarly,
for differences we have
dlu—v) du dv

—. 12
dx dx dx (12)

It’s easy to see that these rules generalize to sums and differences of more than two
functions. For example, repeated application of Eq. (11) to the sum of a finite number
of differentiable functions gives

d(u1+u2+---+un)_du1 du2+ +dun
dx T dx dx dx

13)

REMARK Equation (13) tells us that, when differentiating a sum of terms, we simply
differentiate each term and then add the results.

EXAMPLE 3

D,(36 +26x +7x> —5x) =04+26-1+7-5x*—5.9x%
=26+ 35x% — 45x8. S )
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y=2x3-T7x2+3x+4
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y=-5x+7
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X

FIGURE 3.2.3 The graph
y =2x3 —7x% 4+ 3x + 4 and its
tangent line y = —5x + 7 at the

point (1, 2).
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The Derivative of a Polynomial

When we apply Eqgs. (10) and (13) and the power rule to the polynomial
px) =apx" + a1 X"+ ax? +aix +ap
(and thus differentiate termwise), we find the derivative as fast as we can write it:
p'(x) =na,x" '+ (n— Da,_ 1 x" 2+ - + 3a3x> + 2a,x + a. (14)

With this result, it becomes a routine matter to write an equation for a line tangent to
the graph of a polynomial.

EXAMPLE 4 Write an equation for the straight line that is tangent to the graph of
y = 2x3 — 7x? 4 3x + 4 at the point (1, 2).

Solution We compute the derivative as in Eq. (14):

d

&m0 32 -7 2x +340=6x2— 14x + 3.

dx
We substitute x = 1 in dy/dx and find that the slope of the tangent line at (1, 2) is
m = —5. So the point-slope equation of the tangent line is

y—2=-=5(—-1);
that is,
y=-5x+7.

A calculator- or computer-generated picture like Fig. 3.2.3 provides suggestive visual
evidence of the validity of this tangent line computation. ]

EXAMPLE 5 The volume V (in cubic centimeters) of a given sample of water varies
with changing temperature 7. For T between 0°C and 30°C, the relation is given
almost exactly by the formula

V = Vo[l — (6.427 x 107°)T + (8.505 x 107%)T? — (6.790 x 10~%)77],

where V|, is the volume of the water (not ice) sample at 0°C. Suppose that V, =
10° cm?. Find both the volume and the rate of change of volume with respect to tem-
perature when T = 20°C.

Solution Substituting Vy = 10° = 100,000 in the given volume formula yields
V(T) = 100,000 — (6.427)T + (0.8505)T* — (0.00679)T".

Then substituting 7 = 20 yields V (20) ~ 100,157.34, so the sample would expand
by about 157 cm? if heated from 0°C to 20°C. The rate of change of volume V with
respect to temperature 7 is given by

dv
= —6.427 + (1.7010)T — (0.02037)T2,
and substituting 7 = 20 here yields
dv
— ~ 1945 (cm’/C).
dT T=20

Thus we should expect the volume of the water sample to increase by slightly more
than 19 cm? if it is heated by 1°C from 20°C to 21°C. In fact, direct substitution into
the original volume formula gives

V(21) — V(20) ~ 19.88.
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Finally, we note that the average rate of change of V with respect to T on the interval
19.5 < T £ 20.5centered at T = 20 is

AV V(20.5) — V(19.5)
AT 20.5—19.5

which is very close to the derivative dV /dT at T = 20. —

~ 1944 (cm’/C),

The Product Rule and the Quotient Rule
It might be natural to conjecture that the derivative of a product f(x)g(x) is the product
of the derivatives. This is false! For example, if f(x) = g(x) = x, then
D.[f(x)g(x)] = Dyx® = 2.
But
[Dy f(0)]- [Dxg(x)] = (Dyx) - (Dyx) =1-1=1.

In general, the derivative of a product is not merely the product of the derivatives.
Theorem 4 tells us what it is.

THEOREM 4 The Product Rule
If f and g are differentiable at x, then fg is differentiable at x, and
D [f(x)g(x)] = f'(x)g(x) + f(x)g (x). 15)
With u = f(x) and v = g(x), this product rule takes the form
d(uv) dv N du
=u—+v—.
dx dx dx
When it is clear what the independent variable is, we can write the product rule even
more briefly:

(15)

wv) = u'v+uv'. (15")

Proof We use an “add and subtract” device.

fx+hgx+h)— fx)gx)

DLf(x)g(x)] = lim

h

— lim fx+hgx+h — f(x)gx+h)+ f(x)glx+h)— f(x)g(x)

h—0 h
_ fx+hgx+h) — fx)gx+h) . fx)gx+h) — f(x)gx)
= lim + lim

h—0 h h—0 h

. +h) — . ) +h) —

= (i P =L (i x4 1) 400 (i £ )
= f'(x)gx) + f(x)g'(x). *

In this proof we used the sum law and product law for limits, the definitions of
f’(x) and g’(x), and the fact that

}111_I>r(1)g(x +h) =gx).

This last equation holds because g is differentiable and therefore continuous at x (as
we will see in Theorem 2 in Section 3.4).

In words, the product rule says that the derivative of the product of two functions
is formed by multiplying the derivative of each by the other and then adding the results.
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EXAMPLE 6 Find the derivative of

f(x) = (1 —4x*)(Bx> = 5x +2)
without first multiplying out the two factors.

Solution

D, [(1 —4x*)(3x% — 5x +2)]
= [Dy(1 — 4x*)](3x% = 5x +2) + (1 — 4x>)[D, (3x? — 5x 4+ 2)]
= (—12x%)(B3x? = 5x +2) + (1 — 4x%)(6x — 5)
= —60x* 4 80x> — 24x% + 6x — 5. S

We can apply the product rule repeatedly to find the derivative of a product of
three or more differentiable functions u1, u,, ... , u, of x. For example,

Dluiusus] = (uiuz)'uz + (uyuz)uy
= (ujup + uuy)us + uusuly

/ / /
= U UpU3 + UiUyU3 + U U US.

Note that the derivative of each factor in the original product is multiplied by the other
two factors and then the three resulting products are added. This is, indeed, the general
result:

D(uyuy -+ y) = uiusls -+ Up_1Up + UyUSU3Z - Upy_ Uy + - - -

16
+uguoUs - Uil (16

where the sum in Eq. (16) has one term corresponding to each of the n factors in the
product uju; - - - u,. Itis easy to establish this extended product rule (see Problem 62)
one step at a time—next with n = 4, then with n = 5, and so forth.

Our next result tells us how to find the derivative of the reciprocal of a function
if we know the derivative of the function itself.

THEOREM The Reciprocal Rule
If f is differentiable at x and f(x) # 0, then

D, [ : ] — (17)
Fx) [f ()]
With u = f(x), the reciprocal rule takes the form
d (1 1 du ,
d—x(;>=7'd—x- an

If there can be no doubt what the independent variable is, we can write
1Y '
(—) -z 17"
u u

Proof As in the proof of Theorem 4, we use the limit laws, the definition of the
derivative, and the fact that a function is continuous wherever it is differentiable (by
Theorem 2 of Section 3.4). Moreover, note that f(x + h) # 0 for & near zero because
f(x) # 0and f is continuous at x. (See Problem 16 in Appendix D.) Therefore

[ 1 j| . 1( 1 1 ) f&x)—=f(x+h)
D,|——| =1lim — — = lim
fx)yl n=oh \f(x+h)  f(x) h=0 hf(x +h)f(x)

B (1. 1 )( k) — f(x)) A
= — m---————————- lim = — .
=0 f(x +h) f(x) ) \h>0 h Lf()]?
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EXAMPLE 7 With f(x) = x2 + 1 in Eq. (17), we get

b 1\ D241 2x
\x2+1) 0 @2+ 24D

We now combine the reciprocal rule with the power rule for positive integral
exponents to establish the power rule for negative integral exponents.

THEOREM 5 Power Rule for a Negative Integer n
If n is a negative integer, then D,x" = nx"~'.

Proof Letm = —n, so that m is a positive integer. If x # 0 then we can apply the
reciprocal rule with f(x) = x™ # 0 and f'(x) = mx™~! (the latter by the power rule
with positive integer exponent). This gives

" 1 D.(x™) mx™1 Zm—1 ne1
Dx"=D,|—)=-—  Ra— = (—m)x =nx""".
Thus we have established that the rule in Theorem 5 holds precisely where the function
being differentiated is defined—that is, where x # 0. L 2
EXAMPLE 8
Sxt—6x +7 s IR
Dx (T) = Dx (jx —3x + X )
5 3 3 7
(2x)—3(x )+ (—2x )—SJC—i-——x—3
The key here was to “divide out” before differentiating. —

Now we apply the product rule and reciprocal rule to get a rule for differentiation
of the quotient of two functions.

THEOREM 6 The Quotient Rule
If f and g are differentiable at x and g(x) # 0, then f/g is differentiable at x and

[f(X)] _ f)g) — f(X)g/(X)' (18)
8(x) [g(x)]?
With u = f(x) and v = g(x), this rule takes the form
Udu udv
d ouN _ Tdx dx ,
dx <v> N v2 (189
If it is clear what the independent variable is, we can write the quotient rule in the
form
u\'  u'v—uv .
()= a8
Proof We apply the product rule to the factorization
fe 1
g(x) = ( )
This gives
f (X)} [ 1 }
D, =[D, — 4+ —
[() [Dx f(x)]- () f(x)-D 2
_ @ . (_ g ) _[0sw - f0g'w)
“ e O Twr P
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FIGURE 3.2.4 Graphs of the
function z(¢) of Example 9 and its

derivative 7/(1).
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Note that the numerator in Eq. (18) is not the derivative of the product of f and
g. And the minus sign means that the order of terms in the numerator is important.

EXAMPLE 9 Find 7'(t) = dz/dt if 7 is given by
1=7

ST

Solution Here, primes denote derivatives with respect to . With ¢ (rather than x) as

the independent variable, the quotient rule gives

dz _ (1=r)U+1H) =1 =)A+1Y)

dr (1 + 14)2
(SBA)A ) — (A =)@ 0 —4r =32
B (14142 (1442

Figure 3.2.4 shows computer-generated graphs of the function z(#) and its derivative
7/(t). Observe that z(¢) is increasing on intervals where z'(f) is positive and is de-
creasing on intervals where z'(f) is negative (thus corroborating our computation of
the derivative). A quick computer or calculator graph of a function and its alleged
derivative will often reveal an error if one has been made. I

3.2 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If y = f(x), then three acceptable notational devices for indicating the derivative

of f are f'(x), Z—z, and D, f(x).

2. D,(x3%) = _§x,1/2_
3. D, (16x5) = 22,
4. If f(x) = 2x> —7x> 4 3x + 4, then f'(x) = 6x% — 14x + 3 + 4.
d
5. Iy =y(x) =2+ 1) (- 1),thend—y =2 (3= 1) 432 (24 ).
X

3
6. If z = z(t) = ——, th
z=2(1) T en

dz _ (=32 - (L+ 1% — (1 = 1%) - 41°)
dr (14142 '

. If D, (sinx) = cosx, then D,(sinz) = cos z.

. If D, (sinx) = cos x, then D,(x sinx) = x cosx + sinx.

=2 B |

. sin x
. If D,(sinx) = cosx, then D, <—) =1.
X

10. If u and v are differentiable functions of x, then the assertion that
dlu+v) du dv
T dx @ dx
is both notationally and mathematically correct.

3.2 CONCEPTS: QUESTIONS AND DISCUSSION

1. Theorems 2 and 5 in this section imply that the power rule D,x" = nx"~! holds
provided that the integer n is nonzero. Does it also hold if n = 0? Can you think
of a simple algebraic function whose derivative is a nonzero constant multiple of
1/x?

127
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2. Example 1 and the discussion preceding it may seem to imply that the power rule
holds in the very general form D[whatever]” = n[whatever]"~'—more precisely,
D [f(x)]" = n[f(x)]""". Is this true or false? When you’re confronted with a
question like this, don’t just sit there. Check it out! Test the conjecture with
specific choices for n and f(x)—perhaps n = 7 and f(x) = x'!. What are the
simplest choices you can use to resolve the matter?

3.2 PROBLEMS

2 5 2 4
Apply the differentiation rules of this section to find the deriva- 29. y(x) = S+ X7 30. u(x) = 2x =37 427
tives of the functions in Problems I through 40. x? 5x?
2.2 1 32 044 1 1
1. f(x)=3x"—x+5 2. g(t)=1—-3t"—2t 3 y(x) =3x — — 32 () = —
3. f)=2x+3)Bx—2) 4. gx)=2x>2 - D> +2) 4x (2 +2z2+2)
5. h(x) = 13 6. g(t) = (4t —7)? 1 1
(x) x+1) g ( )1 33 y(x) = X . + x;_ 34, u(t) = T 5
X — X — 4t~
T /M =y2y=DQy+1D 8 f)=4'-—
X3 —4x+5 3
1 1 35 y(x) = ————— 36. w(z) =7° (2Z3 - —)
9. = -— 10. f(1) = —— 2 4
8= g f0 == s 42
3 1 2x?
e 2 Jo=" 3.y = ——- B 0= 5
1—-— 3y — ——
X Sx*
13. gt) =+ D(E+2+1)
3 4 x? w + 10
14. f(x) = (2x° = 3)(17x* — 6x +2) 39. y(x) = 40. h(w) = ——
) x+1 w?
15. g(z) = 2% 32 In Problems 41 through 50, write an equation of the line tangent
e — 3x? 44 to the curve y = f(x) at the given point P on the curve. Express
16. f(x) = XX 2+ x—3 the answer in the form ax + by = c.
’ X
— 3 — 2,2 _ 4. _
17. g(y) = 2y(3y* — D + 2y +3) 41. y=x’; P(2,8) 42, y=3x"—4; P(1,-1)
18 x4 43. vy = ! : P2, 1) 4. y=2 l-P(OS iy
@) =5 Y= P, Ly =2v— 1 POS,
t—1
19. g(t) = ——— 45. y=x +3x> —4x —5; P(1,-5
8O = YA 4=
1 T A
20. u(x) = ——= 4. y=(-——=) ; P2, 4
(x +2)2 y T2 2,4
1
21, v(t) = ———— 3 4
(t—1)3 47. y=— — = P(=LD
243 4 x% = 3x + 17 oo
22, hx) = = +; 5x+ o
r 48. y=""": P(2,0.5)
3x 3x 42
23 gx) = ————
X3+7x -5 3,2
1 49, y=———; P(—1,3)
4. f() = —7 xX2+x+1
<t + —> 6
t 50. y = PR P(2,-2)
1 ) 1 —x
25. g(x) = X x2 51. Apply the formula in Example 5 to answer the following
3 _ i two questions. (a) If 1000 cm?® of water at 0°C is heated,
x3 x4 does it initially expand or contract? (b) What is the rate
s 1 (in cm?/°C) at which it initially contracts or expands?
-
2
26. f(x)= AIH 52. Susan’s weight in pounds is given by the formula W =
Xt 5— (2 x 10%)/R?, where R is her distance in miles from the
xt+1 center of the earth. What is the rate of change of W with re-
27. h(x) =x> —6x° + %x"' + 12 spect to R when R = 3960 mi? If Susan climbs a mountain,
4 beginning at sea level, at what rate in ounces per (vertical)
28. x(1) = TTaT 5 mile does her weight initially decrease?
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53.

54.

FIGURE 3.2.6 The tangent
line of Problem 54.

55.

56.

57.

58.

59.

60.

61.

The conical tank shown in Fig. 3.2.5 has radius 160 cm and
height 800 cm. Water is running out of a small hole in the
bottom of the tank. When the height 4 of water in the tank
is 600 cm, what is the rate of change of its volume V with
respect to 1 ?

FIGURE 3.2.5 The leaky
tank of Problem 53.

Find the x- and y-intercepts of the straight line that is tangent
to the curve y = x* + x? 4 x at the point (1, 3) (Fig. 3.2.6).

FIGURE 3.2.7 The tangent
line of Problem 55.

Find an equation for the straight line that passes through the
point (1, 5) and is tangent to the curve y = x3. [Sugges-
tion: Denote by (a, a®) the point of tangency, as indicated in
Fig 3.2.7. Find by inspection small integral solutions of the
resulting cubic equation in a.]

Find rwo lines through the point (2, 8) that are tangent to the
curve y = x>, [See the suggestion for Problem 55.]

Prove that no straight line can be tangent to the curve y = x>

at two different points.
Find the two straight lines of slope —2 that are tangent to the
curve y = 1/x.

Let n=2 be a fixed but unspecified integer. Find the
x-intercept of the line that is tangent to the curve y = x"
at the point P (xg, yo)-

Prove that the curve y = x° 4 2x has no horizontal tangents.
What is the smallest slope that a line tangent to this curve
can have?
Apply Eq. (16) withn = 3 and u; = u, = u; = f(x) to
show that

D ([f)F) =3[f0)F - f'(x).

62.

63.

64.
65.

66.
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(a) First write u ususuy = (U usus)uy to verify Eq. (16) for
n = 4. (b) Then write ujuususus = (ujuruzuy)us and
apply the result in part (a) to verify Eq. (16) forn = 5.

Apply Eq. (16) to show that
D(Lf (1) = nlf ()™ f'(x)

if n is a positive integer and f’(x) exists.
Use the result of Problem 63 to compute D, [(x%+x +1)'%].

Use the result of Problem 63 to find g'(x) given g(x) =
x3 —17x +35".

Find constants a, b, ¢, and d such that the graph of
fx) = ax* +bx*+cex+d

has horizontal tangent lines at the points (0, 1) and (1, 0).

In connection with Problems 67 through 71, Figs. 3.2.8 through
3.2.11 show the curves

67.

68.

69.

FIGURE 3.2.9 The graph
X

1 of y = —.
1+ x2 1+x

T 2 ——
: y =x3/(1 +ix?)
: Ly
Yo
.i.“ _1 .
: -2

-4 2 0 2 4 -2 -1 0 1 2

X X

Show that for n = 0 and n = 2, the curve has only a single
point where the tangent line is horizontal (Figs. 3.2.8 and
3.2.10).

When n = 1, there are two points on the curve where the
tangent line is horizontal (Fig. 3.2.9). Find them.

Show that for n = 3, (0, 0) is the only point on the graph of

n

X

Y= Te

at which the tangent line is horizontal (Fig. 3.2.11).
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70. Figure 3.2.12 shows the graph of the derivative f’(x) of the

71.

function
3
1+ x2
There appear to be two points on the graph of y = f(x) at
which the tangent line has slope 1. Find them.

fx) =

It appears in Fig. 3.2.12 that there are three points on the
curve y = f’(x) at which the tangent line is horizontal. Find
them.

2 — 1001

Evidently a minimal volume V,, = V(T,,) occurs at a crit-
ical temperature 7,, ~ 4 (°C). Given that the tangent line
to the graph of V is horizontal at the point (7,,, V,,), find:
(a) the numerical values of 7, and V,,, and (b) the tempera-
ture 7 ~ 8 (°C) at which the volume of the sample is again
exactly 1000 cm?®. Comment: Because water that’s slightly
warmer than the freezing point of 0°C is slightly denser than
water at 0°C, the warmer water sinks to the bottom as a cool-
ing lake freezes. But ice is less dense, so it floats on the
surface. Consequently, ice at the surface traps somewhat
warmer water at the bottom of the lake—which otherwise
might freeze solid. This phenomenon is responsible for the
survival and evolution of life forms that can withstand cold
water but not freezing.

FIGURE 3.2.12 The graph

V1000
(T, Vi)

999
0

FIGURE 3.2.13 The

In Problems 73 through 78, sketch the graph of the given function
f and determine where it is differentiable. Recall the definition
of one-sided derivatives in Problem 54 of Section 3.1, as well as
the fact that f'(a) exists if and only if ' (a) = f|(a).

x3 temperature-volume graph of
of y = Dy <1—x2) of Problem 72.
Problems 70 and 71.
72. Much of life on earth (as we know it) depends critically on

the variation of water density with temperature. Consider a
sample of water than has a volume of exactly 1000 cm?® when
measured at precisely 0°C. Figure 3.2.13 shows a graph of
its volume function V (T') as given by the formula in Exam-
ple 5. The surprise is that, as the temperature is increased,
the sample initially contracts rather than expands in volume.

73. f(x) = |x}| 74. f(x) = x>+ |x3
75, F(0) 243x% ifx <1,
- fw= 34+2x% ifx>1
x4 ifx <1,
[LRAC A PRI
4
: if 1
77 f=32-x "FT"
X ifx>1
12
—_ if x <3,
78. f(x) =1 (5—x)?
x2=3x+3 ifx=3

@ 3.3 THE CHAINRULE

We saw in Section 3.2 how to differentiate powers of the independent variable, but we
often need to differentiate powers of rather general (or even unknown) functions. For

instance, suppose that

y=u’ 1)

where u is in turn a function of x. Then the extended product rule [Eq. (16) in Sec-

tion 3.2] yields

dy
dx

—=Duw’=D(u-u-w)=u-u-u+u-u -utu-u-u

where u' = du/dx. After we collect terms, we find that

d d
Y- 3ulu’ = 3u2—u. 2)
dx dx

Is it a surprise that the derivative of u3 is not simply 3u?, which you might expect in
analogy with the correct formula D,x* = 3x?? There is an additional factor du/dx,
whose presence may seem more natural if we differentiate y in Eq. (1) with respect to

u, and write

dy

= 3u’.
du
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x barrels crude oil

Process 1

u liters gasoline

{

Process 2

y grams petrochemical

FIGURE 3.3.1 The two-process oil
refinery (Example 2).
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Then the derivative formula in (2) takes the form

d dy d
dy _dy du o
dx du dx

Equation (3), the chain rule, holds for any two differentiable functions y = f(u) and
u = g(x). The formula in Eq. (2) is simply the special case of (3) with f(u) = u>.

EXAMPLE 1 If
y= 02+ 57,

it would be impractical to write the binomial expansion of the seventeenth power of
3x2 + 5 before differentiating. The Expand command in a typical computer alge-
bra system yields a polynomial in x having 18 terms, some of which have 15-digit
coefficients:

(3x? +5)"7 = 762939453125 + 7781982421875x% + - - -

+ 186911613281250x'® + - - - + 129140163x>*.

(Each ellipsis replaces seven omitted terms.) But if we simply write

y =u' with u =3x>+35,
then
d d
il = 17u'® and au = 6x.
du dx

Hence the chain rule yields

d dy d
@Y _ &Y 17,16 6x
dx du dx

= 173x>+5)'% . 6x = 102x(3x> + 5)'6. I

The formula in (3) is one that, once learned, is unlikely to be forgotten. Although
dy/du and du/dx are not fractions—they are merely symbols representing the deriva-
tives f’(u) and g’(x)—it is much as though they were fractions, with the du in the first
factor canceling the du in the second factor:

dy du dy df dy

—_— . — = —_— = Invalid cancellation!

du dx dy dx dx [ )

But you should realize that such “cancellation” no more proves the chain rule than
canceling two copies of the symbol d proves that

dy _dy _y [An absurdity!]

dx dx x
It is nevertheless an excellent way to remember the chain rule. Such manipulations
with differentials are so suggestive (even when invalid) that they played a substantial
role in the early development of calculus in the seventeenth and eighteenth centuries.
Many formulas were thereby produced (and later proved valid), as were some formulas
that were incorrect.

EXAMPLE 2 For a physical interpretation of the chain rule, imagine an oil refinery
that first makes u liters of gasoline from x barrels of crude oil. Then, in a second
process, the refinery makes y grams of a marketable petrochemical from the u liters of
gasoline. (The two processes are illustrated in Fig. 3.3.1.) Then y is a function of u
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and u is a function of x, so the final output y is a function also of the input x. Consider
the units in which the derivatives of these functions are measured.

dy g . .
0L (grams of petrochemical
u
per liter of gasoline)
du L . .
d—: barrel (liters of gasoline
X
per barrel of oil)
dy . 8 s of
Tr " barrel (grams of petrochemical
x barre

per barrel of oil)

When we include the units in the chain rule equation
dy dy du

dx  du dx’

dy g  [(dyg du ¥\ _ (dy du) g

dx barrel  \du L dx barrel ) \du dx ) barrel’
The handy cancellation of units seems to confirm the validity of the chain rule (at least
in this application). For example, if we get 3 g of petrochemical per liter of gasoline

and 75 L of gasoline per barrel of oil, how could we fail to get 225 = 3 - 75 g of
petrochemical per barrel of 0il? I

we get

The Chain Rule in Function Notation

Although Eq. (3) is a memorable statement of the chain rule in differential notation, it
has the disadvantage of not specifying the values of the variables at which the deriva-
tives are evaluated. This problem can be solved by the use of function notation for the
derivatives. Let us write

y = fu), u=gx) y = h(x) = f(g(x)).
Then

du , dy ,
_— = _— = h
I8 (%), I (%),

and
d
d—y = f'w) = f(g(x)).
u

Substituting these derivatives into the chain rule formula

dy dy du
2 _ 2.z 3
dx du dx )
recasts it in the form
h(x) = f'(gx)) - g'(x). €))

This version of the chain rule gives the derivative of the composition h = f o g of two
functions f and g in terms of their derivatives.

THEOREM 1 The Chain Rule

Suppose that g is differentiable at x and that f is differentiable at g(x). Then the
composition i = f o g defined by h(x) = f(g(x)) is differentiable at x, and its
derivative is

h(x) = f'(gx)) - g'(x). C))
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REMARK The chain rule in (4) shows that the derivative of the compositions = fog
is a product of the derivatives of f and g. Note, however, that these two derivatives are
evaluated at different points. The derivative g’ of the inner function is evaluated at x,
whereas the derivative f’ of the outer function is evaluated at g(x) (rather than at the
same point x).

EXAMPLE 3 In Example 1 we applied the differential form of the chain rule in (3)
to differentiate the function
h(x) = 3x* +5)".

To apply the functional form of the chain rule in (4), we must first identify the outer
function

f(x)=x",  forwhich f'(x)=17x"C,
and the inner function
g(x) =3x2+5,  forwhich g'(x) = 6x.
Then
B (x) = f'(gx)) - g'(x)
= f'Bx*+5)- 3x*+5)
= 17(3x> + 5)'% . 6x = 102x(3x* + 5)'°. D

The Proof of the Chain Rule

To outline a proof of the chain rule, suppose that we are given differentiable functions
y = f(u) and u = g(x) and want to compute the derivative

dy . Ay . f(glx + Ax)) — f(gx))
— im lim .

- = — = 5)
X Ax—0 Ax Ax—0 Ax
The differential form of the chain rule suggests the factorization
Ay Ay Au
e ©)
Ax  Au Ax

where
Au=gx+ Ax) —gx) and Ay = f(u+ Au) — f(u).

For x fixed, the factorization in Eq. (6) is valid if g’(x) # 0, because

=M him A 2

X)= — = e

8 dx Ax—0 Ax

implies that Au # 0 if Ax # 0 is sufficiently small—for if so, then Au = (Au/Ax) -
Ax is the product of nonzero numbers. But the fact that g is differentiable, and there-
fore continuous, at the point x (see Theorem 2 in Section 3.4) implies that

Au=gkx+ Ax) —gx)—0 as Ax — 0.

The product law of limits therefore gives

dy ) Ay Au . Ay . Au dy du

—=Ilm|— - —)=({Ilm — ) - lim —)=— —.

dx Ax—0\ Au Ax Au—0 Au Ax—0 Ax du dx
Thus we have shown that D,[f(g(x))] = f'(g(x)) - g'(x) at any point x at which
g'(x) # 0. Butif g’(x) = 0, then it is entirely possible that Au is zero for some or
all nonzero values of Ax approaching zero—in which case the factorization in (6) is

invalid. Our proof of the chain rule is therefore incomplete. In Section 4.2 we give a
proof that does not require the assumption that g’(x) # 0.
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The Generalized Power Rule

If we substitute g(x) = u and g'(x) = du/dx into Eq. (4) with h’'(x) = D, f(g(x)) =
D, f(u), we get the hybrid form

d
D.f ()] = f'(u) - f )

of the chain rule that frequently is the most useful form for purely computational pur-
poses. Recall that the subscript x in D, specifies that f (u) is being differentiated with
respect to x, not with respect to u.

Let us set f(u) = u" in Eq. (7), where n is an integer. Because f'(u) = nu""!,
we thereby obtain

_,du

— ®

D.u" = nu"

the chain rule version of the power rule. Since u = g(x) is a differentiable function,
Eq. (8) implies that

Di[g(0)]" = nlg()]"~" - Dx[g(x)]. (&)

[If n — 1 < 0, we must add the proviso that g(x) # 0 in order for the right-hand side
in Eq. (9) to be meaningful.] We refer to this chain rule version of the power rule as
the generalized power rule.

REMARK We may interpret the operator form in (9) as describing a chain rule pro-
cedure in which we work from the outside to the inside—differentiating first the outer
function and then the inner function. This outside-inside procedure is illustrated in the
next example.

EXAMPLE 4 To differentiate

1

YT 2 —x 72

we first write
y=02x —x+77?

in order to apply the generalized power rule, Eq. (9), with n = —2. This gives

d
2= (D -+ D~ 4T
X

derivative of
outer function

2(1 — 6x?)
= (-2)(2x°® — N3 —1)= ——F . N
(=2)2x° —=x+17) (_xv_) 2 —x 1)
derivative of
inner function

EXAMPLE 5 Find the derivative of the function

h()_(z—l>5
Y=\1)

Solution The key to applying the generalized power rule is observing what the given
function is a power of. Here,

z—1
z+1’

h(z) = u’, where u =
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and z, not x, is the independent variable. Hence we apply first Eq. (8) and then the

quotient rule to get
du z—1\ z—1
W(z)=5u"— =5 D ( )
@) dz <Z+1) Nz +1

:5(1— 1)“' (DE+1D = D)

z+1 (z+ 1)

_ 1\ _1\4
:S(Z 1)‘ 2 _10c-n*

z+1 (z+1)2 (z+1)°

The importance of the chain rule goes far beyond the power function differenti-
ations illustrated in Examples 1, 4, and 5. We shall learn in later sections how to dif-
ferentiate exponential, logarithmic, and trigonometric functions. Each time we learn
a new differentiation formula—for the derivative f’(x) of a new function f (x)—the
formula in Eq. (7) immediately provides us with the chain rule version of that formula,

Dy f(u) = f'(u)Dyu.

The step from the power rule D,x" = nx"~! to the generalized power rule D u" =
nu"~'D,u is our first instance of this general phenomenon.

Rate-Of-Change Applications

Suppose that the physical or geometric quantity p depends on the quantity ¢, which
in turn depends on time ¢. Then the dependent variable p is a function both of the
intermediate variable g and of the independent variable t. Hence the derivatives that
appear in the chain rule formula

dp dpdq
dt ~ dg dt

are rates of change (as in Section 3.1) of these variables with respect to one another.
For instance, suppose that a spherical balloon is being inflated or deflated. Then its
volume V and its radius r are changing with time ¢, and

dv _ dVdr
dt — dr dt’

Remember that a positive derivative signals an increasing quantity and that a negative
derivative signals a decreasing quantity.

EXAMPLE 6 A spherical balloon is being inflated (Fig. 3.3.2). The radius r of the
balloon is increasing at the rate of 0.2 cm/s when r = 5 cm. At what rate is the volume

FIGURE 3.3.2 The spherical V of the balloon increasing at that instant?

balloon with volume V = %JTV3.

Solution Given dr/dt = 0.2 cm/s when r = 5 cm, we want to find dV /dt at that
instant. Because the volume of the balloon is

V= %nr3,

we see that dV /dr = 4mrr?. So the chain rule gives

AV dv d d
4 Y 4 42(5)2(02) ~ 6283 (emls)
dir  dr di d
at the instant when r = 5 cm. I )
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In Example 6 we did not need to know r explicitly as a function of #. But suppose
we are told that after # seconds the radius (in centimeters) of an inflating balloon is
r = 3 4+ (0.2)¢ (until the balloon bursts). Then the volume of this balloon is

o ld (5t \
=—nr’'=-m -1,

3 3 5
so dV /dt is given explicitly as a function of ¢ by

v _4 o 3+z2 1\ 4 3+r2

— =7 - —|==7 - .

dt 3 5 5 5 5
EXAMPLE 7 Imagine a spherical raindrop that is falling through water vapor in the
air. Suppose that the vapor adheres to the surface of the raindrop in such a way that the
time rate of increase of the mass M of the droplet is proportional to the surface area

S of the droplet. If the initial radius of the droplet is, in effect, zero and the radius is
r = 1 mm after 20 s, when is the radius 3 mm?

Solution We are given

M
I ks, 10
7 (10)

where k is some constant that depends upon atmospheric conditions. Now
4 3 2
M = 3mpr® and S =d4nr’,
where p denotes the density of water. Substitution of the chain rule results in
dM _dM dr _d(5mpr’) dr a2 4
R — . - S — npr [—
dt dr dt dr dt dt

and kS = k - 4772 into Eq. (10) then yields

d
471pr2—r = 47rkr2,

dt

so it follows that
dr _ k
dt  p’

a constant. So the radius of the droplet grows at a constant rate. Thus if it takes 20 s
for r to grow to 1 mm, it will take 1 min for r to grow to 3 mm. J

3.3 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The chain rule can be expressed in the form

du B du dv
dt  dv dt’
2. The chain rule can be expressed in the form D[ f(g(x))] = f'(g(x)) - g'(x).

. The generalized power rule states that D[ f (x)]" = m[f(x)]""! - f'(x) if m is
an integer and the right-hand side in the last equation is defined.

W

4. According to the generalized power rule, D, (3x + 5)!7 = 51(3x + 5)'S.
5. Ifh= fog,thenh'(x) = f'(g(x)) - g (x).
d
6. If y = y(x) = (2x> — x +7)72, then d—y =(=2)2x —x+7)3 - (6x = 1).
X
7. If

x—1\° x—1\* x —1
h(x) = , then hW'(x)=5 - D, .
x+1 x+1 x+1
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8. Given: D, (sinx) = cosx. Then D, (sinx)> = 5(sinx)*cos x.
9. Given: D, (sinx) = cosx. Then D,[sin(x>)] = 5x* cos(x°).

d
10. Ifu = u(x) = (x3 + x2) then d—” = 7(3x% + 2x)°.
X

3.3 CONCEPTS: QUESTIONS AND DISCUSSION

1. As a mathematical quiz show contestant, you are asked to calculate the value
F'(7) for the composition F = f o g. The functions f and g are unknown, but
you are permitted to ask exactly three questions regarding numerical values of
these functions and/or their derivatives at specified points. What three questions
should you ask?

2. Write the function-notation form of the chain rule formula in Problem 63 for a
composition F = f o g o h of three functions. What numerical data are now
needed to calculate the numerical value F’(7)?

3.3 PROBLEMS

Find dy/dx in Problems I through 12. 27. g(y) =y + 2y —3)° 28. h(z) =72(z2+4)3
_ 5 (7 &3 1\
1L oy= Gx +4 2. y=0 15x> 29. F(s) = <s _ 7)
s
3. y= 4, y=— —
T RN CT 0 s Y
5.y = (x2+3x +4)° 6. y=(1—2x%)" ' G(’)_(’ + +?>
7. y=2-x)"'G+x) 8. y=+x)(1+x%)? 3. fu) =1 +uw)d +u?)?
9. y= T2 10, y = 1= 32, gw) = (W — 3w + 4w +4)°
) (3x —4)} ) (4 + 5x + 6x2)? T
1. y=[1+ (1 +x)** 12 y =[x+ (x +x)73]7° 33. h(v) = |:v — (1 — —) :|
v
In Problems 13 through 20, express the derivative dy/dx in terms . | )
of x without first rewriting y as a function of x. 34. p(t) = <; + 5 + t_3>
1
13. y=w+1)> and u=— 1
X 35. Fo) = ———————
1 1 (3 — 4z +529)10
14. yzﬂ_ﬁ and u=2x+1 36. G(x) = {1+ [x + (x% + x3)*P)S
15. y=(1+u*)’ and u=(4x—1)° In Problems 37 through 44, dy/dx can be found in two ways—
6. v—=u5 and u— one way using the chain rule, the other way without using it. Use
"= T 3x =2 both techniques to find dy/dx and then compare the answers.
1 (They should agree!)
17. y =u(l —u)®* and u=— 1
X 1\~
(3 — 12 Y
u—+1 x+1
, s 1 39, y =2 -1 =x*—2x2+1
19,y =wu—uw)" and u=-= 40, y= (1 —x)* =1 —3x+3x2 — x>
20. y = u and u—x_ > . y=@+D*=x*+4x> +6x> +4x + 1
Qu + 1)* X 1
o . 2. y=(+)2= ——
In Problems 21 through 26, identify a function u of x and an x24+2x+1
int 1 such that =u". Th te f'(x).
integer n # 1 such that f(x) =u en compule f(x) Boy= (1) = —
X
_ 23 —
2. f(x) = Q2x—x7 2. f0) =375 M. y=(+ 17 =+ D+ 1)
23. f(x) = 1 24. f(x) = (% —4dx + 1) We shall see in Section 3.7 that D.[sin x] = cos x (provided that
(1 —x2)* X is in radian measure). Use this fact and the chain rule to find
1Y 2 D4 the derivatives of the functions in Problems 45 through 48.
25. f(x) = (x + ) 26. f(x) = M
x—1 (x+1) 45. f(x) = sin(x?) 46. g(t) = (sint)?
Differentiate the functions given in Problems 27 through 36. 47. g(z) = (sin2z)* 48. k(1) = sin(1 + sinu)
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49.

50.

51.

52.

53.

54.

A pebble dropped into a lake creates an expanding circular
ripple (Fig. 3.3.3). Suppose that the radius of the circle is
increasing at the rate of 2 in./s. At what rate is its area in-
creasing when its radius is 10 in.?

FIGURE 3.3.3 Expanding circular
ripple in a lake (Problem 49).

The area of a circle is decreasing at the rate of 2r cm?/s. At
what rate is the radius of the circle decreasing when its area
is 757 cm??

Each edge x of a square is increasing at the rate of 2 in./s. At
what rate is the area A of the square increasing when each
edge is 10 in.?

Each edge of an equilateral triangle is increasing at 2 cm/s
(Fig. 3.3.4). At what rate is the area of the triangle increasing
when each edge is 10 cm?

55.

57.

58.

59.

60.

61.

62.

63.

Given: G(t) = f(h(t)), h(1) =4, f'(4) =3,and h'(1) =
—6. Find G'(1).

. Suppose that f(0) = 0 and that f'(0) = 1. Calculate the

derivative of f(f(f(x))) atx = 0.

Air is being pumped into a spherical balloon in such a way
that its radius r is increasing at the rate of dr/dt = 1 cm/s.
What is the time rate of increase, in cubic centimeters per
second, of the balloon’s volume when r = 10 cm?

Suppose that the air is being pumped into the balloon of
Problem 57 at the constant rate of 200 cm’/s. What is the
time rate of increase of the radius » when r = 5 cm?

Air is escaping from a spherical balloon at the constant rate
of 300 cm®/s. What is the radius of the balloon when its
radius is decreasing at the rate of 3 cm/s?

A spherical hailstone is losing mass by melting uniformly
over its surface as it falls. At a certain time, its radius is 2
cm and its volume is decreasing at the rate of 0.1 cm*/s. How
fast is its radius decreasing at that time?

A spherical snowball is melting in such a way that the rate
of decrease of its volume is proportional to its surface area.
At 10 A.M. its volume is 500 in.> and at 11 A.M. its volume
is 250 in.>. When does the snowball finish melting? (See
Example 7.)

A cubical block of ice with edges 20 in. long begins to melt
at 8 A.M. Each edge decreases at a constant rate thereafter
and each is 8 in. long at 4 P.M. What was the rate of change
of the block’s volume at noon?

Suppose that u is a function of v, that v is a function of w,
that w is a function of x, and that all these functions are dif-
ferentiable. Explain why it follows from the chain rule that

X X du o du dv dw
o=t dx  dv dw dx’
64. Let f be a differentiable function such that f(1) = 1. If
F(x) = f(x")and G(x) = [f(x)]" (where n is a fixed inte-
! 1x Tx—s] ger), show that F(1) = G(1) and that F'(1) = G'(1).

FIGURE 3.3.4 The
triangle of Problem 52 with
area A = %xh‘

A cubical block of ice is melting in such a way that each
edge decreases steadily by 2 in. every hour. At what rate is
its volume decreasing when each edge is 10 in. long?

Find f'(=1), given f(y) = h(g(y)), h(2) = 55, g(—1) =
2,(2)=—1,and g'(—1) =T7.

Recall from Example 13 in Section 2.2 that

1

Use (only) this fact and the chain rule to calculate the derivative
of each function given in Problems 65 through 68.

65.
67.

h(x) =+/x+4
h(x) = (x> +4)3?

66. h(x) =x*?
68. h(x) = |x| = V2

. 3.4 DERIVATIVES OF ALGEBRAIC FUNCTIONS

We saw in Section 3.3 that the chain rule yields the differentiation formula

du
dx

n—1

(¢Y)

D.u" = nu

if u = f(x) is a differentiable function and the exponent 7 is an integer. We shall see
in Theorem 1 of this section that this generalized power rule holds not only when the
exponent is an integer, but also when it is a rational number r = p/q (where p and ¢
are integers and ¢ # 0). Recall that rational powers are defined in terms of integral

roots and powers as follows:

ul/d = Yur = ({f/ﬁ)p
138
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2
y'=—1
2Vx
y 1 v=Vx
% 0.5 1 L5

FIGURE 3.4.1 The graphs of

f@) = VX and f'(x) =

25
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We consider first the case of a rational power of the independent variable x:
y=xP/, @)

where p and g are integers with g positive. In Problems 72 through 75 we illustrate
the proof that the derivative of the root function f(x) = ¢/x is given by

Dx(xl/q) = lx(l/q)—l = lx—(q—l)/q @A)
q q

for x > 0; essentially the same proof works for x < 0if g is odd (so that no even root of
a negative number is involved). Thus the power rule—which we established in Section
3.2 only for integral exponents—also holds if the exponent of x is the reciprocal of a
positive integer.

Consequently, we can apply Eq. (1) with n = p and u = x'/7 to differentiate the
rational power of x in (2):

Dy[x"] = D.[(x'7)"]
— (9" Dy (xV9)

— p(xl/q)ﬂfl ) lquH
q
— P w/-/p+a/p-1.
q
therefore
Dx[xp/q] = Bx(p/q)—l_
q
Thus we have shown that the power rule
Dyx" =rx"! 4)

holds if the exponent r = p/q is arational number (subject to the conditions previously
mentioned).

Using Eq. (4) we can differentiate a simple “radical” (or “root”) function by first
rewriting it as a power with a fractional exponent.

EXAMPLE 1

1 1
Dy =D, [x!/?] = —x71/2 = .
@ Dfvx] = Dilx] =2 2%
d 3 3
(b) Ify:\/)?,then_y:_xl/zz_ﬁ'
| dx 2 2 ) ,
© Ifg(t):3—:f72/3,thengl(t):——t*5/3:— 3= — )
J? 3 7

REMARK In parts (a) and (b) of Example 1 it is necessary that x > 0 in order that ,/x
be defined. In part (a) it is, moreover, necessary that x # 0; if x = 0 then the formula

1
NG
would involve division by zero. Figure 3.4.1 shows the graphs of the function f(x) =

J/x and its derivative f'(x) = 1/(24/x) for x > 0. Note that f'(x) — oo as x — 07,
further emphasizing the fact that f(x) = 4/x is not differentiable at x = 0.

D, [Vx]
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3
y=V4-x2

2

1
y 0

-1

y =X
i) V4 -x2

B335 0 o0 1 2

X

FIGURE 3.4.2 The graphs of
f(x) =+4—x?and

oL X
rO=r==

140

3

The Generalized Power Rule

For the more general form of the power rule, let
y=u

where u is a differentiable function of x and r = p/q is rational. Then

dy r—1
— =ru
du
by Eq. (4), so the chain rule gives
dy dy du 1 du
— = —=ru" —.
dx du dx dx
Thus
d
D’ =ru""! %, &)

which is the generalized power rule for rational exponents.

THEOREM 1 Generalized Power Rule
If r is a rational number, then
Dyl f)) =rlf@I " f'(x) (6)

wherever the function f is differentiable and the right-hand side is defined.

For the right-hand side in Eq. (6) to be “defined” means that f’(x) exists, there
is no division by zero, and no even root of a negative number appears.

EXAMPLE 2

D,[V4—-x2]=D,[4—x)"*]=1@d-x»""*.D,(4 —x*)
=34 —x)7"2 (=20);

D.[V4—x] = _4%)# )

except where x = =2 (division by zero) or where |x| > 2 (square root of a negative
number). Thus Eq. (7) holds if —2 < x < 2. In writing derivatives of algebraic func-
tions, we ordinarily omit such disclaimers unless they are pertinent to some specific
purpose at hand. But note in Fig. 3.4.2 that if f(x) = +/4 — x2 then f'(x) — +o0 as
x — —2Tand f'(x) > —ocoasx — +27. N )

A template for the application of the generalized power rule is
D ([% % %]") = nlx % 1" "' Dy [% % %],

where * s % represents a function of x and (as we now know) n can be either an integer
or a fraction (a quotient of integers).

But to differentiate a power of a function, we must first recognize what function
it is a power of. So to differentiate a function involving roots (or radicals), we first
“prepare” it for an application of the generalized power rule by rewriting it as a power
function with fractional exponent. Examples 3, 5, and 6 illustrate this technique.

—_— 2
EXAMPLE 3 If y = 5v/x3 — ——, then
X

7

y =5x3% —2x713,
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f0) =lx|

FIGURE 3.4.3 The graph of
fx) = Ix|.
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SO

dy 3, 1 15 2 15 2
o5 [ Zx12)—2 [ —ox ) = X2 S = S -
I <2x ) ( 3 > +3x 2ﬁ+3374

S )

EXAMPLE 4 With f(x) =3 — 5x and r = 7, the generalized power rule yields

D [(3—=5x)"1=7(3 —5x)°D. (3 — 5x)

=73 — 5x)%(=5) = =353 — 5x)°. S )

EXAMPLE 5 With f(x) = 2x> = 3x +5and r =
yields

%, the generalized power rule

D.v/2x2 —3x+5=D,(2x> = 3x +5)!/?
1

= 5(2x2 —3x+5)7"°D,(2x* —3x +5)
4x —3
e —— —'
2V2xT —3x +5
EXAMPLE 6 If
x =[5t + /G — A"
then Eq. (5) with u = 5¢ + (3t — 1)*/3 and with independent variable ¢ gives
dx g du
— = 10u” - —
di di
—10[57 + Br — D] D, [5t + 3t — D*°]
= 10[5t + Bt — )*]” - [D,(5t) + D, 3t — 1)*?]
= 10[51+ B — D] - [5+ 431 — D' 3];
d
d_)t‘ =10[5 + 31 — /] - [5 + 4G — D] _

Example 6 illustrates the fact that we apply the chain rule (or generalized power
rule) by working from the outside to the inside. At each step the derivative of the
outside function is multiplied by the derivative of the inside function. We continue
until no “inside function” remains undifferentiated. Does the process remind you of
peeling an onion, one layer at a time, until its core is reached?

Differentiability and Vertical Tangent Lines

Whereas polynomials and rational functions are both continuous and differentiable
wherever they are defined, simple algebraic functions can be continuous at points
where their derivatives do not exist.

EXAMPLE 7 If

f) = |x| = Va2
denotes the absolute value function, then for x # 0 we find that
1) — 201/21 —_ 1,2y=1/2 _r _r -1 ifx <0,
£ = D[] = 30720 = = = {+1 oo

Thus f is differentiable at every point except possibly for the origin x = 0. In fact, the
graph of f(x) = |x| in Fig. 3.4.3 makes it clear that the difference quotient

f@ = FO) _Ixl

x—0 X
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y

y=x13

FIGURE 3.4.4 The graph of the
cube root function.

(=1,0)

FIGURE 3.4.5 The graph of

fx)=xv1—x2,-1<x<1
(Example 9).

©, D

has left-hand limit —1 and right-hand limit +1 at x = 0. Thus the absolute value
function is not differentiable at the isolated point x = 0, where the graph y = |x| has
a “corner point” rather than a tangent line. (Can you think of a continuous function
whose graph has infinitely many such corner points?) I

EXAMPLE 8 Figure 3.4.4 shows the graph of the cube-root function
y = \3/; = x1/3,

and illustrates another way in which a function can fail to be differentiable at an isolated
point. Its derivative,

dy 1 o 1

dx 3 3/\3/ x2 ’
increases without bound as x — 0 but does not exist at x = 0. Therefore, the definition
of tangent line does not apply to this graph at (0, 0). Nevertheless, from the figure it

seems appropriate to regard the vertical line x = 0 as the line tangent to the curve
y = x!/3 at the point (0, 0). S

DEFINITION Vertical Tangent Line
The curve y = f(x) has a vertical tangent line at the point (a, f(a)) provided that
f is continuous at a and

|f’(x)|—>+oo as x — a. )

Thus the graph of the continuous function f(x) = x'/* of Example 8 has a
vertical tangent line at the origin, even though f is not differentiable at x = 0. Note
that the requirement that f be continuous at x = a implies that f(a) must be defined.
Thus it would be pointless to ask about a line (vertical or not) tangent to the curve
y = 1/x where x = 0.

If f is defined (and differentiable) on only one side of x = a, we mean in Eq. (8)
that | f(x)| — 400 as x approaches a from that side.

EXAMPLE 9 Find the points on the curve

y=fx)=xv1—-x2, —-1<x<1,
at which the tangent line is either horizontal or vertical.

Solution We differentiate using first the product rule and then the chain rule:

i)y =1 -x)2 4 ga — 272 (—2x)

1 —2x?
_ _ w2\—1)2 w2y 27
=(1—x9 [(1 —x%) x]_im.

Now f’(x) = 0 only when the numerator 1 — 2x? is zero—that is, when x = £1/ V2.
Because f(41/+/2) = 41/2, the curve has a horizontal tangent line at each of the two
points (1/+/2,1/2) and (—1/+/2, —1/2).

We also observe that the denominator /1 — x2 approaches zero as x — —1T
and as x — +17. Because f(+1) = 0, we see that the curve has a vertical tan-
gent line at each of the two points (1,0) and (—1,0). The graph of f is shown in
Fig. 3.4.5. — )

FIGURE 3.4.6 The graph of

-1

0
X

y =1— </x2 with a cusp at (0, 1).

142

EXAMPLE 10 Figure 3.4.6 shows the graph of the function f(x) = 1— Jx2, which
appears to have a sharp “cusp” (rather than a corner) at the point (0, 1). Because the
absolute value of the derivative f'(x) = —2x~*/° approaches 400 as x — 0, the curve
y = f(x) has a vertical tangent at that point. —
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Whereas the preceding examples show that a function can be continuous without
being differentiable, the following theorem says that a function is continuous wherever
it is differentiable. Thus differentiability of a function is a stronger condition than
continuity alone.

THEOREM 2 Differentiability Implies Continuity
Suppose that the function f is defined in a neighborhood of a. If f is differentiable
at a, then f is continuous at a.

Proof Because f'(a) exists, the product law for limits yields

lim [f (x) — f(@)] = lim <(x —a)- M)
X—a X—a X —a
(o) 1)
=0 f'(a) =0.
Thus lim f(x) = f(a), so f is continuous at a. .

3.4 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

L If f(x) = /x, then f'(x) = Jx~1/2

2. D [x 32 = —3x712,

3. Suppose that r is a rational number and that f is a differentiable function of x.
Then D, [f ()]" = r[f )"+ f/(x).

4. D, [VA—x2] =14 —xH)712

5. If f is continuous at x = a and | f'(x)| — +00 as x — a, then the graph of f
has a vertical tangent line at the point (a, f(a)).

6. If f(x) = x+/1 — x2, then the graph of f has vertical tangent lines at the two
points (1, 0) and (—1, 0).

7. If f is continuous at x = a then f'(a) exists.

. If f'(a) exists then f is continuous at x = a.

e

9. If g(x) = |x — 1|42 then g is continuous everywhere but fails to be differentiable
at infinitely many points.

1
10. If h(x) = — then the graph of % has a vertical tangent line at (0, 0).
X

3.4 CONCEPTS: QUESTIONS AND DISCUSSION

1. (a) Can you define a function that is continuous everywhere and has a “corner
point” at each integer point x = n, but is differentiable at every other point of the
real line? (b) Can you define a function that is continuous everywhere and has
a vertical tangent line at each integer point x = n, but is differentiable at every
other point of the real line?

2. Suppose that the function f has the following property: Every point x of the real
line lies in some closed interval [a, b] on which the graph of f is a semicircle
having this interval as a diameter. Sketch a typical graph of such a function. Dis-
cuss the continuity and differentiability of f. Remark: The set of all endpoints
of the closed intervals mentioned might (or might not) be the set of all integer
points on the real line.
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In Question 2, you may have assumed that each endpoint of the interval [a, b]
lies on exactly two such semicircles, one to the right and one to the left. Can
you think of a function g whose graph consists entirely of semicircles, but does
not satisfy this “two semicircles” condition? If so, discuss the differentiability
of g. Suggestion: The construction of g might (or might not) involve the set

(1,1, L 171
727374’5’

... } of all reciprocals of positive integers.

Suppose that the function f is continuous everywhere. At how many points do
you suspect that f can fail to be differentiable? What’s the worst such function

you can think of?

3.4 PROBLEMS

Differentiate the functions given in Problems I through 44.

1.

2
fx) =4Vx% + 7
) =V2x + 1

6 —x2
fo =7

7. f(x) = (Q2x +3)%?
9. f(x) =3 —2x?)73?

11.

13.

15.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.
30.
31.

fx)=+/x3+1

Fx) =+/2x2+1

f) =3
f)=@x* —x 472

g(2) = (B —4)7

glx) =

(x — 2x3)4/3
f@&)y =0+ 1+
fx) =xv1—x2
2x + 1
s = /==
2+1
FO =5

2(2) = —
1+ 2Z2
I
Fy=Y2F
v
X 5/3
h(x) = (1 +x2>
fx)=1—x2
g(x) =vx +x

fO) =x(3 —4x)'2

2. g(t) =9Vt — —

10.
12.

14.

16.

- h(z) =

¢u) =

glx) =
S =

3
Ji
1

FT—6:
7 4+ 2u — 3u*

Ju?
Gx + 4)¥3
(4= 3y")2F

t— 1+

t2
33 f(x)=(1—x>)Q2x + 43
M., fx)=1-x)"2Q2—-x)13

32. g(t) =

2
35. g(t) = (1 + %) B2+ 12

36. f(x) = x(1+2x 4+ 3x2)°

2x — 1
37. f(x) == m
38. I’Z(Z) = (Z — 1)4(Z + 1)6
_@x+ 1”2
39‘ f(x) —_ m
40. f(x) = (1 — 3)64)5(4 _ .X)l/3
1 T —
41. h(y) = ‘/Ty;";/—y
VY

4. fo)=1-Ix
43. g(t) = Jt +t + /1

1
44. =x /1 - ———
Joo=x x2+1
For each curve given in Problems 45 through 50, find all points
on the graph where the tangent line is either horizontal or verti-

cal.

45, y = x*3 46. y = x+/4 — x2
1
47. y = x1? — x32 48. y =
y V==
x
49. y = 50. y = /(1 —x2)(4 —x?
y N y ( )( )

In Problems 51 through 56, first write an equation of the line tan-
gent to the given curve y = f(x) at the indicated point P. Then
illustrate your result with a graphing calculator or computer by
graphing both the curve and the tangent line on the same screen.

51. y = 2/x, atthe point P where x = 4

52. y = 3./x, atthe point P where x = 8

53. y = 3/x2, at the point P where x = —1
54. y =24/1 — x, at the point P where x = %
55. y= x4 —x, atthe point P where x = 0
56. y = (1 — x)4/x, atthe point P where x = 4
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In Problems 57 through 62, match the given graph 'y = f(x) of a
function with the graph y = f'(x) of its derivative among those
shown in Figs. 3.4.13(a) through 3.4.13(f).

57. Figure 3.4.7 58. Figure 3.4.8

2 2
y=x23
1 1 o
y 0 y 0
4 _1/
2 0 1 > 2 o 0 1 2
X X

FIGURE 3.4.7 y = x?/3
(Problem 57).

FIGURE 3.4.8 y = x!/3
(Problem 58).

59. Figure 3.4.9 60. Figure 3.4.10

2 2
y 0 y 0
-1 -1
2 0 1 P — 0 1 2
X X

FIGURE3.49 y=1—-x%3 FIGURE3.4.10 y =x+/2 —x

(Problem 59). (Problem 60).
61. Figure 3.4.11 62. Figure 3.4.12
3 1
2 y=xV4— x2
1
y 0 y 0
y=(-x)x?
-1
)
-3 -1
—2-15-1-050 05 1 15 2 -2 -1 0 1 2
X X

FIGURE 3.4.11 y —
x+/4 — x2 (Problem 61).

FIGURE 3.4.12 y =
(1 — x2)24/x2/3 (Problem 62).

3 2

2 1

FIGURE 3.4.13(a) FIGURE 3.4.13(b)
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2 2

1 /\ 1
y 0 y 0
-1 \/ -1

S a— 0 1 IS 0 1 2
X X

FIGURE 3.4.13(c) FIGURE 3.4.13(d)

3 2
2
1Lk
1
y 0 y O
-1
1L
-2
B T R 1 : T e T
X X

FIGURE 3.4.13(e) FIGURE 3.4.13(f)

63. The period of oscillation P (in seconds) of a simple pendu-
lum of length L (in feet) is given by P = 27w/L/g, where
g = 32 ft/s%. Find the rate of change of P with respect to L
when P = 2.

64. Find the rate of change of the volume V = %nr3 of a sphere

of radius r with respect to its surface area A = 477> when
r = 10.

65. Find the two points on the circle x> + y> = 1 at which the
slope of the tangent line is —2 (Fig. 3.4.14).

y

xX2+y2=1

FIGURE 3.4.14 The two tangent
lines of Problem 65.

66. Find the two points on the circle x> 4+ y?> = 1 at which the
slope of the tangent line is 3.

67. Find a line through the point P (18, 0) that is normal to the
tangent line to the parabola y = x? at some point Q(a, a*)
(see Fig. 3.4.15). (Suggestion: You will obtain a cubic equa-
tion in the unknown a. Find by inspection a small integral
root r. The cubic polynomial is then the product of @ —r and
a quadratic polynomial; you can find the latter by division of
a — r into the cubic.)
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, 12r —
! N R
) Y=X/ B S I DR
/ 8 /|
|
| )
q [y=x
4
y 10 y ,/
b 0 >
0 n S )
4 /
0 10 20 -5 0 5 10
X X

FIGURE 3.4.16 The three
normal lines of Problem 68.

FIGURE 3.4.15 The tangent
and normal of Problem 67.

68. Find three distinct lines through the point P (3, 10) that are
normal to the parabola y = x? (Fig. 3.4.16). (See the sug-
gestion for Problem 67. This problem will require a certain
amount of calculator-aided computation.)

69. Find two distinct lines through the point P(0, 2) that are nor-
mal to the curve y = x*3 (Fig. 3.4.17).

70. Verify that the line tangent to the circle x> + y* = a? at the
point P is perpendicular to the radius OP (Fig. 3.4.18).

71. Consider the cubic equation x* = 3x + 8. If we differentiate
each side with respect to x, we obtain 3x> = 3, which has
the two solutions x = 1 and x = —1. But neither of these is
a solution of the original cubic equation. What went wrong?
Why does differentiation of both sides of the cubic equation
give an invalid result?

The derivation of the generalized power rule Dyu” = ru’~"-D.u
(for r = p/q, a rational number) provided in this section de-
pends on the assumed differentiability of the qth root function
f(x) = x4, Ifa > 0 and q is a positive integer, then the
derivative of f is given by

xla — gl/a

f/(@) = lim =——%— ©)

X—a X —da

provided that this limit exists. Problems 72 through 75 illustrate

o~
S /
=

FIGURE 3.4.17 The two
normal lines of Problem 69.

2 +y2=qa?

FIGURE 3.4.18 The circle, radius,
and tangent line of Problem 70.

the evaluation of this limit using the algebraic identity
sT—t1 = (s =) (T +572 4+ 519724177 (10)

q terms

For instance, with s = x"/9 and t = a'/4 this identity yields (with

q =2, 3, and 5) the formulas
X —a= (xl/z—al/z)(xl/z—l—al/z), 11)
Y —a— (xl/3 _ al/S)(x2/3 + x13g173 +a2/3), 12)

and
Y —a— (xl/S _ al/S)(x4/5 T x35g1/5
+x2/5a2/5+x1/5a3/5+a4/5). a3
72. Substitute (11) in the denominator in (9) to show that
D.x'/? = Jx~'2 forx > 0.

73. Substitute (12) in the denominator in (9) to show that
D.x'3 = %x‘m for x > 0.

74. Substitute (13) in the denominator in (9) to show that
D.x'3 = %x“‘/s for x > 0.

75. Finally, explain how Eq. (10) can be applied in the general
case to prove that

L=
q
if x > 0 and ¢ is a positive integer.

D.x'4 =

' 3.5 MAXIMA AND MINIMA OF FUNCTIONS ON CLOSED INTERVALS

v |$5/4t $5/ft| v

$1/ft
X Wall

FIGURE 3.5.1 The animal pen.

In applications we often need to find the maximum (largest) or minimum (smallest)
$5/ft value that a specified quantity can attain. The animal pen problem posed in Section 1.1
is a simple yet typical example of an applied maximum-minimum problem. There we
investigated the animal pen shown in Fig. 3.5.1, with the indicated dollar-per-foot cost
figures for its four sides. We showed that if $180 is allocated for material to construct
this pen, then its area A = f(x) is given as a function of its base length x by

fx) = %x(30 —x), 0=x<=30. 1

Hence the question of the largest possible area of the animal pen is equivalent to the
purely mathematical problem of finding the maximum value attained by the function
fx) = %x(30 — x) on the closed interval [0, 30].
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DEFINITION Maximum and Minimum Values

If ¢ is in the closed interval [a, b], then f(c) is called the minimum value of f(x)
on [a, b] if f(c) £ f(x) for all x in [a, b]. Similarly, if d is in [a, b], then f(d) is
called the maximum value of f(x) on [a, b] if f(d) = f(x) for all x in [a, b].

Thus if f(c) is the minimum value and f(d) the maximum value of f(x) on
[a, b], then
f) = f(x) = f@) (2)

for all x in [a, b], and hence f(x) attains no value smaller than f(c) or larger than
f(d). In geometric terms, (c, f(c)) is a low point and (d, f(d)) is a high point on the
curve y = f(x),a < x < b, as illustrated in Figs. 3.5.2 and 3.5.3.

High point y High point

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b

S )
|
|
|
|
|
l
|
R | . @
a c d b * a X
FIGURE 3.5.2 f(c) is the minimum value and f(d) is the FIGURE 3.5.3 Maximum and minimum values can occur at

maximum value of f(x) on [a, b].

S =2x

|
1 X

FIGURE 3.5.4 The graph of the
function of Example 1.

the endpoints of an interval. Here f(a) is the minimum value
and f(b) is the maximum value of f(x) on [a, b].

Theorem 1 (proved in Appendix E) says that a continuous function f on a closed
interval [a, b] attains a minimum value f(c) and a maximum value f(d), so the in-
equalities in (2) hold: The curve y = f(x) over [a, b] has both a lowest point and a
highest point.

THEOREM 1 Maximum and Minimum Value Property

If the function f is continuous on the closed interval [a, b], then there exist numbers
candd in [a, b] such that f(c) is the minimum value, and f (d) the maximum value,
of f on [a, b].

In short, a continuous function defined on a closed and bounded interval attains
both a minimum value and a maximum value at points of the interval. Hence we see it
is the continuity of the function

fx) = %X(30 —X)

on the closed interval [0, 30] that guarantees that the maximum value of f exists and
is attained at some point of the interval [0, 30].

Suppose that the function f is defined on the interval /. Examples 1 and 2 show
that if either f1is not continuous or [ is not closed, then f may fail to attain maximum
and minimum values at points of /. Thus both hypotheses in Theorem 1 are necessary.

EXAMPLE 1 Let the continuous function f(x) = 2x be defined only for0 < x < 1,
so that its domain of definition is not a closed interval. From the graph shown in
Fig. 3.5.4, it is clear that f attains its minimum value 0 at x = 0. But f(x) = 2x attains

no maximum value at any point of [0, 1). The only possible candidate for a maximum
value would be the value 2 at x = 1, but f(1) is not defined. _ D
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fo=1

14 (1,10

|
1 X

FIGURE 3.5.5 The graph of the
function of Example 2.

Local maximum

X

Local minimum

FIGURE 3.5.6 Local extrema.

EXAMPLE 2 The function f defined on the closed interval [0, 1] with the formula

1

- if0<x <1,
f&)=1x

1 ifx=0

is not continuous on [0, 1] because lim,_, o+ (1/x) does not exist (Fig. 3.5.5). This
function does attain its minimum value of 1 at x = 0 and also at x = 1. But it attains
no maximum value on [0, 1] because 1/x can be made arbitrarily large by choosing x
positive and very close to zero. S

For a variation on Example 2, the function g(x) = 1/x with domain the open
interval (0, 1) attains neither a maximum nor a minimum there.

Local Maxima and Minima

Once we know that the continuous function f does attain minimum and maximum
values on the closed interval [a, b], the remaining question is this: Exactly where are
these values located? We solved the animal pen problem in Section 2.1 on the basis of
the following assumption, motivated by geometry: The function f(x) = %x(30 —X)
attains its maximum value on [0, 30] at an interior point of that interval, a point at which
the tangent line is horizontal. Theorems 2 and 3 of this section provide a rigorous basis
for the method we used there.

We say that the value f(c) is a local maximum value of the function f if f(x) <
f(c) for all x sufficiently near c. More precisely, if this inequality holds for all x
that are simultaneously in the domain of f and in some open interval containing c,
then f(c) is a local maximum of f. Similarly, we say that the value f(c) is a local
minimum value of f if f(x) = f(c) for all x sufficiently near c.

As Fig. 3.5.6 shows, a local maximum is a point such that no nearby points on
the graph are higher, and a local minimum is one such that no nearby points on the
graph are lower. A local extremum of f is a value of f that is either a local maximum
or a local minimum.

THEOREM 2 Local Maxima and Minima
Suppose that f is differentiable at ¢ and is defined on a open interval containing c.
If f(c) is either a local maximum value or a local minimum value of f, then

f'(c) = 0.

Thus a local extremum of a differentiable function on an open interval can occur
only at a point where the derivative is zero and, therefore, where the line tangent to the
graph is horizontal.

Proof of Theorem 2  Suppose, for instance, that f(c) is a local maximum value of
f. The assumption that f’(c) exists means that the right-hand and left-hand limits

. fle+h)— f(o) . fle+h) — f(o)
im ~——~* and lim ——MF—————~
h—0+ h h—0~ h

both exist and are equal to f'(c).
If h > 0, then

fleth = f© o
A =
because f(c) = f(c + h) for all small positive values of . Hence, by a one-sided

version of the squeeze law for limits (in Section 2.3), this inequality is preserved when
we take the limit as 7 — 0. We thus find that

wg lim 0 = 0.

/ — 1'
Fe© h—lgl+ h h—0+
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y=x

FIGURE 3.5.7 There is no
extremum at x = 0 even though the
derivative is zero there.

Local, not
global

Global maximum

Local, not
global

\V/

Global minimum

FIGURE 3.5.8 Some extrema are
global; others are merely local.
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Similarly, in the case 4 < 0, we find that

f(C+h2—f(C) > 0.

Therefore,

h) —
o) = tim L€ =IO 5y o—o.

h—0— h h—0—
Because both f/(¢) £ 0and f’(c) = 0, we conclude that f'(c) = 0. This establishes
Theorem 2. 2

BEWARE The converse of Theorem 2 is false. That is, the fact that f'(c) = 0 is not
enough to imply that f(c) is a local extremum. For example, consider the function
f(x) = x3. Its derivative f'(x) = 3x? is zero at x = 0. But a glance at its graph
(Fig. 3.5.7) shows us that f(0) is not a local extremum of f.

Thus the equation f'(¢) = 0 is a necessary condition for f(c) to be a local
maximum or minimum value for a function f that is differentiable on an open interval
containing c. It is not a sufficient condition. The reason: f’(x) may well be zero at
points other than local maxima and minima. We give sufficient conditions for local
maxima and minima in Chapter 4.

The Closed-Interval Maximum-Minimum Method

In most types of optimization problems, we are less interested in the local extrema
(as such) than in the absolute, or global, maximum and minimum values attained by a
given continuous function. If f is a function with domain D, we call f(c) the absolute
maximum value, or global maximum value, of f on D provided that f(c) = f(x)
for all x in D. Briefly, f(c) is the largest value of f on D. It should be clear how the
global minimum of f is to be defined. Figure 3.5.8 illustrates some local and global
extrema. On the one hand, every global extremum is, of course, local as well. On the
other hand, the graph shows local extrema that are not global.

Theorem 3 tells us that the absolute maximum and absolute minimum values
of the continuous function f on the closed interval [a, b] occur either at one of the
endpoints a or b or at a critical point of f. The number ¢ in the domain of f is called
a critical point of f if either

e f'(c)=0,o0r
e f’(c) does not exist.

THEOREM 3 Absolute Maxima and Minima

Suppose that f(c) is the absolute maximum (or absolute minimum) value of the
continuous function f on the closed interval [a, b]. Then c is either a critical point
of f or one of the endpoints a and b.

Proof This result follows almost immediately from Theorem 2. If ¢ is not an end-
point of [a, b], then f(c) is a local extremum of f on the open interval (a, b). In this
case Theorem 2 implies that f'(c) = 0, provided that f is differentiable at c. L 2

As a consequence of Theorem 3, we can find the (absolute) maximum and mini-
mum values of the function f on the closed interval [a, b] as follows:

1. Locate the critical points of f: those points where f’(x) = 0 and those points
where f’(x) does not exist.

2. List the values of x that yield possible extrema of f: the two endpoints a and b
and those critical points that lie in [a, b].

3. Evaluate f(x) at each point in this list of possible extrema.
4. Inspect these values of f(x) to see which is the smallest and which is the largest.
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The largest of the values in Step 4 is the absolute maximum value of f; the smallest, the
absolute minimum. We call this procedure the closed-interval maximum-minimum
method.

EXAMPLE 3 For our final discussion of the animal pen problem, let us apply the
closed-interval maximum-minimum method to find the maximum and minimum values
of the differentiable function

fx)=2x(30—x) = 2(30x —x?)
on the closed interval [0, 30].
Solution The derivative of f is
£1(x) = 130 — 2x),

which is zero only at the point x = 15 in [0, 30]. Including the two endpoints, our
list of the only values of x that can yield extrema of f consists of 0, 15, and 30. We
evaluate f at each:

f(©0) =0, <— absolute minimum
f(15) = 135, <— absolute maximum
f@30) =0. <— absolute minimum

Thus the maximum value of f(x) on [0, 30] is 135 (attained at x = 15), and the mini-
mum value is O (attained both at x = 0 and at x = 30). N ]
EXAMPLE 4 Find the maximum and minimum values of

f(x)=2x3=3x*—12x + 15

on the closed interval [0, 3].

Solution The derivative of f is
Fl(x) =6x* —6x — 12 =6(x —2)(x + 1).
So the critical points of f are the solutions of the equation
6(x—2)(x+1)=0

and the numbers ¢ for which f’(c) does not exist. There are none of the latter, so the
critical points of f occur at x = —1 and x = 2. The first of these is not in the domain
of f; we discard it, and thus the only critical point of f in [0, 3] is x = 2. Including the
two endpoints, our list of all values of x that yield a possible maximum or minimum
value of f consists of 0, 2, and 3. We evaluate the function f at each:

f(0) =15, <— absolute maximum

f(2) = -5, <— absolute minimum

f3)=6.
Therefore the maximum value of f on [0, 3] is f(0) = 15 and its minimum value is
f2)=-5. S

If in Example 4 we had asked for the maximum and minimum values of f(x) on
the interval [—2, 3] (instead of the interval [0, 3]), then we would have included both
critical points x = —1 and x = 2 in our list of possibilities. The resulting values of f
would have been

f(=2) =11,

f(—1) =22, <— absolute maximum
f(2)=-5, <— absolute minimum
f@3)=6.
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FIGURE 3.5.9 The critical points
of the differentiable function f(x)
are the zeros of f’(x).
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FIGURE 3.5.10 Graph of the
function of Example 5.
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FIGURE 3.5.11 Graph of the
function of Example 6.
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Figure 3.5.9 shows both the curve y = f(x) and the graph of its derivative. Note the
vertical line segments joining high and low points on y = f(x) with x-intercepts of
dy/dx = f’(x). Thus the figure illustrates the following fact:

The critical points of a differentiable function f(x) are the zeros of its deriva-
tive f'(x).

On the basis of this principle, we can approximate a critical point of f graphically by
“zooming in” on a zero of f”.

In Example 4 the function f was differentiable everywhere. Examples 5 and 6
illustrate the case of an extremum at a critical point where the function is not differen-
tiable.

EXAMPLE 5 Find the maximum and minimum values of the function f(x) =
3 — |x — 2| on the interval [1, 4].

Solution Ifx £2,thenx —2 <0, so
fx)=3—-Q2—-x)=x+1.

If x 22,thenx —2 =0, so
fx)=3—-(x—-2)=5—x.

Consequently, the graph of f looks like the one shown in Fig. 3.5.10. The only critical
point of f in [1, 4] is the point x = 2, because f'(x) takes on only the two values +1
and —1 (and so is never zero), and f’(2) does not exist. (Why not?) Evaluation of f
at this critical point and at the two endpoints yields

f =2,
f(2) =3, <«— absolute maximum
f@) =1. <— absolute minimum —

EXAMPLE 6 Find the maximum and minimum values of
fx) = 5x33 — x33
on the closed interval [—1, 4].

Solution Differentiating f yields

10 5 5 52—
Fx) = ?x—1/3 _2B =2 B0 ) = 2-x

3 3 o 3y
Hence f has two critical points in the interval: x = 2, where f’'(x) = 0, and x = 0,
where f'(x) does not exist (the graph of f has a vertical tangent at (0, 0)). When we
evaluate f at these two critical points and at the two endpoints, we get

f(=1) =6, <— absolute maximum
f0)=0 <— absolute minimum
f@2)=5.2*3 -2 ~ 476,
f@) =547 -4 ~252,
Thus the maximum value f(—1) = 6 occurs at an endpoint. The minimum value

f(0) = 0 occurs at a point where f is not differentiable. — )

By using a graphics calculator or computer with graphics capabilities, you can
verify that the graph of the function f of Example 6 is that shown in Fig. 3.5.11. But
in the usual case of a continuous function that has only finitely many critical points in
a given closed interval, the closed-interval maximum-minimum method suffices to de-
termine its maximum and minimum values without requiring any detailed knowledge
of the graph of the function.

151
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=037

FIGURE 3.5.12 The graphs
y=f@x)andy= f'(x).

EXAMPLE 7 Figure 3.5.12 shows the graphs of the function
fx) =4x* —11x> = 5x =3
and its derivative
fl(x) =16x> —22x -5

in the viewing window —3 < x < 3, —30 < y < 30. Evidently the maximum value of
f(x) on the closed interval [—2, 2] is the left-endpoint value f(—2) = 27.

The lowest point on the graph of y = f(x) and the corresponding zero of its
derivative dy/dx = f'(x) lie within the small boxes in the figure. To find this lowest
point exactly we would need to solve the cubic equation 16x*> — 22x — 5 = 0. But
the lowest point also can be located approximately by using a graphing calculator or
computer to zoom in more closely.

If we attempt to zoom in on the lowest point without changing the “range factors”
or “aspect ratios” of the viewing window, we get a picture like the one in Fig. 3.5.13.
Here the magnified graph is indistinguishable from its horizontal tangent line at the
low point, so it’s impossible to gauge accurately the x-coordinate of the critical point.

Consequently, it is much more effective to zoom in on the corresponding zero of
the derivative f’(x). We can then locate the indicated critical point with much greater
precision. Thus it is clear in Fig. 3.5.14 that the minimum value attained by f(x) on

[—2, 2] is approximately f(1.273) ~ —16.686. —
0.04
~16.682FF
-16.684 0.02
_ y
y —16.686 0
~16.688 [ -
: -0.02
16,69 it Y
1272 1273 1274 127 1272 1274
X X
FIGURE 3.5.13 Zooming in FIGURE 3.5.14 Zooming in
on the minimum shown in instead on the zero of f/(x)
Fig. 3.5.12. shown in Fig. 3.5.12.
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Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If f(c) = f(x) for all x in the interval [a, b], then f(c) is the minimum value of
f on[a, b].

2. If f is continuous on [a, b], then f has a maximum value on [a, b].

3. If f(¢) = f(x) for all x both in the domain of f and in some open interval I,
then f(x) is said to be a local maximum value of f.

4. Every local extremum of the function f occurs at a point where f’(x) = 0.

5. If f(c) is alocal extremum of the function f, then either f'(c¢) = 0 or f’(c) does
not exist.

6. If f(c) is a local extremum of the function f and c is not an endpoint of the
domain of f, then either f'(c) = 0 or f’(c) does not exist.

7. If f(c¢) = f(x) for every number x in the domain D of the function f, then f(c)
is called the global maximum value (or the absolute maximum value) of f on D.

8. The absolute maximum value of f(x) =2x> —3x? — 12x 4+ 15 on [0, 3] is
f(0) =15.

9. The absolute maximum value of f(x) =3 — |x — 2| on the interval [1, 4] is

f) =1
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10. If f(p) and f(g) are both absolute minimum values of f on its domain, then

f(p) = fq).

3.5 CONCEPTS: QUESTIONS AND DISCUSSION

1. Suppose that the function f is continuous on the closed interval [a, b]. In each
of the five following cases, sketch a possible graph (if any) of f.

(a) f has a single critical point ¢ but neither a local minimum nor a local maxi-
mum in the open interval (a, b). Discuss the possibility that f is not differ-
entiable at ¢ and the possibility that f is differentiable there.

(b) f has two critical points but only a single local extremum in (a, b).
(c) f hasboth alocal maximum and a local minimum, but only one critical point

in (a, b).

(d) f has exactly one local maximum, exactly one local minimum, and exactly

three critical points in

(e) f has three local maxima but only a single local minimum in (a, b).

2. Can you give an example of a polynomial of odd degree that has neither a local
minimum value nor a local maximum value? Can you give an example of a
polynomial of even degree that has neither an absolute minimum value nor an

absolute maximum value?

3. Assume that you have located a point on the graph of a differentiable function
where a local extremum occurs. Suppose that you zoom in on this point with a
graphing calculator or computer, magnifying at each step by the same factor in
the x-direction and the y-direction. Should the graph always look like a horizon-
tal line (as in Fig. 3.5.13) after zooming in sufficiently closely in this manner?

(a,b).

3.5 PROBLEMS

In Problems 1 through 10, state whether the given function at- 14.

tains a maximum value or a minimum value (or both) on the

15.

given interval. [Suggestion: Begin by sketching a graph of the

function.]

1. fx)=1—x; [-1,1)

f@=2x+1; [-1,1

2
3. fx)=1Ixl; (1,1
a. f(x)z%; 0,11
5. f)=1Ix—=2]; (1,4]
f)=5-x% [-1,2)
7. foy=x"+1; [-1,1]

f

8. f(x) = L (—00, 00)
9. f(x)= x(l _x); [2, 3]

1
10. f(x) = m§ (07 1)

16.
17.
18.

19.

20.

21.
22,
23.
24,
25.
26.
27.

In Problems 11 through 40, find the maximum and minimum 28.

values attained by the given function on the indicated closed 29

interval.

11. f(x)=3x—-2; [-2,3]
12. f(x)=4—-3x; [-1,5]
13. h(x) =4—x% [1,3]

30.
31.

32.

fx)=x>43; [0,5]

g) =@ —1% [-1,4]

h(x) =x>+4x+7; [-3,0]
fx)=x3=3x; [-2,4]

g(x) = 2x° —9x% + 12x; [0, 4]

h(x) =x+ i; [1,4]
b

f(X)=x2+176; (1,3]
f&x)y=3-2x; [-1,1]
f@)=x*—4x+3; [0,2]
f(x)=5—-12x —9x?; [—1,1]
fx)=2x*—4x+7; [0,2]
fx)=x>=3x2-9x+5; [-2,4]
f)=x"+x; [-1,2]

fx) =3x—5x% [-2,2]
f)=12x=3[; [1,2]

cfx)=5+17-3x|; [1,5]

S =lx+1+x—11; [-2,2]
f(x) =50x% —105x% +72x; [0, 1]

1
fx)=2x+—; [1,4]
2x
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

f(x)—m, s
X
fO) =55 (03]
1—x
f) = 213 [-2,5]
f)=2—-Jx; [-1,8]

f) =xv1-x% [-11]

f) =xv4—x% [0,2]

f)=x2-x)" [1,3]

f) =x'2 =% 10,4]

Suppose that f(x) = Ax 4+ B is a linear function and that
A # 0. Explain why the maximum and minimum values of
f on a closed interval [a, b] must occur at the endpoints of
the interval.

Suppose that f is continuous on [a, b] and differentiable on
(a, b) and that f’(x) is never zero at any point of (a, b).
Explain why the maximum and minimum values of f must

occur at the endpoints of the interval [a, b].

Explain why every real number is a critical point of the great-
est integer function f(x) = [[x].

Prove that every quadratic function
fx)=ax*+bx+c (a0

has exactly one critical point on the real line.

Explain why the cubic polynomial function
f)=ax*+bx>+cx+d (a#0)

can have either two, one, or no critical points on the real line.
Produce examples that illustrate each of the three cases.

Define f(x) to be the distance from x to the nearest integer.
What are the critical points of f?

In Problems 47 through 52, match the given graph of the function
with the graph of its derivative f' from those in Fig. 3.5.15, parts
(a) through (f).

47.

Figure 3.5.16 48. Figure 3.5.17

FIGURE 3.5.16 FIGURE 3.5.17
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49. Fig.3.5.18

FIGURE 3.5.18

51. Fig.3.5.20

FIGURE 3.5.20

0
X

(e)

FIGURE 3.5.15

50. Fig.3.5.19

FIGURE 3.5.19

52. Fig.3.5.21

FIGURE 3.5.21
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In Problems 53 through 60, find good approximations to the max- 56. f(x) =x*—5x*4+17x —5; [-3,3]

imum and minimum values of the given function on the indicated 57
closed interval by zooming in on the zeros of the derivative.

53. f(x) = x> +3x2 —7x + 10;
54, f(x) =x*+3x*—Tx + 10;
55. f(x) =x*=3x3+7x = 5;

@) =x*=5x3+17x —5; [0,2]
58. f(x) =x> —5x* —15x3 +17x> +23x; [-1,1]

[(-2.2]
[—4.2] 59. f(x) =x° —5x* —15x3 +17x* +23x; [-3,3]
[—3,3] 60. f(x) =x> —5x* —15x° + 17x* +23x; [0, 10]

3.5 INVESTIGATION: When Is Your Coffee Cup Stablest?

- T~
Coffee surface
H
¥
le——R
B
-

FIGURE 3.5.22 Coffee cup
partially filled with coffee to depth y.

35+
3

2.5

2
1.5+

1=
05

0

FIGURE 3.5.23 Centroid height
f(y) as a function of coffee depth y.

Your car has no cupholder, so you must place your filled coffee cup on the passenger
seat beside you when you start out in the morning. Bitter experience has taught you
that the cup is least stable—and most prone to spill—when it’s completely full, but
becomes more stable as you drink the coffee and thereby lower its level in the cup.
Now you’re ready to apply calculus to analyze this phenomenon.

Figure 3.5.22 shows a coffee cup partially filled with coffee. We will assume that
it is stablest when the centroid of the cup-plus-coffee is lowest. The centroid of a solid
cylinder or cylindrical shell is its geometric central point, and the y-coordinate y of the
centroid of a composite body consisting of several pieces with masses m |, my, and m;
having centroids with respective y-coordinates y;, y,, and y; is given by

miyy + may; + msy3
my+my + ms3 .

(¢Y)

y =

This formula means that y is an average of the y-coordinates y;, y», and y; of the
individual centroids, each weighted by the corresponding mass.

The simplified model of the coffee cup shown in Fig. 3.5.22 consists of the fol-
lowing:

» A side surface that is a cylindrical shell with height H, inner radius R, and thick-
ness T', and

« A bottom that is a solid cylinder with radius R + T and height B.

The cup is partially filled with coffee with depth y and density 1 g/cm?. For instance,
letustake H =8, R =3, T = 0.5, and B = 1 (all units are centimeters). Assuming
also that the density of the material of the cup itself is § = 1 g/cm?, we apply Eq. (1)
to derive the function

87 + 4y?

f(y)—734+8y,

0=y=38 2

giving the y-coordinate y = f(y) of the centroid of the cup-plus-coffee as a function
of the depth y of the coffee in the cup.

Figure 3.5.23 shows the graph of the function f. It appears that the centroid is
lowest when y = 2, and thus when the cup is about one-quarter filled with coffee.
To find when f’(y) = 0, you can differentiate the function in (2) and simplify to
obtain

_ 2(4y* +34y —87)

(4y +17)2 3

£

Thus you need only solve a quadratic equation to see where the numerator is zero:
when y = %(—17 + 74/13). The positive solution gives the optimal depth y ~
2.0597 cm of the coffee in your cup—just a bit more than a quarter of the height
H = 8 cm of the cup.

Carry out this analysis with your own favorite coffee cup. Measure its physical
dimensions H, R, T, and B. How can you determine the approximate density § of its
material?
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. 3.6 APPLIED OPTIMIZATION PROBLEMS

X Area A = xy X

Wall

FIGURE 3.6.1 The rectangular pen
of Example 1.

156

This section is devoted to applied maximum-minimum problems (like the animal pen
problem of Section 1.1) for which the closed-interval maximum-minimum method of
Section 3.5 can be used. When we confront such a problem, there is an important first
step: We must determine the quantity to be maximized or minimized. This quantity
will be the dependent variable in our analysis of the problem.

This dependent variable must then be expressed as a function of an independent
variable, one that “controls” the values of the dependent variable. If the domain of
values of the independent variable—those that are pertinent to the applied problem—
is a closed interval, then we may proceed with the closed-interval maximum-minimum
method. This plan of attack can be summarized in the following steps:

1. Find the quantity to be maximized or minimized. This quantity, which you should
describe with a word or short phrase and label with a descriptive letter, will be the
dependent variable. Because it is a dependent variable, it depends on something
else; that quantity will be the independent variable. Here we call the independent
variable x.

2. Express the dependent variable as a function of the independent variable. Use
the information in the problem to write the dependent variable as a function of x.
Always draw a figure and label the variables;, this is generally the best way to find
the relationship between the dependent and independent variables. Use auxiliary
variables if they help, but not too many, for you must eventually eliminate them.
You must express the dependent variable as a function of the single independent
variable x and various constants before you can compute any derivatives. Find
the domain of this function as well as its formula. Force the domain to be a closed
and bounded interval if possible—if the natural domain is an open interval, adjoin
the endpoints if you can.

3. Apply calculus to find the critical points. Compute the derivative f’ of the func-
tion f that you found in Step 2. Use the derivative to find the critical points—
where f'(x) = 0 and where f’(x) does not exist. If f is differentiable every-
where, then its only critical points occur where f’(x) = 0.

4. Identify the extrema. Evaluate f at each critical point in its domain and at the two
endpoints. The values you obtain will tell you which is the absolute maximum
and which is the absolute minimum. Of course, either or both of these may occur
at more than one point.

5. Answer the question posed in the original problem. In other words, interpret
your results. The answer to the original problem may be something other than
merely the largest (or smallest) value of f. Give a precise answer to the specific
question originally asked.

Observe how we follow this five-step process in Example 1.

EXAMPLE 1 A farmer has 200 yd of fence with which to construct three sides
of a rectangular pen; an existing long, straight wall will form the fourth side. What
dimensions will maximize the area of the pen?

Solution We want to maximize the area A of the pen shown in Fig. 3.6.1. To get a
formula for the dependent variable A, we observe that the area of a rectangle is the
product of its base and its height. So we let x denote the length of each of the two sides
of the pen perpendicular to the wall. We also let y denote the length of the side parallel
to the wall. Then the area of the rectangle is given by the formula

A = xy.

Now we need to write A as a function of either x or y. Because all 200 yd of
fence are to be used,

2x +y=1200, so y=200—"2x 1)
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FIGURE 3.6.2 The relation in
Eq. (1) between x and y
(Example 1).
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FIGURE 3.6.3 The pen with
maximal area of Example 1.
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FIGURE 3.6.4 Making the box of
Example 2.

FIGURE 3.6.5 The 5-ft width of
the metal sheet (Example 2).
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(We chose to express y in terms of x merely because the algebra is slightly simpler.)
Next, we substitute this value of y into the formula A = xy to obtain

A(x) = x(200 — 2x) = 200x — 2x°. 2)

This equation expresses the dependent variable A as a function of the independent
variable x.

Before proceeding, we must find the domain of the function A. It is clear from
Fig. 3.6.2 that 0 < x < 100. But to apply the closed-interval maximum-minimum
method, we need a closed interval. In this example, we may adjoin the endpoints to
(0, 100) to get the closed interval [0, 100]. The values x = 0 and x = 100 correspond
to “degenerate” pens of area zero. Because zero cannot be the maximum value of A,
there is no harm in thus enlarging the domain of the function A.

Now we compute the derivative of the function A in Eq. (2):

dA 200 — 4
— = —4x.
dx
Because A is differentiable, its only critical points occur when
dA
=0
dx
that is, when
200 — 4x = 0.

So x = 50 is the only critical point in the interval (0, 100). Including the endpoints,
the extrema of A can occur only at x = 0, 50, and 100. We evaluate A at each:

A0) =0,
A(50) = 5000, <— absolute maximum
A(100) = 0.

Thus the maximal area is A(50) = 5000 (yd?). From Eq. (1) we find that y = 100
when x = 50. Therefore, for the pen to have maximal area, each of the two sides
perpendicular to the wall should be 50 yd long and the side parallel to the wall should
be 100 yd long (Fig. 3.6.3). N

EXAMPLE 2 A piece of sheet metal is rectangular, 5 ft wide and 8 ft long. Congruent
squares are to be cut from its four corners. The resulting piece of metal is to be folded
and welded to form an open-topped box (Fig. 3.6.4). How should this be done to get a
box of largest possible volume?

Solution The quantity to be maximized—the dependent variable—is the volume V
of the box to be constructed. The shape and thus the volume of the box are determined
by the length x of the edge of each corner square removed. Hence x is a natural choice
for the independent variable.

To write the volume V as a function of x, note that the finished box will have
height x and its base will measure 8 — 2x ft by 5 — 2x ft. Hence its volume is given by

V(x) =x(5 —2x)(8 — 2x) = 4x° — 26x% + 40x.

The procedure described in this example will produce an actual box only if 0 < x <
2.5 (Fig. 3.6.5). But we make the domain the closed interval [0, 2.5] to ensure that a
maximum of V (x) exists and to use the closed-interval maximum-minimum method.
The values x = 0 and x = 2.5 correspond to “degenerate” boxes of zero volume,
so adjoining these points to (0, 2.5) will affect neither the location of the absolute
maximum nor its value.

Now we compute the derivative of V:

V/(x) = 12x% — 52x + 40 = 4(3x — 10)(x — 1).

The only critical points of the differentiable function V occur where
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V'(x) =0;
that is, where

4(Bx —10)(x — 1) = 0.

The solutions of this equation are x = 1 and x = %. We discard the latter because it

does not lie in the domain [0, 2.5] of V. So we examine these values of V:

V() =0,
1ft V(1) =18, <— absolute maximum
2.5) =0.
— 7 V(2.5)=0
Thus the maximum value of V (x) on [0, 2.5]is V(1) = 18. The answer to the question
FIGURE 3.6.6 The box with posed is this: The squares cut from the corners should be of edge length 1 ft each. The
maximal volume of Example 2. resulting box will measure 6 ft by 3 ft by 1 ft, and its volume will be 18 ft* (Fig. 3.6.6).
D

For our next application of the closed-interval maximum-minimum method, let
us consider a typical problem in business management. Suppose that x units of com-
puter diskettes are to be manufactured at a total cost of C(x) dollars. We make the
simple (but not always valid) assumption that the cost function C (x) is the sum of two
terms:

o A constant term a representing the fixed cost of acquiring and maintaining pro-
duction facilities (overhead), and

o A variable term representing the additional cost of making x units at, for exam-
ple, b dollars each.

Then
the total cost is the sum of the fixed cost and the additional cost,
so the cost function C(x) is given by
C(x) =a+ bx. 3

We also assume that the number of units that can be sold (and hence will be manufac-
tured) is a linear function of the selling price p, so that x = m — np where m and n are
positive constants. The minus sign indicates that an increase in selling price will result
in a decrease in sales. If we solve this last equation for p, we get the price function

p(x) =A— Bx )

(A and B are also constants).
The quantity to be maximized is profit, given here by the profit function P(x),
which is equal to the sales revenue minus the production costs. Thus

P(x) =xp(x) = Cx). €))

EXAMPLE 3 Suppose that the cost of publishing a small book is $10,000 to set up
the (annual) press run plus $8 for each book printed. The publisher sold 7000 copies
last year at $13 each, but sales dropped to 5000 copies this year when the price was
raised to $15 per copy. Assume that up to 10,000 copies can be printed in a single
press run. How many copies should be printed, and what should be the selling price of
each copy, to maximize the year’s profit on this book?

Solution The dependent variable to be maximized is the profit P. As independent
variable we choose the number x of copies to be printed; also, 0 < x < 10,000. The
given cost information then implies that
C(x) = 10,000 + 8x.
158
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FIGURE 3.6.7 The cylindrical can
of Example 4.
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Now we substitute into Eq. (4) the data x = 7000 when p = 13 as well as the
data x = 5000 when p = 15. We obtain the equations
A —7000B = 13, A —5000B = 15.

When we solve these equations simultaneously, we find that A = 20 and B = 0.001.
Hence the price function is

—20— >,
px) 1000

and thus the profit function is

1000

We expand and collect terms to obtain

P(x) = x(20 - L) — (10,000 + 8x).

2
P(x) = 12x — —— — 10,000, 0 < x < 10,000.

1000
Now
dP X
— =12—-—,
dx 500
and the only critical points of the differentiable function P occur when
dp
=0
dx
that is, when
X
12— — =0; = 12500 = 6000.
500 !

We check P at this value of x as well as the values of P (x) at the endpoints to find the
maximum profit:

P(0) = —10,000,
P (6000) = 26,000, <— absolute maximum
P (10,000) = 10,000.

Therefore, the maximum possible annual profit of $26,000 results from printing 6000
copies of the book. Each copy should be sold for $14, because
6000

=20— —— = 14.
p(6000) 0 1000 >

EXAMPLE 4 We need to design a cylindrical can with radius r and height /. The top
and bottom must be made of copper, which will cost 2¢/in.? The curved side is to be
made of aluminum, which will cost 1¢/in.2 We seek the dimensions that will maximize
the volume of the can. The only constraint is that the total cost of the can is to be
300m¢.

Solution We need to maximize the volume V of the can, which we can compute if
we know its radius r and its height & (Fig. 3.6.7). With these dimensions, we find that

V = nr’h, (6)

but we need to express V as a function of » alone (or as a function of / alone).

Both the circular top and bottom of the can have area r? in.%, so the area of
copper to be used is 27772 and its cost is 477> cents. The area of the curved side of the
can is 27rrh in.2, so the area of aluminum used is the same, and the aluminum costs
2rrh cents.

We obtain the total cost of the can by adding the cost of the copper to the cost of
the aluminum. This sum must be 3007 ¢, and therefore

A r? + 27rh = 3007. (7

159
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20

FIGURE 3.6.8 The can of maximal
volume in Example 4.

FIGURE 3.6.9 A sawmill
problem—Example 5.

160

We eliminate 4 in Eq. (6) by solving Eq. (7) for A:

300m —4nr? 1
h= 22 T D150 — 202, 8)
27r r
Hence
1
V=V({) = (r’)=(150 — 2r?) = 27 (75r — r). )
r

To determine the domain of definition of V, we note from Eq. (7) that
47r? < 3007, sor < /75 for the desired can; with r = V75 = 5\/5, we get a
degenerate can with height # = 0. With » = 0, we obtain no value of 4 in Eq. (8) and
therefore no can, but V (r) is nevertheless continuous at » = 0. Consequently, we can
take the closed interval [0, 5«/5] to be the domain of V.

Calculating the derivative yields

V'(r) =21(75 = 3r?) = 6m(25 — r?).

Because V (r) is a polynomial, V'(r) exists for all values of r, so we obtain all critical
points by solving the equation

V'(r) = 0;
that is,
67 (25 —r?) =0.

We discard the solution —35, as it does not lie in the domain of V. Thus we obtain only
the single critical point = 5 in [0, 5+/3]. Now

V() =0,
V(5) = 500, <— absolute maximum
V(5v3) = 0.
Thus the can of maximum volume has radius r = 5 in., and Eq. (8) yields its height to
be & = 20 in. Figure 3.6.8 shows such a can. —

EXAMPLE 5 (A Sawmill Problem) Suppose that you need to cut a beam with max-
imal rectangular cross section from a circular log of radius 1 ft. (This is the geometric
problem of finding the rectangle of greatest area that can be inscribed in a circle of
radius 1.) What are the shape and cross-sectional area of such a beam?

Solution Let x and y denote half the base and half the height, respectively, of the
inscribed rectangle (Fig. 3.6.9). Apply the Pythagorean theorem to the small right
triangle in the figure. This yields the equation

x4yt =1, so y=+1-—x2

The area of the inscribed rectangle is A = (2x)(2y) = 4xy. You may now express A

as a function of x alone:
A(x) = 4x+v/1 — x2.

The practical domain of definition of A is (0, 1), and there is no harm (and much
advantage) in adjoining the endpoints, so you take [0, 1] to be the domain. Next,

dA a1 _ 4 — 8x?

an 4o /2 N D S

dx_4 (1—x9)"7"4+2x(A—x7)"7%( Zx)_(l_xz)l/z.
You observe that A’(1) does not exist, but this causes no trouble, because differentia-
bility at the endpoints is not assumed in Theorem 3 of Section 3.5. Hence you need
only solve the equation

A'(x) =0;
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FIGURE 3.6.10 Cut four more
beams after cutting one large beam.
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that is,
4 — 8x? _
V1 —x2 B

A fraction can be zero only when its numerator is zero and its denominator is not, so
A’(x) = 0 when 4 — 8x? = 0. Thus you find the only critical point of A in the open
interval (0, 1) to be x = /1/2 = %\/5 (and 2x = 2y = +/2). You evaluate A here
and at the two endpoints to find that

A0) =0,
A(%«/z) =2, <— absolute maximum
A(l) =0.

Therefore, the beam with rectangular cross section of maximal area is square, with
edges +/2 ft long and with cross-sectional area 2 ft2. — )

In Problem 43 we ask you to maximize the total cross-sectional area of the four
planks that can be cut from the four pieces of log that remain after cutting the square
beam (Fig. 3.6.10).

Plausibility You should always check your answers for plausibility. In Example 5,
the cross-sectional area of the log from which the beam is to be cut is 7 ~ 3.14 ft’.
The beam of maximal cross-section area 2 ft> thus uses a little less than 64% of the
log. This is plausible. Had the fraction been an extremely inefficient 3% or a wildly
optimistic 98%, you should have searched for an error in arithmetic, algebra, calculus,
or logic (as you would had the fraction been —14% or 150%). Check the results of
Examples 1 through 4 for plausibility.

Dimensions Another way to check answers is to use dimensional analysis. Work the
problem with unspecified constants in place of the actual numbers. In Example 5, it
would be good practice to find the beam of maximal rectangular cross section that can
be cut from a circular log of radius R rather than radius 1 ft. You can always substitute
the given value R = 1 at the conclusion of the solution. A brief solution to this problem
might go as follows:

Dimensions of beam: base 2x, height 2y.
Area of beam: A = 4xy.

Draw a radius of the log from its center to one corner of the rectangular beam, as
in Fig. 3.6.11. This radius has length R, so the Pythagorean theorem gives

FIGURE 3.6.11 The log with radius R.

161
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RN

Area A =2R? RV2

RV2

FIGURE 3.6.12 The inscribed
square beam with maximal
cross-sectional area.

FIGURE 3.6.13 Reflection at P of
a light ray by a mirror M
(Example 6).

Area of beam:
A(x) =4xvR?—x2, 0<x<R.
4R? — 8x?
A'(x) = 4R — x2)'2 4 20 (R? — x2) 2 (—2x) = -2 %
R2 — xz

A’(x) does not exist when x = R, but that’s an endpoint; we’ll check it sepa-

rately.
A'(x) = 0 when x = %Rﬁ (ignore the negative root; it’s not in the domain
of A).
A0) =0,
A(%R«/E) = 2R2, <— absolute maximum
A(R) =0.

Figure 3.6.12 shows the dimensions of the inscribed rectangle of maximal area.

Now you can check the results for dimensional accuracy. The value of x that
maximizes A is a length (R) multiplied by a pure (dimensionless) numerical constant
(%\/E), so x has the dimensions of length—that’s correct; had it been anything else,
you would need to search for the error. Moreover, the maximum cross-sectional area of
the beam is 2R?, the product of a pure number and the square of a length, thus having
the dimensions of area. This, too, is correct.

EXAMPLE 6 We consider the reflection of a ray of light by a mirror M as in
Fig. 3.6.13, which shows a ray traveling from point A to point B via reflection off
M at the point P. We assume that the location of the point of reflection is such that the
total distance d; + d, traveled by the light ray will be minimized. This is an applica-
tion of Fermat’s principle of least time for the propagation of light. The problem is to
find P.

Solution Drop perpendiculars from A and B to the plane of the mirror M. Denote
the feet of these perpendiculars by A" and B’ (Fig. 3.6.13). Let a, b, ¢, and x denote
the lengths of the segments AA’, BB, A’B’, and A’ P, respectively. Then ¢ — x is the
length of the segment P B’. By the Pythagorean theorem, the distance to be minimized
is then

di+dy = f(x) = Va>+x2+ /b + (c — x)2. (10)

We may choose as the domain of f the interval [0, c], because the minimum of
f must occur somewhere within that interval. (To see why, examine the picture you
get if x is not in that interval.)

Then
X (c—x)(—1)

') = + : 11

Vaz+x2 /b2 + (c — x)?

Recognizing the distances d; and d, in the denominators here, we see that
X c—x

'(x) = — — 12
fo)=- & 12)

Consequently, any horizontal tangent to the graph of f must occur over the point x
determined by the equation

X c—x

— = . 13

a 5 (13)
At such a point, cos o = cos 8, where « is the angle of the incident light ray and g is
the angle of the reflected ray (Fig. 3.6.13). Both « and B lie between 0 and 7/2, and
thus we find that « = B. In short, the point P must be located so that the angle of
incidence is equal to the angle of reflection, a familiar principle from physics. ____ b
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The computation in Example 6 has an alternative interpretation that is interesting,
if somewhat whimsical. Figure 3.6.14 shows a feedlot 200 ft long with a water trough
along one edge and a feed bin located on an adjacent edge. A cow enters the gate at the
point A, 90 ft from the water trough. She walks straight to point P, gets a drink from
the trough, and then walks straight to the feed bin at point B, 60 ft from the trough.
If the cow knew calculus, what point P along the water trough would she select to
minimize the total distance she walks?

A
T+ Feed bin
B ]

90 T

60

: !

Water trough
x | 200 - x

FIGURE 3.6.14 The feedlot.

In comparing Figs. 3.6.13 and 3.6.14, we see that the cow’s problem is to min-
imize the distance function f in Eq. (10) with the numerical values a = 90, b = 60,
and ¢ = 200. When we substitute these values and

di=va®+x* and dy=b+ (c—x)?
in Eq. (13), we get
X _ 200 — x
V8100 +x2 /3600 + (200 — x)2
We square both sides, clear the equation of fractions, and simplify. The result is
x%[3600 + (200 — x)*] = (200 — x)*(8100 4 x?);
3600x* = 8100(200 — x)*; (Why?)
60x = 90(200 — x);
150x = 18,000;
x = 120.

Thus the cow should proceed directly to the point P located 120 ft along the water
trough.

These examples indicate that the closed-interval maximum-minimum method is
applicable to a wide range of problems. Indeed, applied optimization problems that
seem as different as light rays and cows may have essentially identical mathematical
models. This is only one illustration of the power of generality that calculus exploits
so effectively.

3.6 TRUE/FALSE STUDY GUIDE

Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The maximum area of the pen of Example 1 is 5000 square yards.

2. The maximum area of the pen of Example 1 occurs when the side parallel to the
wall has length 100 yards.

3. The domain of the volume function of Example 2 is determined by the fact that
neither the length, nor the width, nor the height of the box can be negative.

4. In Example 4 we went to some trouble to obtain the closed interval [0, 54/3] for
the domain of the function V because we had nothing better to do.

5. In Example 5 the area function A(x) is not differentiable at the endpoint x = 1
of its domain, so the area function has no extremum there.

163
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6. It is plausible that when the rectangle of largest possible area is inscribed in a
circle, then the rectangle occupies 3% of the area of the circle.

7. It is reasonable that when the rectangle of largest possible area is inscribed in a
circle of radius R, then the area of the rectangle is 2R ft.

8. Light travels from point A to point B in such a way to minimize the total time to
get from A to B.

9. To solve an applied maximum-minimum problem, it is usually wise to begin by
identifying the quantity to be maximized or minimized.

10. To solve an equation such as /8 — x2 = x, it is usually wise to begin by squaring
both sides in order to eliminate the radical.

3.6 CONCEPTS: QUESTIONS AND DISCUSSION

1. How do you decide what is the dependent variable in an optimization problem?
The independent variable? Discuss the differences in the roles played by depen-
dent and independent variables in an optimization problem.

2. Discuss the differences among the following three items:

o A relation among two or more variables describing an applied problem.
o A formula giving the dependent variable in terms of other variables.

o A function expressing the dependent variable in terms of an independent vari-
able.

Outline and contrast the roles played by relations, formulas, and functions in
typical optimization problems.

3.6 PROBLEMS

1. Find two positive real numbers x and y such that their sum
is 50 and their product is as large as possible.

5. A rectangular box has a square base with edges at least
1 in. long. It has no top, and the total area of its five sides

. . 2 . . . .
2. Find the maximum possible area of a rectangle of perimeter is 300 in.” (Fig. 3.6.16). What is the maximum possible vol-
200 m. ume of such a box?

3. A rectangle with sides parallel to the coordinate axes has
one vertex at the origin, one on the positive x-axis, one on
the positive y-axis, and its fourth vertex in the first quadrant
on the line with equation 2x 4 y = 100 (Fig. 3.6.15). What
is the maximum possible area of such a rectangle?

y
X

FIGURE 3.6.16 A box with

square base and volume V = x?y
\ (Problems 5, 17, and 20).

164

(x,
) 6. If x is in the interval [0, 1], then x — x? is not negative. What
2x+y =100 is the maximum value that x — x? can have on that interval?
In other words, what is the greatest amount by which a real
\ number can exceed its square?
X

FIGURE 3.6.15 The rectangle of 7. The sum of two positive numbers is 48. What is the smallest

Problem 3. possible value of the sum of their squares?

. A farmer has 600 m of fencing with which to enclose a rect-

angular pen adjacent to a long existing wall. He will use the
wall for one side of the pen and the available fencing for the
remaining three sides. What is the maximum area that can
be enclosed in this way?

. A rectangle of fixed perimeter 36 is rotated around one of

its sides, thus sweeping out a figure in the shape of a right
circular cylinder (Fig. 3.6.17). What is the maximum possi-
ble volume of that cylinder?
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10.

11.

12.

13.

14.

15.

FIGURE 3.6.17 The

rectangle and cylinder

of Problem 8.
The sum of two nonnegative real numbers is 10. Find the
minimum possible value of the sum of their cubes.

Suppose that the strength of a rectangular beam is propor-
tional to the product of the width and the square of the height
of its cross section. What shape beam should be cut from a
cylindrical log of radius r to achieve the greatest possible
strength?

A farmer has 600 yd of fencing with which to build a rectan-
gular corral. Some of the fencing will be used to construct
two interval divider fences, both parallel to the same two
sides of the corral (Fig. 3.6.18). What is the maximum pos-
sible total area of such a corral?

I X {

FIGURE 3.6.18 The divided corral of
Problem 11.

Find the maximum possible volume of a right circular cylin-
der if its total surface area—including both circular ends—is
1507.

Find the maximum possible area of a rectangle with diago-
nals of length 16.

A rectangle has a line of fixed length L reaching from one
vertex to the midpoint of one of the far sides (Fig. 3.6.19).
What is the maximum possible area of such a rectangle?

fe— e —

k X 1

FIGURE 3.6.19 The rectangle of Problem 14.

The volume V (in cubic centimeters) of 1 kg of water at tem-
perature T between 0°C and 30°C is very closely approxi-
mated by

V = 999.87 — (0.06426)T
+ (0.0085043)T? — (0.0000679)T>.

At what temperature does water have its maximum density?

16

17.

18.

19.

20.

21.

22.

23.
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. What is the maximum possible area of a rectangle with a
base that lies on the x-axis and with two upper vertices that
lie on the graph of the equation y = 4 — x? (Fig. 3.6.20)?

y
y=4-x2

(x, y)

/ \ -

FIGURE 3.6.20 The rectangle of

Problem 16.
A rectangular box has a square base with edges at least 1 cm
long. Its total surface area is 600 cm?. What is the largest
possible volume that such a box can have?

You must make a cylindrical can with a bottom but no top
from 3007 in.2 of sheet metal. No sheet metal will be
wasted; you are allowed to order a circular piece of any size
for its base and any appropriate rectangular piece to make
into its curved side so long as the given conditions are met.
What is the greatest possible volume of such a can?

Three large squares of tin, each with edges 1 m long, have
four small, equal squares cut from their corners. All twelve
resulting small squares are to be the same size (Fig. 3.6.21).
The three large cross-shaped pieces are then folded and
welded to make boxes with no tops, and the twelve small
squares are used to make two small cubes. How should this
be done to maximize the total volume of all five boxes?

FIGURE 3.6.21 One of
the three 1-m squares of
Problem 19.

Suppose that you are to make a rectangular box with a square
base from two different materials. The material for the top
and four sides of the box costs $1/ft?; the material for the
base costs $2/ft>. Find the dimensions of the box of great-
est possible volume if you are allowed to spend $144 for the
material to make it.

A piece of wire 80 in. long is cut into at most two pieces.
Each piece is bent into the shape of a square. How should
this be done to minimize the sum of the areca(s) of the
square(s)? To maximize it?

A wire of length 100 cm is cut into two pieces. One piece is
bent into a circle, the other into a square. Where should the
cut be made to maximize the sum of the areas of the square
and the circle? To minimize that sum?

A farmer has 600 m of fencing with which she plans to en-
close a rectangular pasture adjacent to a long existing wall.
She plans to build one fence parallel to the wall, two to form
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24.

25.

26.

27.

28.

29.

30.

31.

the ends of the enclosure, and a fourth (parallel to the ends
of the enclosure) to divide it equally. What is the maximum
area that can be enclosed?

A zookeeper needs to add a rectangular outdoor pen to an
animal house with a corner notch, as shown in Fig. 3.6.22.
If 85 m of new fence is available, what dimensions of the
pen will maximize its area? No fence will be used along the
walls of the animal house.

Animal house

Sm

I
I
I
I
New fence |
I
I
I
I

FIGURE 3.6.22 The rectangular
pen of Problem 24.

Suppose that a post office can accept a package for mailing
only if the sum of its length and its girth (the circumference
of its cross section) is at most 100 in. What is the maximum
volume of a rectangular box with square cross section that
can be mailed?

Repeat Problem 25, but use a cylindrical package; its cross
section is circular.

A printing company has eight presses, each of which can
print 3600 copies per hour. It costs $5.00 to set up each
press for a run and 10 4 6n dollars to run n presses for 1 h.
How many presses should be used to print 50,000 copies of
a poster most profitably?

A farmer wants to hire workers to pick 900 bushels of beans.
Each worker can pick 5 bushels per hour and is paid $1.00
per bushel. The farmer must also pay a supervisor $10 per
hour while the picking is in progress, and he has additional
miscellaneous expenses of $8 per worker. How many work-
ers should he hire to minimize the total cost? What will then
be the cost per bushel picked?

The heating and cooling costs for a certain uninsulated house
are $500/yr, but with x < 10 in. of insulation, the costs are
1000/(2 + x) dollars/yr. It costs $150 for each inch (thick-
ness) of insulation installed. How many inches of insulation
should be installed to minimize the fotal (initial plus annual)
costs over a 10-yr period? What will then be the annual sav-
ings resulting from this optimal insulation?

A concessionaire had been selling 5000 burritos each game
night at 50¢ each. When she raised the price to 70¢ each,
sales dropped to 4000 per night. Assume a linear relation-
ship between price and sales. If she has fixed costs of $1000
per night and each burrito costs her 25¢, what price will max-
imize her nightly profit?

A commuter train carries 600 passengers each day from a
suburb to a city. It costs $1.50 per person to ride the train.
Market research reveals that 40 fewer people would ride the
train for each 5¢ increase in the fare, 40 more for each 5¢

32.

33.

34.

35.

decrease. What fare should be charged to get the largest pos-
sible revenue?

Find the shape of the cylinder of maximal volume that can be
inscribed in a sphere of radius R (Fig. 3.6.23). Show that the
ratio of the height of the cylinder to its radius is +/2 and that
the ratio of the volume of the sphere to that of the maximal

cylinder is +/3.
i

FIGURE 3.6.23 The sphere
and cylinder of Problem 32.

ST

Find the dimensions of the right circular cylinder of greatest
volume that can be inscribed in a right circular cone of radius
R and height H (Fig. 3.6.24).

FIGURE 3.6.24 The cone
and cylinder of Problem 33.

Figure 3.6.25 shows a circle of radius 1 in which a trape-
zoid is inscribed. The longer of the two parallel sides of the
trapezoid coincides with a diameter of the circle. What is
the maximum possible area of such a trapezoid. (Sugges-
tion: A positive quantity is maximized when its square is
maximized.)

2x

FIGURE 3.6.25 The
circle and trapezoid of
Problem 34.

Show that the rectangle of maximal perimeter that can be
inscribed in a circle is a square.
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36.

37.

38.

39.

40.

41.

42.

43.

4.

Find the dimensions of the rectangle (with sides parallel to
the coordinate axes) of maximal area that can be inscribed in
the ellipse with equation

X2 y2
I
25 + 9
(Fig. 3.6.26).
y
(0, 3)
(x, y)
(5,0)

FIGURE 3.6.26 The ellipse and rectangle of Problem 36.

A right circular cone of radius » and height / has slant height
L = /r? + h?. What is the maximum possible volume of a
cone with slant height 10?

Two vertical poles 10 ft apart are both 10 ft tall. Find the
length of the shortest rope that can reach from the top of one
pole to a point on the ground between them and then to the
top of the other pole.

The sum of two nonnegative real numbers is 16. Find the
maximum possible value and the minimum possible value
of the sum of their cube roots.

A straight wire 60 cm long is bent into the shape of an L.
What is the shortest possible distance between the two ends
of the bent wire?

What is the shortest possible distance from a point on the
parabola y = x? to the point (0, 1)?

Given: There is exactly one point on the graph of y =
/3x — 4 that is closest to the origin. Find it. (Sugges-

tion: See Fig. 3.6.27, and solve the equation you obtain by
inspection.)

1 1
L |

X | 1 |

FIGURE 3.6.27 The curve FIGURE 3.6.28 The

of Problem 42. rectangle and equilateral
triangle of Problem 44.
Find the dimensions that maximize the cross-sectional area

of the four planks that can be cut from the four pieces of
the circular log of Example 5—the pieces that remain after a
square beam has been cut from the log (Fig. 3.6.10).

Find the maximal area of a rectangle inscribed in an equilat-
eral triangle with edges of length 1, as in Fig. 3.6.28.

45.

46.

47.

48.
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A small island is 2 km off shore in a large lake. A woman on
the island can row her boat 10 km/h and can run at a speed of
20 km/h. If she rows to the closest point of the straight shore,
she will land 6 km from a village on the shore. Where should
she land to reach the village most quickly by a combination
of rowing and running?

A factory is located on one bank of a straight river that is
2000 m wide. On the opposite bank but 4500 m down-
stream is a power station from which the factory draws its
electricity. Assume that it costs three times as much per
meter to lay an underwater cable as to lay an aboveground
cable. What path should a cable connecting the power sta-
tion to the factory take to minimize the cost of laying the
cable?

A company has plants that are located (in an appropriate co-
ordinate system) at the points A (0, 1), B(0, —1), and C (3, 0)
(Fig. 3.6.29). The company plans to construct a distribution
center at the point P (x, 0). What value of x would minimize
the sum of the distances from P to A, B, and C?

FIGURE 3.6.29 The
locations in Problem 47.

Light travels at speed ¢ in air and at a slower speed v in wa-
ter. (The constant c is approximately 3 x 10'° cm/s; the ratio
n = c¢/v, known as the index of refraction, depends on the
color of the light but is approximate 1.33 for water.) Figure
3.6.30 shows the path of a light ray traveling from point A
in air to point B in water, with what appears to be a sudden
change in direction as the ray moves through the air-water
interface. (a) Write the time 7 required for the ray to travel
from A to B in terms of the variable x and the constants a, b,
¢, s, and v, all of which have been defined or are shown in the
figure. (b) Show that the equation 7’(x) = 0 for minimizing
T is equivalent to the condition
sin o c

- =—-=n.
sin 8 v

This is Snell’s law: The ratio of the sines of the angles of
incidence and refraction is equal to the index of refraction.

A

e 5 — X > Air
Water

B

FIGURE 3.6.30 Snell’s law gives the path
of refracted light (Problem 48).
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Refraction of light at an air-water interface

49.

50.

51.

52.

168

The mathematics of Snell’s law (Problem 48) is ap-
plicable to situations other than the refraction of light.
Figure 3.6.31 shows an east-west geologic fault that sepa-
rates two towns at points A and B. Assume that A is a miles
north of the fault, that B is b miles south of the fault, and
that B is L miles east of A. We want to build a road from A
to B. Because of differences in terrain, the cost of construc-
tion is C; (in millions of dollars per mile) north of the fault
and C; south of it. Where should the point P be placed to
minimize the total cost of road construction? (a) Using the
notation in the figure, show that the cost is minimized when
Cysinfy = Cysin6,. (b) Takea =b =C, =1, C, = 2,
and L = 4. Show that the equation in part (a) is equiva-
lent to

F(x) =3x* —24x3 +51x% = 32x + 64 = 0.

To approximate the desired solution of this equation, calcu-
late £(0), f(1), f(2), f(3), and f(4). You should find that
f@3) > 0 > f(4). Interpolate between f(3) and f(4) to
approximate the desired root of this equation.

A

)

|
CAY

FIGURE 3.6.31 Building a road
from A to B (Problem 49).

The sum of the volumes of two cubes is 2000 in.> What
should their edges x and y be to maximize the sum of their
surface areas? To minimize it?

The sum of the surface areas of a cube and a sphere is
1000 in.? What should their dimensions be to minimize the
sum of their volumes? To maximize it?

Your brother has six pieces of wood with which to make
the kite frame shown in Fig. 3.6.32. The four outer pieces
with the indicated lengths have already been cut. How long

should the lengths of the inner struts be to maximize the area
of the kite?

FIGURE 3.6.32 The kite
frame (Problem 52).

Problems 53 through 55 deal with alternative methods of con-
structing a tent.

53.

54.

Figure 3.6.33 shows a 20-by-20-ft square of canvas tent ma-
terial. Girl Scout Troop A must cut pieces from its four cor-
ners as indicated, so that the four remaining triangular flaps
can be turned up to form a tent in the shape of a pyramid
with a square base. How should this be done to maximize
the volume of the tent?

Let A denote the area of the base of the tent and h
its height. With x as indicated in the figure, show that the
volume V = %Ah of the tent is given by

V(x) = $x°+/100 — 20x, 0<x<5.

Maximize V by graphing V (x) and V’(x) and zooming in
on the zero of V'(x).

FIGURE 3.6.33 The canvas square—first
attempt.

Girl Scout Troop B must make a tent in the shape of a pyra-
mid with a square base from a similar 20-by-20-ft square of
canvas but in the manner indicated in Fig. 3.6.34. With x as
indicated in the figure, show that the volume of the tent is
given by

V(x) = 2x°+/200 — 20x, 0<x<10.

Maximize V graphically as in Problem 53.
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FIGURE 3.6.34 The canvas
square—second attempt.

55. Solve Problems 53 and 54 analytically to verify that the max-
imal volume in Problem 54 is exactly 2+/2 times the
maximal volume in Problem 53. It pays to think before mak-
ing a tent!

Problems 56 and 57 deal with rectangular boxes with square
base. Such a box is said to be closed if it has both a (square)
bottom and a top (as well as four vertical sides), open if it has a
bottom but no top.

56. Show that, among all closed square-based rectangular boxes
with a given fixed total surface area, the one with maximal
volume is a cube.

57. Show that, among all open square-based rectangular boxes
with a given fixed total surface area, the one with maximal
volume has height equal to half the length of the edge of its
base.

Problems 58 through 60 deal with right circular cylinders. Such
a “can” is said to be closed if it has both a (circular) bottom and
a top (as well as a curved side), open if it has a bottom but no
top.

58. Show that, among all closed cylindrical cans with a given
fixed total surface area, the one with maximal volume has
height equal to the diameter of its base.

59. Show that, among all open cylindrical cans with a given fixed
total surface area, the one with maximal volume has height
equal to the radius of its base.

60. Suppose that the bottom and curved side surface of a pop-
top soft drink can have the same thickness. But, in order
that the top not be ripped upon opening, it is three times as
thick as the bottom. Show that, among all such soft drink
cans made from a fixed total amount of material (includ-
ing the triple-thick top), the one with maximal volume has
height approximately twice its diameter. (Perhaps this is why
soft drink cans look somewhat taller than soup or vegetable
cans.) Suggestion: To simplify the computations, you may
assume that the amount of material used to make a can of
inner radius r, inner height /2, and thickness ¢ (except for
the top, of thickness 3t), is wr?t + 2mrht + 3mr’t. This
will be quite accurate if ¢ is very small in comparison with r
and h.
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61. Figure 3.6.35 shows a triangle bounded by the nonnega-
tive coordinate axes and the line tangent to the curve y =
1/(1 + x?%) at the first-quadrant point (x, y). Is it appar-
ent that the area A(x) of this triangle is very large when
x > 0 is very close to zero? But your task is to find the
maximum and minimum values of A for % <x <20 It will
be convenient to use a computer algebra system, both to
find A(x) and to solve the sixth-degree equation you should
encounter.

FIGURE 3.6.35 Triangle bounded
by coordinate axes and a tangent line
1

to the curve y = T2

62. Figure 3.6.36 shows a one-mile-square city park in central
Villabuena. A local power company needs to run a power
line from the northwest corner A of the park to the southeast
corner B. To preserve the beauty of the park, only under-
ground lines may be run through the park itself, but over-
head lines are permissible along the boundary of the park.
The power company plans to construct an overhead line a
distance x along the west edge of the park, then from the
southern end of this line continue with a straight power line
to point B. If overhead lines cost $40 thousand per mile and
underground lines cost $100 thousand per mile, how should
the power company construct the line to minimize its total
cost?

FIGURE 3.6.36 The one-
mile-square park in
central Villabuena.

. 3.7 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

In this section we begin our study of the calculus of trigonometric functions, focusing

first on the sine and cosine functions. The definitions and the elementary properties of

trigonometric functions are reviewed in Appendix C.

169
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When we write sin€ (or cosf), we mean the sine (or cosine) of an angle of
0 radians (rad). Recall the fundamental relation between radian measure and degree
measure of angles:

7 radians = 180 degrees. 1)
) Upon division of both sides of this equation by 7 and 180, respectively, and
Radians Degrees abbreviating the units, we get the conversion relations
0 0
180 b4
7/6 30 lrad= —deg and 1deg= —— rad.
/4 45 T 180
7/3 60
72 90 Figure 3.7.1 shows radian-degree conversions for some frequently occurring angles.
27/3 120 The derivatives of the sine and cosine functions depend on the limits
3r/4 135 sinf 1 —cosé
57/6 150 lim — =1, lim ———— =0 Q)
-0 6 6—0 0
b4 180
37/2 270 that we established in Section 2.3. The addition formulas
2 360 cos(x 4+ y) = cosx cosy — sinx siny,
4 720 3)

sin(x + y) = sinx cosy + cosxsiny
FIGURE 3.7.1 Some radian- degree
conversions. are needed as well.

THEOREM 1 Derivatives of Sines and Cosines
The functions f(x) = sinx and g(x) = cos x are differentiable for all x, and

D, sinx = cos x, 4

D, cosx = —sinx. 5)

Proof To differentiate f(x) = sinx, we begin with the definition of the derivative,

Sx+h) —fx) . sin(x + h) — sinx
=i h '

/ — 1
frx) lim
Next we apply the addition formula for the sine and the limit laws to get

(sinx cosh + sinhcosx) — sinx
h

[ = lim

=1l
h—0

B (1 sin & ino( 1 1 —cosh
= (cosx hl_I)I(l) W (sinx hl_I)I(I) p .

The limits in Eq. (2) now yield

sinh . 1 —cosh
m (cosx)T — (sinx)———

f'(x) = (cosx)(1) — (sinx)(0) = cos x,
which proves Eq. (4). The proof of Eq. (5) is quite similar. (See Problem 72.) L 4

Examples 1 through 4 illustrate the application of Egs. (4) and (5) in conjunction
with the general differentiation formulas of Sections 3.2, 3.3, and 3.4 to differentiate
various combinations of trigonometric and other functions.

EXAMPLE 1 The product rule yields

D, (x*sinx) = (D, x?)(sinx) + (x*)(D, sin x)
= 2x sinx + x2cos x. D
170
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y =cos? x
P (0.5, 0.7702)

y=-0.8415x + 1.1909

™N
>

2 0 1 2 3

X

FIGURE 3.7.2 The curve

y = cos® x and its tangent line at the
point P where x = 0.5.
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EXAMPLE 2 If y = %, then the quotient rule yields
dy _ (Dy cosx)(1 —sinx) — (cosx)[D,(1 — sinx)]
dx (1 — sinx)?
(—sinx)(1 — sinx) — (cosx)(— cos x)
- (1 —sinx)?
—sinx + sin® x + cos? x —sinx + 1
- (1 — sinx)? (0 —sinx)?’
dy 1
B _
dx 1 —sinx

EXAMPLE 3 If x = cos®z and u = cost—so that x = u’—then the chain rule
yields

d dx d
@ _ardn Bu?)(—sint) = (3cos’r)(—sint) = —3cos> ¢ sint. N ]
dt  du dt
EXAMPLE 4 If g(t) = (2 — 3cost)*?, then the chain rule yields
g'(t) =3(2—3cost)'*D,(2 — 3cost)
:%(2—3cost)1/2(3sint):%(2—3cost)1/2sint. N ]

EXAMPLE 5 Write an equation of the line tangent to the curve y = cos® x at the
point P on the graph where x = 0.5. Approximations are allowed.

Solution The y-coordinate of P is y(0.5) = (cos0.5)%> ~ (0.8776)> ~ 0.7702.

Because
dy

dx
the slope of the tangent line at P is

= —2cos x sin x,

dy
m=2

= = —2(c0s0.5)(sin 0.5) ~ —0.8415.
dx|,_os

Then the point-slope formula gives the (approximate) equation
y —0.7702 = —(0.8415)(x — 0.5);

that is, y = —(0.8415)x + 1.1909, as the desired equation of the tangent line at P.
Figure 3.7.2 shows the result of checking this computation by graphing both the curve
y = cos® x and the line with this equation. —

The Remaining Trigonometric Functions

It is easy to differentiate the other four trigonometric functions, because they can be
expressed in terms of the sine and cosine functions:

sin x COS X
tanx = s cotx = : S
COS X sin x
(6)
1 1
secx = , csex = ——.
CoS X sin x

Each of these formulas is valid except where a zero denominator is encountered. Thus
tanx and secx are undefined when x is an odd integral multiple of 7/2, and cotx
and csc x are undefined when x is an integral multiple of 7. The graphs of the six
trigonometric functions appear in Fig. 3.7.3. There we show the sine and its reciprocal,
the cosecant, in the same coordinate plane; we also pair the cosine with the secant but
show the tangent and cotangent functions separately.
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()

y=cotx

4
3
2
1

2n

(b)

FIGURE 3.7.3 Graphs of the six
trigonometric functions.

The functions in Eq. (6) can be differentiated by using the quotient rule and the
derivatives of the sine and cosine functions. For example,

sin x
tanx =
cos X
SO
(D, sinx)(cosx) — (sinx)(D, cos x)
D, tanx = 3
(cosx)
(cosx)(cosx) — (sinx)(—sinx)  cos®x + sin®x I
B cos2 x o cos2 x "~ cos?x’

2

D, tanx = sec” x.

As an exercise (Problem 71), you should derive in similar fashion the differentiation
formulas in Egs. (8) through (10) of Theorem 2.

THEOREM 2 Derivatives of Trigonometric Functions
The functions f(x) = tanx, g(x) = cotx, p(x) = secx, and g(x) = cscx are
differentiable wherever they are defined, and

D, tanx = sec’ x, 7
D, cotx = —csc’ x, )
D, secx = secxtanx, )
D, cscx = —cscxcotx. (10)

The patterns in the formulas of Theorem 2 and in Egs. (4) and (5) make them easy
to remember. The formulas in Egs. (5), (8), and (10) are the “cofunction analogues”
of those in Egs. (4), (7), and (9), respectively. Note that the derivative formulas for the
three cofunctions are those involving minus signs.

EXAMPLE 6

D,(xtanx) = (D,x)(tanx) + (x)(D, tan x)
= (D) (tan x) + (x)(sec? x)
D, (cot’ t) = D,(cott)® = 3(cot#)>D, cott

= 3(cotr)*(—csc’t) = —3csc’ ¢ cot’ 7.
secz
2.(*7)

=tanx 4+ x seczx.

_ (D, sec 2)(vz) — (secz)(D./2)
(Vz)’
(secz)(tanz) (ﬁ ) — (secz) (%Zfl/z)

Z

= %2_3/2(21 tanz — 1) secz. S )
Chain Rule Formulas
Recall from Eq. (7) in Section 3.3 that the chain rule gives
du
Di[gw)] = g'(w)— (1)
dx

for the derivative of the composition g(u(x)) of two differentiable functions g and u.
This formula yields a chain rule version of each new differentiation formula that we
learn.
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If we apply Eq. (11) first with g(u) = sinu, then with g(#) = cosu, and so on,
we get the chain rule versions of the trigonometric differentiation formulas:

d
D, sinu = (cosu) =, (12)
dx
d
D, cosu = (—sinu) =2, (13)
dx
d
D, tanu = (sec?u) -2, (14)
dx
d
D, cotu = (—csc? u) 22, (15)
dx
d
D, secu = (secutanu) —u, (16)
dx
du
D, cscu = (—cscucotu) —. 17)
X

The cases in which u = kx (where k is a constant) are worth mentioning. For
example,

D, sinkx = kcoskx and D,coskx = —ksinkx. (18)

The formulas in (18) provide an explanation of why radian measure is more appropriate
than degree measure. Because it follows from Eq. (1) that an angle of degree measure
x has radian measure 7 x /180, the “sine of an angle of x degrees” is a new and different
function with the formula

. . TX
sin x° = sin —,

180

expressed on the right-hand side in terms of the standard (radian-measure) sine func-
tion. Hence the first formula in (18) yields

. b1 X
D, sinx® = — cos —,
180 180

S0
D, sinx® ~ (0.01745) cos x°.

The necessity of using the approximate value 0.01745 here—and indeed its very
presence—is one reason why radians instead of degrees are used in the calculus of
trigonometric functions: When we work with radians, we don’t need such approxima-
tions.

EXAMPLE 7 If y = 2sin 10t 4+ 3 cos ir¢, then

d
d—f — 20cos 107 — 37 sin 777 _

EXAMPLE 8
D, (sin? 3x cos”* 5x)
= [D, (sin 3x)*](cos* 5x) + (sin? 3x)[ D, (cos 5x)*]
= 2(sin 3x)(Dy sin 3x) - (cos* 5x) + (sin® 3x) - 4(cos 5x)* (D, cos 5x)
= 2(sin 3x) (3 cos 3x)(cos* 5x) + (sin’ 3x)(4 cos® 5x) (=5 sin 5x)
= 65in 3x cos 3x cos* 5x — 20 sin® 3x sin 5x cos® Sx. —
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FIGURE 3.7.4 The curve y =
cos 4/x and the constant multiple

y = —(2sin/x)//x of its

derivative.

EXAMPLE 9 Differentiate f(x) = cos 1/x.

Solution If u = /x, then du/dx = 1/(24/x), so Eq. (13) yields

d
Dxcosﬁszcosuz(—sinu)d—u

X
1 sinyx
2/x  2yx

Alternatively, we can carry out this computation without introducing the auxiliary vari-
able u:

= —(siny/x)

D, cos/x = (—sin/x) - Dy(Vx) = _sizn\/é)?.

In Fig. 3.7.4 we have plotted both the curve y = y(x) = cos+/x and (to show the
vertical scale more clearly) the constant multiple

g 2sinyx
y=4y(x) = VA

of its derivative. Note the correspondence in this figure between the local maxima and
minima of the function y(x) = cos +/x and the zeros of its derivative y’(x) (which are
the same as the zeros of 4y'(x)). _

EXAMPLE 10 Differentiate
y = sin?(2x — 1)¥? = [sin(2x — 1)3/2]2.
Solution Here, y = u?, where u = sin(2x — 1)¥?, so

d_y_ d_”_ : _1)\3/27. ; _1)3/2
dx_Zudx_Z[sm(Zx DY?] - D[ sin(2x — 1)*?]

=2[sin(2x — 1)*?][cos(2x — 1)*?] - Dy (2x — )¥?
= 2[sin(2x — 1)*?*][ cos(2x — D¥*]22x — D'/*.2
= 6(2x — 1)'/*[sin2x — 1)**][ cos(2x — 1)*"?]. >

EXAMPLE 11

D, tan2x> = (sec®2x?) - D, (2x?) = 6x% sec? 2x°.
D, cot® 2t = D,(cot 2t)> = 3(cot 2¢)* - D,(cot2t)
= (3cot? 2t)(—csc? 21) - D,(2t)

= —6csc® 2t cot? 2t.
sec /Y tan
Dysec/y = (secy/ytan/y) - Dy/y = M
2y
D./cscz = D, (cscz)'/? = T(ese 272 . D, (csc2)
= %(CSCZ)_I/z(—csczcotz) = —%(cotz)«/csc Z. )

Examples 12 and 13 illustrate the applications of trigonometric functions to rate-
of-change and maximum-minimum problems.

EXAMPLE 12 A rocket is launched vertically and is tracked by a radar station lo-
cated on the ground 5 mi from the launch pad. Suppose that the elevation angle 6 of
the line of sight to the rocket is increasing at 3° per second when 6 = 60°. What is the
velocity of the rocket at this instant?
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FIGURE 3.7.7 The rectangle of

Example 13.

fe—x —

Derivatives of Trigonometric Functions SECTION 3.7 175

Solution First we convert the given data from degrees into radians. Because there are
/180 rad in 1°, the rate of increase of 6 becomes

3 T

— = — d/
180 6o MM
at the instant when
60r
= —— = — (rad).
180 3
From Fig. 3.7.5 we see that the height y (in miles) of the rocket is
y = 5tan#f.
Hence its velocity is
d dy do deo
& _ 4 e 5(sec’0) —.
dt do dt dt
Because sec(ir/3) = 2 (Fig. 3.7.6), the velocity of the rocket is
d
D 5.2 T T i),
dt 60 3
about 3770 mi/h, at the instant when 6 = 60°. _ D

4

y 2 V3
0 T
I-— 5 mi—— 3
1
FIGURE 3.7.5 Tracking an FIGURE 3.7.6

ascending rocket (Example 12). sec T — 2 (Example 12)
3 .

EXAMPLE 13 A rectangle is inscribed in a semicircle of radius R (Fig. 3.7.7). What
is the maximum possible area of such a rectangle?

Solution If we denote the length of half the base of the rectangle by x and its height
by y, then its area is A = 2xy. We see in Fig. 3.7.7 that the right triangle has hy-
potenuse R, the radius of the circle. So

x =Rcosf and y = Rsinf. (19)

Each value of 0 between 0 and /2 corresponds to a possible inscribed rectangle. The
values 6 = 0 and 6 = 7 /2 will yield degenerate rectangles.
We substitute the data in Eq. (19) into the formula A = 2xy to obtain the area

A= A) =2(RcosH)(Rsinb)
= 2R?cos O sind (20)
as a function of 0 on the closed interval [0, 7 /2]. To find the critical points, we differ-
entiate:
dA

20 = 2R?*(—sin@sin6 + cos O cos ) = 2R*(cos’ O — sin® 0).
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Because d A/d6 always exists, we have critical points only if
cos’ 0 —sin’ 0 = 0;
sin? @ = cos” 6;
tan’ 0 = 1;
tan6 = £1.

The only value of 6 in [0, 7 /2] such that tanf = *1 is 6 = /4.
Upon evaluation of A(6) at each of the possible values 6 = 0, 6 = 7/4, and
6 = /2 (the endpoints and the critical point), we find that

A(0) =0,
A(l) = 2R2<L) <L> = R?, <— absolute maximum
4 2)\2 ’ | ‘

()0

Thus the largest inscribed rectangle has area R2, and its dimensions are 2x = RV2
and y = R//2. S )

3.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. D, (sinx) = cosx.

. If g(x) = cosx, then g’(x) = sinx.

. D, (x%sinx) = 2x sinx + x2cos x.

. If g(t) = (2 —3cos1)*?, then g'(1) = 3(2 — 3cos1)'/%.

d
. If y = y(x) = tanx, then @ _ sec? x.
dx

2 x means sec(x?).

. The notation sec
. Dy(secx) = secx tanx.
. If u = u(x) is differentiable, then

D, [sec(u(x))] = [sec(u(x))] - [tan(u(x))] - u’(x).

9. If A(A) = 2cos@ sin0 on the interval I = [0, 7], then A has a global maximum
value on /.

LRI N AW

10. An easy way to show that f(x) = sinx is continuous for all x is to observe that
f'(x) = cosx exists for all x.

3.7 CONCEPTS: QUESTIONS AND DISCUSSION

1. The function f is said to be even if f(—x) = f(x) for all x, odd if f(—x) =
— f(x) for all x. For instance, the power function f(x) = x" is even if n is
an even integer, but is odd if n is an odd integer. How can you determine if a
function is even or odd by looking at its graph? Which of the six trigonometric
functions are even and which are odd?

2. Give an example of a function (with domain the set of all real numbers) that is
neither even nor odd. Find every function that is both even and odd.

3. The six trigonometric functions all have period 27, meaning that f(x + 27) =
f(x) for all x. Which of the trigonometric functions have period 7 ? Determine
the value of the constant k if the function f () = A coskt 4+ B sin kt models:
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o The height of the tide at a certain beachfront location; with ¢ in hours, the
values of f(¢) repeat periodically every 12 h 25 min.

» The average monthly rainfall in a certain locale; with ¢ in months, the values
of f(t) repeat periodically every 12 months.

« The average daily temperature in a certain locale; with ¢ in days, the values of
f(¢) repeat periodically every 365 days.

4. Considering the trigonometric functions sin x, tan x, sec x, and their cofunctions,
what is the pattern of signs of their derivatives? State a single short sentence
telling which of the six derivative formulas include minus signs and which do

not.

3.7 PROBLEMS

Differentiate the functions given in Problems I through 20.
2. f(x) =2cos*x
4. f(x) = /xsinx

1.
3.

S.

7.

11.

f(x) =3sin’x

f(x) =xcosx

. sin x 6 . COoS X
fo)y=—- . ) = NG
f(x) = sinx cos® x 8. f(x) = cos®xsin’x
9. g(t) = (1 +sinp)* 10. g(t) = (2 — cos? t)?
sin ¢
80 = sint 4 cos? 12. () = 1+ cost
f(x) =2xsinx — 3x?cos x

13.
14.
15.
17.

19.

fx) =x"2cosx —x~1/2

f(x) = cos2x sin3x
g(r) = 3 sin® 2t

g(t) = (cos 3t + cos 5t)%? 20. g(t) =

16
18

sin x

. f(x) = cos5x sin 7x

. g(t) = /tcos’ 3t
1

Find dy/dx in Problems 21 through 40.

21.

23.
25.

27.

29.
31.

33.

35.
37.
39.

y = sin® /x

y =x2cos(3x? — 1)

y = sin2x cos 3x
_cos3x
" sin5x

y = sin’ x2

y =sin2{/x

y = x sin x?

y = /X sin /x

y = /x(x — cosx)*

y = cos(sin x?)

2. y— cos 2x

X
24. y = sin’ x*

X
26. y =

Y sin 3x

28. y = /cos/x
30. y = cos® x?
32. y =cos3J/x

34.

36.
38.
40.

y = x?cos <l>

x
y = (sinx — cos x)?
y = J/xsiny/x +/x
y = sin(1 + +/sinx)

Find dx/dt in Problems 41 through 60.

41.
43.

45.
47.
49.

x =tant’
x = (tant)’
x = ¢’ tan 5¢

x = JJtseca/t

1
X =csc 7

42.
4.

46.

x =sect’

x = (sec2t)’
sect’

X =

t

. x = sec/ttan \/t

. x = cot (%)

V/sin® t + sin’ 3¢

5t
51 x = ¢ 52. x =sec’t —tan’t
tan 3¢
53. x =tsectcsct 54. x = tan’ £3
55. x = sec(sint) 56. x = cot(sec7t)
57, x = S0t 58. x = ¢!
sect 1 +tant
59. x = +/1+cot5t 60. x = /cscA/t

In Problems 61 through 64, write an equation of the line that is
tangent to the given curve y = f(x) at the point P with the given
x-coordinate. Then check the plausibility of your result by plot-
ting both the curve and the line you found on the same screen.

6l. y=xcosx; x=m 62. y=cos’x; x=m/4
4 3

63.y=—tanﬂ; x=1 64.y=—sin2ﬂ—x; x=5
b4 4 b4 3

In Problems 65 through 68, find all points on the given curve
y = f(x) where the tangent line is horizontal.

65. y =cos2x 66. y =x —2sinx
67 i 68 1

.y =sinxcosx Y=
Y Y 3sin® x 4+ 2 cos? x

69. Figure 3.7.8 shows the graph y = x —2 cos x and two lines of
slope 1 both tangent to this graph. Write equations of these
two lines.

Jly=x-2cos x

-10 =5 0 5 10

FIGURE 3.7.8 The curve y =
x — 2cos x and two tangent
lines each having slope 1.
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70. Figure 3.7.9 shows the graph

16 + sinx
r= 3 +sinx
and its two horizontal tangent lines. Write equations of these
two lines.
12
10

4 _16+sinx
2 3 +sin x
0

FIGURE 3.7.9 The curve
_ 16 + sinx

3 4 sinx
horizontal tangent lines.

and its two

71. Derive the differentiation formulas in Egs. (8) through (10).

72. Use the definition of the derivative to show directly that
g'(x) = —sinx if g(x) = cos x.

73. If a projectile is fired from ground level with initial velocity
vo and inclination angle « and if air resistance can be ig-
nored, then its range—the horizontal distance it travels—is

R L 2
= —UVU,SINx CoS&x
16 °

(Fig. 3.7.10). What value of « maximizes R?

)

Ground
f R |

FIGURE 3.7.10 The projectile of Problem 73.

74. A weather balloon that is rising vertically is observed from
a point on the ground 300 ft from the spot directly beneath
the balloon (Fig. 3.7.11). At what rate is the balloon rising
when the angle between the ground and the observer’s line
of sight is 45° and is increasing at 1° per second?

/
/
4 ‘\9 Ground

L—300—>

FIGURE 3.7.11 The weather
balloon of Problem 74.
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75. A rocket is launched vertically upward from a point 2 mi
west of an observer on the ground. What is the speed of the
rocket when the angle of elevation (from the horizontal) of
the observer’s line of sight to the rocket is 50° and is increas-
ing at 5° per second?

76. A plane flying at an altitude of 25,000 ft has a defective air-
speed indicator. To determine her speed, the pilot sights a
fixed point on the ground. At the moment when the angle
of depression (from the horizontal) of her line of sight is
65°, she notes that this angle is increasing at 1.5° per second
(Fig. 3.7.12). What is the speed of the plane?

Ground N

FIGURE 3.7.12 The airplane of Problem 76.

77. An observer on the ground sights an approaching plane fly-
ing at constant speed and at an altitude of 20,000 ft. From
his point of view, the plane’s angle of elevation is increasing
at 0.5° per second when the angle is 60°. What is the speed
of the plane?

78. Find the largest possible area A of a rectangle inscribed in
the unit circle x?> + y?> = 1 by maximizing A as a function of
the angle 0 indicated in Fig. 3.7.13.

(x, y)

x2+y2=1

FIGURE 3.7.13 A rectangle
inscribed in the unit circle
(Problem 78).

79. A water trough is to be made from a long strip of tin 6 ft
wide by bending up at an angle 8 a 2-ft strip on each side
(Fig. 3.7.14). What angle 6 would maximize the cross-
sectional area, and thus the volume, of the trough?

FIGURE 3.7.14 The water trough
of Problem 79.
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80. A circular patch of grass of radius 20 m is surrounded by a /\

walkway, and a light is placed atop a lamppost at the circle’s S
center. At what height should the light be placed to illumi- T2 TSl
nate the walkway most strongly? The intensity of illumina- TS~
tion I of a surface is given by I = (ksin®)/D?, where D 8 T~
is the distance from the light source to the surface, 6 is the 1 —
angle at which light strikes the surface, and k is a positive .
constant FIGURE 3.7.17 A trapezoid
' inscribed in a semicircle
81. Find the minimum possible volume V of a cone in which (Problem 83).
a sphere of given radius R is inscribed. Minimize V as a
function of the angle € indicated in Fig. 3.7.15. 84. A logger must cut a six-sided beam from a circular log

of diameter 30 cm so that its cross section is as shown in
Fig. 3.7.18. The beam is symmetrical, with only two differ-
ent internal angles « and 8. Show that the cross section is
maximal when the cross section is a regular hexagon, with
equal sides and angles (corresponding to « = 8 = 27/3).
Note that o + 28 = 2. (Why?)

FIGURE 3.7.15 Finding the
smallest cone containing a
fixed sphere (Problem 81). B

FIGURE 3.7.18 A hexagonal
beam cut from a circular log

82. A very long rectangular piece of paper is 20 cm wide. The (Problem 84).

bottom right-hand corner is folded along the crease shown in
Fig. 3.7.16, so that the corner just touches the left-hand side
of the page. How should this be done so that the crease is as
short as possible?

85. Consider a circular arc of length s with its endpoints on the
x-axis (Fig. 3.7.19). Show that the area A bounded by this
arc and the x-axis is maximal when the circular arc is in
the shape of a semicircle. [Suggestion: Express A in terms

of the angle 6 subtended by the arc at the center of the cir-
cle, as shown in Fig. 3.7.19. Show that A is maximal when
0 =m.]
Y Circular arc
/ of length s
X
Radius r 0 Radius r
A
FIGURE 3.7.19 Finding the maximum
area bounded by a circular arc and its
FIGURE 3.7.16 Fold a piece chord (Problem 85).
of paper; make the crease of
minimal length (Problem 82). 86. A hiker starting at a point P on a straight road wants to reach
a forest cabin that is 2 km from a point Q 3 km down the road
from P (Fig. 3.7.20). She can walk 8 km/h along the road
83. Find the maximum possible area A of a trapezoid inscribed but only 3 km/h through the forest. She wants to minimize
in a semicircle of radius 1, as shown in Fig. 3.7.17. Begin by the time required to reach the cabin. How far down the road
expressing A as a function of the angle 6 shown there. should she walk before setting off through the forest straight
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for the cabin? [Suggestion: Use the angle 6 between the road
and the path she takes through the forest as the independent
variable.]

Cabin
Forest

P Road

|
-}

|
I 3

FIGURE 3.7.20 Finding the quickest
path to the cabin in the forest
(Problem 86).

87. Show that the function (graphed in Fig. 3.7.21)

ifx #0

0 ifx=0
(see Example 4 in Section 2.3) is not differentiable at x = 0.
[Suggestion: Show that whether z = 1 or z = —1, there are

arbitrarily small values of & such that [ f(h) — f(0)]/h = z.
Then use the definition of the derivative.]

02

0.1

FIGURE 3.7.21 The graph of

1
y = xsin — near x = 0.
X

88. Let

, 1
x“sin— ifx #0
X

0 ifx=0

fx) =

(the graph of f appears in Figs. 3.7.22 and 3.7.23). Apply
the definition of the derivative to show that f is differentiable
at x = 0 and that f'(0) = 0.

0.08

0.04 -

—-0.04

—~0.08} LY .‘:
-04 -02 0 02 04

FIGURE 3.7.22 The graph of

1
y = x2sin — (Problem 88).
X

x 1073

Ly=x2
Y :

-0.04 0 0.04

FIGURE 3.7.23 The graph in
Fig. 3.7.22 magnified (Problem 88).

' 3.8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Until now, we have concentrated on algebraic and trigonometric functions. Exponen-
tial and logarithmic functions complete the list of the so-called elementary functions
that are most important in applications of calculus.

Exponential Functions

An exponential function is a function of the form

fx) =a* ¢Y)

where a > 0. Note that the exponent x is the variable here; the number a, called the

base, is a constant. Thus

o An exponential function f(x) = a* is a constant raised to a variable power,

whereas

« The power function p(x) = x* is a variable raised to a constant power.
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In elementary algebra a rational power of the positive real number a is defined
in terms of integral roots and powers. If n is a positive integer then

a"=a-a-a---a (n factors)

and

Next we learn that if r = p/q where p and g are integers (with g positive), then the
rational power a” is defined by

alll = Ygr = (\q/g)l’.

The following laws of exponents are then established for all rational exponents r
and s:

at = d-d, (@) = a7,
a’’ = ir, (ab) = a" -b". )
a
Moreover, recall that
a’ =1 3

for every positive real number a.
The following example illustrates the fact that applications often call for irra-
tional exponents as well as rational exponents.

EXAMPLE 1 Consider a bacteria population P (¢) that begins (at time ¢t = 0) with
initial population P(0) = 1 (million) and doubles every hour thereafter. The growing
population is given at 1-hour intervals as in the following table:

t 1 2 3 4 5 (hours)
P 2 4 8 16 32 (millions)

It is evident that P(n) = 2" if n is an integer. Now let’s make the plausible assumption
that the population increases by the same factor in any two time intervals of the same
length—for example, if it grows by 10% in any one eight-minute interval, then it grows
by 10% in any other eight-minute interval. If ¢ is a positive integer and k denotes the
factor by which the population increases during a time interval of length At = 1/gq,
then the population is given at successive time intervals of length 1/¢ as in the next
table.

t =1

Q|
S

Q| W

1
q
k

2 K K ki =2 (Why?)

We therefore see that k = 279 If p is another positive integer, then during p/g hours
the population P will increase p times by the factor k = 2!/4, so it follows that

P(p/q) = k" = 2P =27/,
Thus the bacteria population after ¢ hours is given (in millions) by
P(t) =2

if the exponent 7 is a rational number. But because time is not restricted to rational
values alone, we surely ought to conclude that P(¢) = 2’ forall t > 0. N ]
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t 2!
3.1 8.5742
3.14 8.8152
3.141 8.8214
3.1415 8.8244
3.14159 8.8250
3.141592 8.8250
3.1415926 8.8250

{ \

b4 27

FIGURE 3.8.1 Investigating 27.

FIGURE 3.8.2 The graph y = 2*.

.."' y=a" (a =2 here)

FIGURE 3.8.3 The graph of
y = a”* has “holes” if only rational

values of x are used.

Investigation But what do we mean by an expression involving an irrational exponent,

such as 2¥2 or 272 To find the value of 27, we might work with (rational) finite decimal
approximations to the irrational number & = 3.1415926 - - - . For example, a calculator
gives

231 = 23110 = (192)"! ~ 8.5742.

The approximate values shown in the table in Fig. 3.8.1 indicate that the bacteria pop-
ulation in Example 1 after 7 hours is

P(r) ~ 8.8250 (million).

Because any irrational number can be approximated arbitrarily closely by rational
numbers, the preceding investigation suggests that the value of a*—with irrational
exponent x and a fixed base a > O—can be regarded as a limit of the form

a* =lima” (r rational). 4)

Indeed, when the meaning of the limit in (4) is made precise, it provides one way of
defining as well as calculating values of the exponential function f(x) = a* for all x.

On a calculator, the [A] key (sometimes the key) is ordinarily used to cal-
culate values of exponential functions. For instance, Fig. 3.8.2 shows the result of
graphing the function defined by y = 2Ax. We see the steadily rising graph (from
left to right) of a function that is positive-valued for all x. Indeed, if r and s are positive
rational numbers with » < s and a > 1, then we note first that a*~" > 1 (Why?) and
then that

ar < ar . asfr — ar+(s7r) — as.

Thus a” < a* whenever 0 < r < s, so the exponential function f(x) = a* witha > 1
is certainly an increasing function if only positive rational values of the exponent are
involved. A graphing calculator or computer actually plots only finitely many points
(x, a"), but the curve plotted in Fig. 3.8.2 looks connected because these points are
plotted too close together for the eye to distinguish them.

By contrast, the graph in Fig. 3.8.3 is shown with a dotted curve to suggest that it
is densely filled with tiny holes corresponding to the missing points (x, a*) for which x
is irrational. In Section 6.7 we will use calculus to show that these holes can be filled to
obtain the graph of a continuous increasing function f with the following properties:

o f(x) is defined for every real number x;
e f(r) =a" if r is rational; and
« the laws of exponents in (2) hold for irrational as well as rational exponents.

We therefore write f(x) = a* for all x and call f the exponential function with base
a.

As illustrated in Fig. 3.8.4, the exponential function f(x) = a* witha > 1
increases rapidly as x > 0 increases, and the graphs of y = a* look qualitatively
similar for different values of the base a so long as a > 1. The steep rate of increase
of a* for x positive and increasing is a characteristic feature of exponential functions.
Figures 3.8.5 and 3.8.6 compare the graphs of the exponential function y = 2* and the

quadratic function y = x2.

Derivatives of Exponential Functions

To compute the derivative of the exponential function f(x) = a*, we begin with the
definition of the derivative and then use the first law of exponents in Eq. (2) to simplify.
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200
180
160
140
120
y . y 100
80
S 60
: 40
: 20
0 2 4 6 05
X
FIGURE 3.8.4 y = a* fora =2, 3, FIGURE 3.8.5 Here the graphs FIGURE 3.8.6 But here we see 2*
5, 10. y=2andy = x2 look similar increasing much more rapidly
for x > 2. than x2.
This gives
. x+h)— fx . a"th —af
f’(x):hmf( )= f&) e —a
h—0 h—0 h
a‘a" — a*
= lim —— (by the laws of exponents)
h—0 h
_ah—1 . .
