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Functions, Graphs,
and Models 1

René Descartes (1596–1650)

The seventeenth-cen-
tury French scholar
René Descartes is

perhaps better remembered
today as a philosopher than
as a mathematician. But
most of us are familiar
with the “Cartesian plane”
in which the location of a
point P is specified by its
coordinates (x, y).

As a schoolboy
Descartes was often per-
mitted to sleep late because

of allegedly poor health. He claimed that he always
thought most clearly about philosophy, science, and math-
ematics while he was lying comfortably in bed on cold
mornings. After graduating from college, where he stud-
ied law (apparently with little enthusiasm), Descartes trav-
eled with various armies for a number of years, but more
as a gentleman soldier than as a professional military man.

In 1637, after finally settling down (in Holland),
Descartes published his famous philosophical treatise Dis-
course on the Method (of Reasoning Well and Seeking
Truth in the Sciences). One of three appendices to this
work sets forth his new “analytic” approach to geometry.
His principal idea (published almost simultaneously by his
countryman Pierre de Fermat) was the correspondence be-
tween an equation and its graph, generally a curve in the
plane. The equation could be used to study the curve and
vice versa.

Suppose that we want to solve the equation
f (x) = 0. Its solutions are the intersection points of the
graph of y = f (x) with the x-axis, so an accurate picture
of the curve shows the number and approximate locations
of the solutions of the equation. For instance, the graph

y = x3 − 3x2 + 1

has three x-intercepts, showing that the equation

x3 − 3x2 + 1 = 0

has three real solutions—one between −1 and 0, one
between 0 and 1, and one between 2 and 3. A mod-
ern graphing calculator or computer program can approx-
imate these solutions more accurately by magnifying the
regions in which they are located. For instance, the mag-
nified center region shows that the corresponding solution
is x ≈ 0.65.
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The graph y = x3 − 3x2 + 1

From Chapter 1 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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2 CHAPTER 1 Functions, Graphs, and Models

1.1 FUNCTIONS AND MATHEMATICAL MODELING

Calculus is one of the supreme accomplishments of the human intellect. This math-
ematical discipline stems largely from the seventeenth-century investigations of Isaac
Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716). Yet some of its
ideas date back to the time of Archimedes (287–212 B.C.) and originated in cultures
as diverse as those of Greece, Egypt, Babylonia, India, China, and Japan. Many of the
scientific discoveries that have shaped our civilization during the past three centuries
would have been impossible without the use of calculus.

The principal objective of calculus is the analysis of problems of change (of mo-
tion, for example) and of content (the computation of area and volume, for instance).
These problems are fundamental because we live in a world of ceaseless change, filled
with bodies in motion and phenomena of ebb and flow. Consequently, calculus remains
a vibrant subject, and today this body of conceptual understanding and computational
technique continues to serve as the principal quantitative language of science and tech-
nology.

Functions
Most applications of calculus involve the use of real numbers or variables to describe
changing quantities. The key to the mathematical analysis of a geometric or scientific
situation is typically the recognition of relationships among the variables that describe
the situation. Such a relationship may be a formula that expresses one variable as a
function of another. For example:

• The area A of a circle of radius r is given by A = πr2 (Fig. 1.1.1). The volume
V and surface area S of a sphere of radius r are given by

r

FIGURE 1.1.1 Circle: area
A = πr2, circumference C = 2πr .

V = 4
3πr3 and S = 4πr2,

respectively (Fig. 1.1.2).

r

FIGURE 1.1.2 Sphere: volume
V = 4

3 πr3, surface area S = 4πr2.

• After t seconds (s) a body that has been dropped from rest has fallen a distance

s = 1
2 gt2

feet (ft) and has speed v = gt feet per second (ft/s), where g ≈ 32 ft/s2 is
gravitational acceleration.

• The volume V (in liters, L) of 3 grams (g) of carbon dioxide at 27◦C is given in
terms of its pressure p in atmospheres (atm) by V = 1.68/p.

DEFINITION Function
A real-valued function f defined on a set D of real numbers is a rule that assigns
to each number x in D exactly one real number, denoted by f (x).

The set D of all numbers for which f (x) is defined is called the domain (or
domain of definition) of the function f . The number f (x), read “ f of x ,” is called the
value of the function f at the number (or point) x . The set of all values y = f (x) is
called the range of f . That is, the range of f is the set

{y : y = f (x) for some x in D}.
In this section we will be concerned more with the domain of a function than with its
range.

EXAMPLE 1 The squaring function defined by

f (x) = x2

assigns to each real number x its square x2. Because every real number can be squared,
the domain of f is the set R of all real numbers. But only nonnegative numbers are
squares. Moreover, if a � 0, then a = (

√
a)2 = f (

√
a), so a is a square. Hence

2
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Functions and Mathematical Modeling SECTION 1.1 3

the range of the squaring function f is the set {y : y � 0} of all nonnegative real
numbers. ◗

Functions can be described in various ways. A symbolic description of the func-
tion f is provided by a formula that specifies how to compute the number f (x) in terms
of the number x . Thus the symbol f ( ) may be regarded as an operation that is to be
performed whenever a number or expression is inserted between the parentheses.

EXAMPLE 2 The formula

f (x) = x2 + x − 3 (1)

defines a function f whose domain is the entire real line R. Some typical values of f
are f (−2) = −1, f (0) = −3, and f (3) = 9. Some other values of the function f are

f (4) = 42 + 4 − 3 = 17,

f (c) = c2 + c − 3,

f (2 + h) = (2 + h)2 + (2 + h) − 3

= (4 + 4h + h2) + (2 + h) − 3 = h2 + 5h + 3, and

f (−t2) = (−t2)2 + (−t2) − 3 = t4 − t2 − 3. ◗

When we describe the function f by writing a formula y = f (x), we call x the
independent variable and y the dependent variable because the value of y depends—
through f —upon the choice of x . As the independent variable x changes, or varies,
then so does the dependent variable y. The way that y varies is determined by the rule
of the function f . For example, if f is the function of Eq. (1), then y = −1 when
x = −2, y = −3 when x = 0, and y = 9 when x = 3.

You may find it useful to visualize the dependence of the value y = f (x) on x by
thinking of the function f as a kind of machine that accepts as input a number x and
then produces as output the number f (x), perhaps displayed or printed (Fig. 1.1.3).

One such machine is the square root key of a simple pocket calculator. When
a nonnegative number x is entered and this key is pressed, the calculator displays (an
approximation to) the number

√
x . Note that the domain of this square root function

f (x) = √
x is the set [0, +∞) of all nonnegative real numbers, because no negative

number has a real square root. The range of f is also the set of all nonnegative real
numbers, because the symbol

√
x always denotes the nonnegative square root of x . The

f (x)

f

x

FIGURE 1.1.3 A “function
machine.”

calculator illustrates its “knowledge” of the domain by displaying an error message if
we ask it to calculate the square root of a negative number (or perhaps a complex
number, if it’s a more sophisticated calculator).

EXAMPLE 3 Not every function has a rule expressible as a simple one-part formula
such as f (x) = √

x . For instance, if we write

h(x) =
{

x2 if x � 0,√−x if x < 0,

then we have defined a perfectly good function with domain R. Some of its values are
h(−4) = 2, h(0) = 0, and h(2) = 4. By contrast, the function g in Example 4 is
defined initially by means of a verbal description rather than by means of formulas.

◗

EXAMPLE 4 For each real number x , let g(x) denote the greatest integer that is less
than or equal to x . For instance, g(2.5) = 2, g(0) = 0, g(−3.5) = −4, and g(π) = 3.
If n is an integer, then g(x) = n for every number x such that n � x < n + 1. This
function g is called the greatest integer function and is often denoted by

g(x) = [[x]].
3
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4 CHAPTER 1 Functions, Graphs, and Models

Thus [[2.5]] = 2, [[−3.5]] = −4, and [[π ]] = 3. Note that although [[x]] is defined
for all x , the range of the greatest integer function is not all of R, but the set Z of all
integers. ◗

The name of a function need not be a single letter such as f or g. For instance,
think of the trigonometric functions sin(x) and cos(x) with the names sin and cos.

EXAMPLE 5 Another descriptive name for the greatest integer function of Exam-
ple 4 is

FLOOR(x) = [[x]]. (2)

(We think of the integer n as the “floor” beneath the real numbers lying between n and
n + 1.) Similarly, we may use ROUND(x) to name the familiar function that “rounds
off” the real number x to the nearest integer n, except that ROUND(x) = n + 1 if
x = n + 1

2 (so we “round upward” in case of ambiguity). Round off enough different
numbers to convince yourself that

ROUND(x) = FLOOR
(
x + 1

2

)
(3)

for all x .
Closely related to the FLOOR and ROUND functions is the “ceiling function” used

by the U.S. Postal Service; CEILING(x) denotes the least integer that is not less than
the number x . In 2006 the postage rate for a first-class letter was 39/c for the first ounce
and 24/c for each additional ounce or fraction thereof. For a letter weighing w > 0
ounces, the number of “additional ounces” involved is CEILING(w)−1. Therefore the
postage s(w) due on this letter is given by

s(w) = 39 + 24 · [CEILING(w) − 1] = 15 + 24 · CEILING(w). ◗

Domains and Intervals
The function f and the value or expression f (x) are different in the same sense that a
machine and its output are different. Nevertheless, it is common to use an expression
like “the function f (x) = x2” to define a function merely by writing its formula. In
this situation the domain of the function is not specified. Then, by convention, the
domain of the function f is the set of all real numbers x for which the expression
f (x) makes sense and produces a real number y. For instance, the domain of the
function h(x) = 1/x is the set of all nonzero real numbers (because 1/x is defined
precisely when x �= 0).

(−∞, 2)

(−1, 1]

[0, 1.5)

[−1, 2]

(1, 3)
An open interval

A closed interval

A half-open interval

A half-open interval

An unbounded interval

An unbounded interval

1
2

[ , ∞)

FIGURE 1.1.4 Some examples of intervals of real
numbers.

Domains of functions frequently are described in terms of intervals of real num-
bers (Fig. 1.1.4). (Interval notation is reviewed in Appendix A.) Recall that a closed
interval [a, b] contains both its endpoints x = a and x = b, whereas the open inter-
val (a, b) contains neither endpoint. Each of the half-open intervals [a, b) and (a, b]
contains exactly one of its two endpoints. The unbounded interval [a, ∞) contains
its endpoint x = a, whereas (−∞, a) does not. The previously mentioned domain of
h(x) = 1/x is the union of the unbounded intervals (−∞, 0) and (0, ∞).

4
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Functions and Mathematical Modeling SECTION 1.1 5

EXAMPLE 6 Find the domain of the function g(x) = 1

2x + 4
.

Solution Division by zero is not allowed, so the value g(x) is defined precisely when
2x + 4 �= 0. This is true when 2x �= −4, and thus when x �= −2. Hence the domain
of g is the set {x : x �= 2}, which is the union of the two unbounded open intervals
(−∞, −2) and (−2, ∞), shown in Fig. 1.1.5. ◗

(−∞, −2) (−2, ∞)

−2 0

FIGURE 1.1.5 The domain of
g(x) = 1/(2x + 4) is the union of
two unbounded open intervals.

EXAMPLE 7 Find the domain of h(x) = 1√
2x + 4

.

Solution Now it is necessary not only that the quantity 2x+4 be nonzero, but also that
it be positive, in order that the square root

√
2x + 4 is defined. But 2x + 4 > 0 when

2x > −4, and thus when x > −2. Hence the domain of h is the single unbounded
open interval (−2, ∞). ◗

Mathematical Modeling
The investigation of an applied problem often hinges on defining a function that cap-
tures the essence of a geometrical or physical situation. Examples 8 and 9 illustrate
this process.

EXAMPLE 8 A rectangular box with a square base has volume 125. Express its total

x
x

y

FIGURE 1.1.6 The box of
Example 8.

surface area A as a function of the edge length x of its base.

Solution The first step is to draw a sketch and to label the relevant dimensions. Fig-
ure 1.1.6 shows a rectangular box with square base of edge length x and with height y.
We are given that the volume of the box is

V = x2 y = 125. (4)

Both the top and the bottom of the box have area x2 and each of its four vertical sides
has area xy, so its total surface area is

A = 2x2 + 4xy. (5)

But this is a formula for A in terms of the two variables x and y rather than a function
of the single variable x . To eliminate y and thereby obtain A in terms of x alone, we
solve Eq. (4) for y = 125/x2 and then substitute this result in Eq. (5) to obtain

A = 2x2 + 4x · 125

x2
= 2x2 + 500

x
.

Thus the surface area is given as a function of the edge length x by

A(x) = 2x2 + 500

x
, 0 < x < +∞. (6)

It is necessary to specify the domain because negative values of x make sense in the
formula in (5) but do not belong in the domain of the function A. Because every x > 0
determines such a box, the domain does, in fact, include all positive real numbers.

◗

COMMENT In Example 8 our goal was to express the dependent variable A as a func-
tion of the independent variable x . Initially, the geometric situation provided us instead
with

1. The formula in Eq. (5) expressing A in terms of both x and the additional variable
y, and

2. The relation in Eq. (4) between x and y, which we used to eliminate y and
thereby express A as a function of x alone.

We will see that this is a common pattern in many different applied problems, such as
the one that follows.

5
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6 CHAPTER 1 Functions, Graphs, and Models

The Animal Pen Problem You must build a rectangular holding pen for animals. To
save material, you will use an existing wall as one of its four sides. The fence for
the other three sides costs $5/ft, and you must spend $1/ft to paint the portion of the
wall that forms the fourth side of the pen. If you have a total of $180 to spend, what
dimensions will maximize the area of the pen you can build?

Figure 1.1.7 shows the animal pen and its dimensions x and y, along with thex

$5/ft

y $5/ft y$5/ft

$1/ft
x Wall

FIGURE 1.1.7 The animal pen.

cost per foot of each of its four sides. When we are confronted with a verbally stated
applied problem such as this, our first question is, How on earth do we get started on
it? The function concept is the key to getting a handle on such a situation. If we can
express the quantity to be maximized—the dependent variable—as a function of some
independent variable, then we have something tangible to do: Find the maximum value
attained by the function. Geometrically, what is the highest point on that function’s
graph?

EXAMPLE 9 In connection with the animal pen problem, express the area A of the
pen as a function of the length x of its wall side.

Solution The area A of the rectangular pen of length x and width y is

A = xy. (7)

When we multiply the length of each side in Fig. 1.1.7 by its cost per foot and then add
the results, we find that the total cost C of the pen is

C = x + 5y + 5x + 5y = 6x + 10y.

So
6x + 10y = 180, (8)

because we are given C = 180. Choosing x to be the independent variable, we use
the relation in Eq. (8) to eliminate the additional variable y from the area formula in
Eq. (7). We solve Eq. (8) for y and substitute the result

y = 1
10 (180 − 6x) = 3

5 (30 − x) (9)

in Eq. (7). Thus we obtain the desired function

A(x) = 3
5 (30x − x2)

that expresses the area A as a function of the length x .
In addition to this formula for the function A, we must also specify its domain.

Only if x > 0 will actual rectangles be produced, but we find it convenient to include
the value x = 0 as well. This value of x corresponds to a “degenerate rectangle” of
base length zero and height

y = 3
5 · 30 = 18,

a consequence of Eq. (9). For similar reasons, we have the restriction y � 0. Because

y = 3
5 (30 − x),

it follows that x � 30. Thus the complete definition of the area function is

A(x) = 3
5 (30x − x2), 0 � x � 30. (10)

◗

COMMENT The domain of a function is a necessary part of its definition, and for
each function we must specify the domain of values of the independent variable. In
applications, we use the values of the independent variable that are relevant to the
problem at hand.

6
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Functions and Mathematical Modeling SECTION 1.1 7

Example 9 illustrates an important part of the solution of a typical applied
problem—the formulation of a mathematical model of the physical situation under
study. The area function A(x) defined in (10) provides a mathematical model of the
animal pen problem. The shape of the optimal animal pen can be determined by finding
the maximum value attained by the function A on its domain of definition.

Numerical Investigation
Armed with the result of Example 9, we might attack the animal pen problem by calcu-
lating a table of values of the area function A(x) in Eq. (10). Such a table is shown in
Fig. 1.1.8. The data in this table suggest strongly that the maximum area is A = 135 ft2,
attained with side length x = 15 ft, in which case Eq. (9) yields y = 9 ft. This conjec-
ture appears to be corroborated by the more refined data shown in Fig. 1.1.9.

Thus it seems that the animal pen with maximal area (costing $180) is x = 15 ft
long and y = 9 ft wide. The tables in Figs. 1.1.8 and 1.1.9 show only integral values
of x , however, and it is quite possible that the length x of the pen of maximal area is

x A(x)

0 0
5 75

10 120
15 135←
20 120
25 75
30 0

FIGURE 1.1.8 Area A(x) of a pen
with side of length x .

not an integer. Consequently, numerical tables alone do not settle the matter. A new
mathematical idea is needed in order to prove that A(15) = 135 is the maximum value
of

A(x) = 3
5 (30x − x2), 0 � x � 30

for all x in its domain. We attack this problem again in Section 1.2.

Tabulation of Functions
Many scientific and graphing calculators allow the user to program a given function for
repeated evaluation, and thereby to painlessly compute tables like those in Figs. 1.1.8
and 1.1.9. For instance, Figs. 1.1.10 and 1.1.11 show displays of a calculator prepared
to calculate values of the dependent variable

y1 = A(x) = (3/5)(30x − x2),

and Fig. 1.1.12 shows the calculator’s resulting version of the table in Fig. 1.1.9.
The use of a calculator or computer to tabulate values of a function is a simple

technique with surprisingly many applications. Here we illustrate a method of solving
approximately an equation of the form f (x) = 0 by repeated tabulation of values f (x)

of the function f .

x A(x)

10 120
11 125.4
12 129.6
13 132.6
14 134.4
15 135 ←
16 134.4
17 132.6
18 129.6
19 125.4
20 120

FIGURE 1.1.9 Further indication
that x = 15 yields maximal area
A = 135.

As a specific example, suppose that we ask what value of x in Eq. (10) yields an
animal pen of area A = 100. Then we need to solve the equation

A(x) = 3
5 (30x − x2) = 100,

which is equivalent to the equation

f (x) = 3
5 (30x − x2) − 100 = 0. (11)

This is a quadratic equation that could be solved using the quadratic formula of basic
algebra, but we want to take a more direct, numerical approach. The reason is that the

TEXAS INSTRUMENTS TI-83tt

FIGURE 1.1.10 A calculator
programmed to evaluate
A(x) = (3/5)(30x − x2).

TEXAS INSTRUMENTS TI-83tt

FIGURE 1.1.11 The table setup.

TEXAS INSTRUMENTS TI-83tt

FIGURE 1.1.12 The resulting table.

7
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8 CHAPTER 1 Functions, Graphs, and Models

numerical approach is applicable even when no simple formula (such as the quadratic
formula) is available.

The data in Fig. 1.1.8 suggest that one value of x for which A(x) = 100 lies
somewhere between x = 5 and x = 10 and that a second such value lies between
x = 20 and x = 25. Indeed, substitution in Eq. (11) yields

f (5) = −25 < 0 and f (10) = 20 > 0.

The fact that f (x) is negative at one endpoint of the interval [5, 10] but positive at the
other endpoint suggests that f (x) is zero somewhere between x = 5 and x = 10.

To see where, we tabulate values of f (x) on [5, 10]. In the table of Fig. 1.1.13
we see that f (7) < 0 and f (8) > 0, so we focus next on the interval [7, 8]. Tabu-
lating f (x) on [7, 8] gives the table of Fig. 1.1.14, where we see that f (7.3) < 0 and
f (7.4) > 0.

We therefore tabulate f (x) once more, this time on the interval [7.3, 7.4]. In
Fig. 1.1.15 we see that

f (7.36) ≈ −0.02 and f (7.37) ≈ 0.07.

Because f (7.36) is considerably closer to zero than is f (7.37), we conclude that the
desired solution of Eq. (11) is given approximately by x ≈ 7.36, accurate to two dec-
imal places. If greater accuracy were needed, we could continue to tabulate f (x) on
smaller and smaller intervals.

If we were to begin with the interval [20, 25] and proceed similarly, we would
find the second value x ≈ 22.64 such that f (x) = 0. (You should do this for practice.)

Finally, let’s calculate the corresponding values of the width y of the animal pen
such that A = xy = 100:

• If x ≈ 7.36, then y ≈ 13.59.
• If x ≈ 22.64, then y ≈ 4.42.

Thus, under the cost constraint of the animal pen problem, we can construct either a
7.36-ft by 13.59-ft or a 22.64-ft by 4.42-ft rectangle, both of area 100 ft2.

The layout of Figs. 1.1.13 through 1.1.15 suggests the idea of repeated tabulation
as a process of successive numerical magnification. This method of repeated tabulation
can be applied to a wide range of equations of the form f (x) = 0. If the interval [a, b]
contains a solution and the endpoint values f (a) and f (b) differ in sign, then we can
approximate this solution by tabulating values on successively smaller subintervals.
Problems 57 through 66 and the project at the end of this section are applications of
this concrete numerical method for the approximate solution of equations.

x f (x)

5 �25.0
6 �13.6
7 �3.4
8 5.6
9 13.4

10 20.0

FIGURE 1.1.13 Values of f (x) on
[5, 10].

x f (x)

7.0 �3.400
7.1 �2.446
7.2 �1.504
7.3 �0.574
7.4 0.344
7.5 1.250
7.6 2.144
7.7 3.026
7.8 3.896
7.9 4.754
8.0 5.600

FIGURE 1.1.14 Values of f (x) on [7, 8].

x f (x)

7.30 �0.5740
7.31 �0.4817
7.32 �0.3894
7.33 �0.2973
7.34 �0.2054
7.35 �0.1135
7.36 �0.0218
7.37 0.0699
7.38 0.1614
7.39 0.2527
7.40 0.3440

FIGURE 1.1.15 Values of f (x) on
[7.3, 7.4].

8
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Functions and Mathematical Modeling SECTION 1.1 9

1.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Isaac Newton was born in the 18th century.
2. A function is a rule that assigns to each real number in its domain one and only

one real number.
3. The value of the function f at the number x in its domain is commonly denoted

by f (x).
4. If the domain of the function f is not specified, then it is the set of all real

numbers.
5. The function giving the surface area A as a function of the edge length x of the

box of Example 8 is given by

A(x) = 2x2 + 600

x
, 0 � x < +∞.

6. In the animal pen problem (Example 9), the maximum area is attained when the
length x of the wall side is 18 ft.

7. The interval (a, b) is said to be open because it contains neither of its endpoints
a and b.

8. The domain of f (x) = √
x does not include the number x = −4.

9. The domain of the function A(x) = 3
5 (30x − x2) is the set of all real numbers.

10. There is no good reason why the domain of the animal pen function in Eq. (10)
is restricted to the interval 0 � x � 30.

1.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. Can a function have the same value at two different points? Can it have two

different values at the same point x?
2. Explain the difference between a dependent variable and an independent variable.

A change in one both causes and determines a change in the other. Which one is
the “controlling variable”?

3. What is the difference between an open interval and a closed interval? Is every
interval on the real line either open or closed? Justify your answer.

4. Suppose that S is a set of real numbers. Is there a function whose domain of
definition is precisely the set S? Is there a function defined on the whole real line
whose range is precisely the set S? Is there a function that has the value 1 at each
point of S and the value 0 at each point of the real line R not in S?

5. Figure 1.1.6 shows a box with square base and height y. Which of the following
two formulas would suffice to define the volume V of this box as a function of
y?

(a) V = x2 y; (b) V = y(10 − 2y)2.

Discuss the difference between a formula and a function.
6. In the following table, y is a function of x . Determine whether or not x is a

function of y.

x 0 2 4 6 8 10

y −1 3 8 7 3 −2

9
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10 CHAPTER 1 Functions, Graphs, and Models

1.1 PROBLEMS

In Problems 1 through 4, find and simplify each of the following
values: (a) f (−a); (b) f (a−1); (c) f (

√
a); (d) f (a2).

1. f (x) = 1

x
2. f (x) = x2 + 5

3. f (x) = 1

x2 + 5
4. f (x) = √

1 + x2 + x4

In Problems 5 through 10, find all values of a such that g(a) = 5.

5. g(x) = 3x + 4 6. g(x) = 1

2x − 1

7. g(x) = √
x2 + 16 8. g(x) = x3 − 3

9. g(x) = 3
√

x + 25 10. g(x) = 2x2 − x + 4

In Problems 11 through 16, compute and then simplify the quan-
tity f (a + h) − f (a).

11. f (x) = 3x − 2 12. f (x) = 1 − 2x

13. f (x) = x2 14. f (x) = x2 + 2x

15. f (x) = 1

x
16. f (x) = 2

x + 1

In Problems 17 through 20, find the range of values of the given
function.

17. f (x) =
⎧⎨
⎩

x

|x | if x �= 0;
0 if x = 0

18. f (x) = [[3x]] (Recall that [[x]] is the largest integer not
exceeding x .)

19. f (x) = (−1)[[x]]

20. f (x) is the first-class postage (in cents) for a letter mailed in
the United States and weighing x ounces, 0 < x < 12. As of
January 8, 2006 the postage rate for such a letter was 39/c for
the first ounce plus 24/c for each additional ounce or fraction
thereof.

In Problems 21 through 35, find the largest domain (of real
numbers) on which the given formula determines a (real-valued)
function.

21. f (x) = 10 − x2 22. f (x) = x3 + 5

23. f (t) = √
t2 24. g(t) = (√

t
)2

25. f (x) = √
3x − 5 26. g(t) = 3

√
t + 4

27. f (t) = √
1 − 2t 28. g(x) = 1

(x + 2)2

29. f (x) = 2

3 − x
30. g(t) =

√
2

3 − t

31. f (x) = √
x2 + 9 32. h(z) = 1√

4 − z2

33. f (x) = √
4 − √

x 34. f (x) =
√

x + 1

x − 1

35. g(t) = t

|t |
36. Express the area A of a square as a function of its perime-

ter P .

37. Express the circumference C of a circle as a function of its
area A.

38. Express the volume V of a sphere as a function of its surface
area S.

39. Given: 0◦C is the same as 32◦F, and a temperature change
of 1◦C is the same as a change of 1.8◦F. Express the Celsius
temperature C as a function of the Fahrenheit temperature F .

40. Show that if a rectangle has base x and perimeter 100
(Fig. 1.1.16), then its area A is given by the function

A(x) = x(50 − x), 0 � x � 50.

y

x

FIGURE 1.1.16 A = xy
(Problem 40).

41. A rectangle with base of length x is inscribed in a circle of
radius 2 (Fig 1.1.17). Express the area A of the rectangle as
a function of x .

y

x

FIGURE 1.1.17 A = xy
(Problem 41).

42. An oil field containing 20 wells has been producing 4000
barrels of oil daily. For each new well that is drilled, the
daily production of each well decreases by 5 barrels per day.
Write the total daily production of the oil field as a function
of the number x of new wells drilled.

43. Suppose that a rectangular box has volume 324 cm3 and a
square base of edge length x centimeters. The material for
the base of the box costs 2/c/cm2, and the material for its top
and four sides costs 1/c/cm2. Express the total cost of the
box as a function of x . See Fig. 1.1.18.

x
x

y

FIGURE 1.1.18 V = x2 y
(Problem 43).

2

2

2
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Functions and Mathematical Modeling SECTION 1.1 11

44. A rectangle of fixed perimeter 36 is rotated around one of
its sides S to generate a right circular cylinder. Express the
volume V of this cylinder as a function of the length x of the
side S. See Fig. 1.1.19.

y

x

FIGURE 1.1.19 V = πxy2 (Problem 44).

45. A right circular cylinder has volume 1000 in.3 and the radius
of its base is r inches. Express the total surface area A of the
cylinder as a function of r . See Fig. 1.1.20.

h

r

FIGURE 1.1.20 V =
πr2h (Problem 45).

46. A rectangular box has total surface area 600 cm2 and a
square base with edge length x centimeters. Express the vol-
ume V of the box as a function of x .

47. An open-topped box is to be made from a square piece of
cardboard of edge length 50 in. First, four small squares,
each of edge length x inches, are cut from the corners of
the cardboard (Fig. 1.1.21). Then the four resulting flaps are
turned up—folded along the dotted lines—to form the four
sides of the box, which will thus have a square base and a
depth of x inches (Fig. 1.1.22). Express its volume V as a
function of x .

50

x

50

x x?

FIGURE 1.1.21 Fold the
edges up to make a box
(Problem 47).

x

FIGURE 1.1.22 The box of
Problem 47.

48. Continue Problem 40 by numerically investigating the area
of a rectangle of perimeter 100. What dimensions (length
and width) would appear to maximize the area of such a rect-
angle?

49. Determine numerically the number of new oil wells that
should be drilled to maximize the total daily production of
the oil field of Problem 42.

50. Investigate numerically the total surface area A of the rect-
angular box of Example 8. Assuming that both x � 1 and
y � 1, what dimensions x and y would appear to mini-
mize A?

Problems 51 through 56 deal with the functions CEILING,
FLOOR, and ROUND of Example 5.

51. Show that CEILING(x) = −FLOOR(−x) for all x .

52. Suppose that k is a constant. What is the range of the func-
tion g(x) = ROUND(kx)?

53. What is the range of the function g(x) = 1
10 ROUND(10x)?

54. Recalling that π ≈ 3.14159, note that 1
100 ROUND(100π) =

3.14. Hence define (in terms of ROUND) a function
ROUND2(x) that gives the value of x rounded accurate to
two decimal places.

55. Define a function ROUND4(x) that gives the value of
x rounded accurate to four decimal places, so that
ROUND4(π) = 3.1416.

56. Define a function CHOP4(x) that “chops off” (or discards)
all decimal places of x beyond the fourth one, so that
CHOP4(π) = 3.1415.

In Problems 57 through 66, a quadratic equation ax2+bx+c = 0
and an interval [p, q] containing one of its solutions are given.
Use the method of repeated tabulation to approximate this solu-
tion with two digits correct or correctly rounded to the right of
the decimal. Check that your result agrees with one of the two
solutions given by the quadratic formula,

x = −b ± √
b2 − 4ac

2a
.

57. x2 − 3x + 1 = 0, [0, 1]
58. x2 − 3x + 1 = 0, [2, 3]
59. x2 + 2x − 4 = 0, [1, 2]
60. x2 + 2x − 4 = 0, [−4, −3]
61. 2x2 − 7x + 4 = 0, [0, 1]
62. 2x2 − 7x + 4 = 0, [2, 3]

63. x2 − 11x + 25 = 0, [3, 4]
64. x2 − 11x + 25 = 0, [7, 8]
65. 3x2 + 23x − 45 = 0, [1, 2]
66. 3x2 + 23x − 45 = 0, [−10, −9]

11
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12 CHAPTER 1 Functions, Graphs, and Models

1.1 INVESTIGATION: Designing a Wading Pool
Starting with a given rectangular piece of tin, you are to design a wading pool in the
manner indicated by Figs. 1.1.21 and 1.1.22. Your task is to investigate the maximal
volume pool that can be constructed, and how to construct a wading pool of specified
volume.

For your own personal wading pool, start with a square piece of tin of size a × b
feet, where a and b < a are the two largest digits in your student ID number. You need
to determine the corner notch edge length x so that the wading pool you construct will
have the largest possible volume V . Start by expressing the box’s volume V = f (x)

as a function of its height x , and then use the method of repeated tabulation to find
the maximum value Vmax (rounded off accurate to 2 decimal places) attained by the
function f (x) on the interval [0, b/2]. (Why is this the appropriate domain of f ?)

For a second investigation, suppose you decide instead that you want your pool
to have exactly half the maximum possible volume Vmax. Note first that a tabulation
of f (x) on the interval [0, b/2] indicates that this is true for two different values of x .
Find each of them (rounded off accurate to 3 decimal places).

Write up the results of your investigations in the form of a carefully organized
report consisting of complete sentences (plus pertinent equations and data tables) ex-
plaining your results in detail, and telling precisely what you did to solve your prob-
lems.

1.2 GRAPHS OF EQUATIONS AND FUNCTIONS

Graphs and equations of straight lines in the xy-coordinate plane are reviewed in Ap-

x

y

y = mx + b

b

φ

FIGURE 1.2.1 A line with
y-intercept b and inclination angle φ.

pendix B. Recall the slope-intercept equation

y = mx + b (1)

of the straight line with slope m = tan φ, angle of inclination φ, and y-intercept b
(Fig. 1.2.1). The “rise over run” definition

m = rise

run
= �y

�x
= y2 − y1

x2 − x1
(2)

of the slope (Fig. 1.2.2) leads to the point-slope equation

y − y0 = m(x − x0) (3)

of the straight line with slope m that passes through the point (x0, y0)—see Fig. 1.2.3.
In either case a point (x, y) in the xy-plane lies on the line if and only if its coordinates
x and y satisfy the indicated equation.

x

y

(x1, y1)

(x2, y2)

Δy = y2 − y1

Δx = x2 − x1

φ

FIGURE 1.2.2 Slope

m = tan φ = �y

�x
.

x

y

(x0, y0)

y − y0 = m(x − x0)

(x, y)

FIGURE 1.2.3 The line through
(x0, y0) with slope m.
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Graphs of Equations and Functions SECTION 1.2 13

If �y = 0 in Eq. (2), then m = 0 and the line is horizontal. If �x = 0, then
the line is vertical and (because we cannot divide by zero) the slope of the line is not
defined. Thus:

• Horizontal lines have slope zero.
• Vertical lines have no defined slope at all.

EXAMPLE 1 Write an equation of the line L that passes through the point P(3, 5)

and is parallel to the line having equation y = 2x − 4.

Solution The two parallel lines have the same angle of inclination φ (Fig. 1.2.4) and
therefore have the same slope m. Comparing the given equation y = 2x − 4 with the

x

y

φ

φ

FIGURE 1.2.4 Parallel lines have
the same slope m = tan φ. slope-intercept equation in (1), we see that m = 2. The point-slope equation therefore

gives

y − 5 = 2(x − 3)

—alternatively, y = 2x − 1, for an equation of the line L . ◗

Equations (1) and (3) can both be put into the form of the general linear equation

A x + By = C. (4)

Conversely, if B �= 0, then we can divide the terms in Eq. (4) by B and solve for y,
thereby obtaining the slope-intercept equation of a straight line. If A = 0, then the
resulting equation has the form y = H , the equation of a horizontal line with slope
zero. If B = 0 but A �= 0, then Eq. (4) can be solved for x = K , the equation of a

x

y

FIGURE 1.2.5 The graph of the
equation x2 + y2 = (x2 + y2 − 2x)2.

vertical line (having no slope at all). In summary, we see that if the coefficients A and
B are not both zero, then Eq. (4) is the equation of some straight line in the plane.

x

y

P1(x1, y1)

P2(x2, y2)

y2 − y1

x2 − x1

d

FIGURE 1.2.6 The Pythagorean
theorem implies the distance
formula

d = √
(x2 − x1)2 + (y2 − y1)2.

Graphs of More General Equations

A straight line is a simple example of the graph of an equation. By contrast, a
computer-graphing program produced the exotic curve shown in Fig. 1.2.5 when asked
to picture the set of all points (x, y) satisfying the equation

x2 + y2 = (x2 + y2 − 2x)2.

Both a straight line and this complicated curve are examples of graphs of equations.

DEFINITION Graph of an Equation
The graph of an equation in two variables x and y is the set of all points (x, y) in
the plane that satisfy the equation.

For example, the distance formula of Fig. 1.2.6 tells us that the graph of the

r

x

y

(x, y)

(h, k)

FIGURE 1.2.7 A translated circle.

equation

x2 + y2 = r2 (5)

is the circle of radius r centered at the origin (0, 0). More generally, the graph of the
equation

(x − h)2 + (y − k)2 = r2 (6)

is the circle of radius r with center (h, k). This also follows from the distance formula,
because the distance between the points (x, y) and (h, k) in Fig. 1.2.7 is r .

13
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14 CHAPTER 1 Functions, Graphs, and Models

EXAMPLE 2 The equation of the circle with center (3, 4) and radius 10 is

(x − 3)2 + (y − 4)2 = 100,

which may also be written in the form

x2 + y2 − 6x − 8y − 75 = 0. ◗

Translates of Graphs
Suppose that the xy-plane is shifted rigidly (or translated) by moving each point h

x

y

(x + h, y + k)

(x, y)

FIGURE 1.2.8 Translating a point.

units to the right and k units upward. (A negative value of h or k corresponds to a
leftward or downward movement.) That is, each point (x, y) of the plane is moved to
the point (x +h, y +k); see Fig. 1.2.8. Then the circle with radius r and center (0, 0) is
translated to the circle with radius r and center (h, k). Thus the general circle described
by Eq. (6) is a translate of the origin-centered circle. Note that the equation of the
translated circle is obtained from the original equation by replacing x with x − h and
y with y − k. This observation illustrates a general principle that describes equations
of translated (or “shifted”) graphs.

Translation Principle
When the graph of an equation is translated h units to the right and k units up-
ward, the equation of the translated curve is obtained from the original equation by
replacing x with x − h and y with y − k.

Observe that we can write the equation of a translated circle in Eq. (6) in the
general form

x2 + y2 + ax + by = c. (7)

What, then, can we do when we encounter an equation already of the form in Eq. (7)?
We first recognize that the graph is likely to be a circle. If so, we can discover its center
and radius by the technique of completing the square. To do so, we note that

x2 + ax =
(

x + a

2

)2 − a2

4
,

which shows that x2 + ax can be made into the perfect square (x + 1
2 a)2 by adding to

it the square of half the coefficient of x .

EXAMPLE 3 Find the center and radius of the circle that has the equation

x2 + y2 − 4x + 6y = 12.

Solution We complete the square separately for each of the variables x and y. This
gives

(x2 − 4x + 4) + (y2 + 6y + 9) = 12 + 4 + 9;
(x − 2)2 + (y + 3)2 = 25.

Hence the circle—shown in Fig. 1.2.9—has center (2, −3) and radius 5. Solving the
last equation for y gives

y = −3 ±
√

25 − (x − 2)2.

Thus the whole circle consists of the graphs of the two equations

-8

-4

0

4

8

-10 -5 0 5 10
x

y

(2, −3)

FIGURE 1.2.9 The circle of
Example 3.

y = −3 +
√

25 − (x − 2)2

and
y = −3 −

√
25 − (x − 2)2

that describe its upper and lower semicircles. ◗
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Graphs of Equations and Functions SECTION 1.2 15

Graphs of Functions
The graph of a function is a special case of the graph of an equation.

DEFINITION Graph of a Function
The graph of the function f is the graph of the equation y = f (x).

Thus the graph of the function f is the set of all points in the plane that have the
form (x, f (x)), where x is in the domain of f . (See Fig. 1.2.10.) Because the second
coordinate of such a point is uniquely determined by its first coordinate, we obtain the
following useful principle:

x

y

(x1, f (x1)) (x2, f (x2))

(x3, f (x3))

 f (x1)

x1 x2 x3

 f (x2)

 f (x3)

y = f (x)

FIGURE 1.2.10 The graph of the function f .

The Vertical Line Test
Each vertical line through a point in the domain of a function meets its graph in
exactly one point.

Thus no vertical line can intersect the graph of a function in more than one point.
For instance, it follows that the curve in Fig. 1.2.5 cannot be the graph of a function,
although it is the graph of an equation. Similarly, a circle cannot be the graph of a
function.

EXAMPLE 4 Construct the graph of the absolute value function f (x) = |x |.
Solution Recall that

|x | =
{

x if x � 0,

−x if x < 0.

So the graph of y = |x | consists of the right half of the line y = x together with the
left half of the line y = −x , as shown in Fig. 1.2.11. ◗

y = |x |

y = −x  for  x < 0 y =
 x 

 fo
r  

x >
 0

x

y

FIGURE 1.2.11 The graph of the
absolute value function y = |x | of
Example 4.

EXAMPLE 5 Sketch the graph of the reciprocal function

f (x) = 1

x
.

Solution Let’s examine four natural cases.

1. When x is positive and numerically large, f (x) is small and positive.
2. When x is positive and near zero, f (x) is large and positive.
3. When x is negative and numerically small (negative and close to zero), f (x) is

large and negative.
4. When x is large and negative (x is negative but |x | is large), f (x) is small and

negative (negative and close to zero).

15
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16 CHAPTER 1 Functions, Graphs, and Models

To get started with the graph, we can plot a few points, such as

1
5

(5, )

1
5

(   , 5)

(1, 1)

(−5, − )1
5

(− , −5)1
5

y = 1
x

x

y

64−2−4−6

6

4

2

−2

−4

−6

2

(−1, −1)

FIGURE 1.2.12 The graph of the
reciprocal function y = 1/x of
Example 5.

(1, 1), (−1, −1),
(
5, 1

5

)
,
(

1
5 , 5

)
,
(−5, − 1

5

)
, and

(− 1
5 , −5

)
.

The locations of these points, together with the four cases just discussed, suggest that
the actual graph resembles the one shown in Fig. 1.2.12. ◗

Figure 1.2.12 exhibits a “gap,” or “discontinuity,” in the graph of y = 1/x at
x = 0. Indeed, the gap is called an infinite discontinuity because y increases without
bound as x approaches zero from the right, whereas y decreases without bound as x
approaches zero from the left. This phenomenon generally is signaled by the presence
of denominators that are zero at certain values of x , as in the case of the functions

f (x) = 1

1 − x
and f (x) = 1

x2
,

which we ask you to graph in the problems.

EXAMPLE 6 Figure 1.2.13 shows the graph of the greatest integer function f (x) =

…

…

x

y

32−1−2−3

3

2

1

−1

−2

−3

1

FIGURE 1.2.13 The graph of the
greatest integer function f (x) = [[x]]
of Example 6.

[[x]] in Example 4 in Section 1.1. Note the “jumps” that occur at integral values of x .
On calculators, the greatest integer function is sometimes denoted by INT ; in some
programming languages, it is called FLOOR. ◗

EXAMPLE 7 Graph the function with the formula

f (x) = x − [[x]] − 1
2 .

Solution Recall that [[x]] = n, where n is the greatest integer not exceeding x—thus
n � x < n + 1. Hence if n is an integer, then

f (n) = n − n − 1
2 = − 1

2 .

This implies that the point (n, − 1
2 ) lies on the graph of f for each integer n. Next, if

n � x < n + 1 (where, again, n is an integer), then

f (x) = x − n − 1
2 .

Because y = x−n− 1
2 has as its graph a straight line of slope 1, it follows that the graph

of f takes the form shown in Fig. 1.2.14. This sawtooth function is another example of
a discontinuous function. The values of x where the value of f (x) makes a jump are
called points of discontinuity of the function f . Thus the points of discontinuity of
the sawtooth function are the integers. As x approaches the integer n from the left, the
value of f (x) approaches + 1

2 , but f (x) abruptly jumps to the value − 1
2 when x = n. A

precise definition of continuity and discontinuity for functions appears in Section 2.4.
Figure 1.2.15 shows a graphing calculator prepared to graph the sawtooth function.

◗

…
… x

y

21−1−2

1

−1

FIGURE 1.2.14 The graph of the
sawtooth function f (x) = x −
[[x]] − 1

2 of Example 7.

TEXAS INSTRUMENTS TI-83 tt

FIGURE 1.2.15 A graphing
calculator prepared to graph the
sawtooth function of Example 7.
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Graphs of Equations and Functions SECTION 1.2 17

Parabolas
The graph of a quadratic function of the form

f (x) = ax2 + bx + c (a �= 0) (8)

is a parabola whose shape resembles that of the particular parabola in Example 8.

EXAMPLE 8 Construct the graph of the parabola y = x2.

Solution We plot some points in a short table of values.

x −3 −2 −1 0 1 2 3

y = x2 9 4 1 0 1 4 9

When we draw a smooth curve through these points, we obtain the curve shown in
Fig. 1.2.16. ◗

x

y

(0, 0)

(1, 1)

(2, 4)

(3, 9)

y = x2

(−1, 1)

(−2, 4)

(−3, 9)

FIGURE 1.2.16 The graph of the
parabola y = x2 of Example 8.

The parabola y = −x2 would look similar to the one in Fig. 1.2.16 but would
open downward instead of upward. More generally, the graph of the equation

y = ax2 (9)

is a parabola with its vertex at the origin, provided that a �= 0. This parabola opens
upward if a > 0 and downward if a < 0. [For the time being, we may regard the vertex
of a parabola as the point at which it “changes direction.” The vertex of a parabola of
the form y = ax2 (a �= 0) is always at the origin. A precise definition of the vertex of
a parabola appears in Chapter 9.]

EXAMPLE 9 Construct the graphs of the functions f (x) = √
x and g(x) = −√

x .

Solution After plotting and connecting points satisfying y = ±√
x , we obtain the

parabola y2 = x shown in Fig. 1.2.17. This parabola opens to the right. The upper
half is the graph of f (x) = √

x , the lower half is the graph of g(x) = −√
x . Thus the

x

y

y = x

y = − x

FIGURE 1.2.17 The graph of the
parabola x = y2 of Example 9.

union of the graphs of these two functions is the graph of the single equation y2 = x .
(Compare this with the circle of Example 3.) More generally, the graph of the equation

x = by2 (10)

is a parabola with its vertex at the origin, provided that b �= 0. This parabola opens to
the right if b > 0 (as in Fig. 1.2.17), but to the left if b < 0. ◗
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18 CHAPTER 1 Functions, Graphs, and Models

The size of the coefficient a in Eq. (9) [or of b in Eq. (10)] determines the “width”
of the parabola; its sign determines the direction in which the parabola opens. Specif-
ically, the larger a > 0 is, the steeper the curve rises and hence the narrower the
parabola is. (See Fig. 1.2.18.)

0

2

4

-2 0 2
x

y

a = 5 a = 2 a = 1

a = 1/2

a = 1/4

FIGURE 1.2.18 Parabolas with
different widths.

x

y

u

v

h u

v

P

k(h, k)

FIGURE 1.2.19 A translated
parabola.

The parabola in Fig. 1.2.19 has the shape of the “standard parabola” in Example
8, but its vertex is located at the point (h, k). In the indicated uv-coordinate system,
the equation of this parabola is v = u2, in analogy with Eq. (9) with a = 1. But the
uv-coordinates and xy-coordinates are related as follows:

u = x − h, v = y − k.

Hence the xy-coordinate equation of this parabola is

y − k = (x − h)2. (11)

Thus when the parabola y = x2 is translated h units to the right and k units upward,
the equation in (11) of the translated parabola is obtained by replacing x with x − h
and y with y − k. This is another instance of the translation principle that we observed
in connection with circles.

More generally, the graph of any equation of the form

y = ax2 + bx + c (a �= 0) (12)

can be recognized as a translated parabola by first completing the square in x to obtain
an equation of the form

y − k = a(x − h)2. (13)

The graph of this equation is a parabola with its vertex at (h, k).

EXAMPLE 10 Determine the shape of the graph of the equation

y = 2x2 − 4x − 1. (14)

Solution If we complete the square in x , Eq. (14) takes the form

y = 2(x2 − 2x + 1) − 3;
y + 3 = 2(x − 1)2.

Hence the graph of Eq. (14) is the parabola shown in Fig. 1.2.20. It opens upward and
its vertex is at (1, −3). ◗

x

y

(1, −3)

FIGURE 1.2.20 The parabola
y = 2x2 − 4x − 1 of Example 10.
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Applications of Quadratic Functions
In Section 1.1 we saw that a certain type of applied problem may call for us to find the
maximum or minimum attained by a certain function f . If the function f is a quadratic
function as in Eq. (8), then the graph of y = f (x) is a parabola. In this case the
maximum (or minimum) value of f (x) corresponds to the highest (or lowest) point of
the parabola. We can therefore find this maximum (or minimum) value graphically—at
least approximately—by zooming in on the vertex of the parabola.

For instance, recall the animal pen problem of Section 1.1. In Example 9 there
we saw that the area A of the pen (see Fig. 1.2.21) is given as a function of its base
length x by

A(x) = 3
5 (30x − x2), 0 � x � 30. (15)

Figure 1.2.22 shows the graph y = A(x), and Figs. 1.2.23, 1.2.24, and 1.2.25 show

x

$5/ft

y $5/ft y$5/ft

$1/ft
x Wall

FIGURE 1.2.21 The animal pen.
successive magnifications of the region near the high point (vertex) of the parabola.
The dashed rectangle in each figure is the viewing window for the next. Figure 1.2.25
makes it seem that the maximum area of the pen is A(15) = 135. It is clear from the
figure that the maximum value of A(x) is within 0.001 of A = 135.
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y = A(x)

FIGURE 1.2.22 The graph y = A(x).

120

124

128

132

136

140

10 12 14 16 18 20
x

y
y = A(x)

FIGURE 1.2.23 The first zoom.

134

134.4

134.8

135.2

135.6

136

14 14.5 15 15.5 16
x

y

y = A(x)

FIGURE 1.2.24 The second zoom.
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135.01

14.9 14.95 15 15.05 15.1
x

y

y = A(x)

FIGURE 1.2.25 The third zoom.

We can verify by completing the square as in Example 10 that the maximum
value is precisely A(15) = 135:

A = − 3
5 (x2 − 30x) = − 3

5 (x2 − 30x + 225 − 225)

= − 3
5 (x2 − 30x + 225) + 135;

that is,

A − 135 = − 3
5 (x − 15)2. (16)

It follows from Eq. (16) that the graph of Eq. (15) is the parabola shown in

A

3
5

Horizontal
tangent line

Highest point
(15, 135)

10 20 30 x

150

100

50 (30x − x2)A =

FIGURE 1.2.26 The graph of
A(x) = 3

5 (30x − x2) for 0 � x � 30.
Fig. 1.2.26, which opens downward from its vertex (15, 135). This proves that the
maximum value of A(x) on the interval [0, 30] is the value A(15) = 135, as both our
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20 CHAPTER 1 Functions, Graphs, and Models

numerical investigations in Section 1.1 and our graphical investigations here suggest.
And when we glance at Eq. (16) in the form

A(x) = 135 − 3
5 (x − 15)2,

it’s clear and unarguable that the maximum possible value of 135 − 3
5 u2 is 135 when

u = x − 15 = 0—that is, when x = 15.
The technique of completing the square is quite limited: It can be used to find

maximum or minimum values only of quadratic functions. One of the goals in calculus
is to develop a more general technique that can be applied to a far wider variety of
functions.

The basis of this more general technique lies in the following observation. Visual
inspection of the graph of

A(x) = 3
5 (30x − x2)

in Fig. 1.2.26 suggests that the line tangent to the curve at its highest point is horizontal.
If we knew that the tangent line to a graph at its highest point must be horizontal, then
our problem would reduce to showing that (15, 135) is the only point of the graph of
y = A(x) at which the tangent line is horizontal.

But what do we mean by the tangent line to an arbitrary curve? We pursue this
question in Section 2.1. The answer will open the door to the possibility of finding the
maximum and minimum values of a wide variety of functions.

Graphic, Numeric, and Symbolic Viewpoints

An equation y = f (x) provides a symbolic description of the function f . A table
of values of f (like those in Section 1.1) is a numeric representation of the function,
whereas this section deals largely with graphic representations of functions. Interesting
applications often involve looking at the same function from at least two of these three
viewpoints.

EXAMPLE 11 Suppose that a car begins (at time t = 0 hours) in Athens, Georgia
(position x = 0 miles) and travels to Atlanta (position x = 60) with a constant speed
of 60 mi/h. The car stays in Atlanta for exactly one hour, then returns to Athens,
again with a constant speed of 60 mi/h. Describe the car’s “position function” both
graphically and symbolically.

Solution It’s fairly clear that x = 60t during the 1-hour trip from Athens to Atlanta;
for instance, after t = 1

2 hour the car has traveled halfway, so x = 30 = 1
2 · 60. During

the next hour, 1 � t � 2, the car’s position is constant, x ≡ 60. And perhaps you can
see that during the return trip of the third hour, 2 � t � 3, the car’s position is given by

x = 60 − 60(t − 2) = 180 − 60t

(so that x(2) = 60 and x(3) = 0). Thus the position function x(t) is defined symboli-
cally by

x(t) =

⎧⎪⎨
⎪⎩

60t if 0 � t � 1,

60 if 1 < t � 2,

180 − 60t if 2 < t � 3.

The domain of this function is the t-interval [0, 3] and its graph is shown in Fig. 1.2.27,
where we denote both the function and the dependent variable by the same symbol x

t

x = x(t )

321

x

60

FIGURE 1.2.27 The graph of the
position function x(t) in
Example 11.

(an abuse of notation that’s not uncommon in applications). ◗
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EXAMPLE 12 During the decade of the 1980s the population P (in thousands) of a
small but rapidly growing city was recorded in the following table.

Year 1980 1982 1984 1986 1988 1990

t 0 2 4 6 8 10

P 27.00 29.61 32.48 35.62 39.07 42.85

Estimate the population of this city in the year 1987.

Solution Figure 1.2.28 shows a graph of the population function P(t) obtained by
connecting the six given data points (t, P(t)) with a smooth curve. A careful measure-
ment of the height of the point on this curve at which t = 7 yields the approximate
population P(7) ≈ 37.4 (thousand) of the city in 1987. ◗

0

50
45
40
35
30
25
20
15
10
5

0 2 4 6 8 10
t

P P = P(t)

FIGURE 1.2.28 The population
function of Example 12.

1.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Parallel lines, if not vertical, have the same slope.
2. The line with equation y = 3x − 5 has slope 3 and y-intercept 5.
3. The graph of the equation (x − 2)2 + (y + 3)2 = 25 is a circle.
4. The graph of the function f is defined to be the graph of the equation y = f (x).
5. If the number a on the x-axis is in the domain of the function f , then the vertical

line through a meets the graph of f in exactly one point.
6. The graph of y = |x | has a discontinuity at x = 0.
7. The graph of the “sawtooth function” of Example 7 has a discontinuity at each

integral value of x .
8. If a �= 0, then the graph of y = ax2 is a parabola with its vertex at the origin.
9. The graph of y = 2x2 − 4x − 1 (Example 10) is a parabola opening upward and

having its vertex at the point (1, −3).
10. The position formula x(t) in Example 11 is not a function because its rule is

expressed in three parts.

1.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Two general forms of equations of straight lines are reviewed at the beginning

of this section. Describe a straight line for which the slope-intercept equation
would be the one more convenient to use in writing an equation of the line. Then
describe a line for which the point-slope equation would be more convenient.

2. (a) What is the difference between a line that has slope zero and a line that has
no slope? If two lines are perpendicular and one of them has slope zero, what is
the slope of the other line? (b) Let L1 and L2 be two perpendicular lines having
slopes m1 and m2, respectively. Theorem 2 in Appendix B asserts that L1 and
L2 are perpendicular if and only if m1m2 = −1. Is this assertion true in case L1

is the x-axis and L2 is the y-axis? Or is there an oversight in the statement of
Theorem 2 in Appendix B?

3. (a) Sketch the graph of the equation |x | + |y| = 1. Is this graph the graph of
some function? Justify your answer. (b) Repeat part (a), but with the equation
|x + y| = 1.

4. (a) Suppose that f is a function such that f (x) > 0 for all real x . Discuss the
question of whether the graph of the given equation is the graph of some function.

(i) y2 = f (x); (ii) |y| = f (x); (iii) y = | f (x)|.
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22 CHAPTER 1 Functions, Graphs, and Models

(b) Repeat part (a), but assume that f (x) < 0 for all x . (c) Repeat part (a), but
assume that f has both positive and negative values. For instance, sketch the
graphs of the equations in (i), (ii), and (iii) if f (x) = x2 − 1.

5. Newspaper articles often describe or refer to functions (either explicitly or im-
plicitly) but rarely contain equations. Find and discuss examples of numeric and
graphic representations of functions in a typical issue of your local newspaper.
Also see if you can find a reference to a function that is described verbally but
without either a graphic or a numeric representation.

1.2 PROBLEMS

In Problems 1 through 10, write an equation of the line L de-
scribed and sketch its graph.

1. L passes through the origin and the point (2, 3).

2. L is vertical and has x-intercept 7.

3. L is horizontal and passes through (3, −5).

4. L has x-intercept 2 and y-intercept −3.

5. L passes through (2, −3) and (5, 3).

6. L passes through (−1, −4) and has slope 1
2 .

7. L passes through (4, 2) and has angle of inclination 135◦.

8. L has slope 6 and y-intercept 7.

9. L passes through (1, 5) and is parallel to the line with equa-
tion 2x + y = 10.

10. L passes through (−2, 4) and is perpendicular to the line
with equation x + 2y = 17.

Sketch the translated circles in Problems 11 through 16. Indicate
the center and radius of each.

11. x2 + y2 = 4x 12. x2 + y2 + 6y = 0

13. x2 + y2 + 2x + 2y = 2

14. x2 + y2 + 10x − 20y + 100 = 0

15. 2x2 + 2y2 + 2x − 2y = 1

16. 9x2 + 9y2 − 6x − 12y = 11

Sketch the translated parabolas in Problems 17 through 22. In-
dicate the vertex of each.

17. y = x2 − 6x + 9 18. y = 16 − x2

19. y = x2 + 2x + 4 20. 2y = x2 − 4x + 8

21. y = 5x2 + 20x + 23 22. y = x − x2

The graph of the equation (x − h)2 + (y − k)2 = C is a circle
if C > 0, is the single point (h, k) if C = 0, and contains no
points if C < 0. (Why?) Identify the graphs of the equations in
Problems 23 through 26. If the graph is a circle, give its center
and radius.

23. x2 + y2 − 6x + 8y = 0

24. x2 + y2 − 2x + 2y + 2 = 0

25. x2 + y2 + 2x + 6y + 20 = 0

26. 2x2 + 2y2 − 2x + 6y + 5 = 0

Sketch the graphs of the functions in Problems 27 through 50.
Take into account the domain of definition of each function, and
plot points as necessary.

27. f (x) = 2 − 5x, −1 � x � 1

28. f (x) = 2 − 5x, 0 � x < 2

29. f (x) = 10 − x2 30. f (x) = 1 + 2x2

31. f (x) = x3 32. f (x) = x4

33. f (x) = √
4 − x2 34. f (x) = −√

9 − x2

35. f (x) = √
x2 − 9 36. f (x) = 1

1 − x

37. f (x) = 1

x + 2
38. f (x) = 1

x2

39. f (x) = 1

(x − 1)2
40. f (x) = |x |

x

41. f (x) = 1

2x + 3
42. f (x) = 1

(2x + 3)2

43. f (x) = √
1 − x 44. f (x) = 1√

1 − x

45. f (x) = 1√
2x + 3

46. f (x) = |2x − 2|

47. f (x) = |x | + x 48. f (x) = |x − 3|

49. f (x) = |2x + 5| 50. f (x) =
{|x | if x < 0,

x2 if x � 0

Sketch graphs of the functions given in Problems 51 through 56.
Indicate any points of discontinuity.

51. f (x) =
{

0 if x < 0,

1 if x � 0

52. f (x) =
{

1 if x is an integer,
0 otherwise

53. f (x) = [[2x]] 54. f (x) = x − 1

|x − 1|
55. f (x) = [[x]] − x 56. f (x) = [[x]] + [[−x]] + 1

In Problems 57 through 64, use a graphing calculator or com-
puter to find (by zooming) the highest or lowest (as appropriate)
point P on the given parabola. Determine the coordinates of P
with two digits to the right of the decimal correct or correctly
rounded. Then verify your result by completing the square to find
the actual vertex of the parabola.

57. y = 2x2 − 6x + 7

58. y = 2x2 − 10x + 11

59. y = 4x2 − 18x + 22

60. y = 5x2 − 32x + 49

61. y = −32 + 36x − 8x2
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62. y = −53 − 34x − 5x2

63. y = 3 − 8x − 3x2 64. y = −28 + 34x − 9x2

In Problems 65 through 68, use the method of completing the
square to graph the appropriate function and thereby determine
the maximum or minimum value requested.

65. If a ball is thrown straight upward with initial velocity 96 ft/s,
then its height t seconds later is y = 96t − 16t2 (ft). Deter-
mine the maximum height that the ball attains.

66. Find the maximum possible area of the rectangle described
in Problem 40 of Section 1.1.

67. Find the maximum possible value of the product of two pos-
itive numbers whose sum is 50.

68. In Problem 42 of Section 1.1, you were asked to express
the daily production of a specific oil field as a function
P = f (x) of the number x of new oil wells drilled. Con-
struct the graph of f and use it to find the value of x that
maximizes P .

In Problems 69 through 72 write a symbolic description of the
function whose graph is pictured. You may use the greatest inte-
ger function of Examples 6 and 7 (if needed).

69. Figure 1.2.29

x

y
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1

FIGURE 1.2.29 Problem 69.

70. Figure 1.2.30
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FIGURE 1.2.30 Problem 70.

71. Figure 1.2.31
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FIGURE 1.2.31 Problem 71.

72. Figure 1.2.32

x2 41 3−2−4 −1−3
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y

FIGURE 1.2.32 Problem 72.

Each of Problems 73 through 76 describes a trip you made along
a straight road connecting two cities 120 miles apart. Sketch the
graph of the distance x from your starting point (in miles) as a
function of the time t elapsed (in hours). Also describe the func-
tion x(t) symbolically.

73. You traveled for one hour at 45 mi/h, then realized you were
going to be late, and therefore traveled at 75 mi/h for the next
hour.

74. You traveled for one hour at 60 mi/h, stopped for a half hour
while a herd of caribou crossed the road, then drove on to-
ward your destination for the next hour at 60 mi/h.

75. You traveled for one hour at 60 mi/h, were suddenly engulfed
in a dense fog, and drove back home at 30 mi/h.

76. You traveled for a half hour at 60 mi/h, suddenly remem-
bered you had left your wallet at home, drove back at 60 mi/h
to get it, and finally drove for two hours at 60 mi/h toward
your original destination.

77. Suppose that the cost C of printing a pamphlet of at most
100 pages is a linear function of the number p of pages it
contains. It costs $1.70 to print a pamphlet with 34 pages,
whereas a pamphlet with 79 pages costs $3.05. (a) Express
C as a function of p. Use this function to find the cost of
printing a pamphlet with 50 pages. (b) Sketch the straight
line graph of the function C(p). Tell what the slope and the
C-intercept of this line mean—perhaps in terms of the “fixed
cost” to set up the press for printing and the “marginal cost”
of each additional page printed.

78. Suppose that the cost C of renting a car for a day is a linear
function of the number x of miles you drive that day. On day
1 you drove 207 miles and the cost was $99.45. On day 2
you drove 149 miles and the cost was $79.15. (a) Express C
as a function of x . Use this function to find the cost for day 3
if you drove 175 miles. (b) Sketch the straight line graph of
the function C(x). Tell what the slope and the C-intercept of
this line mean—perhaps in terms of fixed and marginal costs
as in Problem 77.

79. For a Federal Express letter weighing at most one pound sent
to a certain destination, the charge C is $8.00 for the first 8
ounces plus 80/c for each additional ounce or fraction thereof.
Sketch the graph of this function C of the total number x of
ounces, and describe it symbolically in terms of the greatest
integer function of Examples 6 and 7.

80. In a certain city, the charge C for a taxi trip of at most
20 miles is $3.00 for the first 2 miles (or fraction thereof),
plus 50/c for each half-mile (or part thereof) up to a total
of 10 miles, plus 50/c for each mile (or part thereof) over
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10 miles. Sketch the graph of this function C of the num-
ber x of miles and describe it symbolically in terms of the
greatest integer function of Examples 6 and 7.

81. The volume V (in liters) of a sample of 3 g of carbon diox-
ide at 27◦C was measured as a function of its pressure p (in
atmospheres) with the results shown in the following table:

p 0.25 1.00 2.50 4.00 6.00

V 6.72 1.68 0.67 0.42 0.27

Sketch the graph of the function V (p) and use the graph to
estimate the volumes of the gas sample at pressures of 0.5
and 5 atmospheres.

82. The average temperature T (in ◦F) in Athens, Georgia was
measured at two-month intervals, with the results shown in
the following table:

Date Jul 15 Sep 15 Nov 15 Jan 15 Mar 15 May 15

T 79.1 70.2 52.3 43.4 52.2 70.1

Sketch the graph of T as a function of the number of days
after July 15. Then use your graph to estimate the average
temperature on October 15 and on April 15.

83. A 50-ft tree stands 10 ft from a fence 10 feet high. The tree is
suddenly “broken” part of the way up. You are to determine
the height of the break so that the tree falls with its trunk
barely touching the top of the fence when the tip of the tree
strikes the ground on the other side of the fence. The key is
the use of simple geometry to derive the equations

y = 100

x − 10
, (17)

(y + 10)2 = 2500 − 100x (18)

relating the lengths x and y indicated in Fig. 1.2.33.
The graph of Eq. (17) is a translated rectangular hyper-
bola, while the graph of Eq. (18) is a translated parabola
(Fig. 1.2.34). You can use a graphing calculator or computer
to locate the pertinent point(s) of intersection of these two
graphs.

y 10

10

x

50 − x

FIGURE 1.2.33 The broken tree.
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y = 100
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FIGURE 1.2.34 The hyperbola and
parabola in the broken tree
investigation.

1.3 POLYNOMIALS AND ALGEBRAIC FUNCTIONS

In this section and the next we briefly survey a variety of functions that are used in ap-
plications of calculus to describe and model changing phenomena in the world around
us. Our viewpoint here is largely graphical. The objective is for you to attain a gen-
eral understanding of major differences between different types of functions. In later
chapters we use calculus to investigate further the graphs presented here.

Power Functions

A function of the form f (x) = xk (where k is a constant) is called a power function.
If k = 0 then we have the constant function f (x) ≡ 1. The shape of the graph of a
power function with exponent k = n, a positive integer, depends on whether n is even
or odd.

EXAMPLE 1 The graphs of the even-degree power functions x2, x4, x6, . . . all “cup
upward,” as indicated in Fig. 1.3.1. If n > 2 is an even integer then the graph y = xn

resembles the parabola y = x2, but is flatter near the origin and steeper when |x | > 1.

-1
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2
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4

5

-2 -1 0 1 2
x

y
x2

x4

x6

FIGURE 1.3.1 Graphs of power
functions of even degree
(Example 1).

The graphs of the odd-degree power functions x1, x3, x5, . . . all go “from south-
west to northeast,” as indicated in Fig. 1.3.2. If n > 3 is an odd integer then the graph
y = xn resembles that of y = x3, but again is flatter near the origin and steeper when
|x | > 1. ◗
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Note that all the power function graphs in Figs. 1.3.1 and 1.3.2 pass through the
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x

x5

FIGURE 1.3.2 Graphs of power
functions of odd degree (Example 1).

origin, through the point (1, 1), and either through (−1, 1) or (−1, −1), depending on
whether n is even or odd. In either case, xn increases numerically (either positively or
negatively) as x does. Would you agree that the notation

xn → +∞ as x → +∞, xn →
{+∞ as x → −∞ if n is even,
−∞ as x → −∞ if n is odd

(with the arrow signifying “goes to”) provides a convenient and suggestive description
of the general features, when |x | becomes large, of the graphs in Figs. 1.3.1 and 1.3.2?

The graph y = xk may have a quite different appearance if the exponent k is
not a positive integer. If k is a negative integer—say, k = −m where m is a positive
integer—then

f (x) = xk = x−m = 1

xm
,

so in this case the power function is the reciprocal of a function like those in Example 1.

y = x−1
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FIGURE 1.3.3 y = 1

x
.

Figures 1.3.3 and 1.3.4 show the graphs of

y = x−1 = 1

x
and y = x−2 = 1

x2
,

respectively. Observe that 0 is not in the domain of such a function. Moreover, the
reciprocal of a number close to zero is very large in magnitude, which explains the
behavior of these graphs near zero: In both graphs, |y| is very large—so the point
(x, y) is either very high or very low—when x is close to zero.

The graph y = xk may be undefined if x � 0 and k is not an integer. In the
simplest such case, when k is irrational, we do not attempt to define xk if x < 0, so
the graph of xk exists only for x � 0.

The situation is still more complicated if the exponent k is not an integer. We

y = x−2
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FIGURE 1.3.4 y = 1

x2
.

do not (at present) attempt to define the expression xk if k is irrational—that is, not a
quotient of integers. But if k = m/n is rational, with the integers m and n having no
common integral factor larger than 1, then we can write

xk = xm/n = n
√

xm ,

and thereby interpret f (x) = xk as a “root function.” If n is odd then n
√

xm is defined
for all real x if m is positive and for all nonzero values of x if m is negative. But if n is
even and m is odd, then the root n

√
xm is not defined for negative x values.

The typical behavior of such root functions is illustrated by the graphs of y =
x1/2 = √

x and y = x1/3 = 3
√

x shown in Figs. 1.3.5 and 1.3.6. The square root
√

x
is defined only for x � 0. The cube root 3

√
x is defined for all x , but observe that its

graph appears to be tangent to the y-axis at the origin.

3

2

1

0

y = x

-1

2.5

1.5

0.5

-0.5

-1 32.521.510.50-0.5
x

y

FIGURE 1.3.5 y = x1/2.

y = x
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FIGURE 1.3.6 y = x1/3.
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Combinations of Functions
Many varied and complicated functions can be assembled out of simple “building-
block functions.” Here we discuss some of the ways of combining functions to obtain
new ones.

Suppose that f and g are functions and that c is a fixed real number. The (scalar)
multiple c f , the sum f + g, the difference f − g, the product f · g, and the quotient
f/g are the new functions with the following formulas:

(c f )(x) = c · f (x),

( f + g)(x) = f (x) + g(x),

( f − g)(x) = f (x) − g(x),

( f · g)(x) = f (x) · g(x), and(
f

g

)
(x) = f (x)

g(x)
.

(1)

(2)

(3)

(4)

(5)

The combinations in Eqs. (2) through (4) are defined for every number x that lies both
in the domain of f and in the domain of g. In Eq. (5) we must also require that
g(x) �= 0.

EXAMPLE 2 Let f (x) = x2 + 1 and g(x) = x − 1. Then:

(3 f )(x) = 3(x2 + 1),

( f + g)(x) = (x2 + 1) + (x − 1) = x2 + x,

( f − g)(x) = (x2 + 1) − (x − 1) = x2 − x + 2,

( f · g)(x) = (x2 + 1)(x − 1) = x3 − x2 + x − 1, and(
f

g

)
(x) = x2 + 1

x − 1
(x �= 1). ◗

EXAMPLE 3 If f (x) = √
1 − x for x � 1 and g(x) = √

1 + x for x � −1, then
the sum and product of f and g are defined where both f and g are defined. Thus the
domain of both

f (x) + g(x) = √
1 − x + √

1 + x

and
f (x) · g(x) = √

1 − x
√

1 + x =
√

1 − x2

is the closed interval [−1, 1]. But the domain of the quotient

f (x)

g(x)
=

√
1 − x√
1 + x

=
√

1 − x

1 + x

is the half-open interval (−1, 1], because g(−1) = 0. ◗

The results of algebraic operations can sometimes be visualized with the aid of
geometric interpretations of the operations. Figures 1.3.7 through 1.3.10 show the
results of various operations involving the function f (x) = 20x2(x2 − 1)2. Adding a
constant simply shifts the graph vertically, as in Fig. 1.3.7, which shows y = f (x) + c
for c = −2, 0, 2, and 4. Multiplication by a positive constant c expands (if c > 1)
or contracts (if 0 < c < 1) the graph in the vertical direction, as in Fig. 1.3.8, which
shows y = c f (x) for c = 1, 2, and 3. Figure 1.3.9 shows y = f (x) and the parabola
y = 2x2, whereas Fig. 1.3.10 shows the graph y = 2x2 + f (x), obtained by adding
the ordinates of the two curves.
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c = 4

c = -2

c = 2

c = 0
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FIGURE 1.3.7 y = 20x2(x2 − 1)2

+ c for c = −2, 0, 2, 4.
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FIGURE 1.3.8 y =
c · 20x2(x2 − 1)2 for c = 1, 2, 3.

y = 2x2

y = 20x2 (x2 − 1)2 
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FIGURE 1.3.9 y = 2x2 and
y = 20x2(x2 − 1)2.

y = 2x2

y = 2x2 + 20x2 (x2 − 1)2 
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FIGURE 1.3.10 y = 2x2 and
y = 2x2 + 20x2(x2 − 1)2.

Polynomials
A polynomial of degree n is a function of the form

p(x) = anxn + an−1xn−1 + · · · + a2x2 + a1x + a0 (6)

where the coefficients a0, a1, . . . , an are fixed real numbers and an �= 0. Thus an
nth-degree polynomial is a sum of constant multiples of the power functions

1, x, x2, . . . , xn−1, xn.

A first-degree polynomial is simply a linear function a1x + a0 whose graph is a
straight line. A second-degree polynomial is a quadratic function whose graph y =
a2x2 + a1x + a0 is a parabola (see Section 1.2).

Recall that a zero of the function f is a solution of the equation

f (x) = 0.

Is it obvious to you that the zeros of f (x) are precisely the x-intercepts of the graph

y = f (x)?

Indeed, a major reason for being interested in the graph of a function is to see the
number and approximate locations of its zeros.

A key to understanding graphs of higher-degree polynomials is the fundamental
theorem of algebra. It states that every nth-degree polynomial has n zeros (possibly
complex, possibly repeated). It follows that an nth-degree polynomial has no more
than n distinct real zeros.
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EXAMPLE 4 Figures 1.3.11 and 1.3.12 exhibit polynomials that both have the max-
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y

FIGURE 1.3.11 f (x) =
x3 − 3x2 + 1 has three real zeros
(Example 4).

imum number of real zeros allowed by the fundamental theorem of algebra. But the
graphs of power functions in Figs. 1.3.1 and 1.3.2 show that a high-degree polynomial
may have only a single real zero. And the quadratic function

f (x) = x2 + 4x + 13 = (x + 2)2 + 9

has no real zeros at all. (Why not?) Figure 1.3.7 includes graphs of sixth-degree
polynomials having six, three, or no zeros. Indeed, an nth-degree polynomial can have
any number of zeros from 0 to n if n is even (from 1 to n if n is odd). ◗

A polynomial behaves “near infinity”—that is, outside an interval on the x-axis
containing its real zeros—in much the same way as a power function of the same
degree. If p(x) is a polynomial of odd degree, then y = p(x) goes in opposite (ver-
tical) directions as x goes to −∞ and to +∞ (like the cubic polynomial graph in
Fig. 1.3.11). But if p(x) is a polynomial of even degree, then y = p(x) goes in the
same (vertical) direction as x goes to −∞ and to +∞ (like the 4th-degree polynomial
graph in Fig. 1.3.12).

Between the extremes to the left and right, where |x | is large, an nth-degree

-3 -2 -1 0 1 2 3
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FIGURE 1.3.12 f (x) =
x4 − 4x2 + x + 1 has four real zeros
(Example 4).

polynomial has at most n − 1 “bends”—like the 2 bends of the 3rd-degree polynomial
graph in Fig. 1.3.11 and the 3 bends of the 4th-degree polynomial graph in Fig. 1.3.12.
In Chapter 4 we will use calculus to see why this is so (and to make precise the notion
of a “bend” in a curve).

Calculator/Computer Graphing
A typical calculator or computer graphing utility shows (on its graphics screen or mon-
itor) only that portion of a graph y = f (x) that lies within a selected rectangular
viewing window of the form

{(x, y) : a � x � b and c � y � d }.
The parts of the graph that lie outside this viewing window remain unseen (Fig. 1.3.13).
With a calculator the maximum and minimum x- and y-values may be entered explic-
itly in a form such as

Xmin = a Ymin = c

Xmax = b Ymax = d

Frequently the user must specify the x-range [a, b] and the y-range [c, d] carefully so
that the viewing window will show the desired portion of the graph. The calculator or
computer’s “default window” may provide only a starting point.

xba

c

d

y

FIGURE 1.3.13 The viewing window a � x � b, c � y � d.

EXAMPLE 5 Construct a graph that exhibits the principal features of the cubic poly-
nomial

y = x3 + 12x2 + 5x − 66. (7)
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Solution We anticipate a graph that looks somewhat like the cubic graph in
Fig. 1.3.11, one that goes “from southwest to northeast,” perhaps with a couple of
bends in between. But when we enter Eq. (7) in a typical graphing calculator with
default viewing window −10 � x � 10, −10 � y � 10, we get the result shown in
Fig. 1.3.14. Evidently our viewing window is not large enough to show the expected
behavior.
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FIGURE 1.3.14 y = x3 + 12x2 +
5x − 66 with viewing window
−10 � x � 10, −10 � y � 10.
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FIGURE 1.3.15 y = x3 + 12x2 +
5x − 66 with viewing window
−20 � x � 20, −20 � y � 20.
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FIGURE 1.3.16 y = x3 + 12x2 +
5x − 66 with viewing window
−20 � x � 20, −200 � y � 200.

Doubling each dimension of the viewing window, we get the result in Fig. 1.3.15.
Now we see the three zeros that a cubic polynomial can have, as well as some possi-
bility of two bends, but it appears that magnification in the y-direction is indicated.
Perhaps we need a y-range measuring in the hundreds rather than the tens. With the
viewing window −20 � x � 20, −200 � y � 200 we finally get the satisfying graph
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FIGURE 1.3.17 y =
(x2 − 1)(x − 10)(x − 10.1) with
viewing window −5 � x � 15,
−1000 � y � 1000.

shown in Fig. 1.3.16.
Once we have zoomed out to see the “big picture,” we can zoom in on points

of interest. For instance, Fig. 1.3.16 indicates “zoom boxes” locating the three zeros
of the polynomial in (7). Apparently these zeros are located at or near the points
x = −11, x = −3, and x = 2. Each can be approximated graphically as closely as
you please (subject to the limitations of your computer) by the method of successive
magnifications. (See if you can convince yourself that these three zeros are exactly the
indicated integers. How could you verify that this actually is true?) ◗

EXAMPLE 6 Investigate the graph of the quartic (fourth-degree) polynomial

f (x) = (x2 − 1)(x − 10)(x − 10.1) = x4 − (20.1)x3 + 100x2 + (20.1)x − 101. (8)

Solution Here we know the zeros x = −1, 1, 10, and 10.1 in advance, so it makes
sense to choose an x-range that includes all four. Noting that f (0) = −101, we suspect
that a y-range measuring in the hundreds is indicated. Thus with the viewing window
−5 � x � 15, −1000 � y � 1000, we get the attractive graph in Fig. 1.3.17. Observe
that with its three bends it resembles the quartic graph in Fig. 1.3.12.

But now the behavior of the graph near the point x = 10 is unclear. Does it dip
beneath the x-axis or not? We select the viewing window 9.5 � x � 10.5, −1 � y � 1
to magnify this area and get the result in Fig. 1.3.18. This is a case where it appears that
different plots on different scales are required to show all the behavior of the graph.

◗

Our graphs in Examples 5 and 6 exhibit the maximum possible number of zeros
and bends for the polynomials in Eqs. (7) and (8), so we are fairly confident that our
investigations reveal the main qualitative features of the graphs of these polynomials.
But only with the calculus techniques of Chapter 4 can we be certain of the structure of
a graph. For instance, a polynomial graph can exhibit fewer than the maximum possible
number of bends, but at this stage we cannot be certain that more bends are not hidden
somewhere, perhaps visible only on a scale different from that of the viewing window
we have selected.
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FIGURE 1.3.18 y =
(x2 − 1)(x − 10)(x − 10.1) with
viewing window 9.5 � x � 10.5,
−1 � y � 1.
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Rational Functions

Just as a rational number is a quotient of two integers, a rational function is a quotient

f (x) = p(x)

q(x)
(9)

of two polynomials p(x) and q(x). Graphs of rational functions and polynomials have
several features in common. For instance, a rational function has only a finite number
of zeros, because f (x) in Eq. (9) can be zero only when the numerator polynomial
p(x) is zero. Similarly, the graph of a rational function has only a finite number of
bends.

But the denominator polynomial q(x) in Eq. (9) may have a zero at a point x = a
where the numerator is nonzero. In this case the value of f (x) will be very large in
magnitude when x is close to a. This observation implies that the graph of a rational
function may have a feature that no polynomial graph can have—an asymptote.

EXAMPLE 7 Figure 1.3.19 shows the graph of the rational function

f (x) = (x + 2)(x − 1)

x(x + 1)(x − 2)
. (10)

Note the x-intercepts x = −2 and x = 1, corresponding to the zeros of the numerator
(x + 2)(x − 1). The vertical lines x = −1, x = 0, and x = 2 shown in the graph
correspond to the zeros of the denominator x(x + 1)(x − 2). These vertical lines are
asymptotes of the graph of f . ◗
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FIGURE 1.3.19 The graph of the
rational function in Eq. (10)
(Example 7).
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FIGURE 1.3.20 The graph of the
rational function in Eq. (11)
(Example 8).

EXAMPLE 8 Figure 1.3.20 shows the graph of the rational function

f (x) = x(x + 2)(x − 1)

(x + 1)(x − 2)
. (11)

The x-intercepts x = −2, x = 0, and x = 1 correspond to the zeros of the numerator,
whereas the asymptotes x = −1 and x = 2 correspond to the zeros of the denominator.

◗

It should be clear that—by counting x-intercepts and asymptotes—you could
match the rational functions in Eqs. (10) and (11) with their graphs in Figs. 1.3.19 and
1.3.20 without knowing in advance which was which.
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Algebraic Functions

An algebraic function is one whose formula can be constructed beginning with power
functions and applying the algebraic operations of addition, subtraction, multiplication
by a real number, multiplication, division, and/or root-taking. Thus polynomials and
rational functions are algebraic functions. But whereas every polynomial is defined ev-
erywhere on the real line, and every rational function is defined everywhere except at
the (finitely many) real zeros of its denominator (which correspond to vertical asymp-
totes), the domain of definition of an algebraic function may be quite limited. For
instance, Figs. 1.3.21 and 1.3.22 show the graphs of the algebraic functions

f (x) = 4
√

16 − x4 and g(x) =
√

x2 − 16

on the bounded and unbounded intervals (respectively) where they are defined.
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FIGURE 1.3.21 y = 4
√

16 − x4 on
[−2, 2].

The graph of every polynomial or rational function looks “smooth” at every point
where it is defined, but the graph of an algebraic function may exhibit “corners” or
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FIGURE 1.3.22 y = √
x2 − 16 on

(−∞, −4] ∪ [4, ∞).

sharp “cusps” where it does not look smooth. For instance, look at the graphs in
Figs. 1.3.23 and 1.3.24 of the algebraic functions

f (x) =
√

x2 = |x | and g(x) = 3
√

x2(x − 2)2.

In Chapter 3 we will use concepts of calculus to say precisely what is meant by a
smooth graph.

Figure 1.3.25 shows the graphs of the two algebraic functions defined by

y = ±(
0.2969

√
x − 0.126x − 0.3516x2 + 0.2843x3 − 0.10151x4

)
. (12)

The loop describes the cross-sectional profile of the NASA 0012 airfoil as designed by
aeronautical engineers.
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FIGURE 1.3.23 y = |x | with a
“corner” at the origin.
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FIGURE 1.3.24 y = 3
√

x2(x − 2)2

with “cusps” at (0, 0) and (2, 0).
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FIGURE 1.3.25 y =
±(0.2969

√
x − 0.126x −

0.3516x2 +0.2843x3 −0.10151x4).

1.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If x is close to zero, then so is x−3.
2. If m and n are positive integers and x � 0, then xm/n = n

√
xm .

3. The product f · g of the functions f and g is defined as follows: ( f · g)(x) =
f (x) · g(x).

4. If f (x) = √
1 − x and g(x) = √

1 + x , then the domain of f/g is [−1, 1].
5. If p(x) = x3 + x3/2 − x2 + 1, then p(x) is a polynomial.
6. The quotient of any two functions is known as a rational function.

7. If f (x) = |x |, then f is an algebraic function because f (x) = √
x2.
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8. The graph of the rational function

f (x) = x(x + 2)(x − 1)

(x + 1)(x − 2)

has three x-intercepts and two vertical asymptotes.
9. The graph shown in Fig. 1.3.25 is not the graph of a function.

10. If p(x) is a polynomial of high degree, then as x → +∞, either p(x) → +∞
or p(x) → −∞.

1.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. In each of the following eight cases, give an example of a function as described

or explain why no such function exists.

(a) A polynomial function of degree less than 2 whose graph lies entirely above
the x-axis.

(b) A polynomial of positive degree whose graph lies entirely beneath the x-axis.

(c) A polynomial of positive degree and with positive leading coefficient whose
graph lies entirely below the x-axis (the leading coefficient of a polynomial
is the coefficient of its term of highest degree).

(d) A polynomial of odd degree with negative leading coefficient whose graph
does not intersect the x-axis.

(e) A polynomial whose graph lies entirely between the lines y = −1 and y = 1.

(f) A polynomial whose graph contains points above the line y = 1 and below
the line y = −1, but contains no points between those two lines.

(g) A rational function that has both positive and negative values but is never
zero.

(h) A nonconstant rational function that is never zero and has no vertical asymp-
tote.

2. In each of the following five cases write the formula of a specific function as
described. Also sketch a typical graph of such a function (not necessarily the
same one you defined symbolically).

(a) A quadratic polynomial with no real zeros.

(b) A cubic polynomial with exactly one real zero x �= 0.

(c) A cubic polynomial with exactly two distinct real zeros.

(d) A quartic polynomial with exactly two distinct real zeros.

(e) A quartic polynomial with exactly three distinct real zeros.

3. Which of the following algebraic functions agrees with some polynomial func-
tion?

(a) f (x) = √
x2 + 2x + 1 (b) f (x) = √

x4 + 4x + 4

(c) f (x) = 3
√

(x − 1)3 (d) f (x) = 3
√

(x − 2)2

1.3 PROBLEMS

In Problems 1 through 6, find f + g, f · g, and f/g, and give the
domain of definition of each of these new functions.

1. f (x) = x + 1, g(x) = x2 + 2x − 3

2. f (x) = 1

x − 1
, g(x) = 1

2x + 1

3. f (x) = √
x, g(x) = √

x − 2

4. f (x) = √
x + 1, g(x) = √

5 − x

5. f (x) = √
x2 + 1, g(x) = 1√

4 − x2

6. f (x) = x − 1

x − 2
, g(x) = x + 1

x + 2
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In Problems 7 through 12, match the given polynomial with its
graph among those shown in Figs. 1.3.26 through 1.3.31. Do not
use a graphing calculator or a computer. Instead, consider the
degree of the polynomial, its indicated number of zeros, and its
behavior for |x | large.

7. f (x) = x3 − 3x + 1

8. f (x) = 1 + 4x − x3

9. f (x) = x4 − 5x3 + 13x + 1

10. f (x) = 2x5 − 10x3 + 6x − 1

11. f (x) = 16 + 2x2 − x4

12. f (x) = x5 + x
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FIGURE 1.3.26
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FIGURE 1.3.27
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FIGURE 1.3.31

In Problems 13 through 16, use the vertical asymptotes of the
given rational function (rather than a graphing calculator or
computer) to match it with its graph among those shown in
Figs. 1.3.32 through 1.3.35.

13. f (x) = 1

(x + 1)(x − 2)
14. f (x) = x

x2 − 9

15. f (x) = 3

x2 + 1
16. f (x) = x2 + 1

x3 − 1
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FIGURE 1.3.32
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FIGURE 1.3.33
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FIGURE 1.3.35

In Problems 17 through 20, use primarily the domain of defini-
tion of the given algebraic function (rather than a graphing cal-
culator or computer) to match it with its graph among those in
Figs. 1.3.36 through 1.3.39.

17. f (x) = x
√

x + 2 18. f (x) = √
2x − x2

19. f (x) = √
x2 − 2x 20. f (x) = 2 3

√
x2 − 2x
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FIGURE 1.3.36
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FIGURE 1.3.39

In Problems 21 through 30 use a graphing calculator or com-
puter to determine one or more appropriate viewing windows to
exhibit the principal features of the graph y = f (x). In partic-
ular, determine thereby the number of real solutions of the equa-
tion f (x) = 0 and the approximate location (to the nearest inte-
ger) of each of these solutions.

21. f (x) = x3 − 3x + 1

22. f (x) = x3 − 3x + 2

23. f (x) = x3 − 3x + 3
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24. f (x) = 2x4 − 6x3 + 10x − 5

25. f (x) = 2x4 − 6x3 + 10x − 6

26. f (x) = 2x4 − 6x3 + 10x − 7

27. f (x) = x3 − 50x − 100

28. f (x) = x4 + 20x3 − 50x − 30

29. f (x) = x5 + 5x4 − 100x3 − 200x2 + 2500x − 3500

30. f (x) = x6 − 250x4 + 2500x2 − 2500

In Problems 31 through 37, determine how the graph y = f (x)

changes when the value of c is changed within the given interval.
With a graphing calculator or computer you should be able to
plot graphs with different values of c on the same screen.

31. f (x) = x3 − 3x + c, −5 � c � 5

32. f (x) = x3 + cx , −5 � c � 5

33. f (x) = x3 + cx2, −5 � c � 5

34. f (x) = x4 + cx2, −5 � c � 5

35. f (x) = x5 + cx3 + x , −5 � c � 5

36. f (x) = 1

1 + cx2
, 1 � c � 10

37. f (x) =
√

x2

c2 − x2
, 1 � c � 10, x in (−c, c)

38. Use the graphical method of repeated magnifications to find
both the length and the maximum width of the airfoil shown
in Fig. 1.3.25. Determine each accurate to three decimal
places.

39. A 12-ft ladder leans across a 5-ft fence and touches a high
wall located 3 ft behind the fence. You are to find the dis-
tance from the foot of the ladder to the bottom of the fence.
The key is the use of simple geometry to derive the equations

xy = 15 and (x + 3)2 + (y + 5)2 = 144

relating the lengths x and y indicated in Fig. 1.3.40. Can
you eliminate y to find a quartic polynomial equation that x
must satisfy? If so, then you can use a graphing calculator
or computer to approximate the possible values of x by the
method of repeated magnification.

x

y

3

5

12

Ground

FIGURE 1.3.40 The leaning ladder.

1.4 TRANSCENDENTAL FUNCTIONS

Continuing the survey of elementary functions begun in Section 1.3, we now review
briefly the most familiar nonalgebraic functions that are studied in calculus. These
include the trigonometric functions that are used to model periodic phenomena—
phenomena of ebb and flow, involving quantities that oscillate with the passage of
time—and the exponential and logarithmic functions that are used to model phenom-
ena of growth and decay—involving quantities that either increase steadily or decrease
steadily as time passes. We also introduce composition of functions, a new way (in
addition to the algebraic operations of Section 1.3) of combining familiar functions to
form new ones.

Trigonometric Functions
A review of trigonometry is included in Appendix C. In elementary trigonometry a
trigonometric function such as sin A, cos A, or tan A ordinarily is first defined as a
function of an angle A in a right triangle. But here a trigonometric function of a real
number x corresponds to that function of an angle measuring x radians. Thus

sin
π

6
= 1

2
, cos

π

6
=

√
3

2
, and tan

π

6
=

sin
π

6

cos
π

6

= 1√
3

because π/6 is the radian measure of an angle of 30◦. Recall that

π radians = 180 degrees, (1)

so

1 rad = 180

π
deg and 1 deg = π

180
rad.
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FIGURE 1.4.1 y = sin x .
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FIGURE 1.4.2 y = cos x .

Figures 1.4.1 and 1.4.2 show the graphs y = sin x and y = cos x of the sine
and cosine functions, respectively. The value of each oscillates between +1 and −1,
exhibiting the characteristic periodicity of the trigonometric functions:

sin(x + 2π) = sin x and cos(x + 2π) = cos x (2)

for all x .
If we translate the graph y = cos x by π/2 units to the right, we get the graph

y = sin x . This observation corresponds to the familiar relation

cos
(

x − π

2

)
= cos

(π

2
− x

)
= sin x . (3)

EXAMPLE 1 Figure 1.4.3 shows the translated sine curve obtained by translating the
origin to the point (1, 2). Its equation is obtained upon replacing x and y in y = sin x
with x − 1 and y − 2, respectively:

y − 2 = sin(x − 1); that is,

y = 2 + sin(x − 1). ◗

-1

0

1

2

3

4

-4 0 4 8
x

y (1, 2)

FIGURE 1.4.3 The translated sine curve
y − 2 = sin(x − 1).

The world around us is full of quantities that oscillate like the trigonometric func-
tions. Think of the alternation of day and night, the endless repetition of the seasons,
the monthly cycle of the moon, the rise and fall of the tides, the beat of your heart.

EXAMPLE 2 Figure 1.4.4 shows the cosine-like behavior of temperatures in Athens,
Georgia. The average temperature T (in ◦F) during a 24-hr day t months after July 15
is given approximately by

t

60

T

0 1284

80 T = 61.3 + (17.9) cos    t
6
π

FIGURE 1.4.4 Average daily
temperature in Athens, Georgia, t
months after July 15 (Example 2).

T = T (t) = 61.3 + 17.9 cos
π t

6
. (4)
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For instance, on a typical October 15 (three months after July 15) the average temper-
ature is

T (3) = 61.3 + 17.9 cos
3π

6
= 61.3 (◦F)

because cos(3π/6) = cos(π/2) = 0. Thus the “midpoint” of fall weather in Athens—
when the average daily temperature is midway between summer’s high and winter’s
low—occurs about three weeks after the official beginning of fall (on or about Septem-
ber 22). Note also that

T (t + 12) = 61.3 + 17.9 cos

(
π t

6
+ 2π

)
= 61.3 + 17.9 cos

(
π t

6

)
= T (t)

(why?), in agreement with the yearly 12-month cycle of average weather. ◗

The periodicity and oscillatory behavior of the trigonometric functions make
them quite unlike polynomial functions. Because

sin nπ = 0 and cos(2n + 1)
π

2
= 0 (5)

for n = 0, 1, 2, 3, . . . , we see that the simple trigonometric equations

sin x = 0 and cos x = 0 (6)

have infinitely many solutions. In contrast, a polynomial equation can have only a finite
number of solutions.

Figure 1.4.5 shows the graph of y = tan x . The x-intercepts correspond to the
zeros of the numerator sin x in the relation

tan x = sin x

cos x
, (7)

whereas the vertical asymptotes correspond to the zeros of the denominator cos x . Ob-
serve the “infinite gaps” in the graph y = tan x at these odd-integral multiples of π/2.
We call these gaps discontinuities, phenomena we discuss further in Chapter 2.

-4

-2

0

2

4

-4 -2 0 2 4 6
x

y
2ππ-π

FIGURE 1.4.5 y = tan x .

Composition of Functions

Many varied and complex functions can be “put together” by using quite simple
“building-block” functions. In addition to adding, subtracting, multiplying, or dividing
two given functions, we can also combine functions by letting one function act on the
output of the other.
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DEFINITION Composition of Functions
The composition of the two functions f and g is the function h = f ◦ g defined by

h(x) = f (g(x)) (8)

for all x in the domain of g such that u = g(x) is in the domain of f . (The right-
hand side in Eq. (8) is read “ f of g of x .”)

Thus the output u = g(x) of the function g is used as the input to the function f
(Fig. 1.4.6). We sometimes refer to g as the inner function and to f as the outer
function in Eq. (8).

EXAMPLE 3 If f (x) = √
x and g(x) = 1 − x2, then

f (g(x)) =
√

1 − x2 for |x | � 1,

whereas
g( f (x)) = 1 − (√

x
)2 = 1 − x for x � 0. ◗

The f (g(x)) notation for compositions is most commonly used in ordinary com-

x

f (u) = f(g(x)) = h(x)

g

u = g(x)

f

FIGURE 1.4.6 The composition of
f and g.

putations, whereas the f ◦g notation emphasizes that the composition may be regarded
as a new kind of combination of the functions f and g. But Example 3 shows that f ◦g
is quite unlike the product f g of the two functions f and g, for

f ◦ g �= g ◦ f,

whereas f g = g f (because f (x) · g(x) = g(x) · f (x) whenever f (x) and g(x) are
defined). So remember that composition is quite different in character from ordinary
multiplication of functions.

EXAMPLE 4 If
f (x) = x2 and g(x) = cos x,

then the functions
f (x)g(x) = x2 cos x,

f (g(x)) = cos2 x = (cos x)2, and

g( f (x)) = cos x2 = cos(x2)

are defined for all x . Figures 1.4.7 through 1.4.9 illustrate vividly how different these
three functions are. ◗

EXAMPLE 5 Given the function h(x) = (x2 + 4)3/2, find two functions f and g
such that h(x) = f (g(x)).

-200

-100

0

100

200

-10 0 10
x

y

y = x2 cos x

FIGURE 1.4.7 y = x2 cos x
(Example 4).
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FIGURE 1.4.8 y = cos2 x
(Example 4).
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y = cos x2

FIGURE 1.4.9 y = cos x2

(Example 4).
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Solution It is technically correct—but useless—simply to let g(x) = x and f (u) =
(u2 + 4)3/2. We seek a nontrivial answer here. To calculate (x2 + 4)3/2, we must first
calculate x2 + 4. So we choose g(x) = x2 + 4 as the inner function. The last step is to
raise u = g(x) to the power 3

2 , so we take f (u) = u3/2 as the outer function. Thus if

f (x) = x3/2 and g(x) = x2 + 4,

then f (g(x)) = f (x2 + 4) = (x2 + 4)3/2 = h(x). ◗

Exponential Functions

An exponential function is a function of the form

f (x) = ax , (9)

where the base a is a fixed positive real number—a constant. Note the difference

0

4

8

-2 0 2 4
x

y

(0, 1)

y = 2x

y = 10x

FIGURE 1.4.10 Increasing
exponential functions y = 2x and
y = 10x .

between an exponential function and a power function. In the power function xn , the
variable x is raised to a constant power; in the exponential function ax , a constant is
raised to a variable power.

Many computers and programmable calculators use the notation a ∧ x to denote
the exponential ax (a few use a ↑ x). If a > 1, then the graph y = ax looks much like
those in Fig. 1.4.10, which shows y = 2x and y = 10x . The graph of an exponential
function with base a, a > 1, lies entirely above the x-axis and rises steadily from
left to right. Therefore, such a graph is nothing like the graph of a polynomial or
trigonometric function. The larger the base a, the more rapid the rate at which the
curve y = ax rises (for x > 0). Thus y = 10x climbs more steeply than y = 2x .

EXAMPLE 6 Every exponential function (with base a > 1) increases very rapidly
when x is large. The following table comparing values of x2 with 2x exhibits vividly
the rapid rate of increase of the exponential function 2x , even compared with the power
function x2, which increases at a more restrained rate as x increases.

x x2 2x

10 100 1024
20 400 1048576
30 900 1073741824
40 1600 1099511627776
50 2500 1125899906842624
60 3600 1152921504606846976
70 4900 1180591620717411303424
80 6400 1208925819614629174706176
90 8100 1237940039285380274899124224
100 10000 1267650600228229401496703205376

The comparison between x2 and 2x for smaller values of x is interesting in a different
way. The graphs of y = x2 and y = 2x in Fig. 1.4.11 indicate that the equation
x2 = 2x has three solutions between x = −2 and x = 5. Is it clear to you that x = 2
and x = 4 are exact solutions? The “zoom” shown in Fig. 1.4.12 indicates that the
negative solution is a bit less than −0.75. Perhaps you can zoom once more and find
the value of this negative solution accurate to at least two decimal places. ◗

If we replace x in Eq. (9) with −x , we get the function a−x . Its graph y = a−x

falls from left to right if a > 1. Figure 1.4.13 shows the graphs y = 3−x and y = 7−x .
Whereas trigonometric functions are used to describe periodic phenomena of ebb

and flow, exponential functions are used to describe natural processes of steady growth
or steady decline.
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FIGURE 1.4.11 y = x2 and
y = 2x .
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FIGURE 1.4.12 A magnification
of 1.4.11 showing the negative
solution.
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FIGURE 1.4.13 Decreasing
exponential functions y = 3−x and
y = 7−x .

EXAMPLE 7 Let P(t) denote the number of rodents after t months in a certain pro-
lific population that doubles every month. If there are P(0) = 10 rodents initially, then
there are

• P(1) = 10 · 21 = 20 rodents after 1 month,
• P(2) = 10 · 22 = 40 rodents after 2 months,
• P(3) = 10 · 23 = 80 rodents after 3 months,

and so forth. Thus the rodent population after t months is given by the exponential
function

P(t) = 10 · 2t (10)

if t is a nonnegative integer. Under appropriate conditions, Eq. (10) gives an accurate
approximation to the rodent population even when t is not an integer. For instance, this
formula predicts that after t = 4 1

2 months, there will be

P(4.5) = 10 · 24.5 ≈ 226.27 ≈ 226 rodents. ◗

EXAMPLE 8 Suppose that you invest $5000 in a money-market account that pays
8% interest compounded annually. This means that the amount in the account is mul-
tiplied by 1.08 at the end of each year. Let A(t) denote the amount in your account at
the end of t years. Then,

• A(1) = 5000 · 1.081 ($5400.00) after 1 yr,
• A(2) = 5000 · 1.082 ($5832.00) after 2 yr,
• A(3) = 5000 · 1.083 ($6298.56) after 3 yr,

and so on. Thus after t years (t a nonnegative integer), the amount in your account is
given by the exponential function

A(t) = 5000 · 1.08t . (11)

Figure 1.4.14 shows the graph A(t) = 5000 · 1.08t as well as the horizontal line
A = 10,000. From this graph we see, for instance, that the amount in the account
has doubled (to $10,000) after approximately t = 9 yr. We could approximate the
“doubling time” more accurately by magnifying the graph near the intersection of the
horizontal line and the rising curve. ◗

0

4000

8000

12000

0 2 4 6 8 10
t

A

A = 10,000

A = 5000 .1.08t

FIGURE 1.4.14 The graph for
Example 8.

Example 9 exhibits a function that combines the steady decrease of an exponen-
tial function with negative exponent with the oscillation of a trigonometric function.

EXAMPLE 9 The function

y(t) = 3 · 2−t cos 4π t (12)
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might describe the amplitude y, in inches, of the up-and-down vibrations of a car with
very poor shock absorbers t seconds after it hits a deep pothole. Can you see that
Eq. (12) describes an initial (t = 0) amplitude of 3 inches that halves every second,
while two complete up-and-down oscillations occur every second? (The factor 3 · 2−t

is the decreasing amplitude of the vibrations, while the function cos 4π t has period 1
2

s.) Figure 1.4.15 shows the graph of y(t). The curve described in Eq. (12) oscillates
between the two curves y(t) = ±3 · 2−t . It appears that the car’s vibrations subside
and are negligible after 7 or 8 seconds. ◗

-1

-2

-3

3

2

1

0

0 87654321
t sec

y = −3 · 2−t

y = 3 · 2−t

y = 3 · 2−t cos 4π t

y in.

FIGURE 1.4.15 y(t) =
3 · 2−t cos 4π t (Example 9).

Logarithmic Functions
In analogy with the inverse trigonometric functions that you may have seen in
trigonometry, logarithms are “inverse” to exponential functions. The base a logarithm
of the positive number x is the power to which a must be raised to get x . That is,

y = loga x if ay = x . (13)

The LOG key on most calculators gives the base 10 (common) logarithm log10 x . The
LN key gives the natural logarithm

ln x = loge x,

where e is a special irrational number:

e = 2.71828182845904523536 . . . .

You’ll see the significance of this strange-looking base in Chapter 3.
Figure 1.4.16 shows the graphs y = ln x and y = log10 x . Both graphs pass
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y
(1, 0)

y = ln x
y = log10 x

FIGURE 1.4.16 The common and
natural logarithm functions.

through the point (1, 0) and rise steadily (though slowly) from left to right. Because
exponential functions never take on zero or negative values, neither zero nor any neg-
ative number is in the domain of any logarithmic function.

The facts that log10 100,000 = 5 and log10 1,000,000 = 6 indicate that the

0
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3

2

1

21.50.5 10
x

y = log x

× 105

y
y = x1/51

2

FIGURE 1.4.17 1
2 x1/5 passes log x .

function log x = log10 x increases quite slowly as x increases. Whereas Example 6
above illustrates the fact that an exponential function ax (with a > 1) increases more
rapidly than any power function as x → ∞, Example 10 illustrates the fact that a
logarithmic function increases more slowly than any power function.

EXAMPLE 10 In the following table we compare the rate of growth of the power
function f (x) = 1

2 x1/5 with that of the logarithm function g(x) = log x .

x f (x) = 1
2 x1/5 g(x) = log x

20000 3.62390 4.30103
40000 4.16277 4.60206
60000 4.51440 4.77815
80000 4.78176 4.90309

100000 5 5
120000 5.18569 5.07918
140000 5.34805 5.14613
160000 5.49280 5.20412
180000 5.62373 5.25527
200000 5.74349 5.30103

It appears here and in Fig. 1.4.17 that log x is smaller than 1
2 x1/5 when x > 100,000.

Figure 1.4.18 shows that log x initially is smaller than 1
2 x1/5, but “catches up and

passes” 1
2 x1/5 somewhere around (although a bit less than) x = 5. Then 1

2 x1/5 in turn
catches up and passes log x at x = 100,000. When x = 1050, 1

2 x1/5 = 5,000,000,000,
but the value of log x is only 50. ◗
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FIGURE 1.4.18 log x passes 1
2 x1/5.
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Transcendental Equations
The trigonometric, exponential, and logarithmic functions are called transcendental
functions. As we saw in Eqs. (5) and (6), an equation that includes transcendental
functions can have infinitely many solutions. But it also may have only a finite number
of solutions. Determining whether the number of solutions is finite or infinite can be
difficult. One approach is to write the given equation in the form

f (x) = g(x), (14)

where both the functions f and g are readily graphed. Then the real solutions of
Eq. (14) correspond to the intersections of the two graphs y = f (x) and y = g(x).

EXAMPLE 11 The single point of intersection of the graphs y = x and y = cos x ,
shown in Fig. 1.4.19, indicates that the equation

x = cos x

has only a single solution. Moreover, from the graph you can glean the additional
information that the solution lies in the interval (0, 1). ◗
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y = cos x

y = x

FIGURE 1.4.19 Solving the
equation x = cos x of Example 11.
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y = 1 − x

y = 3 cos x

FIGURE 1.4.20 Solving the
equation 1 − x = 3 cos x of
Example 12.

EXAMPLE 12 The graphs of y = 1 − x and y = 3 cos x are shown in Fig. 1.4.20.
In contrast with Example 11, there are three points of intersection of the graphs. This
makes it clear that the equation

1 − x = 3 cos x

has one negative solution and two positive solutions. They could be approximated by
(separately) zooming in on the three intersection points. ◗

Can You Believe What You See on Your Calculator/Computer Screen?
The examples we give next show that the short answer to this question is “not always.”
One reason is that a typical graphing calculator or simple computer program plots only
a finite number of equally spaced points on the curve y = f (x), a � x � b, joining the
selected points with straight line segments. If the plotted points are sufficiently close,
then the resulting graph may look to the unaided eye like a smooth curve, but it may
miss some essential features that would be revealed if more points were plotted.

EXAMPLE 13 A 1-ampere alternating current with frequency 60 Hz (Hertz; cycles
per second) is described by the function

I (t) = sin 120π t. (15)

The absolute value |I (t)| gives the magnitude (in amperes) of the current at time t ,
which flows in one direction when I > 0 the opposite direction when I < 0. A simple
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FIGURE 1.4.21 On the interval
[−1, 1] it’s wrong.
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FIGURE 1.4.22 On the interval
[−1/2, 1/2] it’s bizarre.
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FIGURE 1.4.23 On the interval
[−1/30, 1/30] it’s correct!

computer program was used to plot the alleged graphs of I (t) shown in Figs. 1.4.21
through 1.4.23. The graph in Fig. 1.4.21 is plotted on the interval −1 � t � 1,
where we should see 120 complete oscillations because the period of I (t) in Eq. (15)
is 1/60 s. But instead the figure shows exactly one oscillation, so something has gone
badly wrong. The graph in Fig. 1.4.22 is plotted on the interval − 1

2 � t � 1
2 , and

whatever it is has gone from merely wrong to outright bizarre. Finally, in Fig. 1.4.23
the graph is plotted on the interval − 1

30 � t � 1
30 of length 4

60 , so we should see exactly
4 complete oscillations. And indeed we do, so we’ve finally got a correct graph of the
current function in Eq. (15). ◗

Here’s an explanation of what went wrong at first in Example 13. The computer
was programmed to plot values at exactly 120 equally spaced points of the interval
desired. So in Fig. 1.4.21 we’re plotting only 1 point per cycle—not nearly enough to
capture the actual shape of the curve—and only 2 points per cycle in Fig. 1.4.22. But in
Fig. 1.4.23 we’re plotting 30 points per cycle, and this gives an accurate representation
of the actual graph.

The incorrect graph in Fig. 1.4.21—which seems to portray an oscillation with
the incorrect period of 2 s, instead of the correct 1

60 s—is an example of the phe-
nomenon of aliasing. Another example of aliasing, occasionally seen in old Western
movies, is the wagon wheel that appears to rotate slowly in the wrong direction.

REMARK The aliasing phenomenon exhibited in Figs. 1.4.21 and 1.4.22 is heavily
dependent on the precise number of points being plotted. A plotting device (such
as graphing calculator) that uses a fixed number of plotting points is susceptible to
aliasing. More sophisticated graphing utilities may avoid aliasing by using a variable
number of nonuniformly spaced plotting points.

Figure 1.4.22 consists largely of line segments joining consecutive points that are
far apart. Figure 1.4.24 shows how that incorrect graph came about; points 1, 3, 5, 7,
. . . , 117, 119 in the interval [−0.5, 0.5] are plotted in red, whereas points 2, 4, 6, . . . ,

118, 120 are plotted in blue. Now you can see what happened when the computer
plotted line segments joining point 1 to point 2, point 2 to point 3, and so forth.

One moral of Example 13 is that it pays to know what you’re looking for in a

1
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-0.5

-1

0.5-0.5 0
t

I

FIGURE 1.4.24 Individual plotted
points that are joined by line
segments in Fig. 1.4.22.

graph. If the graph looks markedly different in windows of different sizes, this is a
clue that something’s wrong.

Whereas in Example 13 we got anomalous results by plotting the graph in win-
dows of different sizes, the next example illustrates a situation where we must plot
graphs on different scales in order to see the whole picture.

EXAMPLE 14 Now suppose that a high-frequency (6000 Hz) current of 0.01 ampere
is added to the current in Eq. (15), so the resulting current is described by

I (t) = sin 120π t + (0.01) sin 12000π t. (16)
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1

0.5

0

-0.5

-1

0.01-0.01 0
t

I

FIGURE 1.4.25 I (t) =
sin 120π t + 0.01 sin 12000π t on the
interval −1/60 � t � 1/60.
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t × 10-4

I

FIGURE 1.4.26 I (t) =
sin 120π t + 0.01 sin 12000π t on the
interval −1/2400 � t � 1/2400.

When we plot Eq. (16) on the interval − 1
60 � t � 1

60 , we get the graph shown in
Fig. 1.4.25. It looks like two cycles of the original current in (15), although the plot is
perhaps a bit “fuzzy.” To see the effect of the added second term in Eq. (16) we must
plot the graph on a much magnified scale, as in Fig. 1.4.26. The “fuzz” in Fig. 1.4.25
has now been magnified to show clearly the high-frequency oscillations with period

1
6000 s. ◗

1.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. For every real number x , sin(x + 2π) = sin x .
2. The equation cos x = 0 has no solutions.
3. The composition h = f ◦ g of the functions f and g has the formula h(x) =

f (g(x)).
4. If f and g are functions, then f ◦ g = g ◦ f .
5. If f (x) = x2 and g(x) = cos x , then f (g(x)) = cos(x2).
6. If f (x) = 2x , then f (x) → −∞ as x → −∞.
7. The statement y = loga x means that ay = x .
8. To the number of digits shown, e ≈ 2.71828.
9. The equation x = cos x has infinitely many real solutions.

10. If x > 100,000, then log x < 1
2 x1/5.

1.4 CONCEPTS: QUESTIONS AND DISCUSSION
Each of the following items describes a particular population numbering P(t) at time t .
Tell whether you think the function P(t) seems more likely to be a linear, quadratic,
polynomial, root, rational, trigonometric, exponential, or logarithmic function of t . In
each case write a specific function satisfying the given description.

1. The population triples every five years.
2. The population increases by the same amount each year.
3. The population oscillates every five years between a maximum of 120 and a

minimum of 80.
4. The population decreases for a time, reaches a minimum value, then increases

thereafter (getting larger and larger as time goes on).
5. The population increases for a time and reaches a maximum value, then decreases

for a time and reaches a minimum value, and thereafter increases (becoming
larger and larger).
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6. The population increases each year, but by a smaller percentage than it increased
in the preceding year.

7. The population decreases by the same percentage each year.
8. The population increases for a time, reaches a maximum value, and decreases

thereafter (apparently dying out) with P(t) approaching zero as t increases.

1.4 PROBLEMS

In Problems 1 through 10, match the given function with its graph
among those shown in Figs. 1.4.27 through 1.4.36. Try to do this
without using your graphing calculator or computer.

1. f (x) = 2x − 1 2. f (x) = 2 − 3−x

3. f (x) = 1 + cos x 4. f (x) = 2 − 2 sin x

5. f (x) = 1 + 2 cos x 6. f (x) = 2 − sin x

7. f (x) = x

2x
8. f (x) = log x

x

9. f (x) = 1 + cos 6x

1 + x2
10. f (x) = 2−x sin 10x

3

4

2

1

0

-1

-2
10-10 -5 0 5

x

y

FIGURE 1.4.27
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FIGURE 1.4.28
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FIGURE 1.4.29
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1

0.5

0

-0.5
1086420

x

y

FIGURE 1.4.31
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FIGURE 1.4.32
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FIGURE 1.4.33
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FIGURE 1.4.34
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FIGURE 1.4.35
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FIGURE 1.4.36

In Problems 11 through 20, find f (g(x)) and g( f (x)).

11. f (x) = 1 − x2, g(x) = 2x + 3

12. f (x) = −17, g(x) = |x |
13. f (x) = √

x2 − 3, g(x) = x2 + 3

14. f (x) = x2 + 1, g(x) = 1

x2 + 1

15. f (x) = x3 − 4, g(x) = 3
√

x + 4

16. f (x) = √
x , g(x) = cos x

17. f (x) = sin x , g(x) = x3

18. f (x) = sin x , g(x) = cos x

19. f (x) = 1 + x2, g(x) = tan x

20. f (x) = 1 − x2, g(x) = sin x

In Problems 21 through 30, find a function of the form f (x) = xk

(you must specify k) and a function g such that f (g(x)) = h(x).

21. h(x) = (2 + 3x)2 22. h(x) = (4 − x)3

23. h(x) = √
2x − x2 24. h(x) = (1 + x4)17

25. h(x) = (5 − x2)3/2 26. h(x) = 3
√

(4x − 6)4

27. h(x) = 1

x + 1
28. h(x) = 1

1 + x2

29. h(x) = 1√
x + 10

30. h(x) = 1

(1 + x + x2)3
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In Problems 31–40, use a graphing calculator or computer to de-
termine the number of real solutions by inspecting the graph of
the given equation.

31. x = 2−x

32. x + 1 = 3 cos x

33. x − 1 = 3 cos x

34. x = 5 cos x

35. x = 7 cos x

36. 2 log10 x = cos x (x > 0)

37. log10 x = cos x (x > 0)

38. x2 = 10 cos x

39. x2 = 100 sin x

40. x = 5 cos x + 10 log10 x (x > 0)

41. Consider the population of Example 7 in this section, which
starts with 10 rodents and doubles every month. Determine
graphically (that is, by zooming) how long it will take this
population to grow to 100 rodents. (Assume that each month
is 30 days long and obtain an answer correct to the nearest
day.)

42. Consider the money-market account of Example 8, which
pays 8% annually. Determine graphically how long it will
take the initial investment of $5000 to triple.

43. In 1980 the population P of Mexico was 67.4 million and
was growing at the rate of 2.6% per year. If the population
continues to grow at this rate, then t years after 1980 it will
be P(t) = 67.4 · (1.026)t (millions). Determine graphically
how long it will take the population of Mexico to double.

44. Suppose that the amount A of ozone in the atmosphere de-
creases at the rate of 0.25% per year, so that after t years
the amount remaining is A(t) = A 0(0.9975)t , where A 0 de-
notes the initial amount. Determine graphically how long it
will take for only half the original amount of ozone to be left.
Does the numerical value of A 0 affect this answer?

45. The nuclear accident at Chernobyl left the surrounding re-
gion contaminated with strontium-90, which initially was
emitting radiation at approximately 12 times the level safe
for human habitation. When an atom of strontium-90 emits
radiation, it decays to a nonradioactive isotope. In this way,

about 2.5% of the strontium-90 disappears each year. Then
the amount of radiation left after t years will be A(t) =
12 · (0.975)t (measured in “safe units” of radiation). De-
termine graphically how long (after the original accident) it
will be until the region measures only 1 safe unit, and it is
therefore safe for humans to return.

46. Refer to Example 6 of this section; determine graphically
the value (accurate to three decimal places) of the negative
solution of the equation x2 = 2x .

47. Refer to Example 10 of this section; determine graphically
the value (accurate to three decimal places) of the solution
near x = 5 of the equation log10 x = 1

2 x1/5.

48. The equation x10 = 3x has three real solutions. Graphically
approximate each of them accurate to two decimal places.

49. You land your space ship on a spherical asteroid between
Earth and Mars. Your copilot walks 1000 feet away along the
asteroid’s smooth surface carrying a 10-ft rod and thereby
vanishes over the horizon. When she places one end of the
rod on the ground and holds it straight up and down, you—
lying flat on the ground—can just barely see the tip of the
rod. Use this information to find the radius R of this aster-
oid (in miles). The key will be to derive a pair of equations
relating R and the angle θ indicated in Fig. 1.4.37. (Think
of the right triangle shown there and of the relationship be-
tween circular arc length and subtended central angle.) You
can then attempt to solve these equations graphically. You
should find plenty of solutions. But which of them gives the
radius of the asteroid?

10 ft

1000 ft

R
θ

FIGURE 1.4.37 The asteroid
problem.

1.5 PREVIEW: WHAT IS CALCULUS?

Surely this question is on your mind as you begin a study of calculus that may extend
over two or three terms. Following our review of functions and graphs in Sections 1.1
through 1.4, we can preview here at least the next several chapters, where the central
concepts of calculus are developed.

The Two Fundamental Problems
The body of computational technique that constitutes “the calculus” revolves around
two fundamental geometric problems that people have been investigating for more than
2000 years. Each problem involves the graph y = f (x) of a given function.

The first fundamental problem is this: What do we mean by the line tangent to
the curve y = f (x) at a given point? The word tangent stems from the Latin word
tangens, for “touching.” Thus a line tangent to a curve is one that “just touches” the
curve. Lines tangent to circles (Fig. 1.5.1) are well known from elementary geometry.
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L

P

FIGURE 1.5.1 The tangent
line L touches the circle at
the point P .

-2

0

2

4

-4 -2 0 2 4
x

y
(1, 1)

y = 2x − 1

y = x2

FIGURE 1.5.2 The line tangent
to the parabola y = x2 at the point
(1, 1).

Figure 1.5.2 shows the line tangent to the parabola y = x2 at the point (1, 1). We
will see in Section 2.1 that this particular tangent line has slope 2, so its point-slope
equation is

y − 1 = 2 · (x − 1); that is, y = 2x − 1.

Our first problem is how to find tangent lines in more general cases.

The Tangent Problem
Given a point P(x, f (x)) on the curve y = f (x), how do we calculate the slope of
the tangent line at P (Fig. 1.5.3)?

We begin to explore the answer to this question in Chapter 2. If we denote by

x

y

P(x, f (x))

L

y = f (x)

FIGURE 1.5.3 What is the slope of
the line L tangent to the graph
y = f (x) at the point P(x, f (x))?

m(x) the slope of the tangent line at P(x, f (x)), then m is a new function. It might
informally be called a slope-predictor for the curve y = f (x). In calculus this slope-
predictor function is called the derivative of the function f . In Chapter 3 we learn to
calculate derivatives of a variety of functions, and in both Chapter 3 and Chapter 4 we
see numerous applications of derivatives in solving real-world problems. These three
chapters introduce part of calculus called differential calculus.

The tangent problem is a geometric problem—a purely mathematical question.
But its answer (in the form of derivatives) is the key to the solution of diverse applied
problems in many scientific and technical areas. Examples 1 and 2 may suggest to you
the connections that are the key to the pivotal role of calculus in science and technology.

EXAMPLE 1 Suppose that you’re driving a car along a long, straight road
(Fig. 1.5.4). If f (t) denotes the distance (in miles) the car has traveled at time t (in
hours), then the slope of the line tangent to the curve y = f (t) at the point (t, f (t))
(Fig. 1.5.5) is the velocity (in miles per hour) of the car at time t . ◗

Time t
Distance f (t)

Start

FIGURE 1.5.4 A car on a straight
road (Example 1).

y

t

D
is

ta
nc

e

(t, f (t))

y = f (t)

Time

FIGURE 1.5.5 The slope of the
tangent line at the point (t, f (t)) is
the velocity at the time t (Example 1).
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EXAMPLE 2 Suppose that f (t) denotes the number of people in the United Statesy

Po
pu

la
tio

n

(t, f (t))

y = f (t)

tTime

FIGURE 1.5.6 The rate of growth
of f (t) at the time t is the slope of
the tangent line at the point (t, f (t))
(Example 2).

who have a certain serious disease at time t (measured in days from the beginning of
the year). Then the slope of the line tangent to the curve y = f (t) at the point (t, f (t))
(Fig. 1.5.6) is the rate of growth (the number of persons newly affected per day) of the
diseased population at time t . ◗

NOTE The truth of the statements made in these two examples is not obvious. To
understand such things is one reason you study calculus! We return to the concepts of
velocity and rate of change at the beginning of Chapter 3.

Here we will be content with the observation that the slopes of the tangent lines
in Examples 1 and 2 at least have the correct units. If in the time-distance plane of
Example 1 we measure time t (on the horizontal axis) in seconds and distance y (on
the vertical axis) in feet (or meters), then the slope (ratio of rise to run) of a straight
line has the dimensions of feet (or meters) per second—the proper units for velocity
(Fig. 1.5.7). Similarly, if in the t y-plane of Example 2 time t is measured in months and
y is measured in persons, then the slope of a straight line has the proper units of persons
per month for measuring the rate of growth of the afflicted population (Fig. 1.5.8).

y (ft)

t (s)

Run (s)

Rise (ft)

Slope units:
ft
s

FIGURE 1.5.7 Here slope has the
dimensions of velocity (ft/s).

y (persons)

t (months)

Run (months)

Rise
(persons)

Slope units:
persons
month

FIGURE 1.5.8 Here slope has the
dimensions of rate of change of
population.

The second fundamental problem of calculus is the problem of area. Given the
graph y = f (x), what is the area between this graph and the x-axis over the interval
[a, b]?

The Area Problem
If f (x) � 0 for x in the interval [a, b], how do we calculate the area A of the plane
region that lies between the curve y = f (x) and the x-axis over the interval [a, b]
(Fig. 1.5.9)?

x

y

y = f (x)

Area A = ?

ba

FIGURE 1.5.9 The area problem.

We begin to explore the answer to this second question in Chapter 5. In calculus
the area A is called an integral of the function f . Chapters 5 and 6 are devoted to the
calculation and application of integrals. These two chapters introduce the other part of
calculus, which is called integral calculus.

Like the tangent problem, the area problem is a purely mathematical question, but
its answer (in the form of integrals) has extensive ramifications of practical importance.
Examples 3 and 4 have an obvious kinship with Examples 1 and 2.
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EXAMPLE 3 If f (t) denotes the velocity of a car at time t , then the area under the

Time t

y

y = f (t)

Area A

ba

V
el

oc
ity

FIGURE 1.5.10 The area A under
the velocity curve is equal to the
distance traveled during the time
interval a � t � b (Example 3).

curve y = f (t) over the time interval [a, b] is equal to the distance traveled by the car
between time t = a and time t = b (Fig. 1.5.10). ◗

EXAMPLE 4 If f (t) denotes the rate of growth of a diseased population at time
t , then the area under the curve y = f (t) over the time interval [a, b] is equal to
the net change in the size of this population between time t = a and time t = b
(Fig. 1.5.11). ◗

When we discuss integrals in Chapter 5, you will learn why the statements in
Examples 3 and 4 are true.

The Fundamental Relationship

Examples 1 and 3 are two sides of a certain coin: There is an “inverse relationship”

Time t

y

y = f (t)

Area A

ba

R
at

e 
of

 c
ha

ng
e

FIGURE 1.5.11 The area A under
the rate-of-change curve is equal to
the net change in the population
from time t = a to t = b
(Example 4).

between the distance traveled and the velocity of a moving car. Examples 2 and 4
exhibit a similar relationship between the size of a population and its rate of change.

Both the distance/velocity relationship and the size/rate-of-change relationship
illustrated by Examples 1 through 4 are consequences of a deep and fundamental re-
lationship between the tangent problem and the area problem. This more general re-
lationship is described by the fundamental theorem of calculus, which we discuss in
Chapter 5. It was discovered in 1666 by Isaac Newton at the age of 23 while he was still
a student at Cambridge University. A few years later it was discovered independently
by Gottfried Wilhelm Leibniz, who was then a German diplomat in Paris who studied
mathematics privately. Although the tangent problem and the area problem had, even
then, been around for almost 2000 years, and much progress on separate solutions had
been made by predecessors of Newton and Leibniz, their joint discovery of the funda-
mental relationship between the area and tangent problems made them famous as “the
inventors of the calculus.”

Applications of Calculus

So calculus centers around the computation and application of derivatives and inte-
grals—that is, of tangent line slopes and areas under graphs. Throughout this textbook,
you will see concrete applications of calculus to different areas of science and technol-
ogy. The following list of a dozen such applications gives just a brief indication of the
extraordinary range and real-world power of calculus.

• Suppose that you make and sell tents. How can you make the biggest tent from a
given amount of cloth and thereby maximize your profit? (Section 3.6)

• You throw into a lake a cork ball that has one-fourth the density of water. How
deep will it sink in the water? (Section 3.10)

• A driver involved in an accident claims he was going only 25 mi/h. Can you de-
termine from his skid marks the actual speed of his car at the time of the accident?
(Section 5.2)

• The great pyramid of Khufu at Gizeh, Egypt, was built well over 4000 years
ago. No personnel records from the construction remain, but nevertheless we can
calculate the approximate number of laborers involved. (Section 6.5)

• Suppose that you win the Florida lottery and decide to use part of your winnings
to purchase a “perpetual annuity” that will pay you and your heirs (and theirs,
ad infinitum) $10,000 per year. What is a fair price for an insurance company to
charge you for such an annuity? (Section 7.8)

• If the earth’s population continues to grow at its present rate, when will there be
“standing room only”? (Section 8.1)

• The factories polluting Lake Erie are forced to cease dumping wastes into the
lake immediately. How long will it take for natural processes to restore the lake
to an acceptable level of purity? (Section 8.4)
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• In 1845 the Belgian demographer Verhulst used calculus to predict accurately the
course of U.S. population growth (to within 1%) well into the twentieth century,
long after his death. How? (Section 8.5)

• What explains the fact that a well-positioned reporter can eavesdrop on a quiet
conversation between two diplomats 50 feet away in the Whispering Gallery of
the U.S. Senate, even if this conversation is inaudible to others in the same room?
(Section 9.6)

• Suppose that Paul and Mary alternately toss a fair six-sided die in turn until one
wins the pot by getting the first “six.” How advantageous is it to be the one who
tosses first? (Section 10.3)

• How can a submarine traveling in darkness beneath the polar icecap keep accu-
rate track of its position without being in radio contact with the rest of the world?
(Section 11.5)

• Suppose that your club is designing an unpowered race car for the annual down-
hill derby. You have a choice of solid wheels, bicycle wheels with thin spokes,
or even solid spherical wheels (like giant ball bearings). Can you determine
(without time-consuming experimentation) which will make the race car go the
fastest? (Section 13.5)

• Some bullets have flattened tips. Is it possible that an artillery shell with a
flat-tipped “nose cone” may experience less air resistance—and therefore travel
farther—than a shell with a smoothly rounded tip? (Section 14.5)

1.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The tangent problem is the problem of finding the slope of the straight line tan-
gent to the graph of y = f (x) at the point P of the graph.

2. The area problem is the problem of finding the area of the plane region above the
x-axis and below the graph of the function y = f (x) � 0 for a � x � b.

3. The fundamental theorem of calculus was discovered by Newton and, indepen-
dently, by Leibniz.

4. The slope of the line tangent to the graph of y = x2 at the point (1, 1) is 4.
5. If a straight line touches or intersects a curve at exactly one point, then it is

tangent to the curve at that point.
6. If a straight line touches or intersects a curve at more than one point, then it

cannot be tangent to the curve at any of those points.
7. A function that predicts the slope of the line tangent to the graph of the function

f at the point (x, f (x)) is called the derivative of f .
8. The computation of area is one topic studied in integral calculus.
9. The relation between distance and velocity has nothing to do with calculus.

10. The fundamental theorem of calculus shows that the tangent problem and the
area problem are related.
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CHAPTER 1: REVIEW

Understanding: Concepts and Definitions
Refer to the listed pages to review the concepts and definitions in this chapter that you need to understand.

Section Pages
1.1 The definition of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The domain and range of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Dependent and independent variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Open and closed interval notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
What is a formula vs. what is a relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
The idea of a mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Slope-intercept and point-slope equations of straight lines . . . . . . . . . . . . . . . . . . . . . . . . . . 12
The graph of an equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Circles and translates of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–14
The graph of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
The vertical line test for graphs of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Discontinuities of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Parabolas and graphs of quadratic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–18
Graphic, numeric, and symbolic representations of functions . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 The definition of a power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Algebraic combinations of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
The definition of a polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
The definition of a rational function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
The definition of an algebraic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 The sine and cosine functions and their graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
The definition of the composition of two functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
The definition of an exponential function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
The definition of a logarithmic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
1.1 Simplifying functional expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 15

Finding the domain of a function defined by a formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 29, 33
Writing formulas for functions described verbally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37, 39, 41, 43, 45
Numerical solution of equations by repeated tabulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 60

1.2 Writing the equation of a given straight line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 9
Sketching the graph of a circle with given equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 15
Sketching a parabola with given equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Identifying and sketching the graph of a given function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 37, 39, 45, 49
Algebraic and graphical investigation of high and low points . . . . . . . . . . . . . . . . . . . . . . . . 57, 61

1.3 Finding formulas for algebraic combinations of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5
Identifying the graph of a polynomial by determining its number of zeros . . . . . . . . . . . . 7, 11

and its behavior for |x | large
Identifying the graph of a rational function by determining its asymptotes . . . . . . . . . . . . 13, 15

and its behavior for |x | large
Finding graphically the number of real zeros of a polynomial . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 25, 39

1.4 Matching graphs and equations of trigonometric and exponential functions . . . . . . . . . . . 1, 3, 5, 7
Finding the formula for the composition f (g(x)) of two given functions f and g . . . . . 11, 15, 17, 19
Finding graphically the number of real solutions of a given transcendental equation . . . 31, 33, 35, 39
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MISCELLANEOUS PROBLEMS

In Problems 1 through 10, find the domain of definition of the
function with the given formula.

1. f (x) = √
x − 4 2. f (x) = 1

2 − x

3. f (x) = 1

x2 − 9
4. f (x) = x

x2 + 1

5. f (x) = (
1 + √

x
)3

6. f (x) = x + 1

x2 − 2x

7. f (x) = √
2 − 3x 8. f (x) = 1√

9 − x2

9. f (x) = (x − 2)(4 − x) 10. f (x) = √
(x − 2)(4 − x)

11. In accord with Boyle’s law, the pressure p (lb/in.2) and vol-
ume V (in.3) of a certain gas satisfy the condition pV = 800.
What is the range of possible values of p, given 100 � V �
200?

12. The relationship between the Fahrenheit temperature F and
the Celsius temperature C is given by

F = 32 + 9
5 C.

If the temperature on a given day ranges from a low of 70◦F
to a high of 90◦F, what is the range of temperature in degrees
Celsius?

13. An electric circuit contains a battery that supplies E volts in
series with a resistance of R ohms (Fig. 1.MP.1). Then the
current of I amperes that flows in the circuit satisfies Ohm’s
law, E = I R. If E = 100 and 25 < R < 50, what is the
range of possible values of I ?

Battery:
E volts

Current: I amperes

Resistance:
R ohms

FIGURE 1.MP.1 The simple electric
circuit of Problem 13.

14. The period T (in seconds) of a simple pendulum of length L
(in feet) is given by T = 2π

√
L/32. If 3 < L < 4, what is

the range of possible values of T ?

15. Express the volume V of a cube as a function of its total
surface area S.

16. The height of a certain right circular cylinder is equal to its
radius. Express its total surface area A (including both ends)
as a function of its volume V .

17. Express the area A of an equilateral triangle as a function of
its perimeter P .

18. A piece of wire 100 in. long is cut into two pieces of lengths
x and 100 − x . The first piece is bent into the shape of a
square, the second into the shape of a circle. Express as a
function of x the sum A of the areas of the square and circle.

In Problems 19 through 24, write an equation of the straight line
L described.

19. L passes through (−3, 5) and (1, 13).

20. L passes through (4, −1) and has slope −3.

21. L has slope 1
2 and y-intercept −5.

22. L passes through (2, −3) and is parallel to the line with
equation 3x − 2y = 4.

23. L passes through (−3, 7) and is perpendicular to the line
with equation y − 2x = 10. (Appendix B reviews slopes of
perpendicular lines.)

24. L is the perpendicular bisector of the segment joining
(1, −5) and (3, −1).

In Problems 25 through 34, match the given function with its
graph among those shown in Figs. 1.MP.2 through 1.MP.11. Do
this without using your graphing calculator or computer. In-
stead, rely on your knowledge of the general characteristics of
polynomial, rational, algebraic, trigonometric, exponential, and
logarithmic functions.

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
1086420-2

x

y

FIGURE 1.MP.2

1.5

2

1

0.5

0

-0.5

-1
10-10 -5 0 5

x

y

FIGURE 1.MP.3

0

-20

-40

-60

20

40

60

5-5 0
x

y

FIGURE 1.MP.4
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15

5

0

-5

-10

-15
10-10 -5 0 5
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FIGURE 1.MP.5
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y
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FIGURE 1.MP.6
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FIGURE 1.MP.7
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FIGURE 1.MP.8
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FIGURE 1.MP.9
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FIGURE 1.MP.10
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FIGURE 1.MP.11

25. f (x) = 2 − 2x − x2 26. f (x) = x3 − 4x2 + 5

27. f (x) = x4 − 4x3 + 5 28. f (x) = 5

x2 − x − 6

29. f (x) = 5

x2 − x + 6
30. f (x) = √

8 + 2x − x2

31. f (x) = 2−x − 1 32. f (x) = log10(x + 1)

33. f (x) = 1 + 3 sin x 34. f (x) = x + 3 sin x

Sketch the graphs of the equations and functions given in Prob-
lems 35 through 44.

35. 2x − 5y = 7 36. |x − y| = 1

37. x2 + y2 = 2x 38. x2 + y2 = 4y − 6x + 3

39. y = 2x2 − 4x − 1 40. y = 4x − x2

41. f (x) = 1

x + 5
42. f (x) = 1

4 − x2

43. f (x) = |x − 3| 44. f (x) = |x − 3| + |x + 2|
45. Apply the triangle inequality (of Appendix A) twice to show

that
|a + b + c| � |a| + |b| + |c|

for arbitrary real numbers a, b, and c.

46. Write a = (a −b)+b to deduce from the triangle inequality
(of Appendix A) that

|a| − |b| � |a − b|
for arbitrary real numbers a and b.

47. Solve the inequality x2 −x −6 > 0. [ Suggestion: Conclude
from the factorization

x2 − x − 6 = (x − 3)(x + 2)

that the quantities x − 3 and x + 2 must be either both pos-
itive or both negative for the inequality to hold. Consider

the two cases separately to conclude that the solution set is
(−∞, −2) ∪ (3, +∞). ]

Use the method of Problem 47 to solve the inequalities in Prob-
lems 48 through 50.

48. x2 − 3x + 2 < 0 49. x2 − 2x − 8 > 0

50. 2x � 15 − x2

The remaining problems require the use of an appropriate cal-
culator or computer. In Problems 51 through 56, use either the
method of repeated tabulation or the method of successive zooms
(or both) to find the two roots (with three digits to the right
of the decimal point correct or correctly rounded) of the given
quadratic equation. You may check your work with the aid of the
quadratic formula and an ordinary calculator.

51. x2 − 5x − 7 = 0 52. 3x2 − 10x − 11 = 0

53. 4x2 − 14x + 11 = 0 54. 5x2 + 24x − 35 = 0

55. 8x2 + 33x − 36 = 0 56. 9x2 + 74x − 156 = 0

In Problems 57 through 62, apply either the method of repeated
tabulation or the method of successive zooms (or both) to find the
lowest point on the given parabola. You may check your work by
completing the square.

57. y = x2 − 5x + 7 58. y = 3x2 − 10x + 11

59. y = 4x2 − 14x + 11 60. y = 5x2 + 24x + 35

61. y = 8x2 + 33x + 35 62. y = 9x2 + 74x + 156

63. Figure 1.MP.12 shows a 10-cm by 7-cm portrait that includes
a border of width x on the top and bottom and of width 2x
on either side. The area of the border is itself 20 cm2. Use
either repeated tabulation or successive zooms to find x .

x

10 cm

7 cm

2x

x

2x

FIGURE 1.MP.12 The bordered portrait
of Problem 63.

64. A mail-order catalog lists a 60-in. by 35-in. tablecloth that
shrinks 7% in area when first washed. The catalog descrip-
tion also implies that the length and width will both decrease
by the same amount x . Use numerical (tabulation) or graph-
ical (zoom) methods to find x .

Determine graphically the number of real solutions of each equa-
tion in Problems 65 through 70.

65. x3 − 7x + 3 = 0

66. x4 − 3x2 + 4x − 5 = 0

67. sin x = x3 − 3x + 1

68. cos x = x4 − x

69. cos x = log10 x

70. 10−x = log10 x

PHOTO CREDITS

1 Corbis/Bettmann 
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Ada Byron (1815–1852)

The modern com-
puter program-
ming language Ada
is named in honor of

Ada Byron, daughter of
the English poet Lord
Byron. Her interest in sci-
ence and mathematics led
her around 1840 to study
the Difference Engine, a
gear-based mechanical cal-
culator that the mathe-
matician Charles Babbage
had built to compute ta-
bles of values of functions.

By then he was designing his much more advanced
Analytic Engine, an elaborate computing machine that
would have been far ahead of its time if it had been com-
pleted. In 1843 Ada Byron wrote a series of brief essays
explaining the planned operation of the Analytical Engine
and its underlying mathematical principles. She included a
prototype “computer program” to illustrate how its calcu-
lations were to be “programmed” in advance, using a deck
of punched cards to specify its instructions.

The Difference Engine

Calculus has been called “the calculating engine par
excellence.” But in our own time the study and applica-
tions of calculus have been reshaped by electronic com-
puters. Throughout this book we illustrate concepts of cal-
culus by means of graphic, numeric, and symbolic results
generated by computers. In Chapter 2 we exploit compu-
tational technology systematically in the investigation of
limits.

Grace Murray Hopper (1906–1992)

Almost exactly a century after the death of Ada By-
ron, the first modern computer compiler (for translation
of human-language programs into machine-language in-
structions) was developed by Grace Murray Hopper. As a
mathematician and U.S. Navy officer, Hopper had worked
with the very first modern electronic computers developed
during and immediately after World War II. In 1967 she
was recalled to active duty to lead efforts to standardize
the computer language COBOL for the Navy. In 1985 at
the age of 79, she became Rear Admiral Grace Hopper.
In 1986 she was retired—as the Navy’s oldest commis-
sioned officer on active duty—in a ceremony held aboard
the U.S.S. Constitution, the Navy’s oldest commissioned
warship.

From Chapter 2 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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54 CHAPTER 2 Prelude to Calculus

2.1 TANGENT LINES AND SLOPE PREDICTORS

In Sections 1.2 and 1.5 we saw that certain applied problems raise the question of what
is meant by the tangent line at a specified point of a general curve y = f (x). In this

P

O

FIGURE 2.1.1 The line tangent to
the circle at the point P is
perpendicular to the radius OP.

section we see that this “tangent-line problem” leads to the limit concept, which we
pursue further in Section 2.2.

In elementary geometry the line tangent to a circle at a point P is defined as the
straight line through P that is perpendicular to the radius (OP) to that point (Fig. 2.1.1).
A general graph y = f (x) has no radius for us to use, but the line tangent to the graph
at the point P should be the straight line through P that has—in some sense—the same
direction at P as the curve itself. Because a line’s “direction” is determined by its
slope, our plan for defining a line tangent to a curve amounts to finding an appropriate
“slope-prediction formula” that will give the proper slope of the tangent line. Example
1 illustrates this approach in the case of one of the simplest of all nonstraight curves,
the parabola with equation y = x2.

EXAMPLE 1 Determine the slope of the line L tangent to the parabola y = x2 at the
point P(a, a2).

Solution Figure 2.1.2 shows the parabola y = x2 and a typical point P(a, a2) on it.
The figure also shows a visual guess of the direction of the desired tangent line L at P .
We must find the slope of L .

P(a, a2)

x

y

L

y = x2

FIGURE 2.1.2 The tangent line at P should have the
same direction as the curve does at P (Example 1).

We cannot immediately calculate the slope of L , because we know the coordi-
nates of only one point P(a, a2) of L . Hence we begin with another line whose slope
we can compute. Figure 2.1.3 shows the secant line K that passes through the point
P and the nearby point Q(b, b2) of the parabola y = x2. Let us write

h = �x = b − a

for the difference of the x-coordinates of P and Q. (The notation �x is as old as
calculus itself, and it means now what it did 300 years ago: an increment, or change,
in the value of x .) Then the coordinates of Q are given by the formulas

b = a + h and b2 = (a + h)2.

Hence the difference in the y-coordinates of P and Q is

�y = b2 − a2 = (a + h)2 − a2.

Because P and Q are two different points, we can use the definition of slope to calcu-
late the slope m P Q of the secant line K through P and Q. If you change the value of
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x

y

Q(b, b2)

P(a, a2)

K

L

y = x2

Δy

Δx

a b = a + h

FIGURE 2.1.3 The secant line K passes
through the two points P and Q, which we can
use to determine its slope (Example 1).

h = �x , you change the line K and thereby change its slope. Therefore, m P Q depends
on h:

m P Q = �y

�x
= (a + h)2 − a2

(a + h) − a

= (a2 + 2ah + h2) − a2

h
= 2ah + h2

h
= h(2a + h)

h
. (1)

Because h is nonzero, we may cancel it in the final fraction. Thus we find that the slope
of the secant line K is given by

m P Q = 2a + h. (2)

Now imagine what happens as you move the point Q along the curve closer and
closer to the point P . (This situation corresponds to h approaching zero.) The line K
still passes through P and Q, but it pivots around the fixed point P . As h approaches
zero, the secant line K comes closer to coinciding with the tangent line L . This phe-
nomenon is suggested in Fig. 2.1.4, which shows the secant line K approaching the
tangent line L .

Our idea is to define the tangent line L as the limiting position of the secant line
K . To see precisely what this means, examine what happens to the slope of K as K

xa

L 

K

P

Q

y = x2

y

FIGURE 2.1.4 As h → 0, Q approaches P ,
and K moves into coincidence with the tangent
line L (Example 1).
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56 CHAPTER 2 Prelude to Calculus

pivots into coincidence with L:

As h approaches zero,

Q approaches P , and so

K approaches L; meanwhile,

the slope of K approaches the slope of L .

Hence our question is this: As the number h approaches zero, what value does
the slope m P Q = 2a + h approach? We can state this question of the “limiting value”
of 2a + h by writing

lim
h→0

(2a + h) = ? (3)

Here, “lim” is an abbreviation for the word “limit,” and “h → 0” is an abbrevia-
tion for the phrase “h approaches zero.” Thus Eq. (3) asks, “What is the limit of 2a +h
as h approaches zero?”

For any specific value of a we can investigate this question numerically by calcu-
lating values of 2a +h with values of h that become closer and closer to zero—such as
the values h = 0.1, h = −0.01, h = 0.001, h = −0.0001, . . . , or the values h = 0.5,
h = 0.1, h = 0.05, h = 0.01, . . . . For instance, the tables of values in Figs. 2.1.5 and
2.1.6 indicate that with a = 1 and a = −2 we should conclude that

lim
h→0

(2 + h) = 2 and lim
h→0

(−4 + h) = −4.

More generally, it seems clear from the table in Fig. 2.1.7 that

lim
h→0

m P Q = lim
h→0

(2a + h) = 2a. (4)

h 2 + h

0.1 2.1
0.01 2.01
0.001 2.001
0.0001 2.0002

↓ ↓
0 2

FIGURE 2.1.5 As
h → 0 (first column),
2 + h approaches 2
(second column).

h −4 + h

0.5 −3.5
0.1 −3.9
0.05 −3.95
0.01 −3.99
0.005 −3.995
0.001 −3.999

↓ ↓
0 −4

FIGURE 2.1.6 As
h → 0 (first
column), −4 + h
approaches −4
(second column).

h 2a + h

0.01 2a + 0.01
0.001 2a + 0.001

...
...

↓ ↓
0 2a

FIGURE 2.1.7 As
h → 0 (first column),
2a + h approaches 2a
(second column)
(Example 1).

This, finally, answers our original question: The slope m = m(a) of the line tangent to
the parabola y = x2 at the point (a, a2) is given by

m = 2a. (5)
◗

The formula in Eq. (5) is a “slope predictor” for (lines tangent to) the parabola
y = x2. Once we know the slope of the line tangent to the curve at a given point of
the curve, we can then use the point-slope formula to write an equation of this tangent
line.

EXAMPLE 2 With a = 1, the slope predictor in Eq. (5) gives m = 2 for the slope of
the line tangent to y = x2 at the point (1, 1). Hence an equation of this line is

y − 1 = 2(x − 1); that is, y = 2x − 1.
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With a = −3, Eq. (5) gives m = −6 as the slope of the line tangent at (−3, 9), so an
equation of the line tangent to the curve at this point is

y − 9 = −6(x + 3); that is, y = −6x − 9. ◗

In Fig. 2.1.8 the parabola y = x2 and its tangent line y = 2x −1 passing through
(1, 1) are both graphed. The relationship between the curve and its tangent line is such
that as we “zoom in” on the point of tangency, successive magnifications show less
and less of a difference between the curve and the tangent line. This phenomenon is
illustrated in Figs. 2.1.9 through 2.1.11.

-1

0

1

2

3

4

0 2 4
x

y

y = x2

FIGURE 2.1.8 The parabola
y = x2 and its tangent line at
P(1, 1).

0.6

0.8

1

1.2

1.4

0.6 0.8 1 1.2 1.4
x

y

y = x2

FIGURE 2.1.9 First
magnification.

0.8

0.9

1

1.1

1.2

0.8 0.9 1 1.1 1.2
x

y

y = x2

FIGURE 2.1.10 Second
magnification.

0.96

0.98

1

1.02

1.04

0.96 0.98 1 1.02 1.04
x

y

FIGURE 2.1.11 Can you see the
difference?

REMARK In Example 1 we proceeded as though the concept of a tangent line to a
curve were self-evident. The actual meaning of the slope-predictor result m = 2a in
Eq. (5) is this: Whatever is meant by the line tangent to the parabola y = x2 at the
point P(a, a2), it can only be the unique straight line through P with slope m = 2a.
Thus we must define the line tangent to y = x2 at P to be the line whose point-slope
equation is y − a2 = 2a(x − a). Pictures like those in Figs. 2.1.8 through 2.1.11
certainly support our conviction that this definition is the correct one.

More General Slope Predictors
The general case of the line tangent to a curve y = f (x) is scarcely more complicated
than the special case y = x2 of Example 1. Given the function f , suppose that we
want to find the slope of the line L tangent to y = f (x) at the point P(a, f (a)). As
indicated in Fig. 2.1.12, let K be the secant line passing through the point P and the
nearby point Q(a + h, f (a + h)) on the graph. The slope of this secant line is the
difference quotient

m P Q = �y

�x
= f (a + h) − f (a)

h
(with h �= 0). (6)
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L

a

Δx = h

Δy = f (a + h) − f (a)

Q

K

y = f (x)

y

xa + h

P

FIGURE 2.1.12 As h → 0, Q → P , and the slope of K
approaches the slope of the tangent line L .

Slope: m(a)

P (a, f (a))

Q(a + h, f (a + h))

xa a + h

y

y = f (x)

Δx = h
Δy = f (a + h) − f (a)

FIGURE 2.1.13 The slope of the tangent line
at (a, f (a)) is

m(a) = lim
h→0

f (a + h) − f (a)

h
.

We now force Q to approach the fixed point P along the curve y = f (x) by making h
approach zero. We ask whether m P Q approaches some limiting value m as h → 0. If
so, we write

m = lim
h→0

f (a + h) − f (a)

h

and conclude that this number m is the slope of the line tangent to the graph y = f (x)

at the point (a, f (a)). Actually, this slope depends on a and we can indicate this by
writing

ma = lim
h→0

f (a + h) − f (a)

h
. (7)

If we can express the limiting value on the right explicitly in terms of a, then Eq. (7)
yields a slope predictor for lines tangent to the curve y = f (x). In this case the line
tangent to the curve at the point P(a, f (a)) is defined to be the straight line through P
that has slope ma . This tangent line is indicated in Fig. 2.1.13.

In Chapter 3 we will acknowledge the fact that the slope ma is somehow “de-
rived” from the function f by calling this number the derivative of the function f
at the point a. Indeed, much of Chapter 3 will be devoted to methods of calculating
derivatives of various familiar functions. Most of these methods are based on the limit
techniques of Sections 2.2 and 2.3, but the case of quadratic functions is sufficiently
simple for inclusion here. Recall from Section 1.2 that the graph of any quadratic
function is a parabola that opens either upward or downward.

THEOREM Parabolas and Tangent Lines
Consider the parabola y = f (x) where

f (x) = px2 + qx + r (8)

(with p �= 0). Then the line tangent to this parabola at the point P(a, f (a)) has
slope

ma = 2pa + q. (9)

Proof The slope of the secant line given in (6) may be simplified as follows:

mPQ = f (a + h) − f (a)

h
= [p(a + h)2 + q(a + h) + r ] − [pa2 + qa + r ]

h

= [p(a2 + 2ah + h2) + q(a + h) + r ] − [pa2 + qa + r ]
h

= 2pah + ph2 + qh

h
,
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and therefore

m P Q = 2pa + q + ph.

The numbers p, q , and a are fixed, so as h → 0 the product ph approaches zero, much
as in our computations in Example 1. Thus

ma = lim
h→0

m P Q = lim
h→0

(2pa + q + ph) = 2pa + q,

as claimed in Eq. (9). ◆

REMARK 1 Thus the formula ma = 2pa + q provides a ready slope predictor for
lines tangent to the parabola with equation

y = px2 + qx + r.

Given the coefficients p, q, r , and the number a, we need only substitute in this slope-
predictor formula to obtain the slope ma of the line tangent to the parabola at the point
where x = a. We need not repeat the computational steps that were carried out in the
derivation of the slope-predictor formula.

REMARK 2 If we replace a with x we get the slope-predictor function

m(x) = 2px + q. (10)

Here m is a function whose value m(x) at x is the slope of the line tangent to the
parabola y = f (x) at the point P(x, f (x)). Perhaps the visual scheme

f (x) = px2 + qx + r⏐� ⏐� ⏐� ⏐�
m(x) = 2px + q + 0

makes this slope predictor easy for you to remember.

x

(c, c2)

y = x2

(3, 0)

N

y

FIGURE 2.1.14 The normal line N
from the point (3, 0) to the point
(c, c2) on the parabola y = x2.

EXAMPLE 3 Find an equation of the line tangent to the parabola y = 2x2 − 3x + 5
at the point where x = −1.

Solution Here we have p = 2, q = −3, r = 5, and the y-coordinate of our point is
2 · (−1)2 − 3 · (−1) + 5 = 10. Then Eq. (10) gives the slope predictor

m(x) = 2 · 2x + (−3) = 4x − 3,

so the slope of the line tangent to the parabola at the point (−1, 10) is m(−1) =
4 · (−1) − 3 = −7. The point-slope equation of this tangent line is therefore

y − 10 = (−7)(x + 1); that is, y = −7x + 3. ◗

Normal Lines
How would you find the point P(c, c2) that lies on the parabola y = x2 and is closest
to the point (3, 0)? Intuitively, the line segment N with endpoints (3, 0) and P should
be perpendicular, or normal, to the parabola’s tangent line at P (Fig. 2.1.14). But if the
slope of the tangent line is m, then—by Theorem 2 in Appendix B—the slope of the
normal line is

m N = − 1

m
. (11)

(Theorem 2 tells us that if two perpendicular lines have nonzero slopes m1 and m2,
then m1m2 = −1.) More precisely, the normal line at a point P of a curve where the
tangent line has slope m is defined to be the line through P with slope m N = −1/m
(Fig. 2.1.15). Consequently, the parabolic slope predictor in (9) enables us to write
equations of lines normal to parabolas as easily as equations of tangent lines.

P (c, f (c))

y =  f (x)

x

y

Tangent line,
slope: m

Normal line,
slope: −1/m

FIGURE 2.1.15 The tangent line
and normal line through the point P
on a curve.
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60 CHAPTER 2 Prelude to Calculus

EXAMPLE 4 In Example 3 we found that the line tangent to the parabola y = 2x2 −
3x + 5 at the point P(−1, 10) has slope −7. Therefore the slope of the line normal to
that parabola at P is m N = −1/(−7) = 1

7 . So the point-slope equation of the normal
line is

y − 10 = 1
7 (x + 1); that is, y = 1

7 x + 71
7 . ◗

The Animal Pen Problem Completed
Now we can apply our newfound knowledge of slope-predictor formulas to wrap up
our continuing discussion of the animal pen problem of Section 1.1. In Example 9
there we found that the area A of the pen (see Fig. 2.1.16) is given as a function of its
base length x by

A(x) = 3
5 (30x − x2) = − 3

5 x2 + 18x (12)

for 0 � x � 30. Therefore our problem is to find the maximum value of A(x) for x in

x

$5/ft

y $5/ft y$5/ft

$1/ft
x Wall

FIGURE 2.1.16 The animal pen.
the closed interval [0, 30].

Let us accept as intuitively obvious—we will see a proof in Chapter 3—the fact
that the maximum value of A(x) occurs at the high point where the line tangent to the

Horizontal
tangent line

Highest point
(15, 135)

10 20 30 x

150

100

50

y

y = A(x)

FIGURE 2.1.17 The graph of
y = A(x), 0 � x � 30.

parabola y = A(x) is horizontal, as indicated in Fig. 2.1.17. But the function A(x) in
Eq. (12) is quadratic with p = − 3

5 and q = 18 (compare (12) with (8)). Therefore the
slope predictor in (10) implies that the slope of the tangent line at an arbitrary point
(x, A(x)) of the parabola is given by

m = m(x) = 2px + q = − 6
5 x + 18.

We ask when m = 0 and find that this happens when

− 6
5 x + 18 = 0,

and thus when x = 15. In agreement with the result found by algebraic methods in
Section 1.2, we find that the maximum possible area of the pen is

A(15) = 3
5 (30 · 15 − 152) = 135 (ft2).

Numerical Investigation of Slopes
Suppose that you are given the function f and a specific numerical value of a. You can
then use a calculator to investigate the value

m = lim
h→0

f (a + h) − f (a)

h
(13)

of the slope of the line tangent to the curve y = f (x) at the point (a, f (a)). Simply
calculate the values of the difference quotient

f (a + h) − f (a)

h
(14)

with successively smaller nonzero values of h to see whether a limiting numerical value
is apparent.

EXAMPLE 5 Find by numerical investigation (an approximation to) the line tangent
to the graph of

f (x) = x + 1

x
(15)

at the point (2, 5
2 ).
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Tangent Lines and Slope Predictors SECTION 2.1 61

TEXAS INSTRUMENTS TI-83tt

FIGURE 2.1.18 A calculator
prepared to calculate
f (a + h) − f (a)

h
with

f (x) = x + 1

x
.

TEXAS INSTRUMENTS TI-83tt

FIGURE 2.1.19 Approximating

lim
h→0

f (a + h) − f (a)

h
.

48SX SCIENTIFIC EXPANDABLE

FIGURE 2.1.20 A calculator
prepared to compute
f (x + h) − f (x)

h
.

Solution Figure 2.1.18 shows a TI calculator prepared to calculate the difference
quotient in Eq. (14) with the function f in Eq. (15). As indicated in Fig. 2.1.19,
successive values of this quotient can then be calculated by brief “one-liners.” Figure
2.1.20 shows an HP calculator prepared to define the same quotient; then evaluation of
the expression 'M(2,0.0001)' yields the approximate value m ≈ 0.75001. In this
way we get the table shown in Fig. 2.1.21, which suggests that the slope of the line

h
f (2 + h) − f (2)

h

0.1 0.76190
0.01 0.75124
0.001 0.75012
0.0001 0.75001
0.00001 0.75000

↓ ↓
0

3

4

FIGURE 2.1.21 Numerical
investigation of the limit in (13) with

f (x) = x + 1

x
, a = 2.

tangent to the graph of f (x) at the point (2, 5
2 ) is m = 3

4 . If so, then the tangent line at
this point has the point-slope equation

y − 5
2 = 3

4 (x − 2); that is, y = 3
4 x + 1.

Our numerical investigation does not constitute a rigorous proof that this actually is
the desired tangent line, but Figs. 2.1.22 and 2.1.23 showing the computer-generated
graphs

y = x + 1

x
and y = 3

4
x + 1

are strong evidence that we’ve got it right. (Do you agree?) ◗

y = x +

4
y = x + 13

0 1 2 3 4 5
0

1

2

3

4

5

x

y

1
x

FIGURE 2.1.22 The curve and its
tangent line (Example 5).

1.5 2 2.5
2

2.5

3

x

y

4
y = x + 13

y = x + 1
x

FIGURE 2.1.23 The curve and its
tangent line magnified near (2, 5

2 ).

2.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The straight line through (a, a2) and (a + h, (a + h)2) has slope 2a + h.
2. The straight line tangent to the graph of f (x) = x2 at the point (a, a2) has slope

2a.
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62 CHAPTER 2 Prelude to Calculus

3. The straight line tangent to the graph of y = f (x) at the point (a, f (a)) has
slope

f (a + h) − f (a)

h
.

4. The straight line tangent to the parabola f (x) = px2 + qx + r at the point
(a, f (a)) has slope 2pa + q.

5. If the nonvertical lines L1 and L2 have slopes m1 and m2, respectively, and L1

and L2 are perpendicular, then m1m2 = 1.
6. Every horizontal line has slope zero.
7. To find the highest point on the graph of y = A(x) = − 3

5 x2 + 18x , find where
the line tangent to the graph has slope zero.

8. The slope-predictor for A(x) = − 3
5 x2 + 18x is m(x) = 2x + 18.

9. An equation of the straight line tangent to the graph of y = 2x2 − 3x + 5 at the
point (−1, 10) is y = 3x − 7.

10. Example 5 shows how to find the slope-predictor for the function f (x) = x3.

2.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. What is the slope-predictor function for the straight line with equation y = 17x −

21?
2. Can two different parabolas with equations of the form y = px2 + qx + r have

the same slope-predictor function?
3. The vertex of the parabola with equation y = px2 +qx +r is its highest point (if

p < 0) or its lowest point (if p > 0). As indicated in Fig. 2.1.17, it is apparent
that this vertex is the single point of the parabola at which the tangent line is
horizontal. Is it true—for any given curve y = f (x)—that a point on the graph
at which the tangent line is horizontal is either the highest or the lowest point on
the graph?

2.1 PROBLEMS

In Problems 1 through 14, first apply the slope-predictor formula
in (10) for quadratic functions to write the slope m(a) of the line
tangent to y = f (x) at the point where x = a. Then write
an equation of the line tangent to the graph of f at the point
(2, f (2)).

1. f (x) ≡ 5 2. f (x) = x

3. f (x) = x2 4. f (x) = 1 − 2x2

5. f (x) = 4x − 5 6. f (x) = 7 − 3x

7. f (x) = 2x2 − 3x + 4 8. f (x) = 5 − 3x − x2

9. f (x) = 2x(x + 3) 10. f (x) = 3x(5 − x)

11. f (x) = 2x −
( x

10

)2
12. f (x) = 4 − (3x + 2)2

13. f (x) = (2x + 1)2 − 4x 14. f (x) = (2x+3)2−(2x−3)2

In Problems 15 through 24, find all points of the curve y = f (x)

at which the tangent line is horizontal.

15. y = 10 − x2 16. y = 10x − x2

17. y = x2 − 2x + 1 18. y = x2 + x − 2

19. y = x −
( x

10

)2
20. y = x(100 − x)

21. y = (x + 3)(x − 5) 22. y = (x − 5)2

23. y = 70x − x2 24. y = 100
(

1 − x

10

)2

In Problems 25 through 35, use the slope-predictor formula for
quadratic functions as necessary. In Problems 25 through 27,
write equations for both the line tangent to, and the line normal
to, the curve y = f (x) at the given point P.

25. y = x2; P(−2, 4)

26. y = 5 − x − 2x2; P(−1, 4)

27. y = 2x2 + 3x − 5; P(2, 9)

28. Prove that the line tangent to the parabola y = x2 at the
point (x0, y0) intersects the x-axis at the point (x0/2, 0). See
Fig. 2.1.24.

x

y

(x0, y0)

y = x2

(x0
2

, )0

FIGURE 2.1.24 The parabola and
tangent line of Problem 28.
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Tangent Lines and Slope Predictors SECTION 2.1 63

29. If a ball is thrown straight upward with initial velocity 96 ft/s,
then its height t seconds later is y(t) = 96t − 16t2 feet. De-
termine the maximum height the ball attains by finding the
point in the parabola y(t) = 96t − 16t2 where the tangent
line is horizontal.

30. According to Problem 40 of Section 1.1, the area of a rect-
angle with base of length x and perimeter 100 is A(x) =
x(50− x). Find the maximum possible area of this rectangle
by finding the point on the parabola A = x(50 − x) at which
the tangent line is horizontal.

31. Find the maximum possible value of the product of two pos-
itive numbers whose sum is 50.

32. Suppose that a projectile is fired at an angle of 45◦ from the
horizontal. Its initial position is the origin in the xy-plane,
and its initial velocity is 100

√
2 ft/s (Fig. 2.1.25). Then its

trajectory will be the part of the parabola y = x−(x/25)2 for
which y � 0. (a) How far does the projectile travel (horizon-
tally) before it hits the ground? (b) What is the maximum
height above the ground that the projectile attains?

x

y

y = x − ( x
25)2

FIGURE 2.1.25 The trajectory of the projectile of
Problem 32.

33. One of the two lines that pass through the point (3, 0) and
are tangent to the parabola y = x2 is the x-axis. Find an
equation for the other line. (Suggestion: First find the value
of the number a shown in Fig. 2.1.26.)

x

y

(a, a2)

y = x2

(3, 0)

FIGURE 2.1.26 Two lines tangent
to the parabola of Problem 33.

34. Write equations for the two straight lines that pass through
the point (2, 5) and are tangent to the parabola y = 4x − x2.
(Suggestion: Draw a figure like Fig. 2.1.26.)

35. Between Examples 3 and 4 we raised—but did not answer—
the question of how to locate the point on the graph of

y = x2 closest to the point (3, 0). It’s now time for you to
find that point. (Suggestion: Draw a figure like Fig. 2.1.26.
The cubic equation you should obtain has one solution that
is apparent by inspection.)

Let P(a, f (a)) be a fixed point on the graph of y = f (x).
If h > 0, then Q(a + h, f (a + h)) lies to the right, and
R(a − h, f (a − h)) lies to the left, of P. Does Fig. 2.1.27 make
it appear plausible—for h > 0 and h very small—that the slope

mRQ = f (a + h) − f (a − h)

2h
= 1

2
(mPQ + mRP)

is generally an especially good approximation to the slope m of
the line tangent to the graph at P? In particular, the “symmetric
difference quotient” m RQ is generally a better approximation to
m than either the standard right-hand difference quotient

m P Q = f (a + h) − f (a)

h

or the left-hand difference quotient

m R P = f (a) − f (a − h)

h
.

In Problems 36 through 48, use a calculator or computer to
investigate numerically the slope m of the line tangent to the
given graph at P(a, f (a)) by calculating both m P Q and m RQ

for h = 0.1, 0.01, 0.001, . . . . Check the resulting value of m by
plotting both the graph of y = f (x) and the alleged tangent line.

R(a − h, f(a − h))

Q(a + h, f (a + h))

P(a, f (a))

a − h a + ha x

y y = f (x)

FIGURE 2.1.27 Three different
approximations to the slope of a
tangent line.

36. f (x) = x2; a = −1 37. f (x) = x3; a = 2

38. f (x) = x3; a = −1 39. f (x) = √
x ; a = 1

40. f (x) = √
x ; a = 4 41. f (x) = 1

x
; a = 1

42. f (x) = 1

x
; a = − 1

2 43. f (x) = cos x ; a = 0

44. f (x) = sin 10πx ; a = 0 45. f (x) = cos x ; a = 1
4 π

46. f (x) = sin 10πx ; a = 1
20 47. f (x) = √

25 − x2 ; a = 0

48. f (x) = √
25 − x2 ; a = 3
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64 CHAPTER 2 Prelude to Calculus

2.1 INVESTIGATION: Numerical Slope Approximations
In each of the problems listed below, it is known that the slope m of the tangent line to

0

1

2

3

4

0 1 2 3
x

y P

(x2, y2)

y = f(x)

(x1, y1)

FIGURE 2.1.28 Points on either
side of P .

the graph y = f (x) at the fixed point P(a, f (a)) is either an integer or the reciprocal
of a single-digit integer. Use this fact to determine m numerically by using a graphing
facility (calculator or computer) with which you can “grab” the xy-coordinates of a
selected point on the graph. Suppose you “zoom in” on the point P , and at the kth zoom
record the coordinates (x1, y1) and (x2, y2) of two points located on either side of P
(as indicated in Fig. 2.1.28). Then you can approximate the value of m by calculating
the value of the difference quotient

mk = �y

�x
= y2 − y1

x2 − x1
.

After enough zooms, it should be clear what rational value the approximate slopes
m1, m2, . . . , are approaching.

1. f (x) = x2; P = P(−2, 4); m(−2) = ?

2. f (x) = √
x ; P = P(1, 1); m(1) = ?

3. f (x) = 1

x
; P = P(2, 1/2); m(2) = ?

4. f (x) = 12

x2
; P = P(−4, 3/4); m(−4) = ?

5. f (x) = √
x2 − 9; P = P(5, 4); m(5) = ?

6. f (x) = 3

π
sin

π

x
; P = P(3, 3

√
3/2π); m(3) = ?

2.2 THE LIMIT CONCEPT

In Section 2.1 we defined the slope m of the line tangent to the graph y = f (x) at the
point P(a, f (a)) to be

m = lim
h→0

f (a + h) − f (a)

h
. (1)

The graph that motivated this definition is repeated in Fig. 2.2.1, with a + h relabeled
as x (so that h = x − a). We see that x approaches a as h approaches zero, so Eq. (1)
can be written in the form

m = lim
x→a

f (x) − f (a)

x − a
. (2)

x

P(a, f (a))

x = a + ha

y = f (x)

x − a = h

y

Q(x, f (x))

f (x) − f (a) = f (a + h) − f (a)

FIGURE 2.2.1 The slope m at P(a, f (a)) can be

defined in this way: m = lim
x→a

f (x) − f (a)

x − a
.
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The Limit Concept SECTION 2.2 65

Thus the computation of m amounts to the determination of the limit, as x approaches
a, of the function

g(x) = f (x) − f (a)

x − a
. (3)

In order to develop general methods for calculating such limits, we need to in-
vestigate more fully the meaning of the statement

lim
x→a

f (x) = L . (4)

This is read “the limit of f (x) as x approaches a is L .” We sometimes write Eq. (4) in
the concise form

f (x) → L as x → a.

The function f need not be defined at the point x = a in order for us to discuss
the limit of f at a. The actual value of f (a)—if any—actually is immaterial. It suffices
for f (x) to be defined for all points other than a in some neighborhood of a—that is,
for all x �= a is some open interval containing a. This is exactly the situation for the
function in Eq. (3), which is defined except at a (where the denominator is zero). The
following statement presents the meaning of Eq. (4) in intuitive language.

Idea of the Limit
We say that the number L is the limit of f (x) as x approaches a provided that we can
make the number f (x) as close to L as we please merely by choosing x sufficiently
near, though not equal to, the number a.

What this means, roughly, is that f (x) tends to get closer and closer to L as x
gets closer and closer to a. Once we decide how close to L we want f (x) to be, it is
necessary that f (x) be that close to L for all x sufficiently close to (but not equal to) a.

Figure 2.2.2 shows a graphical interpretation of the limit concept. As x ap-
proaches a (from either side), the point (x, f (x)) on the graph y = f (x) must ap-
proach the point (a, L).

In this section we explore the idea of the limit, mainly through the investigation
of specific examples. A precise statement of the definition of the limit appears in

x

y

(a, L)

y = f (x)

(x, f (x))

xa

L

FIGURE 2.2.2 Graphical
interpretation of the limit concept.

Section 2.3.

EXAMPLE 1 Investigate the value of lim
x→3

x − 1

x + 2
.

Investigation This is an investigation (rather than a solution) because numerical cal-
culations may strongly suggest the value of a limit but cannot establish its value with
certainty. The table in Fig. 2.2.3 gives values of

f (x) = x − 1

x + 2
,

correct to six rounded decimal places, for values of x that approach 3 (but are not equal
to 3). The first and third columns of the table show values of x that approach 3 both
from the left and from the right.

Now examine the table—read down the columns for x , because down is the ta-
ble’s direction for “approaches”—to see what happens to the corresponding values of
f (x). The data clearly suggest that

lim
x→3

x − 1

x + 2
= 2

5
. ◗

REMARK 1 The graph of f (x) = (x − 1)/(x + 2) in Fig. 2.2.4 reinforces our guess
that f (x) is near 2

5 when x is near 3. For still more reinforcement you can use a
graphing calculator or computer to zoom in on the point on the graph where x = 3.
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x
x − 1

x + 2
x

x − 1

x + 2

2 0.250000 4 0.500000
2.9 0.387755 3.1 0.411765
2.99 0.398798 3.01 0.401198
2.999 0.399880 3.001 0.400120
2.9999 0.399988 3.0001 0.400012

↓ ↓ ↓ ↓
3 0.4 3 0.4

FIGURE 2.2.3 Investigating the limit in Example 1.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

x

y
x = 3

y =
x + 2
x − 1

y = 0.4

FIGURE 2.2.4 The limit in
Example 1.

REMARK 2 Note that we did not simply substitute the value x = 3 into the function
f (x) = (x − 1)/(x + 2) to obtain the apparent value 2

5 = 0.4 of the limit. Although
such substitution would produce the correct answer in this particular case, in many
limits it produces either an incorrect answer or no answer at all. (See Examples 2 and
3 and Problems 19 through 36 and 47 through 56.)

EXAMPLE 2 Investigate the value of lim
x→2

x2 − 4

x2 + x − 6
.

Investigation The numerical data shown in Fig. 2.2.5 certainly suggest that

lim
x→2

x2 − 4

x2 + x − 6
= 4

5
. ◗

x
x2 − 4

x2 + x − 6
x

x2 − 4

x2 + x − 6

1 0.750000 3 0.833333
1.5 0.777778 2.5 0.818182
1.9 0.795918 2.1 0.803922
1.99 0.799599 2.01 0.800399
1.999 0.799960 2.001 0.800040
1.9999 0.799996 2.0001 0.800004

↓ ↓ ↓ ↓
2 0.8 2 0.8

FIGURE 2.2.5 Investigating the limit in Example 2.

REMARK The function

f (x) = x2 − 4

x2 + x − 6

is not defined at x = 2, so we cannot merely substitute 2 for x . But if we let

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2 − 4

x2 + x − 6
if x �= 2,

6

5
if x = 2,

then g(x) is defined at x = 2 (and agrees with f (x) elsewhere). Is it clear to you that
f and g must have the same limit at x = 2? Figure 2.2.6 shows the graph y = g(x),
including the isolated point (2, 1.2) on its graph.

y =
x2 + x − 6

x2 − 4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

(2, 1.2)

y = 0.8

x

y

FIGURE 2.2.6 The limit in
Example 2.
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EXAMPLE 3 Investigate the value of lim
t→0

√
t + 25 − 5

t
.

t

√
t + 25 − 5

t

1.0 0.099020
0.5 0.099505
0.1 0.099900
0.05 0.099950
0.01 0.099990
0.005 0.099995

↓ ↓
0 0.1

FIGURE 2.2.7 Investigating the
limit in Example 3.

Investigation Here we cannot make a guess by substituting t = 0 because the frac-
tion

g(t) =
√

t + 25 − 5

t

is not defined when t = 0. But the numerical data shown in Fig. 2.2.7 indicate that

lim
t→0

√
t + 25 − 5

t
= 1

10
.

We can attempt to corroborate this result graphically by zooming in on the point (1, 1
10 ).

The plot shown in Fig. 2.2.8 does not contradict the indicated limit, but somehow is
unconvincing because it “goes too far” and suggests (incorrectly!) that g(t) = 1

10 for
t �= 0. The problem is that the scale on the y-axis is too coarse. The magnification
shown in Fig. 2.2.9 does appear to substantiate the limiting value of 1

10 . ◗

0 0.5 1
-1
-1 -0.5

-0.5

0

0.5

1

t

y

y =
t

t + 25 − 5

FIGURE 2.2.8 Graph of

g(t) =
√

t + 25 − 5

t
for

−1 � t � + 1, −1 � y � + 1.

0 0.5 1
0.099

-1 -0.5

0.0995

0.1

0.1005

0.101

t

y
y =

t
t + 25 − 5

(0, 1/10)

FIGURE 2.2.9 Graph of

g(t) =
√

t + 25 − 5

t
for −1 � t � + 1,

0.099 � y � 0.101.

REMARK Can you see that, upon dividing each number in the second column of
Fig. 2.2.7 by 10000, one might well suspect that

lim
t→0

√
t + 25 − 5

10000t
= 0? (Wrong!)

In fact, the value of this limit (as we will see in Example 13) is exactly 10−5 = 0.00001,
not zero. This fact constitutes a warning that numerical investigations of limits are not
conclusive.

The numerical investigation in Example 3 is incomplete because the table in
Fig. 2.2.7 shows values of the function g(t) on only one side of the point t = 0.
But in order that limx→a f (x) = L , it is necessary for f (x) to approach L both as x
approaches a from the left and as x approaches a from the right. If f (x) approaches
different values as x approaches a from different sides, then limx→a f (x) does not
exist. In Section 2.3 we discuss such one-sided limits in more detail.

EXAMPLE 4 Investigate lim
x→0

f (x), given

f (x) = x

|x | =
{

1 if x > 0,

−1 if x < 0.
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Solution From the graph of f shown in Fig. 2.2.10, it is apparent that f (x) → 1 as

x

y

−1

+1

FIGURE 2.2.10 The graph of

f (x) = x

|x | (Example 4).

x → 0 from the right and that f (x) → −1 as x → 0 from the left. In particular, there
are positive values of x as close to zero as we please such that f (x) = 1 and negative
values of x equally close to zero such that f (x) = −1. Hence we cannot make f (x)

as close as we please to any single value of L merely by choosing x sufficiently close
to zero. Therefore,

lim
x→0

x

|x | does not exist. ◗

In Example 5 the value obtained by substituting x = a in F(x) to find
limx→a F(x) is incorrect.

EXAMPLE 5 Evaluate lim
x→0

F(x) where

x

y

F(0) = 0

FIGURE 2.2.11 The graph of the
function F of Example 5.

F(x) =
{

1 if x �= 0,

0 if x = 0.

The graph of F is shown in Fig. 2.2.11.

Solution The fact that F(x) = 1 for every value of x �= 0 in any neighborhood of
zero implies that

lim
x→0

F(x) = 1.

But note that the value of the limit at x = 0 is not equal to the functional value
F(0) = 0 there. ◗

The Limit Laws

Numerical investigations such as those in Examples 1 through 3 provide us with an
intuitive feeling for limits and typically suggest the correct value of a limit. But most
limit computations are based neither on merely suggestive (and imprecise) numerical
estimates nor on direct (but difficult) applications of the definition of limit. Instead,
such computations are performed most easily and naturally with the aid of the limit
laws that we give next. These “laws” actually are theorems, whose proofs (based on
the precise definition of the limit) are included in Appendix D.

Constant Law
If f (x) ≡ C , where C is a constant [so f (x) is a constant function], then

lim
x→a

f (x) = lim
x→a

C = C. (5)

Sum Law
If both of the limits

lim
x→a

f (x) = L and lim
x→a

g(x) = M

exist, then

lim
x→a

[ f (x) ± g(x)] =
[

lim
x→a

f (x)
]

±
[

lim
x→a

g(x)
]

= L ± M. (6)

(The limit of a sum is the sum of the limits; the limit of a difference is the difference
of the limits.)

68

www.konkur.in



The Limit Concept SECTION 2.2 69

Product Law
If both of the limits

lim
x→a

f (x) = L and lim
x→a

g(x) = M

exist, then

lim
x→a

[ f (x)g(x)] =
[

lim
x→a

f (x)
][

lim
x→a

g(x)
]

= L M. (7)

(The limit of a product is the product of the limits.)

Quotient Law
If both of the limits

lim
x→a

f (x) = L and lim
x→a

g(x) = M

exist and if M �= 0, then

lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)
= L

M
. (8)

(The limit of a quotient is the quotient of the limits, provided that the limit of the
denominator is not zero.)

Root Law
If n is a positive integer and if a > 0 for even values of n, then

lim
x→a

n
√

x = n
√

a. (9)

The case n = 1 of the root law is obvious:

lim
x→a

x = a. (10)

Examples 6 and 7 show how the limit laws can be used to evaluate limits of
polynomials and rational functions.

EXAMPLE 6

lim
x→3

(x2 + 2x + 4) =
(

lim
x→3

x2
)

+
(

lim
x→3

2x
)

+
(

lim
x→3

4
)

=
(

lim
x→3

x
)2 + 2

(
lim
x→3

x
)

+
(

lim
x→3

4
)

= 32 + 2 · 3 + 4 = 19.

◗

EXAMPLE 7

lim
x→3

2x + 5

x2 + 2x + 4
=

lim
x→3

(2x + 5)

lim
x→3

(x2 + 2x + 4)

= 2 · 3 + 5

32 + 2 · 3 + 4
= 11

19
. ◗

NOTE In Examples 6 and 7, we systematically applied the limit laws until we could
simply substitute 3 for limx→3 x at the final step. To determine the limit of a quotient
of polynomials, we must verify before this final step that the limit of the denominator
is not zero. If the denominator limit is zero, then the limit may fail to exist.

EXAMPLE 8 Investigate lim
x→1

1

(x − 1)2
.
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Solution Because limx→1(x − 1)2 = 0, we cannot apply the quotient law. Moreover,

x

y

x = 1

L
y = L − ∋

y = L + ∋

y = 1
(x − 1)2

FIGURE 2.2.12 The graph of

y = 1

(x − 1)2
(Example 8).

we can make 1/(x − 1)2 arbitrarily large by choosing x sufficiently close to 1. Hence
1/(x − 1)2 cannot approach any (finite) number L as x approaches 1. Therefore, the
limit in this example does not exist. You can see the geometric reason if you examine
the graph of y = 1/(x − 1)2 in Fig. 2.2.12. As x → 1, the corresponding point (x, y)

ascends the curve near the vertical line x = 1. It must therefore leave the indicated
strip between the two horizontal lines x = L − ε and x = L + ε that bracket the
proposed limit L . Thus, the point (x, y) cannot approach the point (1, L) as x → 1.

◗

EXAMPLE 9 Investigate lim
x→2

x2 − 4

x2 + x − 6
.

Solution We cannot immediately apply the quotient law (as we did in Example 7)
because the denominator approaches zero as x approaches 2. If the numerator were
approaching some number other than zero as x → 2, then the limit would fail to exist
(as in Example 8). But here the numerator does approach zero, so there is a possibility
that a factor of the numerator can be canceled with the same factor of the denominator,
thus removing the zero-denominator problem. Indeed,

lim
x→2

x2 − 4

x2 + x − 6
= lim

x→2

(x − 2)(x + 2)

(x − 2)(x + 3)

= lim
x→2

x + 2

x + 3
= 4

5
.

We can cancel the factor x −2 because it is nonzero: x �= 2 when we evaluate the limit
as x approaches 2. Moreover, this verifies the numerical limit of 0.8 that we found in
Example 2. ◗

Substitution of Limits

It is tempting to write

lim
x→−4

√
x2 + 9 =

√
lim

x→−4
(x2 + 9)

=
√

(−4)2 + 9 = √
25 = 5. (11)

But can we simply “move the limit inside the radical” in Eq. (11)? To analyze this
question, let us write

f (x) = √
x and g(x) = x2 + 9.

Then the function that appears in Eq. (11) is the composite function

f (g(x)) = √
g(x) =

√
x2 + 9.

(Recall that the left-hand expression in this equation is read “ f of g of x .”) Hence our
question is whether or not

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)
.

The next limit law answers this question in the affirmative, provided that the “outside
function” f meets a certain condition; if so, then the limit of the composite function
f (g(x)) as x → a may be found by substituting into the function f the limit of g(x)

as x → a.
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Substitution Law Limits of Compositions
Suppose that

lim
x→a

g(x) = L and that lim
x→L

f (x) = f (L).

Then
lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)

= f (L). (12)

Thus the condition under which Eq. (12) holds is that the limit of the outer func-
tion f not only exists at x = L , but also is equal to the “expected” value of f —namely,
f (L). In particular, because

lim
x→−4

(x2 + 9) = 25 and lim
x→25

√
x = √

25 = 5,

this condition is satisfied in Eq. (11). Hence the computations shown there are valid.
In this section we use only the following special case of the substitution law.

With f (x) = x1/n , where n is a positive integer, Eq. (12) takes the form

lim
x→a

n
√

g(x) = n

√
lim
x→a

g(x), (13)

under the assumption that the limit of g(x) exists as x → a (and is positive if n is
even). With g(x) = xm , where m is a positive integer, Eq. (13) in turn yields

lim
x→a

xm/n = am/n, (14)

with the condition that a > 0 if n is even. Equations (13) and (14) may be regarded
as generalized root laws. Example 10 illustrates the use of these special cases of the
substitution law.

EXAMPLE 10

lim
x→4

3
√

3
√

x3 + 20
√

x = 3

√
lim
x→4

(3x3/2 + 20
√

x ) [using Eq. (13)]

=
(

lim
x→4

3x3/2 + lim
x→4

20
√

x
)1/3

[using the sum law]

= (
3 · 43/2 + 20

√
4

)1/3
[using Eq. (14)]

= (24 + 40)1/3 = 3
√

64 = 4. ◗

Slope-Predictor Functions
Our discussion of limits began with the slope

ma = lim
h→0

f (a + h) − f (a)

h
(15)

of the line tangent to the graph y = f (x) at the point (a, f (a)). The lines tangent
to y = f (x) at different points have different slopes. Thus if we replace a with x in
Eq. (15), we get a new function defined by

m(x) = lim
h→0

f (x + h) − f (x)

h
. (16)

This function m may be regarded as a “slope predictor” for lines tangent to the graph
y = f (x). It is a new function derived from the original function f (x), and in Chap-
ter 3 we will call it the derivative of f .
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EXAMPLE 11 In Section 2.1 we saw that the line tangent to the graph y = px2 +
qx + r at the point where x = a has slope ma = 2pa + q. Hence the slope-predictor
function for the quadratic function

f (x) = px2 + qx + r (17)

is the linear function
m(x) = 2px + q. (18)

Figure 2.2.13 illustrates the case p = 1, q = 4, r = −12. It is worth noting that the
x-intercept where m(x) = 0 corresponds to the point of the parabola y = f (x) where
the tangent line is horizontal. ◗

-10 -5 0 5 10
-20

-10

0

10

20

y = x2 + 4x − 12

y = 2x + 4

x

y

FIGURE 2.2.13 The parabola
y = x2 + 4x − 12 and its slope
predictor m(x) = 2x + 4.

The slope-predictor definition in Eq. (16) calls for us to carry out the following
four steps.

1. Write the definition of m(x).
2. Substitute into this definition the formula of the given function f .
3. Make algebraic simplifications until Step 4 can be carried out.
4. Determine the value of the limit as h → 0.

Note that x may be thought of as a constant throughout this computation—it is h that
is the variable in this four-step process.

EXAMPLE 12 Find the slope-predictor function for the function

f (x) = x + 1

x
that was investigated numerically in Example 5 of Section 2.1.

Solution The first two steps in the preceding list yield

m(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(
x + h + 1

x + h

)
−

(
x + 1

x

)
h

.

We cancel the two copies of x in the numerator and proceed to simplify algebraically,
first finding a common denominator in the numerator:

m(x) = lim
h→0

h + 1

x + h
− 1

x
h

= lim
h→0

h(x + h)x + x − (x + h)

h(x + h)x

= lim
h→0

h(x + h)x − h

h(x + h)x
.

Now we can divide numerator and denominator by h (because h �= 0) and finally apply
the sum, product, and quotient laws to evaluate the limit as h → 0:

m(x) = lim
h→0

h(x + h)x − h

h(x + h)x

= lim
h→0

(x + h)x − 1

(x + h)x
= x2 − 1

x2
= 1 − 1

x2
.

For instance, the slope of the line tangent to

y = x + 1

x

at the point (2, 5
2 ) is m(2) = 3

4 (thus verifying the result in Example 5 of Section 2.1).
◗
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Example 13 illustrates an algebraic procedure often used in “preparing” func-
tions before taking limits. This procedure can be applied when roots are present and
resembles the simple computation

1√
5 − √

2
= 1√

5 − √
2

·
√

5 + √
2√

5 + √
2

=
√

5 + √
2

5 − 2
=

√
5 + √

2

3
.

EXAMPLE 13 Find the slope-predictor function for the function f (x) = √
x .

Solution

m(x) = lim
h→0

√
x + h − √

x

h
. (19)

To prepare the fraction for evaluation of the limit, we first multiply the numerator and
denominator by the conjugate

√
x + h + √

x of the numerator:

m(x) = lim
h→0

√
x + h − √

x

h
·
√

x + h + √
x√

x + h + √
x

= lim
h→0

(x + h) − x

h(
√

x + h + √
x )

= lim
h→0

1√
x + h + √

x
.

Thus

m(x) = 1

2
√

x
. (20)

(In the final step we used the sum, quotient, and root laws—we did not simply substi-
tute 0 for h.) ◗

Note that if we equate the right-hand sides of Eqs. (19) and (20) and take x = 25,
then we get the limit in Example 3:

lim
h→0

√
25 + h − 5

h
= 1

10
.

(The t in Example 3 has been replaced here with h.) And if we divide both sides by
10000 we find that

lim
h→0

√
25 + h − 5

10000h
= 1

100000
= 0.00001,

as claimed in the remark following Example 3.

2.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose that the function f is given together with the point P(a, f (a)) on its
graph. Then the slope of the straight line tangent to the graph of f at the point P
is

g(x) = f (x) − f (a)

x − a
.

2. Suppose that the function f is given together with the point P(a, f (a)) on its
graph. Then the slope of the straight line tangent to the graph of f at the point
P is the limiting value, as x approaches a, of the function g(x) defined in the
preceding item.
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3. To say that lim
x→a

g(x) = L means that g(x) can be made arbitrarily close to the

number L merely by ensuring that x is sufficiently close to (but not equal to) the
number a.

4. lim
x→2

x3 = 6.

5. If g(x) = x2 − 4

x2 + x − 6
, then lim

x→2
g(x) = g(2).

6. If f (x) = x

|x | , then lim
x→0

f (x) does not exist because f (0) is undefined.

7. If F(x) =
{

1 if x �= 0,
0 if x = 0,

then lim
x→0

F(x) = 0.

8. If lim
x→a

f (x) = L and lim
x→a

g(x) = M , then lim
x→a

f (x) · g(x) = L · M .

9. If lim
x→a

f (x) = L and lim
x→a

g(x) = M , then lim
x→a

f (x)

g(x)
= L

M
.

10. It follows from the limit laws that lim
x→3

√
25 − x2 = 4.

2.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. The sum, product, and quotient laws imply that if the limits

lim
x→a

f (x) and lim
x→a

g(x) (21)

both exist, then the limit

lim
x→a

[ f (x) 	 g(x)] (22)

also exists—with the symbol 	 denoting either +, −, ×, or ÷ (and assuming
in the case of division that limx→a g(x) �= 0). Can you produce examples—
in all four cases—of functions such that neither of the limits in (21) exists, but
nevertheless the limit in (22) does exist? It may help to review the examples of
nonexisting limits in this section.

2. Can you produce examples of functions f and g such that both

lim
x→a

g(x) = b and lim
x→b

f (x) = c

exist, but

lim
x→a

f (g(x)) �= f
(

lim
x→a

g(x)
)

?

If so, why does this not contradict the substitution law of limits?

2.2 PROBLEMS

Apply the limit laws of this section to evaluate the limits in Prob-
lems 1 through 18. Justify each step by citing the appropriate
limit law.

1. lim
x→3

(3x2 + 7x − 12)

2. lim
x→−2

(x3 − 3x2 + 5)

3. lim
x→1

(x2 − 1)(x7 + 7x − 4)

4. lim
x→−2

(x3 − 3x + 3)(x2 + 2x + 5)

5. lim
x→1

x + 1

x2 + x + 1
6. lim

t→−2

t + 2

t2 + 4

7. lim
x→3

(x2 + 1)3

(x3 − 25)3
8. lim

z→−1

(3z2 + 2z + 1)10

(z3 + 5)5

9. lim
x→1

√
4x + 5 10. lim

y→4

√
27 − √

y

11. lim
x→3

(x2 − 1)3/2 12. lim
t→−4

√
t + 8

25 − t2

13. lim
z→8

z2/3

z − √
2z

14. lim
t→2

3
√

3t3 + 4t − 5

15. lim
w→0

√
(w − 2)4 16. lim

t→−4

3
√

(t + 1)6

17. lim
x→−2

3

√
x + 2

(x − 2)2
18. lim

y→5

(
2y2 + 2y + 4

6y − 3

)1/3
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In Problems 19 through 28, note first that the numerator and de-
nominator have a common algebraic factor (as in Example 9).
Use this fact to help evaluate the given limit.

19. lim
x→−1

x + 1

x2 − x − 2
20. lim

t→3

t2 − 9

t − 3

21. lim
x→1

x2 + x − 2

x2 − 4x + 3
22. lim

y→−1/2

4y2 − 1

4y2 + 8y + 3

23. lim
t→−3

t2 + 6t + 9

t2 − 9
24. lim

x→2

x2 − 4

3x2 − 2x − 8

25. lim
z→−2

(z + 2)2

z4 − 16
26. lim

t→3

t3 − 9t

t2 − 9

27. lim
x→1

x3 − 1

x4 − 1
28. lim

y→−3

y3 + 27

y2 − 9

In Problems 29 through 36, evaluate those limits that exist.

29. lim
x→3

1

x
− 1

3
x − 3

30. lim
t→0

1

2 + t
− 1

2
t

31. lim
x→4

x − 4√
x − 2

32. lim
x→9

3 − √
x

9 − x

33. lim
t→0

√
t + 4 − 2

t
34. lim

h→0

1

h

(
1√

9 + h
− 1

3

)

35. lim
x→4

x2 − 16

2 − √
x

36. lim
x→0

√
1 + x − √

1 − x

x

In Problems 37 through 46, use the four-step process illustrated
in Examples 12 and 13 to find a slope-predictor function for the
given function f (x). Then write an equation for the line tangent
to the curve y = f (x) at the point where x = 2.

37. f (x) = x3 38. f (x) = 1

x

39. f (x) = 1

x2
40. f (x) = 1

x + 1

41. f (x) = 2

x − 1
42. f (x) = x

x − 1

43. f (x) = 1√
x + 2

44. f (x) = x2 + 3

x

45. f (x) = √
2x + 5 46. f (x) = x2

x + 1

In Problems 47 through 56, the actual value of the given limit
limx→a f (x) is a rational number that is a ratio of two single-
digit integers. Guess this limit on the basis of a numerical investi-
gation in which you calculate f (x) for x = a±0.1, x = a±0.05,
x = a±0.01, x = a±0.005, and so on. Use other similar values
of x near a as you wish.

47. lim
x→0

(1 + x)2 − 1

x
48. lim

x→1

x4 − 1

x − 1

49. lim
x→0

√
x + 9 − 3

x
50. lim

x→4

x3/2 − 8

x − 4

51. lim
x→0

1

x

[
2

(2 + x)3
− 1

4

]
52. lim

x→0

(3 + x)−1 − (3 − x)−1

x

53. lim
x→0

sin x

x
54. lim

x→0

1 − cos x

x2

55. lim
x→0

x − sin x

x3
56. lim

x→0

(
1 + 1

|x |
)x

57. In contrast with the rational-valued limits in Problems 47
through 56, the value of the limit

lim
x→0

(1 + x)1/x

is the famous irrational number e (of Chapter 3), whose
three-place decimal approximation is e ≈ 2.718. Numeri-
cally investigate this limit to approximate e accurate to five
decimal places. Corroborate this value graphically by zoom-
ing in on the y-intercept of the curve y = (1 + x)1/x .

58. Verify graphically the limit

lim
x→0

sin x

x

of Problem 53 by zooming in on the y-intercept of the curve
y = (sin x)/x .

59. Investigate the limit

lim
x→0

x − tan x

x3

both numerically and graphically. Determine its value accu-
rate to four decimal places.

60. The value of

lim
x→0

sin 2x

tan 5x

is the ratio of two single-digit integers. Determine this value
both numerically and graphically.

61. Calculate the value of

f (x) = sin
π

x

for x = 1
2 , 1

4 , 1
8 , 1

16 , . . . . What do you now conjecture to be
the value of

lim
x→0

sin
π

x
?

Next calculate f (x) for x = 2
3 , 2

9 , 2
27 , 2

81 , . . . . Now what do
you conclude?

62. To investigate the limit of f (x) = sin x + 10−5 cos x as
x → 0, set your graphing calculator or computer to display
exactly four digits to the right of the decimal point. After
calculating f (x) with x = 0.1, 0.001, 0.00001, 0.0000001,
. . . , what do you conclude? (Your answer may depend on
how your particular calculator works.) Now zoom in on the
y-intercept of the curve y = f (x) sufficiently to show that
the value of the limit is nonzero. What is it?

63. Investigate numerically or graphically (or both) the value of
the limit

lim
x→0

(
log10

1

|x |
)−1/32

.

The actual value of this limit is zero, so you’ll see that your
calculator or computer cannot always be believed.
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64. (a) Show that the slope of the line tangent to the graph of
y = 10x at the point (0, 1) is the number

L = lim
h→0

10h − 1

h
.

Investigate this limit numerically and graphically. Do your

results substantiate the fact that L = ln 10, the value pro-
duced by the LN key on your calculator? (b) Show that
the slope-predictor function for lines tangent to the graph
y = 10x is m(x) = L · 10x . Corroborate this fact by using a
calculator or computer to plot the graph of y = 10x and its
predicted tangent lines at several different points.

2.2 INVESTIGATION: Limits, Slopes, and Logarithms
Generalize the result in Problem 64 of this section. First refer to Fig. 2.2.14. Then

0 0.5 1
-4

-1 -0.5

0

-2

2

4

6

8

x

y

y = L(a)x + 1

y = ax

(0, 1)

FIGURE 2.2.14 The graph of
y = ax and its tangent line at the
point (0, 1).

suppose that a is a positive constant. Show that the slope of the line tangent to the
graph of y = ax at the point (0, 1) is the number

L(a) = lim
h→0

ah − 1

h
. (1)

(Note how the notation of functions is used in Eq. (1) to emphasize the dependence of
the slope on the base constant a.) Next choose at random a pair of positive integers a
and b and investigate the numerical values of L(a), L(b), and L(ab). Are your results
consistent with the fact that

L(ab) = L(a) + L(b), (2)

in analogy with the law of logarithms

log ab = log a + log b? (3)

At this point the connection between Eqs. (2) and (3) is surely an enigma rather than
an explanation. The mystery will be explained in Section 3.8, in which we study
natural logarithms. For now, use the LN key on your calculator to find ln a, ln b, and
ln ab; compare these with your earlier values of L(a), L(b), and L(ab). You can also
follow up these investigations with a computer algebra system: Use it to attempt to
evaluate the limit in Eq. (1) symbolically, and then compare the symbolic result with
your numerical results.

2.3 MORE ABOUT LIMITS

To investigate limits of trigonometric functions, we begin with Fig. 2.3.1, which shows

θ, sin θ)

x

y

θ
R(1, 0)

P(cos

x2 + y2 = 1

FIGURE 2.3.1 An angle θ .

an angle θ with its vertex at the origin, its initial side along the positive x-axis, and its
terminal side intersecting the unit circle at the point P . By the definition of the sine and
cosine functions, the coordinates of P are P(cos θ, sin θ). From geometry we see that,
as θ → 0, the point P(cos θ, sin θ) approaches the point R(1, 0). Hence cos θ → 1
and sin θ → 0 as θ → 0 through positive values. A similar picture gives the same
result for negative values of θ , so we see that

lim
θ→0

cos θ = 1 and lim
θ→0

sin θ = 0. (1)

Equation (1) says simply that the limits of the functions cos θ and sin θ as θ → 0 are
equal to their respective values at θ = 0: cos 0 = 1 and sin 0 = 0.

The limit of the quotient (sin θ)/θ as θ → 0 plays a special role in the calculus
of trigonometric functions. For instance, it is needed to find slopes of lines tangent to
trigonometric graphs such as y = cos x and y = sin x .

Note that the value of the quotient (sin θ)/θ is not defined when θ = 0. (Why
not?) But a calculator set in radian mode provides us with the numerical evidence
shown in Fig. 2.3.2. This table strongly suggests that the limit of (sin θ)/θ is 1 as
θ → 0. This conclusion is supported by the graph of y = (sin x)/x shown in Fig. 2.3.3,
where it appears that the point (x, y) on the curve is near (0, 1) when x is near zero.
Later in this section we provide a proof of the following result.
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θ
sin θ

θ

±1.0 0.84147
±0.5 0.95885
±0.1 0.99833
±0.05 0.99958
±0.01 0.99998
±0.005 1.00000
±0.001 1.00000

...
...

↓ ↓
0 1

FIGURE 2.3.2 The numerical data

suggest that lim
θ→0

sin θ

θ
= 1.

-2

-1

0

1

2

-10 -5 0 5 10

(0, 1)

x

y

y = (sin x)/x

FIGURE 2.3.3 y = sin x

x
for

x �= 0.

THEOREM 1 The Basic Trigonometric Limit

lim
x→0

sin x

x
= 1. (2)

As in Examples 1 and 2, many other trigonometric limits can be reduced to the
one in Theorem 1.

EXAMPLE 1 Show that

lim
x→0

1 − cos x

x
= 0. (3)

Solution We multiply the numerator and denominator in Eq. (3) by the “conjugate”
1 + cos x of the numerator 1 − cos x . Then we apply the identity 1 − cos2 x = sin2 x .
This gives

lim
x→0

1 − cos x

x
= lim

x→0

1 − cos x

x
· 1 + cos x

1 + cos x
= lim

x→0

sin2 x

x(1 + cos x)

=
(

lim
x→0

sin x

x

)(
lim
x→0

sin x

1 + cos x

)
= 1 · 0

1 + 1
= 0.

In the last step we used all the limits in Eqs. (1) and (2). ◗

EXAMPLE 2 Evaluate lim
x→0

tan 3x

x
.

Solution

lim
x→0

tan 3x

x
= 3

(
lim
x→0

tan 3x

3x

)
= 3

(
lim
θ→0

tan θ

θ

)
(θ = 3x)

= 3

(
lim
θ→0

sin θ

θ cos θ

) (
because tan θ = sin θ

cos θ

)

= 3

(
lim
θ→0

sin θ

θ

)(
lim
θ→0

1

cos θ

)
(by the product law of limits)

= 3 · 1 · 1

1
= 3.

We used the fact that tan θ = (sin θ)/(cos θ) as well as some of the limits in Eqs. (1)
and (2). ◗
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Example 3 constitutes a warning: The results of a numerical investigation can be
x sin

π

x

1 0
0.5 0
0.1 0
0.05 0
0.01 0
0.005 0
0.001 0

FIGURE 2.3.4 Do you think that

lim
x→0

sin
π

x
= 0 (Example 3)?

misleading unless they are interpreted with care.

EXAMPLE 3 The numerical data shown in the table of Fig. 2.3.4 suggest that the
limit

lim
x→0

sin
π

x
(4)

has the value zero. But it appears in the graph of y = sin(π/x) (for x �= 0), shown
in Fig. 2.3.5, that the value of sin(π/x) oscillates infinitely often between +1 and −1
as x → 0. Indeed, this fact follows from the periodicity of the sine function, because

-1

0

1

-1 -0.5 0 0.5 1
x

y

y = sin(π/x)

FIGURE 2.3.5 The graph of

y = sin
π

x
shows infinite oscillation

as x → 0 (Example 3).

π/x increases without bound as x → 0. Hence sin(π/x) cannot approach zero (or any
other number) as x → 0. Therefore the limit in (4) does not exist.

We can explain the potentially misleading results tabulated in Fig. 2.3.4 as fol-
lows: Each value of x shown there just happens to be of the form 1/n, the reciprocal
of an integer. Therefore,

sin
π

x
= sin

π

1/n
= sin nπ = 0

for every nonzero integer n. But with a different selection of “trial values” of x , we
might have obtained the results shown in Fig. 2.3.6, which immediately suggest the
nonexistence of the limit in (4). ◗

The Squeeze Law of Limits

A final property of limits that we will need is the squeeze law (also known as the
“sandwich theorem”). It is related to the fact that taking limits preserves inequalities
among functions.

Figure 2.3.7 illustrates how and why the squeeze law works and how it got its

x sin
π

x

2
9 +1
2
11 −1
2

101 +1
2

103 −1
2

1001 +1
2

1003 −1

FIGURE 2.3.6 Verify the entries in
the second column (Example 3).

name. The idea is that g(x) is trapped between f (x) and h(x) near a; both f (x) and
h(x) approach the same limit L , so g(x) must approach L as well. A formal proof of
the squeeze law can be found in Appendix D.

Squeeze Law
Suppose that f (x) � g(x) � h(x) for all x �= a in some neighborhood of a and
also that

lim
x→a

f (x) = L = lim
x→a

h(x).

Then
lim
x→a

g(x) = L

as well.

EXAMPLE 4 Figures 2.3.8 and 2.3.9 show two views of the graph of the function g
defined for x �= 0 by

g(x) = x sin
1

x
.

As in Example 3, sin(1/x) oscillates infinitely often between +1 and −1 as x → 0.
Therefore the graph y = g(x) bounces back and forth between the lines y = +x and

x

y

a

L

y = f (x)

y = g(x)

y = h(x)

FIGURE 2.3.7 How the squeeze
law works.

y = −x . Because |sin(1/x)| � 1 for all x �= 0,

−|x | � x sin
1

x
� +|x |
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-2

-1

0

1

2

-2 -1 0 1 2
x

y
y = x sin(1/x)

y = xy = −x

FIGURE 2.3.8 The graph of

g(x) = x sin
1

x
for x �= 0

(Example 4).

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2
x

y

y = -x y = x

y = x sin(1/x)

FIGURE 2.3.9 The graph
magnified near the origin
(Example 4).

for all x �= 0. Moreover, ±|x | → 0 as x → 0, so with f (x) = −|x | and h(x) = +|x |,
it follows from the squeeze law of limits that

lim
x→0

x sin
1

x
= 0. (5)

◗

QUESTION Why doesn’t the limit in Eq. (5) follow from the product law of limits
with f (x) = x and g(x) = sin(1/x)?

One-Sided Limits
In Example 4 of Section 2.2 we examined the function

−1

1

x

y

FIGURE 2.3.10 The graph of

f (x) = x

|x | again.

f (x) = x

|x | =
{

1 if x > 0;
−1 if x < 0.

The graph of y = f (x) is shown in Fig. 2.3.10. We argued that the limit of f (x) as
x → 0 does not exist because f (x) approaches +1 as x approaches zero from the right,
whereas f (x) → −1 as x approaches zero from the left. A natural way of describing
this situation is to say that at x = 0 the right-hand limit of f (x) is +1 and the left-hand
limit of f (x) is −1.

Here we define and investigate such one-sided limits. Their definitions will be
stated initially in the informal language we used in Section 2.2 to describe the “idea of
the limit.” To define the right-hand limit of f (x) at x = a, we must assume that f is
defined on an open interval immediately to the right of a. To define the left-hand limit,
we must assume that f is defined on an open interval immediately to the left of a.

The Right-Hand Limit of a Function
Suppose that f is defined on the interval (a, c) immediately to the right of a. Then
we say that the number L is the right-hand limit of f (x) as x approaches a (from
the right), and we write

lim
x→a+ f (x) = L , (6)

provided that we can make the number f (x) as close to L as we please merely by
choosing the point x in (a, c) sufficiently close to a.

We may describe the right-hand limit in Eq. (6) by saying that f (x) → L as
x → a+; that is, as x approaches a from the right. The symbol a+ denotes the right-
hand, or “positive,” side of the number a (which may be positive, negative, or zero).
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For instance, we see in Fig. 2.3.10 that

y = f (x)

y = f (x)

L

xa

xa

y

L

y

(a)

(b)

FIGURE 2.3.11 (a) The right- hand
limit of f (x) is L . (b) The left-hand
limit of f (x) is L .

lim
x→0+

|x |
x

= +1 (7)

because |x |/x is equal to +1 for all x to the right of zero. See Fig. 2.3.11(a) for a more
general geometric interpretation of right-hand limits.

The Left-Hand Limit of a Function
Suppose that f is defined on the interval (c, a) immediately to the left of a. Then
we say that the number L is the left-hand limit of f (x) as x approaches a (from
the left), and we write

lim
x→a− f (x) = L , (8)

provided that we can make the number f (x) as close to L as we please merely by
choosing the point x in (c, a) sufficiently close to a.

We may describe the left-hand limit in Eq. (8) by saying that f (x) → L as
x → a−; that is, as x approaches a from the left. The symbol a− denotes the left-hand
or “negative” side of a.

For instance, we see in Fig. 2.3.10 that

lim
x→0−

|x |
x

= −1 (9)

because |x |/x is equal to −1 for all x to the left of zero. See Fig. 2.3.11(b) for a more
general geometric interpretation of left-hand limits.

In Example 4 of Section 2.2 we argued (in essence) that, because the limits in
Eqs. (7) and (9) are not equal, the corresponding two-sided limit

lim
x→0

|x |
x

does not exist. More generally, Theorem 2 (next) follows from careful consideration
of the definitions of all the limits involved.

THEOREM 2 One-Sided Limits and Two-Sided Limits
Suppose that the function f is defined for x �= a in a neighborhood of the point a.
Then the two-sided limit

lim
x→a

f (x)

exists and is equal to the number L if and only if the one-sided limits

lim
x→a+ f (x) and lim

x→a− f (x)

both exist and are equal to L .

Theorem 2 is particularly useful in showing that certain (two-sided) limits do not
exist, frequently by showing that the left-hand and right-hand limits are not equal to
each other.

EXAMPLE 5 The graph of the greatest integer function f (x) = [[x]] is shown in
Fig. 2.3.12. It should be apparent that if a is not an integer, then

lim
x→a+[[x]] = lim

x→a−[[x]] = lim
x→a

[[x]] = [[a]].
But if a = n, an integer, then

x

y

2 3 4 51

1

2

3

4

−1
−1

−3

−2

−2−3

FIGURE 2.3.12 The graph of the
greatest integer function f (x) = [[x]]
(Example 5).

lim
x→n−[[x]] = n − 1 and lim

x→n+[[x]] = n.

Because these left-hand and right-hand limits are not equal, it follows from Theorem 2
that the limit of f (x) = [[x]] does not exist as x approaches an integer n. ◗
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EXAMPLE 6 According to the root law in Section 2.2,

lim
x→a

√
x = √

a if a > 0.

But the limit of f (x) = √
x as x → 0− is not defined because the square root of a

negative number is undefined. Hence f is undefined on every open interval containing
zero. What we can say in the case a = 0 is that

lim
x→0+

√
x = 0,

and that the left-hand limit
lim

x→0−
√

x

does not exist. ◗

To each of the limit laws in Section 2.2 there correspond two one-sided limit
laws—a right-hand version and a left-hand version. You may apply these one-sided
limit laws in the same way you apply the two-sided limit laws in the evaluation of
limits.

EXAMPLE 7 Figure 2.3.13 shows the graph of the function f defined by

x

y

FIGURE 2.3.13 y = f (x)

(Example 7).

f (x) =
⎧⎨
⎩

x2 if x � 0;
x sin

1

x
if x > 0.

Clearly
lim

x→0− f (x) = 0 and lim
x→0+ f (x) = 0

by a one-sided version of the squeeze law (as in Example 4). It therefore follows from
Theorem 2 that

lim
x→0

f (x) = 0. ◗

EXAMPLE 8 Upon applying the appropriate one-sided limit laws, we find that

lim
x→3−

(
x2

x2 + 1
+

√
9 − x2

)
=

lim
x→3− x2

lim
x→3−(x2 + 1)

+
√

lim
x→3−(9 − x2)

= 9

9 + 1
+ √

0 = 9

10
.

Note that the two-sided limit at 3 is not defined because
√

9 − x2 is not defined when
x > 3. ◗

Existence of Tangent Lines
Recall that the slope of the line tangent to the graph y = f (x) at the point P(a, f (a))

is defined to be

m = lim
x→a

f (x) − f (a)

x − a
(10)

provided that this (two-sided) limit exists. In this case an equation of the line tangent
to the graph y = f (x) at P(a, f (a)) is

y − f (a) = m(x − a).

If the limit in (10) does not exist, then we say that the curve y = f (x) does not have a
tangent line at the point P . The following example gives perhaps the simplest example
of a function whose graph has a tangent line everywhere except at a single isolated
point.
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EXAMPLE 9 Show that the graph y = |x | has no tangent line at the origin.

y = |x |

x

y

FIGURE 2.3.14 The graph of
f (x) = |x | has a corner point
at (0, 0).

Solution Figure 2.3.14 shows the graph of the function f (x) = |x |. The sharp corner
at the point (0, 0) makes it intuitively clear that there can be no tangent line there—
surely no single straight line can be a good approximation to the shape of the graph at
the origin. To verify this intuitive observation, note that when a = 0 we have

f (a + h) − f (a)

h
= |h|

h
=

{−1 if h < 0,

+1 if h > 0.

Hence the left-hand limit of the quotient is −1, whereas the right-hand limit is +1.
Therefore the two-sided limit in (10) does not exist, so the graph y = |x | has no
tangent line at the origin, where a = 0. ◗

QUESTION Does Fig. 2.3.14 make it clear to you that for f (x) = |x | and a �= 0, the
value of the “slope limit” in (10) is given by

m =
{−1 if a < 0;
+1 if a > 0?

It follows (as is apparent from Fig. 2.3.14) that the line y = x is tangent to the graph
y = |x | at any point of the graph to the right of the origin, and that the line y = −x is
the tangent line at any point of the graph to the left of the origin.

Infinite Limits
In Example 8 of Section 2.2, we investigated the function f (x) = 1/(x − 1)2; the

x

y

x = 1

y = 1
(x − 1)2

FIGURE 2.3.15 The graph of the

function f (x) = 1

(x − 1)2
.

graph of f is shown in Fig. 2.3.15. The value of f (x) increases without bound (that
is, eventually exceeds any preassigned number) as x approaches 1 either from the right
or from the left. This situation can be described by writing

lim
x→1−

1

(x − 1)2
= +∞ = lim

x→1+
1

(x − 1)2
, (11)

and we say that each of these one-sided limits is equal to “plus infinity.”

CAUTION The expression

lim
x→1+

1

(x − 1)2
= +∞ (12)

does not mean that there exists an “infinite real number” denoted by +∞—there does
not! Neither does it mean that the limit on the left-hand side in Eq. (12) exists—it does
not! Instead, Eq. (12) is just a convenient way of saying why the right-hand limit in
Eq. (12) does not exist: because the quantity 1/(x − 2)2 increases without bound as
x → 1+.

With similar provisos we may write

x

y

y = 1
x

FIGURE 2.3.16 The graph of the

function f (x) = 1

x
.

lim
x→1

1

(x − 1)2
= +∞ (13)

despite the fact that the (two-sided) limit in Eq. (13) does not exist. The expression in
Eq. (13) is merely a convenient way of saying that the limit in Eq. (13) does not exist
because 1/(x − 1)2 increases without bound as x → 1 from either side.

Now consider the function f (x) = 1/x ; its graph is shown in Fig. 2.3.16.
This function increases without bound as x approaches zero from the right but de-
creases without bound—it becomes less than any preassigned negative number—as x
approaches zero from the left. We therefore write

lim
x→0−

1

x
= −∞ and lim

x→0+
1

x
= +∞. (14)
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There is no shorthand for the two-sided limit in this case. We may say only that

lim
x→0

1

x
does not exist.

EXAMPLE 10 Investigate the behavior of the function

f (x) = 2x + 1

x − 1

near the point x = 1, where the limit of f (x) does not exist.

Solution First we look at the behavior of f (x) just to the right of the number 1. If x
is greater than 1 but close to 1, then 2x + 1 is close to 3 and x − 1 is a small positive
number. In this case the quotient (2x + 1)/(x − 1) is a large positive number, and the
closer x is to 1, the larger this positive quotient will be. For such x , f (x) increases
without bound as x approaches 1 from the right. That is,

lim
x→1+

2x + 1

x − 1
= +∞, (15)

as the data in Fig. 2.3.17 suggest.

x
2x + 1

x − 1
x

2x + 1

x − 1

1.1 32 0.9 −28
1.01 302 0.99 −298
1.001 3002 0.999 −2998
1.0001 30002 0.9999 −29998

...
...

...
...

↓ ↓ ↓ ↓
1 +∞ 1 −∞

FIGURE 2.3.17 The behavior of f (x) = 2x + 1

x − 1
for x

near 1 (Example 10).

If instead x is less than 1 but still close to 1, then 2x +1 is still close to 3, but now
x − 1 is a negative number close to zero. In this case the quotient (2x + 1)/(x − 1) is a
(numerically) large negative number and decreases without bound as x → 1−. Hence
we conclude that

0 5 10
-10

-10 -5

-5

0

5

10

x

y

y =

x = 1

y = 2

2x + 1
x − 1

FIGURE 2.3.18 Graph of

f (x) = 2x + 1

x − 1
.

lim
x→1−

2x + 1

x − 1
= −∞. (16)

The results in Eqs. (15) and (16) provide a concise description of the behavior of
f (x) = (2x + 1)/(x − 1) near the point x = 1. (See Fig. 2.3.18.) Finally, to re-
main consistent with Theorem 2 on one-sided and two-sided limits, we do not write

lim
x→1

2x + 1

x − 1
= ∞. (Wrong!)

Do you see, however, that it would be correct to write

lim
x→1

∣∣∣∣2x + 1

x − 1

∣∣∣∣ = +∞? ◗

EXAMPLE 11 The graph of f (x) = log10 x is shown in Fig. 2.3.19. The graph
makes it clear that

lim
x→0+ log10 x = −∞.

But the left-hand limit of f (x) at x = 0 does not exist because log10 x is not defined if

0 51 62 73 84 9 10
-2

-1

0

1

-1.5

-0.5

0.5

1.5

2

x

y

y = log10 x

FIGURE 2.3.19 Graph of
f (x) = log10 x .

x � 0. ◗
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EXAMPLE 12 Look at the graph of y = 2x in Fig. 1.4.10 to see that

lim
x→0−

1

x
= −∞ implies that lim

x→0− 21/x = 0

(because 2t → 0 as t → −∞), whereas

lim
x→0+

1

x
= ∞ implies that lim

x→0+ 21/x = ∞

(because 2t → +∞ as t → +∞). These one-sided limits of 21/x at x = 0 are
illustrated in Fig. 2.3.20. ◗0 5

-5
-5 1-4 2-3 3-2 4-1

0

-4

1

-3

2

-2

3

-1

4

5

x

y

y = 21/x

for x < 0

y = 21/x

for x > 0

FIGURE 2.3.20 Graph of
f (x) = 21/x .

The Basic Trigonometric Limit
We now provide a geometric proof that

lim
θ→0

sin θ

θ
= 1. (17)

Proof Figure 2.3.21 shows the angle θ , the triangles OPQ and ORS, and the circular

P

O

x2 + y2 = 1

cosθ

S

tanθ

y

θ
xR

Q

sinθ

FIGURE 2.3.21 Aid to the proof of
the basic trigonometric limit.

sector OPR that contains the triangle OPQ and is contained in the triangle ORS. Hence

area(�OPQ) < area(sector OPR) < area(�ORS).

In terms of θ , this means that

1

2
sin θ cos θ <

1

2
θ <

1

2
tan θ = sin θ

2 cos θ
.

Here we use the standard formula for the area of a triangle to obtain the area of �OPQ
and �ORS. We also use the fact that the area of a circular sector in a circle of radius
r is A = 1

2r2θ if the sector is subtended by a central angle of θ radians; here, r = 1.
If 0 < θ < π/2, then we can divide each member of the last inequality by 1

2 sin θ to
obtain

cos θ <
θ

sin θ
<

1

cos θ
.

We take reciprocals, which reverses the inequalities:

cos θ <
sin θ

θ
<

1

cos θ
.

Now we apply the squeeze law of limits with

f (θ) = cos θ, g(θ) = sin θ

θ
, and h(θ) = 1

cos θ
.

Because it is clear from Eq. (1) (at the beginning of this section) that f (θ) and h(θ)

both approach 1 as θ → 0+, so does g(θ) = (sin θ)/θ . This geometric argument
shows that (sin θ)/θ → 1 for positive values of θ that approach zero. But the same
result follows for negative values of θ , because sin(−θ) = − sin θ . So we have proved
Eq. (17). ◆

The Precise Definition of the Limit
When we say that f (x) approaches the limiting value L as x approaches a, we imply
that the behavior of the variable x controls the behavior of the value f (x). As x
approaches a, this forces the value of f (x) to approach L . In Section 2.2 we said that
limx→a f (x) = L provided that we can make f (x) as close to L as we please merely
by choosing x sufficiently close to a (though not equal to a).

But how close is “sufficiently close”? We can say how close to L we want f (x)

to be by prescribing an error tolerance. Then the question is this: How close to a must
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x be in order to force the numerical difference | f (x)− L|—the “discrepancy” between
f (x) and L—to be less than the prescribed error tolerance. For instance:

• How close to a must x be to guarantee that | f (x) − L| < 0.1?
• How close to a must x be to guarantee that | f (x) − L| < 0.01?
• How close to a must x be to guarantee that | f (x) − L| < 0.001?

For any given error tolerance—however small it may be—we need to determine how
close to a (but not equal to a) the variable x must be in order to satisfy that error
tolerance.

EXAMPLE 13 Suppose that a = 2 and f (x) = 5x − 3. We could easily use the
limit laws to show that limx→2(5x − 3) = 7, so that L = 7. But let’s instead begin
afresh. We note first that

| f (x) − L| = |(5x − 3) − 7| = |5x − 10| = 5 · |x − 2|.
Thus |(5x − 3) − 7| is always 5 times |x − 2|. It follows that

• If |x − 2| < 0.02 then |5x − 10| = 5 · |x − 2| < 5 · (0.02) = 0.1.
• If |x − 2| < 0.002 then |5x − 10| = 5 · |x − 2| < 5 · (0.002) = 0.01.
• If |x − 2| < 0.0002 then |5x − 10| = 5 · |x − 2| < 5 · (0.0002) = 0.001.

More generally, we need only divide any given error tolerance ε > 0 by 5 to get the
“variance” in x that works:

If |x − 2| <
ε

5
then |(5x − 3) − 7| = 5 · |x − 2| < 5 · ε

5
= ε. (18)

Thus we can force f (x) = 5x − 3 to be within ε of L = 7 merely by requiring
that x be within ε/5 of a = 2. In this example it is also harmless if x = 2 as well—in
which case |(5x − 3) − 7| = 0—but we include the requirement that x �= 2 by writing
0 < |x − 2| < ε/5. Finally, if we write δ = ε/5 for this variance in x that forces an
acceptable discrepancy in f (x) = 5x − 3, we conclude from (18) that

|(5x − 3) − 7| < ε for all x such that 0 < |x − 2| < δ. (19)
◗

The exact meaning of limits was debated vigorously—sometimes acrimoni-
ously—during the 17th and 18th centuries. The condition in (19) illustrates the precise
definition of the limit that was finally formulated by the German mathematician Karl
Weierstrass (1815–1897) and is the definition accepted to this day.

DEFINITION The Limit
Suppose that f (x) is defined in an open interval containing the point a (except
possibly not at a itself). Then we say that the number L is the limit of f (x) as x
approaches a—and we write

lim
x→a

f (x) = L

—provided that the following criterion is satisfied: Given any number ε > 0, there
exists a corresponding number δ > 0 such that

| f (x) − L| < ε for all x such that 0 < |x − a| < δ. (20)

The condition in (20) can be rewritten in the form

If 0 < |x − a| < δ then | f (x) − L| < ε,

or even more simply in the form

0 < |x − a| < δ implies that | f (x) − L| < ε. (21)
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x

y
y = f (x)

a − δ

δx = a −

y = L − ∋

δx = a +

∋L + y = L + ∋

L

∋L −

a a + δ

FIGURE 2.3.22 Geometric illustration of the
limit definition.

Figure 2.3.22 illustrates this definition, which for obvious reasons is often called
the “epsilon-delta” definition of limits. The points on the graph of y = f (x) that
satisfy the inequality |f (x) − L| < ε are those that lie between the horizontal lines
y = L − ε and y = L + ε. The points on this graph that satisfy the inequality
|x − a| < δ are those that lie between the vertical lines x = a − δ and x = a + δ.
Consequently, the definition of the limit implies that limx→a f (x) = L if and only if
the following statement is true:

Suppose that the two horizontal lines y = L − ε and y = L + ε (with ε > 0) are
given. Then it is possible to choose two vertical lines x = a − δ and x = a + δ

(with δ > 0) so that every point (with x �= a) on the graph of y = f (x) that lies
between the two vertical lines must also lie between the two horizontal lines.

Figure 2.3.22 suggests that the closer together are the two horizontal lines, the
closer together the two vertical lines will need to be. This is precisely what we mean
by “making f (x) closer to L by making x closer to a.”

Application of the epsilon-delta definition of limits to establish a limit is usually
a two-step process:

• Given ε > 0, we first analyze the first inequality |f (x) − L| < ε in (20) to
estimate or deduce a value of δ > 0 that works.

• Then we attempt to prove that this value of δ works—that is, prove that 0 <

|x − a| < δ implies that |f (x) − L| < ε.

EXAMPLE 14 Use the epsilon-delta definition of limits to prove that

lim
x→3

(13x − 29) = 10.

Solution Our analysis of the first inequality in (20) consists of noting that it takes the
form

|(13x − 29) − 10| = |13x − 39| = 13 · |x − 3| < ε,

which boils down to |x − 3| < ε/13. This leads us to guess—on the basis of rather
strong circumstantial evidence—that the value δ = ε/13 will work. To prove this, we
need only note that if δ = ε/13, then

0 < |x − 3| < δ implies that |(13x − 29) − 10| = 13 · |x − 3| < 13 · ε

13
= ε.

Thus 0 < |x − 3| < δ implies that |(13x − 29) − 10| < ε, as desired. ◗
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EXAMPLE 15 Use the epsilon-delta definition of limits to prove that limx→0
3
√

x =
0.

Solution Our analysis of the first inequality in (20) consists of noting that it takes the
form ∣∣ 3

√
x − 0

∣∣ = ∣∣ 3
√

x
∣∣ = 3

√|x | < ε,

which can be simplified to |x | < ε3. This leads us to guess that the value δ = ε3 will
work. To prove this, we need only note that if δ = ε3, then

0 < |x − 0| < δ implies that
∣∣ 3
√

x − 0
∣∣ = 3

√|x | <
3√
ε3 = ε.

Thus 0 < |x − 0| < δ implies that | 3
√

x − 0| < ε, as desired. ◗

Given a value of ε > 0, it is frequently more difficult to guess a value of δ

that works than to prove that it does; see Problems 75–84 and this section’s project
for additional practice. In Appendix D we use the epsilon-delta definition of limits to
establish rigorously the laws of limits.

2.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. lim
x→0

sin x

x
= 1.

2. lim
x→0

1 − cos x

x
= 0

0
= 1.

3. lim
y→0

tan 3y

y
= lim

y→0

tan 3��y

��y
= tan 3.

4. If x is any real number, then −|x | � x � |x |.
5. If f (x) = x

|x | , then lim
x→0+ f (x) = 1 and lim

x→0− f (x) = −1.

6. Let g(x) = [[x]] (the greatest integer function). Then lim
x→3

g(x) does not exist

because the left-hand limit of g(x) at x = 3 is not equal to the right-hand limit
of g(x) at x = 3.

7. There is no line tangent to the graph of f (x) = |x | at (0, 0).

8. lim
x→0

1

x
= 0.

9. lim
x→0

1

x2
does not exist.

10. lim
x→0

1

x2
= +∞.

2.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. We have interpreted the statement limx→a f (x) = L to mean (roughly) that

“ f (x) tends to get closer and closer to L as x gets closer and closer to a.” What
would be meant by the statement that “ f (x) gets steadily closer to L as x gets
steadily closer to a”? State it precisely, something along the lines that “ f (x) is
still closer to L whenever x is still closer to a” (which is still not sufficiently pre-
cise). Does this follow from the statement that limx→a f (x) = L? It may help to
think about the oscillatory function of Example 4.

2. Formulate precise epsilon-delta definitions of one-sided limits, as well as an M-
delta definition of the infinite limit limx→a f (x) = +∞. The latter definition
should involve the inequality f (x) > M ; illustrate it with a figure that is similar
to Fig. 2.3.22, but involves only a single horizontal line.
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2.3 PROBLEMS

Find the trigonometric limits in Problems 1 through 24. If you
have a graphing calculator or a computer with graphing facility,
verify that graphical evidence supports your answer.

1. lim
θ→0

θ2

sin θ
2. lim

θ→0

sin2 θ

θ2

3. lim
θ→0

1 − cos θ

θ2
4. lim

θ→0

tan θ

θ

5. lim
t→0

2t

(sin t) − t
6. lim

θ→0

sin(2θ2)

θ2

7. lim
x→0

sin 5x

x
8. lim

z→0

sin 2z

z cos 3z

9. lim
x→0

sin x√
x

10. lim
x→0

1 − cos 2x

x

11. lim
x→0

1

x
sin

x

3
12. lim

θ→0

(sin 3θ)2

θ 2 cos θ

13. lim
x→0

1 − cos x

sin x
14. lim

x→0

tan 3x

tan 5x

15. lim
x→0

x sec x csc x 16. lim
θ→0

sin 2θ

θ

17. lim
θ→0

1 − cos θ

θ sin θ
18. lim

θ→0

sin2 θ

θ

19. lim
z→0

tan z

sin 2z
20. lim

x→0

tan 2x

3x

21. lim
x→0

x cot 3x 22. lim
x→0

x − tan x

sin x

23. lim
t→0

1

t2
sin2

(
t

2

)
24. lim

x→0

sin 2x

sin 5x

Use the squeeze law of limits to find the limits in Problems 25
through 28. Also illustrate each of these limits by graphing the
functions f , g, and h (in the notation of the squeeze law) on the
same screen.

25. lim
x→0

x2 cos 10x 26. lim
x→0

x2 sin
1

x2

27. lim
x→0

x2 cos
1

3
√

x
28. lim

x→0

3
√

x sin
1

x

Use one-sided limit laws to find the limits in Problems 29 through
48 or to determine that they do not exist.

29. lim
x→0+(3 − √

x) 30. lim
x→0+(4 + 3x3/2)

31. lim
x→1−

√
x − 1 32. lim

x→4−

√
4 − x

33. lim
x→2+

√
x2 − 4 34. lim

x→3+

√
9 − x2

35. lim
x→5−

√
x(5 − x) 36. lim

x→2− x
√

4 − x2

37. lim
x→4+

√
4x

x − 4
38. lim

x→−3+

√
6 − x − x2

39. lim
x→5−

x − 5

|x − 5| 40. lim
x→−4+

16 − x2

√
16 − x2

41. lim
x→3+

√
x2 − 6x + 9

x − 3
42. lim

x→2+
x − 2

x2 − 5x + 6

43. lim
x→2+

2 − x

|x − 2| 44. lim
x→7−

7 − x

|x − 7|

45. lim
x→1+

1 − x2

1 − x
46. lim

x→0−
x

x − |x |

47. lim
x→5+

√
(5 − x)2

5 − x
48. lim

x→−4−
4 + x√
(4 + x)2

For each of the functions in Problems 49 through 58, there is ex-
actly one point a where both the right-hand and left-hand limits
of f (x) fail to exist. Describe (as in Example 10) the behavior of
f (x) for x near a.

49. f (x) = 1

x − 1
50. f (x) = 2

3 − x

51. f (x) = x − 1

x + 1
52. f (x) = 2x − 5

5 − x

53. f (x) = 1 − x2

x + 2
54. f (x) = 1

(x − 5)2

55. f (x) = |1 − x |
(1 − x)2

56. f (x) = x + 1

x2 + 6x + 9

57. f (x) = x − 2

4 − x2
58. f (x) = x − 1

x2 − 3x + 2

In Problems 59 and 60, find the left-hand and right-hand limits of
f (x) at a = 2. Does the two-sided limit of f exist there? Sketch
the graph of y = f (x).

59. f (x) = x2 − 4

|x − 2|
60. f (x) = x4 − 8x + 16

|x − 2|
Problems 61 through 68, do the following:

(a) Sketch the graph of the given function f .

(b) For each integer n, evaluate the one-sided limits

lim
x→n− f (x) and lim

x→n+ f (x)

in terms of n.

(c) Determine those values of a for which lim
x→a

f (x) exists.

Recall that [[x]] denote the greatest integer that does not exceed x.

61. f (x) =
{

2 if x is not an integer;
2 + (−1)x if x is an integer.

62. f (x) =
{

x if x is not an integer;
0 if x is an integer.

63. f (x) = [[10x]]
64. f (x) = (−1)[[x]]

65. f (x) = x − [[x]] − 1

2

66. f (x) =
[[ x

2

]]
67. f (x) = [[x]] + [[−x]]

68. f (x) =
⎧⎨
⎩

[[x]]
x

if x �= 0;

0 if x = 0.

69. If g(x) = 1

10
[[10x]], the value of x to one decimal place

rounded down, sketch the graph of g and determine the val-
ues of a such that lim

x→a
g(x) exists.
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70. The sign function sgn(x) is defined as follows:

sgn(x) =
{ x

|x | if x �= 0;

0 if x = 0.

Use the sign function to define two functions f and g whose
limits as x → 0 do not exist, but such that

(a) lim
x→0

[ f (x) + g(x)] does exist;

(b) lim
x→0

f (x) · g(x) does exist.

71. Let

f (x) =
{

x2 if x is rational;
0 if x is irrational.

Use the squeeze law of limits to show that lim
x→0

f (x) =
f (0) = 0.

72. Sketch the graph of the function

f (x) = 1

1 + 21/x

for x �= 0. Then determine whether or not lim
x→0

f (x) exists.

In Problems 73 and 74, first examine the value of f (x) on inter-
vals of the form

1

n + 1
< x <

1

n

where n is an integer. Then determine whether or not lim
x→0

f (x)

exists. If your graphing calculator or computer has a greatest in-
teger (or “floor”) function, graph f to corroborate your answer.

73. f (x) = x ·
[[

1

x

]]
74. f (x) = x2 ·

[[
1

x

]]

In Problems 75 through 84, use the epsilon-delta definition of
limits to prove the given equation.

75. lim
x→−3

(7x − 9) = −30

76. lim
x→5

(17x − 35) = 50

77. lim
x→0+

√
x = 0 Suggestion: First formulate a precise

epsilon-delta definition of right-hand limits.

78. lim
x→0

x2 = 0

79. lim
x→2

x2 = 4 Suggestion: Note that

|x2 − 4| = |x + 2| · |x − 2|.
Then argue that if we agree to choose δ < 1, then |x −2| < δ

will imply that |x +2| < 5. (Why?) Then show that it works
to choose δ to be the smaller of the two numbers 1 and ε/5.

80. lim
x→7

(x2 − 5x − 4) = 10 Suggestion: Note that

|(x2 − 5x − 4) − 10| = |x + 2| · |x − 7|.
Then argue that if we agree to choose δ < 1, then |x −7| < δ

will imply that |x + 2| < 10. (Why?)

81. lim
x→10

(2x2 − 13x − 25) = 45 Suggestion: Write

|(2x2 − 13x − 25) − 45| = |2x + 7| · |x − 10|.
Then argue that if we agree to choose δ < 1, then |x −10| <

δ will imply that |2x + 7| < 29. (Why?)

82. lim
x→2

x3 = 8 Suggestion: First verify that

|x3 − 8| = |x2 + 2x + 4| · |x − 2|.
Then argue that if we agree to choose δ < 1, then |x −2| < δ

will imply that |x2 + 2x + 4| < 19. (Why?)

83. Generalize the approach of Problem 79 to prove that
lim
x→a

x2 = a2.

84. Generalize the approach of Problem 82 to prove that
lim
x→a

x3 = a3.

2.3 INVESTIGATION: Numerical Epsilon-Delta Limits
Figure 2.3.23 shows a steadily rising graph y = f (x) that passes through the
point (a, L). Given a single numerical value of ε > 0, we can illustrate the limit
limx→a f (x) = L by solving the equations f (x) = L ± ε graphically or numerically
for the indicated values x1 to the left of a such that f (x1) = L −ε and x2 to the right of
a such that f (x2) = L + ε. If δ > 0 is chosen smaller than either of the two indicated
distances δ1 = a − x1 and δ2 = x2 − a, then the figure suggests that

0 < |x − a| < δ implies that | f (x) − L| < ε. (21)

You should understand that an actual proof that limx→a f (x) = L must show that,
given any ε > 0 whatsoever, there exists a δ > 0 that works for this ε—meaning that
the implication in (21) holds.

Doing it for a single value of ε does not constitute a proof, but doing it for several
successively smaller values of ε can be instructive and perhaps convincing. Suppose,
for example, that

f (x) = x3 + 5x2 + 10x + 98, a = 3, and L = 200.

Then, for a particular fixed value of ε > 0, you can use a calculator or computer
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x

y
y = f (x)

δx1 = a − 1

δ1 δ2

δx2 = a + 2

(a, L)

∋L +

L

∋
∋

∋

L −

a

FIGURE 2.3.23 Finding δ = min(δ1, δ2)

graphically.

algebra system to solve the equations

x3 + 5x2 + 10x + 98 = 200 − ε and x3 + 5x2 + 10x + 98 = 200 + ε

numerically for the solutions x1 and x2 near 3. With ε = 1, ε = 0.2, and ε = 0.04 you
should obtain the following results.

ε x1 x2 δ1 δ2 δ

1 2.98503 3.01488 0.01497 0.01488 0.01
0.2 2.99701 3.00298 0.00299 0.00298 0.002
0.04 2.99940 3.00060 0.00060 0.00060 0.0005

In the final column, each value of δ is (for safety) chosen a bit smaller than either δ1

or δ2, to be sure that it works with the corresponding value of ε. You might try a still
smaller value such as ε = 0.001 to find a corresponding value of δ that works. Then
carry out a similar investigation to “verify ” numerically a polynomial limit of your
own selection.

2.4 THE CONCEPT OF CONTINUITY

Anyone can see a drastic difference between the graphs in Figs. 2.4.1 and 2.4.2. Fig-
ure 2.4.1 is intended to suggest that the graph y = f (x) can be traced with a continuous
motion—without any jumps—of the pen from left to right. But in Fig. 2.4.2 the pen
must make a sudden jump at x = a.

The concept of continuity isolates the property that the function f of Fig. 2.4.1
possesses but that the function g of Fig. 2.4.2 lacks. We first define continuity of a
function at a single point.

x

y

y = f (x)

FIGURE 2.4.1 A continuous graph.

x

y

y = g(x)

a

FIGURE 2.4.2 A graph that is not
continuous.
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DEFINITION Continuity at a Point
Suppose that the function f is defined in a neighborhood of a. We say that f is
continuous at a provided that limx→a f (x) exists and, moreover, that the value of
this limit is f (a). In other words, f is continuous at a provided that

lim
x→a

f (x) = f (a). (1)

Briefly, continuity of f at a means this:

The limit of f at a is equal to the value of f there.

Another way to put it is this: The limit of f at a is the “expected” value—the value
that you would assign if you knew the values of f for x �= a in a neighborhood of a
and you knew f to be “predictable.” Alternatively, continuity of f at a means this:
When x is close to a, f (x) is close to f (a).

Analysis of the definition of continuity shows us that to be continuous at the point
a, the function f must satisfy the following three conditions:

1. The function f must be defined at a [so that f (a) exists].
2. The limit of f (x) as x approaches a must exist.
3. The numbers in conditions 1 and 2 must be equal:

lim
x→a

f (x) = f (a).

If any one of these conditions is not satisfied, then f is not continuous at a.
Examples 1 through 3 illustrate these three possibilities for discontinuity at a point. If
the function f is not continuous at a, then we say that it is discontinuous there, or that
a is a discontinuity of f . Intuitively, a discontinuity of f is a point where the graph
of f has a “gap,” or “jump,” of some sort.

-4

0

4

-4 0 4
x

y

f(x) = 1/(x − 2)

FIGURE 2.4.3 The function
f (x) = 1/(x − 2) has an infinite
discontinuity at x = 2 (Example 1).

EXAMPLE 1 Figure 2.4.3 shows the graph of the function f defined by

x

y

(0, −1)
(not on the graph)

(0, 1)

FIGURE 2.4.4 The function g has a
finite jump discontinuity at x = 0
(Example 2).

f (x) = 1

x − 2
for x �= 2.

Because f is not defined at the point x = 2, it is not continuous there. Moreover, f
has what might be called an infinite discontinuity at x = 2. ◗

EXAMPLE 2 Figure 2.4.4 shows the graph of the function g defined by

g(x) = sgn(x) =
{+1 if x � 0;
−1 if x < 0.

Its left-hand and right-hand limits at x = 0 are unequal, so g(x) has no limit as x → 0.
Consequently, the function g is not continuous at x = 0; it has what might be called a
finite jump discontinuity there. ◗

EXAMPLE 3 Figure 2.4.5 shows the graph of the function h defined by

h(x) =
⎧⎨
⎩

sin x

x
if x �= 0;

0 if x = 0.

Because we saw in Section 2.3 that

lim
x→0

h(x) = lim
x→0

sin x

x
= 1,

whereas h(0) = 0, we see that the limit and the value of h at x = 0 are not equal. Thus
the function h is not continuous there. As x moves from negative values through x = 0
to positive values, the value of h(x) jumps from “near 1” to zero and back again.

-2

-1

0

1

2

-10 -5 0 5 10

(0, 0)

x

y

y = h(x)

FIGURE 2.4.5 The point (0, 0) is
on the graph; the point (0, 1) is not
(Example 3).

◗
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The discontinuity at the origin in Example 3 is an example of a removable dis-
continuity. The point a where the function f is discontinuous is called a removable
discontinuity provided that there exists a function F such that

• F(x) = f (x) for all x �= a in the domain of definition of f , and
• This new function F is continuous at a.

The original function f may or may not be defined at a, but in any event the graphs
of f and F differ only at x = a. Sometimes it is simpler to speak of “old” and “new”
versions of the same function f . Thus we might say that a removable discontinu-
ity of a function is one that can be removed by suitable definition—or, if necessary,
redefinition—of the function at that single point.

REMARK The discontinuity at the origin of the function h in Example 3 is removable.
The reason is that if we change the original value h(0) = 0 to h(0) = 1, then

lim
x→0

h(x) = lim
h→0

sin x

x
= 1 = h(0),

so h is now continuous at x = 0. By contrast, the discontinuities in the sawtooth
function f of the next example are not removable, because we see genuine jumps or
gaps in the graph that obviously cannot be removed simply by changing the values of
f at these discontinuities.

EXAMPLE 4 Figure 2.4.6 shows the graph of the function f defined by

f (x) = x − [[x]].
As before, [[x]] denotes the largest integer no greater than x . If x = n, an integer, then
[[n]] = n, so f (n) = 0. On the open interval (n, n + 1), the graph of f is linear and
has slope 1. It should be clear that f is

• Continuous at x if x is not an integer;
• Discontinuous at each integer point on the x-axis. ◗

x

y

FIGURE 2.4.6 The “sawtooth
function” of Example 4.

Combinations of Continuous Functions
Frequently we are most interested in functions that are continuous. Suppose that the
function f is defined on an open interval or a union of open intervals. Then we say
simply that f is continuous if it is continuous at each point of its domain of definition.

It follows readily from the limit laws in Section 2.2 that any constant multiple,
sum, difference, or product of continuous functions is continuous. That is, if c is a
constant and the functions f and g are continuous at a, then so are the functions

c f, f + g, f − g, and f · g.

For instance, if f and g are continuous at a, then

lim
x→a

[ f (x) + g(x)] =
(

lim
x→a

f (x)
)

+
(

lim
x→a

g(x)
)

= f (a) + g(a),

so it follows that the sum f + g is also continuous at a.

EXAMPLE 5 Because f (x) = x and constant-valued functions are clearly continu-
ous everywhere, it follows that the cubic polynomial function

f (x) = x3 − 3x2 + 1 = x · x · x + (−3) · x · x + 1

is continuous everywhere. ◗

More generally, it follows in a similar way that every polynomial function

p(x) = bnxn + bn−1xn−1 + · · · + b1x + b0
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is continuous at each point of the real line. In short, every polynomial is continuous
everywhere.

If p(x) and q(x) are polynomials, then the quotient law for limits and the conti-
nuity of polynomials imply that

lim
x→a

p(x)

q(x)
=

lim
x→a

p(x)

lim
x→a

q(x)
= p(a)

q(a)

provided that q(a) �= 0. Thus every rational function

f (x) = p(x)

q(x)
(2)

is continuous wherever it is defined—that is, wherever the denominator polynomial is
nonzero. More generally, the quotient of any two continuous functions is continuous at
every point where the denominator is nonzero.

At a point x = a where the denominator in Eq. (2) is zero, q(a) = 0, there are
two possibilities:

• If p(a) �= 0, then f has an infinite discontinuity (as in Figs. 2.4.3 and 2.4.7) at

-4

0

4

-4 0 4
x

y
y = 1/(x − 2)2

FIGURE 2.4.7 The function
f (x) = 1/(x − 2)2 has an infinite
discontinuity at x = 2.

x = a.
• Otherwise, f may have a removable discontinuity at x = a.

EXAMPLE 6 Suppose that

f (x) = x − 2

x2 − 3x + 2
. (3)

We factor the denominator: x2 − 3x + 2 = (x − 1)(x − 2). This shows that f is
not defined at x = 1 and at x = 2. Thus the rational function defined in Eq. (3) is
continuous except at these two points. Because cancellation gives

f (x) = x − 2

x2 − 3x + 2
= 1

x − 1

except at the single point x = 2, the new function

F(x) = 1

x − 1
(4)

agrees with f (x) if x �= 2 but is continuous at x = 2 also, where F(2) = 1. Thus f
has a removable discontinuity at x = 2; the discontinuity at x = 1 is not removable.
(See Fig. 2.4.8.) ◗

-4

0

4

-4 0 4
x

y

(2, 1)

y = F(x)

FIGURE 2.4.8 In Example 6, the
graph y = F(x) consists of the
graph y = f (x) with the single point
(2, 1) adjoined.

Continuity of Trigonometric Functions
At the beginning of Section 2.3 we noted that

lim
x→0

cos x = 1 and lim
x→0

sin x = 0. (5)

Because cos 0 = 1 and sin 0 = 0, the sine and cosine functions are continuous at x = 0
by definition. But this fact implies that they are continuous everywhere.

THEOREM 1 Continuity of Sine and Cosine
The functions f (x) = sin x and g(x) = cos x are continuous functions of x on the
whole real line.
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Proof We give the proof only for sin x ; the proof for cos x is similar. (See Prob-
lem 67.) We want to show that limx→a sin x = sin a for every real number a. If we
write x = a + h, so that h = x − a, then h → 0 as x → a. Thus we need only show
that

lim
h→0

sin(a + h) = sin a.

But the addition formula for the sine function yields

lim
h→0

sin(a + h) = lim
h→0

(sin a cos h + cos a sin h)

= (sin a)
(

lim
h→0

cos h
)

+ (cos a)
(

lim
h→0

sin h
)

= sin a

as desired; we used the limits in Eq. (5) in the last step. ◆

REMARK It now follows that the function

tan x = sin x

cos x
(6)

is continuous except where cos x = 0—that is, except when x is an odd integral multi-
ple of π/2. As illustrated in Fig. 2.4.9, tan x has an infinite discontinuity at each such
point.

-4

-2

0

2

4

y

y = tanx

2
π−

2
π

2
3π−

-4 -2 0 2 4 6
x

-4

-2

0

2

4

-4 -2 0 2 4 6
x

y

y = tanx

2
π

2
π

2
3π

FIGURE 2.4.9 The function tan x has
infinite discontinuities at x = ±π/2,
±3π/2, . . . .

Composition of Continuous Functions
Recall from Section 1.4 that the composition of the two functions f and g is the
function h = f ◦ g defined by

h(x) = f (g(x))

for all x in the domain of g such that u = g(x) is in the domain of f . Theorem 2
implies that functions built by forming compositions of continuous functions are them-
selves continuous.

THEOREM 2 Continuity of Compositions
The composition of two continuous functions is continuous. More precisely, if g is
continuous at a and f is continuous at g(a), then f ◦ g is continuous at a.
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Proof The continuity of g at a means that g(x) → g(a) as x → a, and the continuity
of f at g(a) implies that f (x) → f (g(a)) as x → g(a). Hence the substitution law
for limits (Section 2.2) yields

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)

= f (g(a)),

as desired. ◆

Recall from the root law in Section 2.2 that

lim
x→a

n
√

x = n
√

a

under the conditions that n is an integer and that a > 0 if n is even. Thus the nth-root
function f (x) = n

√
x is continuous everywhere if n is odd; f is continuous for x > 0

if n is even.
We may combine this result with Theorem 2. Then we see that a root of a con-

tinuous function is continuous wherever it is defined. That is, the composition

h(x) = n
√

g(x) = [g(x)]1/n

of f (x) = n
√

x and the function g(x) is continuous at a if g is, assuming that g(a) > 0
if n is even (so that n

√
g(a) is defined).

EXAMPLE 7 Show that the function

f (x) =
(

x − 7

x2 + 2x + 2

)2/3

is continuous on the whole real line.

Solution Note first that the denominator

x2 + 2x + 2 = (x + 1)2 + 1

is never zero, because its smallest value (when x = −1) is 02 + 1 = 1. Hence the
rational function

r(x) = x − 7

x2 + 2x + 2

is defined and continuous everywhere. It then follows from Theorem 2 and the
continuity of the cube root function that

f (x) = [r(x)]2/3 = 3
√

[r(x)]2

is continuous everywhere—as suggested by its graph in Fig. 2.4.10, where we see a
high point apparently near the point (−1, 4) and the single point (7, 0) where the curve
touches the x-axis. ◗

−10 −5 0 5 10 15

0

1

2

3

4

5

x

y

(7, 0)

(−1, 4)

FIGURE 2.4.10 The graph

y =
(

x − 7

x2 + 2x + 2

)2/3

.

EXAMPLE 8 (a) The exponential function f (x) = 2x is continuous everywhere,
and therefore so is the composition h(x) = 2sin x of f and the sine function. Refer to
Fig. 2.4.11, where we see high and low points on the graph of y = 2sin x corresponding
to the high and low points on the graph of y = sin x . (b) By contrast, the tangent
function tan x has infinite discontinuities at odd integral multiples of π/2 (as shown in
Fig. 2.4.9), and we see corresponding discontinuities in the composition h(x) = 2tan x

when we look at the graph in Fig. 2.4.12. These discontinuities are interesting in that,
if a is an odd integral multiple of π/2, then

lim
x→a− h(x) = lim

x→a− 2tan x = +∞,

whereas

lim
x→a+ h(x) = lim

x→a+ 2tan x = 0. ◗
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0

3

-1

1

2

0
x

y

π/2-π/2-3π/2 3π/2 5π/2

y = 2sinx

FIGURE 2.4.11 The function h(x) = 2sin x is
continuous everywhere.

0

5

10

-5
0

x

y

π/2-π/2-3π/2 3π/2 5π/2

y = 2tanx

FIGURE 2.4.12 The function h(x) = 2tan x

has infinite discontinuities.

The function h(x) = 2tan x of Example 8(b) illustrates the concept of one-sided
continuity. It is convenient to say that the function f is

• continuous from the left at a if lim
x→a− = f (a), and is

• continuous from the right at a if lim
x→a+ = f (a).

Suppose we define the “augmented function” H by H(x) = 2tan x unless x is an odd
integral multiple a of π/2, in which case H(a) = 0. Then it follows from Example
8(b) that H is continuous from the right at a, but is not continuous from the left at a.
Of course, a function is automatically continuous at a point if it is continuous from
both sides there.

REMARK We have observed that the function f (x) = √
x is continuous for x > 0.

However, f is not continuous at x = 0 because
√

x is not defined for x < 0, so lim
x→0

√
x

does not exist. However, lim
x→0+

√
x = 0 = √

0, so the function f is continuous from the

right at 0. Thus
√

x is continuous from the right where it is only defined on the right.
Hence it is sometimes said—by a slight “abuse of terminology”—that the function

√
x

is continuous wherever it is defined.

Continuous Functions on Closed Intervals
An applied problem typically involves a function whose domain is a closed interval.x

$5/ft

y $5/ft y$5/ft

$1/ft
x Wall

FIGURE 2.4.13 The animal pen.

For example, in the animal pen problem of Section 1.1, we found that the area A of the
rectangular pen in Fig. 2.4.13 was expressed as a function of its base length x by

A = f (x) = 3
5 x(30 − x).

Although this formula for f is meaningful for all x , only values in the closed interval
[0, 30] correspond to actual rectangles, so only such values are pertinent to the animal
pen problem.

The function f defined on the closed interval [a, b] is said to be continuous on
[a, b] provided that

• f is continuous at each point of the open interval (a, b),
• f is continuous from the right at the left-hand endpoint a, and
• f is continuous from the left at the right-hand endpoint b.

The last two conditions imply that, at each endpoint, the value of the function is equal
to its limit from within the interval. For instance, every polynomial is continuous on
every closed interval. The square root function f (x) = √

x is continuous from the
right at 0 because limx→0+

√
x = 0 = √

0 . Therefore f is continuous on the closed
interval [0, 1] even though f is not defined for x < 0.
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Continuous functions defined on closed intervals have very special properties.
For example, every such function has the intermediate value property of Theorem 3.
(A proof of this theorem is given in Appendix E.) We suggested earlier that continuity
of a function is related to the possibility of tracing its graph without lifting the pen
from the paper. Theorem 3, the intermediate value theorem, expresses this fact with
precision.

THEOREM 3 Intermediate Value Property
Suppose that the function f is continuous on the closed interval [a, b]. Then f (x)

assumes every intermediate value between f (a) and f (b). That is, if K is any
number between f (a) and f (b), then there exists at least one number c in (a, b)

such that f (c) = K .

Figure 2.4.14 shows the graph of a typical continuous function f whose domain
is the closed interval [a, b]. The number K is located on the y-axis, somewhere be-
tween f (a) and f (b). In the figure f (a) < f (b), but this is not important. The
horizontal line through K must cross the graph of f somewhere, and the x-coordinate
of the point where graph and line meet yields the value of c. The number c is the one
whose existence is guaranteed by the intermediate value property of the continuous
function f .

y

f (a)

y = K

c

y = f (x)

a b

f (b)

FIGURE 2.4.14 The continuous function f attains
the intermediate value K at x = c.

Thus the intermediate value theorem implies that each horizontal line meeting
the y-axis between f (a) and f (b) must cross the graph of the continuous function f
somewhere. This is a way of saying that the graph has no gaps or jumps, suggesting
that the idea of being able to trace such a graph without lifting the pen from the paper
is accurate.

EXAMPLE 9 The discontinuous function defined on [−1, 1] as

f (x) =
{

0 if x < 0,

1 if x � 0

does not attain the intermediate value 1
2 . See Fig. 2.4.15. ◗

x

y

(−1, 0)

(1, 1)

y = 1
2

FIGURE 2.4.15 This discontinuous
function does not have the
intermediate value property
(Example 9).

Existence of Solutions of Equations
An important application of the intermediate value theorem is the verification of the
existence of solutions of equations written in the form

f (x) = 0. (7)

EXAMPLE 10 You could attempt to approximate the number
√

2 graphically by
zooming in on the intersection of the parabola y = x2 − 2 with the positive x-axis
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(Fig. 2.4.16). The x-coordinate of the intersection yields the positive solution of the
equation

-2

0

2

-2 0 2
x

y

(1, −1)

(2, 2)
y = x2 − 2

FIGURE 2.4.16 The graph of
f (x) = x2 − 2 (Example 10).

f (x) = x2 − 2 = 0. (8)

Perhaps it makes no sense to zoom in on this point unless we know that it’s “really
there.” But we can see from Eq. (8) that

f (1) = −1 < 0, whereas f (2) = 2 > 0.

We note that the function f is continuous on [1, 2] (it is continuous everywhere) and
that K = 0 is an intermediate value of f on the interval [1, 2]. Therefore, it follows
from Theorem 3 that f (c) = c2 − 2 = 0 for some number c in (1, 2)—that is, that

c2 = 2.

This number c is the desired square root of 2. Thus it is the intermediate value property
of continuous functions that guarantees the existence of the number

√
2: There is a real

number whose square is 2. ◗

As indicated in Fig. 2.4.17, the solutions of Eq. (7) are simply the points where

x

y = f (x)

Solution

y

FIGURE 2.4.17 The solution of the
equation f (x) = 0.

the graph y = f (x) crosses the x-axis. Suppose that f is continuous and that we
can find a closed interval [a, b] (such as the interval [1, 2] of Example 10) such that
the value of f is positive at one endpoint of [a, b] and negative at the other. That is,
suppose that f (x) changes sign on the closed interval [a, b]. Then the intermediate
value property ensures that f (x) = 0 at some point of [a, b].

EXAMPLE 11 The graph y = x3 − x − 2 shown in Fig. 2.4.18 indicates that the
equation

f (x) = x3 − x − 2 = 0

has a solution somewhere between x = 1 and x = 2. Apply the intermediate value
theorem to show that this actually is so.

Solution The function f (x) is continuous on [1, 2] because it is a polynomial and,

-10

-6

-2
-4

-8

2
0

6
8

4

10

-3 -2 1-1 0 2 3
x

y

(1, −2)

(2, 4)

y = x3 − x − 2

FIGURE 2.4.18 The equation
x3 − x − 2 = 0 of Example 11
appears to have a solution
somewhere between x = 1 and
x = 2.

therefore, is continuous everywhere. Because f (1) = −2 and f (2) = +4, the inter-
mediate value theorem implies that every number between −2 and +4 is a value of
f (x) on [1, 2]. In particular,

−2 = f (1) < 0 < f (2) = +4,

so the intermediate value property of f implies that f attains the value 0 at some
number c between x = 1 and x = 2. That is,

f (c) = c3 − c − 2 = 0,

so x = c is a solution in (1, 2) of the equation x3 − x − 2 = 0. ◗

The following example shows that not every suspected root of an equation
f (x) = 0 that seems to be visible on a computer-plotted figure is actually there. In-
deed, a graphing calculator or computer ordinarily is programmed to plot close but
isolated points on the desired graph y = f (x) and then join these points with line
segments so short that the result looks like a smooth curve. In effect, the computer is
assuming that the function f is continuous, whether or not it actually is continuous.

EXAMPLE 12 Figure 2.4.19 shows a computer plot of the graph of the function

f (x) = 10 · [[1000x]] − 4995

10000
.

The graph y = f (x) appears indistinguishable from the line y = x − 1
2 , and in par-

ticular it appears that the equation f (x) = 0 has the solution x = 1
2 . But when we

zoom in near this alleged solution we see the graph shown in Fig. 2.4.20. Now we see
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-1

-0.5

0

0.5

1

-0.5 0.50 1
x

y

y = f(x)

?

FIGURE 2.4.19 The graph
y = f (x) of Example 12 appears to
have x-intercept x = 0.5.

0

0.49 0.495 0.5 0.505 0.51
-0.01

-0.008

-0.006
-0.004

-0.002
0

0.002
0.004
0.006
0.008

0.01

x

y

FIGURE 2.4.20 The graph in
Example 12 jumps across the
x-axis—there is no x-intercept.

that the function f is discontinuous, and actually “jumps” across the x-axis without
intersecting it. Thus the equation f (x) = 0 has no solution at all. ◗

2.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If the limit of the function f at x = a exists and is equal to f (a), then f is
continuous at x = a.

2. If f (x) = 1

x − 2
, then f is not continuous at x = 2.

3. If h(x) =
⎧⎨
⎩

sin x

x
if x �= 0,

1 if x = 0,
then h is continuous at x = 0.

4. Every polynomial function is continuous at every real number.
5. Every rational function is continuous wherever it is defined.
6. If f is continuous at x = a, then lim

x→a
f (x) = f (a).

7. The sine and cosine functions are continuous on the entire real line.
8. The composition f ◦ g of the continuous functions f and g is continuous.
9. The function f is said to be continuous on the closed and bounded interval [a, b]

provided that f is continuous on (a, b) and, morever,

lim
x→a+ f (x) = f (a) and lim

x→b− f (x) = f (b).

10. If f is continuous on the interval [a, b] and K is between f (a) and f (b), then
K = f (c) for some number c in (a, b).

2.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that a < b < c. If the function f is continuous both on the closed

interval [a, b] and on the closed interval [b, c], does it follow that f is continuous
on [a, c]? If f is continuous on the closed interval [n, n + 1] for every integer n,
does it follow that f is continuous on the entire real line?

2. Suppose that the function f is continuous everywhere and that the composition
f (g(x)) is continuous at x = a. Does it follow that g(x) is continuous at a?
Suggestion: Consider the possibility that f (x) = |x |.

3. Suppose that p(x) is a polynomial of odd degree with positive leading coeffi-
cient. Then its graph y = p(x) “heads southwest in the third quadrant” and
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“northeast in the first quadrant.” Can you state more precisely what these intu-
itive statements mean? Why does it follow that the equation p(x) = 0 always
has at least one solution?

4. If 10L = y, then we call the number L the base 10 logarithm of y and write
L = log y. Assume that the exponential function f (x) = 10x is continuous
everywhere (it is!) and—as suggested by its graph in Fig. 1.4.10—it has both
arbitrarily large positive values and values arbitrarily close to zero. Then explain
why the intermediate value theorem implies that every positive number has a base
10 logarithm.

2.4 PROBLEMS

In Problems 1 through 8, apply the limit laws and the theorems
of this section to show that the given function is continuous for
all x.

1. f (x) = 2x5 − 7x2 + 13 2. f (x) = 7x3 − (2x + 1)5

3. g(x) = 2x − 1

4x2 + 1
4. g(x) = x3

x2 + 2x + 5

5. h(x) = √
x2 + 4x + 5 6. h(x) = 3

√
1 − 5x

7. f (x) = 1 − sin x

1 + cos2 x
8. g(x) = 4

√
1 − sin2 x

In Problems 9 through 14, apply the limit laws and the theorems
of this section to show that the given function is continuous on
the indicated interval.

9. f (x) = 1

x + 1
, x > −1

10. f (x) = x − 1

x2 − 4
, −2 < x < 2

11. g(t) = √
9 − 4t2 , − 3

2 � t � 3
2

12. h(z) = √
(z − 1)(3 − z), 1 � z � 3

13. f (x) = x

cos x
, − 1

2 π < x < 1
2 π

14. g(t) = √
1 − 2 sin t , − 1

6 π < t < 1
6 π

In Problems 15 through 36, tell where the given function is con-
tinuous. Recall that when the domain of a function is not speci-
fied, it is the set of all real numbers for which the formula of the
function is meaningful.

15. f (x) = 2x + 3
√

x 16. g(x) = x2 + 1

x

17. f (x) = 1

x + 3
18. f (t) = 5

5 − t

19. f (x) = 1

x2 + 1
20. g(z) = 1

z2 − 1

21. f (x) = x − 5

|x − 5| 22. h(x) = x2 + x + 1

x2 + 1

23. f (x) = x2 + 4

x − 2
24. f (t) = 4

√
4 + t4

25. f (x) = 3

√
x + 1

x − 1
26. F(u) = 3

√
3 − u3

27. f (x) = 3

x2 − x
28. f (z) = √

9 − z2

29. f (x) = x√
4 − x2

30. f (x) =
√

1 − x2

4 − x2

31. f (x) = sin x

x2
32. g(θ) = θ

cos θ

33. f (x) = 1

sin 2x
34. f (x) = √

sin x

35. f (x) = sin |x | 36. G(u) = 1√
1 + cos u

In Problems 37 through 48, find the points where the given func-
tion is not defined and is therefore not continuous. For each such
point a, tell whether or not this discontinuity is removable.

37. f (x) = x

(x + 3)3
38. f (t) = t

t2 − 1

39. f (x) = x − 2

x2 − 4
40. G(u) = u + 1

u2 − u − 6

41. f (x) = 1

1 − |x | 42. h(x) = |x − 1|
(x − 1)3

43. f (x) = x − 17

|x − 17|
44. g(x) = x2 + 5x + 6

x + 2

45. f (x) =
{−x if x < 0;

x2 if x > 0

46. f (x) =
{

x + 1 if x < 1;
3 − x if x > 1

47. f (x) =
⎧⎨
⎩

1 + x2 if x < 0;
sin x

x
if x > 0

48. f (x) =
{1 − cos x

x
if x < 0;

x2 if x > 0

In Problems 49 through 52, find a value of the constant c so that
the function f (x) is continuous for all x.

49. f (x) =
{

x + c if x < 0,

4 − x2 if x � 0

50. f (x) =
{

2x + c if x � 3,

2c − x if x > 3

51. f (x) =
{

c2 − x2 if x < 0,

2(x − c)2 if x � 0

52. f (x) =
{

c3 − x3 if x � π,

c sin x if x > π

In Problems 53 through 58, apply the intermediate value prop-
erty of continuous functions to show that the given equation has
a solution in the given interval.
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53. x2 − 5 = 0 on [2, 3]
54. x3 + x + 1 = 0 on [−1, 0]
55. x3 − 3x2 + 1 = 0 on [0, 1]
56. x3 = 5 on [1, 2]
57. x4 + 2x − 1 = 0 on [0, 1]
58. x5 − 5x3 + 3 = 0 on [−3, −2]
In Problems 59 and 60, show that the given equation has three
distinct roots by calculating the values of the left-hand side at
x = −3, −2, −1, 0, 1, 2, and 3 and then applying the intermedi-
ate value property of continuous functions on appropriate closed
intervals.

59. x3 − 4x + 1 = 0 60. x3 − 3x2 + 1 = 0

61. Suppose that you accept a job now (time t = 0) at an an-
nual salary of $25, 000 and are promised a 6% raise at the
end of each year of employment. Explain why your salary in
thousands of dollars after t years is given by the formula

S(t) = 25 · (1.06)[[t]].

Graph this function for the first 5 years and comment on its
continuity.

62. Suppose that you accept the same job as in Problem 61, but
now are promised a 1.5% raise at the end of each quarter
(three months). (a) Write a formula for your salary (in thou-
sands of dollars) after t years. (b) Graph this new salary
function and comment on its continuity. (c) Which is the
better deal, the promised salary of Problem 61 or the one of
this problem?

63. Suppose that f and g are two functions both continuous on
the interval [a, b], and such that f (a) = g(b) = p and
f (b) = g(a) = q where p �= q. Sketch typical graphs
of two such functions. Then apply the intermediate value
theorem to the function h(x) = f (x) − g(x) to show that
f (c) = g(c) at some point c of (a, b).

64. Suppose that today you leave your home in Estes Park, CO
at 1 P.M. and drive to Grand Lake, arriving at 2 P.M. Tomor-
row you leave your destination in Grand Lake at 1 P.M. and
retrace the same route, arriving home at 2 P.M. Use Prob-
lem 63 as a suggestion to show that at some instant between
1 and 2 P.M. you are at precisely the same point on the road
both days. What must you assume about the functions de-
scribing your location as a function of time each day?

65. Apply the intermediate value property of continuous func-
tions to show that every positive number a has a square root.
That is, given a > 0, prove that there exists a number r such
that r 2 = a.

66. Apply the intermediate value property to prove that every
real number has a cube root.

67. Show that the cosine function is continuous on the set of all
real numbers. (Suggestion: Alter the proof of Theorem 1 of
the continuity of the sine function.)

68. Determine where the function f (x) = x+[[x]] is continuous.

69. Suppose that f (x) = 0 if x is a rational number, whereas
f (x) = 1 if x is irrational. Prove that f is discontinuous at
every real number.

70. Suppose that f (x) = 0 if x is a rational number, whereas
f (x) = x2 if x is irrational. Prove that f is continuous only
at the single point x = 0.

71. Figure 2.4.21 suggests that the equation x = cos x has a so-
lution in the interval (0, π/2). Use the intermediate value
theorem to show that this is true. Then use your calculator
to approximate this solution accurate to two decimal places.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

y = x

y = cos x

FIGURE 2.4.21 The graphs y = x
and y = cos x (Problem 71).

72. Figure 2.4.22 suggests that the equation x = −5 cos x has
at least three distinct solutions. Use the intermediate value
theorem to show that this is true. Then use your calculator to
approximate each of these solutions accurate to two decimal
places.

-8 -6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2

4

6
8

x

y

y = x

y = −5 cos x

FIGURE 2.4.22 The graphs y = x
and y = −5 cos x (Problem 72).

Investigate the continuity of each of the functions defined in Prob-
lems 73 through 78. For each discontinuity, determine whether
the given function is continuous from the right and whether it is
continuous from the left. Use a graphing calculator or computer
if you find it helpful.

73. f (x) = 21/x if x �= 0; f (0) = 0

74. f (x) = 2−1/x2
if x �= 0; f (0) = 0

75. f (x) = 1

1 + 21/x
if x �= 0; f (0) = 1

76. f (x) = 1

1 + 2−1/x2 if x �= 0; f (0) = 1

77. f (x) = 1

1 + 2tan x
where meaningful;

f (x) = 1 otherwise

78. f (x) = 1

1 + 21/ sin x
where meaningful;

f (x) = 0 otherwise
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CHAPTER 2: REVIEW

Understanding: Concepts and Definitions
Refer to the listed pages to review the concepts and definitions in this chapter that you need to understand.

Section Pages
2.1 The relation between secant lines and tangent lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

The difference quotient of a function f at a point x = a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
The slope of a tangent line as a limit of difference quotients . . . . . . . . . . . . . . . . . . . . . . . . . 58
The slope formula for the tangent line at a point on a parabola . . . . . . . . . . . . . . . . . . . . . . 58–59
The relation between tangent and normal lines to a curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 The slope at (a, f (a)) as a limit as either h → 0 or x → a . . . . . . . . . . . . . . . . . . . . . . . . . 64
The idea of the limit of f (x) as x → a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
The constant, sum, product, quotient, and root laws of limits . . . . . . . . . . . . . . . . . . . . . . . . 68–69
The substitution law and limits of compositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
The four-step process for finding slope-predictor functions . . . . . . . . . . . . . . . . . . . . . . . . . .72

2.3 The basic trigonometric limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
The squeeze law of limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Right-hand and left-hand limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79–80
The relation between one-sided and two-sided limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Existence of tangent lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Infinite limits of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
The precise definition of the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.4 Continuity of a function at a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Removable discontinuities of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Continuity of combinations, polynomials and rational functions . . . . . . . . . . . . . . . . . . . . . 93
Continuity of trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Continuity of compositions of continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Continuity of a function on a closed interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
The intermediate value property of continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Existence of solutions of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
2.1 Finding the equation of the tangent line at a point on a parabola . . . . . . . . . . . . . . . . . . . . . 9, 11

Find the point(s) on a curve where the tangent line is horizontal . . . . . . . . . . . . . . . . . . . . . 17, 21
Finding equations of both tangent and normal lines to a curve . . . . . . . . . . . . . . . . . . . . . . . 25, 27
Solving applied problems by finding high points on parabolas . . . . . . . . . . . . . . . . . . . . . . . 29, 31
Numerically investigating the slope of a tangent line at a point . . . . . . . . . . . . . . . . . . . . . . 37, 41, 45

2.2 Using limit laws to evaluate limits of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 7, 11
Finding limits of quotients after algebraic simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 25, 31, 35
Using the four-step process to find a slope-predictor function . . . . . . . . . . . . . . . . . . . . . . . 37, 41, 45
Investigating a limit numerically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 49, 55

2.3 Using limit laws to evaluate trigonometric limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 9, 11, 13, 25
Using the one-sided limit laws to evaluate limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 35, 39, 43, 45
Determining behavior where one-sided limits fail to exist . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 51, 55
Using the precise definition to establish a limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75, 79

2.4 Using limit laws to establish continuity of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 7, 9, 11, 13
Determining where a given function is continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 21, 23, 25, 31
Determining whether or not a discontinuity is removable . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 39, 43, 45, 47
Applying the intermediate value property to locate solutions . . . . . . . . . . . . . . . . . . . . . . . . 53, 55
Numerical investigation of continuity at a given point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73, 75
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Chapter 2 Miscellaneous Problems 103

MISCELLANEOUS PROBLEMS

Apply the limit laws to evaluate the limits in Problems 1 through
40 or to show that the indicated limit does not exist, as appropri-
ate.

1. lim
x→0

(x2 − 3x + 4) 2. lim
x→−1

(3 − x + x3)

3. lim
x→2

(4 − x2)10 4. lim
x→1

(x2 + x − 1)17

5. lim
x→2

1 + x2

1 − x2
6. lim

x→3

2x

x2 − x − 3

7. lim
x→1

x2 − 1

1 − x
8. lim

x→−2

x + 2

x2 + x − 2

9. lim
t→−3

t2 + 6t + 9

9 − t2
10. lim

x→0

4x − x3

3x + x2

11. lim
x→3

(x2 − 1)2/3 12. lim
x→2

√
2x2 + 1

2x

13. lim
x→3

(
5x + 1

x2 − 8

)3/4

14. lim
x→1

x4 − 1

x2 + 2x − 3

15. lim
x→7

√
x + 2 − 3

x − 7
16. lim

x→1+

(
x −

√
x2 − 1

)

17. lim
x→−4

1√
13 + x

− 1

3
x + 4

18. lim
x→1+

1 − x

|1 − x |

19. lim
x→2+

2 − x√
4 − 4x + x2

20. lim
x→−2−

x + 2

|x + 2|

21. lim
x→4+

x − 4

|x − 4| 22. lim
x→3−

√
x2 − 9

23. lim
x→2+

√
4 − x2 24. lim

x→−3

x

(x + 3)2

25. lim
x→2

x + 2

(x − 2)2
26. lim

x→1−
x

x − 1

27. lim
x→3+

x

x − 3
28. lim

x→1−
x − 2

x2 − 3x + 2

29. lim
x→1−

x + 1

(x − 1)3
30. lim

x→5+
25 − x2

x2 − 10x + 25

31. lim
x→0

sin 3x

x
32. lim

x→0

tan 5x

x

33. lim
x→0

sin 3x

sin 2x
34. lim

x→0

tan 2x

tan 3x

35. lim
x→0+

x

sin
√

x
36. lim

x→0

1 − cos 3x

2x

37. lim
x→0

1 − cos 3x

2x2
38. lim

x→0
x3 cot x csc x

39. lim
x→0

sec 2x tan 2x

x
40. lim

x→0
x2 cot2 3x

In Problems 41 through 46, apply your knowledge of lines tan-
gent to parabolas (Section 2.1) to write a slope-predictor formula
for the given curve y = f (x). Then write an equation for the line
tangent to y = f (x) at the point (1, f (1)).

41. f (x) = 3 + 2x2 42. f (x) = x − 5x2

43. f (x) = 3x2 + 4x − 5 44. f (x) = 1 − 2x − 3x2

45. f (x) = (x − 1)(2x − 1) 46. f (x) = x

3
−

( x

4

)2

In Problems 47 through 53, use the “four-step process” of Sec-
tion 2.3 to find a slope-predictor formula for the graph y = f (x).

47. f (x) = 2x2 + 3x 48. f (x) = x − x3

49. f (x) = 1

3 − x
50. f (x) = 1

2x + 1

51. f (x) = x − 1

x
52. f (x) = x

x + 1

53. f (x) = x + 1

x − 1

54. Find a slope-predictor formula for the graph

f (x) = 3x − x2 + |2x + 3|
at the points where a tangent line exists. Find the point (or
points) where no tangent line exists. Sketch the graph of f .

55. Write equations of the two lines through (3, 4) that are tan-
gent to the parabola y = x2. (Suggestion: Let (a, a2) denote
either point of tangency; first solve for a.)

56. Write an equation for the circle with center (2, 3) that is tan-
gent to the line with equation x + y + 3 = 0.

In Problems 57 through 60, explain why each function is contin-
uous wherever it is defined by the given formula. For each point
a where f is not defined by the formula, tell whether a value can
be assigned to f (a) in such a way as to make f continuous at a.

57. f (x) = 1 − x

1 − x2
58. f (x) = 1 − x

(2 − x)2

59. f (x) = x2 + x − 2

x2 + 2x − 3
60. f (x) =

∣∣x2 − 1
∣∣

x2 − 1

61. Apply the intermediate value property of continuous func-
tions to prove that the equation x5 + x = 1 has a solution.

62. Apply the intermediate value property of continuous func-
tions to prove that the equation x3 − 4x2 + 1 = 0 has three
different solutions.

63. Show that there is a number x between 0 and π/2 such that
x = cos x .

64. Show that there is a number x between π/2 and π such
that tan x = −x . (Suggestion: First sketch the graphs of
y = tan x and y = −x .)

65. Find how many straight lines through the point (12, 15
2 ) are

normal to the graph of y = x2 and find the slope of each.
(Suggestion: The cubic equation you should obtain has one
root evident by inspection.)
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66. A circle of radius r is dropped into the parabola y = x2. If
r is too large, the circle will not fall all the way to the bot-
tom; if r is sufficiently small, the circle will touch the para-
bola at its vertex (0, 0). (See Fig. 2.MP.1.) Find the largest
value of r so that the circle will touch the vertex of the
parabola.

y = x2

FIGURE 2.MP.1 If the circle
is too large, it cannot touch the
bottom of the parabola
(Problem 66).

PHOTO CREDITS

p. 53 (top left) Getty Images, Inc.-Hulton Archive Photos; (bottom left) Courtesy of International  Business 
Machines Corporation. Unauthorized use not permitted. (right) Navy Visual News Service/U.S. Navy 
News Photo 
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Isaac Newton (1642–1727)

Isaac Newton was born
in a rural English farm-
ing village on Christmas

Day in 1642, three months
after his father’s death.
When the boy was three,
his mother remarried and
left him with his grand-
mother. Nothing known
about his childhood and
early schooling hinted that
his life and work would
constitute a turning point
in the history of humanity.

But due to the influence of an uncle who suspected
hidden potential in young Isaac, Newton was able to en-
ter Cambridge University in 1661. During the years 1665
and 1666, when Cambridge closed because of the bubonic
plague then sweeping Europe, he returned to his country
home and there laid the foundations for the three tower-
ing achievements of his scientific career—the invention of
the calculus, the discovery of the spectrum of colors in
light, and the theory of gravitation. Of these two years he
later wrote that “in those days I was in the prime of my
age of invention and minded mathematics and philosophy
more than at any time since.” Indeed, his thirties were
devoted more to smoky chemical (and even alchemical)
experiments than to serious mathematical investigations.

In his forties, while a mathematics professor at
Cambridge, Newton wrote the Principia Mathematica
(1687), perhaps the single most influential scientific trea-
tise ever published. In it he applied the concepts of the
calculus to explore the workings of the universe, includ-
ing the motions of the earth, moon, and planets about the
sun. A student is said to have remarked, “There goes the
man that wrote a book that neither he nor anyone else un-
derstands.” But it established for Newton such fame that
upon his death in 1727 he was buried alongside his coun-
try’s greats in Westminster Abbey with such pomp that the
French philosopher Voltaire remarked, “I have seen a pro-
fessor of mathematics . . . buried like a king who had done
good to his subjects.”

Shortly after his Cambridge graduation in 1665,
Newton discovered a new method for solving an equa-
tion of the form f (x) = 0. Unlike special methods such
as the quadratic formula that apply only to equations of
special form, Newton’s method can be used to approxi-
mate numerical solutions of virtually any equation. In Sec-
tion 3.10 we present an iterative formulation of Newton’s
method that is especially adaptable to calculators and com-
puters. There we describe how the combination of New-
ton’s method with modern computer graphics has led to the
generation of striking fractal images associated with the
science of chaos. The pictures here result from the appli-
cation of a complex-number version of Newton’s method
to the simple equation x3 + 1 = 0.

From Chapter 3 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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106 CHAPTER 3 The Derivative

3.1 THE DERIVATIVE AND RATES OF CHANGE

In Section 2.1 we saw that the line tangent to the curve y = f (x) (Fig. 3.1.1) at they

x

y = f(x) 

Slope m = f '(a) 

(a, f (a)) 

a

FIGURE 3.1.1 The geometric
motivation for the definition of the
derivative.

point P(a, f (a)) has slope

m = m(a) = lim
h→0

f (a + h) − f (a)

h
(1)

provided that this limit exists. As in the slope-prediction formulas of Section 2.2, we
get a new function f ′—the derivative of the original function f —when we replace the
constant a in (1) with the independent variable x .

DEFINITION The Derivative
The derivative of the function f is the function f ′ defined by

f ′(x) = lim
h→0

f (x + h) − f (x)

h
(2)

for all x for which this limit exists.

It is important to understand that when the limit in (2) is evaluated, we hold x
fixed while h approaches zero. When we are specifically interested in the value f ′(a)

of the derivative f ′ at the number x = a, we sometimes rewrite Eq. (2) in the form

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

x→a

f (x) − f (a)

x − a
. (3)

The second limit in Eq. (3) is obtained from the first by writing x = a + h, h =
x − a, and by noting that x → a as h → 0 (Fig. 3.1.2). The statement that these
equivalent limits exist can be abbreviated as “ f ′(a) exists.” In this case we say that the
function f is differentiable at x = a. The process of finding the derivative f ′ is called

x

y

x = a  + ha

y = f (x)

Q (x, f (x))

P (a, f (a))

h = x  − a

f (a + h) − f (a)
= f (x) − f (a)

FIGURE 3.1.2 The notation in
Eq. (3).

differentiation of f .
However it is found, the derivative f ′ is a slope predictor for lines tangent to the

graph y = f (x) of the original function f (Fig. 3.1.1).

The Derivative as Slope Predictor
The slope m of the line tangent to the graph y = f (x) at the point (a, f (a)) where
x = a is

m = f ′(a). (4)

Application of the point-slope formula gives

y − f (a) = f ′(a) · (x − a) (5)

as an equation of this tangent line.

Differentiating a given function f by direct evaluation of the limit in Eq. (3)
involves carrying out four steps:

1. Write the definition in Eq. (2) of the derivative.
2. Substitute the expressions f (x + h) and f (x) as determined by the particular

function f .
3. Simplify the result by algebraic methods until it is possible to . . .

4. Apply appropriate limit laws to finally evaluate the limit.

In Section 2.2 we used this same “four-step process” to calculate several slope-
predictor functions—that is, derivatives. The limit calculations of Examples 12 and 13
in Section 2.2—where we found the derivatives of the functions

f (x) = x + 1

x
and f (x) = √

x
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—illustrate algebraic simplification techniques that frequently are useful in the evalu-
ation of derivatives directly from the definition in Eq. (2).

EXAMPLE 1 First apply the definition of the derivative directly to differentiate the
function

f (x) = x

x + 3
.

Then find the line tangent to the graph of f at the origin, where f (0) = 0.

Solution Steps 1 and 2 above give

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

x + h

(x + h) + 3
− x

x + 3
h

.

Then an algebraic simplification suggested by the common-denominator calculation

a

b
− c

d
h

=
ad − bc

bd
h

= ad − bc

hbd

yields

f ′(x) = lim
h→0

(x + h)(x + 3) − x(x + h + 3)

h(x + h + 3)(x + 3)

= lim
h→0

3h

h(x + h + 3)(x + 3)
= lim

h→0

3

(x + h + 3)(x + 3)

= 3(
lim
h→0

(x + h + 3)
)(

lim
h→0

(x + 3)
) .

We therefore find finally that

f ′(x) = 3

(x + 3)(x + 3)
= 3

(x + 3)2
.

Substituting a = 0, f (0) = 0, and f ′(0) = 1
3 in Eq. (5) gives the equation y = 1

3 x of
the line tangent to the graph y = x/(x + 3) at the origin (0, 0) (Fig. 3.1.3). ◗

x

y

−3

−2

−1

0

1

2

3

0 1 2 3−3 −2 −1

y = x
3

x
x + 3

y =

FIGURE 3.1.3 The tangent line
y = 1

3 x to the curve y = x/(x + 3)

at the origin.

Even when the function f is rather simple, this four-step process for computing
f ′ directly from the definition of the derivative can be time consuming. Also, Step 3
may require considerable ingenuity. Moreover, it would be very repetitious to con-
tinue to rely on this process. To avoid tedium, we want a fast, easy, short method fory = (px2) + (qx) + r

↓ ↓ ↓
m(x) = 2(px) + q + 0

FIGURE 3.1.4 Termwise
construction of the slope-predictor
function m(x) = 2px + q for a
parabola y = px2 + qx + r. Note
that the exponent 2 in the quadratic
term px2 comes “down out
front”—yielding the linear term
2px—while the linear term qx
simply yields the constant q, and the
constant term r just “disappears.”

computing f ′(x).
That new method is one focus of this chapter: the development of systematic

methods (“rules”) for differentiating those functions that occur most frequently. Such
functions include polynomials, rational functions, the trigonometric functions sin x and
cos x , and combinations of such functions. Once we establish these general differenti-
ation rules, we can apply them formally, almost mechanically, to compute derivatives.
Only rarely should we need to return to the definition of the derivative.

Figure 3.1.4 illustrates the slope-predictor function for a parabola that we ex-
hibited in Eq. (10) of Section 2.1. Restated in the language of derivatives, this is an
example of a “differentiation rule.”

RULE Differentiation of Quadratic Functions
The derivative of the quadratic function

f (x) = ax2 + bx + c (6)

is the linear function

f ′(x) = 2ax + b. (7)
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108 CHAPTER 3 The Derivative

Note that this rule works in the same way no matter whether we denote the coef-
ficients by a, b, and c as in Eqs. (6) and (7), or by p, q, and r as in Fig. 3.1.4.

It may be instructive to derive the differentiation formula in (7) directly from the
definition of the derivative:

f ′(x) = lim
h→0

f (x + h) − f (x)

h

= lim
h→0

[a(x + h)2 + b(x + h) + c] − [ax2 + bx + c]
h

= lim
h→0

(ax2 + 2ahx + ah2 + bx + bh + c) − (ax2 + bx + c)

h

= lim
h→0

2ahx + ah2 + bh

h
= lim

h→0
(2ax + ah + b).

Therefore

f ′(x) = 2ax + b.

Once we know this rule, we need never again apply the definition of the derivative to
differentiate a quadratic function.

EXAMPLE 2 (a) If f (x) = 3x2 −4x +5, we can apply Eq. (7) to write the derivative
immediately, without going through the four-step process:

x

y, y'

−40

0

−30

10

−20

20

−10

30
40
50
60

0 5−5

y =  3x2 − 4x + 5

y' = 6x − 4

y' > 0
y increasing

y' < 0
y decreasing

FIGURE 3.1.5 Note that the curve
y = f (x) is falling (from left to
right) where the derivative f ′(x) is
negative, and is rising where the
derivative is positive.

f ′(x) = 2 · (3x) + (−4) = 6x − 4.

Figure 3.1.5 compares the graph of f with that of its derivative f ′.
(b) Similarly, if g(t) = 2t − 5t2, then

g′(t) = (2) + 2 · (−5t) = 2 − 10t. ◗

It makes no difference what the name for the function is or whether we write x
or t for the independent variable. This flexibility is valuable—in general, it is such
adaptability that makes mathematics applicable to virtually every other branch of hu-
man knowledge. In any case, you should learn every differentiation rule in a form
independent of the notation used to state it.

We develop additional differentiation rules in Sections 3.2 through 3.4. First,
however, we must introduce new notation and a new interpretation of the derivative.

Differential Notation
An important alternative notation for the derivative originates from the early custom of
writing �x in place of h (because h = �x is an increment in x) and

�y = f (x + �x) − f (x)

for the resulting change (or increment) in y. The slope of the secant line K of Fig. 3.1.6
is then

msec = �y

�x
= f (x + �x) − f (x)

�x
,

and the slope of the tangent line is

m = dy

dx
= lim

�x→0

�y

�x
. (8)

Hence, if y = f (x), we often write

dy

dx
= f ′(x). (9)
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P

y =  f (x)

Q
Secant
line K

Δx

y

x

Δy

FIGURE 3.1.6 Origin of the dy/dx notation.

(The so-called differentials dy and dx are discussed carefully in Chapter 4.) The sym-
bols f ′(x) and dy/dx for the derivative of the function y = f (x) are used almost
interchangeably in mathematics and its applications, so you need to be familiar with
both versions of the notation. You also need to know that dy/dx is a single symbol
representing the derivative; it is not the quotient of two separate quantities dy and dx .

EXAMPLE 2 (Continued) If y = ax2 + bx + c, then the derivative in Eq. (7) in
differential notation takes the form

dy

dx
= 2ax + b.

Consequently,

if y = 3x2 − 4x + 5, then
dy

dx
= 6x − 4;

if z = 2t − 5t2, then
dz

dt
= 2 − 10t. ◗

The letter d in the notation dy/dx stands for the word “differential.” Whether we
write dy/dx or dz/dt , the dependent variable appears “upstairs” and the independent
variable “downstairs.”

Rates of Change

The derivative of a function serves as a slope predictor for straight lines tangent to
the graph of that function. Now we introduce the equally important interpretation of
the derivative of a function as the rate of change of that function with respect to the
independent variable.

We begin with the instantaneous rate of change of a function whose independent
variable is time t . Suppose that Q is a quantity that varies with time t , and write
Q = f (t) for the value of Q at time t . For example, Q might be

• The size of a population (such as kangaroos, people, or bacteria);
• The number of dollars in a bank account;
• The volume of a balloon being inflated;
• The amount of water in a reservoir with variable inflow and outflow;
• The amount of a chemical product produced in a reaction; or
• The distance traveled t hours after the beginning of a journey.

The change in Q from time t to time t + �t is the increment

�Q = f (t + �t) − f (t).

109

www.konkur.in



110 CHAPTER 3 The Derivative

The average rate of change of Q (per unit of time) is, by definition, the ratio of the
change �Q in Q to the change �t in t . Thus it is the quotient

�Q

�t
= f (t + �t) − f (t)

�t
(10)

illustrated in Fig. 3.1.7.

t

ΔQ = f (t + Δ t) − f (t)
(the change in Q)

t

(t, f (t))

(t + Δ t, f (t + Δ t))
Slope:

Q

Q = f (t)

Δ t
(the change in t )

ΔQ

t  + Δ t

Δ t

FIGURE 3.1.7 Average rate of change as a slope.

We define the instantaneous rate of change of Q (per unit of time) to be the
limit of this average rate as �t → 0. That is, the instantaneous rate of change of Q is

lim
�t→0

�Q

�t
= lim

�t→0

f (t + �t) − f (t)

�t
. (11)

But the right-hand limit in Eq. (11) is simply the derivative f ′(t). So we see that the

t

(t, f (t)) 

Q

Q = f (t) 

dQ
dt

Slope:

the instantaneous
rate of change of
Q at t

,

FIGURE 3.1.8 The relation
between the tangent line at (t, f (t))
and the instantaneous rate of change
of f at t .

instantaneous rate of change of Q = f (t) is the derivative

d Q

dt
= f ′(t). (12)

To interpret intuitively the concept of instantaneous rate of change, think of theQ

Q increasing

t

dQ
dt

Slope > 0: curve rising

t

FIGURE 3.1.9 Quantity
increasing—derivative positive.

point P(t, f (t)) moving along the graph of the function Q = f (t). As Q changes with
time t , the point P moves along the curve. But suppose that suddenly, at the instant t ,
the point P begins to follow a straight-line path—like a whirling particle suddenly cut
loose from its string. Then the new path of P would appear as in Fig. 3.1.8. The dashed
curve in the figure corresponds to the “originally planned” behavior of Q (before P
decided to fly off along the straight-line path). But the straight-line path of P (of
constant slope) corresponds to the quantity Q “changing at a constant rate.” Because
the straight line is tangent to the graph Q = f (t), we can interpret d Q/dt as the
instantaneous rate of change of the quantity Q at the instant t :

The instantaneous rate of change of Q = f (t) at time t is equal to the slope of
the line tangent to the curve Q = f (t) at the point (t, f (t)).

We can draw additional important conclusions. Because a positive slope corre-
sponds to a rising tangent line and a negative slope corresponds to a falling tangent line
(as in Figs. 3.1.9 and 3.1.10), we say that

Q is increasing at time t if
d Q

dt
> 0;

Q is decreasing at time t if
d Q

dt
< 0.

(13)

NOTE The meaning of the phrase “Q = f (t) is increasing over (or during) the time
interval from t = a to t = b” should be intuitively clear. The expressions in (13) give
us a way to make precise what we mean by “Q = f (t) is increasing at time t”—that is,

t

Q

Q decreasing

dQ
dt

Slope < 0: curve falling

t

FIGURE 3.1.10 Quantity
decreasing—derivative negative.

at the instant t . Note also that the fact that a function is increasing at some instant does
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The Derivative and Rates of Change SECTION 3.1 111

not necessarily imply that it continues to increase throughout some interval of time;
this question is discussed in Section 4.3.

EXAMPLE 3 The cylindrical tank in Fig. 3.1.11 has a vertical axis and is initially

 Volume V(t)

 Rate V'(t)

FIGURE 3.1.11 The draining tank
of Example 3.

filled with 600 gal of water. This tank takes 60 min to empty after a drain in its bottom
is opened. Suppose that the drain is opened at time t = 0. Suppose also that the
volume V of water remaining in the tank after t minutes is

V (t) = 1
6 (60 − t)2 = 600 − 20t + 1

6 t2

gallons. Find the instantaneous rate at which water is flowing out of the tank at time
t = 15 (min) and at time t = 45 (min). Also find the average rate at which water flows
out of the tank during the half hour from t = 15 to t = 45.

Solution The instantaneous rate of change of the volume V (t) of water in the tank is
given by the derivative

dV

dt
= −20 + 1

3 t.

At the instants t = 15 and t = 45 we obtain

V ′(15) = −20 + 1
3 · 15 = −15

and
V ′(45) = −20 + 1

3 · 45 = −5.

The units here are gallons per minute (gal/min). The fact that V ′(15) and V ′(45)

are negative is consistent with the observation that V is a decreasing function of t
(as t increases, V decreases). One way to indicate this is to say that after 15 min,
the water is flowing out of the tank at 15 gal/min; after 45 min, the water is flowing
out at 5 gal/min. The instantaneous rate of change of V at t = 15 is −15 gal/min,
and the instantaneous rate of change of V at t = 45 is −5 gal/min. We could have
predicted the units, because �V/�t is a ratio of gallons to minutes, and therefore its
limit V ′(t) = dV/dt must be expressed in the same units.

During the time interval of length �t = 30 min from time t = 15 to time t = 45,
the average rate of change of the volume V (t) is

�V

�t
= V (45) − V (15)

45 − 15

=
1
6 (60 − 45)2 − 1

6 (60 − 15)2

45 − 15
= −300

30
.

Each numerator in the last equation is measured in gallons—this is especially apparent
when you examine the second numerator—and each denominator is measured in min-
utes. Hence the ratio in the last fraction is a ratio of gallons to minutes, so the average
rate of change of the volume V of water in the tank is −10 gal/min. Thus the average
rate of flow of water out of the tank during this half-hour interval is 10 gal/min. ◗

Our examples of functions up to this point have been restricted to those with for-
mulas or verbal descriptions. Scientists and engineers often work with tables of values
obtained from observations or experiments. Example 4 shows how the instantaneous
rate of change of such a tabulated function can be estimated.

EXAMPLE 4 The table in Fig. 3.1.12 gives the U.S. population P (in millions) in the
nineteenth century at 10-year intervals. Estimate the instantaneous rate of population
growth in 1850.

Solution We take t = 0 (yr) in 1800, so t = 50 corresponds to the year 1850. In
Fig. 3.1.13 we have plotted the given data and then added a freehand sketch of a smooth
curve that fits these data.

We can hope that this curve fitting the data is a good approximation to the true
graph of the unknown function P = f (t). The instantaneous rate of change d P/dt in
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U.S. Population
t Year (Millions)

0 1800 5.3
10 1810 7.2
20 1820 9.6
30 1830 12.9
40 1840 17.1
50 1850 23.2
60 1860 31.4
70 1870 38.6
80 1880 50.2
90 1890 63.0

100 1900 76.2

FIGURE 3.1.12 Data for Example 4.

1800 1850 1900
t (year)

20

40

60

80

P (millions)

(50, 23.2)

50
36

FIGURE 3.1.13 A smooth curve that fits the data
of Fig. 3.1.12 well (Example 4).

1850 is then the slope of the tangent line at the point (50, 23.2). We draw the tangent
line as accurately as we can by visual inspection and then measure the base and height
of the triangle in Fig. 3.1.13. In this way we approximate the slope of the tangent at
t = 50 as

d P

dt
≈ 36

50
= 0.72

millions of people per year (in 1850). Although there was no national census in 1851,
we would expect the U.S. population then to have been approximately 23.2 + 0.7 =
23.9 million. ◗

Velocity and Acceleration

Suppose that a particle moves along a horizontal straight line, with its location x at
x = 0 x = f (t)

FIGURE 3.1.14 The particle in
motion is at the point x = f (t) at
time t .

time t given by its position function x = f (t). Thus we make the line of motion a
coordinate axis with an origin and a positive direction; f (t) is merely the x-coordinate
of the moving particle at time t (Fig. 3.1.14).

Think of the time interval from t to t + �t . The particle moves from position
f (t) to position f (t + �t) during this interval. Its displacement is then the increment

�x = f (t + �t) − f (t).

We calculate the average velocity of the particle during this time interval exactly as we
would calculate average speed on a long motor trip: We divide the distance by the time
to obtain an average speed in miles per hour. In this case we divide the displacement
of the particle by the elapsed time to obtain the average velocity

v = �x

�t
= f (t + �t) − f (t)

�t
. (14)

(The overbar is a standard symbol that usually connotes an average of some sort.) We
define the instantaneous velocity v of the particle at the time t to be the limit of the
average velocity v as �t → 0. That is,

v = lim
�t→0

�x

�t
= lim

�t→0

f (t + �t) − f (t)

�t
. (15)
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We recognize the limit on the right in Eq. (15)—it is the definition of the deriva-
tive of f at time t . Therefore, the velocity of the moving particle at time t is simply

v = dx

dt
= f ′(t). (16)

Thus velocity is instantaneous rate of change of position. The velocity of a mov-
ing particle may be positive or negative, depending on whether the particle is moving
in the positive or negative direction along the line of motion. We define the speed of
the particle to be the absolute value |v| of the velocity.

EXAMPLE 5 Figure 3.1.15 shows a car moving along the (horizontal) x-axis. Sup-
pose that its position (in feet) at time t (in seconds) is given by

x(t) = 5t2 + 100.

0 x = 100 x = 600 x (ft)

= 0 = 100

FIGURE 3.1.15 The car of Example 5.

Then its velocity at time t is

v(t) = x ′(t) = 10t.

Because x(0) = 100 and v(0) = 0, the car starts at time t = 0 from rest—v(0) = 0—
at the point x = 100. Substituting t = 10, we see that x(10) = 600 and v(10) = 100,
so after 10 s the car has traveled 500 ft (from its starting point x = 100), and its speed
then is 100 ft/s. ◗

Vertical Motion
In the case of vertical motion—such as that of a ball thrown straight upward—it is
common to denote the position function by y(t) rather than by x(t). Typically, y(t)

y = 0 Ground level

y = y (t) Time t

FIGURE 3.1.16 Vertical motion
with position function y(t).

denotes the height above the ground at time t , as in Fig. 3.1.16. But velocity is still the
derivative of position:

v(t) = dy

dt
.

Upward motion with y increasing corresponds to positive velocity, v > 0 (Fig. 3.1.17).y

y increasing
dy
dt

> 0

y decreasing
dy
dt

< 0= =

FIGURE 3.1.17 Upward motion
and downward motion.

Downward motion with y decreasing corresponds to negative velocity, v < 0.
The case of vertical motion under the influence of constant gravity is of special

interest. If a particle is projected straight upward from an initial height y0 (ft) above
the ground at time t = 0 (s) and with initial velocity v0 (ft/s) and if air resistance is
negligible, then its height y (in feet above the ground) at time t is given by a formula
known from physics,

y(t) = − 1
2 gt2 + v0t + y0. (17)

Here g denotes the acceleration due to the force of gravity. Near the surface of the
earth, g is nearly constant, so we assume that it is exactly constant, and at the surface
of the earth, g ≈ 32 ft/s2, or g ≈ 9.8 m/s2.

If we differentiate y with respect to time t , we obtain the velocity of the particle
at time t :

v(t) = dy

dt
= −gt + v0. (18)
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The acceleration of the particle is defined to be the instantaneous time rate of
change (derivative) of its velocity:

a = dv

dt
= −g. (19)

Your intuition should tell you that a body projected upward in this way will reach its
maximum height at the instant that its velocity becomes zero—when v(t) = 0. (We
shall see in Section 3.5 why this is true.)

EXAMPLE 6 Find the maximum height attained by a ball thrown straight upward
from the ground with initial velocity v0 = +96 ft/s. Also find the velocity with which
it hits the ground upon its return.

Solution To begin the solution of a motion problem such as this, we sketch a diagram
like Fig. 3.1.18, indicating both the given data and the data that are unknown at the time
instants in question. Here we focus on the time t = 0 when the ball leaves the ground
(y = 0), the unknown time when it reaches its maximum height with velocity v = 0,
and the unknown time when it returns to the ground.

y

t = ?

t = 0
y0 = 0

Start:
t = ?
y = 0

Impact:

y = ?

= 960 = ?

= 0

FIGURE 3.1.18 Data for the ball of
Example 6.

We begin by substituting y0 = 0, v0 = 96, and g = 32 in Eq. (17). Then the
height of the ball at time t (so long as it remains aloft) is given by

y(t) = −16t2 + 96t.

Then differentiation gives its velocity at time t ,

v(t) = y′(t) = −32t + 96

(see Fig. 3.1.19). The ball attains its maximum height when v = 0; that is, when

v(t) = −32t + 96 = 0.

This occurs when t = 3 (s). Substituting t = 3 in the height function y(t) gives the
maximum height of the ball,

ymax = y(3) = −16 · (3)2 + 96 · (3) = 144 (ft).

The ball returns to the ground when y(t) = 0. The equation

y(t) = −16t2 + 96t = −16t (t − 6) = 0

has the two solutions t = 0 and t = 6. Thus the ball returns to the ground at time
t = 6. The velocity with which it strikes the ground is

t

y, v

−50

50

0

100

150

200

0 2 4 6 8−2

y =  −16t2 + 96t
v = −32t + 96

v < 0

y
dec.

v > 0

y
inc.

FIGURE 3.1.19 Note that the ball
is rising when its velocity v > 0,
falling when v < 0, and is at its apex
when v = 0.

v(t) = (−32)(6) + 96 = −96 (ft/s). ◗

Other Rates of Change
The derivative of any function—not merely a function of time—may be interpreted as
its instantaneous rate of change with respect to the independent variable. If y = f (x),
then the average rate of change of y (per unit change in x) on the interval [x, x +�x]
is the quotient

�y

�x
= f (x + �x) − f (x)

�x
.

The instantaneous rate of change of y with respect to x is the limit, as �x → 0, of
the average rate of change. Thus the instantaneous rate of change of y with respect to
x is

lim
�x→0

�y

�x
= dy

dx
= f ′(x). (20)
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Example 7 illustrates the fact that a dependent variable may sometimes be ex-
pressed as two different functions of two different independent variables. The deriva-
tives of these functions are then rates of change of the dependent variable with respect
to the two different independent variables.

EXAMPLE 7 The area of a square with edge length x centimeters is A = x2, so the

x

x

A = x2

Δx
Δx

FIGURE 3.1.20 The square of
Example 7:

A + �A = (x + �x)2;
�A = 2x�x + (�x)2;
�A

�x
= 2x + �x;

d A

dx
= 2x .

derivative of A with respect to x ,

d A

dx
= 2x, (21)

is the rate of change of its area A with respect to x . (See the computations in Fig. 3.1.20.)
The units of d A/dx are square centimeters per centimeter. Now suppose that the edge
length of the square is increasing with time: x = 5t , with time t in seconds. Then the
area of the square at time t is

A = (5t)2 = 25t2.

The derivative of A with respect to t is

d A

dt
= 2 · 25t = 50t; (22)

this is the rate of change of A with respect to time t , with units of square centimeters
per second. For instance, when t = 10 (so x = 50), the values of the two derivatives
of A in Eqs. (21) and (22) are

d A

dx

∣∣∣∣
x=50

= 2 · 50 = 100 (cm2/cm)

and

d A

dt

∣∣∣∣
t=10

= 50 · 10 = 500 (cm2/s).

Thus A is increasing at the rate of 100 cm2 per cm increase in x , and at the rate of 500
cm2 per second increase in t . ◗

The notation d A/dt for the derivative suffers from the minor inconvenience of
not providing a “place” to substitute a particular value of t , such as t = 10. The last
lines of Example 7 illustrate one way around this difficulty.

Just as we can speak of whether the quantity Q(t) is increasing or decreasing at
time t = a—according as Q ′(a) > 0 or Q ′(a) < 0—we can ask whether the function
y = f (x) is an increasing or decreasing function of x . Thinking of rising tangent lines
with positive slopes, and falling tangent lines with negative slopes, we say in analogy
with (13) that

y is increasing at the point x = a if f ′(a) > 0;
y is decreasing at the point x = a if f ′(a) < 0.

EXAMPLE 8 Figure 3.1.21 shows the graphs y = f (x) of a function and y = f ′(x)

of its derivative. Observe that

• y = f (x) has a horizontal tangent line at points where f ′(x) = 0;

6420
x

y = f(x)

y = f '(x)

y

−4 −2
−200
−100

0
100
200
300
400
500
600
700
800

FIGURE 3.1.21 Correspondence
between the function graph
y = f (x) and the derivative graph
y = f ′(x).

• f (x) is increasing on open intervals where f ′(x) > 0; and
• f (x) is decreasing on open intervals where f ′(x) < 0. ◗
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3.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The derivative of the function f is the function f ′ with the rule

f ′(x) = lim
h→0

f (x + h) − f (x)

h

for those values of x for which the limit exists.
2. If f ′(a) exists, then there is a straight line tangent to the graph of f at the point

P(a, f (a)), and its slope is f ′(a).
3. If p, q , and r are constants and f (x) = px2 + qx + r , then f ′(x) = 2px + q .

4. If y = f (x), then it is acceptable to write
dy

dx
as an alternative notation for f ′(x);

that is: If y = f (x), then
dy

dx
= f ′(x).

5. If Q = Q(t) is a function of time t , then the average rate of change of Q over

the time interval [t, t + �t] is
Q(t + �t) − Q(t)

�t
.

6. If Q = Q(x) is a function of x , then the instantaneous rate of change of Q with

respect to x is Q′(x) = lim
h→0

Q(x + h) − Q(x)

h
.

7. If a particle moves along a straight line with position x(t) at time t and velocity
v(t) at time t , then v′(t) = x(t).

8. If a particle moves along a straight line with velocity v(t) at time t , then its
acceleration a(t) at time t is defined to be a(t) = v′(t).

9. If Q = f (t) is a function of time t , then Q is increasing at the instant t if
f ′(t) > 0.

10. If y = f (x) is a function of x , then y is decreasing at x provided that f ′(x) < 0.

3.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. The slope line in Fig. 3.1.5 looks as if it might be tangent to the parabola. Is it? If

not, what’s a simple way you could alter the equation of the parabola—without
changing its slope line—in order to ensure that the line will be tangent to the
altered parabola?

2. When a ball is tossed straight upward, it may appear to hover at the apex of its
trajectory for a brief period of time. Does it?

3. You are pulled over by a policeman who claims that you did not stop properly
at a stop sign. You argue that as you braked your car, its velocity was zero at a
certain instant before you removed your foot from the brake pedal and proceeded
through the intersection. The policeman replies that you nevertheless did not
come to a full stop—that he is certain your velocity did not remain zero for even
a hundredth of a second. What’s the cause of this disagreement? Explain it with
such convincing clarity that the judge will let you off without you paying a fine.

4. The ball of Example 6 took the same amount of time to rise from the ground to
its highest point as to fall back to the ground. Is this always the case for a ball
governed by Eqs. (17) and (18) of this section? Suggestion: In lieu of a blizzard
of algebra, think about the symmetry of the parabola in Fig. 3.1.19.

3.1 PROBLEMS

In Problems 1 through 10, find the indicated derivative by using
the differentiation rule in Eqs. (6) and (7):

If f (x) = ax2 + bx + c, then f ′(x) = 2ax + b.

1. f (x) = 4x − 5; find f ′(x).

2. g(t) = 100 − 16t2; find g′(t).

3. h(z) = z(25 − z); find h′(z).
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4. f (x) = 16 − 49x ; find f ′(x).

5. y = 2x2 + 3x − 17; find dy/dx .

6. x = 16t − 100t2; find dx/dt .

7. z = 5u2 − 3u; find dz/du.

8. v = 5y(100 − y); find dv/dy.

9. x = −5y2 + 17y + 300; find dx/dy.

10. u = 7t2 + 13t ; find du/dt .

In Problems 11 through 20, apply the definition of the derivative
(as in Example 1) to find f ′(x).

11. f (x) = 2x − 1 12. f (x) = 2 − 3x

13. f (x) = x2 + 5 14. f (x) = 3 − 2x2

15. f (x) = 1

2x + 1
16. f (x) = 1

3 − x

17. f (x) = √
2x + 1 18. f (x) = 1√

x + 1

19. f (x) = x

1 − 2x
20. f (x) = x + 1

x − 1

In Problems 21 through 25, the position function x = f (t) of
a particle moving in a horizontal straight line is given. Find its
location x when its velocity v is zero.

21. x = 100 − 16t2 22. x = −16t2 + 160t + 25

23. x = −16t2 + 80t − 1 24. x = 100t2 + 50

25. x = 100 − 20t − 5t2

In Problems 26 through 29, the height y(t) (in feet at time t sec-
onds) of a ball thrown vertically upward is given. Find the maxi-
mum height that the ball attains.

26. y = −16t2 + 160t 27. y = −16t2 + 64t

28. y = −16t2 + 128t + 25 29. y = −16t2 + 96t + 50

In Problems 30 through 35 (Figs. 3.1.22 through 3.1.27), match
the given graph of the function f with that of its derivative, which
appears among those in Fig. 3.1.28, parts (a) through ( f ).

30. Figure 3.1.22
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FIGURE 3.1.22

31. Figure 3.1.23
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32. Figure 3.1.24
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33. Figure 3.1.25
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34. Figure 3.1.26
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35. Figure 3.1.27
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FIGURE 3.1.28(f)
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36. The Celsius temperature C is given in terms of the Fahren-
heit temperature F by C = 5

9 (F − 32). Find the rate of
change of C with respect to F and the rate of change of F
with respect to C .

37. Find the rate of change of the area A of a circle with respect
to its circumference C .

38. A stone dropped into a pond at time t = 0 s causes a circular
ripple that travels out from the point of impact at 5 m/s. At
what rate (in square meters per second) is the area within the
circle increasing when t = 10?

39. A car is traveling at 100 ft/s when the driver suddenly ap-
plies the brakes (x = 0, t = 0). The position function of the
skidding car is x(t) = 100t − 5t2. How far and for how long
does the car skid before it comes to a stop?

40. A water bucket containing 10 gal of water develops a leak
at time t = 0, and the volume V of water in the bucket t
seconds later is given by

V (t) = 10

(
1 − t

100

)2

until the bucket is empty at time t = 100. (a) At what
rate is water leaking from the bucket after exactly 1 min
has passed? (b) When is the instantaneous rate of change
of V equal to the average rate of change of V from t = 0 to
t = 100?

41. A population of chipmunks moves into a new region at time
t = 0. At time t (in months), the population numbers

P(t) = 100[1 + (0.3)t + (0.04)t2].
(a) How long does it take for this population to double its
initial size P(0)? (b) What is the rate of growth of the popu-
lation when P = 200?

42. The following data describe the growth of the population P
(in thousands) of Gotham City during a 10-year period. Use
the graphical method of Example 4 to estimate its rate of
growth in 1989.

Year 1984 1986 1988 1990 1992 1994

P 265 293 324 358 395 427

43. The following data give the distance x in feet traveled by an
accelerating car (that starts from rest at time t = 0) in the
first t seconds. Use the graphical method of Example 4 to

estimate its speed (in miles per hour) when t = 20 and again
when t = 40.

t 0 10 20 30 40 50 60

x 0 224 810 1655 2686 3850 5109

In Problems 44 through 49, use the fact (proved in Section 3.2)
that the derivative of y = ax3 + bx2 + cx + d is dy/dx =
3ax2 + 2bx + c.

44. Prove that the rate of change of the volume V of a cube with
respect to its edge length x is equal to half the surface area
A of the cube (Fig. 3.1.29).

45. Show that the rate of change of the volume V of a sphere
with respect to its radius R is equal to its surface area S
(Fig. 3.1.30).

46. The height h of a certain cylinder whose height changes is
always twice its radius r . Show that the rate of change of its
volume V with respect to r is equal to its total surface area
S (Fig. 3.1.31).

47. A spherical balloon with an initial radius r of 5 in. be-
gins to leak at time t = 0, and its radius t seconds later is
r = (60 − t)/12 in. At what rate (in cubic inches per sec-
ond) is air leaking from the balloon when t = 30?

48. The volume V (in liters) of 3 g of CO2 at 27◦C is given
in terms of its pressure p (in atmospheres) by the formula
V = 1.68/p. What is the rate of change of V with respect
to p when p = 2 (atm)? (Suggestion: Use the fact that the
derivative of f (x) = c/x is f ′(x) = −c/x2 if c is a con-
stant; you can establish this by using the definition of the
derivative.)

49. As a snowball with an initial radius of 12 cm melts, its radius
decreases at a constant rate. It begins to melt when t = 0 (h)
and takes 12 h to disappear. (a) What is its rate of change of
volume when t = 6? (b) What is its average rate of change
of volume from t = 3 to t = 9?

50. A ball thrown vertically upward at time t = 0 (s) with ini-
tial velocity 96 ft/s and with initial height 112 ft has height
function y(t) = −16t2 + 96t + 112. (a) What is the max-
imum height attained by the ball? (b) When and with what
impact speed does the ball hit the ground?

51. A spaceship approaching touchdown on the planet Gzyx
has height y (meters) at time t (seconds) given by y =
100−100t +25t2. When and with what speed does it hit the
ground?

x

x
x

FIGURE 3.1.29 The cube of
Problem 44—volume V = x3,
surface area S = 6x2.

r

FIGURE 3.1.30 The sphere of
Problem 45—volume V = 4

3 πr3,
surface area S = 4πr2.

h

r

FIGURE 3.1.31 The cylinder of
Problem 46—volume V = πr2h,
surface area S = 2πr2 + 2πrh.
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52. The population (in thousands) of the city Metropolis is given
by

P(t) = 100[1 + (0.04)t + (0.003)t2],
with t in years and with t = 0 corresponding to 1980.
(a) What was the rate of change of P in 1986? (b) What
was the average rate of change of P from 1983 to 1988?

53. Suppose that during the 1990s the population P of a small
city was given by

P(t) = 10 + t − 0.1t2 + 0.006t3

(with t in years and P in thousands). Taking t = 0 on Jan-
uary 1, 1990, find the time(s) during the 1990s at which the
instantaneous rate of change of this population was equal to
its average rate of change during the whole decade. (Use the
differentiation formulas given in the instructions for Prob-
lems 44–49.)

Problems 54 through 60 involve the left-hand and right-hand
derivatives of f at a that are defined by

f ′
−(a) = lim

h→0−
f (a + h) − f (a)

h

and

f ′
+(a) = lim

h→0+
f (a + h) − f (a)

h
,

(assuming these limits exist). Then f ′(a) exists if and only
both the left-hand and right-hand derivatives exist and f ′

−(a) =
f ′
+(a).

54. (a) Find f ′
−(0) and f ′

+(0) given f (x) = |x |. (b) The func-
tion f (x) = |12x − 101| is differentiable except at a single
point. What is this point, and what are the values of its left-
hand and right-hand derivatives of f there?

55. Sketch the graph of the given function f and determine if it
is differentiable at x = 0:

(a) f (x) =
{

x if x < 0,

2x if x � 0;
(b) f (x) =

{
x2 if x < 0,

2x2 if x � 0.

56. Investigate the differentiability of the function f defined by

f (x) =
{

2x + 1 if x < 1,

4x − x2 if x � 1.

57. Investigate the differentiability of the function f defined by

f (x) =
{

11 + 6x − x2 if x < 3,

x2 − 6x + 29 if x � 3.

58. Sketch the graph of the function f (x) = x ·|x | and show that
it is differentiable everywhere. Can you write a single (one-
part) formula that gives the value of f ′(x) both for x > 0
and for x < 0?

59. Sketch the graph of the function f (x) = x +|x |. Then inves-
tigate its differentiability. Find the derivative f ′(x) where
it exists; find the one-sided derivatives at the points where
f ′(x) does not exist.

60. Repeat Problem 59, except with the function f (x) =
x · (x + |x |).

3.2 BASIC DIFFERENTIATION RULES

Here we begin our systematic development of formal rules for finding the derivative f ′
of the function f :

f ′(x) = lim
h→0

f (x + h) − f (x)

h
. (1)

Some alternative notation for derivatives will be helpful.
When we interpreted the derivative in Section 3.1 as a rate of change, we found

it useful to employ the dependent-independent variable notation

y = f (x), �x = h, �y = f (x + �x) − f (x). (2)

This led to the “differential notation”

dy

dx
= lim

�x→0

�y

�x
= lim

�x→0

f (x + �x) − f (x)

�x
(3)

for the derivative. When you use this notation, remember that the symbol dy/dx is
simply another notation for the derivative f ′(x); it is not the quotient of two separate
entities dy and dx .

A third notation is sometimes used for the derivative f ′(x); it is Dx f (x). Here,

Dx f(x) = f '(x)

f

Dx

FIGURE 3.2.1 The “differentiation
machine” Dx .

think of Dx as a “machine” that operates on the function f to produce its derivative
Dx f with respect to x (Fig. 3.2.1). Thus we can write the derivative 3x2 of y =
f (x) = x3 in any of three ways:

f ′(x) = dy

dx
= Dx x3 = 3x2.
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These three notations for the derivative—the function notation f ′(x), the differential
notation dy/dx , and the operator notation Dx f (x)—are used almost interchangeably
in mathematical and scientific writing, so you need to be familiar with each.

The Derivative of a Constant
Our first differentiation rule says that the derivative of a constant function is identi-y

y = c
Slope zero

x

FIGURE 3.2.2 The derivative of a
constant-valued function is zero
(Theorem 1).

cally zero. Geometry makes this obvious, because the graph of a constant function is
a horizontal straight line that is its own tangent line, with slope zero at every point
(Fig. 3.2.2).

THEOREM 1 Derivative of a Constant
If f (x) = c (a constant) for all x , then f ′(x) = 0 for all x . That is,

dc

dx
= Dx c = 0. (4)

Proof Because f (x + h) = f (x) = c, we see that

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

c − c

h
= lim

h→0

0

h
= 0. ◆

The Power Rule
As motivation for the next rule, consider the following list of derivatives, all of which
have already appeared in the text (or as problems). The first two are special cases of
the formula Dx(ax2 + bx + c) = 2ax + b.

Dx x = 1

Dx x2 = 2x = 2 · x1

Dx x3 = 3 · x2 (Problem 37, Section 2.2)

Dx
1

x
= Dx x−1 = − 1

x2
= −1 · x−2 (Problem 38, Section 2.2)

Dx
1

x2
= Dx x−2 = − 2

x3
= −2 · x−3 (Problem 39, Section 2.2)

Dx
√

x = Dx x1/2 = 1

2
√

x
= 1

2
· x−1/2 (Example 13, Section 2.2)

Each of these formulas fits the simple pattern

Dx xn = nxn−1, (5)

in which the exponent n is simultaneously placed before the variable and, in the expo-
nent, is decreased by 1. Thus it appears that the blanks in the pattern

Dx x = x −1

can be filled with any (single) integer you please, or even the fraction 1
2 . But Eq. (5)—

inferred from the preceding list of derivatives—is as yet only a conjecture. Never-
theless, many discoveries in mathematics are made by detecting such patterns, then
proving that they hold universally.

Eventually we shall see that the formula in Eq. (5), called the power rule, is
valid for all real numbers n. At this time we give a proof only for the case in which the
exponent n is a positive integer.
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THEOREM 2 Power Rule for a Positive Integer n
If n is a positive integer and f (x) = xn , then

f ′(x) = nxn−1. (6)

Proof For a positive integer n, the identity

bn − an = (b − a)(bn−1 + bn−2a + bn−3a2 + · · · + ban−2 + an−1)

is easy to verify by multiplication. Thus, if b �= a, then

bn − an

b − a
= bn−1 + bn−2a + bn−3a2 + · · · + ban−2 + an−1.

Because each of the n terms on the right-hand side approaches an−1 as b → a, this
tells us that

lim
b→a

bn − an

b − a
= nan−1

by various limit laws. Now let b = x + h and a = x , so that h = b − a. Then h → 0
as b → a, and hence

f ′(x) = lim
h→0

(x + h)n − xn

h
= nxn−1. (7)

This establishes Theorem 2. ◆

We need not always use the same symbols x and n for the independent variable
and the constant exponent in the power rule. For instance,

Dt t
m = mtm−1 and Dzzk = kzk−1.

If it is perfectly clear what the independent variable is, the subscript may be dropped
from Dx (or Dt , or Dz), as in Example 1.

EXAMPLE 1 Dx7 = 7x6, Dt17 = 17t16, Dz100 = 100z99. ◗

The Derivative of a Linear Combination
To use the power rule to differentiate polynomials, we need to know how to differenti-
ate linear combinations. A linear combination of the functions f and g is a function
of the form a f + bg where a and b are constants. It follows from the sum and product
laws for limits that

lim
x→c

[a f (x) + bg(x)] = a
(

lim
x→c

f (x)
)

+ b
(

lim
x→c

g(x)
)

(8)

provided that the two limits on the right in Eq. (8) both exist. The formula in Eq. (8) is
called the linearity property of the limit operation. It implies an analogous linearity
property of differentiation.

THEOREM 3 Derivative of a Linear Combination
If f and g are differentiable functions and a and b are fixed real numbers, then

Dx [a f (x) + bg(x)] = a[Dx f (x)] + b[Dx g(x)]. (9)

With u = f (x) and v = g(x), this takes the form

d(au + bv)

dx
= a

du

dx
+ b

dv

dx
. (9′)
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Proof The linearity property of limits immediately gives

Dx [a f (x) + bg(x)] = lim
h→0

[a f (x + h) + bg(x + h)] − [a f (x) + bg(x)]
h

= a

(
lim
h→0

f (x + h) − f (x)

h

)
+ b

(
lim
h→0

g(x + h) − g(x)

h

)
= a[Dx f (x)] + b[Dx g(x)],

as desired. ◆

Now take a = c and b = 0 in Eq. (9). The result is

Dx [c f (x)] = cDx f (x); (10)

alternatively,

d(cu)

dx
= c

du

dx
, (10′)

Thus the derivative of a constant multiple of a function is the same constant multiple
of its derivative.

EXAMPLE 2

(a) Dx(16x6) = 16 · 6x5 = 96x5.
(b) If f (z) = 7z3, then f ′(z) = 21z2.

(c)
d

du
(99u100) = 9900u99. ◗

Next, take a = b = 1 in Eq. (9). We find that

Dx [ f (x) + g(x)] = [Dx f (x)] + [Dx g(x)]. (11)

In differential notation,

d(u + v)

dx
= du

dx
+ dv

dx
. (11′)

Thus the derivative of the sum of two functions is the sum of their derivatives. Similarly,
for differences we have

d(u − v)

dx
= du

dx
− dv

dx
. (12)

It’s easy to see that these rules generalize to sums and differences of more than two
functions. For example, repeated application of Eq. (11) to the sum of a finite number
of differentiable functions gives

d(u1 + u2 + · · · + un)

dx
= du1

dx
+ du2

dx
+ · · · + dun

dx
. (13)

REMARK Equation (13) tells us that, when differentiating a sum of terms, we simply
differentiate each term and then add the results.

EXAMPLE 3

Dx(36 + 26x + 7x5 − 5x9) = 0 + 26 · 1 + 7 · 5x4 − 5 · 9x8

= 26 + 35x4 − 45x8. ◗
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The Derivative of a Polynomial
When we apply Eqs. (10) and (13) and the power rule to the polynomial

p(x) = anxn + an−1xn−1 + · · · + a2x2 + a1x + a0

(and thus differentiate termwise), we find the derivative as fast as we can write it:

p′(x) = nanxn−1 + (n − 1)an−1xn−2 + · · · + 3a3x2 + 2a2x + a1. (14)

With this result, it becomes a routine matter to write an equation for a line tangent to
the graph of a polynomial.

EXAMPLE 4 Write an equation for the straight line that is tangent to the graph of
y = 2x3 − 7x2 + 3x + 4 at the point (1, 2).

Solution We compute the derivative as in Eq. (14):

dy

dx
= 2 · 3x2 − 7 · 2x + 3 + 0 = 6x2 − 14x + 3.

We substitute x = 1 in dy/dx and find that the slope of the tangent line at (1, 2) is
m = −5. So the point-slope equation of the tangent line is

y − 2 = −5(x − 1);
that is,

y = −5x + 7.

A calculator- or computer-generated picture like Fig. 3.2.3 provides suggestive visual
evidence of the validity of this tangent line computation. ◗

x

y

−30

−20

−10

0

10

20

30

0 4−4 1−3 2−2 3−1

y = −5x + 7

(1, 2)

y = 2x3 − 7x2 + 3x + 4

FIGURE 3.2.3 The graph
y = 2x3 − 7x2 + 3x + 4 and its
tangent line y = −5x + 7 at the
point (1, 2).

EXAMPLE 5 The volume V (in cubic centimeters) of a given sample of water varies
with changing temperature T . For T between 0◦C and 30◦C, the relation is given
almost exactly by the formula

V = V0[1 − (6.427 × 10−5)T + (8.505 × 10−6)T 2 − (6.790 × 10−8)T 3],
where V0 is the volume of the water (not ice) sample at 0◦C. Suppose that V0 =
105 cm3. Find both the volume and the rate of change of volume with respect to tem-
perature when T = 20◦C.

Solution Substituting V0 = 105 = 100,000 in the given volume formula yields

V (T ) = 100,000 − (6.427)T + (0.8505)T 2 − (0.00679)T 3.

Then substituting T = 20 yields V (20) ≈ 100,157.34, so the sample would expand
by about 157 cm3 if heated from 0◦C to 20◦C. The rate of change of volume V with
respect to temperature T is given by

dV

dT
= −6.427 + (1.7010)T − (0.02037)T 2,

and substituting T = 20 here yields

dV

dT

∣∣∣∣
T =20

≈ 19.45 (cm3/◦C).

Thus we should expect the volume of the water sample to increase by slightly more
than 19 cm3 if it is heated by 1◦C from 20◦C to 21◦C. In fact, direct substitution into
the original volume formula gives

V (21) − V (20) ≈ 19.88.

123

www.konkur.in



124 CHAPTER 3 The Derivative

Finally, we note that the average rate of change of V with respect to T on the interval
19.5 � T � 20.5 centered at T = 20 is

�V

�T
= V (20.5) − V (19.5)

20.5 − 19.5
≈ 19.44 (cm3/◦C),

which is very close to the derivative dV/dT at T = 20. ◗

The Product Rule and the Quotient Rule
It might be natural to conjecture that the derivative of a product f (x)g(x) is the product
of the derivatives. This is false! For example, if f (x) = g(x) = x , then

Dx [ f (x)g(x)] = Dx x2 = 2x .

But

[Dx f (x)] · [Dx g(x)] = (Dx x) · (Dx x) = 1 · 1 = 1.

In general, the derivative of a product is not merely the product of the derivatives.
Theorem 4 tells us what it is.

THEOREM 4 The Product Rule
If f and g are differentiable at x , then f g is differentiable at x , and

Dx [ f (x)g(x)] = f ′(x)g(x) + f (x)g′(x). (15)

With u = f (x) and v = g(x), this product rule takes the form

d(uv)

dx
= u

dv

dx
+ v

du

dx
. (15′)

When it is clear what the independent variable is, we can write the product rule even
more briefly:

(uv)′ = u′v + uv′. (15′′)

Proof We use an “add and subtract” device.

Dx [ f (x)g(x)] = lim
h→0

f (x + h)g(x + h) − f (x)g(x)

h

= lim
h→0

f (x + h)g(x + h) − f (x)g(x + h) + f (x)g(x + h) − f (x)g(x)

h

= lim
h→0

f (x + h)g(x + h) − f (x)g(x + h)

h
+ lim

h→0

f (x)g(x + h) − f (x)g(x)

h

=
(

lim
h→0

f (x + h) − f (x)

h

)(
lim
h→0

g(x + h)
)

+ f (x)

(
lim
h→0

g(x + h) − g(x)

h

)

= f ′(x)g(x) + f (x)g′(x). ◆

In this proof we used the sum law and product law for limits, the definitions of
f ′(x) and g′(x), and the fact that

lim
h→0

g(x + h) = g(x).

This last equation holds because g is differentiable and therefore continuous at x (as
we will see in Theorem 2 in Section 3.4).

In words, the product rule says that the derivative of the product of two functions
is formed by multiplying the derivative of each by the other and then adding the results.
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EXAMPLE 6 Find the derivative of

f (x) = (1 − 4x3)(3x2 − 5x + 2)

without first multiplying out the two factors.

Solution

Dx [(1 − 4x3)(3x2 − 5x + 2)]
= [Dx(1 − 4x3)](3x2 − 5x + 2) + (1 − 4x3)[Dx(3x2 − 5x + 2)]
= (−12x2)(3x2 − 5x + 2) + (1 − 4x3)(6x − 5)

= −60x4 + 80x3 − 24x2 + 6x − 5. ◗

We can apply the product rule repeatedly to find the derivative of a product of
three or more differentiable functions u1, u2, . . . , un of x . For example,

D[u1u2u3] = (u1u2)
′u3 + (u1u2)u

′
3

= (u′
1u2 + u1u′

2)u3 + u1u2u′
3

= u′
1u2u3 + u1u′

2u3 + u1u2u′
3.

Note that the derivative of each factor in the original product is multiplied by the other
two factors and then the three resulting products are added. This is, indeed, the general
result:

D(u1u2 · · · un) = u′
1u2u3 · · · un−1un + u1u′

2u3 · · · un−1un + · · ·
+ u1u2u3 · · · un−1u′

n,
(16)

where the sum in Eq. (16) has one term corresponding to each of the n factors in the
product u1u2 · · · un . It is easy to establish this extended product rule (see Problem 62)
one step at a time—next with n = 4, then with n = 5, and so forth.

Our next result tells us how to find the derivative of the reciprocal of a function
if we know the derivative of the function itself.

THEOREM The Reciprocal Rule
If f is differentiable at x and f (x) �= 0, then

Dx

[
1

f (x)

]
= − f ′(x)

[ f (x)]2
. (17)

With u = f (x), the reciprocal rule takes the form

d

dx

(
1

u

)
= − 1

u2
· du

dx
. (17′)

If there can be no doubt what the independent variable is, we can write(
1

u

)′
= − u′

u2
. (17′′)

Proof As in the proof of Theorem 4, we use the limit laws, the definition of the
derivative, and the fact that a function is continuous wherever it is differentiable (by
Theorem 2 of Section 3.4). Moreover, note that f (x + h) �= 0 for h near zero because
f (x) �= 0 and f is continuous at x . (See Problem 16 in Appendix D.) Therefore

Dx

[
1

f (x)

]
= lim

h→0

1

h

(
1

f (x + h)
− 1

f (x)

)
= lim

h→0

f (x) − f (x + h)

h f (x + h) f (x)

= −
(

lim
h→0

1

f (x + h) f (x)

)(
lim
h→0

f (x + h) − f (x)

h

)
= − f ′(x)

[ f (x)]2
. ◆
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EXAMPLE 7 With f (x) = x2 + 1 in Eq. (17), we get

Dx

(
1

x2 + 1

)
= − Dx(x2 + 1)

(x2 + 1)2
= − 2x

(x2 + 1)2
.

We now combine the reciprocal rule with the power rule for positive integral
exponents to establish the power rule for negative integral exponents.

THEOREM 5 Power Rule for a Negative Integer n
If n is a negative integer, then Dx xn = nxn−1.

Proof Let m = −n, so that m is a positive integer. If x �= 0 then we can apply the
reciprocal rule with f (x) = xm �= 0 and f ′(x) = mxm−1 (the latter by the power rule
with positive integer exponent). This gives

Dx xn = Dx

(
1

xm

)
= − Dx(xm)

(xm)2 = −mxm−1

x2m
= (−m)x−m−1 = nxn−1.

Thus we have established that the rule in Theorem 5 holds precisely where the function
being differentiated is defined—that is, where x �= 0. ◆

EXAMPLE 8

Dx

(
5x4 − 6x + 7

2x2

)
= Dx

(
5
2 x2 − 3x−1 + 7

2 x−2
)

= 5
2 (2x) − 3(−x−2) + 7

2 (−2x−3) = 5x + 3

x2
− 7

x3
.

The key here was to “divide out” before differentiating. ◗

Now we apply the product rule and reciprocal rule to get a rule for differentiation
of the quotient of two functions.

THEOREM 6 The Quotient Rule
If f and g are differentiable at x and g(x) �= 0, then f/g is differentiable at x and

Dx

[
f (x)

g(x)

]
= f ′(x)g(x) − f (x)g′(x)

[g(x)]2
. (18)

With u = f (x) and v = g(x), this rule takes the form

d

dx

(u

v

)
=

v
du

dx
− u

dv

dx
v2

(18′)

If it is clear what the independent variable is, we can write the quotient rule in the
form (u

v

)′ = u′v − uv′

v2
. (18′′)

Proof We apply the product rule to the factorization

f (x)

g(x)
= f (x) · 1

g(x)
.

This gives

Dx

[
f (x)

g(x)

]
= [Dx f (x)] · 1

g(x)
+ f (x) · Dx

[
1

g(x)

]

= f ′(x)

g(x)
+ f (x) ·

(
− g′(x)

[g(x)]2

)
= f ′(x)g(x) − f (x)g′(x)

[g(x)]2
. ◆
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Note that the numerator in Eq. (18) is not the derivative of the product of f and
g. And the minus sign means that the order of terms in the numerator is important.

EXAMPLE 9 Find z′(t) = dz/dt if z is given by

z = 1 − t3

1 + t4
.

Solution Here, primes denote derivatives with respect to t . With t (rather than x) as
the independent variable, the quotient rule gives

dz

dt
= (1 − t3)′(1 + t4) − (1 − t3)(1 + t4)′

(1 + t4)2

= (−3t2)(1 + t4) − (1 − t3)(4t3)

(1 + t4)2
= t6 − 4t3 − 3t2

(1 + t4)2
.

Figure 3.2.4 shows computer-generated graphs of the function z(t) and its derivative
z′(t). Observe that z(t) is increasing on intervals where z′(t) is positive and is de-
creasing on intervals where z′(t) is negative (thus corroborating our computation of
the derivative). A quick computer or calculator graph of a function and its alleged
derivative will often reveal an error if one has been made. ◗

50
t

z

−5
−2

2

1

0

−1

z(t)

z '(t)

FIGURE 3.2.4 Graphs of the
function z(t) of Example 9 and its
derivative z′(t).

3.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If y = f (x), then three acceptable notational devices for indicating the derivative

of f are f ′(x),
dy

dx
, and Dx f (x).

2. Dx(x−3/2) = −3

2
x−1/2.

3. Dx(16x6) = 22x5.
4. If f (x) = 2x3 − 7x2 + 3x + 4, then f ′(x) = 6x2 − 14x + 3 + 4.

5. If y = y(x) = (x2 + 1) · (x3 − 1), then
dy

dx
= 2x · (x3 − 1) + 3x2 · (x2 + 1).

6. If z = z(t) = 1 − t3

1 + t4
, then

dz

dt
= (−3t2) · (1 + t4) − (1 − t3) · (4t3)

(1 + t4)2
.

7. If Dx(sin x) = cos x , then Dz(sin z) = cos z.
8. If Dx(sin x) = cos x , then Dx(x sin x) = x cos x + sin x .

9. If Dx(sin x) = cos x , then Dx

(
sin x

x

)
= 1.

10. If u and v are differentiable functions of x , then the assertion that

d(u + v)

dx
= du

dx
+ dv

dx

is both notationally and mathematically correct.

3.2 CONCEPTS: QUESTIONS AND DISCUSSION

1. Theorems 2 and 5 in this section imply that the power rule Dx xn = nxn−1 holds
provided that the integer n is nonzero. Does it also hold if n = 0? Can you think
of a simple algebraic function whose derivative is a nonzero constant multiple of
1/x?
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128 CHAPTER 3 The Derivative

2. Example 1 and the discussion preceding it may seem to imply that the power rule
holds in the very general form D[whatever]n = n[whatever]n−1—more precisely,
Dx [ f (x)]n = n[ f (x)]n−1. Is this true or false? When you’re confronted with a
question like this, don’t just sit there. Check it out! Test the conjecture with
specific choices for n and f (x)—perhaps n = 7 and f (x) = x11. What are the
simplest choices you can use to resolve the matter?

3.2 PROBLEMS

Apply the differentiation rules of this section to find the deriva-
tives of the functions in Problems 1 through 40.

1. f (x) = 3x2 − x + 5 2. g(t) = 1 − 3t2 − 2t4

3. f (x) = (2x + 3)(3x − 2) 4. g(x) = (2x2 − 1)(x3 + 2)

5. h(x) = (x + 1)3 6. g(t) = (4t − 7)2

7. f (y) = y(2y − 1)(2y + 1) 8. f (x) = 4x4 − 1

x2

9. g(x) = 1

x + 1
− 1

x − 1
10. f (t) = 1

4 − t2

11. h(x) = 3

x2 + x + 1
12. f (x) = 1

1 − 2

x
13. g(t) = (t2 + 1)(t3 + t2 + 1)

14. f (x) = (2x3 − 3)(17x4 − 6x + 2)

15. g(z) = 1

2z
− 1

3z2

16. f (x) = 2x3 − 3x2 + 4x − 5

x2

17. g(y) = 2y(3y2 − 1)(y2 + 2y + 3)

18. f (x) = x2 − 4

x2 + 4

19. g(t) = t − 1

t2 + 2t + 1

20. u(x) = 1

(x + 2)2

21. v(t) = 1

(t − 1)3

22. h(x) = 2x3 + x2 − 3x + 17

2x − 5

23. g(x) = 3x

x3 + 7x − 5

24. f (t) = 1(
t + 1

t

)2

25. g(x) =
1

x
− 2

x2

2

x3
− 3

x4

26. f (x) =
x3 − 1

x2 + 1

x4 + 1

x2 + 1

27. h(x) = x3 − 6x5 + 3
2 x−4 + 12

28. x(t) = 3

t
− 4

t2
− 5

29. y(x) = 5 − 4x2 + x5

x3
30. u(x) = 2x − 3x2 + 2x4

5x2

31. y(x) = 3x − 1

4x2
32. f (z) = 1

z(z2 + 2z + 2)

33. y(x) = x

x − 1
+ x + 1

3x
34. u(t) = 1

1 − 4t−2

35. y(x) = x3 − 4x + 5

x2 + 9
36. w(z) = z2

(
2z3 − 3

4z4

)

37. y(x) = 2x2

3x − 4

5x4

38. z(t) = 4

(t2 − 3)2

39. y(x) = x2

x + 1
40. h(w) = w + 10

w2

In Problems 41 through 50, write an equation of the line tangent
to the curve y = f (x) at the given point P on the curve. Express
the answer in the form ax + by = c.

41. y = x3; P(2, 8) 42. y = 3x2 − 4; P(1, −1)

43. y = 1

x − 1
; P(2, 1) 44. y = 2x − 1

x
; P(0.5, −1)

45. y = x3 + 3x2 − 4x − 5; P(1, −5)

46. y =
(

1

x
− 1

x2

)−1

; P(2, 4)

47. y = 3

x2
− 4

x3
; P(−1, 7)

48. y = 3x − 2

3x + 2
; P(2, 0.5)

49. y = 3x2

x2 + x + 1
; P(−1, 3)

50. y = 6

1 − x2
; P(2, −2)

51. Apply the formula in Example 5 to answer the following
two questions. (a) If 1000 cm3 of water at 0◦C is heated,
does it initially expand or contract? (b) What is the rate
(in cm3/◦C) at which it initially contracts or expands?

52. Susan’s weight in pounds is given by the formula W =
(2 × 109)/R2, where R is her distance in miles from the
center of the earth. What is the rate of change of W with re-
spect to R when R = 3960 mi? If Susan climbs a mountain,
beginning at sea level, at what rate in ounces per (vertical)
mile does her weight initially decrease?
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53. The conical tank shown in Fig. 3.2.5 has radius 160 cm and
height 800 cm. Water is running out of a small hole in the
bottom of the tank. When the height h of water in the tank
is 600 cm, what is the rate of change of its volume V with
respect to h?

600

120

FIGURE 3.2.5 The leaky
tank of Problem 53.

54. Find the x- and y-intercepts of the straight line that is tangent
to the curve y = x3 + x2 + x at the point (1, 3) (Fig. 3.2.6).

−20

−10

0

10

20

−4 −2 0 2 4
x

y
(1, 3)

y = x3 + x2 + x

FIGURE 3.2.6 The tangent
line of Problem 54.

−4

0

4

8

(a, a3)

(1, 5)

y = x3

−2 −1 0 1 2
x

y

FIGURE 3.2.7 The tangent
line of Problem 55.

55. Find an equation for the straight line that passes through the
point (1, 5) and is tangent to the curve y = x3. [Sugges-
tion: Denote by (a, a3) the point of tangency, as indicated in
Fig 3.2.7. Find by inspection small integral solutions of the
resulting cubic equation in a.]

56. Find two lines through the point (2, 8) that are tangent to the
curve y = x3. [See the suggestion for Problem 55.]

57. Prove that no straight line can be tangent to the curve y = x2

at two different points.

58. Find the two straight lines of slope −2 that are tangent to the
curve y = 1/x .

59. Let n � 2 be a fixed but unspecified integer. Find the
x-intercept of the line that is tangent to the curve y = xn

at the point P(x0, y0).

60. Prove that the curve y = x5 + 2x has no horizontal tangents.
What is the smallest slope that a line tangent to this curve
can have?

61. Apply Eq. (16) with n = 3 and u1 = u2 = u3 = f (x) to
show that

Dx ([ f (x)]3) = 3[ f (x)]2 · f ′(x).

62. (a) First write u1u2u3u4 = (u1u2u3)u4 to verify Eq. (16) for
n = 4. (b) Then write u1u2u3u4u5 = (u1u2u3u4)u5 and
apply the result in part (a) to verify Eq. (16) for n = 5.

63. Apply Eq. (16) to show that

Dx ([ f (x)]n) = n[ f (x)]n−1 · f ′(x)

if n is a positive integer and f ′(x) exists.

64. Use the result of Problem 63 to compute Dx [(x2 +x +1)100].
65. Use the result of Problem 63 to find g′(x) given g(x) =

(x3 − 17x + 35)17.

66. Find constants a, b, c, and d such that the graph of

f (x) = ax3 + bx2 + cx + d

has horizontal tangent lines at the points (0, 1) and (1, 0).

In connection with Problems 67 through 71, Figs. 3.2.8 through
3.2.11 show the curves

y = xn

1 + x2

for n = 0, 1, 2, and 3.

−2

−1

0

1

2

−2 0 2
x

y

y = 1/(1 + x2)

−1 1

FIGURE 3.2.8 The graph

of y = 1

1 + x2
.

y = x/(1 + x2)

−0.8

−0.4

0

0.4

0.8

−4 0 4
x

y

−2 2

FIGURE 3.2.9 The graph

of y = x

1 + x2
.

−2

−1

0

1

2

−4 0 4
x

y

y = x2/(1 + x2)

−2 2

FIGURE 3.2.10 The graph

of y = x2

1 + x2
.

−2

−1

0

1

y = x3/(1 + x2)
2

−2 0 2
x

y

−1 1

FIGURE 3.2.11 The graph

of y = x3

1 + x2
.

67. Show that for n = 0 and n = 2, the curve has only a single
point where the tangent line is horizontal (Figs. 3.2.8 and
3.2.10).

68. When n = 1, there are two points on the curve where the
tangent line is horizontal (Fig. 3.2.9). Find them.

69. Show that for n � 3, (0, 0) is the only point on the graph of

y = xn

1 + x2

at which the tangent line is horizontal (Fig. 3.2.11).
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70. Figure 3.2.12 shows the graph of the derivative f ′(x) of the
function

f (x) = x3

1 + x2
.

There appear to be two points on the graph of y = f (x) at
which the tangent line has slope 1. Find them.

71. It appears in Fig. 3.2.12 that there are three points on the
curve y = f ′(x) at which the tangent line is horizontal. Find
them.

−1

0

1

2

−4 −2 0 2 4
x

y

y = Dxx3/(1 + x2)

FIGURE 3.2.12 The graph

of y = Dx

( x3

1 + x2

)
of

Problems 70 and 71.

999

1000

V = V(T)

V = 1000
V = Vm

(Tm, Vm)

1001

0 20
T

V

15105

FIGURE 3.2.13 The
temperature-volume graph of
Problem 72.

72. Much of life on earth (as we know it) depends critically on
the variation of water density with temperature. Consider a
sample of water than has a volume of exactly 1000 cm3 when
measured at precisely 0◦C. Figure 3.2.13 shows a graph of
its volume function V (T ) as given by the formula in Exam-
ple 5. The surprise is that, as the temperature is increased,
the sample initially contracts rather than expands in volume.

Evidently a minimal volume Vm = V (Tm) occurs at a crit-
ical temperature Tm ≈ 4 (◦C). Given that the tangent line
to the graph of V is horizontal at the point (Tm, Vm), find:
(a) the numerical values of Tm and Vm , and (b) the tempera-
ture T1 ≈ 8 (◦C) at which the volume of the sample is again
exactly 1000 cm3. Comment: Because water that’s slightly
warmer than the freezing point of 0◦C is slightly denser than
water at 0◦C, the warmer water sinks to the bottom as a cool-
ing lake freezes. But ice is less dense, so it floats on the
surface. Consequently, ice at the surface traps somewhat
warmer water at the bottom of the lake—which otherwise
might freeze solid. This phenomenon is responsible for the
survival and evolution of life forms that can withstand cold
water but not freezing.

In Problems 73 through 78, sketch the graph of the given function
f and determine where it is differentiable. Recall the definition
of one-sided derivatives in Problem 54 of Section 3.1, as well as
the fact that f ′(a) exists if and only if f ′

−(a) = f ′
+(a).

73. f (x) = |x3| 74. f (x) = x3 + |x3|

75. f (x) =
{

2 + 3x2 if x < 1,

3 + 2x3 if x � 1

76. f (x) =
⎧⎨
⎩

x4 if x < 1,

2 − 1

x4
if x � 1

77. f (x) =
⎧⎨
⎩

1

2 − x
if x < 1,

x if x � 1

78. f (x) =
⎧⎨
⎩

12

(5 − x)2
if x < 3,

x2 − 3x + 3 if x � 3

3.3 THE CHAIN RULE

We saw in Section 3.2 how to differentiate powers of the independent variable, but we
often need to differentiate powers of rather general (or even unknown) functions. For
instance, suppose that

y = u3 (1)

where u is in turn a function of x . Then the extended product rule [Eq. (16) in Sec-
tion 3.2] yields

dy

dx
= Dx u3 = Dx(u · u · u) = u′ · u · u + u · u′ · u + u · u · u′

where u′ = du/dx . After we collect terms, we find that

dy

dx
= 3u2u′ = 3u2 du

dx
. (2)

Is it a surprise that the derivative of u3 is not simply 3u2, which you might expect in
analogy with the correct formula Dx x3 = 3x2? There is an additional factor du/dx ,
whose presence may seem more natural if we differentiate y in Eq. (1) with respect to
u, and write

dy

du
= 3u2.

130

www.konkur.in



The Chain Rule SECTION 3.3 131

Then the derivative formula in (2) takes the form

dy

dx
= dy

du
· du

dx
. (3)

Equation (3), the chain rule, holds for any two differentiable functions y = f (u) and
u = g(x). The formula in Eq. (2) is simply the special case of (3) with f (u) = u3.

EXAMPLE 1 If

y = (3x2 + 5)17,

it would be impractical to write the binomial expansion of the seventeenth power of
3x2 + 5 before differentiating. The Expand command in a typical computer alge-
bra system yields a polynomial in x having 18 terms, some of which have 15-digit
coefficients:

(3x2 + 5)17 = 762939453125 + 7781982421875x2 + · · ·
+ 186911613281250x18 + · · · + 129140163x34.

(Each ellipsis replaces seven omitted terms.) But if we simply write

y = u17 with u = 3x2 + 5,

then

dy

du
= 17u16 and

du

dx
= 6x .

Hence the chain rule yields

dy

dx
= dy

du
· du

dx
= 17u16 · 6x

= 17(3x2 + 5)16 · 6x = 102x(3x2 + 5)16. ◗

The formula in (3) is one that, once learned, is unlikely to be forgotten. Although
dy/du and du/dx are not fractions—they are merely symbols representing the deriva-
tives f ′(u) and g′(x)—it is much as though they were fractions, with the du in the first
factor canceling the du in the second factor:

dy

du
· du

dx
= dy

du
// · du

//
dx

= dy

dx
. [Invalid cancellation!]

But you should realize that such “cancellation” no more proves the chain rule than
canceling two copies of the symbol d proves that

dy

dx
= dy

/
dx
/ = y

x
. [An absurdity!]

It is nevertheless an excellent way to remember the chain rule. Such manipulations
with differentials are so suggestive (even when invalid) that they played a substantial
role in the early development of calculus in the seventeenth and eighteenth centuries.
Many formulas were thereby produced (and later proved valid), as were some formulas
that were incorrect.

EXAMPLE 2 For a physical interpretation of the chain rule, imagine an oil refinery
that first makes u liters of gasoline from x barrels of crude oil. Then, in a second
process, the refinery makes y grams of a marketable petrochemical from the u liters of
gasoline. (The two processes are illustrated in Fig. 3.3.1.) Then y is a function of u

x barrels crude oil

Process 1

u liters gasoline

Process 2

y grams petrochemical

FIGURE 3.3.1 The two-process oil
refinery (Example 2).
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and u is a function of x , so the final output y is a function also of the input x . Consider
the units in which the derivatives of these functions are measured.

dy

du
: g

L
(grams of petrochemical

per liter of gasoline)

du

dx
: L

barrel
(liters of gasoline

per barrel of oil)

dy

dx
: g

barrel
(grams of petrochemical

per barrel of oil)

When we include the units in the chain rule equation

dy

dx
= dy

du
· du

dx
,

we get

dy

dx

g

barrel
=

(
dy

du

g

L/

)
·
(

du

dx

L/

barrel

)
=

(
dy

du
· du

dx

)
g

barrel
.

The handy cancellation of units seems to confirm the validity of the chain rule (at least
in this application). For example, if we get 3 g of petrochemical per liter of gasoline
and 75 L of gasoline per barrel of oil, how could we fail to get 225 = 3 · 75 g of
petrochemical per barrel of oil? ◗

The Chain Rule in Function Notation
Although Eq. (3) is a memorable statement of the chain rule in differential notation, it
has the disadvantage of not specifying the values of the variables at which the deriva-
tives are evaluated. This problem can be solved by the use of function notation for the
derivatives. Let us write

y = f (u), u = g(x) y = h(x) = f (g(x)).

Then
du

dx
= g′(x),

dy

dx
= h′(x),

and
dy

du
= f ′(u) = f ′(g(x)).

Substituting these derivatives into the chain rule formula

dy

dx
= dy

du
· du

dx
(3)

recasts it in the form

h′(x) = f ′(g(x)) · g′(x). (4)

This version of the chain rule gives the derivative of the composition h = f ◦ g of two
functions f and g in terms of their derivatives.

THEOREM 1 The Chain Rule
Suppose that g is differentiable at x and that f is differentiable at g(x). Then the
composition h = f ◦ g defined by h(x) = f (g(x)) is differentiable at x , and its
derivative is

h′(x) = f ′(g(x)) · g′(x). (4)
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REMARK The chain rule in (4) shows that the derivative of the composition h = f ◦g
is a product of the derivatives of f and g. Note, however, that these two derivatives are
evaluated at different points. The derivative g′ of the inner function is evaluated at x ,
whereas the derivative f ′ of the outer function is evaluated at g(x) (rather than at the
same point x).

EXAMPLE 3 In Example 1 we applied the differential form of the chain rule in (3)
to differentiate the function

h(x) = (3x2 + 5)17.

To apply the functional form of the chain rule in (4), we must first identify the outer
function

f (x) = x17, for which f ′(x) = 17x16,

and the inner function

g(x) = 3x2 + 5, for which g′(x) = 6x .

Then

h′(x) = f ′(g(x)) · g′(x)

= f ′(3x2 + 5) · (3x2 + 5)′

= 17(3x2 + 5)16 · 6x = 102x(3x2 + 5)16. ◗

The Proof of the Chain Rule
To outline a proof of the chain rule, suppose that we are given differentiable functions
y = f (u) and u = g(x) and want to compute the derivative

dy

dx
= lim

�x→0

�y

�x
= lim

�x→0

f (g(x + �x)) − f (g(x))

�x
. (5)

The differential form of the chain rule suggests the factorization

�y

�x
= �y

�u

�u

�x
(6)

where

�u = g(x + �x) − g(x) and �y = f (u + �u) − f (u).

For x fixed, the factorization in Eq. (6) is valid if g′(x) �= 0, because

g′(x) = du

dx
= lim

�x→0

�u

�x
�= 0

implies that �u �= 0 if �x �= 0 is sufficiently small—for if so, then �u = (�u/�x) ·
�x is the product of nonzero numbers. But the fact that g is differentiable, and there-
fore continuous, at the point x (see Theorem 2 in Section 3.4) implies that

�u = g(x + �x) − g(x) → 0 as �x → 0.

The product law of limits therefore gives

dy

dx
= lim

�x→0

(
�y

�u
· �u

�x

)
=

(
lim

�u→0

�y

�u

)
·
(

lim
�x→0

�u

�x

)
= dy

du
· du

dx
.

Thus we have shown that Dx [ f (g(x))] = f ′(g(x)) · g′(x) at any point x at which
g′(x) �= 0. But if g′(x) = 0, then it is entirely possible that �u is zero for some or
all nonzero values of �x approaching zero—in which case the factorization in (6) is
invalid. Our proof of the chain rule is therefore incomplete. In Section 4.2 we give a
proof that does not require the assumption that g′(x) �= 0.
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The Generalized Power Rule
If we substitute g(x) = u and g′(x) = du/dx into Eq. (4) with h′(x) = Dx f (g(x)) =
Dx f (u), we get the hybrid form

Dx [ f (u)] = f ′(u) · du

dx
(7)

of the chain rule that frequently is the most useful form for purely computational pur-
poses. Recall that the subscript x in Dx specifies that f (u) is being differentiated with
respect to x , not with respect to u.

Let us set f (u) = un in Eq. (7), where n is an integer. Because f ′(u) = nun−1,
we thereby obtain

Dx un = nun−1 du

dx
, (8)

the chain rule version of the power rule. Since u = g(x) is a differentiable function,
Eq. (8) implies that

Dx [g(x)]n = n[g(x)]n−1 · Dx [g(x)]. (9)

[If n − 1 < 0, we must add the proviso that g(x) �= 0 in order for the right-hand side
in Eq. (9) to be meaningful.] We refer to this chain rule version of the power rule as
the generalized power rule.

REMARK We may interpret the operator form in (9) as describing a chain rule pro-
cedure in which we work from the outside to the inside—differentiating first the outer
function and then the inner function. This outside-inside procedure is illustrated in the
next example.

EXAMPLE 4 To differentiate

y = 1

(2x3 − x + 7)2
,

we first write
y = (2x3 − x + 7)−2

in order to apply the generalized power rule, Eq. (9), with n = −2. This gives

dy

dx
= (−2)(2x3 − x + 7)−3︸ ︷︷ ︸

derivative of
outer function

· Dx(2x3 − x + 7)

= (−2)(2x3 − x + 7)−3 · (6x2 − 1)︸ ︷︷ ︸
derivative of

inner function

= 2(1 − 6x2)

(2x3 − x + 7)3
. ◗

EXAMPLE 5 Find the derivative of the function

h(z) =
(

z − 1

z + 1

)5

.

Solution The key to applying the generalized power rule is observing what the given
function is a power of. Here,

h(z) = u5, where u = z − 1

z + 1
,
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and z, not x , is the independent variable. Hence we apply first Eq. (8) and then the
quotient rule to get

h′(z) = 5u4 du

dz
= 5

(
z − 1

z + 1

)4

Dz

(
z − 1

z + 1

)

= 5

(
z − 1

z + 1

)4

· (1)(z + 1) − (z − 1)(1)

(z + 1)2

= 5

(
z − 1

z + 1

)4

· 2

(z + 1)2
= 10(z − 1)4

(z + 1)6
. ◗

The importance of the chain rule goes far beyond the power function differenti-
ations illustrated in Examples 1, 4, and 5. We shall learn in later sections how to dif-
ferentiate exponential, logarithmic, and trigonometric functions. Each time we learn
a new differentiation formula—for the derivative f ′(x) of a new function f (x)—the
formula in Eq. (7) immediately provides us with the chain rule version of that formula,

Dx f (u) = f ′(u)Dx u.

The step from the power rule Dx xn = nxn−1 to the generalized power rule Dx un =
nun−1 Dx u is our first instance of this general phenomenon.

Rate-Of-Change Applications

Suppose that the physical or geometric quantity p depends on the quantity q, which
in turn depends on time t . Then the dependent variable p is a function both of the
intermediate variable q and of the independent variable t . Hence the derivatives that
appear in the chain rule formula

dp

dt
= dp

dq

dq

dt

are rates of change (as in Section 3.1) of these variables with respect to one another.
For instance, suppose that a spherical balloon is being inflated or deflated. Then its
volume V and its radius r are changing with time t , and

r

FIGURE 3.3.2 The spherical
balloon with volume V = 4

3 πr3.

dV

dt
= dV

dr

dr

dt
.

Remember that a positive derivative signals an increasing quantity and that a negative
derivative signals a decreasing quantity.

EXAMPLE 6 A spherical balloon is being inflated (Fig. 3.3.2). The radius r of the
balloon is increasing at the rate of 0.2 cm/s when r = 5 cm. At what rate is the volume
V of the balloon increasing at that instant?

Solution Given dr/dt = 0.2 cm/s when r = 5 cm, we want to find dV/dt at that
instant. Because the volume of the balloon is

V = 4
3πr3,

we see that dV/dr = 4πr2. So the chain rule gives

dV

dt
= dV

dr
· dr

dt
= 4πr2 dr

dt
= 4π(5)2(0.2) ≈ 62.83 (cm3/s)

at the instant when r = 5 cm. ◗
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136 CHAPTER 3 The Derivative

In Example 6 we did not need to know r explicitly as a function of t . But suppose
we are told that after t seconds the radius (in centimeters) of an inflating balloon is
r = 3 + (0.2)t (until the balloon bursts). Then the volume of this balloon is

V = 4

3
πr3 = 4

3
π

(
3 + t

5

)3

,

so dV/dt is given explicitly as a function of t by

dV

dt
= 4

3
π(3)

(
3 + t

5

)2 (
1

5

)
= 4

5
π

(
3 + t

5

)2

.

EXAMPLE 7 Imagine a spherical raindrop that is falling through water vapor in the
air. Suppose that the vapor adheres to the surface of the raindrop in such a way that the
time rate of increase of the mass M of the droplet is proportional to the surface area
S of the droplet. If the initial radius of the droplet is, in effect, zero and the radius is
r = 1 mm after 20 s, when is the radius 3 mm?

Solution We are given

d M

dt
= kS, (10)

where k is some constant that depends upon atmospheric conditions. Now

M = 4
3πρr3 and S = 4πr2,

where ρ denotes the density of water. Substitution of the chain rule results in

d M

dt
= d M

dr
· dr

dt
= d

(
4
3πρr3

)
dr

· dr

dt
= 4πρr2 · dr

dt

and kS = k · 4πr2 into Eq. (10) then yields

4πρr2 dr

dt
= 4πkr2,

so it follows that
dr

dt
= k

ρ
,

a constant. So the radius of the droplet grows at a constant rate. Thus if it takes 20 s
for r to grow to 1 mm, it will take 1 min for r to grow to 3 mm. ◗

3.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The chain rule can be expressed in the form

du

dt
= du

dv
· dv

dt
.

2. The chain rule can be expressed in the form Dx [ f (g(x))] = f ′(g(x)) · g′(x).
3. The generalized power rule states that Dx [ f (x)]m = m[ f (x)]m−1 · f ′(x) if m is

an integer and the right-hand side in the last equation is defined.
4. According to the generalized power rule, Dx(3x + 5)17 = 51(3x + 5)16.
5. If h = f ◦ g, then h′(x) = f ′(g(x)) · g′(x).

6. If y = y(x) = (2x3 − x + 7)−2, then
dy

dx
= (−2)(2x3 − x + 7)−3 · (6x − 1).

7. If

h(x) =
(

x − 1

x + 1

)5

, then h′(x) = 5

(
x − 1

x + 1

)4

· Dx

(
x − 1

x + 1

)
.
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8. Given: Dx(sin x) = cos x . Then Dx(sin x)5 = 5(sin x)4 cos x .
9. Given: Dx(sin x) = cos x . Then Dx [sin(x5)] = 5x4 cos(x5).

10. If u = u(x) = (x3 + x2)7 then
du

dx
= 7(3x2 + 2x)6.

3.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. As a mathematical quiz show contestant, you are asked to calculate the value

F ′(7) for the composition F = f ◦ g. The functions f and g are unknown, but
you are permitted to ask exactly three questions regarding numerical values of
these functions and/or their derivatives at specified points. What three questions
should you ask?

2. Write the function-notation form of the chain rule formula in Problem 63 for a
composition F = f ◦ g ◦ h of three functions. What numerical data are now
needed to calculate the numerical value F ′(7)?

3.3 PROBLEMS

Find dy/dx in Problems 1 through 12.

1. y = (3x + 4)5 2. y = (2 − 5x)3

3. y = 1

3x − 2
4. y = 1

(2x + 1)3

5. y = (x2 + 3x + 4)3 6. y = (7 − 2x3)−4

7. y = (2 − x)4(3 + x)7 8. y = (x + x2)5(1 + x3)2

9. y = x + 2

(3x − 4)3
10. y = (1 − x2)3

(4 + 5x + 6x2)2

11. y = [1 + (1 + x)3]4 12. y = [x + (x + x2)−3]−5

In Problems 13 through 20, express the derivative dy/dx in terms
of x without first rewriting y as a function of x.

13. y = (u + 1)3 and u = 1

x2

14. y = 1

2u
− 1

3u2
and u = 2x + 1

15. y = (1 + u2)3 and u = (4x − 1)2

16. y = u5 and u = 1

3x − 2

17. y = u(1 − u)3 and u = 1

x4

18. y = u

u + 1
and u = x

x + 1

19. y = u2(u − u4)3 and u = 1

x2

20. y = u

(2u + 1)4
and u = x − 2

x

In Problems 21 through 26, identify a function u of x and an
integer n �= 1 such that f (x) = un. Then compute f ′(x).

21. f (x) = (2x − x2)3 22. f (x) = 1

2 + 5x3

23. f (x) = 1

(1 − x2)4
24. f (x) = (x2 − 4x + 1)3

25. f (x) =
(

x + 1

x − 1

)7

26. f (x) = (x2 + x + 1)4

(x + 1)4

Differentiate the functions given in Problems 27 through 36.

27. g(y) = y + (2y − 3)5 28. h(z) = z2(z2 + 4)3

29. F(s) =
(

s − 1

s2

)3

30. G(t) =
(

t2 + 1 + 1

t

)2

31. f (u) = (1 + u)3(1 + u2)4

32. g(w) = (w2 − 3w + 4)(w + 4)5

33. h(v) =
[
v −

(
1 − 1

v

)−1
]−2

34. p(t) =
(

1

t
+ 1

t2
+ 1

t3

)−4

35. F(z) = 1

(3 − 4z + 5z5)10

36. G(x) = {1 + [x + (x2 + x3)4]5}6

In Problems 37 through 44, dy/dx can be found in two ways—
one way using the chain rule, the other way without using it. Use
both techniques to find dy/dx and then compare the answers.
(They should agree!)

37. y = (x3)4 = x12 38. y = x =
(

1

x

)−1

39. y = (x2 − 1)2 = x4 − 2x2 + 1

40. y = (1 − x)3 = 1 − 3x + 3x2 − x3

41. y = (x + 1)4 = x4 + 4x3 + 6x2 + 4x + 1

42. y = (x + 1)−2 = 1

x2 + 2x + 1

43. y = (x2 + 1)−1 = 1

x2 + 1
44. y = (x2 + 1)2 = (x2 + 1)(x2 + 1)

We shall see in Section 3.7 that Dx [sin x] = cos x (provided that
x is in radian measure). Use this fact and the chain rule to find
the derivatives of the functions in Problems 45 through 48.

45. f (x) = sin(x3) 46. g(t) = (sin t)3

47. g(z) = (sin 2z)3 48. k(u) = sin(1 + sin u)
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49. A pebble dropped into a lake creates an expanding circular
ripple (Fig. 3.3.3). Suppose that the radius of the circle is
increasing at the rate of 2 in./s. At what rate is its area in-
creasing when its radius is 10 in.?

FIGURE 3.3.3 Expanding circular
ripple in a lake (Problem 49).

50. The area of a circle is decreasing at the rate of 2π cm2/s. At
what rate is the radius of the circle decreasing when its area
is 75π cm2?

51. Each edge x of a square is increasing at the rate of 2 in./s. At
what rate is the area A of the square increasing when each
edge is 10 in.?

52. Each edge of an equilateral triangle is increasing at 2 cm/s
(Fig. 3.3.4). At what rate is the area of the triangle increasing
when each edge is 10 cm?

x x

h = ? 
xx

1
2

1
2

FIGURE 3.3.4 The
triangle of Problem 52 with
area A = 1

2 xh.

53. A cubical block of ice is melting in such a way that each
edge decreases steadily by 2 in. every hour. At what rate is
its volume decreasing when each edge is 10 in. long?

54. Find f ′(−1), given f (y) = h(g(y)), h(2) = 55, g(−1) =
2, h′(2) = −1, and g′(−1) = 7.

55. Given: G(t) = f (h(t)), h(1) = 4, f ′(4) = 3, and h′(1) =
−6. Find G ′(1).

56. Suppose that f (0) = 0 and that f ′(0) = 1. Calculate the
derivative of f ( f ( f (x))) at x = 0.

57. Air is being pumped into a spherical balloon in such a way
that its radius r is increasing at the rate of dr/dt = 1 cm/s.
What is the time rate of increase, in cubic centimeters per
second, of the balloon’s volume when r = 10 cm?

58. Suppose that the air is being pumped into the balloon of
Problem 57 at the constant rate of 200π cm3/s. What is the
time rate of increase of the radius r when r = 5 cm?

59. Air is escaping from a spherical balloon at the constant rate
of 300π cm3/s. What is the radius of the balloon when its
radius is decreasing at the rate of 3 cm/s?

60. A spherical hailstone is losing mass by melting uniformly
over its surface as it falls. At a certain time, its radius is 2
cm and its volume is decreasing at the rate of 0.1 cm3/s. How
fast is its radius decreasing at that time?

61. A spherical snowball is melting in such a way that the rate
of decrease of its volume is proportional to its surface area.
At 10 A.M. its volume is 500 in.3 and at 11 A.M. its volume
is 250 in.3. When does the snowball finish melting? (See
Example 7.)

62. A cubical block of ice with edges 20 in. long begins to melt
at 8 A.M. Each edge decreases at a constant rate thereafter
and each is 8 in. long at 4 P.M. What was the rate of change
of the block’s volume at noon?

63. Suppose that u is a function of v, that v is a function of w,
that w is a function of x , and that all these functions are dif-
ferentiable. Explain why it follows from the chain rule that

du

dx
= du

dv
· dv

dw
· dw

dx
.

64. Let f be a differentiable function such that f (1) = 1. If
F(x) = f (xn) and G(x) = [ f (x)]n (where n is a fixed inte-
ger), show that F(1) = G(1) and that F ′(1) = G ′(1).

Recall from Example 13 in Section 2.2 that

Dx

(√
x
) = 1

2
√

x
.

Use (only) this fact and the chain rule to calculate the derivative
of each function given in Problems 65 through 68.

65. h(x) = √
x + 4 66. h(x) = x3/2

67. h(x) = (x2 + 4)3/2 68. h(x) = |x | = √
x2

3.4 DERIVATIVES OF ALGEBRAIC FUNCTIONS

We saw in Section 3.3 that the chain rule yields the differentiation formula

Dx un = nun−1 du

dx
(1)

if u = f (x) is a differentiable function and the exponent n is an integer. We shall see
in Theorem 1 of this section that this generalized power rule holds not only when the
exponent is an integer, but also when it is a rational number r = p/q (where p and q
are integers and q �= 0). Recall that rational powers are defined in terms of integral
roots and powers as follows:

u p/q = q
√

u p = (
q
√

u
)p

.
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We consider first the case of a rational power of the independent variable x :

y = x p/q , (2)

where p and q are integers with q positive. In Problems 72 through 75 we illustrate
the proof that the derivative of the root function f (x) = q

√
x is given by

Dx
(
x1/q

) = 1

q
x (1/q)−1 = 1

q
x−(q−1)/q (3)

for x > 0; essentially the same proof works for x < 0 if q is odd (so that no even root of
a negative number is involved). Thus the power rule—which we established in Section
3.2 only for integral exponents—also holds if the exponent of x is the reciprocal of a
positive integer.

Consequently, we can apply Eq. (1) with n = p and u = x1/q to differentiate the
rational power of x in (2):

Dx
[
x p/q

] = Dx
[(

x1/q
)p]

= p
(
x1/q

)p−1 · Dx
(
x1/q

)
= p

(
x1/q

)p−1 · 1

q
x (1/q)−1

= p

q
x (p/q)−(1/q)+(1/q)−1;

therefore

Dx
[
x p/q

] = p

q
x (p/q)−1.

Thus we have shown that the power rule

Dx xr = r xr−1 (4)

holds if the exponent r = p/q is a rational number (subject to the conditions previously
mentioned).

Using Eq. (4) we can differentiate a simple “radical” (or “root”) function by first
rewriting it as a power with a fractional exponent.

EXAMPLE 1

(a) Dx
[√

x
] = Dx

[
x1/2

] = 1

2
x−1/2 = 1

2
√

x
.

(b) If y = √
x3, then

dy

dx
= 3

2
x1/2 = 3

2

√
x .

(c) If g(t) = 1
3
√

t2
= t−2/3, then g′(t) = −2

3
t−5/3 = − 2

3 3
√

t5
. ◗

REMARK In parts (a) and (b) of Example 1 it is necessary that x � 0 in order that
√

x
be defined. In part (a) it is, moreover, necessary that x �= 0; if x = 0 then the formula

Dx
[√

x
] = 1

2
√

x

would involve division by zero. Figure 3.4.1 shows the graphs of the function f (x) =√
x and its derivative f ′(x) = 1/(2

√
x) for x > 0. Note that f ′(x) → ∞ as x → 0+,

further emphasizing the fact that f (x) = √
x is not differentiable at x = 0.

21
x

y

0 0.5 1.5
0

1

2

y = x

y' =
x2

1

FIGURE 3.4.1 The graphs of

f (x) = √
x and f ′(x) = 1

2
√

x
.
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The Generalized Power Rule
For the more general form of the power rule, let

y = ur

where u is a differentiable function of x and r = p/q is rational. Then

dy

du
= rur−1

by Eq. (4), so the chain rule gives

dy

dx
= dy

du
· du

dx
= rur−1 du

dx
.

Thus

Dx ur = rur−1 du

dx
, (5)

which is the generalized power rule for rational exponents.

THEOREM 1 Generalized Power Rule
If r is a rational number, then

Dx [ f (x)]r = r [ f (x)]r−1 · f ′(x) (6)

wherever the function f is differentiable and the right-hand side is defined.

For the right-hand side in Eq. (6) to be “defined” means that f ′(x) exists, there
is no division by zero, and no even root of a negative number appears.

EXAMPLE 2

Dx
[√

4 − x2
] = Dx

[
(4 − x2)1/2

] = 1
2 (4 − x2)−1/2 · Dx(4 − x2)

= 1
2 (4 − x2)−1/2 · (−2x);

Dx
[√

4 − x2
] = − x√

4 − x2
(7)

except where x = ±2 (division by zero) or where |x | > 2 (square root of a negative
number). Thus Eq. (7) holds if −2 < x < 2. In writing derivatives of algebraic func-
tions, we ordinarily omit such disclaimers unless they are pertinent to some specific
purpose at hand. But note in Fig. 3.4.2 that if f (x) = √

4 − x2 then f ′(x) → +∞ as
x → −2+ and f ′(x) → −∞ as x → +2−. ◗

x

y

−3

−2

−1

0

1

2

3

0 1 2 3−3 −2 −1

y = 4 − x2

4 − x2
y' = − x

FIGURE 3.4.2 The graphs of
f (x) = √

4 − x2 and

f ′(x) = −x√
4 − x2

.

A template for the application of the generalized power rule is

Dx([∗ ∗ ∗]n) = n[∗ ∗ ∗]n−1 Dx [∗ ∗ ∗],
where ∗ ∗ ∗ represents a function of x and (as we now know) n can be either an integer
or a fraction (a quotient of integers).

But to differentiate a power of a function, we must first recognize what function
it is a power of. So to differentiate a function involving roots (or radicals), we first
“prepare” it for an application of the generalized power rule by rewriting it as a power
function with fractional exponent. Examples 3, 5, and 6 illustrate this technique.

EXAMPLE 3 If y = 5
√

x3 − 2
3
√

x
, then

y = 5x3/2 − 2x−1/3,
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so

dy

dx
= 5 ·

(
3

2
x1/2

)
− 2 ·

(
−1

3
x−4/3

)
= 15

2
x1/2 + 2

3
x−4/3 = 15

2

√
x + 2

3 3
√

x4
.

◗

EXAMPLE 4 With f (x) = 3 − 5x and r = 7, the generalized power rule yields

Dx [(3 − 5x)7] = 7(3 − 5x)6 Dx(3 − 5x)

= 7(3 − 5x)6(−5) = −35(3 − 5x)6. ◗

EXAMPLE 5 With f (x) = 2x2 − 3x + 5 and r = 1
2 , the generalized power rule

yields

Dx

√
2x2 − 3x + 5 = Dx(2x2 − 3x + 5)1/2

= 1

2
(2x2 − 3x + 5)−1/2 Dx(2x2 − 3x + 5)

= 4x − 3

2
√

2x2 − 3x + 5
. ◗

EXAMPLE 6 If

x = [
5t + 3

√
(3t − 1)4

]10

then Eq. (5) with u = 5t + (3t − 1)4/3 and with independent variable t gives

dx

dt
= 10u9 · du

dt

= 10
[
5t + (3t − 1)4/3

]9 · Dt
[
5t + (3t − 1)4/3

]
= 10

[
5t + (3t − 1)4/3

]9 · [
Dt(5t) + Dt(3t − 1)4/3

]
= 10

[
5t + (3t − 1)4/3

]9 · [
5 + 4

3 (3t − 1)1/3 · 3
] ;

dx

dt
= 10

[
5t + (3t − 1)4/3

]9 · [
5 + 4(3t − 1)1/3

]
. ◗

Example 6 illustrates the fact that we apply the chain rule (or generalized power
rule) by working from the outside to the inside. At each step the derivative of the
outside function is multiplied by the derivative of the inside function. We continue
until no “inside function” remains undifferentiated. Does the process remind you of
peeling an onion, one layer at a time, until its core is reached?

Differentiability and Vertical Tangent Lines
Whereas polynomials and rational functions are both continuous and differentiable
wherever they are defined, simple algebraic functions can be continuous at points
where their derivatives do not exist.

EXAMPLE 7 If

f (x) = |x | =
√

x2

denotes the absolute value function, then for x �= 0 we find that

f ′(x) = Dx
[
(x2)1/2

] = 1
2 (x2)−1/2(2x) = x√

x2
= x

|x | =
{−1 if x < 0,

+1 if x > 0.

Thus f is differentiable at every point except possibly for the origin x = 0. In fact, the
graph of f (x) = |x | in Fig. 3.4.3 makes it clear that the difference quotient

f (x) = |x |

x

y

FIGURE 3.4.3 The graph of
f (x) = |x |.

f (x) − f (0)

x − 0
= |x |

x
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has left-hand limit −1 and right-hand limit +1 at x = 0. Thus the absolute value
function is not differentiable at the isolated point x = 0, where the graph y = |x | has
a “corner point” rather than a tangent line. (Can you think of a continuous function
whose graph has infinitely many such corner points?) ◗

EXAMPLE 8 Figure 3.4.4 shows the graph of the cube-root functiony

x

y = x1/3

FIGURE 3.4.4 The graph of the
cube root function.

y = 3
√

x = x1/3,

and illustrates another way in which a function can fail to be differentiable at an isolated
point. Its derivative,

dy

dx
= 1

3
x−2/3 = 1

3 3
√

x2
,

increases without bound as x → 0 but does not exist at x = 0. Therefore, the definition
of tangent line does not apply to this graph at (0, 0). Nevertheless, from the figure it
seems appropriate to regard the vertical line x = 0 as the line tangent to the curve
y = x1/3 at the point (0, 0). ◗

DEFINITION Vertical Tangent Line
The curve y = f (x) has a vertical tangent line at the point (a, f (a)) provided that
f is continuous at a and ∣∣ f ′(x)

∣∣ → +∞ as x → a. (8)

Thus the graph of the continuous function f (x) = x1/3 of Example 8 has a
vertical tangent line at the origin, even though f is not differentiable at x = 0. Note
that the requirement that f be continuous at x = a implies that f (a) must be defined.
Thus it would be pointless to ask about a line (vertical or not) tangent to the curve
y = 1/x where x = 0.

If f is defined (and differentiable) on only one side of x = a, we mean in Eq. (8)
that | f ′(x)| → +∞ as x approaches a from that side.

EXAMPLE 9 Find the points on the curve

y = f (x) = x
√

1 − x2, −1 � x � 1,

at which the tangent line is either horizontal or vertical.

Solution We differentiate using first the product rule and then the chain rule:

x

y

2

1 , 1
2( )

2

1 , 1
2

( )−−

1 − x2y = x

(1, 0)

(−1, 0)

FIGURE 3.4.5 The graph of
f (x) = x

√
1 − x2, −1 � x � 1

(Example 9).

f ′(x) = (1 − x2)1/2 + x

2
(1 − x2)−1/2(−2x)

= (1 − x2)−1/2[(1 − x2) − x2] = 1 − 2x2

√
1 − x2

.

Now f ′(x) = 0 only when the numerator 1 − 2x2 is zero—that is, when x = ±1/
√

2.
Because f (±1/

√
2) = ±1/2, the curve has a horizontal tangent line at each of the two

points (1/
√

2, 1/2) and (−1/
√

2, −1/2).
We also observe that the denominator

√
1 − x2 approaches zero as x → −1+

and as x → +1−. Because f (±1) = 0, we see that the curve has a vertical tan-
gent line at each of the two points (1, 0) and (−1, 0). The graph of f is shown in
Fig. 3.4.5. ◗

EXAMPLE 10 Figure 3.4.6 shows the graph of the function f (x) = 1− 5
√

x2, which
appears to have a sharp “cusp” (rather than a corner) at the point (0, 1). Because the
absolute value of the derivative f ′(x) = − 2

5 x−3/5 approaches +∞ as x → 0, the curve
y = f (x) has a vertical tangent at that point. ◗

x

y

−0.5

1.5

1

0.5

0

0 2−2 1−1

(0, 1)

FIGURE 3.4.6 The graph of
y = 1 − 5

√
x2 with a cusp at (0, 1).
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Whereas the preceding examples show that a function can be continuous without
being differentiable, the following theorem says that a function is continuous wherever
it is differentiable. Thus differentiability of a function is a stronger condition than
continuity alone.

THEOREM 2 Differentiability Implies Continuity
Suppose that the function f is defined in a neighborhood of a. If f is differentiable
at a, then f is continuous at a.

Proof Because f ′(a) exists, the product law for limits yields

lim
x→a

[ f (x) − f (a)] = lim
x→a

(
(x − a) · f (x) − f (a)

x − a

)

=
(

lim
x→a

(x − a)
)(

lim
x→a

f (x) − f (a)

x − a

)
= 0 · f ′(a) = 0.

Thus lim
x→a

f (x) = f (a), so f is continuous at a. ◆

3.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If f (x) = √
x , then f ′(x) = 1

2 x−1/2.

2. Dx [x−3/2] = − 3
2 x−1/2.

3. Suppose that r is a rational number and that f is a differentiable function of x .
Then Dx [ f (x)]r = r [ f (x)]r−1 · f ′(x).

4. Dx
[√

4 − x2
] = 1

2 (4 − x2)−1/2.
5. If f is continuous at x = a and | f ′(x)| → +∞ as x → a, then the graph of f

has a vertical tangent line at the point (a, f (a)).

6. If f (x) = x
√

1 − x2, then the graph of f has vertical tangent lines at the two
points (1, 0) and (−1, 0).

7. If f is continuous at x = a then f ′(a) exists.
8. If f ′(a) exists then f is continuous at x = a.
9. If g(x) = |x − 1|+2 then g is continuous everywhere but fails to be differentiable

at infinitely many points.

10. If h(x) = 1

x
then the graph of h has a vertical tangent line at (0, 0).

3.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. (a) Can you define a function that is continuous everywhere and has a “corner

point” at each integer point x = n, but is differentiable at every other point of the
real line? (b) Can you define a function that is continuous everywhere and has
a vertical tangent line at each integer point x = n, but is differentiable at every
other point of the real line?

2. Suppose that the function f has the following property: Every point x of the real
line lies in some closed interval [a, b] on which the graph of f is a semicircle
having this interval as a diameter. Sketch a typical graph of such a function. Dis-
cuss the continuity and differentiability of f . Remark: The set of all endpoints
of the closed intervals mentioned might (or might not) be the set of all integer
points on the real line.
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3. In Question 2, you may have assumed that each endpoint of the interval [a, b]
lies on exactly two such semicircles, one to the right and one to the left. Can
you think of a function g whose graph consists entirely of semicircles, but does
not satisfy this “two semicircles” condition? If so, discuss the differentiability
of g. Suggestion: The construction of g might (or might not) involve the set
{1, 1

2 , 1
3 , 1

4 , 1
5 , . . . } of all reciprocals of positive integers.

4. Suppose that the function f is continuous everywhere. At how many points do
you suspect that f can fail to be differentiable? What’s the worst such function
you can think of?

3.4 PROBLEMS

Differentiate the functions given in Problems 1 through 44.

1. f (x) = 4
√

x5 + 2√
x

2. g(t) = 9 3
√

t4 − 3
3
√

t

3. f (x) = √
2x + 1 4. h(z) = 1

3
√

7 − 6z

5. f (x) = 6 − x2

√
x

6. φ(u) = 7 + 2u − 3u4

3
√

u2

7. f (x) = (2x + 3)3/2 8. g(x) = (3x + 4)4/3

9. f (x) = (3 − 2x2)−3/2 10. f (y) = (4 − 3y3)−2/3

11. f (x) = √
x3 + 1 12. g(z) = 1

(z4 + 3)2

13. f (x) = √
2x2 + 1 14. f (t) = t√

1 + t4

15. f (t) = √
2t3 16. g(t) =

√
1

3t5

17. f (x) = (2x2 − x + 7)3/2

18. g(z) = (3z2 − 4)97

19. g(x) = 1

(x − 2x3)4/3

20. f (t) = [t2 + (1 + t)4]5

21. f (x) = x
√

1 − x2

22. g(x) =
√

2x + 1

x − 1

23. f (t) =
√

t2 + 1

t2 − 1

24. h(y) =
(

y + 1

y − 1

)17

25. f (x) =
(

x − 1

x

)3

26. g(z) = z2

√
1 + z2

27. f (v) =
√

v + 1

v

28. h(x) =
(

x

1 + x2

)5/3

29. f (x) = 3
√

1 − x2

30. g(x) = √
x + √

x

31. f (x) = x(3 − 4x)1/2

32. g(t) = t − (1 + t2)1/2

t2

33. f (x) = (1 − x2)(2x + 4)1/3

34. f (x) = (1 − x)1/2(2 − x)1/3

35. g(t) =
(

1 + 1

t

)2

(3t2 + 1)1/2

36. f (x) = x(1 + 2x + 3x2)10

37. f (x) = 2x − 1

(3x + 4)5

38. h(z) = (z − 1)4(z + 1)6

39. f (x) = (2x + 1)1/2

(3x + 4)1/3

40. f (x) = (1 − 3x4)5(4 − x)1/3

41. h(y) =
√

1 + y + √
1 − y

3
√

y5

42. f (x) = √
1 − 3

√
x

43. g(t) =
√

t +
√

t + √
t

44. f (x) = x3

√
1 − 1

x2 + 1

For each curve given in Problems 45 through 50, find all points
on the graph where the tangent line is either horizontal or verti-
cal.

45. y = x2/3 46. y = x
√

4 − x2

47. y = x1/2 − x3/2 48. y = 1√
9 − x2

49. y = x√
1 − x2

50. y = √
(1 − x2)(4 − x2)

In Problems 51 through 56, first write an equation of the line tan-
gent to the given curve y = f (x) at the indicated point P. Then
illustrate your result with a graphing calculator or computer by
graphing both the curve and the tangent line on the same screen.

51. y = 2
√

x , at the point P where x = 4

52. y = 3 3
√

x , at the point P where x = 8

53. y = 3 3
√

x2, at the point P where x = −1

54. y = 2
√

1 − x , at the point P where x = 3
4

55. y = x
√

4 − x , at the point P where x = 0

56. y = (1 − x)
√

x , at the point P where x = 4
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In Problems 57 through 62, match the given graph y = f (x) of a
function with the graph y = f ′(x) of its derivative among those
shown in Figs. 3.4.13(a) through 3.4.13(f).

57. Figure 3.4.7 58. Figure 3.4.8

y = x2 /3

x
0−1−2

−2

−1

0

1

2

1 2

y

FIGURE 3.4.7 y = x2/3

(Problem 57).

y = x1 /3

x
0−1−2

−2

−1

0

1

2

1 2

y

FIGURE 3.4.8 y = x1/3

(Problem 58).

59. Figure 3.4.9 60. Figure 3.4.10

y = 1 − x2 /3

x
0−1−2

−2

−1

0

1

2

1 2

y

FIGURE 3.4.9 y = 1 − x2/3

(Problem 59).

x
0−1−2

−2

−1

0

1

2

1 2

y

y = x 2 − x

FIGURE 3.4.10 y = x
√

2 − x
(Problem 60).

61. Figure 3.4.11 62. Figure 3.4.12

x
0 0.5−0.5−1−1.5−2

−3

0

−2

1

−1

2

3

1 1.5 2

y

y = x 4 − x2

FIGURE 3.4.11 y =
x
√

4 − x2 (Problem 61).

x
0−1−2

−1

0

1

1 2

y
y = (1 − x2)2 x2/3

FIGURE 3.4.12 y =
(1 − x2)2

√
x2/3 (Problem 62).

x
0−1−2

−3

0

−2

1

−1

2

3

1 2

y

FIGURE 3.4.13(a)

x
0−1−2

−2

−1

0

1

2

1 2

y

FIGURE 3.4.13(b)

x
0−1−2

−2

−1

0

1

2

1 2

y

FIGURE 3.4.13(c)

x
0−1−2

−2

−1

0

1

2

1 2

y

FIGURE 3.4.13(d)

x
0−1−2

−3

0

−2

1

−1

2

3

1 2

y

FIGURE 3.4.13(e)

−2 −1 0 1 2
x

−2

−1

0

1

2

y

FIGURE 3.4.13(f)

63. The period of oscillation P (in seconds) of a simple pendu-
lum of length L (in feet) is given by P = 2π

√
L/g, where

g = 32 ft/s2. Find the rate of change of P with respect to L
when P = 2.

64. Find the rate of change of the volume V = 4
3 πr 3 of a sphere

of radius r with respect to its surface area A = 4πr 2 when
r = 10.

65. Find the two points on the circle x2 + y2 = 1 at which the
slope of the tangent line is −2 (Fig. 3.4.14).

x

y

x2 + y2 = 1 

FIGURE 3.4.14 The two tangent
lines of Problem 65.

66. Find the two points on the circle x2 + y2 = 1 at which the
slope of the tangent line is 3.

67. Find a line through the point P(18, 0) that is normal to the
tangent line to the parabola y = x2 at some point Q(a, a2)

(see Fig. 3.4.15). (Suggestion: You will obtain a cubic equa-
tion in the unknown a. Find by inspection a small integral
root r . The cubic polynomial is then the product of a −r and
a quadratic polynomial; you can find the latter by division of
a − r into the cubic.)
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0

10

20

0 10 20
x

y

P
Q

y = x2

FIGURE 3.4.15 The tangent
and normal of Problem 67.

−4

0

4

8

12

−5 0 5 10
x

y

P

y = x2

FIGURE 3.4.16 The three
normal lines of Problem 68.

−1

0

1

2

3

4

−2 0 2
x

y

(0, 2.5)

y = x2 /3

FIGURE 3.4.17 The two
normal lines of Problem 69.

x

y

x2 + y2 = a2 

P

O

FIGURE 3.4.18 The circle, radius,
and tangent line of Problem 70.

68. Find three distinct lines through the point P(3, 10) that are
normal to the parabola y = x2 (Fig. 3.4.16). (See the sug-
gestion for Problem 67. This problem will require a certain
amount of calculator-aided computation.)

69. Find two distinct lines through the point P(0, 5
2 ) that are nor-

mal to the curve y = x2/3 (Fig. 3.4.17).

70. Verify that the line tangent to the circle x2 + y2 = a2 at the
point P is perpendicular to the radius OP (Fig. 3.4.18).

71. Consider the cubic equation x3 = 3x + 8. If we differentiate
each side with respect to x , we obtain 3x2 = 3, which has
the two solutions x = 1 and x = −1. But neither of these is
a solution of the original cubic equation. What went wrong?
Why does differentiation of both sides of the cubic equation
give an invalid result?

The derivation of the generalized power rule Dx ur = rur−1 · Dx u
(for r = p/q, a rational number) provided in this section de-
pends on the assumed differentiability of the qth root function
f (x) = x1/q . If a > 0 and q is a positive integer, then the
derivative of f is given by

f ′(a) = lim
x→a

x1/q − a1/q

x − a
(9)

provided that this limit exists. Problems 72 through 75 illustrate

the evaluation of this limit using the algebraic identity

sq − tq = (s − t) (sq−1 + sq−2t + · · · + stq−2 + tq−1)︸ ︷︷ ︸
q terms

. (10)

For instance, with s = x1/q and t = a1/q this identity yields (with
q = 2, 3, and 5) the formulas

x − a = (
x1/2 − a1/2

)(
x1/2 + a1/2

)
, (11)

x − a = (
x1/3 − a1/3

)(
x2/3 + x1/3a1/3 + a2/3

)
, (12)

and
x − a = (

x1/5 − a1/5
)(

x4/5 + x3/5a1/5

+ x2/5a2/5 + x1/5a3/5 + a4/5
)
. (13)

72. Substitute (11) in the denominator in (9) to show that
Dx x1/2 = 1

2 x−1/2 for x > 0.

73. Substitute (12) in the denominator in (9) to show that
Dx x1/3 = 1

3 x−2/3 for x > 0.

74. Substitute (13) in the denominator in (9) to show that
Dx x1/5 = 1

5 x−4/5 for x > 0.

75. Finally, explain how Eq. (10) can be applied in the general
case to prove that

Dx x1/q = 1

q
x−(q−1)/q

if x > 0 and q is a positive integer.

3.5 MAXIMA AND MINIMA OF FUNCTIONS ON CLOSED INTERVALS

In applications we often need to find the maximum (largest) or minimum (smallest)x

$5/ft

y $5/ft y$5/ft

$1/ft
x Wall

FIGURE 3.5.1 The animal pen.

value that a specified quantity can attain. The animal pen problem posed in Section 1.1
is a simple yet typical example of an applied maximum-minimum problem. There we
investigated the animal pen shown in Fig. 3.5.1, with the indicated dollar-per-foot cost
figures for its four sides. We showed that if $180 is allocated for material to construct
this pen, then its area A = f (x) is given as a function of its base length x by

f (x) = 3
5 x(30 − x), 0 � x � 30. (1)

Hence the question of the largest possible area of the animal pen is equivalent to the
purely mathematical problem of finding the maximum value attained by the function
f (x) = 3

5 x(30 − x) on the closed interval [0, 30].
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DEFINITION Maximum and Minimum Values
If c is in the closed interval [a, b], then f (c) is called the minimum value of f (x)

on [a, b] if f (c) � f (x) for all x in [a, b]. Similarly, if d is in [a, b], then f (d) is
called the maximum value of f (x) on [a, b] if f (d) � f (x) for all x in [a, b].

Thus if f (c) is the minimum value and f (d) the maximum value of f (x) on
[a, b], then

f (c) � f (x) � f (d) (2)

for all x in [a, b], and hence f (x) attains no value smaller than f (c) or larger than
f (d). In geometric terms, (c, f (c)) is a low point and (d, f (d)) is a high point on the
curve y = f (x), a � x � b, as illustrated in Figs. 3.5.2 and 3.5.3.

x

f (c)

Low
point

y

bdca

High point

f (d)

FIGURE 3.5.2 f (c) is the minimum value and f (d) is the
maximum value of f (x) on [a, b].

x

f (a)

Low
point

y

ba

f (b)

High point

FIGURE 3.5.3 Maximum and minimum values can occur at
the endpoints of an interval. Here f (a) is the minimum value
and f (b) is the maximum value of f (x) on [a, b].

Theorem 1 (proved in Appendix E) says that a continuous function f on a closed
interval [a, b] attains a minimum value f (c) and a maximum value f (d), so the in-
equalities in (2) hold: The curve y = f (x) over [a, b] has both a lowest point and a
highest point.

THEOREM 1 Maximum and Minimum Value Property
If the function f is continuous on the closed interval [a, b], then there exist numbers
c and d in [a, b] such that f (c) is the minimum value, and f (d) the maximum value,
of f on [a, b].

In short, a continuous function defined on a closed and bounded interval attains
both a minimum value and a maximum value at points of the interval. Hence we see it
is the continuity of the function

f (x) = 3

5
x(30 − x)

on the closed interval [0, 30] that guarantees that the maximum value of f exists and
is attained at some point of the interval [0, 30].

Suppose that the function f is defined on the interval I . Examples 1 and 2 show
that if either f is not continuous or I is not closed, then f may fail to attain maximum
and minimum values at points of I . Thus both hypotheses in Theorem 1 are necessary.

EXAMPLE 1 Let the continuous function f (x) = 2x be defined only for 0 � x < 1,

y

x1

2

f (x) = 2x

FIGURE 3.5.4 The graph of the
function of Example 1.

so that its domain of definition is not a closed interval. From the graph shown in
Fig. 3.5.4, it is clear that f attains its minimum value 0 at x = 0. But f (x) = 2x attains
no maximum value at any point of [0, 1). The only possible candidate for a maximum
value would be the value 2 at x = 1, but f (1) is not defined. ◗
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EXAMPLE 2 The function f defined on the closed interval [0, 1] with the formulay

x

(1, 1) 

1
x

f (x) =

1

1

FIGURE 3.5.5 The graph of the
function of Example 2.

f (x) =
⎧⎨
⎩

1

x
if 0 < x � 1,

1 if x = 0

is not continuous on [0, 1] because limx→0+(1/x) does not exist (Fig. 3.5.5). This
function does attain its minimum value of 1 at x = 0 and also at x = 1. But it attains
no maximum value on [0, 1] because 1/x can be made arbitrarily large by choosing x
positive and very close to zero. ◗

For a variation on Example 2, the function g(x) = 1/x with domain the open
interval (0, 1) attains neither a maximum nor a minimum there.

Local Maxima and Minima
Once we know that the continuous function f does attain minimum and maximum
values on the closed interval [a, b], the remaining question is this: Exactly where are
these values located? We solved the animal pen problem in Section 2.1 on the basis of
the following assumption, motivated by geometry: The function f (x) = 3

5 x(30 − x)

attains its maximum value on [0, 30] at an interior point of that interval, a point at which
the tangent line is horizontal. Theorems 2 and 3 of this section provide a rigorous basis
for the method we used there.

We say that the value f (c) is a local maximum value of the function f if f (x) �
f (c) for all x sufficiently near c. More precisely, if this inequality holds for all x
that are simultaneously in the domain of f and in some open interval containing c,
then f (c) is a local maximum of f . Similarly, we say that the value f (c) is a local
minimum value of f if f (x) � f (c) for all x sufficiently near c.

As Fig. 3.5.6 shows, a local maximum is a point such that no nearby points on
the graph are higher, and a local minimum is one such that no nearby points on the
graph are lower. A local extremum of f is a value of f that is either a local maximum

y

x

Local maximum

Local minimum

FIGURE 3.5.6 Local extrema.
or a local minimum.

THEOREM 2 Local Maxima and Minima
Suppose that f is differentiable at c and is defined on a open interval containing c.
If f (c) is either a local maximum value or a local minimum value of f , then
f ′(c) = 0.

Thus a local extremum of a differentiable function on an open interval can occur
only at a point where the derivative is zero and, therefore, where the line tangent to the
graph is horizontal.

Proof of Theorem 2 Suppose, for instance, that f (c) is a local maximum value of
f . The assumption that f ′(c) exists means that the right-hand and left-hand limits

lim
h→0+

f (c + h) − f (c)

h
and lim

h→0−
f (c + h) − f (c)

h

both exist and are equal to f ′(c).
If h > 0, then

f (c + h) − f (c)

h
� 0,

because f (c) � f (c + h) for all small positive values of h. Hence, by a one-sided
version of the squeeze law for limits (in Section 2.3), this inequality is preserved when
we take the limit as h → 0. We thus find that

f ′(c) = lim
h→0+

f (c + h) − f (c)

h
� lim

h→0+ 0 = 0.
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Similarly, in the case h < 0, we find that

f (c + h) − f (c)

h
� 0.

Therefore,

f ′(c) = lim
h→0−

f (c + h) − f (c)

h
� lim

h→0− 0 = 0.

Because both f ′(c) � 0 and f ′(c) � 0, we conclude that f ′(c) = 0. This establishes
Theorem 2. ◆

BEWARE The converse of Theorem 2 is false. That is, the fact that f ′(c) = 0 is not
enough to imply that f (c) is a local extremum. For example, consider the function
f (x) = x3. Its derivative f ′(x) = 3x2 is zero at x = 0. But a glance at its graph
(Fig. 3.5.7) shows us that f (0) is not a local extremum of f .

y

x

y = x3

FIGURE 3.5.7 There is no
extremum at x = 0 even though the
derivative is zero there.

Thus the equation f ′(c) = 0 is a necessary condition for f (c) to be a local
maximum or minimum value for a function f that is differentiable on an open interval
containing c. It is not a sufficient condition. The reason: f ′(x) may well be zero at
points other than local maxima and minima. We give sufficient conditions for local
maxima and minima in Chapter 4.

The Closed-Interval Maximum-Minimum Method
In most types of optimization problems, we are less interested in the local extrema
(as such) than in the absolute, or global, maximum and minimum values attained by a
given continuous function. If f is a function with domain D, we call f (c) the absolute
maximum value, or global maximum value, of f on D provided that f (c) � f (x)

for all x in D. Briefly, f (c) is the largest value of f on D. It should be clear how they

Local, not
global

Global maximum

Global minimum

Local, not
global

x

FIGURE 3.5.8 Some extrema are
global; others are merely local.

global minimum of f is to be defined. Figure 3.5.8 illustrates some local and global
extrema. On the one hand, every global extremum is, of course, local as well. On the
other hand, the graph shows local extrema that are not global.

Theorem 3 tells us that the absolute maximum and absolute minimum values
of the continuous function f on the closed interval [a, b] occur either at one of the
endpoints a or b or at a critical point of f . The number c in the domain of f is called
a critical point of f if either

• f ′(c) = 0, or
• f ′(c) does not exist.

THEOREM 3 Absolute Maxima and Minima
Suppose that f (c) is the absolute maximum (or absolute minimum) value of the
continuous function f on the closed interval [a, b]. Then c is either a critical point
of f or one of the endpoints a and b.

Proof This result follows almost immediately from Theorem 2. If c is not an end-
point of [a, b], then f (c) is a local extremum of f on the open interval (a, b). In this
case Theorem 2 implies that f ′(c) = 0, provided that f is differentiable at c. ◆

As a consequence of Theorem 3, we can find the (absolute) maximum and mini-
mum values of the function f on the closed interval [a, b] as follows:

1. Locate the critical points of f : those points where f ′(x) = 0 and those points
where f ′(x) does not exist.

2. List the values of x that yield possible extrema of f : the two endpoints a and b
and those critical points that lie in [a, b].

3. Evaluate f (x) at each point in this list of possible extrema.
4. Inspect these values of f (x) to see which is the smallest and which is the largest.
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The largest of the values in Step 4 is the absolute maximum value of f ; the smallest, the
absolute minimum. We call this procedure the closed-interval maximum-minimum
method.

EXAMPLE 3 For our final discussion of the animal pen problem, let us apply the
closed-interval maximum-minimum method to find the maximum and minimum values
of the differentiable function

f (x) = 3
5 x(30 − x) = 3

5 (30x − x2)

on the closed interval [0, 30].
Solution The derivative of f is

f ′(x) = 3
5 (30 − 2x),

which is zero only at the point x = 15 in [0, 30]. Including the two endpoints, our
list of the only values of x that can yield extrema of f consists of 0, 15, and 30. We
evaluate f at each:

f (0) = 0, ←− absolute minimum

f (15) = 135, ←− absolute maximum

f (30) = 0. ←− absolute minimum

Thus the maximum value of f (x) on [0, 30] is 135 (attained at x = 15), and the mini-
mum value is 0 (attained both at x = 0 and at x = 30). ◗

EXAMPLE 4 Find the maximum and minimum values of

f (x) = 2x3 − 3x2 − 12x + 15

on the closed interval [0, 3].
Solution The derivative of f is

f ′(x) = 6x2 − 6x − 12 = 6(x − 2)(x + 1).

So the critical points of f are the solutions of the equation

6(x − 2)(x + 1) = 0

and the numbers c for which f ′(c) does not exist. There are none of the latter, so the
critical points of f occur at x = −1 and x = 2. The first of these is not in the domain
of f ; we discard it, and thus the only critical point of f in [0, 3] is x = 2. Including the
two endpoints, our list of all values of x that yield a possible maximum or minimum
value of f consists of 0, 2, and 3. We evaluate the function f at each:

f (0) = 15, ←− absolute maximum

f (2) = −5, ←− absolute minimum

f (3) = 6.

Therefore the maximum value of f on [0, 3] is f (0) = 15 and its minimum value is
f (2) = −5. ◗

If in Example 4 we had asked for the maximum and minimum values of f (x) on
the interval [−2, 3] (instead of the interval [0, 3]), then we would have included both
critical points x = −1 and x = 2 in our list of possibilities. The resulting values of f
would have been

f (−2) = 11,

f (−1) = 22, ←− absolute maximum

f (2) = −5, ←− absolute minimum

f (3) = 6.
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Figure 3.5.9 shows both the curve y = f (x) and the graph of its derivative. Note the

−20

−10

0

10

20

30

−2 0 2
x

y

y = f(x)

y = f '(x)

(−1, 22)

(2, −5)

−1 1

FIGURE 3.5.9 The critical points
of the differentiable function f (x)

are the zeros of f ′(x).

vertical line segments joining high and low points on y = f (x) with x-intercepts of
dy/dx = f ′(x). Thus the figure illustrates the following fact:

The critical points of a differentiable function f (x) are the zeros of its deriva-
tive f ′(x).

On the basis of this principle, we can approximate a critical point of f graphically by
“zooming in” on a zero of f ′.

In Example 4 the function f was differentiable everywhere. Examples 5 and 6
illustrate the case of an extremum at a critical point where the function is not differen-
tiable.

EXAMPLE 5 Find the maximum and minimum values of the function f (x) =
3 − |x − 2| on the interval [1, 4].
Solution If x � 2, then x − 2 � 0, so

f (x) = 3 − (2 − x) = x + 1.

If x � 2, then x − 2 � 0, so

f (x) = 3 − (x − 2) = 5 − x .

Consequently, the graph of f looks like the one shown in Fig. 3.5.10. The only critical

=<=<
y = f (x) = 3 − |x − 2 |,

1    x    4

1

4

y

x321

2

3 (2, 3)

(4, 1)

(1, 2)

FIGURE 3.5.10 Graph of the
function of Example 5.

point of f in [1, 4] is the point x = 2, because f ′(x) takes on only the two values +1
and −1 (and so is never zero), and f ′(2) does not exist. (Why not?) Evaluation of f
at this critical point and at the two endpoints yields

f (1) = 2,

f (2) = 3, ←− absolute maximum

f (4) = 1. ←− absolute minimum ◗

EXAMPLE 6 Find the maximum and minimum values of

f (x) = 5x2/3 − x5/3

on the closed interval [−1, 4].
Solution Differentiating f yields

f ′(x) = 10

3
x−1/3 − 5

3
x2/3 = 5

3
x−1/3(2 − x) = 5(2 − x)

3x1/3
.

Hence f has two critical points in the interval: x = 2, where f ′(x) = 0, and x = 0,
where f ′(x) does not exist (the graph of f has a vertical tangent at (0, 0)). When we
evaluate f at these two critical points and at the two endpoints, we get

f (−1) = 6, ←− absolute maximum

f (0) = 0 ←− absolute minimum

f (2) = 5 · 22/3 − 25/3 ≈ 4.76,

f (4) = 5 · 42/3 − 45/3 ≈ 2.52.

Thus the maximum value f (−1) = 6 occurs at an endpoint. The minimum value
f (0) = 0 occurs at a point where f is not differentiable. ◗

By using a graphics calculator or computer with graphics capabilities, you can
verify that the graph of the function f of Example 6 is that shown in Fig. 3.5.11. But
in the usual case of a continuous function that has only finitely many critical points in
a given closed interval, the closed-interval maximum-minimum method suffices to de-
termine its maximum and minimum values without requiring any detailed knowledge

4

2

x

y

−2 2 4

6

f (x) = 5x2/3 − x5/3

(−1, 6)

(2, 4.76)

(4, 2.52)

(0, 0)

FIGURE 3.5.11 Graph of the
function of Example 6.

of the graph of the function.
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EXAMPLE 7 Figure 3.5.12 shows the graphs of the function

f (x) = 4x4 − 11x2 − 5x − 3

and its derivative

x

y = f(x)

y = f '(x)

y

3210−3

30

20

10

0

−10

−20

−30 −2 −1

FIGURE 3.5.12 The graphs
y = f (x) and y = f ′(x).

f ′(x) = 16x3 − 22x − 5

in the viewing window −3 � x � 3, −30 � y � 30. Evidently the maximum value of
f (x) on the closed interval [−2, 2] is the left-endpoint value f (−2) = 27.

The lowest point on the graph of y = f (x) and the corresponding zero of its
derivative dy/dx = f ′(x) lie within the small boxes in the figure. To find this lowest
point exactly we would need to solve the cubic equation 16x3 − 22x − 5 = 0. But
the lowest point also can be located approximately by using a graphing calculator or
computer to zoom in more closely.

If we attempt to zoom in on the lowest point without changing the “range factors”
or “aspect ratios” of the viewing window, we get a picture like the one in Fig. 3.5.13.
Here the magnified graph is indistinguishable from its horizontal tangent line at the
low point, so it’s impossible to gauge accurately the x-coordinate of the critical point.

Consequently, it is much more effective to zoom in on the corresponding zero of
the derivative f ′(x). We can then locate the indicated critical point with much greater
precision. Thus it is clear in Fig. 3.5.14 that the minimum value attained by f (x) on
[−2, 2] is approximately f (1.273) ≈ −16.686. ◗

−16.69

−16.688

−16.686

−16.684

−16.682

1.272 1.273 1.274
x

y
y = f (x)

FIGURE 3.5.13 Zooming in
on the minimum shown in
Fig. 3.5.12.

y = f '(x)

−0.02

0

0.02

0.04

1.27 1.272 1.274
x

y

FIGURE 3.5.14 Zooming in
instead on the zero of f ′(x)

shown in Fig. 3.5.12.

3.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If f (c) � f (x) for all x in the interval [a, b], then f (c) is the minimum value of
f on [a, b].

2. If f is continuous on [a, b], then f has a maximum value on [a, b].
3. If f (c) � f (x) for all x both in the domain of f and in some open interval I ,

then f (x) is said to be a local maximum value of f .
4. Every local extremum of the function f occurs at a point where f ′(x) = 0.
5. If f (c) is a local extremum of the function f , then either f ′(c) = 0 or f ′(c) does

not exist.
6. If f (c) is a local extremum of the function f and c is not an endpoint of the

domain of f , then either f ′(c) = 0 or f ′(c) does not exist.
7. If f (c) � f (x) for every number x in the domain D of the function f , then f (c)

is called the global maximum value (or the absolute maximum value) of f on D.
8. The absolute maximum value of f (x) = 2x3 − 3x2 − 12x + 15 on [0, 3] is

f (0) = 15.
9. The absolute maximum value of f (x) = 3 − |x − 2| on the interval [1, 4] is

f (4) = 1.
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10. If f (p) and f (q) are both absolute minimum values of f on its domain, then
f (p) = f (q).

3.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that the function f is continuous on the closed interval [a, b]. In each

of the five following cases, sketch a possible graph (if any) of f .

(a) f has a single critical point c but neither a local minimum nor a local maxi-
mum in the open interval (a, b). Discuss the possibility that f is not differ-
entiable at c and the possibility that f is differentiable there.

(b) f has two critical points but only a single local extremum in (a, b).
(c) f has both a local maximum and a local minimum, but only one critical point

in (a, b).
(d) f has exactly one local maximum, exactly one local minimum, and exactly

three critical points in (a, b).
(e) f has three local maxima but only a single local minimum in (a, b).

2. Can you give an example of a polynomial of odd degree that has neither a local
minimum value nor a local maximum value? Can you give an example of a
polynomial of even degree that has neither an absolute minimum value nor an
absolute maximum value?

3. Assume that you have located a point on the graph of a differentiable function
where a local extremum occurs. Suppose that you zoom in on this point with a
graphing calculator or computer, magnifying at each step by the same factor in
the x-direction and the y-direction. Should the graph always look like a horizon-
tal line (as in Fig. 3.5.13) after zooming in sufficiently closely in this manner?

3.5 PROBLEMS

In Problems 1 through 10, state whether the given function at-
tains a maximum value or a minimum value (or both) on the
given interval. [Suggestion: Begin by sketching a graph of the
function.]

1. f (x) = 1 − x; [−1, 1)

2. f (x) = 2x + 1; [−1, 1)

3. f (x) = |x | ; (−1, 1)

4. f (x) = 1√
x
; (0, 1]

5. f (x) = |x − 2| ; (1, 4]
6. f (x) = 5 − x2; [−1, 2)

7. f (x) = x3 + 1; [−1, 1]
8. f (x) = 1

x2 + 1
; (−∞, ∞)

9. f (x) = 1

x(1 − x)
; [2, 3]

10. f (x) = 1

x(1 − x)
; (0, 1)

In Problems 11 through 40, find the maximum and minimum
values attained by the given function on the indicated closed
interval.

11. f (x) = 3x − 2; [−2, 3]
12. f (x) = 4 − 3x; [−1, 5]
13. h(x) = 4 − x2; [1, 3]

14. f (x) = x2 + 3; [0, 5]
15. g(x) = (x − 1)2; [−1, 4]
16. h(x) = x2 + 4x + 7; [−3, 0]
17. f (x) = x3 − 3x; [−2, 4]
18. g(x) = 2x3 − 9x2 + 12x; [0, 4]
19. h(x) = x + 4

x
; [1, 4]

20. f (x) = x2 + 16

x
; [1, 3]

21. f (x) = 3 − 2x; [−1, 1]
22. f (x) = x2 − 4x + 3; [0, 2]
23. f (x) = 5 − 12x − 9x2; [−1, 1]
24. f (x) = 2x2 − 4x + 7; [0, 2]
25. f (x) = x3 − 3x2 − 9x + 5; [−2, 4]
26. f (x) = x3 + x; [−1, 2]
27. f (x) = 3x5 − 5x3; [−2, 2]
28. f (x) = |2x − 3| ; [1, 2]
29. f (x) = 5 + |7 − 3x | ; [1, 5]
30. f (x) = |x + 1| + |x − 1| ; [−2, 2]
31. f (x) = 50x3 − 105x2 + 72x; [0, 1]
32. f (x) = 2x + 1

2x
; [1, 4]
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33. f (x) = x

x + 1
; [0, 3]

34. f (x) = x

x2 + 1
; [0, 3]

35. f (x) = 1 − x

x2 + 3
; [−2, 5]

36. f (x) = 2 − 3
√

x; [−1, 8]
37. f (x) = x

√
1 − x2; [−1, 1]

38. f (x) = x
√

4 − x2; [0, 2]
39. f (x) = x(2 − x)1/3; [1, 3]
40. f (x) = x1/2 − x3/2; [0, 4]
41. Suppose that f (x) = Ax + B is a linear function and that

A �= 0. Explain why the maximum and minimum values of
f on a closed interval [a, b] must occur at the endpoints of
the interval.

42. Suppose that f is continuous on [a, b] and differentiable on
(a, b) and that f ′(x) is never zero at any point of (a, b).
Explain why the maximum and minimum values of f must
occur at the endpoints of the interval [a, b].

43. Explain why every real number is a critical point of the great-
est integer function f (x) = [[x]].

44. Prove that every quadratic function

f (x) = ax2 + bx + c (a �= 0)

has exactly one critical point on the real line.

45. Explain why the cubic polynomial function

f (x) = ax3 + bx2 + cx + d (a �= 0)

can have either two, one, or no critical points on the real line.
Produce examples that illustrate each of the three cases.

46. Define f (x) to be the distance from x to the nearest integer.
What are the critical points of f ?

In Problems 47 through 52, match the given graph of the function
with the graph of its derivative f ′ from those in Fig. 3.5.15, parts
(a) through (f).

47. Figure 3.5.16
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48. Figure 3.5.17
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49. Fig. 3.5.18
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50. Fig. 3.5.19
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51. Fig. 3.5.20
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52. Fig. 3.5.21
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FIGURE 3.5.15
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In Problems 53 through 60, find good approximations to the max-
imum and minimum values of the given function on the indicated
closed interval by zooming in on the zeros of the derivative.

53. f (x) = x3 + 3x2 − 7x + 10; [−2, 2]
54. f (x) = x3 + 3x2 − 7x + 10; [−4, 2]
55. f (x) = x4 − 3x3 + 7x − 5; [−3, 3]

56. f (x) = x4 − 5x3 + 17x − 5; [−3, 3]
57. f (x) = x4 − 5x3 + 17x − 5; [0, 2]
58. f (x) = x5 − 5x4 − 15x3 + 17x2 + 23x; [−1, 1]
59. f (x) = x5 − 5x4 − 15x3 + 17x2 + 23x; [−3, 3]
60. f (x) = x5 − 5x4 − 15x3 + 17x2 + 23x; [0, 10]

3.5 INVESTIGATION: When Is Your Coffee Cup Stablest?
Your car has no cupholder, so you must place your filled coffee cup on the passenger
seat beside you when you start out in the morning. Bitter experience has taught you
that the cup is least stable—and most prone to spill—when it’s completely full, but
becomes more stable as you drink the coffee and thereby lower its level in the cup.
Now you’re ready to apply calculus to analyze this phenomenon.

Figure 3.5.22 shows a coffee cup partially filled with coffee. We will assume that
it is stablest when the centroid of the cup-plus-coffee is lowest. The centroid of a solid
cylinder or cylindrical shell is its geometric central point, and the y-coordinate y of the
centroid of a composite body consisting of several pieces with masses m1, m2, and m3

having centroids with respective y-coordinates y1, y2, and y3 is given by

y = m1 y1 + m2 y2 + m3 y3

m1 + m2 + m3
. (1)

This formula means that y is an average of the y-coordinates y1, y2, and y3 of the
individual centroids, each weighted by the corresponding mass.

The simplified model of the coffee cup shown in Fig. 3.5.22 consists of the fol-
lowing:

• A side surface that is a cylindrical shell with height H , inner radius R, and thick-
ness T , and

• A bottom that is a solid cylinder with radius R + T and height B.

The cup is partially filled with coffee with depth y and density 1 g/cm3. For instance,
let us take H = 8, R = 3, T = 0.5, and B = 1 (all units are centimeters). Assuming
also that the density of the material of the cup itself is δ = 1 g/cm3, we apply Eq. (1)

Coffee surface

y

R

H

T

B

FIGURE 3.5.22 Coffee cup
partially filled with coffee to depth y.

to derive the function

f (y) = 87 + 4y2

34 + 8y
, 0 � y � 8 (2)

giving the y-coordinate y = f (y) of the centroid of the cup-plus-coffee as a function
of the depth y of the coffee in the cup.

Figure 3.5.23 shows the graph of the function f . It appears that the centroid is
lowest when y = 2, and thus when the cup is about one-quarter filled with coffee.
To find when f ′(y) = 0, you can differentiate the function in (2) and simplify to
obtain

f ′(y) = 2(4y2 + 34y − 87)

(4y + 17)2
. (3)

Thus you need only solve a quadratic equation to see where the numerator is zero:
when y = 1

4 (−17 ± 7
√

13). The positive solution gives the optimal depth y ≈
2.0597 cm of the coffee in your cup—just a bit more than a quarter of the height
H = 8 cm of the cup.

y

y0 642

3

2

1

3.5

2.5

1.5

0.5

FIGURE 3.5.23 Centroid height
f (y) as a function of coffee depth y.

Carry out this analysis with your own favorite coffee cup. Measure its physical
dimensions H , R, T , and B. How can you determine the approximate density δ of its
material?
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3.6 APPLIED OPTIMIZATION PROBLEMS

This section is devoted to applied maximum-minimum problems (like the animal pen
problem of Section 1.1) for which the closed-interval maximum-minimum method of
Section 3.5 can be used. When we confront such a problem, there is an important first
step: We must determine the quantity to be maximized or minimized. This quantity
will be the dependent variable in our analysis of the problem.

This dependent variable must then be expressed as a function of an independent
variable, one that “controls” the values of the dependent variable. If the domain of
values of the independent variable—those that are pertinent to the applied problem—
is a closed interval, then we may proceed with the closed-interval maximum-minimum
method. This plan of attack can be summarized in the following steps:

1. Find the quantity to be maximized or minimized. This quantity, which you should
describe with a word or short phrase and label with a descriptive letter, will be the
dependent variable. Because it is a dependent variable, it depends on something
else; that quantity will be the independent variable. Here we call the independent
variable x .

2. Express the dependent variable as a function of the independent variable. Use
the information in the problem to write the dependent variable as a function of x .
Always draw a figure and label the variables; this is generally the best way to find
the relationship between the dependent and independent variables. Use auxiliary
variables if they help, but not too many, for you must eventually eliminate them.
You must express the dependent variable as a function of the single independent
variable x and various constants before you can compute any derivatives. Find
the domain of this function as well as its formula. Force the domain to be a closed
and bounded interval if possible—if the natural domain is an open interval, adjoin
the endpoints if you can.

3. Apply calculus to find the critical points. Compute the derivative f ′ of the func-
tion f that you found in Step 2. Use the derivative to find the critical points—
where f ′(x) = 0 and where f ′(x) does not exist. If f is differentiable every-
where, then its only critical points occur where f ′(x) = 0.

4. Identify the extrema. Evaluate f at each critical point in its domain and at the two
endpoints. The values you obtain will tell you which is the absolute maximum
and which is the absolute minimum. Of course, either or both of these may occur
at more than one point.

5. Answer the question posed in the original problem. In other words, interpret
your results. The answer to the original problem may be something other than
merely the largest (or smallest) value of f . Give a precise answer to the specific
question originally asked.

Observe how we follow this five-step process in Example 1.

EXAMPLE 1 A farmer has 200 yd of fence with which to construct three sides
of a rectangular pen; an existing long, straight wall will form the fourth side. What
dimensions will maximize the area of the pen?

Solution We want to maximize the area A of the pen shown in Fig. 3.6.1. To get ay

Wall

Area A = xyx x

FIGURE 3.6.1 The rectangular pen
of Example 1.

formula for the dependent variable A, we observe that the area of a rectangle is the
product of its base and its height. So we let x denote the length of each of the two sides
of the pen perpendicular to the wall. We also let y denote the length of the side parallel
to the wall. Then the area of the rectangle is given by the formula

A = xy.

Now we need to write A as a function of either x or y. Because all 200 yd of
fence are to be used,

2x + y = 200, so y = 200 − 2x (1)
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(We chose to express y in terms of x merely because the algebra is slightly simpler.)
Next, we substitute this value of y into the formula A = xy to obtain

A(x) = x(200 − 2x) = 200x − 2x2. (2)

This equation expresses the dependent variable A as a function of the independent

200

x x y

FIGURE 3.6.2 The relation in
Eq. (1) between x and y
(Example 1).

variable x .
Before proceeding, we must find the domain of the function A. It is clear from

Fig. 3.6.2 that 0 < x < 100. But to apply the closed-interval maximum-minimum
method, we need a closed interval. In this example, we may adjoin the endpoints to
(0, 100) to get the closed interval [0, 100]. The values x = 0 and x = 100 correspond
to “degenerate” pens of area zero. Because zero cannot be the maximum value of A,
there is no harm in thus enlarging the domain of the function A.

Now we compute the derivative of the function A in Eq. (2):

d A

dx
= 200 − 4x .

Because A is differentiable, its only critical points occur when

d A

dx
= 0;

that is, when

200 − 4x = 0.

So x = 50 is the only critical point in the interval (0, 100). Including the endpoints,
the extrema of A can occur only at x = 0, 50, and 100. We evaluate A at each:

A(0) = 0,

A(50) = 5000, ←− absolute maximum

A(100) = 0.

Thus the maximal area is A(50) = 5000 (yd2). From Eq. (1) we find that y = 100
when x = 50. Therefore, for the pen to have maximal area, each of the two sides
perpendicular to the wall should be 50 yd long and the side parallel to the wall should

100 yd

Wall 

5000 yd2 50 yd50 yd

FIGURE 3.6.3 The pen with
maximal area of Example 1.

be 100 yd long (Fig. 3.6.3). ◗

EXAMPLE 2 A piece of sheet metal is rectangular, 5 ft wide and 8 ft long. Congruent

x

x

5 – 2x

8 – 2xx x

8 – 2x 5 – 2x

x

Fold lines

Cut lines

FIGURE 3.6.4 Making the box of
Example 2.

squares are to be cut from its four corners. The resulting piece of metal is to be folded
and welded to form an open-topped box (Fig. 3.6.4). How should this be done to get a
box of largest possible volume?

Solution The quantity to be maximized—the dependent variable—is the volume V
of the box to be constructed. The shape and thus the volume of the box are determined
by the length x of the edge of each corner square removed. Hence x is a natural choice
for the independent variable.

To write the volume V as a function of x , note that the finished box will have
height x and its base will measure 8 − 2x ft by 5 − 2x ft. Hence its volume is given by

V (x) = x(5 − 2x)(8 − 2x) = 4x3 − 26x2 + 40x .

The procedure described in this example will produce an actual box only if 0 < x <

2.5 (Fig. 3.6.5). But we make the domain the closed interval [0, 2.5] to ensure that a
maximum of V (x) exists and to use the closed-interval maximum-minimum method.
The values x = 0 and x = 2.5 correspond to “degenerate” boxes of zero volume,
so adjoining these points to (0, 2.5) will affect neither the location of the absolute
maximum nor its value.

Now we compute the derivative of V :

V ′(x) = 12x2 − 52x + 40 = 4(3x − 10)(x − 1).

The only critical points of the differentiable function V occur where

5

x x

FIGURE 3.6.5 The 5-ft width of
the metal sheet (Example 2).
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V ′(x) = 0;
that is, where

4(3x − 10)(x − 1) = 0.

The solutions of this equation are x = 1 and x = 10
3 . We discard the latter because it

does not lie in the domain [0, 2.5] of V . So we examine these values of V :

V (0) = 0,

V (1) = 18, ←− absolute maximum

V (2.5) = 0.

Thus the maximum value of V (x) on [0, 2.5] is V (1) = 18. The answer to the question
posed is this: The squares cut from the corners should be of edge length 1 ft each. The
resulting box will measure 6 ft by 3 ft by 1 ft, and its volume will be 18 ft3 (Fig. 3.6.6).

6 ft 3 ft

1 ft

FIGURE 3.6.6 The box with
maximal volume of Example 2.

◗

For our next application of the closed-interval maximum-minimum method, let
us consider a typical problem in business management. Suppose that x units of com-
puter diskettes are to be manufactured at a total cost of C(x) dollars. We make the
simple (but not always valid) assumption that the cost function C(x) is the sum of two
terms:

• A constant term a representing the fixed cost of acquiring and maintaining pro-
duction facilities (overhead), and

• A variable term representing the additional cost of making x units at, for exam-
ple, b dollars each.

Then

the total cost is the sum of the fixed cost and the additional cost,

so the cost function C(x) is given by

C(x) = a + bx . (3)

We also assume that the number of units that can be sold (and hence will be manufac-
tured) is a linear function of the selling price p, so that x = m − np where m and n are
positive constants. The minus sign indicates that an increase in selling price will result
in a decrease in sales. If we solve this last equation for p, we get the price function

p(x) = A − Bx (4)

(A and B are also constants).
The quantity to be maximized is profit, given here by the profit function P(x),

which is equal to the sales revenue minus the production costs. Thus

P(x) = xp(x) − C(x). (5)

EXAMPLE 3 Suppose that the cost of publishing a small book is $10,000 to set up
the (annual) press run plus $8 for each book printed. The publisher sold 7000 copies
last year at $13 each, but sales dropped to 5000 copies this year when the price was
raised to $15 per copy. Assume that up to 10,000 copies can be printed in a single
press run. How many copies should be printed, and what should be the selling price of
each copy, to maximize the year’s profit on this book?

Solution The dependent variable to be maximized is the profit P . As independent
variable we choose the number x of copies to be printed; also, 0 � x � 10,000. The
given cost information then implies that

C(x) = 10,000 + 8x .
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Now we substitute into Eq. (4) the data x = 7000 when p = 13 as well as the
data x = 5000 when p = 15. We obtain the equations

A − 7000B = 13, A − 5000B = 15.

When we solve these equations simultaneously, we find that A = 20 and B = 0.001.
Hence the price function is

p(x) = 20 − x

1000
,

and thus the profit function is

P(x) = x

(
20 − x

1000

)
− (10,000 + 8x).

We expand and collect terms to obtain

P(x) = 12x − x2

1000
− 10,000, 0 � x � 10,000.

Now
d P

dx
= 12 − x

500
,

and the only critical points of the differentiable function P occur when

d P

dx
= 0;

that is, when

12 − x

500
= 0; x = 12 · 500 = 6000.

We check P at this value of x as well as the values of P(x) at the endpoints to find the
maximum profit:

P(0) = −10,000,

P(6000) = 26,000, ←− absolute maximum

P(10,000) = 10,000.

Therefore, the maximum possible annual profit of $26,000 results from printing 6000
copies of the book. Each copy should be sold for $14, because

p(6000) = 20 − 6000

1000
= 14. ◗

EXAMPLE 4 We need to design a cylindrical can with radius r and height h. The top

h

r

2¢/in.2

1¢/in.2

FIGURE 3.6.7 The cylindrical can
of Example 4.

and bottom must be made of copper, which will cost 2/c/in.2 The curved side is to be
made of aluminum, which will cost 1/c/in.2 We seek the dimensions that will maximize
the volume of the can. The only constraint is that the total cost of the can is to be
300π/c.

Solution We need to maximize the volume V of the can, which we can compute if
we know its radius r and its height h (Fig. 3.6.7). With these dimensions, we find that

V = πr2h, (6)

but we need to express V as a function of r alone (or as a function of h alone).
Both the circular top and bottom of the can have area πr2 in.2, so the area of

copper to be used is 2πr2 and its cost is 4πr2 cents. The area of the curved side of the
can is 2πrh in.2, so the area of aluminum used is the same, and the aluminum costs
2πrh cents.

We obtain the total cost of the can by adding the cost of the copper to the cost of
the aluminum. This sum must be 300π/c, and therefore

4πr2 + 2πrh = 300π. (7)
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We eliminate h in Eq. (6) by solving Eq. (7) for h:

h = 300π − 4πr2

2πr
= 1

r
(150 − 2r2). (8)

Hence

V = V (r) = (πr2)
1

r
(150 − 2r2) = 2π(75r − r3). (9)

To determine the domain of definition of V , we note from Eq. (7) that
4πr2 < 300π , so r <

√
75 for the desired can; with r = √

75 = 5
√

3, we get a
degenerate can with height h = 0. With r = 0, we obtain no value of h in Eq. (8) and
therefore no can, but V (r) is nevertheless continuous at r = 0. Consequently, we can
take the closed interval [0, 5

√
3] to be the domain of V .

Calculating the derivative yields

V ′(r) = 2π(75 − 3r2) = 6π(25 − r2).

Because V (r) is a polynomial, V ′(r) exists for all values of r , so we obtain all critical
points by solving the equation

V ′(r) = 0;
that is,

6π(25 − r2) = 0.

We discard the solution −5, as it does not lie in the domain of V . Thus we obtain only
the single critical point r = 5 in [0, 5

√
3]. Now

V (0) = 0,

V (5) = 500π, ←− absolute maximum

V
(
5
√

3
) = 0.

Thus the can of maximum volume has radius r = 5 in., and Eq. (8) yields its height to
be h = 20 in. Figure 3.6.8 shows such a can. ◗

20

5

FIGURE 3.6.8 The can of maximal
volume in Example 4.

EXAMPLE 5 (A Sawmill Problem) Suppose that you need to cut a beam with max-
imal rectangular cross section from a circular log of radius 1 ft. (This is the geometric
problem of finding the rectangle of greatest area that can be inscribed in a circle of
radius 1.) What are the shape and cross-sectional area of such a beam?

Solution Let x and y denote half the base and half the height, respectively, of the

Radius 1

x

y

2x

2y

FIGURE 3.6.9 A sawmill
problem—Example 5.

inscribed rectangle (Fig. 3.6.9). Apply the Pythagorean theorem to the small right
triangle in the figure. This yields the equation

x2 + y2 = 1, so y =
√

1 − x2.

The area of the inscribed rectangle is A = (2x)(2y) = 4xy. You may now express A
as a function of x alone:

A(x) = 4x
√

1 − x2.

The practical domain of definition of A is (0, 1), and there is no harm (and much
advantage) in adjoining the endpoints, so you take [0, 1] to be the domain. Next,

d A

dx
= 4 · (1 − x2)1/2 + 2x(1 − x2)−1/2(−2x) = 4 − 8x2

(1 − x2)1/2
.

You observe that A′(1) does not exist, but this causes no trouble, because differentia-
bility at the endpoints is not assumed in Theorem 3 of Section 3.5. Hence you need
only solve the equation

A′(x) = 0;
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that is,
4 − 8x2

√
1 − x2

= 0.

A fraction can be zero only when its numerator is zero and its denominator is not, so
A′(x) = 0 when 4 − 8x2 = 0. Thus you find the only critical point of A in the open
interval (0, 1) to be x = √

1/2 = 1
2

√
2 (and 2x = 2y = √

2). You evaluate A here
and at the two endpoints to find that

A(0) = 0,

A
(

1
2

√
2
) = 2, ←− absolute maximum

A(1) = 0.

Therefore, the beam with rectangular cross section of maximal area is square, with
edges

√
2 ft long and with cross-sectional area 2 ft2. ◗

In Problem 43 we ask you to maximize the total cross-sectional area of the four

2

2

FIGURE 3.6.10 Cut four more
beams after cutting one large beam.

planks that can be cut from the four pieces of log that remain after cutting the square
beam (Fig. 3.6.10).

Plausibility You should always check your answers for plausibility. In Example 5,
the cross-sectional area of the log from which the beam is to be cut is π ≈ 3.14 ft2.
The beam of maximal cross-section area 2 ft2 thus uses a little less than 64% of the
log. This is plausible. Had the fraction been an extremely inefficient 3% or a wildly
optimistic 98%, you should have searched for an error in arithmetic, algebra, calculus,
or logic (as you would had the fraction been −14% or 150%). Check the results of
Examples 1 through 4 for plausibility.

Dimensions Another way to check answers is to use dimensional analysis. Work the
problem with unspecified constants in place of the actual numbers. In Example 5, it
would be good practice to find the beam of maximal rectangular cross section that can
be cut from a circular log of radius R rather than radius 1 ft. You can always substitute
the given value R = 1 at the conclusion of the solution. A brief solution to this problem
might go as follows:

Dimensions of beam: base 2x , height 2y.
Area of beam: A = 4xy.
Draw a radius of the log from its center to one corner of the rectangular beam, as
in Fig. 3.6.11. This radius has length R, so the Pythagorean theorem gives

x2 + y2 = R2; y =
√

R2 − x2.

R

x

y

FIGURE 3.6.11 The log with radius R.
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Area of beam:

A(x) = 4x
√

R2 − x2, 0 � x � R.

A′(x) = 4(R2 − x2)1/2 + 2x(R2 − x2)−1/2(−2x) = 4R2 − 8x2

√
R2 − x2

.

A′(x) does not exist when x = R, but that’s an endpoint; we’ll check it sepa-
rately.

A′(x) = 0 when x = 1
2 R

√
2 (ignore the negative root; it’s not in the domain

of A).
A(0) = 0,

A
(

1
2 R

√
2
) = 2R2, ←− absolute maximum

A(R) = 0.

Figure 3.6.12 shows the dimensions of the inscribed rectangle of maximal area.

Area A = 2R2 2R

2R

FIGURE 3.6.12 The inscribed
square beam with maximal
cross-sectional area.

Now you can check the results for dimensional accuracy. The value of x that
maximizes A is a length (R) multiplied by a pure (dimensionless) numerical constant
( 1

2

√
2), so x has the dimensions of length—that’s correct; had it been anything else,

you would need to search for the error. Moreover, the maximum cross-sectional area of
the beam is 2R2, the product of a pure number and the square of a length, thus having
the dimensions of area. This, too, is correct.

EXAMPLE 6 We consider the reflection of a ray of light by a mirror M as in

x c − x
A' P B'

c

A

a

d1 d2

B

b

M

α β

FIGURE 3.6.13 Reflection at P of
a light ray by a mirror M
(Example 6).

Fig. 3.6.13, which shows a ray traveling from point A to point B via reflection off
M at the point P . We assume that the location of the point of reflection is such that the
total distance d1 + d2 traveled by the light ray will be minimized. This is an applica-
tion of Fermat’s principle of least time for the propagation of light. The problem is to
find P .

Solution Drop perpendiculars from A and B to the plane of the mirror M . Denote
the feet of these perpendiculars by A′ and B ′ (Fig. 3.6.13). Let a, b, c, and x denote
the lengths of the segments AA′, B B ′, A′ B ′, and A′ P , respectively. Then c − x is the
length of the segment P B ′. By the Pythagorean theorem, the distance to be minimized
is then

d1 + d2 = f (x) =
√

a2 + x2 +
√

b2 + (c − x)2. (10)

We may choose as the domain of f the interval [0, c], because the minimum of
f must occur somewhere within that interval. (To see why, examine the picture you
get if x is not in that interval.)

Then

f ′(x) = x√
a2 + x2

+ (c − x)(−1)√
b2 + (c − x)2

. (11)

Recognizing the distances d1 and d2 in the denominators here, we see that

f ′(x) = x

d1
− c − x

d2
. (12)

Consequently, any horizontal tangent to the graph of f must occur over the point x
determined by the equation

x

d1
= c − x

d2
. (13)

At such a point, cos α = cos β, where α is the angle of the incident light ray and β is
the angle of the reflected ray (Fig. 3.6.13). Both α and β lie between 0 and π/2, and
thus we find that α = β. In short, the point P must be located so that the angle of
incidence is equal to the angle of reflection, a familiar principle from physics. ◗
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The computation in Example 6 has an alternative interpretation that is interesting,
if somewhat whimsical. Figure 3.6.14 shows a feedlot 200 ft long with a water trough
along one edge and a feed bin located on an adjacent edge. A cow enters the gate at the
point A, 90 ft from the water trough. She walks straight to point P , gets a drink from
the trough, and then walks straight to the feed bin at point B, 60 ft from the trough.
If the cow knew calculus, what point P along the water trough would she select to
minimize the total distance she walks?

x

A

B

P

Water trough

90
60

Feed bin

200 – x

FIGURE 3.6.14 The feedlot.

In comparing Figs. 3.6.13 and 3.6.14, we see that the cow’s problem is to min-
imize the distance function f in Eq. (10) with the numerical values a = 90, b = 60,
and c = 200. When we substitute these values and

d1 =
√

a2 + x2 and d2 =
√

b2 + (c − x)2

in Eq. (13), we get

x√
8100 + x2

= 200 − x√
3600 + (200 − x)2

.

We square both sides, clear the equation of fractions, and simplify. The result is

x2[3600 + (200 − x)2] = (200 − x)2(8100 + x2);
3600x2 = 8100(200 − x)2; (Why?)

60x = 90(200 − x);
150x = 18,000;

x = 120.

Thus the cow should proceed directly to the point P located 120 ft along the water
trough.

These examples indicate that the closed-interval maximum-minimum method is
applicable to a wide range of problems. Indeed, applied optimization problems that
seem as different as light rays and cows may have essentially identical mathematical
models. This is only one illustration of the power of generality that calculus exploits
so effectively.

3.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The maximum area of the pen of Example 1 is 5000 square yards.
2. The maximum area of the pen of Example 1 occurs when the side parallel to the

wall has length 100 yards.
3. The domain of the volume function of Example 2 is determined by the fact that

neither the length, nor the width, nor the height of the box can be negative.

4. In Example 4 we went to some trouble to obtain the closed interval [0, 5
√

3] for
the domain of the function V because we had nothing better to do.

5. In Example 5 the area function A(x) is not differentiable at the endpoint x = 1
of its domain, so the area function has no extremum there.
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6. It is plausible that when the rectangle of largest possible area is inscribed in a
circle, then the rectangle occupies 3% of the area of the circle.

7. It is reasonable that when the rectangle of largest possible area is inscribed in a
circle of radius R, then the area of the rectangle is 2R ft.

8. Light travels from point A to point B in such a way to minimize the total time to
get from A to B.

9. To solve an applied maximum-minimum problem, it is usually wise to begin by
identifying the quantity to be maximized or minimized.

10. To solve an equation such as
√

8 − x2 = x , it is usually wise to begin by squaring
both sides in order to eliminate the radical.

3.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. How do you decide what is the dependent variable in an optimization problem?

The independent variable? Discuss the differences in the roles played by depen-
dent and independent variables in an optimization problem.

2. Discuss the differences among the following three items:

• A relation among two or more variables describing an applied problem.
• A formula giving the dependent variable in terms of other variables.
• A function expressing the dependent variable in terms of an independent vari-

able.

Outline and contrast the roles played by relations, formulas, and functions in
typical optimization problems.

3.6 PROBLEMS

1. Find two positive real numbers x and y such that their sum
is 50 and their product is as large as possible.

2. Find the maximum possible area of a rectangle of perimeter
200 m.

3. A rectangle with sides parallel to the coordinate axes has
one vertex at the origin, one on the positive x-axis, one on
the positive y-axis, and its fourth vertex in the first quadrant
on the line with equation 2x + y = 100 (Fig. 3.6.15). What
is the maximum possible area of such a rectangle?

x

y

2x + y = 100

(x, y ) 

FIGURE 3.6.15 The rectangle of
Problem 3.

4. A farmer has 600 m of fencing with which to enclose a rect-
angular pen adjacent to a long existing wall. He will use the
wall for one side of the pen and the available fencing for the
remaining three sides. What is the maximum area that can
be enclosed in this way?

5. A rectangular box has a square base with edges at least
1 in. long. It has no top, and the total area of its five sides
is 300 in.2 (Fig. 3.6.16). What is the maximum possible vol-
ume of such a box?

x
x

y

FIGURE 3.6.16 A box with
square base and volume V = x2 y
(Problems 5, 17, and 20).

6. If x is in the interval [0, 1], then x − x2 is not negative. What
is the maximum value that x − x2 can have on that interval?
In other words, what is the greatest amount by which a real
number can exceed its square?

7. The sum of two positive numbers is 48. What is the smallest
possible value of the sum of their squares?

8. A rectangle of fixed perimeter 36 is rotated around one of
its sides, thus sweeping out a figure in the shape of a right
circular cylinder (Fig. 3.6.17). What is the maximum possi-
ble volume of that cylinder?
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h

r

FIGURE 3.6.17 The
rectangle and cylinder
of Problem 8.

9. The sum of two nonnegative real numbers is 10. Find the
minimum possible value of the sum of their cubes.

10. Suppose that the strength of a rectangular beam is propor-
tional to the product of the width and the square of the height
of its cross section. What shape beam should be cut from a
cylindrical log of radius r to achieve the greatest possible
strength?

11. A farmer has 600 yd of fencing with which to build a rectan-
gular corral. Some of the fencing will be used to construct
two interval divider fences, both parallel to the same two
sides of the corral (Fig. 3.6.18). What is the maximum pos-
sible total area of such a corral?

x

y y y y

FIGURE 3.6.18 The divided corral of
Problem 11.

12. Find the maximum possible volume of a right circular cylin-
der if its total surface area—including both circular ends—is
150π .

13. Find the maximum possible area of a rectangle with diago-
nals of length 16.

14. A rectangle has a line of fixed length L reaching from one
vertex to the midpoint of one of the far sides (Fig. 3.6.19).
What is the maximum possible area of such a rectangle?

x

y
2

L

FIGURE 3.6.19 The rectangle of Problem 14.

15. The volume V (in cubic centimeters) of 1 kg of water at tem-
perature T between 0◦C and 30◦C is very closely approxi-
mated by

V = 999.87 − (0.06426)T

+ (0.0085043)T 2 − (0.0000679)T 3.

At what temperature does water have its maximum density?

16. What is the maximum possible area of a rectangle with a
base that lies on the x-axis and with two upper vertices that
lie on the graph of the equation y = 4 − x2 (Fig. 3.6.20)?

y

x

y = 4 − x2

(x, y)

FIGURE 3.6.20 The rectangle of
Problem 16.

17. A rectangular box has a square base with edges at least 1 cm
long. Its total surface area is 600 cm2. What is the largest
possible volume that such a box can have?

18. You must make a cylindrical can with a bottom but no top
from 300π in.2 of sheet metal. No sheet metal will be
wasted; you are allowed to order a circular piece of any size
for its base and any appropriate rectangular piece to make
into its curved side so long as the given conditions are met.
What is the greatest possible volume of such a can?

19. Three large squares of tin, each with edges 1 m long, have
four small, equal squares cut from their corners. All twelve
resulting small squares are to be the same size (Fig. 3.6.21).
The three large cross-shaped pieces are then folded and
welded to make boxes with no tops, and the twelve small
squares are used to make two small cubes. How should this
be done to maximize the total volume of all five boxes?

1 m

1 m

x

x

x

x

FIGURE 3.6.21 One of
the three 1-m squares of
Problem 19.

20. Suppose that you are to make a rectangular box with a square
base from two different materials. The material for the top
and four sides of the box costs $1/ft2; the material for the
base costs $2/ft2. Find the dimensions of the box of great-
est possible volume if you are allowed to spend $144 for the
material to make it.

21. A piece of wire 80 in. long is cut into at most two pieces.
Each piece is bent into the shape of a square. How should
this be done to minimize the sum of the area(s) of the
square(s)? To maximize it?

22. A wire of length 100 cm is cut into two pieces. One piece is
bent into a circle, the other into a square. Where should the
cut be made to maximize the sum of the areas of the square
and the circle? To minimize that sum?

23. A farmer has 600 m of fencing with which she plans to en-
close a rectangular pasture adjacent to a long existing wall.
She plans to build one fence parallel to the wall, two to form
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the ends of the enclosure, and a fourth (parallel to the ends
of the enclosure) to divide it equally. What is the maximum
area that can be enclosed?

24. A zookeeper needs to add a rectangular outdoor pen to an
animal house with a corner notch, as shown in Fig. 3.6.22.
If 85 m of new fence is available, what dimensions of the
pen will maximize its area? No fence will be used along the
walls of the animal house.

10 m

5 m

Animal house

New fence

FIGURE 3.6.22 The rectangular
pen of Problem 24.

25. Suppose that a post office can accept a package for mailing
only if the sum of its length and its girth (the circumference
of its cross section) is at most 100 in. What is the maximum
volume of a rectangular box with square cross section that
can be mailed?

26. Repeat Problem 25, but use a cylindrical package; its cross
section is circular.

27. A printing company has eight presses, each of which can
print 3600 copies per hour. It costs $5.00 to set up each
press for a run and 10 + 6n dollars to run n presses for 1 h.
How many presses should be used to print 50,000 copies of
a poster most profitably?

28. A farmer wants to hire workers to pick 900 bushels of beans.
Each worker can pick 5 bushels per hour and is paid $1.00
per bushel. The farmer must also pay a supervisor $10 per
hour while the picking is in progress, and he has additional
miscellaneous expenses of $8 per worker. How many work-
ers should he hire to minimize the total cost? What will then
be the cost per bushel picked?

29. The heating and cooling costs for a certain uninsulated house
are $500/yr, but with x � 10 in. of insulation, the costs are
1000/(2 + x) dollars/yr. It costs $150 for each inch (thick-
ness) of insulation installed. How many inches of insulation
should be installed to minimize the total (initial plus annual)
costs over a 10-yr period? What will then be the annual sav-
ings resulting from this optimal insulation?

30. A concessionaire had been selling 5000 burritos each game
night at 50/c each. When she raised the price to 70/c each,
sales dropped to 4000 per night. Assume a linear relation-
ship between price and sales. If she has fixed costs of $1000
per night and each burrito costs her 25/c, what price will max-
imize her nightly profit?

31. A commuter train carries 600 passengers each day from a
suburb to a city. It costs $1.50 per person to ride the train.
Market research reveals that 40 fewer people would ride the
train for each 5/c increase in the fare, 40 more for each 5/c

decrease. What fare should be charged to get the largest pos-
sible revenue?

32. Find the shape of the cylinder of maximal volume that can be
inscribed in a sphere of radius R (Fig. 3.6.23). Show that the
ratio of the height of the cylinder to its radius is

√
2 and that

the ratio of the volume of the sphere to that of the maximal
cylinder is

√
3.

h
2

R

r

FIGURE 3.6.23 The sphere
and cylinder of Problem 32.

33. Find the dimensions of the right circular cylinder of greatest
volume that can be inscribed in a right circular cone of radius
R and height H (Fig. 3.6.24).

H

h

r

R

FIGURE 3.6.24 The cone
and cylinder of Problem 33.

34. Figure 3.6.25 shows a circle of radius 1 in which a trape-
zoid is inscribed. The longer of the two parallel sides of the
trapezoid coincides with a diameter of the circle. What is
the maximum possible area of such a trapezoid. (Sugges-
tion: A positive quantity is maximized when its square is
maximized.)

2x

1 1

FIGURE 3.6.25 The
circle and trapezoid of
Problem 34.

35. Show that the rectangle of maximal perimeter that can be
inscribed in a circle is a square.
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36. Find the dimensions of the rectangle (with sides parallel to
the coordinate axes) of maximal area that can be inscribed in
the ellipse with equation

x2

25
+ y2

9
= 1

(Fig. 3.6.26).
y

(x, y)

(0, 3)

(5, 0)

FIGURE 3.6.26 The ellipse and rectangle of Problem 36.

37. A right circular cone of radius r and height h has slant height
L = √

r 2 + h2. What is the maximum possible volume of a
cone with slant height 10?

38. Two vertical poles 10 ft apart are both 10 ft tall. Find the
length of the shortest rope that can reach from the top of one
pole to a point on the ground between them and then to the
top of the other pole.

39. The sum of two nonnegative real numbers is 16. Find the
maximum possible value and the minimum possible value
of the sum of their cube roots.

40. A straight wire 60 cm long is bent into the shape of an L.
What is the shortest possible distance between the two ends
of the bent wire?

41. What is the shortest possible distance from a point on the
parabola y = x2 to the point (0, 1)?

42. Given: There is exactly one point on the graph of y =
3
√

3x − 4 that is closest to the origin. Find it. (Sugges-
tion: See Fig. 3.6.27, and solve the equation you obtain by
inspection.)

−2 −1 0 1 2
x

−2

−1

0

1

2

y

FIGURE 3.6.27 The curve
of Problem 42.

1

11

FIGURE 3.6.28 The
rectangle and equilateral
triangle of Problem 44.

43. Find the dimensions that maximize the cross-sectional area
of the four planks that can be cut from the four pieces of
the circular log of Example 5—the pieces that remain after a
square beam has been cut from the log (Fig. 3.6.10).

44. Find the maximal area of a rectangle inscribed in an equilat-
eral triangle with edges of length 1, as in Fig. 3.6.28.

45. A small island is 2 km off shore in a large lake. A woman on
the island can row her boat 10 km/h and can run at a speed of
20 km/h. If she rows to the closest point of the straight shore,
she will land 6 km from a village on the shore. Where should
she land to reach the village most quickly by a combination
of rowing and running?

46. A factory is located on one bank of a straight river that is
2000 m wide. On the opposite bank but 4500 m down-
stream is a power station from which the factory draws its
electricity. Assume that it costs three times as much per
meter to lay an underwater cable as to lay an aboveground
cable. What path should a cable connecting the power sta-
tion to the factory take to minimize the cost of laying the
cable?

47. A company has plants that are located (in an appropriate co-
ordinate system) at the points A(0, 1), B(0, −1), and C(3, 0)

(Fig. 3.6.29). The company plans to construct a distribution
center at the point P(x, 0). What value of x would minimize
the sum of the distances from P to A, B, and C?

y

x

A

P

B

C

FIGURE 3.6.29 The
locations in Problem 47.

48. Light travels at speed c in air and at a slower speed v in wa-
ter. (The constant c is approximately 3×1010 cm/s; the ratio
n = c/v, known as the index of refraction, depends on the
color of the light but is approximate 1.33 for water.) Figure
3.6.30 shows the path of a light ray traveling from point A
in air to point B in water, with what appears to be a sudden
change in direction as the ray moves through the air-water
interface. (a) Write the time T required for the ray to travel
from A to B in terms of the variable x and the constants a, b,
c, s, and v, all of which have been defined or are shown in the
figure. (b) Show that the equation T ′(x) = 0 for minimizing
T is equivalent to the condition

sin α

sin β
= c

v
= n.

This is Snell’s law: The ratio of the sines of the angles of
incidence and refraction is equal to the index of refraction.

a

A

B

b

P
Air

Water
Qx

s − x

α

β

FIGURE 3.6.30 Snell’s law gives the path
of refracted light (Problem 48).
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Refraction of light at an air-water interface

49. The mathematics of Snell’s law (Problem 48) is ap-
plicable to situations other than the refraction of light.
Figure 3.6.31 shows an east-west geologic fault that sepa-
rates two towns at points A and B. Assume that A is a miles
north of the fault, that B is b miles south of the fault, and
that B is L miles east of A. We want to build a road from A
to B. Because of differences in terrain, the cost of construc-
tion is C1 (in millions of dollars per mile) north of the fault
and C2 south of it. Where should the point P be placed to
minimize the total cost of road construction? (a) Using the
notation in the figure, show that the cost is minimized when
C1 sin θ1 = C2 sin θ2. (b) Take a = b = C1 = 1, C2 = 2,
and L = 4. Show that the equation in part (a) is equiva-
lent to

f (x) = 3x4 − 24x3 + 51x2 − 32x + 64 = 0.

To approximate the desired solution of this equation, calcu-
late f (0), f (1), f (2), f (3), and f (4). You should find that
f (3) > 0 > f (4). Interpolate between f (3) and f (4) to
approximate the desired root of this equation.

θ

θ

x

a

A

P

B

b

W E

L − x1

2

FIGURE 3.6.31 Building a road
from A to B (Problem 49).

50. The sum of the volumes of two cubes is 2000 in.3 What
should their edges x and y be to maximize the sum of their
surface areas? To minimize it?

51. The sum of the surface areas of a cube and a sphere is
1000 in.2 What should their dimensions be to minimize the
sum of their volumes? To maximize it?

52. Your brother has six pieces of wood with which to make
the kite frame shown in Fig. 3.6.32. The four outer pieces
with the indicated lengths have already been cut. How long

should the lengths of the inner struts be to maximize the area
of the kite?

2

4 4

2

FIGURE 3.6.32 The kite
frame (Problem 52).

Problems 53 through 55 deal with alternative methods of con-
structing a tent.

53. Figure 3.6.33 shows a 20-by-20-ft square of canvas tent ma-
terial. Girl Scout Troop A must cut pieces from its four cor-
ners as indicated, so that the four remaining triangular flaps
can be turned up to form a tent in the shape of a pyramid
with a square base. How should this be done to maximize
the volume of the tent?

Let A denote the area of the base of the tent and h
its height. With x as indicated in the figure, show that the
volume V = 1

3 Ah of the tent is given by

V (x) = 4
3 x2

√
100 − 20x, 0 � x � 5.

Maximize V by graphing V (x) and V ′(x) and zooming in
on the zero of V ′(x).

10 − x

x 10 − xh

x

FIGURE 3.6.33 The canvas square—first
attempt.

54. Girl Scout Troop B must make a tent in the shape of a pyra-
mid with a square base from a similar 20-by-20-ft square of
canvas but in the manner indicated in Fig. 3.6.34. With x as
indicated in the figure, show that the volume of the tent is
given by

V (x) = 2
3 x2

√
200 − 20x, 0 � x � 10.

Maximize V graphically as in Problem 53.
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x

FIGURE 3.6.34 The canvas
square—second attempt.

55. Solve Problems 53 and 54 analytically to verify that the max-
imal volume in Problem 54 is exactly 2

√
2 times the

maximal volume in Problem 53. It pays to think before mak-
ing a tent!

Problems 56 and 57 deal with rectangular boxes with square
base. Such a box is said to be closed if it has both a (square)
bottom and a top (as well as four vertical sides), open if it has a
bottom but no top.

56. Show that, among all closed square-based rectangular boxes
with a given fixed total surface area, the one with maximal
volume is a cube.

57. Show that, among all open square-based rectangular boxes
with a given fixed total surface area, the one with maximal
volume has height equal to half the length of the edge of its
base.

Problems 58 through 60 deal with right circular cylinders. Such
a “can” is said to be closed if it has both a (circular) bottom and
a top (as well as a curved side), open if it has a bottom but no
top.

58. Show that, among all closed cylindrical cans with a given
fixed total surface area, the one with maximal volume has
height equal to the diameter of its base.

59. Show that, among all open cylindrical cans with a given fixed
total surface area, the one with maximal volume has height
equal to the radius of its base.

60. Suppose that the bottom and curved side surface of a pop-
top soft drink can have the same thickness. But, in order
that the top not be ripped upon opening, it is three times as
thick as the bottom. Show that, among all such soft drink
cans made from a fixed total amount of material (includ-
ing the triple-thick top), the one with maximal volume has
height approximately twice its diameter. (Perhaps this is why
soft drink cans look somewhat taller than soup or vegetable
cans.) Suggestion: To simplify the computations, you may
assume that the amount of material used to make a can of
inner radius r , inner height h, and thickness t (except for
the top, of thickness 3t), is πr 2t + 2πrht + 3πr 2t . This
will be quite accurate if t is very small in comparison with r
and h.

61. Figure 3.6.35 shows a triangle bounded by the nonnega-
tive coordinate axes and the line tangent to the curve y =
1/(1 + x2) at the first-quadrant point (x, y). Is it appar-
ent that the area A(x) of this triangle is very large when
x > 0 is very close to zero? But your task is to find the
maximum and minimum values of A for 1

2 � x � 2. It will
be convenient to use a computer algebra system, both to
find A(x) and to solve the sixth-degree equation you should
encounter.

x

(x, y ) 

y

y  = 1
1 + x2

FIGURE 3.6.35 Triangle bounded
by coordinate axes and a tangent line

to the curve y = 1

1 + x2
.

62. Figure 3.6.36 shows a one-mile-square city park in central
Villabuena. A local power company needs to run a power
line from the northwest corner A of the park to the southeast
corner B. To preserve the beauty of the park, only under-
ground lines may be run through the park itself, but over-
head lines are permissible along the boundary of the park.
The power company plans to construct an overhead line a
distance x along the west edge of the park, then from the
southern end of this line continue with a straight power line
to point B. If overhead lines cost $40 thousand per mile and
underground lines cost $100 thousand per mile, how should
the power company construct the line to minimize its total
cost?

A

B

x

FIGURE 3.6.36 The one-
mile-square park in
central Villabuena.

3.7 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

In this section we begin our study of the calculus of trigonometric functions, focusing
first on the sine and cosine functions. The definitions and the elementary properties of
trigonometric functions are reviewed in Appendix C.
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When we write sin θ (or cos θ ), we mean the sine (or cosine) of an angle of
θ radians (rad). Recall the fundamental relation between radian measure and degree
measure of angles:

π radians = 180 degrees. (1)

Upon division of both sides of this equation by π and 180, respectively, and
Radians Degrees

0 0
π/6 30
π/4 45
π/3 60
π/2 90
2π/3 120
3π/4 135
5π/6 150

π 180
3π/2 270
2π 360
4π 720

FIGURE 3.7.1 Some radian- degree
conversions.

abbreviating the units, we get the conversion relations

1 rad = 180

π
deg and 1 deg = π

180
rad.

Figure 3.7.1 shows radian-degree conversions for some frequently occurring angles.
The derivatives of the sine and cosine functions depend on the limits

lim
θ→0

sin θ

θ
= 1, lim

θ→0

1 − cos θ

θ
= 0 (2)

that we established in Section 2.3. The addition formulas

cos(x + y) = cos x cos y − sin x sin y,

sin(x + y) = sin x cos y + cos x sin y
(3)

are needed as well.

THEOREM 1 Derivatives of Sines and Cosines
The functions f (x) = sin x and g(x) = cos x are differentiable for all x , and

Dx sin x = cos x, (4)
Dx cos x = − sin x . (5)

Proof To differentiate f (x) = sin x , we begin with the definition of the derivative,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

sin(x + h) − sin x

h
.

Next we apply the addition formula for the sine and the limit laws to get

f ′(x) = lim
h→0

(sin x cos h + sin h cos x) − sin x

h

= lim
h→0

[
(cos x)

sin h

h
− (sin x)

1 − cos h

h

]

= (cos x)

(
lim
h→0

sin h

h

)
− (sin x)

(
lim
h→0

1 − cos h

h

)
.

The limits in Eq. (2) now yield

f ′(x) = (cos x)(1) − (sin x)(0) = cos x,

which proves Eq. (4). The proof of Eq. (5) is quite similar. (See Problem 72.) ◆

Examples 1 through 4 illustrate the application of Eqs. (4) and (5) in conjunction
with the general differentiation formulas of Sections 3.2, 3.3, and 3.4 to differentiate
various combinations of trigonometric and other functions.

EXAMPLE 1 The product rule yields

Dx(x2 sin x) = (Dx x2)(sin x) + (x2)(Dx sin x)

= 2x sin x + x2 cos x . ◗
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EXAMPLE 2 If y = cos x

1 − sin x
, then the quotient rule yields

dy

dx
= (Dx cos x)(1 − sin x) − (cos x)[Dx(1 − sin x)]

(1 − sin x)2

= (− sin x)(1 − sin x) − (cos x)(− cos x)

(1 − sin x)2

= − sin x + sin2 x + cos2 x

(1 − sin x)2
= − sin x + 1

(1 − sin x)2
;

dy

dx
= 1

1 − sin x
. ◗

EXAMPLE 3 If x = cos3 t and u = cos t—so that x = u3—then the chain rule
yields

dx

dt
= dx

du

du

dt
= (3u2)(− sin t) = (3 cos2 t)(− sin t) = −3 cos2 t sin t. ◗

EXAMPLE 4 If g(t) = (2 − 3 cos t)3/2, then the chain rule yields

g′(t) = 3
2 (2 − 3 cos t)1/2 Dt(2 − 3 cos t)

= 3
2 (2 − 3 cos t)1/2(3 sin t) = 9

2 (2 − 3 cos t)1/2 sin t. ◗

EXAMPLE 5 Write an equation of the line tangent to the curve y = cos2 x at the
point P on the graph where x = 0.5. Approximations are allowed.

Solution The y-coordinate of P is y(0.5) = (cos 0.5)2 ≈ (0.8776)2 ≈ 0.7702.
y = cos2 x

y = −0.8415x + 1.1909

P(0.5, 0.7702)

x
0−1

−2

−1

0

1

2

21 3

y

FIGURE 3.7.2 The curve
y = cos2 x and its tangent line at the
point P where x = 0.5.

Because
dy

dx
= −2 cos x sin x,

the slope of the tangent line at P is

m = dy

dx

∣∣∣∣
x=0.5

= −2(cos 0.5)(sin 0.5) ≈ −0.8415.

Then the point-slope formula gives the (approximate) equation

y − 0.7702 = −(0.8415)(x − 0.5);
that is, y = −(0.8415)x + 1.1909, as the desired equation of the tangent line at P .
Figure 3.7.2 shows the result of checking this computation by graphing both the curve
y = cos2 x and the line with this equation. ◗

The Remaining Trigonometric Functions
It is easy to differentiate the other four trigonometric functions, because they can be
expressed in terms of the sine and cosine functions:

tan x = sin x

cos x
, cot x = cos x

sin x
,

sec x = 1

cos x
, csc x = 1

sin x
.

(6)

Each of these formulas is valid except where a zero denominator is encountered. Thus
tan x and sec x are undefined when x is an odd integral multiple of π/2, and cot x
and csc x are undefined when x is an integral multiple of π . The graphs of the six
trigonometric functions appear in Fig. 3.7.3. There we show the sine and its reciprocal,
the cosecant, in the same coordinate plane; we also pair the cosine with the secant but
show the tangent and cotangent functions separately.
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The functions in Eq. (6) can be differentiated by using the quotient rule and the

y = sec x

y = cos x

y = cot x

(b)

1
2
3
4

x

−4
−3
−2
−1

π
2

3π
2

2ππ 3π

π
2

−

y = csc x

y = sin x

y

2
3
4

x

−4
−3
−2
−1 2π−π 3π

y

π

1
2
3
4

x

−4
−3
−2
−1

π
2

3π
2

2ππ 3π

y = tan x

y

π
2

−

−π
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−π

(a)

FIGURE 3.7.3 Graphs of the six
trigonometric functions.

derivatives of the sine and cosine functions. For example,

tan x = sin x

cos x
,

so

Dx tan x = (Dx sin x)(cos x) − (sin x)(Dx cos x)

(cos x)2

= (cos x)(cos x) − (sin x)(− sin x)

cos2 x
= cos2 x + sin2 x

cos2 x
= 1

cos2 x
;

Dx tan x = sec2 x .

As an exercise (Problem 71), you should derive in similar fashion the differentiation
formulas in Eqs. (8) through (10) of Theorem 2.

THEOREM 2 Derivatives of Trigonometric Functions
The functions f (x) = tan x , g(x) = cot x , p(x) = sec x , and q(x) = csc x are
differentiable wherever they are defined, and

Dx tan x = sec2 x, (7)

Dx cot x = − csc2 x, (8)
Dx sec x = sec x tan x, (9)
Dx csc x = − csc x cot x . (10)

The patterns in the formulas of Theorem 2 and in Eqs. (4) and (5) make them easy
to remember. The formulas in Eqs. (5), (8), and (10) are the “cofunction analogues”
of those in Eqs. (4), (7), and (9), respectively. Note that the derivative formulas for the
three cofunctions are those involving minus signs.

EXAMPLE 6

Dx(x tan x) = (Dx x)(tan x) + (x)(Dx tan x)

= (1)(tan x) + (x)(sec2 x) = tan x + x sec2 x .

Dt(cot3 t) = Dt(cot t)3 = 3(cot t)2 Dt cot t

= 3(cot t)2(−csc2t) = −3 csc2 t cot2 t.

Dz

(
sec z√

z

)
= (Dz sec z)

(√
z
) − (sec z)

(
Dz

√
z
)

(√
z
)2

= (sec z)(tan z)
(√

z
) − (sec z)

(
1
2 z−1/2

)
z

= 1
2 z−3/2(2z tan z − 1) sec z. ◗

Chain Rule Formulas
Recall from Eq. (7) in Section 3.3 that the chain rule gives

Dx [g(u)] = g′(u)
du

dx
(11)

for the derivative of the composition g(u(x)) of two differentiable functions g and u.
This formula yields a chain rule version of each new differentiation formula that we
learn.
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If we apply Eq. (11) first with g(u) = sin u, then with g(u) = cos u, and so on,
we get the chain rule versions of the trigonometric differentiation formulas:

Dx sin u = (cos u)
du

dx
,

Dx cos u = (− sin u)
du

dx
,

Dx tan u = (sec2 u)
du

dx
,

Dx cot u = (− csc2 u)
du

dx
,

Dx sec u = (sec u tan u)
du

dx
,

Dx csc u = (− csc u cot u)
du

dx
.

(12)

(13)

(14)

(15)

(16)

(17)

The cases in which u = kx (where k is a constant) are worth mentioning. For
example,

Dx sin kx = k cos kx and Dx cos kx = −k sin kx . (18)

The formulas in (18) provide an explanation of why radian measure is more appropriate
than degree measure. Because it follows from Eq. (1) that an angle of degree measure
x has radian measure πx/180, the “sine of an angle of x degrees” is a new and different
function with the formula

sin x◦ = sin
πx

180
,

expressed on the right-hand side in terms of the standard (radian-measure) sine func-
tion. Hence the first formula in (18) yields

Dx sin x◦ = π

180
cos

πx

180
,

so

Dx sin x◦ ≈ (0.01745) cos x◦.

The necessity of using the approximate value 0.01745 here—and indeed its very
presence—is one reason why radians instead of degrees are used in the calculus of
trigonometric functions: When we work with radians, we don’t need such approxima-
tions.

EXAMPLE 7 If y = 2 sin 10t + 3 cos π t , then

dy

dt
= 20 cos 10t − 3π sin π t. ◗

EXAMPLE 8

Dx(sin2 3x cos4 5x)

= [Dx(sin 3x)2](cos4 5x) + (sin2 3x)[Dx(cos 5x)4]
= 2(sin 3x)(Dx sin 3x) · (cos4 5x) + (sin2 3x) · 4(cos 5x)3(Dx cos 5x)

= 2(sin 3x)(3 cos 3x)(cos4 5x) + (sin2 3x)(4 cos3 5x)(−5 sin 5x)

= 6 sin 3x cos 3x cos4 5x − 20 sin2 3x sin 5x cos3 5x . ◗
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EXAMPLE 9 Differentiate f (x) = cos
√

x .

Solution If u = √
x , then du/dx = 1/(2

√
x), so Eq. (13) yields

Dx cos
√

x = Dx cos u = (− sin u)
du

dx

= −(
sin

√
x
) 1

2
√

x
= −sin

√
x

2
√

x
.

Alternatively, we can carry out this computation without introducing the auxiliary vari-
able u:

Dx cos
√

x = ( − sin
√

x
) · Dx

(√
x
) = −sin

√
x

2
√

x
.

In Fig. 3.7.4 we have plotted both the curve y = y(x) = cos
√

x and (to show the
vertical scale more clearly) the constant multiple

y = 4y′(x) = −2 sin
√

x√
x

of its derivative. Note the correspondence in this figure between the local maxima and
minima of the function y(x) = cos

√
x and the zeros of its derivative y′(x) (which are

the same as the zeros of 4y′(x)). ◗

x

y

0 40 8020 60

1

0

−1

100

y = cos x

y = −
x

x2 sin

FIGURE 3.7.4 The curve y =
cos

√
x and the constant multiple

y = −(2 sin
√

x)/
√

x of its
derivative.

EXAMPLE 10 Differentiate

y = sin2(2x − 1)3/2 = [
sin(2x − 1)3/2

]2
.

Solution Here, y = u2, where u = sin(2x − 1)3/2, so

dy

dx
= 2u

du

dx
= 2

[
sin(2x − 1)3/2

] · Dx
[

sin(2x − 1)3/2
]

= 2
[

sin(2x − 1)3/2
][

cos(2x − 1)3/2
] · Dx(2x − 1)3/2

= 2
[

sin(2x − 1)3/2
][

cos(2x − 1)3/2
]

3
2 (2x − 1)1/2 · 2

= 6(2x − 1)1/2
[

sin(2x − 1)3/2
][

cos(2x − 1)3/2
]
. ◗

EXAMPLE 11

Dx tan 2x3 = (sec2 2x3) · Dx(2x3) = 6x2 sec2 2x3.

Dt cot3 2t = Dt(cot 2t)3 = 3(cot 2t)2 · Dt(cot 2t)

= (3 cot2 2t)(− csc2 2t) · Dt(2t)

= −6 csc2 2t cot2 2t.

Dy sec
√

y = (
sec

√
y tan

√
y
) · Dy

√
y = sec

√
y tan

√
y

2
√

y
.

Dz
√

csc z = Dz(csc z)1/2 = 1
2 (csc z)−1/2 · Dz(csc z)

= 1
2 (csc z)−1/2(−csc z cot z) = − 1

2 (cot z)
√

csc z. ◗

Examples 12 and 13 illustrate the applications of trigonometric functions to rate-
of-change and maximum-minimum problems.

EXAMPLE 12 A rocket is launched vertically and is tracked by a radar station lo-
cated on the ground 5 mi from the launch pad. Suppose that the elevation angle θ of
the line of sight to the rocket is increasing at 3◦ per second when θ = 60◦. What is the
velocity of the rocket at this instant?
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Solution First we convert the given data from degrees into radians. Because there are
π/180 rad in 1◦, the rate of increase of θ becomes

3π

180
= π

60
(rad/s)

at the instant when

θ = 60π

180
= π

3
(rad).

From Fig. 3.7.5 we see that the height y (in miles) of the rocket is

y = 5 tan θ.

Hence its velocity is

dy

dt
= dy

dθ
· dθ

dt
= 5(sec2 θ)

dθ

dt
.

Because sec(π/3) = 2 (Fig. 3.7.6), the velocity of the rocket is

dy

dt
= 5 · 22 · π

60
= π

3
(mi/s),

about 3770 mi/h, at the instant when θ = 60◦. ◗

5 mi

θ

y

FIGURE 3.7.5 Tracking an
ascending rocket (Example 12).

1

3

π
3

2

FIGURE 3.7.6

sec
π

3
= 2 (Example 12).

EXAMPLE 13 A rectangle is inscribed in a semicircle of radius R (Fig. 3.7.7). What

θ

y

x

R

FIGURE 3.7.7 The rectangle of
Example 13.

is the maximum possible area of such a rectangle?

Solution If we denote the length of half the base of the rectangle by x and its height
by y, then its area is A = 2xy. We see in Fig. 3.7.7 that the right triangle has hy-
potenuse R, the radius of the circle. So

x = R cos θ and y = R sin θ. (19)

Each value of θ between 0 and π/2 corresponds to a possible inscribed rectangle. The
values θ = 0 and θ = π/2 will yield degenerate rectangles.

We substitute the data in Eq. (19) into the formula A = 2xy to obtain the area

A = A(θ) = 2(R cos θ)(R sin θ)

= 2R2 cos θ sin θ (20)

as a function of θ on the closed interval [0, π/2]. To find the critical points, we differ-
entiate:

d A

dθ
= 2R2(− sin θ sin θ + cos θ cos θ) = 2R2(cos2 θ − sin2 θ).
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Because d A/dθ always exists, we have critical points only if

cos2 θ − sin2 θ = 0;
sin2 θ = cos2 θ;
tan2 θ = 1;
tan θ = ±1.

The only value of θ in [0, π/2] such that tan θ = ±1 is θ = π/4.
Upon evaluation of A(θ) at each of the possible values θ = 0, θ = π/4, and

θ = π/2 (the endpoints and the critical point), we find that

A(0) = 0,

A

(
π

4

)
= 2R 2

(
1√
2

)(
1√
2

)
= R 2, ←− absolute maximum

A

(
π

2

)
= 0.

Thus the largest inscribed rectangle has area R 2, and its dimensions are 2x = R
√

2
and y = R/

√
2. ◗

3.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Dx(sin x) = cos x .
2. If g(x) = cos x , then g′(x) = sin x .
3. Dx(x2 sin x) = 2x sin x + x2 cos x .
4. If g(t) = (2 − 3 cos t)3/2, then g′(t) = 3

2 (2 − 3 cos t)1/2.

5. If y = y(x) = tan x , then
dy

dx
= sec2 x .

6. The notation sec2 x means sec(x2).
7. Dx(sec x) = sec x tan x .
8. If u = u(x) is differentiable, then

Dx [sec(u(x))] = [sec(u(x))] · [tan(u(x))] · u′(x).

9. If A(θ) = 2 cos θ sin θ on the interval I = [0, π ], then A has a global maximum
value on I .

10. An easy way to show that f (x) = sin x is continuous for all x is to observe that
f ′(x) = cos x exists for all x .

3.7 CONCEPTS: QUESTIONS AND DISCUSSION
1. The function f is said to be even if f (−x) = f (x) for all x , odd if f (−x) =

− f (x) for all x . For instance, the power function f (x) = xn is even if n is
an even integer, but is odd if n is an odd integer. How can you determine if a
function is even or odd by looking at its graph? Which of the six trigonometric
functions are even and which are odd?

2. Give an example of a function (with domain the set of all real numbers) that is
neither even nor odd. Find every function that is both even and odd.

3. The six trigonometric functions all have period 2π , meaning that f (x + 2π) =
f (x) for all x . Which of the trigonometric functions have period π? Determine
the value of the constant k if the function f (t) = A cos kt + B sin kt models:
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• The height of the tide at a certain beachfront location; with t in hours, the
values of f (t) repeat periodically every 12 h 25 min.

• The average monthly rainfall in a certain locale; with t in months, the values
of f (t) repeat periodically every 12 months.

• The average daily temperature in a certain locale; with t in days, the values of
f (t) repeat periodically every 365 days.

4. Considering the trigonometric functions sin x , tan x , sec x , and their cofunctions,
what is the pattern of signs of their derivatives? State a single short sentence
telling which of the six derivative formulas include minus signs and which do
not.

3.7 PROBLEMS

Differentiate the functions given in Problems 1 through 20.

1. f (x) = 3 sin2 x 2. f (x) = 2 cos4 x

3. f (x) = x cos x 4. f (x) = √
x sin x

5. f (x) = sin x

x
6. f (x) = cos x√

x

7. f (x) = sin x cos2 x 8. f (x) = cos3 x sin2 x

9. g(t) = (1 + sin t)4 10. g(t) = (2 − cos2 t)3

11. g(t) = 1

sin t + cos t
12. g(t) = sin t

1 + cos t
13. f (x) = 2x sin x − 3x2 cos x

14. f (x) = x1/2 cos x − x−1/2 sin x

15. f (x) = cos 2x sin 3x 16. f (x) = cos 5x sin 7x

17. g(t) = t3 sin2 2t 18. g(t) = √
t cos3 3t

19. g(t) = (cos 3t + cos 5t)5/2 20. g(t) = 1√
sin2 t + sin2 3t

Find dy/dx in Problems 21 through 40.

21. y = sin2 √
x 22. y = cos 2x

x
23. y = x2 cos(3x2 − 1) 24. y = sin3 x4

25. y = sin 2x cos 3x 26. y = x

sin 3x

27. y = cos 3x

sin 5x
28. y = √

cos
√

x

29. y = sin2 x2 30. y = cos3 x3

31. y = sin 2
√

x 32. y = cos 3 3
√

x

33. y = x sin x2 34. y = x2 cos

(
1

x

)
35. y = √

x sin
√

x 36. y = (sin x − cos x)2

37. y = √
x(x − cos x)3 38. y = √

x sin
√

x + √
x

39. y = cos(sin x2) 40. y = sin(1 + √
sin x)

Find dx/dt in Problems 41 through 60.

41. x = tan t7 42. x = sec t7

43. x = (tan t)7 44. x = (sec 2t)7

45. x = t7 tan 5t 46. x = sec t5

t
47. x = √

t sec
√

t 48. x = sec
√

t tan
√

t

49. x = csc

(
1

t2

)
50. x = cot

(
1√
t

)

51. x = sec 5t

tan 3t
52. x = sec2 t − tan2 t

53. x = t sec t csc t 54. x = t3 tan3 t3

55. x = sec(sin t) 56. x = cot(sec 7t)

57. x = sin t

sec t
58. x = sec t

1 + tan t

59. x = √
1 + cot 5t 60. x =

√
csc

√
t

In Problems 61 through 64, write an equation of the line that is
tangent to the given curve y = f (x) at the point P with the given
x-coordinate. Then check the plausibility of your result by plot-
ting both the curve and the line you found on the same screen.

61. y = x cos x; x = π 62. y = cos2 x; x = π/4

63. y = 4

π
tan

πx

4
; x = 1 64. y = 3

π
sin2 πx

3
; x = 5

In Problems 65 through 68, find all points on the given curve
y = f (x) where the tangent line is horizontal.

65. y = cos 2x 66. y = x − 2 sin x

67. y = sin x cos x 68. y = 1

3 sin2 x + 2 cos2 x

69. Figure 3.7.8 shows the graph y = x−2 cos x and two lines of
slope 1 both tangent to this graph. Write equations of these
two lines.

50 10
x

y = x − 2 cos x
y

−10 −5

−10

−5

0

5

10

FIGURE 3.7.8 The curve y =
x − 2 cos x and two tangent
lines each having slope 1.
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70. Figure 3.7.9 shows the graph

y = 16 + sin x

3 + sin x

and its two horizontal tangent lines. Write equations of these
two lines.

0 4 8
x

y

−8 −4
0

12

10

8

6

4

2

16 + sin x
3 + sin x

y =

FIGURE 3.7.9 The curve

y = 16 + sin x

3 + sin x
and its two

horizontal tangent lines.

71. Derive the differentiation formulas in Eqs. (8) through (10).

72. Use the definition of the derivative to show directly that
g′(x) = − sin x if g(x) = cos x .

73. If a projectile is fired from ground level with initial velocity
v0 and inclination angle α and if air resistance can be ig-
nored, then its range—the horizontal distance it travels—is

R = 1

16
v2

0 sin α cos α

(Fig. 3.7.10). What value of α maximizes R?

R

α
Ground

0

FIGURE 3.7.10 The projectile of Problem 73.

74. A weather balloon that is rising vertically is observed from
a point on the ground 300 ft from the spot directly beneath
the balloon (Fig. 3.7.11). At what rate is the balloon rising
when the angle between the ground and the observer’s line
of sight is 45◦ and is increasing at 1◦ per second?

300

θ

y

Ground

FIGURE 3.7.11 The weather
balloon of Problem 74.

75. A rocket is launched vertically upward from a point 2 mi
west of an observer on the ground. What is the speed of the
rocket when the angle of elevation (from the horizontal) of
the observer’s line of sight to the rocket is 50◦ and is increas-
ing at 5◦ per second?

76. A plane flying at an altitude of 25,000 ft has a defective air-
speed indicator. To determine her speed, the pilot sights a
fixed point on the ground. At the moment when the angle
of depression (from the horizontal) of her line of sight is
65◦, she notes that this angle is increasing at 1.5◦ per second
(Fig. 3.7.12). What is the speed of the plane?

Ground

25,000 ft

θ
x

FIGURE 3.7.12 The airplane of Problem 76.

77. An observer on the ground sights an approaching plane fly-
ing at constant speed and at an altitude of 20,000 ft. From
his point of view, the plane’s angle of elevation is increasing
at 0.5◦ per second when the angle is 60◦. What is the speed
of the plane?

78. Find the largest possible area A of a rectangle inscribed in
the unit circle x2 + y2 = 1 by maximizing A as a function of
the angle θ indicated in Fig. 3.7.13.

θ

y

x

(x, y)

x2 + y2 = 1

FIGURE 3.7.13 A rectangle
inscribed in the unit circle
(Problem 78).

79. A water trough is to be made from a long strip of tin 6 ft
wide by bending up at an angle θ a 2-ft strip on each side
(Fig. 3.7.14). What angle θ would maximize the cross-
sectional area, and thus the volume, of the trough?

θ

2

2

2

θ

FIGURE 3.7.14 The water trough
of Problem 79.
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80. A circular patch of grass of radius 20 m is surrounded by a
walkway, and a light is placed atop a lamppost at the circle’s
center. At what height should the light be placed to illumi-
nate the walkway most strongly? The intensity of illumina-
tion I of a surface is given by I = (k sin θ)/D2, where D
is the distance from the light source to the surface, θ is the
angle at which light strikes the surface, and k is a positive
constant.

81. Find the minimum possible volume V of a cone in which
a sphere of given radius R is inscribed. Minimize V as a
function of the angle θ indicated in Fig. 3.7.15.

R

θ

FIGURE 3.7.15 Finding the
smallest cone containing a
fixed sphere (Problem 81).

82. A very long rectangular piece of paper is 20 cm wide. The
bottom right-hand corner is folded along the crease shown in
Fig. 3.7.16, so that the corner just touches the left-hand side
of the page. How should this be done so that the crease is as
short as possible?

20

θ

Crease

θ

FIGURE 3.7.16 Fold a piece
of paper; make the crease of
minimal length (Problem 82).

83. Find the maximum possible area A of a trapezoid inscribed
in a semicircle of radius 1, as shown in Fig. 3.7.17. Begin by
expressing A as a function of the angle θ shown there.

θ

1

π /2

FIGURE 3.7.17 A trapezoid
inscribed in a semicircle
(Problem 83).

84. A logger must cut a six-sided beam from a circular log
of diameter 30 cm so that its cross section is as shown in
Fig. 3.7.18. The beam is symmetrical, with only two differ-
ent internal angles α and β. Show that the cross section is
maximal when the cross section is a regular hexagon, with
equal sides and angles (corresponding to α = β = 2π/3).
Note that α + 2β = 2π . (Why?)

α

β 30

α

ββ

β

FIGURE 3.7.18 A hexagonal
beam cut from a circular log
(Problem 84).

85. Consider a circular arc of length s with its endpoints on the
x-axis (Fig. 3.7.19). Show that the area A bounded by this
arc and the x-axis is maximal when the circular arc is in
the shape of a semicircle. [Suggestion: Express A in terms
of the angle θ subtended by the arc at the center of the cir-
cle, as shown in Fig. 3.7.19. Show that A is maximal when
θ = π .]

Circular arc
of length s

x

y

Radius r
θ

Radius r

FIGURE 3.7.19 Finding the maximum
area bounded by a circular arc and its
chord (Problem 85).

86. A hiker starting at a point P on a straight road wants to reach
a forest cabin that is 2 km from a point Q 3 km down the road
from P (Fig. 3.7.20). She can walk 8 km/h along the road
but only 3 km/h through the forest. She wants to minimize
the time required to reach the cabin. How far down the road
should she walk before setting off through the forest straight
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for the cabin? [Suggestion: Use the angle θ between the road
and the path she takes through the forest as the independent
variable.]

P

3

2

Cabin

Forest

Road
Q

θ

FIGURE 3.7.20 Finding the quickest
path to the cabin in the forest
(Problem 86).

87. Show that the function (graphed in Fig. 3.7.21)

f (x) =
⎧⎨
⎩x sin

1

x
if x �= 0

0 if x = 0

(see Example 4 in Section 2.3) is not differentiable at x = 0.
[Suggestion: Show that whether z = 1 or z = −1, there are
arbitrarily small values of h such that [ f (h) − f (0)]/h = z.
Then use the definition of the derivative.]

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2
x

y

y = −x y = x

y = x sin(1/x)

FIGURE 3.7.21 The graph of

y = x sin
1

x
near x = 0.

88. Let

f (x) =
⎧⎨
⎩x2 sin

1

x
if x �= 0

0 if x = 0

(the graph of f appears in Figs. 3.7.22 and 3.7.23). Apply
the definition of the derivative to show that f is differentiable
at x = 0 and that f ′(0) = 0.

−0.08

−0.04

0

0.04

0.08

−0.4 −0.2 0 0.2 0.4
x

y

y = x2sin(1/x)

FIGURE 3.7.22 The graph of

y = x2 sin
1

x
(Problem 88).

−2

0

2

−0.04 0 0.04
x

y

y = −x2

× 10−3

y = x2 y = x2sin(1/x)

FIGURE 3.7.23 The graph in
Fig. 3.7.22 magnified (Problem 88).

3.8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Until now, we have concentrated on algebraic and trigonometric functions. Exponen-
tial and logarithmic functions complete the list of the so-called elementary functions
that are most important in applications of calculus.

Exponential Functions

An exponential function is a function of the form

f (x) = ax (1)

where a > 0. Note that the exponent x is the variable here; the number a, called the
base, is a constant. Thus

• An exponential function f (x) = ax is a constant raised to a variable power,
whereas

• The power function p(x) = xk is a variable raised to a constant power.
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In elementary algebra a rational power of the positive real number a is defined
in terms of integral roots and powers. If n is a positive integer then

an = a · a · a · · · a (n factors)

and

a−n = 1

an
.

Next we learn that if r = p/q where p and q are integers (with q positive), then the
rational power ar is defined by

a p/q = q
√

a p = (
q
√

a
)p

.

The following laws of exponents are then established for all rational exponents r
and s:

ar+s = ar · as, (ar )s = ar ·s,

a−r = 1

ar
, (ab)r = ar · br .

(2)

Moreover, recall that

a0 = 1 (3)

for every positive real number a.
The following example illustrates the fact that applications often call for irra-

tional exponents as well as rational exponents.

EXAMPLE 1 Consider a bacteria population P(t) that begins (at time t = 0) with
initial population P(0) = 1 (million) and doubles every hour thereafter. The growing
population is given at 1-hour intervals as in the following table:

t 1 2 3 4 5 (hours)

P 2 4 8 16 32 (millions)

It is evident that P(n) = 2n if n is an integer. Now let’s make the plausible assumption
that the population increases by the same factor in any two time intervals of the same
length—for example, if it grows by 10% in any one eight-minute interval, then it grows
by 10% in any other eight-minute interval. If q is a positive integer and k denotes the
factor by which the population increases during a time interval of length �t = 1/q,
then the population is given at successive time intervals of length 1/q as in the next
table.

t
1

q

2

q

3

q
· · · q

q
= 1

P k k2 k3 · · · kq = 2 (Why?)

We therefore see that k = 21/q . If p is another positive integer, then during p/q hours
the population P will increase p times by the factor k = 21/q , so it follows that

P(p/q) = k p = (21/q)p = 2p/q .

Thus the bacteria population after t hours is given (in millions) by

P(t) = 2t

if the exponent t is a rational number. But because time is not restricted to rational
values alone, we surely ought to conclude that P(t) = 2t for all t � 0. ◗
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Investigation But what do we mean by an expression involving an irrational exponent,
such as 2

√
2 or 2π? To find the value of 2π , we might work with (rational) finite decimal

approximations to the irrational number π = 3.1415926 · · · . For example, a calculator
gives

23.1 = 231/10 = ( 10
√

2
)31 ≈ 8.5742.

The approximate values shown in the table in Fig. 3.8.1 indicate that the bacteria pop-

t 2t

3.1 8.5742
3.14 8.8152
3.141 8.8214
3.1415 8.8244
3.14159 8.8250
3.141592 8.8250
3.1415926 8.8250

↓ ↓
π 2π

FIGURE 3.8.1 Investigating 2π .

ulation in Example 1 after π hours is

P(π) ≈ 8.8250 (million).

Because any irrational number can be approximated arbitrarily closely by rational
numbers, the preceding investigation suggests that the value of ax —with irrational
exponent x and a fixed base a > 0—can be regarded as a limit of the form

ax = lim
r→x

ar (r rational). (4)

Indeed, when the meaning of the limit in (4) is made precise, it provides one way of
defining as well as calculating values of the exponential function f (x) = ax for all x .

On a calculator, the ∧ key (sometimes the y x key) is ordinarily used to cal-
culate values of exponential functions. For instance, Fig. 3.8.2 shows the result of
graphing the function defined by y = 2∧x. We see the steadily rising graph (from
left to right) of a function that is positive-valued for all x . Indeed, if r and s are positive
rational numbers with r < s and a > 1, then we note first that as−r > 1 (Why?) and
then that

ar < ar · as−r = ar+(s−r) = as .

Thus ar < as whenever 0 < r < s, so the exponential function f (x) = ax with a > 1

2
x

y = 2x

y

−2 −1 430 1
0
1
2
3
4
5
6
7
8
9

10

FIGURE 3.8.2 The graph y = 2x .
is certainly an increasing function if only positive rational values of the exponent are
involved. A graphing calculator or computer actually plots only finitely many points
(x, ax), but the curve plotted in Fig. 3.8.2 looks connected because these points are
plotted too close together for the eye to distinguish them.

By contrast, the graph in Fig. 3.8.3 is shown with a dotted curve to suggest that it

x321−1−2

1

2

3

4

5

y

y = ax (a = 2 here)

FIGURE 3.8.3 The graph of
y = ax has “holes” if only rational
values of x are used.

is densely filled with tiny holes corresponding to the missing points (x, ax) for which x
is irrational. In Section 6.7 we will use calculus to show that these holes can be filled to
obtain the graph of a continuous increasing function f with the following properties:

• f (x) is defined for every real number x ;
• f (r) = ar if r is rational; and
• the laws of exponents in (2) hold for irrational as well as rational exponents.

We therefore write f (x) = ax for all x and call f the exponential function with base
a.

As illustrated in Fig. 3.8.4, the exponential function f (x) = ax with a > 1
increases rapidly as x > 0 increases, and the graphs of y = ax look qualitatively
similar for different values of the base a so long as a > 1. The steep rate of increase
of ax for x positive and increasing is a characteristic feature of exponential functions.
Figures 3.8.5 and 3.8.6 compare the graphs of the exponential function y = 2x and the
quadratic function y = x2.

Derivatives of Exponential Functions

To compute the derivative of the exponential function f (x) = ax , we begin with the
definition of the derivative and then use the first law of exponents in Eq. (2) to simplify.
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0

40

80

0 2 4 6
x

y

a = 10
a = 5

a = 3

a = 2

FIGURE 3.8.4 y = ax for a = 2, 3,
5, 10.

2

(2, 4)

x

y = 2x

y = x2

y

−2 −1 430 1
0
1
2
3
4
5
6
7
8
9

10

FIGURE 3.8.5 Here the graphs
y = 2x and y = x2 look similar
for x > 2.

−2
x

y = x2

y = 2x

y

80 2 4 6
0

20
40
60
80

1000
120
140
160
180
200

FIGURE 3.8.6 But here we see 2x

increasing much more rapidly
than x2.

This gives

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

ax+h − ax

h

= lim
h→0

ax ah − ax

h
(by the laws of exponents)

= ax

(
lim
h→0

ah − 1

h

)
(because ax is “constant” with respect to h).

Under the assumption that f (x) = ax is differentiable, it follows that the limit

m(a) = lim
h→0

ah − 1

h
(5)

exists. Although its value m(a) depends on a, the limit is a constant as far as x is
concerned. Thus we find that the derivative of ax is a constant multiple of ax itself:

Dx ax = m(a) · ax . (6)

Because a0 = 1, we see from Eq. (6) that the constant m(a) is the slope of the line

h
2h − 1

h

3h − 1

h

0.1 0.718 1.161
0.01 0.696 1.105
0.001 0.693 1.099
0.0001 0.693 1.099

FIGURE 3.8.7 Investigating the
values of m (2) and m (3).

tangent to the curve y = ax at the point (0, 1), where x = 0.
The numerical data shown in Fig. 3.8.7 suggest that m(2) ≈ 0.693 and that

m(3) ≈ 1.099. The tangent lines with these slopes are shown in Fig. 3.8.8. Thus it
appears that

Dx 2x ≈ (0.693) · 2x and Dx 3x ≈ (1.099) · 3x . (7)

y = 2x 

Slope ≈ 1.099

Slope ≈ 0.693

(0, 1) (0, 1)

x

y

x

y

(a) (b)

y = 3x 

FIGURE 3.8.8 The graphs (a) y = 2x and (b) y = 3x .
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We would like somehow to avoid awkward numerical factors like those in Eq. (7).
It seems plausible that the value m(a) defined in Eq. (5) is a continuous function of a.
If so, then because m(2) < 1 and m(3) > 1, the intermediate value theorem implies
that m(e) = 1 (exactly) for some number e between 2 and 3. If we use this particular
number e as the base, then it follows from Eq. (6) that the derivative of the resulting
exponential function f (x) = ex is

Dx ex = ex . (8)

Thus the function ex is its own derivative. We call f (x) = ex the natural exponential
function. Its graph is shown in Fig. 3.8.9.

y = ex 

Slope: 1

(0, 1)

x

y

FIGURE 3.8.9 The graph y = ex .

n

(
1 + 1

n

)n

10 2.594
100 2.705

1,000 2.717
10,000 2.718

100,000 2.718

FIGURE 3.8.10 Numerical
estimate of the number e.

We will see in Section 4.9 that the number e is given by the limit

e = lim
n→∞

(
1 + 1

n

)n

.

Let us investigate this limit numerically. With a calculator we obtain the values in the
table of Fig. 3.8.10. The evidence suggests (but does not prove) that e ≈ 2.718 to three
places. This number e is one of the most important special numbers in mathematics. It
is known to be irrational; its value accurate to 15 places is

e ≈ 2.71828 1828 459045.

The chain rule version of Eq. (8) is the differentiation formula

Dx eu = eu du

dx
, (9)

where u denotes a differentiable function of x . In particular,

Dx ekx = kekx

if k is a constant. For instance, Dx e−x = −e−x and Dx e2x = 2e2x .

EXAMPLE 2

(a) If f (x) = x2e−x , then the product rule gives

f ′(x) = (Dx x2)e−x + x2(Dx e−x)

= (2x)e−x + x2(−e−x)

= (2x − x2)e−x .
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(b) If y = e2x

2x + 1
, then the quotient rule gives

dy

dx
= (Dx e2x)(2x + 1) − (e2x)Dx(2x + 1)

(2x + 1)2

= (2e2x)(2x + 1) − (e2x)(2)

(2x + 1)2
= 4xe2x

(2x + 1)2
. ◗

EXAMPLE 3 Figure 3.8.11 shows a computer plot of the graph of f (x) = x2e−x .
Find the coordinates of the indicated local maximum point on the curve in the first
quadrant.

Solution The calculation in part (a) of Example 2 yields f ′(x) = 0 when

80 1 2 3 4 5 6 7
x

y

−1
−0.5

0

0.5

1

y = x2e−x

FIGURE 3.8.11 The graph of
Example 3.

(2x − x2)e−x = x(2 − x)

ex
= 0,

so the only critical points of f are at x = 0 and x = 2. Thus the indicated first-quadrant
critical point on the curve is (2, f (2)) = (2, 4e−2) ≈ (2, 0.5413). ◗

Logarithms and Inverse Functions
In precalculus courses, the base a logarithm function loga x is introduced as the “op-
posite” of the exponential function f (x) = ax with base a > 1. That is, loga x is the
power to which a must be raised to get x . Thus

y = loga x if and only if ay = x . (10)

With a = 10, this is the base 10 common logarithm log10 x .

EXAMPLE 4
log10 1000 = 3 because 1000 = 103;
log10(0.1) = −1 because 0.1 = 10−1;

log2 16 = 4 because 16 = 24;
log3 9 = 2 because 9 = 32. ◗

If y = loga x , then ay = x > 0. Hence it follows that

aloga x = x 11(a)
and

loga(a
y) = y. 11(b)

Thus the base a exponential and logarithmic functions are natural opposites, in the
sense that each undoes the result of applying the other. Apply both in succession—in
either order—and you’re back where you started (Fig. 3.8.12). Example 5 gives other
familiar pairs of functions that are inverses of each other.

EXAMPLE 5 The following are some pairs of inverse functions:

(a) f (x) = x + 1 and g(x) = x − 1.

Adding 1 and subtracting 1 are inverse operations; doing either undoes the other. Next,
doubling and halving are inverse operations:

(b) f (x) = 2x and g(x) = x

2
.

A function can be its own inverse:

x

g

f

x

f (x)

x

f

x

g (x)

g

FIGURE 3.8.12 Inverse functions
f and g. Each undoes the effect of
the other.

(c) f (x) = 1

x
and g(x) = 1

x
. ◗
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Like f (x) = ax and g(x) = loga x , each pair f and g of functions given in
Example 5 has the property that

f (g(x)) = x and g( f (x)) = x (12)

for all values of x in the domains of g and f , respectively. For instance, the functions
f (x) = x + 1 and g(x) = x − 1 in part (a) of the example are defined for all x , and it
is easy to check that

f (g(x)) = g(x) + 1 = (x − 1) + 1 = x

and
g( f (x)) = f (x) − 1 = (x + 1) − 1 = x

for every real number x .

DEFINITION Inverse Functions
The two functions f and g are inverse functions, or are inverses of each other,
provided that

• The range of values of each function is the domain of definition of the other,
and

• The relations in (12) hold for all x in the domains of g and f , respectively.

The following two examples illustrate the fact that care is required when we
specify the domains of definition of the functions f and g to ensure that the condition
in (12) is satisfied.

EXAMPLE 6 The function f (x) = x2 is defined for all x and its range is the set
of all nonnegative real numbers y; thus we write f : (−∞, +∞) −→ [0, +∞).
As indicated in Fig. 3.8.13, it is a familiar fact that each positive number y has two
different square roots, g+(y) = +√

y and g−(y) = −√
y. (Recall that the symbol√

y unadorned with either sign always denotes the nonnegative square root of y.) The
positive square root function g+(y) = +√

y is defined for all y � 0, as is g−(y), and
they are the inverses of the two different squaring functions

y = f+(x)y = f−(x)

y = x2

x

y

x = + yx = − y

FIGURE 3.8.13 The function
f (x) = x2 and its restrictions f−
and f+.

f+ : [0, +∞) −→ [0, +∞) defined by f+(x) = x2 for x � 0

and
f− : (−∞, 0] −→ [0, +∞) defined by f−(x) = x2 for x � 0.

(The functions f+ and f− are obtained by “restricting” the function f (x) = x2 to the
nonnegative x-axis and the nonpositive x-axis, respectively.) For instance,

f−(g−(x)) = (−√
x)2 = (

√
x)2 = x for all x � 0

and
g−( f−(x)) = −

√
x2 = −

√
(−x)2 = −(−x) = x for all x � 0.

Thus the functions f− and g− are inverse functions. You should verify similarly that
the functions f+ and g+ are inverse functions. ◗

EXAMPLE 7 In contrast with Example 6, the functions f (x) = x3 and g(x) = 3
√

x
are inverse functions defined for all x . The difference is that any real number x—
whether positive, negative, or zero—has one and only one cube root (as indicated in
Fig. 3.8.14). ◗

Because ax > 0 for all x (as illustrated in Fig. 3.8.15), it follows that loga x is

y

x

y = x3

y = x3

x = y
3

x = y
3

FIGURE 3.8.14 The function
f (x) = x3 has inverse g(y) = 3

√
y

defined for all y.
defined only for x > 0. Because interchanging x and y in ay = x yields y = ax , it
follows from Eq. (10) that the graph of y = loga x is the reflection in the line y = x of
the graph of y = ax and therefore has the shape shown in Fig. 3.8.15. Because a0 = 1,
it also follows that

loga 1 = 0,

so the intercepts in the figure are independent of the choice of a.
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x321−1−2

1

2

3

y
y = ax 

−1

−2

−3

y = x 

x = ay or
y = loga x 

FIGURE 3.8.15 The graph of x = ay is
the graph of the inverse function loga x
of the exponential function ax . The case
a > 1 is shown here.

We can use the inverse-function relationship between loga x and ax to deduce,
from the laws of exponents in Eq. (2), the following laws of logarithms:

loga xy = loga x + loga y, loga
1

x
= − loga x,

loga
x

y
= loga x − loga y, loga x y = y loga x .

(13)

We will verify these laws of logarithms in Section 6.7.

Derivatives of Inverse Functions
Our interest in inverse-function pairs at this point stems from the following general
principle: When we know the derivative of either of two inverse functions, then we
can use the inverse-function relationship between them to discover the derivative of
the other of the two functions. Theorem 1 is usually proved in an advanced calculus
course.

THEOREM 1 Differentiation of an Inverse Function
Suppose that the differentiable function f is defined on the open interval I and
that f ′(x) > 0 for all x in I . Then f has an inverse function g, the function g is
differentiable, and

g′(x) = 1

f ′(g(x))
(14)

for all x in the domain of g.

COMMENT 1 Theorem 1 is true also when the condition f ′(x) > 0 is replaced with
the condition f ′(x) < 0. If we assume that g is differentiable, then we can derive the
formula in Eq. (14) by differentiating with respect to x each side in the inverse-function
relation

f (g(x)) = x .

When we differentiate each side, using the fact that this relation is actually an identity
on some interval and using the chain rule on the left-hand side, the result is

f ′(g(x)) · g′(x) = 1.

When we solve this equation for g′(x), the result is Eq. (14).
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188 CHAPTER 3 The Derivative

COMMENT 2 In order that the function f in Theorem 1 have an inverse function g, it
is necessary (and sufficient) that, for each y in the range of f , there exists exactly one x
in the domain of f such that f (x) = y. (We can then define g(y) = x .) Figure 3.8.14
indicates that this is so for the cubing function f (x) = x3 of Example 7. In contrast,
we see in Fig. 3.8.13 that each y > 0 in the range of the squaring function f (x) = x2 of
Example 6 corresponds to two different values of x—the positive and negative square
roots of y. This is why the squaring function f : (−∞, +∞) −→ [0, +∞) has no
(single) inverse function. The graph of f is the entire parabola in the figure. The
right and left “halves” of the parabola are the graphs of the restrictions f+ and f− with
inverse functions g+ and g−, respectively.

COMMENT 3 Equation (14) is easy to remember in differential notation. Let us write
x = f (y) and y = g(x). Then dy/dx = g′(x) and dx/dy = f ′(y). So Eq. (14)
becomes the seemingly inevitable formula

dy

dx
= 1

dx

dy

. (15)

In using Eq. (15), it is important to remember that dy/dx is to be evaluated at x , but
dx/dy is to be evaluated at the corresponding value of y; namely, y = g(x).

EXAMPLE 8 In Section 3.4 we verified the power rule Dx xr = r xr−1 for rational
values of the exponent r . But there we needed to know in advance that Dx x1/q =
(1/q)x (1/q)−1 for every positive integer q. Now we observe that the power function
f (x) = xq , x > 0 certainly has a positive derivative: f ′(x) = qxq−1 for x > 0.
Therefore Theorem 1 implies that its inverse function g(x) = x1/q = q

√
x exists and

has derivative

Dx x1/q = g′(x) = 1

f ′(g(x))
= 1

q
(
x1/q

)q−1 = 1

qx1−(1/q)
= 1

q
x (1/q)−1,

as desired. Alternatively, we could use the approach of Comment 1 and simply write
the identity (x1/q)q = x . Then differentiation, using the chain rule on the left (and
Dx x ≡ 1 on the right) gives the equation q(x1/q)q−1 · Dx x1/q = 1, so we can solve for
Dx x1/q . ◗

The Natural Logarithm
The natural exponential function f (x) = ex is defined for all x and f ′(x) = ex > 0. If
f is the inverse function that consequently is guaranteed by Theorem 1 in this section,
then f (g(x)) = eg(x) = x . Thus g(x) is “the power to which e must be raised to get
x ,” and therefore is simply the logarithm function with base e: g(x) = loge x . The
function g is therefore called the natural logarithm function. It is commonly denoted
(on calculator keys, for instance) by the special symbol ln:

x

y = ln x

0 2 4
−4

0

−3

1

1 e

−2

2

−1

3

4

6 8 10

y

FIGURE 3.8.16 The graph of the
natural logarithm function.

ln x = loge x (x > 0). (16)

Because ex > 0 for all x , it follows that ln x is defined only for x > 0. The graph
of y = ln x is shown in Fig. 3.8.16, and appears to rise quite slowly when x is large.
We note that ln 1 = 0, so the graph has x-intercept x = 1, and that ln e = 1 (because
ln e = loge e = 1).

The inverse function relations between f (x) = ex and g(x) = ln x are these:

eln x = x for all x > 0 (17a)

and

ln(ex) = x for all x . (17b)
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Derivatives of Logarithmic Functions
To differentiate the natural logarithm function, we can apply Eq. (14) in Theorem 1
(with f (x) = ex and g(x) = ln x) and thereby write

g′(x) = 1

f ′(g(x))
= 1

f ′(ln x)
= 1

eln x
= 1

x
.

Alternatively, we could begin with Eq. (17a) and differentiate both sides with respect
to x , as follows:

Dx eln x = Dx x;
eln x · Dx ln x = 1 (by Eq. (9) with u = ln x);

x · Dx ln x = 1.

Thus we find either way that the derivative g′(x) = Dx ln x of the natural logarithm
function is given by

Dx ln x = 1

x
(18)

for x > 0. Thus ln x is the hitherto missing function whose derivative is x−1 = 1/x .
Just as with exponentials, the derivative of a logarithm function with base other

than e involves an inconvenient numerical factor. For instance, Problem 74 shows that

Dx log10 x ≈ 0.4343

x
. (19)

The contrast between Eqs. (18) and (19) illustrates one way in which base e logarithms
are “natural.”

EXAMPLE 9 Figure 3.8.17 shows the graph of the function

x
0 5 10

-1

-0.5

0

0.5

1

15 20 25

y

ln x
x

y =

FIGURE 3.8.17 The graph of
Example 9.

f (x) = ln x

x
.

Find the coordinates of the indicated first-quadrant critical point on this curve.

Solution Equation (18) and the quotient rule yield

f ′(x) = (Dx ln x)(x) − (ln x)(Dx x)

x2
=

1

x
· x − (ln x) · 1

x2
= 1 − ln x

x2
.

Hence the only critical point of f occurs when ln x = 1; that is, when x = e. Thus the
critical point indicated in Fig. 3.8.17 is (e, 1/e) ≈ (2.718, 0.368). ◗

The chain-rule version of Eq. (18) is

Dx ln u = 1

u
· du

dx
= u′

u
, (20)

where u is a positive-valued function of x and u′ denotes u′(x). If u(x) has negative
values, then the function ln |u| is defined wherever u is nonzero, so

Dx ln |u| = 1

|u| · d|u|
du

· du

dx

by Eq. (20) with |u| in place of u. But from the familiar graph of the absolute value
function we see that

d|u|
du

= |u|
u

=
{−1 if u < 0,

+1 if u > 0.
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It therefore follows that

Dx ln |u| = 1

u
· du

dx
(21)

wherever the differentiable function u(x) is nonzero. In particular,

Dx ln |x | = 1

x
(22)

if x �= 0 (see Fig. 3.8.18).

EXAMPLE 10 With u = 1 + x2 as the “inner function” in Eq. (20), we get

x642−2−4−6

y

−3

−2

−1

1

2

3
y = 1

x y = ln |x |

FIGURE 3.8.18 The function
f (x) = ln |x | and its derivative
f ′(x) = 1/x .

Dx ln(1 + x2) = u′

u
= 2x

1 + x2
. ◗

EXAMPLE 11 Find the derivative of y = √
1 + ln x .

Solution Now u = 1 + ln x is the inner function, so

dy

dx
= 1

2
(1 + ln x)−1/2 · Dx(1 + ln x)

= 1

2
(1 + ln x)−1/2 · 1

x
= 1

2x
√

1 + ln x
. ◗

EXAMPLE 12 Find the derivative of y = ln

√
2x + 3

4x + 5
.

Solution If we differentiated immediately, we’d find ourselves applying the quotient
rule to differentiate the fraction within the radical. (Try it yourself!) It’s simpler to
apply laws of logarithms to simplify the given function before differentiating it:

y = ln

(
2x + 3

4x + 5

)1/2

= 1

2
ln

2x + 3

4x + 5
= 1

2
[ln(2x + 3) − ln(4x + 5)].

Then

dy

dx
= 1

2

(
2

2x + 3
− 4

4x + 5

)
= 1

2x + 3
− 2

4x + 5
= − 1

8x2 + 22x + 15
. ◗

Logarithmic Differentiation
The derivatives of certain functions are most conveniently found by first differentiat-
ing their logarithms. This process—called logarithmic differentiation—involves the
following steps for finding f ′(x).

1. Given: y = f (x)

2. Take natural logarithms; then simplify, ln y = ln f (x)

using laws of logarithms:

3. Differentiate with respect to x :
1

y
· dy

dx
= Dx [ln f (x)]

4. Multiply both sides by y = f (x):
dy

dx
= f (x)Dx [ln f (x)]

REMARK If f (x) is not positive-valued everywhere, then Steps 1 and 2 should be re-
placed with y = | f (x)| and ln y = ln | f (x)|, respectively. The differentiation in Step 3
then leads to the result dy/dx = f (x)Dx [ln | f (x)|] in Step 4. In practice, we need
not be overly concerned in advance with the sign of f (x), because the appearance of
what seems to be the logarithm of a negative quantity will signal the fact that absolute
values should be used.
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EXAMPLE 13 Find dy/dx , given

y =
√

(x2 + 1)3

3
√

(x3 + 1)4
.

Solution The laws of logarithms give

ln y = ln
(x2 + 1)3/2

(x3 + 1)4/3
= 3

2
ln(x2 + 1) − 4

3
ln(x3 + 1).

Then differentiation with respect to x gives

1

y
· dy

dx
= 3

2
· 2x

x2 + 1
− 4

3
· 3x2

x3 + 1
= 3x

x2 + 1
− 4x2

x3 + 1
.

Finally, to solve for dy/dx , we multiply both sides by

y = (x2 + 1)3/2

(x3 + 1)4/3
,

and we obtain

dy

dx
=

(
3x

x2 + 1
− 4x2

x3 + 1

)
· (x2 + 1)3/2

(x3 + 1)4/3
. ◗

EXAMPLE 14 Find dy/dx , given y = x x+1 for x > 0.

Solution If y = x x+1, then

ln y = ln(x x+1) = (x + 1) ln x;
1

y
· dy

dx
= (1)(ln x) + (x + 1)

(
1

x

)
= 1 + 1

x
+ ln x .

Multiplying by y = x x+1 gives

dy

dx
=

(
1 + 1

x
+ ln x

)
x x+1. ◗

3.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. An exponential function has the form f (x) = ax where a is a constant.
2. If r and s are rational numbers and a > 0, then (ar )s = ar+s .
3. If a > 0 then f (x) = ax is an increasing function.
4. If a > 0 and f (x) = ax , then f ′(x) = xax−1.
5. Dx(ex) = ex .
6. Dx(x2e−x) = 2xe−x − x2e−x .
7. A function can be its own inverse.
8. If a > 1, then y = loga x if and only if x = ay .

9. Dx(ln x) = 1

x
.

10. The highest point on the graph of f (x) = ln x

x
has coordinates (e, e−1).
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3.8 CONCEPTS: QUESTIONS AND DISCUSSION
1. Example 5 lists three inverse function pairs. List several more inverse function

pairs f and g of your own. In each case specify the domains of f and g and
verify that f and g are indeed inverse functions.

2. Suppose that n is a positive integer. Discuss (as in Examples 6 and 7) the question
of whether the power function f (x) = xn and the root function g(x) = n

√
x are

inverse functions defined for all x . How does the situation depend on whether
n is even or odd? Discuss positive and negative nth roots if necessary. Specify
the domain of definition of each function you mention and verify all claims you
make.

3. Sketch the bell-shaped graph of the function

f (x) = 1

1 + x2
.

Explain why f (which is defined for all x) does not have an inverse function,
but its restrictions f+ and f− to the positive and negative x-axes do have inverse
functions g+ and g− (using notation similar to that in Example 6). Find formulas
for g+(x) and g−(x) and specify the domain of definition of each of these two
inverse functions.

4. Restrict the domain of each of the six trigonometric functions sin x , cos x , tan x ,
cot x , sec x , and csc x to those points in the interval 0 < x < π at which they
are defined. Consulting the graphs in Fig. 3.7.3 as necessary, determine which of
these functions have inverse functions. Answer the same question if instead the
domains are restricted to the interval 0 < x < π/2.

3.8 PROBLEMS

Differentiate the functions in Problems 1 through 38.

1. f (x) = e2x 2. f (x) = e3x−1

3. f (x) = ex2
4. f (x) = e4−x3

5. f (x) = e1/x2
6. f (x) = x2ex3

7. g(t) = te
√

t 8. g(t) = (e2t + e3t )7

9. g(t) = (t2 − 1)e−t 10. g(t) = √
et − e−t

11. g(t) = ecos t 12. f (x) = xesin x

13. g(t) = 1 − e−t

t
14. f (x) = e−1/x

15. f (x) = 1 − x

ex
16. f (x) = e

√
x + e−√

x

17. f (x) = eex
18. f (x) = √

e2x + e−2x

19. f (x) = sin(2ex ) 20. f (x) = cos(ex + e−x )

21. f (x) = ln(3x − 1) 22. f (x) = ln(4 − x2)

23. f (x) = ln
√

1 + 2x 24. f (x) = ln[(1 + x)2]
25. f (x) = ln 3

√
x3 − x 26. f (x) = ln(sin2 x)

27. f (x) = cos(ln x) 28. f (x) = (ln x)3

29. f (x) = 1

ln x
30. f (x) = ln(ln x)

31. f (x) = ln
(
x
√

x2 + 1
)

32. g(t) = t3/2 ln(t + 1)

33. f (x) = ln(cos x) 34. f (x) = ln(2 sin x)

35. f (t) = t2 ln(cos t) 36. f (x) = sin(ln 2x)

37. g(t) = t (ln t)2 38. g(t) = √
t[cos(ln t)]2

In Problems 39 through 46, apply laws of logarithms to simplify
the given function before finding its derivative.

39. f (x) = ln[(2x + 1)3(x2 − 4)4] 40. f (x) = ln

√
1 − x

1 + x

41. f (x) = ln

√
4 − x2

9 + x2
42. f (x) = ln

√
4x − 7

(3x − 2)3

43. f (x) = ln
x + 1

x − 1
44. f (x) = x2 ln

1

2x + 1

45. g(t) = ln
t2

t2 + 1
46. f (x) = ln

√
x + 1

(x − 1)3

In Problems 47 through 58, find dy/dx by logarithmic differen-
tiation.

47. y = 2x 48. y = x x

49. y = x ln x 50. y = (1 + x)1/x

51. y = (ln x)
√

x 52. y = (3 + 2x )x

53. y = (1 + x2)3/2

(1 + x3)4/3
54. y = (x + 1)x

55. y = (x2 + 1)x2
56. y =

(
1 + 1

x

)x

57. y = (√
x
)√

x
58. y = x sin x

In Problems 59 through 62, write an equation of the line tangent
to the graph of the given function at the indicated point.

59. y = xe2x at the point (1, e2)

60. y = e2x cos x at the point (0, 1)
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61. y = x3 ln x at the point (1, 0)

62. y = ln x

x2
at the point (e, e−2)

In Problems 63 and 64, differentiate the given function f (x) and
its derivative in turn, several times in succession. Then give a
likely formula for the result after n successive differentiations in
this manner.

63. f (x) = e2x 64. f (x) = xex

65. Figure 3.8.19 shows the graph of the function f (x) =
e−x/6 sin x , together with the graphs of its “envelope curves”
y = e−x/6 and y = −e−x/6. Find the first local maximum
point and the first local minimum point on the graph of f for
x > 0.

0
x

y

15105

−1

0

1 y = e−x/6 sin x
y = e−x/6

y = −e−x/6

FIGURE 3.8.19 The graph for
Problems 65 and 66.

66. Find the first two points of tangency of the curve
y = e−x/6 sin x with the two envelope curves shown in
Fig. 3.8.19. Are these the same as the two local extreme
points found in Problem 65?

67. Find graphically the coordinates (accurate to three decimal
places) of the intersection point of the graphs y = ex and
y = x10 indicated in Fig. 3.8.20.

0
x

y

0.5 1.5 21

10

0

9
8
7
6
5
4
3
2
1

y = ex

y = x10

FIGURE 3.8.20 Comparing
y = ex and y = x10.

68. See Problem 67. Determine a viewing rectangle that reveals
a second intersection point (with x > 10) of the graphs
y = ex and y = x10. Then determine graphically the first
three digits of the larger solution x of the equation ex = x10

(thus writing this solution in the form p.qr × 10k).

69. If we substitute n = 10k in e = lim
n→∞

(
1 + 1

n

)n

, we get the

limit

e = lim
k→∞

(
1 + 1

10k

)10k

that “converges” much more rapidly. Using a calculator or
computer, substitute k = 1, 2, 3, . . . , 8 in turn to discover
that e ≈ 2.71828 accurate to five decimal places.

70. Suppose that u and v are differentiable functions of x . Show
by logarithmic differentiation that

Dx (u
v) = v(uv−1)

du

dx
+ (uv ln u)

dv

dx
.

Interpret the two terms on the right in relation to the special
cases in which (a) u is a constant; (b) v is a constant.

71. Suppose that y = uvw/pqr , where u, v, w, p, q, and r are
nonzero differentiable functions of x . Show by logarithmic
differentiation that

dy

dx
=

y ·
(

1

u

du

dx
+ 1

v

dv

dx
+ 1

w

dw

dx
− 1

p

dp

dx
− 1

q

dq

dx
− 1

r

dr

dx

)
.

Is the generalization—for an arbitrary finite number of fac-
tors in numerator and denominator—obvious?

72. Show that the number log2 3 is irrational. [Suggestion: As-
sume to the contrary that log2 3 = p/q where p and q are
positive integers; then express the consequence of this as-
sumption in exponential form. Under what circumstances
can an integral power of 2 equal an integral power of 3?]

73. The log key on the typical calculator denotes the base 10
logarithm f (x) = log10 x .

(a) Use the definition of the derivative to show that

f ′(1) = lim
h→0

log10(1 + h)1/h .

(b) Investigate the limit in (a) numerically to show that
f ′(1) ≈ 0.4343.

74. The object of this problem is to differentiate the base 10 log-
arithm function of Problem 73.

(a) First use the known formula for Dx eu to show that
Dx 10x = 10x ln 10.

(b) Conclude from the chain rule that

Dx 10u = 10u(ln 10)
du

dx
.

(c) Substitute u = log10 x in the inverse function identity
10log10 x = x and then differentiate using the result of
part (b) to conclude that

Dx log10 x = 1

x ln 10
≈ 0.4343

x
,

consistent with the result (for x = 1) of Problem 73.
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3.8 INVESTIGATION: Discovering the Number e for Yourself
You can investigate the value of e by approximating the value of a such that

m(a) = lim
h→0

ah − 1

h
= 1.

You need use only available technology to calculate (with appropriate fixed values of
a) values of the function φ(h) = (ah − 1)/h with h sufficiently small that you can
recognize (to appropriate accuracy) the value of the limit.

For instance, if you calculate φ(h) with a = 2 and with a = 3 for h = 0.1, 0.01,
0.001, 0.0001, . . . , you should find that

m(2) ≈ 0.6931 < 1 whereas m(3) ≈ 1.0986 > 1.

It follows that the mysterious number e for which m(e) = 1 is somewhere between 2
and 3. Linear interpolation between the values of m(2) ≈ 0.6931 and m(3) ≈ 1.0986
suggests that e ≈ 2.7 or e ≈ 2.8 accurate to one decimal place.

Investigate the values of m(2.7) and m(2.8) to verify the entries shown in

a m(a)

2 0.6931
2.7 0.9933
↓ ↓
e 1.0000
↑ ↑

2.8 1.0296
3 1.0986

FIGURE 3.8.21 Closing in on the
number e.

Fig. 3.8.21. Continue in this way to close in on the number e. Don’t quit until you’re
convinced that e ≈ 2.718 accurate to three decimal places.

3.9 IMPLICIT DIFFERENTIATION AND RELATED RATES

A formula such as y = x3 sin x defines y “explicitly” as a function of x . Most of the
functions we have seen so far have been defined explicitly in this way. Nevertheless,

x

y

y = + x

y = − x

FIGURE 3.9.1 The equation
x − y2 = 0 implicitly defines the
two functions f (x) = √

x and
g(x) = −√

x .

a function can also be defined “implicitly” by an equation that can be solved for y in
terms of x . Indeed, we will see that a single equation relating the two variables x and
y can implicitly define two or more different functions of x .

EXAMPLE 1

(a) When we solve the equation

x − y2 = 0

for y = ±√
x , we get the two explicit functions

f (x) = √
x and g(x) = −√

x

that we say are implicitly defined by the original equation. The graphs of these
two functions—both defined for x � 0—are the upper and lower branches of
the parabola shown (in different colors) in Fig. 3.9.1. The whole parabola is the
graph of the equation x − y2 = 0 (or x = y2) but is not the graph of any single
function. (Why?)

(b) Similarly, the equationy

x

y = + 100 − x2

y = − 100 − x2

FIGURE 3.9.2 The equation
x2 + y2 = 100 implicitly defines the
two functions
f (x) = √

100 − x2 and

g(x) = −√
100 − x2.

x2 + y2 = 100

implicitly defines the two continuous functions

f (x) =
√

100 − x2 and g(x) = −
√

100 − x2

—both defined for −10 � x � 10—that correspond to the solutions y =
±√

100 − x2 for y in terms of x . The graphs of f and g are the upper and
lower semicircles of the whole circle x2 + y2 = 100 (shown in different colors
in Fig. 3.9.2). ◗

Whereas the equations x − y2 = 0 and x2 + y2 = 100 are readily solved for
y in terms of x , an equation such as x3 + y3 = 3xy or sin(x + 2y) = 2x cos y may
be difficult or impossible to solve for an implicitly defined function y(x). And yet
the derivative dy/dx can be calculated without first expressing y in terms of x . Here’s
how: We can use the chain rule and other basic differentiation rules to differentiate both
sides of the given equation with respect to x (we think of x as the independent variable,
although it is permissible to reverse the roles of x and y). We then solve the resulting
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equation for the derivative y′(x) = dy/dx of the implicitly defined function y(x).
This process is called implicit differentiation. In the examples and problems of this
section, we proceed on the assumption that our implicitly defined functions actually
exist and are differentiable at almost all points in their domains. (The functions with
the graphs shown in Fig. 3.9.2 are not differentiable at the endpoints of their domains.)

EXAMPLE 2 Use implicit differentiation to find the derivative of a differentiable
function y = f (x) implicitly defined by the equation

x2 + y2 = 100.

Solution The equation x2 + y2 = 100 is to be regarded as an identity that implicitly
defines y = y(x) as a function of x . Because x2 +[y(x)]2 is then a function of x , it has
the same derivative as the constant function 100 on the right-hand side of the identity.
Thus we may differentiate both sides of the identity x2 + y2 = 100 with respect to x
and equate the results. We obtain

2x + 2y
dy

dx
= 0.

In this step, it is essential to remember that y is a function of x , so the chain rule yields
Dx(y2) = 2y Dx y.

Then we solve for

dy

dx
= − x

y
. (1)

It may be surprising to see a formula for dy/dx containing both x and y, but such a
formula can be just as useful as one containing only x . For example, the formula in
Eq. (1) tells us that the slope of the line tangent to the circle x2 + y2 = 100 at the point
(6, 8) is

dy

dx

∣∣∣∣
(6,8)

= −6

8
= −3

4
.

The circle and this line are shown in Fig. 3.9.3. ◗

y

x

Slope  m = − 3
4

(6, 8)

FIGURE 3.9.3 The circle x2 + y2 = 100
and the tangent line at the point (6, 8).

NOTE If we solve for y = ±√
100 − x2 in Example 1, then

dy

dx
= −x

±√
100 − x2

= − x

y
,

in agreement with Eq. (1). Thus Eq. (1) simultaneously gives us the derivatives of
both the functions y = +√

100 − x2 and y = −√
100 − x2 implicitly defined by the

equation x2 + y2 = 100.
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EXAMPLE 3 The folium of Descartes is the graph of the equation

x3 + y3 = 3xy (2)

This curve was first proposed by René Descartes as a challenge to Pierre de Fermat

x1 2 3

y

x + y = −1

x + y = 3

1

2

3

−1

−2

−3

−1−2

, 3
2

3
2( )

FIGURE 3.9.4 A tangent line and
an apparent asymptote to the curve
x3 + y3 = 3xy.

(1601–1665) to find its tangent line at an arbitrary point. The project for this section
tells how we constructed Fig. 3.9.4. It indicates that the second- and fourth-quadrant
points on the graph for which |x | and |y| are both large lie very close to the straight
line x + y + 1 = 0. In the first quadrant we see a loop shaped like a laurel leaf—hence
the name folium. (Can you see directly from Eq. (2) that the third quadrant contains
no points of the folium?) Here we want to find Fermat’s answer as to the slope of a
typical line tangent to the folium of Descartes.

Solution Equation (2) is a cubic equation in x , and we see in Fig. 3.9.4 three different
branches of the graph over an interval to the right of the origin. When we asked a
computer algebra system to solve the equation for these implicitly defined functions of
x , it produced three different expressions, the simplest of which was

y = 1

2

3
√

−4x3 + 4
√

x6 − 4x3 + 2x
3
√

−4x3 + 4
√

x6 − 4x3
.

(It turns out that this formula describes the upper part of the loop in Fig. 3.9.4.) Surely
you would not relish explicit differentiation of this expression to find the slope of a line
tangent to the folium. Fortunately, the alternative of implicit differentiation is available.
We need only differentiate each side of Eq. (2) with respect to x , remembering that y
is a function of x . Hence we use the chain rule to differentiate y3 and the product rule
to differentiate 3xy. This yields

3x2 + 3y2 dy

dx
= 3y + 3x

dy

dx
.

We can now collect coefficients (those involving dy/dx and those not) and solve for
the derivative:

(3y2 − 3x)
dy

dx
= 3y − 3x2;

dy

dx
= y − x2

y2 − x
. (3)

For instance, at the point P
(

3
2 , 3

2

)
of the folium, the slope of the tangent line is

dy

dx

∣∣∣∣( 3
2 ,

3
2

) =
3
2 − (

3
2

)2

(
3
2

)2 − 3
2

= −1.

This result agrees with our intuition about the figure, because the evident symmetry of
the folium around the line y = x suggests that the tangent line at P should, indeed,
have slope −1. The equation of this tangent line is

y − 3
2 = − (

x − 3
2

);
that is, x + y = 3. ◗

EXAMPLE 4 Figure 3.9.5 shows a computer plot of the graph of the equation

sin(x + 2y) = 2x cos y. (4)

Write the equation of the line tangent to this curve at the origin (0, 0).

x

y

−3

−2

−1

0

1

2

3

0 1 2 3−3 −2 −1

xy = 1
2

FIGURE 3.9.5 The curve
sin(x + 2y) = 2x cos y and its
tangent at the origin.

Solution When we differentiate each side in (4) with respect to the independent vari-
able x , regarding y as a function of x , we get

[cos(x + 2y)] ·
(

1 + 2
dy

dx

)
= 2 cos y − (2x sin y)

dy

dx
. (5)
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We could collect coefficients and solve for the derivative dy/dx . But because we need
only the slope y′(0) at the origin, let us instead substitute x = y = 0 in Eq. (5). Noting
that cos(0) = 1 and sin(0) = 0, we get the equation

1 + 2y′(0) = 2,

from which we see that y′(0) = 1
2 . The resulting tangent line y = 1

2 x plotted in
Fig. 3.9.5 “looks right,” and thus corroborates the results of our calculations. ◗

Related Rates
A related-rates problem involves two or more quantities that vary with time and an
equation that expresses some relationship between these quantities. Typically, the val-
ues of these quantities at some instant are given, together with all their time rates of
change but one. The problem is usually to find the time rate of change that is not given,
at some instant specified in the problem. Implicit differentiation, with respect to time
t , of the equation that relates the given quantities will produce an equation that relates
the rates of change of the given quantities. This is the key to solving a related-rates
problem.

EXAMPLE 5 Suppose that x(t) and y(t) are the x- and y-coordinates at time t of a
point moving around the circle with equation

x2 + y2 = 25. (6)

Let us use the chain rule to differentiate both sides of this equation with respect to time
t . This produces the equation

2x
dx

dt
+ 2y

dy

dt
= 0. (7)

If the values of x , y, and dx/dt are known at a certain instant t , then Eq. (7) can be
solved for the value of dy/dt . It is not necessary to know x and y as functions of t .
Indeed, it is common for a related-rates problem to contain insufficient information to
express x and y as functions of t .

For instance, suppose that we are given x = 3, y = 4, and dx/dt = 12 at a
certain instant. Substituting these values into Eq. (7) yields

2 · 3 · 12 + 2 · 4 · dy

dt
= 0,

so we find that dy/dt = −9 at the same instant. ◗

EXAMPLE 6 A rocket that is launched vertically is tracked by a radar station lo-
cated on the ground 3 mi from the launch site. What is the vertical speed of the rocket
at the instant that its distance from the radar station is 5 mi and this distance is increas-
ing at the rate of 5000 mi/h?

Solution Figure 3.9.6 illustrates this situation. We denote the altitude of the rocket
(in miles) by y and its distance from the radar station by z. We are given

dz

dt
= 5000 when z = 5.

We want to find dy/dt (in miles per hour) at this instant.
We apply the Pythagorean theorem to the right triangle in the figure and obtain

y2 + 9 = z2

as a relation between y and z. From this we see that y = 4 when z = 5. Implicit
differentiation then gives

2y
dy

dt
= 2z

dz

dt
.
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y

3

dy
dt 

z

FIGURE 3.9.6 The rocket of Example 6.

We substitute the data y = 4, z = 5, and dz/dt = 5000. Thus we find that

dy

dt
= 6250 (mi/h)

at the instant in question. ◗

Example 6 illustrates the following steps in the solution of a typical related-rates
problem of the sort that involves a geometric situation:

1. Draw a diagram and label as variables the various changing quantities involved
in the problem.

2. Record the values of the variables and their rates of change, as given in the prob-
lem.

3. Use the diagram to determine an equation that relates the important variables in
the problem.

4. Differentiate this equation implicitly with respect to time t .
5. Substitute the given numerical data in the resulting equation, and then solve for

the unknown.

WARNING The most common error to be avoided is the premature substitution of the
given data before differentiating implicitly. If we had substituted z = 5 to begin with
in Example 5, our equation would have been y2 + 9 = 25, and implicit differentiation
would have given the absurd result dy/dt = 0.

We use similar triangles (rather than the Pythagorean theorem ) in Example 7 to
discover the needed relation between the variables.

EXAMPLE 7 A man 6 ft tall walks with a speed of 8 ft/s away from a street light that
is atop an 18-ft pole. How fast is the tip of his shadow moving along the ground when
he is 100 ft from the light pole?

Solution Let x be the man’s distance measured from the pole and z the distance from
the tip of his shadow to the base of the pole (Fig. 3.9.7). Although x and z are positive-
valued functions of time t , we do not attempt to find explicit formulas for either.

We are given dx/dt = 8 (in feet per second); we want to find dz/dt when
x = 100 (ft). We equate ratios of corresponding sides of the two similar triangles of
Fig. 3.9.7 and find that

z

18
= z − x

6
.
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x

18 ft

6 ft
Shadow

z − x
z

FIGURE 3.9.7 The moving shadow of
Example 7.

It follows that
2z = 3x,

and implicit differentiation gives

2
dz

dt
= 3

dx

dt
.

We substitute dx/dt = 8 and find that

dz

dt
= 3

2
· dx

dt
= 3

2
· 8 = 12.

So the tip of the man’s shadow is moving at 12 ft/s. ◗

Example 7 is somewhat unusual in that the answer is independent of the man’s
distance from the light pole—the given value x = 100 is superfluous because the tip of
the man’s shadow is moving at constant speed. Example 8 is a related-rates problem
with two relationships between the variables, which is not quite so unusual.

EXAMPLE 8 Two radar stations at A and B, with B 6 km east of A, are tracking a
ship. At a certain instant, the ship is 5 km from A, and this distance is increasing at the
rate of 28 km/h. At the same instant, the ship is also 5 km from B, but this distance
is increasing at only 4 km/h. Where is the ship, how fast is it moving, and in what
direction is it moving?

Solution With the distances indicated in Fig. 3.9.8, we find—again with the aid of

Radar
station

B

Ship

u

Radar
station

A

y

x 6 − x

FIGURE 3.9.8 Radar stations
tracking a ship (Example 8).

the Pythagorean theorem—that

x2 + y2 = u2 and (6 − x)2 + y2 = v2. (8)

We are given the following data: u = v = 5, du/dt = 28, and dv/dt = 4 at the
instant in question. Because the ship is equally distant from A and B, it is clear that
x = 3. Thus y = 4. Hence the ship is 3 km east and 4 km north of A.

We differentiate implicitly the two equations in (8), and we obtain

2x
dx

dt
+ 2y

dy

dt
= 2u

du

dtand

−2(6 − x)
dx

dt
+ 2y

dy

dt
= 2v

dv

dt
.

When we substitute the numerical data given and data deduced, we find that

3
dx

dt
+ 4

dy

dt
= 140 and −3

dx

dt
+ 4

dy

dt
= 20.

These equations are easy to solve: dx/dt = dy/dt = 20. Therefore, the ship is sailing
northeast at a speed of √

202 + 202 = 20
√

2 (km/h)

—if the figure is correct! A mirror along the line AB will reflect another ship, 3 km
east and 4 km south of A, sailing southeast at a speed of 20

√
2 km/h.
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The lesson? Figures are important, helpful, often essential—but potentially mis-
leading. Avoid taking anything for granted when you draw a figure. In this example
there would be no real problem, for each radar station could determine whether the
ship was generally to the north or to the south. ◗

3.9 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If x2 + y2 = 100 then
dy

dx
= x

y
.

2. Pierre de Fermat challenged René Descartes to find the line tangent to the graph
of the folium x2 + y3 = 3xy at an arbitrary point.

3. In a right triangle with short sides a and b and hypotenuse c, (a + b)2 = c2.
4. If two triangles have corresponding sides parallel, then the triangles are similar.
5. In a related rates problem, one uses the fact that changes in related quantities are

themselves related.
6. Only one function is implicitly defined by the equation x2 + y2 = 100.
7. Suppose that x = x(t) and y = y(t) are two functions of t such that x2+ y2 = 25

(for all t). If x = 3, y = 4, and x ′(t) = 12, then y′(t) = −9.
8. If x3 + y3 = 3xy, then Dx(x3) = 3x2 and Dy(y3) = 3y2.

9. If x3 + y3 = 3xy, then Dx(3xy) = 3x
dy

dx
+ 3y.

10. Folium is the Latin word for leaf.

3.9 CONCEPTS: QUESTIONS AND DISCUSSION

1. Figure 3.9.1 shows the graphs of the two functions f (x) = √
x and g(x) =

−√
x that are defined implicitly by the equation x − y2 = 0. Both f and g are

continuous for x � 0. Can you think of a discontinuous function y = h(x) that
satisfies the same equation?

2. How many different continuous functions of x (with the same domain of defini-
tion) are implicitly defined by a given quadratic equation in x and y? A given
cubic equation? A given quartic (fourth-degree) equation? How many different
discontinuous functions?

3. How many different continuous functions of x are defined by the following equa-
tions?

(a) x2 + y2 + 1 = 0 (b) x3 + y3 = 1 (c) x4 + y4 = 1

4. How many different continuous functions of x are defined by the transcendental
equation sin y = x?

3.9 PROBLEMS

In Problems 1 through 4, first find the derivative dy/dx by im-
plicit differentiation. Then solve the original equation for y ex-
plicitly in terms of x and differentiate to find dy/dx. Finally ver-
ify that your two results are the same by substituting the explicit
expression for y(x) in the implicit form of the derivative.

1. x2 − y2 = 1 2. xy = 1

3. 16x2 + 25y2 = 400 4. x3 + y3 = 1

In Problems 5 through 14, find dy/dx by implicit differentiation.

5.
√

x + √
y = 1 6. x4 + x2 y2 + y4 = 48

7. x2/3 + y2/3 = 1 8. (x − 1)y2 = x + 1

9. x2(x − y) = y2(x + y) 10. x5 + y5 = 5x2 y2

11. x sin y + y sin x = 1 12. cos(x + y) = sin x sin y

13. 2x + 3ey = ex+y 14. xy = e−xy

In Problems 15 through 28, use implicit differentiation to find an
equation of the line tangent to the given curve at the given point.

15. x2 + y2 = 25; (3, −4)

16. xy = −8; (4, −2)
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17. x2 y = x + 2; (2, 1)

18. x1/4 + y1/4 = 4; (16, 16)

19. xy2 + x2 y = 2; (1, −2)

20.
1

x + 1
+ 1

y + 1
= 1; (1, 1)

21. 12(x2 + y2) = 25xy; (3, 4)

22. x2 + xy + y2 = 7; (3, −2)

23. 2e−x + ey = 3ex−y ; (0, 0)

24. xy = 6e2x−3y ; (3, 2)

25. x2/3 + y2/3 = 5; (8, 1) (Fig. 3.9.9)

50 10
x

(8, 1)

y

−10 −5
−10

−5

0

5

10

FIGURE 3.9.9 Problem 25.

26. x2 − xy + y2 = 19; (3, −2) (Fig. 3.9.10)

−5 5 100
x

y

−10
−10
−8
−6
−4
−2

0
2
4
6
8

10

(3, −2)

FIGURE 3.9.10 Problem 26.

27. (x2 + y2)2 = 50xy; (2, 4) (Fig. 3.9.11)

x

y

−6

−4

−2

0

2

4

6

0 2

(2, 4)

4 6−6 −4 −2

FIGURE 3.9.11 Problem 27.

28. y2 = x2(x + 7); (−3, 6) (Fig. 3.9.12)

50 10
x

(−3, 6)

y

−10 −5

−10

−5

0

5

10

FIGURE 3.9.12 Problem 28.

29. The curve x3 + y3 = 9xy is similar in shape and appearance
to the folium of Descartes in Fig. 3.9.4. Find (a) the equation
of its tangent line at the point (2, 4) and (b) the equation of
its tangent line with slope −1.

30. (a) Factor the left-hand side of the equation

2x2 − 5xy + 2y2 = 0

to show that its graph consists of two straight lines through
the origin. Hence the derivative y′(x) has only two possible
numerical values (the slopes of these two lines). (b) Cal-
culate dy/dx by implicit differentiation of the equation in
part (a). Verify that the expression you obtain yields the
proper slope for each of the straight lines of part (a).

31. Find all points on the graph of x2 + y2 = 4x + 4y at which
the tangent line is horizontal.

32. Find the first-quadrant points of the folium of Example 3 at
which the tangent line is either horizontal (dy/dx = 0) or
vertical (where dx/dy = 1/(dy/dx) = 0).

33. Figure 3.9.13 shows the graph of the equation x = yey .
Show first that explicit differentiation to find dx/dy and im-
plicit differentiation to find dy/dx yield consistent results.
Then find the equation of the line tangent to the graph at the
point (a) (0, 0); (b) (e, 1).

40 1 2 3
x

y

−1
−3

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

(e, 1)

x = yey

FIGURE 3.9.13 The curve x = yey

and its tangent line at the origin.

34. (a) Find the points on the curve x = yey of Fig. 3.9.13 where
the tangent line is vertical (dx/dy = 0). (b) Is there a point
on the curve where the tangent line is horizontal? (c) Show
that x → 0 and dy/dx → −∞ as y → −∞. (d) Show that
y → +∞ and dy/dx → 0 as x → +∞.
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35. The graph in Fig. 3.9.14 is a lemniscate with equation
(x2 + y2)2 = x2 − y2. Find by implicit differentiation the
four points on the lemniscate where the tangent line is hor-
izontal. Then find the two points where the tangent line is
vertical—that is, where dx/dy = 1/(dy/dx) = 0.

y 

x

(x2 + y2)2 = x2 − y2

FIGURE 3.9.14 The lemniscate of
Problem 35.

36. Water is being collected from a block of ice with a square
base (Fig. 3.9.15). The water is produced because the ice is
melting in such a way that each edge of the base of the block
is decreasing at 2 in./h while the height of the block is de-
creasing at 3 in./h. What is the rate of flow of water into the
collecting pan when the base has edge length 20 in. and the
height of the block is 15 in.? Make the simplifying assump-
tion that water and ice have the same density.

x
x

y

FIGURE 3.9.15 The ice
block of Problem 36.

37. Sand is being emptied from a hopper at the rate of 10 ft3/s.
The sand forms a conical pile whose height is always twice
its radius (Fig. 3.9.16). At what rate is the radius of the pile
increasing when its height is 5 ft?

h = 2r

r

FIGURE 3.9.16 The
conical sand pile of
Problem 37 with
volume V = 1

3 πr2h.

38. Suppose that water is being emptied from a spherical tank
of radius 10 ft (Fig. 3.9.17). If the depth of the water in the

tank is 5 ft and is decreasing at the rate of 3 ft/s, at what rate
is the radius r of the top surface of the water decreasing?

r

10

y

FIGURE 3.9.17 The spherical
tank of Problem 38.

39. A circular oil slick of uniform thickness is caused by a spill
of 1 m3 of oil. The thickness of the oil slick is decreasing at
the rate of 0.1 cm/h. At what rate is the radius of the slick
increasing when the radius is 8 m?

40. Suppose that an ostrich 5 ft tall is walking at a speed of 4 ft/s
directly toward a street light 10 ft high. How fast is the tip of
the ostrich’s shadow moving along the ground? At what rate
is the ostrich’s shadow decreasing in length?

41. The width of a rectangle is half its length. At what rate is
its area increasing if its width is 10 cm and is increasing at
0.5 cm/s?

42. At what rate is the area of an equilateral triangle increasing
if its base is 10 cm long and is increasing at 0.5 cm/s?

43. A gas balloon is being filled at the rate of 100π cm3 of gas
per second. At what rate is the radius of the balloon increas-
ing when its radius is 10 cm?

44. The volume V (in cubic inches) and pressure p (in pounds
per square inch) of a certain gas satisfy the equation pV =
1000. At what rate is the volume of the sample changing
if the pressure is 100 lb/in.2 and is increasing at the rate of
2 lb/in.2 per second?

45. Figure 3.9.18 shows a kite in the air at an altitude of 400 ft.
The kite is being blown horizontally at the rate of 10 ft/s
away from the person holding the kite string at ground level.
At what rate is the string being payed out when 500 ft of
string is already out? (Assume that the string forms a straight
line.)

Ground

10 ft/s

400 ft

FIGURE 3.9.18 The kite of Problem 45.

46. A weather balloon that is rising vertically is being observed
from a point on the ground 300 ft from the spot directly be-
neath the balloon. At what rate is the balloon rising when
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the angle between the ground and the observer’s line of sight
is 45◦ and is increasing at 1◦ per second?

47. An airplane flying horizontally at an altitude of 3 mi and at
a speed of 480 mi/h passes directly above an observer on the
ground. How fast is the distance from the observer to the
airplane increasing 30 s later?

48. Figure 3.9.19 shows a spherical tank of radius a partly filled
with water. The maximum depth of water in the tank is
y. A formula for the volume V of water in the tank—
a formula you can derive after you study Chapter 6—is
V = 1

3 πy2(3a − y). Suppose that water is being drained
from a spherical tank of radius 5 ft at the rate of 100 gal/min.
Find the rate at which the depth y of water is decreasing
when (a) y = 7 (ft); (b) y = 3 (ft). [Note: One gallon of
water occupies a volume of approximately 0.1337 ft3.]

a

y

Water level

FIGURE 3.9.19 The spherical
water tank of Problem 48.

49. Repeat Problem 48, but use a tank that is hemispherical, flat
side on top, with radius 10 ft.

50. A swimming pool is 50 ft long and 20 ft wide. Its depth
varies uniformly from 2 ft at the shallow end to 12 ft at the
deep end (Fig. 3.9.20). Suppose that the pool is being filled
at the rate of 1000 gal/min. At what rate is the depth of wa-
ter at the deep end increasing when the depth there is 6 ft?
[Note: One gallon of water occupies a volume of approxi-
mately 0.1337 ft3.]

50 ft

12 ft

2 ft

Water level

y

FIGURE 3.9.20 Cross section of the swimming pool
of Problem 50.

51. A ladder 41 ft long that was leaning against a vertical wall
begins to slip. Its top slides down the wall while its bot-
tom moves along the level ground at a constant speed of 4
ft/s. How fast is the top of the ladder moving when it is 9 ft
above the ground?

52. The base of a rectangle is increasing at 4 cm/s while its
height is decreasing at 3 cm/s. At what rate is its area chang-
ing when its base is 20 cm and its height is 12 cm?

53. The height of a cone is decreasing at 3 cm/s while its ra-
dius is increasing at 2 cm/s. When the radius is 4 cm and
the height is 6 cm, is the volume of the cone increasing or
decreasing? At what rate is the volume changing then?

54. A square is expanding. When each edge is 10 in., its area is
increasing at 120 in.2/s. At what rate is the length of each
edge changing then?

55. A rocket that is launched vertically is tracked by a radar sta-
tion located on the ground 4 mi from the launch site. What
is the vertical speed of the rocket at the instant its distance
from the radar station is 5 mi and this distance is increasing
at the rate of 3600 mi/h?

56. Two straight roads intersect at right angles. At 10 A.M. a car
passes through the intersection headed due east at 30 mi/h.
At 11 A.M. a truck heading due north at 40 mi/h passes
through the intersection. Assume that the two vehicles main-
tain the given speeds and directions. At what rate are they
separating at 1 P.M.?

57. A 10-ft ladder is leaning against a wall. The bottom of
the ladder begins to slide away from the wall at a speed
of 1 mi/h. (a) Find the rate at which the top of the latter
is moving when it is 4 ft from the ground. If the top of
the ladder maintained contact with the wall, find the speed
with which it would be moving when it is (b) 1 in. above
the ground; (c) 1 mm above the ground. Do you believe
your answers? The key to the apparent paradox is that
when the top of the ladder is about 1.65 ft high, it disen-
gages altogether from the wall and thereafter slides away
from it.

58. Two ships are sailing toward a very small island. One ship,
the Pinta, is east of the island and is sailing due west at
15 mi/h. The other ship, the Niña, is north of the island and
is sailing due south at 20 mi/h. At a certain time the Pinta is
30 mi from the island and the Niña is 40 mi from the island.
At what rate are the two ships drawing closer together at that
time?

59. At time t = 0, a single-engine military jet is flying due east
at 12 mi/min. At the same altitude and 208 mi directly ahead
of the military jet, still at time t = 0, a commercial jet is
flying due north at 8 mi/min. When are the two planes clos-
est to each other? What is the minimum distance between
them?

60. A ship with a long anchor chain is anchored in 11 fath-
oms of water. The anchor chain is being wound in at the
rate of 10 fathoms/min, causing the ship to move toward the
spot directly above the anchor resting on the seabed. The
hawsehole—the point of contact between ship and chain—is
located 1 fathom above the water line. At what speed is the
ship moving when there are exactly 13 fathoms of chain still
out?

61. A water tank is in the shape of a cone with vertical axis and
vertex downward. The tank has radius 3 ft and is 5 ft high. At
first the tank is full of water, but at time t = 0 (in seconds),
a small hole at the vertex is opened and the water begins to
drain. When the height of the water in the tank has dropped
to 3 ft, the water is flowing out at 2 ft3/s. At what rate, in feet
per second, is the water level dropping then?

62. A spherical tank of radius 10 ft is being filled with water at
the rate of 200 gal/min. How fast is the water level rising
when the maximum depth of water in the tank is 5 ft? See
Problem 48 for a useful formula and a helpful note.

63. A water bucket is shaped like the frustum of a cone with
height 2 ft, base radius 6 in., and top radius 12 in. Water is
leaking from the bucket at 10 in.3/min. At what rate is the
water level falling when the depth of water in the bucket is
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1 ft? [Note: The volume V of a conical frustum with height
h and base radii a and b is

V = πh

3
(a2 + ab + b2).

Such a frustum is shown in Fig. 3.9.21.]

b

h

a

FIGURE 3.9.21 The volume
of this conical frustum is given
in Problem 63.

64. Suppose that the radar stations A and B of Example 8 are
now 12.6 km apart. At a certain instant, a ship is 10.4 km
from A and its distance from A is increasing at 19.2 km/h.
At the same instant, its distance from B is 5 km and is de-
creasing at 0.6 km/h. Find the location, speed, and direction
of motion of the ship.

65. An airplane climbing at an angle of 45◦ passes directly over
a ground radar station at an altitude of 1 mi. A later reading

shows that the distance from the radar station to the plane is
5 mi and is increasing at 7 mi/min. What is the speed of the
plane then (in miles per hour)? [Suggestion: You may find
the law of cosines useful—see Appendix C.]

66. The water tank of Problem 62 is completely full when a plug
at its bottom is removed. According to Torricelli’s law, the
water drains in such a way that dV/dt = −k

√
y, where V

is the volume of water in the tank and k is a positive empir-
ical constant. (a) Find dy/dt as a function of the depth y.
(b) Find the depth of water when the water level is falling
the least rapidly. (You will need to compute the derivative of
dy/dt with respect to y.)

67. A person 6 ft tall walks at 5 ft/s along one edge of a road 30 ft
wide. On the other edge of the road is a light atop a pole 18 ft
high. How fast is the length of the person’s shadow (on the
horizontal ground) increasing when the person is 40 ft from
the point directly across the road from the pole?

68. A highway patrol officer’s radar unit is parked behind a bill-
board 200 ft from a long straight stretch of U.S. 17. Down
the highway, 200 ft from the point on the highway closest
to the officer, is an emergency call box. The officer points
the radar gun at the call box. A minivan passes the call box
and, at that moment, the radar unit indicates that the dis-
tance between the officer and the minivan is increasing at
45 mi/h—that is, 66 ft/s. The posted speed limit is 55 mi/h.
Does the officer have any reason to apprehend the driver of
the minivan?

3.9 INVESTIGATION: Constructing the Folium of Descartes
Computer graphics often requires lots of mathematics, and much mathematics was
used in constructing many of the figures in this book. To see one way to construct
Fig. 3.9.4, use a computer algebra system to solve the equation x3 + y3 = 3xy for y in
terms of x . Verify that the three expressions you get define three different functions f ,
g, and h whose graphs are the three branches of the curve that are colored differently
in Fig. 3.9.22. Investigate the domains of definition and the graphs of these functions
to verify that they fit together precisely as shown in the figure.

x1 2

y

1

2

−1

−2

−1−2

y = f (x)

y = g(x)

y = h(x)

FIGURE 3.9.22 The equation
x3 + y3 = 3xy implicitly defines
three functions f , g, and h.

3.10 SUCCESSIVE APPROXIMATIONS AND NEWTON'S METHOD

The solution of equations has always been a central task of mathematics. More than
two millennia ago, mathematicians of ancient Babylon discovered the method of “com-
pleting the square,” which leads to the quadratic formula for an exact solution of any
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second-degree equation ax2+bx +c = 0. Early in the sixteenth century, several Italian
mathematicians (Cardan, del Ferro, Ferrari, and Tartaglia) discovered formulas for the
exact solutions of third- and fourth-degree equations. (Because they are quite compli-
cated, these formulas are seldom used today except in computer algebra systems.) And
in 1824 a brilliant young Norwegian mathematician, Niels Henrik Abel∗ (1802–1829),
published a proof that there is no general formula giving the solution of an arbitrary
polynomial equation of degree 5 (or higher) in terms of algebraic combinations of its
coefficients. Thus the exact solution (for all its roots) of an equation such as

f (x) = x5 − 3x3 + x2 − 23x + 19 = 0 (1)

may be quite difficult or even—as a practical matter—impossible to find. In such a
case it may be necessary to resort to approximate methods.

For example, the graph of y = f (x) in Fig. 3.10.1 indicates that Eq. (1) has three
real solutions (and hence two complex ones as well). The indicated small rectangle
0.5 � x � 1, −5 � y � 5 encloses one of these solutions. If we use this small
rectangle as a new “viewing window” with a computer or graphics calculator, then we
see that this solution is near 0.8 (Fig. 3.10.2). A few additional magnifications might
yield greater accuracy, showing that the solution is approximately 0.801.

−80

−40

0

40

80

−2 0 2
x

y

y = f(x)

FIGURE 3.10.1 The graph
y = f (x) in Eq. (1).

−4

−2

0

2

4

0.6 0.8 1
x

y

y = f (x)

FIGURE 3.10.2 Magnification of
Fig. 3.10.1 near a solution.

Graphical methods are good for three- or four-place approximations. Here we
shall discuss an analytical method developed by Isaac Newton that can rapidly provide
much more accurate approximations.

Iteration and the Babylonian Square Root Method
What it means to solve even so simple an equation as

x2 − 2 = 0 (2)

is open to question. The positive exact solution is x = √
2. But the number

√
2 is

irrational and hence cannot be expressed as a terminating or repeating decimal. Thus
if we mean by a solution an exact decimal value for x , then even Eq. (2) can be solved
only approximately.

The ancient Babylonians devised an effective way to generate a sequence of bet-
ter and better approximations to

√
A, the square root of a given positive number A.

Here is the Babylonian square root method: We begin with a first guess x0 for the value
of

√
A. For

√
2, we might guess x0 = 1.5. If x0 is too large—that is, if x0 >

√
A—then

A

x0
<

A√
A

= √
A,

∗ For the complete story of Abel’s remarkable achievements in his brief lifetime, see Oystein Ore’s very
readable biography Niels Henrik Abel (The University of Minnesota and Chelsea Publishing Company,
1974).
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so A/x0 is too small an estimate of
√

A. Similarly, if x0 is too small (if x0 <
√

A),
then A/x0 is too large an estimate of

√
A; that is, A/x0 >

√
A.

Thus in each case one of the two numbers x0 and A/x0 is an underestimate of√
A and the other is an overestimate. The Babylonian idea was that we should get a

better estimate of
√

A by averaging x0 and A/x0. This yields a better approximation

x1 = 1

2

(
x0 + A

x0

)
(3)

to
√

A. But why not repeat this process? We can average x1 and A/x1 to get a second
approximation x2, average x2 and A/x2 to get x3, and so on. By repeating this process,
we generate a sequence of numbers

x1, x2, x3, x4, . . .

that we have every right to expect will consist of better and better approximations to√
A.

Specifically, having calculated the nth approximation xn , we calculate the next
one by means of the iterative formula

xn+1 = 1

2

(
xn + A

xn

)
. (4)

In other words, we plow each approximation to
√

A back into the right-hand side in
Eq. (4) to calculate the next approximation. This is an iterative process—the words
iteration and iterative are derived from the Latin iterare, “to plow again.”

Suppose we find that after sufficiently many steps in this iteration, xn+1 ≈ xn

accurate to the number of decimal places we are retaining in our computations. Then
Eq. (4) yields

xn ≈ xn+1 = 1

2

(
xn + A

xn

)
= 1

2xn

(
x2

n + A
)
,

so 2x2
n ≈ x2

n + A, and hence x2
n ≈ A to some degree of accuracy.

EXAMPLE 1 With A = 2 we begin with the crude first guess x0 = 1 to the value
of

√
A. Then successive applications of the formula in Eq. (4) yield

x1 = 1

2

(
1 + 2

1

)
= 3

2
= 1.5,

x2 = 1

2

(
3

2
+ 2

3/2

)
= 17

12
≈ 1.416666667,

x3 = 1

2

(
17

12
+ 2

17/12

)
= 577

408
≈ 1.414215686,

x4 = 1

2

(
577

408
+ 2

577/408

)
= 665857

470832
≈ 1.414213562,

rounding results to nine decimal places. It happens that x4 gives
√

2 accurate to all
nine places! ◗

The Babylonian iteration defined in Eq. (4) is a method for generating a sequence
of approximations to the positive root r = √

A of the particular equation x2 − A =
0. We turn next to a method that gives such a sequence of approximations for more
general equations.
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Newton's Method
Newton’s method is an iterative method for generating a sequence x1, x2, x3, . . . of
approximations to a solution r of a given equation written in the general form

f (x) = 0. (5)

We hope that this sequence of approximations will “converge” to the root r in the sense
of the following definition.

DEFINITION Convergence of Approximations
We say that the sequence of approximations x1, x2, x3, . . . converges to the number
r provided that we can make xn as close to r as we please merely by choosing
n sufficiently large. More precisely, for any given ε > 0, there exists a positive
integer N such that |xn − r | < ε for all n � N .

As a practical matter such convergence means, as illustrated in Example 1, that
for any positive integer k, xn and r will agree to k or more decimal places once n
becomes sufficiently large.

The idea is that we begin with an initial guess x0 that roughly approximates a
solution r of the equation f (x) = 0. This initial guess may, for example, be obtained
by inspection of the graph of y = f (x), perhaps obtained from a computer or graphics
calculator. We use x0 to calculate an approximation x1, use x1 to calculate a better
approximation x2, use x2 to calculate a still better approximation x3, and so on.

Here is the general step in the process. Having reached the nth approximation xn ,
we use the tangent line at (xn, f (xn)) to construct the next approximation xn+1 to the
solution r as follows: Begin at the point xn on the x-axis. Go vertically up (or down)
to the point (xn, f (xn)) on the curve y = f (x). Then follow the tangent line L there
to the point where L meets the x-axis (Fig. 3.10.3). That point will be xn+1.

r

L

y 

y = f (x)

(xn,  f (xn))

xn + 1 xn x

FIGURE 3.10.3 Geometry of the formula of
Newton’s method.

Here is a formula for xn+1. We obtain it by computing the slope of the line L in
two ways: from the derivative and from the two-point definition of slope. Thus

f ′(xn) = f (xn) − 0

xn − xn+1
,

and we easily solve for

xn+1 = xn − f (xn)

f ′(xn)
. (6)

This equation is the iterative formula of Newton’s method, so called because in about
1669, Newton introduced an algebraic procedure (rather than the geometric construc-
tion illustrated in Fig. 3.10.3) that is equivalent to the iterative use of Eq. (6). Newton’s

207

www.konkur.in



208 CHAPTER 3 The Derivative

first example was the cubic equation x3 − 2x − 5 = 0, for which he found the root
r ≈ 2.0946 (as we ask you to do in Problem 18).

Suppose now that we want to apply Newton’s method to solve the equation

f (x) = 0 (7)

to an accuracy of k decimal places (k digits to the right of the decimal correct or
correctly rounded). Remember that an equation must be written precisely in the form
of Eq. (7) in order to use the formula in Eq. (6). If we reach the point in our iteration
at which xn and xn+1 agree to k decimal places, it then follows that

xn ≈ xn+1 = xn − f (xn)

f ′(xn)
; 0 ≈ − f (xn)

f ′(xn)
; f (xn) ≈ 0.

Thus we have found an approximate root xn ≈ xn+1 of Eq. (7). In practice, then, we
retain k decimal places in our computations and persist until xn ≈ xn+1 to this degree
of accuracy. (We do not consider here the possibility of round-off error, an important
topic in numerical analysis.)

EXAMPLE 2 Use Newton’s method to find
√

2 accurate to nine decimal places.

Solution More generally, consider the square root of the positive number A as the
positive root of the equation

f (x) = x2 − A = 0.

Because f ′(x) = 2x , Eq. (6) gives the iterative formula

xn+1 = xn − x2
n − A

2xn
= 1

2

(
xn + A

xn

)
. (8)

Thus we have derived the Babylonian iterative formula as a special case of Newton’s
method. The use of Eq. (8) with A = 2 therefore yields exactly the values of x1, x2,
x3, and x4 that we computed in Example 1, and after performing another iteration we
find that

x5 = 1

2

(
x4 + 2

x4

)
≈ 1.414213562,

which agrees with x4 to nine decimal places. The very rapid convergence here is an im-
portant characteristic of Newton’s method. As a general rule (with some exceptions),
each iteration doubles the number of decimal places of accuracy. ◗

EXAMPLE 3 Figure 3.10.4 shows an open-topped tray constructed by the method

x

11 − 2x
7 − 2x

FIGURE 3.10.4 The tray of
Example 3.

of Example 2 in Section 3.6. We begin with a 7-by-11-in. rectangle of sheet metal.
We cut a square with edge length x from each of its four corners and then fold up the
resulting flaps to obtain a rectangular tray with volume

V (x) = x(7 − 2x)(11 − 2x)

= 4x3 − 36x2 + 77x, 0 � x � 3.5. (9)

In Section 3.6 we inquired about the maximum possible volume of such a tray. Here
we want to find instead the value(s) of x that will yield a tray with volume 40 in.3; we
will find x by solving the equation

V (x) = 4x3 − 36x2 + 77x = 40.

To solve this equation for x , first we write an equation of the form in Eq. (7):

f (x) = 4x3 − 36x2 + 77x − 40 = 0. (10)

Figure 3.10.5 shows the graph of f . We see three solutions: a root r1 between 0 and 1,
a root r2 slightly greater than 2, and a root r3 slightly larger than 6. Because

−40

0

40

0 4 8
x

y

y = 4x3 − 36x2 + 77x − 40

FIGURE 3.10.5 The graph of f (x)

in Eq. 10 of Example 3.

f ′(x) = 12x2 − 72x + 77,
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Newton’s iterative formula in Eq. (6) takes the form

xn+1 = xn − f (xn)

f ′(xn)

= xn − 4x3
n − 36x2

n + 77xn − 40

12x2
n − 72xn + 77

. (11)

Beginning with the initial guess x0 = 1 (because it’s reasonably close to r1), Eq. (11)
gives

x1 = 1 − 4 · 13 − 36 · 12 + 77 · 1 − 40

12 · 12 − 72 · 1 + 77
≈ 0.7059,

x2 ≈ 0.7736,

x3 ≈ 0.7780,

x4 ≈ 0.7780.

Thus we obtain the root r1 ≈ 0.7780, retaining only four decimal places.
If we had begun with a different initial guess, the sequence of Newton iterates

might well have converged to a different root of the equation f (x) = 0. The ap-
proximate solution obtained therefore depends on the initial guess. For example, with
x0 = 2 and, later, with x0 = 6, the iteration in Eq. (11) produces the two sequences

x0 = 2 x0 = 6
x1 ≈ 2.1053 x1 ≈ 6.1299
x2 ≈ 2.0993 x2 ≈ 6.1228
x3 ≈ 2.0992 x3 ≈ 6.1227
x4 ≈ 2.0992 x4 ≈ 6.1227

Thus the other two roots of Eq. (10) are r2 ≈ 2.0992 and r3 ≈ 6.1277.
With x = r1 ≈ 0.7780, the tray in Fig. 3.10.4 has the approximate dimensions

9.4440 in. by 5.4440 in. by 0.7780 in. With x = r2 ≈ 2.0992, its approximate dimen-
sions are 6.8016 in. by 2.8016 in. by 2.0992 in. But the third root r3 ≈ 6.1227 would
not lead to a tray that is physically possible. (Why not?) Thus the two values of x that
yield trays with volume 40 in.3 are x ≈ 0.7780 and x ≈ 2.0992. ◗

EXAMPLE 4 Figure 3.10.6 indicates that the equation

x = 1
2 cos x (12)

has a solution r near 0.5. To apply Newton’s method to approximate r , we rewrite

−2

0

2

−2 0 2
x

y

y = (1/2) cos x

y = x

FIGURE 3.10.6 Solving the
equation x = 1

2 cos x (Example 4).
Eq. (12) in the form

f (x) = 2x − cos x = 0.

Because f ′(x) = 2 + sin x , the iterative formula of Newton’s method is

xn+1 = xn − 2xn − cos xn

2 + sin xn
.

Beginning with x0 = 0.5 and retaining five decimal places, this formula yields

x1 ≈ 0.45063, x2 ≈ 0.45018, x3 ≈ 0.45018.

Thus the root is 0.45018 to five decimal places. ◗

EXAMPLE 5 Figure 3.10.7 indicates that the equation

3 sin x = ln x

has either five or six positive solutions. To better approximate the smallest solution
r ≈ 3, we apply Newton’s method with

300 5 10 15 20 25
x

y

−5
−5
−4
−3
−2
−1

0
1
2
3
4
5

?
y = ln x

y = 3 sin x

FIGURE 3.10.7 The graphs
y = 3 sin x and y = ln x .

f (x) = 3 sin x − ln x, f ′(x) = 3 cos x − 1

x
.
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210 CHAPTER 3 The Derivative

Then the iterative formula of Newton’s method is

xn+1 = xn − 3 sin xn − ln xn

3 cos xn − (1/xn)
.

When we begin with x0 = 3 and retain five decimal places, this formula gives

x1 ≈ 2.79558, x2 ≈ 2.79225, x3 ≈ 2.79225.

Thus r ≈ 2.79225 to five decimal places. In Problem 42 we ask you to find the
remaining solutions indicated in Fig. 3.10.7. ◗

EXAMPLE 6 Newton’s method is one for which “the proof is in the pudding.” If it
works, it’s obvious that it does, and everything’s fine. When Newton’s method fails, it
may do so spectacularly. For example, suppose that we want to solve the equation

x1/3 = 0.

Here r = 0 is the only solution. The iterative formula in Eq. (6) becomes

xn+1 = xn − (xn)
1/3

1
3 (xn)−2/3

= xn − 3xn = −2xn.

If we begin with x0 = 1, Newton’s method yields x1 = −2, x2 = +4, x3 = −8, and
so on. Figure 3.10.8 indicates why our “approximations” are not converging. ◗

y = x1/3

x

y

−2 1 4

FIGURE 3.10.8 A failure of Newton’s method.

When Newton’s method fails, a graph will typically indicate the reason why.
Then the use of an alternative method such as repeated tabulation or successive mag-
nification is appropriate.

Newton's Method with Calculators and Computers
With calculators and computers that permit user-defined functions, Newton’s method
is very easy to set up and apply repeatedly. It is helpful to interpret Newton’s iteration

xn+1 = xn − f (xn)

f ′(xn)

as follows. Having first defined the functions f and f ′, we then define the “iteration
function”

g(x) = x − f (x)

f ′(x)
.

Newton’s method is then equivalent to the following procedure. Begin with an initial
estimate x0 of the solution of the equation

f (x) = 0.

Calculate successive approximations x1, x2, x3, . . . to the exact solution by means of
the iteration

xn+1 = g(xn).

That is, apply the function g to each approximation to get the next.
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Figure 3.10.9 shows a TI graphics calculator prepared to solve the equation

f (x) = x3 − 3x2 + 1 = 0.

Then we need only store the initial guess, 0.5→x, and next enter repeatedly the
command y3→x, as indicated in Fig. 3.10.10.

TEXAS INSTRUMENTS TI-85 tt

FIGURE 3.10.9 Preparing to solve
the equation x3 − 3x2 + 1 = 0.

TEXAS INSTRUMENTS TI-85 tt

FIGURE 3.10.10 Solving the
equation x3 − 3x2 + 1 = 0.

48SX SCIENTIFIC EXPANDABLE

FIGURE 3.10.11 Preparing to solve
the equation x3 − 3x2 + 1 = 0.

Figure 3.10.11 shows an HP calculator prepared to carry out the same iteration.
The functions F(X), D(X) (for f ′(x)), and G(X) are each defined by pressing the
DEFINE key. Then it is necessary only to ENTER the initial guess x0 and press the
G key repeatedly to generate the desired successive appropriations.

With Maple or Mathematica you can define the functions f and g and then re-
peatedly enter the command x = g(x), as shown in Fig. 3.10.12.

Mathematica Command Maple Command Result

f[x ] := x∧3 − 3x∧2 + 1 f : = x −> x∧3 − 3 ∗ x∧2 + 1;
g[x ] := x − f[x]/f′[x] g : = x −> x − f(x)/D(f)(x);
x = 0.5 x : = 0.5; 0.500000
x = g[x] x : = g(x); 0.666667
x = g[x] x : = g(x); 0.652778
x = g[x] x : = g(x); 0.652704
x = g[x] x : = g(x); 0.652704

FIGURE 3.10.12 Mathematica and Maple implementations of Newton’s method.

Newton's Method and Computer Graphics
Newton’s method and similar iterative techniques are often used to generate vividly
colored “fractal patterns,” in which the same or similar structures are replicated on
smaller and smaller scales at successively higher levels of magnification. To describe
one way this can be done, we replace the real numbers in our Newton’s method com-
putations with complex numbers. We illustrate this idea with the cubic equation

f (x) = x3 − 3x2 + 1 = 0. (13)

In the Investigation we ask you to approximate the three solutions

r1 ≈ −0.53, r2 ≈ 0.65, r3 ≈ 2.88

of this equation.
First, recall that a complex number is a number of the form a + bi , where i =√−1, so i2 = −1. The real numbers a and b are called the real part and the imaginary

part, respectively, of a + bi . You add, multiply, and divide complex numbers as if they
were binomials, with real and imaginary parts “collected” as in the computations

(3 + 4i) + (5 − 7i) = (3 + 5) + (4 − 7)i = 8 − 3i,

(2 + 5i)(3 − 4i) = 2(3 − 4i) + 5i(3 − 4i)

= 6 − 8i + 15i − 20i2 = 26 + 7i,
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212 CHAPTER 3 The Derivative

and

2 + 5i

3 + 4i
= 2 + 5i

3 + 4i
· 3 − 4i

3 − 4i
= 26 + 7i

9 − 16i2
= 26 + 7i

25
= 1.04 + (0.28)i.

The use of the conjugate 3 − 4i of the denominator 3 + 4i in the last computation is
a very common technique for writing a complex fraction in the standard form a + bi .
(The conjugate of x + yi is x − yi ; it follows that the conjugate of x − yi is x + yi .)

Now let us substitute the complex number z = x + iy into the cubic polynomial

f (z) = z3 − 3z2 + 1

of Eq. (13) and into its derivative f ′(z) = 3z2 − 6z. We find that

f (z) = (x + iy)3 − 3(x + iy)2 + 1

= (x3 − 3xy2 − 3x2 + 3y2 + 1) + (3x2 y − y3 − 6xy)i (14)

and

f ′(z) = 3(x + iy)2 − 6(x + iy)

= (3x2 − 3y2 − 6x) + (6xy − 6y)i. (15)

Consequently, there is nothing to prevent us from applying Newton’s method to
Eq. (13) with complex numbers. Beginning with a complex initial guess z0 = x0 + iy0,
we can substitute Eqs. (14) and (15) into Newton’s iterative formula

zn+1 = zn − f (zn)

f ′(zn)
(16)

to generate the complex sequence {zn}, which may yet converge to a (real) solution of
Eq. (13).

With this preparation, we can now explain how Fig. 3.10.13 was generated. A
computer was programmed to carry out Newton’s iteration repeatedly, beginning with
many thousands of initial guesses z0 = x0 + iy0 that “fill” the rectangle −2 � x � 4,
−2.25 � y � 2.25 in the complex plane. The initial point z0 = x0 + iy0 was then
color-coded according to the root (if any) to which the corresponding sequence {zn}
converged:

Color z0 green if {zn} converges to the root r1 ≈ −0.53;
Color z0 red if {zn} converges to the root r2 ≈ 0.65;
Color z0 yellow if {zn} converges to the root r3 ≈ 2.88.

FIGURE 3.10.13 −2 � x � 4,
−2.25 � y � 2.25.

Thus we use different colors to distinguish different “Newton basins of attrac-
tion” for the equation we are investigating. It is not surprising that a red region con-
taining the root r2 appears in the middle of Fig. 3.10.13, separating a green region to
the left that contains r1 and a yellow region to the right that contains r3. But why
would yellow lobes protrude from the green region into the red region and green lobes
protrude from the yellow region into the red one? To see what’s happening near these
lobes, we generated some blowups.
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Figure 3.10.14 shows a blowup of the rectangle 1.6 � x � 2.4, −0.3 � y � 0.3
containing the green lobe that’s visible in Fig. 3.10.13. Figure 3.10.15 (1.64 � x �
1.68, −0.015 � y � 0.015) and Fig. 3.10.16 (1.648 � x � 1.650, −0.00075 � y �
0.00075) are further magnifications. The rectangle shown in Fig. 3.10.16 corresponds
to less than one millionth of a square inch of Fig. 3.10.13.

FIGURE 3.10.14 1.6 � x � 2.4,
−0.3 � y � 0.3.

FIGURE 3.10.15 1.64 � x � 1.68,
−0.015 � y � 0.015.

FIGURE 3.10.16 1.648 � x � 1.650,
−0.00075 � y � 0.00075.

At every level of magnification, each green lobe has smaller yellow lobes pro-
truding into the surrounding red region, and each of these yellow lobes has still smaller
green lobes protruding from it, and so on ad infinitum (just like the proverbial little
fleas that are bitten by still smaller fleas, and so on ad infinitum).

Figure 3.10.17 shows the Newton basins picture for the twelfth-degree polyno-
mial equation

f (x) = x12 − 14x10 + 183x8 − 612x6 − 2209x4 − 35374x2 + 38025 = 0, (17)

which has as its solution the twelve complex numbers

1, 1 ± 2i, − 1, −1 ± 2i,

3, 3 ± 2i, − 3, −3 ± 2i.

Twelve different colors are used to distinguish the Newton basins of these twelve solu-
tions of Eq. (17).

Where the fractal common boundary appears to separate basins of different col-
ors, it is studded with “flowers” like the one at the center of Fig. 3.10.17, which is
magnified in Fig. 3.10.18. Each of these flowers has ten “leaves” (in the remaining ten
colors). Each of these leaves has “buds” like the one shown in Fig. 3.10.19. Each of
these buds is encircled with flowers that have leaves that have buds that are encircled
with flowers—and so on ad infinitum.

FIGURE 3.10.17 Newton basis for
the twelfth-degree polynomial.

FIGURE 3.10.18 The flower at the
center of Fig. 3.10.17.

FIGURE 3.10.19 A bud on a petal
of the flower in Fig. 3.10.18.

3.10 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Neils Henrik Abel lived early in the nineteenth century.
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2. In the Babylonian square root method for approximating
√

2, beginning with the
first approximation x0 = 1 leads to the second approximation x1 = 1.5.

3. To use Newton’s method to solve an equation in (the single variable) x , first write
the equation in the form f (x) = 0.

4. The formula used in Newton’s method can be derived with the aid of Fig. 3.10.3.
5. The iterative formula of Newton’s method is

xn+1 = xn + f ′(xn)

f (xn)
for n � 0.

6. One application of Newton’s method to approximate
√

2 using the initial approx-
imation x0 = 3

2 yields x1 = 17
12 .

7. Suppose that you use Newton’s method to approximate a solution of the equation
f (x) = 0 and you find that the approximations xn and xn+1 agree to 100 decimal
places. Then you can be quite sure that either is an excellent approximation to a
solution of f (x) = 0.

8. The smallest positive solution of 4x3 − 36x2 + 77x − 40 = 0 is approximately
0.7780.

9. The largest positive solution of 4x3 − 36x2 + 77x − 40 = 0 is approximately
6.1227.

10. The only positive solution of 2x = cos x is approximately 0.45018.

3.10 CONCEPTS: QUESTIONS AND DISCUSSION
1. Example 1 in this section illustrates the use of Babylonian iteration to approx-

imate the square root of a positive number A, beginning with a positive initial
guess x0. How is the number of iterations required for six-place accuracy af-
fected by choosing x0 very close to zero, or very large? Does it appear that the
number of decimal places of accuracy is roughly doubled with each iteration?
What happens if a negative initial guess is used? What happens if A itself is
negative?

2. The general rule—that each iteration of Newton’s method typically doubles the
number of decimal places of accuracy—does not hold when the method is used to
approximate a solution r of f (x) = 0 if r is also a critical point of f . Investigate
the “rate of convergence” to the root r if: (a) f (x) = (x − 2)2, so that r = 2 is
a double root; (b) f (x) = (x − 1)2/3, so that the graph has a cusp and a vertical
tangent at r = 1.

3. Consider the exotic function f (x) = x2 sin(1/x) [with f (0) = 0] of Problem 88
in Section 3.7. Investigate what happens when you use a computer algebra sys-
tem to attempt to approximate the root r = 0 by iterating g(x) = x − f (x)/ f ′(x).
Try a variety of different nonzero initial guesses and explain the results.

3.10 PROBLEMS

In Problems 1 through 20, use Newton’s method to find the so-
lution of the given equation f (x) = 0 in the indicated interval
[a, b] accurate to four decimal places. You may choose the initial
guess either on the basis of a calculator graph or by interpolation
between the values f (a) and f (b).

1. x2 − 5 = 0; [2, 3] (to find the positive square root of 5)

2. x3 − 2 = 0; [1, 2] (to find the cube root of 2)

3. x5 − 100 = 0; [2, 3] (to find the fifth root of 100)

4. x3/2 − 10 = 0; [4, 5] (to find 102/3)

5. x2 + 3x − 1 = 0; [0, 1]
6. x3 + 4x − 1 = 0; [0, 1]

7. x6 + 7x2 − 4 = 0; [−1, 0]
8. x3 + 3x2 + 2x = 10; [1, 2]
9. x − cos x = 0; [0, 2]

10. x2 − sin x = 0; [0.5, 1.0]
11. 4x − sin x = 4; [1, 2]
12. 5x + cos x = 5; [0, 1]
13. x5 + x4 = 100; [2, 3]
14. x5 + 2x4 + 4x = 5; [0, 1]
15. x + tan x = 0; [2, 3]
16. x + tan x = 0; [11, 12]
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17. x − e−x = 0; [0, 1]
18. x3 − 2x − 5 = 0; [2, 3] (Newton’s own example)

19. ex + x − 2 = 0; [0, 1]
20. e−x − ln x = 0; [1, 2]
21. (a) Show that Newton’s method applied to the equation

x3 − a = 0 yields the formula

xn+1 = 1

3

(
2xn + a

x2
n

)

for approximating the cube root of a. (b) Use this formula
to find 3

√
2 accurate to five decimal places.

22. (a) Show that Newton’s method yields the formula

xn+1 = 1

k

[
(k − 1)xn + a

(xn)k−1

]

for approximating the kth root of the positive number a.
(b) Use this formula to find 10

√
100 accurate to five decimal

places.

23. Equation (12) has the special form x = G(x), where G(x) =
1
2 cos x . For an equation of this form, the iterative formula
xn+1 = G(xn) produces a sequence of approximations that
sometimes converges to a root. In the case of Eq. (12), this
repeated substitution formula is simply xn+1 = 1

2 cos xn .
Begin with x0 = 0.5 as in Example 4 and retain five deci-
mal places in your computation of the solution of Eq. (12).
[Check: You should find that x8 ≈ 0.45018.]

24. The equation x4 = x + 1 has a solution between x = 1 and
x = 2. Use the initial guess x0 = 1.5 and the method of
repeated substitution (see Problem 23) to discover that one
of the solutions of this equation is approximately 1.220744.
Iterate using the formula

xn+1 = (xn + 1)1/4.

Then compare the result with what happens when you iterate
using the formula

xn+1 = (xn)
4 − 1.

25. The equation x3 −3x2 +1 = 0 has a solution between x = 0
and x = 1. To apply the method of repeated substitution (see
Problem 23) to this equation, you may write it either in the
form

x = 3 − 1

x2

or in the form

x = (3x2 − 1)1/3.

If you begin with x0 = 0.5 in the hope of finding the nearby
solution (approximately 0.6527) of the original equation by
using each of the preceding iterative formulas, you will ob-
serve some of the drawbacks of the method. Describe what
goes wrong.

26. Show that Newton’s method applied to the equation

1

x
− a = 0

yields the iterative formula

xn+1 = 2xn − a(xn)
2

and thus provides a method for approximating the reciprocal
1/a without performing any divisions. Such a method is use-
ful because, in most high-speed computers, the operation of
division is more time consuming than even several additions
and multiplications.

27. Prove that the equation x5 + x = 1 has exactly one real so-
lution. Then use Newton’s method to find it with four places
correct to the right of the decimal point.

In Problems 28 through 30, use Newton’s method to find all real
roots of the given equation with four digits correct to the right of
the decimal point. [Suggestion: In order to determine the num-
ber of roots and their approximate locations, graph the left- and
right-hand sides of each equation and observe where the graphs
cross.]

28. x2 = cos x 29. x = 2 sin x

30. cos x = − 1
5 x (There are exactly three solutions, as indicated

in Fig. 3.10.20.)

x
5

y

y = − 

x

y = cos x

FIGURE 3.10.20 Solving the equation in Problem 30.

31. Prove that the equation x7 − 3x3 + 1 = 0 has at least one
solution. Then use Newton’s method to find one solution to
three-place accuracy.

32. Use Newton’s method to approximate 3
√

5 to four-place
accuracy.

33. Use Newton’s method to find the value of x for which
x3 = cos x .

34. Use Newton’s method to find the smallest positive value of
x for which x = tan x .

35. In Problem 49 of Section 3.6, we dealt with the problem
of minimizing the cost of building a road to two points on
opposite sides of a geologic fault. This problem led to the
equation

f (x) = 3x4 − 24x3 + 51x2 − 32x + 64 = 0.

Use Newton’s method to find, to four-place accuracy, the
root of this equation that lies in the interval [3, 4].

36. The moon of Planet Gzyx has an elliptical orbit with eccen-
tricity 0.5, and its period of revolution around the planet is
100 days. If the moon is at the position (a, 0) when t = 0,
then (Fig. 3.10.21) the central angle after t days is given by
Kepler’s equation

2π t

100
= θ − 1

2
sin θ.

Use Newton’s method to solve for θ when t = 17 (days).
Take θ0 = 1.5 (rad) and calculate the first two approxima-
tions θ1 and θ2. Express θ2 in degrees as well.
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Moon

Planet,

3 )a 
2

0,

at ( )

θ

)

(a, 0)

a
2

, 0

FIGURE 3.10.21 The elliptical orbit of
Problem 36.

37. A great problem of Archimedes was that of using a plane
to cut a sphere into two segments with volumes in a given
(preassigned) ratio. Archimedes showed that the volume
of a segment of height h of a sphere of radius a is V =
1
3 πh2(3a − h). If a plane at distance x from the cen-
ter of a sphere of radius 1 cuts the sphere into two seg-
ments, one with twice the volume of the other, show that
3x3 − 9x + 2 = 0. Then use Newton’s method to find x
accurate to four decimal places.

38. The equation f (x) = x3 − 4x + 1 = 0 has three distinct
real roots. Approximate their locations by evaluating f at
x = −3, −2, −1, 0, 1, 2, and 3. Then use Newton’s method
to approximate each of the three roots to four-place accuracy.

39. The equation x + tan x = 0 is important in a variety of
applications—for example, in the study of the diffusion of
heat. It has a sequence α1, α2, α3, . . . of positive roots, with
the nth root slightly larger than (n − 0.5)π . Use Newton’s
method to compute α1 and α2 to three-place accuracy.

40. Investigate the cubic equation

4x3 − 42x2 − 19x − 28 = 0.

Perhaps you can see graphically that it has only a single real
solution. Find it (accurate to four decimal places). First try
the initial guess x0 = 0; be prepared for at least 25 iterations.
Then try initial guesses x0 = 10 and x0 = 100.

41. A 15-ft ladder and a 20-ft ladder lean in opposite directions
against the vertical walls of a hall (Fig. 3.10.22). The lad-
ders cross at a height of 5 ft. You must find the width w

of the hall. First, let x and y denote the heights of the tops
of the ladders on the walls and u and v the lengths shown in
the figure, so that w = u + v. Use similar triangles to show
that

x = 5
(

1 + u

v

)
, y = 5

(
1 + v

u

)
.

Then apply the Pythagorean theorem to show that t = u/v

satisfies the equation

t4 + 2t3 + 7t2 − 2t − 1 = 0.

Finally, use Newton’s method to find first the possible values
of t , and then those of w, accurate to four decimal places.

x

15

y

20

5

u

FIGURE 3.10.22 The crossing
ladders of Problem 41.

42. Use Newton’s method to find the remaining positive
solutions of the equation 3 sin x = ln x of Example 5
(Fig. 3.10.7). Do whatever is necessary to determine whether
there is or is not a solution near x = 20.

43. The spherical asteroid problem in Problem 49 in Section
1.4 leads to the equation (100 + θ) cos θ = 100, where
R = 1000/θ is the radius of the asteroid, and it is clear
from the context that 0 < θ < π/2. Use Newton’s method
to solve this problem.

44. This is a famous “railroad track problem.” Consider a
1-mile railroad track that was constructed without leaving
the usual expansion spaces between consecutive rails. Thus
each rail of the track is, in effect, a single steel rail one mile
long. Suppose that an increase in the temperature by 20◦C
increases—by thermal expansion of the steel—the length of
this rail by one foot. Also assume that the ends of the track
are fixed, so the rail “bows up” in the shape of a circular arc
with central angle 2θ and radius R (Fig. 3.10.23). Find the
resulting height x (at its midpoint) of the bowed rail above
the ground.

R

Straight track x
Curved track

θ θ

FIGURE 3.10.23 The bowed railroad
track of Problem 44.
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3.10 INVESTIGATION: How Deep Does a Floating Ball Sink?
Figure 3.10.24 shows a large cork ball of radius a = 1 floating in water of density
1. If the ball’s density ρ is one-fourth that of water, ρ = 1

4 , then Archimedes’ law of
buoyancy implies that the ball floats in such a way that one-fourth of its total volume
is submerged. Because the volume of the ball is 4π/3, it follows that the volume of the
part of the ball beneath the waterline is given by

V = ρ · 4π

3
= 1

4
· 4π

3
= π

3
. (1)

x

r

11 – x

Waterline

FIGURE 3.10.24 The floating
cork ball.

The shape of the submerged part of the ball is that of a spherical segment with
a circular flat top. The volume of a spherical segment of top radius r and depth h = x
(as in Fig. 3.10.24) is given by the formula

V = πx

6
(3r2 + x2). (2)

This formula is also due to Archimedes and holds for any depth x , whether the spheri-
cal segment is smaller or larger than a hemisphere. For instance, note that with r = 0
and x = 2a it gives V = 4

3πa3, the volume of an entire sphere of radius a.
For a preliminary investigation, proceed as follows to find the depth x to which

the ball sinks in the water. Equate the two expressions for V in Eqs. (1) and (2), then
use the right triangle in Fig. 3.10.24 to eliminate r . You should find that x must be a
solution of the cubic equation

f (x) = x3 − 3x2 + 1 = 0. (3)

As the graph y = f (x) in Fig. 3.10.25 indicates, this equation has three real

−4

−2

0

2

4

−4 −2 0 2 4
x

y

y = x3 − 3x2 + 1

FIGURE 3.10.25 Graph for the
cork-ball equation.

solutions—one in (−1, 0), one in (0, 1), and one in (2, 3). The solution between 0
and 1 gives the actual depth x to which the ball sinks (why?). You can find x using
Newton’s method.

Your Investigation For your very own floating ball to investigate, let its density ρ in
Eq. (1) be given by

ρ = 10 + k

20
where k denotes the last nonzero digit in the sum of the final four digits of your student
I.D. number. Your objective is to find the depth to which this ball sinks in the water.
Begin by deriving the cubic equation that you need to solve, explaining each step
carefully. Then find all of its solutions accurate to at least four decimal places. Include
in your report a sketch of a spherical ball with the waterline located accurately (to scale)
in the position corresponding to your result for the desired depth.
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CHAPTER 3: REVIEW

Understanding: Concepts, Definitions, Formulas
Refer to the listed pages to review the concepts, definitions, and formulas in this chapter that you need to understand.

Section Pages
3.1 The definition of the derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

The derivative as a slope predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Differential notation for derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Average and instantaneous rate of change of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109–110, 114
Position function; velocity and acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112–114

3.2 Operator notation for derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
The power rule: Dx xn = nxn−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120, 126, 139
Linearity of differentiation: Dx(au + bv) = au′ + bv′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
The derivative of a polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
The product rule: Dx(uv) = u′v + uv′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
The reciprocal rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

The quotient rule: Dx
u

v
= u′v − uv′

v2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.3 The chain rule in differential notation: If y = u(x) then
dy

dx
= dy

du
· du

dx
. . . . . . . . . . . . . 131

The chain rule in functional notation: Dx f (g(x)) = f ′(g(x))g′(x) . . . . . . . . . . . . . . . . . 132

The generalized power rule: Dx un = nun−1 du

dx
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134, 140

3.4 The definition of a vertical tangent line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
The continuity of differentiable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.5 Maximum and minimum values of a function on a closed interval . . . . . . . . . . . . . . . . . . 147
The maximum-minimum value property for continuous functions . . . . . . . . . . . . . . . . . . 147
The necessary condition f ′(x) = 0 for a local extreme value . . . . . . . . . . . . . . . . . . . . . . . 148
Local and global (absolute) extreme values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148–149
The definition of a critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
The closed-interval maximum-minimum method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149–150

3.6 Steps in the solution of an applied maximum-minimum problem . . . . . . . . . . . . . . . . . . . 156
3.7 The sine-cosine derivatives: Dx sin x = cos x , Dx cos x = − sin x . . . . . . . . . . . . . . . . . . 170

The tangent-cotangent derivatives: Dx tan x = sec2 x , Dx cot x = − csc2 x . . . . . . . . . . 172
The secant-cosecant derivatives: Dx sec x = sec x tan x , Dx csc x = − csc x cot x . . . 172
Chain rule forms of the trigonometric differentiation formulas . . . . . . . . . . . . . . . . . . . . . 173

3.8 The general exponential function ax and the laws of exponents . . . . . . . . . . . . . . . . . . . . . 180–181
The number e ≈ 2.71828. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
The natural exponential function ex ; its derivative Dex = ex . . . . . . . . . . . . . . . . . . . . . . . 184
The chain-rule exponential derivative: Dx eu = eu Dx u . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
The general logarithm function loga x and laws of logarithms . . . . . . . . . . . . . . . . . . . . . . 185, 187
Pairs of inverse functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Differentiation of inverse functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

The natural logarithm function ln x ; its derivative Dx ln x = 1

x
. . . . . . . . . . . . . . . . . . . . . 188–189

The chain-rule logarithmic derivative: Dx ln |u| = 1

u

du

dx
. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

The process of logarithmic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.9 Implicitly defined functions and implicit differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 194–195

Related-rates problems and derivatives of related functions . . . . . . . . . . . . . . . . . . . . . . . . 197
3.10 Iteration and the Babylonian square root method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205–206

Convergence of approximations to a solution of the equation f (x) = 0 . . . . . . . . . . . . . 207

The iterative formula of Newton’s method: xn+1 = xn − f (xn)

f ′(xn)
. . . . . . . . . . . . . . . . . . . 207
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CHAPTER 3: REVIEW (Continued)

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
3.1 Using a differentiation rule to differentiate quadratic functions . . . . . . . . . . . . . . . . . . . . . 5, 9

Applying the definition of the derivative to find f ′(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 17, 19
Finding when the velocity of a moving particle is zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 29, 39
Matching the graphs of a function and its derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 33
Calculating the rate of growth of a population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 53
Calculating rates of change in geometric situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45, 47, 49

3.2 Applying general differentiation rules to find derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . .3, 5, 9, 11, 15, 19, 21,
27, 35

Finding tangent lines to graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43, 45, 49
Calculating rates of change in geometric situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51, 53

3.3 Using the chain rule to differentiate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 9, 13, 15, 23, 25,
29, 33, 35

Calculating rates of change in geometric situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49, 51, 53, 57, 59
3.4 Using rules to differentiate algebraic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 9, 13, 17, 21, 23,

29, 35, 41
Finding tangent lines to graphs of algebraic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 49, 53
Matching the graphs of a function and its derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 59

3.5 Finding the maximum and minimum values of a function defined on a . . . . . . . . . . . . . . 5, 7, 11, 15, 19, 25, 33,
closed interval 35, 37

Matching the graphs of a function and its derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 51
3.6 Solving applied maximum-minimum problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 7, 11, 17, 21, 23,

27, 31, 33, 45
3.7 Calculating derivatives of trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 7, 9, 13, 15, 21, 27,

35, 39, 45, 47, 51, 53
Finding tangent lines to trigonometric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61, 65
Solving trigonometric rate of change problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75, 77
Solving trigonometric maximum-minimum problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79, 81, 83

3.8 Calculating derivatives of exponential and logarithmic functions . . . . . . . . . . . . . . . . . . . 5, 7, 11, 15, 19, 23, 27,
29, 31, 33

Applying laws of logarithms before differentiating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 41
Finding a derivative by logarithmic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 51
Finding tangent lines to exponential graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 61

3.9 Finding derivatives and tangent lines by implicit differentiation . . . . . . . . . . . . . . . . . . . . 3, 7, 15, 21, 25
Solving applied related-rates problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 39, 41, 43, 45, 47,

51, 53, 55, 61
3.10 Applying Newton’s method to find a solution of an equation . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 9, 15, 17, 27, 33

MISCELLANEOUS PROBLEMS

Find dy/dx in Problems 1 through 35.

1. y = x2 + 3

x2
2. y2 = x2

3. y = √
x + 1

3
√

x
4. y = (x2 + 4x)5/2

5. y = (x − 1)7(3x + 2)9 6. y = x4 + x2

x2 + x + 1

7. y =
(

3x − 1

2x2

)4

8. y = x10 sin 10x

9. xy = 9 10. y =
√

1

5x6

11. y = 1√
(x3 − x)3

12. y = 3
√

2x + 1 5
√

3x − 2

13. y = 1

1 + u2
where u = 1

1 + x2

14. x3 = sin2 y 15. y =
(√

x + 3
√

2x
)7/3

16. y = √
3x5 − 4x2

17. y = u + 1

u − 1
, where u = √

x + 1

18. y = sin(2 cos 3x) 19. x2 y2 = x + y

20. y = √
1 + sin

√
x 21. y =

√
x +

√
2x + √

3x
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22. y = x + sin x

x2 + cos x
23. 3

√
x + 3

√
y = 4

24. x3 + y3 = xy

25. y = (1 + 2u)3, where u = 1

(1 + x)3

26. y = cos2(sin2 x) 27. y =
√

sin2 x

1 + cos x

28. y = (
1 + √

x
)3 (

1 − 2 3
√

x
)4

29. y = cos 2x√
sin 3x

30. x3 − x2 y + xy2 − y3 = 4 31. y = ex cos x

32. y = e−2x sin 3x 33. y = [1 + (2 + 3ex )−3/2]2/3

34. y = (ex + e−x )5 35. y = cos3
(

3
√

1 + ln x
)

Find the derivatives of the functions defined in Problems 36
through 45.

36. f (x) = cos(1 − e−x ) 37. f (x) = sin2(e−x )

38. f (x) = ln(x + e−x ) 39. f (x) = ex cos 2x

40. f (x) = e−2x sin 3x 41. g(t) = ln
(
tet2)

42. g(t) = 3(et − ln t)5 43. g(t) = sin(et ) cos(e−t )

44. f (x) = 2 + 3x

e4x
45. g(t) = 1 + et

1 − et

In Problems 46 through 51, find dy/dx by implicit differentia-
tion.

46. xey = y 47. sin(exy) = x

48. ex + ey = exy 49. x = yey

50. ex−y = xy 51. x ln y = x + y

In Problems 52 through 57, find dy/dx by logarithmic differen-
tiation.

52. y =
√

(x2 − 4)
√

2x + 1 53. y = (3 − x2)1/2

(x4 + 1)1/4

54. y =
[

(x + 1)(x + 2)

(x2 + 1)(x2 + 2)

]1/3

55. y = √
x + 1 3

√
x + 2 4

√
x + 3

56. y = x (ex ) 57. y = (ln x)ln x , x > 1

In Problems 58 through 61, write an equation of the line tangent
to the given curve at the indicated point.

58. y = x + 1

x − 1
; (0, −1) 59. x = sin 2y; (1, π/4)

60. x2 − 3xy + 2y2 = 0; (2, 1)

61. y3 = x2 + x; (0, 0)

62. If a hemispherical bowl with radius 1 ft is filled with water
to a depth of x in., then the volume of water in the bowl is

V = π

3
(36x2 − x3) (in.3).

If the water flows out a hole at the bottom of the bowl
at the rate of 36π in.3/s, how fast is x decreasing when
x = 6 in.?

63. Falling sand forms a conical sandpile. Its height h always
remains twice its radius r while both are increasing. If sand
is falling onto the pile at the rate of 25π ft3/min, how fast
is r increasing when r = 5 ft?

Find the limits in Problems 64 through 69.

64. lim
x→0

x − tan x

sin x
65. lim

x→0
x cot 3x

66. lim
x→0

sin 2x

sin 5x
67. lim

x→0
x2 csc 2x cot 2x

68. lim
x→0

x2 sin
1

x2
69. lim

x→0+
√

x sin
1

x

In Problems 70 through 75, identify two functions f and g such
that h(x) = f (g(x)). Then apply the chain rule to find h′(x).

70. h(x) = 3
√

x + x4 71. h(x) = 1√
x2 + 25

72. h(x) =
√

x

x2 + 1
73. h(x) = 3

√
(x − 1)5

74. h(x) = (x + 1)10

(x − 1)10
75. h(x) = cos(x2 + 1)

76. The period T of oscillation (in seconds) of a simple pendu-
lum of length L (in feet) is given by T = 2π

√
L/32. What

is the rate of change of T with respect to L when L = 4 ft?

77. What is the rate of change of the volume V = 4
3 πr 3 of a

sphere with respect to its surface area A = 4πr 2?

78. What is an equation for the straight line through (1, 0) that
is tangent to the graph of

h(x) = x + 1

x

at a point in the first quadrant?

79. A rocket is launched vertically upward from a point 3 mi
west of an observer on the ground. What is the speed of
the rocket when the angle of elevation (from the horizon-
tal) of the observer’s line of sight to the rocket is 60◦ and is
increasing at 6◦ per second?

80. An oil field containing 20 wells has been producing 4000
barrels of oil daily. For each new well drilled, the daily
production of each well decreases by 5 barrels. How many
new wells should be drilled to maximize the total daily pro-
duction of the oil field?

81. A triangle is inscribed in a circle of radius R. One side
of the triangle coincides with a diameter of the circle. In
terms of R, what is the maximum possible area of such a
triangle?

82. Five rectangular pieces of sheet metal measure 210 cm by
336 cm each. Equal squares are to be cut from all their
corners, and the resulting five cross-shaped pieces of metal
are to be folded and welded to form five boxes without
tops. The 20 little squares that remain are to be assem-
bled in groups of four into five larger squares, and these
five larger squares are to be assembled into a cubical box
with no top. What is the maximum possible total volume
of the six boxes that are constructed in this way?

83. A mass of clay of volume V is formed into two spheres.
For what distribution of clay is the total surface area of the
two spheres a maximum? A minimum?

84. A right triangle has legs of lengths 3 m and 4 m. What is
the maximum possible area of a rectangle inscribed in the
triangle in the “obvious” way—with one corner at the trian-
gle’s right angle, two adjacent sides of the rectangle lying
on the triangle’s legs, and the opposite corner on the hypo-
tenuse?
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85. What is the maximum possible volume of a right circular
cone inscribed in a sphere of radius R?

86. A farmer has 400 ft of fencing with which to build a rect-
angular corral. He will use some or even all of an existing
straight wall 100 ft long as part of the perimeter of the cor-
ral. What is the maximum area that can be enclosed?

87. In one simple model of the spread of a contagious disease
among members of a population of M people, the incidence
of the disease, measured as the number of new cases per
day, is given in terms of the number x of individuals al-
ready infected by

R(x) = kx(M − x) = k Mx − kx2,

where k is a positive constant. How many individuals in
the population are infected when the incidence R is the
greatest?

88. Three sides of a trapezoid have length L , a constant. What
should be the length of the fourth side if the trapezoid is to
have maximal area?

89. A box with no top must have a base twice as long as it is
wide, and the total surface area of the box is to be 54 ft2.
What is the maximum possible volume of such a box?

90. A small right circular cone is inscribed in a larger one
(Fig. 3.MP.1). The larger cone has fixed radius R and fixed
altitude H . What is the largest fraction of the volume of the
larger cone that the smaller one can occupy?

H

R

FIGURE 3.MP.1 A small
cone inscribed in a larger
one (Problem 90).

91. Two vertices of a trapezoid are at (−2, 0) and (2, 0), and the
other two lie on the semicircle x2 + y2 = 4, y � 0. What is
the maximum possible area of the trapezoid? [Note: The
area of a trapezoid with bases b1 and b2 and height h is
A = h(b1 + b2)/2.]

92. Suppose that f is a differentiable function defined on the
whole real number line R and that the graph of f contains
a point Q(x, y) closest to the point P(x0, y0) not on the
graph. Show that

f ′(x) = − x − x0

y − y0

at Q. Conclude that the segment PQ is perpendicular to the
line tangent to the curve at Q. [Suggestion: Minimize the
square of the distance PQ.]

93. Use the result of Problem 92 to show that the minimum dis-
tance from the point (x0, y0) to a point of the straight line
Ax + By + C = 0 is

|Ax0 + By0 + C |√
A2 + B2

.

94. A race track is to be built in the shape of two parallel and
equal straightaways connected by semicircles on each end
(Fig. 3.MP.2). The length of the track, one lap, is to be
exactly 4 km. What should its design be to maximize the
rectangular area within it?

FIGURE 3.MP.2 Design the race
track to maximize the rectangular
area (Problem 94).

95. Two towns are located near the straight shore of a lake.
Their nearest distances to points on the shore are 1 mi and
2 mi, respectively, and these points on the shore are 6 mi
apart. Where should a fishing pier be located to minimize
the total amount of paving necessary to build a straight road
from each town to the pier?

96. A hiker finds herself in a forest 2 km from a long straight
road. She wants to walk to her cabin, which is 10 km away
in the forest and also 2 km from the road (Fig. 3.MP.3).
She can walk at a rate of 8 km/h along the road but only
3 km/h through the forest. So she decides to walk first to
the road, then along the road, and finally through the for-
est to the cabin. What angle θ (shown in the figure) would
minimize the total time required for the hiker to reach her
cabin? How much time is saved in comparison with the
straight route through the forest?

Road

θ

10
CabinHiker

2 Forest
θ

FIGURE 3.MP.3 The hiker’s quickest
path to the cabin (Problem 96).

97. When an arrow is shot from the origin with initial veloc-
ity v and initial angle of inclination α (from the horizontal
x-axis, which represents the ground), then its trajectory is
the curve

y = mx − 16

v2
(1 + m2)x2,

where m = tan α. (a) Find the maximum height reached
by the arrow in terms of m and v. (b) For what value of m
(and hence, for what α) does the arrow travel the greatest
horizontal distance?
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98. A projectile is fired with initial velocity v and angle of
elevation θ from the base of a plane inclined at 45◦ from
the horizontal (Fig. 3.MP.4). The range of the projectile, as
measured up this slope, is given by

R = v2
√

2

16
(cos θ sin θ − cos2 θ).

What value of θ maximizes R?

R45°

Level Ground

θ

FIGURE 3.MP.4 A projectile fired uphill
(Problem 98).

In Problems 99 through 110, use Newton’s method to find the so-
lution of the given equation f (x) = 0 in the indicated interval
[a, b] accurate to four decimal places.

99. x2 −7 = 0; [2, 3] (to find the positive square root of 7)

100. x3 − 3 = 0; [1, 2] (to find the cube root of 3)

101. x5 − 75 = 0; [2, 3] (to find the fifth root of 75)

102. x4/3 − 10 = 0; [5, 6] (to approximate 103/4)

103. x3 − 3x − 1 = 0; [−1, 0]
104. x3 − 4x − 1 = 0; [−1, 0]
105. e−x − sin x = 0; [0, 2]
106. cos x − ln x = 0; [0, 2]
107. x + cos x = 0; [−2, 0]
108. x2 + sin x = 0; [−1.0, −0.5]
109. 4x − sin x + 4 = 0; [−2, −1]
110. 5x − cos x + 5 = 0; [−1, 0]
111. Find the depth to which a wooden ball with radius 2 ft sinks

in water if its density is one-third that of water. A useful
formula appears in Problem 37 of Section 3.10.

112. The equation x2 + 1 = 0 has no real solutions. Try find-
ing a solution by using Newton’s method and report what
happens. Use the initial estimate x0 = 2.

113. At the beginning of Section 3.10 we mentioned the fifth-
degree equation

x5 − 3x3 + x2 − 23x + 19 = 0;
its graph appears in Fig. 3.10.1. The graph makes it clear
that this equation has exactly three real solutions. Find all
of them, to four-place accuracy, using Newton’s method.

114. The equation

tan x = 1

x

has a sequence α1, α2, α3, . . . of positive roots, with αn

slightly larger than (n − 1)π . Use Newton’s method to
approximate α1 and α2 to three-place accuracy.

115. Criticize the following “proof” that 3 = 2. Begin by writ-
ing

x3 = x · x2 = x2 + x2 + · · · + x2 (x summands).

Differentiate to obtain

3x2 = 2x + 2x + · · · + 2x (still x summands).

Thus 3x2 = 2x2, and “therefore” 3 = 2.

If we substitute z = x +h into the definition of the derivative, the
result is

f ′(x) = lim
z→x

f (z) − f (x)

z − x
.

Use this formula in Problems 116 and 117, together with the for-
mula

a3 − b3 = (a − b)(a2 + ab + b2)

for factoring the difference of two cubes.

116. Show that

Dx x3/2 = lim
z→x

z3/2 − x3/2

z − x
= 3

2
x1/2.

[Suggestion: Factor the numerator as a difference of cubes
and the denominator as a difference of squares.]

117. Prove that

Dx x2/3 = lim
z→x

z2/3 − x2/3

z − x
= 2

3
x−1/3.

[Suggestion: Factor the numerator as a difference of
squares and the denominator as a difference of cubes.]

118. A rectangular block with square base is being squeezed in
such a way that its height y is decreasing at the rate of
2 cm/min while its volume remains constant. At what rate
is the edge x of its base increasing when x = 30 cm and
y = 20 cm?

119. Air is being pumped into a spherical balloon at the constant
rate of 10 in.3/s. At what rate is the surface area of the
balloon increasing when its radius is 5 in.?

120. A ladder 10 ft long is leaning against a wall. If the bot-
tom of the ladder slides away from the wall at the constant
rate of 1 mi/h, how fast (in miles per hour) is the top of the
ladder moving when it is 0.01 ft above the ground?

121. A water tank in the shape of an inverted cone, axis vertical
and vertex downward, has a top radius of 5 ft and height 10
ft. Water is flowing out of the tank through a hole at the
vertex at the rate of 50 ft3/min. What is the time rate of
change of the water depth at the instant when the water is 6
ft deep?

122. Plane A is flying west toward an airport at an altitude of
2 mi. Plane B is flying south toward the same airport at an
altitude of 3 mi. When both planes are 2 mi (ground dis-
tance) from the airport, the speed of plane A is 500 mi/h
and the distance between the two planes is decreasing at
600 mi/h. What is the speed of plane B then?

123. A water tank is shaped in such a way that the volume of wa-
ter in the tank is V = 2y3/2 in.3 when its depth is y inches.
If water flows out through a hole at the bottom of the tank
at the rate of 3

√
y in.3/min, at what rate does the water level

in the tank fall? What is a practical application for such a
water tank?
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124. Water is being poured into the conical tank of Problem 121
at the rate of 50 ft3/min and is draining through the hole at
the bottom at the rate of 10

√
y ft3/min, where y is the depth

of water in the tank. (a) At what rate is the water level ris-
ing when the water is 5 ft deep? (b) Suppose that the tank is
initially empty, water is poured in at 25 ft3/min, and water
continues to drain at 10

√
y ft3/min. What is the maximum

depth attained by the water?

125. Let L be a straight line passing through the fixed point
P(x0, y0) and tangent to the parabola y = x2 at the point
Q(a, a2). (a) Show that a2 − 2ax0 + y0 = 0. (b) Apply
the quadratic formula to show that if y0 < (x0)

2 (that is, if
P lies below the parabola), then there are two possible val-
ues for a and thus two lines through P that are tangent to
the parabola. (c) Similarly, show that if y0 > (x0)

2 (P lies
above the parabola), then no line through P can be tangent
to the parabola.

PHOTO CREDITS

p. 105 Ward’s Natural Science Establishment/Science Source; (bottom right) C. H. Edwards p. 168  Richard 
Megna/Fundamental Photographs 
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Additional Applications
of the Derivative 4

G. W. Leibniz (1646–1716)

Gottfried Wilhelm
Leibniz entered
the University of

Leipzig when he was 15,
studied philosophy and law,
graduated at 17, and re-
ceived his doctorate in phi-
losophy at 21. Upon com-
pletion of his academic
work, Leibniz entered the
political and governmental
service of the Elector of
Mainz (Germany). His se-
rious study of mathemat-
ics did not begin until 1672

(when he was 26) when he was sent to Paris on a diplo-
matic mission. During the next four years there he con-
ceived the principal features of calculus. For this work
he is remembered (with Newton) as a codiscoverer of the
subject. Newton’s discoveries had come slightly earlier (in
the late 1660s), but Leibniz’s were the first to be published,
beginning in 1684. Despite an unfortunate priority dispute
between supporters of Newton and supporters of Leibniz
that raged for more than a century, it is clear now that the
discoveries were made independently.

Throughout his life, Leibniz sought a universal
language incorporating notation and terminology that
would provide all educated people with the powers of
clear and correct reasoning in all subjects. But only in
mathematics did he largely accomplish this goal. His
differential notation for calculus is arguably the best ex-
ample of a system of notation chosen so as to mirror
perfectly the basic operations and processes of the sub-
ject. Indeed, it can be said that Leibniz’s notation for cal-
culus brings within the range of ordinary students prob-
lems that once required the ingenuity of an Archimedes
or a Newton. For this reason, Leibniz’s approach
to calculus was dominant during the eighteenth cen-
tury, even though Newton’s somewhat different approach

may have been closer to our modern understanding of the
subject.

The origin of differential notation was an infinitesi-
mal right triangle with legs dx and dy and with hypotenuse
a tiny segment of the curve y = f (x). Leibniz later de-
scribed the moment he first visualized this “characteristic
triangle” as a burst of light that was the inception of his
calculus. Indeed, he sometimes referred to his calculus as
“my method of the Characteristic Triangle.”

y = f (x)

dy

dx

Leibniz’s characteristic triangle

The following excerpt shows the opening paragraphs
of Leibniz’s first published article (in the 1684 Acta Erudi-
torum) in which the differential notation initially appeared.
In the fifth line of the second paragraph, the product rule
for differentiation is expressed as

d(xv) = x dv + v dx .

From Chapter 4 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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226 CHAPTER 4 Additional Applications of the Derivative

4.1 INTRODUCTION

We learned in Chapter 3 how to differentiate a wide variety of algebraic and trigono-
metric functions. We saw that derivatives have such diverse applications as maximum-
minimum problems, related-rates problems, and the solution of equations by
Newton’s method. The further applications of differentiation that we discuss in this
chapter all depend ultimately upon a single fundamental question. Suppose that y =
f (x) is a differentiable function defined on the closed interval [a, b ] of length �x =
b − a. Then the increment �y in the value of f (x) as x changes from x = a to
x = b = a + �x is

�y = f (b) − f (a). (1)

The question is this: How is the increment �y related to the derivative—the rate of
change—of the function f at the points of the interval [a, b ]?

An approximate answer is given in Section 4.2. If the function continued
throughout the interval with the same rate of change f ′(a) that it had at x = a, then
the change in its value would be f ′(a)(b −a) = f ′(a) �x . This observation motivates
the tentative approximation

�y ≈ f ′(a) �x . (2)

A precise answer to the preceding question is provided by the mean value theorem of
Section 4.3. This theorem implies that the exact increment is given by

�y = f ′(c) �x (3)

for some number c in (a, b). The mean value theorem is the central theoretical result
of differential calculus, and is also the key to many of the more advanced applications
of derivatives.

4.2 INCREMENTS, DIFFERENTIALS, AND LINEAR APPROXIMATION

Sometimes we need a quick and simple estimate of the change in f (x) that results

x

y

x

y = f (x)

f (x)

f (x + Δx)

Δy

Δx

x + Δx

FIGURE 4.2.1 The increments �x
and �y.

from a given change in x . We write y for f (x) and suppose first that the change in the
independent variable is the increment �x , so that x changes from its original value to
the new value x + �x . The change in the value of y is the increment �y, computed
by subtracting the old value of y from its new value:

�y = f (x + �x) − f (x). (1)

The increments �x and �y are represented geometrically in Fig. 4.2.1.
Now we compare the actual increment �y with the change that would occur in

the value of y if it continued to change at the fixed rate f ′(x) while the value of the
independent variable changes from x to x + �x . This hypothetical change in y is the
differential

dy = f ′(x) �x . (2)

As Fig. 4.2.2 shows, dy is the change in height of a point that moves along the tangent
line at the point (x, f (x)) rather than along the curve y = f (x).

Think of x as fixed. Then Eq. (2) shows that the differential dy is a linear func-
tion of the increment �x . For this reason, dy is called the linear approximation to
the increment �y. We can approximate f (x + �x) by substituting dy for �y:

f (x + �x) = y + �y ≈ y + dy.

Because y = f (x) and dy = f ′(x)�x , this gives the linear approximation formula

f (x + �x) ≈ f (x) + f ′(x) �x . (3)
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x

y

x

y = f (x)

y

dy

Tangent line
at (x, f (x))

y + dy
Δy

Δx

x + Δx

y + Δy

FIGURE 4.2.2 The estimate dy of the
actual increment �y.

The point is that this approximation is a “good” one, at least when �x is relatively
small. If we combine Eqs. (1), (2), and (3), we see that

�y ≈ f ′(x) �x = dy. (4)

Thus the differential dy = f ′(x) �x is a good approximation to the increment �y =
f (x + �x) − f (x).

If we replace x with a in Eq. (3), we get the approximation

f (a + �x) ≈ f (a) + f ′(a) �x . (5)

If we now write �x = x − a, so that x = a + �x , the result is

f (x) ≈ f (a) + f ′(a) · (x − a). (6)

Because the right-hand side

L(x) = f (a) + f ′(a) · (x − a) (7)

in Eq. (6) is a linear function of x , we call it the linear approximation L(x) to the
function f (x) near the point x = a. As illustrated in Fig. 4.2.3, the graph y = L(x)

is the straight line tangent to the graph y = f (x) at the point (a, f (a)).

x

y

a

y = f (x)

(a, f (a)) y = f (a) + f '(a)(x − a)

FIGURE 4.2.3 The graph of the
linear approximation
L(x) = f (a) + f ′(a) · (x − a) is the
line tangent to y = f (x) at the point
(a, f (a)).

EXAMPLE 1 Find the linear approximation to the function f (x) = √
1 + x near the

10
x

y

−0.5 0.5
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

y = 1 + x

(0, 1)

y = 1 + x1
2

Δy

Δx

dy

FIGURE 4.2.4 The function
f (x) = √

1 + x and its linear
approximation L(x) = 1 + 1

2 x near
a = 0.

point a = 0.

Solution Note that f (0) = 1 and that

f ′(x) = 1

2
(1 + x)−1/2 = 1

2
√

1 + x
,

so f ′(0) = 1
2 . Hence Eq. (6) with a = 0 yields

f (x) ≈ f (0) + f ′(0) · (x − 0) = 1 + 1
2 x = L(x).

Thus the desired linear approximation is

√
1 + x ≈ 1 + 1

2 x . (8)

Figure 4.2.4 illustrates the close approximation near x = 0 of the nonlinear
function f (x) = √

1 + x by its linear approximation L(x) = 1 + 1
2 x . ◗
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IMPORTANT It is evident in Fig. 4.2.4 that the value of the linear approximation
L(x) = 1 + 1

2 x is closer to the actual value of the function f (x) = √
1 + x when x is

closer to a = 0. For instance, the approximate values
√

1.1 ≈ 1 + 1
2 (0.1) = 1.05 (using x = 0.1 in (8))

and √
1.03 ≈ 1 + 1

2 (0.03) = 1.015 (using x = 0.03 in (8))

are accurate to two and three decimal places (rounded), respectively. But
√

3 ≈ 1 + 1
2 · 2 = 2,

using x = 2, is a very poor approximation to
√

3 ≈ 1.732.

The approximation
√

1 + x ≈ 1 + 1
2 x is a special case of the approximation

(1 + x)k ≈ 1 + kx (9)

(k is a constant, x is near zero), an approximation with numerous applications. The
derivation of (9) is similar to that in Example 1. (See Problem 39.)

EXAMPLE 2 Use the linear approximation formula to approximate (122)2/3. Note
that

(125)2/3 = [
(125)1/3

]2 = 52 = 25.

Solution We need to approximate a particular value of x2/3, so our strategy is to apply
Eq. (6) with f (x) = x2/3. We first note that f ′(x) = 2

3 x−1/3. We choose a = 125,
because we know the exact values

f (125) = (125)2/3 = 25 and f ′(125) = 2
3 (125)−1/3 = 2

15

and because 125 is relatively close to 122. Then the linear approximation in (6) to
f (x) = x2/3 near a = 125 takes the form

f (x) ≈ f (125) + f ′(125) · (x − 125);
that is,

x2/3 ≈ 25 + 2
15 (x − 125).

With x = 122 we get

(122)2/3 ≈ 25 + 2
15 (−3) = 24.6.

Thus (122)2/3 is approximately 24.6. The actual value of (122)2/3 is about 24.5984, so
the formula in (6) gives a relatively good approximation in this case. ◗

EXAMPLE 3 A hemispherical bowl of radius 10 in. is filled with water to a depth of
x inches. The volume V of water in the bowl (in cubic inches) is given by the formula

V = π

3
(30x2 − x3) (10)

(Fig. 4.2.5). (You will be able to derive this formula after you study Chapter 6.) Sup-

x10

Δx

FIGURE 4.2.5 The bowl of
Example 3.

pose that you measure the depth of water in the bowl to be 5 in. with a maximum
possible measured error of 1

16 in. Estimate the maximum error in the calculated vol-
ume of water in the bowl.

Solution The error in the calculated volume V (5) is the difference

�V = V (x) − V (5)

between the actual volume V (x) and the calculated volume. We do not know the depth
x of water in the bowl. We are given only that the difference

�x = x − 5
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between the actual and the measured depths is numerically at most 1
16 in.: |�x | � 1

16 .
Because Eq. (10) yields

V ′(x) = π

3
(60x − 3x2) = π(20x − x2),

the linear approximation

�V ≈ dV = V ′(5) �x

at x = 5 gives

�V ≈ π(20 · 5 − 52) �x = 75π �x .

With the common practice in science of writing �x = ± 1
16 to signify that − 1

16 �
�x � 1

16 , this gives

�V ≈ (75π)
( ± 1

16

) ≈ ±14.73 (in.3).

The formula in Eq. (10) gives the calculated volume V (5) ≈ 654.50 in.3, but we now
see that this may be in error by almost 15 in.3 in either direction. ◗

Absolute and Relative Errors
The (absolute) error in a measured or approximated value is defined to be the remain-
der when the approximate value is subtracted from the true value. Hence

“actual value = approximate value + error.”

The relative error is the ratio of the (absolute) error to the true value,

“relative error = error

value
, ”

and may be given as either a numerical fraction or as a percentage of the value.

EXAMPLE 4 In Example 3, a relative error in the measured depth x of

�x

x
=

1
16

5
= 0.0125 = 1.25%

leads to a relative error in the estimated volume of

dV

V
≈ 14.73

654.50
≈ 0.0225 = 2.25%.

The relationship between these two relative errors is of some interest. The formulas
for dV and V in Example 3 give

dV

V
= π(20x − x2) �x

1
3π(30x2 − x3)

= 3(20 − x)

30 − x
· �x

x
.

When x = 5, this gives

dV

V
= (1.80)

�x

x
.

Hence, to approximate the volume of water in the bowl with a relative error of at most
0.5%, for instance, we would need to measure the depth with a relative error of at most
(0.5%)/1.8, thus with a relative error of less than 0.3%. ◗
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The Error in Linear Approximation
Now we consider briefly the question of the difference between the values of a func-
tion f (x) and its linear approximation L(x) near the point x = a. If we let �x =
x − a and write

y = f (x), f (a + �x) = f (a) + �y,

and

L(x) = f (a) + f ′(a) · �x = f (a) + dy,

it then follows that the error in the linear approximation is given by

f (x) − L(x) = �y − dy, (11)

as illustrated in Fig. 4.2.6. It appears in the figure that, the smaller �x is, the closer

x

y

a a + Δx

dy = f '(a) Δx

Δx

Δy

error

FIGURE 4.2.6 The error �y − dy
in the linear approximation
dy ≈ f ′(a) �x = dy.

are the corresponding points on the curve y = f (x) and its tangent line y = L(x).
Because Eq. (11) implies that the difference in the heights of two such points is equal
to �y − dy, the figure suggests that �y − dy approaches zero as �x → 0.

But even more is true: The difference

�y − dy = f (a + �x) − f (a) − f ′(a) �x (12)

is a function of �x that is small even in comparison with �x . To see why, let’s write

ε(�x) = �y − dy

�x
= f (a + �x) − f (a)

�x
− f ′(a)

and note that

lim
�x→0

ε(�x) = f ′(a) − f ′(a) = 0.

Consequently, the error

�y − dy = ε(�x) · �x (13)

in the linear approximation dy = f ′(a) �x to the actual increment �y is the product
of two quantities, both of which approach zero as �x → 0. If �x is “very small”—so
that ε(�x) is also “very small”—then we might well describe their product in (13) as
“very very small.” In this case we may finally rewrite Eq. (13) in the form

f (a + �x) − f (a) = f ′(a) �x + ε(�x) · �x, (14)

expressing the actual increment �y = f (a + �x) − f (a) as the sum of the very small
differential dy = f ′(a) �x and the very very small error ε(�x)·�x in this differential.

EXAMPLE 5 If y = f (x) = x3, then simple computations (with �x = x − a) give

�y = f (a + �x) − f (a)

= (a + �x)3 − a3 = 3a2 �x + 3a(�x)2 + (�x)3

and
dy = f ′(a) �x = 3a2 �x .

Hence
�y − dy = 3a(�x)2 + (�x)3 .

If a = 1 and �x = 0.1, for instance, then these formulas yield

�y = 0.331, dy = 0.3, and �y − dy = 0.031,

thereby illustrating the smallness in the error �y − dy in the linear approximation in
comparison with the values of �y and dy. ◗
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Example 6 indicates how we sometimes can use a graphing calculator or com-
puter to specify how accurate a linear approximation is—in terms of its accuracy
throughout an entire interval containing the point x = a. In concrete situations we
often want to determine an interval throughout which the linear approximation pro-
vides a specified accuracy.

EXAMPLE 6 Find an interval on which the approximation
√

1 + x ≈ 1 + 1
2 x (15)

of Example 1 is accurate to within 0.1.

Solution Accuracy to within 0.1 means that the two functions in (15) differ by less
than 0.1: ∣∣√1 + x − (

1 + 1
2 x

)∣∣ < 0.1,

which is equivalent to
√

1 + x − 0.1 < 1 + 1
2 x <

√
1 + x + 0.1.

Thus we want the graph of the linear approximation y = 1 + 1
2 x to lie between the

x

y

1.510.50
0

0.5

1

1.5

2

2.5

−0.5−1

(0, 1)

y = 1 + x1
2

y = 1 + x + 0.1

y = 1 + x − 0.1

FIGURE 4.2.7 The function
f (x) = √

1 + x on the interval
−1 < x < 1.5.

two curves obtained by shifting the graph y = √
1 + x vertically up and down by

the amount 0.1. Figure 4.2.7 shows the graphs of all these curves on the interval
−1 < x < 1.5. The points at which the linear approximation y = 1 + 1

2 x emerges
from the band of width 0.2 around the graph y = √

1 + x are marked, and we see that a
smaller interval around x = 0 is needed to confine the linear approximation within the

x

y

1.6

1.4

1.2

1

0.8

0.6

0.4

0.80.60.40.20−0.4 −0.2

(0, 1)
y = 1 + x1

2

y = 1 + x + 0.1

y = 1 + x − 0.1

FIGURE 4.2.8 The function
f (x) = √

1 + x on the smaller
interval −0.6 < x < 0.9.

desired range. Indeed, the zoom shown in Fig. 4.2.8 indicates that the approximation
in (15) is accurate to within 0.1 for every x in the interval −0.6 < x < 0.9. ◗

Differentials
The linear approximation formula in (3) is often written with dx in place of �x :

f (x + dx) ≈ f (x) + f ′(x) dx . (16)

In this case dx is an independent variable, called the differential of x , and x is fixed.
Thus the differentials of x and y are defined to be

dx = �x and dy = f ′(x) �x = f ′(x) dx . (17)

From this definition it follows immediately that

dy

dx
= f ′(x) dx

dx
= f ′(x),

in perfect accord with the notation we have been using. Indeed, Leibniz originated
differential notation by visualizing “infinitesimal” increments dx and dy (Fig. 4.2.9),
with their ratio dy/dx being the slope of the tangent line. The key to Leibniz’s inde-
pendent discovery of differential calculus in the 1670s was his insight that if dx and
dy are sufficiently small, then the segment of the curve y = f (x) and the straight
line segment joining (x, y) and (x + dx, y + dy) are virtually indistinguishable. This
insight is illustrated by the successive magnifications in Figs. 4.2.10 through 4.2.12 of
the curve y = x2 near the point (1, 1).

Differential notation provides us with a convenient way to write derivative for-
mulas. Suppose that z = f (u), so that dz = f ′(u) du. For particular choices of the
function f , we get the formulas

dx

dy

FIGURE 4.2.9 The slope of the
tangent line as the ratio of the
infinitesimals dy and dx .

d(un) = nun−1 du,

d(sin u) = (cos u) du,

d(eu) = eu du,
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y

dx

dy

y = x2

0

2

4

6

8

0 1 2 3
x

FIGURE 4.2.10 dx = 1.

0.5

1

1.5

2

2.5

0.8 1 1.2 1.4 1.6
x

y

y = x2

dx

dy

FIGURE 4.2.11 dx = 1
3 .

1

1.2

1.4

0.9 1 1.1 1.2
x

y

y = x2

dx

dy

FIGURE 4.2.12 dx = 1
10 .

and so on. Thus we can write differentiation rules in differential form without having
to identify the independent variable. The sum, product, and quotient rules take the
respective forms

d(u + v) = du + dv,

d(uv) = u dv + v du,

and

d
(u

v

)
= v du − u dv

v2
.

If z = f (u) and u = g(x), we may substitute du = g′(x) dx into the formula
dz = f ′(u) du. This gives

dz = f ′(g(x)) · g′(x) dx .

This is the differential form of the chain rule

Dx f (g(x)) = f ′(g(x)) · g′(x).

Thus the chain rule appears here as though it were the result of mechanical manipula-
tions of the differential notation. This compatibility with the chain rule is one reason
for the extraordinary usefulness of differential notation in calculus.

EXAMPLE 7

(a) If y = 3x2 − 2x3/2, then dy = (
6x − 3

√
x

)
dx .

(b) If u = sin2 t − cos 2t , then

du = (2 sin t cos t + 2 sin 2t) dt = 3 sin 2t dt

(using the trigonometric identity sin 2t = 2 sin t cos t).
(c) If w = zez , then

dw = (1 · ez + z · ez) dz = (1 + z)ez dz. ◗

Proof of the Chain Rule
We can now use our knowledge of the error in linear approximations to give a proof of
the chain rule for the composition f ◦ g that does not require the assumption g′(x) �= 0
that we needed in Section 3.3. Here we suppose only the existence of the derivatives
g′(a) and f ′(b) (where b = g(a)) of the functions u = g(x) and y = f (g(x)) = f (u).
If we write

�u = g(a + �x) − g(a) and �y = f (b + �u) − f (b),

then Eq. (14) in this section—with g in place of f —gives

�u = g′(a) �x + ε1 · �x = [
g′(a) + ε1

]
�x (18)
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where ε1 → 0 as �x → 0. A second application of Eq. (14)—this time with u in place
of x—gives

�y = f ′(b) �u + ε2 · �u = [
f ′(b) + ε2

]
�u

= [
f ′(g(a)) + ε2

] · [
g′(a) + ε1

]
�x (19)

where ε2 → 0 as �u → 0, and hence as �x → 0 (because Eq. (18) shows that
�u → 0 as �x → 0). Finally, when we divide by �x in Eq. (19) and then take the
limit as �x → 0, we get

dy

dx
= lim

�x→0

�y

�x
= lim

�x→0

[
f ′(g(a)) + ε2

] · [
g′(a) + ε1

] = f ′(g(a)) · g′(a).

Thus we have shown that the chain rule formula Dx [ f (g(x))] = f ′(g(x)) ·g′(x) holds
at x = a.

4.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose that y = f (x) and that �x is an increment in x . Then, by definition,
�y = f (x + �x) − f (x).

2. If y = f (x) and �x is an increment in x , then, by definition, dy = f ′(x)�x .
3. If y = f (x) and �x is an increment in x , then the linear approximation formula

states that f (x + �x) ≈ f (x) + f ′(x)�x .
4. The linear approximation to f (x) = √

1 + x near the point a = 0 is
√

1 + x ≈
1 + x .

5. In Example 2 we find that (122)2/3 = 24.6.
6. The error in the linear approximation L(x) = f (x) + f ′(a)�x to the function f

near the point x = a is f (x) − L(x) = �y − dy.
7. d(un) = nun−1.
8. d(sin u) = (cos u) du.
9. d(uv) = u dv + v du.

10. If w = w(z) = zez , then dw = (1 + z)ez dz.

4.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Use Eqs. (11)–(13) of this section to show that the linear function L(x) = f (a)+

f ′(a) · (x − a) of x satisfies the condition

lim
x→a

f (x) − L(x)

x − a
= 0. (20)

2. Any linear function L(x) = mx + b satisfying Eq. (20) is called a linearization
of the function f (x) at the point x = a. Can a function have two different
linearizations at the same point?

3. Can a function have a linearization (as in Question 2) at a point where it is not
differentiable?

4.2 PROBLEMS

In Problems 1 through 16, write dy in terms of x and dx.

1. y = 3x2 − 4

x2
2. y = 2

√
x − 3

3
√

x

3. y = x − √
4 − x3 4. y = 1

x − √
x

5. y = 3x2(x − 3)3/2 6. y = x

x2 − 4

7. y = x(x2 + 25)1/4 8. y = 1

(x2 − 1)4/3

9. y = cos
√

x 10. y = x2 sin x

11. y = sin 2x cos 2x 12. y = cos3 3x
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13. y = sin 2x

3x
14. y = x3e−2x

15. y = 1

1 − x sin x
16. y = ln x

x

In Problems 17 through 24, find—as in Example 1—the linear
approximation L(x) to the given function f (x) near the point
a = 0.

17. f (x) = 1

1 − x
18. f (x) = 1√

1 + x

19. f (x) = (1 + x)2 20. f (x) = (1 − x)3

21. f (x) = (1 − 2x)3/2 22. f (x) = e−x

23. f (x) = sin x 24. f (x) = ln(1 + x)

In Problems 25 through 34, use—as in Example 2—a linear
approximation L(x) to an appropriate function f (x), with an
appropriate value of a, to estimate the given number.

25. 3
√

25 26.
√

102

27. 4
√

15 28.
√

80

29. 65−2/3 30. 803/4

31. cos 43◦ 32. sin 32◦

33. e1/10 34. ln
(

11
10

)
In Problems 35 through 38, compute the differential of each side
of the given equation, regarding x and y as dependent variables
(as if both were functions of some third, unspecified, variable).
Then solve for dy/dx.

35. x2 + y2 = 1 36. xey = 1

37. x3 + y3 = 3xy 38. x ln y = 1

39. Assuming that Dx xk = kxk−1 for any real constant k (which
we shall establish in Chapter 6), derive the linear approxi-
mation formula (1 + x)k ≈ 1 + kx for x near zero.

In Problems 40 through 47, use linear approximations to estimate
the change in the given quantity.

40. The circumference of a circle, if its radius is increased from
10 in. to 10.5 in.

41. The area of a square, if its edge length is decreased from
10 in. to 9.8 in.

42. The surface area of a sphere, if its radius is increased from 5
in. to 5.2 in. (Fig. 4.2.13).

r

FIGURE 4.2.13 The sphere of
Problem 42—area A = 4πr2,
volume V = 4

3 πr3.

h

r

FIGURE 4.2.14 The cylinder
of Problem 43—volume
V = πr2h.

43. The volume of a cylinder, if both its height and its radius are
decreased from 15 cm to 14.7 cm (Fig. 4.2.14).

44. The volume of the conical sandpile of Fig. 4.2.15, if its
radius is 14 in. and its height is increased from 7 in. to 7.1 in.

h

r

FIGURE 4.2.15 The conical
sandpile of Problem 44—
volume V = 1

3 πr2h.

45. The range R = 1
32 v2 sin 2θ of a shell fired at inclination

angle θ = 45◦, if its initial velocity v is increased from
80 ft/s to 81 ft/s.

46. The range R = 1
32 v2 sin 2θ of a projectile fired with initial

velocity v = 80 ft/s, if its initial inclination angle θ is in-
creased from 60◦ to 61◦.

47. The wattage W = RI 2 of a floodlight with resistance R =
10 ohms, if the current I is increased from 3 amperes to
3.1 amperes.

48. The equatorial radius of the earth is approximately 3960 mi.
Suppose that a wire is wrapped tightly around the earth at the
equator. Approximately how much must this wire be length-
ened if it is to be strung all the way around the earth on poles
10 ft above the ground? Use the linear approximation for-
mula!

49. The radius of a spherical ball is measured as 10 in., with a
maximum error of 1

16 in. What is the maximum resulting
error in its calculated volume?

50. With what accuracy must the radius of the ball of Problem
49 be measured to ensure an error of at most 1 in.3 in its
calculated volume?

51. The radius of a hemispherical dome is measured as 100 m
with a maximum error of 1 cm (Fig. 4.2.16). What is the
maximum resulting error in its calculated surface area?

r

FIGURE 4.2.16 The hemisphere
of Problem 51—curved surface area
A = 2πr2.

52. With what accuracy must the radius of a hemispherical dome
be measured to ensure an error of at most 0.01% in its cal-
culated surface area?

In Problems 53 through 60, a function f (x) and a point x = a
are given. Determine graphically an open interval I centered at
a so that the function f (x) and its linear approximation L(x)

differ by less than the given value ε at each point of I .

53. f (x) = x2, a = 1, ε = 0.2

54. f (x) = √
x , a = 1, ε = 0.1

55. f (x) = 1

x
, a = 2, ε = 0.01

56. f (x) = 3
√

x , a = 8, ε = 0.01

57. f (x) = sin x , a = 0, ε = 0.05

58. f (x) = ex , a = 0, ε = 0.05

59. f (x) = sin x , a = π/4, ε = 0.02

60. f (x) = tan x , a = π/4, ε = 0.02
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4.3 INCREASING AND DECREASING FUNCTIONS AND THE MEAN VALUE THEOREM

The significance of the sign of the first derivative of a function is simple but crucial:

f (x) is increasing on an interval where f ′(x) > 0;
f (x) is decreasing on an interval where f ′(x) < 0.

Geometrically, this means that where f ′(x) > 0, the graph of y = f (x) is rising as
you scan it from left to right. Where f ′(x) < 0, the graph is falling. We can clarify the
terms increasing and decreasing as follows.

DEFINITION Increasing and Decreasing Functions
The function f is increasing on the interval I = (a, b) provided that

f (x1) < f (x2)

for all pairs of numbers x1 and x2 in I for which x1 < x2. The function f is
decreasing on I provided that

f (x1) > f (x2)

for all pairs of numbers x1 and x2 for which x1 < x2.

Figure 4.3.1 illustrates this definition. In short, the function f is increasing on
I = (a, b) if the values of f (x) increase as x increases [Fig. 4.3.1(a)]; f is decreasing
on I if the values of f (x) decrease as x increases [Fig. 4.3.1(b)].

a x1 x2 b

f (x1)
f (x2)

f increasing
on (a, b)

(a)

a x1 x2 b

f (x1)
f (x2)

f decreasing
on (a, b)

(b)

FIGURE 4.3.1 (a) An
increasing function and (b) a
decreasing function.

x

y

y = x2

1 2

2

1

3

4

−2 −1

FIGURE 4.3.2 f (x) = x2 is
decreasing for x < 0, increasing for
x > 0.

EXAMPLE 1 As illustrated in Fig. 4.3.2, the simple function f (x) = x2 is decreas-
ing on the interval (−∞, 0) and increasing on the interval (0, +∞). This follows im-
mediately from the elementary fact that u2 < v2 if 0 < u < v. Because f ′(x) = 2x ,
we also see immediately that f ′(x) < 0 on the interval (−∞, 0) and that f ′(x) > 0 on
the interval (0, +∞). But for more general functions, the mean value theorem of this
section is needed to establish the precise relationship between the sign of the derivative
of a function and its increasing-decreasing behavior. ◗

REMARK We speak of a function as increasing or decreasing on an interval, not at
a single point. Nevertheless, if we consider the sign of f ′, the derivative of f , at a
single point, we get a useful intuitive picture of the significance of the sign of the
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derivative. This is because the derivative f ′(x) is the slope of the tangent line at the

x

f '(x) > 0
Graph rising at x

x

f '(x) < 0
Graph falling at x

(a)

(b)

FIGURE 4.3.3 (a) A graph rising at
x and (b) a graph falling at x .

point (x, f (x)) on the graph of f . If f ′(x) > 0, then the tangent line has positive slope.
Therefore, it rises as you scan from left to right. Intuitively, a rising tangent would seem
to correspond to a rising graph and thus to an increasing function. Similarly, we expect
to see a falling graph where f ′(x) is negative (Fig. 4.3.3). One caution: In order to
determine whether a function f is increasing or decreasing, we must examine the sign
of f ′ on a whole interval, not merely at a single point. (See Problem 59.)

The Mean Value Theorem

Although pictures of rising and falling graphs are suggestive, they provide no actual
proof of the significance of the sign of the derivative. To establish rigorously the
connection between a graph’s rising and falling and the sign of the derivative of the
graphed function, we need the mean value theorem, stated later in this section. This
theorem is the principal theoretical tool of differential calculus, and we shall see that it
has many important applications.

A Question As an introduction to the mean value theorem, we pose the following
question. Suppose that P and Q are two points on the surface of the sea, with Q lying
generally to the east of P (Fig. 4.3.4). Is it possible to sail a boat from P to Q, always
sailing roughly east, without ever (even for an instant) sailing in the exact direction
from P to Q? That is, can we sail from P to Q without our instantaneous line of
motion ever being parallel to the line PQ?

The mean value theorem answers this question: No. There will always be at
least one instant when we are sailing parallel to the line PQ, no matter which path we

x

y

P

Q

FIGURE 4.3.4 Can you sail from P
to Q without ever sailing—even for
an instant—in the direction PQ (the
direction of the arrow)?

choose.
To paraphrase: Let the path of the sailboat be the graph of a differentiable func-

tion y = f (x) with endpoints P(a, f (a)) and Q(b, f (b)). Then we say that there
must be some point on this graph where the tangent line (corresponding to the in-
stantaneous line of motion of the boat) to the curve is parallel to the line PQ that
joins the curve’s endpoints. This is a geometric interpretation of the mean value
theorem.

The Geometric Formulation The slope of the line tangent at the point (c, f (c))
(Fig. 4.3.5) is f ′(c), whereas the slope of the line PQ is

f (b) − f (a)

b − a
.

We may think of this last quotient as the average (or mean) value of the slope of the
curve y = f (x) over the interval [a, b]. The mean value theorem guarantees that there
is a point c in (a, b) for which the line tangent to y = f (x) at (c, f (c)) is indeed
parallel to the line PQ. In the language of algebra, there’s a number c in (a, b) such
that

f ′(c) = f (b) − f (a)

b − a
. (1)

A Preliminary Result We first state a “lemma” to expedite the proof of the mean
value theorem. This theorem is called Rolle’s theorem, after Michel Rolle
(1652–1719), who discovered it in 1690. In his youth Rolle studied the emerging
subject of calculus but later renounced it. He argued that the subject was based on
logical fallacies, and he is remembered today only for the single theorem that bears his
name. It is ironic that his theorem plays an important role in the rigorous proofs of
several calculus theorems.

x

y

P(a, f (a))

c

y = f (x)

Q(b, f (b))

Slope f '(c)

FIGURE 4.3.5 The sailboat
problem in mathematical
terminology.
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ROLLE'S THEOREM
Suppose that the function f is continuous on the closed interval [a, b] and is differ-
entiable in its interior (a, b). If f (a) = 0 = f (b), then there exists some number c
in (a, b) such that f ′(c) = 0.

Figure 4.3.6 illustrates the first case in the following proof of Rolle’s theorem.
The idea of the proof is this: Suppose that the smooth graph y = f (x) starts (x = a)

x

y

a bc

f '(c) = 0

FIGURE 4.3.6 The idea of the
proof of Rolle’s theorem. at height zero and ends (x = b) at height zero. Then if it goes up, it must come back

down. But where it stops going up and starts coming back down, its tangent line must
be horizontal. Therefore the derivative is zero at that point.

Proof of Rolle's Theorem Because f is continuous on [a, b ], it must attain both a

x

x

x

FIGURE 4.3.7 The existence of the
horizontal tangent is a consequence
of Rolle’s theorem.

maximum and a minimum value on [a, b] (by the maximum value property of Section
3.5). If f has any positive values, consider its maximum value f (c). Now c is not an
endpoint of [a, b] because f (a) = 0 and f (b) = 0. Therefore c is a point of (a, b).
But we know that f is differentiable at c. So it follows from Theorem 2 of Section 3.5
that f ′(c) = 0.

Similarly, if f has any negative values, we can consider its minimum value f (c)
and conclude much as before that f ′(c) = 0.

If f has neither positive nor negative values, then f is identically zero on [a, b ],
and it follows that f ′(c) = 0 for every c in (a, b).

Thus we see that the conclusion of Rolle’s theorem is justified in every case. ◆

An important consequence of Rolle’s theorem is that between each pair of zeros
of a differentiable function, there is at least one point at which the tangent line is
horizontal. Some possible pictures of the situation are indicated in Fig. 4.3.7.

EXAMPLE 2 Suppose that f (x) = x1/2 − x3/2 on [0, 1]. Find a number c that
satisfies the conclusion of Rolle’s theorem.

Solution Note that f is continuous on [0, 1] and differentiable on (0, 1). Because

c

−0.2

0

0.2

0.4

0 0.4 0.8
x

y

y = x1/2 − x3/2

FIGURE 4.3.8 The number c of
Example 2.

the term x1/2 is present, f is not differentiable at x = 0, but this is irrelevant. Also,
f (0) = 0 = f (1), so all of the hypotheses of Rolle’s theorem are satisfied. Finally,

f ′(x) = 1
2 x−1/2 − 3

2 x1/2 = 1
2 x−1/2(1 − 3x),

so we see that f ′(c) = 0 for c = 1
3 . An accurate graph of f on [0, 1], including c and

the horizontal tangent line, is shown in Fig. 4.3.8. ◗

EXAMPLE 3 Suppose that f (x) = 1−x2/3 on [−1, 1]. Then f satisfies the hypothe-
ses of Rolle’s theorem except for the fact that f ′(0) does not exist. It is clear from the
graph of f that there is no point where the tangent line is horizontal (Fig. 4.3.9). In-
deed,

f ′(x) = −2

3
x−1/3 = − 2

3 3
√

x
,

so f ′(x) �= 0 for x �= 0, and we see that | f ′(x)| → ∞ as x → 0. Hence the graph of

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
x

y

y = 1 − x2 /3

FIGURE 4.3.9 The function
f (x) = 1 − x2/3 of Example 3.

f has a vertical tangent line—rather than a horizontal one—at the point (0, 1). Thus
the conclusion of Rolle’s theorem—like that of any theorem—may fail to hold if any
of its hypotheses are not satisfied. ◗

Now we are ready to state formally and prove the mean value theorem.

The Mean Value Theorem
Suppose that the function f is continuous on the closed interval [a, b] and differ-
entiable on the open interval (a, b). Then

f (b) − f (a) = f ′(c) · (b − a) (2)

for some number c in (a, b).
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COMMENT Because Eq. (2) is equivalent to Eq. (1), the conclusion of the mean value
theorem is that there must be at least one point on the curve y = f (x) at which the
tangent line is parallel to the line joining its endpoints P(a, f (a)) and Q(b, f (b)).

xa x b

y

P(a, f (a))

Q (b, f (b))(x)φ

FIGURE 4.3.10 The construction of the auxiliary
function φ.

Motivation for the Proof of the Mean Value Theorem We consider the auxil-
iary function φ suggested by Fig. 4.3.10. The value of φ(x) is, by definition, the
vertical height difference over x between the point (x, f (x)) on the curve and the cor-
responding point on the line PQ. It appears that a point on the curve y = f (x) where
the tangent line is parallel to PQ corresponds to a maximum or minimum of φ. It’s
also clear that φ(a) = 0 = φ(b), so Rolle’s theorem can be applied to the function φ

on [a, b]. So our plan for proving the mean value theorem is this: First, we obtain a
formula for the function φ. Second, we locate the point c such that φ′(c) = 0. Finally,
we show that this number c is exactly the number needed to satisfy the conclusion of
the mean value theorem in Eq. (2).

Proof of the Mean Value Theorem Because the line PQ passes through
P(a, f (a)) and has slope

m = f (b) − f (a)

b − a
,

the point-slope formula for the equation of a straight line gives us the following equa-
tion for PQ:

y = yline = f (a) + m(x − a).

Thus

φ(x) = ycurve − yline = f (x) − f (a) − m(x − a).

You may verify by direct substitution that φ(a) = 0 = φ(b). And, because φ is
continuous on [a, b] and differentiable on (a, b), we may apply Rolle’s theorem to it.
Thus there is a point c somewhere in the open interval (a, b) at which φ′(c) = 0. But

φ′(x) = f ′(x) − m = f ′(x) − f (b) − f (a)

b − a
.

Because φ′(c) = 0, we conclude that

0 = f ′(c) − f (b) − f (a)

b − a
.

That is,

f (b) − f (a) = f ′(c) · (b − a). ◆

The proof of the mean value theorem is an application of Rolle’s theorem,
whereas Rolle’s theorem is the special case of the mean value theorem in which
f (a) = 0 = f (b).
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EXAMPLE 4 Suppose that we drive from Kristiansand, Norway to Oslo—a road
distance of almost exactly 350 km—in exactly 4 h, from time t = 0 to time t =
4. Let f (t) denote the distance we have traveled at time t , and assume that f is a
differentiable function. Then the mean value theorem implies that

350 = f (4) − f (0) = f ′(c) · (4 − 0) = 4 f ′(c)

and thus that

f ′(c) = 350
4 = 87.5

at some instant c in (0, 4). But f ′(c) is our instantaneous velocity at time t = c, and
87.5 km/h is our average velocity for the trip. Thus the mean value theorem implies
that we must have an instantaneous velocity of exactly 87.5 km/h at least once during
the trip. ◗

The argument in Example 4 is quite general—during any trip, the instantaneous
velocity must at some instant equal the average velocity for the whole trip. For instance,
it follows that if two toll stations are 70 mi apart and you drive between the two in
exactly 1 h, then at some instant you must have been speeding in excess of the posted
limit of 65 mi/h. Speeding tickets have been issued by the Pennsylvania State Police
to speeders on the Pennsylvania Turnpike on exactly such evidence!

Consequences of the Mean Value Theorem
The first of three important consequences of the mean value theorem is the nontrivial
converse of the trivial fact that the derivative of a constant function is identically zero.
That is, we prove that there can be no exotic function that is nonconstant but has a
derivative that is identically zero. In Corollaries 1 through 3 we assume, as in Rolle’s
theorem and the mean value theorem, that f and g are continuous on the closed interval
[a, b] and differentiable on (a, b).

COROLLARY 1 Functions with Zero Derivative
If f ′(x) ≡ 0 on (a, b) (that is, f ′(x) = 0 for all x in (a, b)), then f is a constant
function on [a, b]. In other words, there exists a constant C such that f (x) ≡ C .

Proof Apply the mean value theorem to the function f on the interval [a, x], where
x is a fixed but arbitrary point of the interval (a, b]. We find that

f (x) − f (a) = f ′(c) · (x − a)

for some number c between a and x . But f ′(x) is always zero on the interval (a, b),
so f ′(c) = 0. Thus f (x) − f (a) = 0, and therefore f (x) = f (a).

But this last equation holds for all x in (a, b]. Therefore, f (x) = f (a) for all x
in (a, b] and, indeed, for all x in [a, b]. That is, f (x) has the constant value C = f (a).
This establishes Corollary 1. ◆

Corollary 1 is usually applied in a different but equivalent form, which we state
and prove next.

COROLLARY 2 Functions with Equal Derivatives
Suppose that f ′(x) = g′(x) for all x in the open interval (a, b). Then f and g differ
by a constant on [a, b]. That is, there exists a constant K such that

f (x) = g(x) + K

for all x in [a, b].

Proof Given the hypotheses, let h(x) = f (x) − g(x). Then

h′(x) = f ′(x) − g′(x) = 0
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for all x in (a, b). So, by Corollary 1, h(x) is a constant K on [a, b ]. That is, f (x) −
g(x) = K for all x in [a, b ]; therefore,

f (x) = g(x) + K

for all x in [a, b]. This establishes Corollary 2. ◆

EXAMPLE 5 If f ′(x) = 6e2x and f (0) = 7, what is the function f (x)?

Solution Because Dx(e2x) = 2e2x , we see immediately that one function with deriva-
tive g′(x) = 6e2x is

g(x) = 3e2x .

Hence Corollary 2 implies that there exists a constant K such that

f (x) = g(x) + K = 3e2x + K

on any given interval [a, b] containing zero. But we can find the value of K by substi-
tuting x = 0:

f (0) = 3e0 + K ;
7 = 3 · 1 + K ;

so K = 4. Thus the function f is defined by

f (x) = 3e2x + 4. ◗

The following consequence of the mean value theorem verifies the remarks about
increasing and decreasing functions with which we opened this section.

COROLLARY 3 Increasing and Decreasing Functions
If f ′(x) > 0 for all x in (a, b), then f is an increasing function on [a, b ]. If
f ′(x) < 0 for all x in (a, b), then f is a decreasing function on [a, b ].

Proof Suppose, for example, that f ′(x) > 0 for all x in (a, b). We need to show the
following: If u and v are points of [a, b] with u < v, then f (u) < f (v). We apply the
mean value theorem to f , but on the closed interval [u, v]. This is legitimate because
[u, v] is contained in [a, b], so f satisfies the hypotheses of the mean value theorem
on [u, v] as well as on [a, b]. The result is that

f (v) − f (u) = f ′(c) · (v − u)

for some number c in (u, v). Because v > u and because, by hypothesis, f ′(c) > 0, it
follows that

f (v) − f (u) > 0; that is, f (u) < f (v),

as we wanted to show. The proof is similar in the case that f ′(x) is negative on
(a, b). ◆

The meaning of Corollary 3 is summarized in Fig. 4.3.11. Figure 4.3.12 shows
a graph y = f (x) labeled in accord with this correspondence between the sign of the
derivative f ′(x) and the increasing or decreasing behavior of the function f (x).

EXAMPLE 6 Where is the function f (x) = x2 − 4x + 5 increasing, and where is it
decreasing?

Solution The derivative of f is f ′(x) = 2x −4. Clearly f ′(x) > 0 if x > 2, whereas
f ′(x) < 0 if x < 2. Hence f is decreasing on (−∞, 2) and increasing on (2, +∞), as
we see in Fig. 4.3.13. ◗
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f ′(x) f (x)

Negative Decreasing
Positive Increasing

FIGURE 4.3.11 Corollary 3.

f ' positive:
f increasing

x

y f ' negative:
f decreasing

f ' positive:
f increasing

FIGURE 4.3.12 The significance of the sign of f ′(x).

EXAMPLE 7 Show that the equation ex + x − 2 = 0 has exactly one [real] solution.

0

4

8

0 2 4
x

y

(2, 1)

y = x2 − 4x + 5

FIGURE 4.3.13 The parabola of
Example 6.

Solution A solution of the given equation will be a zero of the function

f (x) = ex + x − 2.

Now f (0) = −1 < 0 while f (1) = e−1 > 0. Because f is continuous (everywhere),
the intermediate value property of continuous functions therefore guarantees that f (x)

has at least one zero x0 in the interval (0, 1). We see this zero in Fig. 4.3.14, but
cannot conclude from graphical evidence alone that there is no other zero somewhere
(perhaps outside the viewing window of the figure).

To prove that there is no other zero, we note that f is an increasing function on
the whole real line. This follows from Corollary 3 and the fact that

f ′(x) = ex + 1 > 1 > 0

because ex > 0 for all x . Hence it follows from the definition of an increasing function

−2

−1

1.5

1

0.5

0

−0.5

−1.5

2

−1 −0.5 0 0.5 1 1.5 2
x

y

y = ex + x − 2

?

FIGURE 4.3.14 The graph
y = ex + x − 2.

that if x < x0, then f (x) < f (x0) = 0, while if x > x0 then f (x) > f (x0) = 0. Thus
x0 is the only zero of f (x) and hence is the one and only real solution of the equation
ex + x − 2 = 0. ◗

EXAMPLE 8 Determine the open intervals on the x-axis on which the function

f (x) = 3x4 − 4x3 − 12x2 + 5

is increasing and those on which it is decreasing.

Solution The derivative of f is

f ′(x) = 12x3 − 12x2 − 24x

= 12x(x2 − x − 2) = 12x(x + 1)(x − 2). (3)

The critical points x = −1, 0, and 2 separate the x-axis into the four open intervals
(−∞, −1), (−1, 0), (0, 2), and (2, +∞) (Fig. 4.3.15). The derivative f ′(x) does not
change sign within any of these intervals, because

• The factor x + 1 in Eq. (3) changes sign only at x = −1,
• The factor 12x changes sign only at x = 0, and
• The factor x − 2 changes sign only at x = 2.

x = −1 x = 0 x = 2

x + 1 > 0
x − 2 < 0

x + 1 < 0
x − 2 < 0

x + 1 > 0
x − 2 > 0

FIGURE 4.3.15 The signs of x + 1 and
x − 2 (Example 8).
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Figure 4.3.15 indicates the signs of x + 1 and x − 2 on each of the four inter-
vals. We illustrate two different methods of determining the sign of f ′(x) on each
interval.

Method 1 The second, third, and fourth columns of the next table record the signs
of the factors in Eq. (3) on each of the four intervals listed in the first column. The
signs of f ′(x) shown in the fifth column are then obtained by multiplication. The sixth
column lists the resulting increasing or decreasing behavior of f on the four intervals.

Interval x + 1 12x x − 2 f ′(x) f

(−∞, −1) − − − − Decreasing
(−1, 0) + − − + Increasing
(0, 2) + + − − Decreasing

(2, +∞) + + + + Increasing

Method 2 Because the derivative f ′(x) does not change sign within any of the four
intervals, we need only calculate its value at a single point in each interval. Whatever
the sign at that point may be, it is the sign of f ′(x) throughout that interval.

In (−∞, −1): f ′(−2) = −96 < 0; f is decreasing.
In (−1, 0): f ′(−0.5) = 7.5 > 0; f is increasing.
In (0, 2): f ′(1) = −24 < 0; f is decreasing.
In (2, +∞): f ′(3) = 144 > 0; f is increasing.

The second method is especially convenient if the derivative is complicated but an
appropriate calculator for computation of its values is available.

Finally, note that the results we have obtained in each method are consistent with
the graph of y = f (x) shown in Fig. 4.3.16. ◗

−1 0 1 2
x

−40

−20

0

20

40

y
(−1, 0)

(0, 5)

(2, −27)

FIGURE 4.3.16 The critical points of the
polynomial of Example 8.

−π 0 π
x

−1

0

1

y

y = x

y = sin x

FIGURE 4.3.17 x and sin x (Example 9).

EXAMPLE 9 The graph in Fig. 4.3.17 suggests that sin x < x for all x > 0. To show
that this is indeed so, it suffices to show that the difference

h(x) = f (x) − g(x) = x − sin x

of the functions f (x) = x and g(x) = sin x is positive-valued for x > 0. But

h′(x) = 1 − cos x > 0

for all x in the interval (0, 2π), where cos x < 1. Hence Corollary 3 implies that h is
an increasing function on the closed interval [0, 2π ]. Because h(0) = 0, it therefore
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follows that h(x) > 0 if 0 < x � 2π . But if x > 2π then certainly

h(x) = x − sin x > 2π − sin x > 0

because | sin x | � 1 for all x . Thus we have proved that

x − sin x = h(x) > 0,

and hence that x > sin x for all x > 0. (Can you tell why it follows from this that
x < sin x for all x < 0?) ◗

4.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. By definition, the function f is increasing on the interval I = (a, b) if f ′(x) > 0
for all x in I .

2. The mean value theorem implies that if the function f is differentiable on (a, b)

and continuous at a and at b, then the line through (a, f (a)) and (b, f (b)) is
parallel to some line tangent to the graph of f .

3. The mean value theorem states that

f (b) − f (a)

b − a
= f ′(c).

4. If f ′(x) = 0 for all x in (a, b), then f (x) = 0 for all x in (a, b).
5. If f ′(x) = g′(x) for all x in (a, b), then there is a constant C such that f (x) =

g(x) + C for all x in (a, b).
6. One consequence of the mean value theorem is that if f ′(x) > 0 for all x in

(a, b), then f is increasing on (a, b).
7. If f (x) = x2 − 4x + 5, then f is increasing on (−∞, 2) and decreasing on

(2, +∞).
8. If f (x) = 3x4 −4x3 −12x2 +5, then f is increasing on (−1, 0) and on (2, +∞),

decreasing on (−∞, −1) and on (0, 2).
9. If x > 0 then sin x < x .

10. If f ′(x) < 0 for all x in (a, b) then f is decreasing on (a, b).

4.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. It’s often said that “what goes up must come down.” Can you translate this com-

mon saying into a mathematical statement? Does it follow from results in this
section?

2. Suppose that f ′(x) > 0 for all x in the open interval (a, b). Why does it follow
that there exists an inverse function g such that g( f (x)) = x for all x in (a, b)?
What is the domain of definition of g?

3. Continuing Question 2, explain why it follows from results in this section that
the function f (x) = ex has an inverse function (g(x) = ln x) that is defined for
all x > 0.

4. Why does it not follow from results in this section that the function f (x) = sin x
has an inverse function g such that g( f (x)) = x for all x? Determine a maximal
closed interval I containing the origin such that there does exist a function g such
that g( f (x)) = x for all x in I . Does your function g agree with the function
sin−1 on your calculator?

5. Repeat Question 4, except with (a) f (x) = tan x ; (b) f (x) = cos x .
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4.3 PROBLEMS

For the functions in Problems 1 through 6, first determine (as
in Example 8) the open intervals on the x-axis on which each
function is increasing and those where it is decreasing. Then use
this information to match the function to its graph, one of the six
shown in Fig. 4.3.18.
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−4 −2 0 2 4
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y
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y
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0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

(a) (b)

(c) (d)

(e) (f)

FIGURE 4.3.18 Problems 1 through 6.

1. f (x) = 4 − x2 2. f (x) = x2 − 2x − 1

3. f (x) = x2 + 4x + 1 4. f (x) = 1
4 x3 − 3x

5. f (x) = 1
3 x3 − 1

2 x2 −2x +1 6. f (x) = 2x − 1
6 x2 − 1

9 x3

In Problems 7 through 10, the derivative f ′(x) and the value
f (0) are given. Use the method of Example 5 to find the function
f (x).

7. f ′(x) = 4x; f (0) = 5 8. f ′(x) = 3
√

x ; f (0) = 4

9. f ′(x) = 1

x2
; f (1) = 1 10. f ′(x) = 6e−3x ; f (0) = 3

In Problems 11 through 24, determine (as in Example 8) the open
intervals on the x-axis on which the function is increasing as well
as those on which it is decreasing. If you have a graphics calcu-
lator or computer, plot the graph y = f (x) to see whether it
agrees with your results.

11. f (x) = 3x + 2 12. f (x) = 4 − 5x

13. f (x) = 8 − 2x2 14. f (x) = 4x2 + 8x + 13

15. f (x) = 6x − 2x2 16. f (x) = x3 − 12x + 17

17. f (x) = x4 − 2x2 + 1

18. f (x) = x

x + 1
[Note: f ′(x) doesn’t change sign at x = −1.

Why?]

19. f (x) = 3x4 + 4x3 − 12x2 20. f (x) = x
√

x2 + 1

21. f (x) = xe−x/2 22. f (x) = x2e−2x

23. f (x) = (x − 1)2e−x 24. f (x) = ln 2x

x
for x > 0

In Problems 25 through 28, show that the given function satis-
fies the hypotheses of Rolle’s theorem on the indicated interval
[a, b ], and find all numbers x in (a, b) that satisfy the conclu-
sion of that theorem.

25. f (x) = x2 − 2x ; [0, 2]
26. f (x) = 9x2 − x4; [−3, 3]
27. f (x) = 2 sin x cos x; [0, π ]
28. f (x) = 5x2/3 − x5/3; [0, 5]
In Problems 29 through 31, show that the given function f does
not satisfy the conclusion of Rolle’s theorem on the indicated in-
terval. Which of the hypotheses does it fail to satisfy?

29. f (x) = 1 − |x |; [−1, 1]
30. f (x) = 1 − (2 − x)2/3; [1, 3]
31. f (x) = xex ; [0, 1]
In Problems 32 through 36, show that the given function f sat-
isfies the hypotheses of the mean value theorem on the indicated
interval, and find all numbers c in that interval that satisfy the
conclusion of that theorem.

32. f (x) = x3; [−1, 1]
33. f (x) = 3x2 + 6x − 5; [−2, 1]
34. f (x) = √

x − 1 ; [2, 5]
35. f (x) = (x − 1)2/3; [1, 2]
36. f (x) = x + 1

x
; [2, 3]

In Problems 37 through 40, show that the given function f satis-
fies neither the hypotheses nor the conclusion of the mean value
theorem on the indicated interval.

37. f (x) = |x − 2|; [1, 4]
38. f (x) = 1 + |x − 1|; [0, 3]
39. f (x) = [[x]] (the greatest integer function); [−1, 1]
40. f (x) = 3x2/3; [−1, 1]
In Problems 41 through 44, show that the given equation has ex-
actly one solution in the indicated interval.

41. x5 + 2x − 3 = 0; [0, 1]
42. e−x = x − 1; [1, 2]
43. x ln x = 3; [2, 4]
44. sin x = 3x − 1; [−1, 1]
45. A car is driving along a rural road where the speed limit is

70 mi/h. At 3:00 P.M. its odometer (measuring distance trav-
eled) reads 8075 mi. At 3:18 P.M. it reads 8100 mi. Prove
that the driver violated the speed limit at some instant be-
tween 3:00 and 3:18 P.M.
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46. Suppose that a car’s speedometer reads 50 mi/h at 3:25 P.M.
and 65 mi/h at 3:35 P.M. Prove that at some instant in this
10-minute time interval the car’s acceleration was exactly 90
mi/h2.

47. Points A and B along Interstate Highway 80 in Nebraska are
60 miles apart. Two cars both pass point A at 9:00 A.M.
and both pass point B at 10:00 A.M. Show that at some
instant between 9:00 and 10:00 A.M. the two cars have
the same velocity. (Suggestion: Consider the difference
h(t) = f (t) − g(t) between the position functions of the
two cars.)

48. Show that the function f (x) = x2/3 does not satisfy the
hypotheses of the mean value theorem on [−1, 27] but
that nevertheless there is a number c in (−1, 27) such
that

f ′(c) = f (27) − f (−1)

27 − (−1)
.

49. Prove that the function

f (x) = (1 + x)3/2 − 3
2 x − 1

is increasing on (0, +∞). Explain carefully how you could
conclude that

(1 + x)3/2 > 1 + 3
2 x

for all x > 0.

50. Suppose that f ′ is a constant function on the interval [a, b].
Prove that f must be a linear function (a function whose
graph is a straight line).

51. Suppose that f ′(x) is a polynomial of degree n − 1 on the
interval [a, b ]. Prove that f (x) must be a polynomial of
degree n on [a, b ].

52. Suppose that there are k different points of [a, b ] at which
the differentiable function f vanishes (is zero). Prove that
f ′ must vanish on at least k − 1 points of [a, b ].

53. (a) Apply the mean value theorem to f (x) = √
x on

[100, 101] to show that
√

101 = 10 + 1

2
√

c

for some number c in (100, 101). (b) Show that if
100 < c < 101, then 10 <

√
c < 10.5, and use this

fact to conclude from part (a) that 10.0475 <
√

101 <

10.0500.

54. Prove that the equation x7 + x5 + x3 +1 = 0 has exactly one
real solution.

55. (a) Show that Dx tan2 x = Dx sec2 x on the open interval
(−π/2, π/2). (b) Conclude that there exists a constant C
such that tan2 x = sec2 x + C for all x in (−π/2, π/2).
Then evaluate C .

56. Explain why the mean value theorem does not apply to the
function f (x) = |x | on the interval [−1, 2].

57. Suppose that the function f is differentiable on the interval
[−1, 2] and that f (−1) = −1 and f (2) = 5. Prove that
there is a point on the graph of f at which the tangent line is
parallel to the line with the equation y = 2x .

58. Let f (x) = x4 − x3 + 7x2 + 3x − 11. Prove that the graph
of f has at least one horizontal tangent line.

59. Let the function g be defined as follows:

g(x) =
⎧⎨
⎩

x

2
+ x2 sin

1

x
if x �= 0,

0 if x = 0.

(a) Show that g′(0) = 1
2 > 0. (b) Sketch the graph of g near

x = 0. Is g increasing on any open interval containing
x = 0? [Answer: No.]

60. Suppose that f is increasing on every closed interval [a, b]
provided that 2 � a < b. Prove that f is increasing on
the unbounded open interval (2, +∞). Note that the prin-
ciple you discover was used implicitly in Example 6 of this
section.

Approximations Problems 61 through 64 illustrate the use of
the mean value theorem to approximate numerical values of func-
tions.

61. Use the method of Example 9 with f (x) = cos x and
g(x) = 1 − 1

2 x2 to show that

cos x > 1 − 1
2 x2

for all x > 0 (Fig. 4.3.19).

−2

−1

0

1

2

−4 −2 0 2 4
x

y
y = cos x

y = g(x)

FIGURE 4.3.19 cos x and
g(x) = 1 − 1

2 x2 (Problem 61).

−2

−1

0

1

2

−4 −2 0 2 4
x

y

y = sin xy = g(x)
y = x

FIGURE 4.3.20 x , sin x , and
g(x) = x − 1

6 x3 (Problem 62).

62. (a) Use the method of Example 9 and the result of Prob-
lem 61 to show that

sin x > x − 1
6 x3

for all x > 0 (Fig. 4.3.20). (b) Use the results of Ex-
ample 9 and part (a) to calculate the sine of a 5◦ angle
accurate to three decimal places.

63. (a) Use the results of Problem 62(a) to show that

cos x < 1 − 1
2 x2 + 1

24 x4

for all x > 0. (b) Use the results of Problem 61 and
part (a) to calculate the cosine of a 10◦ angle accurate to
three decimal places.

64. Let

pn(x) = 1 − x + x2

2! − x3

3! + · · · + (−1)n xn

n!
for each positive integer n.

(a) Use the method of Example 9 to show that e−x >

p1(x) = 1 − x for all x > 0.
(b) Use the result of part (a) to show that e−x < p2(x) =

1 − x + 1
2 x2 for all x > 0.

(c) Use the result of part (b) to show that e−x > p3(x) =
1 − x + 1

2 x2 − 1
6 x3 for all x > 0.

(d) Continue one step at a time in like manner until you have
shown that p7(x) < e−x < p8(x) for all x < 0. Fi-
nally, substitute x = 1 in this inequality to show that
e ≈ 2.718 accurate to three decimal places.
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246 CHAPTER 4 Additional Applications of the Derivative

4.4 THE FIRST DERIVATIVE TEST AND APPLICATIONS

In Section 3.5 we discussed maximum and minimum values of a function defined on
a closed and bounded interval [a, b]. Now we consider extreme values of functions
defined on more general domains, including open or unbounded intervals as well as
closed and bounded intervals.

The distinction between absolute and local extrema is important here. Let c be
a point of the domain D of the function f . Then recall from Section 3.5 that f (c) is
the (absolute) maximum value of f (x) on D provided that f (c) � f (x) for all x in
D, whereas the value f (c) is a local maximum value of f (x) if it is the maximum
value of f (x) on some open interval containing c. Similarly, f (c) is the (absolute)
minimum value of f (x) on D provided that f (c) � f (x) for all x in D; f (c) is a
local minimum value of f (x) if it is the minimum value of f (x) on some open interval

x

y

Maximum

Minimum

FIGURE 4.4.1 Local extrema are
absolute extrema on sufficiently
small intervals.

containing c. Thus a local maximum value is one that is as large as or greater than any
nearby value of f (x), and a local minimum value is one that is as small as or less
than any nearby value. Figure 4.4.1 shows a typical example of a function that has
neither an absolute maximum nor an absolute minimum value. But each of the two
local extrema pictured there is an (absolute) extreme value on a sufficiently small open
interval.

REMARK Absolute extreme values are sometimes called global extreme values, and
local extreme values are sometimes called relative extreme values.

Theorem 2 of Section 3.5 tells us that any extremum of the differentiable function
f on an open interval I must occur at a critical point where the derivative vanishes:

f ′(x) = 0.

But the mere fact that f ′(c) = 0 does not, by itself, imply that the critical value f (c)
is an extreme value of f . Figures 4.4.2 through 4.4.5 illustrate different possibilities
for the nature of f (c): whether it is a local or global maximum or minimum value, or
neither.

A Test for Local Extrema
What we need is a way to test whether, at the critical point x = c, the value f (c) is
actually a maximum or a minimum value of f (x), either local or global. Figure 4.4.6
shows how such a test might be developed. Suppose that the function f is continuous at
c and that c is an interior point of the domain of f —that is, f is defined on some open
interval that contains c. If f is decreasing immediately to the left of c and increasing
immediately to the right, then f (c) should be a local minimum value of f (x). But if

−2

0

2

4

6

8

−2 0 2
x

y y = x2 + 3 (0, 3)

FIGURE 4.4.2 The graph
of f (x) = x2 + 3. The
local minimum value
f (0) = 3 is also the global
minimum value of f (x).

−4

−2

0

2

4

−4 −2 0 2 4
x

y

(1, 4)

y = 4 − (x − 1)2

FIGURE 4.4.3 The graph
of f (x) = 4 − (x − 1)2.

The local maximum value
f (1) = 4 is also the global
maximum value of f (x).

−40

0

40

−4 0 4
x

y

(−1, 5)

(3, −27)

y = x3 − 3x2 − 9x

FIGURE 4.4.4 The graph
of f (x) = x3 − 3x2 − 9x .
The local minimum value
f (3) = −27 clearly is not
the global minimum value.
Similarly, the local
maximum value f (−1) = 5
is not the global maximum
value.

−8

−4

0

4

8

−2 0 2
x

y

(0, 2)
y = x3 + 2

FIGURE 4.4.5 The graph
of f (x) = x3 + 2. The
critical value f (0) = 2 is
neither a global nor a local
extreme value of f (x).
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x

y

ca b

Minimum

f decreasing
f '(x) < 0

f increasing
f '(x) > 0

x

y

ca b

Maximum

f increasing
f '(x) > 0

f decreasing
f '(x) < 0

x

y

ca b

Neither

f increasing
f '(x) > 0

f increasing
f '(x) > 0

FIGURE 4.4.6 The first derivative test.

f is increasing immediately to the left of c and decreasing immediately to its right,
then f (c) should be a local maximum. If f is increasing on both sides or decreasing
on both sides, then f (c) should be neither a maximum value nor a minimum value of
f (x).

Moreover, we know from Corollary 3 in Section 4.3 that the sign of the derivative
f ′(x) determines where f (x) is decreasing and where it is increasing:

• f (x) is decreasing where f ′(x) < 0;
• f (x) is increasing where f ′(x) > 0.

In the following test for local extrema, we say that

• f ′(x) < 0 to the left of c if f ′(x) < 0 on some interval (a, c) of numbers
immediately to the left of c, and that

• f ′(x) > 0 to the right of c if f ′(x) > 0 on some interval (c, b) of numbers
immediately to the right of c,

and so forth. (See Fig. 4.4.7.) Theorem 1 tells us how to use the signs of f ′(x) to the

c

ba

L R

To the
left of c

To the
right of c

FIGURE 4.4.7 Open intervals to
the left and right of the point c.

left and right of the point c to determine whether f (x) has a local maximum or local
minimum value at x = c.

THEOREM 1 The First Derivative Test for Local Extrema
Suppose that the function f is continuous on the interval I and also is differentiable
there except possibly at the interior point c of I .

1. If f ′(x) < 0 to the left of c and f ′(x) > 0 to the right of c, then f (c) is a
local minimum value of f (x) on I .

2. If f ′(x) > 0 to the left of c and f ′(x) < 0 to the right of c, then f (c) is a
local maximum value of f (x) on I .

3. If f ′(x) > 0 both to the left of c and to the right of c, or if f ′(x) < 0 both
to the left of c and to the right of c, then f (c) is neither a maximum nor a
minimum value of f (x).

COMMENT Thus f (c) is a local extremum if the first derivative f ′(x) changes sign
as x increases through c, and the direction of this sign change determines whether f (c)
is a local maximum or a local minimum. A good way to remember the first derivative
test for local extrema is simply to visualize Fig. 4.4.6.

Proof We will prove only part 1; the other two parts have similar proofs. Suppose
that the hypotheses of Theorem 1 hold: that f is continuous on the interval I , that c
is an interior point of I , and that f is differentiable on I except possibly at x = c.
Then there exist two intervals (a, c) and (c, b), each wholly contained in I , such that
f ′(x) < 0 on (a, c) and f ′(x) > 0 on (c, b).

Suppose that x is in (a, b). Then there are three cases to consider. First, if x < c,
then x is in (a, c) and f is decreasing on (a, c ], so f (x) > f (c). Second, if x > c,
then x is in (c, b) and f is increasing on [c, b), so again f (x) > f (c). Finally, if
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x = c, then f (x) = f (c). Thus, for each x in (a, b), f (x) � f (c). Therefore, by
definition, f (c) is a local minimum value of f (x). ◆f incf dec

f decf inc

f decf dec

c

(a)

c

(b)

c

(c)

FIGURE 4.4.8 The three cases in
the first derivative test.

The idea of this proof is illustrated in Fig. 4.4.8. Part (a) shows f decreasing to
the left of c and increasing to the right, so there must be a local minimum at x = c.
Part (b) shows f increasing to the left of c and decreasing to the right, so f (c) is a
local maximum value of f (x). In part (c), the derivative has the same sign on each
side of c, and so there can be no extremum of any sort at x = c.

REMARK Figures 4.4.9 through 4.4.13 illustrate cases in which Theorem 1 applies,
where the interval I is the entire real number line R. In Fig. 4.4.9 through 4.4.11, the
origin c = 0 is a critical point because f ′(0) = 0. In Figs. 4.4.12 and 4.4.13, c = 0 is
a critical point because f ′(0) does not exist.

Classification of Critical Points
Suppose that we have found the critical points of a function. Then we can attempt
to classify them—as local maxima, local minima, or neither—by applying the first
derivative test at each point in turn. Example 1 illustrates a procedure that can be used.

EXAMPLE 1 Find and classify the critical points of the function

f (x) = 2x3 − 3x2 − 36x + 7.

Solution The derivative is

f ′(x) = 6x2 − 6x − 36 = 6(x + 2)(x − 3), (1)

so the critical points [where f ′(x) = 0] are x = −2 and x = 3. These two points
separate the x-axis into the three open intervals (−∞, −2), (−2, 3), and (3, +∞).

−0.8

−0.4

0

0.4

0.8

−1 −0.5 0 0.5 1
x

y

y = x2

FIGURE 4.4.9 f (x) = x2,
f ′(x) = 2x , a local minimum at
x = 0.

−0.8

−0.4

0

0.4

0.8

−1 −0.5 0 0.5 1
x

y
y = −x2

FIGURE 4.4.10 f (x) = −x2,
f ′(x) = −2x , a local maximum at
x = 0.

−0.8

−0.4

0

0.4

0.8

−1 −0.5 0 0.5 1
x

y

y = −x3

FIGURE 4.4.11 f (x) = −x3,
f ′(x) = −3x2, no extremum at
x = 0.

−0.8

−0.4

0

0.4

0.8

−1 −0.5 0 0.5 1
x

y

y = x2 /3

FIGURE 4.4.12 f (x) = x2/3,
f ′(x) = 2

3 x−1/3, a local
minimum at x = 0.

−0.8

−0.4

0

0.4

0.8

−1 −0.5 0 0.5 1
x

y

y = x1/3

FIGURE 4.4.13 f (x) = x1/3,
f ′(x) = 1

3 x−2/3, no extremum
at x = 0.
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The derivative f ′(x) cannot change sign within any of these intervals. One reason is
that the factor x + 2 in Eq. (1) changes sign only at −2, whereas the factor x − 3
changes sign only at 3 (Fig. 4.4.14). As in Example 8 of Section 4.3, we illustrate here
two methods of determining the signs of f ′(x) on the intervals (−∞, −2), (−2, 3),
and (3, +∞).

x − 3 < 0

x = −2

x + 2 < 0

x = 3

x + 2 > 0

x − 3 > 0

FIGURE 4.4.14 The signs of x + 2 and x − 3 (Example 1).

Method 1 The second and third columns of the following table record (from
Fig. 4.4.14) the signs of the factors x + 2 and x − 3 in Eq. (1) on the three intervals
listed in the first column. The signs of f ′(x) in the fourth column are then obtained by
multiplication.

Interval x + 2 x − 3 f ′(x)

(−∞, −2) − − +
(−2, 3) + − −
(3, +∞) + + +

Method 2 Because the derivative f ′(x) does not change sign within any of the three
intervals, we need to calculate its value only at a single point in each interval:

In (−∞, −2): f ′(−3) = 36 > 0; f ′ is positive;
In (−2, 3): f ′(0) = −36 < 0; f ′ is negative;
In (3, +∞): f ′(4) = 36 > 0; f ′ is positive.

f '(x) > 0

x = 3x = −2

f '(x) < 0 f '(x) > 0

f increasing f decreasing f increasing

FIGURE 4.4.15 The three intervals of Example 1.

Figure 4.4.15 summarizes our information about the signs of f ′(x). Because
f ′(x) is positive to the left and negative to the right of the critical point x = −2, the
first derivative test implies that f (−2) = 51 is a local maximum value. Because f ′(x)

is negative to the left and positive to the right of x = 3, it follows that f (3) = −74 is a
local minimum value. The graph of y = f (x) in Fig. 4.4.16 confirms this classification

−80

−40

0

40

80

−4 −2 0 2 4
x

y
−2 3

y = f(x)

FIGURE 4.4.16 y = f (x)

(Example 1).
of the critical points x = −2 and x = 3. ◗

Open-Interval Maximum-Minimum Problems
In Section 3.6 we discussed applied maximum-minimum problems in which the values
of the dependent variable are given by a function defined on a closed and bounded in-
terval. Sometimes, though, the function f describing the variable to be maximized (or
minimized) is defined on an open interval (a, b), possibly an unbounded open inter-
val such as (1, +∞) or (−∞, +∞), and we cannot “close” the interval by adjoining
endpoints. Typically, the reason is that | f (x)| → +∞ as x approaches a or b. But if
f has only a single critical point in (a, b), then the first derivative test can tell us that
f (c) is the desired extreme value and can even determine whether it is a maximum or
a minimum value of f (x).
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EXAMPLE 2 Figure 4.4.17 shows the graph of the function

200 5 10 15
x

y

−5
−1

−0.5

0

0.5

1.5

1
y = 2 ln x

x

e, 2
e( )

FIGURE 4.4.17 The graph

y = 2 ln x

x
.

f (x) = 2 ln x

x
,

which is defined on the open interval (0, +∞). Because

f ′(x) = 2

x
· 1

x
− 2

x2
· ln x = 2

x2
(1 − ln x),

there is a lone critical point at x = e. Note that

• If x < e, then ln x < 1, so f ′(x) > 0 if x < e;
• If x > e, then ln x > 1, so f ′(x) < 0 if x > e.

Therefore the first derivative test implies that f (e) = 2/e is a local maximum
value of f . Indeed, because f is increasing if 0 < x < e and decreasing if x > e, it
follows that 2/e is the absolute maximum value of f . ◗

EXAMPLE 3 Find the (absolute) minimum value of

f (x) = x + 4

x
for 0 < x < +∞.

Solution The derivative is

f ′(x) = 1 − 4

x2
= x2 − 4

x2
. (2)

The roots of the equation

f ′(x) = x2 − 4

x2
= 0

are x = −2 and x = 2. But x = −2 is not in the open interval (0, +∞), so we have
only the critical point x = 2 to consider.

We see immediately from Eq. (2) that

• f ′(x) < 0 to the left of x = 2 (because x2 < 4 there), and
• f ′(x) > 0 to the right of x = 2 (because x2 > 4 there).

Therefore, the first derivative test implies that f (2) = 4 is a local minimum value. We
note also that f (x) → +∞ as either x → 0+ or as x → +∞. Hence the graph of f

x

y

2

(2, 4)

4
x

y = x +

f ' (
x)

> 0

f ' (x) < 0

FIGURE 4.4.18 The graph of the
function of Example 3.

must resemble Fig. 4.4.18, and we see that f (2) = 4 is in fact the absolute minimum
value of f (x) on the entire interval (0, +∞). ◗

EXAMPLE 4 We must make a cylindrical can with volume 125 in.3 (about 2 L) by

2rTop

Bottom

Side

2πr

h

r

h

FIGURE 4.4.19 The parts to make
the cylindrical can of Example 4.

cutting its top and bottom from squares of metal and forming its curved side by bending
a rectangular sheet of metal to match its ends. What radius r and height h of the can will
minimize the total amount of material required for the rectangle and the two squares?

Solution We assume that the corners cut from the two squares, shown in Fig. 4.4.19,
are wasted but that there is no other waste. As the figure shows, the area of the total
amount of sheet metal required is

A = 8r2 + 2πrh.

The volume of the resulting can is then

V = πr2h = 125,

so h = 125/(πr2). Hence A is given as a function of r by

A(r) = 8r2 + 2πr · 125

πr2
= 8r2 + 250

r
, 0 < r < +∞.

The domain of A is the unbounded open interval (0, +∞) because r can have any
positive value, so A(r) is defined for every number r in (0, +∞). But A(r) → +∞ as
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r → 0+ and as r → +∞. So we cannot use the closed-interval maximum-minimum
method. But we can use the first derivative test.

The derivative of A(r) is

d A

dr
= 16r − 250

r2
= 16

r2

(
r3 − 125

8

)
. (3)

Thus the only critical point in (0, +∞) is where r3 = 125
8 ; that is,

r = 3
√

125
8 = 5

2 = 2.5.

We see immediately from Eq. (3) that

• d A/dr < 0 to the left of r = 5
2 , because r3 < 125

8 there, and

• d A/dr > 0 to the right, where r3 > 125
8 .

Therefore, the first derivative test implies that a local minimum value of A(r) on
(0, +∞) is

A

(
5

2

)
= 8 ·

(
5

2

)2

+ 250
5
2

= 150.

Considering that A(r) → +∞ as r → 0+ and as r → +∞, we see that the graph
of A(r) on (0, +∞) looks like Fig. 4.4.20. This clinches the fact that A( 5

2 ) = 150 is
the absolute minimum value of A(r). Therefore, we minimize the amount of material

r

A

5
2

150 A(r) = 8r2 + 250
r

A' (r
) > 0

A' (r) < 0

FIGURE 4.4.20 Graph of the
function of Example 4.

required by making a can with radius r = 2.5 in. and height

h = 125

π(2.5)2
= 20

π
≈ 6.37 (in.).

The total amount of material used is 150 in.2 ◗

EXAMPLE 5 Find the length of the longest rod that can be carried horizontally

2

4 4

2

L1

L2

θ

θ

FIGURE 4.4.21 Carrying a rod
around a corner (Example 5).

around the corner from a hall 2 m wide into one that is 4 m wide.

Solution The desired length is the minimum length L = L1 + L2 of the rod being
carried around the corner in Fig. 4.4.21. We see from the two similar triangles in the
figure that

4

L1
= sin θ and

2

L2
= cos θ,

so
L1 = 4 csc θ and L2 = 2 sec θ.

Therefore, the length L = L1 + L2 of the rod is given as a function of θ by

L(θ) = 4 csc θ + 2 sec θ

on the open interval (0, π/2). Note that L(θ) → +∞ as either θ → 0+ or as θ →
(π/2)−. (Why?)

The derivative of L(θ) is

d L

dθ
= −4 csc θ cot θ + 2 sec θ tan θ

= −4 cos θ

sin2 θ
+ 2 sin θ

cos2 θ
= 2 sin3 θ − 4 cos3 θ

sin2 θ cos2 θ

= (2 cos θ)(tan3 θ − 2)

sin2 θ
. (4)

Hence d L/dθ = 0 exactly when

tan θ = 3
√

2, so θ ≈ 0.90 (rad).

We now see from Eq. (4) and from the graph of the tangent function (Fig. 4.4.22) that

y = tanx

x

y

θ
2
π

2
π−

2
3

FIGURE 4.4.22 y = tan x
(Example 5).
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• d L/dθ < 0 to the left of θ ≈ 0.90, where tan θ <
3
√

2, so tan3 θ < 2, and
• d L/dθ > 0 to the right, where tan3 θ > 2.

Hence the graph of L resembles Fig. 4.4.23. This means that the absolute minimum
value of L—and therefore the maximum length of the rod in question—is about

0.90
2
π

8.32

50

L

dL < 0
dθ

θ

dL > 0
dθ

FIGURE 4.4.23 The graph of L(θ)

(Example 5).

L(0.90) = 4 csc(0.90) + 2 sec(0.90),

approximately 8.32 m. ◗

The method we used in Examples 3 through 5 to establish absolute extrema il-
lustrates the following global version of the first derivative test.

THEOREM 2 The First Derivative Test for Global Extrema
Suppose that f is defined on an open interval I , either bounded or unbounded, and
that f is differentiable at each point of I except possibly at the single critical point c
where f is continuous.

1. If f ′(x) < 0 for all x in I with x < c and f ′(x) > 0 for all x in I with x > c,
then f (c) is the absolute minimum value of f (x) on I .

2. If f ′(x) > 0 for all x in I with x < c and f ′(x) < 0 for all x in I with x > c,
then f (c) is the absolute maximum value of f (x) on I .

The proof of this theorem is essentially the same as that of Theorem 1.

REMARK When the function f (x) has only one critical point c in an open interval I ,
Theorem 2 may apply to tell us either that f (c) is the absolute minimum or that it is
the absolute maximum of f (x) on I . But it is good practice to verify your conclusion
by sketching the graph as we did in Examples 3 through 5.

4.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose that the function f is continuous on the interval I and also is differen-
tiable there except possibly at the interior point c of I . If f ′(x) < 0 to the left
of c and f ′(x) > 0 to the right of c, then f (c) is a local minimum value of f (x)

on I .
2. Suppose that the function f is continuous on the interval I and also is differen-

tiable there except possibly at the interior point c of I . If f ′(x) > 0 both to the
left of c and to the right of c, then f (c) is not an extremum of f .

3. If f (x) = 2x3 − 3x2 − 36x + 7, then f ′(x) cannot change sign on the interval
(−2, 3).

4. If f (x) = 2x3 − 3x2 − 36x + 7, then f (3) is a local maximum value of f .
5. If f (x) = 2x3 − 3x2 − 36x + 7, then f has two critical points.

6. The absolute maximum value of f (x) = x + 4

x
, 0 < x < +∞, is f (2) = 4.

7. The longest rod that can be carried horizontally from a hall 4 meters wide around
the corner into a perpendicular hall 2 meters wide is 4 + 2 = 6 meters.

8. Suppose that f is defined on the open interval I and is differentiable at each point
of I except possibly at the critical point c, where f is continuous. If f ′(x) > 0
for all x in I with x < c and f ′(x) < 0 for all x in I with x > c, then f (c) is the
absolute maximum value of f on I .

9. Suppose that f is defined on the open interval I and is differentiable at each point
of I except possibly at the critical point c, where f is continuous. If f ′(x) < 0
for all x in I with x < c and f ′(x) > 0 for all x in I with x > c, then f (c) is the
absolute minimum value of f on I .
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10. The first derivative test cannot be applied to the function g(x) = |x | on the
interval [−1, 2].

4.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that the function f is continuous on the whole real line R. Sketch a

possible graph—if any—of f in each of the following three cases.

(a) f has two critical points a and b but neither a local minimum nor a local max-
imum anywhere. Discuss separately the various possibilities: as to whether
f is, or is not, differentiable at a and/or b.

(b) f has three critical points but only a single local extremum.
(c) f has three local minima but only a single local maximum.

2. Suppose that f is a cubic polynomial with positive leading coefficient. List the
possibilities—with a typical graph of each—for the number and types of critical
points of f .

3. Repeat Question 2 for a quartic (fourth-degree) polynomial.
4. Repeat Question 2 for a quintic (fifth-degree) polynomial.
5. Can you show that the function f must have an absolute minimum value if f is

a polynomial of even degree with positive leading coefficient?
6. Can you show that the function f must have an absolute minimum value if

lim
x→a+ f (x) = lim

x→b− f (x) = +∞
and f is continuous on the open interval (a, b)?

4.4 PROBLEMS

Apply the first derivative test to classify each of the critical points
of the functions in Problems 1 through 16 (local or global, max-
imum or minimum, or not an extremum). If you have a graphics
calculator or computer, plot y = f (x) to see whether the ap-
pearance of the graph corresponds to your classification of the
critical points.

1. f (x) = x2 − 4x + 5 2. f (x) = 6x − x2

3. f (x) = x3 − 3x2 + 5 4. f (x) = x3 − 3x + 5

5. f (x) = x3 − 3x2 + 3x + 5

6. f (x) = 2x3 + 3x2 − 36x + 17

7. f (x) = 10 + 60x + 9x2 − 2x3

8. f (x) = 27 − x3 9. f (x) = x4 − 2x2

10. f (x) = 3x5 − 5x3 11. f (x) = x + 9

x

12. f (x) = x2 + 2

x
13. f (x) = xe−2x

14. f (x) = x2e−x/3 15. f (x) = (x + 4)2e−x/5

16. f (x) = 1 − ln x

x
for x > 0

In Problems 17 through 26, find and classify the critical points of
the given function in the indicated open interval. You may find it
useful to construct a table of signs as in Example 1.

17. f (x) = sin2 x ; (0, 3) 18. f (x) = cos2 x ; (−1, 3)

19. f (x) = sin3 x ; (−3, 3) 20. f (x) = cos4 x ; (0, 4)

21. f (x) = sin x − x cos x ; (−5, 5)

22. f (x) = cos x + x sin x ; (−5, 5)

23. f (x) = ln x

x2
; (0, 5)

24. f (x) = ln(1 + x)

1 + x
; (0, 5)

25. f (x) = ex sin x ; (−3, 3)

26. f (x) = x3e−x−x2
; (−3, 3)

In Problems 27 through 50, which are applied maximum-
minimum problems, use the first derivative test to verify your an-
swer.

27. Determine two real numbers with difference 20 and mini-
mum possible product.

28. A long rectangular sheet of metal is to be made into a rain
gutter by turning up two sides at right angles to the remain-
ing center strip (Fig. 4.4.24). The rectangular cross section
of the gutter is to have area 18 in.2 Find the minimum possi-
ble width of the sheet.

A = 18 (in.2)

FIGURE 4.4.24 The
rectangular cross
section of the gutter
of Problem 28.

29. Find the point (x, y) on the line 2x + y = 3 that is closest to
the point (3, 2).
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30. You must construct a closed rectangular box with volume
576 in.3 and with its bottom twice as long as it is wide
(Fig. 4.4.25). Find the dimensions of the box that will mini-
mize its total surface area.

x2x

FIGURE 4.4.25 The box
of Problem 30.

31. Repeat Problem 30, but use an open-topped rectangular box
with volume 972 in.3

32. An open-topped cylindrical pot is to have volume 125 in.3

What dimensions will minimize the total amount of material
used in making this pot (Fig. 4.4.26)? Neglect the thickness
of the material and possible wastage.

h

r

Atop = πr2

πAside = 2 rh

FIGURE 4.4.26 The cylinder
of Problems 32, 33, 38, and 39.

33. An open-topped cylindrical pot is to have volume 250 cm3

(Fig. 4.4.26). The material for the bottom of the pot costs
4/c/cm2; that for its curved side costs 2/c/cm2. What dimen-
sions will minimize the total cost of this pot?

34. Find the point (x, y) on the parabola y = 4 − x2 that is
closest to the point (3, 4). [Suggestion: The cubic equation
that you should obtain has a small integer as one of its roots.
Suggestion: Minimize the square of the distance.]

35. Show that the rectangle with area 100 and minimum perime-
ter is a square.

36. Show that the rectangular solid with a square base, volume
1000, and minimum total surface area is a cube.

37. A box with a square base and an open top is to have vol-
ume 62.5 in.3 Neglect the thickness of the material used to
make the box, and find the dimensions that will minimize the
amount of material used.

38. You need a tin can in the shape of a right circular cylinder of
volume 16π cm3 (Fig. 4.4.26). What radius r and height h
would minimize its total surface area (including top and bot-
tom)?

39. The metal used to make the top and bottom of a cylindrical
can (Fig. 4.4.26) costs 4/c/in.2; the metal used for the sides
costs 2/c/in.2 The volume of the can must be exactly 100 in.3.
What dimensions of the can would minimize its total cost?

40. Each page of a book will contain 30 in.2 of print, and
each page must have 2-in. margins at top and bottom and a
1-in. margin at each side. What is the minimum possible
area of such a page?

41. What point or points on the curve y = x2 are nearest the
point (0, 2)? [Suggestion: The square of a distance is mini-
mized exactly when the distance itself is minimized.]

42. What is the length of the shortest line segment lying wholly
in the first quadrant tangent to the graph of y = 1/x and with
its endpoints on the coordinate axes?

43. A rectangle has area 64 cm2. A straight line is to be drawn
from one corner of the rectangle to the midpoint of one of
the two more distant sides. What is the minimum possible
length of such a line?

44. An oil can is to have volume 1000 in.3 and is to be shaped
like a cylinder with a flat bottom but capped by a hemi-
sphere (Fig. 4.4.27). Neglect the thickness of the material
of the can, and find the dimensions that will minimize the
total amount of material needed to construct it.

h

r

r2πA = 2

FIGURE 4.4.27 The oil
can of Problem 44.

2

4 4

2

x

FIGURE 4.4.28 Carrying
a rod around a corner
(Problem 45).

45. Find the exact length L of the longest rod that can be carried
horizontally around a corner from a corridor 2 m wide into
one 4 m wide. Do this by minimizing the length of the rod
in Fig. 4.4.28 by minimizing the square of that length as a
function of x .

46. Find the length of the shortest ladder that will reach from the
ground, over a wall 8 ft high, to the side of a building 1 ft
behind the wall. That is, minimize the length L = L1 + L 2

shown in Fig. 4.4.29.

Wall

x

8

1

y

Ground

L1

L2

FIGURE 4.4.29 The ladder
of Problem 46.

47. A sphere with fixed radius a is inscribed in a pyramid with
a square base so that the sphere touches the base of the
pyramid and also each of its four sides. Show that the
minimum possible volume of the pyramid is 8/π times
the volume of the sphere. [Suggestion: Use the two right
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triangles in Fig. 4.4.30 to show that the volume of the
pyramid is

V = V (y) = 4a2 y2

3(y − 2a)
.

This can be done easily with the aid of the angle θ and with-
out the formula for tan(θ/2). ] Don’t forget the domain of
V (y).

y

a

a
θ

θ

FIGURE 4.4.30 Cross section
through the centers of the
sphere and pyramid of
Problem 47.

48. Two noisy discothèques, one four times as noisy as the other,
are located on opposite ends of a block 1000 ft long. What
is the quietest point on the block between the two discos?
The intensity of noise at a point away from its source is pro-
portional to the noisiness and inversely proportional to the
square of the distance from the source.

49. A floored tent with fixed volume V is to be shaped
like a pyramid with a square base and congruent sides
(Fig. 4.4.31). What height y and base edge 2x would mini-
mize its total surface area (including its floor)?

x

y z

FIGURE 4.4.31 The tent
of Problem 49.

50. Suppose that the distance from the building to the wall in
Problem 46 is a and that the height of the wall is b. Show
that the minimal length of the ladder is

Lmin = (
a2/3 + b2/3

)3/2
.

Problems 51 and 52 deal with square-based rectangular boxes.
Such a box is said to be closed if it has both a square base and
a top (as well as four vertical sides), open if it has a base but no
top. (Problems 51 through 55 here are in a certain sense “dual”
to Problems 56 through 60 in Section 3.6. Compare correspond-
ing problems to make sure you see the difference; one will be
a closed-interval maximum-minimum problem and the other an
open-interval maximum-minimum problem.)

51. Show that, among all closed rectangular boxes with square
bases and a given fixed volume, the one with minimal total
surface area is a cube.

52. Show that, among all open rectangular boxes with square
bases and a given fixed volume, the one with minimal total
surface area has height equal to half the length of the edge
of its base.

Problems 53 through 55 deal with cans in the shape of right cir-
cular cylinders. Such a can is said to be closed if it has both a
circular base and a top (as well as a curved side), open if it has
a base but no top.

53. Show that, among all closed cylindrical cans with a given
fixed volume, the one with minimal total surface area has
height equal to the diameter of its base.

54. Show that, among all open cylindrical cans with a given fixed
volume, the one with minimal total surface area has height
equal to the radius of its base.

55. Suppose that the base and curved side of a pop-top soft drink
can have the same thickness. But the top is three times as
thick as the base to prevent ripping when the can is opened.
Show that, among all such cans with a given fixed volume,
the one requiring the least amount (volume) of material to
make—including the triply thick top—has height twice the
diameter of its base. Perhaps this is why soft drink cans look
somewhat taller than vegetable or soup cans.

56. Suppose that you want to construct a closed rectangular box
with a square base and fixed volume V . Each of the six faces
of the box—the base, top, and four vertical sides—costs a
cents per square inch, and gluing each of the 12 edges costs
b cents per inch of edge length. What shape should this box
be in order to minimize its total cost? [Suggestion: Show
that the critical points of the cost function are roots of a cer-
tain quartic equation that you can solve using a computer
algebra system. You may even be able to solve it with pencil
and paper alone; begin by grouping the two terms of highest
degree.]

4.4 INVESTIGATION: Constructing a Candy Box with Lid
A candy maker wants to package jelly beans in boxes each having a fixed volume V .
Each box is to be an open rectangular box with square base of edge length x . (See
Fig. 4.4.32.) In addition, the box is to have a square lid with a two-inch rim. Thus the
box-with-lid actually consists of two open rectangular boxes—the x-by-x-by-y box
itself with height y � 2 (in.) and the x-by-x-by-2 lid (which fits the box very snugly).
Your job as the firm’s design engineer is to determine the dimensions x and y that will

255

www.konkur.in



256 CHAPTER 4 Additional Applications of the Derivative

minimize the total cost of the two open boxes that comprise a single candy box with lid.
Assume that the box-with-lid is to be made using an attractive foil-covered cardboard
that costs $1 per square foot and that its volume is to be V = 400 + 50n cubic inches.
(For your personal design problem, choose an integer n between 1 and 10.)

2

y

x
x

FIGURE 4.4.32 The
square-based candy box
with lid.

r

2

h

FIGURE 4.4.33 The
cylindrical candy box
with lid.

Your next task is to design a cylindrical box-with-lid as indicated in Fig. 4.4.33.
Now the box proper and its lid are both open circular cylinders, but everything else
is the same as in the previous problem—two-inch rim, $1 per square foot foil-covered
cardboard, and volume V = 400+50n. What are the dimensions of the box of minimal
cost? Which is less expensive to manufacture—the optimal rectangular box-with-lid
or the optimal box-with-lid in the shape of a cylinder?

4.5 SIMPLE CURVE SKETCHING

We can construct a reasonably accurate graph of the polynomial function

f (x) = anxn + an−1xn−1 + · · · + a2x2 + a1x + a0 (1)

by assembling the following information.

1. The critical points of f —that is, the points on the graph where the tangent line
is horizontal, so that f ′(x) = 0.

2. The increasing/decreasing behavior of f —that is, the intervals on which f is
increasing and those on which it is decreasing.

3. The behavior of f “at” infinity—that is, the behavior of f as x → +∞ and as
x → −∞.

The same information often is the key to understanding the structure of a graph
that has been plotted with a calculator or computer.

Behavior at Infinity
To carry out the task in item 3, we write f (x) in the form

f (x) = xn

(
an + an−1

x
+ · · · + a1

xn−1
+ a0

xn

)
.

Thus we conclude that the behavior of f (x) as x → ±∞ is much the same as that of
its leading term anxn , because all the terms that have powers of x in the denominator
approach zero as x → ±∞. In particular, if an > 0, then

lim
x→∞ f (x) = +∞, (2)

meaning that f (x) increases without bound as x → +∞. Also

lim
x→−∞ f (x) =

{+∞ if n is even;
−∞ if n is odd.

(3)
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If an < 0, simply reverse the signs on the right-hand sides in Eqs. (2) and (3). It
follows that the graph of any (nonconstant) polynomial function exhibits one of the
four “behaviors as x → ±∞” that are illustrated in Fig. 4.5.1.

x x

y

y
y

y

1 2 3 4 1 2 3 4

10

20
20
10

(a)  Northwest-northeast if n is
      even and an > 0

(b)  Southwest-southeast if n is
      even and an < 0

(c)  Southwest-northeast if n is
      odd and an > 0

(d)  Northwest-southeast if n is
      odd and an < 0

−2
−10

20

40

−20

100
200
300

−100
−200
−300−40

−20

−10
−20
−30
−40

−1

x x1 2 2 43 4 5−2 −4 −2−1

−3 −2 −1−3

FIGURE 4.5.1 The behavior of polynomial graphs as x → ±∞.

Critical Points
Every polynomial, such as f (x) in Eq. (1), is differentiable everywhere. So the
critical points of f (x) are the roots of the polynomial equation f ′(x) = 0—that is,
solutions of

nanxn−1 + (n − 1)an−1xn−2 + · · · + 2a2x + a1 = 0. (4)

Sometimes we can find all (real) solutions of such an equation by factoring, but most
often in practice we must resort to numerical methods aided by calculator or computer.

Increasing/Decreasing Behavior
Suppose that we have somehow found all the (real) solutions c1, c2, . . . , ck of Eq. (4).

c1 c2 c3 ck − 1 ck

x

FIGURE 4.5.2 The zeros of f ′(x)

divide the x-axis into intervals on
which f ′(x) does not change sign.

Then these solutions are the critical points of f . If they are arranged in increasing
order, as in Fig. 4.5.2, then they separate the x-axis into the finite number of open
intervals

(−∞, c1), (c1, c2), (c2, c3), . . . , (ck−1, ck), (ck, +∞)

that also appear in the figure. The intermediate value property applied to f ′(x) tells
us that f ′(x) can change sign only at the critical points of f , so f ′(x) has only
one sign on each of these open intervals. It is typical for f ′(x) to be negative on
some intervals and positive on others. Moreover, it’s easy to find the sign of f ′(x)

on any one such interval I : We need only substitute any convenient number in I
into f ′(x).

Once we know the sign of f ′(x) on each of these intervals, we know where f
is increasing and where it is decreasing. We then apply the first derivative test to find
which of the critical values are local maxima, which are local minima, and which are
neither—merely places where the tangent line is horizontal. With this information, the
knowledge of the behavior of f as x → ±∞, and the fact that f is continuous, we can
sketch its graph. We plot the critical points (ci , f (ci )) and connect them with a smooth
curve that is consistent with our other data.
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It may also be helpful to plot the y-intercept (0, f (0)) and also any x-intercepts
that are easy to find. But we recommend (until inflection points are introduced in
Section 4.6) that you plot only these points—critical points and intercepts—and rely
otherwise on the increasing and decreasing behavior of f .

EXAMPLE 1 Sketch the graph of f (x) = x3 − 27x .

Solution Because the leading term is x3, we see that

lim
x→+∞ f (x) = +∞ and lim

x→−∞ f (x) = −∞.

Moreover, because

f ′(x) = 3x2 − 27 = 3(x + 3)(x − 3), (5)

we see that the critical points where f ′(x) = 0 are x = −3 and x = 3. The correspond-
ing points on the graph of f are (−3, 54) and (3, −54). The critical points separate
the x-axis into the three open intervals (−∞, −3), (−3, 3), and (3, +∞) (Fig. 4.5.3).

f '(x) > 0

f (−3) = 54

f '(x) < 0 f '(x) > 0

f (x) increasing f (x) increasing

x = 3x = −3

f (3) = −54

f (x) decreasing

FIGURE 4.5.3 The three open intervals of Example 1.

To determine the increasing or decreasing behavior of f on these intervals, let’s sub-
stitute a number in each interval into the derivative in Eq. (5):

On (−∞, −3): f ′(−4) = (3)(−1)(−7) = 21 > 0; f is increasing;

On (−3, 3): f ′(0) = (3)(3)(−3) = −27 < 0; f is decreasing;

On (3, +∞): f ′(4) = (3)(7)(1) = 21 > 0; f is increasing.

We plot the critical points and the intercepts (0, 0), (3
√

3, 0), and (−3
√

3, 0). Then we
use the information about where f is increasing or decreasing to connect these points
with a smooth curve. Remembering that there are horizontal tangents at the two critical
points, we obtain the graph shown in Fig. 4.5.4.

+ + + + + − − − − − − − − + + + + +

x1 2 3 4 5 6−1−2−3−4−5−6

25

50

−25

−50

(0, 0)
x-intercept
y-intercept

(−3 3, 0)
x-intercept

3, 0)(3
x-intercept

(−3, 54)
Local maximum

(3, −54)
Local minimum

y = x3 − 27x

y

FIGURE 4.5.4 Graph of the function of Example 1.
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In the figure we use plus and minus signs to mark the sign of f ′(x) in each
interval. This makes it clear that (−3, 54) is a local maximum and that (3, −54) is a
local minimum. The limits we found at the outset show that neither is global. ◗

EXAMPLE 2 Sketch the graph of f (x) = 8x5 − 5x4 − 20x3.

Solution Because

f ′(x) = 40x4 − 20x3 − 60x2 = 20x2(x + 1)(2x − 3), (6)

the critical points where f ′(x) = 0 are x = −1, x = 0, and x = 3
2 . These three critical

points separate the x-axis into the four open intervals shown in Fig. 4.5.5.

f '(x) > 0

f (−1) = 7

f '(x) < 0

f (x) increasing

x = 0x = −1

f (0) = 0

3
2

x =

3
2

f ( ) ≈ −32.06

f (x) decreasing

f '(x) < 0

f (x) decreasing

f '(x) > 0

f (x) increasing

FIGURE 4.5.5 The four open intervals of Example 2.

This time, let’s determine the increasing or decreasing behavior of f by recording
the signs of the factors in Eq. (6) on each of the subintervals shown in Fig. 4.5.5. In
this way we get the following table:

Interval x + 1 20x2 2x − 3 f ′(x) f

(−∞, −1) − + − + Increasing

(−1, 0) + + − − Decreasing(
0, 3

2

) + + − − Decreasing(
3
2 , +∞) + + + + Increasing

The points on the graph that correspond to the critical points are (−1, 7), (0, 0), and
(1.5, −32.0625).

We write f (x) in the form

f (x) = x3(8x2 − 5x − 20)

in order to use the quadratic formula to find the x-intercepts. They turn out to be
(−1.30, 0), (1.92, 0) (the abscissas are given only approximately), and the origin
(0, 0). The latter is also the y-intercept. We apply the first derivative test to the in-
creasing or decreasing behavior shown in the table. It follows that (−1, 7) is a local
maximum, (1.5, −32.0625) is a local minimum, and (0, 0) is neither. The graph re-
sembles the one shown in Fig. 4.5.6. ◗

In Example 3, the function is not a polynomial. Nevertheless, the methods of this
section suffice for sketching its graph.

EXAMPLE 3 Sketch the graph of

f (x) = x2/3(x2 − 2x − 6) = x8/3 − 2x5/3 − 6x2/3.

Solution The derivative of f is

f ′(x) = 8
3 x5/3 − 10

3 x2/3 − 12
3 x−1/3

= 2
3 x−1/3(4x2 − 5x − 6) = 2(4x + 3)(x − 2)

3x1/3
. (7)

The tangent line is horizontal at the two critical points x = − 3
4 and x = 2, where the

numerator in the last fraction of Eq. (7) is zero (and the denominator is not). Moreover,
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y

2 x1−2 −1

20

10

−10

−20

−30

y = 8x5 − 5x4 − 20x3

(1.5, −32.06)
Local minimum

Horizontal
tangent
(0, 0)

(1.92, 0)

(−1, 7)
Local maximum

(−1.30, 0)

+++ +++++−−−−−−−−−−−−−−−+++++++++ + −+ +

FIGURE 4.5.6 Graph of the function of Example 2.

because of the presence of the factor x1/3 in the denominator, | f ′(x)| → +∞ as
x → 0. Thus x = 0 (a critical point because f is not differentiable there) is a point
where the tangent line is vertical. These three critical points separate the x-axis into
the four open intervals shown in Fig. 4.5.7.

f '(x) < 0 f '(x) > 0

f (x) decreasing

x = 0

f (0) = 0

3
4

x = −

3
4

f (− ) ≈ −3.25

f (x)
increasing

f '(x) < 0

f (x) decreasing

f '(x) > 0

f (x) increasing

x = 2

f (2) ≈ −9.52

FIGURE 4.5.7 The four open intervals of Example 3.

We determine the increasing or decreasing behavior of f by substituting a num-
ber from each interval in f ′(x) (Eq. (7)).

On
(−∞, − 3

4

) : f ′(−1) = 2 · (−1)(−3)

3 · (−1)
< 0; f is decreasing;

On
(− 3

4 , 0
) : f ′ (− 1

2

) = 2 · (+1)
(− 5

2

)
3 · (− 1

2

)1/3 > 0; f is increasing;

On (0, 2) : f ′(1) = 2 · (+7)(−1)

3 · (+1)
< 0; f is decreasing;

On (2, +∞) : f ′(3) = 2 · (+15)(+1)

3 · (+3)1/3
> 0; f is increasing.

The three critical points x = − 3
4 , x = 0, and x = 2 give the points (−0.75, −3.25),

(0, 0), and (2, −9.52) on the graph (using approximations where appropriate).
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The first derivative test now shows local minima at (−0.75, −3.25) and at
(2, −9.52); there is a local maximum at (0, 0). Although f ′(0) does not exist, the
function f is continuous everywhere (because it involves only positive integral powers
of x).

We use the quadratic formula to find the x-intercepts. In addition to the origin,
they occur where x2 − 2x − 6 = 0, and thus they are located at (1 − √

7, 0) and
at (1 + √

7, 0). We then plot the approximations (−1.65, 0) and (3.65, 0). Finally, we
note that f (x) → +∞ as x → ±∞. So the graph has the shape shown in Fig. 4.5.8.

◗

1−1

5

−5

−2 2 3 4

−10

10

15

(−1.65, 0)
(−0.75, −3.25)

Local minimum

(0, 0)
Local maximum,
vertical tangent

Local minimum
(2, −9.52)

(3.65, 0)

y

y = x2/3(x2 − 2x − 6)

x

FIGURE 4.5.8 The technique is effective for
nonpolynomial functions, as in Example 3.

Curve Sketching and Solution of Equations
An important application of curve-sketching techniques is the solution of an equation
of the form

f (x) = 0. (8)

The real (as opposed to complex) solutions of this equation are simply the x-intercepts
of the graph of y = f (x). Hence by sketching this graph with reasonable accuracy—
either “by hand” or with a calculator or computer—we can glean information about the
number of real solutions of Eq. (8) as well as their approximate locations.

For example, Figs. 4.5.9 through 4.5.11 show the graphs of the cubic polynomials
on the left-hand sides of the equations

x3 − 3x + 1 = 0, (9)

x3 − 3x + 2 = 0, (10)

x3 − 3x + 3 = 0. (11)

Note that the polynomials differ only in their constant terms.
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y = x3 − 3x + 1

FIGURE 4.5.9 y = x3 − 3x + 1.
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FIGURE 4.5.10 y = x3 − 3x + 2.
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FIGURE 4.5.11 y = x3 − 3x + 3.
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It is clear from Fig. 4.5.9 that Eq. (9) has three real solutions, one in each of the
intervals [−2, −1], [0, 1], and [1, 2]. These solutions could be approximated graphi-
cally by successive magnification or analytically by Newton’s method. (As we have
previously mentioned, there are even formulas—Cardan’s formulas—for the exact so-
lution of an arbitrary cubic equation, but they are unwieldy and are seldom used except
in computer algebra programs. For example, these formulas yield (via a computer
algebra system) the expressions

x1 =
(

−1 + i
√

3

2

)−1/3

+
(

−1 + i
√

3

2

)1/3

,

x2 =
(

−1 + i
√

3

2

)4/3

+
(

−1 + i
√

3

2

)5/3

, (12)

and

x3 =
(

−1 + i
√

3

2

)2/3

+
(

−1 + i
√

3

2

)7/3

for the three solutions of Eq. (9). Despite the appearance of the imaginary number
i = √−1 in these three expressions, Fig. 4.5.9—with its three x-intercepts—indicates
that all three solutions simplify to ordinary real numbers.)

It appears in Fig. 4.5.10 that Eq. (10) has the two real solutions x = 1 and
x = −2. Once we verify that x = 1 is a solution, then it follows from the factor
theorem of algebra that x − 1 is a factor of x3 − 3x + 2. The other factor can be found
by division (long or synthetic) of x − 1 into x3 − 3x + 2; the quotient is x2 + x − 2.
Thus we see that

x3 − 3x + 2 = (x − 1)(x2 + x − 2) = (x − 1)2(x + 2).

Hence x = 1 is a “double root” and x = −2 is a “single root” of Eq. (10), thereby
accounting for the three solutions that a cubic equation “ought to have.”

We see in Fig. 4.5.11 that Eq. (11) has only one real solution. It is given approx-
imately by x ≈ −2.1038. Problem 55 asks you to divide x + 2.0138 into x3 − 3x + 3
to obtain a factorization of the form

x3 − 3x + 3 ≈ (x + 2.1038)(x2 + bx + c). (13)

The quadratic equation x2 + bx + c = 0 has two complex conjugate solutions, which
are the other two solutions of Eq. (12).

Calculator and Computer Graphing
With a graphing calculator or computer we may construct the graph of a given function
with a few keystrokes. Nevertheless, the viewpoint of this section may be useful in
analyzing and understanding what we see on the screen.

EXAMPLE 4 Figure 4.5.12 shows a computer-generated graph of the function

f (x) = x4 − 5x2 + x + 2. (14)

Three critical points are visible, separating the x-axis into two intervals on which the
function f increases and two on which it decreases. In order to find these critical
points, we need to solve the cubic equation

f ′(x) = 4x3 − 10x + 1 = 0. (15)

For this purpose we could graph the derivative f ′(x) and zoom in on its solutions,

30
x

y

−3 1−2 2−1
−10
−8
−6
−4
−2

0
2
4
6
8

10

FIGURE 4.5.12 y = x4 − 5x2

+ x + 2.
or use Newton’s method to approximate these solutions accurately, or simply use
the “solve” command on our calculator or computer. The approximate solutions
of Eq. (15) thus found are −1.6289, 0.1004, and 1.5285. The corresponding nu-
merical values of y obtained by substitution in Eq. (14) are −5.8554, 2.0501, and
−2.6947. Thus the three critical points that we see on the graph in Fig. 4.5.12 are
(−1.6289, −5.8554), (0.1004, 2.0501), and (1.5285, −2.6947). The function f is
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decreasing on the intervals −∞ < x < −1.6289 and 0.1004 < x < 1.5285 and
increasing on the intervals −1.6289 < x < 0.1004 and 1.55285 < x < ∞. ◗

4.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If f (x) = x3 − 27x , then lim
x→∞ f (x) = +∞.

2. If f (x) = x3 − 27x , then lim
x→−∞ f (x) = +∞.

3. If f (x) = x3 − 27x , then f is increasing on the interval (−3, 3).
4. If f (x) = 8x5 − 5x4 − 20x3, then f is decreasing on (−1, 0).
5. If f (x) = 8x5 − 5x4 − 20x3, then f is decreasing on (0, 1.5).
6. If f (x) = x2/3(x2 − 2x − 6), then f is increasing on (0, 2).
7. If f (x) = x2/3(x2 − 2x − 6), then f has a local minimum at (0, 0).
8. Every local maximum of the function f is also an absolute maximum of f .
9. Cardan’s formulas are formulas for the solution of cubic equations.

10. The equation x3 − 3x + 2 = 0 has exactly two real solutions.

4.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that n is a positive integer and that k is an integer such that

0 � k � n. Does there always exist a polynomial of degree n having exactly k
real zeros? If not, what are the exceptions?

2. Suppose that f (x) is a polynomial of degree n whose graph has p local min-
ima and q local maxima. Explain why p + q < n. Discuss any other neces-
sary restrictions on p and q. For instance, if n = 4 is it possible that p = 3
and q = 0? If n = 5 is it possible that p = 3 and q = 1? Justify your
answers.

3. Someone asserts that “the graphs of any two n1th-degree polynomials with the
same term of highest degree look essentially the same when plotted in a suffi-
ciently large viewing window.” To what extent is this a reasonable claim? Begin
by testing it with two quartic polynomials both having leading term x4. Do you
need to adjust the x-scale, the y-scale, or both, to make the graphs nearly coin-
cide?

4.5 PROBLEMS

In Problems 1 through 4, use behavior “at infinity” to match the
given function with its graph in Fig. 4.5.13.

1. f (x) = x3 − 5x + 2 2. f (x) = x4 − 3x2 + x − 2

3. f (x) = − 1
3 x5 − 3x2 + 3x + 2

4. f (x) = − 1
3 x6 + 2x5 − 3x4 + 1

2 x + 5

−8

−4

0

4

8

−4 −2 0 2 4
x

y

(a) (b) (c) (d)

−8

−4

0

4

8

−4 −2 0 2 4
x

y

−8

−4

0

4

8

−4 −2 0 2 4
x

y

−8

−4

0

4

8

−4 −2 0 2 4
x

y

FIGURE 4.5.13 Problems 1 through 4.
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In Problems 5 through 14 a function y = f (x) and its computer-
generated graph are given. Find both the critical points and the
increasing/decreasing intervals for f (x).

5. y = 2x2 − 10x − 7 (Fig. 4.5.14)

6. y = 27 + 12x − 4x2 (Fig. 4.5.15)

100
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y

−10 5−5
−50
−40
−30
−20
−10

0
10
20
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FIGURE 4.5.14 Problem 5.
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0
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20
30
40
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FIGURE 4.5.15 Problem 6.

7. y = 4x3 − 3x2 − 90x + 23 (Fig. 4.5.16)

8. y = 85 + 70x − 11x2 − 4x3 (Fig. 4.5.17)
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FIGURE 4.5.16 Problem 7.
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FIGURE 4.5.17 Problem 8.

9. y = 3x4 + 4x3 − 36x2 + 40 (Fig. 4.5.18)

10. y = 125 + 120x2 − 2x3 − 9x4 (Fig. 4.5.19)

x
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0
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FIGURE 4.5.18 Problem 9.
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FIGURE 4.5.19 Problem 10.

11. y = 3x5 − 100x3 + 960x (Fig. 4.5.20)

12. y = 2x6 − 87x4 + 600x2 + 3000 (Fig. 4.5.21)

x
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FIGURE 4.5.20 Problem 11.
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FIGURE 4.5.21 Problem 12.

13. y = 3x7 − 84x5 + 448x3 (Fig. 4.5.22)

14. y = 3x8 − 52x6 + 216x4 − 500 (Fig. 4.5.23)
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FIGURE 4.5.22 Problem 13.
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FIGURE 4.5.23 Problem 14.

In Problems 15 through 48, find the intervals on which the func-
tion f is increasing and those on which it is decreasing. Sketch
the graph of y = f (x) and label the local maxima and minima.
Global extrema should be so identified.

15. f (x) = 3x2 − 6x + 5

16. f (x) = 5 − 8x − 2x2

17. f (x) = x3 − 12x

18. f (x) = x3 + 3x

19. f (x) = x3 − 6x2 + 9x

20. f (x) = x3 + 6x2 + 9x

21. f (x) = x3 + 3x2 + 9x

22. f (x) = x3 − 27x

23. f (x) = (x − 1)2(x + 2)2

24. f (x) = (x − 2)2(2x + 3)2

25. f (x) = 3
√

x − x
√

x

26. f (x) = x2/3(5 − x)

27. f (x) = 3x5 − 5x3

28. f (x) = x4 + 4x3

29. f (x) = x4 − 8x2 + 7

30. f (x) = 1

x
31. f (x) = 2x2 − 3x − 9

32. f (x) = 6 − 5x − 6x2

33. f (x) = 2x3 + 3x2 − 12x

34. f (x) = x3 + 4x

35. f (x) = 50x3 − 105x2 + 72x

36. f (x) = x3 − 3x2 + 3x − 1

37. f (x) = 3x4 − 4x3 − 12x2 + 8

38. f (x) = x4 − 2x2 + 1

39. f (x) = 3x5 − 20x3

40. f (x) = 3x5 − 25x3 + 60x

41. f (x) = 2x3 + 3x2 + 6x

42. f (x) = x4 − 4x3

43. f (x) = 8x4 − x8

44. f (x) = 1 − x1/3

45. f (x) = x1/3(4 − x)

46. f (x) = x2/3(x2 − 16)

47. f (x) = x(x − 1)2/3 48. f (x) = x1/3(2 − x)2/3
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In Problems 49 through 54, the values of the function f (x) at its
critical points are given, together with the graph y = f ′(x) of
its derivative. Use this information to construct a sketch of the
graph y = f (x) of the function.

49. f (−3) = 78, f (2) = −47; Fig. 4.5.24

50. f (−2) = 106, f (4) = −110; Fig. 4.5.25
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y = f '(x)

FIGURE 4.5.24 y = f ′(x)

of Problem 49.

y = f '(x)
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FIGURE 4.5.25 y = f ′(x)

of Problem 50.

51. f (−3) = −66, f (2) = 59; Fig. 4.5.26

52. f (−3) = −130, f (0) = 5, f (1) = −2; Fig. 4.5.27

y = f '(x)
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FIGURE 4.5.26 y = f ′(x)

of Problem 51.
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FIGURE 4.5.27 y = f ′(x)

of Problem 52.

53. f (−2) = −107, f (1) = 82, f (3) = 18; Fig. 4.5.28

54. f (−3) = 5336, f (0) = 17, f (2) = 961, f (4) = −495;
Fig. 4.5.29
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FIGURE 4.5.28 y = f ′(x)

of Problem 53.
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FIGURE 4.5.29 y = f ′(x)

of Problem 54.

55. (a) Verify the approximate solution x ≈ −2.0138 of
Eq. (11). (b) Divide x3 − 3x + 3 by x + 2.1038 to obtain the
factorization in Eq. (13). (c) Use the quotient in part (b) to
find (approximately) the complex conjugate pair of solutions
of Eq. (11).

56. Explain why Figs. 4.5.9 and 4.5.10 imply that the cubic
equation x3 − 3x + q = 0 has exactly one real solution if
|q| > 2 but has three distinct real solutions if |q| < 2. What
is the situation if q = −2?

57. The computer-generated graph in Fig. 4.5.30 shows how the
curve

y = [x(x − 1)(2x − 1)]2

looks on any “reasonable” scale with integral units of mea-
surement on the y-axis. Use the methods of this section
to show that the graph really has the appearance shown in
Fig. 4.5.31 (the values on the y-axis are in thousandths), with
critical points at 0, 1

2 , 1
6 (3 ± √

3 ), and 1.

−2

0

2

4

6

−1 0 1 2
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y

FIGURE 4.5.30 The graph
y = [x(x − 1)(2x − 1)]2

on a “reasonable scale”
(Problem 57).
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× 10−3

FIGURE 4.5.31 The graph
y = [x(x − 1)(2x − 1)]2

on a finer scale:
−0.005 � y � 0.005
(Problem 57).

58. Use a computer algebra system to verify that the three ex-
pressions x1, x2, and x3 in Eq. (12) are, indeed, distinct real
solutions of Eq. (9).

Problems 59 and 60 require the use of a graphing calculator or
computer algebra system. If you find it necessary to solve various
equations, you may use either a graphing calculator or a “solve”
command in a computer algebra system.

59. Show first that, on a “reasonable” scale with integral units
of measurement on the y-axis, the graph of the poly-
nomial

f (x) = [
1
6 x(9x − 5)(x − 1)

]4

strongly resembles the graph shown in Fig. 4.5.30, with a
seemingly flat section. Then produce a plot that reveals the
true structure of the graph, as in Fig. 4.5.31. Finally, find
the approximate coordinates of the local maximum and min-
imum points on the graph.

60. This problem pertains to the plausible suggestion that two
polynomials with essentially the same coefficients ought to
have essentially the same roots. (a) Show, nevertheless, that
the quartic equation

f (x) = x4 − 55x3 + 505x2 + 11000x − 110000 = 0

has four distinct real solutions, whereas the “similar” equa-
tion

g(x) = x4 − 55x3 + 506x2 + 11000x − 110000 = 0

has only two distinct real solutions (and two complex con-
jugate solutions). (b) Let h(x) = f (x) + εx2. Note
that if ε = 0 then h(x) = f (x), and if ε = 1 then
h(x) = g(x). Investigate the question of where—between
ε = 0 and ε = 1—the transition from four real solutions of
h(x) = 0 to only two real solutions takes place.
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4.6 HIGHER DERIVATIVES AND CONCAVITY

We saw in Section 4.3 that the sign of the first derivative f ′ of a differentiable function
f indicates whether the graph of f is rising or falling. Here we shall see that the
sign of the second derivative of f , the derivative of f ′, indicates which way the curve
y = f (x) is bending, upward or downward.

Higher Derivatives
The second derivative of f is the derivative of f ′; it is denoted by f ′′, and its value at
x is

f ′′(x) = Dx( f ′(x)) = Dx(Dx f (x)) = D 2
x f (x).

(The superscript 2 is not an exponent but only an indication that the operator Dx is to
be applied twice.) The derivative of f ′′ is the third derivative f ′′′ of f , and

f ′′′(x) = Dx( f ′′(x)) = Dx
(
D 2

x f (x)
) = D 3

x f (x).

The third derivative is also denoted by f (3). More generally, the result of beginning
with the function f and differentiating n times is succession is the nth derivative f (n)

of f , with f (n)(x) = D n
x f (x).

If y = f (x), then the first n derivatives are written in operator notation as

Dx y, D 2
x y, D 3

x y, . . . , D n
x y,

in function notation as

y′(x), y′′(x), y′′′(x), . . . , y(n)(x),

and in differential notation as

dy

dx
,

d2 y

dx2
,

d3 y

dx3
, . . . ,

dn y

dxn
.

The history of the curious use of superscripts in differential notation for higher deriva-
tives involves the metamorphosis

d

dx

(
dy

dx

)
→ d

dx

dy

dx
→ (d)2 y

(dx)2
→ d2 y

dx2
.

EXAMPLE 1 Find the first four derivatives of

f (x) = 2x3 + 1

x2
+ 16x7/2.

Solution Write

f (x) = 2x3 + x−2 + 16x7/2.

Then

f ′(x) = 6x2 − 2x−3 + 56x5/2 = 6x2 − 2

x3
+ 56x5/2,

f ′′(x) = 12x + 6x−4 + 140x3/2 = 12x + 6

x4
+ 140x3/2,

f ′′′(x) = 12 − 24x−5 + 210x1/2 = 12 − 24

x5
+ 210

√
x,

and

f (4)(x) = 120x−6 + 105x−1/2 = 120

x6
+ 105√

x
. ◗
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Example 2 shows how to find higher derivatives of implicitly defined functions.

EXAMPLE 2 Find the second derivative y′′(x) of a function y(x) that is defined
implicitly by the equation

x2 − xy + y2 = 9.

Solution A first implicit differentiation of the given equation with respect to x gives

2x − y − x
dy

dx
+ 2y

dy

dx
= 0,

so
dy

dx
= y − 2x

2y − x
.

We obtain d2 y/dx2 by differentiating implicitly, again with respect to x , using the
quotient rule. After that, we substitute the expression we just found for dy/dx :

d2 y

dx2
= Dx

(
y − 2x

2y − x

)
=

(
dy

dx
− 2

)
(2y − x) − (y − 2x)

(
2

dy

dx
− 1

)
(2y − x)2

=
3x

dy

dx
− 3y

(2y − x)2
=

3x
y − 2x

2y − x
− 3y

(2y − x)2
.

Thus

d2 y

dx2
= −6(x2 − xy + y2)

(2y − x)3
.

We now substitute the original equation, x2 − xy + y2 = 9, for one final simplification:

d2 y

dx2
= − 54

(2y − x)3
.

The somewhat unexpected final simplification is always available when the original
equation is symmetric in x and y. ◗

The Sign of the Second Derivative
Now we shall investigate the significance of the sign of the second derivative. If
f ′′(x) > 0 on the interval I , then the first derivative f ′ is an increasing function
on I , because its derivative f ′′(x) is positive. Thus, as we scan the graph y = f (x)

from left to right, we see the tangent line turning counterclockwise (Fig. 4.6.1). We
describe this situation by saying that the curve y = f (x) is bending upward. Note
that a curve can bend upward without rising, as in Fig. 4.6.2.

y

x

y = f (x)

FIGURE 4.6.1 The graph is bending
upward.

x

y

y = f (x)

FIGURE 4.6.2 Another graph
bending upward.
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If f ′′(x) < 0 on the interval I , then the first derivative f ′ is decreasing on I ,
so the tangent line turns clockwise as x increases. We say in this case that the curve
y = f (x) is bending downward. Figures 4.6.3 and 4.6.4 show two ways this can
happen.

The two cases are summarized in the brief table in Fig. 4.6.5.

y

y = f (x)

x

FIGURE 4.6.3 A graph bending
downward.

x

y

y = f (x)

FIGURE 4.6.4 Another graph
bending downward.

f ′′(x) y = f (x)

Negative Bending downward
Positive Bending upward

FIGURE 4.6.5 Significance of the sign
of f ′′(x) on an interval.

EXAMPLE 3 Figure 4.6.6 shows the graph of the function

−4

−2

0

2

4

−4 −2 0 2 4
x

y

f"(x) < 0
(1, 1)

f"(x) > 0

y = x3 − 3x2 + 3

FIGURE 4.6.6 The graph of
y = x3 − 3x2 + 3 (Example 3).

f (x) = x3 − 3x2 + 3.

Because

f ′(x) = 3x2 − 6x and f ′′(x) = 6x − 6 = 6(x − 1),

we see that

f ′′(x) < 0 for x < 1,

f ′′(x) > 0 for x > 1.

Observe in the figure that the curve bends downward on (−∞, 1) but bends upward on
(1, +∞), consistent with the correspondences in Fig. 4.6.5. ◗

The Second Derivative Test
We know from Section 3.5 that a local extremum of a differentiable function f can
occur only at a critical point where f ′(c) = 0, so the tangent line at the point (c, f (c))
on the curve y = f (x) is horizontal. But the example f (x) = x3, for which x = 0
is a critical point but not an extremum (Fig. 4.6.7), shows that the necessary condition

x

y

y = f (x) = x3

FIGURE 4.6.7 Although
f ′(0) = 0, f (0) is not an extremum.

f ′(c) = 0 is not a sufficient condition from which to conclude that f (c) is an extreme
value of the function f .

Now suppose not only that f ′(c) = 0, but also that the curve y = f (x) is
bending upward on some open interval that contains the critical point x = c. It is
apparent from Fig. 4.6.8(a) that f (c) is a local minimum value. Similarly, f (c) is a
local maximum value if f ′(c) = 0 while y = f (x) is bending downward on some
open interval containing c [Fig. 4.6.8(b)]. But the sign of the second derivative f ′′(x)

tells us whether y = f (x) is bending upward or downward and therefore provides us
with a sufficient condition for a local extremum.

THEOREM 1 Second Derivative Test
Suppose that the function f is twice differentiable on the open interval I containing
the critical point c at which f ′(c) = 0. Then

1. If f ′′(x) > 0 on I , then f (c) is the minimum value of f (x) on I .
2. If f ′′(x) < 0 on I , then f (c) is the maximum value of f (x) on I .
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y

x
(a)

y

x
(b)

y = f (x)

c c

y = f (x)

FIGURE 4.6.8 The second derivative test (Theorem 1). (a) f ′′(x) > 0: tangent turning
counterclockwise; graph bending upward; local minimum at x = c.
(b) f ′′(x) < 0: tangent turning clockwise; graph bending downward; local
maximum at x = c.

Proof We will prove only part 1. If f ′′(x) > 0 on I , then it follows that the first
derivative f ′ is an increasing function on I . Because f ′(c) = 0, we may conclude
that f ′(x) < 0 for x < c in I and that f ′(x) > 0 for x > c in I . Consequently,
the first derivative test of Section 4.4 implies that f (c) is the minimum value of
f (x) on I . ◆

REMARK 1 Rather than memorizing verbatim the conditions in parts 1 and 2 of Theo-
rem 1 (summarized in Fig. 4.6.9), it is easier and more reliable to remember the second
derivative test by visualizing continuously turning tangent lines (Fig. 4.6.8).

REMARK 2 Theorem 1 implies that the function f has a local minimum at the critical

f ′′(x) f (c)

Positive Minimum
Negative Maximum

FIGURE 4.6.9 Significance of the
sign of f ′′(x) on an interval
containing the critical point c.

point c if f ′′(x) > 0 on some open interval about c but a local maximum if f ′′(x) < 0
near c. But the hypothesis on f ′′(x) in Theorem 1 is global in that f ′′(x) is assumed to
have the same sign at every point of the open interval I that contains the critical point
c. There is a strictly local version of the second derivative test that involves only the
sign of f ′′(c) at the critical point c (rather than on a whole open interval). According

x

x

y

x

y

f (x) = x4

f" (0) = 0 — a local minimum

y

f (x) = −x4

f" (0) = 0 — a local maximum

f (x) = x3

f" (0) = 0 — neither a minimum
 nor a maximum

FIGURE 4.6.10 No conclusion is
possible if f ′(c) = 0 = f ′′(c).

to Problem 90, if f ′(c) = 0, then f (c) is a local minimum value of f if f ′′(c) > 0 but
a local maximum if f ′′(c) < 0.

REMARK 3 The second derivative test says nothing about what happens if f ′′(c) = 0
at the critical point c. Consider the three functions f (x) = x4, f (x) = −x4, and
f (x) = x3. For each, f ′(0) = 0 and f ′′(0) = 0. But their graphs, shown in Fig. 4.6.10,
demonstrate that anything can happen at such a point—maximum, minimum, or
neither.

REMARK 4 Suppose that we want to maximize or minimize the function f on the
open interval I , and we find that f has only one critical point in I , a number c at which
f ′(c) = 0. If f ′′(x) has the same sign at all points of I , then Theorem 1 implies that
f (c) is an absolute extremum of f on I —a minimum if f ′′(x) > 0 and a maximum if
f ′′(x) < 0. This absolute interpretation of the second derivative test can be useful in
applied open-interval maximum-minimum problems.

EXAMPLE 3 (continued) Consider again the function f (x) = x3 − 3x2 + 3, for
which

f ′(x) = 3x(x − 2) and f ′′(x) = 6(x − 1).

Then f has the two critical points x = 0 and x = 2, as marked in Fig. 4.6.6. Because
f ′′(x) < 0 for x near zero, the second derivative test implies that f (0) = 3 is a local
maximum value of f . And because f ′′(x) > 0 for x near 2, it follows that f (2) = −1
is a local minimum value. ◗

EXAMPLE 4 An open-topped rectangular box with square base has volume 500 cm3.
Find the dimensions that minimize the total area A of its base and four sides.
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Solution We denote by x the edge length of the square base and by y the height of

x

y

x

FIGURE 4.6.11 The open-topped
box of Example 4.

the box (Fig. 4.6.11). The volume of the box is

V = x2 y = 500, (1)

and the total area of its base and four sides is

A = x2 + 4xy. (2)

When we solve Eq. (1) for y = 500/x2 and substitute this into Eq. (2), we get the area
function

A(x) = x2 + 2000

x
, 0 < x < +∞.

The domain of A is the open and unbounded interval (0, +∞) because x can take on
any positive value; to make the box volume 500, simply choose y = 500/x2. But x
cannot be zero or negative.

The first derivative of A(x) is

A′(x) = 2x − 2000

x2
= 2(x3 − 1000)

x2
. (3)

The equation A′(x) = 0 yields x3 = 1000, so the only critical point of A in (0, +∞)

is x = 10. To investigate this critical point, we calculate the second derivative,

A′′(x) = 2 + 4000

x3
. (4)

Because it is clear that A′′(x) > 0 on (0, +∞), it follows from the second deriva-
tive test and Remark 4 that A(10) = 300 is the absolute minimum value of A(x) on
(0, +∞). Finally, because y = 500/x2, y = 5 when x = 10. Therefore, this absolute
minimum corresponds to a box with base 10 cm by 10 cm and height 5 cm. ◗

Concavity and Inflection Points
A comparison of Fig. 4.6.1 with Fig. 4.6.3 suggests that the question of whether the
curve y = f (x) is bending upward or downward is closely related to the question
of whether it lies above or below its tangent lines. The latter question refers to the
important property of concavity.

DEFINITION Concavity
Suppose that the function f is differentiable at the point a and that L is the line
tangent to the graph y = f (x) at the point (a, f (a)). Then the function f (or its
graph) is said to be

1. Concave upward at a if, on some open interval containing a, the graph of
f lies above L .

2. Concave downward at a if, on some open interval containing a, the graph
of f lies below L .

Figure 4.6.12(a) shows a graph that is concave upward at (a, f (a)). Figure 4.6.12(b)
shows a graph that is concave downward at (a, f (a)).

Theorem 2 establishes the connection between concavity and the sign of the sec-
ond derivative. That connection is the one suggested by our discussion of bending.

THEOREM 2 Test for Concavity
Suppose that the function f is twice differentiable on the open interval I .

1. If f ′′(x) > 0 on I , then f is concave upward at each point of I .
2. If f ′′(x) < 0 on I , then f is concave downward at each point of I .
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x

y

(a) a

(a, f (a))

L

y = f (x)

x

y

(b) a

(a, f (a))

L

y = f (x)

FIGURE 4.6.12 (a) At x = a, f is a
concave upward. (b) At x = a, f is
concave downward.

A proof of Theorem 2 based on the second derivative test is given at the end of
this section.

NOTE The significance of the sign of the first derivative must not be confused with
the significance of the sign of the second derivative. The possibilities illustrated in
Figs. 4.6.13 through 4.6.16 show that the signs of f ′ and f ′′ are independent of each
other.

y

x

FIGURE 4.6.13 f ′(x) > 0,
f increasing; f ′′(x) > 0,
f concave upward.

y

x

FIGURE 4.6.14 f ′(x) > 0,
f increasing; f ′′(x) < 0;
f concave downward.

y

x

FIGURE 4.6.15 f ′(x) < 0,
f decreasing; f ′′(x) > 0,
f concave upward.

y

x

FIGURE 4.6.16 f ′(x) < 0,
f decreasing; f ′′(x) < 0,
f concave downward.

EXAMPLE 3 (continued again) For the function f (x) = x3 − 3x2 + 3, the second
derivative changes sign from positive to negative at the point x = 1. Observe in
Fig. 4.6.6 that the corresponding point (1, 1) on the graph of f is where the curve
changes from bending downward to bending upward. ◗
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Observe that the test for concavity in Theorem 2 says nothing about the case
in which f ′′(x) = 0. A point where the second derivative is zero may or may not
be a point where the function changes from concave upward on one side to concave
downward on the other. But a point like (1, 1) in Fig. 4.6.6, where the concavity does
change in this manner, is called an inflection point of the graph of f . More precisely,
the point x = a where f is continuous is an inflection point of the function f provided
that f is concave upward on one side of x = a and concave downward on the other
side. We also refer to (a, f (a)) as an inflection point on the graph of f .

THEOREM 3 Inflection Point Test
Suppose that the function f is continuous and f ′′ exists on an open interval con-
taining the point a. Then a is an inflection point of f provided that f ′′(x) < 0 on
one side of a and f ′′(x) > 0 on the other side.

The fact that a point where the second derivative changes sign is an inflection
point follows from Theorem 2 and the definition of an inflection point.

REMARK At the inflection point itself, either

• f ′′(a) = 0, or
• f ′′(a) does not exist.

Thus we find inflection points of f by examining the critical points of f ′. Some of the
possibilities are indicated in Fig. 4.6.17. We mark the intervals of upward concavity
and downward concavity by small cups opening upward and downward, respectively.

y

x

Vertical
tangent

Inflection
point

f"(a) = 0,
f '(a) ≠ 0

f"(a) = 0 and
f '(a) = 0

Corner point that's
also an inflection point

FIGURE 4.6.17 Some inflection points.

EXAMPLE 5 Figure 4.6.18 shows the graph of f (x) = (2x2 − 3x − 1)e−x . Two

−2

−0.5

−1.5

0

(1, −2e−1)

(9/2, 26e−9/2)

−1

0.5

1

−1 0 1 2 3 4 5 6 7
x

y
y = (2x2 − 3x − 1)e−x

FIGURE 4.6.18 The graph
y = (2x2 − 3x − 1)e−x

(Example 5).

evident inflection points are marked. Find their coordinates.

Solution We calculate

f ′(x) = (4x − 3)e−x − (2x2 − 3x − 1)e−x = (−2x2 + 7x − 2)e−x

and

f ′′(x) = (−4x + 7)e−x − (−2x2 + 7x − 2)e−x = (2x2 − 11x + 9)e−x .

Because e−x is never zero, it follows that f ′′(x) = 0 only when

2x2 − 11x + 9 = (2x − 9)(x − 1) = 0

—that is, when either x = 1 or x = 9
2 . Only at these two points can f ′′(x) change
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sign. But

f ′′(0) = 9 > 0,

f ′′(2) = −5e−x < 0,

and

f ′′(5) = 4e−5 > 0.

It therefore follows that

f ′′(x) > 0 if x < 1,

f ′′(x) < 0 if 1 < x < 9
2 ,

and

f ′′(x) > 0 if 9
2 < x .

Thus the graph of f (x) = (2x2 − 3x − 1)e−x has inflection points where x = 1 and
where x = 9

2 . These points, marked on the graph in Fig. 4.6.18, have coordinates
(1, −2e−1) and ( 9

2 , 26e−9/2). ◗

Inflection Points and Curve Sketching
Let the function f be twice differentiable for all x . Just as the critical points where
f ′(x) = 0 separate the x-axis into open intervals on which f ′(x) does not change
sign, the possible inflection points where f ′′(x) = 0 separate the x-axis into open
intervals on which f ′′(x) does not change sign. On each of these intervals, the curve
y = f (x) either is bending downward [ f ′′(x) < 0] or is bending upward [ f ′′(x) > 0].
We can determine the sign of f ′′(x) in each of these intervals in either of two ways:

1. Evaluation of f ′′(x) at a typical point of each interval. The sign of f ′′(x) at that
particular point is the sign of f ′′(x) throughout the interval.

2. Construction of a table of signs of the factors of f ′′(x). Then the sign of f ′′(x)

on each interval can be deduced from the table.

These are the same two methods we used in Sections 4.4 and 4.5 to determine the sign
of f ′(x). We use the first method in Example 6 and the second in Example 7.

EXAMPLE 6 Sketch the graph of f (x) = 8x5−5x4−20x3, indicating local extrema,
inflection points, and concave structure.

Solution We sketched this curve in Example 2 of Section 4.5; see Fig. 4.5.6 for the
graph. In that example we found the first derivative to be

f ′(x) = 40x4 − 20x3 − 60x2 = 20x2(x + 1)(2x − 3),

so the critical points are x = −1, x = 0, and x = 3
2 . The second derivative is

f ′′(x) = 160x3 − 60x2 − 120x = 20x(8x2 − 3x − 6).

When we compute f ′′(x) at each critical point, we find that

f ′′(−1) = −100 < 0, f ′′(0) = 0, and f ′′ ( 3
2

) = 225 > 0.

Continuity of f ′′ ensures that f ′′(x) < 0 near the critical point x = −1 and that
f ′′(x) > 0 near the critical point x = 3

2 . The second derivative test therefore tells us
that f has a local maximum at x = −1 and a local minimum at x = 3

2 . We cannot
determine from the second derivative test the behavior of f at x = 0.

Because f ′′(x) exists everywhere, the possible inflection points are the solutions
of the equation

f ′′(x) = 0; that is, 20x(8x2 − 3x − 6) = 0.
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Clearly, one solution is x = 0. To find the other two, we use the quadratic formula to
solve the equation

8x2 − 3x − 6 = 0.

This gives

x = 1
16

(
3 ± √

201
)
,

so x ≈ 1.07 and x ≈ −0.70 are possible inflection points along with x = 0.
These three possible inflection points separate the x-axis into the intervals indi-

cated in Fig. 4.6.19. We check the sign of f ′′(x) on each.

On (−∞, −0.70) : f ′′(−1) = −100 < 0; f is concave downward;
On (−0.70, 0) : f ′′ (− 1

2

) = 25 > 0; f is concave upward;
On (0, 1.07) : f ′′(1) = −20 < 0; f is concave downward;
On (1.07, +∞) : f ′′(2) = 800 > 0; f is concave upward.

f"(x) < 0

Bending down

x = 0x = −0.70 x = 1.07

f"(x) > 0

Bending up

f"(x) < 0

Bending down

f"(x) > 0

Bending up

FIGURE 4.6.19 Intervals of concavity of Example 6.

Thus we see that the direction of concavity of f changes at each of the three
points x ≈ −0.70, x = 0, and x ≈ 1.07. These three points are indeed inflection
points. This information is shown in the graph of f sketched in Fig 4.6.20. ◗

y

2 x1−2 −1

20

10

−10

−20

−30

y = 8x5 − 5x4 − 20x3

Local minimum
(1.5, −32.06)

Horizontal tangent,
inflection point
(0, 0)

(1.92, 0)

Local maximum
(−1, 7)

(−1.3, 0)(−1.3, 0) Inflection point
(−0.70, 4.30)

Inflection point
(1.07, −19.98)

FIGURE 4.6.20 The graph of the function of Example 6.

EXAMPLE 7 Sketch the graph of f (x) = 4x1/3 + x4/3. Indicate local extrema,
inflection points, and concave structure.
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Solution First,

f ′(x) = 4

3
x−2/3 + 4

3
x1/3 = 4(x + 1)

3x2/3
,

so the critical points are x = −1 (where the tangent line is horizontal) and x = 0
(where it is vertical). Next,

f ′′(x) = −8

9
x−5/3 + 4

9
x−2/3 = 4(x − 2)

9x5/3
,

so the possible inflection points are x = 2 (where f ′′(x) = 0) and x = 0 (where f ′′(x)

does not exist).
To determine where f is increasing and where it is decreasing, we construct the

following table.

Interval x + 1 x2/3 f ′(x) f

(−∞, −1) − + − Decreasing
(−1, 0) + + + Increasing
(0, +∞) + + + Increasing

Thus f is decreasing when x < −1 and increasing when x > −1 (Fig. 4.6.21(a)).

x = 0x = −1

f '(x) < 0

f  decreasing

f '(x) > 0

f  increasing

f '(x) > 0

f  increasing

(a)

x = 2x = 0

f "(x) > 0

Bending up

f "(x) < 0

Bending down

f "(x) > 0

Bending up

(b)

FIGURE 4.6.21 (a) Increasing and decreasing intervals of
Example 7. (b) Intervals of concavity of Example 7.

To determine the concavity of f , we construct a table to find the sign of f ′′(x)

on each of the intervals separated by its zeros.

Interval x5/3 x − 2 f ′′(x) f

(−∞, 0) − − + Concave upward
(0, 2) + − − Concave downward

(2, +∞) + + + Concave upward

The table shows that f is concave downward on (0, 2) and concave upward for
x < 0 and for x > 2 (Fig. 4.6.21(b)).

We note that f (x) → +∞ as x → ±∞, and we mark with plus signs the
intervals on the x-axis where f is increasing, minus signs where it is decreasing, cups
opening upward where f is concave upward, and cups opening downward where f is
concave downward. We plot (at least approximately) the points on the graph of f that
correspond to the zeros and discontinuities of f ′ and f ′′; these are (−1, −3), (0, 0),
and (2, 6 3

√
2 ). Finally, we use all this information to draw the smooth curve shown in

Fig. 4.6.22. ◗
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− − − − − + + + + + + +

y

x(0, 0)
Vertical tangent
x- and y-intercept
inflection point

(−1, −3)
Local minimum

(2, 7.6)
Inflection point

y = 4x1/3 + x4/3

FIGURE 4.6.22 The graph of the function of
Example 7.

EXAMPLE 8 The graph of the equation x2 −xy+ y2 = 9 is the rotated ellipse showny

x42−2−4

−4

x2 − xy + y2 = 9

−2

2

4 3 3 )( , 2

3 ), −2− 3(

y = x
2

FIGURE 4.6.23 The ellipse
x2 − xy + y2 = 9 is concave
downward at points above the line
y = 1

2 x , concave upward at points
beneath it.

in Fig. 4.6.23. In Example 2 we saw that if the function y(x) is implicitly defined by
this equation, then

dy

dx
= y − 2x

2y − x
.

Hence y = 2x at any critical point (x, y) at which y′(x) = 0. Substituting y = 2x
into the equation x2 − xy + y2 = 9 readily gives the two points (

√
3 , 2

√
3 ) and

(−√
3 , −2

√
3 ) that are marked in Fig. 4.6.23. We also saw that

d2 y

dx2
= − 54

(2y − x)3
.

It follows that y′′(x) < 0 when 2y − x > 0, so the graph is concave downward at
any point (x, y) at which 2y > x ; that is, at points above the line y = 1

2 x . Similarly,
y′′(x) > 0 when 2y − x < 0, so the graph is concave upward at any point (x, y) at
which 2y < x ; that is, at points below the line y = 1

2 x . (See Fig. 4.6.23.) ◗

Proof of Theorem 2 We will prove only part 1—the proof of part 2 is similar.
Given a fixed point a of the open interval I where f ′′(x) > 0, we want to showy

x

(a, f (a))

a x

y = T(x)

g(x) = f (x) − T(x)
y = f (x)

FIGURE 4.6.24 Illustrating the
proof of Theorem 2.

that the graph y = f (x) lies above the tangent line at (a, f (a)). The tangent line in
question has the equation

y = T (x) = f (a) + f ′(a) · (x − a). (5)

Consider the auxiliary function

g(x) = f (x) − T (x) (6)

illustrated in Fig. 4.6.24. Note first that g(a) = g′(a) = 0, so x = a is a critical point
of g. Moreover, Eq. (5) implies that T ′(x) ≡ f ′(a) and that T ′′(x) ≡ 0, so

g′′(x) = f ′′(x) − T ′′(x) = f ′′(x) > 0

at each point of I . Therefore, the second derivative test implies that g(a) = 0 is the
minimum value of g(x) = f (x) − T (x) on I . It follows that the curve y = f (x) lies
above the tangent line y = T (x). ◆

4.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The second derivative of the function f is Dx( f ′(x)).

2. If f (x) = 2x3 + 1

x2
+ 16x7/2, then f (4)(x) = 120

x6
+ 105√

x
.
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3. If x2 − xy + y2 = 9, then
d2 y

dx2
= 54

(2y − x)3
.

4. If f ′′(x) > 0 on (a, b), then the graph of f is bending downward on (a, b).
5. Suppose that the function f is twice differentiable on the open interval I con-

taining the critical point c at which f ′(c) = 0. If f ′′(x) < 0 on I , then f (c) is
the maximum value of f (x) on I .

6. If f ′′(x) > 0 on (a, b), then the graph of f is concave upward on (a, b).
7. Suppose that the function f is continuous and that f ′′ exists on an open interval

containing the point a. Then a is an inflection point of f provided that f ′′(x) < 0
on one side of a and f ′′(x) > 0 on the other side.

8. The graph of f (x) = 8x5 − 5x4 − 20x3 has exactly three inflection points.
9. The graph of f (x) = 4x1/3 − x4/3 has both a vertical tangent and an inflection

point at (0, 0).
10. The graph of f (x) = 4x1/3 − x4/3 is concave downward on (0, 2).

4.6 CONCEPTS: QUESTIONS AND DISCUSSION

1. Suppose that the function f is differentiable at the point x = c where f ′′(c) = 0.
Does it necessarily follow that the point (c, f (c)) is an inflection point of the
graph of y = f (x)?

2. Suppose that the function f is differentiable except at the point x = c where the
graph of y = f (x) has a vertical tangent line. Does it necessarily follow that the
point (c, f (c)) is an inflection point of the graph of y = f (x)?

3. Suppose that n is a positive integer and that k is an integer such that 0 � k �
n − 2. Does there always exist a polynomial of degree n having exactly k inflec-
tion points? Justify your answer.

4. Can the graph of a function have more inflection points than critical points? Jus-
tify your answer.

4.6 PROBLEMS

Calculate the first three derivatives of the functions given in
Problems 1 through 15.

1. f (x) = 2x4 − 3x3 + 6x − 17

2. f (x) = 2x5 + x3/2 − 1

2x

3. f (x) = 2

(2x − 1)2

4. g(t) = t2 + √
t + 1

5. g(t) = (3t − 2)4/3

6. f (x) = x
√

x + 1 7. h(y) = y

y + 1

8. f (x) = (
1 + √

x
)3

9. g(t) = t2 ln t

10. h(z) = ez

√
z

11. f (x) = sin 3x

12. f (x) = cos2 2x 13. f (x) = sin x cos x

14. f (x) = x2 cos x 15. f (x) = sin x

x

In Problems 16 through 22, calculate dy/dx and d2 y/dx2, as-
suming that y is defined implicitly as a function of x by the given
equation.

16. x2 + y2 = 4 17. x2 + xy + y2 = 3

18. x1/3 + y1/3 = 1 19. y3 + x2 + x = 5

20.
1

x
+ 1

y
= 1 21. sin y = xy

22. sin2 x + cos2 y = 1

In Problems 23 through 30, find the exact coordinates of the in-
flection points and critical points marked on the given graph.

23. The graph of f (x) = x3 − 3x2 − 45x (Fig. 4.6.25)

24. The graph of f (x) = 2x3 − 9x2 − 108x + 200 (Fig. 4.6.26)

−200

−100

0

100

200

−10 −5 0 5 10
x

y

FIGURE 4.6.25 The graph
of f (x) = x3 − 3x2 − 45x
(Problem 23).

−400

−200

0

200

400

−10 −5 0 5 10
x

y

FIGURE 4.6.26 The graph
of f (x) = 2x3 − 9x2 −
108x + 200 (Problem 24).
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25. The graph of f (x) = 4x3−6x2−189x +137 (Fig. 4.6.27)

26. The graph of f (x) = −40x3 − 171x2 + 2550x + 4150
(Fig. 4.6.28)
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FIGURE 4.6.27 The graph
of f (x) = 4x3 − 6x2 −
189x + 137 (Problem 25).
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FIGURE 4.6.28 The graph
of f (x) = −40x3 − 171x2 +
2550x + 4150 (Problem 26).

27. The graph of f (x) = x4 − 54x2 + 237 (Fig. 4.6.29)

28. The graph of f (x) = x4 − 10x3 − 250 (Fig. 4.6.30)
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FIGURE 4.6.29 The graph
of f (x) = x4 − 54x2 − 237
(Problem 27).

−1000

0

1000

−5 0 5 10 15
x

y

FIGURE 4.6.30 The graph
of f (x) = x4 − 10x3 − 250
(Problem 28).

29. The graph of f (x) = 3x5 − 20x4 + 1000 (Fig. 4.6.31)

30. The graph of f (x) = 3x5 − 160x3 (Fig. 4.6.32)

0

−2000

2000

y
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FIGURE 4.6.31 The graph of
f (x) = 3x5 − 20x4 + 1000
(Problem 29).
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FIGURE 4.6.32 The graph
of f (x) = 3x5 − 160x3

(Problem 30).

Apply the second derivative test to find the local maxima and lo-
cal minima of the functions given in Problems 31 through 50, and
apply the inflection point test to find all inflection points.

31. f (x) = x2 − 4x + 3 32. f (x) = 5 − 6x − x2

33. f (x) = x3 − 3x + 1 34. f (x) = x3 − 3x2

35. f (x) = xe−x 36. f (x) = ln x

x
37. f (x) = x5 + 2x 38. f (x) = x4 − 8x2

39. f (x) = x2(x − 1)2 40. f (x) = x3(x + 2)2

41. f (x) = sin x on (0, 2π)

42. f (x) = cos x on (−π/2, π/2)

43. f (x) = tan x on (−π/2, π/2)

44. f (x) = sec x on (−π/2, π/2)

45. f (x) = cos2 x on (−π/2, 3π/2)

46. f (x) = sin3 x on (−π, π)

47. f (x) = 10(x − 1)e−2x

48. f (x) = (x2 − x)e−x

49. f (x) = (x2 − 2x − 1)e−x

50. f (x) = xe−x2

In Problems 51 through 62, rework the indicated problem from
Section 4.4, now using the second derivative test to verify that
you have found the desired absolute maximum or minimum value.

51. Problem 27 52. Problem 28

53. Problem 29 54. Problem 30

55. Problem 31 56. Problem 32

57. Problem 33 58. Problem 36

59. Problem 37 60. Problem 38

61. Problem 39 62. Problem 40

Sketch the graphs of the functions in Problems 63 through 76, in-
dicating all critical points and inflection points. Apply the second
derivative test at each critical point. Show the correct concave
structure and indicate the behavior of f (x) as x → ±∞.

63. f (x) = 2x3 − 3x2 − 12x + 3

64. f (x) = 3x4 − 4x3 − 5

65. f (x) = 6 + 8x2 − x4 66. f (x) = 3x5 − 5x3

67. f (x) = 3x4 − 4x3 − 12x2 − 1

68. f (x) = 3x5 − 25x3 + 60x

69. f (x) = x3(x − 1)4

70. f (x) = (x − 1)2(x + 2)3

71. f (x) = 1 + x1/3 72. f (x) = 2 − (x − 3)1/3

73. f (x) = (x + 3)
√

x 74. f (x) = x2/3(5 − 2x)

75. f (x) = (4 − x) 3
√

x 76. f (x) = x1/3(6 − x)2/3
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In Problems 77 through 82, the graph of a function f (x) is
shown. Match it with the graph of its second derivative f ′′(x)

in Fig. 4.6.33.
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FIGURE 4.6.33

77. See Fig. 4.6.34. 78. See Fig. 4.6.35.
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FIGURE 4.6.34
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FIGURE 4.6.35

79. See Fig. 4.6.36. 80. See Fig. 4.6.37.
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FIGURE 4.6.36
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81. See Fig. 4.6.38. 82. See Fig. 4.6.39.
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FIGURE 4.6.38
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FIGURE 4.6.39

83. (a) Show first that the nth derivative of f (x) = xn is

f (n)(x) ≡ n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1.

(b) Conclude that if f (x) is a polynomial of degree n, then
f (k)(x) ≡ 0 if k > n.

84. (a) Calculate the first four derivatives of f (x) = sin x .
(b) Explain why it follows that Dn+4

x sin x = Dn
x sin x if n is

a positive integer.

85. Suppose that z = g(y) and that y = f (x). Show that

d2z

dx2
= d2z

dy2

(
dy

dx

)2

+ dz

dy
· d2 y

dx2
.

86. Prove that the graph of a quadratic polynomial has no
inflection points.

87. Prove that the graph of a cubic polynomial has exactly one
inflection point.

88. Prove that the graph of a polynomial function of degree 4 has
either no inflection point or exactly two inflection points.

89. Suppose that the pressure p (in atmospheres), volume V
(in cubic centimeters), and temperature T (in kelvins) of n
moles of carbon dioxide (CO2) satisfy van der Waals’ equa-
tion (

p + n2a

V 2

)
(V − nb) = n RT,

where a, b, and R are empirical constants. The following
experiment was carried out to find the values of these con-
stants.

One mole of CO2 was compressed at the constant tem-
perature T = 304 K. The measured pressure-volume (pV )
data were then plotted as in Fig. 4.6.40, with the pV curve
showing an inflection point coinciding with a horizontal tan-
gent at V = 128.1, p = 72.8. Use this information to calcu-
late a, b, and R. [Suggestion: Solve van der Waals’ equation
for p and then calculate dp/dV and d2 p/dV 2.]

p

V

(128.1, 72.8)

FIGURE 4.6.40 A problem
involving van der Waals’
equation.
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90. Suppose that the function f is differentiable on an open in-
terval containing the point c at which f ′(c) = 0 and that the
second derivative

f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
h→0

f ′(c + h)

h

exists. (a) First assume that f ′′(c) > 0. Reason that f ′(c+h)

and h have the same sign if h �= 0 is sufficiently small.
Hence apply the first derivative test to show in this case that
f (c) is a local minimum value of f . (b) Show similarly that
f (c) is a local maximum value of f if f ′′(c) < 0.

Problems 91 and 92 require the use of a graphing calculator or
computer algebra system. Any equations you need to solve may
be solved graphically or by using a “solve” key or command.

91. Figure 4.6.41 shows the graph of the cubic equation

y = 1000x3 − 3051x2 + 3102x + 1050

on a scale with x measured in units and y in tens of thou-
sands. The graph appears to exhibit a single point near

(1, 2000) that is both a critical point and an inflection point.
Nevertheless, this curve “has two real wiggles like a good
cubic should.” Find them! In particular, find the local ex-
trema and inflection point (or points) on this curve. Then
sketch a graph that plainly exhibits all these points—mark
and label each of them.

92. Figure 4.6.42 shows the graph of

y = [x(1 − x)(9x − 7)(4x − 1)]4

on a scale with x and y both measured in units. At first
glance it appears that there is a local maximum near x = 1

2 ,
with “flat spots” along the x-axis to the left and to the
right. But no nonconstant polynomial can have a “flat
spot” where y = 0 on an open interval of the x-axis.
(Why not?) Indeed, this graph actually has seven lo-
cal extrema and six inflection points in the interval 0 �
x � 1. Find approximate coordinates of all thirteen of these
points, then sketch a graph on a scale that makes all these
points evident.
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FIGURE 4.6.41 The cubic graph
of Problem 91.
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FIGURE 4.6.42 The graph of
Problem 92.

4.7 CURVE SKETCHING AND ASYMPTOTES

We now extend the limit concept to include infinite limits and limits at infinity. This
extension will add a powerful weapon to our arsenal of curve-sketching techniques, the
notion of an asymptote to a curve—a straight line that the curve approaches arbitrarily
close in a sense we soon make precise.

Recall from Section 2.3 that f (x) is said to increase without bound, or become
infinite, as x approaches a, and we write

lim
x→a

f (x) = +∞, (1)

provided that f (x) can be made arbitrarily large by choosing x sufficiently close (but
not equal) to a. The statement that f (x) decreases without bound, or becomes neg-
atively infinite, as x → a, written

lim
x→a

f (x) = −∞, (2)

has an analogous definition.
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EXAMPLE 1 It is apparent that

lim
x→−2

1

(x + 2)2
= +∞

because, as x → −2, (x + 2)2 is positive and approaches zero. (See Fig. 4.7.1.) By
contrast,

lim
x→−2

x

(x + 2)2
= −∞

because, as x → −2, the denominator (x + 2)2 is still positive and approaches zero,
but the numerator x is negative. (See Fig. 4.7.2.) Thus when x is very close to −2,
we have in x/(x + 2)2 a negative number close to −2 divided by a very small positive
number. Hence the quotient becomes a negative number of large magnitude. ◗

x

x = −2

420−2−4−6
−5

0

5

10

15

y

1
(x + 2)2

y =

FIGURE 4.7.1
1

(x + 2)2
→ ∞ as

x → −2, and the line x = −2 is a
vertical asymptote.

x

x = −2

420−2−4−6
−15

−10

−5

0

5

y
x

(x + 2)2
y =

FIGURE 4.7.2
x

(x + 2)2
→ −∞

as x → −2, and the line x = −2 is
a vertical asymptote.

One-sided versions of Eqs. (1) and (2) are valid also. For instance, if n is an odd

y

−10
−8
−6
−4
−2

0
2
4
6
8

10

x = −2
1

(x + 2)3
y =

x
420−2−4−6

FIGURE 4.7.3
1

(x + 2)3
has

infinite one-sided limits as x → −2,
and the line x = −2 is a vertical
asymptote.

positive integer, then it is apparent that

lim
x→−2−

1

(x + 2)n
= −∞ and lim

x→−2+
1

(x + 2)n
= +∞,

because (x + 2)n is negative when x is to the left of −2 and positive when x is to the
right of −2. The case n = 3 is illustrated in Fig. 4.7.3.

Vertical Asymptotes
The vertical lines at x = −2 in Figs. 4.7.1 through 4.7.3 are examples of vertical
asymptotes associated with infinite limits. The line x = a is a vertical asymptote of
the curve y = f (x) provided that either

lim
x→a− f (x) = ±∞ (3a)

or

lim
x→a+ f (x) = ±∞ (3b)

or both. It is usually the case that both one-sided limits, rather than only one, are
infinite. If so, we write

lim
x→a

f (x) = ±∞. (3c)
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The geometry of a vertical asymptote is illustrated by the graphs in Figs. 4.7.1

x

y

x = 1

FIGURE 4.7.4 A ”right-hand only”
vertical asymptote.

through 4.7.3. In each case, as x → −2 and f (x) → ±∞, the point (x, f (x)) on the
curve approaches the vertical asymptote x = −2 and the shape and direction of the
curve are better and better approximated by the asymptote.

Figure 4.7.4 shows the graph of a function whose left-hand limit is zero at x = 1.
But the right-hand limit there is +∞, which explains why the line x = 1 is a vertical
asymptote for this graph. The right-hand limit in Fig. 4.7.5 does not even exist, but
because the left-hand limit at x = 1 is −∞, the vertical line at x = 1 is again a vertical
asymptote.

A vertical asymptote typically appears in the case of a rational function f (x) =
p(x)/q(x) at a point x = a where q(a) = 0 but p(a) �= 0. (See Examples 4 through
8 later in this section.)

Limits at Infinity
In Section 4.5 we discussed infinite limits at infinity in connection with the behavior
of a polynomial as x → ±∞. There is also such a thing as a finite limit at infinity. We

x

y x = 1

FIGURE 4.7.5 The behavior of the
graph to its left produces the vertical
asymptote.

say that f (x) approaches the number L as x increases without bound and write

lim
x→+∞ f (x) = L (4)

provided that |f (x) − L| can be made arbitrarily small (close to zero) merely by choos-
ing x sufficiently large. That is, given ε > 0, there exists M > 0 such that

x > M implies | f (x) − L| < ε. (5)

The statement that

lim
x→−∞ f (x) = L

has a definition of similar form—merely replace the condition x > M with the condi-
tion x < −M .

The analogues for limits at infinity of the limit laws of Section 2.2 all hold, in-
cluding, in particular, the sum, product, and quotient laws. In addition, it is not difficult
to show that if

lim
x→+∞ f (x) = L and lim

x→+∞ g(x) = ±∞,

then

lim
x→+∞

f (x)

g(x)
= 0.

It follows from this result that

lim
x→+∞

1

xk
= 0 (6)

for any choice of the positive rational number k.
Using Eq. (6) and the limit laws, we can easily evaluate limits at infinity of ratio-

nal functions. The general method is this: First divide each term in both the numerator
and the denominator by the highest power of x that appears in any of the terms. Then
apply the limit laws.

EXAMPLE 2 Find

lim
x→+∞ f (x) if f (x) = 3x3 − x

2x3 + 7x2 − 4
.
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Solution We begin by dividing each term in the numerator and denominator by x3:

lim
x→+∞

3x3 − x

2x3 + 7x2 − 4
= lim

x→+∞

3 − 1

x2

2 + 7

x
− 4

x3

=
lim

x→+∞

(
3 − 1

x2

)

lim
x→+∞

(
2 + 7

x
− 4

x3

) = 3 − 0

2 + 0 − 0
= 3

2
.

The same computation, but with x → −∞, also gives the result

lim
x→−∞ f (x) = 3

2
. ◗

EXAMPLE 3 Find lim
x→+∞(

√
x + a − √

x ).

Solution We use the familiar “divide-and-multiply” technique with the conjugate of√
x + a − √

x :

lim
x→+∞

(√
x + a − √

x
) = lim

x→+∞
(√

x + a − √
x

) ·
√

x + a + √
x√

x + a + √
x

= lim
x→+∞

a√
x + a + √

x
= 0. ◗

Horizontal Asymptotes
In geometric terms, the statement

lim
x→+∞ f (x) = L

means that the point (x, f (x)) on the curve y = f (x) approaches the horizontal line
y = L as x → +∞. In particular, with the numbers M and ε of the condition
in Eq. (5), the part of the curve for which x > M lies between the horizontal lines
y = L − ε and y = L + ε (Fig. 4.7.6). Therefore, we say that the line y = L is a
horizontal asymptote of the curve y = f (x) if either

lim
x→+∞ f (x) = L or lim

x→−∞ f (x) = L .

x

y

M

y = L

y = f (x)

y = L − ∋

y = L + ∋

FIGURE 4.7.6 Geometry of the definition of horizontal
asymptote.
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EXAMPLE 4 Figure 4.7.7 shows the graph of the function f (x) = 4e2x/(1 + ex)2.

x

y = 4

60 1 2 3 4 5
0

1

2

3

4

5

6

y

4e2x

(1 + ex)2
y =

FIGURE 4.7.7 The graph

y = 4e2x

(1 + ex )2
.

Upon dividing numerator and denominator by e2x , we find that

f (x) = 4e2x

(1 + ex)2
= 4

(e−x + 1)2
→ 4

as x → +∞. Thus the curve y = 4e2x/(1 + ex)2 has the line y = 4 as a horizontal
asymptote. ◗

EXAMPLE 5 Figure 4.7.8 shows the graph of the function f (x) = e−x/5 sin 2x . Be-
cause |sin 2x | � 1 for all x and e−x/5 = 1/(ex/5) → 0 as x → +∞, the squeeze law
of limits implies that e−x/5 sin 2x → 0 as x → +∞. Thus the curve y = e−x/5 sin 2x
has the x-axis y = 0 as a horizontal asymptote. ◗

EXAMPLE 6 Sketch the graph of f (x) = x/(x − 2). Indicate any horizontal or

0
x

y

5 2010 15

0

−1

0.5

−0.5

1
y = e−x/5 sin 2x

y = e−x/5

y = −e−x/5

FIGURE 4.7.8 The graph
y = e−x/5 sin 2x .

vertical asymptotes.

Solution First we note that x = 2 is a vertical asymptote because | f (x)| → +∞ as
x → 2. Also,

lim
x→±∞

x

x − 2
= lim

x→±∞
1

1 − 2

x

= 1

1 − 0
= 1.

So the line y = 1 is a horizontal asymptote. The first two derivatives of f are

f ′(x) = − 2

(x − 2)2
and f ′′(x) = 4

(x − 2)3
.

Neither f ′(x) nor f ′′(x) is zero anywhere, so the function f has no critical points and
no inflection points. Because f ′(x) < 0 for x �= 2, we see that f (x) is decreasing
on the open intervals (−∞, 2) and (2, +∞). And because f ′′(x) < 0 for x < 2 and
f ′′(x) > 0 for x > 2, the graph of f is concave downward on (−∞, 2) and concave
upward on (2, +∞). The graph of f appears in Fig. 4.7.9. ◗

Horizontal
asymptote
y = 1

Vertical asymptote
x = 2

x

y

y = x
x − 2

FIGURE 4.7.9 The graph for
Example 6.

EXAMPLE 7 Let’s reexamine the function

f (x) = x

(x + 2)2

284

www.konkur.in



Curve Sketching and Asymptotes SECTION 4.7 285

whose graph was shown in Fig. 4.7.2. We note that

lim
x→∞

x

(x + 2)2
= lim

x→∞

1

x(
1 + 2

x

)2 = 0,

so the x-axis y = 0 is a horizontal asymptote of the graph y = f (x). We must change
the viewing window to see clearly the behavior of this curve for x > 0. With the
window −10 < x < 40, −0.25 < y < 0.25 of Fig. 4.7.10 we see that f (x) appears to
attain a local maximum value near the point where x = 2 before approaching zero as
x → ∞. Indeed, upon differentiating f and simplifying the result, we see that

f ′(x) = 2 − x

(x + 2)3
,

so the indicated maximum point on the curve is (2, 1
8 ). The second derivative of f is

x

y 0

−0.2

0.1

−0.1

0.2

10 20−10 30 400 50

y = x
(x + 2)2

(2, )1
8

(4, )1
9

FIGURE 4.7.10
x

(x + 2)2
→ 0 as

x → ∞, so the x-axis y = 0 is a
horizontal asymptote.

f ′′(x) = 2(x − 4)

(x + 2)4
,

and it follows that the inflection point apparent in Fig. 4.7.10 is at (4, 1
9 ). ◗

Curve-Sketching Strategy
The curve-sketching techniques of Sections 4.5 and 4.6, together with those of this
section, can be summarized as a list of steps. If you follow these steps, loosely rather
than rigidly, you will obtain a qualitatively accurate sketch of the graph of a given
function f :

1. Solve the equation f ′(x) = 0 and also find where f ′(x) does not exist. This gives
the critical points of f . Note whether the tangent line is horizontal, vertical, or
nonexistent at each critical point.

2. Determine the intervals on which f is increasing and those on which it is de-
creasing.

3. Solve the equation f ′′(x) = 0 and also find where f ′′(x) does not exist. These
points are the possible inflection points of the graph.

4. Determine the intervals on which the graph of f is concave upward and those on
which it is concave downward.

5. Find the y-intercept and the x-intercepts (if any) of the graph.
6. Plot and label the critical points, possible inflection points, and intercepts.
7. Determine the asymptotes (if any), discontinuities (if any), and especially the be-

havior of f (x) and f ′(x) near discontinuities of f . Also determine the behavior
of f (x) as x → +∞ and as x → −∞.

8. Finally, join the plotted points with a curve that is consistent with the informa-
tion you have gathered. Remember that corner points are rare and that straight
sections of graph are even rarer.

You may follow these steps in any convenient order and omit any that present
major computational difficulties. Many problems require fewer than all eight steps;
see Example 6. But Example 8 requires them all.

EXAMPLE 8 Sketch the graph of

f (x) = 2 + x − x2

(x − 1)2
.

Solution We notice immediately that

lim
x→1

f (x) = +∞,
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because the numerator approaches 2 as x → 1 and the denominator approaches zero
through positive values. So the line x = 1 is a vertical asymptote. Also,

lim
x→±∞

2 + x − x2

(x − 1)2
= lim

x→±∞

2

x2
+ 1

x
− 1(

1 − 1

x

)2 = −1,

so the line x = −1 is a horizontal asymptote (in both the positive and the negative
directions).

Next we apply the quotient rule and simplify to find that

f ′(x) = x − 5

(x − 1)3
.

Thus the only critical point in the domain of f is x = 5, and we plot the point
(5, f (5)) = (5, − 9

8 ) on a convenient coordinate plane and mark the horizontal tan-
gent there. To determine the increasing or decreasing behavior of f , we use both the
critical point x = 5 and the point x = 1 (where f ′ is not defined) to separate the x-axis
into open intervals. The following table shows the results:

Interval (x − 1)3 x − 5 f ′(x) f

(−∞, 1) − − + Increasing
(1, 5) + − − Decreasing

(5, +∞) + + + Increasing

After some simplifications, we find the second derivative to be

f ′′(x) = 2(7 − x)

(x − 1)4
.

The only possible inflection point is at x = 7, corresponding to the point (7, − 10
9 ) on

the graph. We use both x = 7 and x = 1 (where f ′′ is undefined) to separate the x-axis
into open intervals. The concave structure of the graph can be deduced with the aid of
the next table.

Interval (x − 1)4 7 − x f ′′(x) f

(−∞, 1) + + + Concave upward
(1, 7) + + + Concave upward

(7, +∞) + − − Concave downward

The y-intercept of f is (0, 2), and the equation 2 + x − x2 = 0 readily yields
the x-intercepts (−1, 0) and (2, 0). We plot these intercepts, sketch the asymptotes,
and finally sketch the graph with the aid of the two tables; their information now is
symbolized along the x-axis in Fig. 4.7.11. ◗

Slant Asymptotes
Not all asymptotes are horizontal or vertical—some are inclined. The nonvertical line
y = mx + b is an asymptote for the curve y = f (x) provided that either

lim
x→+∞ [ f (x) − (mx + b)] = 0 (7a)

or

lim
x→−∞ [ f (x) − (mx + b)] = 0 (7b)

(or both). These conditions mean that as x → +∞ or as x → −∞ (or both), the
vertical distance between the point (x, f (x)) on the curve and the point (x, mx + b)

on the line approaches zero.
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x

y

+ + + + − − − + + +− + + + + + + +

9
8

)

y = −1: horizontal asymptote

(−1, 0)
x-intercept

(0, 2)
y -intercept

(2, 0)
x -intercept

(5, −
local and
global
minimum

(7, − 10
9

)

inflection
point

y = 2 + x − x2

(x − 1)2

x = 1:
vertical
asymptote

FIGURE 4.7.11 Graphing the function of Example 8.

Suppose that f (x) = p(x)/q(x) is a rational function for which the degree of
p(x) is greater by 1 than the degree of q(x). Then, by long division of q(x) into p(x),
we find that f (x) has the form

f (x) = mx + b + g(x)

where m �= 0 and
lim

x→±∞ g(x) = 0.

Thus the nonvertical line y = mx + b is an asymptote of the graph of y = f (x). Such
an asymptote is called a slant asymptote.

EXAMPLE 9 Sketch the graph of

f (x) = x2 + x − 1

x − 1
.

Solution The long division suggested previously takes the form shown next.

x + 2

x − 1 ) x2 + x − 1

x2 − x

2x − 1

2x − 2

1

Thus

f (x) = x + 2 + 1

x − 1
.

So y = x + 2 is a slant asymptote of the curve. Also,

lim
x→1

| f (x)| = +∞,

so x = 1 is a vertical asymptote. The first two derivatives of f are

f ′(x) = 1 − 1

(x − 1)2
= x(x − 2)

(x − 1)2
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and

f ′′(x) = 2

(x − 1)3
.

It follows that f has critical points at x = 0 and at x = 2 but no inflection points.
The sign of f ′ tells us that f is increasing on (−∞, 0) and on (2, +∞), decreasing
on (0, 1) and on (1, 2). Examination of f ′′(x) reveals that f is concave downward on
(−∞, 1) and concave upward on (1, +∞). In particular, f (0) = 1 is a local maximum
value and f (2) = 5 is a local minimum value. The graph of f looks much like the one
in Fig. 4.7.12. ◗

(0, 1)
Local maximum
y -intercept

x = 1: vertical asymptote

(2, 5)
Local minimum

y = x + 2:
asymptote

y = x2 + x − 1
x − 1

x

y

FIGURE 4.7.12 A function with slant
asymptote y = x + 2 (Example 9).

Calculator/Computer Graphing
Instead of using concepts of calculus to construct a graph from scratch, we can go the
other way. That is, we can begin with a graph plotted by a calculator or computer, and
then use a calculator to analyze the graph and refine our understanding of it. In Sections
1.3 and 1.4 we discussed the fact that a calculator or computer graph can sometimes
be misleading or incomplete. But now we can use calculus—and in particular the
computation of critical points and inflection points—to make sure that the machine-
generated graph exhibits all of its important features. Moreover, with graphing and
automatic solution techniques we can investigate graphs of functions that would be too

40
x

y

−4
−10

0

−5

5

10

15

20

FIGURE 4.7.13 y =
x4 − 5x2 − 5x + 7

2x3 − 2x + 1
.

complicated to study without a calculator or computer.

EXAMPLE 10 Figure 4.7.13 shows a computer-generated graph of the function

f (x) = x4 − 5x2 − 5x + 7

2x3 − 2x + 1
. (8)

It appears likely to have a vertical asymptote somewhere near x = −1. To test this
hypothesis, we need to know where the denominator in (8) is zero. The graph of this
denominator, shown in Fig. 4.7.14, indicates that the equation 2x3 − 2x + 1 = 0
has a single real solution near x = −1.2. We could zoom in graphically to show
that the corresponding vertical asymptote is still closer to x = −1.19, and a
calculator or computer Solve command yields the solution x ≈ −1.1915 accurate
to four decimal places.

Noting that the degree of the numerator in (8) exceeds that of the denominator,
we find by long division that

f (x) = 1

2
x + −4x2 − 11

2 x + 7

2x3 − 2x + 1
.

Thus the graph y = f (x) has the slant asymptote y = 1
2 x (Fig. 4.7.15).

20
x

y = 2x3 − 2x + 1

y

−2 1−1
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 4.7.14 Graph of the
denominator in (8).
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To investigate the critical points of f (x), we calculate the derivative

40
x

y

−6 −2 2−4
−5

15

10

5

0

xy = 1
2

FIGURE 4.7.15 Now we see both
the vertical asymptote and the slant
asymptote y = 1

2 x .

f ′(x) = 2x6 + 4x4 + 24x3 − 32x2 − 10x + 9

(2x3 − 2x + 1)2
. (9)

The critical points of f (x) are the zeros of the numerator of f ′(x), together with the
zero of the denominator that yields the vertical asymptote. The graph of the numerator,
shown in Fig. 4.7.16, indicates that the equation

2x6 + 4x4 + 24x3 − 32x2 − 10x + 9 = 0

has four real solutions, near the points x = −2.3, −0.6, 0.5, and 1.1. We could zoom
in closer to each of these solutions, or use a calculator or computer Solve command
to get the approximations x ≈ −2.3440, −0.5775, 0.4673, and 1.0864 that agree with
the overall structure of the graph shown in Fig. 4.7.13, where four critical points with
horizontal tangent lines are apparent.

The leftmost critical point x ≈ −2.3440 deserves closer examination. In
Fig. 4.7.15 it appears likely to lie just to the left of the point where the left branch

x
0 1 2 3 4−4

60

40

20

0

−20

−40
y

−60

−80

−100

−120 −3 −2 −1

FIGURE 4.7.16 Graph of the
numerator in (9).

of the graph y = f (x) crosses the slant asymptote y = 1
2 x . The zoom shown in

Fig. 4.7.17 bears out this observation.
Finally, an examination of the original graph y = f (x) in Fig. 4.7.13 suggests

the approximate locations of three inflection points in the first quadrant. But if the
graph is to approach the slant asymptote as x → −∞, then Fig. 4.7.17 suggests the
presence of a fourth inflection point somewhere to the left of the leftmost critical point.
(Why?) To investigate this possibility, we calculate the second derivative

f ′′(x) = 2(−16x6 − 66x5 + 120x4 + 34x3 − 18x2 − 42x + 13)

(2x3 − 2x + 1)3
. (10)

The inflection points of y = f (x) have x-coordinates given by the zeros of the nu-
merator in (10). The graph of this numerator, shown in Fig. 4.7.18, indicates that the
equation

2(−16x6 − 66x5 + 120x4 + 34x3 − 18x2 − 42x + 13) = 0

has four real solutions—a negative one near −5.5 as well as three positive solutions
between 0 and 2 that correspond to the visually apparent first-quadrant inflection points
in Fig. 4.7.13. We could zoom in closer to each of these solutions, or use a calculator
or computer Solve command to get the approximations −5.4303, 0.3152, 0.6503,
and 1.3937. The larger view shown in Fig. 4.7.19 convinces us that we’ve found all
the inflection points of y = f (x). In particular, we see that y = f (x) is concave
upward to the left of the inflection point x ≈ −5.4303, where the denominator in (10)
is negative (why?), and is concave downward just to its right (consistent with what we
see in Fig. 4.7.17).

x

y

−3.5 −3 −2.5 −2 −1.5
−2

−1.5

−1

−0.5

xy = 1
2

y = f(x)

FIGURE 4.7.17 Near the leftmost
critical point.

0
x

y

−8 −6 −4 −2 42
−100
−80
−60
−40
−20

0
20
40
60
80

100

FIGURE 4.7.18 Graph of the
numerator in (10).

y

−4

10

8

6

4

2

0

−2

× 104

0
x

−8 −6 −4 −2 42

FIGURE 4.7.19 Larger view of the
graph of the numerator in (10).
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This thorough analysis of the graph of the function f of Eq. (8) involves a certain
amount of manual labor—just to calculate and simplify the derivatives in (9) and (10)
unless we use a computer algebra system for this task—but would be very challenging
without the use of a graphing calculator or computer. ◗

4.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If the function f increases without bound as x → a, then lim
x→a

f (x) = +∞.

2. lim
x→−2

x

(x + 2)2
= +∞.

3. The graph of f (x) = 1

x − 1
has a vertical asymptote with equation x = 1.

4. lim
x→∞

3x3 − x

2x3 + 7x2 − 4
= 2

3
.

5. The line y = L is a horizontal asymptote of f (x) if lim
x→L

f (x) = +∞.

6. The graph of f (x) = x

(x + 2)2
has no horizontal asymptote.

7. If f (x) = 2 + x − x2

(x − 1)2
, then f ′(x) = x − 5

(x − 1)3
.

8. The graph of

f (x) = x2 + x − 1

x − 1

has only one asymptote and exactly two extrema.

9. If f (x) = x2 + x − 1

x − 1
, then f ′′(x) = 2

(x − 1)3
.

10. A graph cannot have both a vertical asymptote and a slant asymptote.

4.7 CONCEPTS: QUESTIONS AND DISCUSSION
1. Can you sketch the graph of a function that has two distinct critical points that

are not separated by an inflection point? Does such a function exist?
2. Does the graph of a polynomial always have an inflection point? Or does it

depend upon whether the degree n of the polynomial is even or odd? Begin by
discussing separately the cases n = 2, 3, 4, and 5.

3. Can the graph of a polynomial have an asymptote? Does the graph of a rational
function always have an asymptote? Justify your answers.

4. What can you say about the degrees of the numerator and denominator of a ra-
tional function that has a horizontal asymptote? What can you say about the
degrees of the numerator and denominator of a rational function that has a slant
asymptote?

4.7 PROBLEMS

Investigate the limits in Problems 1 through 16.

1. lim
x→+∞

x

x + 1
2. lim

x→−∞
x2 + 1

x2 − 1

3. lim
x→1

x2 + x − 2

x − 1
4. lim

x→1

x2 − x − 2

x − 1

5. lim
x→+∞

2x2 − 1

x2 − 3x
6. lim

x→+∞
1 + ex

2 + e2x

7. lim
x→−1

x2 + 2x + 1

(x + 1)2
8. lim

x→+∞
5x3 − 2x + 1

7x3 + 4x2 − 2

9. lim
x→4

x − 4√
x − 2

10. lim
x→+∞

2x + 1

x − x
√

x

11. lim
x→−∞

8 − 3
√

x

2 + x
12. lim

x→+∞
4e6x + 5 sin 6x

(1 + 2e2x )3
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13. lim
x→+∞

√
4x2 − x

x2 + 9
14. lim

x→−∞

3
√

x3 − 8x + 1

3x − 4

15. lim
x→−∞

(√
x2 + 2x − x

)
16. lim

x→−∞
(
2x −

√
4x2 − 5x

)
Apply your knowledge of limits and asymptotes to match
each function in Problems 17 through 28 with its graph-with-
asymptotes in one of the twelve parts of Fig. 4.7.20.

17. f (x) = 1

x − 1
18. f (x) = 1

1 − x

19. f (x) = 1

(x − 1)2
20. f (x) = − 1

(1 − x)2

21. f (x) = 1

x2 − 1
22. f (x) = 1

1 − x2

23. f (x) = x

x2 − 1
24. f (x) = x

1 − x2

25. f (x) = x

x − 1
26. f (x) = x2

x2 − 1

27. f (x) = x2

x − 1
28. f (x) = x3

x2 − 1

Sketch by hand the graph of each function in Problems 29
through 54. Identify and label all extrema, inflection points, in-
tercepts, and asymptotes. Show the concave structure clearly as
well as the behavior of the graph for |x | large and for x near any
discontinuities of the function.

29. f (x) = 2

x − 3
30. f (x) = 4

5 − x

31. f (x) = 3

(x + 2)2
32. f (x) = − 4

(3 − x)2

33. f (x) = 1

(2x − 3)3
34. f (x) = x + 1

x − 1

(a)

−4

0

4

−4 0 4
x

y

(b)

−4

−2

0

2

4

−4 −2 0 2 4
x

y

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

−4

0

4

−4 0 4
x

y

−4

0

4

−4 0 4
x

y

−4

0

4

−4 0 4
x

y

−4

0

4

−4 0 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

−4

−2

0

2

4

−4 −2 0 2 4
x

y

FIGURE 4.7.20 Problems 17 through 28.
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35. f (x) = x2

x2 + 1
36. f (x) = 2x

x2 + 1

37. f (x) = 1

x2 − 9
38. f (x) = x

4 − x2

39. f (x) = 1

x2 + x − 6
40. f (x) = 2x2 + 1

x2 − 2x

41. f (x) = x + 1

x
42. f (x) = 2x + e−x

43. f (x) = x2

x − 1
44. f (x) = 2x3 − 5x2 + 4x

x2 − 2x + 1

45. f (x) = 1

(x − 1)2
46. f (x) = 1

(1 + ex )2

47. f (x) = ex

ex + 1
48. f (x) = 1

ex + e−x

49. f (x) = 1

x2 − x − 2
50. f (x) = 1

(x − 1)(x + 1)2

51. f (x) = x2 − 4

x
52. f (x) = ex − e−x

ex + e−x

53. f (x) = x3 − 4

x2
54. f (x) = x2 + 1

x − 2

In Problems 55 through 60, you can determine by inspection the
x-intercepts as well as the vertical and horizontal asymptotes of
the curve y = f (x). First sketch the graph by hand, using this
information, and without calculating any derivatives. Then use
a calculator or computer to locate accurately the critical and in-
flection points of f (x). Finally, use a calculator or computer to
produce graphs that display the major features of the curve.

55. f (x) = (x + 1)(x − 3)

x2(x − 2)
56. f (x) = (x + 1)2(x − 3)

x2(x − 4)

57. f (x) = (x + 1)2(x − 3)

x3(x − 2)
58. f (x) = (x + 1)2(x − 3)2

x3(x − 2)

59. f (x) = (x + 1)2(x − 3)2

x3(x − 2)2
60. f (x) = (x + 1)(x − 3)4

x3(x − 2)3

In Problems 61 through 68, begin with a calculator- or computer-
generated graph of the curve y = f (x). Then use a calculator
or computer to locate accurately the vertical asymptotes and the
critical and inflection points of f (x). Finally, use a calcula-
tor or computer to produce graphs that display the major fea-
tures of the curve, including any vertical, horizontal, and slant
asymptotes.

61. f (x) = x2

x3 − 3x2 + 1
62. f (x) = x2

x3 − 3x2 + 5

63. f (x) = x4 − 4x + 5

x3 − 3x2 + 5
64. f (x) = x4 − 4x + 1

2x3 − 3x + 2

65. f (x) = x5 − 4x2 + 1

2x4 − 3x + 2
66. f (x) = x5 − 4x3 + 2

2x4 − 5x + 5

67. f (x) = x6 − 4x3 + 5x

2x5 − 5x3 + 5
68. f (x) = 2x6 − 5x4 + 6

3x5 − 5x4 + 4

69. Suppose that

f (x) = x2 + 2

x
.

Note that

lim
x→±∞ [ f (x) − x2] = 0,

so the curve y = f (x) approaches the parabola y = x2 as
x → ±∞. Use this observation to make an accurate sketch
of the graph of f .

70. Use the method of Problem 69 to make an accurate sketch of
the graph of

f (x) = x3 − 12

x − 1
.

4.7 INVESTIGATION: Locating Special Points on Exotic Graphs
The investigations described here deal with fairly exotic curves having critical and in-
flection points that are not clearly visible on their graphs if plotted on a “natural” scale.
The reason is that different scales on the x- and y-axes are required to see the unusual
behavior in question. In both investigations you are to begin with a graph that you
generate with calculator or computer, and then analyze the curve—locating accurately
all critical and inflection points—in order to plot additional graphs that demonstrate
clearly all of the major features of the curve.

Investigation A Choose in advance a single-digit integer n (perhaps the final nonzero
digit of your student I.D. number). Then your task is to analyze the structure of the
curve

y = x7 + 5x6 − 11x5 − 21x4 + 31x3 − 57x2 − (101 + 2n)x + (89 − 3n).

Find the local maximum and minimum points and the inflection point (or points) on
this curve, giving their coordinates accurate to four decimal places. To display all these
points, you probably will need to produce separate plots with different scales, showing
different parts of this curve. In the end, use all the information accumulated to produce
a careful hand sketch (not to scale) displaying all the maxima, minima, and inflection
points with their (approximate) coordinates labeled.
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Investigation B Explore in the detail the structure of the graph of the function

f (x) = − 1,234,567,890 + 2,695,140,459x2 + 605,435,400x3

− 411,401,250x4 − 60,600,000x5 + 25,000,000x6.

The graph y = f (x) is shown in Fig. 4.7.21. At a glance, it might appear that we have
only three critical points—a local minimum near the origin and two critical points that
are also inflection points, as well as two more inflection points that are not critical
points. Settle the matter. How many of each, in fact, are there? Find and exhibit all of
them in a graph; your graph may be a neat hand sketch and need not be to scale.

x
0−5

−5

0

5

10

15

20

25

5

y

× 109

FIGURE 4.7.21 The ”big picture”
in Investigation B.

4.8 INDETERMINATE FORMS AND L'HÔPITAL'S RULE

An indeterminate form is a certain type of expression with a limit that is not evident by
inspection. There are several types of indeterminate forms. If

lim
x→a

f (x) = 0 = lim
x→a

g(x),

then we say that the quotient f (x)/g(x) has the indeterminate form 0/0 at x = a (or
as x → a). For example, to differentiate the trigonometric functions (Section 3.7), we
needed to know that

lim
x→0

sin x

x
= 1. (1)

Figure 4.8.1 corroborates the fact that (sin x)/x is close to 1 when x is close to

x

(0, 1)

y

0 8−8 2−6 4−4 6−2

2

1.5

1

0.5

0

−0.5

−1

sin x
x

y =

FIGURE 4.8.1 Visual evidence that
the quotient (sin x)/x is near 1 when
x is near zero.

zero.
The quotient (sin x)/x in Eq. (1) has the indeterminate form 0/0 at x = 0 because

the functions f (x) = sin x and g(x) = x both approach zero as x → 0. Hence the
quotient law of limits cannot be used to evaluate this limit. We therefore needed a
special geometric argument (see Section 2.3) to find the limit in Eq. (1). Something
similar happens whenever we compute a derivative, because the quotient

f (x) − f (a)

x − a
,

whose limit as x → a is the derivative f ′(a), has the indeterminate form 0/0 at x = a.
We can sometimes find the limit of an indeterminate form by performing a special

algebraic manipulation or construction, as in our earlier computation of derivatives.
Often, however, it is more convenient to apply a rule that appeared in the first calculus
textbook ever published, by the Marquis de l’Hôpital, in 1696. L’Hôpital was a French
nobleman who had hired the Swiss mathematician John Bernoulli as his calculus tutor,
and “l’Hôpital’s rule” is actually the work of Bernoulli.
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THEOREM 1 L'Hôpital's Rule
Suppose that the functions f and g are differentiable and that g′(x) is nonzero in
some neighborhood of the point a (except possibly at a itself). Suppose also that

lim
x→a

f (x) = 0 = lim
x→a

g(x).

Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, (2)

provided that the limit on the right either exists (as a finite real number) or is +∞
or −∞.

In essence, l’Hôpital’s rule says that if f (x)/g(x) has the indeterminate form 0/0
at x = a, then—subject to a few mild restrictions—this quotient has the same limit at
x = a as does the quotient f ′(x)/g′(x) of derivatives. The proof of l’Hôpital’s rule is
discussed at the end of this section.

EXAMPLE 1 Find lim
x→0

ex − 1

sin 2x
.

Solution The fraction whose limit we seek has the indeterminate form 0/0 at x = 0.
The numerator and denominator are clearly differentiable in some neighborhood of
x = 0, and the derivative of the denominator is certainly nonzero if the neighborhood
is small enough (specifically, if |x | < π/4). So l’Hôpital’s rule applies, and

lim
x→0

ex − 1

sin 2x
= lim

x→0

ex

2 cos 2x
= e0

2 cos 0
= 1

2

because (by continuity) both ex and cos 2x approach 1 as x → 0. Figure 4.8.2 corrob-
orates this limit. ◗

x
1.510.50−0.5−1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

y
ex − 1
sin 2x

y =(0,, )1
2

FIGURE 4.8.2 Visual evidence that

the quotient
ex − 1

sin 2x
is near 1

2 when

x is near 0.

If the quotient f ′(x)/g′(x) is itself indeterminate, then l’Hôpital’s rule may be
applied a second (or third, . . . ) time, as in Example 2. When the rule is applied repeat-
edly, however, the conditions for its applicability must be checked at each stage.

EXAMPLE 2 Find lim
x→1

1 − x + ln x

1 + cos πx
.

Solution

lim
x→1

1 − x + ln x

1 + cos πx
= lim

x→1

−1 + 1

x
−π sin πx

(still of the form 0/0)

= lim
x→1

x − 1

πx sin πx
(algebraic simplification)

= lim
x→1

1

π sin πx + π2x cos πx
(l’Hôpital’s rule again)

= − 1

π2
(by inspection).

Because the final limit exists, so do the previous ones; the existence of the final limit
in Eq. (2) implies the existence of the first. ◗

When you need to apply l’Hôpital’s rule repeatedly in this way, you need only
keep differentiating the numerator and denominator separately until at least one of them
has a nonzero finite limit. At that point you can recognize the limit of the quotient by
inspection, as in the final step in Example 2.

EXAMPLE 3 Find lim
x→0

sin x

x + x2
.
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Solution If we simply apply l’Hôpital’s rule twice in succession, the result is the
incorrect computation

lim
x→0

sin x

x + x2
= lim

x→0

cos x

1 + 2x

= lim
x→0

− sin x

2
= 0. (Wrong!)

The answer is wrong because (cos x)/(1 + 2x) is not an indeterminate form. Thus
l’Hôpital’s rule cannot be applied to it. The correct computation is

lim
x→0

sin x

x + x2
= lim

x→0

cos x

1 + 2x
=

lim
x→0

cos x

lim
x→0

(1 + 2x)
= 1

1
= 1. ◗

The point of Example 3 is to issue a warning: Verify the hypotheses of l’Hôpital’s
rule before you apply it. It is an oversimplification to say that l’Hôpital’s rule works
when you need it and doesn’t work when you don’t, but there is still much truth in this
statement.

Indeterminate Forms Involving ∞
L’Hôpital’s rule has several variations. In addition to the fact that the limit in Eq. (2) is
allowed to be infinite, the real number a in l’Hôpital’s rule may be replaced with either
+∞ or −∞. For example,

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)
(3)

provided that the other hypotheses are satisfied in some interval of the form (c, +∞).
In particular, to use Eq. (3), we must first verify that

lim
x→∞ f (x) = 0 = lim

x→∞ g(x)

and that the right-hand limit in Eq. (3) exists. The proof of this version of l’Hôpital’s
rule is outlined in Problem 70.

L’Hôpital’s rule may also be used when f (x)/g(x) has the indeterminate form
∞/∞. This means that

lim
x→a

f (x) is either +∞ or −∞
and

lim
x→a

g(x) is either +∞ or −∞.

The proof of this extension of the rule is difficult and is omitted here. [For a proof, see
(for example) A. E. Taylor and W. R. Mann, Advanced Calculus, 3rd ed. (New York:
John Wiley, 1983), p. 107. ]

One-sided indeterminate forms occur, and we may speak of a 0/0 form or an
∞/∞ form as either x → a− or as x → a+.

EXAMPLE 4 Figure 4.8.3 shows a computer-generated graph of the function

f (x) = ln 2x

ln x
. (4)

The vertical asymptote x = 1 is explained (without using l’Hôpital’s rule) by the facts

y

x4321

−4

−2

2

4

6

8

y = ln 2x
ln x

FIGURE 4.8.3 The graph

y = ln 2x

ln x
has both the vertical

asymptote x = 1 and the horizontal
asymptote y = 1.

that

• the numerator ln 2x is positive at x = 1, while
• the denominator ln x approaches zero through negative values as x → 1− and

approaches zero through positive values as x → 1+.
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The familiar graph of y = ln x (Fig. 4.8.4) reminds us that ln x → −∞ as
y

x1

1

y = x

y = ln x

(u, v)

(v, u)

y = ex

FIGURE 4.8.4 The graphs y = ex

and y = ln x are reflections of one
another in the line y = x .

x → 0+ and that ln x → +∞ as x → +∞. Consequently, we see that the function f
in Eq. (4) has the indeterminate form ∞/∞, both as x → 0+ and as x → +∞. Thus
l’Hôpital’s rule gives

lim
x→0+

ln 2x

ln x
= lim

x→0+

2

2x
1

x

= lim
x→0+ 1 = 1

and

lim
x→+∞

ln 2x

ln x
= lim

x→+∞

2

2x
1

x

= lim
x→+∞ 1 = 1.

The fact that

lim
x→0+

ln 2x

ln x
= 1

explains why the graph in Fig. 4.8.3 appears to “start” at the point (0, 1). And the fact
that

lim
x→∞

ln 2x

ln x
= 1

explains the horizontal asymptote y = 1 that we see in Fig. 4.8.3. ◗

Order of Magnitude of ex and ln x

Because Dx ex = ex (for all x) and Dx ln x = 1/x (for all x > 0), the functions ln x
and ex are increasing wherever they are defined. If n is an integer and x > n, it follows
that ex > en > 2n , and hence that

lim
x→+∞ ex = +∞. (5)

Similarly, if x > 2n , then ln x > ln 2n = n ln 2, and therefore

lim
x→+∞ ln x = +∞ (6)

as well.
But the graphs in Fig. 4.8.4 suggest that as x → +∞, ex → +∞ much more

rapidly than ln x → +∞. Indeed, l’Hôpital’s rule yields

lim
x→+∞

ex

ln x
= lim

x→+∞
ex

1

x

= lim
x→+∞ xex = +∞.

Thus, when x is large positive, ex is so much larger than ln x that the quotient ex/(ln x)

is large positive. This observation seems related to the facts that:

• The second derivative D2
x ex = ex > 0 for all x , so the curve y = ex is concave

upward, and becomes steeper and steeper as x increases.
• In contrast, D 2

x ln x = −1/x2 < 0 for all x > 0, so the curve y = ln x is concave
downward, and becomes less and less steep as x increases.
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Indeterminate Forms and L'Hôpital's Rule SECTION 4.8 297

EXAMPLE 5 Explain the principal features of the graph of the function f (x) =y

x6 842

0.2

0.4

0.6

y = x2

ex

FIGURE 4.8.5 The graph
y = x2e−x has two local extrema,
two inflection points, and the
horizontal asymptote y = 0.

x2e−x shown in Fig. 4.8.5.

Solution The function f (x) = x2/ex has the indeterminate form ∞/∞ as x → +∞.
Hence the horizontal asymptote y = 0 is explained by two applications of l’Hôpital’s
rule:

lim
x→∞

x2

ex
= lim

x→∞
2x

ex
= lim

x→∞
2

ex
= 0. (7)

The two local extrema that we see in the figure result from the fact that the derivative

f ′(x) = 2x · e−x − x2 · e−x = (2x − x2)e−x = x(2 − x)e−x

has the two zeros x = 0 and x = 2. The second derivative is

f ′′(x) = (2 − 2x) · e−x − (2x − x2) · e−x = (x2 − 4x + 2)e−x ,

and the two solutions x = 2 ± √
2 of the quadratic equation x2 − 4x + 2 = 0 provide

the two inflection points visible in Fig. 4.8.5. ◗

The exponential function is notable for its very rapid rate of increase with in-
creasing x . In fact, ex increases more rapidly as x → +∞ than any fixed power of x .
Thus the limit in (7) is a special case of the fact that

lim
x→∞

xk

ex
= 0 (8)

or, alternatively,

lim
x→∞

ex

xk
= +∞ (9)

for any fixed real number k > 0. For instance, if k = n, a positive integer, then n
successive applications of l’Hôpital’s rule give

lim
x→∞

xn

ex
= lim

x→∞
nxn−1

ex
= lim

x→∞
n(n − 1)xn−2

ex

= · · · = lim
x→∞

n(n − 1) · · · 2x

ex
= lim

x→∞
n(n − 1) · · · 2 · 1

ex
= 0.

In Problem 61 we ask you to consider positive nonintegral values of k.
The table in Fig. 4.8.6 illustrates the case k = 5 of Eq. (8). Although both

x5 → +∞ and ex → +∞ as x → +∞, we see that ex increases so much more rapidly
than x5 that x5/ex → 0.

x x5 ex x5/ex

10 1.00 × 105 2.20 × 104 4.54 × 100

20 3.20 × 106 4.85 × 108 6.60 × 10−3

30 2.43 × 107 1.07 × 1013 2.27 × 10−6

40 1.02 × 108 2.35 × 1017 4.35 × 10−10

50 3.13 × 108 5.18 × 1021 6.03 × 10−14

↓ ↓ ↓
∞ ∞ ∞

FIGURE 4.8.6 Orders of magnitude of x5 and ex .
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EXAMPLE 6 Explain the principal features of the graph of the functiony

x80604020

−1

−0.5

0.5

1
y = ln x

√x

FIGURE 4.8.7 The graph
y = (ln x)/

√
x has a local

maximum, an inflection point, and
the horizontal asymptote y = 0.

f (x) = ln x√
x

shown in Fig. 4.8.7.

Solution The function f (x) = (ln x)/
√

x has the indeterminate form ∞/∞ as x →
+∞. A single application of l’Hôpital’s rule yields

lim
x→∞

ln x√
x

= lim
x→∞

1

x
1

2
√

x

= lim
x→∞

2√
x

= 0, (10)

and thus the graph has the horizontal asymptote y = 0. The local maximum that we
see in the figure results from the fact that the derivative

f ′(x) =
1

x

√
x − ln x

2
√

x
x

= 2 − ln x

2x3/2

has the zero x = e2. The inflection point that we see corresponds to the zero x = e8/3

of the second derivative

f ′′(x) =
−1

x
· 2x3/2 − (2 − ln x)

(
3x1/2

)
4x3

= −8 + 3 ln x

4x5/2
. ◗

In contrast with the exponential function, the natural logarithm function is
notable for its very slow rate of increase with increasing x . In Problem 62 we ask
you to generalize the result in Eq. (10) by showing that

lim
x→+∞

ln x

xk
= 0 (11)

if k > 0. Thus

• ln x increases slower than any (positive) power of x , whereas
• ex increases faster than any power of x .

REMARK Figure 4.8.8 might suggest to the unwary that ln x is greater than (rather
than less than) x1/10 when x is large positive. But Eq. (11) implies that the graph of
y = x1/10 must eventually overtake and recross the graph of y = ln x . (See Prob-

2 9
x

y = ln x

y = x1/10

y

1 43 65 87
−1

0

1

2

3

4

FIGURE 4.8.8 Comparing y = ln x
with y = x1/10.

lem 74.)

Proof of L'Hôpital's Rule
Suppose that the functions f and g of Theorem 1 are not merely differentiable but have
continuous derivatives near x = a and that g′(a) �= 0. Then

lim
x→a

f ′(x)

g′(x)
=

lim
x→a

f ′(x)

lim
x→a

g′(x)
= f ′(a)

g′(a)
(12)

by the quotient law for limits. In this case l’Hôpital’s rule in Eq. (2) reduces to the
limit

lim
x→a

f (x)

g(x)
= f ′(a)

g′(a)
, (13)

which is a weak form of the rule. It actually is this weak form that is typically applied
in single-step applications of l’Hôpital’s rule.
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EXAMPLE 7 In Example 1 we had

f (x) = ex − 1, g(x) = sin 2x

so

f ′(x) = ex , g′(x) = 2 cos 2x,

and g′(0) = 2 �= 0. With a = 0, Eq. (13) therefore gives

lim
x→0

ex − 1

sin 2x
= lim

x→0

f (x)

g(x)
= f ′(0)

g′(0)
= 1

2
. ◗

THEOREM 2 L'Hôpital's Rule (weak form)
Suppose that the functions f and g are differentiable at x = a, that

f (a) = 0 = g(a),

and that g′(a) �= 0. Then

lim
x→a

f (x)

g(x)
= f ′(a)

g′(a)
. (13)

Proof We begin with the right-hand side of Eq. (13) and work toward the left-hand
side.

f ′(a)

g′(a)
=

lim
x→a

f (x) − f (a)

x − a

lim
x→a

g(x) − g(a)

x − a

(the definition of the derivative)

= lim
x→a

f (x) − f (a)

x − a
g(x) − g(a)

x − a

(the quotient law of limits)

= lim
x→a

f (x) − f (a)

g(x) − g(a)
(algebraic simplification)

= lim
x→a

f (x)

g(x)

[because f (a) = 0 = g(a)]. ◆

Figure 4.8.9 illustrates the meaning and proof of Theorem 2. Appendix H in-
cludes a proof of the strong form of l’Hôpital’s rule, the form stated in Theorem 1.

Slope:
y

x

f '(a)
g' (a)

Slope:
f (t)
g(t)

O

P(g(t), f (t))

FIGURE 4.8.9 Suppose that the
point P(g(t), f (t)) traces a
continuous curve that passes through
the origin O when t = a. Then the
secant line O P approaches the
tangent line at O as t → a, so its
slope f (t)/g(t) approaches the slope
f ′(a)/g′(a) of the tangent line at O .

4.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If lim
x→a

f (x) = 0 = lim
x→a

g(x), then
f (x)

g(x)
is said to have the indeterminate form

0

0
at x = a.

2. lim
x→0

sin x

x
= 1. 3. lim

x→0

ex − 1

sin 2x
= 0

0
= 1.

4. lim
x→0

ex − 1

sin 2x
= 1

2
. 5. lim

x→0

sin x

x + x2
= 0.

6. lim
x→∞

ln 2x

ln x
= 1. 7. lim

x→∞
ln x√

x
= ∞

∞ = 1.
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8. lim
x→∞

ln x√
x

= lim
x→∞

2√
x

= 0. 9. lim
x→1

1 − x + ln x

1 + cos πx
does not exist.

10. If f and g are differentiable at x = a, f (a) = 0 = g(a), and g′(a) �= 0, then

lim
x→a

f (x)

g(x)
= f ′(a)

g′(a)
.

4.8 CONCEPTS: QUESTIONS AND DISCUSSION
In the following questions, think of the given functions f and g as a tortoise and a hare
racing toward infinity as x → +∞. Which is the tortoise and which is the hare?

1. f (x) = x2 and g(x) = x5

2. f (x) = x1/2 and g(x) = x1/5

3. f (x) = x10 ln x and g(x) = ex

x10

4. f (x) = ex and g(x) is a polynomial
5. f (x) = ln x and g(x) is a polynomial

4.8 PROBLEMS

Find the limits in Problems 1 through 48.

1. lim
x→1

x − 1

x2 − 1
2. lim

x→∞
3x − 4

2x − 5

3. lim
x→∞

2x2 − 1

5x2 + 3x
4. lim

x→0

e3x − 1

x

5. lim
x→0

sin x2

x
6. lim

x→0+
1 − cos

√
x

x

7. lim
x→1

x − 1

sin x
8. lim

x→0

1 − cos x

x3

9. lim
x→0

ex − x − 1

x2
10. lim

z→π/2

1 + cos 2z

1 − sin 2z

11. lim
u→0

u tan u

1 − cos u
12. lim

x→0

x − tan x

x3

13. lim
x→∞

ln x
10
√

x
14. lim

r→∞
er

(r + 1)4

15. lim
x→10

ln(x − 9)

x − 10
16. lim

t→∞
t2 + 1

t ln t

17. lim
x→0

ex + e−x − 2

x sin x
18. lim

x→(π/2)−
tan x

ln(cos x)

19. lim
x→0

sin 3x

tan 5x
20. lim

x→0

ex − e−x

x

21. lim
x→1

x3 − 1

x2 − 1
22. lim

x→2

x3 − 8

x4 − 16

23. lim
x→∞

x + sin x

3x + cos x
24. lim

x→∞

√
x2 + 4

x

25. lim
x→0

2x − 1

3x − 1
26. lim

x→∞
2x

3x

27. lim
x→∞

√
x2 − 1√

4x2 − x
28. lim

x→∞

√
x3 + x√
2x3 − 4

29. lim
x→0

ln(1 + x)

x
30. lim

x→∞
ln(ln x)

x ln x

31. lim
x→0

2ex − x2 − 2x − 2

x3
32. lim

x→0

sin x − tan x

x3

33. lim
x→0

2 − ex − e−x

2x2
34. lim

x→0

e3x − e−3x

2x

35. lim
x→π/2

2x − π

tan 2x
36. lim

x→π/2

sec x

tan x

37. lim
x→2

x − 2 cos πx

x2 − 4
38. lim

x→1/2

2x − sin πx

4x2 − 1

39. lim
x→0+

ln
√

2x

ln 3
√

3x
40. lim

x→0

ln(1 + x)

ln(1 − x2)

41. lim
x→0

exp(x3) − 1

x − sin x
42. lim

x→0

√
1 + 3x − 1

x

43. lim
x→0

3
√

1 + 4x − 1

x
44. lim

x→0

√
3 + 2x − √

3 + x

x

45. lim
x→0

3
√

1 + x − 3
√

1 − x

x
46. lim

x→π/4

1 − tan x

4x − π

47. lim
x→0

ln(1 + x2)

ex − cos x
48. lim

x→2

x5 − 5x2 − 12

x10 − 500x − 24

Sketch the graphs of the curves in Problems 49 through 60. Even
if you use a graphing calculator or computer, apply l’Hôpital’s
rule as necessary to verify the apparent behavior of the curve as
x approaches a point where the function has an indeterminate
form.

49. y = sin2 x

x
50. y = sin2 x

x2

51. y = sin x

x − π
52. y = cos x

2x − π

53. y = 1 − cos x

x2
54. y = x − sin x

x3

55. y = xe−x 56. y = e−x√x

57. y = xe−√
x 58. y = x2e−2x

59. y = ln x

x
60. y = ln x√

x + 3
√

x

61. Show that lim
x→∞

xk

ex
= 0 if k is a positive real number.
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62. Show that lim
x→∞

ln x

xk
= 0 if k is a positive real number.

63. Suppose that n is a fixed positive integer larger than 1. Show
that the curve y = xne−x has a single local maximum and
two inflection points for x > 0, and also has the x-axis as an
asymptote.

64. Suppose that k is an arbitrary positive real number. Show
that the curve y = x−k ln x has a single local maximum and
a single inflection point for x > 0, and also has the x-axis as
an asymptote.

65. Substitute y = 1

x
in Eq. (11) to show that

lim
x→0+ xk ln x = 0

if k is a positive real number.

66. Show that if n is any integer, then

lim
x→∞

(ln x)n

x
= 0.

67. Suppose that f ′(x) is continuous. Show that

lim
h→0

f (x + h) − f (x − h)

2h
= f ′(x).

The symmetric difference quotient on the left can be used
(with h very small) to approximate the derivative numeri-
cally, and turns out to be a better approximation than the
one-sided difference quotient [ f (x + h) − f (x)]/h.

68. Suppose that f ′′(x) is continuous. Show that

lim
h→0

f (x + h) − 2 f (x) + f (x − h)

h2
= f ′′(x).

The second difference quotient on the left can be used
(with h very small) to approximate the second derivative
numerically.

69. In his calculus textbook of 1696, l’Hôpital used a limit sim-
ilar to

lim
x→1

√
2x − x4 − 3

√
x

1 − x4/3

to illustrate his rule. Evaluate this limit.

70. Establish the 0/0 version of l’Hôpital’s rule for the case a =
∞. Suggestion: Let F(t) = f (1/t) and G(t) = g(1/t).
Then show that

lim
x→∞

f (x)

g(x)
= lim

t→0+
F(t)

G(t)
= lim

t→0+
F ′(t)
G ′(t)

= lim
x→∞

f ′(x)

g′(x)
,

using l’Hôpital’s rule for the case a = 0.

71. Show without using l’Hôpital’s rule that

lim
x→∞

( x

e

)x = +∞.

Thus the function f (x) = x x increases even faster than the
exponential function ex as x → +∞.

72. If a chemical plant releases an amount A of a pollutant into
a canal at time t = 0, then the resulting concentration of
pollutant at time t in the water at a town on the canal a fixed
distance x0 downstream is

C(t) = A√
πkt

exp

(
− x2

0

4kt

)

where k is a constant. Sketch a typical graph of C(t) for
t � 0. Then show that the maximum pollutant concentration
that occurs at the town is

Cmax = A

x0

√
2

πe
.

73. (a) If f (x) = xne−x (where n is a fixed positive integer) is
the function of Problem 63, show that the maximum value
of f (x) for x � 0 is f (n) = nne−n . (b) Conclude from the
fact that f (n − 1) and f (n + 1) are both less than f (n) that

(
1 + 1

n

)n

< e <

(
1 − 1

n

)−n

.

Substitute n = 1,000,000 to prove that e = 2.71828 accu-
rate to five decimal places.

74. (a) Approximate numerically the solution x1 of the equa-
tion ln x = x1/10 that is indicated in Fig. 4.8.8. (b) Use
a calculator or computer to plot the graphs of y = ln x and
y = x1/10 in a viewing window that shows a second solution
x2 of the equation ln x = x1/10. Then approximate x2 numer-
ically. Suggestion: Plot the graphs on successive intervals
of the form [10n, 10n+1] where n = 1, 2, 3, . . . . By the time
you locate x2 you may well have the feeling of “going boldly
where no one has gone before!”

4.9 MORE INDETERMINATE FORMS

We saw in Section 4.8 that l’Hôpital’s rule can be applied to the indeterminate forms
0/0 and ∞/∞. There are other indeterminate forms; although l’Hôpital’s rule cannot
be applied directly to these other forms, it may be possible to convert them into the
form 0/0 or into the form ∞/∞. If so, it may be possible to apply l’Hôpital’s rule.

Suppose that

lim
x→a

f (x) = 0 and lim
x→a

g(x) = ∞.

Then we say that the product f (x) · g(x) has the indeterminate form 0 · ∞ at x = a
(or as x → a). To find the limit of f (x) · g(x) at x = a, we can change the problem to
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one of the forms 0/0 or ∞/∞ in this way:

f (x) · g(x) = f (x)

1/g(x)
= g(x)

1/f (x)
.

Now l’Hôpital’s rule may be applied if its other hypotheses are satisfied, as illustrated
in Example 1.

EXAMPLE 1 Find lim
x→∞ x ln

(
x − 1

x + 1

)
.

Solution We are dealing with the indeterminate form 0 · ∞, so we write

lim
x→∞ x ln

(
x − 1

x + 1

)
= lim

x→∞

ln

(
x − 1

x + 1

)
1

x

.

The right-hand limit has the form 0/0, so we can apply l’Hôpital’s rule. First we note
that

Dx ln

(
x − 1

x + 1

)
= 2

x2 − 1
.

Thus

lim
x→∞ x ln

(
x − 1

x + 1

)
= lim

x→∞

2

x2 − 1

− 1

x2

= lim
x→∞

−2x2

x2 − 1
= lim

x→∞
−2

1 − 1

x2

= −2.

Hence the curve

y = x ln
x − 1

x + 1
, x > 1,

has the line y = −2 as a horizontal asymptote as x → +∞. (See Fig. 4.9.1.) It also
has the line x = 1 as a vertical asymptote as x → 1+. (Why?) ◗

x
2 2.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

3 3.50 0.5 1 1.5 4

y
y = −2

x = 1

y = x ln x − 1
x + 1

FIGURE 4.9.1 Visual corroboration
of the limit in Example 1.

If

lim
x→a

f (x) = +∞ = lim
x→a

g(x),

then we say that f (x) − g(x) has the indeterminate form ∞ − ∞ as x → a. To
evaluate

lim
x→a

[ f (x) − g(x)],

we try by algebraic manipulation to convert f (x) − g(x) into a form of type 0/0 or
∞/∞ so that it may be possible to apply l’Hôpital’s rule. If f (x) or g(x) is expressed
as a fraction, we can sometimes do this by finding a common denominator. In most
cases, however, subtler methods are required. Example 2 illustrates the technique of
finding a common denominator. Example 3 demonstrates a factoring technique that
can be effective.
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EXAMPLE 2

lim
x→0

(
1

x
− 1

sin x

)
= lim

x→0

(sin x) − x

x sin x
(form 0/0 )

= lim
x→0

(cos x) − 1

sin x + x cos x
(still 0/0)

= lim
x→0

− sin x

2 cos x − x sin x
= 0. ◗

EXAMPLE 3

lim
x→+∞

(√
x2 + 3x − x

) = lim
x→+∞ x

(√
1 + 3

x
− 1

)
(form ∞ · 0)

= lim
x→+∞

√
1 + 3

x
− 1

1

x

(form 0/0 now)

= lim
x→+∞

1

2

(
1 + 3

x

)−1/2 (
− 3

x2

)

− 1

x2

= lim
x→+∞

3

2√
1 + 3

x

= 3

2
.

Thus the curve y = √
x2 + 3x −x , x > 0, has the line y = 3

2 as a horizontal asymptote
as x → +∞. (See Fig. 4.9.2.) ◗

1086420
x

y

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

3

y = 3
2

y = x2 + 3x − x

FIGURE 4.9.2 Visual
corroboration of the limit in
Example 3.

The Indeterminate Forms 00, ∞0, and 1∞
Suppose that we need to find the limit of a quantity

y = [ f (x)]g(x),

where the limits of f and g as x → a are such that one of the indeterminate forms
00, ∞0, or 1∞ is produced. We first compute the natural logarithm

ln y = ln
([ f (x)]g(x)

) = g(x) ln f (x).

For each of the three indeterminate forms mentioned here, g(x) ln f (x) has the form
0 · ∞, so we can use our earlier methods to find L = limx→a ln y (assuming that
f (x) > 0 near x = a, so that y > 0). Then

lim
x→a

[ f (x)]g(x) = lim
x→a

y = lim
x→a

exp(ln y) = exp
(

lim
x→a

ln y
)

= eL ,

because the exponential function is continuous. Thus we have the following four steps
for finding the limit of [ f (x)]g(x) as x → a:

1. Let y = [ f (x)]g(x).
2. Simplify ln y = g(x) ln f (x).
3. Evaluate L = lim

x→a
ln y.

4. Conclude that lim
x→a

[ f (x)]g(x) = eL .
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EXAMPLE 4 Find lim
x→0

(cos x)1/x2
.

Solution Here we have the indeterminate form 1∞. If we let y = (cos x)1/x2
, then

ln y = ln
[
(cos x)1/x2] = ln cos x

x2
.

As x → 0, cos x → 1, and so ln cos x → 0; we are now dealing with the indeterminate
form 0/0. Hence two applications of l’Hôpital’s rule yield

lim
x→0

ln y = lim
x→0

ln cos x

x2
= lim

x→0

(−sin x)/(cos x)

2x
= lim

x→0

−tan x

2x
(0/0 form)

= lim
x→0

−sec2 x

2
= −1

2
.

Consequently, as suggested by Fig. 4.9.3,

1.5−1.5 −1 −0.5 10.50
x

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

y = (cos x)1/x2

y = ≈ 0.607
e

1

FIGURE 4.9.3 Visual
corroboration of the limit in
Example 4.

lim
x→0

(cos x)1/x2 = e−1/2 = 1√
e
. ◗

EXAMPLE 5 Find lim
x→0+ x tan x .

Solution This has the indeterminate form 00. If y = x tan x , then

1.510.50
x

y

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

y = xtan x

FIGURE 4.9.4 Visual
corroboration of the limit in
Example 5.

ln y = (tan x)(ln x) = ln x

cot x
.

Now we have the indeterminate form ∞/∞, and l’Hôpital’s rule yields

lim
x→0+ ln y = lim

x→0+
ln x

cot x
= lim

x→0+

1

x
−csc2 x

= − lim
x→0+

sin2 x

x

= − lim
x→0+

(
sin x

x

)
(sin x) = (−1) · 0 = 0.

Therefore, limx→0+ x tan x = e0 = 1. The graph of the curve y = x tan x , 0 < x < π/2
in Fig. 4.9.4 provides corroboration of this limit. We note also a local minimum on the
curve near x = 0.4. (See Problem 45.) ◗

Although a0 = 1 for any nonzero constant a, the form 00 is indeterminate—the
limit is not necessarily 1 (see Problem 52). But the form 0∞ is not indeterminate; its
limit is zero. For example,

lim
x→0+ x1/x = 0.

The Number e as a Limit
Figure 4.9.5 shows the graph of the function

f (x) =
(

1 + 1

x

)x

(1)

for x > 0. The graph appears to begin at the point (0, 1) and to approach a horizontal
asymptote as x → +∞. Note that f (x) has the indeterminate form ∞0 as x → 0+ and
has the indeterminate form 1∞ as x → +∞. In each case our strategy is to calculate
the limit of ln f (x):

y

x

(0, 1)

y = (1 + )
x1

x

y = e

FIGURE 4.9.5 The graph

y =
(

1 + 1

x

)x

has the horizontal

asymptote y = e.

lim

[
ln

(
1 + 1

x

)x]
= lim

[
x · ln

(
1 + 1

x

)]
= lim

ln

(
1 + 1

x

)
1

x

.
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The last limit here has the indeterminate form ∞/∞ as x → 0+ and has the indeter-
minate form 0/0 as x → +∞. In each case we can apply l’Hôpital’s rule to obtain

lim

[
ln

(
1 + 1

x

)x]
= lim

− 1

x2
· 1

1 + (1/x)

− 1

x2

= lim
x

x + 1
=

{
0 as x → 0+,

1 as x → +∞.

Thus we find that

lim
x→0+

(
1 + 1

x

)x

= e0 = 1

and that

lim
x→+∞

(
1 + 1

x

)x

= e1 = e. (2)

The last limit shows that the horizontal asymptote in Fig. 4.9.5 is the line y = e.
If we write x = n (a positive integer) in Eq. (2), we obtain the famous limit

e = lim
n→∞

(
1 + 1

n

)n

, (3)

which can be used to approximate the number e. In Problem 44 we ask you to use
l’Hôpital’s rule similarly to derive the more general limit expression

ex = lim
n→∞

(
1 + x

n

)n
(4)

for the exponential function.
The limit in (3) can be approximated with a very rudimentary calculator by sub-

stituting n = 2k (a power of 2) to get

e = lim
k→∞

(
1 + 1

2k

)2k

= lim
k→∞ ν2k

(5)

where ν = 1 + (1/2k). Then

(ν2)2 = ν4, (ν4)2 = ν8, (ν8)2 = ν16, . . . ,
(
ν2k−1)2 = ν2k

.

Therefore we should get the value [1 + (1/2k)]2k
if we enter ν = 1 + (1/2k) and

then press the x2 key k times in succession. (Try this with your own calculator. Can
you see how and why the process may fail if k is too large?) The entries in the table
in Fig. 4.9.6 were calculated using a high-precision computer (rather than a simple
calculator). They indicate that e = 2.71828 1828 accurate to nine decimal places.

k
(

1 + 1

2k

)2k

10 2.71695 5729
20 2.71828 0532
30 2.71828 1827
40 2.71828 1828
50 2.71828 1828

FIGURE 4.9.6 Approximating the
number e.

4.9 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. lim
x→∞ x ln

x − 1

x + 1
= ∞ · 0 = 0. 2. lim

x→∞ x ln
x − 1

x + 1
= −2.

3. lim
x→0

(
1

x
− 1

sin x

)
= 0. 4. lim

x→∞

(√
x2 + 3x − x

)
= ∞−∞ = 0.

5. lim
x→∞

(√
x2 + 3x − x

)
= 3

2
. 6. lim

x→0
(cos x)1/x2 = 1∞ = 1.

7. lim
x→0

(cos x)1/x2 = −1

2
. 8. lim

x→0
(cos x)1/x2 = e−1/2.

9. lim
x→0+ x tan x = 1. 10. lim

x→0+ x tan x = 00 = 0.
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4.9 CONCEPTS: QUESTIONS AND DISCUSSION
1. List the seven indeterminate forms discussed in Sections 4.8 and 4.9. Illustrate

each of these forms with your own example.
2. Explain in your own words why 0∞ and 0−∞ are not indeterminate forms.
3. Suppose that someone claims that “calculus is merely the study of indetermi-

nate forms.” Based on what you’ve learned so far, how would you argue for (or
against) this claim?

4.9 PROBLEMS

Find the limits in Problems 1 through 34.

1. lim
x→0

x cot x 2. lim
x→0

(
1

x
− cot x

)

3. lim
x→0

1

x
ln

(
7x + 8

4x + 8

)
4. lim

x→0+(sin x)(ln sin x)

5. lim
x→0

x2 csc2 x 6. lim
x→∞ e−x ln x

7. lim
x→∞ x(e1/x − 1) 8. lim

x→2

(
1

x − 2
− 1

ln(x − 1)

)
9. lim

x→0+ x ln x 10. lim
x→π/2

(tan x)(cos 3x)

11. lim
x→π

(x − π) csc x 12. lim
x→∞ (x − sin x) exp(−x2)

13. lim
x→0+

(
1√
x

− 1

sin x

)

14. lim
x→0

(
1

x
− 1

ex − 1

)

15. lim
x→1+

(
x

x2 + x − 2
− 1

x − 1

)

16. lim
x→∞

(√
x + 1 − √

x
)

17. lim
x→0

(
1

x
− 1

ln(1 + x)

)

18. lim
x→∞

(√
x2 + x −

√
x2 − x

)
19. lim

x→∞
( 3
√

x3 + 2x + 5 − x
)

20. lim
x→0+ x x

21. lim
x→0+ x sin x 22. lim

x→∞

(
2x − 1

2x + 1

)x

23. lim
x→∞(ln x)1/x 24. lim

x→∞

(
1 − 1

x2

)x

25. lim
x→0

(
sin x

x

)1/x2

26. lim
x→0+(1 + 2x)1/(3x)

27. lim
x→∞

(
cos

1

x2

)x4

28. lim
x→0+(sin x)sec x

29. lim
x→0+(x + sin x)x 30. lim

x→π/2
(tan x − sec x)

31. lim
x→1

x1/(1−x) 32. lim
x→1+(x − 1)ln x

33. lim
x→2+

(
1√

x2 − 4
− 1

x − 2

)

34. lim
x→∞

( 5
√

x5 − 3x4 + 17 − x
)

Figures 4.9.7 through 4.9.9 illustrate the graphs of some of the
functions defined for x > 0 in Problems 35 through 42. In each
of these problems:

(a) First use your own calculator or computer to graph the given
function f (x) with an x-range sufficient to suggest its be-
havior both as x → 0+ and as x → +∞.

(b) Then apply l’Hôpital’s rule as necessary to verify this sus-
pected behavior near zero and +∞.

(c) Finally, estimate graphically and/or numerically the maxi-
mum value attained by f (x) for x � 0. If possible, find this
maximum value exactly.

35. f (x) = x1/x 36. f (x) = x (1/x2)

37. f (x) = (x2)1/x 38. f (x) = x−x

39. f (x) = (1 + x2)1/x 40. f (x) =
(

1 + 1

x2

)x

41. f (x) = (x + sin x)1/x 42. f (x) = (
e1/x2)(cos x−1)

Use l’Hôpital’s rule to establish the limits in Problems 43 and
44.

43. lim
h→0

(1 + hx)1/h = ex 44. lim
n→∞

(
1 + x

n

)n = ex

1.510.50
x

y

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

FIGURE 4.9.7
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FIGURE 4.9.8
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FIGURE 4.9.9
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45. Estimate graphically or numerically the location of the local
minimum point on the graph y = x tan x shown in Fig. 4.9.4.

46. Let n be a fixed positive integer and let p(x) be the polyno-
mial

p(x) = xn + a1xn−1 + a2xn−2 + · · · + an−1x + an;
the numbers a1, a2, . . . , an are fixed real numbers. Prove
that

lim
x→∞

(
[p(x)]1/n − x

) = a1

n
.

47. As we shall see in Problem 52 of Section 7.6, the surface
area of the ellipsoid obtained by revolving the ellipse

x2

a2
+ y2

b2
= 1 (a > b > 0)

around the x-axis is

A = 2πab

[
b

a
+ a

c
sin−1

(
c

a

) ]
,

where c = √
a2 − b2. Use l’Hôpital’s rule to show that

lim
b→a

A = 4πa2,

the surface area of a sphere of radius a.

48. If the amount A 0 is invested in an account that earns interest
at the annual rate r � 1 compounded n times annually, then
the amount A in the account after t years is given by

A = A 0

(
1 + r

n

)nt

.

(a) Show that A is an increasing function of n (with r and t
fixed). Thus the bank that compounds more often pays more
interest. (b) Use l’Hôpital’s rule to show that

lim
n→∞ A(n) = A 0ert .

This is the amount after t years if the bank compounds in-
terest “continuously.” The “annual yield” is the value of this
limit in the case t = 1. (c) If a bank advertises an annual
interest rate of 8% compounded continuously, what is the
annual yield?

49. Graph the function f (x) = | ln x |1/x for x > 0 and deter-
mine its behavior as x → 0+ and as x → +∞. Estimate
graphically and/or numerically the locations of any critical
points or inflection points on the graph of f .

50. Graph the function f (x) = | ln x |1/| ln x | for x > 0 and de-
termine its behavior as x → 0+, as x → +∞, and as x
approaches 1 from either side.

51. Graph the function f (x) = | ln x || ln x | for x > 0 and de-
termine its behavior as x → 0+, as x → +∞, and as
x approaches 1 from either side. Explore both graphically
(by zooming) and symbolically (by differentiating) the ques-
tion of whether f is differentiable at x = 1.

52. Let α be a fixed real number. (a) Evaluate (in terms of α) the
00 indeterminate form

lim
x→0

[
exp

(
− 1

x2

) ]αx2

.

(Note that l’Hôpital’s rule is not needed.) Thus the indeter-
minate form 00 may have as its limit any positive real num-
ber. Explain why. (b) Can the limit of a 00 indeterminate
form be zero, negative, or infinite? Explain.

53. Sketch the graph of the function f (x) = (1 + x)1/x for
x � −1, x �= 0. Explain why you can approximate the
number e by zooming in on the apparent y-intercept of this
graph. Do so, accurate to five decimal places.

54. This problem explores the fact that a lead ball hits the
ground with greater speed than a feather when both are
dropped simultaneously from the top of a tall building.
Assuming that air resistance is proportional to downward ve-
locity v, we will show in Chapter 8 that after t seconds the
velocity of a dropped body of mass m is given by

v(t) = mg

k

(
1 − e−kt/m

)
where g is the familiar acceleration of gravity and k denotes
a constant air-resistance coefficient. (a) Note that

lim
t→∞ v(t) = mg

k
.

Thus a body’s velocity tends to a finite limit after it has fallen
a sufficiently long time. (b) Note that

lim
m→0

v(t) = 0.

Consequently a light “feathery” body falls very slowly
through the air. (c) Show that

lim
m→∞ v(t) = gt = lim

k→0+ v(t),

the velocity of the body after t seconds in the case of no air
resistance. Thus a very heavy body tends to fall much as it
would with no air resistance.
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CHAPTER 4: REVIEW

Understanding: Concepts, Definitions, Results
Refer to the listed pages to review the concepts, definitions, and formulas in this chapter that you need to understand.

Section Pages
4.2 The increment �y and the differential dy of a function y = f (x) . . . . . . . . . . . . . . . . . . . .226

The linear approximation formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
The linear approximation to f (x) near the point x = a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Absolute and relative errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
The error �y − dy in linear approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
Differentiation rules in differential form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231–232

4.3 Increasing functions and decreasing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Geometric interpretation of the mean value theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Rolle’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Statement and proof of the mean value theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237–238
Constant functions and zero derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Functions with equal derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Significance of the sign of the first derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235, 240

4.4 Distinction between local (or relative) and global (or absolute extrema) . . . . . . . . . . . . . . 246
The first derivative test for local extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Open-interval maximum-minimum problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
The first derivative test for global extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

4.5 Steps in graphing polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Behavior at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Critical points and increasing/decreasing behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

4.6 Second and higher derivatives of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
The significance of the sign of the second derivative: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267–268

bending downward and bending upward
The second derivative test for local extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
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The definition of inflection points and the inflection point test . . . . . . . . . . . . . . . . . . . . . . . 272
Use of inflection points in curve-sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
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CHAPTER 4: REVIEW (Continued)

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
4.2 Calculating differentials of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 9, 13

Finding linear approximations to functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 23
Calculating numerical linear approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 31, 33
Applying differentials in geometric situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 43, 49

4.3 Using increasing-decreasing behavior to match functions and graphs . . . . . . . . . . . . . . . . .1, 3
Determining the increasing-decreasing intervals for a function . . . . . . . . . . . . . . . . . . . . . . 11, 13, 19, 21
Checking hypotheses and conclusions for Rolle’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 31
Checking hypotheses and conclusions for the mean value theorem . . . . . . . . . . . . . . . . . . . 33, 35

4.4 Using the first derivative test to classify critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 7, 13, 21, 23
Solving applied open-interval optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 33, 35, 41, 45

4.5 Using behavior at infinity to match functions and graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3
Finding critical points and increasing-decreasing behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 11
Sketching graphs of given polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 19, 23, 27

4.6 Calculating higher derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 13, 17
Finding critical and inflection points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23, 27
Applying the second derivative and inflection point tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 35, 47
Using concavity and critical-inflection points to sketch graphs . . . . . . . . . . . . . . . . . . . . . . 63, 67, 75
Matching graphs of functions and of their second derivatives . . . . . . . . . . . . . . . . . . . . . . . . 77, 79

4.7 Investigating infinite limits and limits at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 9
Using asymptotes to match functions and their graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21, 25
Sketching graphs with extrema, inflection points, and asymptotes . . . . . . . . . . . . . . . . . . . .35, 39, 43, 47, 49

4.8 Applying l’Hôpital’s rule to the forms 0/0 and ∞/∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 9, 13, 19, 25, 29, 33
4.9 Applying l’Hôpital’s rule to the forms 0 · ∞ and ∞ − ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 7, 9, 13, 17

Applying l’Hôpital’s rule to the forms 00, ∞0, and 1∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 31

MISCELLANEOUS PROBLEMS

In Problems 1 through 6, write dy in terms of x and dx.

1. y = (4x − x2)3/2 2. y = 8x3
√

x2 + 9

3. y = x + 1

x − 1
4. y = sin x2

5. y = x2 cos
√

x 6. y = x

sin 2x

In Problems 7 through 16, estimate the indicated number by lin-
ear approximation.

7.
√

6401 (Note that 802 = 6400.)

8.
1

1.000007
9. (2.0003)10 (Note that 210 = 1024.)

10. 3
√

999 (Note that 103 = 1000.)

11. 3
√

1005 12. 3
√

62

13. 263/2 14. 5
√

30

15. 4
√

17 16. 10
√

1000

In Problems 17 through 22, estimate by linear approximation the
change in the indicated quantity.

17. The volume V = s3 of a cube, if its side length s is in-
creased from 5 in. to 5.1 in.

18. The area A = πr 2 of a circle, if its radius r is decreased
from 10 cm to 9.8 cm.

19. The volume V = 4
3 πr 3 of a sphere, if its radius r is in-

creased from 5 cm to 5.1 cm.

20. The volume V = 1000/p in.3 of a gas, if the pressure p is
decreased from 100 lb/in.2 to 99 lb/in.2

21. The period of oscillation T = 2π
√

L/32 of a pendulum, if
its length L is increased from 2 ft to 2 ft 1 in. (Time T is in
seconds and L is in feet.)

22. The lifetime L = 1030/E13 of a light bulb with applied volt-
age E volts (V), if the voltage is increased from 110 V to
111 V. Compare your result with the exact change in the
function L .

If the mean value theorem applies to the function f on the inter-
val [a, b], it ensures the existence of a solution c in the interval
(a, b) of the equation

f ′(c) = f (b) − f (a)

b − a
.

In Problems 23 through 28, a function f and an interval [a, b]
are given. Verify that the hypotheses of the mean value theorem
are satisfied for f on [a, b]. Then use the given equation to find
the value of the number c.

23. f (x) = x − 1

x
; [1, 3]

24. f (x) = x3 + x − 4; [−2, 3]
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25. f (x) = x3; [−1, 2] 26. f (x) = x3; [−2, 1]
27. f (x) = 11

5 x5; [−1, 2] 28. f (x) = √
x ; [0, 4]

Sketch the graphs of the functions in Problems 29 through 33.
Indicate the local maxima and minima of each function and the
intervals on which the function is increasing or decreasing. Show
the concave structure of the graph and identify all inflection
points.

29. f (x) = x2 − 6x + 4 30. f (x) = 2x3 − 3x2 − 36x

31. f (x) = 3x5 − 5x3 + 60x 32. f (x) = (3 − x)
√

x

33. f (x) = (1 − x) 3
√

x

34. Show that the equation x5 + x = 5 has exactly one real
solution.

Calculate the first three derivatives of the functions in Problems
35 through 44.

35. f (x) = x3 − 2x 36. f (x) = (x + 1)100

37. g(t) = 1

t
− 1

2t + 1
38. h(y) = √

3y − 1

39. f (t) = 2t3/2 − 3t4/3 40. g(x) = 1

x2 + 9

41. h(t) = t + 2

t − 2
42. f (z) = 3

√
z + 3

5
√

z

43. g(x) = 3
√

5 − 4x 44. g(t) = 8

(3 − t)3/2

In Problems 45 through 52, calculate dy/dx and d2 y/dx2 under
the assumption that y is defined implicitly as a function of x by
the given equation.

45. x1/3 + y1/3 = 1 46. 2x2 − 3xy + 5y2 = 25

47. y5 − 4y + 1 = √
x 48. sin xy = xy

49. x2 + y2 = 5xy + 5 50. x5 + xy4 = 1

51. y3 − y = x2 y 52. (x2 − y2)2 = 4xy

Sketch the graphs of the functions in Problems 53 through 72,
indicating all critical points, inflection points, and asymptotes.
Show the concave structure clearly.

53. f (x) = x4 − 32x 54. f (x) = 18x2 − x4

55. f (x) = x6 − 2x4 56. f (x) = x
√

x − 3

57. f (x) = x 3
√

4 − x 58. f (x) = x − 1

x + 2

59. f (x) = x2 + 1

x2 − 4
60. f (x) = x

x2 − x − 2

61. f (x) = 2x2

x2 − x − 2
62. f (x) = x3

x2 − 1
63. f (x) = 3x4 − 4x3 64. f (x) = x4 − 2x2

65. f (x) = x2

x2 − 1
66. f (x) = x3 − 12x

67. f (x) = −10 + 6x2 − x3

68. f (x) = x

1 + x2
; note that

f ′(x) = − (x − 1)(x + 1)

(x2 + 1)2

and that

f ′′(x) = 2x(x2 − 3)

(x2 + 1)3
.

69. f (x) = x3 − 3x 70. f (x) = x4 − 12x2

71. f (x) = x3 + x2 − 5x + 3 72. f (x) = 1

x
+ 1

x2

73. The function

f (x) = 1

x2 + 2x + 2
has a maximum value, and only one. Find it.

74. You need to manufacture a cylindrical pot, without a top,
with a volume of 1 ft3. The cylindrical part of the pot is to
be made of aluminum, the bottom of copper. Copper is five
times as expensive as aluminum. What dimensions would
minimize the total cost of the pot?

75. An open-topped rectangular box is to have a volume of
4500 cm3. If its bottom is a rectangle whose length is twice
its width, what dimensions would minimize the total area
of the bottom and four sides of the box?

76. A small rectangular box must be made with a volume of
324 in.3 Its bottom is square and costs twice as much (per
square inch) as its top and four sides. What dimensions
would minimize the total cost of the material needed to
make this box?

77. You must make a small rectangular box with a volume of
400 in.3 Its bottom is a rectangle whose length is twice its
width. The bottom costs 7/c/in.2; the top and four sides of
the box cost 5/c/in.2 What dimensions would minimize the
cost of the box?

78. Suppose that f (x) is a cubic polynomial with exactly three
distinct real zeros. Prove that the two zeros of f ′(x) are
real and distinct.

79. Suppose that it costs 1 + (0.0003)v3/2 dollars per mile to
operate a truck at v miles per hour. If there are additional
costs (such as the driver’s pay) of $10/hr, what speed would
minimize the total cost of a 1000-mi trip?

80. The numbers a1, a2, . . . , an are fixed. Find a simple for-
mula for the number x such that the sum of the squares of
the distances of x from the n fixed numbers is as small as
possible.

81. Sketch the curve y2 = x(x − 1)(x − 2), showing that
it consists of two pieces—one bounded and the other
unbounded—and has two horizontal tangent lines, three
vertical tangent lines, and two inflection points. [Sugges-
tion: Note that the curve is symmetric around the x-axis.
Begin by determining the intervals on which the product
x(x − 1)(x − 2) is positive. Compute dy/dx and d2 y/dx2

by implicit differentiation. ]

82. Farmer Rogers wants to fence in a rectangular plot of area
2400 ft2. She wants also to use additional fencing to build
an internal divider fence parallel to two of the boundary
sections (Fig. 4.MP.1). What is the minimum total length
of fencing that this project will require? Verify that your
answer yields the global minimum.

FIGURE 4.MP.1 The
fencing of Problem 82.
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83. Farmer Simmons wants to fence in a rectangular plot of
area 1800 ft2. He wants also to use additional fencing to
build two internal divider fences, both parallel to the same
two outer boundary sections (Fig. 4.MP.2). What is the
minimum total length of fencing that this project will re-
quire? Verify that your answer yields the global minimum.

FIGURE 4.MP.2 The fencing of
Problem 83.

84. Farmer Taylor wants to fence in a rectangular plot of area
2250 m2. She wants also to use additional fencing to build
three internal divider fences, all parallel to the same two
outer boundary sections. What is the minimum total length
of fencing that this project will require? Verify that your
answer yields the global minimum.

85. Farmer Upshaw wants to fence in a rectangular plot of
area A ft2. He wants also to use additional fenc-
ing to build n (a fixed but unspecified positive inte-
ger) internal divider fences, all parallel to the same
two outer boundary sections. What is the mini-
mum total length of fencing that this project will re-
quire? Verify that your answer yields the global
minimum.

86. What is the length of the shortest line segment that lies in
the first quadrant with its endpoints on the coordinate axes
and is also tangent to the graph of y = 1/x2? Verify that
your answer yields the global minimum.

87. A right triangle is formed in the first quadrant by a line seg-
ment that is tangent to the graph of y = 1/x2 and whose
endpoints lie on the coordinate axes. Is there a maximum
possible area of such a triangle? Is there a minimum? Jus-
tify your answers.

88. A right triangle is formed in the first quadrant by a line seg-
ment that is tangent to the graph of y = 1/x and whose
endpoints lie on the coordinate axes. Is there a maximum
possible area of such a triangle? Is there a minimum? Jus-
tify your answers.

89. A rectangular box (with a top) is to have volume 288 in.3,
and its base is to be exactly three times as long as it is wide.
What is the minimum possible surface area of such a box?
Verify that your answer yields the global minimum.

90. A rectangular box (with a top) is to have volume 800 in.3,
and its base is to be exactly four times as long as it is wide.
What is the minimum possible surface area of such a box?
Verify that your answer yields the global minimum.

91. A rectangular box (with a top) is to have volume 225 cm3,
and its base is to be exactly five times as long as it is wide.
What is the minimum possible surface area of such a box?
Verify that your answer yields the global minimum.

92. A rectangular box (with a top) is to have volume V , and
its base is to be exactly n times as long as it is wide (n is

a fixed but unspecified positive integer). What is the mini-
mum possible surface area of such a box? Verify that your
answer yields the global minimum.

93. The graph of f (x) = x1/3(1−x)2/3 is shown in Fig. 4.MP.3.
Recall from Section 4.7 that this graph has a slant asymp-
tote with equation y = mx + b provided that

lim
x→+∞ [ f (x) − (mx + b)] = 0

or that

lim
x→−∞ [ f (x) − (mx + b)] = 0.

(The values of m and b may be different in the two cases
x → +∞ and x → −∞.) The graph here appears to have
such an asymptote as x → +∞. Find m by evaluating

lim
x→+∞

f (x)

x
.

Then find b by evaluating

lim
x→+∞ [ f (x) − mx].

Finally, find m and b for the case x → −∞.

x

y

4

4

−2

2

2

−4

−2−4

FIGURE 4.MP.3 The graph of
y = f (x) of Problem 93.

94. You are at the southernmost point of a circular lake of ra-
dius 1 mi. Your plan is to swim a straight course to another
point on the shore of the lake, then jog to the northernmost
point. You can jog twice as fast as you can swim. What
route gives the minimum time required for your journey?

Find the limits in Problems 95 through 109.

95. lim
x→2

x − 2

x2 − 4
96. lim

x→0

sin 2x

x

97. lim
x→π

1 + cos x

(x − π)2
98. lim

x→0

x − sin x

x3

99. lim
t→0

tan t − sin t

t3
100. lim

x→∞
ln(ln x)

ln x
101. lim

x→0
(cot x) ln(1 + x) 102. lim

x→0+(e1/x − 1) tan x

103. lim
x→0

(
1

x2
− 1

1 − cos x

)
104. lim

x→∞

(
x2

x + 2
− x3

x2 + 3

)

105. lim
x→∞

(√
x2 − x − 1 − √

x
)

106. lim
x→∞ x1/x 107. lim

x→∞ (e2x − 2x)1/x

108. lim
x→∞[1 − exp(−x2)]1/x2
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109. lim
x→∞ x

[(
1 + 1

x

)x

− e

]
[ Suggestion: Let u = 1/x ,

and take the limit as u → 0+. ]

110. According to Problem 53 of Section 7.6, the surface area
of the ellipsoid obtained by revolving around the x-axis the
ellipse with equation

(
x

a

)2

+
(

y

b

)2

= 1 (0 < a < b)

is

A = 2πab

[
b

a
+ a

c
ln

(
b + c

a

)]
,

where c = √
b2 − a2 . Use l’Hôpital’s rule to show that

lim
b→a

A = 4πa2,

the surface area of a sphere of radius a.

PHOTO CREDITS

p. 225 (top left) The Royal Society of London; (bottom right) David E. Penney 
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The Integral 5

Archimedes (287–212 B.C.)

Archimedes of
Syracuse was
the greatest

mathematician of the
ancient era from the fifth
century B.C. to the sec-
ond century A.D., when the
seeds of modern mathemat-
ics sprouted in Greek com-
munities located mainly on
the shores of the Mediter-
ranean Sea. He was fa-
mous in his own time
for mechanical inventions

—the so-called Archimedean screw for pumping water,
lever-and-pulley devices (“give me a place to stand and
I can move the earth”), a planetarium that duplicated
the motions of heavenly bodies so accurately as to show
eclipses of the sun and moon, and machines of war that
terrified Roman soldiers in the siege of Syracuse, dur-
ing which Archimedes was killed. But it is said that for
Archimedes himself these inventions were merely the “di-
versions of geometry at play,” and his writings are devoted
to mathematical investigations.

Archimedes carried out many area and volume
computations that now use integral calculus—ranging
from areas of circles, spheres, and segments of conic
sections to volumes of cones, spheres, ellipsoids, and
paraboloids. It had been proved earlier in Euclid’s
Elements that the area A of a circle is proportional to
the square of its radius r , so A = πr2 for some propor-
tionality constant π . But it was Archimedes who accu-
rately approximated the numerical value of π , showing
that it lies between the value 3 1

7 memorized by elemen-
tary school children and the lower bound 3 10

71 . Euclid had
also proved that the volume V of a sphere of radius r is
given by V = μr3 (μ constant), but it was Archimedes
who discovered (and proved) that μ = 4π/3. He also dis-
covered the now-familiar volume formulas V = πr2h and

V = 1
3πr2h for the cylinder and the cone, respectively, of

base radius r and height h.
It was long suspected that Archimedes had not orig-

inally discovered his area and volume formulas by means
of the limit-based arguments he used to establish them
rigorously. In 1906 an Archimedean treatise entitled The
Method was rediscovered virtually by accident after hav-
ing been lost since ancient times. In it he described a
“method of discovery” based on using infinitesimals much
as they were employed during the invention and explo-
ration of calculus in the seventeenth and eighteenth cen-
turies.

To commemorate his sphere and cylinder formulas,
Archimedes requested that on his tombstone be carved
a sphere inscribed in a circular cylinder. If the height
of the cylinder is h = 2r , can you verify that the to-
tal surface areas A C and AS of the cylinder and sphere,
and their volumes VC and VS , are related by Archimedes’
formulas

AS = 2
3 A C and VS = 2

3 VC ?

Thus the volumes and surface areas of the sphere and
cylinder have the same 2 : 3 ratio.

h
r

From Chapter 5 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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5.1 INTRODUCTION

Chapters 1 through 4 dealt with differential calculus, which is one of two closelyy

x

P(x, f (x))

x

y = f (x)

Slope m = ?

FIGURE 5.1.1 The tangent-line
problem motivates differential
calculus.

related parts of the calculus. Differential calculus is centered on the concept of the
derivative. Recall that the original motivation for the derivative was the problem of
defining what it means for a straight line to be tangent to the graph of a function and
calculating the slopes of such lines (Fig. 5.1.1). By contrast, the importance of the
derivative stems from its applications to diverse problems that may, upon initial in-
spection, seem to have little connection with tangent lines.

Integral calculus is based on the concept of the integral. The definition of the
integral is motivated by the problem of defining and calculating the area of the region
that lies between the graph of a positive-valued function f and the x-axis over a given
closed interval [a, b]. The area of the region R of Fig. 5.1.2 is given by the integral of
f from a to b, denoted by the symbol∫ b

a
f (x) dx . (1)

But the integral, like the derivative, is important due to its applications in many prob-
lems that may appear unrelated to its original motivation—problems involving motion
and velocity, population growth, volume, arc length, surface area, and center of gravity,
among others.

The principal theorem of this chapter is the fundamental theorem of calculus
in Section 5.6. It provides a vital connection between the operations of differen-
tiation and integration, one that provides an effective method for computing values
of integrals. It turns out that, in order to apply this theorem to evaluate the integral
in (1), we need to find not the derivative of the function f (x) but rather a new function
F(x) whose derivative is f (x):

F ′(x) = f (x). (2)

Thus we need to do “differentiation in reverse.” We therefore begin in Section 5.2 with

y

xa

y = f (x)

b

Area A = ?
R

FIGURE 5.1.2 The area problem
motivates integral calculus.

an investigation of antidifferentiation.

5.2 ANTIDERIVATIVES AND INITIAL VALUE PROBLEMS

The language of change is the natural language for the statement of most scientific
laws and principles. For example, Newton’s law of cooling says that the rate of change
of the temperature T of a body is proportional to the difference between T and the
temperature of the surrounding medium (Fig. 5.2.1). That is,

dT

dt
= −k(T − A), (1)

where k is a positive constant and A, normally assumed to be constant, is the surround-
ing temperature. Similarly, the rate of change of a population P with constant birth
and death rates is proportional to the size of the population:

d P

dt
= k P (k constant). (2)

Torricelli’s law of draining (Fig. 5.2.2) implies that the rate of change of the depth y
of water in a draining tank is proportional to the square root of y; that is,

dy

dt
= −k

√
y (k constant). (3)

Mathematical models of real-world situations frequently involve equations that contain
derivatives of unknown functions. Such equations, including Eqs. (1) through (3),
are called differential equations.
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Temperature T

Temperature A

FIGURE 5.2.1 Newton’s
law of cooling (Eq. (1))
describes the cooling of
a hot rock in cold water.

yVolume V

FIGURE 5.2.2 Torricelli’s
law of draining (Eq. (3))
describes the draining of a
cylindrical water tank.

Antiderivatives
The simplest kind of differential equation has the form

dy

dx
= f (x), (4)

where f is a given (known) function and the function y(x) is unknown. The process of
finding a function from its derivative is the opposite of differentiation and is therefore
called antidifferentiation. If we can find a function y(x) whose derivative is f (x),

y′(x) = f (x),

then we call y(x) an antiderivative of f (x).

DEFINITION Antiderivative
An antiderivative of the function f is a function F such that

F ′(x) = f (x)

wherever f (x) is defined.

The table in Fig. 5.2.3 shows some examples of functions, each paired with one
of its antiderivatives. Figure 5.2.4 illustrates the operations of differentiation and an-
tidifferentiation, beginning with the same function f and going in opposite directions.
Figure 5.2.5 illustrates differentiation “undoing” the result of antidifferentiation—the
derivative of the antiderivative of f (x) is the original function f (x).

Function Antiderivative
f (x) F(x)

1 x
2x x2

x3 1
4 x4

cos x sin x
sin 2x − 1

2 cos 2x

FIGURE 5.2.3 Some
antiderivatives.

Antiderivative
F(x)

Function
f (x)

Derivative
f '(x)

Antidifferentiation

Differentiation

FIGURE 5.2.4 Differentiation
and antidifferentiation are
opposites.

F(x)

Antidifferentiation Differentiation

f (x)

FIGURE 5.2.5 Differentiation undoes
the result of antidifferentiation.
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EXAMPLE 1 Given the function f (x) = 3x2, F(x) = x3 is an antiderivative of
f (x), as are the functions

G(x) = x3 + 17, H(x) = x3 + π, and K (x) = x3 − √
2.

Indeed, J (x) = x3 + C is an antiderivative of f (x) = 3x2 for any choice of the
constant C . ◗

Thus a single function has many antiderivatives, whereas a function can have
only one derivative. If F(x) is an antiderivative of f (x), then so is F(x) + C for any
choice of the constant C . The converse of this statement is more subtle: If F(x) is one
antiderivative of f (x) on the interval I , then every antiderivative of f (x) on I is of the
form F(x) + C . This follows directly from Corollary 2 of the mean value theorem in
Section 4.3, according to which two functions with the same derivative on an interval
differ only by a constant on that interval.

Thus the graphs of any two antiderivatives F(x) + C1 and F(x) + C2 of the
same function f (x) on the same interval I are “parallel” in the sense illustrated in
Figs. 5.2.6 through 5.2.8. There we see that the constant C is the vertical distance
between the curves y = F(x) and y = F(x)+C for each x in I . This is the geometric
interpretation of Theorem 1.

−4

−2

0

2

4

−2 −1 0 1 2
x

y = x2 + C

y

C = 3
C = 2

C = 1

C = 0

C = −2

C = −1

C = −3

FIGURE 5.2.6 Graph of
y = x2 + C for various
values of C .

−8

−4

0

4

8

y

C = 6

C = 4

C = 2

C = 0
C = −2

C = −4

C = −6

y = x3 + C

−2 −1 0 1 2
x

FIGURE 5.2.7 Graph of
y = x3 + C for various values
of C .

−4

−2

0

2

4

−4 −2 0 2 4
x

y

3
2
1

0
−1
−2

−3

y = sin x + C

FIGURE 5.2.8 Graph of
y = sin x + C for various values
of C .

THEOREM 1 The Most General Antiderivative
If F ′(x) = f (x) at each point of the open interval I , then every antiderivative G of
f on I has the form

G(x) = F(x) + C, (5)

where C is a constant.

Thus if F is any single antiderivative of f on the interval I , then the most general
antiderivative of f on I has the form F(x) + C , as given in Eq. (5). The collection
of all antiderivatives of the function f (x) is called the indefinite integral of f with
respect to x and is denoted by ∫

f (x) dx .

On the basis of Theorem 1, we write∫
f (x) dx = F(x) + C, (6)

where F(x) is any particular antiderivative of f (x). Therefore,

∫
f (x) dx = F(x) + C if and only if F ′(x) = f (x).
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The integral symbol
∫

is made like an elongated capital S. It is, in fact, a me-
dieval S, used by Leibniz as an abbreviation for the Latin word summa (“sum”). We
think of the combination

∫
. . . dx as a single symbol; we fill in the “blank” with the

formula of the function whose antiderivative we seek. We may regard the differen-
tial dx as specifying the independent variable x both in the function f (x) and in its
antiderivatives.

EXAMPLE 2 The entries in Fig. 5.2.3 yield the indefinite integrals∫
1 dx = x + C,∫

2x dx = x2 + C,∫
x3 dx = 1

4 x4 + C,∫
cos x dx = sin x + C,

and ∫
sin 2x dx = − 1

2 cos 2x + C.

You can verify each such formula by differentiating the right-hand side. Indeed, this is
the surefire way to check any antidifferentiation: To verify that F(x) is an antideriva-
tive of f (x), compute F ′(x) to see whether or not you obtain f (x). For instance, the
differentiation

Dx
(− 1

2 cos 2x + C
) = − 1

2 (−2 sin 2x) + 0 = sin 2x

is sufficient to verify the fifth formula of this example. ◗

The differential dx in Eq. (6) specifies that the independent variable is x . But we
can describe a specific antidifferentiation in terms of any independent variable that is
convenient. For example, the indefinite integrals∫

3t2 dt = t3 + C,

∫
3y2 dy = y3 + C, and

∫
3u2 du = u3 + C

mean exactly the same thing as ∫
3x2 dx = x3 + C.

Using Integral Formulas
Every differentiation formula yields immediately—by “reversal” of the
differentiation—a corresponding indefinite integral formula. The now-familiar deri-
vatives of power functions and trigonometric and exponential functions yield the inte-
gral formulas stated in Theorem 2.

THEOREM 2 Some Integral Formulas∫
xk dx = xk+1

k + 1
+ C (if k �= −1), (7)∫

cos kx dx = 1

k
sin kx + C, (8)∫

sin kx dx = −1

k
cos kx + C, (9)∫

sec2 kx dx = 1

k
tan kx + C, (10)
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∫
csc2 kx dx = −1

k
cot kx + C, (11)∫

sec kx tan kx dx = 1

k
sec kx + C, (12)∫

csc kx cot kx dx = −1

k
csc kx + C, (13)

and ∫
ekx dx = 1

k
ekx + C. (14)

REMARK 1 The excluded case k = −1 in Eq. (7) corresponds to the fact that
Dx [ln x] = 1/x if x > 0, so

∫
1

x
dx = ln x + C (x > 0).

REMARK 2 Be sure you see why there is a minus sign in Eq. (9) but none in Eq. (8)!

Recall that the operation of differentiation is linear, meaning that

Dx [cF(x)] = cF ′(x) (where c is a constant)

and

Dx [F(x) ± G(x)] = F ′(x) ± G ′(x).

It follows in the notation of antidifferentiation that∫
c f (x) dx = c

∫
f (x) dx (c is a constant) (15)

and ∫
[ f (x) ± g(x)] dx =

∫
f (x) dx ±

∫
g(x) dx . (16)

We can summarize these two equations by saying that antidifferentiation is linear. In
essence, then, we antidifferentiate a sum of functions by antidifferentiating each func-
tion individually. This is termwise (or term-by-term) antidifferentiation. Moreover, a
constant coefficient in any such term is merely “carried through” the antidifferentia-
tion.

EXAMPLE 3 Find ∫ (
x3 + 3

√
x − 4

x2

)
dx .

Solution Just as in differentiation, we prepare for antidifferentiation by writing roots
and reciprocals as powers with fractional or negative exponents. Thus∫ (

x3 + 3
√

x − 4

x2

)
dx =

∫ (
x3 + 3x1/2 − 4x−2

)
dx

=
∫

x3 dx + 3
∫

x1/2 dx − 4
∫

x−2 dx [using Eqs. (15) and (16)]

= x4

4
+ 3 · x3/2

3
2

− 4 · x−1

−1
+ C [using Eq. (7)]

= 1

4
x4 + 2x

√
x + 4

x
+ C.
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There’s only one “ + C” because the surefire check verifies that 1
4 x4 + 2x3/2 + 4x−1 is

a particular antiderivative. Hence any other antiderivative differs from this one by only
a (single) constant C . ◗

EXAMPLE 4∫
(2 cos 3t + 5 sin 4t + 3e7t) dt

= 2
∫

cos 3t dt + 5
∫

sin 4t dt + 3
∫

e7t dt [using Eqs. (15) and (16)]

= 2
(

1
3 sin 3t

) + 5
(− 1

4 cos 4t
) + 3

(
1
7 e7t

) + C [using Eqs. (8), (9), and (14)]

= 2
3 sin 3t − 5

4 cos 4t + 3
7 e7t + C. ◗

Equation (7) is the power rule “in reverse.” The generalized power rule in reverse
is

∫
uk du = uk+1

k + 1
+ C (if k �= −1), (17)

where

u = g(x) and du = g′(x) dx .

EXAMPLE 5 With u = x + 5 (so that du = dx), Eq. (17) yields∫
(x + 5)10 dx =

∫
u10 du

= 1
11 u11 + C = 1

11 (x + 5)11 + C.

Note that, after substituting u = x + 5 and integrating with respect to u, our final step
is to express the resulting antiderivative in terms of the original variable x . ◗

EXAMPLE 6 We want to find ∫
20

(4 − 5x)3
dx .

We plan to use Eq. (17) with u = 4−5x . But we must get the differential du = −5 dx
into the act. The “constant-multiplier rule” of Eq. (15) permits us to do this:∫

20

(4 − 5x)3
dx = 20

∫
(4 − 5x)−3 dx

= 20

−5

∫
(4 − 5x)−3(−5 dx) (18)

= −4
∫

u−3 du (u = 4 − 5x, du = −5 dx)

= −4 · u−2

−2
+ C [Eq. (7) with k = −3].

Thus ∫
20

(4 − 5x)3
dx = 2

(4 − 5x)2
+ C.

The key step occurs in (18). There we, in effect, multiplied by the constant −5 inside
the integral and compensated for that by dividing by −5 outside the integral. At the
end it was necessary to replace u with 4 − 5x to express the antiderivative in terms of
the original independent variable x . ◗
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Very Simple Differential Equations
The technique of antidifferentiation can often be used to solve a differential equation
of the special form

dy

dx
= f (x) (19)

in which the dependent variable y does not appear on the right-hand side. To solve the
differential equation in (19) is simply to find a function y(x) that satisfies Eq. (19)—a
function whose derivative is the given function f (x). Hence the general solution of
Eq. (19) is the indefinite integral

y(x) =
∫

f (x) dx + C (20)

of the function f (x).

EXAMPLE 7 The general solution of the differential equation

dy

dx
= 3x2

is given by

y(x) =
∫

3x2 dx = x3 + C. ◗

A differential equation of the form in Eq. (19) may appear in conjunction with
an initial condition, a condition of the form

y(x0) = y0. (21)

This condition specifies the value y = y0 that the solution function y(x) must have at
x = x0. Once we have found the general solution in Eq. (20), we can determine the
value of the constant C by substituting the information that y = y0 when x = x0. With
this specific value of C , Eq. (20) then gives the particular solution of the differential
equation in (19) that satisfies the initial condition in Eq. (21). The combination

dy

dx
= f (x), y(x0) = y0 (22)

of a differential equation with an initial condition is called an initial value
problem.

EXAMPLE 8 Solve the initial value problem

dy

dx
= 2x + 3, y(1) = 2. (23)

Solution By Eq. (20) the general solution of the differential equation dy/dx = 2x +3
is given by

y(x) =
∫

(2x + 3) dx = x2 + 3x + C.

Figure 5.2.9 shows the graph y = x2 + 3x + C for various value of C . The particular

−8

−4

0

4

−4 0 4
x

y

y = x2 + 3x + C

C = 2

C = 0

C = −2

C = −4

C = −6

FIGURE 5.2.9 General solutions
y = x2 + 3x + C of the differential
equation in (22) (Example 8).

solution we seek corresponds to the curve in Fig. 5.2.9 that passes through the point
(1, 2), thereby satisfying the initial condition

y(1) = (1)2 + 3 · (1) + C = 2.

It follows that 4 + C = 2, and hence that C = −2. So the desired particular solution
is given by

y(x) = x2 + 3x − 2. ◗
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REMARK The method used in Example 8 may be described as “integrating both sides
of a differential equation” with respect to x :∫ (

dy

dx

)
dx =

∫
(2x + 3) dx;

y(x) = x2 + 3x + C.

Rectilinear Motion
Antidifferentiation enables us, in many important cases, to analyze the motion of a
particle (or “mass point”) in terms of the forces acting on it. If the particle moves in
rectilinear motion along a straight line—the x-axis, for instance—under the influence
of a given (possibly variable) force, then (as in Section 3.1) the motion of the particle
is described by its position function

x = x(t), (24)

which gives its x-coordinate at time t (Fig. 5.2.10). The particle’s velocity v(t) is the

Position at
time t

x(t)
0

x

FIGURE 5.2.10 The position
function x(t) of a particle moving
along the x-axis.

time derivative of its position function,

v(t) = dx

dt
, (25)

and its acceleration a(t) is the time derivative of its velocity:

a(t) = dv

dt
= d2x

dt2
. (26)

In a typical situation, the following information is given (Fig. 5.2.11):

x(0) = x0
0

x

Time t = 0;
velocity x'(0) = 0

FIGURE 5.2.11 Initial data for
linear motion.

a(t) the particle’s acceleration;

x(0) = x0 its initial position;

v(0) = v0 its initial velocity.

(27)

In principle, we can then proceed as follows to find the particle’s position function
x(t). First we solve the initial value problem

dv

dt
= a(t), v(0) = v0 (28)

for the velocity function v(t). Knowing v(t), we then solve the initial value problem

dx

dt
= v(t), x(0) = x0 (29)

for the particle’s position function x(t). Thus we determine x(t) from the acceleration
and initial data given in Eq. (27) by solving two successive initial value problems. For
this purpose we can use the integral versions

v(t) =
∫

a(t) dt (30)

and

x(t) =
∫

v(t) dt (31)

of the derivative formulas in (25) and (26), remembering that each antidifferentiation
involves an arbitrary constant.
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EXAMPLE 9 A particle starts from rest (that is, with initial velocity zero) at the point
x = 10 and moves along the x-axis with acceleration function a(t) = 12t . Find its
resulting position function x(t).

Solution First we must solve the initial value problem

dv

dt
= a(t) = 12t, v(0) = 0

to find the velocity function v(t). Using Eq. (30) we get

v(t) =
∫

a(t) dt =
∫

12t dt = 6t2 + C1.

(We write C1 because we anticipate the appearance of a second constant when we
integrate again to find x(t).) Then substituting the initial data t = 0, v = 0 yields

0 = 6 · 02 + C1 = C1,

so it follows that v(t) = 6t2. Next we must solve the initial value problem

dx

dt
= v(t) = 6t2, x(0) = 10

for x(t). Using Eq. (31) we get

x(t) =
∫

v(t) dt =
∫

6t2 dt = 2t3 + C2.

Then substituting the initial data t = 0, x = 10 yields

10 = 2 · 03 + C2 = C2,

so it follows finally that the particle’s position function is

x(t) = 2t3 + 10. ◗

Constant Acceleration
The solution of the initial value problems in Eqs. (28) and (29) is simplest when the
given acceleration a is constant. We begin with

dv

dt
= a (a is a constant)

and antidifferentiate:

v(t) =
∫

a dt.

So

v(t) = at + C1. (32)

To evaluate the constant C1, we substitute the initial value v(0) = v0; this gives

v0 = a · 0 + C1 = C1.

Therefore, Eq. (32) becomes

v(t) = at + v0. (33)

Because x ′(t) = v(t), a second antidifferentiation yields

x(t) =
∫

v(t) dt

=
∫

(at + v0) dt;
x(t) = 1

2 at2 + v0t + C2. (34)
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Now substituting the initial value x(0) = x0 gives

x0 = 1
2 a · (0)2 + v0 · (0) + C2 = C2

in Eq. (34). Thus the position function of the particle is

x(t) = 1
2 at2 + v0t + x0. (35)

WARNING Equations (33) and (35) are valid only in the case of constant acceleration
a. They do not apply to problems in which the acceleration varies.

EXAMPLE 10 The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in
question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How
fast was the car traveling when its brakes were first applied?

Solution The introduction of a convenient coordinate system is often crucial to the
successful solution of a physical problem. Here we take the x-axis to be positively
oriented in the direction of motion of the car. We choose the origin so that x0 = 0 when
t = 0, the time when the brakes were first applied (Fig. 5.2.12). In this coordinate
system, the car’s velocity v(t) is a decreasing function of time t (in seconds), so its
acceleration is a = −20 (ft/s2) rather than a = +20. Hence we begin with the constant
acceleration equation

dv

dt
= −20.

x

Constant deceleration  a = −20

Stop: x = 160Start: t = 0
x = 0

0=
= 0

FIGURE 5.2.12 Skid marks 160 ft long
(Example 10).

Antidifferentiation as in Eq. (30) gives

v(t) =
∫

(−20) dt = −20t + C1.

Even though the initial velocity is unknown and not given, the initial data t = 0, v = v0

still yield C1 = v0. So the car’s velocity function is

v(t) = −20t + v0. (36)

A second antidifferentiation as in Eq. (31) gives

x(t) =
∫

(−20t + v0) dt = −10t2 + v0t + C2.

Substituting the initial data t = 0, x0 = 0 yields C2 = 0, so the position function of
the car is

x(t) = −10t2 + v0t. (37)

The fact that the skid marks are 160 ft long tells us that x = 160 when the car
comes to a stop; that is,

x = 160 when v = 0.
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Substituting these values into the velocity and position equations [Eqs. (36) and (37)]
then yields the two simultaneous equations

−20t + v0 = 0, −10t2 + v0t = 160.

We now solve these for v0 and t to find the initial velocity v0 and the duration t of

Stroboscopic photograph of a ball
falling with constant acceleration
due to gravity.

the car’s skid. If we multiply the first equation by −t and add the result to the second
equation, we find that 10t2 = 160, so t = 4 when the car first comes to a stop. It
follows that the velocity of the car was

v0 = 20 · 4 = 80 (ft/s),

or about 55 mi/h, when the brakes were first applied. ◗

Vertical Motion with Constant Gravitational Acceleration
One common application of Eqs. (33) and (35) involves vertical motion near the surface
of the earth. A particle in such motion is subject to a downward acceleration a, which
is almost exactly constant if only small vertical distances are involved. The magnitude
of this constant is denoted by g, approximately 32 ft/s2 or 9.8 m/s2. (If you need
more accurate values for g, use 32.17 ft/s2 in the fps system or 9.807 m/s2 in the mks
system.)

If we neglect air resistance, we may assume that this acceleration due to gravity is
the only outside influence on the moving particle. Because we deal with vertical motion
here, it is natural to choose the y-axis as the coordinate system for the position of the

Ground
y = 0

y(t)

y
Position
at time t

FIGURE 5.2.13 The position
function y(t) of a particle moving
vertically.

particle and to place “ground level” where y = 0 (Fig. 5.2.13). If we choose the upward
direction to be the positive direction, then the effect of gravity on the particle is to
decrease its height and also to decrease its velocity v = dy/dt . Then the acceleration
of the particle is

a = dv

dt
= −g = −32 (ft/s2).

Equations (33) and (35) then become

v(t) = −32t + v0 (38)

and

y(t) = −16t2 + v0t + y0 (39)

Here y0 is the initial height of the particle in feet, v0 is its initial velocity in feet per
second, and time t is measured in seconds.

EXAMPLE 11 Suppose that a bolt was fired vertically upward from a crossbow at
ground level and that it struck the ground 20 s later. If air resistance may be neglected,
find the initial velocity of the bolt and the maximum altitude that it reached.

Solution We set up the coordinate system illustrated in Fig. 5.2.14, with ground level
corresponding to y = 0, with the bolt fired at time t = 0 (in seconds), and with the
positive direction being the upward direction. Units on the y-axis are in feet.

We are given that y = 0 when t = 20. We lack any information about the initial
velocity v0. But we may use Eqs. (38) and (39) because we have set up a coordinate
system in which the acceleration due to gravity acts in the negative direction. Thus

y(t) = −16t2 + v0t + y0 = −16t2 + v0t

and

Ground

y

a(t) = −g

Positive
values
upward

t = 0:
 y (0) = y0 = 0

0=(0)

FIGURE 5.2.14 A bolt fired
straight upward from a crossbow
(Example 11).

v(t) = −32t + v0.
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We use the information that y = 0 when t = 20 in the first equation:

0 = −16 · 202 + 20v0, and thus v0 = 16 · 20 = 320 (ft/s).

To find the maximum altitude of the bolt, we maximize y(t) by finding the value of t
for which its derivative is zero. In other words, the bolt reaches its maximum altitude
when its velocity is zero:

dy

dt
= −32t + v0 = 0,

so at maximum altitude, t = v0/32 = 10. At that time, the bolt has reached its
maximum altitude of

ymax = y(10) = −16 · 102 + 320 · 10 = 1600 (ft).

The result seems contrary to experience. It may well suggest that air resistance
cannot always be neglected, particularly not in problems involving long journeys at
high velocity. ◗

5.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Torricelli’s law of draining implies that the rate of change of the depth y of water
in a draining tank is proportional to

√
y.

2. If F ′(x) = f (x), then F is called an antiderivative of f .

3.
∫

2x dx = x2 + C

4. If c is a constant then
∫

c f (x) dx = c
∫

f (x) dx .

5.
∫

(x + 5)10 dx = 1

11
(x + 5)11 + C .

6. k �= −1 then
∫

xk dx = xk+1 + C .

7. The general solution of the differential equation

dy

dx
= 3x2

is y(x) = x3 + C .
8. The solution of the initial value problem

dy

dx
= 2x + 3, y(1) = 2

is y(x) = x2 + 3x + 2.
9. The solution of the initial value problem

dv

dt
= 12t, v(0) = 0

is v(t) = 6t2.
10. If a particle moves in a straight line with velocity v(t) and constant acceleration

a, then
dv

dt
= a.
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5.2 CONCEPTS: QUESTIONS AND DISCUSSION
List corresponding features of the graphs of a function f and its antiderivative F .
Hence describe a strategy whereby—given a plot showing the graphs of f and F—
you can determine which is which. Apply your strategy to the following graphs, in
which h is either the derivative or the antiderivative of g.

1. Figure 5.2.15
y

x
h

g

FIGURE 5.2.15

2. Figure 5.2.16
y

x

h

g

FIGURE 5.2.16

3. Figure 5.2.17
y

x

h

g

FIGURE 5.2.17

4. Figure 5.2.18
y

x

h g

FIGURE 5.2.18

5.2 PROBLEMS

Evaluate the indefinite integrals in Problems 1 through 30.

1.
∫

(3x2 + 2x + 1) dx 2.
∫

(3t4 + 5t − 6) dt

3.
∫

(1 − 2x2 + 3x3) dx 4.
∫ (

− 1

t2

)
dt

5.
∫ (

3

x3
+ 2x3/2 − 1

)
dx 6.

∫ (
x5/2 − 5

x4
− √

x

)
dx

7.
∫ (

3
2 t1/2 + 7

)
dt 8.

∫ (
2

x3/4
− 3

x2/3

)
dx

9.
∫ (

3
√

x2 + 4
4
√

x5

)
dx 10.

∫ (
2x

√
x − 1√

x

)
dx

11.
∫

(4x3 − 4x + 6) dx 12.
∫ (

1

4
t5 − 5

t2

)
dt

13.
∫

7ex/7 dx 14.
∫

1

7x
dx

15.
∫

(x + 1)4 dx 16.
∫

(t + 1)10 dt

17.
∫

1

(x − 10)7
dx 18.

∫ √
z + 1 dz

19.
∫ √

x (1 − x)2 dx 20.
∫

3
√

x (x + 1)3 dx

21.
∫

2x4 − 3x3 + 5

7x2
dx 22.

∫
(3x + 4)2

√
x

dx

23.
∫

(9t + 11)5 dt 24.
∫

1

(3z + 10)7
dz

25.
∫ (

e2x + e−2x
)

dx 26.
∫ (

ex + e−x
)2

dx

27.
∫

(5 cos 10x − 10 sin 5x) dx

28.
∫

(2 cos πx + 3 sin πx) dx

29.
∫

(3 cos π t + cos 3π t) dt

30.
∫

(4 sin 2π t − 2 sin 4π t) dt

31. Verify by differentiation that the integral formulas∫
sin x cos x dx = 1

2 sin2 x + C1

and ∫
sin x cos x dx = − 1

2 cos2 x + C2

are both valid. Reconcile these seemingly different results.
What is the relation between the constants C1 and C2?

32. Show that the obviously different functions

F1(x) = 1

1 − x
and F2(x) = x

1 − x

are both antiderivatives of f (x) = 1/(1 − x)2. What is the
relation between F1(x) and F2(x)?
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33. Use the identities

sin2 x = 1 − cos 2x

2
and cos2 x = 1 + cos 2x

2

to find the antiderivatives∫
sin2 x dx and

∫
cos2 x dx .

34. (a) First explain why
∫

sec2 x dx = tan x + C. (b) Then use
the identity 1 + tan2 x = sec2 x to find the antiderivative∫

tan2 x dx .

Solve the initial value problems in Problems 35 through 46.

35.
dy

dx
= 2x + 1; y(0) = 3

36.
dy

dx
= (x − 2)3; y(2) = 1

37.
dy

dx
= √

x ; y(4) = 0

38.
dy

dx
= 1

x2
; y(1) = 5

39.
dy

dx
= 1√

x + 2
; y(2) = −1

40.
dy

dx
= √

x + 9; y(−4) = 0

41.
dy

dx
= 3x3 + 2

x2
; y(1) = 1

42.
dy

dx
= x4 − 3x + 3

x3
; y(1) = −1

43.
dy

dx
= (x − 1)3; y(0) = 2

44.
dy

dx
= √

x + 5; y(4) = −3

45.
dy

dx
= 6e2x ; y(0) = 10

46.
dy

dx
= 3

x
; y(1) = 7

In Problems 47 through 52, a particle moves along the x-axis
with the given acceleration function a(t), initial position x(0),
and initial velocity v(0). Find the particle’s position function
x(t).

47. a(t) = 12t − 4; x(0) = 0, v(0) = −10

48. a(t) = 10 − 30t ; x(0) = 5, v(0) = −5

49. a(t) = 2t2; x(0) = −7, v(0) = 3

50. a(t) = 15
√

t ; x(0) = 5, v(0) = 7

51. a(t) = sin t ; x(0) = 0, v(0) = 0

52. a(t) = 8 cos 2t ; x(0) = −2, v(0) = 4

In Problems 53 through 56, a particle starts at the origin and
travels along the x-axis with the velocity function v(t) whose
graph is shown in Figs. 5.2.19 through 5.2.22. Sketch the graph
of the resulting position function x(t) for 0 � t � 10.

53. Figure 5.2.19 54. Figure 5.2.20

1086420
t

v

0
1
2
3
4
5
6
7
8
9

10

FIGURE 5.2.19 Graph of
the velocity function v(t)
of Problem 53.

1086420
t

v

0
1
2
3
4
5
6
7
8
9

10

FIGURE 5.2.20 Graph of
the velocity function v(t)
of Problem 54.

55. Figure 5.2.21 56. Figure 5.2.22

1086420
t

v

0
1
2
3
4
5
6
7
8
9

10

FIGURE 5.2.21 Graph of
the velocity function v(t)
of Problem 55.

1086420
t

v

0
1
2
3
4
5
6
7
8
9

10

FIGURE 5.2.22 Graph of
the velocity function v(t)
of Problem 56.

Problems 57 through 73 deal with vertical motion near the sur-
face of the earth (with air resistance considered negligible). Use
g = 32 ft/s2 for the magnitude of the gravitational acceleration.

57. You throw a ball straight upward from the ground with initial
velocity 96 ft/s. How high does the ball rise, and how long
does it remain aloft?

58. When Alex shot a marble straight upward from ground level
with his slingshot, it reached a maximum height of 400 ft.
What was the marble’s initial velocity?

59. Laura drops a stone into a well; it hits bottom 3 s later. How
deep is the well?

60. Fran throws a rock straight upward alongside a tree
(Fig. 5.2.23). The rock rises until it is even with the top
of the tree and then falls back to the ground; it remains aloft
for 4 s. How tall is the tree?

h = ?

FIGURE 5.2.23 The tree
of Problem 60.
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61. Mickey throws a ball upward with an initial velocity of
48 ft/s from the top of a building 160 ft high. The ball soon
falls to the ground at the base of the building (Fig. 5.2.24).
How long does the ball remain aloft, and with what speed
does it strike the ground?

y = 160

y = 0

FIGURE 5.2.24 The
building of Problem 61.

62. A ball is dropped from the top of a building 576 ft high.
With what velocity should a second ball be thrown straight
downward 3 s later so that the two balls hit the ground si-
multaneously?

63. A ball is dropped from near the top of the Empire State
Building, at a height 960 ft above 34th Street. How long
does it take for the ball to reach the street, and with what
velocity does it strike the street?

64. Lynda shoots an arrow straight upward from the ground with
initial velocity 320 ft/s. (a) How high is the arrow after ex-
actly 3 s have elapsed? (b) At what time is the arrow exactly
1200 ft above the ground? (c) How many seconds after its
release does the arrow strike the ground?

65. Bill throws a stone upward from the ground. The stone
reaches a maximum height of 225 ft. What was its initial
velocity?

66. Sydney drops a rock into a well in which the water surface
is 98 m below the ground. How long does it take the rock to
reach the water surface? How fast is the rock moving as it
penetrates the water surface?

67. Gloria drops a tennis ball from the top of a building 400 ft
high. How long does it take the ball to reach the ground?
With what velocity does it strike the ground?

68. Kosmo throws a baseball straight downward from the top of
a tall building. The initial speed of the ball is 25 ft/s. It hits
the ground with a speed of 153 ft/s. How tall is the building?

69. A ball is thrown straight upward from ground level with an
initial speed of 160 ft/s. What is the maximum height that
the ball attains?

70. Carolyn drops a sandbag from the top of a tall building h
feet high. At the same time Jon throws a ball upward from
ground level from a point directly below the sandbag. With
what (initial) velocity should the ball be thrown so that it

meets the sandbag at the halfway point, where both have al-
titude h/2?

71. Kelly throws a baseball straight downward with an ini-
tial speed of 40 ft/s from the top of the Washington
Monument, 555 ft high. How long does it take the base-
ball to reach the ground, and with what speed does it strike
the ground?

72. A rock is dropped from an initial height of h feet above the
surface of the earth. Show that the speed with which the rock
strikes the surface is

√
2gh .

73. A bomb is dropped from a balloon hovering at an altitude of
800 ft. From directly below the balloon, a projectile is fired
straight upward toward the bomb exactly 2 s after the bomb
is released. With what initial speed should the projectile be
fired in order to hit the bomb at an altitude of exactly 400 ft?

74. A car’s brakes are applied when the car is moving at 60 mi/h
(exactly 88 ft/s). The brakes provide a constant deceleration
of 40 ft/s2. How far does the car travel before coming to a
stop?

75. A car traveling at 60 mi/h (exactly 88 ft/s) skids for 176 ft
after its brakes are applied. The deceleration provided by the
braking system is constant. What is its value?

76. A spacecraft is in free fall toward the surface of the moon at
a speed of 1000 mi/h. Its retrorockets, when fired, provide a
deceleration of 20000 mi/h2. At what height above the sur-
face should the astronauts activate the retrorockets to ensure
a “soft touchdown” (v = 0 at impact)? (See Fig. 5.2.25.)
Ignore the effect of the moon’s gravitational field.

Lunar surface

a v

FIGURE 5.2.25 The
spacecraft of Problem 76.

77. (a) What initial velocity v0 must you use to throw a ball to a
maximum height of 144 ft? (b) Now suppose that you throw
a ball upward with the same initial velocity v0 on the moon,
where the surface gravitational acceleration is only 5.2 ft/s2.
How high will it go, and how long will it remain aloft?

78. Arthur C. Clarke’s The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Its 2-
mi2 aluminized sail provides it with an acceleration of
(0.001)g = 0.032 ft/s2. If the Diana starts from rest and
travels in a straight line, calculate its distance x traveled (in
miles) and its velocity v (in mi/h) after 1 min, 1 h, and 1 day.

79. A driver involved in an accident claims he was going only
25 mi/h. When police tested his car, they found that when
the brakes were applied at 25 mi/h, the car skidded only 45
ft before coming to a stop. The driver’s skid marks at the ac-
cident scene measured 210 ft. Assuming the same (constant)
deceleration, calculate the speed at which he was traveling
prior to the accident.
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5.3 ELEMENTARY AREA COMPUTATIONS

The indefinite integrals of Section 5.2 stem from the concept of antidifferentiation. The
most fundamental type of integral is the one mentioned in Section 5.1, associated with
the concept of area. It is called the definite integral, or simply the integral. Surpris-
ingly, the quite different concepts of area and antidifferentiation have a close and deep
relationship. This fact, discovered and exploited by Newton and Leibniz late in the
seventeenth century, is the reason the same word, integral, is used in both contexts.

The Concept of Area
Perhaps everyone’s first contact with the concept of area is the formula A = bh, which
gives the area A of a rectangle as the product of its base length b and its height h.
We next learn that the area of a triangle is half the product of its base and height.
This follows because any triangle can be split into two right triangles, and every right
triangle is exactly half a rectangle (Fig. 5.3.1).

h

b

FIGURE 5.3.1 The
formula for the area of a
triangle, A = 1

2 bh, follows
with the aid of this figure.

FIGURE 5.3.2 Every
polygon can be
represented as a union of
nonoverlapping triangles.

Given the formula A = 1
2 bh for the area of a triangle, we can—in principle—find

the area of any polygonal figure (a plane region bounded by a closed “curve” consisting
of a finite number of straight line segments). The reason is that any polygonal figure
can be divided into nonoverlapping triangles (Fig. 5.3.2), and the area of the polygonal
figure is then the sum of the areas of these triangles. This approach to area dates back
several thousand years to the ancient civilizations of Egypt and Babylonia.

The ancient Greeks began the investigation of areas of curvilinear figures in the
fourth and fifth centuries B.C. Given a plane region R whose area they sought, they
worked both with a polygonal P inscribed in R (Fig. 5.3.3) and with a polygonal
Q circumscribed about R (Fig. 5.3.4). If the polygons P and Q have sufficiently
many sides, all short, then it would appear that their areas a(P) and a(Q) closely
approximate the area of the region R. Moreover, error control is possible: We see that

a(P) < a(R) < a(Q) (1)

because R contains the polygon P but is contained in the polygon Q.

R
P

(a) (b)

R
P

FIGURE 5.3.3 (a) A six-sided polygon
P inscribed in R; (b) a many-sided
inscribed polygon P more closely
approximating the area of R.

R

(a) (b)

Q
R

Q

FIGURE 5.3.4 (a) A six-sided polygon
Q circumscribed around R; (b) a
many-sided circumscribed polygon
Q more closely approximating the
area of R.
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The inequalities in (1) bracket the desired area a(R). Suppose, for instance, that
calculations based on triangular dissections (as in Fig. 5.3.2) yield a(P) = 7.341 and
a(Q) = 7.343. Then the resulting inequality,

7.341 < a(R) < 7.343,

implies that a(R) ≈ 7.34, accurate to two decimal places.
Our primary objective here is to describe a systematic technique by which to ap-

proximate the area of an appropriate curvilinear region using easily calculated polygo-
nal areas.

Areas Under Graphs
We consider the type of region that is determined by a continuous positive-valued
function f defined on a closed interval [a, b]. Suppose that we want to calculate the
area A of the region R that lies below the curve y = f (x) and above the interval [a, b]
on the x-axis (Fig. 5.3.5). The region R is bounded on the left by the vertical line
x = a and on the right by the vertical line x = b.

xa b

Area A of region R

y = f (x)

FIGURE 5.3.5 The area under the
graph of y = f (x) from x = a to
x = b.

xa

y = f (x)

b

FIGURE 5.3.6 Vertical strips determined
by a division of [a, b] into equal-length
subintervals.

We divide the base interval [a, b] into subintervals, all with the same length.
Above each subinterval lies a vertical strip (Fig. 5.3.6), and the area of A is the sum of
the areas of these strips.

On each of these base subintervals, we erect a rectangle that approximates the
corresponding vertical strip. We may choose either an “inscribed” or a “circumscribed”
rectangle (both possibilities are illustrated in Fig. 5.3.6), or even a rectangle that is
intermediate between the two. These rectangles then make up a polygon that approxi-
mates the region R, and therefore the sum of the areas of these rectangles approximates
the desired area A.

For example, suppose that we want to approximate the area A of the region R that
lies below the parabola y = x2 above the interval [0, 3] on the x-axis. The computer
plots in Fig. 5.3.7 show successively

• 5 inscribed and 5 circumscribed rectangles;
• 10 inscribed and 10 circumscribed rectangles;
• 20 inscribed and 20 circumscribed rectangles;
• 40 inscribed and 40 circumscribed rectangles.

Each collection of inscribed rectangles gives an underestimate of A, whereas each
collection of circumscribed rectangles gives an overestimate of A. The “curvilinear
triangles” (by which the rectangular polygons in Fig. 5.3.7 undershoot or overshoot
the region R) constitute the errors in these estimates. The more rectangles we use, the
more accurate the approximation. Thus, to approximate accurately the area of such a
region R, we need an effective way to calculate and sum the areas of collections of
rectangles like those in Fig. 5.3.7.

EXAMPLE 1 As in Fig. 5.3.7, let R denote the region that lies below the graph of
f (x) = x2 and above the interval [0, 3]. Calculate the underestimate and the over-
estimate of the area A of R by using 5 rectangles each of width 3

5 . Then repeat the
computations using 10 rectangles each of width 3

10 .
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3 x21

4

8

(a)

Inscribed

3 x21

4

8

Circumscribed

3 x21

4

8

(b)

3 x21

4

8

3 x21

4

8

(c)

3 x21

4

8

3 x21

4

8

(d)

3 x21

4

8

y y

y y

y y

y y

FIGURE 5.3.7 (a) Five inscribed and circumscribed polygons; (b) ten inscribed and circumscribed poly-
gons; (c) twenty inscribed and circumscribed polygons; (d) forty inscribed and circumscribed polygons.

Solution First suppose that n = 5 rectangles are used. Let A5 denote the underes-
timate and A5 the overestimate obtained by using 5 rectangles based on the 5 subin-
tervals of length 3

5 (Fig. 5.3.8). From Fig. 5.3.7(a) we see that the heights of the 5
0 312

5
9
5

6
5

3
5

FIGURE 5.3.8 Five subintervals,
each of length 3

5 (Example 1).

inscribed rectangles (the first of which is degenerate—its height is zero) are the values
of the function f (x) = x2 at the 5 left-hand endpoints 0, 3

5 , 6
5 , 9

5 , and 12
5 . Because the

base of each rectangle has length 3
5 , we see also that

A5 = 3
5 ·

[
(0)2 + (

3
5

)2 + (
6
5

)2 + (
9
5

)2 + (
12
5

)2
]

= 3
5 · (

0 + 9
25 + 36

25 + 81
25 + 144

25

) = 6.48.

The heights of the 5 circumscribed rectangles are the values of f (x) = x2 at the 5

331

www.konkur.in



332 CHAPTER 5 The Integral

right-hand endpoints 3
5 , 6

5 , 9
5 , 12

5 , and 3, so the corresponding overestimate is

A 5 = 3
5 ·

[(
3
5

)2 + (
6
5

)2 + (
9
5

)2 + (
12
5

)2 + (
15
5

)2
]

= 3
5 · (

9
25 + 36

25 + 81
25 + 144

25 + 225
25

) = 11.88.

These are crude approximations to the actual area A. On the basis of this information
alone, our best estimate of A might well be the average of the under- and overestimates:

A5 +A 5

2
= 6.48 + 11.88

2
= 9.18.

Let us see if doubling the number of subintervals to n = 10 increases the accu-
0 327

10
24
10

21
10

18
10

15
10

12
10

9
10

6
10

3
10

FIGURE 5.3.9 Ten subintervals,
each of length 3

10 (Example 1).

racy significantly. Looking at Fig. 5.3.7(b), we see that the heights of the 10 inscribed
rectangles are the values of f (x) = x2 at the 10 left-hand endpoints 0, 3

10 , 6
10 , 9

10 , 12
10 ,

15
10 , 18

10 , 21
10 , 24

10 , and 27
10 of the subintervals in Fig. 5.3.9. The base of each rectangle has

length 3
10 , so the resulting underestimate is

A 10 = 3
10 ·

[
(0)2 + (

3
10

)2 + (
6
10

)2 + (
9

10

)2 + (
12
10

)2

+ (
15
10

)2 + (
18
10

)2 + (
21
10

)2 + (
24
10

)2 + (
27
10

)2
]

= 3
10 · (

0 + 9
100 + 36

100 + 81
100 + 144

100 + 225
100 + 324

100 + 441
100 + 576

100 + 729
100

)
= 7695

1000 = 7.695.

Similarly, the sum of the areas of the 10 circumscribed rectangles in Fig. 5.3.7(b) is the
overestimate

A 10 = 3
10 ·

[(
3
10

)2 + (
6

10

)2 + (
9
10

)2 + (
12
10

)2 + (
15
10

)2

+ (
18
10

)2 + (
21
10

)2 + (
24
10

)2 + (
27
10

)2 + (
30
10

)2
]

= 10395
1000 = 10.395.

At this point, our best estimate of the actual area A might be the average

A 10 +A 10

2
= 7.695 + 10.395

2
= 9.045. ◗

We used a computer to calculate more refined underestimates and overestimates
of the area A under the graph y = x2 over [0, 3], with 20, 40, 80, 160, and, finally, 320
rectangles. The results (rounded to four decimal places) are shown in Fig. 5.3.10. The
average values in the final column of the table suggest that A ≈ 9.

Number of
rectangles Underestimate Overestimate Average

5 6.4800 11.8800 9.1800
10 7.6950 10.3950 9.0450
20 8.3363 9.6863 9.0113
40 8.6653 9.3403 9.0028
80 8.8320 9.1695 9.0007

160 8.9158 9.0846 9.0002
320 8.9579 9.0422 9.0000

FIGURE 5.3.10 Estimate of the area under y = x2 over [0, 3].
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Summation Notation
For more convenient computation of area estimates, as in Example 1, we need a concise
notation for sums of many numbers. The symbol

∑n
i=1 ai is used to abbreviate the sum

of the n numbers a1, a2, a3, . . . , an:

n∑
i=1

ai = a1 + a2 + a3 + · · · + an . (2)

The symbol on the left here—
∑

is the capital Greek letter sigma (for S, for “sum”)—
specifies the sum of the terms ai as the summation index i takes on the successive
integer values from 1 to n. For instance, the sum of the squares of the first 10 positive
integers is

10∑
i=1

i2 = 12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102

= 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 = 385.

The particular symbol used for the summation index is immaterial:

10∑
i=1

i2 =
10∑

k=1

k2 =
10∑

r=1

r2 = 385.

EXAMPLE 2

7∑
k=1

(k + 1) = 2 + 3 + 4 + 5 + 6 + 7 + 8 = 35,

6∑
n=1

2n = 2 + 4 + 8 + 16 + 32 + 64 = 126,

and

5∑
j=1

(−1) j+1

j2
= 1 − 1

4 + 1
9 − 1

16 + 1
25 = 3019

3600 ≈ 0.8386. ◗

The simple rules of summation

n∑
i=1

cai = c
n∑

i=1

ai (3)

and

n∑
i=1

(ai + bi ) =
(

n∑
i=1

ai

)
+

(
n∑

i=1

bi

)
(4)

are easy to verify by writing out each sum in full.
Note that if ai = a (a constant) for i = 1, 2, . . . , n, then Eq. (4) yields

n∑
i=1

(a + bi ) =
n∑

i=1

a +
n∑

i=1

bi =
(

a + a + · · · + a︸ ︷︷ ︸
n terms

)
+

n∑
i=1

bi ,

and hence
n∑

i=1

(a + bi ) = na +
n∑

i=1

bi . (5)
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In particular,

n∑
i=1

1 = n. (6)

The sum of the kth powers of the first n positive integers,

n∑
i=1

i k = 1k + 2k + 3k + · · · + nk,

commonly occurs in area computations. The values of this sum for k = 1, 2, and 3 are
given by the following formulas (see Problems 43 and 44):

n∑
i=1

i = n(n + 1)

2
= 1

2 n2 + 1
2 n, (7)

n∑
i=1

i2 = n(n + 1)(2n + 1)

6
= 1

3 n3 + 1
2 n2 + 1

6 n, (8)

n∑
i=1

i3 = n2(n + 1)2

4
= 1

4 n4 + 1
2 n3 + 1

4 n2. (9)

EXAMPLE 3 The sum of the first 10 positive integers is given by Eq. (7) with
n = 10:

1 + 2 + 3 + · · · + 10 =
10∑

i=1

i = 10 · 11

2
= 55.

The sum of their squares and cubes are given by Eqs. (8) and (9):

12 + 22 + 32 + · · · + 102 =
10∑

i=1

i2 = 10 · 11 · 21

6
= 385

and

13 + 23 + 33 + · · · + 103 =
10∑

i=1

i3 = 102 · 112

4
= 3025. ◗

EXAMPLE 4 Consider the sum

10∑
i=1

(7i2 − 5i) = 2 + 18 + 48 + · · · + 522 + 650.

Using the rules in Eqs. (3) and (4) as well as Eqs. (7) and (8), we find that

10∑
i=1

(7i2 − 5i) = 7
10∑

i=1

i2 − 5
10∑

i=1

i

= 7 · 10 · 11 · 21

6
− 5 · 10 · 11

2
= 2420. ◗
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EXAMPLE 5 We can use Eq. (8) to simplify the evaluation of the sum for A 10 in
Example 1, as follows:

A 10 = 3
10 ·

[(
0
10

)2 + (
3

10

)2 + (
6
10

)2 + · · · + (
27
10

)2
]

= 3
10

9∑
i=0

(
3

10

)2
i2

= 3
10 · (

3
10

)2 · [
12 + 22 + 32 + · · · + 92

] = (
3
10

)3
9∑

i=1

i2

= 27

1000
· 9 · 10 · 19

6
= 7695

1000
= 7.695. ◗

EXAMPLE 6 Evaluate the limit

lim
n→+∞

1 + 2 + 3 + · · · + n

n2
.

Solution Using Eq. (7), we obtain

lim
n→+∞

1 + 2 + 3 + · · · + n

n2
= lim

n→+∞

1
2 n(n + 1)

n2

= lim
n→+∞

n + 1

2n
= lim

n→+∞

(
1

2
+ 1

2n

)
= 1

2
,

because the term 1/(2n) has limit zero as n → +∞. ◗

Area Sums
Figure 5.3.11 shows the region R that lies below the graph of the positive-valued in-
creasing function f and above the interval [a, b]. To approximate the area A of R, we
have chosen a fixed integer n and divided the interval [a, b] into n subintervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn],
all with the same length

�x = b − a

n
. (10)

On each of the subintervals we have erected one inscribed rectangle and one circum-
scribed rectangle.

xn − 1 x

y y = f (x)

xn = ba = x0 x1 x2 x3

f (b) − f (a)

Δx

FIGURE 5.3.11 The area under y = f (x) over the interval [a, b].

As indicated in Fig. 5.3.12, the inscribed rectangle over the i th subinterval
[xi−1, xi ] has height f (xi−1), whereas the i th circumscribed rectangle has height f (xi ).
Because the base of each rectangle has length �x , the areas of the rectangles are

f (xi−1) �x and f (xi ) �x, (11)
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xi − 1 x

y y = f (x)

xn = ba = x0 xi

f (xi − 1)
f (xi)

Δx

FIGURE 5.3.12 Inscribed and circumscribed
rectangles on the i th subinterval [xi−1, xi ].

respectively. Adding the areas of the inscribed rectangles for i = 1, 2, 3, . . . , n, we
get the underestimate

A n =
n∑

i=1

f (xi−1) �x (12)

of the actual area A. Similarly, the sum of the areas of the circumscribed rectangles is
the overestimate

A n =
n∑

i=1

f (xi ) �x . (13)

The inequality A n � A � A n then yields

n∑
i=1

f (xi−1) �x � A �
n∑

i=1

f (xi ) �x . (14)

The inequalities in (14) would be reversed if f (x) were decreasing (rather than increas-
ing) on [a, b]. (Why?)

Areas as Limits
An illustration such as Fig. 5.3.7 suggests that if the number n of subintervals is very
large, so that �x is small, then the areas A n andA n of the inscribed and circumscribed
polygons will differ by very little. Hence both will be very close to the actual area A
of the region R. We can also see this because, if f either is increasing or is decreasing
on the whole interval [a, b], then the small rectangles in Fig. 5.3.11 (representing the
difference between A n and A n) can be reassembled in a “stack,” as indicated on the
right in the figure. It follows that

|A n − A n| = | f (b) − f (a)| �x . (15)

But �x = (b − a)/n → 0 as n → ∞. Thus the difference between the left-
hand and right-hand sums in (14) is approaching zero as n → ∞, whereas A does not
change as n → ∞. It follows that the area of the region R is given by

A = lim
n→∞

n∑
i=1

f (xi−1) �x = lim
n→∞

n∑
i=1

f (xi ) �x . (16)

The meaning of these limits is simply that A can be found with any desired accuracy
by calculating either sum in Eq. (16) with a sufficiently large number n of subintervals.
In applying Eq. (16), recall that

�x = b − a

n
(17)
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Also note that

xi = a + i �x (18)

for i = 0, 1, 2, . . . , n, because xi is i “steps” of length �x to the right of x0 = a.

EXAMPLE 7 We can now compute exactly the area we approximated in Exam-
ple 1—the area of the region under the graph of f (x) = x2 over the interval [0, 3].
If we divide [0, 3] into n subintervals all of the same length, then Eqs. (17) and (18)
give

�x = 3

n
and xi = 0 + i · 3

n
= 3i

n

for i = 0, 1, 2, . . . , n. Therefore,

n∑
i=1

f (xi ) �x =
n∑

i=1

(xi )
2 �x =

n∑
i=1

(
3i

n

)2(3

n

)
= 27

n3

n∑
i=1

i2.

Then Eq. (8) for
∑

i2 yields

n∑
i=1

f (xi ) �x = 27

n3

(
1

3
n3 + 1

2
n2 + 1

6
n

)
= 27

(
1

3
+ 1

2n
+ 1

6n2

)
.

When we take the limit as n → ∞, Eq. (16) gives

A = lim
n→∞ 27

(
1

3
+ 1

2n
+ 1

6n2

)
= 9,

because the terms 1/(2n) and 1/(6n2) approach zero as n → ∞. Thus our earlier
inference from the data in Fig. 5.3.10 was correct: A = 9 exactly. ◗

EXAMPLE 8 Find the area under the graph of f (x) = 100 − 3x2 from x = 1 to

x

y

54321

40

80

FIGURE 5.3.13 The region of
Example 8.

x = 5.

Solution As shown in Fig. 5.3.13, the sum
∑

f (xi ) �x gives the area of the inscribed
rectangular polygon. With a = 1 and b = 5, Eqs. (17) and (18) give

�x = 4

n
and xi = 1 + i · 4

n
= 1 + 4i

n
.

Therefore
n∑

i=1

f (xi ) �x =
n∑

i=1

[
100 − 3 ·

(
1 + 4i

n

)2
](

4

n

)

=
n∑

i=1

[
97 − 24i

n
− 48i2

n2

](
4

n

)

= 388

n

n∑
i=1

1 − 96

n2

n∑
i=1

i − 192

n3

n∑
i=1

i2

= 388

n
· n − 96

n2

(
1

2
n2 + 1

2
n

)
− 192

n3

(
1

3
n3 + 1

2
n2 + 1

6
n

)

= 276 − 144

n
− 32

n2
.

[We have applied Eqs. (6) through (8).] Consequently, the second limit in Eq. (16)
yields

A = lim
n→∞

(
276 − 144

n
− 32

n

)
= 276

for the desired area. ◗
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Historical Note—The Number π

Mathematicians of ancient times tended to employ inscribed and circumscribed tri-

1 nα

Pn

nα

Qn

1

FIGURE 5.3.14 Estimating π by
using inscribed and circumscribed
regular polygons and the unit circle.

angles rather than rectangles for area approximations. In the third century B.C.,
Archimedes, the greatest mathematician of antiquity, used such an approach to derive
the famous estimate

223
71 = 3 10

71 < π < 3 1
7 = 22

7 .

Because the area of a circle of radius r is πr2, the number π may be defined to be the
area of the unit circle of radius r = 1. We will approximate π , then, by approximating
the area of the unit circle.

Let Pn and Qn be n-sided regular polygons, with Pn inscribed in the unit circle
and Qn circumscribed around it (Fig. 5.3.14). Because both polygons are regular, all
their sides and angles are equal, so we need to find the area of only one of the triangles
that we’ve shown making up Pn and one of those making up Qn .

Let αn be the central angle subtended by half of one of the polygon’s sides. The
angle αn is the same whether we work with Pn or with Qn . In degrees,

αn = 360◦

2n
= 180◦

n
.

We can read various dimensions and proportions from Fig. 5.3.14. For example, we
n a(Pn) a(Qn)

6 2.598076 3.464102
12 3.000000 3.215390
24 3.105829 3.159660
48 3.132629 3.146086
96 3.139350 3.142715

180 3.140955 3.141912
360 3.141433 3.141672
720 3.141553 3.141613

1440 3.141583 3.141598
2880 3.141590 3.141594
5760 3.141592 3.141593

FIGURE 5.3.15 Data for estimating
π (rounded to six-place accuracy).

see that the area a(Pn) = A n of Pn is given by

A n = a(Pn) = n · 2 · 1

2
sin αn cos αn = n

2
sin 2αn = n

2
sin

(
360◦

n

)
(19)

and that the area of Qn is

A n = a(Qn) = n · 2 · 1

2
tan αn = n tan

(
180◦

n

)
. (20)

We substituted selected values of n into Eqs. (19) and (20) to obtain the entries of
the table in Fig. 5.3.15. Because A n � π � A n for all n, we see that π ≈ 3.14159 to
five decimal places. Archimedes’ reasoning was not circular—he used a direct method
for computing the sines and cosines in Eqs. (19) and (20) that does not depend upon a
priori knowledge of the value of π .∗

5.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. At the beginning of Section 5.3 it is shown that the area of a triangle is half the
product of its base and height.

2. In Example 1, evidence is provided to suggest that the area between the graph of
f (x) = x2 and the x-axis for 0 � x � 3 is 9.

3.
10∑

i=1

i2 = 255. 4.
5∑

j=1

(−1) j+1

j2
= 3019

3600
.

5.
n∑

i=1

1 = n. 6.
n∑

i=1

i = n(n + 1)

2
.

7. lim
n→∞

1 + 2 + 3 + · · · + n

n2
= 1.

8. In Example 7 a proof is provided that the area of the region of Example 1 is
exactly 9.

∗ See Chapter 2 of C. H. Edwards, Jr., The Historical Development of the Calculus (New York: Springer-
Verlag, 1979).
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9. Archimedes established that
223

71
< π <

22

7
.

10. In Section 5.3 it is asserted that the area of any bounded plane region can be
approximated to any degree of accuracy by the method of inscribed and circum-
scribed rectangles.

5.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. When the German mathematician Carl Friedrich Gauss (1777–1855) was ten

years old, his teacher asked the class to find the sum of the integers 1 through
100. Young Gauss almost immediately wrote the answer (and nothing else) on
his slate. Apparently he had simply noted that the sum of the first and last of
these integers is 101, as is the sum of the second and next-to-last, as is the sum
of the third and second-from-last, and so forth. So he simply multiplied 101 by
50—the number of such pairs—to get the sum 5050. Explain carefully how this
approach can be used to show that

n∑
i=1

i = n(n + 1)

2
.

In what way does the argument depend on whether n is even or odd?
2. The area A of the region under the curve y = f (x) in Fig. 5.3.11 satisfies (for

every positive integer n) the inequality A n < A < A n , where A n andA n are the
sums defined in Eqs. (12) and (13). Moreover,

|A n − A n| = | f (b) − f (a)| · b − a

n
by Eq. (15). Explain carefully why it follows—as asserted in Eq. (16)—that

lim
n→∞ A n = lim

n→∞ A n = A.

That is, explain why it follows that, given ε > 0, there exists an integer N such
that both A n andA n differ from A by less than ε if n > N .

5.3 PROBLEMS

Write each of the sums in Problems 1 through 8 in expanded no-
tation.

1.
5∑

i=1

3i 2.
6∑

i=1

√
2i

3.
5∑

j=1

1

j + 1
4.

6∑
j=1

(2 j − 1)

5.
6∑

k=1

1

k2
6.

6∑
k=1

(−1)k+1

k2

7.
5∑

n=1

xn 8.
5∑

n=1

(−1)n+1x2n−1

Write the sums in Problems 9 through 18 in summation notation.

9. 1 + 4 + 9 + 16 + 25

10. 1 − 2 + 3 − 4 + 5 − 6

11. 1 + 1
2 + 1

3 + 1
4 + 1

5

12. 1 + 1
4 + 1

9 + 1
16 + 1

25

13. 1
2 + 1

4 + 1
8 + 1

16 + 1
32 + 1

64

14. 1
3 − 1

9 + 1
27 − 1

81 + 1
243

15. 2
3 + 4

9 + 8
27 + 16

81 + 32
243

16. 1 + √
2 + √

3 + 2 + √
5 + √

6 + √
7 + 2

√
2 + 3

17. x + x2

2
+ x3

3
+ · · · + x10

10

18. x − x3

3
+ x5

5
− x7

7
+ · · · − x19

19

Use Eqs. (6) through (9) to find the sums in Problems 19
through 28.

19.
10∑

i=1

(4i − 3) 20.
8∑

j=1

(5 − 2 j)

21.
10∑

i=1

(3i2 + 1) 22.
6∑

k=1

(2k − 3k2)

23.
8∑

r=1

(r − 1)(r + 2) 24.
5∑

i=1

(i3 − 3i + 2)

25.
6∑

i=1

(i3 − i2) 26.
10∑

k=1

(2k − 1)2

27.
100∑
i=1

i2 28.
100∑
i=1

i3
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Use the method of Example 6 to evaluate the limits in Problems
29 and 30.

29. lim
n→∞

12 + 22 + 32 + · · · + n2

n3

30. lim
n→∞

13 + 23 + 33 + · · · + n3

n4

Use Eqs. (6) through (9) to derive concise formulas in terms of n
for the sums in Problems 31 and 32.

31.
n∑

i=1

(2i − 1) 32.
n∑

i=1

(2i − 1)2

In Problems 33 through 42, let R denote the region that lies be-
low the graph of y = f (x) over the interval [a, b] on the x-axis.
Use the method of Example 1 to calculate both an underestimate
An and an overestimate A n for the area A of R, based on a divi-
sion of [a, b] into n subintervals all with the same length �x =
(b − a)/n.

33. f (x) = x on [0, 1]; n = 5

34. f (x) = x on [1, 3]; n = 5

35. f (x) = 2x + 3 on [0, 3]; n = 6

36. f (x) = 13 − 3x on [0, 3]; n = 6 (Fig. 5.3.16)

x

y

3

8

21

4

12

FIGURE 5.3.16 Problem 36.

37. f (x) = x2 on [0, 1]; n = 5

38. f (x) = x2 on [1, 3]; n = 5

39. f (x) = 9 − x2 on [0, 3]; n = 5 (Fig. 5.3.17)

x

y

3

4

8

21

FIGURE 5.3.17 Problem 39.

40. f (x) = 9 − x2 on [1, 3]; n = 8

41. f (x) = x3 on [0, 1]; n = 10

42. f (x) = √
x on [0, 1]; n = 10 (Fig. 5.3.18)

x

y

1

0.4

0.8

0.80.60.40.2

FIGURE 5.3.18 Problem 42.

43. Derive Eq. (7) by adding the equations

n∑
i=1

i = 1 + 2 + 3 + · · · + n

and
n∑

i=1

i = n + (n − 1) + (n − 2) · · · + 2 + 1.

44. Write the n equations obtained by substituting the values
k = 1, 2, 3, . . . , n into the identity

(k + 1)3 − k3 = 3k2 + 3k + 1.

Add these n equations and use their sum to deduce Eq. (8)
from Eq. (7).

In Problems 45 through 50, first calculate (in terms of n) the sum

n∑
i=1

f (xi ) �x

to approximate the area A of the region under y = f (x) above
the interval [a, b]. Then find A exactly (as in Examples 7 and 8)
by taking the limit as n → ∞.

45. f (x) = x on [0, 1] 46. f (x) = x2 on [0, 2]
47. f (x) = x3 on [0, 3] 48. f (x) = x + 2 on [0, 2]
49. f (x) = 5 − 3x on [0, 1] 50. f (x) = 9 − x2 on [0, 3]
51. As in Fig. 5.3.19, the region under the graph of f (x) =

hx/b for 0 � x � b is a triangle with base b and height
h. Use Eq. (7) to verify—with the notation of Eq. (16)—
that

lim
n→∞

n∑
i=1

f (xi ) �x = 1
2 bh,

in agreement with the familiar formula for the area of a tri-
angle.

x

y

hx
b

y =

(b, h)

h

b

FIGURE 5.3.19 Problem 51.

O
/n

r

r

π

/nπ

FIGURE 5.3.20 Problem 52.

In Problems 52 and 53, let A denote the area and C the circum-
ference of a circle of radius r and let A n and Cn denote the
area and perimeter, respectively, of a regular n-sided polygon
inscribed in this circle.

52. Figure 5.3.20 shows one side of the n-sided polygon sub-
tending an angle 2π/n at the center O of the circle. Show
that

An = nr 2 sin
(π

n

)
cos

(π

n

)
and that Cn = 2nr sin

(π

n

)
.

53. Deduce that A = 1
2 rC by taking the limit of An/Cn as

n → ∞. Then, under the assumption that A = πr 2, deduce
that C = 2πr . Thus the familiar circumference formula for
a circle follows from the familiar area formula for a circle.
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5.4 RIEMANN SUMS AND THE INTEGRAL

Suppose that f is a positive-valued and increasing function defined on a set of real
numbers that includes the interval [a, b]. In Section 5.3 we used inscribed and cir-
cumscribed rectangles to set up the sums

n∑
i=1

f (xi−1) �x and
n∑

i=1

f (xi ) �x (1)

that approximate the area A under the graph of y = f (x) from x = a to x = b.
Recall that the notation in Eq. (1) is based on a division of the interval [a, b] into n
subintervals, all with the same length �x = (b − a)/n, and that [xi−1, xi ] denotes the
i th subinterval.

The approximating sums in Eq. (1) are both of the form

n∑
i=1

f (x�
i ) �x, (2)

where x�
i denotes a selected point of the i th subinterval [xi−1, xi ] (Fig. 5.4.1). Sums of

the form in (2) appear as approximations in a wide range of applications and form the
basis for the definition of the integral. Motivated by our discussion of area in Section
5.3, we want to define the integral of f from a to b as some sort of limit, as �x → 0,
of sums such as the one in (2). Our goal is to begin with a fairly general function f and
define a computable real number I (the integral of f ) that—in the special case when
f is continuous and positive-valued on [a, b]—will equal the area under the graph of
y = f (x).

x -axis

y = f (x)

a = x0 x1x1
★ x2x2

★ xi − 1 xn = bxi
★ xi xn

★

FIGURE 5.4.1 The Riemann sum in Eq. (2) as a sum of areas of
rectangles.

Riemann Sums
We begin with a function f defined on [a, b] that is not necessarily either continuous
or positive valued. A partition P of [a, b] is a collection of subintervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn]
of [a, b] such that

a = x0 < x1 < x2 < x3 < · · · < xn−1 < xn = b,

as in Fig. 5.4.1. We write �xi = xi − xi−1 for the length of the i th subinterval

xixi − 1 xi
★

FIGURE 5.4.2 The selected point
x�

i in the i th subinterval [xi−1, xi ].
[xi−1, xi ]. To get a sum such as the one in (2), we need a point x�

i in the i th subinterval
for each i , 1 � i � n. A collection of points

S = {x�
1, x�

2, x�
3, . . . , x�

n}
with x�

i in [xi−1, xi ] for each i (Fig. 5.4.2) is called a selection for the partition P .
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DEFINITION Riemann Sum
Let f be a function defined on the interval [a, b]. If P is a partition of [a, b] and S
is a selection for P , then the Riemann sum for f determined by P and S is

R =
n∑

i=1

f (x�
i ) �xi . (3)

We also say that this Riemann sum is associated with the partition P .

The German mathematician G. F. B. Riemann (1826–1866) provided a rigorous
definition of the integral. Various special types of “Riemann sums” had appeared in
area and volume computations since the time of Archimedes, but it was Riemann who
framed the preceding definition in its full generality.

The point x�
i in Eq. (3) is simply a selected point of the i th subinterval [xi−1, xi ].

That is, it can be any point of this subinterval. But when we compute Riemann
sums, we usually choose the points of the selection S in some systematic manner,
as illustrated in Fig. 5.4.3. There we show different Riemann sums for the func-
tion f (x) = 2x3 − 6x2 + 5 on the interval [0, 3]. Figure 5.4.3(a) shows rectangles
associated with the left-endpoint sum

R left =
n∑

i=1

f (xi−1) �x , (4)

in which each x�
i is selected to be xi−1, the left endpoint of the i th subinterval [xi−1, xi ]

of length �x = (b − a)/n. Figure 5.4.3(b) shows rectangles associated with the

y

−2

y

x

(a)

(b)

(c)

2

4

2

x

x

−2

y

2

4

−2

2

4

1

2

1

2

1

3

3

3

FIGURE 5.4.3 Riemann sums for
f (x) = 2x3 − 6x2 + 5 on [0, 3]:
(a) Left-endpoint sum; (b) Right-endpoint
sum; (c) Midpoint sum.
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right-endpoint sum

R right =
n∑

i=1

f (xi ) �x , (5)

in which each x�
i is selected to be xi , the right endpoint of [xi−1, xi ]. In each figure,

some of the rectangles are inscribed and others are circumscribed.
Figure 5.4.3(c) shows rectangles associated with the midpoint sum

R mid =
n∑

i=1

f (mi ) �x , (6)

in which
x�

i = mi = xi−1 + xi

2
,

the midpoint of the i th subinterval [xi−1, xi ]. The dashed lines in Fig. 5.4.3(c) represent
the ordinates of f at these midpoints.

EXAMPLE 1 In Example 1 of Section 5.3 we calculated left- and right-endpoint
sums for f (x) = x2 on [0, 3] with n = 10 subintervals. We now do this more con-
cisely by using summation notation, and we also calculate the analogous midpoint
sum. Figure 5.4.4 shows a typical approximating rectangle for each of these sums.
With a = 0, b = 3, and �x = (b − a)/n = 3

10 , we see that the i th subdivision point is

xi = a + i · �x = 3
10 i.

x

y

y = x2

3xi − 1 xi

(a)

x

y

y = x2

3xi − 1 xi

(b)

x

y

y = x2

3xi − 1 xi

(c)

FIGURE 5.4.4 Example 1: (a) The case x�
i = xi−1; (b) The case x�

i = xi ; (c) The case
x�

i = mi .

The i th subinterval, as well as its midpoint

mi = xi−1 + xi

2
= 1

2

(
3i − 3

10
+ 3i

10

)
= 3

20
(2i − 1),

are shown in Fig. 5.4.5. With x�
i = xi−1 = 3

10 (i − 1), we obtain the left-endpoint sum

3
20mi = (2i − 1)

3
10xi − 1 = (i − 1) 3

10 ixi =

FIGURE 5.4.5 The i th subinterval
of Example 1.

in Eq. (4),

R left =
n∑

i=1

f (xi−1) �x =
10∑

i=1

[
3

10 (i − 1)
]2 (

3
10

)

= 27
1000 · (

02 + 12 + 22 + · · · + 92
)

= 7695
1000 = 7.695 [using Eq. (8) of Section 5.3].
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With x�
i = xi = 3

10 i , we get the right-endpoint sum in Eq. (5),

R right =
n∑

i=1

f (xi ) �x =
10∑

i=1

[
3

10 i
]2 (

3
10

)
= 27

1000 · (12 + 22 + 32 + · · · + 102)

= 10395
1000 = 10.395 [using Eq. (8) of Section 5.3].

Finally, with x�
i = mi = 3

20 (2i − 1), we get the midpoint sum in Eq. (6),

R mid =
n∑

i=1

f (mi ) �x =
10∑

i=1

[
3

20 (2i − 1)
]2 (

3
10

)
= 27

4000 · (
12 + 32 + 52 + · · · + 172 + 192

) = 35910
4000 = 8.9775.

The midpoint sum is much closer than either endpoint sum to the actual value 9
(of the area under the graph of y = x2 over [0, 3]) that we found in Example 7 of
Section 5.3. ◗

EXAMPLE 2 Figure 5.4.6 illustrates Riemann sums for f (x) = sin x on [0, π ] based
on n = 3 subintervals: [0, π/3], [π/3, 2π/3], and [2π/3, π ], of length �x = π/3, and
with midpoints π/6, π/2, and 5π/6. The left-endpoint sum is

R left = (�x) ·
(

n∑
i=1

f (xi−1)

)
= π

3
·
(

sin 0 + sin
π

3
+ sin

2π

3

)

= π

3
·
(

0 +
√

3

2
+

√
3

2

)
= π

√
3

3
≈ 1.81.

It is clear from the figure that the right-endpoint sum has the same value. The corre-
sponding midpoint sum is

Rmid = π

3
·
(

sin
π

6
+ sin

π

2
+ sin

5π

6

)
= π

3
·
(

1

2
+ 1 + 1

2

)
= 2π

3
≈ 2.09.

(We will soon be able to show that the area under one arch of the sine curve is

2

x

y

3

0.4

0.8

21
π

(a)

x

y

3

0.4

0.8

21
π

(b)

x

y

3

0.4

0.8

21
π

(c)

π /3 π /32

π /3 π /3

π /3 π /32

FIGURE 5.4.6 Approximating the
area under y = sin x on [0, π ]
(Example 2): (a) Left-endpoint sum;
(b) Right-endpoint sum;
(c) Midpoint sum.

exactly 2.) ◗

The Integral as a Limit
In the case of a function f that has both positive and negative values on [a, b], it is
necessary to consider the signs indicated in Fig. 5.4.7 when we interpret geometrically
the Riemann sum in Eq. (3). On each subinterval [xi−1, xi ], we have a rectangle with
width �xi and “height” f (x�

i ). If f (x�
i ) > 0, then this rectangle stands above the

x-axis; if f (x�
i ) < 0, it lies below the x-axis. The Riemann sum R is then the sum of

x

y

a = x0

+

x1 x2

+ + + +

−

xi − 1

xi
★

★ ★

xi

−

y = f (x)

− − − − −

i(x , f (xi ))

xn = bxn − 1+
−

FIGURE 5.4.7 A geometric representation of the Riemann sum in Eq. (3).
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the signed areas of these rectangles—that is, the sum of the areas of those rectangles
that lie above the x-axis minus the sum of the areas of those that lie below the x-axis.

If the widths �xi of these rectangles are all very small, then it appears that the
corresponding Riemann sum R will closely approximate the area from x = a to x = b
under y = f (x) and above the x-axis, minus the area that lies above the graph and
below the x-axis. This suggests that the integral of f from a to b should be defined by
taking the limit of the Riemann sums as the widths �xi all approach zero:

I = lim
�xi →0

n∑
i=1

f (x�
i ) �xi . (7)

The formal definition of the integral is obtained by saying precisely what it means for
this limit to exist. The norm of the partition P is the largest of the lengths �xi =
xi − xi−1 of the subintervals in P and is denoted by |P|. Briefly, Eq. (7) means that
if |P| is sufficiently small, then all Riemann sums associated with the partition P are
close to the number I .

DEFINITION The Definite Integral
The definite integral of the function f from a to b is the number

I = lim|P|→0

n∑
i=1

f (x�
i ) �xi , (8)

provided that this limit exists, in which case we say that f is integrable on [a, b].
Equation (8) means that, for each number ε > 0, there exists a number δ > 0 such
that ∣∣∣∣∣I −

n∑
i=1

f (x�
i ) �xi

∣∣∣∣∣ < ε

for every Riemann sum associated with any partition P of [a, b] for which |P| < δ.

The customary notation for the integral of f from a to b, due to the German
mathematician and philosopher G. W. Leibniz, is

I =
∫ b

a
f (x) dx = lim|P|→0

n∑
i=1

f (x�
i ) �xi . (9)

Considering I to be the area under y = f (x) from a to b, Leibniz first thought of a

a bx

y = f (x)

dx
f (x)

FIGURE 5.4.8 Origin of Leibniz’s
notation for the integral.

narrow strip with height f (x) and “infinitesimally small” width dx (as in Fig. 5.4.8),
so that its area would be the product f (x) dx . He regarded the integral as a sum of
areas of such strips and denoted this sum by the elongated capital S (for summa) that
appears as the integral sign in Eq. (9).

We shall see that this integral notation is not only highly suggestive, but also is
exceedingly useful in manipulations with integrals. The numbers a and b are called the
lower limit and upper limit, respectively, of the integral; they are the endpoints of the
interval of integration. The function f (x) that appears between the integral sign and dx
is called the integrand. The symbol dx that follows the integrand in Eq. (9) should, for
the time being, be thought of as simply an indication of what the independent variable
is. Like the index of summation, the independent variable x is a “dummy variable”—it
may be replaced with any other variable without affecting the meaning of Eq. (9). Thus
if f is integrable on [a, b], we can write∫ b

a
f (x) dx =

∫ b

a
f (t) dt =

∫ b

a
f (u) du.

The definition given for the definite integral applies only if a < b, but it is
convenient to include the cases a = b and a > b as well. The integral is defined in
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these cases as follows:

∫ a

a
f (x) dx = 0 (10)

and

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx, (11)

provided that the right-hand integral exists. Thus interchanging the limits of integration
reverses the sign of the integral.

Just as not all functions are differentiable, not every function is integrable. Sup-
pose that c is a point of [a, b] such that f (x) → +∞ as x → c. If [xk−1, xk] is the
subinterval of the partition P that contains c, then the Riemann sum in Eq. (3) can be
made arbitrarily large by choosing x�

k to be sufficiently close to c. For our purposes,
however, we need to know only that every continuous function is integrable. The fol-
lowing theorem is proved in Appendix G.

THEOREM 1 Existence of the Integral
If the function f is continuous on [a, b], then f is integrable on [a, b].

Although we omit the details, it is not difficult to show that the definition of the
integral can be reformulated in terms of sequences of Riemann sums, as follows.

THEOREM 2 The Integral as a Limit of a Sequence
The function f is integrable on [a, b] with integral I if and only if

lim
n→∞ Rn = I (12)

for every sequence {Rn}∞1 of Riemann sums associated with a sequence of partitions
{Pn}∞1 of [a, b] such that |Pn| → 0 as n → +∞.

Riemann Sum Computations

The reformulation in Theorem 2 of the definition of the integral is helpful because it
is easier to visualize a specific sequence of Riemann sums than to visualize the vast
totality of all possible Riemann sums. In the case of a continuous function f (known
to be integrable by Theorem 1), the situation can be simplified even more by using only
Riemann sums associated with partitions consisting of subintervals all with the same
length

�x1 = �x2 = · · · = �xn = b − a

n
= �x .

Such a partition of [a, b] into equal-length subintervals is called a regular partition
of [a, b].

Any Riemann sum associated with a regular partition can be written in the form

n∑
i=1

f (x�
i ) �x, (13)

where the absence of a subscript in �x signifies that the sum is associated with a
regular partition. In such a case the conditions |P| → 0, �x → 0, and n → +∞ are
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equivalent, so the integral of a continuous function can be defined quite simply:

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x�
i ) �x = lim

�x→0

n∑
i=1

f (x�
i ) �x . (14)

Consequently, we henceforth will use only regular partitions; the subintervals will thus
have length and endpoints given by

�x = b − a

n
and xi = a + i · �x (15)

for i = 0, 1, 2, 3, . . . , n. If we select x�
i = xi then (14) gives

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (xi ) �x . (16)

EXAMPLE 3 Use Riemann sums to evaluate
∫ 4

0
(x3 − 2x) dx .

Solution With a = 0 and b = 4 in (15), we have �x = 4/n and xi = 4i/n. Hence∫ 4

0
(x3 − 2x) dx = lim

n→∞

n∑
i=1

f (xi ) �x = lim
n→∞

n∑
i=1

[(
4i

n

)3

− 2

(
4i

n

)]
· 4

n

= lim
n→∞

4

n

n∑
i=1

[
64i3

n3
− 8i

n

]

= lim
n→∞

[
256

n4

n∑
i=1

i3 − 32

n2

n∑
i=1

i

]
.

We now use Eqs. (7) and (9) in Section 5.3 to convert each of the last two sums to
closed form:∫ 4

0
(x3 − 2x) dx = lim

n→∞

[
256

n4
· n2(n + 1)2

4
− 32

n2
· n(n + 1)

2

]

= lim
n→∞

[
64

n2
(n + 1)2 − 16

n
(n + 1)

]

= lim
n→∞

[
64

(
1 + 1

n

)2

− 16

(
1 + 1

n

)]
;

∫ 4

0
(x3 − 2x) dx = 64 − 16 = 48. ◗

EXAMPLE 4 Use Riemann sums to evaluate
∫ b

a
x dx (where a < b).

Solution With f (x) = x and x�
i = xi (see Fig. 5.4.9), Eqs. (15) and (16) yield∫ b

a
x dx = lim

n→∞

n∑
i=1

f (xi ) �x = lim
n→∞

n∑
i=1

(a + i · �x) �x

= lim
n→∞

[
(a �x)

n∑
i=1

1 + (�x)2
n∑

i=1

i

]

= lim
n→∞

[
(a �x) · n + (�x)2 · n(n + 1)

2

]
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xixi − 1

f (xi) = xi

a = x0

y = x

b = xn
x

Δx

y

FIGURE 5.4.9 Calculating the area under y = x
from x = a to x = b.

when we use Eqs. (6) and (7) in Section 5.3 to convert the sums to closed form. Then
substituting �x = (b − a)/n gives∫ b

a
x dx = lim

n→∞

[
a · b − a

n
· n +

(
b − a

n

)2

· n(n + 1)

2

]

= lim
n→∞

[
a(b − a) + 1

2
(b − a)2

(
1 + 1

n

)]

= a(b − a) + 1

2
(b − a)2 = (b − a)

(
a + 1

2
b − 1

2
a

)

= (b − a) · 1

2
(b + a) = 1

2
(b2 − a2).

Thus we see finally that ∫ b

a
x dx = 1

2
b2 − 1

2
a2. (17)

◗

REMARK 1 If 0 < a < b, then A = ∫ b
a x dx is the area of the trapezoid shown in

Fig. 5.4.9. Then Eq. (17) implies that

x

y

b

y = x

+

−
a

FIGURE 5.4.10 Example 4 with
a < 0 < b.

A = (b − a) · 1
2 (a + b) = w · h,

where w = b − a is the width and h = 1
2 (a + b) is the average height of the trapezoid.

x

y

b

y = x

a

−

FIGURE 5.4.11 Example 4 with
0 < a < b.

REMARK 2 Figures 5.4.10 and 5.4.11 illustrate two different cases in Example 4. In
each case Eq. (17) agrees with the sum of the indicated signed areas. The minus sign in
Fig. 5.4.10 represents the fact that area beneath the x-axis is measured with a negative
number. The minus sign in Fig. 5.4.11 signifies that the area of the triangle over [0, a]
is subtracted from the area of the triangle over [0, b] to get the area of the trapezoid.

The summation formulas in Eqs. (6) through (9) in Section 5.3 suffice for the
integration of polynomials of low degree, but integrals of other functions may require
other devices (or a computer algebra system) for the conversion of Riemann sums to
closed forms whose limits can be evaluated.

EXAMPLE 5 Use Riemann sums to evaluate
∫ 2

0
ex dx .

348

www.konkur.in



Riemann Sums and the Integral SECTION 5.4 349

Solution With �x = 2/n and xi = i · �x = 2i/n, we have∫ 2

0
ex dx = lim

n→∞

n∑
i=1

f (xi ) �x = lim
n→∞

n∑
i=1

e2i/n · 2

n

= lim
n→∞

2

n

(
e2/n + e4/n + e6/n + · · · + e2n/n

)
= lim

n→∞
2e2/n

n

(
1 + e2/n + e4/n + · · · + e2(n−1)/n

)
= lim

n→∞
2r

n

(
1 + r + r2 + · · · + rn−1

)
where r = e2/n . To convert the last sum to closed form, we use the formula

1 + r + r2 + · · · + rn−1 = rn − 1

r − 1
, (18)

which is readily verified by multiplying the left-hand side by the denominator on the
right. This gives∫ 2

0
ex dx = lim

n→∞
2r

n
· rn − 1

r − 1

= lim
n→∞

2e2/n

n
· e2 − 1

e2/n − 1
= 2(e2 − 1)

lim
n→∞ n · (1 − e−2/n)

. (19)

The limit in the denominator has the indeterminate form ∞ · 0 as n → +∞. We
evaluate it using l’Hôpital’s rule as in Section 4.9:

lim
n→∞ n · (1 − e−2/n) = lim

n→∞
1 − e−2/n

1

n

[now the indeterminate form 0/0]

= lim
n→∞

− 2

n2
· e−2/n

− 1

n2

= lim
n→∞ 2e−2/n = 2.

Substituting this limit in Eq. (19) finally gives∫ 2

0
ex dx = e2 − 1. ◗

5.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. A partition P of [a, b] is a collection of subintervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn]
of [a, b] such that a = x0 < x1 < x2 < x3 < · · · < xn−1 < xn = b.

2. If P is a partition of [a, b], then a selection S for P is a collection of points

S = {x�
1, x�

2, x�
3, . . . , x�

n}
such that xi−1 � x�

i � xi for 1 � i � n.
3. If f is a function defined on [a, b], P is a partition of [a, b], and S is a selection

for P (with the same notation as in Questions 1 and 2), then the Riemann sum for
f determined by P and S is

R =
n∑

i=1

f (x�
i )(xi − xi−1).
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4. The midpoint sum with n = 10 subintervals for f (x) = x2 on [0, 3] is 8.9775.

5. The midpoint sum for f (x) = sin x with n = 3 subintervals of [0, π ] is
2π

3
.

6. The norm |P| of the partition P = {x0, x1, x2, . . . , xn} is the maximum value of
�xi = xi − xi−1 for 1 � i � n.

7. Suppose that f is a function defined on [a, b]. In the notation of Questions 1, 2,
and 6, the definite integral of f from a to b is

I = lim
|P|→0

n∑
i=1

f (x�
i )�xi

provided that this limit exists.

8. A common notation for the definite integral of f from a to b is
∫ b

a
f (x) dx .

9. If f is continuous on [a, b], then
∫ b

a
f (x) dx exists.

10. Example 4 shows that
∫ b

a
x dx = 1

2
b2 − 1

2
a2.

5.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. Explain why you would generally expect the midpoint sum in Eq. (6) to be a

more accurate approximation to the actual value
∫ b

a f (x) dx than either the left-
endpoint sum in (4) or the right-endpoint sum in (5).

2. The result in Example 4, with a = 0, and Problems 49 and 50 tell us that∫ b

0
x dx = 1

2
b2,

∫ b

0
x2 dx = 1

3
b3, and

∫ b

0
x3 dx = 1

4
b4

if b > 0. Assuming that the pattern holds (it does), what would you expect to be
the value of

∫ b
a xn dx with n > 0 and 0 < a < b? Explain how you take into

account the nonzero lower limit a.
3. Example 5 and Problem 56 imply that

∫ 2
0 ex dx = e2 − 1 and

∫ 5
0 ex dx = e5 − 1.

Thinking of area under the curve y = ex , what would you expect to be the
value of

∫ 5
2 ex dx? What would you conjecture about the value of

∫ b
a ex dx with

0 < a < b?

5.4 PROBLEMS

In Problems 1 through 10, express the given limit as a definite
integral over the indicated interval [a, b]. Assume that [xi−1, xi ]
denotes the i th subinterval of a subdivision of [a, b] into n subin-
tervals, all with the same length �x = (b − a)/n, and that
mi = 1

2 (xi−1 + xi ) is the midpoint of the i th subinterval.

1. lim
n→∞

n∑
i=1

(2xi − 1)�x over [1, 3]

2. lim
n→∞

n∑
i=1

(2 − 3xi−1)�x over [−3, 2]

3. lim
n→∞

n∑
i=1

(
x2

i + 4
)
�x over [0, 10]

4. lim
n→∞

n∑
i=1

(
x3

i − 3x2
i + 1

)
�x over [0, 3]

5. lim
n→∞

n∑
i=1

√
mi �x over [4, 9]

6. lim
n→∞

n∑
i=1

√
25 − x2

i �x over [0, 5]

7. lim
n→∞

n∑
i=1

1√
1 + mi

�x over [3, 8]

8. lim
n→∞

n∑
i=1

(cos 2xi−1) �x over [0, π/2]

9. lim
n→∞

n∑
i=1

(sin 2πmi ) �x over [0, 1/2]

10. lim
n→∞

n∑
i=1

e2xi �x over [0, 1]
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In Problems 11 through 20, compute the Riemann sum
n∑

i=1

f (x�
i ) �x

for the indicated function and a regular partition of the given in-
terval into n subintervals. Use x�

i = xi , the right-hand endpoint
of the i th subinterval [xi−1, xi ].
11. f (x) = x2 on [0, 1]; n = 5

12. f (x) = x3 on [0, 1]; n = 5

13. f (x) = 1

x
on [1, 6]; n = 5

14. f (x) = √
x on [0, 5]; n = 5

15. f (x) = 2x + 1 on [1, 4]; n = 6

16. f (x) = x2 + 2x on [1, 4]; n = 6

17. f (x) = x3 − 3x on [1, 4]; n = 5

18. f (x) = 1 + 2
√

x on [2, 3]; n = 5

19. f (x) = cos x on [0, π ]; n = 6

20. f (x) = ln x on [1, 6]; n = 5

21. through 30. Repeat Problems 11 through 20, except with
x�

i = xi−1, the left-hand endpoint.

31. through 40. Repeat Problems 11 through 20, except with
x�

i = (xi−1 + xi )/2, the midpoint of the i th subinterval.

41. Work Problem 13 with x�
i = (3xi−1 + 2xi )/5.

42. Work Problem 14 with x�
i = (xi−1 + 2xi )/3.

In Problems 43 through 48, evaluate the given integral by com-
puting

lim
n→∞

n∑
i=1

f (xi ) �x

for a regular partition of the given interval of integration.

43.
∫ 2

0
x2 dx 44.

∫ 4

0
x3 dx

45.
∫ 3

0
(2x + 1) dx 46.

∫ 5

1
(4 − 3x) dx

47.
∫ 3

0
(3x2 + 1) dx 48.

∫ 4

0
(x3 − x) dx

49. Show by the method of Example 4 that∫ b

0
x2 dx = 1

3
b3

if b > 0.

50. Show by the method of Example 4 that∫ b

0
x3 dx = 1

4
b4

if b > 0.

51. Let f (x) = x , and let {x0, x1, x2, . . . , xn} be an arbitrary
partition of the closed interval [a, b]. For each i (1 � i � n),
let x�

i = (xi−1 + xi )/2. Then show that

n∑
i=1

x�
i �xi = 1

2
b2 − 1

2
a2.

Explain why this computation proves that∫ b

a
x dx = b2 − a2

2
.

52. Suppose that f is a function continuous on [a, b] and that k
is a constant. Use Riemann sums to prove that∫ b

a
k f (x) dx = k

∫ b

a
f (x) dx .

53. Suppose that f (x) ≡ c, a constant. Use Riemann sums to
prove that ∫ b

a
c dx = c(b − a).

[Suggestion: First consider the case a < b.]

54. Suppose that the function f is defined on the interval [0, 1]
as follows:

f (x) =
⎧⎨
⎩

1

x
if 0 < x � 1,

0 if x = 0.

Show that the integral
∫ 1

0 f (x) dx does not exist. [Sugges-
tion: Show that, whatever n may be, the first term in the
Riemann sum

∑n
i=1 f (x�

i ) �x can be made arbitrarily large
by the choice of the first selected point x�

i .] Why does this
not contradict Theorem 1?

55. Suppose that the function f is defined as follows:

f (x) =
{

0 if x is rational,

1 if x is irrational.

Show that the integral
∫ 1

0 f (x) dx does not exist. [Sug-
gestion: Show that, whatever n may be, the Riemann sum∑n

i=1 f (x�
i ) �x has the value 0 for one possible selection of

points {x�
i }, but the value 1 for another possible selection.]

Why does this not contradict Theorem 1?

Use the method of Example 5 to verify the results in Problems 56
through 58.

56.
∫ 5

0
ex dx = e5 − 1. 57.

∫ 3

0
e−x dx = 1 − e−3.

58.
∫ 5

2
ex dx = e5 − e2.

59. First show that∫ π

0
sin x dx = lim

n→∞
π

n

n∑
k=1

sin
kπ

n
.

A computer algebra system reports that
n∑

k=1

sin
kπ

n
= cot

π

2n
.

Use this fact and l’Hôpital’s rule to show finally that∫ π

0
sin x dx = 2.

In Problems 60 through 62, verify the given result as follows:
Use a computer algebra system first to set up the appropriate
Riemann sum, then to simplify the sum, and finally to evaluate its
limit as n → +∞.

60.
∫ b

a
ex dx = eb − ea .

61.
∫ b

a
sin x dx = cos a − cos b.

62.
∫ b

a
cos x dx = sin b − sin a.
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5.4 INVESTIGATION: Calculator/Computer Riemann Sums
Suppose that you want to approximate the integral

∫ b

a
f (x) dx

numerically using midpoint sums. If �x = (b − a)/n and

mi = xi − 1

2
�x = (a + i · �x) − 1

2
�x = a +

(
i − 1

2

)
�x

is the midpoint of the i th subinterval [xi−1, xi ], then the selection x�
i = mi in Eq. (14)

gives

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (mi ) �x .

Many calculators and computer algebra systems include Sum commands that can
be used to calculate easily and rapidly the midpoint sum with larger and larger values
of n. A common practice is to begin with perhaps n = 50 subintervals, then calculate
midpoint sums with successively doubled numbers of subintervals; that is, with n =
50, 100, 200, . . . , until successive sums agree to the desired number of decimal places
of accuracy. In the Project Manual material for this investigation we illustrate this
procedure using graphing calculators and typical computer algebra systems. You can
then carry out the following investigations.

1. Approximate the integral

∫ 2

0
ex dx = e2 − 1 ≈ 6.3891

of Example 5 accurate to four decimal places.
2. Approximate the integral ∫ π

0
sin x dx = 2 = 2.0000

of Problem 59 accurate to four decimal places.
3. First explain why Fig. 5.4.12 and the area formula A = πr2 for a circle of radius

r imply that

∫ 1

0
4
√

1 − x2 dx = π.

Then use midpoint sums to approximate this integral and, thereby, the numer-
ical value of π . Begin with n = 50 subintervals, then successively double n.
How large must n be for you to obtain the familiar four-place approximation

x

y

y = 1 − x2

1

FIGURE 5.4.12 Investigation 3.
π ≈ 3.1416?

5.5 EVALUATION OF INTEGRALS

The evaluation of integrals by using Riemann sums, as in Section 5.4, is tedious and
time-consuming. Fortunately, we will seldom find it necessary to evaluate an inte-
gral in this way. In 1666, Isaac Newton, while still a student at Cambridge Univer-
sity, discovered a much more efficient way to evaluate an integral. A few years later,
Gottfried Wilhelm Leibniz, working with a different approach, discovered this
method independently.
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Newton’s key idea was that to evaluate the number

x -axis

y

ba

y = f (x)

x x + Δx

A(x)
ΔA f (x)

FIGURE 5.5.1 The area function
A(x).

∫ b

a
f (x) dx,

we should first introduce the function A(x) defined as follows:

A(x) =
∫ x

a
f (t) dt. (1)

The independent variable x appears as the upper limit of the integral in Eq. (1); the
dummy variable t is used in the integrand merely to avoid confusion. If f is positive-
valued, continuous, and x > a, then A(x) is the area below the curve y = f (x) above
the interval [a, x] (Fig. 5.5.1).

It is apparent from Fig. 5.5.1 that A(x) increases as x increases. When x in-
creases by �x , A increases by the area �A of the narrow strip in Fig. 5.5.1 with base
[x, x + �x]. If �x is very small, then the area of this strip is very close to the area
f (x) �x of the rectangle with base [x, x + �x] and height f (x). Thus

�A ≈ f (x) �x; �A

�x
≈ f (x). (2)

Moreover, the figure makes it plausible that we get equality in the limit at �x → 0:

d A

dx
= lim

�x→0

�A

�x
= f (x).

That is,

A′(x) = f (x), (3)

so the derivative of the area function A(x) is the curve’s height function f (x). In other
words, Eq. (3) implies that A(x) is an antiderivative of f (x).

Figure 5.5.2 shows a physical interpretation of Eq. (3). A paint roller is laying
down a 1-mm-thick coat of paint to cover the region under the curve y = f (t). The
paint roller is of adjustable length—as it rolls with a speed of 1 mm/s from left to right,
one end traces the x-axis and the other end traces the curve y = f (t). At any time t ,
the volume V of paint the roller has laid down equals the area of the region already
painted:

V = A(t) (mm3).

Then Eq. (3) yields

dV

dt
= A′(t) = f (t).

Thus the instantaneous rate at which the roller is depositing paint is equal to the current
length of the roller.

y

t

a

x

y = f (t)

FIGURE 5.5.2 The adjustable-length paint roller.
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The Evaluation Theorem
Equation (3) implies that the area function A(x) defined in (1) and illustrated in
Fig. 5.5.1 is one antiderivative of the given function f (x). Now suppose that G(x)

is any other antiderivative of f (x)—perhaps one found by the methods of Section 5.2.
Then

A(x) = G(x) + C , (4)

because (by the second corollary to the mean value theorem) two antiderivatives of the
same function (on an interval) can differ only by a constant. Also,

A(a) =
∫ a

a
f (t) dt = 0 (5)

and

A(b) =
∫ b

a
f (t) dt =

∫ b

a
f (x) dx (6)

by Eq. (1). So it follows that∫ b

a
f (x) dx = A(b) − A(a) = [G(b) + C] − [G(a) + C],

and thus

∫ b

a
f (x) dx = G(b) − G(a). (7)

Our intuitive discussion has led us to the statement of Theorem 1.

THEOREM 1 Evaluation of Integrals
If G is an antiderivative of the continuous function f on the interval [a, b], then∫ b

a
f (x) dx = G(b) − G(a). (7)

In Section 5.6 we will fill in the details of the preceding discussion, thus giving
a rigorous proof of Theorem 1 (which is part of the fundamental theorem of calculus).
Here we concentrate on the computational applications of this theorem. The difference
G(b) − G(a) is customarily abbreviated as [G(x)]b

a , so Theorem 1 implies that

∫ b

a
f (x) dx =

[
G(x)

]b

a

= G(b) − G(a) (8)

if G is any antiderivative of the continuous function f on the interval [a, b]. Thus if we
can find an antiderivative G of f , we can quickly evaluate the integral without having
to resort to the paraphernalia of limits of Riemann sums.

If G ′(x) = f (x), then (as in Section 5.2) we write∫
f (x) dx = G(x) + C (9)

for the indefinite integral of f . With the indefinite integral
∫

f (x) dx in place of the
antiderivative G(x), Eq. (8) takes the form∫ b

a
f (x) dx =

[∫
f (x) dx

]b

a

. (10)

This is the connection between the indefinite integral and the definite integral to which
we have alluded in the earlier sections of Chapter 5.
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EXAMPLE 1 Because∫
xn dx = xn+1

n + 1
+ C (if n �= −1),

it follows that ∫ b

a
xn dx =

[
xn+1

n + 1

]b

a

= bn+1 − an+1

n + 1

if n �= −1. For instance,∫ 3

0
x2 dx =

[
1
3 x3

]3

0

= 1
3 · 33 − 1

3 · 03 = 9.

Contrast the immediacy of this result with the complexity of the computations of Ex-
ample 7 in Section 5.3. ◗

EXAMPLE 2 Because ∫
cos x dx = sin x + C,

it follows that ∫ b

a
cos x dx =

[
sin x

]b

a

= sin b − sin a.

Similarly, ∫ b

a
sin x dx =

[
− cos x

]b

a

= cos a − cos b.

In particular, as we mentioned in Example 2 of Section 5.4,∫ π

0
sin x dx =

[
− cos x

]π

0

= (−cos π) − (−cos 0) = (+1) − (−1) = 2. ◗

EXAMPLE 3 ∫ 2

0
x5 dx =

[
1
6 x6

]2

0

= 64
6 − 0 = 32

3 .

∫ 9

1

(
2x − x−1/2 − 3

)
dx =

[
x2 − 2x1/2 − 3x

]9

1

= 52.

∫ 1

0
(2x + 1)3 dx =

[
1
8 (2x + 1)4

]1

0

= 1
8 · (81 − 1) = 10.

∫ π/2

0
sin 2x dx =

[
− 1

2 cos 2x

]π/2

0

= − 1
2 (cos π − cos 0) = 1.

∫ 1

0
e2x dx =

[
1
2 e2x

]1

0

= 1
2 (e2 − 1).

We have not shown the details of finding the antiderivatives, but you can (and
should) check each of these results by showing that the derivative of the function within
the evaluation brackets on the right is equal to the integrand on the left. In Example 4
we show the details. ◗

EXAMPLE 4 Evaluate
∫ 5

1

√
3x + 1 dx .
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Solution We apply the antiderivative form of the generalized power rule,∫
uk du = uk+1

k + 1
+ C (k �= −1),

with k = 1
2 and

u = 3x + 1, du = 3 dx .

This gives ∫
(3x + 1)1/2 dx = 1

3

∫
(3x + 1)1/2 (3 dx) = 1

3

∫
u1/2 du

= 1
3 · u3/2

3
2

+ C = 2
9 (3x + 1)3/2 + C

for the indefinite integral, so it follows from Eq. (10) that∫ 5

1

√
3x + 1 dx =

[
2
9 (3x + 1)3/2

]5

1

= 2
9 (163/2 − 43/2) = 2

9 (43 − 23) = 112
9 . ◗

If the derivative F ′(x) of the function F(x) is continuous, then the evaluation
theorem, with F ′(x) in place of f (x) and F(x) in place of G(x), yields

∫ b

a
F ′(x) dx =

[
F(x)

]b

a

= F(b) − F(a). (11)

The next example provides an immediate application.

EXAMPLE 5 Suppose that an animal population P(t) initially numbers P(0) = 100
and that its rate of growth after t months is given by

P ′(t) = 10 + t + (0.06)t2.

What is the population after 10 months?

Solution By Eq. (11), we know that

P(10) − P(0) =
∫ 10

0
P ′(t) dt =

∫ 10

0
[10 + t + (0.06)t2] dt

=
[

10t + 1
2 t2 + (0.02)t3

]10

0

= 170.

Thus P(10) = 100 + 170 = 270 individuals. ◗

EXAMPLE 6 Evaluate

lim
n→∞

n∑
i=1

2i

n2

by recognizing this limit as the value of an integral.

Solution If we write

n∑
i=1

2i

n2
=

n∑
i=1

(
2i

n

)(
1

n

)
,

we recognize that we have a Riemann sum for the function f (x) = 2x associated
with a partition of the interval [0, 1] into n equal-length subintervals. The i th point of
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subdivision is xi = i/n, and �x = 1/n. Hence it follows from the definition of the
integral and from the evaluation theorem that

lim
n→∞

n∑
i=1

2i

n2
= lim

n→∞

n∑
i=1

2xi �x = lim
n→∞

n∑
i=1

f (xi ) �x

=
∫ 1

0
f (x) dx =

∫ 1

0
2x dx .

Therefore,

lim
n→∞

n∑
i=1

2i

n2
=

[
x2

]1

0

= 1. ◗

Basic Properties of Integrals

Problems 59 through 62 outline elementary proofs of the integral properties that are
stated next. We assume throughout that each function mentioned is integrable on [a, b].

x

y

a b

y = c
c

c dx∫a
b

FIGURE 5.5.3 The integral of a
constant is the area of a rectangle.

Integral of a Constant ∫ b

a
c dx = c(b − a).

This property is intuitively obvious because the area represented by the integral
is simply a rectangle with base b − a and height c (Fig. 5.5.3).

Constant Multiple Property∫ b

a
c f (x) dx = c

∫ b

a
f (x) dx .

Thus a constant can be “moved across” the integral sign. For example,

∫ π/2

0
2 sin x dx = 2

∫ π/2

0
sin x dx = 2

[
− cos x

]π/2

0

= 2.

Sum Property∫ b

a
[ f (x) + g(x)] dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .

Thus if the functions f and g are both integrable on [a, b], then the integral of
their sum is equal to the sum of their integrals. This fact sometimes permits a “divide-
and-conquer” strategy for the calculation of integrals:∫ π

0

(
3
√

x + cos
x

2

)
dx =

∫ π

0
3
√

x dx +
∫ π

0
cos

x

2
dx

=
[

2x3/2

]π

0

+
[

2 sin
x

2

]π

0

= 2π3/2 + 2.

Figure 5.5.4 illustrates geometrically the sum property of integrals. The proof of
the sum property illustrates a Riemann sums approach that can be adapted to all of the
properties under discussion here. Let us think of a partition of the interval [a, b] into
subintervals all having the same length �x . If the functions f , g, and f + g are all
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bxa

y = f (x) + g(x)

g(x)

f (x)

y = f (x)

x

y

∫a
b
g (x) dx

∫a
b
f (x) dx

FIGURE 5.5.4 The integral of the sum of two
positive-valued functions.

integrable, then Theorem 2 in Section 5.4 gives

∫ b

a
[ f (x) + g(x)] dx = lim

�x→0

n∑
i=1

[
f (x�

i ) + g(x�
i )

]
�x

= lim
�x→0

[
n∑

i=1

f (x�
i ) �x +

n∑
i=1

g(x�
i ) �x

]

=
[

lim
�x→0

n∑
i=1

f (x�
i ) �x

]
+

[
lim

�x→0

n∑
i=1

g(x�
i ) �x

]

=
∫ b

a
f (x) dx +

∫ b

a
g(x) dx .

Interval Union Property
If a < c < b, then ∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

Figure 5.5.5 indicates the plausibility of the interval union property.

xa c b

y = f (x)

∫a
c
f (x) dx ∫c

b
f (x) dx

FIGURE 5.5.5 The way the interval
union property works.

EXAMPLE 7 If f (x) = 2 |x |, then

f (x) =
{−2x if x � 0,

2x if x � 0.

The graph of f is shown in Fig. 5.5.6. An antiderivative of f (x) is not evident, but the

x3−1

y

y =
 2

xy = −2x

FIGURE 5.5.6 The area under the
graph of y = 2|x | over [−1, 3].

interval union property allows us to split the integral of f on [−1, 3] into two easily
calculated integrals:

∫ 3

−1
2 |x | dx =

∫ 0

−1
(−2x) dx +

∫ 3

0
(2x) dx

=
[

− x2

]0

−1

+
[

x2

]3

0

= [0 − (−1)] + [9 − 0] = 10.

Does the result agree with Fig. 5.5.6? ◗

EXAMPLE 8 Evaluate the integral
∫ 2π

0 |cos x − sin x | dx .
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Solution Figure 5.5.7 shows the graph of the function f (x) = cos x − sin x and

x

y = cos x − sin x

0 654321

y

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4
π π

4
5

FIGURE 5.5.7 y = cos x − sin x .

Fig. 5.5.8 shows the graph of its absolute value | f (x)| = |cos x − sin x | that we want
to integrate. We readily see that f (x) = 0 at x = π/4 and x = 5π/4, so

| f (x)| =
⎧⎨
⎩

cos x − sin x if 0 � x < π/4,

sin x − cos x if π/4 � x < 5π/4,

cos x − sin x if 5π/4 � x � 2π.

The interval union property therefore gives

x

y = |cos x − sin x|

0 654321

y

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 4
5π π

FIGURE 5.5.8 y = | cos x − sin x |.

∫ 2π

0
|cos x − sin x | dx

=
∫ π/4

0
(cos x − sin x) dx +

∫ 5π/4

π/4
(sin x − cos x) dx +

∫ 2π

5π/4
(cos x − sin x) dx

=
[

sin x + cos x

]π/4

0

+
[

− cos x − sin x

]5π/4

π/4

+
[

sin x + cos x

]2π

5π/4

= (
1
2

√
2 + 1

2

√
2

) − (0 + 1) + (
1
2

√
2 + 1

2

√
2

)
− ( − 1

2

√
2 − 1

2

√
2

) + (0 + 1) − ( − 1
2

√
2 − 1

2

√
2

)
= 4

√
2. ◗

Comparison Properties
(1) If f (x) � g(x) for all x in [a, b], then∫ b

a
f (x) dx �

∫ b

a
g(x) dx .

(2) If m � f (x) � M for all x in [a, b], then

m(b − a) �
∫ b

a
f (x) dx � M(b − a).

The first comparison property says that the larger function has the larger integral.

x

y

a b
b − a

m

My = f (x)

FIGURE 5.5.9 Plausibility of the
second comparison property.

The plausibility of the second comparison property is indicated in Fig. 5.5.9. Note
that m and M need not necessarily be the minimum and maximum values of f (x) on
[a, b ].

EXAMPLE 9 Figure 5.5.10 shows the graphs

y = √
1 + x , y =

√
1 + √

x , and y = 1.2 + (0.3)x,

and we see that

0 0.5 1
x

2

1y

y = 1.2 + 0.3x

y =   1 + x

y =   1 +   x

FIGURE 5.5.10 Bounding the
graph of f (x) = √

1 + √
x .

√
1 + x �

√
1 + √

x � 1.2 + (0.3)x (12)

for x in [0, 1]. Indeed, the fact that x �
√

x for x in [0, 1] implies that
√

1 + x �√
1 + √

x there. The graph y = 1.2 + (0.3)x that lies above y = √
1 + √

x was
discovered empirically using a graphing calculator. At any rate, the inequalities in (12)
and the first comparison property of integrals imply that∫ 1

0

√
1 + x dx �

∫ 1

0

√
1 + √

x dx �
∫ 1

0
[1.2 + (0.3)x] dx;

thus [
2
3 (1 + x)3/2

]1

0

�
∫ 1

0

√
1 + √

x dx �
[
(1.2)x + (0.15)x2

]1

0

= 1.35.
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Now 2
3 (23/2 − 1) ≈ 1.2190, so we see finally that

1.21 �
∫ 1

0

√
1 + √

x dx � 1.35. (13)

It turns out (using the methods of Section 5.9) that the actual value of
∫ 1

0

√
1 + √

x dx
is 1.29 rounded to two decimal places—quite close to the average 1.28 of the upper
and lower bounds in (13). ◗

The properties of integrals stated here are frequently used in computing and will
be applied in the proof of the fundamental theorem of calculus in Section 5.6.

5.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If A(x) =
∫ x

a
f (t) dt , then A′(x) = f (t).

2. If G ′(x) = f (x) for x in [a, b], then
∫ b

a
f (x) dx = G(b) − G(a).

3.
∫ 3

0
x2 dx = 1

3
(27 − 0) = 9.

4.
∫ b

a
cos x dx = sin a − sin b.

5.
∫ 2

0
x5 dx = 32

3
.

6. If F ′ is continuous on [a, b], then
∫ b

a
F ′(x) dx = F(b) − F(a).

7. If f and g are integrable on [a, b], then

∫ b

a
[ f (x) + g(x)] dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .

8. If f is integrable on [a, b] and a < c < b, then

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

9.
∫ 2π

0
| cos x − sin x | dx = 4

√
2.

10. 1.21 �
∫ 1

0

√
1 + √

x dx � 1.35.

5.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Let f be a continuous function defined on the closed interval [a, b]. Explain the

difference between the functions g and h defined for t in [a, b] by

g(t) =
∫ b

a
f (x) dx and h(t) =

∫ t

a
f (x) dx .

What is the difference between their derivatives g′(t) and h′(t)?
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2. What is the relation between the integrals∫ b

a
f (x) dx and

∫ b

a
| f (x)| dx?

What is the difference between their absolute values? Discuss separately the
following cases:

(a) f is positive-valued on the interval [a, b];
(b) f is negative-valued on the interval [a, b];
(c) f has both positive and negative values on [a, b].

5.5 PROBLEMS

Apply the evaluation theorem to evaluate the integrals in Prob-
lems 1 through 36.

1.
∫ 1

0

(
3x2 + 2

√
x + 3 3

√
x

)
dx

2.
∫ 3

1

6

x2
dx 3.

∫ 1

0
x3(1 + x)2 dx

4.
∫ −1

−2

1

x4
dx 5.

∫ 1

0
(x4 − x3) dx

6.
∫ 2

1
(x4 − x3) dx 7.

∫ 0

−1
(x + 1)3 dx

8.
∫ 3

1

x4 + 1

x2
dx 9.

∫ 4

0

√
x dx

10.
∫ 4

1

1√
x

dx 11.
∫ 2

−1
(3x2 + 2x + 4) dx

12.
∫ 1

0
x99 dx 13.

∫ 1

−1
x99 dx

14.
∫ 4

0

(
7x5/2 − 5x3/2

)
dx 15.

∫ 3

1
(x − 1)5 dx

16.
∫ 2

1
(x2 + 1)3 dx 17.

∫ 0

−1
(2x + 1)3 dx

18.
∫ 3

1

10

(2x + 3)2
dx 19.

∫ 8

1
x2/3 dx

20.
∫ 9

1

(
1 + √

x
)2

dx 21.
∫ 1

−1
(ex − e−x ) dx

22.
∫ 4

0

√
3t dt 23.

∫ 2

0

√
e3t dt

24.
∫ 3

2

du

u2

(
Note the abbreviation for

1

u2
du.

)

25.
∫ 2

1

1

t
dt 26.

∫ 10

5

1

x
dx

27.
∫ 1

0
(ex − 1)2 dx 28.

∫ π/2

0
cos 2x dx

29.
∫ π/4

0
sin x cos x dx 30.

∫ π

0
sin2 x cos x dx

31.
∫ π

0
sin 5x dx 32.

∫ 2

0
cos π t dt

33.
∫ π/2

0
cos 3x dx 34.

∫ 5

0
sin

πx

10
dx

35.
∫ 2

0
cos

πx

4
dx 36.

∫ π/8

0
sec2 2t dt

In Problems 37 through 42, evaluate the given limit by first rec-
ognizing the indicated sum as a Riemann sum associated with a
regular partition of [0, 1] and then evaluating the corresponding
integral.

37. lim
n→∞

n∑
i=1

(
2i

n
− 1

)
1

n

38. lim
n→∞

n∑
i=1

i2

n3

39. lim
n→∞

1 + 2 + 3 + · · · + n

n2

40. lim
n→∞

13 + 23 + 33 + · · · + n3

n4

41. lim
n→∞

√
1 + √

2 + √
3 + · · · + √

n

n
√

n

42. lim
n→∞

n∑
i=1

1

n
sin

π i

n

In Problems 43 through 48, an integral
∫ b

a f (x) dx is given. First
sketch the graph y = f (x) on the interval [a, b ]. Then, in-
terpreting the integral as the area of a region, evaluate it using
known area formulas for rectangles, triangles, and circles.

43.
∫ 2

−2
|1 − x | dx 44.

∫ 3

−3
|3x − 2| dx

45.
∫ 5

0
(2 − |x |) dx 46.

∫ 6

0

∣∣5 − |2x |∣∣ dx

47.
∫ 5

0

√
25 − x2 dx

48.
∫ 6

0

√
6x − x2 dx (Suggestion: Complete the square.)

In Problems 49 through 54, use properties of integrals to estab-
lish each inequality without evaluating the integrals involved.

49. 1 �
∫ 1

0

√
1 + x2 dx �

∫ 1

0

√
1 + x dx

50.
∫ 2

1

√
1 + x dx �

∫ 2

1

√
1 + x3 dx �

√
10

51.
∫ 1

0

1

1 + √
x

dx �
∫ 1

0

1

1 + x2
dx
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52.
∫ 5

2

1

1 + x5
dx �

∫ 5

2

1

1 + x2
dx

53.
∫ 2

0
sin

√
x dx � 2

54.
π

8
�

∫ π/4

0

1

1 + cos2 x
dx �

π

6

In Problems 55 through 58, use the second comparison property
of integrals to estimate—giving both a lower bound and an upper
bound as in Problem 54—the value of the given integral.

55.
∫ 1

0

1

1 + x
dx 56.

∫ 9

4

1

1 + √
x

dx

57.
∫ π/6

0
cos2 x dx 58.

∫ π/4

0

√
16 + 2 sin2 x dx

59. Use Riemann sums—as in the proof of the sum property of
integrals—to establish the constant multiple property.

60. Use Riemann sums to establish the first comparison property
of integrals.

61. Deduce the second comparison property of integrals from
the first comparison property.

62. Use sequences of Riemann sums to establish the interval
union property of the integral. Note that if R ′

n and R ′′
n are

Riemann sums for f on the intervals [a, c] and [c, b], re-
spectively, then Rn = R ′

n + R ′′
n is a Riemann sum for f

on [a, b].
63. Suppose that a tank initially contains 1000 gal of water and

that the rate of change of its volume after the tank drains for
t min is V ′(t) = (0.8)t − 40 (in gallons per minute). How
much water does the tank contain after it has been draining
for a half-hour?

64. Suppose that the population of Juneau in 1970 was 125
(in thousands) and that its rate of growth t years later was
P ′(t) = 8 + (0.5)t + (0.03)t2 (in thousands per year). What
was its population in 1990?

65. Figure 5.5.11 shows the graph of f (x) = 1/x on the inter-
val [1, 2], the line joining its endpoints (1, 1) and (2, 1

2 ), and
its tangent line at the point ( 3

2 , 2
3 ). Use this construction to

estimate the value of the integral∫ 2

1

1

x
dx

(whose exact value is known to be ln 2 ≈ 0.693).

x

y

1.2

1

0.8

0.6

0.4

0.2

0
21 1.2 1.4 1.6 1.8

y = 1
x

( , )3
2

2
3

FIGURE 5.5.11 Bounding the

graph of f (x) = 1

x
.

66. Figure 5.5.12 shows the graph of f (x) = 1/(1 + x2) on
the interval [0, 1], the line y = L(x) joining its endpoints
(0, 1) and (1, 1

2 ), and the line y = L(x) + 0.07. First graph
f (x)− L(x) to verify that the latter line lies above y = f (x)

on the interval [0, 1]. Then use this construction to estimate
the value of the integral∫ 1

0

1

1 + x2
dx

(whose exact value is known to be 1
4 π ≈ 0.785).

x
10 0.2 0.4 0.6 0.8

y = L(x)

y = L(x) + 0.07

y

1.2

1

0.8

0.6

0.4

0.2

0

1
1 + x2

y =

FIGURE 5.5.12 Bounding the

graph of f (x) = 1

1 + x2
.

5.6 THE FUNDAMENTAL THEOREM OF CALCULUS

Newton and Leibniz are generally credited with the invention of calculus in the latter
part of the seventeenth century. Actually, others had earlier calculated areas essentially
equivalent to integrals and tangent line slopes essentially equivalent to derivatives. The
great accomplishments of Newton and Leibniz were the discovery and computational
exploitation of the inverse relationship between differentiation and integration. This
relationship is embodied in the fundamental theorem of calculus. One part of this
theorem is the evaluation theorem of Section 5.5: To evaluate∫ b

a
f (x) dx,

it suffices to find an antiderivative of f on [a, b]. The other part of the fundamental
theorem tells us that doing so is usually possible, at least in theory: Every continuous
function has an antiderivative.
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The Average Value of a Function
The concept of the average value of a function is useful for the proof of the fundamen-
tal theorem and has numerous important applications in its own right. The ordinary
(arithmetic) average of n given numbers a1, a2, . . . , an is defined to be

a = a1 + a2 + · · · + an

n
= 1

n

n∑
i=1

ai . (1)

But a function f defined on an interval generally has infinitely many values f (x),
so we cannot simply divide the sum of all these values by their number to find the
average value of f (x). We introduce the proper notion with a discussion of average
temperature.

EXAMPLE 1 Let the measured temperature T during a particular 24-h day at a cer-
tain location be given by the function

T = f (t), 0 � t � 24

(with the 24-h clock running from t = 0 at one midnight to t = 24 at the following
midnight). Thus, for example, the temperatures f (1), f (2), . . . , f (24) are recorded
at 1-h intervals during the day. We might define the average temperature T for the day
as the (ordinary arithmetic) average of the hourly temperatures:

T = 1

24

24∑
i=1

f (ti ),

where ti = i . If we divided the day into n equal subintervals rather than into 24 1-h
intervals, we would obtain the more general average

T = 1

n

n∑
i=1

f (ti ).

The larger n is, the closer would we expect T to be to the “true” average temperature
for the entire day. It is therefore plausible to define the true average temperature by
letting n increase without bound. This gives

T = lim
n→∞

1

n

n∑
i=1

f (ti ).

The right-hand side resembles a Riemann sum, and we can make it into a Rie-
mann sum by introducing the factor

�t = b − a

n
,

where a = 0 and b = 24. Then

T = lim
n→∞

1

n
· n

b − a

n∑
i=1

f (ti ) · b − a

n

= lim
n→∞

1

b − a

n∑
i=1

f (ti ) · b − a

n

= 1

b − a
lim

n→∞

n∑
i=1

f (ti ) �t = 1

b − a

∫ b

a
f (t) dt.

Thus

T = 1

24

∫ 24

0
f (t) dt (2)

under the assumption that f is continuous, so the Riemann sums converge to the inte-
gral as n → ∞. ◗
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The final result in Eq. (2) is the integral of the function divided by the length of
the interval. Example 1 motivates the following definition:

DEFINITION Average Value of a Function
Suppose that the function f is integrable on [a, b]. Then the average value y of
y = f (x) for x in the interval [a, b] is

y = 1

b − a

∫ b

a
f (x) dx . (3)

We can rewrite Eq. (3) in the form∫ b

a
f (x) dx = y · (b − a). (4)

If f is positive-valued on [a, b], then Eq. (4) implies that the area under y = f (x)

over [a, b] is equal to the area of a rectangle with base length b − a and height y
(Fig. 5.6.1).

x

y

a bx

y = f (x)

y

FIGURE 5.6.1 A rectangle illustrating the
average value y of a function.

EXAMPLE 2 The average value of f (x) = x2 for x in [0, 2] is

y = 1

2

∫ 2

0
x2 dx = 1

2

[
1

3
x3

]2

0

= 4

3
. ◗

EXAMPLE 3 In Athens, Georgia (USA) the mean daily temperature in degrees

40

50

60

70

80

2 3 4 5
t

T T = 57

T = f(t)

FIGURE 5.6.2 The temperature
function T = f (t) of Example 3.

Fahrenheit t months after July 15 is closely approximated by

T = 61 + 18 cos
π t

6
= f (t). (5)

Find the average temperature between September 15 (t = 2) and December 15
(t = 5).

Solution Equation (3) gives

T = 1

5 − 2

∫ 5

2

(
61 + 18 cos

π t

6

)
dt

= 1

3

[
61t + 6 · 18

π
sin

π t

6

]5

2

≈ 57◦F.

Figure 5.6.2 shows the graphs of T = f (t) and T ≡ 57. Can you see that Eq. (4)
implies that the two almost-triangular regions in the figure have equal areas? ◗
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Theorem 1 tells us that every continuous function on a closed interval attains its
average value at some point of the interval.

THEOREM 1 Average Value Theorem
If f is continuous on [a, b], then

f (x) = 1

b − a

∫ b

a
f (x) dx (6)

for some number x in [a, b].

Proof Let m = f (c) be the minimum value of f (x) on [a, b ] and let M = f (d) be
its maximum value there. Then, by the comparison property of Section 5.5,

m = f (c) � y = 1

b − a

∫ b

a
f (x) dx � f (d) = M.

Because f is continuous, we can now apply the intermediate value property. The
number y is between the two values m and M of f , and consequently, y itself must be
a value of f . Specifically, y = f (x) for some number x between a and b. This yields
Eq. (6). ◆

REMARK Whereas y denotes the average value of the function y = f (x), the point
x where this average value is attained is not, in general, itself an average value of x .

EXAMPLE 4 If v(t) denotes the velocity function of a sports car accelerating during
the time interval a � t � b, then the car’s average velocity is given by

v = 1

b − a

∫ b

a
v(t) dt.

The average value theorem implies that v = v
(
t
)

for some number t in [a, b]. Thus
t is an instant at which the car’s instantaneous velocity is equal to its average velocity
over the entire time interval. ◗

The Fundamental Theorem

We state the fundamental theorem of calculus in two parts. The first part is the fact

x

y

y = f (x)

xa x + h

F(x)

t

f ( t )

FIGURE 5.6.3 The area function F
is an antiderivative of f .

that every function f that is continuous on an interval I has an antiderivative on I .
In particular, an antiderivative of f can be obtained by integrating f in a certain way.
Intuitively, in the case f (x) > 0, we let F(x) denote the area under the graph of f from
a fixed point a of I to x , a point of I with x > a. We shall prove that F ′(x) = f (x).
We show the construction of the function F in Fig. 5.6.3. More precisely, we define
the function F as follows:

F(x) =
∫ x

a
f (t) dt,

where we use the dummy variable t in the integrand to avoid confusion with the upper
limit x . The proof that F ′(x) = f (x) will be independent of the supposition that
x > a.
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THE FUNDAMENTAL THEOREM OF CALCULUS
Suppose that f is continuous on the closed interval [a, b].
Part 1: If the function F is defined on [a, b] by

F(x) =
∫ x

a
f (t) dt, (7)

then F is an antiderivative of f . That is, F ′(x) = f (x) for x in [a, b].
Part 2: If G is any antiderivative of f on [a, b], then∫ b

a
f (x) dx =

[
G(x)

]b

a

= G(b) − G(a). (8)

Proof of Part 1 By the definition of the derivative,

F ′(x) = lim
h→0

F(x + h) − F(x)

h
= lim

h→0

1

h

(∫ x+h

a
f (t) dt −

∫ x

a
f (t) dt

)
.

But ∫ x+h

a
f (t) dt =

∫ x

a
f (t) dt +

∫ x+h

x
f (t) dt

by the interval union property of Section 5.5. Thus

F ′(x) = lim
h→0

1

h

∫ x+h

x
f (t) dt.

The average value theorem tells us that

1

h

∫ x+h

x
f (t) dt = f

(
t
)

for some number t in [x, x + h]. Finally, we note that t → x as h → 0. Thus, because
f is continuous, we see that

F ′(x) = lim
h→0

1

h

∫ x+h

x
f (t) dt = lim

h→0
f
(
t
) = lim

t→x
f
(
t
) = f (x).

Hence the function F in Eq. (7) is, indeed, an antiderivative of f . ◆

REMARK Figure 5.6.4 indicates why t must approach x as h → 0. As the moving
washer at x + h approaches the fixed flange at x , the bead t between them has nowhere

x

Flange
Wire

t

Bead

x + h

Washer

FIGURE 5.6.4 The bead at t
trapped between the washer at x + h
and the flange at x .

else to go.

Proof of Part 2 Here we apply Part 1 to give a proof of the evaluation theorem in
Section 5.5. If G is any antiderivative of f , then—because it and the function F of
Part 1 are both antiderivatives of f on the interval [a, b]—we know that

G(x) = F(x) + C

on [a, b] for some constant C . To evaluate C , we substitute x = a and obtain

C = G(a) − F(a) = G(a),

because

F(a) =
∫ a

a
f (t) dt = 0.

Hence G(x) = F(x) + G(a). In other words,

F(x) = G(x) − G(a)
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for all x in [a, b]. With x = b this gives

G(b) − G(a) = F(b) =
∫ b

a
f (x) dx,

which establishes Eq. (8). ◆

Sometimes the fundamental theorem of calculus is interpreted to mean that dif-
ferentiation and integration are inverse processes. Part 1 can be written in the form

d

dx

(∫ x

a
f (t) dt

)
= f (x) (9)

if f is continuous on an open interval containing a and x . That is, if we first integrate
the function f (with variable upper limit of integration x) and then differentiate with
respect to x , the result is the function f again. So differentiation “cancels” the effect
of integration of continuous functions.

Moreover, Part 2 of the fundamental theorem can be written in the form∫ x

a
G ′(t) dt = G(x) − G(a) (10)

if we assume that G ′ is continuous. If so, this equation means that if we first differen-
tiate the function G and then integrate the result from a to x , the result can differ from
the original function G by, at worst, the constant G(a). This means that integration
“cancels” the effect of differentiation when a is chosen so that G(a) = 0.

Computational Applications
Examples 1 through 4 of Section 5.5 illustrate the use of Part 2 of the fundamental the-
orem in the evaluation of integrals. Additional examples appear in the end-of-section
problems, in this section, and in Section 5.7. Example 5 illustrates the necessity of
splitting an integral into a sum of integrals when its integrand has different antideriva-
tive formulas on different intervals.

EXAMPLE 5 Figure 5.6.5 shows the graph of the function f defined by

f (x) =
{

cos x if x � 0,
1 − x2 if x � 0.

Find the area A of the region R bounded above by the graph of y = f (x) and below

−2

−1

0

1

2

−2 −1 0 1 2
x

y

y = f(x)

R

FIGURE 5.6.5 The region of
Example 5.

by the x-axis.

Solution The x-intercepts shown in the figure are x = −1 (where 1 − x2 = 0 and
x < 0) and x = π/2 (where cos x = 0 and x > 0). Hence

A =
∫ π/2

−1
f (x) dx =

∫ 0

−1
(1 − x2) dx +

∫ π/2

0
cos x dx

=
[

x − 1

3
x3

]0

−1

+
[

sin x

]π/2

0

= 2

3
+ 1 = 5

3
. ◗

EXAMPLE 6 Figure 5.6.6 shows the graph of

f (x) = x3 − x2 − 6x .

Find the area A of the entire region R bounded by the graph of f and the x-axis.

Solution The region R consists of the two regions R1 and R2 and extends from x =
−2 to x = 3. The area of R1 is

−8

−4

0

4

8

−4 −2 0 2 4
x

y
−2

3

R1

R2

y = x3 − x2 − 6x

FIGURE 5.6.6 The graph
y = x3 − x2 − 6x of Example 6.

A1 =
∫ 0

−2
(x3 − x2 − 6x) dx =

[
1
4 x4 − 1

3 x3 − 3x2

]0

−2

= 16
3 .
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But on the interval (0, 3), the function f (x) is negative-valued, so to get the (positive)
area A2 of R2, we must integrate the negative of f :

A 2 =
∫ 3

0
(−x3 + x2 + 6x) dx =

[
− 1

4 x4 + 1
3 x3 + 3x2

]3

0

= 63
4 .

Consequently the area of the entire region R is

A = A1 + A 2 = 16
3 + 63

4 = 253
12 ≈ 21.08.

In effect, we have integrated the absolute value of f (x):

A =
∫ 3

−2
| f (x)| dx

=
∫ 0

−2
(x3 − x2 − 6x) dx +

∫ 3

0
(−x3 + x2 + 6x) dx = 253

12 .

Compare the graph of y = | f (x)| in Fig. 5.6.7 with that of y = f (x) in Fig. 5.6.6.

−8

−4

0

4

8

−4 −2 0 2 4
x

y 3−2

y = ⎜x3 − x2 − 6x⎜

R1

R2

FIGURE 5.6.7 The graph
y = |x3 − x2 − 6x | of Example 6.

◗

EXAMPLE 7 Evaluate ∫ 2

−1
|x3 − x | dx .

Solution We note that x3 − x � 0 on [−1, 0], that x3 − x � 0 on [0, 1], and that
x3 − x � 0 on [1, 2]. So we write∫ 2

−1
|x3 − x | dx =

∫ 0

−1
(x3 − x) dx +

∫ 1

0
(x − x3) dx +

∫ 2

1
(x3 − x) dx

=
[

1
4 x4 − 1

2 x2

]0

−1

+
[

1
2 x2 − 1

4 x4

]1

0

+
[

1
4 x4 − 1

2 x2

]2

1

= 1
4 + 1

4 + [
2 − (− 1

4

)] = 11
4 = 2.75. ◗

Part 1 of the fundamental theorem of calculus says that the derivative of an in-
tegral with respect to its upper limit is equal to the value of the integrand at the upper
limit. For example, if

y(x) =
∫ x

0
t3 sin t dt,

then
dy

dx
= x3 sin x .

Example 8 is a bit more complicated in that the upper limit of the integral is a nontrivial
function of the independent variable.

EXAMPLE 8 Find h′(x) given

h(x) =
∫ x2

0
t3 sin t dt.

Solution Let y = h(x) and u = x2. Then

y =
∫ u

0
t3 sin t dt,

so
dy

du
= u3 sin u

by the fundamental theorem of calculus. Then the chain rule yields

h′(x) = dy

dx
= dy

du
· du

dx
= (u3 sin u)(2x) = 2x7 sin x2. ◗
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Initial Value Problems
Note that if

y(x) =
∫ x

a
f (t) dt, (11)

then y(a) = 0. Hence y(x) is a solution of the initial value problem

dy

dx
= f (x), y(a) = 0. (12)

To get a solution of the initial value problem

dy

dx
= f (x) y(a) = b, (13)

we need only add the desired initial value:

y(x) = b +
∫ x

a
f (t) dt. (14)

EXAMPLE 9 Express as an integral the solution of the initial value problem

dy

dx
= sec x, y(2) = 3. (15)

Solution With a = 2 and b = 3, Eq. (14) gives

y(x) = 3 +
∫ x

2
sec t dt. (16)

With our present knowledge, we cannot antidifferentiate sec t , but for a particular value
of x the integral in Eq. (16) can be approximated using Riemann sums. For instance,
with x = 4 a calculator with an INTEGRATE key gives∫ 4

2
sec t dt ≈ −2.5121.

Hence the value of the solution in Eq. (16) at x = 4 is

y(4) ≈ 3 − 2.5121 = 0.4879. ◗

5.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If f is integrable on [a, b], then its average value there is

y = 1

b − a

∫ b

a
f (x) dx .

2. The average value of f (x) = x2 on [0, 2] is 8
3 .

3. If f is continuous on [a, b] with average value y there, then y = f (x) for some
number x in [a, b].

4. If v(t) denotes the velocity—assumed continuous—of a car traveling in a straight
line during the time interval a � t � b, then the average velocity of the car over
that interval is

v = 1

b − a

∫ b

a
v(t) dt.

5. The fundamental theorem of calculus implies that if f is continuous on [a, b],
then f has an antiderivative there.
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6. If f is continuous on [a, b] and

F(x) =
∫ x

a
f (t) dt,

then F ′(x) = f (x).
7. The fundamental theorem of calculus implies that if f is continuous on [a, b]

and G ′ = f there, then ∫ b

a
f (x) dx = G(b) − G(a).

8. The area bounded by the graph of f (x) = x3 − x2 − 6x and the x-axis is 253
12 .

9.
∫ 2

−1
|x3 − x | dx = 11

4
.

10. If h(x) =
∫ x2

0
t3 sin t dt , then h′(x) = x3 sin x .

5.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. Does every function defined on a closed interval have an average value there?
2. Suppose that the function f defined on the closed interval [a, b] has an average

value there. Does f necessarily attain this average value there? Either show that
it does or give an example showing it need not.

3. Discuss the validity of the assertion that the fundamental theorem of calculus
simply says that “every function is the derivative of its integral and the integral
of its derivative.” Does the fundamental theorem of calculus say this? Does it
say more than this?

4. Suppose that a particle moving along the x-axis has position x = f (t) and ve-
locity v = f ′(t) at time t . Interpret the values of the integrals∫ b

a
f ′(t) dt and

∫ b

a
| f ′(t)| dt

in terms of the change in position of the particle and the distance it travels. What’s
the difference?

5.6 PROBLEMS

In Problems 1 through 12, find the average value of the given
function on the specified interval.

1. f (x) = x4; [0, 2]
2. g(x) = √

x ; [1, 4]
3. h(x) = 3x2

√
x3 + 1; [0, 2]

4. f (x) = 8x ; [0, 4]
5. g(x) = 8x ; [−4, 4]
6. h(x) = x2; [−4, 4]
7. f (x) = x3; [0, 5]
8. g(x) = x−1/2; [1, 4]
9. f (x) = √

x + 1 ; [0, 3] 10. g(x) = sin 2x ; [0, π/2]
11. f (x) = sin 2x ; [0, π ] 12. g(t) = e2t ; [−1, 1]
Evaluate the integrals in Problems 13 through 28.

13.
∫ 3

−1
dx (Here dx stands for 1 dx .)

14.
∫ 2

1
(y5 − 1) dy 15.

∫ 4

1

dx√
9x3

16.
∫ 1

−1
(x3 + 2)2 dx 17.

∫ 3

1

3t − 5

t4
dt

18.
∫ −1

−2

x2 − x + 3
3
√

x
dx 19.

∫ π

0
sin x cos x dx

20.
∫ 2

−1
|x | dx 21.

∫ 2

1

(
t − 1

2t

)2

dt

22.
∫ 1

0
e2x−1 dx 23.

∫ 1

0

e2x − 1

ex
dx

24.
∫ 2

0

∣∣x − √
x

∣∣ dx 25.
∫ 2

−2
|x2 − 1| dx

26.
∫ π/3

0
sin 3x dx 27.

∫ 8

4

1

x
dx

28.
∫ 11

6

1

x − 1
dx
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In Problems 29 through 32, the graph of f and the x-axis divide
the xy-plane into several regions, some of which are bounded.
Find the total area of the bounded regions in each problem.

29. f (x) = 1 − x4 if x � 0; f (x) = 1 − x3 if x � 0
(Fig. 5.6.8)

30. f (x) = (π/2)2 sin x on [0, π/2]; f (x) = x(π − x) on
[π/2, π ] (Fig. 5.6.9)

−1

0

1

−1 0 1
x

y

y = 1 − x3y = 1 − x4

FIGURE 5.6.8 Problem 29.

−2

−1

0

1

2

3

0 1 2 3
x

y

y = x(π − x)

y = (π/2)2 sin x

FIGURE 5.6.9 Problem 30.

31. f (x) = x3 − 9x (Fig. 5.6.10)

32. f (x) = x3 − 2x2 − 15x (Fig. 5.6.11)

−10

0

10

−4 −2 0 2 4
x

y

y = x3 − 9x

FIGURE 5.6.10 Problem 31.

−40

−20

0

20

40

−4 0 4
x

y

y = x3 − 2x2 − 15x

FIGURE 5.6.11 Problem 32.

33. Rosanne drops a ball from a height of 400 ft. Find the ball’s
average height and its average velocity between the time it is
dropped and the time it strikes the ground.

34. Find the average value of the animal population P(t) =
100 + 10t + (0.02)t2 over the time interval [0, 10].

35. Suppose that a 5000-L water tank takes 10 min to drain and
that after t minutes, the amount of water remaining in the
tank is V (t) = 50(10 − t)2 liters. What is the average
amount of water in the tank during the time it drains?

36. On a certain day the temperature t hours past midnight
was

T (t) = 80 + 10 sin

(
π

12
(t − 10)

)
.

What was the average temperature between noon and 6 P.M.?

37. Suppose that a heated rod lies along the interval
0 � x � 10. If the temperature at points of the rod is given
by T (x) = 4x(10 − x), what is the rod’s average tempera-
ture?

38. Figure 5.6.12 shows a cross section at distance x from the
center of a sphere of radius 1. Find the average area of the
cross section for 0 � x � 1.

x

1 r

FIGURE 5.6.12 The sphere of
Problem 38.

39. Figure 5.6.13 shows a cross section at distance y from the
vertex of a cone with base radius 1 and height 2. Find the
average area of this cross section for 0 � y � 2.

r

1

y

2

FIGURE 5.6.13 The cone of
Problem 39.

40. A sports car starts from rest (x = 0, t = 0) and experi-
ences constant acceleration x ′′(t) = a for T seconds. Find,
in terms of a and T , (a) its final and average velocities and
(b) its final and average positions.

41. (a) Figure 5.6.14 shows a triangle inscribed in the region that
lies between the x-axis and the curve y = 9−x2. Express the
area of this triangle as a function A(x) of the x-coordinate of
its upper vertex P . (b) Find the average area A of A(x) for x
in the interval [−3, 3]. (c) Sketch a triangle as in Fig. 5.6.14
that has the area A found in part (b). How many different
such triangles are there?

x

y

y = 9 − x2

P(x, y)

FIGURE 5.6.14 The typical triangle
of Problem 41.

42. (a) Figure 5.6.15 shows a rectangle inscribed in the first-
quadrant region that lies between the x-axis and the line
y = 10 − x . Express the area of this rectangle as a func-
tion A(x) of the x-coordinate of its vertex P on the line.
(b) Find the average area A of A(x) for x in the interval
[0, 10]. (c) Sketch a rectangle as in Fig. 5.6.15 that has the
area A found in part (b). How many different such rectangles
are there?
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x

x + y = 10

P(x, y)

y

FIGURE 5.6.15 The typical
rectangle of Problem 42.

43. (a) Figure 5.6.16 shows a rectangle inscribed in the semi-
circular region that lies between the x-axis and the graph
y = √

16 − x2 . Express the area of the rectangle as a func-
tion A(x) of the x-coordinate of its vertex P on the line.
(b) Find the average area A of A(x) for x in the interval
[0, 4]. (c) Sketch a rectangle as in Fig. 5.6.16 that has the
area A found in part (b). How many different such rectan-
gles are there?

x

y

x

y

P(x, y)
16 − x2y =

FIGURE 5.6.16 The typical
rectangle of Problem 43.

44. Repeat Problem 43 in the case that the rectangle has two
vertices on the x-axis and two on the parabola y = 16 − x2

(rather than on the semicircle y = √
16 − x2 ). You may

need to use a calculator or computer to find the base of a
rectangle whose area is the average A of A(x) for x in [0, 4].

In Problems 45 through 49, apply the fundamental theorem of
calculus to find the derivative of the given function.

45. f (x) =
∫ x

−1
(t2 + 1)17 dt 46. g(t) =

∫ t

0

√
x2 + 25 dx

47. h(z) =
∫ z

2

3
√

u − 1 du 48. A(x) =
∫ x

1

1

t
dt

49. f (x) =
∫ 10

x
(et − e−t ) dt

In Problems 50 through 53, G(x) is the integral of the given func-
tion f (t) over the specified interval of the form [a, x], x > a.
Apply Part 1 of the fundamental theorem of calculus to find
G ′(x).

50. f (t) = t

t2 + 1
; [2, x] 51. f (t) = √

t + 4 ; [0, x]

52. f (t) = sin3 t ; [0, x] 53. f (t) = √
t3 + 1 ; [1, x]

In Problems 54 through 60, differentiate the function by first writ-
ing f (x) in the form g(u), where u denotes the upper limit of
integration.

54. f (x) =
∫ x2

0

√
1 + t3 dt 55. f (x) =

∫ 3x

2
sin t2 dt

56. f (x) =
∫ sin x

0

√
1 − t2 dt 57. f (x) =

∫ x2

0
sin t dt

58. f (x) =
∫ sin x

1
(t2 + 1)3 dt 59. f (x) =

∫ x2+1

1

dt

t

60. f (x) =
∫ ex

1
ln(1 + t2) dt

Use integrals (as in Example 9) to solve the initial value problems
in Problems 61 through 64.

61.
dy

dx
= 1

x
, y(1) = 0

62.
dy

dx
= 1

1 + x2
, y(1) = π

4

63.
dy

dx
= √

1 + x2 , y(5) = 10

64.
dy

dx
= tan x , y(1) = 2

65. The fundamental theorem of calculus seems to say that

∫ 1

−1

dx

x2
=

[
− 1

x

]1

−1

= −2,

in apparent contradiction to the fact that 1/x2 is always pos-
itive. What’s wrong here?

66. Prove that the average rate of change

f (b) − f (a)

b − a

of the differentiable function f on [a, b] is equal to the av-
erage value of its derivative on [a, b].

67. The graph y = f (x), 0 � x � 10 is shown in Fig. 5.6.17.
Let

g(x) =
∫ x

0
f (t) dt.

(a) Find the values g(0), g(2), g(4), g(6), g(8), and g(10).
(b) Find the intervals on which g(x) is increasing and those
on which it is decreasing. (c) Find the global maximum and
minimum values of g(x) for 0 � x � 10. (d) Sketch a rough
graph of y = g(x).

0
x

y = f(x)

y

102 4 6 8
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 5.6.17 Problem 67.
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68. Repeat Problem 67, except use the graph of the function f
shown in Fig. 5.6.18.

0
x

y = f(x)

y

102 4 6 8
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 5.6.18 Problem 68.

69. Figure 5.6.19 shows the graph of the function f (x) = x sin x
on the interval [0, 4π ]. Let

g(x) =
∫ x

0
f (t) dt.

(a) Find the values of x at which g(x) has local maximum
and minimum values on the interval [0, 4π ]. (b) Where
does g(x) attain its global maximum and minimum values
on [0, 4π ]? (c) Which points on the graph y = f (x) corre-
spond to inflection points on the graph y = g(x)? (d) Sketch
a rough graph of y = g(x).

0
x

y = x sin x

y

12108642

-5

-10

0

10

5

FIGURE 5.6.19 Problem 69.

70. Repeat Problem 69, except use the function

f (x) = sin x

x

on the interval [0, 4π ] (as shown in Fig. 5.6.20). Take
f (0) = 1 because (sin x)/x → 1 as x → 0.

0
x

y

12108642

−1
−0.8
−0.6
−0.4
−0.2

0

1
0.8
0.6
0.4
0.2

sin x
x

y =

FIGURE 5.6.20 Problem 70.

5.7 INTEGRATION BY SUBSTITUTION

The fundamental theorem of calculus in the form∫ b

a
f (x) dx =

[∫
f (x) dx

]b

a

(1)

implies that we can readily evaluate the definite integral on the left if we can find the
indefinite integral (that is, antiderivative) on the right. We now discuss a powerful
method of antidifferentiation that amounts to “the chain rule in reverse.” This method
is a generalization of the “generalized power rule in reverse,”

∫
un du = un+1

n + 1
+ C (n �= −1), (2)

which we introduced in Section 5.2.
Equation (2) is an abbreviation for the formula∫

[g(x)]ng′(x) dx = [g(x)]n+1

n + 1
+ C (n �= −1) (3)

that results when we write

u = g(x), du = g′(x) dx .

So to apply Eq. (2) to a given integral, we must be able to visualize the integrand as a
product of a power of a differentiable function g(x) and its derivative g′(x).
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EXAMPLE 1 With

u = 2x + 1, du = 2 dx,

we see that∫
(2x + 1)5 · 2 dx =

∫
u5 du = u6

6
+ C = 1

6
(2x + 1)6 + C. ◗

EXAMPLE 2

(a)
∫

2x
√

1 + x2 dx =
∫

(1 + x2)1/2 · 2x dx

=
∫

u1/2 du (u = 1 + x2, du = 2x dx)

= u3/2

3
2

+ C = 2
3 (1 + x2)3/2 + C.

(b) Similarly, but with u = 1 + ex and du = ex dx , we get∫
ex

√
1 + ex

dx =
∫

1√
u

du = 2
√

u + C

= 2
√

1 + ex + C. ◗

Equation (3) is the special case f (u) = un of the general integral formula

∫
f (g(x)) · g′(x) dx =

∫
f (u) du. (4)

The right-hand side of Eq. (4) results when we make the formal substitutions

u = g(x), du = g′(x) dx

on the left-hand side.
One of the beauties of differential notation is that Eq. (4) is not only plausible

but is, in fact, true—with the understanding that u is to be replaced with g(x) after the
indefinite integration on the right-hand side of Eq. (4) has been carried out. Indeed,
Eq. (4) is merely an indefinite integral version of the chain rule. For if F ′(x) = f (x),
then

Dx F(g(x)) = F ′(g(x)) · g′(x) = f (g(x)) · g′(x)

by the chain rule, so∫
f (g(x)) · g′(x) dx =

∫
F ′(g(x)) · g′(x) dx = F(g(x)) + C

= F(u) + C [u = g(x)]
=

∫
f (u) du.

Equation (4) is the basis for the powerful technique of indefinite integration by sub-
stitution. It may be used whenever the integrand function is recognized to be of the
form f (g(x)) · g′(x).

EXAMPLE 3 Find ∫
x2

√
x3 + 9 dx .
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Solution Note that x2 is, to within a constant factor, the derivative of x3 + 9. We
can, therefore, substitute

u = x3 + 9, du = 3x2 dx . (5)

The constant factor 3 can be supplied if we compensate by multiplying the integral by
1
3 . This gives∫

x2
√

x3 + 9 dx = 1

3

∫
(x3 + 9)1/2 · 3x2 dx = 1

3

∫
u1/2 du

= 1

3
· u3/2

3
2

+ C = 2

9
u3/2 + C = 2

9
(x3 + 9)3/2 + C.

An alternative way to carry out the substitution in (5) is to solve

du = 3x2 dx for x2 dx = 1
3 du,

and then write ∫
(x3 + 9)1/2 dx =

∫
u1/2 · 1

3 du = 1
3

∫
u1/2 du,

concluding the computation as before. ◗

The following three steps in the solution of Example 3 are worth special
mention:

• The differential dx along with the rest of the integrand is “transformed,” or re-
placed, in terms of u and du.

• Once the integration has been performed, the constant C of integration is added.
• A final resubstitution is necessary to write the answer in terms of the original

variable x .

Substitution in Trigonometric and Exponential Integrals
By now we know that every differentiation formula yields—upon “reversal”—a cor-
responding antidifferentiation formula. The familiar formulas for the derivatives
of the six trigonometric functions thereby yield the following indefinite-integral
formulas: ∫

cos u du = sin u + C , (6)

∫
sin u du = − cos u + C , (7)

∫
sec2 u du = tan u + C , (8)

∫
csc2 u du = − cot u + C , (9)

∫
sec u tan u du = sec u + C , (10)

∫
csc u cot u du = − csc u + C . (11)
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Also, the derivatives Dx [ex ] = ex and Dx [ln |x |] = 1/x (for x �= 0) yield the integral
formulas ∫

eu du = eu + C , (12)

∫
1

u
du = ln |u| + C (for u �= 0). (13)

Any of these integrals can appear as the integral
∫

f (u) du that results from an appro-
priate u-substitution in a given integral.

EXAMPLE 4∫
sin(3x + 4) dx =

∫
(sin u) · 1

3 du (u = 3x + 4, du = 3 dx)

= 1
3

∫
sin u du = − 1

3 cos u + C

= − 1
3 cos(3x + 4) + C. ◗

EXAMPLE 5∫
3x cos(x2) dx = 3

∫
(cos x2) · x dx

= 3
∫

(cos u) · 1
2 du (u = x2, du = 2x dx)

= 3
2

∫
cos u du = 3

2 sin u + C = 3
2 sin(x2) + C. ◗

EXAMPLE 6∫
sec2 3x dx =

∫
(sec2 u) · 1

3 du (u = 3x, du = 3 dx)

= 1
3 tan u + C = 1

3 tan 3x + C. ◗

EXAMPLE 7 Evaluate ∫
2 sin3 x cos x dx .

Solution None of the integrals in Eqs. (6) through (11) appears to “fit,” but the sub-
stitution

u = sin x, du = cos x dx

yields ∫
2 sin3 x cos x dx = 2

∫
u3 du = 2 · u4

4
+ C = 1

2
sin4 x + C. ◗

EXAMPLE 8 Let

u = 1 +
√

x3 = 1 + x3/2, so that du = 3

2
x1/2 dx = 3

2

√
x dx .

Then Eq. (12) yields∫
3
√

x exp
(
1 +

√
x3

)
dx =

∫
eu · 2 du = 2eu + C = 2 exp

(
1 +

√
x3

) + C.
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Moreover, if x > 0 then u = |u| > 0 and Eq. (13) gives∫
3
√

x

1 + √
x3

dx =
∫

2

u
du = 2 ln u + C = 2 ln

(
1 +

√
x3

) + C. ◗

Substitution in Definite Integrals
The method of integration by substitution can be used with definite integrals as well as
with indefinite integrals. Only one additional step is required—evaluation of the final
antiderivative at the original limits of integration.

EXAMPLE 9 The substitution used in Example 3 gives

∫ 3

0
x2

√
x3 + 9 dx =

∫
u1/2 · 1

3 du (u = x3 + 9, du = 3x2 dx)

= 1
3

[
2
3 u3/2

]
= 2

9

[
(x3 + 9)3/2

]3

0

(resubstitute)

= 2
9 (216 − 27) = 42.

The limits on u were left “blank” above because they weren’t calculated—there was
no need to know them, because we planned to resubstitute for u in terms of the original
variable x before using the original limits of integration.

But sometimes it is more convenient to determine the limits of integration with
respect to the new variable u. With the substitution u = x3 + 9, du = 3x2 dx , we see
that

• u = 9 when x = 0 (lower limit);
• u = 36 when x = 3 (upper limit).

Use of these limits on u (rather than resubstitution in terms of x) gives

∫ 3

0
x2

√
x3 + 9 dx = 1

3

∫ 36

9
u1/2 du = 1

3

[
2
3 u3/2

]36

9

= 42. ◗

Theorem 1 says that the “natural” way of transforming an integral’s limits under
a u-substitution, like the work just done, is in fact correct.

THEOREM 1 Definite Integration by Substitution
Suppose that the function g has a continuous derivative on [a, b] and that f is con-
tinuous on the interval g ([a, b]). Let u = g(x). Then∫ b

a
f (g(x)) · g′(x) dx =

∫ g(b)

g(a)

f (u) du. (14)

REMARK Thus we get the new limits on u by applying the substitution function u =
g(x) to the old limits on x . Then:

• The new lower limit is g(a), and
• The new upper limit is g(b),

whether or not g(b) is greater than g(a).

Proof of Theorem 1 Choose an antiderivative F of f , so F ′ = f . Then, by the
chain rule,

Dx [F(g(x))] = F ′(g(x)) · g′(x) = f (g(x)) · g′(x).
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Therefore, ∫ b

a
f (g(x)) · g′(x) dx =

[
F(g(x))

]b

a

= F(g(b)) − F(g(a))

=
[

F(u)

]g(b)

u=g(a)

=
∫ g(b)

g(a)

f (u) du.

Note how we used the fundamental theorem to obtain the first and last equalities in this
argument. ◆

Whether it is simpler to apply Theorem 1 and transform to new u-limits or to
resubstitute u = g(x) and use the old x-limits depends on the specific problem at
hand. Examples 10 and 11 illustrate the technique of transforming to new limits.

EXAMPLE 10 Evaluate ∫ 5

3

x dx

(30 − x2)2
.

Solution Note that 30 − x2 is nonzero on [3, 5], so the integrand is continuous there.
We substitute

u = 30 − x2, du = −2x dx,

and observe that

If x = 3, then u = 21 (lower limit);
If x = 5, then u = 5 (upper limit).

Hence our substitution gives∫ 5

3

x dx

(30 − x2)2
=

∫ 5

21

− 1
2 du

u2
= −1

2

[
−1

u

]5

21

= −1

2

(
−1

5
+ 1

21

)
= 8

105
. ◗

EXAMPLE 11 Evaluate ∫ π/4

0

cos 2t

1 + sin 2t
dt.

Solution We substitute

u = 1 + sin 2t, so du = 2 cos 2t dt.

Then u = 1 when t = 0 and u = 2 when t = π/4. Hence Eq. (13) gives∫ π/4

0

cos 2t

1 + sin 2t
dt = 1

2

∫ 2

1

1

u
du

= 1
2

[
ln u

]2

1

= 1
2 ln 2 ≈ 0.3466. ◗

5.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The substitution u = 2x + 1, du = 2 dx transforms∫
(2x + 1)5 · 2 dx into

∫
u5 du.
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2. The substitution u = 1 + x2, du = 2x dx transforms∫
2x

√
1 + x2 dx into

∫
u1/2 du.

3. The substitution u = x3 + 9, du = 3x2 dx transforms∫
x2

√
x3 + 9 dx into

∫
u1/2 du.

4. The substitution u = 3x + 4, du = 3 dx transforms∫
sin(3x + 4) dx into

1

3

∫
sin u du.

5.
∫

3x cos(x2) dx = sin(x2) + C . 6.
∫

sec2 3x dx = 1

3
tan 3x + C .

7. A good way to evaluate ∫
2 sin3 x cos x dx

is to use the substitution u = sin x , du = cos x dx .
8. The substitution u = x3 + 9 yields∫ 3

0
x2

√
x3 + 9 dx = 1

3

∫ 3

0
u1/2 du.

9. Suppose that the function g has a continuous derivative on [a, b] and that f is
continuous on the set g([a, b]). Let u = g(x). Then∫ b

a
f (g(x)) · g′(x) dx =

∫ g(b)

g(a)

f (u) du.

10.
∫ 5

3

x dx

(30 − x2)2
= −1

2

[
−1

u

]5

21

.

5.7 CONCEPTS: QUESTIONS AND DISCUSSION
1. In Theorem 1, the function g is continuous on the interval [a, b]. Give an example

in which the range set g([a, b]) is not simply the closed interval with endpoints
g(a) and g(b). Then select a nontrivial function f that is continuous on g([a, b])
and verify that Eq. (14) holds.

2. Suppose that the function g is continuous on the interval [a, b]. Use properties
of continuous functions stated in Sections 2.4 and 3.5 to prove that the range set
g([a, b]) is a closed interval.

3. Discuss the possible advantages and disadvantages of transforming to new u-
limits when evaluating a definite integral by substitution. Perhaps you can give
one example in which this makes the calculation simpler, another example in
which it does not.

5.7 PROBLEMS

In Problems 1 through 10, use the indicated substitution to eval-
uate the given integral.

1.
∫

(3x − 5)17 dx; u = 3x − 5

2.
∫

1

(4x + 7)6
dx; u = 4x + 7

3.
∫

x
√

x2 + 9 dx; u = x2 + 9

4.
∫

x2

3
√

2x3 − 1
dx; u = 2x3 − 1

5.
∫

sin 5x dx; u = 5x

6.
∫

cos kx dx; u = kx

7.
∫

x sin(2x2) dx; u = 2x2
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8.
∫

e
√

x

√
x

dx; u = √
x

9.
∫

(1 − cos x)5 sin x dx; u = 1 − cos x

10.
∫

cos 3x

5 + 2 sin 3x
dx; u = 5 + 2 sin 3x

Evaluate the indefinite integrals in Problems 11 through 50.

11.
∫

(x + 1)6 dx 12.
∫

(2 − x)5 dx

13.
∫

(4 − 3x)7 dx 14.
∫ √

2x + 1 dx

15.
∫

dx√
7x + 5

16.
∫

dx

(3 − 5x)2

17.
∫

sin(πx + 1) dx 18.
∫

cos
π t

3
dt

19.
∫

sec 2θ tan 2θ dθ 20.
∫

csc2 5x dx

21.
∫

e1−2x dx 22.
∫

xex2
dx

23.
∫

x2e3x3−1 dx 24.
∫ √

x e2x
√

x dx

25.
∫

1

2x − 1
dx 26.

∫
1

3x + 5
dx

27.
∫

1

x
(ln x)2 dx 28.

∫
1

x ln x
dx

29.
∫

x + e2x

x2 + e2x
dx 30.

∫
(ex + e−x )2 dx

31.
∫

x
√

x2 − 1 dx 32.
∫

3t (1 − 2t2)10 dt

33.
∫

x
√

2 − 3x2 dx 34.
∫

t dt√
2t2 + 1

35.
∫

x3
√

x4 + 1 dx 36.
∫

x2 dx
3
√

x3 + 1

37.
∫

x2 cos(2x3) dx 38.
∫

t sec2(t2) dt

39.
∫

xe−x2
dx 40.

∫
x

1 + x2
dx

41.
∫

cos3 x sin x dx 42.
∫

sin5 3z cos 3z dz

43.
∫

tan3 θ sec2 θ dθ 44.
∫

sec3 θ tan θ dθ

45.
∫

cos
√

x√
x

dx [Suggestion: Try u = √
x . ]

46.
∫

dx
√

x
(
1 + √

x
)2 47.

∫
(x2 +2x +1)4(x +1) dx

48.
∫

(x + 2) dx

(x2 + 4x + 3)3
49.

∫
x + 2

x2 + 4x + 3
dx

50.
∫

2x + ex

(x2 + ex + 1)2
dx

Evaluate the definite integrals in Problems 51 through 64.

51.
∫ 2

1

dt

(t + 1)3
52.

∫ 4

0

dx√
2x + 1

53.
∫ 4

0
x
√

x2 + 9 dx

54.
∫ 4

1

(
1 + √

x
)4

√
x

dx [Suggestion: Try u = 1 + √
x .]

55.
∫ 8

0
t
√

t + 1 dt [Suggestion: Try u = t + 1.]

56.
∫ π/2

0
sin x cos x dx 57.

∫ π/6

0
sin 2x cos3 2x dx

58.
∫ √

π

0
t sin

t2

2
dt

59.
∫ π/2

0
(1 + 3 sin θ)3/2 cos θ dθ

[Suggestion: Try u = 1 + 3 sin θ .]

60.
∫ π/2

0
sec2 x

2
dx

61.
∫ π/2

0
esin x cos x dx [Suggestion: Try u = sin x .]

62.
∫ 2

1

1 + ln x

x
dx [Suggestion: Try u = 1 + ln x .]

63.
∫ 2

1

e−1/x

x2
dx

[
Suggestion: Try u = 1

x
.

]

64.
∫ π2

π2/4

sin
√

x cos
√

x√
x

dx

Use the half-angle identities

cos2 θ = 1 + cos 2θ

2
and sin2 θ = 1 − cos 2θ

2

to evaluate the integrals in Problems 65 through 68.

65.
∫

sin2 x dx 66.
∫

cos2 x dx

67.
∫ π

0
sin2 3t dt 68.

∫ 1

0
cos2 π t dt

Use the identity 1 + tan2 θ = sec2 θ to evaluate the integrals in
Problems 69 and 70.

69.
∫

tan2 x dx 70.
∫ π/12

0
tan2 3t dt

71. Substitute sin3 x = (sin x)(1 − cos2 x) to show that∫
sin3 x dx = 1

3 cos3 x − cos x + C.

72. Evaluate ∫ π/2

0
cos3 x dx

by the method of Problem 71.

73. Substitute first u = sin θ and then u = cos θ to obtain∫
sin θ cos θ dθ = 1

2 sin2 θ + C1 = − 1
2 cos2 θ + C2.

Reconcile these results. What is the relation between the
constants C1 and C2? Suggestion: Compare the graphs (on
the same screen) of

f (x) = 1
2 sin2 θ and g(x) = − 1

2 cos2 θ.
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74. Substitute first u = tan θ and then u = sec θ to obtain∫
sec2 θ tan θ dθ = 1

2 tan2 θ + C1 = 1
2 sec2 θ + C2.

Reconcile these results. What is the relation between the
constants C1 and C2? Suggestion: Compare the graphs (on
the same screen) of

f (x) = 1
2 tan2 θ and g(x) = 1

2 sec2 θ.

75. (a) Verify by differentiation that∫
dx

(1 − x)2
= x

1 − x
+ C1.

(b) Substitute u = 1 − x to show that∫
dx

(1 − x)2
= 1

1 − x
+ C2.

(c) Reconcile the results of parts (a) and (b). Suggestion:
Compare the graphs (on the same screen) of

f (x) = x

1 − x
and g(x) = 1

1 − x
.

76. (a) Substitute u = x2 and apply part (a) of Problem 75 to
show that ∫

x dx

(1 − x2)2
= x2

2(1 − x2)
+ C1.

(b) Substitute u = 1 − x2 to show that∫
x dx

(1 − x2)2
= 1

2(1 − x2)
+ C2.

(c) Reconcile the results of parts (a) and (b). Suggestion:
Compare the graphs (on the same screen) of

f (x) = x2

2(1 − x2)
and g(x) = 1

2(1 − x2)
.

Problems 77 and 78 deal with even and odd functions. An even
function f is a function such that

f (−x) = f (x)

for all x. This means that the graph of y = f (x) is symmet-
ric under reflection across the y-axis (Fig. 5.7.1). Examples of
even functions include f (x) = cos x, 1, x2, x4, and x6. An odd
function f is a function such that

f (−x) = − f (x)

for all x. This means that the graph of y = f (x) is symmetric
under reflections first across the y-axis, then across the x-axis
(Fig. 5.7.2). Examples of odd functions are f (x) = sin x, x,
x3, and x5. Think about these reflections with the (even) cosine
function (in Fig. 5.7.3) and the (odd) sine function (in Fig. 5.7.4).

y

y = f (x)

x

FIGURE 5.7.1 The graph of the
even function y = f (x) is invariant
under reflection through the y-axis.

x

y

y = f (x)

FIGURE 5.7.2 The graph of the
odd function y = f (x) is invariant
under successive reflections through
both axes.

x

y

y = cosx

FIGURE 5.7.3 The cosine
function is even.

x

y
y = sinx

FIGURE 5.7.4 The sine
function is odd.

77. See Fig. 5.7.5. If the continuous function f is odd, substitute
u = −x into the integral

∫ 0

−a
f (x) dx to show that

∫ a

−a
f (x) dx = 0.

x

y

a

+

−

−a

y = f (x)

FIGURE 5.7.5 Areas cancel
when f is odd (Problem 77).

78. See Fig. 5.7.6. If the continuous function f is even, use the
method of Problem 77 to show that

∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx .

x

y

a

+

−a

+

y = f (x)

FIGURE 5.7.6 Areas add
when f is even (Problem 78).

In Problems 79 and 80, use the results of Problems 77 and 78 to
justify the values of the given integrals without extensive compu-
tation.

79.
∫ 1

−1

[
tan x +

3
√

x

(1 + x2)7
− x17 cos x

]
dx = 0.
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80.
∫ 5

−5

(
3x2 − x10 sin x + x5

√
1 + x4

)
dx = 2

[
x3

]5

0

= 250.

81. Suppose that f is continuous everywhere and that k is a con-
stant. Show that∫ b

a
f (x + k) dx =

∫ b+k

a+k
f (x) dx .

In the case in which k > 0 and f (x) > 0, illustrate this
formula with a sketch showing two regions with bases [a, b]
and [a + k, b + k]. Why is it plausible that these two regions
have equal areas?

82. Suppose that f is continuous everywhere and that k is a con-
stant. Show that∫ kb

ka
f (x) dx = k

∫ b

a
f (kx) dx .

In the case in which k > 1 and f (x) > 0, illustrate this for-
mula with a sketch showing two regions with bases [a, b]
and [ka, kb]. Why is it plausible that the area of one of
these regions is k times the area of the other?

83. (a) Verify by differentiation that

∫
ueu du = (u − 1)eu + C.

(b) Use part (a) to show that

∫ 1

0
e

√
x dx = 2.

84. (a) Verify by differentiation that

∫
u sin u du = sin u − u cos u + C.

(b) Use part (a) to show that

∫ π2

0
sin

√
x dx = 2π.

5.8 AREAS OF PLANE REGIONS

In Section 5.3 we discussed the area A under the graph of a positive-valued conti-
nuous function f on the interval [a, b]. This discussion motivated our definition in
Section 5.4 of the integral of f from a to b as the limit of Riemann sums. An important
result was that

A =
∫ b

a
f (x) dx, (1)

by definition.
Here we consider the problem of finding the areas of more general regions in the

coordinate plane. Regions such as the ones illustrated in Fig. 5.8.1 may be bounded by
the graphs of two (or more) different functions.

x

y
y = 1 − x2

y = − 1 − x2

x

y

y = |x |

y = 1
2 (x + 2)

x

y

y = 1 − x

y = x2

x

y

y = 2 − x2

y = x2

FIGURE 5.8.1 Plane regions bounded by pairs of curves.

Let f and g be continuous functions such that f (x) � g(x) for all x in the
interval [a, b]. We are interested in the area A of the region R in Fig. 5.8.2, which lies
between the graphs of y = f (x) and y = g(x) for x in [a, b]. Thus R is bounded by

• The curve y = f (x), the upper boundary of R, by
• The curve y = g(x), the lower boundary of R, and by
• The vertical lines x = a and x = b (if needed).

To approximate A, we consider a partition of [a, b] into n subintervals, all with
the same length �x = (b − a)/n. If �A i denotes the area of the region between
the graphs of f and g over the i th subinterval [xi−1, xi ], and x�

i is a selected number
chosen in that subinterval (all this for i = 1, 2, 3, . . . , n), then �A i is approximately
equal to the area of a rectangle with height f (x�

i ) − g(x�
i ) and width �x (Fig. 5.8.3).
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R

x

y

a b

y = f (x)

y = g(x)

FIGURE 5.8.2 A region between two graphs.

xi
★

★
i )★

i )

★
i )

★
i )

x

y

a = x0 xn = b

y = g(x)

y = f (x)

x1 x2

xi − 1 xi

xn − 1

Δx

g(xf (x −

g(x

f (x

FIGURE 5.8.3 A partition of [a, b] divides R into vertical strips
that we approximate with rectangular strips.

Hence
�A i ≈ [ f (x�

i ) − g(x�
i )] �x;

so

A =
n∑

i=1

�A i ≈
n∑

i=1

[ f (x�
i ) − g(x�

i )] �x .

We introduce the height function h(x) = f (x) − g(x) and observe that A is
approximated by a Riemann sum for h(x) associated with our partition of [a, b]:

A ≈
n∑

i=1

h(x�
i ) �x .

Both intuition and reason suggest that this approximation can be made arbitrarily accu-
rate by choosing n to be sufficiently large (and hence �x = (b−a)/n to be sufficiently
small). We therefore conclude that

A = lim
�x→0

n∑
i=1

h(x�
i ) �x =

∫ b

a
h(x) dx =

∫ b

a
[ f (x) − g(x)] dx .

Because our discussion is based on an intuitive concept rather than on a pre-
cise logical definition of area, it does not constitute a proof of this area formula.
It does, however, provide justification for the following definition of the area in
question.

DEFINITION The Area Between Two Curves
Let f and g be continuous with f (x) � g(x) for x in [a, b]. Then the area A of
the region bounded by the curves y = f (x) and y = g(x) and by the vertical lines
x = a and x = b is

A =
∫ b

a
[ f (x) − g(x)] dx . (2)

EXAMPLE 1 Find the area of the region bounded by the lines y = x and x = 2 and

x

y

1 x

(2, 2)

y = x

x = 2

y = 1
x2

(1, 1)

FIGURE 5.8.4 The region of
Example 1.

by the curve y = 1/x2 (Fig. 5.8.4).

Solution Here the top curve is y = f (x) = x , the bottom curve is y = g(x) = 1/x2,
a = 1, and b = 2. The vertical line x = 2 is “needed” (to form the right-hand boundary
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of the region), whereas x = 1 is not. Equation (2) yields

A =
∫ 2

1

(
x − 1

x2

)
dx =

[
1

2
x2 + 1

x

]2

1

=
(

2 + 1

2

)
−

(
1

2
+ 1

)
= 1. ◗

Equation (1) is the special case of Eq. (2) in which g(x) is identically zero on
[a, b]. But if f (x) ≡ 0 and g(x) � 0 on [a, b], then Eq. (2) reduces to

A = −
∫ b

a
g(x) dx; that is,

∫ b

a
g(x) dx = −A.

In this case the region R lies beneath the x-axis (Fig. 5.8.5). Thus the integral from a
to b of a negative-valued function is the negative of the area of the region bounded by
its graph, the x-axis, and the vertical lines x = a and x = b.

x

y

a b

R

y = g(x)

FIGURE 5.8.5 The integral∫ b
a g(x) dx gives the negative of the

geometric area for a region that lies
below the x-axis.

More generally, consider a continuous function f with a graph that crosses the
x-axis at finitely many points c1, c2, c3, . . . , ck between a and b (Fig. 5.8.6). We write∫ b

a
f (x) dx =

∫ c1

a
f (x) dx +

∫ c2

c1

f (x) dx + · · · +
∫ b

ck

f (x) dx .

Thus we see that ∫ b

a
f (x) dx

is equal to the area below y = f (x) and above the x-axis minus the area above y =
f (x) and below the x-axis.

x

y

a
b

y = f (x)

c1

c2

ck
−

−

+
+ +

−

FIGURE 5.8.6 The integral
∫ b

a f (x) dx computes the area
above the x-axis minus the area below the x-axis.

The following heuristic (suggestive, though nonrigorous) way of setting up inte-

x

y

a b
x x + dx

ytop = f (x)

ybot = g(x)

ytop − ybot

FIGURE 5.8.7 Heuristic
(suggestive but nonrigorous)
approach to setting up area integrals.

gral formulas such as Eq. (2) can be useful. Consider the vertical strip of area that lies
above the interval [x, x + dx], shown shaded in Fig. 5.8.7, where we have written

ytop = f (x) and ybot = g(x)

for the top and bottom boundary curves. We think of the length dx of the interval
[x, x + dx ] as being so small that we can regard this strip as a rectangle with width dx
and height ytop − ybot. Its area is then

d A = (ytop − ybot) dx .

Think now of the region over [a, b] that lies between ytop = f (x) and ybot = g(x) as
being made up of many such vertical strips. We can regard its area as a sum of areas
of such rectangular strips. If we write

∫
for sum, we get the formula

A =
∫

d A =
∫ b

a
(ytop − ybot) dx .

This heuristic approach bypasses the subscript notation associated with
Riemann sums. Nevertheless, it is not and should not be regarded as a complete
derivation of the last formula. It is best used only as a convenient memory device.
For instance, in the figures that accompany many examples, we shall often show a strip
of width dx as a visual aid in properly setting up the correct integral.
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EXAMPLE 2 Find the area A of the region R bounded by the line y = x and the
parabola y = 6 − x2.

Solution The region R is shown in Fig. 5.8.8. We can use Eq. (2) and take f (x) =

x

y

a
b

ybot = x

ytop = 6 − x2

R

dx

FIGURE 5.8.8 The region R of
Example 2.

6 − x2 and g(x) = x . The limits a and b will be the x-coordinates of the two points of
intersection of the line and the parabola; our first order of business is to find a and b.
To do so, we equate f (x) and g(x) and solve the resulting equation for x :

x = 6 − x2; x2 + x − 6 = 0;
(x − 2)(x + 3) = 0; x = −3, 2.

Thus a = −3 and b = 2, so Eq. (2) gives

A =
∫ 2

−3
(6 − x2 − x) dx =

[
6x − 1

3 x3 − 1
2 x2

]2

−3

= [
6 · 2 − 1

3 · 23 − 1
2 · 22

] − [
6 · (−3) − 1

3 · (−3)3 − 1
2 · (−3)2

] = 125
6 . ◗

Subdividing Regions Before Integrating
Example 3 shows that it is sometimes necessary to subdivide a region before applying
Eq. (2), typically because the formula for either the top or the bottom boundary curve
(or both) changes somewhere between x = a and x = b.

EXAMPLE 3 Find the area of the region R bounded by the line y = 1
2 x and the

parabola y2 = 8 − x .

Solution The region R is shaded in Fig. 5.8.9. The points of intersection (−8, −4)

and (4, 2) are found by equating y = 1
2 x and y = ±√

8 − x and then solving for
x . The lower boundary of R is given by ybot = −√

8 − x on [−8, 8]. But the upper
boundary of R is given by

ytop = 1
2 x on [−8, 4], ytop = +√

8 − x on [4, 8].
We must therefore divide R into the two regions R1 and R2, as indicated in Fig. 5.8.9.
Then Eq. (2) gives

A =
∫ 4

−8

(
1
2 x + √

8 − x
)

dx +
∫ 8

4
2
√

8 − x dx

=
[

1
4 x2 − 2

3 (8 − x)3/2

]4

−8

+
[

− 4
3 (8 − x)3/2

]8

4

= [(
16
4 − 16

3

) − (
64
4 − 128

3

)] + [
0 + 32

3

] = 36. ◗

y
y =

x

1
2 x

ytop = 1
2 x

(8, 0)

(4, 2)

(−8, −4)

y2 = 8 − x

8 − xytop = +

8 − xybot = −

R1
R2

FIGURE 5.8.9 In Example 3, we split region R into two
regions R1 and R2.
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Determining Area by Integrating with Respect to y

The region in Example 3 appears to be simpler if we consider it to be bounded by
graphs of functions of y rather than by graphs of functions of x . Figure 5.8.10 shows
a region R bounded by the curves x = f (y) and x = g(y), with f (y) � g(y) for y
in [c, d], and by the horizontal lines y = c and y = d . To approximate the area A

★

★
i

★
i)

y

y0 = c
y1

y2

yi − 1

yiyi

yn = d
yn − 1

Δy

g(y−f (y )

x = g(y)

x = f (y)

R

x

FIGURE 5.8.10 Find area by using an integral with respect to y.

of R, we begin with a partition of [c, d] into n subintervals all with the same length
�y = (d − c)/n. We choose a point y�

i in the i th subinterval [yi−1, yi ] for each i
(1 � i � n). The horizontal strip of R lying opposite [yi−1, yi ] is approximated by
a rectangle with width �y (measured vertically) and height f (y�

i ) − g(y�
i ) (measured

horizontally). Hence

A ≈
n∑

i=1

[
f (y�

i ) − g(y�
i )

]
�y.

Recognizing the sum as a Riemann sum for the integral

∫ d

c
[ f (y) − g(y)] dy

motivates the following definition.

DEFINITION The Area Between Two Curves
Let f and g be continuous functions of y with f (y) � g(y) for y in [c, d]. Then
the area A of the region bounded by the curves x = f (y) and x = g(y) and by the
horizontal lines y = c and y = d is

A =
∫ d

c
[ f (y) − g(y)] dy. (3)

In a more advanced course, we would now prove that Eqs. (2) and (3) yield the
same area A for a region that can be described both in the manner shown in Fig. 5.8.2
and in the manner shown in Fig. 5.8.10.

Let us write

xright = f (y) and xleft = g(y)
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for the right and left boundary curves, respectively, of the region in Fig. 5.8.10. Then
Eq. (3) takes the form

A =
∫ d

c
[xright − xleft] dy.

Comparing Example 3 with Example 4 illustrates the advantage of choosing the “right”
variable of integration—the one that makes the resulting computations simpler.

EXAMPLE 4 Integrate with respect to y to find the area of the region R of Ex-
ample 3.

Solution We see from Fig. 5.8.11 that Eq. (3) applies with xright = f (y) = 8 − y2

and xleft = g(y) = 2y for y in [−4, 2]. This gives

A =
∫ 2

−4
[(8 − y2) − 2y] dy =

[
8y − 1

3 y3 − y2

]2

−4

= 36. ◗

x

y

(4, 2)

(−8, −4)

x left = 2y
x right = 8 − y2

FIGURE 5.8.11 Recomputation of the area of
Example 3 (Example 4).

EXAMPLE 5 Use calculus to derive the formula A = πr2 for the area of a circle of
radius r .

Solution The point is that the formula A = πr2 , however familiar it seems, requires
proof —it certainly is not self-evident. We begin with the definition (as suggested in
Section 5.3) of the famous number π as the area of the unit circle x2 + y2 = 1. This
implies that ∫ 1

0

√
1 − x2 dx = π

4
, (4)

(see Fig. 5.8.12) despite the fact that there is no immediate or obvious way of antidif-
ferentiating

√
1 − x2 in order to explicitly evaluate the integral in (4).

Now we turn our attention to the general circle of radius r shown in Fig. 5.8.13.
We apply Eq. (1) to the first quadrant and then multiply by 4. Thus we find that the
total area A of the circle is given by

A = 4
∫ r

0

√
r2 − x2 dx = 4r

∫ r

0

√
1 − x2

r2
dx

= 4r
∫ 1

0
r
√

1 − u2 du

(
Substitution: u = x

r
, x = ru, dx = r du

)

= 4r2 · π

4
.

Here we have applied Eq. (4)—with u in place of x—to get A = πr2, as desired. ◗
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x

y

(1, 0)

(0, 1)

y

dx

1 − x2y = 

FIGURE 5.8.12 The number π is
four times the shaded area.

x

y

(r, 0)

(0, r)

y

dx

r2 − x2y = 

FIGURE 5.8.13 The shaded area
can be expressed as an integral.

EXAMPLE 6 Approximate the area A of the first-quadrant region shown in

x

y

0

0.5

1

1.5

2

2.5

3

1.5 2 2.50 0.5 1 3

y = x21
3

y = 7x
(x2 + 1)3/2

FIGURE 5.8.14 The region of
Example 6.

Fig. 5.8.14. This is the region bounded by the curves

y = 7x

(x2 + 1)3/2
and y = x2

3
.

Solution In order to find the exact coordinates of the first-quadrant intersection point
in Fig. 5.8.14, we would need to solve the equation

7x

(x2 + 1)3/2
= x2

3
.

We might begin by first canceling x , then cross-multiplying and squaring both sides.
The result, as you can verify, simplifies to the equation

x8 + 3x6 + 3x4 + x2 − 441 = 0.

Now you see why we asked for the approximate area. Although it is impractical to
solve this eighth-degree equation exactly, we can use a graphing calculator or computer
to zoom in on the desired intersection point shown in Fig. 5.8.14. In this way we find
that x ≈ 1.963 is its approximate x-coordinate. (We could also use Newton’s method
or a calculator root-finder.) We can now proceed to approximate the desired area.

A ≈
∫ 1.963

0

(
7x

(x2 + 1)3/2
− x2

3

)
dx

=
∫ 1.963

0

7x

(x2 + 1)3/2
dx −

∫ 1.963

0

x2

3
dx .

We substitute u = x2 + 1, du = 2x dx to evaluate the first integral and get

A ≈
[ −7√

x2 + 1
− x3

9

]1.963

0

≈ −4.018 − (−7) = 2.982. ◗

5.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If f and g are continuous and f (x) � g(x) for x in [a, b], then the area of the
region bounded by the curves y = f (x) and y = g(x) and the vertical lines
x = a and x = b is

A =
∫ b

a
[ f (x) − g(x)] dx .
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2. If g is continuous on [a, b] and g(x) < 0 for x in [a, b], then the area of the
region bounded by the graph of g and the x-axis for a � x � b is

A = −
∫ b

a
g(x) dx .

3. The area of the region bounded by the lines y = x and x = 2 and the curve

y = 1

x2
is

A =
∫ 2

1

(
x − 1

x2

)
dx = 1.

4. The area of the region bounded by the line y = x and the parabola y = 6 − x2 is

A =
∫ 2

−3
(6 − x2 − x) dx = 125

6
.

5. The area of the region R bounded by the line y = 1
2 x and the parabola y2 = 8−x

is

A =
∫ 2

−4

[
(8 − y2) − 2y

]
dy = 36.

6. To use Eq. (2) to find the area of the region R of Question 5, it is necessary to
subdivide R into two regions and evaluate two definite integrals.

7. Suppose that f and g are continuous functions on [c, d] with f (y) � g(y) for
y in [c, d]. Then the area of the region bounded by the curves x = f (y) and
x = g(y) and the horizontal lines y = c and y = d is

A =
∫ d

c
[ f (y) − g(y)] dy.

8. 4
∫ 1

0

√
1 − x2 dx = π .

9. The area of a circle of radius r is A =
∫ r

0

√
r2 − x2 dx .

10. In Section 5.8 it is proved that Eqs. (2) and (3) yield the same value for the area
of a given plane region R.

5.8 CONCEPTS: QUESTIONS AND DISCUSSION
The concept of area is not self-evident, and the area of a plane set must be defined
before it can be calculated. The area of a region bounded by curves can be defined
in terms of areas of inscribed and circumscribed polygons. We say that the region R
has area A—and write a(R) = A—provided that, given any number ε > 0 (however
small), there exist a polygon P contained in R and a polygon Q containing R such that

A − ε < a(P) � a(Q) < A + ε.

The polygonal areas a(P) and a(Q) are defined as sums of areas of nonoverlapping
triangles and/or rectangles. If for some ε > 0 there do not exist such polygons P and
Q, then R does not have area. (There do exist plane sets whose area is not defined!)

1. Suppose that the function f is continuous and positive-valued on the interval
[a, b]. Let R be the plane region bounded above by the graph of y = f (x),
below by the x-axis, and on the sides by the vertical lines x = a and x = b.
Then use the fact that f is integrable and the observation that any Riemann sum
is the area of a polygon to prove that the area A of R exists and is given by

A =
∫ b

a
f (x) dx .

Suggestion: Think about the maximum and minimum values of f (x) on a typical
subinterval of a partition of [a, b].
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2. Suppose that the function f is defined on the interval [0, 1] as follows:

f (x) =
{

0 if x is rational,
1 if x is irrational.

Let R be the plane region consisting of all those points (x, y) such that 0 � x � 1
and 0 � y � f (x). Show that R does not have area. Note that if the polygon P
is contained in R then P is “degenerate,” so that it has area a(P) = 0. Note also
that a(Q) � 1 if the polygon Q contains R.

5.8 PROBLEMS

Find the areas of the regions shown in Problems 1 through 10.

1. (See Fig. 5.8.15.)

x

y

y = 25 − x2

y = 9

FIGURE 5.8.15 Problem 1.

2. (See Fig. 5.8.16.)

x

y

y = 16 − x2

y = −9

FIGURE 5.8.16 Problem 2.

3. (See Fig. 5.8.17.)

x

y = x2 − 3x

y

FIGURE 5.8.17 Problem 3.

4. (See Fig. 5.8.18.)

x

y = x3 − 9x

y

FIGURE 5.8.18 Problem 4.

5. (See Fig. 5.8.19.)

x

y

y = x2

y = 12 − 2x2

FIGURE 5.8.19 Problem 5.

6. (See Fig. 5.8.20.)

x

y

y = 2x2 − 4x

y = 2x − x2

FIGURE 5.8.20 Problem 6.

7. (See Fig. 5.8.21.)

x

y

y = 3x2 − 12

y = 4 − x2

FIGURE 5.8.21 Problem 7.

8. (See Fig. 5.8.22.)

x

y

y = 12 − 3x2

y = 4 − x2

FIGURE 5.8.22 Problem 8.
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9. (See Fig. 5.8.23.)

x

y

y = x2 − 3x

y = 6

FIGURE 5.8.23 Problem 9.

10. (See Fig. 5.8.24.)

x

y

y = x2 − 3x

y = x

FIGURE 5.8.24 Problem 10.

Find the areas of the regions described in Problems 11
through 20.

11. The region R bounded below by the graph of y = x3 and
above by the graph of y = x over the interval [0, 1]

12. The region R between the graph of y = 1/(x + 1)2 and the
x-axis over the interval [1, 3]

13. The region R bounded above by the graph of y = x3 and
below by the graph of y = x4 over the interval [0, 1]

14. The region R bounded above by the graph of y = x2 and
below by the horizontal line y = −1 over the interval
[−1, 2]

15. The region R bounded above by the graph of y = 1/(x + 1)

and below by the x-axis over the interval [0, 2]
16. The region R bounded above by the graph of y = 4x − x2

and below by the x-axis

17. The region R bounded on the left by the graph of x = y2

and on the right by the vertical line x = 4

18. The region R between the graphs of y = x4 −4 and y = 3x2

19. The region R between the graphs of x = 8 − y2 and
x = y2 − 8

20. The region R between the graphs of y = x1/3 and y = x3

In Problems 21 through 40, sketch the region bounded by the
given curves, then find its area.

21. y = x2, y = 2x

22. y = x2, y = 8 − x2

23. x = y2, x = 25

24. x = y2, x = 32 − y2

25. y = x2, y = 2x + 3

26. y = x2, y = 2x + 8

27. x = y2, x = y + 6

28. x = y2, x = 8 − 2y

29. y = cos x , y = sin x , 0 � x � π/4

30. y = cos x , y = sin x , −3π/4 � x � 0

31. x = 4y2, x + 12y + 5 = 0

32. y = x2, y = 3 + 5x − x2

33. x = 3y2, x = 12y − y2 − 5

34. y = x2, y = 4(x − 1)2

35. y = x + 1, y = 1/(x + 1), 0 � x � 1

36. y = x + 1, y = e−x , x = 1

37. y = ex , y = e−x , x = 1

38. y = 1/(x + 1), y = 1/(10x + 1), x = 10

39. y = xe−x2
, y = 0, x = 1

40. y = 8/(x + 2), x + y = 4

In Problems 41 and 42, first use a calculator or computer to
graph the given curves y = f (x) and y = g(x). You should
then be able to find the coordinates of the points of intersection
that will be evident in your figure. Finally, find the area of the re-
gion bounded by the two curves. Problems 43 and 44 are similar,
except that the two curves bound two regions; find the sum of the
areas of these two regions.

41. y = x2 − x , y = 1 − x3

42. y = x3 − x , y = 1 − x4

43. y = x2, y = x3 − 2x

44. y = x3, y = 2x3 + x2 − 2x

45. Evaluate ∫ 3

−3
(4x + 5)

√
9 − x2 dx

by writing this integral as a sum of two integrals and inter-
preting one of them in terms of a known (circular) area.

46. Evaluate ∫ 3

0
x
√

81 − x4 dx

by making a substitution of the form u = x p (you choose p)
and then interpreting the result in terms of a known area.

47. The ellipse x2/a2 + y2/b2 = 1 is shown in Fig. 5.8.25. Use
the method of Example 5 to show that the area of the region
it bounds is A = πab, a pleasing generalization of the area
formula for the circle.

x

y
+x2

a2
y2

b2 = 1

FIGURE 5.8.25 The
ellipse of Problem 47.
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48. Figure 5.8.26 shows a parabolic segment bounded by the
parabola y = x2 and the line y = 1. In the third century
B.C., Archimedes showed that the area of a parabolic seg-
ment is four-thirds the area of the triangle ABC, where AB
is the “base” of the parabolic segment and C is its vertex
(as in Fig. 5.8.26). Verify this for the indicated parabolic
segment.

x

y

C (0, 0)

B (1, 1)A (−1, 1)

y = x2

y = 1

FIGURE 5.8.26 The parabolic
segment of Problem 48.

49. Let A and B be the points of intersection of the parabola
y = x2 and the line y = x + 2, and let C be the point on
the parabola where the tangent line is parallel to the graph of
y = x + 2. Show that the area of the parabolic segment cut
from the parabola by the line (Fig. 5.8.27) is four-thirds the
area of the triangle ABC .

x

y

y = x + 2

A

B

C

y = x2

FIGURE 5.8.27 The parabolic segment
of Problem 49.

50. Find the area of the unbounded region R shaded in
Fig. 5.8.28—regard it as the limit as b → ∞ of the region
bounded by y = 1/x2, y = 0, x = 1, and x = b > 1.

x

y

1 b

y = 1
x2

R

FIGURE 5.8.28 The unbounded region
of Problem 50.

51. Find the total area of the bounded regions that are bounded
by the x-axis and the curve y = 2x3 − 2x2 − 12x .

52. Suppose that the quadratic function

f (x) = px2 + qx + r

is never negative on [a, b]. Show that the area under the
graph of f from a to b is A = 1

3 h[ f (a) + 4 f (m) + f (b)],

where h = (b − a)/2 and m = (a + b)/2. [Suggestion: By
a horizontal translation of this region, you may assume that
a = −h, m = 0, and b = h.]

The curves defined in Problems 53 and 54 include the loops
shown in Figs. 5.8.29 and 5.8.30. Find the area of the region
bounded by each loop.

53. y2 = x(5 − x)2 54. y2 = x2(x + 3)

x

y2 = x(5 − x)2

y

0 1 2 3 4 5 6−1
−8

−6

−4

−2

0

2

4

6

8

FIGURE 5.8.29 The region
of Problem 53.

x
0 1−1−2−3−4

−4

−3

−2

−1

0

1

2

3

4

2 3 4

y

y2 = x2(x + 3)

FIGURE 5.8.30 The region
of Problem 54.

In Problems 55 through 58, use a calculator to approximate
(graphically or otherwise) the points of intersection of the two
given curves. Then integrate to find (approximately) the area of
the region bounded by these curves.

55. y = x2, y = cos x 56. y = x2 − 2x , y = sin x

57. y = x2 − 1, y = 1

1 + x2
58. y = x4 − 16, y = 2x − x2

59. Find a number k > 0 such that the area bounded by the
curves y = x2 and y = k − x2 is 72.

60. Find a number k > 0 such that the line y = k divides the
region between the parabola y = 100 − x2 and the x-axis
into two regions having equal areas.

In Problems 61 through 63 the graphs y = f (x) and y = g(x)

of the given functions f and g bound two regions R1 and R2 as
indicated in Figs. 5.8.31 through 5.8.33. You are to find the sum
A of the areas A1 = a(R1) and A2 = a(R2) of these two re-
gions. If possible, obtain the exact value of A; otherwise, ap-
proximate it very accurately. You may use a calculator or a
computer algebra system, both to find the points of intersection
of the two graphs and to carry out the integrations required to
calculate A.

61. f (x) = x and g(x) = x(x − 4)2. Here you should be able
to find A without a calculator or a computer.

62. f (x) = x2 and g(x) = x(x − 4)2. Here you can solve man-
ually for the points of intersection, but probably will want to
use a calculator or computer for the integrations.

63. f (x) = (x − 2)2 and g(x) = x(x − 4)2. Here you will need
to approximate numerically the coordinates of the points of
intersection as well as the value of A.

In Problems 64 through 67 you may use a calculator or computer
algebra system as in Problems 61 through 63.

64. Approximate numerically the area of the region that lies be-
neath the curve y = 3 − 2x + 5 ln x and above the x-axis.

65. Approximate numerically the area of the region bounded by
the curves y = 10 ln x and y = (x − 5)2.
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0 1 2 3 4 5
x

0

5

10

y

y = f(x) 

y = g(x)

R1

R2

FIGURE 5.8.31 The regions
of Problem 61.

0 2 4 6
x

0

25

50

y y = f(x)

y = g(x)

R1

R2

FIGURE 5.8.32 The regions
of Problem 62.

0 2 4 6
x

0

5

10

15

y y = f(x)

y = g(x)R1

R2

FIGURE 5.8.33 The regions
of Problem 63.

66. Approximate numerically the area of the region bounded by
the curves y = ex and y = 10(1 + 5x − x2).

67. Approximate numerically the sum of the areas of the regions
bounded by the curves y = e−x/2 and y = x4 −6x2 −2x +4.

5.9 NUMERICAL INTEGRATION

The fundamental theorem of calculus,

∫ b

a
f (x) dx =

[
G(x)

]b

a

,

can be used to evaluate an integral only if a convenient formula for the antiderivative
G of f can be found. But there are simple functions with antiderivatives that are
not elementary functions. An elementary function is one that can be expressed in
terms of polynomial, trigonometric, exponential, or logarithmic functions by means
of finite combinations of sums, differences, products, quotients, roots, and function
composition.

The problem is that elementary functions can have nonelementary antideriva-
tives. For example, it is known that the elementary function f (x) = e−x2

has no
elementary antiderivative. Consequently, we cannot use the fundamental theorem of
calculus to evaluate an integral such as

∫ 1

0
e−x2

dx .

Here we discuss the use of Riemann sums to approximate numerically integrals
that cannot conveniently be evaluated exactly, whether or not nonelementary functions
are involved. Given a continuous function f on [a, b] with an integral to be approx-
imated, consider a partition of [a, b] into n subintervals, each with the same length
�x = (b − a)/n. Then the value of any Riemann sum of the form

S =
n∑

i=1

f (x�
i ) �x (1)

may be taken to be an approximation to the value of the integral
∫ b

a f (x) dx .
With x�

i = xi−1 and with x�
i = xi in Eq. (1), we get the left-endpoint approxi-

mation Ln and the right-endpoint approximation Rn to the definite integral
∫ b

a f (x) dx
associated with the partition of [a, b] into n equal-length subintervals. Thus

Ln =
n∑

i=1

f (xi−1) �x (2)
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and

Rn =
n∑

i=1

f (xi ) �x . (3)

We can simplify the notation for Ln and Rn by writing yi for f (xi ) (Fig. 5.9.1).

x

y

a = x0

y0
y1

x1

y2

x2 xi

yi

xn − 1

yn − 1

yn

xn = b

y = f (x)

FIGURE 5.9.1 yi = f (xi ).

DEFINITION Endpoint Approximations
The left-endpoint approximation Ln and the right-endpoint approximation Rn

to
∫ b

a f (x) dx with �x = (b − a)/n are

Ln = (�x)(y0 + y1 + y2 + · · · + yn−1) (2′)

and

Rn = (�x)(y1 + y2 + y3 + · · · + yn). (3′)

In Example 1 of Section 5.3 we calculated the left- and right-endpoint approxi-
mations to the integral

∫ 3

0
x2 dx = 9 (4)

with n = 5 and n = 10. The table in Fig. 5.9.2 shows values of Ln and Rn with larger
values of n.

n Ln Rn
1
2 (Ln + Rn)

5 6.4800 11.8800 9.1800
10 7.6950 10.3950 9.0450
20 8.3363 9.6863 9.0113
40 8.6653 9.3403 9.0028
80 8.8320 9.1695 9.0007

160 8.9158 9.0846 9.0002
320 8.9579 9.0422 9.0000

FIGURE 5.9.2 Left- and right-endpoint approximations to
the integral in Eq. (4).

The final column of this table gives the average of the endpoint sums Ln and Rn .
It is apparent that (for a given value of n) this average is a considerably more accurate
approximation to the integral than is either one-sided approximation by itself.
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The Trapezoidal and Midpoint Approximations
The average Tn = (Ln + Rn)/2 of the left-endpoint and right-endpoint approximations
is called the trapezoidal approximation to

∫ b
a f (x) dx associated with the partition of

[a, b] into n equal-length subintervals. Written in full,

Tn = 1

2
(Ln + Rn)

= �x

2

n∑
i=1

[ f (xi−1) + f (xi )]

= �x

2
{[ f (x0) + f (x1)] + [ f (x1) + f (x2)] + [ f (x2) + f (x3)] + · · ·

+ [ f (xn−2) + f (xn−1)] + [ f (xn−1) + f (xn)]};
that is,

Tn = �x

2

[
f (x0) + 2 f (x1) + 2 f (x2) + · · · + 2 f (xn−2) + 2 f (xn−1) + f (xn)

]
. (5)

Note the 1-2-2- · · · -2-2-1 pattern of the coefficients.

DEFINITION The Trapezoidal Approximation
The trapezoidal approximation to∫ b

a
f (x) dx with �x = b − a

n

is

Tn = �x

2
(y0 + 2y1 + 2y2 + · · · + 2yn−2 + 2yn−1 + yn) . (6)

Figure 5.9.3 shows where the trapezoidal approximation gets its name. The par-
tition points x0, x1, x2, . . . , xn are used to build trapezoids from the x-axis to the graph
of the function f . The trapezoid over the i th subinterval [xi−1, xi ] has height �x , and
its parallel bases have widths f (xi−1) and f (xi ). So its area is

�x

2

[
f (xi−1) + f (xi )

] = �x

2
(yi−1 + yi ).

Comparing this with Eq. (6) shows that Tn is merely the sum of the areas of the n

x

y

f (xi − 1)
f (xi)

Δx
xixi − 1

FIGURE 5.9.3 The area of the
trapezoid is 1

2 [f (xi−1) + f (xi )] �x .
trapezoids shown in Fig. 5.9.4.

a bΔx
xixi − 1

f (xi − 1)

f (xi)

FIGURE 5.9.4 Geometry of the trapezoidal approximation.

EXAMPLE 1 Calculate the trapezoidal approximation to the integral in Eq. (4) with
n = 6 and �x = 0.5.
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Solution The trapezoids in Fig. 5.9.5 indicate why T6 should be a much better approx-
imation than either of the endpoint approximations L6 or R6. The table in Fig. 5.9.6
shows the values of f (x) = x2 that are needed to compute T6. The 1-2-2- · · · -2-2-1
coefficients appear in the final column. Using Eq. (6), we get

T6 = 0.5

2
[1 · (0) + 2 · (0.25) + 2 · (1)

+ 2 · (2.25) + 2 · (4) + 2 · (6.25) + 1 · (9)]

= 9.125

(as compared with the actual value 9). ◗

x

y

2

4

6

8

1 2 3

FIGURE 5.9.5 The area under y = x2 (Example 1).

i xi f (xi ) = x2
i Coefficients

0 0 0 1
1 0.5 0.25 2
2 1 1 2
3 1.5 2.25 2
4 2 4 2
5 2.5 6.25 2
6 3 9 1

FIGURE 5.9.6 Data for Example 1.

Another useful approximation to
∫ b

a f (x) dx is the midpoint approximation Mn .
It is the Riemann sum obtained by choosing the point x�

i in [xi−1, xi ] to be its midpoint
mi = (xi−1 + xi )/2. Thus

Mn =
n∑

i=1

f (mi ) �x = (�x) [ f (m1) + f (m2) + · · · + f (mn)] . (7)

Because m1 is the midpoint of [x0, x1], it is sometimes convenient to write y1/2 for
f (m1), y3/2 for f (m2), and so on (Fig. 5.9.7).

x

y

a = x0 x1 xi xn − 1 xn = b

y = f (x)

y1/2

m1 x2

y3/2

m2 xi − 1 mi mn

yn − (1/2)

FIGURE 5.9.7 The ordinates used in the midpoint approximation.
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DEFINITION The Midpoint Approximation
The midpoint approximation to∫ b

a
f (x) dx with �x = b − a

n

is

Mn = (�x)
(
y1/2 + y3/2 + y5/2 + · · · + yn−(1/2)

)
. (7′)

EXAMPLE 2 Figure 5.9.8 illustrates the midpoint approximation to the integral∫ 3

0
x2 dx = 9

of Example 1, with n = 6 and �x = 0.5, and the table in Fig. 5.9.9 shows the values
of f (x) = x2 needed to compute M6. Using Eq. (7), we obtain

M6 = (0.5) [1 · (0.0625) + 1 · (0.5625) + 1 · (1.5625)

+ 1 · (3.0625) + 1 · (5.0625) + 1 · (7.5625)]

= 8.9375. ◗

x

y

2

4

6

8

1 2 3

y = x2

0.5 1.5 2.5

FIGURE 5.9.8 Midpoint rectangles approximating the area
under y = x2 (Example 2).

i mi f (mi ) Coefficients

1 0.25 0.0625 1
2 0.75 0.5625 1
3 1.25 1.5625 1
4 1.75 3.0625 1
5 2.25 5.0625 1
6 2.75 7.5625 1

FIGURE 5.9.9 Data for Example 2.

EXAMPLE 3 Figure 5.9.10 shows the graph of the function

−0.5

0

0.5

1

1.5

−10 0 10
x

y

y = (sin x)/x

FIGURE 5.9.10 The graph of

f (x) = sin x

x
(Example 3).

f (x) = sin x

x
. (8)

Recall from Section 2.3 that

lim
x→0

sin x

x
= 1.

Hence we define f (0) = 1; then there will be no difficulty at x = 0, even though both
the numerator and denominator in Eq. (8) are zero. It happens that the function f (x)

has no elementary antiderivative, so the fundamental theorem of calculus cannot be
used to calculate the value of the integral

I =
∫ 1

0

sin x

x
dx . (9)

But such integrals are important in the design of precise photographic lenses (among
other applications), so we are well motivated to resort to approximating its value nu-
merically.
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With n = 10 and �x = 0.1, the trapezoidal approximation is

T10 = 0.1

2

[
1 · 1 + 2 · sin 0.1

0.1
+ 2 · sin 0.2

0.2

+ 2 · sin 0.3

0.3
+ · · · + 2 · sin 0.9

0.9
+ 1 · sin 1.0

1.0

]
;

T10 ≈ 0.94583.

The corresponding midpoint approximation is

M10 = (0.1)

[
1 · sin 0.05

0.05
+ 1 · sin 0.15

0.15
+ 1 · sin 0.25

0.25
+ · · ·

+ 1 · sin 0.85

0.85
+ 1 · sin 0.95

0.95

]
;

M10 ≈ 0.94621.

The actual value of the integral in Eq. (9) is I ≈ 0.94608 (accurate to five decimal
places). Thus both T10 and M10 give the correct value 0.946 when rounded to three
places. But

• T10 underestimates I by about 0.00025, whereas
• M10 overestimates I by about 0.00013.

Thus in this example the midpoint approximation is somewhat more accurate than the
trapezoidal approximation. ◗

Simpson's Approximation
The midpoint approximation Mn in Eq. (7) is sometimes called the tangent-line ap-
proximation, because the area of the rectangle with base [xi−1, xi ] and height f (mi )

is also the area of another approximating figure. As shown in Fig. 5.9.11, we draw a
segment tangent to the graph of f at the point (mi , f (mi )) and use that segment for
one side of a trapezoid (somewhat like the method of trapezoidal approximation). The
trapezoid and the rectangle mentioned above have the same area, and so the value of
Mn is the sum of the areas of trapezoids like the one in Fig. 5.9.11.

The area of the trapezoid associated with the midpoint approximation is generally
closer to the true value of ∫ xi

xi−1

f (x) dx

than is the area of the trapezoid associated with the trapezoidal approximation, as was
the case in Example 3. Figure 5.9.12 shows this too, in that the midpoint error EM

xxixi − 1 mi

y = f (x)

FIGURE 5.9.11 The midpoint
(or tangent) approximation.

xxixi − 1

y = f (x)

ET

EM

FIGURE 5.9.12 Comparison of the
midpoint approximation error EM
with the trapezoidal approximation
error ET .

398

www.konkur.in



Numerical Integration SECTION 5.9 399

(above the curve in this figure) is generally smaller than the trapezoidal error ET (be-
low the curve in this figure). Figure 5.9.12 also indicates that if y = f (x) is con-
cave downward, then Mn will be an overestimate and Tn will be an underestimate of∫ b

a f (x) dx . If the graph is concave upward, then the situation is reversed.
Such observations motivate the consideration of a weighted average of Mn and

Tn , with Mn weighted more heavily than Tn , to improve our numerical estimates of the
definite integral. The particular weighted average

S2n = 1
3 (2Mn + Tn) = 2

3 Mn + 1
3 Tn (10)

is called Simpson’s approximation to
∫ b

a f (x) dx . The reason for the subscript 2n is
that we associate S2n with a partition of [a, b] into an even number, 2n, of equal-length
subintervals with the endpoints

a = x0 < x1 < x2 < · · · < x2n−2 < x2n−1 < x2n = b.

The midpoint and trapezoidal approximations associated with the n subintervals

[x0, x2], [x2, x4], [x4, x6], . . . , [x2n−4, x2n−2], [x2n−2, x2n],
all with the same length 2 �x , can then be written in the respective forms

Mn = (2 �x)(y1 + y3 + y5 + · · · + y2n−1)

and

Tn = 2 �x

2
(y0 + 2y2 + 2y4 + · · · + 2y2n−2 + y2n).

We substitute these formulas for Mn and Tn into Eq. (10) and find—after a bit of
algebra—that

S2n = �x

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2y2n−2 + 4y2n−1 + y2n). (11)

To be consistent with our other approximation formulas, we next rewrite Eq. (11) with
n (rather than 2n) to denote the total number of subintervals used.

DEFINITION Simpson's Approximation
Simpson’s approximation to

∫ b
a f (x) dx with �x = (b − a)/n, associated with a

partition of [a, b] into an even number n of equal-length subintervals, is the sum Sn

defined as

Sn = �x

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2yn−2 + 4yn−1 + yn). (12)

REMARK Note the 1-4-2-4-2- · · · -2-4-2-4-1 pattern of coefficients in Simpson’s ap-
proximation. This pattern is symmetric (ending in -2-4-1), as shown, if and only if n is
even.

EXAMPLE 4 Simpson’s approximation (with n = 6 and �x = 0.5) to the integral∫ 3

0
x2 dx = 9

of Examples 1 and 2 is

S6 = 0.5

3
[1 · (0)2 + 4 · (0.5)2 + 2 · (1)2 + 4 · (1.5)2

+ 2 · (2)2 + 4 · (2.5)2 + 1 · (3)2];
S6 = 9 (exactly).
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Problem 29 explains why Simpson’s approximation to this particular integral is exact
rather than merely a good approximation. ◗

EXAMPLE 5 Simpson’s approximation (with n = 10 and �x = 0.1) to the integral∫ 1

0

sin x

x
dx

of Example 3 is

S10 = 0.1

3

[
1 · 1 + 4 · sin 0.1

0.1
+ 2 · sin 0.2

0.2
+ 4 · sin 0.3

0.3
+ · · ·

+ 2 · sin 0.8

0.8
+ 4 · sin 0.9

0.9
+ 1 · sin 1.0

1.0

]
;

S10 ≈ 0.94608,

which is accurate to all five decimal places shown. ◗

Examples 4 and 5 illustrate the greater accuracy of Simpson’s approximation in
comparison with the midpoint and trapezoidal approximations.

The numerical methods of this section are especially useful for approximating
integrals of functions that are available only in graphical or in tabular form. This is
often the case with functions derived from empirical data or from experimental mea-
surements.

EXAMPLE 6 Suppose that the graph in Fig. 5.9.13 shows the velocity v(t) recorded
by instruments on board a submarine traveling under the polar icecap directly toward
the North Pole. Use the trapezoidal approximation and Simpson approximation to
estimate the distance s = ∫ b

a v(t) dt traveled by the submarine during the 10-h period
from t = 0 to t = 10.

0 1 2 3 4 5 6 7 8 9 10

Time t (h)

10

20

30

V
el

oc
ity

 
 (

m
i/

h)

FIGURE 5.9.13 Velocity graph for the
submarine of Example 6.

Solution We read the following data from the graph:

t 0 1 2 3 4 5 6 7 8 9 10 h

v 12 14 17 21 22 21 15 11 11 14 17 mi/h

Using the trapezoidal approximation with n = 10 and �x = 1, we obtain

s =
∫ 10

0
v(t) dt

≈ 1
2 [12 + 2(̇14 + 17 + 21 + 22 + 21 + 15 + 11 + 11 + 14) + 17]

= 160.5 (mi).
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Using Simpson’s approximation with 2n = 10 and �x = 1, we obtain

s =
∫ 10

0
v(t) dt

≈ 1
3 [12 + 4 · 14 + 2 · 17 + 4 · 21 + 2 · 22 + 4 · 21

+ 2 · 15 + 4 · 11 + 2 · 11 + 4 · 14 + 17]
= 161 (mi)

as an estimate of the distance traveled by the submarine during this 10-h period. ◗

Parabolic Approximations
Although we have defined Simpson’s approximation S2n as a weighted average of the
midpoint and trapezoidal approximations, Simpson’s approximation has an important
interpretation in terms of parabolic approximations to the curve y = f (x). Begin-
ning with the partition of [a, b] into 2n equal-length subintervals each of length �x ,
we define the parabolic function

pi (x) = A i + Bi x + Ci x
2

on [x2i−2, x2i ] as follows: We choose the coefficients Ai , Bi , and Ci so that pi (x)

agrees with f (x) at the three points x2i−2, x2i−1, and x2i (Fig. 5.9.14). This can be
done by solving the three equations

A i + Bi x2i−2 + Ci (x2i−2)
2 = f (x2i−2),

A i + Bi x2i−1 + Ci (x2i−1)
2 = f (x2i−1),

A i + Bi x2i + Ci (x2i )
2 = f (x2i )

for the three unknowns A i , Bi , and Ci . A routine (but tedious) algebraic
computation—see Problem 52 of Section 5.8—shows that∫ x2i

x2i−2

pi (x) dx = �x

3
(y2i−2 + 4y2i−1 + y2i ).

We now approximate
∫ b

a f (x) dx by replacing f (x) with pi (x) on the interval
[x2i−2, x2i ] for i = 1, 2, 3, . . . , n. This gives∫ b

a
f (x) dx =

n∑
i=1

∫ x2i

x2i−2

f (x) dx ≈
n∑

i=1

∫ x2i

x2i−2

pi (x) dx

=
n∑

i=1

�x

3
(y2i−2 + 4y2i−1 + y2i )

= �x

3
(y0 + 4y1 + 2y2 + 4y3 + · · · + 4y2n−3 + 2y2n−2 + 4y2n−1 + y2n).

x

y

x2i − 2 x2i − 1 x2i

y = f (x)

y = pi(x)

FIGURE 5.9.14 The parabolic
approximation y = pi (x) to y = f (x) on
[x2i−2, x2i ].
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Thus the parabolic approximation described here results in Simpson’s approximation
S2n to

∫ b
a f (x) dx .

Error Estimates
The trapezoidal approximation, the midpoint approximation, and Simpson’s approx-
imation are widely used for numerical integration, and there are error estimates that
can be used to predict the maximum possible error in a particular approximation. The
trapezoidal error ETn , the midpoint error E Mn , and Simpson’s error E Sn are defined
by the equations

∫ b

a
f (x) dx = Tn + ETn, (13)

∫ b

a
f (x) dx = Mn + E Mn, (14)

and

∫ b

a
f (x) dx = Sn + E Sn (n even). (15)

Note that each of these formulas is of the form∫ b

a
f (x) dx = {approximation} + {error}.

The absolute value |ETn| is the difference between the value of the integral and
the trapezoidal approximation with n subintervals (and similarly for |E Mn| and |E Sn|).
Theorems 1 and 2 are proved in numerical analysis textbooks.

THEOREM 1 Trapezoidal and Midpoint Error Estimates
Suppose that the second derivative f ′′ is continuous on [a, b] and that | f ′′(x)| � K2

for a � x � b. Then

|ETn| �
K2(b − a)3

12n2
(16)

and

|E Mn| �
K2(b − a)3

24n2
. (17)

REMARK Comparing (16) and (17), we see that the maximal predicted midpoint error
is half the predicted trapezoidal error. This is the reason for weighting Mn twice as
heavily as Tn when we calculate Simpson’s approximation using the formula S2n =
2
3 Mn + 1

3 Tn in (10).

THEOREM 2 Simpson's Error Estimate
Suppose that the fourth derivative f (4) is continuous on [a, b] and that | f (4)(x)| �
K4 for a � x � b. If n is even, then

|E Sn| �
K4(b − a)5

180n4
. (18)

REMARK The factor n4 in (18)—compared with the n2 in (16) and (17)—explains
the greater accuracy typical of Simpson’s approximation. For instance, if n = 10, then
n2 = 100 but n4 = 10000, so the denominator in the error formula for Simpson’s
approximation is much larger.
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EXAMPLE 7 Because Dx [ln x] = 1/x , it follows that the natural logarithm of the

1 2 3 x

y

∫1
2

dx = ln 21
x

y = 1
x

FIGURE 5.9.15 The number ln 2 as
an area.

number 2 (given approximately by the LN key on your calculator) is the value of the
integral

∫ 2

1

1

x
dx =

[
ln x

]2

1

= ln 2 − ln 1 = ln 2

illustrated in Fig. 5.9.15. Estimate the errors in the trapezoidal, midpoint, and
Simpson’s approximation to this integral by using n = 10 subintervals. (The actual
value of ln 2 is approximately 0.693147.)

Solution With f (x) = 1/x we calculate

f ′(x) = − 1

x2
, f ′′(x) = 2

x3

f ′′′(x) = − 6

x4
, f (4)(x) = 24

x5
.

The maximum values of all these derivatives for 1 � x � 2 occur at x = 1, so we
may take K2 = 2 and K4 = 24 in Eqs. (16), (17), and (18). From Eqs. (16) and (17)
we see that

|ET10| �
2 · 13

12 · 102
≈ 0.0016667 and |E M10| �

2 · 13

24 · 102
≈ 0.000833. (19)

Hence we would expect both the trapezoidal approximation T10 and the midpoint ap-
proximation M10 to give ln 2 accurate to at least two decimal places. From Eq. (18) we
see that

|E S10| �
24 · 15

180 · 104
≈ 0.000013, (20)

so we would expect Simpson’s approximation S10 to be accurate to at least four decimal
places. When we calculate these approximations, we find that

T10 = 0.1

2

(
1

1
+ 2

1.1
+ 2

1.2
+ 2

1.3
+ · · · + 2

1.9
+ 1

2

)
≈ 0.693771,

M10 = (0.1)

(
1

1.05
+ 1

1.15
+ 1

1.25
+ · · · + 1

1.85
+ 1

1.95

)
≈ 0.692835,

and

S10 = 0.1

3

(
1

1
+ 4

1.1
+ 2

1.2
+ 4

1.3
+ · · · + 4

1.9
+ 1

2

)
≈ 0.693150.

It follows that the values of the errors in these approximations (in comparison with the
actual value ln 2 ≈ 0.693147) are

ET10 ≈ −0.000624, E M10 ≈ 0.000312, and E S10 ≈ 0.000003.

Comparing these actual errors with the maximal predicted errors in (19) and (20), we
see that our approximations are somewhat more accurate than predicted—M10 actu-
ally is accurate to three decimal places and S10 is accurate to five. It is fairly typical
of numerical integration that the trapezoidal, midpoint, and Simpson approximations
are somewhat more accurate than the “worst-case” estimates provided by Theorems 1
and 2. ◗
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5.9 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

NOTE Throughout this list of ten questions, f denotes a function integrable on the
interval [a, b], n is a positive integer, P is a partition of [a, b] into n subintervals
all of the same length �x = (b − a)/n, and the endpoints of the subintervals are
x0, x1, x2, . . . , and xn . The midpoint of the subinterval [xi−1, xi ] is

mi = xi−1 + xi

2
= xi−(1/2),

yq = f (xq) for q = 0, 1
2 , 1, 3

2 , 2, . . . , n and

I =
∫ b

a
f (x) dx .

1. The fundamental theorem of calculus cannot be used to evaluate∫ 1

0

sin x

x
dx .

2. The left-endpoint approximation to I is Ln =
n∑

i=1

f (xi )�xi .

3. The trapezoidal approximation to I is

Tn = �x

2
(y0 + 2y1 + 2y2 + 2y3 + · · · + 2yn−1 + yn).

4. If f ′′(x) is continuous on [a, b] and | f ′′(x)| � K2 for all x in [a, b], then the
error in the trapezoidal approximation to I cannot exceed

K2(b − a)3

12n2
.

5. The midpoint approximation to I is

Mn = (�x) · (y1/2 + y3/2 + y5/2 + · · · + yn−(1/2)).

6. Simpson’s approximation to I is S2n = 2
3 Mn + 1

3 Tn .
7. If n is even, then Simpson’s approximation to I is

Sn = �x

3
(y0 + 4y1 + 2y2 + 4y3 + · · · + 2yn−2 + 4yn−1 + yn).

8. Simpson’s approximation to
∫ 3

0
x2 dx with n = 6 is

S6 = 1

6

[
1 · (0)2 + 4 · (0.5)2 + 2 · (1)2 + 4 · (1.5)2

+ 2 · (2)2 + 4 · (2.5)2 + 1 · (3)2
] = 9.

9. If f (4) is continuous on [a, b] and | f (4)(x)| � K4, then the error in Simpson’s
approximation to I cannot exceed

K4(b − a)5

180n4
.

10. In Section 5.9 it is asserted that G(x) =
∫ x

0

√
1 + t7 dt is nonelementary.
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5.9 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that f is an increasing function on [a, b]. Which is larger—the left-hand

sum or the right-hand sum, each with n subintervals? What if f is a decreasing
function? Draw sketches illustrating both cases.

2. Suppose that the graph of y = f (x) is concave upward on [a, b]. Which is
larger—the midpoint sum or the trapezoidal sum, each with n subintervals? What
if the graph is concave downward? Draw sketches illustrating both cases.

3. Explain why you cannot set up a Simpson’s sum beginning with a partition of
[a, b] into an odd number of subintervals. If you try to do so, what goes wrong?

5.9 PROBLEMS

In Problems 1 through 6, calculate the trapezoidal approxima-
tion Tn to the given integral, and compare Tn with the exact value
of the integral. Use the indicated number n of subintervals, and
round answers to two decimal places.

1.
∫ 4

0
x dx n = 4 2.

∫ 2

1
x2 dx , n = 5

3.
∫ 1

0

√
x dx , n = 5 4.

∫ 3

1

1

x2
dx , n = 4

5.
∫ π/2

0
cos x dx , n = 3 6.

∫ π

0
sin x dx , n = 4

7. through 12. Calculate the midpoint approximations to the
integrals in Problems 1 through 6, using the indicated num-
ber of subintervals. In each case compare Mn with the exact
value of the integral.

In Problems 13 through 20, calculate both the trapezoidal ap-
proximation Tn and Simpson’s approximation Sn to the given in-
tegral. Use the indicated number of subintervals and round an-
swers to four decimal places. In Problems 13 through 16, also
compare these approximations with the exact value of the inte-
gral.

13.
∫ 3

1
x2 dx , n = 4 14.

∫ 5

1

1

x
dx , n = 4

15.
∫ 2

0
e−x dx , n = 4 16.

∫ 1

0

√
1 + x dx , n = 4

17.
∫ 2

0

√
1 + x3 dx , n = 6

18.
∫ 3

0

1

1 + x4
dx , n = 6

19.
∫ 5

1

3
√

1 + ln x dx , n = 8

20.
∫ 1

0

ex − 1

x
dx , n = 10

[Note: Make the integrand in Problem 20 continuous by assum-
ing that its value at x = 0 is its limit there,

lim
x→0

ex − 1

x
= 1.]

In Problems 21 and 22, calculate (a) the trapezoidal approxima-
tion and (b) Simpson’s approximation to∫ b

a
f (x) dx,

where f is the given tabulated function.

21.
x a = 1.00 1.25 1.50 1.75

f (x) 3.43 2.17 0.38 1.87

x 2.00 2.25 2.50 = b

f (x) 2.65 2.31 1.97

22.
x a = 0 1 2 3 4 5 6

f (x) 23 8 −4 12 35 47 53

x 7 8 9 10 = b

f (x) 50 39 29 5

23. Figure 5.9.16 shows the measured rate of water flow (in liters
per minute) into a tank during a 10-min period. Using 10
subintervals in each case, estimate the total amount of wa-
ter that flows into the tank during this period by using (a)
the trapezoidal approximation and (b) Simpson’s approxi-
mation.
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FIGURE 5.9.16 Water-flow graph for
Problem 23.
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24. Figure 5.9.17 shows the daily mean temperature recorded
during December at Big Frog, California. Using 10 subin-
tervals in each case, estimate the average temperature during
that month by using (a) the trapezoidal approximation and
(b) Simpson’s approximation.

0

Days
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10
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20

30

FIGURE 5.9.17 Temperature graph for Problem 24.

25. Figure 5.9.18 shows a tract of land with measurements in
feet. A surveyor has measured its width w at 50-ft intervals
(the values of x shown in the figure), with the following re-
sults.

x 0 50 100 150 200 250 300

w 0 165 192 146 63 42 84

x 350 400 450 500 550 600

w 155 224 270 267 215 0

x = 0 100 200 300 400 500 x = 600

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

FIGURE 5.9.18 The tract of land of Problem 25.

Use (a) the trapezoidal approximation and (b) Simpson’s ap-
proximation to estimate the acreage of this tract. [Note: An
acre is 4840 yd2.]

26. Because the number e is the base for natural logarithms, it
follows that ∫ e

1

1

x
dx = 1.

Approximate the integrals

∫ 2.7

1

1

x
dx and

∫ 2.8

1

1

x
dx

with sufficient accuracy to show that 2.7 < e < 2.8.

Problems 27 and 28 deal with the integral

ln 2 =
∫ 2

1

1

x
dx

of Example 7.

27. Use the trapezoidal error estimate to determine how large n
must be in order to guarantee that Tn differs from ln 2 by at
most 0.0005.

28. Use the Simpson’s error estimate to determine how large n
must be in order to guarantee that Sn differs from ln 2 by at
most 0.000005.

29. Deduce the following from the error estimate for Simpson’s
approximation: If p(x) is a polynomial of degree at most 3,
then Simpson’s approximation with n = 2 subintervals gives
the exact value of the integral

∫ b

a
p(x) dx .

30. Use the result of Problem 29 to calculate (without explicit
integration) the area of the region shown in Fig. 5.9.19.
[Answer: 1331/216.]

x

y

y = 6x2 − 7x

y = 4 − 2x

, 51
2

−

4
3
, 4

3( )

( )

FIGURE 5.9.19 The region of
Problem 30.

31. Whereas the carefully weighted average in (10) of the mid-
point and trapezoidal approximations Mn and Tn gives Simp-
son’s approximation S2n , show that their equally weighted
average gives the trapezoidal approximation with twice as
many intervals; that is, 1

2 (Mn + Tn) = T2n .

32. Figure 5.9.20 shows a pendulum of length L . If this pendu-
lum is released from rest at an angle α from the vertical, then
it swings back and forth with its period T (for one complete
oscillation) given by

T = 4

√
L

g

∫ π/2

0

1√
1 − k2 sin2 x

dx,

where k = sin(α/2). Taking L = 1 m and g = 9.8 m/s2, use
Simpson’s approximation with n = 10 subintervals to calcu-
late the pendulum’s period of oscillation if its initial angle α

is (a) 10◦; (b) 50◦.
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L

m

θ

FIGURE 5.9.20 The pendulum of
Problem 32.

33. Note in Example 7 that the midpoint and trapezoidal approx-
imations gave under- and overestimates, respectively, of the
value

∫ 2
1 (1/x) dx = ln 2. Show that this is a general phe-

nomenon. That is, if f (x) and f ′′(x) are both positive for
a � x � b, then

Mn <

∫ b

a
f (x) dx < Tn,

whereas if f (x) is positive but f ′′(x) is negative for a � x �
b then the inequalities are reversed.

34. Approximate the number e as follows. First apply Simpson’s
approximation with n = 2 subintervals to the integral

∫ 1

0
ex dx = e − 1

to obtain the approximation 5e − 4
√

e − 7 ≈ 0. Then solve
for the resulting approximate value of e.

35. According to the prime number theorem, which was con-
jectured by the great German mathematician Carl Friedrich
Gauss in 1792 (when he was 15 years old) but not
proved until 1896 (independently, by Jacques Hadamard and
C. J. de la Vallée Poussin), the number of prime numbers be-
tween the positive integers a and b > a is given to a close
approximation by the integral

∫ b

a

1

ln x
dx .

The midpoint and trapezoidal approximations with n = 1
subinterval provide an underestimate and an overestimate of
the value of this integral. (Why?) Calculate these estimates
with a = 90000 and b = 100000. The actual number of
prime numbers in this range is 879.

5.9 INVESTIGATION: Trapezoidal and Simpson Approximations
In the Project Manual material for the Section 5.4 Investigation, we illustrated calcula-
tor and computer algebra system commands that can be used to calculate the Riemann
sums

Ln — the left-endpoint approximation,
Rn — the right-endpoint approximation, and
Mn — the midpoint approximation,

based on a division of [a, b] into n equal-length subintervals, to approximate the inte-
gral ∫ b

a
f (x) dx . (1)

The Riemann sums Ln , Rn , and Mn suffice, in turn, to calculate the trapezoidal
and Simpson sums of this section. In particular, the trapezoidal approximation is
given—using Eq. (5) of this section—by

Tn = 1
2 (Ln + Rn). (2)

Once these sums are known, Simpson’s approximation based on a subdivision of [a, b ]
into 2n equal-length subintervals is given—using Eq. (10) of this section—by

Sn = 1
3

(
2Mn/2 + Tn/2

) = 1
6

(
Ln/2 + 4Mn/2 + Rn/2

)
. (3)

Here, then, is a practical scheme for approximating accurately the integral
in (1). Begin with a selected value of n, such as n = 5, and calculate the Riemann
sums L5, R5, and M5. Then use Eq. (3) to calculate the Simpson approximation S10.
Next, double the value of n and calculate similarly L10, R10, M10, and finally S20. A
typical strategy is to continue in this manner, always doubling the current value of n
for the next cycle of computations, until two successively calculated Simpson approx-
imations agree to the desired number of decimal places of accuracy.
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Investigation A According to Example 7, the natural logarithm (corresponding to the
LN or, in some cases, the LOG key on your calculator) of the number 2 is the value
of the integral

ln 2 =
∫ 2

1

1

x
dx .

The value of ln 2 correct to 15 decimal places is

ln 2 ≈ 0.69314 71805 59945.

See how many correct decimal places you can obtain in a reasonable period of time by
using a Simpson’s approximation procedure.

Investigation B In Section 6.8 we will study the inverse tangent function y = arctan x
(y is the angle between −π/2 and π/2 such that tan y = x). There we will discover
that the derivative of y = arctan x is

dy

dx
= 1

1 + x2
.

This implies that∫ 1

0

1

1 + x2
dx =

[
arctan x

]1

0

= arctan 1 − arctan 0 = π

4
.

It follows that the number π is the value of the integral

π =
∫ 1

0

4

1 + x2
dx .

The value of π to 15 decimal places is

π ≈ 3.14159 26535 89793.

See how many correct decimal places you can obtain in a reasonable period of time by
using a Simpson’s approximation procedure.

Investigation C Taking f (x) = 4/(1 + x2) as the integrand of the integral∫ 1

0

4

1 + x2
dx = π

of Investigation B, it would be somewhat lengthy to first calculate and then maximize
by hand the derivatives f ′′(x) and f (4)(x) as needed to apply the error estimates in
Theorems 1 and 2 of this section. Instead, a computer algebra system readily yields

f ′′(x) = 8(3x2 − 1)

(1 + x2)3
and f (4)(x) = 96(5x4 − 10x2 + 1)

(1 + x2)5
.

Figures 5.9.21 and 5.9.22 show the graphs of these two derivatives on the interval
[0, 1]. From these graphs it is clear that each of these derivatives attains its maximum
absolute value at the left endpoint x = 0. Thus you can take

K2 = 8 and K4 = 96

in Theorems 1 and 2. Use this information to determine how large the integer n must
be so that:

1. |E Mn| < 5 × 10−6, so the midpoint approximation Mn will give the number π

accurate to five decimal places;
2. |E Sn| < 5 × 10−11, so the Simpson approximation Sn will give the number π

accurate to ten decimal places;
3. The Simpson approximation Sn will give the number π accurate to 15 decimal

places.
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CHAPTER 5: REVIEW

Understanding: Concepts, Definitions, Results
Refer to the listed pages to review the concepts, definitions, and results in this chapter that you need to understand.

Section Pages
5.2 Antidifferentiation and antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Indefinite integrals and the most general antiderivative of a function . . . . . . . . . . . . . . . . . 316
Integral formulas corresponding to familiar derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317–318
Differential equations and initial value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Rectilinear motion; velocity and acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Constant acceleration problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322–323
Vertical motion with constant acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

5.3 The concept of area and area under graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329–330
Summation notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Area sums and areas as limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335–336

5.4 Riemann sums approximating areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341–342
The definition of the definite integral; the integral as a limit . . . . . . . . . . . . . . . . . . . . . . . . . 344–345
Existence of the integral of a continuous function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
The integral as the limit of a sequence of Riemann sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Regular partitions and
∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (xi )�x . . . . . . . . . . . . . . . . . . . . . . . . . . . 346–347

5.5 Evaluation of integrals:
∫ b

a
f (x) dx = G(b) − G(a) where G = D−1 f . . . . . . . . . . . . . 354

General properties of integrals (including linearity of integration) . . . . . . . . . . . . . . . . . . . 357–359
5.6 The average value of a function on a closed interval (definition) . . . . . . . . . . . . . . . . . . . . . 364

The average value theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
The fundamental theorem of calculus (both parts!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

5.7 The “generalized power rule in reverse”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373
The method of integration by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Trigonometric and exponential/logarithmic substitution formulas . . . . . . . . . . . . . . . . . . . . 375–376
Substitution in definite integrals; changing the limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

5.8 The area between y = f (x) and y = g(x) by integration with respect to x . . . . . . . . . . . 383
The area between x = f (y) and x = g(y) by integration with respect to y . . . . . . . . . . . 386

5.9 The right-endpoint and left-endpoint approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
The trapezoidal approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
The midpoint approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Simpson’s approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Error estimates for numerical approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

409

www.konkur.in



410 CHAPTER 5 The Integral

CHAPTER 5: REVIEW (Continued)

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
5.2 Evaluation of indefinite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 21, 25, 27

Solution of initial value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 37, 45, 51
Solution of rectilinear motion problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 61, 65, 75

5.3 Use of summation notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 9, 15
Use of formulas for sums of powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21, 29
Finding over- and underestimates for areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 39
Taking a limit of sums to find an area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 47

5.4 Expressing Riemann-sum limits as definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3
Setting up Riemann sums for areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 27, 37
Evaluating integrals as limits of Riemann sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43, 45

5.5 Using the evaluation theorem to evaluate integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 9, 21, 23, 25, 31
Recognizing a Riemann-sum limit as a definite integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 41
Evaluating an integral by recognizing it as a simple area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 47

5.6 Finding average values of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9, 11
Using the fundamental theorem of calculus to evaluate integrals . . . . . . . . . . . . . . . . . . . . . 15, 17, 19, 23, 27
Applied problems involving definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33, 35, 37
Applications of Part 1 of the fundamental theorem of calculus . . . . . . . . . . . . . . . . . . . . . . . 45, 51, 57

5.7 Evaluation of integrals by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 7, 13, . . . , 61
5.8 Finding the area of a region bounded by two curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 9, . . . , 37
5.9 Calculating numerical approximations to integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 5, . . . , 19

MISCELLANEOUS PROBLEMS

Find the indefinite integrals in Problems 1 through 24. In Prob-
lems 13 through 24, use the indicated substitution.

1.
∫

x5 − 2x + 5

x3
dx

2.
∫ √

x
(
1 + √

x
)3

dx

3.
∫

(1 − 3x)9 dx

4.
∫

7

(2x + 3)3
dx

5.
∫

3
√

9 + 4x dx

6.
∫

24√
6x + 7

dx

7.
∫

x3(1 + x4)5 dx

8.
∫

3x2
√

4 + x3 dx

9.
∫

x 3
√

1 − x2 dx

10.
∫

3x√
1 + 3x2

dx

11.
∫

(7 cos 5x − 5 sin 7x) dx

12.
∫

5 sin3 4x cos 4x dx

13.
∫

x3
√

1 + x4 dx ; u = x4

14.
∫

sin2 x cos x dx ; u = sin x

15.
∫

1
√

x
(
1 + √

x
)2 dx ; u = 1 + √

x

16.
∫

1
√

x
(
1 + √

x
)2 dx ; u = √

x

17.
∫

x2 cos 4x3 dx ; u = 4x3

18.
∫

x(x + 1)14 dx ; u = x + 1

19.
∫

x(x2 + 1)14 dx ; u = x2 + 1

20.
∫

x3 cos x4 dx ; u = x4

21.
∫

x
√

4 − x dx ; u = 4 − x

22.
∫

x + 2x3

(x4 + x2)3
dx ; u = x4 + x2

23.
∫

2x3

√
1 + x4

dx ; u = x4

24.
∫

2x + 1√
x2 + x

dx ; u = x2 + x
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Solve the initial value problems in 25 through 30.

25.
dy

dx
= 3x2 + 2x ; y(0) = 5

26.
dy

dx
= 3

√
x ; y(4) = 20

27.
dy

dx
= (2x + 1)5; y(0) = 2

28.
dy

dx
= 2√

x + 5
; y(4) = 3

29.
dy

dx
= 1

3
√

x
; y(1) = 1

30.
dy

dx
= 1 − cos x ; y(0) = 0

31. When its brakes are fully applied, a certain automobile has
a constant deceleration of 22 ft/s2. If its initial velocity is
90 mi/h, how long will it take to come to a stop? How many
feet will it travel during that time?

32. In Hal Clement’s novel Mission of Gravity, much of the ac-
tion take place in the polar regions of the planet Mesklin,
where the acceleration of gravity is 22500 ft/s2. A stone is
dropped near the north pole of Mesklin from a height of 450
ft. How long does it remain aloft? With what speed does it
strike the ground?

33. An automobile is traveling along the x-axis in the positive
direction. At time t = 0 its brakes are fully applied, and
the car experiences a constant deceleration of 40 ft/s2 while
skidding. The car skids 180 ft before coming to a stop. What
was its initial velocity?

34. If a car starts from rest with an acceleration of 8 ft/s2, how
far has it traveled by the time it reaches a speed of 60 mi/h?

35. On the planet Zorg, a ball dropped from a height of 20 ft hits
the ground in 2 s. If the ball is dropped from the top of a
200-ft building on Zorg, how long will it take to reach the
ground? With what speed will it hit?

36. Suppose that you can throw a ball from the earth’s surface
straight upward to a maximum height of 144 ft. (a) How
high could you throw it on the planet of Problem 35? (b)
How high could you throw it in the polar regions of Mesklin?
(See Problem 32.)

37. Suppose that a car skids 44 ft if its velocity is 30 mi/h when
the brakes are fully applied. Assuming the same constant de-
celeration, how far will it skid if its velocity is 60 mi/h when
the brakes are fully applied?

38. The graph of the velocity of a model rocket fired at time
t = 0 is shown in Fig. 5.MP.1. (a) At what time was the
fuel exhausted? (b) At what time did the parachute open?
(c) At what time did the rocket reach its maximum altitude?
(d) At what time did the rocket land? (e) How high did the
rocket go? (f) How high was the pole on which the rocket
landed?

t (s)1 2 3 4

(ft /s)

100

200

5

FIGURE 5.MP.1 Rocket velocity
graph for Problem 38.

Find the sums in Problems 39 through 42.

39.
100∑
i=1

17 40.
100∑
k=1

(
1

k
− 1

k + 1

)

41.
10∑

n=1

(3n − 2)2 42.
16∑

n=1

sin
nπ

2

In Problems 43 through 45, find the limit of the given Riemann
sum associated with a regular partition of the indicated interval
[a, b]. First express it as an integral from a to b; then evaluate
that integral.

43. lim
n→∞

n∑
i=1

�x√
x�

i

; [1, 2]

44. lim
n→∞

n∑
i=1

[(x�
i )

2 − 3x�
i ] �x ; [0, 3]

45. lim
n→∞

n∑
i=1

2πx�
i

√
1 + (x�

i )
2 �x ; [0, 1]

46. Evaluate

lim
n→∞

110 + 210 + 310 + · · · + n10

n11

by expressing this limit as an integral over [0, 1].
47. Use Riemann sums to prove that if f (x) ≡ c (a constant),

then ∫ b

a
f (x) dx = c(b − a).

48. Use Riemann sums to prove that if f is continuous on [a, b]
and f (x) � 0 for all x in [a, b], then∫ b

a
f (x) dx � 0.

49. Use the comparison property of integrals (Section 5.5) to
prove that ∫ b

a
f (x) dx > 0

if f is a continuous function with f (x) > 0 on [a, b].
Evaluate the integrals in Problems 50 through 63.

50.
∫ 1

0
(1 − x2)3 dx 51.

∫ (√
2x − 1√

3x3

)
dx

52.
∫ (

1 + 3
√

x
)2

√
x

dx 53.
∫

4 − x3

2x2
dx

54.
∫ 1

0

dt

(3 − 2t)2
55.

∫ √
x cos x

√
x dx

56.
∫ 2

0
x2

√
9 − x3 dx 57.

∫
1

t2
sin

1

t
dt

58.
∫ 2

1

2t + 1√
t2 + t

dt 59.
∫ 3

√
u(

1 + u4/3
)3 du

60.
∫ π/4

0

sin t√
cos t

dt 61.
∫ 4

1

(
1 + √

t
)2

√
t

dt

62.
∫

1

u2

3

√
1 − 1

u
du 63.

∫ √
4x2 − 1

x4
dx
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Find the areas of the plane regions bounded by the curves given
in Problems 64 through 70.

64. y = x3, x = −1, y = 1

65. y = x4, y = x5

66. y2 = x , 3y2 = x + 6

67. y = x4, y = 2 − x2

68. y = x4, y = 2x2 − 1

69. y = (x − 2)2, y = 10 − 5x

70. y = x2/3, y = 2 − x2

71. Evaluate the integral ∫ 2

0

√
2x − x2 dx

by interpreting it as the area of a region.

72. Evaluate the integral∫ 5

1

√
6x − 5 − x2 dx

by interpreting it as the area of a region.

73. Find a function f such that

x2 = 1 +
∫ x

1

√
1 + [ f (t)]2 dt

for all x > 1. [Suggestion: Differentiate both sides of
the equation with the aid of the fundamental theorem of
calculus.]

74. Show that G ′(x) = φ(h(x)) · h′(x) if

G(x) =
∫ h(x)

a
φ(t) dt.

75. Use right-endpoint and left-endpoint approximations to
estimate ∫ 1

0

√
1 + x2 dx

with error not exceeding 0.05.

76. Calculate the trapezoidal approximation and Simpson’s ap-
proximation to ∫ π

0

√
1 − cos x dx

with six subintervals. For comparison, use an appropriate
half-angle identity to calculate the exact value of this inte-
gral.

77. Calculate the midpoint approximation and trapezoidal ap-
proximation to ∫ 2

1

1

x + x2
dx

with n = 5 subintervals. Then explain why the exact value
of the integral lies between these two approximations.

In Problems 78 through 80, let {x0, x1, x2, . . . , xn} be a partition
of [a, b], where a < b.

78. For i = 1, 2, 3, . . . , n, let x�
i be given by

(x�
i )

2 = 1
3 [(xi−1)

2 + xi−1xi + (xi )
2].

Show first that xi−1 < x�
i < xi . Then use the algebraic iden-

tity

(c − d)(c2 + cd + d2) = c3 − d3

to show that

n∑
i=1

(x�
i )

2 �xi = 1
3 (b3 − a3).

Explain why this computation proves that∫ b

a
x2 dx = 1

3 (b3 − a3).

79. Let x�
i = √

xi−1xi for i = 1, 2, 3, . . . , n, and assume that
0 < a < b. Show that

n∑
i=1

�xi

(x�
i )

2
= 1

a
− 1

b
.

Then explain why this computation proves that∫ b

a

dx

x2
= 1

a
− 1

b
.

80. Assume that 0 < a < b. Define

x�
i =

2
3

[
(xi )

3/2 − (xi−1)
3/2

]
xi − xi−1

.

First show that xi−1 < x�
i < xi . Then use this selection for

the given partition to prove that∫ b

a

√
x dx = 2

3

(
b3/2 − a3/2

)
.
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Applications of the Integral 6

G.F.B. Riemann (1826–1866)

The general concept
of integration traces
back to the area and

volume computations of
ancient times, but the in-
tegrals used by Newton and
Leibniz were not defined
with sufficient preci-
sion for full understand-
ing. We owe to the
German mathematician
G. F. Bernhard Riemann
the modern definition that
uses “Riemann sums.”

The son of a Protestant minister, Riemann studied theol-
ogy and philology at Göttingen University until he finally
gained his father’s permission to concentrate on mathemat-
ics. He transferred to Berlin University, where he received
his Ph.D. in 1851. The work he did in the next decade
justifies his place on everyone’s short list of the most pro-
found and creative mathematicians of all time. But in 1862
he was stricken ill. He never fully recovered and in 1866
died prematurely at the age of 39.

Riemann’s mathematical investigations were
as varied as they were deep, ranging from the basic
concepts of functions and integrals to such areas as
non-Euclidean (differential) geometry and the distribu-
tion of prime numbers. Recall that the positive in-
teger p is prime if it cannot be factored into smaller
integers. In a famous paper of 1859, Riemann analyzed
the approximation

π(x) ≈
∫ x

2

dt

ln t
= li(x)

to the number π(x) of those primes p � x (with ln x
denoting the natural logarithm of x). There is a re-
markable correspondence between the values of π(x) and
the “logarithmic integral” approximation li(x):

x 1,000,000 10,000,000 100,000,000 1,000,000,000
li(x) 78,628 664,918 5,762,209 50,849,235
π(x) 78,498 664,579 5,761,455 50,847,543
error 0.165% 0.051% 0.013% 0.003%

Thirty years after Riemann’s death, his ideas led
ultimately to a proof that the percentage error in
the approximation li(x) to π(x) approaches 0 as
x → ∞.

In his 1851 thesis, Riemann introduced a geomet-
ric way of visualizing “multi-valued” functions such as
the square root function with two values ±√

x . The
following graph illustrates the cube root function. For
each complex number z = x + iy in the unit disk
x2 + y2 � 1, the three (complex) cube roots of z
are plotted directly above z. Each root is plotted at a
height equal to its real part, with color determined by its
imaginary part. The result is the “Riemann surface” of the
cube root function.

–1 –0.5
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0
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From Chapter 6 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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414 CHAPTER 6 Applications of the Integral

6.1 RIEMANN SUM APPROXIMATIONS

In Section 5.4 we defined the integral of the function f on the interval [a, b] as a limit
of Riemann sums. Specifically, let the interval [a, b] be divided into n subintervals,
all with the same length �x = (b − a)/n (Fig. 6.1.1). Then a selection of numbers
x�

1, x�
2, . . . , x�

n in these subintervals (x�
i being a point of the i th subinterval [xi−1, xi ])

produces a Riemann sum

n∑
i=1

f (x�
i ) �x (1)

whose value approximates the integral of f on [a, b]. The value of the integral is the
limiting value (if any) of such sums as the subinterval length �x approaches zero. That
is,

∫ b

a
f (x) dx = lim

�x→0

n∑
i=1

f (x�
i ) �x . (2)

The wide applicability of the definite integral arises from the fact that many geomet-
ric and physical quantities can be approximated arbitrarily closely by Riemann sums.
Such approximations lead to integral formulas for the computation of such quantities.

a = x0 xi − 1x1 x2 xi xn − 1 xn = b

xi
★ xn

★

x3

x1
★ x2

★ x3
★

… …

FIGURE 6.1.1 A division (or partition) of
[a, b] into n equal-length subintervals.

For example, suppose that f (x) is positive-valued on [a, b] and that our goal—
as in Section 5.3—is to calculate the area A of the region that lies below the graph
of y = f (x) over the interval [a, b]. Beginning with the subdivision (or partition) of
[a, b] indicated in Fig. 6.1.1, let �A i denote the area of the vertical “strip” that lies
under y = f (x) over the i th subinterval [xi−1, xi ]. Then, as illustrated in Fig. 6.1.2,
the “strip areas”

�A 1, �A 2, . . . , �A n

add up to the total area A:

A =
n∑

i=1

�A i . (3)

y

xa = x0 xi − 1x1 x2 xi xn − 1 xn = b

y = f (x)

ΔA1 ΔA2 ΔAn

xi
★

FIGURE 6.1.2 Approximating an area by means of
a Riemann sum.
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Riemann Sum Approximations SECTION 6.1 415

But the i th strip is approximated by a rectangle with base [xi−1, xi ] and height f (x�
i ),

so its area is given approximately by

�A i ≈ f (x�
i ) �x . (4)

After we substitute Eq. (4) into Eq. (3), it becomes apparent that the total area A
under the graph of f is given approximately by

A ≈
n∑

i=1

f (x�
i ) �x . (5)

Note that the approximating sum on the right is a Riemann sum for f on [a, b]. More-
over,

1. It is intuitively evident that the Riemann sum in (5) approaches the actual area A
as n → +∞ (which forces �x → 0);

2. By the definition of the integral, this Riemann sum approaches
∫ b

a f (x) dx as
n → +∞.

These observations justify the definition of the area A by the formula

A =
∫ b

a
f (x) dx . (6)

Other Quantities as Integrals
Our justification of the area formula in Eq. (6) illustrates an important general method
of setting up integral formulas. Suppose that we want to calculate a certain quantity
Q that is associated with an interval [a, b] in such a way that subintervals of [a, b]
correspond to specific portions of Q (such as the portion of area lying above a particular
subinterval). Then a subdivision of [a, b] into n subintervals produces portions

�Q1, �Q2, . . . , �Qn,

which add up to the quantity

Q =
n∑

i=1

�Qi . (7)

Now suppose that we can find a function f such that the i th portion �Qi is given
approximately by

�Qi ≈ f (x�
i ) �x (8)

(for each i , 1 � i � n) for a selected point x�
i of the i th subinterval [xi−1, xi ] of

[a, b]. Then substituting Eq. (8) into Eq. (7) yields the Riemann sum approximation

Q ≈
n∑

i=1

f (x�
i ) �x (9)

analogous to the approximation in Eq. (5). The right-hand sum in Eq. (9) is a Riemann
sum that approaches the integral∫ b

a
f (x) dx as n → +∞.

If it is also evident—for geometric or physical reasons, for example—that this
Riemann sum must approach the quantity Q as n → +∞, then Eq. (9) justifies our
setting up the integral formula

Q =
∫ b

a
f (x) dx . (10)
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416 CHAPTER 6 Applications of the Integral

Because the right-hand side in Eq. (10) can be easy to calculate (by the fundamental
theorem of calculus), this gives us a practical way of finding the exact numerical value
of the quantity Q.

In addition to area, the following are some of the quantities that can be calculated
by using integral formulas such as Eq. (10). (The variable x is replaced with t where
appropriate.)

• The mass of a thin rod of variable density lying along the interval a � x � b.
• The profit earned by a company between time t = a and time t = b.
• The number of people in a city who contract a certain disease between time t = a

and time t = b.
• The distance traveled by a moving particle during the time interval a � t � b.
• The volume of water flowing into a tank during the time interval a � t � b.
• The work done by a variable force in moving a particle from the point x = a to

the point x = b.

In each case it is evident that a subinterval of [a, b] determines a specific portion
�Q of the whole quantity Q that corresponds to the whole interval [a, b]. The question
is this: What function f should be integrated from a to b? Examples 1 through 3
illustrate the process of finding the needed function f by approximating the portion
�Qi of the quantity Q that corresponds to the subinterval [xi−1, xi ]. An approximation
of the form

�Qi ≈ f (x�
i ) �x (8)

leads to the desired integral formula

Q =
∫ b

a
f (x) dx . (10)

The integral in Eq. (10) results from the summation in Eq. (9) when we make the
following replacements:

n∑
i=1

becomes
∫ b

a
,

x�
i becomes x, and

�x becomes dx .

EXAMPLE 1 Suppose that water is pumped into the initially empty tank of Fig. 6.1.3.
50 − t liters/s

FIGURE 6.1.3 The tank of
Example 1.

The rate of water flow into the tank at time t (in seconds) is 50− t liters (L) per second.
How much water flows into the tank during the first 30 s?

Solution We want to compute the amount Q of water that flows into the tank during
the time interval [0, 30]. Think of a subdivision of [0, 30] into n subintervals, all with
the same length �t = 30/n.

Next choose a point t�
i in the i th subinterval [ti−1, ti ]. If this subinterval is very

short, then the rate of water flow between time ti−1 and time ti remains approximately
50 − t�

i liters per second. So the amount �Qi of water in liters that flows into the tank
during this subinterval of time is obtained approximately by multiplying the flow rate
in liters per second by the duration of flow in seconds:[

(50 − t�
i )

liters

second

]
· [�t seconds],

and hence
�Qi ≈ (50 − t�

i ) �t (liters).

Therefore, the total amount Q that we seek is given approximately by

Q =
n∑

i=1

�Qi ≈
n∑

i=1

(50 − t�
i ) �t (liters).
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We recognize that the sum on the right is a Riemann sum, and—most important—we
see that it is a Riemann sum for the function f (t) = 50 − t . Hence we may conclude
that

Q = lim
n→∞

n∑
i=1

(50 − t�
i ) �t =

∫ 30

0
(50 − t) dt

=
[

50t − 1

2
t2

]30

0

= 1050 (liters). ◗

EXAMPLE 2 Figure 6.1.4 shows a thin rod 20 cm long. Its (linear) density at the

x
x = 0 x = 20

Δx

xi
★

FIGURE 6.1.4 The 20-cm rod of
Example 2.

point x is 15 + 2x grams of mass per centimeter of the rod’s length (g/cm). The rod’s
density thus varies from 15 g/cm at the left end x = 0 to 55 g/cm at the right end
x = 20. Find the total mass M of this rod.

Solution Think of a subdivision of [0, 20] into n subintervals of length �x = 20/n
each. Figure 6.1.4 shows the short piece of the rod that corresponds to the typical
i th subinterval [xi−1, xi ]. If x�

i is, say, the midpoint of [xi−1, xi ], then the mass �Mi

of this short piece is obtained approximately by multiplying its density in grams per
centimeter by its length in centimeters:[

(15 + 2x�
i )

grams

centimeter

]
· [�x centimeters].

That is,

�Mi ≈ (15 + 2x�
i ) �x (grams).

Therefore, the total mass M of the entire rod is given approximately by

M =
n∑

i=1

�Mi ≈
n∑

i=1

(15 + 2x�
i ) �x .

We recognize a Riemann sum on the right, as in Example 1, although this time for the
function f (x) = 15 + 2x on the interval [0, 20]. Hence we may conclude that

M = lim
n→∞

n∑
i=1

(15 + 2x�
i ) �x =

∫ 20

0
(15 + 2x) dx

=
[
15x + x2

]20

0
= 700 (g). ◗

The key to setting up an integral formula as in Examples 1 and 2 is the recognition
of the definite integral that corresponds to a given Riemann sum approximation to the
quantity we wish to calculate.

EXAMPLE 3 Calculate Q if

Q = lim
n→∞

n∑
i=1

2xi exp
(−x2

i

)
�x,

where x0, x1, x2, . . . , xn are the endpoints of a partition of the interval [1, 2] into n
subintervals, all with the same length �x = 1/n.

Solution We recognize the given sum as a Riemann sum (with x�
i = xi ) for the

integral of f (x) = 2x exp(−x2) = 2xe−x2
. Hence

Q =
∫ 2

1
2xe−x2

dx =
[
−e−x2

]2

1
= −e−4 + e−1 ≈ 0.3496. ◗
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418 CHAPTER 6 Applications of the Integral

Distance and Velocity
Consider a particle that travels along the x-axis with position x(t) and velocity v =

tt = a t = b

 = f (t)

(t) dts = 
b

a∫

FIGURE 6.1.5 Equation (11)
means that the (net) distance traveled
is equal to the (signed) area under
the velocity curve.

x ′(t) at time t . Suppose that it begins its motion at time t = a and ends it at time
t = b. When we integrate the velocity, we get∫ b

a
v(t) dt =

∫ b

a
x ′(t) dt =

[
x(t)

]b

a
= x(b) − x(a)

(using the fundamental theorem of calculus). Because the particle has initial position
x(a) and final position x(b), we see that the integral

s =
∫ b

a
v(t) dt = x(b) − x(a) (11)

of its velocity gives the displacement or net distance s traveled by the particle. (See
Fig. 6.1.5.)

The velocity function v(t) = x ′(t) may have both positive and negative values,

−
+

+

tt = a t = b

 = x'(t)

FIGURE 6.1.6 Velocity curve of a
particle that first travels forward,
then backward, then forward again.

as illustrated in Fig. 6.1.6. Then forward distances (v > 0) and backward distances
(v < 0) partially or even totally cancel when we compute the net distance in Eq. (11).
But suppose that we want to calculate the total distance S traveled—irrespective of
direction. We can begin with a partition of [a, b] into n subintervals all having the
same length �t = (b − a)/n and set up the approximation

S ≈
n∑

i=1

|v(t�
i )| �t. (12)

Here |v(t�
i )| is the speed—irrespective of direction—of the particle at a typical point t�

i
of the i th subinterval [ti−1, ti ], and thus |v(t�

i )| �t is the approximate distance traveled
during that time interval. The approximation in (12) is a Riemann sum for the integral
that gives the total distance traveled:

S =
∫ b

a
|v(t)| dt . (13)

In summary, we see that:

• The net distance s traveled by the particle is the integral of its (signed) velocity v,
whereas

• The total distance S traveled by the particle is the integral of the (unsigned) speed
|v| of the particle.

The integral in (13) can be calculated by integrating separately over the subinter-
vals where v is positive and those where v is negative, then adding the absolute values
of the results. This is exactly the same procedure we use to find the area between the
graph of a function and the x-axis when the function has both positive and negative
values.

EXAMPLE 4 Suppose that the velocity of a moving particle is v(t) = t2 − 11t + 24
(ft/s). Find both the net distance s and the total distance S it travels between time t = 0
and t = 10 (s).

Solution For net distance, we use Eq. (11) and find that

s =
∫ 10

0
(t2 − 11t + 24) dt =

[
1

3
t3 − 11

2
t2 + 24t

]10

0

= 1000

3
− 1100

2
+ 240 = 70

3
(ft).

To find the total distance traveled, we note from the graph of v(t) in Fig. 6.1.7—or
from the factorization v(t) = (t − 3)(t − 8)—that v(t) > 0 if 0 � t < 3, v(t) < 0 if

t

v

30

25

20

15

10

5

0

−5

−10
100 2

3 8

4 6 8

v = t2 − 11t + 24

FIGURE 6.1.7 Graph of the
velocity function of Example 4.

418

www.konkur.in



Riemann Sum Approximations SECTION 6.1 419

3 < t < 8, and v(t) > 0 if 8 < t � 10. By Eq. (13), we need to integrate the absolute
value |v(t)| graphed in Fig. 6.1.8. Now

∫ 3

0
(t2 − 11t + 24) dt =

[
1

3
t3 − 11

2
t2 + 24t

]3

0

= 63

2
,

∫ 8

3
(−t2 + 11t − 24) dt =

[
−1

3
t3 + 11

2
t2 − 24t

]8

3

= 125

6
,

and

∫ 10

8
(t2 − 11t + 24) dt =

[
1

3
t3 − 11

2
t2 + 24t

]10

8

= 38

3
.

Thus the particle travels 63
2 ft forward, then 125

6 ft backward, and finally 38
3 ft forward,

for a total distance traveled of S = 63
2 + 125

6 + 38
3 = 65 ft. ◗

t

v

30

25

20

15

10

5

0

−5

−10
100 2

3 8

4 6 8

|v| = |t2 − 11t + 24|

FIGURE 6.1.8 Graph of the
absolute value of the velocity
function of Example 4.

Fluid Flow in Circular Pipes

We consider the flow of fluid in a straight circular pipe of radius r . Because of the

L

x
r (x)

FIGURE 6.1.9 Fluid flow in a pipe
of radius r and length L .

friction with the wall of the pipe, the velocity v of the fluid tends to be greatest along
the centerline of the pipe, and decreases with the distance x from the center (Fig. 6.1.9).
We therefore write v(x) for the velocity (in units such as cm/s) at distance x . We want
to calculate the total flow rate F (in units such as cm3/s).

Figure 6.1.10 shows the pipe’s circular cross section of radius r divided into
washer-shaped annular rings by concentric circles whose radii are the points x0 =
0, x1, x2, . . . , xn = r of a subdivision of the x-interval [0, r ] into n subintervals all
having the same length �x = r/n. The i th annular ring corresponds to the i th subin-
terval [xi−1, xi ] and is bounded by the circles of radii xi−1 and xi . To approximate its
area �A i , we think of cutting this annular ring and straightening it into a long strip of
width �x , as indicated in Fig. 6.1.11. The lengths of the top and bottom edges of this
strip are simply the circumferences 2πxi−1 and 2πxi of the two circles bounding the
original annular ring. If xi = 1

2 (xi−1 + xi ) denotes the “average radius” of this annular
ring—so that 2πxi is the average length of the straightened strip—it follows that

�A i ≈ 2πxi �x . (14)

If we reason that the average velocity of the fluid flowing across this i th annular
ring is accurately approximated by v(xi ), then the volume that flows across it in one
unit of time is approximately a cylindrical shell with base area �A i and height v(xi ).
It follows that the rate of flow �Fi of fluid across this annular ring is given approxi-
mately by

�Fi ≈ v(xi ) �A i ≈ 2πxiv(xi ) �x .

xi − 1

xO

r

xi

ΔAi

FIGURE 6.1.10 The circular cross
section divided into annular rings.

2πxi −1

2πxi

Δx

FIGURE 6.1.11 An annular ring
“straightened out.”
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420 CHAPTER 6 Applications of the Integral

Adding the flow rates across all n annular rings that make up the entire circular cross
section of the pipe, we get the approximation

F =
n∑

i=1

�Fi ≈
n∑

i=1

2πxiv(xi ) �x .

Finally, we see that this approximation is a Riemann sum (with x�
i = xi ) for the integral

F =
∫ r

0
2πxv(x) dx, (15)

which thus gives the total flow rate F of fluid along the pipe.

EXAMPLE 5 If the velocity of the flowing fluid is exactly 1 at each point of the pipe,
then the volume of fluid that flows across a circular cross section of radius r and area A
in 1 second is a cylinder of volume A · 1 = A. Thus F = A in this case. Substituting
v(x) ≡ 1 in Eq. (15) then yields

A =
∫ r

0
2πx dx =

[
πx2

]r

0
= πr2.

Because our derivation of Eq. (15) used only the formula C = 2πr for the circumfer-
ence of a circle—and not its area formula—this is a new and independent derivation of
the formula A = πr2 for the area of a circle of radius r . ◗

EXAMPLE 6 According to the law of laminar flow—discovered by the French physi-
cian Jean-Louis-Marie Poiseuille in 1840—the velocity function for fluid flow in a pipe
of length L and radius r is

v(x) = P

4νL
(r2 − x2), (16)

where ν is the viscosity of the fluid and P is the difference in pressure at the two ends
of the pipe. Note that this formula gives v = 0 at the wall of the pipe, where x = r .
Substituting this velocity function in Eq. (15) gives

F =
∫ r

0
2πx · P

4νL
(r2 − x2) dx

= π P

2νL

∫ r

0
(r2x − x3) dx = π P

2νL

[
r2x2

2
− x4

4

]r

x=0

;

F = π P

2νL
· r4

4
= π Pr4

8νL
. (17)

The formula in (17) is called Poiseuille’s law for laminar fluid flow in a circular pipe.
With a given ratio P/L of pressure difference per length, the flow rate F is proportional
to the fourth power of the radius r of the pipe. For instance, because 4

√
2 ≈ 1.19, a

20% increase in r more than doubles the flow rate F . ◗

Flow Rates and Cardiac Output
The determination of flow rates in pipes or streams has important applications ranging
from engineering and environmental studies to medical procedures. A common tech-
nique involves the injection of a known amount A of a dye or other marker into the
flow at time t = 0, followed by measurement at periodic intervals of the concentration
of the dye by a probe at a fixed point downstream.

Suppose that all the dye has passed the measurement probe by time t = T .
Subdivide the interval [0, T ] into n time intervals all of the same duration �t = T/n.
If the concentration c(t) of the dye in the stream is measured at times t1, t2, . . . , tn ,
then we can estimate the amount of dye that passes the probe during the subinterval of
time [ti−1, ti ]. If the (unknown) constant flow rate is F , then the volume �Vi of fluid
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that passes the probe during the subinterval of time is �Vi = F�t . It may help to
think of typical units:(

F
cm3

second

)
× (�t seconds) = �Vi cm3.

The amount �A i (in mg, for instance) of dye in this volume of fluid is given by

amount (mg) = concentration

(
mg

cm3

)
× volume (cm3).

If we use the measured concentration c(ti ) as the approximate concentration
throughout the time interval [ti−1, ti ], this gives

�A i ≈ c(ti ) �Vi = c(ti ) · F �t = F · c(ti ) �t.

Because the total amount A of injected dye passes the probe by time t = T , we
add the individual amounts �A i for i = 1, 2, . . . , n and get

A =
n∑

i=1

�A i ≈ F ·
n∑

i=1

c(ti ) �t

(using the fact that the flow rate F is constant). Finally, we recognize the Riemann
sum on the right and conclude that

A = F
∫ T

0
c(t) dt.

Thus the previously unknown flow rate is given by

F = A∫ T

0
c(t) dt

, (18)

in terms of the known amount A of dye injected and the downstream concentration
c(t) that has been measured at times t = t1, t2, . . . , tn . We can therefore estimate F
by substituting in Eq. (18) the Riemann sum approximation∫ T

0
c(t) dt ≈

n∑
i=1

c(ti ) �t

—or, alternatively, a Simpson approximation to the integral.
In medicine the term cardiac output is used for the flow rate of blood pumped

through the aorta by the heart. A typical cardiac output for a 70-kg man would be in
the range of 5 to 7 liters per minute (L/min). The dye marker is injected into the heart
(or into a vein entering the heart), and then concentration readings are taken by a probe
inserted into the aorta leaving the heart.

EXAMPLE 7 The table in Fig. 6.1.12 lists concentration readings (in mg/L) taken
with an aortic probe at 2-second intervals after 6 mg of dye was injected into the heart
of a patient undergoing surgery. Approximate the cardiac output of the patient.

Solution Here we have A = 6, T = 20, and �t = 2 with t in seconds. Simpson’s
approximation gives

t c(t) t c(t)

0 0 12 1.84

2 1.93 14 0.88

4 8.17 16 0.39

6 9.00 18 0.15

8 6.34 20 0

10 3.65

FIGURE 6.1.12 Dye concentration
data in Example 7. ∫ 20

0
c(t) dt ≈ 2

3
[0 + 4 · (1.93) + 2 · (8.17) + 4 · (9.00) + 2 · (6.34) + 4 · (3.65)

+ 2 · (1.84) + 4 · (0.88) + 2 · (0.39) + 4 · (0.15) + 0]
≈ 63.95.
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The formula in (18) therefore gives

F = A∫ 20

0
c(t) dt

≈ 6

63.95
≈ 0.0938 (L/s),

approximately 5.63 L/min, for the patient’s cardiac output. ◗

6.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If
n∑

i=1

f (x�
i ) �x

is a Riemann sum for the continuous function f on the interval [a, b], then this
sum approaches ∫ b

a
f (x) dx

as �x → 0.
2. If the function f is continuous and positive on [a, b] and R is the region between

the graph of f and the x-axis for a � x � b, then the area of R is defined to be

A =
∫ b

a
f (x) dx .

3. In Example 1 a subdivision of the time interval [0, 30] into n subintervals all of
the same length implies that each such subinterval has length �t = 30/n.

4. Continuing Example 1, if t�
i is a point of the i th subinterval [ti−1, ti ], then the rate

of water flow during that interval is approximately 50 − t�
i liters per second.

5. Continuing Example 1, the amount �Qi of water that flows into the tank during
the time interval [ti−1, ti ] is approximately (50 − t�

i ) �t .
6. Continuing Example 1, the total amount of water that flows into the tank from

time t = 0 to time t = 30 is approximately

n∑
i=1

(50 − t�
i ) �t.

7. Concluding Example 1, the total amount of water that flows into the tank from
time t = 0 to time t = 30 is exactly

Q =
∫ 30

0
(50 − t) dt =

[
50t − 1

2
t2

]30

0

= 1050 (liters).

8. The formula A = πr2 for the area of a circle of radius r can be derived from the
formula C = 2πr for its circumference.

9. If a particle moves in a straight line with velocity v(t) at time t , then the net
distance it travels from time t = a to time t = b > a is

s =
∫ b

a
v(t) dt.

10. If a particle moves in a straight line with velocity v(t) at time t , then the total
distance it travels from time t = a to time t = b > a is∫ b

a
|v(t)| dt.
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6.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. Describe in your own words—with a minimum of calculus textbook jargon and a

maximum of personal understanding—the process of using approximating sums
to set up an integral formula for use in calculating a specified quantity.

2. Carry out the process described in Question 1 to derive an integral formula corre-
sponding to an application found in a science, engineering, economics, or med-
ical textbook. (The derivation you see there may be somewhat cursory; do it
carefully, as in this section.)

6.1 PROBLEMS

In Problems 1 through 10, x�
i denotes a selected point, and mi

the midpoint, of the i th subinterval [xi−1, xi ] of a partition of the
indicated interval [a, b] into n subintervals each of length �x.
Evaluate the given limit by computing the value of the appropri-
ate related integral.

1. lim
n→∞

n∑
i=1

2x�
i �x ; a = 0, b = 1

2. lim
n→∞

n∑
i=1

�x

(x�
i )

2
; a = 1, b = 2

3. lim
n→∞

n∑
i=1

(sin πx�
i ) �x ; a = 0, b = 1

4. lim
n→∞

n∑
i=1

[
3(x�

i )
2 − 1

]
�x ; a = −1, b = 3

5. lim
n→∞

n∑
i=1

x�
i

√
(x�

i )
2 + 9 �x ; a = 0, b = 4

6. lim
n→∞

n∑
i=1

1

x�
i

�x ; a = 2, b = 4

7. lim
n→∞

n∑
i=1

e−mi �x ; a = 0, b = 1

8. lim
n→∞

n∑
i=1

√
2mi + 1 �x ; a = 0, b = 4

9. lim
n→∞

n∑
i=1

mi

m2
i + 9

�x ; a = 0, b = 6

10. lim
n→∞

n∑
i=1

2mi e
−m2

i �x ; a = 0, b = 1

The notation in Problems 11 through 14 is the same as in Prob-
lems 1 through 10. Express the given limit as an integral involv-
ing the function f .

11. lim
n→∞

n∑
i=1

2πx�
i f (x�

i ) �x ; a = 1, b = 4

12. lim
n→∞

n∑
i=1

[ f (x�
i )]2 �x ; a = −1, b = 1

13. lim
n→∞

n∑
i=1

√
1 + [ f (x�

i )]2 �x ; a = 0, b = 10

14. lim
n→∞

n∑
i=1

2πmi

√
1 + [ f (mi )]2 �x ; a = −2, b = 3

In Problems 15 through 18, a rod coinciding with the interval
[a, b] on the x-axis (units in centimeters) has the specified den-
sity function ρ(x) that gives its density (in grams per centimeter)
at the point x. Find the mass M of the rod.

15. a = 0, b = 100; ρ(x) = 1
5 x

16. a = 0, b = 25; ρ(x) = 60 − 2x

17. a = 0, b = 10; ρ(x) = x(10 − x)

18. a = 0, b = 10; ρ(x) = 10 sin
πx

10

In Problems 19 through 30, compute both the net distance and
the total distance traveled between time t = a and time t = b
by a particle moving with the given velocity function v = f (t)
along a line.

19. v = −32; a = 0, b = 10

20. v = 2t + 10; a = 1, b = 5

21. v = 4t − 25; a = 0, b = 10

22. v = |2t − 5|; a = 0, b = 5

23. v = 4t3; a = −2, b = 3

24. v = t − 1

t2
; a = 0.1, b = 1

25. v = sin 2t ; a = 0, b = π

2

26. v = cos 2t ; a = 0, b = π

2

27. v = cos π t ; a = −1, b = 1

28. v = sin t + cos t ; a = 0, b = π

29. v = t2 − 9t + 14; a = 0, b = 10

30. v = t3 − 8t2 + 15t ; a = 0, b = 6

In Problems 31 through 34, use a calculator or computer to
approximate both the net distance and the total distance trav-
eled by a particle with the given velocity function v(t) during the
indicated time interval [a, b ]. Begin by graphing v = v(t) to es-
timate the intervals where v(t) > 0 and where v(t) < 0. You may
then integrate numerically if your calculator or computer has this
facility.

31. v(t) = t3 − 7t + 4; a = 0, b = 3

32. v(t) = t3 − 5t2 + 10; a = 0, b = 5

33. v(t) = t sin t − cos t ; a = 0, b = π

34. v(t) = sin t + √
t cos t ; a = 0, b = 2π
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35. Suppose that the circular disk of Fig. 6.1.10 has mass density
ρ(x) (in grams per square centimeter) at distance x from the
origin. Then the annular ring of Figs. 6.1.10 and 6.1.11 has
density approximately ρ(x�

i ) at each point. Conclude that
the mass M of this disk of radius r is given by

M =
∫ r

0
2πxρ(x) dx .

In Problems 36 and 37, use the result of Problem 35 to find the
mass of a circular disk with the given radius r and density func-
tion ρ.

36. r = 10, ρ(x) = x 37. r = 5, ρ(x) = 25 − x2

38. If a particle is thrown straight upward from the ground with
an initial velocity of 160 ft/s, then its velocity after t seconds
is v = −32t + 160 feet per second, and it attains its max-
imum height when t = 5 s (and v = 0). Use Eq. (11) to
compute this maximum height. Check your answer by the
methods of Section 5.2.

39. Suppose that the rate of water flow into an initially empty
tank is 100 − 3t gallons per minute at time t (in minutes).
How much water flows into the tank during the interval from
t = 10 to t = 20 min?

40. Suppose that the birth rate in Calgary t years after 1970 was
16 + t thousands of births per year. Set up and evaluate an
appropriate integral to compute the total number of births
that occurred between 1970 and 1990.

41. Assume that the city of Problem 40 had a death rate of 5+ 1
2 t

thousands per year t years after 1970. If the population of the
city was 375,000 in 1970, what was its population in 1990?
Consider both births and deaths.

42. The average daily rainfall in Sioux City is r(t) inches per
day at time t (in days), 0 � t � 365. Begin with a partition of
the interval [0, 365] and derive the formula

R =
∫ 365

0
r(t) dt

for the average total annual rainfall R.

43. Take the average daily rainfall of Problem 42 to be

r(t) = a − b cos
2π t

365
,

where a and b are constants to be determined. If the value of
r(t) on January 1 (t = 0) is 0.1 in. and the value of r(t) on
July 1 (t = 182.5) is 0.3 in., what is the average total annual
rainfall in this locale?

44. Suppose that the rate of water flow into a tank is r(t) liters
per minute at time t (in minutes). Use the method of
Example 1 to derive the formula

Q =
∫ b

a
r(t) dt

for the amount of water that flows into the tank between
times t = a and t = b.

45. Evaluate

lim
n→∞

3
√

1 + 3
√

2 + 3
√

3 + · · · + 3
√

n

n4/3

by first finding a function f such that the limit is equal to∫ 1

0
f (x) dx .

46. In this problem you are to derive the volume formula V =
4
3 πr 3 for a spherical ball of radius r , assuming as known the
formula S = 4πr 2 for the surface area of a sphere of radius
r . Assume it follows that the volume of a thin spherical shell
of radius r and thickness t (Fig. 6.1.13) is given approxi-
mately by �V ≈ S · t = 4πr 2t . Then divide the spherical
ball into concentric spherical shells, analogous to the con-
centric annular rings of Fig. 6.1.10. Finally, interpret the
sum of the volumes of these spherical shells as a Riemann
sum.

r

t

FIGURE 6.1.13 A thin
spherical shell of thickness
t and inner radius r
(Problem 46).

47. A spherical ball has radius 1 ft and, at distance x from its
center, its density is 100(1 + x) lb/ft3. Use Riemann sums to
find a function f (x) such that the weight of the ball is

W =
∫ 1

0
f (x) dx

(in pounds). Then compute W by evaluating this integral.
[Suggestion: Given a partition 0 = x0 < x1 < x2 < · · · <

xn = 1 of [0, 1], estimate the weight �Wi of the spherical
shell xi−1 � x � xi of the ball.]

48. Find the flow rate F in a circular pipe of radius r if the ve-
locity of the fluid at distance x from the center of the pipe is
given by

v(x) = k cos
πx

2r
.

You may use the formula
∫

u cos u du = u sin u +cos u +C .

49. Poiseuille discovered his law of fluid flow in the course
of investigating the flow of blood in veins and arteries in
the human body. With a given fixed flow rate F through
a blood vessel of specified length L , Poiseuille’s law in
Eq. (17) shows that a decrease in the radius r requires an in-
crease in the blood pressure P . This is why hypertension—
high blood pressure—frequently results from constriction
of arteries. Construct a table in which the first column
shows the percentage decrease in the radius of an artery
(in increments of 5% from 0% to 25%) and the second
column shows the resulting percentage increase in blood
pressure.

50. Find the cardiac output (in L/min) if an injection of 4 mg of
dye into a patient’s heart results in the aortic concentration
function c(t) = 40te−t for 0 � t � 10 (seconds). You may
use the formula∫

ueu du = (u − 1)eu + C.
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51. The table in Fig. 6.1.14 lists concentration readings (in
mg/L) taken with an aortic probe at 1-second intervals af-
ter 4.5 mg of dye was injected into the heart of a pa-
tient undergoing surgery. Approximate the patient’s cardiac
output.

t c(t) t c(t)

0 0 6 2.21

1 2.32 7 1.06

2 9.80 8 0.47

3 10.80 9 0.18

4 7.61 10 0

5 4.38

FIGURE 6.1.14 Dye concentration
data for Problem 51.

52. Figure 6.1.15 shows the graph of the concentration function
c(t) recorded by an aortic probe connected to a plotter af-
ter 5.5 mg of dye was injected into the heart of a patient
undergoing surgery. Approximate the cardiac output of the
patient.

0

t (sec)

5 10 15 20

2

4

6

8

c(
t)

 (
m

g/
L

)

10

12

FIGURE 6.1.15 Graph of concentration
c(t) in Problem 52.

6.2 VOLUMES BY THE METHOD OF CROSS SECTIONS

Here we use integrals to calculate the volumes of certain solids or regions in space. We
begin with an intuitive idea of volume as a measure of solids, analogous to area as a
measure of plane regions. In particular, we assume that every simply expressible
bounded solid region R has a volume measured by a nonnegative number v(R) such
that

• If R consists of two nonoverlapping pieces, then v(R) is the sum of their vol-
umes;

• Two different solids have the same volume if they have the same size and shape.Rx

a

x

R

x b

FIGURE 6.2.1 Rx is the cross
section of R in the plane
perpendicular to the x-axis at x .

The method of cross sections is a way of computing the volume of a solid that is
described in terms of its cross sections (or “slices”) in planes perpendicular to a fixed
reference line (such as the x-axis or y-axis). For instance, Fig. 6.2.1 shows a solid R
with volume V = v(R) lying alongside the interval [a, b] on the x-axis. That is, a
plane perpendicular to the x-axis intersects the solid if and only if this plane meets the
x-axis in a point of [a, b]. Let Rx denote the intersection of R with the perpendicular
plane that meets the x-axis at the point x of [a, b]. We call Rx the (plane) cross section
of the solid at x .

Volumes of Cylinders

This situation is especially simple if all the cross sections of R are congruent to one
another and are parallel translations of each other. In this case the solid R is called a
cylinder with bases Ra and Rb and height h = b − a. If Ra and Rb are circular disks,
then R is the familiar circular cylinder. Recall that the volume formula for a circular
cylinder of height h and circular base of radius r and area A = πr2 is

V = πr2h = A h.

Figure 6.2.2 shows several (general) cylinders with bases of various shapes. The
method of cross sections is based on the fact that the volume V of any cylinder—
circular or not—is equal to the product of the cylinder’s height h and the area A of its
base:

V = Ah (volume of a cylinder). (1)
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h
hh

Area A Area A Area A

FIGURE 6.2.2 Every cylinder of height h
and base area A has volume V = Ah.

More General Volumes
The volume of a more general solid, as in Fig. 6.2.1, can be approximated by using
cylinders. For each x in [a, b], let A(x) denote the area of the cross section Rx of the
solid R:

A(x) = area(Rx). (2)

We shall assume that the shape of R is sufficiently simple that this cross-sectional area
function A is continuous (and therefore integrable).

To set up an integral formula for V = v(R), we begin with a partition of [a, b]
into n subintervals, all with the same length �x = (b − a)/n. Let Ri denote the slab
or slice of the solid R positioned alongside the i th subinterval [xi−1, xi ] (Fig. 6.2.3).
We denote the volume of this i th slice of R by �Vi = v(Ri ), so

V =
n∑

i=1

�Vi .

To approximate �Vi , we select a typical point x�
i in [xi−1, xi ] and consider the

cylinder Ci whose height is �x and whose base is the cross section Rx�
i

of R at x�
i .

Figure 6.2.4 suggests that if �x is small, then v(Ci ) is a good approximation to �Vi =
v(Ri ):

�Vi ≈ v(Ci ) = area(Rx�
i
) · �x = A(x�

i ) �x,

a consequence of Eq. (1) with A = A(x�
i ) and h = �x .

Then we add the volumes of these approximating cylinders for i = 1, 2, 3, . . . , n.
We find that

V =
n∑

i=1

�Vi ≈
n∑

i=1

A(x�
i ) �x .

We recognize the approximating sum on the right to be a Riemann sum that approaches∫ b
a A(x) dx as n → +∞. This justifies the following definition of the volume of a solid

R in terms of its cross-sectional area function A(x).

x

Ri
R

bxixi − 1a

y

Δx

FIGURE 6.2.3 Planes through the partition points x0, x1,
x2, . . . , xn partition the solid R into slabs R1, R2, . . . , Rn .

y

xxia

Ci 

R

bxi
★xi − 1

Δx

FIGURE 6.2.4 The slab Ri is approximated by the cylinder Ci
of volume A(x�

i ) �x .
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DEFINITION Volumes by Cross Sections
If the solid R lies alongside the interval [a, b] on the x-axis and has continuous
cross-sectional area function A(x), then its volume V = v(R) is

V =
∫ b

a
A(x) dx . (3)

Equation (3) is known as Cavalieri’s principle, after the Italian mathematician

s

b

x

(a)

x

h

s
b

x

(b)

s

bA(x)

x = h

x = 0

x

FIGURE 6.2.5 The square-based
pyramid of Example 1.

Bonaventura Cavalieri (1598–1647), who systematically exploited the fact that the vol-
ume of a solid is determined by the areas of its cross sections perpendicular to a given
reference line.

EXAMPLE 1 Figure 6.2.5(a) shows a square-based pyramid oriented so that its height
h corresponds to the interval [0, h] on the x-axis. Its base is a b-by-b square, and each
cross section perpendicular to the x-axis is also a square. To find the area A(x) of the
s-by-s cross section at x , we equate height-to-length ratios in the similar triangles of
Fig. 6.2.5(b):

s

x
= b

h
, so s = b

h
x .

Therefore,

A(x) = s2 = b2

h2
x2,

and Eq. (3)—with [0, h] as the interval of integration—gives

V =
∫ h

0
A(x) dx =

∫ h

0

b2

h2
x2 dx =

[
b2

h2
· x3

3

]x=h

x=0

= 1

3
b2h.

With A = b2 denoting the area of the base, our result takes the form

V = 1
3 Ah

for the volume of a pyramid. ◗

Cross Sections Perpendicular to the y-Axis
In the case of a solid R lying alongside the interval [c, d ] on the y-axis, we denote by

x

y

c

y

d
Cross section Ry

of area A(y)

R

FIGURE 6.2.6 A(y) is the area of
the cross section Ry in the plane
perpendicular to the y-axis at the
point y.

A(y) the area of the solid’s cross section Ry in the plane perpendicular to the y-axis at
the point y of [c, d ] (Fig. 6.2.6). A similar discussion, beginning with a partition of
[c, d ], leads to the volume formula

V =
∫ d

c
A(y) dy. (4)

Solids of Revolution
An important special case of Eq. (3) gives the volume of a solid of revolution. For
example, consider the solid R obtained by revolving around the x-axis the region under
the graph of y = f (x) over the interval [a, b], where f (x) � 0. Such a region and the
resulting solid of revolution are shown in Fig. 6.2.7.

Because the solid R is obtained by revolution, each cross section of R at x is a
circular disk of radius f (x). The cross-sectional area function is then A(x) = πy2 =
π [ f (x)]2, so Eq. (3) yields

V =
∫ b

a
πy2 dx =

∫ b

a
π [ f (x)]2 dx (5)

for the volume of a solid of revolution around the x-axis.
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y

xbxa

y

x

A(x) = πy2 = π[ f (x)]2

y = f (x)

f (x)a

x

b

(b)(a)

FIGURE 6.2.7 (a) A region from which we can determine the volume of a (b) solid of
revolution around the x-axis.

NOTE In the expression πy2 dx , the differential dx tells us that the independent vari-
able is x . We must express the dependent variable y in terms of x in order to perform
the indicated integration.

EXAMPLE 2 Figure 6.2.8 shows the region that lies below the parabola y2 = x and
above the x-axis over the interval [0, 2]. Find the volume V of the solid paraboloid
(Fig. 6.2.9) obtained by revolving this region around the x-axis.

y

x

x = y2

dx

y

2

FIGURE 6.2.8 The parabolic region
of Example 2.

y

x2

y

FIGURE 6.2.9 The solid paraboloid
of Example 2.

Solution Because y2 = x on the parabola, the cross-sectional area function in Eq. (5)
is given in terms of x by

A(x) = πy2 = πx .

Hence integration immediately gives

V =
∫ 2

0
πx dx =

[
1
2πx2

]2

0
= 2π. ◗

EXAMPLE 3 Use the method of cross sections to verify the familiar formula V =
4
3π R3 for the volume of a sphere of radius R.

Solution We think of the sphere as the solid of revolution obtained by revolving the
semicircular plane region in Fig. 6.2.10 around the x-axis. This is the region bounded
above by the semicircle

y =
√

R2 − x2, −R � x � R

and below by the interval [−R, R ] on the x-axis. To use Eq. (5), we take

f (x) =
√

R2 − x2, a = −R, and b = R.
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y

xdx

R2 − x2y =

x

y

dx

y

(a) (b)

FIGURE 6.2.10 (a) A semicircular region that we rotate (b) to generate a sphere
(Example 3).

This gives

V =
∫ R

−R
π
(√

R2 − x2
)2

dx = π

∫ R

−R
(R2 − x2) dx

= π
[

R2x − 1
3 x3

]R

−R
= 4

3π R3. ◗

Revolution Around the y-Axis
Figure 6.2.11 shows a solid of revolution around the y-axis. The region being revolved

y

d

y

c

x = g(y)

x

FIGURE 6.2.11 A region lying
between the y-axis and the curve
x = g(y), c � y � d , is rotated
around the y-axis.

is bounded by the y-axis and the curve x = g(y), c � y � d (as well as the lines
y = c and y = d). In this case the horizontal circular cross section has radius x , and
thus the cross-sectional area at y is πx2, where x = g(y). Hence the cross-sectional
area function is A(y) = π [g(y)]2. We therefore obtain the formula

V =
∫ d

c
πx2 dy =

∫ d

c
π [g(y)]2 dy (6)

(contrast it with (5)) for the volume of a solid of revolution around the y-axis.

NOTE In the expression πx2 dy, the differential dy tells us that the independent vari-
x

(r, h)

y

r

h dy

ry
h

x =

FIGURE 6.2.12 Generating a cone
by rotation (Example 4).

able is y. So here we must express the dependent variable x in terms of y before
integrating.

EXAMPLE 4 Use the method of cross sections to verify the familiar formula V =
1
3πr2h for the volume of a right circular cone with base radius r and height h.

Solution Figure 6.2.12 depicts the cone as the solid of revolution obtained by revolv-
ing around the y-axis the triangle with vertices (0, 0), (0, h), and (r, h). The similar
triangles in Fig. 6.2.13 yield the equation x/y = r/h, so the radius of the circular
cross section perpendicular to the y-axis at the point y is x = r y/h. Then Eq. (6), with
g(y) = r y/h, gives

V =
∫ b

a
A(y) dy =

∫ b

a
πx2 dy =

∫ h

0
π

(
r y

h

)2

dy

= πr2

h2

∫ h

0
y2 dy = 1

3
πr2h = 1

3
A h,

where A = πr2 is the area of the base of the cone. ◗

x

y
(r, h)

h

r

y

x

FIGURE 6.2.13 Finding the radius
x of the circular cross section
(Example 4).
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Revolving the Region Between Two Curves
Sometimes we need to calculate the volume of a solid generated by revolving a plane
region that lies between two given curves. Suppose that f (x) � g(x) � 0 for x in
the interval [a, b] and that the solid R is generated by revolving around the x-axis the
region between y = f (x) and y = g(x). Then the cross section at x is an annular ring
(or washer) bounded by two circles (Fig. 6.2.14). The ring has inner radius rin = g(x)

and outer radius rout = f (x), so the formula for the cross-sectional area at x is

A(x) = π(rout)
2 − π(rin)

2 = π [(ytop)
2 − (ybot)

2] = π
{[ f (x)]2 − [g(x)]2

}
,

where we write ytop = f (x) and ybot = g(x) for the top and bottom curves of the plane
region. Therefore, Eq. (3) yields

V =
∫ b

a
π [(ytop)

2 − (ybot)
2] dx =

∫ b

a
π

{[ f (x)]2 − [g(x)]2
}

dx (7)

for the volume V of the solid.

y = f (x)

bxa

y = g (x)

(a) (b)

f (x)

g (x)

FIGURE 6.2.14 (a) The region between two positive graphs (b) is
rotated around the x-axis. Cross sections are annular rings.

Similarly, if f (y) � g(y) � 0 for c � y � d, then the volume of the solid ob-
tained by revolving around the y-axis the region between xright = f (y) and xleft = g(y)

is

V =
∫ d

c
π [(xright)

2 − (xleft)
2] dy =

∫ d

c
π

{[ f (y)]2 − [g(y)]2
}

dy. (8)

EXAMPLE 5 Consider the plane region shown in Fig. 6.2.15, bounded by the curves

y = x3

y

x

(1, 1)

y2 = x

FIGURE 6.2.15 The plane region
of Example 5.

y2 = x and y = x3, which intersect at the points (0, 0) and (1, 1). If this region is
revolved around the x-axis (Fig. 6.2.16), then Eq. (7) with

x

y

x1x

ybot
 = x3

ytop
 = x (1, 1)

FIGURE 6.2.16 Revolution around
the x-axis (Example 5).

ytop = √
x, ybot = x3

gives

V =
∫ 1

0
π

[(√
x
)2 − (x3)2

]
dx =

∫ 1

0
π(x − x6) dx

= π
[

1
2 x2 − 1

7 x7
]1

0
= 5

14π

for the volume of revolution.
If the same region is revolved around the y-axis (Fig. 6.2.17), then each cross

section perpendicular to the y-axis is an annular ring with outer radius xright = y1/3

and inner radius xleft = y2. Hence Eq. (8) gives the volume of revolution generated by
this region as

V =
∫ 1

0
π

[(
y1/3

)2 − (y2)2
]

dy =
∫ 1

0
π

(
y2/3 − y4

)
dy

= π
[

3
5 y5/3 − 1

5 y5
]1

0
= 2

5π. ◗
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y

x

xright
 = y1/3

(1, 1)xleft
 = y2

y

FIGURE 6.2.17 Revolution around the y-axis
(Example 5).

EXAMPLE 6 Suppose that the plane region of Example 5 (Fig. 6.2.15) is revolved
around the vertical line x = −1 (Fig. 6.2.18). Then each cross section of the resulting
solid is an annular ring with outer radius

rout = 1 + xright = 1 + y1/3

and inner radius
rin = 1 + xleft = 1 + y2.

y

x

rin
 = 1 + y2

x = −1

y

y2 = x
(1, 1)

y = x3

1

rout
 = 1 + y1/3

FIGURE 6.2.18 The annular ring of Example 6.

The area of such a cross section is

A(y) = π
(
1 + y1/3

)2 − π(1 + y2)2 = π
(
2y1/3 + y2/3 − 2y2 − y4

)
,

so the volume of the resulting solid of revolution is

V =
∫ 1

0
π

(
2y1/3 + y2/3 − 2y2 − y4

)
dy

= π
[

3
2 y4/3 + 3

5 y5/3 − 2
3 y3 − 1

5 y5
]1

0
= 37

30π. ◗

EXAMPLE 7 Find the volume of the wedge that is cut from a circular cylinder with
unit radius and unit height by a plane that passes through a diameter of the base of the
cylinder and through a point on the circumference of its top.

Solution The cylinder and wedge are shown in Fig. 6.2.19. To form such a wedge, fill
a cylindrical glass with cider and then drink slowly, tipping the bottom up as you drink,
until half the bottom of the glass is exposed; the remaining cider forms the wedge.

We choose as reference line and x-axis the line through the “edge of the wedge”—
FIGURE 6.2.19 The wedge and
cylinder of Example 7.

the original diameter of the base of the cylinder. We can verify with similar triangles
that each cross section of the wedge perpendicular to the diameter is an isosceles right
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triangle. One of these triangles is shown in Fig. 6.2.20. We denote by y the equal base
and height of this triangle.

To determine the cross-sectional area function A(x), we must express y in terms

y

y

x

x

FIGURE 6.2.20 A cross section of
the wedge—an isosceles triangle
(Example 7).

of x . Figure 6.2.21 shows the unit circular base of the original cylinder. We apply the
Pythagorean theorem to the right triangle in this figure and find that y = √

1 − x2.
Hence

A(x) = 1
2 y2 = 1

2 (1 − x2),

so Eq. (3) gives

V =
∫ 1

−1
A(x) dx = 2

∫ 1

0
A(x) dx (by symmetry)

= 2
∫ 1

0

1
2 (1 − x2) dx =

[
x − 1

3 x3
]1

0
= 2

3

for the volume of the wedge. ◗

COMMENT It is a useful habit to check answers for plausibility whenever convenient.
For example, we may compare a given solid with one whose volume is known. Because
the volume of the original cylinder in Example 7 is π , we have found that the wedge
occupies the fraction

x10−1

y1

x

FIGURE 6.2.21 The base of the
cylinder of Example 7.

Vwedge

Vcyl
=

2
3

π
≈ 21%

of the volume of the cylinder. A glance at Fig. 6.2.19 indicates that this is plausible.
An error in our computations could well have given an unbelievable answer.

HISTORICAL NOTE The wedge of Example 7 has an ancient history. Its volume
was first calculated in the third century B.C. by Archimedes, who also derived the
formula V = 4

3πr3 for the volume of a sphere of radius r . His work on the wedge is
found in a manuscript that was discovered in 1906 after having been lost for centuries.
Archimedes used a method of exhaustion for volume similar to that discussed for areas
in Section 5.3. For more information, see pp. 73–74 of C. H. Edwards, The Historical
Development of the Calculus (New York: Springer-Verlag, 1979).

6.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The volume of any cylinder is the product of its height and the area of its base.
2. If the solid R lies alongside the interval [a, b] on the x-axis and has continuous

cross-sectional area function A(x), then the volume of R is

V =
∫ b

a
A(x) dx .

3. If f is continuous and positive-valued for a � x � b and S is the region lying
between the graph of f and the x-axis for x in [a, b], then the volume generated
by rotation of S around the x-axis is

V =
∫ b

a
π [ f (x)]2 dx .

4. If the solid R lies alongside the interval [c, d] on the y-axis and has continuous
cross-sectional area function A(y), then the volume of R is

V =
∫ d

c
A(y) dy.
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5. If x = g(y) is continuous and positive-valued for c � y � d and S is the region
lying between the graph of g and the y-axis for y in [c, d], then the volume
generated by rotation of S around the y-axis is

V =
∫ d

c
π [g(y)]2 dy.

6. In Example 3 it is shown that the volume of a sphere of radius r is 4
3πr3.

7. Suppose that 0 � g(x) � f (x) for a � x � b and that f and g are continuous on
[a, b] . Let S be the region lying between the graphs of f and g for x in [a, b].
Then the volume of the solid generated by rotation of S around the x-axis is

V =
∫ b

a
π [ f (x) − g(x)]2 dx .

8. Suppose that 0 � g(y) � f (y) for c � y � d and that f and g are continuous on
[c, d] . Let S be the region lying between the graphs of x = f (y) and x = g(y)

for y in [c, d]. Then the volume of the solid generated by rotation of S around
the y-axis is

V =
∫ d

c

(
π [ f (y)]2 − π [g(y)]2 )

dy.

9. Cross sections of the wedge of Example 7 perpendicular to the y-axis are isosce-
les triangles.

10. The volume of the wedge of Example 7 was computed by Archimedes in the
third century B.C.

6.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that the cross sections of a solid perpendicular to two nonparallel axes

are all circular disks. Is this solid necessarily a solid sphere?
2. Give your own example of a solid whose volume can be calculated by two essen-

tially different integrals—stemming from cross sections perpendicular to nonpar-
allel axes. Show that both integrals give the same volume for this solid.

3. Question 2 points to the need for a definition of volume that is not based on cross
sections perpendicular to a particular axis. Formulate a possible definition based
on collections of nonoverlapping rectangular blocks containing and contained by
a solid. (Consult the definition of area given in the concepts discussion at the end
of Section 5.8.)

6.2 PROBLEMS

In Problems 1 through 24, find the volume of the solid that is
generated by rotating around the indicated axis the plane region
bounded by the given curves.

1. y = x2, y = 0, x = 1; the x-axis

2. y = √
x , y = 0, x = 4; the x-axis

3. y = x2, y = 4, x = 0 (first quadrant only); the y-axis
(Fig. 6.2.22)

4. y = 1/x , y = 0, x = 0.1, x = 1; the x-axis (Fig. 6.2.23)

y

x

FIGURE 6.2.22 Problem 3.

y

x

FIGURE 6.2.23 Problem 4.
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5. y = 1 − x on [0, 1], x = 0, y = 0; the x-axis

6. y = 9 − x2, y = 0; the x-axis

7. y = x2, x = y2; the x-axis (Fig. 6.2.24)

8. y = x2, y = 4x ; the line x = 5 (Fig. 6.2.25)

y

x

FIGURE 6.2.24 Problem 7.

y

x

FIGURE 6.2.25 Problem 8.

9. y = 1√
x

, y = 0, x = 1, x = 5; the x-axis

10. x = y2, x = y + 6; the y-axis

11. y = 1 − x2, y = 0; the x-axis (Fig. 6.2.26)

12. y = x − x3, y = 0 (0 � x � 1); the x-axis (Fig. 6.2.27)

y

x

FIGURE 6.2.26 Problem 11.

x

y

FIGURE 6.2.27 Problem 12.

13. y = 1 − x2, y = 0; the y-axis

14. y = ex , y = 0, x = 0, x = 1; the x-axis

15. y = 6 − x2, y = 2; the y-axis (Fig. 6.2.28)

16. y = 1 − x2, y = 0; the vertical line x = 2

17. y = x − x3, y = 0 (0 � x � 1); the horizontal line y = −1

18. y = ex , y = e−x , x = 1; the x-axis

19. y = 4, x = 0, y = x2; the y-axis

20. x = 16 − y2, x = 0, y = 0 (first quadrant only);
the x-axis (Fig. 6.2.29)

y

x

FIGURE 6.2.28 Problem 15.

x

y

FIGURE 6.2.29 Problem 20.

21. y = x2, x = y2; the line y = −2

22. y = x2, y = 8 − x2; the line y = −1

23. y = x2, x = y2; the line x = 3

24. y = e−x , y = 2, x = 1; the line y = −1

In Problems 25 through 30, find the volume obtained by revolving
the region R around the x-axis. You may use the trigonometric
identities

cos2 x = 1 + cos 2x

2
and sin2 x = 1 − cos 2x

2

to help you evaluate some of the integrals.

25. R is the region between the graph y = sin x and the x-axis
for 0 � x � π .

26. R is the region between the graph y = cos( 1
2 πx) and the

x-axis for −1 � x � 1.

27. R is the region between the curves y = sin x and y = cos x
for 0 � x � π/4.

28. R is the region between x = −π/3 and x = π/3 that is
bounded by the curves y = cos x and y = 1/2.

29. R is bounded by the curve y = tan x and the lines y = 0 and
x = π/4.

30. R is bounded by the curve y = tan x and the lines x = 0 and
y = 1.

In Problems 31 through 34, first use a calculator or computer
to approximate (graphically or otherwise) the points of intersec-
tion of the two given curves. Let R be the region bounded by
these curves. Integrate to approximate the volume of the solid
obtained by revolving the region R around the x-axis.

31. y = x3 + 1, y = 3x2 32. y = x4, y = x + 4

33. y = x2, y = cos x

34. y = sin x , y = (x − 1)2

35. The region R shown in Fig. 6.2.30 is bounded by the parabo-
las y2 = 2(x − 3) and y2 = x . Find the volume of the solid
generated by rotating R around the x-axis.

y

x

FIGURE 6.2.30 The
region of Problem 35.

36. Find the volume of the ellipsoid generated by rotating around
the x-axis the region bounded by the ellipse with equation( x

a

)2 +
( y

b

)2 = 1

(Fig. 6.2.31).

x

y
x2

+
a2

y2

b2
= 1

FIGURE 6.2.31 The ellipse of
Problems 36 and 37.
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37. Repeat Problem 36, except rotate the elliptical region around
the y-axis.

38. (a) Find the volume of the unbounded solid generated by ro-
tating the unbounded region of Fig. 6.2.32 around the x-axis.
This is the region between the graph of y = e−x and the x-
axis for x � 1. [Method: Compute the volume from x = 1
to x = b, where b > 1. Then find the limit of this volume as
b → +∞.] (b) What happens if y = 1/

√
x instead?

x

y

x = 1

y = e−x

FIGURE 6.2.32 The unbounded
plane region of Problem 38.

39. An observatory (Fig. 6.2.33) is shaped like a solid whose
base is a circular disk with diameter AB of length 2a
(Fig. 6.2.34). Find the volume of this solid if each cross
section perpendicular to AB is a square.

FIGURE 6.2.33 The
observatory of
Problem 39.

2a
A B

FIGURE 6.2.34 The circular
base of the observatory
(Problem 39).

40. The base of a certain solid is a circular disk with diameter
AB of length 2a. Find the volume of the solid if each cross
section perpendicular to AB is a semicircle.

41. The base of a certain solid is a circular disk with diameter
AB of length 2a. Find the volume of the solid if each cross
section perpendicular to AB is an equilateral triangle.

42. The base of a solid is the region in the xy-plane bounded by
the parabolas y = x2 and x = y2. Find the volume of this
solid if every cross section perpendicular to the x-axis is a
square with its base in the xy-plane.

43. The paraboloid generated by rotating around the x-axis the
region under the parabola y2 = 2px , 0 � x � h, is shown
in Fig. 6.2.35. Show that the volume of the paraboloid is
one-half that of the circumscribed cylinder also shown in the
figure.

y2 = 2px

r

h

y

x

FIGURE 6.2.35 The paraboloid
and cylinder of Problem 43.

44. A pyramid has height h and rectangular base with area A.
Show that its volume is V = 1

3 A h. [Suggestion: Note that
each cross section parallel to the base is a rectangle.]

45. Repeat Problem 44, except make the base a triangle with
area A.

46. Find the volume that remains after a hole of radius 3 is bored
through the center of a solid sphere of radius 5 (Fig. 6.2.36).

FIGURE 6.2.36 The
sphere-with-hole of
Problem 46.

47. Two horizontal circular cylinders both have radius a, and
their axes intersect at right angles. Find the volume of their
solid of intersection (Figs. 6.2.37 and 6.2.38, where a = 1).
Is it clear to you that each horizontal cross section of the
solid is a square?

−1

0

1
x

−1

0

1
y

−1

0

1

z

FIGURE 6.2.37 The intersecting
cylinders of Problem 47.

0y
0

1

x

−1

0

1

z

−1

FIGURE 6.2.38 The solid of
intersection (Problem 47).
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48. Figure 6.2.39 shows a “spherical segment” of height h that is
cut off from a sphere of radius r by a horizontal plane. Show
that its volume is

V = 1
3 πh2(3r − h).

r

h

FIGURE 6.2.39 A spherical
segment (Problem 48).

49. A doughnut-shaped solid, called a torus (Fig. 6.2.40), is
generated by revolving around the y-axis the circular disk
(x − b)2 + y2 � a2 centered at the point (b, 0), where 0 <

a < b. Show that the volume of this torus is V = 2π2a2b.
[Suggestion: Note that each cross section perpendicular to
the y-axis is an annular ring, and recall that∫ a

0

√
a2 − y2 dy = 1

4 πa2

because the integral represents the area of a quarter-circle of
radius a.]

FIGURE 6.2.40 The torus
of Problem 49.

50. The summit of a hill is 100 ft higher than the surrounding
level terrain, and each horizontal cross section of the hill is
circular. The following table gives the radius r (in feet) for
selected values of the height h (in feet) above the surround-
ing terrain. Use Simpson’s approximation to estimate the
volume of the hill.

h 0 25 50 75 100

r 60 55 50 35 0

51. Newton’s Wine Barrel Consider a barrel with the shape of
the solid generated by revolving around the x-axis the region
under the parabola

y = R − kx2, − 1
2 h � x � 1

2 h

(Fig. 6.2.41). (a) Show that the radius of each end of the bar-
rel is r = R − δ, where 4δ = kh2. (b) Then show that the
volume of the barrel is

V = 1
3 πh

(
2R2 + r 2 − 2

5 δ2
)
.

x

y

h
2

h
2

R
r

FIGURE 6.2.41 The region of
Problem 51.

52. The Clepsydra, or Water Clock Consider a water tank
whose side surface is generated by rotating the curve y =
kx4 around the y-axis (k is a positive constant). (a) Compute
V (y), the volume of water in the tank as a function of the
depth y. (b) Suppose that water drains from the tank through
a small hole at its bottom. Use the chain rule and Torricelli’s
law of draining [Eq. (3) of Section 5.2] to show that the wa-
ter level in this tank falls at a constant rate. How could such
a tank be used as a clock?

53. A contractor wants to bid on the job of leveling a 60-ft hill. It
will cost $3.30/yd3 of material in the hill to be removed. The
following table, based on surveying data, shows areas of hor-
izontal cross sections of the hill at 10-ft height intervals. Use
(a) the trapezoidal approximation and (b) Simpson’s approx-
imation to estimate how much this job should cost. Round
each answer to the nearest hundred dollars.

Height x (ft) 0 10 20 30 40 50 60

Area (ft2) 1513 882 381 265 151 50 0

54. Water evaporates from an open bowl at a rate proportional
to the area of the surface of the water. Show that whatever
the shape of the bowl, the water level will drop at a constant
rate.

55. A frustum of a right circular cone has height h and volume
V . Its base is a circular disk with radius R and its top is a
circular disk with radius r (Fig. 6.2.42). Apply the method
of cross sections to show that

V = 1
3 πh(r 2 + r R + R2).

r

R

h

FIGURE 6.2.42 A frustum
of a cone (Problem 55).

56. Find the volume of the solid of intersection of two spheres of
radius a, if the center of each lies on the surface of the other.

57. Find the volume of the solid of intersection of two spheres of
radii a and b (with b < a) if the center of the smaller sphere
lies on the surface of the larger one.
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58. In the third century B.C. Archimedes regarded the sphere
of radius r as a solid of revolution in deriving his fa-
mous volume formula V = 4

3 πr 3. A major difference be-
tween his method and the method of this section is that his
derivation used conical frusta rather than circular cylinders
(Fig. 6.2.43). Figure 6.2.44 shows the approximating solid
obtained by revolving around the x-axis the polygonal arc
P0 P1 P2 . . . Pn , where Pi denotes the point (xi , f (xi )) on the
curve y = f (x). The approximating slice that corresponds
to the i th subinterval [xi−1, xi ] is the conical frustum high-
lighted in Fig. 6.2.44. The volume formula of Problem 55

gives the “frustum approximation”

V ≈
n∑

i=1

π

3

{[ f (xi−1)]2 + f (xi−1) f (xi ) + [ f (xi )]2
}
�x .

Use continuity of f to show that this approximation leads
(as n → +∞) to the same volume formula

V =
∫ b

a
π [ f (x)]2 dx

that we derived using the method of cross sections.

y

x

y = f (x)

y

x

y = f (x)

y

x

y = f (x)

FIGURE 6.2.43 Using cylinders to
approximate a solid of revolution.

y

x

y = f (x)

f (xi )
Pi − 1

Pn

P0
f (xi − 1)

xi − 1 xi

Pi

FIGURE 6.2.44 Using conical frusta
to approximate a solid of revolution.

6.3 VOLUMES BY THE METHOD OF CYLINDRICAL SHELLS

The method of cross sections of Section 6.2 is a technique of approximating a solid
by a stack of thin slabs or slices. In the case of a solid of revolution, these slices are
circular disks or annular rings. The method of cylindrical shells is a second way of
computing volumes of solids of revolution. It is a technique of approximating a solid
of revolution by a collection of thin right cylindrical shells, and it frequently leads to
simpler computations than does the method of cross sections.

Volume of a Cylindrical Shell
A cylindrical shell is a region bounded by two concentric circular cylinders of the

r1

h

r2

r

t

FIGURE 6.3.1 A cylindrical shell.

same height h. If, as in Fig. 6.3.1, the inner cylinder has radius r1 and the outer one
has radius r2, then r = (r1 + r2)/2 is the average radius of the cylindrical shell
and t = r2 − r1 is its thickness. We then get the volume of the cylindrical shell by
subtracting the volume of the inner cylinder from that of the outer one:

V = πr2
2 h − πr2

1 h = 2π
r1 + r2

2
(r2 − r1)h = 2πr th. (1)

In words, the volume of the shell is the product of 2π , its average radius, its thick-
ness, and its height. Thus the volume of a very thin shell is closely approximated by
multiplying its curved surface area by its thickness.

More General Volumes
Now suppose that we want to find the volume V of revolution generated by revolving
around the y-axis the region under y = f (x) from x = a to x = b. We assume, as
indicated in Fig. 6.3.2(a), that 0 � a < b and that f (x) is continuous and nonnegative
on [a, b]. The solid will then resemble the one shown in Fig. 6.3.2(b).

437

www.konkur.in



438 CHAPTER 6 Applications of the Integral

b

y

x

y

x

y

x

y

x

ba

y = f (x) y = f (x)

y = f (x)

y = f (x)

b

a

ba

(xi
★, f (xi

★))

f (xi
★)

xi − 1 xi
★ xi

(a) (b)

(c) (d)

a

Δx

FIGURE 6.3.2 A solid of revolution—note the hole through its center—and a way to
approximate it with nested cylindrical shells.

To find V , we begin with a partition of [a, b] into n subintervals, all with the
same length �x = (b − a)/n. Let xi denote the midpoint of the i th subinterval
[xi−1, xi ]. Consider the rectangle in the xy-plane with base [xi−1, xi ] and height f (xi ).
Figure 6.3.2(c) shows the cylindrical shell that is obtained by revolving this rectangle
around the y-axis. This cylindrical shell approximates the solid with volume �Vi that
is obtained by revolving the region under y = f (x) and over [xi−1, xi ], and thus Eq. (1)
gives

�Vi ≈ 2πxi f (xi ) �x .

We add the volumes of the n cylindrical shells determined by the partition of
[a, b]. This sum should approximate V because—as Fig. 6.3.2(d) suggests—the union
of these shells physically approximates the solid of revolution. Thus we obtain the
approximation

V =
n∑

i=1

�Vi ≈
n∑

i=1

2πxi f (xi ) �x .

This approximation to the volume V is a Riemann sum that approaches the integral∫ b

a
2πx f (x) dx as �x → 0,

so it appears that the volume of the solid of revolution is given by

V =
∫ b

a
2πx f (x) dx . (2)

A complete discussion would require a proof that this formula gives the same volume
as that defined by the method of cross sections in Section 6.2. (See Appendix G.)

It is more reliable to learn how to set up integral formulas than merely to mem-
orize such formulas. A useful heuristic (suggestive but nonrigorous) device for setting
up Eq. (2) is to picture the very narrow rectangular strip of area shown in Fig. 6.3.3.
When this strip is revolved around the y-axis, it produces a thin cylindrical shell of
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y

x

y = f (x)

x
ba

dx

f (x)

FIGURE 6.3.3 Heuristic device
for setting up Eq. (2).

dx

f (x)

x

FIGURE 6.3.4 Cylindrical shell
of infinitesimal thickness.

f (x)

dx

2πx

FIGURE 6.3.5 Infinitesimal
cylindrical shell, flattened out.

radius x , height y = f (x), and thickness dx (Fig. 6.3.4). So, if its volume is denoted
by dV , we may write

dV = 2πx · f (x) · dx = 2πx f (x) dx .

This is easy to remember if you visualize Fig. 6.3.5.
We think of V = ∫

dV as a sum of very many such volumes, nested concentri-
cally around the axis of revolution and forming the solid itself. We can then write

V =
∫ b

a
2πxy dx =

∫ b

a
2πx f (x) dx .

Do not forget to express y (and any other dependent variable) in terms of the indepen-
dent variable x (identified here by the differential dx) before you integrate.

EXAMPLE 1 Find the volume V of the solid generated by revolving around the y-y

x

y = 3x2 − x3

x
2 3

FIGURE 6.3.6 The region of
Example 1: Rotate it around the
y-axis.

axis the region under y = 3x2 − x3 from x = 0 to x = 3 (Fig. 6.3.6).

Solution Here it would be impractical to use the method of cross sections, because
a cross section perpendicular to the y-axis is an annular ring, and finding its inner and
outer radii would require us to solve the equation y = 3x2 − x3 for x in terms of y. We
prefer to avoid this troublesome task, and Eq. (2) provides us with an alternative: We
take f (x) = 3x2 − x3, a = 0, and b = 3. It immediately follows that

V =
∫ 3

0
2πx(3x2 − x3) dx = 2π

∫ 3

0
(3x3 − x4) dx

= 2π
[

3
4 x4 − 1

5 x5
]3

0
= 243

10 π. ◗

EXAMPLE 2 Find the volume V of the solid that remains after you bore a circular
hole of radius a through the center of a solid sphere of radius b > a (Fig. 6.3.7).

Solution We think of the sphere of radius b as generated by revolving the right half
of the circular disk x2 + y2 = b2 around the y-axis, and we think of the hole as vertical
and with its centerline lying on the y-axis. Then the upper half of the solid in question
is generated by revolving around the y-axis the region shaded in Fig. 6.3.8. This is the
region below the graph of y = √

b2 − x2 (and above the x-axis) from x = a to x = b.
The volume of the entire sphere-with-hole is then double that of the upper half, and
Eq. (2) gives

V = 2
∫ b

a
2πx(b2 − x2)1/2 dx = 4π

[
− 1

3 (b2 − x2)3/2
]b

a
,

so

V = 4
3π(b2 − a2)3/2. ◗
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y

x

dx

a

x

y

FIGURE 6.3.7 The sphere-with-hole of
Example 2.

y

(b, 0)a

h
b h

2

b2 − x2y =

x

FIGURE 6.3.8 Middle cross section of
the sphere-with-hole (Example 2).

A way to check an answer such as this is to test it in some extreme cases. If a = 0
and b = r , which corresponds to drilling no hole at all through a sphere of radius r ,
then our result reduces to the volume V = 4

3πr3 of the entire sphere. If a = b, which
corresponds to using a drill bit as large as the sphere, then V = 0; this, too, is correct.

Revolving the Region Between Two Curves

Now let A denote the region between the curves y = f (x) and y = g(x) over the
interval [a, b], where 0 � a < b and g(x) � f (x) for x in [a, b]. Such a region
is shown in Fig. 6.3.9. When A is rotated around the y-axis, it generates a solid of
revolution. Suppose that we want to find the volume V of this solid. A development

y

xbxa

y = f (x)

f (x) − g (x)A

y = g (x)

x dx

FIGURE 6.3.9 The region A
between the graphs of f and g over
[a, b] is to be rotated around the
y-axis.

similar to that of Eq. (2) leads to the approximation

V ≈
n∑

i=1

2πxi [ f (xi ) − g(xi )] �x,

from which we may conclude that

V =
∫ b

a
2πx[ f (x) − g(x)] dx . (3)

Thus

V =
∫ b

a
2πx[ytop − ybot] dx, (3′)

where ytop = f (x) and ybot = g(x).
The method of cylindrical shells is also an effective way to compute volumes of

solids of revolution around the x-axis. Figure 6.3.10 shows the region A bounded by
the curves x = f (y) and x = g(y) for c � y � d and by the horizontal lines y = c
and y = d. Let V be the volume obtained by revolving the region A around the x-axis.
To compute V , we begin with a partition of [c, d ] into n subintervals, all of the same
length �y = (d − c)/n. Let yi denote the midpoint of the i th subinterval [yi−1, yi ] of
the partition. Then the volume of the cylindrical shell with average radius yi , height

y

x

d

x = f (y)

A

x = g (y)

dy

f (y) − g (y)

y

c

y

FIGURE 6.3.10 The region A is to
be rotated around the x-axis.

f ( yi ) − g( yi ), and thickness �y is

�Vi = 2πyi [ f ( yi ) − g( yi )] �y.
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We add the volumes of these cylindrical shells and thus obtain the approximation

V ≈
n∑

i=1

2πyi [ f ( yi ) − g( yi )] �y.

We recognize the right-hand side to be a Riemann sum for an integral with respect to
y from c to d and so conclude that the volume of the solid of revolution is given by

V =
∫ d

c
2πy[ f (y) − g(y)] dy. (4)

Thus

V =
∫ d

c
2πy[xright − xleft] dy, (4′)

where xright = f (y) and xleft = g(y).

NOTE To use Eqs. (3′) and (4′), the integrand must be expressed in terms of the
variable of integration specified by the differential.

y = x3

y

x

(1, 1)

y2 = x

FIGURE 6.3.11 The region of
Example 3.

EXAMPLE 3 Consider the region in the first quadrant bounded by the curves y2 = xy

x
x

1

dx

y top
  = x

ybot
 = x3

FIGURE 6.3.12 Revolution around
the y-axis (Example 3).

and y = x3 ((Fig. 6.3.11). Use the method of cylindrical shells to compute the volume
of the solids obtained by revolving this region first around the y-axis and then around
the x-axis.

Solution It is best to use cylindrical shells, as in Figs. 6.3.12 and 6.3.13, rather than
memorized formulas, to set up the appropriate integrals. Thus the volume of revolution
around the y-axis (Fig. 6.3.12) is given by

V =
∫ 1

0
2πx(ytop − ybot) dx =

∫ 1

0
2πx

(√
x − x3

)
dx

=
∫ 1

0
2π

(
x3/2 − x4

)
dx = 2π

[
2
5 x5/2 − 1

5 x5
]1

0
= 2

5π.

The volume of revolution around the x-axis (Fig. 6.3.13) is given by

V =
∫ 1

0
2πy(xright − xleft) dy =

∫ 1

0
2πy

(
y1/3 − y2

)
dy

=
∫ 1

0
2π

(
y4/3 − y3

)
dy = 2π

[
3
7 y7/3 − 1

4 y4
]1

0
= 5

14π.

The answers are the same, of course, as those we obtained by using the method of cross
sections in Example 5 of Section 6.2. ◗

EXAMPLE 4 Suppose that the region of Example 3 is rotated around the vertical line
x = −1 (Fig. 6.3.14). Then the area element

d A = (ytop − ybot) dx = (√
x − x3

)
dx

is revolved through a circle of radius r = 1 + x . Hence the volume of the resulting
cylindrical shell is

y

x

x left
 = y2

y

1
xright

 = y1/3

dy

FIGURE 6.3.13 Revolution around
the x-axis (Example 3).

dV = 2πr d A = 2π(1 + x)
(
x1/2 − x3

)
dx

= 2π
(
x1/2 + x3/2 − x3 − x4

)
dx .
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y

x
dx

1 x

y top − ybot = x − x3

1 x = −1

 x + 1

x

FIGURE 6.3.14 Revolution around the vertical line
x = −1 (Example 4).

The volume of the resulting solid of revolution is then

V =
∫ 1

0
2π

(
x1/2 + x3/2 − x3 − x4

)
dx

= 2π
[

2
3 x3/2 + 2

5 x5/2 − 1
4 x4 − 1

5 x5
]1

0
= 37

30π,

as we found by using the method of cross sections in Example 6 of Section 6.2. ◗

We may observe finally that the method of cylindrical shells is summarized by
the heuristic formula

V =
∫ ��

�

2πr dA,

where dA denotes the area of an infinitesimal strip that is revolved through a circle
of radius r to generate a thin cylindrical shell. The asterisks indicate limits of integra-
tion that you need to find.

6.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The volume of the cylindrical shell of Fig. 6.3.1 is 2πr th where r is its average
radius, t its thickness, and h its height.

2. Suppose that f is continuous and positive-valued for 0 � a � x � b and that S
is the region lying between the graph of f and the x-axis for x in [a, b]. If S is
rotated around the y-axis, then the volume of the solid thereby generated is

V =
∫ b

a
2πx f (x) dx .

3. The volume that remains after a circular hole of radius a is bored through the
center of a solid sphere of radius b > a is 4

3π(b2 − a2)3/2.
4. Suppose that 0 � a < b, that 0 � g(x) � f (x) for x in [a, b], and that f and g

are continuous on [a, b]. Let A denote the region between the graphs of f and
g for a � x � b. If A is rotated around the y-axis, then the volume of the solid
thereby generated is

V =
∫ b

a
2πx [ f (x) − g(x)] dx .

5. Suppose that f is continuous and positive-valued for 0 � c � y � d and that S
is the region lying between the graph of x = f (y) and the y-axis for y in [c, d].
If S is rotated around the x-axis, then the volume of the solid thereby generated
is

V =
∫ d

c
2πy f (y) dy.
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6. Suppose that 0 � c < d, that 0 � g(y) � f (y) for y in [c, d], and that f and
g are continuous on [c, d]. Let A denote the region between the graphs of f and
g for c � y � d . If A is rotated around the x-axis, then the volume of the solid
thereby generated is

A =
∫ d

c
2πy [ f (y) − g(y)] dy.

7. Whether the region of Fig. 6.3.11 is rotated around the x-axis or around the y-
axis, the volume generated is the same either way.

8. It is proved in Section 6.3 that the method of cross sections yields the same
volume for a given solid of revolution as does the method of cylindrical shells.

9. The method of cross sections always leads to a simpler integral than the method
of cylindrical shells.

10. In Example 4 the area element d A = (√
x − x3

)
dx is rotated around a circle of

radius 1 + x .

6.3 CONCEPTS: QUESTIONS AND DISCUSSION
In the text’s discussion of the solid of revolution illustrated in Fig. 6.3.2, �Vi denotes
the part of the entire volume V that is obtained by revolving just the strip that lies
under the graph of y = f (x) over the i th subinterval [xi−1, xi ]. We argued that �Vi is
approximated by �Vi ≈ 2πxi f (xi ) �x .

1. Explain why continuity of the function f implies that �Vi = 2πxi f (x�
i ) �x

exactly for some point x�
i in the i th subinterval.

2. Then the volume V of the entire solid of revolution is given exactly by

V =
n∑

i=1

�Vi =
n∑

i=1

2πxi f (x�
i ) �x

=
n∑

i=1

2πx�
i f (x�

i ) �x +
n∑

i=1

2π(xi − x�
i ) f (x�

i ) �x . (5)

Explain why continuity of f now implies that the last sum in (5) approaches zero
as n → +∞. Explain why this implies that

V =
∫ b

a
2πx f (x) dx .

6.3 PROBLEMS

In Problems 1 through 28, use the method of cylindrical shells
to find the volume of the solid generated by rotating around the
indicated axis the region bounded by the given curves.

1. y = x2, y = 0, x = 2; the y-axis

2. x = y2, x = 4; the y-axis

3. y = 25 − x2, y = 0; the y-axis (Fig. 6.3.15)

4. y = 2x2, y = 8; the y-axis (Fig. 6.3.16)

5. y = x2, y = 8 − x2; the y-axis

6. x = 9 − y2, x = 0; the x-axis

y

x

FIGURE 6.3.15 Problem 3.

y

x

FIGURE 6.3.16 Problem 4.
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7. x = y, x + 2y = 3, y = 0; the x-axis (Fig. 6.3.17)

8. y = x2, y = 2x ; the line y = 5

9. y = 2x2, y2 = 4x ; the x-axis

10. y = 3x − x2, y = 0; the y-axis

11. y = 4x − x3, y = 0; the y-axis (Fig. 6.3.18)

x

y

FIGURE 6.3.17 Problem 7.

y

x

FIGURE 6.3.18 Problem 11.

12. x = y3 − y4, x = 0; the line y = −2 (Fig. 6.3.19)

13. y = x − x3, y = 0 (0 � x � 1); the y-axis

14. x = 16 − y2, x = 0, y = 0 (0 � y � 4); the x-axis

15. y = x − x3, y = 0 (0 � x � 1); the line x = 2
(Fig. 6.3.20)

y

x

FIGURE 6.3.19 Problem 12.

x

y

FIGURE 6.3.20 Problem 15.

16. y = x3, y = 0, x = 2; the y-axis (Fig. 6.3.21)

y

x

FIGURE 6.3.21 Problem 16.

17. y = x3, y = 0, x = 2; the line x = 3

18. y = x3, y = 0, x = 2; the x-axis

19. y = x2, y = 0, x = −1, x = 1; the line x = 2

20. y = x2, y = x (0 � x � 1); the y-axis

21. y = x2, y = x (0 � x � 1); the x-axis

22. y = x2, y = x (0 � x � 1); the line y = 2

23. y = x2, y = x (0 � x � 1); the line x = −1

24. y = 1

x2
, y = 0, x = 1, x = 2; the y-axis

25. y = e−x2
, y = 0, x = 0, x = 1; the y-axis

26. y = 1

1 + x2
, y = 0, x = 0, x = 2; the y-axis

27. y = sin(x2) and y = − sin(x2) for 0 � x �
√

π ; the y-axis
(Fig. 6.3.22)

y

y = sin x2

y = −sin x2

x

FIGURE 6.3.22 Problem 27.

28. y = 1

x2
, y = 0, x = 1, x = 2; the line x = −1

In Problems 29 through 34, first use a calculator or computer
to approximate (graphically or otherwise) the points of intersec-
tion of the two given curves. Let R be the region bounded by
these curves. Integrate to approximate the volume of the solid
obtained by revolving the region R around the y-axis. In Prob-
lems 31 through 34 you will find helpful the integral formula∫

u cos u du = cos u + u sin u + C,

which you can verify by differentiation of the right-hand side.

29. y = x3 + 1, y = 6x − x2 (R lies to the right of the
y-axis)

30. y = x4, y = 10x − 5

31. y = cos x , y = x2

32. y = cos x , y = (x − 1)2

33. y = cos x , y = 3x2 − 6x + 2

34. y = 3 cos x , y = − cos 4x (R lies between x = −2 and
x = 2)

35. Verify the formula for the volume of a right circular cone
by using the method of cylindrical shells. Apply the
method to the figure generated by rotating the triangular
region with vertices (0, 0), (r, 0), and (0, h) around the
y-axis.

36. Use the method of cylindrical shells to compute the volume
of the paraboloid of Problem 43 in Section 6.2.

37. Use the method of cylindrical shells to find the volume of the
ellipsoid obtained by revolving the elliptical region bounded
by the graph of the equation

( x

a

)2 +
( y

b

)2 = 1

around the y-axis.

38. Use the method of cylindrical shells to derive the formula
given in Problem 48 of Section 6.2 for the volume of a spher-
ical segment.

39. Use the method of cylindrical shells to compute the volume
of the torus in Problem 49 in Section 6.2. [Suggestion: Sub-
stitute u for x − b in the integral given by the formula in
Eq. (2).]
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40. (a) Find the volume of the solid generated by revolving the
region bounded by the curves y = x2 and y = x + 2 around
the line x = −2. (b) Repeat part (a), but revolve the region
around the line x = 3.

41. Find the volume of the solid generated by revolving the cir-
cular disk x2 + y2 � a2 around the vertical line x = a.

42. (a) Verify by differentiation that∫
xex dx = (x − 1)ex + C.

(b) Find the volume of the solid obtained by rotating
around the y-axis the area under y = ex from x = 0 to
x = 1.

43. We found in Example 2 that the volume remaining after a
hole of radius a is bored through the center of a sphere of
radius b > a is

V = 4
3 π(b2 − a2)3/2.

(a) Express the volume V in this formula without use of the
hole radius a; use instead the hole height h. [Suggestion:
Use the right triangle in Fig. 6.3.8.] (b) What is remarkable
about the answer to part (a)?

44. The plane region R is bounded above and on the right by
the graph of y = 25 − x2, on the left by the y-axis, and be-
low by the x-axis. A paraboloid is generated by revolving R
around the y-axis. Then a vertical hole of radius 3 and cen-
tered along the y-axis is bored through the paraboloid. Find
the volume of the solid that remains by using (a) the method
of cross sections and (b) the method of cylindrical shells.

45. The loop of the curve y2 = x(5 − x)2 bounds the region
shown in Fig. 6.3.23. Find the volume of the solid obtained
when this region is revolved around (a) the x-axis; (b) the
y-axis; (c) the line x = 5.

46. The loop of the curve y2 = x2(x + 3) bounds the region
shown in Fig. 6.3.24. Find the volume of the solid obtained

when this region is revolved around (a) the x-axis; (b) the y-
axis; (c) the line x = −3. Suggestion: If useful, substitute
u = x + 3 before integrating.

y2 = x(5 − x)2

−1 0 1 2 3 4 5 6
−8

−6

−4

−2

0

2

4

6

8

x

y

FIGURE 6.3.23 The region
of Problem 45.

y2 = x2(x + 3)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x

y

FIGURE 6.3.24 The region
of Problem 46.

47. Figure 6.3.25 illustrates the solid concrete birdbath whose
shape is obtained by revolving around the y-axis the region
that lies between the curves

y = 1 + x2

5
− x4

500
and y = x4

10000
.

(a) Calculate the volume of concrete used in making this
birdbath. (b) Calculate the volume of water it holds when
full.

FIGURE 6.3.25 The concrete
birdbath of Problem 47.

6.3 INVESTIGATION: Design Your Own Ring!
This project deals with the custom-made gold wedding band pictured in Fig. 6.3.26.
Its shape is obtained by revolving the region A shown in Fig. 6.3.27 around the vertical
axis shown there. The resulting wedding band has

• Inner radius R,
• Minimum thickness T , and
• Width W .

The curved boundary of the region A is an arc of a circle whose center lies on the axis
of revolution. For a typical wedding band, R might be anywhere from 6 to 12 mm, T
might be 0.5 to 1.5 mm, and W might be 4 to 10 mm.

If a customer asks the price of a wedding band with given dimensions R, T , and
W , the jeweler must first calculate the volume of the desired band to determine how
much gold will be required to make it. Use the methods of this section to show that the
volume V is given by the formula

V = πW

6
(W 2 + 12RT + 6T 2). (1)
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FIGURE 6.3.26 Wedding band.

T

WR A

Axis of
revolution

FIGURE 6.3.27 Cross section
of the wedding band.

If these dimensions are measured in millimeters, then V is given in cubic millimeters.
(There are 1000 mm3 in 1 cm3.)

Suppose that the jeweler plans to charge the customer $1000 per troy ounce of
alloy (90% gold, 10% silver) used to make the ring. (The profit on the sale, covering
the jeweler’s time and overhead in making the ring, is fairly substantial because the
price of gold is generally under $400/oz, and that of silver under $6/oz.) The inner
radius R of the wedding band is determined by the measurement of the customer’s
finger (in millimeters; there are exactly 25.4 mm per inch). Suppose that the jeweler
makes all wedding bands with T = 1 (mm). Then, for a given acceptable cost C (in
dollars), the customer wants to know the maximum width W of the wedding band he
or she can afford.

Investigation Measure your own ring finger to determine R (you can measure its cir-
cumference C with a piece of string and then divide by 2π ). Then choose a cost figure
C in the $100 to $500 price range. Use Eq. (1) with T = 1 to find the width W of a
band that costs C dollars (at $1000/oz). You will need to know that the density of the
gold-silver alloy is 18.4 g/cm3 and that 1 lb contains 12 troy ounces and 453.59 g. Use
a graphics calculator or a calculator with a SOLVE key to solve the resulting cubic
equation in W .

6.4 ARC LENGTH AND SURFACE AREA OF REVOLUTION

If you plan to hike the Appalachian Trail, you will need to know the length of thisy

x

y

x

g (x) = x2/3

f (x) = ⎜x⎜

FIGURE 6.4.1 Graphs that have
corner points.

curved path so you’ll know how much equipment to take. Here we investigate how to
find the length of a curved path and the closely related idea of finding the surface area
of a curved surface.

A smooth arc is the graph of a smooth function defined on a closed interval; a
smooth function f on [a, b] is a function whose derivative f ′ is continuous on [a, b].
The continuity of f ′ rules out the possibility of corner points on the graph of f , points
where the direction of the tangent line changes abruptly. The graphs of f (x) = |x | and
g(x) = x2/3 are shown in Fig. 6.4.1; neither is smooth because each has a corner point
at the origin.

The Length of a Curve
To investigate the length of a smooth arc, we begin with the length of a straight line
segment, which is simply the distance between its endpoints. Then, given a smooth
arc C , we pose the following question: If C were a thin wire and we straightened it
without stretching it, how long would the resulting straight wire be? The answer is
what we call the length of C .

To approximate the length s of the smooth arc C , we can inscribe in C a polyg-
onal arc—one made up of straight line segments—and then calculate the length of
this polygonal arc. We proceed in the following way, under the assumption that C
is the graph of a smooth function f defined on the closed interval [a, b]. Consider
a partition of [a, b] into n subintervals, all with the same length �x . Let Pi denote
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the point (xi , f (xi )) on the arc C corresponding to the i th subdivision point xi . Our
polygonal arc “inscribed in C” is then the union of the line segments P0 P1, P1 P2,
P2 P3, . . . , Pn−1 Pn . So an approximation to the length s of C is

s ≈
n∑

i=1

|Pi−1 Pi | , (1)

the sum of the lengths of these line segments (Fig. 6.4.2). Our plan is to take the limit
of this sum as n → ∞: We want to evaluate

s = lim
n→∞

n∑
i=1

|Pi−1 Pi |.

y

xxi − 1

 C :  y  = f (x)

xi ba

Pi − 1

Pi 

xi
★

FIGURE 6.4.2 A polygonal arc inscribed in the smooth
curve C .

The length of the typical line segment Pi−1 Pi is

|Pi−1 Pi | = [(xi − xi−1)
2 + ( f (xi ) − f (xi−1))

2]1/2.

We apply the mean value theorem to the function f on the interval [xi−1, xi ] and
thereby conclude the existence of a point x�

i in this interval such that

f (xi ) − f (xi−1) = f ′(x�
i ) · (xi − xi−1).

Hence

|Pi−1 Pi | =
[

1 +
(

f (xi ) − f (xi−1)

xi − xi−1

)2
]1/2

· (xi − xi−1)

=
√

1 + [
f ′(x�

i )
]2

�x,

where �x = xi − xi−1.
We next substitute this expression for |Pi−1 Pi | into Eq. (1) and get the approxi-

mation

s ≈
n∑

i=1

√
1 + [

f ′(x�
i

]2
�x .

This sum is a Riemann sum for the function
√

1 + [ f ′(x)]2 on [a, b], and therefore—
because f ′ is continuous—such sums approach the integral∫ b

a

√
1 + [ f ′(x)]2 dx

as �x → 0. But our approximation ought to approach, as well, the actual length s as
�x → 0. On this basis we define the length s of the smooth arc C to be

s =
∫ b

a

√
1 + [ f ′(x)]2 dx =

∫ b

a

√
1 +

(
dy

dx

)2

dx . (2)
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EXAMPLE 1 Find the length of the so-called semicubical parabola (it’s not really ay

x

y = x3/2 

x = 5

FIGURE 6.4.3 The semicubical
parabola of Example 1.

parabola) y = x3/2 on [0, 5] (Fig. 6.4.3).

Solution We first compute the integrand in Eq. (2):√
1 +

(
dy

dx

)2

=
√

1 + (
3
2 x1/2

)2 =
√

1 + 9
4 x = 1

2 (4 + 9x)1/2.

Hence the length of the arc y = x3/2 over the interval [0, 5] is

s =
∫ 5

0

1
2 (4 + 9x)1/2 dx =

[
1

27 (4 + 9x)3/2
]5

0
= 335

27 ≈ 12.41.

As a plausibility check, the endpoints of the arc are (0, 0) and (5, 5
√

5), so the straight
line segment connecting these points has length 5

√
6 ≈ 12.25. This is, as it should be,

somewhat less than the calculated length of the arc. ◗

EXAMPLE 2 A manufacturer needs to make corrugated metal sheets 36 in. wide
with cross sections in the shape of the curve

y = 1
2 sin πx, 0 � x � 36

(Fig. 6.4.4). How wide must the original flat sheets be for the manufacturer to produce
these corrugated sheets?

0 2 4 3634

FIGURE 6.4.4 The corrugated metal sheet in the shape of
y = 1

2 sin πx (Example 2).

Solution If

f (x) = 1
2 sin πx, then f ′(x) = 1

2π cos πx .

Hence Eq. (2) yields the arc length of the graph of f over [0, 36]:

s =
∫ 36

0

√
1 + (

1
2π

)2
cos2 πx dx = 36

∫ 1

0

√
1 + (

1
2π

)2
cos2 πx dx .

These integrals cannot be evaluated in terms of elementary functions. Because of this,
we cannot apply the fundamental theorem of calculus. So we estimate their values with
the aid of Simpson’s approximation (Section 5.9). Both with n = 6 and with n = 12
subintervals we find that ∫ 1

0

√
1 + (

1
2π

)2
cos2 πx dx ≈ 1.46

inches. Therefore the manufacturer should use flat sheets of approximate width
36 · 1.46 ≈ 52.6 in. ◗

Arc Length by Integration with Respect to y
In the case of a smooth arc given as a graph x = g(y) for y in [c, d], a similar discus-
sion beginning with a subdivision of [c, d] leads to the formula

s =
∫ d

c

√
1 + [g′(y)]2 dy =

∫ d

c

√
1 +

(
dx

dy

)2

dy (3)
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Arc Length and Surface Area of Revolution SECTION 6.4 449

for its length. We can compute the length of a more general curve, such as a circle, by
dividing it into a finite number of smooth arcs and then applying to each of these arcs
whichever of Eqs. (2) and (3) is required.

EXAMPLE 3 Find the length s of the curve (Fig. 6.4.5)

x

y

2.5

2

1.5

1

0.5

0
2.50 0.5 1 1.5 2

x = y3 +

( ,, 1)2
3

1
6

,, 2)(19
12

1
2y

FIGURE 6.4.5 The curve of
Example 3 (although we can
calculate its arc length without even
visualizing it).

x = 1

6
y3 + 1

2y
, 1 � y � 2.

Solution Here y is the natural independent variable, so we use the arc-length formula
in Eq. (3). First we calculate

1 +
(

dx

dy

)2

= 1 +
(

1

2
y2 − 1

2y2

)2

= 1 + 1

4
y4 − 1

2
+ 1

4y4

= 1

4
y4 + 1

2
+ 1

4y4
=

(
1

2
y2 + 1

2y2

)2

.

Thus we can “get out from under the radical” in Eq. (3):

s =
∫ d

c

√
1 +

(
dx

dy

)2

dy =
∫ 2

1

(
1

2
y2 + 1

2y2

)
dy

=
[

1

6
y3 − 1

2y

]2

1

= 17

12
. ◗

A Symbolic Device
There is a convenient symbolic device that we can employ to remember both Eqs. (2)

Q (x + dx, y + dy)

P (x, y)

s

C

P0

ds
dy

dx

FIGURE 6.4.6 Heuristic
development of the arc-length
formula.

and (3) simultaneously. We think of two nearby points P(x, y) and Q(x +dx, y +dy)

on the smooth arc C and denote by ds the length of the arc that joins P and Q. Imagine
that P and Q are so close together that ds is, for all practical purposes, equal to the
length of the straight line segment PQ. Then the Pythagorean theorem applied to the
small right triangle in Fig. 6.4.6 gives

ds =
√

(dx)2 + (dy)2 (4)

=
√

1 +
(

dy

dx

)2

dx (4′)

=
√

1 +
(

dx

dy

)2

dy. (4′′)

Thinking of the entire length s of C as the sum of small pieces such as ds, we write

s =
∫ ��

�

ds. (5)

Then formal (symbolic) substitution of the expressions in Eqs. (4′) and (4′′) for ds in
Eq. (5) yields Eqs. (2) and (3); only the limits of integration remain to be determined.

Cones and Conical Frusta
A surface of revolution is a surface obtained by revolving an arc or curve around an
axis that lies in the same plane as the arc. The surface of a cylinder or of a sphere and
the curved surface of a cone are important as examples of surfaces of revolution.

Our basic approach to finding the area of such a surface is this: First we inscribe
a polygonal arc in the curve to be revolved. We then regard the area of the surface gen-
erated by revolving the polygonal arc to be an approximation to the surface generated
by revolving the original curve. Because a surface generated by revolving a polygonal
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450 CHAPTER 6 Applications of the Integral

arc around an axis consists of frusta (sections) of cones, we can calculate its area in a
reasonably simple way.

This approach to surface area originated with Archimedes. For example, he used
this method to establish the formula A = 4πr2 for the surface area of a sphere of radius
r .

We will need the formula

r2

r1

L

FIGURE 6.4.7 A frustum of a
cone; the slant height is L .

A = 2πr L (6)

for the curved surface area of a conical frustum with average radius r = 1
2 (r1 + r2) and

slant height L (Fig. 6.4.7). Equation (6) follows from the formula

A = πr L (7)

for the area of a conical surface with base radius r and slant height L (Fig. 6.4.8). It
is easy to derive Eq. (7) by “unrolling” the conical surface onto a sector of a circle of
radius L , because the area of this sector is

A = 2πr

2π L
· π L2 = πr L .

r

L

Slant height (radius) L

Arc length 2πr

FIGURE 6.4.8 Surface area of a cone:
Cut along L , then unroll the cone onto the
circular sector.

To derive Eq. (6) from Eq. (7), we think of the frustum as the lower section of a

r1

r2

L1

L2 = L + L1

L

FIGURE 6.4.9 Derivation
of Eq. (6).

cone with slant height L 2 = L + L 1 (Fig. 6.4.9). Then subtracting the area of the upper
conical section from that of the entire cone gives

A = πr2L2 − πr1L1 = πr2(L + L1) − πr1L1 = π(r2 − r1)L1 + πr2L

for the area of the frustum. But the similar right triangles in Fig. 6.4.9 yield the pro-
portion

r1

L 1
= r2

L 2
= r2

L + L 1
,

from which we find that (r2 − r1)L 1 = r1L . Hence the area of the frustum is

A = πr1L + πr2L = 2πr L ,

where r = 1
2 (r1 + r2). So we have verified Eq. (6).

Surface Area of Revolution
Suppose that the surface S has area A and is generated by revolving around the
x-axis the smooth arc y = f (x), a � x � b; suppose also that f (x) is never negative
on [a, b]. To approximate A we begin with a division of [a, b] into n subintervals,
each of length �x . As in our discussion of arc length leading to Eq. (2), let Pi denote
the point (xi , f (xi )) on the arc. Then, as before, the line segment Pi−1 Pi has length

L i = |Pi−1 Pi | =
√

1 + [
f ′(x�

i )
]2

�x

for some point x�
i in the i th subinterval [xi−1, xi ].
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The conical frustum obtained by revolving the segment Pi−1 Pi around the x-axis
has slant height Li and, as shown in Fig. 6.4.10, average radius

r i = 1
2

[
f (xi−1) + f (xi )

]
.

Because r i lies between the values f (xi−1) and f (xi ), the intermediate value property
of continuous functions (Section 2.4) yields a point x��

i in [xi−1, xi ] such that r i =
f (x��

i ). By Eq. (6), the area of this conical frustum is, therefore,

2πr i Li = 2π f (x��
i )

√
1 + [

f ′(x�
i )

]2
�x .

y

xxi − 1 xi
★ xi

Midpoint

Pi − 1

Pi

f (xi − 1) f (xi )ri 

ix★★

FIGURE 6.4.10 Approximating a surface
area of revolution by the surface of a
frustum of a cone.

We add the areas of these conical frusta for i = 1, 2, 3, . . . , n. This gives the
approximation

A ≈
n∑

i=1

2π f (x��
i )

√
1 + [

f ′(x�
i )

]2
�x .

If x�
i and x��

i were the same point of the i th subinterval [xi−1, xi ], then this approxima-
tion would be a Riemann sum for the integral∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx .

Even though the numbers x�
i and x��

i are generally not equal, it still follows (from a
result in Appendix G) that our approximation approaches the integral above as �x →
0. Intuitively, this is easy to believe; after all, as �x → 0, the difference between x�

i
and x��

i also approaches zero.
We therefore define the area A of the surface generated by revolving around the

x-axis the smooth arc y = f (x), a � x � b, by the formula

A =
∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx . (8)

If we write y for f (x) and ds for
√

1 + (dy/dx)2 dx , as in Eq. (4′), then we can
abbreviate Eq. (8) as

A =
∫ b

a
2πy ds (x-axis). (9)

This abbreviated formula is conveniently remembered by thinking of d A = 2πy ds as
the area of the narrow frustum obtained by revolving the tiny arc ds around the x-axis
in a circle of radius y (Fig. 6.4.11).

y

y

ds

x

FIGURE 6.4.11 The tiny arc ds
generates a ribbon with
circumference 2πy when it is
revolved around the x-axis.
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EXAMPLE 4 Figure 6.4.12 shows the horn-shaped surface generated by revolving

0 0.5 1 1.5 2 2.5

−5

0

5

y

x

FIGURE 6.4.12 The “horn”
generated by revolving the curve
y = x3, 0 � x � 2, around the x-axis.

the curve y = x3, 0 � x � 2, around the x-axis. Find its surface area of revolution.

Solution Substituting y = x3 and

ds =
√

1 + [y′(x)]2 dx =
√

1 + 9x4 dx

in Eq. (9), we get

A =
∫ 2

0
2πx3(1 + 9x4)1/2 dx (let u = 1 + 9x4)

=
[

π

27
(1 + 9x4)3/2

]2

0

= π

27

(
1453/2 − 1

) ≈ 203.04. ◗

If the smooth arc being revolved around the x-axis is given instead by x = g(y),
c � y � d, then an approximation based on a subdivision of [c, d] leads to the area
formula

A =
∫ d

c
2πy

√
1 + [g′(y)]2 dy. (10)

We can obtain Eq. (10) by making the formula substitution ds = √
1 + (dx/dy)2 dy

of Eq. (4′′) into the abbreviated formula in Eq. (9) for surface area of revolution and
then replacing a and b with the correct limits of integration.

Revolution Around the y-Axis

Now let us consider the surface generated by revolving a smooth arc around the y-axis
rather than around the x-axis In Fig. 6.4.13 we see that the average radius of the narrow
frustum obtained by revolving the tiny arc ds is now x instead of y. This suggests the
abbreviated formula

A =
∫ b

a
2πx ds (y-axis) (11)

for a surface area of revolution around the y-axis. If the smooth arc is given by y =

y

x

x

ds

FIGURE 6.4.13 The tiny arc ds
generates a ribbon with
circumference 2πx when it is
revolved around the y-axis.

f (x), a � x � b, then the symbolic substitution ds = √
1 + (dy/dx)2 dx gives

A =
∫ b

a
2πx

√
1 + [ f ′(x)]2 dx . (12)

But if the smooth arc is presented in the form x = g(y), c � y � d , then the symbolic
substitution of ds = √

1 + (dx/dy)2 dy into Eq. (11) gives

A =
∫ d

c
2πg(y)

√
1 + [g′(y)]2 dy. (13)

Equations (12) and (13) may be verified by using approximations similar to the one
leading to Eq. (8).

EXAMPLE 5 Find the area of the paraboloid shown in Fig. 6.4.14, which is obtained
by revolving the parabolic arc y = x2, 0 � x �

√
2, around the y-axis.

y

x
2

2

y = x2

(     , 2)

FIGURE 6.4.14 The paraboloid of
Example 5.
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Solution Following the suggestion that precedes the example, we get

A =
∫ ��

�

2πx ds =
∫ b

a
2πx

√
1 +

(
dy

dx

)2

dx

=
∫ √

2

0
2πx

√
1 + (2x)2 dx

=
∫ √

2

0

π

4
(1 + 4x2)1/2 · 8x dx =

[
π

6
(1 + 4x2)3/2

]√
2

0

= 13

3
π. ◗

SURFACE AREA SUMMARY
In conclusion, we have four formulas for areas of surfaces of revolution, summarized
in the table in Fig. 6.4.15. Which of these formulas is appropriate for computing the
area of a given surface depends on two factors:

1. Whether the smooth arc that generates the surface is presented in the form y =
f (x) or in the form x = g(y), and

2. Whether this arc is to be revolved around the x-axis or around the y-axis.

Description
of curve C

y = f (x),
a � x � b

x = g(y)

c � y � d

Axis of revolution

x-axis y-axis

∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx (8)

∫ b

a
2πx

√
1 + [ f ′(x)]2 dx (12)

∫ d

c
2πy

√
1 + [g′(y)]2 dy (10)

∫ d

c
2πg(y)

√
1 + [g′(y)]2 dy (13)

FIGURE 6.4.15 Area formulas for surfaces of revolution.

Memorizing the four formulas in the table is unnecessary. We suggest that you
instead remember the abbreviated formulas in Eqs. (9) and (11) in conjunction with
Figs. 6.4.11 and 6.4.13 and make either the substitution

y = f (x), ds =
√

1 +
(

dy

dx

)2

dx

or the substitution

x = g(y), ds =
√

1 +
(

dx

dy

)2

dy,

depending on whether the smooth arc is presented as a function of x or as a function
of y. It may also be helpful to note that all four of these surface-area formulas have the
form

A =
∫ ��

�

2πr ds, (14)

where r denotes the radius of the circle around which the arc length element ds is
revolved.

As in earlier sections, we again caution you to identify the independent variable
by examining the differential and to express every dependent variable in terms of the
independent variable before you antidifferentiate. That is, either express everything,
including ds, in terms of x (and dx) or everything in terms of y (and dy).
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The decision of which abbreviated formula—Eq. (9) or Eq. (11)—to use is de-
termined by the axis of revolution. In contrast, the decision of whether the variable of
integration should be x or y is made by the way in which the smooth arc is given: as
a function of x or as a function of y. In some problems, either x or y may be used as
the variable of integration, but the integral is usually much simpler to evaluate if you
make the correct choice. Experience is very helpful here. Right now, try Example 5
with independent variable y.

6.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The length of the part of the sine curve shown in the following figure can be
approximated accurately by adding the lengths of inscribed chords (such as are
shown in the figure).

1 2 3 4 5 6
x

−1

−0.5

0.5

1
y

2. If f ′ is continuous on [a, b], then the length of its graph there is defined to be

L =
∫ b

a

√
1 + [ f ′(x)]2 dx .

3. If f ′ is continuous on [a, b], then the definite integral in Question 2 exists.
4. If x = g(t) and g′ is continuous for c � y � d, then the length of its graph there

is

L =
∫ d

c

√
1 + [g′(y)]2 dy.

5. In Section 6.4 it is proved that if both the formula in Question 2 and the formula
in Question 4 can be used to find the length of a graph, then the results are the
same.

6. The curved surface area of the conical frustum of Fig. 6.4.7 is 2πr L where L is
its slant height and r is the average of the radii of its two bases.

7. If f ′ is continuous, f (x) is positive for a � x � b, and the graph of y = f (x)

(a � x � b) is rotated around the x-axis, then the surface area of revolution
thereby generated is

A =
∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx .

8. If f ′ is continuous, f (x) is positive for 0 � a � x � b, and the graph of
y = f (x) (a � x � b) is rotated around the y-axis, then the surface area of
revolution thereby generated is

A =
∫ b

a
2πx

√
1 + [ f ′(x)]2 dx .

9. The surface area of the surface shown in Fig. 6.4.12 is approximately 203.04.
10. The surface area of the paraboloid shown in Fig. 6.4.14 is exactly 13

3 π .
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6.4 CONCEPTS: QUESTIONS AND DISCUSSION
Frequently a concept is enriched when it is viewed from different perspectives.

1. Show that the arc length method of this section gives

C = 8
∫ 1/

√
2

0

1√
1 − x2

dx

for the circumference of the unit circle x2 + y2 = 1. In Section 6.8 we will see
that

Dx sin−1 x = 1√
1 − x2

,

where y = sin−1 x denotes the angle in [−π/2, π/2] such that sin y = x . Con-
clude that

C = 8
[
sin−1 x

]1/
√

2

0
= 8

(
π

4
− 0

)
= 2π.

2. Suppose that Pn denotes the perimeter of a regular polygon with n sides inscribed
in the unit circle. Assume that the limit P = limn→∞ Pn exists (it does). Can
you conclude from the definition of the integral as a limit of Riemann sums that
P = C (the circumference of the circle of Question 1)?

3. Can you prove that the limit P = limn→∞ Pn in Question 2 exists? Can you
show that if Qm is the perimeter of a regular polygon with m sides circumscribed
about the unit circle, then Pn < Qm? Can you see that this implies that there is a
limit as to how large Pn can be?

4. Problem 52 in Section 5.3 implies that the perimeter Pn of Question 2 is given by

Pn = 2n sin
π

n
.

Use l’Hôpital’s rule to show that P = limn→∞ Pn = 2π .

6.4 PROBLEMS

In Problems 1 through 10, set up and simplify the integral that
gives the length of the given smooth arc. Do not evaluate the
integral.

1. y = x2, 0 � x � 1

2. y = x5/2, 1 � x � 3

3. y = 2x3 − 3x2, 0 � x � 2

4. y = x4/3, −1 � x � 1

5. y = 1 − x2, 0 � x � 100

6. x = 4y − y2, 0 � y � 1

7. x = y4, −1 � y � 2

8. y = ex , 0 � x � 1

9. y = ln x , 1 � x � 2

10. y = ln(cos x), 0 � x � π/4

In Problems 11 through 20, set up and simplify the integral that
gives the surface area of revolution generated by rotation of the
given smooth arc around the given axis. Do not evaluate the in-
tegral.

11. y = x2, 0 � x � 4; the x-axis

12. y = x2, 0 � x � 4; the y-axis

13. y = x − x2, 0 � x � 1; the x-axis

14. y = x2, 0 � x � 1; the line y = 4

15. y = x2, 0 � x � 1; the line x = 2

16. y = x − x3, 0 � x � 1; the x-axis

17. y = ln(x2 − 1), 2 � x � 3; the y-axis

18. y = √
x , 1 � x � 4; the y-axis

19. y = ln(x + 1), 0 � x � 1; the line x = −1

20. y = x5/2, 1 � x � 4; the line y = −2

Find the lengths of the smooth arcs in Problems 21 through 28.

21. y = 2
3 (x2 + 1)3/2 from x = 0 to x = 2

22. x = 2
3 (y − 1)3/2 from y = 1 to y = 5

23. y = 1

6
x3 + 1

2x
from x = 1 to x = 3

24. x = 1

8
y4 + 1

4y2
from y = 1 to y = 2

25. 8x2 y − 2x6 = 1 from
(
1, 3

8

)
to

(
2, 129

32

)
26. 12xy − 4y4 = 3 from

(
7
12 , 1

)
to

(
67
24 , 2

)
27. y = 1

2 (ex + e−x ) from x = 0 to x = 1

28. y = 1
8 x2 − ln x from x = 1 to x = 2
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In Problems 29 through 35, find the area of the surface of revolu-
tion generated by revolving the given curve around the indicated
axis.

29. y = √
x , 0 � x � 1; the x-axis

30. y = x3, 1 � x � 2; the x-axis

31. y = 1

5
x5 + 1

12x3
, 1 � x � 2; the y-axis

32. x = 1

8
y4 + 1

4y2
, 1 � y � 2; the x-axis

33. y3 = 3x , 0 � x � 9; the y-axis

34. y = 1
2 (ex + e−x ), 0 � x � 1; the x-axis

35. y = x2 − 1
8 ln x , 1 � x � 2; the y-axis

36. Prove that the length of one arch of the sine curve y = sin x
is equal to half the circumference of the ellipse 2x2+y2 = 2.
[Suggestion: Substitute x = cos θ into the arc length integral
for the ellipse.]

37. Use Simpson’s approximation with n = 6 subintervals to
estimate the length of the sine arch of Problem 36.

38. Use Simpson’s approximation with n = 10 subintervals to
estimate the length of the parabola y = x2 from x = 0 to
x = 1.

39. Verify Eq. (6) for the curved surface area of a conical
frustum. Think of the frustum as being generated by re-
volving around the y-axis the line segment from (r1, 0) to
(r2, h).

40. By considering a sphere of radius r to be a surface of
revolution, derive the formula A = 4πr 2 for its surface
area.

41. Find the total length of the astroid shown in Fig. 6.4.16. The
equation of its graph is x2/3 + y2/3 = 1.

y

x

x2/3 + y2/3 = 1 

FIGURE 6.4.16 The astroid of
Problem 41.

42. Find the area of the surface generated by revolving the
astroid of Problem 41 around the y-axis (Fig. 6.4.17).

FIGURE 6.4.17 The
surface of Problem 42.

43. Figure 6.4.18 shows a spherical zone of height h—it is cut
out of the sphere by two parallel planes that intersect the
sphere. Show that the surface area of this zone is A = 2πrh,
where r is the radius of the sphere and h (the height of the
zone) is the distance between the two planes. Note that A de-
pends only on the height of the zone, and not (otherwise) on
the specific location of the two planes relative to the sphere.

hr

FIGURE 6.4.18 The spherical
zone of Problem 43.

44. Figure 6.4.19 shows a loop of the curve 32y2 = x2(4 − x2).
Find the surface area generated by revolving this loop around
the x-axis.

x

32y2 = x2 (4 − x2)

0 0.5 1
−1

−0.5

0

0.5

1

1.5 2 2.5

y

FIGURE 6.4.19 The loop of
Problem 44.

45. Figure 6.4.20 shows a cable for a suspension bridge. The ca-
ble has the shape of a parabola with equation y = kx2. The
suspension bridge has total span 2S and the height of the ca-
ble (relative to its lowest point) is H at each end. Show that
the total length of the cable is given by

L = 2
∫ S

0

√
1 + 4H 2

S4
x2 dx .

y

x

SS
H H

FIGURE 6.4.20 The parabolic
supporting cable of a suspension bridge.

46. Italian engineers have proposed a single-span suspension
bridge across the Strait of Messina (8 km wide) between
Italy and Sicily. The plans include suspension towers 380
meters high at each end. Use the integral in Problem 45 to
approximate the length L of the parabolic suspension cables
for this proposed bridge. Assuming that the given dimen-
sions are exact, use Simpson’s approximation to estimate the
integral with sufficient accuracy to determine L to the near-
est meter.
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6.5 FORCE AND WORK

The concept of work is introduced to measure the cumulative effect of a force in mov-
ing a body from one position to another. In the simplest case, a particle is moved along
a straight line by the action of a constant force. The work done by such a force is
defined to be the product of the force and the distance through which it acts. Thus if
the constant force has magnitude F and the particle is moved through the distance d,
then the work done by the force is given by

W = F · d. (1)

EXAMPLE 1 If a constant horizontal force of 50 newtons (N) is applied to a heavy
50-N force

10 m

FIGURE 6.5.1 A 50-N force does
500 N·m of work in pushing a
box 10 m.

box to push it a distance of 10 m along a rough floor (Fig. 6.5.1), then the work done
by the force is

W = 50 · 10 = 500

newton-meters (N·m). Note the units; because of the definition of work, units of work
are always products of force units and distance units. For another example, to lift a
weight of 75 lb a vertical distance of 5 ft, a constant force of 75 lb must be applied.
The work done by this force is

W = 75 · 5 = 375

foot-pounds (ft·lb). ◗

Work Done by a Variable Force
Here we use the integral to generalize the definition of work to the case in which a

F(x)

a x b

FIGURE 6.5.2 A variable force
pushing a particle from a to b.

particle is moved along a straight line by a variable force. Given a force function
F(x) defined at each point x of the straight line segment [a, b], we want to define the
work W done by this variable force in pushing the particle from the point x = a to the
point x = b (Fig. 6.5.2).

We begin with the usual partition of the interval [a, b] into n subintervals, all with
the same length �x = (b − a)/n. For each i (1 � i � n), let x�

i be an arbitrary point
of the i th subinterval [xi−1, xi ]. The key idea is to approximate the actual work �Wi

done by the variable force F(x) in moving the particle from xi−1 to xi by the work
F(x�

i ) �x (force × distance) done in moving a particle the distance �x from xi−1 to
F(xi

★)

xi − 1 xi
★ xi

FIGURE 6.5.3 The constant force
F(x�

i ) acting through the i th
subinterval.

xi (Fig. 6.5.3). Thus

�Wi ≈ F(x�
i ) �x . (2)

We approximate the total work W by summing from i = 1 to i = n:

W =
n∑

i=1

�Wi ≈
n∑

i=1

F(x�
i ) �x . (3)

But the final sum in (3) is a Riemann sum for F(x) on the interval [a, b], and as
n → +∞ (and �x → 0), such sums approach the integral of F(x) from x = a to
x = b. We therefore are motivated to define the work W done by the force F(x) in
moving the particle from x = a to x = b to be

W =
∫ b

a
F(x) dx . (4)

The following heuristic way of setting up Eq. (4) is useful in obtaining integrals
for work problems. Imagine that dx is so small a number that the value of F(x) does
not change appreciably on the tiny interval from x to x + dx . Then the work done by
the force F in moving a particle from x to x + dx should be very close to

dW = F(x) dx .
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The natural additive property of work then implies that we could obtain the total work
W by adding these tiny elements of work:

W =
∫ ��

�

dW =
∫ b

a
F(x) dx .

Elastic Springs
Consider a spring whose left end is held fixed and whose right end is free to move along
the x-axis. We assume that the right end is at the origin x = 0 when the spring has its
natural length—that is, when the spring is in its rest position, neither compressed nor
stretched by outside forces.

According to Hooke’s law for elastic springs, the force F(x) that must be exerted
on the spring to hold its right end at the point x is proportional to the displacement x
of the right end from its rest position. That is,

F(x) = kx, (5)

where k is a positive constant. The constant k, called the spring constant, is a charac-
teristic of the particular spring under study.

Figure 6.5.4 shows the arrangement of such a spring along the x-axis. The right
end of the spring is held at position x on the x-axis by a force F(x). The figure shows
the situation for x > 0, so the spring is stretched. The force that the spring exerts on
its right-hand end is directed to the left, so—as the figure indicates—the external force
F(x) must act to the right. The right is the positive direction here, so F(x) must be a
positive number. Because x and F(x) have the same sign, k must also be positive. You
can check that k is positive as well in the case x < 0.

x

x

x = 0

Natural
length L

x = 0

External force F(x)x

Stretch x

FIGURE 6.5.4 The stretch x is
proportional to the impressed force F .

Work in the sense of physics is different
than work in the sense of physiology. At
this moment the weightlifter is doing no
work in the physics sense because he is
holding the weight still.

EXAMPLE 2 Suppose that a spring has a natural length of 1 ft and that a force of
10 lb is required to hold it compressed to a length of 6 in. How much work is done in
stretching the spring from its natural length to a total length of 2 ft?

Solution To move the free end from x = 0 (the natural-length position) to x = 1
(stretched by 1 ft), we must exert a variable force F(x) determined by Hooke’s law.
We are given that F = −10 (lb) when x = −0.5 (ft), so Eq. (5), F = kx , implies that
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the spring constant for this spring is k = 20 (lb/ft). Thus F(x) = 20x , and so—using
Eq. (4)—we find that the work done in stretching this spring in the manner given is

W =
∫ 1

0
20x dx =

[
10x2

]1

0
= 10 (ft·lb). ◗

Work Done Against Gravity
According to Newton’s law of gravitation, the force that must be exerted on a body
to hold it at a distance r from the center of the earth is inversely proportional to r2

(if r � R, the radius of the earth). In other words, if F(r) denotes the holding force,
then

F(r) = k

r2
(6)

for some positive constant k. The value of this force at the surface of the earth, where
r = R ≈ 4000 mi (about 6370 km), is called the weight of the body.

Given the weight F(R) of a particular body, we can find the corresponding value
of k by using Eq. (6):

k = R2 · F(R).

The work that must be done to lift the body vertically from the surface to a distance
R1 > R from the center of the earth is then

W =
∫ R1

R

k

r2
dr. (7)

If distance is measured in miles and force in pounds, then this integral gives the work
in mile-pounds. This is a very unconventional unit of work. We shall multiply by
5280 (ft/mi) to convert any such result into foot-pounds.

EXAMPLE 3 (Satellite Launch) How much work must be done to lift a 1000-lb

Altitude:
1000 mi

Radius:
4000 mi

Satellite

FIGURE 6.5.5 A satellite in orbit
1000 mi above the surface of the
earth (Example 3).

satellite vertically from the earth’s surface to an orbit 1000 mi above the surface? See
Fig. 6.5.5, and take R = 4000 (mi) to be the radius of the earth.

Solution Because F = 1000 (lb) when r = R = 4000 (mi), we find from Eq. (6)
that

k = 40002 · 1000 = 16 × 109 (mi2·lb).

Then by Eq. (7), the work done is

W =
∫ 5000

4000

k

r2
dr =

[
−k

r

]5000

4000

= (16 × 109) · (
1

4000 − 1
5000

) = 8 × 105 (mi·lb).

We multiply by 5280 (ft/mi) and write the answer as

4.224 × 109 = 4,224,000,000 (ft·lb). ◗

We can instead express the answer to Example 3 in terms of the power that the
launch rocket must provide. Power is the rate at which work is done. For instance,
1 horsepower (hp) is defined to be 33,000 ft·lb/min. If the ascent to orbit takes 15 min
and if only 2% of the power generated by the rocket is effective in lifting the satellite
(the rest is used to lift the rocket and its fuel), we can convert the answer in Example 3
to horsepower. The average power that the rocket engine must produce during the
15-min ascent is

P = 50 · (4.224 × 109)

15 · 33,000
≈ 427,000 (hp).

The factor of 50 in the numerator comes from the 2% “efficiency” of the rocket: The
total power must be multiplied by 1/(0.02) = 50.
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Work Done in Filling a Tank
Examples 2 and 3 are applications of Eq. (4) for calculating the work done by a variable

a

Ground

y

y

b

Cross-
sectional
area A(y)

x

FIGURE 6.5.6 An aboveground
tank.

force in moving a particle a certain distance. Another common type of force-work
problem involves the summation of work done by constant forces that act through
different distances. For example, consider the problem of pumping a fluid from ground
level—where we take y = 0—up into an aboveground tank (Fig. 6.5.6).

It is convenient to think of the tank as being filled in thin, horizontal layers of
fluid, each lifted from its ground to its final position in the tank. No matter how the
fluid actually behaves as the tank is filled, this simple way of thinking about the process
gives us a way to compute the work done in the filling process. But when we think of
filling the tank in this way, we must allow for the fact that different layers of fluid are
lifted different distances to reach their final positions in the tank.

Suppose that the bottom of the tank is at height y = a and that its top is at height
y = b > a. Let A(y) be the cross-sectional area of the tank at height y. Consider a
partition of [a, b] into n subintervals, all with the same length �y. Then the volume
of the horizontal slice (Fig. 6.5.7) of the tank that corresponds to the i th subinterval
[yi−1, yi ] is

�Vi =
∫ yi

yi−1

A(y) dy = A(y�
i ) �y

for some number y�
i in [yi−1, yi ]; this is a consequence of the average value theorem

Δy

Ground level

Cross-sectional area A(     )

yi
yi −1

y

x

yi
★

yi
★  

FIGURE 6.5.7 A thin horizontal
slice of fluid with volume
�V = A(y�

i ) �y. Each particle of
this slice must be lifted (from the
ground at y = 0) a distance between
yi−1 and yi .

for integrals (Section 5.6). If ρ is the density of the fluid (in pounds per cubic foot, for
example), then the force required to lift this slice from the ground to its final position
in the tank is simply the (constant) weight of the slice:

Fi = ρ �Vi = ρ A(y�
i ) �y.

But what about the distance through which this force must act? The fluid in question
is lifted from ground level to the level of the subinterval [yi−1, yi ], so every particle of
the fluid is lifted at least the distance yi−1 and at most the distance yi (remember, the
fluid begins its journey at ground level, where y = 0). Hence the work �Wi needed to
lift this i th slice of fluid satisfies the inequalities

Fi yi−1 � �Wi � Fi yi ;
that is,

ρyi−1 A(y�
i ) �y � �Wi � ρyi A(y�

i ) �y.

Now we add these inequalities for i = 1, 2, 3, . . . , n and find thereby that the
total work W = ∑

�Wi satisfies the inequalities

n∑
i=1

ρyi−1 A(y�
i ) �y � W �

n∑
i−1

ρyi A(y�
i ) �y.

If the three points yi−1, yi , and y�
i of [yi−1, yi ] were the same, then both the last two

sums would be Riemann sums for the function f (y) = ρy A(y) on [a, b]. Although
the three points are not the same, it still follows—from a result stated in Appendix G—
that both sums approach ∫ b

a
ρy A(y) dy as �y → 0.

The squeeze law of limits therefore gives the formula

W =
∫ b

a
ρy A(y) dy. (8)

This is the work W done in pumping fluid of density ρ from the ground into a tank that
has horizontal cross-sectional area A(y) and is located between heights y = a and
y = b above the ground.
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A quick heuristic way to set up Eq. (8), and many variants of it, is to think
of a thin, horizontal slice of fluid with volume dV = A(y) dy and weight ρ dV =
ρ A(y) dy. The work required to lift this slice a distance y is

dW = y · ρ dV = ρy A(y) dy,

so the total work required to fill the tank is

W =
∫ ��

�

dW =
∫ b

a
ρy A(y) dy,

because the horizontal slices lie between y = a and y = b.

EXAMPLE 4 Suppose that it took 20 yr to construct the great pyramid of Khufu at

The great pyramid of Khufu.

Gizeh, Egypt. This pyramid is 500 ft high and has a square base with edge length
750 ft. Suppose also that the pyramid is made of rock with density ρ = 120 lb/ft3.
Finally, suppose that each laborer did 160 ft·lb/h of work in lifting rocks from ground
level to their final position in the pyramid and worked 12 h daily for 330 days/yr. How
many laborers would have been required to construct the pyramid?

Solution We assume a constant labor force throughout the 20-yr construction period.
We think of the pyramid as being made up of thin, horizontal slabs of rock, each slab
lifted ( just like a slice of liquid) from ground level to its ultimate height. Hence we
can use Eq. (8) to compute the work W required.

Figure 6.5.8 shows a vertical cross section of the pyramid. The horizontal cross
section at height y is a square with edge length s. We see from the similar triangles in
Fig. 6.5.8 thaty

500 − y

s

750

y

x

FIGURE 6.5.8 Vertical cross
section of Khufu’s pyramid.

s

750
= 500 − y

500
, so s = 3

2
(500 − y).

Hence the cross-sectional area at height y is

A(y) = 9
4 (500 − y)2.

Equation (8) therefore gives

W =
∫ 500

0
120 · y · 9

4 (500 − y)2 dy

= 270
∫ 500

0
(250,000y − 1000y2 + y3) dy

= 270
[
125,000y2 − 1000

3 y3 + 1
4 y4

]500

0
,

so W ≈ 1.406 × 1012 ft·lb.
Because each laborer does

160 · 12 · 330 · 20 ≈ 1.267 × 107 ft·lb

of work, the construction of the pyramid would—under our assumptions—have
required

1.406 × 1012

1.267 × 107
≈ 111,000

laborers. ◗
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Emptying a Tank

Suppose now that the tank shown in Fig. 6.5.9 is already filled with a liquid of density
ρ lb/ft3, and we want to pump all this liquid from the tank up to the level y = h above
the top of the tank. We imagine a thin, horizontal slice of liquid at height y. If its
thickness is dy, then its volume is dV = A(y) dy, so its weight is ρ dV = ρ A(y) dy.
This slice must be lifted the distance h − y, so the work done to lift the slice is

dW = (h − y)ρ dV = ρ(h − y)A(y) dy.

Hence the total amount of work done on all the liquid originally in the tank is

W =
∫ b

a
ρ(h − y)A(y) dy. (9)

Problem 14 asks you to use Riemann sums to set up this integral.

y

x

h − y

h

b

y

a

Tank

Ground

Cross-sectional
area: A(y)

FIGURE 6.5.9 Pumping liquid from a
tank to a higher level.

EXAMPLE 5 A cylindrical tank of radius 3 ft and length 10 ft is lying on its side

5
8 − y

y = 8

y
y = 3

y = 0

Ground: y = −3

y 3

1
2
w

FIGURE 6.5.10 End view of the
cylindrical tank of Example 5.

on horizontal ground. If this tank initially is full of gasoline weighing 40 lb/ft3, how
much work is done in pumping all this gasoline to a point 5 ft above the top of the
tank?

Solution Figure 6.5.10 shows an end view of the tank. To exploit its circular sym-
metry, we choose y = 0 at the center of the circular vertical section, so the tank lies
between y = −3 and y = 3. A horizontal cross section of the tank that meets the
y-axis is a rectangle of length 10 ft and width w. From the right triangle in Fig. 6.5.10,
we see that

1
2w =

√
9 − y2,

so the area of this cross section is

A(y) = 10w = 20
√

9 − y2.

This cross section must be lifted from its initial position y to the final position 5+3 = 8,
so it is to be lifted the distance 8 − y. Thus Eq. (9) with ρ = 40, a = −3, and b = 3
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yields

W =
∫ 3

−3
40 · (8 − y) · 20

√
9 − y2 dy

= 6400
∫ 3

−3

√
9 − y2 dy − 800

∫ 3

−3
y
√

9 − y2 dy.

We attack the two integrals separately. First,∫ 3

−3
y
√

9 − y2 dy =
[
− 1

3 (9 − y2)3/2
]3

−3
= 0.

Second, ∫ 3

−3

√
9 − y2 dy = 1

2π · 32 = 9
2π,

because the integral is simply the area of a semicircle of radius 3. Hence

W = 6400 · 9
2π = 28800π,

approximately 90,478 ft·lb. ◗

REMARK As in Example 5, you may use as needed in the problems the integral∫ a

0

√
a2 − x2 dx = 1

4πa2, (10)

which corresponds to the area of a quarter-circle of radius a.

Force Exerted by a Liquid
The pressure p at depth h in a liquid is the force per unit area exerted by the liquid at
that depth. Pressure is given by

p = ρh, (11)

where ρ is the (weight) density of the liquid. For example, at a depth of 10 ft in water,
for which ρ = 62.4 lb/ft3, the pressure is 62.4 · 10 = 624 lb/ft2. Hence if a thin, flat
plate of area 5 ft2 is suspended in a horizontal position at a depth of 10 ft in water, then
the water exerts a downward force of 624 · 5 = 3120 lb on the top face of the plate and
an equal upward force on its bottom face.

It is an important fact that at a given depth in a liquid, the pressure is the same in
all directions. But if a flat plate is submerged in a vertical position in the liquid, then
the pressure on the face of the plate is not constant, because by Eq. (11) the pressure
increases with increasing depth. Consequently, the total force exerted on a vertical
plate must be computed by integration.

Consider a thin, vertical, flat plate submerged in a liquid of density ρ (Fig. 6.5.11).
The surface of the liquid is at the line y = c, and the plate lies alongside the interval
a � y � b. The width of the plate at depth c − y is some function of y, which we
denote by w(y).

To compute the total force F exerted by the liquid on either face of this plate, we
begin with a partition of [a, b] into n subintervals, all with the same length �y, and
denote by y�

i the midpoint of the subinterval [yi−1, yi ]. The horizontal strip of the plate
opposite this i th subinterval is approximated by a rectangle of width w(y�

i ) and height
�y, and its average depth in the liquid is c − y�

i . Hence the force �Fi exerted by the
liquid on this horizontal strip is given approximately by

�Fi ≈ ρ(c − y�
i )w(y�

i ) �y. (12)

The total force on the entire plate is given approximately by

F =
n∑

i=1

�Fi ≈
n∑

i=1

ρ(c − y�
i )w(y�

i ) �y.
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y

x

b

y

a

c − y

y = c: surface of liquid

w(y)

FIGURE 6.5.11 A thin plate suspended
vertically in a liquid.

We obtain the exact value of F by taking the limit of such Riemann sums as �y → 0:

F =
∫ b

a
ρ(c − y)w(y) dy. (13)

EXAMPLE 6 A cylindrical tank 8 ft in diameter is lying on its side and is half full of
oil of density ρ = 75 lb/ft3. Find the total force F exerted by the oil on one end of the
tank.

y

x

x2 + y2 = 16

dy

−y

w
2

4

FIGURE 6.5.12 View of one end of the
tank of Example 6.

Solution We locate the y-axis as indicated in Fig. 6.5.12, so that the surface of
the oil is at the level y = 0. The oil lies alongside the interval −4 � y � 0. We
see from the right triangle in the figure that the width of the oil at depth −y (and thus
at location y) is

w(y) = 2
√

16 − y2.

Hence Eq. (13) gives

F =
∫ 0

−4
75(−y)

(
2
√

16 − y2
)

dy = 75
[

2
3 (16 − y2)3/2

]0

−4
= 3200 (lb). ◗

6.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Equation (1) of Section 6.5 may be used in the case of a constant force F and a
constant distance d .

2. Work is measured in units such as newton-meters or foot-pounds.
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3. In the case of a particle moved from x = a to x = b by a variable force F(x),
work is defined to be

W =
∫ b

a
F(x) dx .

4. Hooke’s law can be expressed in the form F(x) = kx where k is a positive
constant.

5. The spring constant in Example 2 of Section 6.5 is k = 20 lb/ft.
6. The work to lift a body vertically from the surface of the earth (of radius R) to a

distance R1 > R from the center of the earth is

W =
∫ R1

R

k

r2
dr

where k is a constant.
7. The work W done in pumping fluid of density ρ from the ground into a tank that

has horizontal cross-sectional area A(y) and is located between heights y = a
and y = b > a above the ground is

W =
∫ b

a
ρy A(y) dy.

8. The work to construct the great pyramid of Khufu at Gizeh is computed in Ex-
ample 4 and is approximately 1.406 × 1012 ft·lb.

9. The pressure p at depth h in a liquid is p = ρh where ρ is the (weight) density
of the liquid.

10. The force exerted by the oil in the tank of Example 6 on one end of the tank is
3200 lb.

6.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that you lift a heavy weight from the floor to high over your head and

then let it fall back to the floor. An observer says you did no work because the
weight wound up in its initial position. You disagree. Who’s right?

2. Consider a water tank in the shape of a solid of revolution around a vertical axis.
The work formula in Eq. (8) was derived using horizontal slices. Is it possible to
use cylindrical shells to derive an integral formula to use in calculating the work
required to fill the tank?

6.5 PROBLEMS

In Problems 1 through 5, find the work done by the given force
F(x) in moving a particle along the x-axis from x = a to x = b.

1. F(x) = 10; a = −2, b = 1

2. F(x) = 3x − 1; a = 1, b = 5

3. F(x) = 10

x2
; a = 1, b = 10

4. F(x) = −3
√

x ; a = 0, b = 4

5. F(x) = sin πx ; a = −1, b = 1

6. A spring has a natural length of 1 m, and a force of 10 N is
required to hold it stretched to a total length of 2 m. How
much work is done in compressing this spring from its natu-
ral length to a length of 60 cm?

7. A spring has a natural length of 2 ft, and a force of 15 lb
is required to hold it compressed at a length of 18 in. How
much work is done in stretching this spring from its natural
length to a length of 3 ft?

8. Apply Eq. (4) to compute the amount of work done in lifting
a 100-lb weight a height of 10 ft, assuming that this work is
done against the constant force of gravity.

9. Compute the amount of work (in foot-pounds) done in lifting
a 1000-lb weight from an orbit 1000 mi above the earth’s sur-
face to one 2000 mi above the earth’s surface. Use the value
of k given in Example 3.

10. A cylindrical tank of radius 5 ft and height 10 ft is resting on
the ground with its axis vertical. Use Eq. (8) to compute the
amount of work done in filling this tank with water pumped
in from ground level. (Use ρ = 62.4 lb/ft3 for the weight
density of water.)

11. A conical tank is resting on its base, which is at ground level,
and its axis is vertical. The tank has radius 5 ft and height
10 ft (Fig. 6.5.13). Compute the work done in filling this
tank with water (ρ = 62.4 lb/ft3) pumped in from ground
level.
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r

5

10 − y

y

FIGURE 6.5.13 The
conical tank of
Problem 11.

12. Repeat Problem 11, except that now the tank is upended:
Its vertex is at ground level and its base is 10 ft above the
ground.

13. A tank whose lowest point is 10 ft above the ground has the
shape of a cup obtained by rotating the parabola x2 = 5y,
−5 � x � 5, around the y-axis (Fig. 6.5.14). The units on the
coordinate axes are in feet. How much work is done in fill-
ing this tank with oil of density 50 lb/ft3 if the oil is pumped
in from ground level?

y

10
x

Ground

y

x

FIGURE 6.5.14 The
cup-shaped tank of
Problem 13.

14. Suppose that the tank of Fig. 6.5.9 is filled with fluid of den-
sity ρ and that all this fluid must be pumped from the tank
to the level y = h above the top of the tank. Use Riemann
sums, as in the derivation of Eq. (8), to obtain the formula

W =
∫ b

a
ρ(h − y)A(y) dy

for the work required to do so.

15. Use the formula in Problem 14 to find the amount of work
done in pumping the water in the tank of Problem 10 to a
height of 5 ft above the top of the tank.

16. Gasoline at a service station is stored in a cylindrical tank
buried on its side, with the highest part of the tank 5 ft be-
low the surface. The tank is 6 ft in diameter and 10 ft long.
The density of gasoline is 45 lb/ft3. Assume that the filler
cap of each automobile gas tank is 2 ft above the ground
(Fig. 6.5.15). (a) How much work is done in emptying all
the gasoline from this tank, initially full, into automobiles?

y

x

FIGURE 6.5.15 The gasoline tank
of Problem 16.

(b) Recall that 1 hp is equivalent to 33,000 ft·lb/min. For
electrical conversions, 1 kW (1000 W) is the same as
1.341 hp. The charge for use of electricity generated by a
power company is typically about 7.2/c/kWh. Assume that
the electrical motor in the gas pump at this station is 30%
efficient. How much does it cost to pump all the gasoline
from this tank into automobiles?

17. Consider a spherical water tank whose radius is 10 ft and
whose center is 50 ft above the ground. How much work is
required to fill this tank by pumping water up from ground
level? [Suggestion: It may simplify your computations to
take y = 0 at the center of the tank and to think of the dis-
tance each horizontal slice of water must be lifted.]

18. A hemispherical tank of radius 10 ft is located with its flat
side down atop a tower 60 ft high (Fig. 6.5.16). How much
work is required to fill this tank with oil of density 50 lb/ft3

if the oil is to be pumped into the tank from ground level?

y

x

Ground

60

x

y

FIGURE 6.5.16 The hemispherical
tank of Problem 18.

19. Water is being drawn from a well 100 ft deep, using a bucket
that scoops up 100 lb of water. The bucket is pulled up at
the rate of 2 ft/s, but it has a hole in the bottom through
which water leaks out at the rate of 0.5 lb/s. How much
work is done in pulling the bucket to the top of the well?
Neglect the weight of the bucket, the weight of the rope, and
the work done in overcoming friction. [Suggestion: Take
y = 0 at the level of the water surface in the well, so that
y = 100 at ground level. Let {y0, y1, y2, . . . , yn} be a par-
tition of [0, 100] into n equal-length subintervals. Estimate
the amount of work �Wi required to raise the bucket from
yi−1 to yi . Then set up the sum W = ∑

�Wi and proceed to
the appropriate integral by letting n → +∞.]
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20. A rope that is 100 ft long and weighs 0.25 lb per linear foot
hangs from the edge of a very tall building. How much work
is required to pull this rope to the top of the building?

21. Suppose that we plug the hole in the leaky bucket of Problem
19. How much work do we do in lifting the mended bucket,
full of water, to the surface, using the rope of Problem 20?
Ignore friction and the weight of the bucket, but allow for
the weight of the rope.

22. Consider a volume V of gas in a cylinder fitted with a pis-
ton at one end, where the pressure p of the gas is a function
p(V ) of its volume (Fig. 6.5.17). Let A be the area of the
face of the piston. Then the force exerted on the piston by
gas in the cylinder is F = p A. Assume that the gas expands
from volume V1 to volume V2. Show that the work done by
the force F is then given by

W =
∫ V2

V1

p(V ) dV .

[Suggestion: If x is the length of the cylinder (from its fixed
end to the face of the piston), then F = A · p(Ax). Apply
Eq. (4) and substitute V = Ax into the resulting integral.]

x

V

FIGURE 6.5.17 A cylinder
fitted with a piston (Problem 22).

23. The pressure p and volume V of the steam in a small steam
engine satisfy the condition pV 1.4 = c (where c is a con-
stant). In one cycle, the steam expands from a volume
V1 = 50 in.3 to V2 = 500 in.3 with an initial pressure of
200 lb/in.2 Use the formula in Problem 22 to compute the
work, in foot-pounds, done by this engine in each such cy-
cle.

24. A tank in the shape of a hemisphere of radius 60 is resting
on its flat base with the curved surface on top. It is filled
with alcohol of density 40 lb/ft3. How much work is done in
pumping all the alcohol to the level of the top of the tank?

25. A tank has the shape of the surface generated by rotating
around the y-axis the graph of y = x4, 0 � x � 1. The
tank is initially full of oil of density 60 lb/ft3. The units on
the coordinate axes are in feet. How much work is done in
pumping all the oil to the level of the top of the tank?

26. A cylindrical tank of radius 3 ft and length 20 ft is lying on
its side on horizontal ground. Gasoline weighing 40 lb/ft3 is
at ground level and is to be pumped into the tank. Find the
work required to fill the tank.

27. The base of a spherical storage tank of radius 12 ft is at
ground level. Find the amount of work done in filling the
tank with oil of density 50 lb/ft3 if all the oil is initially at
ground level.

28. A 20-lb monkey is attached to a 50-ft chain that weighs 0.5 lb
per (linear) foot. The other end of the chain is attached to
the 40-ft-high ceiling of the monkey’s cage (Fig. 6.5.18).
Find the amount of work the monkey does in climbing up
her chain to the ceiling.

40 ft

10 ft

FIGURE 6.5.18 The monkey of
Problem 28.

29. Tom is flying his kite at a height of 500 ft above the ground.
Suppose that the kite string weighs 1

16 oz per (linear) foot
and is stretched in a straight line at a 45◦ angle to the ground.
How much work was done by the wind in lifting the string
from ground level up to its flying position?

30. The center of a spherical tank of radius R is at a distance
H > R above the ground. A liquid of weight density ρ is
at ground level. Show that the work required to pump the
initially empty tank full of this liquid is the same as that to
lift the full tank the distance H (ignoring the weight of the
tank itself).

31. A water trough 10 ft long has a square cross section that
is 2 ft wide. If the trough is full of water (density ρ =
62.4 lb/ft3), find the force exerted by the water on one end of
the trough.

32. Repeat Problem 31 for a trough whose cross section is an
equilateral triangle with edges 2 ft long.

33. Repeat Problem 31 for a trough whose cross section is a
trapezoid 3 ft high, 2 ft wide at the bottom, and 4 ft wide
at the top.

34. Find the force on one end of the cylindrical tank of Exam-
ple 5 if the tank is filled with oil of density 50 lb/ft3. Re-
member that ∫ a

0

√
a2 − y2 dy = 1

4 πa2,

because the integral represents the area of a quarter-circle of
radius a.

In Problems 35 through 38, a gate in the vertical face of a dam
is described. Find the total force of water on this gate if its top is
10 ft beneath the surface of the water.

35. A square of edge length 5 ft whose top is parallel to the water
surface.

36. A circle of radius 3 ft.

37. An isosceles triangle 5 ft high and 8 ft wide at the top.

38. A semicircle of radius 4 ft whose top edge is its diameter
(also parallel to the water surface).

39. Suppose that the dam of Fig. 6.5.19 is L = 200 ft long and
T = 30 ft thick at its base. Find the force of water on the
dam if the water is 100 ft deep and the slanted end of the
dam faces the water.
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D

100

Q

C

P

B

O

A

L

T

FIGURE 6.5.19 View of a model of a
dam (Problem 39).

40. The concrete birdbath of Problem 47 in Section 6.3 is ob-
tained by revolving around the y-axis the region that lies be-
tween the curves

y = 1 + x2

5
− x4

500
and y = x4

10000

(with x and y in inches). When placed on its stand, the bot-
tom of this birdbath is 40 inches above the ground. How
much work (in ft·lb) is done in filling this birdbath with
water lifted from ground level? If necessary, use a com-
puter algebra system or table of integrals to help solve this
problem.

6.6 CENTROIDS OF PLANE REGIONS AND CURVES

According to the law of the lever, two masses m1 and m2 on opposite sides and at

m1

d1 d2

m2

Fulcrum

FIGURE 6.6.1 Law of the lever:
The weights balance when
m1d1 = m2d2.

respective distances d1 and d2 from the fulcrum of a lever will balance provided that
m1d1 = m2d2. (See Fig. 6.6.1.) Think of the x-axis as the location of a (weight-
less) lever arm supporting various point masses and of the origin as a fulcrum. Then
a more general form of the law of the lever states that (particle) masses m0, m1,
m2, . . . , mn with respective coordinates x0, x1, x2, . . . , xn will balance provided
that

n∑
i=0

mi xi = m0x0 + m1x1 + m2x2 + · · · + mnxn = 0. (1)

Now consider arbitrary masses m1, m2, . . . , mn at the points x1, x2, . . . , xn .
Then a single particle with mass

m = m1 + m2 + · · · + mn =
n∑

i=1

mi

at position −x will balance these n masses provided that

−mx +
n∑

i=1

mi xi = 0;

that is, provided that

x = 1

m

n∑
i=1

mi xi . (2)

Thus the original n masses act on the lever like a single particle of mass m located
at the point x . The point x is called the center of mass, and the sum

∑n
i=1 mi xi that

appears in Eq. (2) is called the moment of the system of masses about the origin.
Now consider a system of n particles with masses m1, m2, . . . , mn located in the

plane (see Fig. 6.6.2) at the points with respective coordinates (x1, y1), (x2, y2), . . . ,

(xn, yn). In analogy with the one-dimensional case just discussed, we define the
moment My of this system of masses about the y-axis and its moment Mx about
the x-axis by means of the equations

y

xx1

m1

y1

xn

mn

yn

x3

m3

y3

x2

m2

y2

FIGURE 6.6.2 Point masses in the
plane and their moment arms about
the x-axis.

My =
n∑

i=1

mi xi and Mx =
n∑

i=1

mi yi . (3)

The center of mass of this system of n particles is the point (x, y) with coordi-
nates defined to be

x = My

m
and y = Mx

m
(4)
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where m = m1 + m2 + · · · + mn is the sum of the masses. Thus (x, y) is the point
where a single particle of mass m would have the same moments as the original whole
system about the two coordinate axes. In elementary physics it is shown that, if the
xy-plane were a rigid and weightless plastic sheet with our n particles imbedded in it,
then it would balance (horizontally) on the point of an icepick at the point (x, y).

Laminas and Thin Plates

As the number of particles we consider increases while their masses decrease in pro-y

x

R

FIGURE 6.6.3 A line of symmetry.

portion, their aggregate more and more closely resembles a plane region of varying
density. Let us first define the center of mass (x, y) and the moments about the coordi-
nate axes of a thin plate, or lamina, of constant density ρ, one that occupies a bounded
plane region R. Because ρ is constant, the numbers x and y should be independent of
the value of ρ, so we will assume that ρ = 1 (for convenience) in our definitions and
computations. In this case (x, y) is called the centroid of the plane region R. We shall
also define My(R) and Mx(R), the moments of the plane region R about the coordinate
axes, with ρ = 1. The corresponding moments of a lamina of constant density ρ 	= 1
would then be ρMy(R) and ρMx(R).

Our definitions will be based on the following two physical principles. The first
is quite natural: If a region has a line of symmetry, as in Fig. 6.6.3, then its centroid
lies on this line.

Symmetry Principle
If the plane region R is symmetric with respect to the line L —that is, if R is carried
onto itself when the plane is rotated through an angle of 180◦ about the line L —then
the centroid of R (considered as a lamina of constant density) lies on L .

We will find the second principle very useful in locating centroids of regions that
are unions of simple regions.

Additivity of Moments
If R is the union of the two nonoverlapping regions S and T , then

My(R) = My(S) + My(T ) and Mx(R) = Mx(S) + Mx(T ). (5)

For example, the symmetry principle implies that the centroid of a rectangle is
its geometric center: the intersection of the perpendicular bisectors of its sides. We
assume also that the moments of a rectangle R with area A and centroid (x, y) are
My(R) = Ax and Mx(R) = Ay. Knowing the centroid of a rectangle, our strategy
will be to calculate the moments of a more general region by using additivity of mo-
ments and the integral, and finally to define the centroid of this more general region by
analogy with the equations in (4).

Integral Formulas for Centroids

Suppose that the function f is continuous and nonnegative on [a, b], and suppose also
that the region R is the region between the graph of f and the x-axis for a � x � b.
We begin with a regular partition of [a, b] into n subintervals all having the same length
�x = (b−a)/n. Denote by x�

i the midpoint of the i th subinterval [xi−1, xi ]. As shown
in Fig. 6.6.4, the rectangle with base [xi−1, xi ] and height f (x�

i ) has area f (x�
i ) �x and

centroid (x�
i ,

1
2 f (x�

i )). If Pn denotes the union of these rectangles for i = 1, 2, 3, . . . ,

n, then—because moments are additive—the moments of the rectangular polygon Pn

about the y-axis and the x-axis are

y

R

y = f (x)

f (xi
*)

xa bxi − 1 xi
xi

*

xi
*

1
2

FIGURE 6.6.4 Locating the
centroid of R by approximating R
with rectangles.

My(Pn) =
n∑

i=1

x�
i · f (x�

i ) �x
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and

Mx(Pn) =
n∑

i=1

1

2
f (x�

i ) · f (x�
i ) �x,

respectively.
We define the moments My(R) and Mx(R) of the region R itself by taking the

limits of My(Pn) and Mx(Pn) as �x → 0. Because the preceding sums are Riemann
sums, their limits are the definite integrals

My(R) =
∫ b

a
x f (x) dx (6)

and

Mx(R) =
∫ b

a

1

2
[ f (x)]2 dx . (7)

Finally, we define the centroid (x, y) of R by

x = My(R)

A
and y = Mx(R)

A
, (8)

where A = ∫ b
a f (x) dx is the area of R. Thus

x = 1

A

∫ b

a
x f (x) dx (9)

and

y = 1

A

∫ b

a

1

2
[ f (x)]2 dx (10)

are the coordinates of the centroid of the region under y = f (x) from x = a to x = b.
By the symmetry principle, the centroid of a circular disk is its center. But the

centroid of a semicircle is more interesting.

EXAMPLE 1 Find the centroid of the upper half D of the circular disk with center
(0, 0) and radius r .

Solution By symmetry, the centroid of D lies on the y-axis, so x = 0. The semicir-y

x

x2 + y2 = r2, y ≥ 0

r−r

D

FIGURE 6.6.5 The half-disk D of
Example 1.

cular disk lies under y = √
r2 − x2 from x = −r to x = r , as shown in Fig. 6.6.5.

Hence Eq. (7) yields

Mx(D) =
∫ r

−r

1

2

(√
r2 − x2

)2
dx

= 1

2

∫ r

−r
(r2 − x2) dx =

[
r2x − x3

3

]r

−r

= 2

3
r3.

Because A = 1
2πr2, the second formula in (8) gives

y = Mx(D)

A
=

2
3r3

1
2πr2

= 4r

3π
≈ (0.4244)r.

Thus the centroid of D is the point (0, 4r/3π). Note that our computed value for y has
the dimensions of length (because r is a length), as it should. Any answer having other
dimensions would be suspect. Do you feel that these coordinates are plausible as well?

◗
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EXAMPLE 2 Find the centroid of the triangle T with vertices (0, 0), (1, 0), and (0, 1).y

y = 1 − x

(0, 0)

(1, 0)

(0, 1)

x r

T

FIGURE 6.6.6 The triangle T of
Example 2.

Solution Figure 6.6.6 shows the triangle T . Note first that x = y by symmetry.
Equation (6), with y = f (x) = 1 − x , gives

My(T ) =
∫ 1

0
x(1 − x) dx =

[
1

2
x2 − 1

3
x3

]1

0

= 1

6
.

So, by the first equation in (8),

x = My(T )

A
=

1
6
1
2

= 1

3
.

Thus the centroid of T is ( 1
3 , 1

3 ). ◗

Additivity of moments can be used to define the moments and centroid of anyy

y = f (x)

y = g(x)

R

xa b

Rg

FIGURE 6.6.7 The region R
between y = f (x) and y = g(x).

plane region that is the union of a finite number of nonoverlapping regions shaped
like the one in Fig. 6.6.7. For example, suppose that f (x) � g(x) � 0 on [a, b] and
that R is the region between the graphs of y = f (x) and y = g(x) for a � x �
b. If R f and Rg denote the regions under the graphs of f and g, respectively, then
My(R) + My(Rg) = My(R f ) by additivity of moments. Therefore

My(R) = My(R f ) − My(Rg)

=
∫ b

a
x f (x) dx −

∫ b

a
xg(x) dx

by Eq. (6). Thus

My(R) =
∫ b

a
x · [ f (x) − g(x)] dx . (11)

Similarly,
Mx(R) = Mx(R f ) − Mx(Rg)

=
∫ b

a

1

2
[ f (x)]2 dx −

∫ b

a

1

2
[g(x)]2 dx

by Eq. (7), and therefore

Mx(R) =
∫ b

a

1

2

{
[ f (x)]2 − [g(x)]2} dx . (12)

We then define the centroid of R by means of the equations in (8), with

A =
∫ b

a
[ f (x) − g(x)] dx . (13)

EXAMPLE 3 Let R be the rectangle of Fig. 6.6.8. Following two applications of they

x2

(4, 2)

(6, 1)

(6, 3)

(2, 1)

(2, 3)

1

3

6

FIGURE 6.6.8 The rectangle of
Example 3.

symmetry principle, we conclude that its centroid is at the point (4, 2). Let us test
Eqs. (11) and (12) to see if they yield the same result. With a = 2, b = 6, f (x) ≡ 3,
and g(x) ≡ 1, we get

My(R) =
∫ 6

2
x(3 − 1) dx =

[
x2

]6

2
= 32,

Mx(R) =
∫ 6

2

1

2
[(3)2 − (1)2] dx =

[
4x

]6

2
= 16.

Because the region has area A = 4 · 2 = 8, we find using (8) that

x = My

A
= 32

8
= 4 and y = Mx

A
= 16

8
= 2,

exactly as expected. ◗
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An interesting theorem relating centroids and volumes of revolution is named for
the Greek mathematician who stated it during the third century A.D.

FIRST THEOREM OF PAPPUS Volume of Revolution
Suppose that a plane region R is rotated around an axis in its plane, thereby gener-
ating a solid of revolution with volume V . Assume that the axis does not intersect
the interior of R. Then V is the product of the area A of R and the distance traveled
by the centroid of R during one complete rotation.

Proof (For the special case of a region shaped like the one shown in Fig. 6.6.9.) Thisy

y = f (x)

y = g(x)

R

xa b

FIGURE 6.6.9 A region R between
the graphs of two functions.

is the region between the two graphs y = f (x) and y = g(x) for a � x � b, and we
shall take the axis of rotation to be the y-axis. Then, in one complete rotation around
the y-axis, the distance traveled by the centroid of R is d = 2πx . By the method of
cylindrical shells of Section 6.3, the volume of the solid generated is

V =
∫ b

a
2πx [ f (x) − g(x)] dx

= 2π My(R) (by Eq. (11))

= 2πx · A (by Eq. (8)),

and thus V = d · A, as desired. ◆

EXAMPLE 4 Find the volume V of the sphere of radius r generated by rotation of
the semicircle D of Example 1 around the x-axis.

Solution The area of D is A = 1
2πr2, and we found in Example 1 that y = 4r/3π .

Hence Pappus’s theorem gives

V = 2π y A = 2π · 4r

3π
· πr2

2
= 4

3
πr3. ◗

EXAMPLE 5 Consider the circular disk of Fig. 6.6.10, with radius a and center aty

xb

a

FIGURE 6.6.10 Rotate the circular
disk about the y-axis to produce a
torus (Example 5).

the point (0, b) where 0 < a < b. Find the volume V of the solid torus generated by
rotating this disk around the y-axis.

Solution The centroid of the circle is its center (b, 0), so x = b. Hence the centroid of
the disk is moved once around a circle of radius b, thus through the distance d = 2πb.
Consequently

V = d · A = 2πb · πa2 = 2π2a2b.

Note that this result is dimensionally correct. ◗

Moments and Centroids of Curves
Moments and centroids of plane curves are defined in a way that is quite analogous to
the method for plane regions, so we shall present this topic in less detail. The moments
My(C) and Mx(C) of the plane curve C about the y- and x-axes, respectively, are
defined to be

My(C) =
∫

x ds and Mx(C) =
∫

y ds (14)

(with appropriate limits to be inserted when the integrals are evaluated). The centroid
of C is then defined to be the point with coordinates

x = 1

s
My(C) = 1

s

∫
C

x ds and y = 1

s
Mx(C) = 1

s

∫
C

y ds (15)

where s is the arc length of C .
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The meaning of the integrals in (14) and (15) is that of the notation of Sec-
tion 6.4. That is, ds is a symbol to be replaced (before evaluation of the integral) by
either

ds =
√

1 +
(

dy

dx

)2

dx or ds =
√

1 +
(

dx

dy

)2

dy,

depending on whether C is a smooth arc of the form y = f (x) or one of the form
x = g(y). For example, if C is described by y = f (x), a � x � b, then

My(C) =
∫ b

a
x
√

1 + [ f ′(x)]2 dx (16)

and

Mx(C) =
∫ b

a
f (x)

√
1 + [ f ′(x)]2 dx . (17)

EXAMPLE 6 Let J denote the upper half of the circle (not the disk) of radius r . Thus
the arc J is the graph of

y =
√

r2 − x2 , −r � x � r.

Find the centroid of J .

Solution Note first that My(J ) = 0 by symmetry. Now

dy

dx
= − x√

r2 − x2
,

so

ds =
√

1 + x2

r2 − x2
dx = r√

r2 − x2
dx .

Hence the second formula in (14) yields

Mx(J ) =
∫ r

−r

√
r2 − x2

r√
r2 − x2

dx =
∫ r

−r
r dx = 2r2.

Because s = πr , the coordinates of the centroid of J are

x = My(J )

s
= 0 and y = Mx(J )

s
= 2r2

πr
= 2r

π
.

The answer is dimensionally correct. Is it plausible? ◗

The first theorem of Pappus has an analogue for surface area of revolution.

SECOND THEOREM OF PAPPUS Surface Area of Revolution
Suppose that the plane curve C is rotated around an axis in its plane that does not
intersect C . Then the area A of the surface of revolution generated is equal to the
product of the length of C and the distance traveled by the centroid of C .

Proof (For the special case in which C is a smooth arc described by y = f (x),
a � x � b, and the axis of revolution is the y-axis.) The distance traveled by the
centroid of C is d = 2πx . By Eq. (12) in Section 6.4, the area of the surface of
revolution is

A =
∫ b

a
2πx

√
1 + [ f ′(x)]2 dx

= 2π My(C) (Eq. (16))

= 2πxs = d · s (Eq. (15)),

as desired. ◆
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EXAMPLE 7 Find the surface area A of the sphere of radius r generated by revolving
around the x-axis the semicircular arc of Example 6.

Solution Because we found that y = 2r/π and we know that s = πr , the second
theorem of Pappus gives

A = 2π ys = 2π · 2r

π
· πr = 4πr2. ◗

EXAMPLE 8 Find the surface area A of the torus of Example 5.

Solution Now we think of rotating the circle (not the disk) of radius a centered at
the point (b, 0). Naturally, the centroid of the circle is located at its center (b, 0); this
follows from the symmetry principle and can be verified independently by computa-
tions like those in Example 6. Hence the distance traveled by the centroid is d = 2πb.
Because the circumference of the circle is S = 2πa, the second theorem of Pappus
gives

A = 2πb · 2πa = 4π2ab.

Again, note that the answer is dimensionally correct. ◗

6.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The law of the lever implies that two equal masses will balance if they lie on
opposite sides of and at equal distances from the fulcrum of a lever.

2. The centroid of a rectangle is the intersection of its diagonals.
3. If Mx(R) and My(R) are the moments of the plane region R with area A about

the x- and y-axes (respectively), then the coordinates (x, y) of its centroid are
defined by the formulas

x = Mx(R)

A
and y = My(R)

A
.

4. If D is the upper half of the circular disk with center (0, 0) and radius r , then the
centroid of D is the midpoint

(
0, 1

2r
)

of the vertical radius of D.
5. If T is the triangle with vertices (0, 0), (1, 0), and (0, 1), then the centroid of T

is the point
(

1
2 , 1

2

)
that lies both halfway horizontally from (0, 0) to (1, 0) and

halfway vertically from (0, 0) to (0, 1).
6. The Greek mathematician Pappus lived in the same century as Archimedes—the

third century B.C.
7. The volume of a torus is the product of the area of one circle and the circumfer-

ence of another circle.
8. If C is a curve in the xy-plane, then its moments Mx(C) and My(C) about the x-

and y-axes (respectively) are defined by the formulas

Mx(C) =
∫

x ds and My(C) =
∫

y ds.

9. If the curve J is the upper half of the circle with center (0, 0) and radius r , then
the centroid of J is the point (0, r) on the circle that lies halfway from one end
of J to the other.

10. The surface area of a torus is the product of the areas of two circles.

6.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. Example 6 shows that the centroid of a curve need not be a point of the curve.

Must the centroid of a plane region be a point of that region?
2. How could you check the results in Examples 4 and 8 for plausibility?
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6.6 PROBLEMS

In Problems 1 through 18, find the centroid of the plane region
bounded by the given curves.

1. x = 0, x = 4, y = 0, y = 6

2. x = 1, x = 3, y = 2, y = 4

3. x = −1, x = 3, y = −2, y = 4

4. x = 0, y = 0, x + y = 3

5. x = 0, y = 0, x + 2y = 4

6. y = 0, y = x , x + y = 2

7. y = 0, y = x2, x = 2

8. y = x2, y = 9 9. y = 0, y = x2 − 4

10. x = −2, x = 2, y = 0, y = x2 + 1

11. y = 4 − x2, y = 0 12. y = x2, y = 18 − x2

13. y = 3x2, y = 0, x = 1

14. x = y2, y = 0, x = 4 (above the x-axis)

15. y = x , y = 6 − x2 16. y = x2, y2 = x

17. y = x2, y = x3

18. y = sin x (0 � x � π ), y = 0

19. Find the centroid of the first quadrant of the circular disk
x2 + y2 � r 2 by direct computation, as in Example 1.

20. Apply the first theorem of Pappus to find the centroid of the
first quadrant of the circular disk x2 + y2 � r 2. Use the facts
that x = y by symmetry and that rotation of this quarter disk
about either coordinate axis gives a solid hemisphere with
volume V = 2

3 πr 3.

21. Find the centroid of the arc consisting of the first-quadrant
portion of the circle x2 + y2 = r 2 by direct computation, as
in Example 6.

22. Apply the second theorem of Pappus to find the centroid
of the quarter-circular arc of Problem 21. Note that x =
y by symmetry, and that rotation of this arc around ei-
ther coordinate axis gives a hemisphere with surface area
A = 2πr 2.

23. Show by direct computation that the centroid of the triangle
with vertices (0, 0), (r, 0), and (0, h) is the point (r/3, h/3).
Verify that this point lies on the line from the vertex (0, 0)

to the midpoint of the opposite side of the triangle and two-
thirds of the way from the vertex to that midpoint.

24. Apply the first theorem of Pappus and the result of Prob-
lem 23 to verify the formula V = 1

3 πr 2h for the volume
of the cone generated by rotating the triangle around the
y-axis.

25. Apply the second theorem of Pappus to show that the lateral
surface area of the cone of Problem 24 is A = πr L , where
L = √

r 2 + h2 is the slant height of the cone.

26. (a) Use additivity of moments to find the centroid of the
trapezoid shown in Fig. 6.6.11. (b) Apply the first theorem
of Pappus and the result of part (a) to show that the volume
of the conical frustum generated by rotating the trapezoid
around the y-axis is

V = πh

3

(
r 2

1 + r1r2 + r 2
2

)
.

y

(0, h)
(r2, h)

(r1, 0) x

FIGURE 6.6.11 The trapezoid of
Problem 26.

27. Apply the second theorem of Pappus to show that the lat-
eral surface area of the conical frustum in Problem 26 is
A = π(r1 + r2)L , where

L =
√

(r1 − r2)2 + h2

is the slant height of the frustum.

28. (a) Apply the second theorem of Pappus to verify that the
curved surface area of a right circular cylinder with height h
and base radius r is A = 2πrh. (b) Explain how this formula
also follows from the result of Problem 27.

29. (a) Use additivity of moments to find the centroid of the
plane region shown in Fig. 6.6.12, which consists of a semi-
circular region of radius a resting atop a rectangular region
of width 2a and height h. (b) Then apply the first theorem of
Pappus to find the volume generated by rotating this region
around the x-axis.

y

(a, 0)(−a, 0) x

b

FIGURE 6.6.12 The plane region of
Problem 29.

30. (a) Consider the plane region shown in Fig. 6.6.13, bounded
by x2 = 2py, x = 0, and y = h = r 2/2p (p > 0). Show
that its area is A = 2rh/3 and that the x-coordinate of its
centroid is x = 3r/8. (b) Use Pappus’s theorem and the re-
sult of part (a) to show that the volume of a paraboloid of
revolution with radius r and height h is V = 1

2 πr 2h.
y

(r, h)

x2 = 2py

x

FIGURE 6.6.13 The region of
Problem 30.
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31. Figure 6.6.14 shows an arc of the unit circle x2 + y2 = 1
with central angle 2α and height h = 1 − cos α. Show that
the centroid of this arc is the point(

0,
sin α

α

)
.

y

C h

αα

x

FIGURE 6.6.14 The circular arc of
Problem 31.

32. The centroid C shown in Fig. 6.6.14 appears to lie about
one-third of the way from the arc to the horizontal chord

joining its endpoints. Prove that this is indeed so for small
values of α by showing that limα→0 (d/h) = 1/3, where d
denotes the distance from the centroid C to the highest point
(0, 1) of the circular arc.

33. The region in the first quadrant bounded by the graphs of
y = x and y = x2 is rotated around the line y = x . Find
first the centroid of the region, then find the volume of revo-
lution thereby generated.

34. Let R be the region in the xy-plane that is bounded by the
curves y = xm and y = xn , where m and n are positive in-
tegers such that m < n. Use a computer algebra system to
show that the centroid (x,y) of R has coordinates

x = (m + 1)(n + 1)

(m + 2)(n + 2)
and y = (m + 1)(n + 1)

(2m + 1)(2n + 1)
.

Can you see by visualizing (or plotting) the figure why it
is natural to conjecture that, if m is sufficiently large and
n = m + 1, then the centroid (x,y) does not lie within R?
Find specific values of m and n such that the centroid of R
does not lie within R.

6.7 THE NATURAL LOGARITHM AS AN INTEGRAL

Our introduction of the functions ex and ln x in Section 3.8 was informal and based
on an intuitive conception rather than a precise definition of exponentials. Here we
provide a solid foundation and careful development of the natural exponential and
logarithm functions and their properties.

It is simplest to make the definition of the natural logarithm function our starting
point. Guided by the properties of logarithms outlined in Section 3.8, we want to define
ln x for x > 0 in such a way that

ln 1 = 0 and Dx ln x = 1

x
. (1)

To do so, we recall part 1 of the fundamental theorem of calculus (Section 5.6), from
which it follows that

Dx

(∫ x

a
f (t) dt

)
= f (x) (2)

if f is continuous on an interval containing a and x . In order that ln x satisfy the
equations in (1), we take a = 1 and f (t) = 1/t .

DEFINITION The Natural Logarithm
The natural logarithm ln x of the positive number x is defined to be

ln x =
∫ x

1

1

t
dt. (3)

Note that ln x is not defined for x � 0. Geometrically the value ln x of the natural
logarithm of x is equal to:

• The area under the graph of y = 1/t from t = 1 to t = x if x > 1 (Fig. 6.7.1);
• The negative of this area if 0 < x < 1;
• Zero if x = 1.

t

ln x

1

y

x

y = 1
t

FIGURE 6.7.1 The natural
logarithm function defined by means
of an integral.
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EXAMPLE 1 The number

ln 2 =
∫ 2

1

1

t
dt =

∫ 2

1

1

x
dx

is equal to the area under the graph of y = 1/x from x = 1 to x = 2. Examining the
inscribed and circumscribed rectangles in Fig. 6.7.2, we see immediately that

1

2
< ln 2 < 1.

We can use Simpson’s approximation to estimate ln 2 more closely. The regular
partition of [1, 2] into n = 10 subintervals, each of length �x = 1

10 , and with
endpoints 1, 11

10 , 12
10 , . . . , 19

10 , 2 yields

ln 2 =
1
10

3
·
(

1 + 4 · 10

11
+ 2 · 10

12
+ 4 · 10

13
+ 2 · 10

14
+ 4 · 10

15

+ 2 · 10

16
+ 4 · 10

17
+ 2 · 10

18
+ 4 · 10

19
+ 1

2

)
≈ 0.69315.

This approximation is accurate to five decimal places because the actual value of ln 2
to six places is 0.693147. ◗

1
2

y = 1/x 

x

y

1

1 2

FIGURE 6.7.2 Using rectangles to
estimate ln 2.

The Graph of y = ln x

The fact that Dx ln x = 1/x follows immediately from the fundamental theorem of

x

y

(1, 0)

y = ln x

FIGURE 6.7.3 The graph of the
natural logarithm function.

calculus in (2). And by Theorem 2 in Section 3.4, the fact that the function ln x is
differentiable for x > 0 implies that it is continuous for x > 0. Because

Dx ln x = 1

x
> 0 and D2

x ln x = − 1

x2
< 0

for x > 0, we see that ln x is an increasing function whose graph is concave downward
everywhere (by Theorem 2 in Section 4.6). Because ln x is increasing we see, from the
facts that

ln 2n = n ln 2 → +∞ and ln 2−n = −n ln 2 → −∞
as n → +∞, that

lim
x→∞ ln x = +∞ and lim

x→0+ ln x = −∞. (4)

When we assemble these facts, we see that the graph of y = ln x has the familiar shape
shown in Fig. 6.7.3.
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The Number e

Because ln x is an increasing function, the intermediate value property of continuous
functions implies that the curve y = ln x crosses the horizontal line y = 1 precisely
once. (See Fig. 6.7.4.) The x-coordinate of the point of intersection is the famous
number e ≈ 2.71828 introduced differently in Section 3.8.

y = ln x

1 xx = e

y

1

FIGURE 6.7.4 The fact that
ln e = 1 is expressed graphically
here.

DEFINITION The Number e
The number e is the (unique) real number such that

ln e = 1. (5)

The number e has been used to denote the number whose natural logarithm is 1
ever since this number was introduced by the great Swiss mathematician
Leonhard Euler (1707–1783), who used e for “exponential.” [Euler also popularized
the use of π for the area (approximately 3.14159) of the unit circle as well as the
symbol i for the imaginary number

√−1.]

EXAMPLE 2 With a graphing calculator or computer you can zoom in on the inter-

2.722.7182.7162.7142.7122.71
x

y = 1
(e, 1)

y = ln x

y

0.99
0.992
0.994
0.996
0.998

1
1.002
1.004
1.006
1.008
1.01

FIGURE 6.7.5 Zooming in on the
number e.

section of the graphs of y = ln x and y = 1 to verify the first few decimal places of
e. For instance, the viewing window 2.71 � x � 2.72, 0.99 � y � 1.01 of Fig. 6.7.5
suffices to verify that e ≈ 2.718 to three decimal places. ◗

The Laws of Logarithms

We now use our ability to differentiate logarithms to establish rigorously the laws of
logarithms.

THEOREM 1 Laws of Logarithms
If x and y are positive numbers and r is a rational number, then

ln xy = ln x + ln y; (6)

ln

(
1

x

)
= − ln x; (7)

ln

(
x

y

)
= ln x − ln y; (8)

ln(xr ) = r ln x . (9)

The restriction that r is rational is removed later in this section, when we examine
general exponential functions (those with bases other than e).

Proof of Equation (6) We temporarily fix y, so that we may regard x as the inde-
pendent variable and y as a constant in what follows. Then

Dx ln xy = Dx(xy)

xy
= y

xy
= 1

x
= Dx ln x .

Thus ln xy and ln x have the same derivative with respect to x . We therefore conclude
that

ln xy = ln x + C

for some constant C . To evaluate C , we substitute x = 1 into both sides of the last
equation. The fact that ln 1 = 0 then implies that C = ln y, and this is enough to
establish Eq. (6). ◆
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Proof of Equation (7) We differentiate ln(1/x):

Dx

(
ln

1

x

)
=

− 1

x2

1

x

= −1

x
= Dx(− ln x).

Thus ln(1/x) and − ln x have the same derivative. Hence antidifferentiation gives

ln

(
1

x

)
= − ln x + C,

where C is a constant. We substitute x = 1 into this last equation. Because ln 1 = 0, it
follows that C = 0, and this proves Eq. (7). ◆

Proof of Equation (8) Because x/y = x · (1/y), Eq. (8) follows immediately from
Eqs. (6) and (7). ◆

Proof of Equation (9) We know that Dx xr = r xr−1 if r is rational. So

Dx(ln xr ) = r xr−1

xr
= r

x
= Dx(r ln x).

Antidifferentiation then gives

ln(xr ) = r ln x + C

for some constant C . As before, substituting x = 1 then gives C = 0, which
proves Eq. (9). We show later in this section that Eq. (9) holds whether or not r is
rational. ◆

The proofs of Eqs. (6), (7), and (9) are all quite similar—we differentiate the left-
hand side, apply the fact that two functions with the same derivative (on an interval)
differ by a constant C (on that interval), and evaluate C by using the fact that ln 1 = 0.

Logarithms and Experimental Data
Certain empirical data can be explained by assuming that the observed dependent vari-
able is a power function of the independent variable x . In other words, y is described
by a mathematical model of the form

y = kxm,

where k and m are constants. If so, the laws of logarithms imply that

ln y = ln k + m ln x .

An experimenter can then plot values of ln y against values of ln x . If the power-
function model is valid, the resulting data points will lie on a straight line of slope
m and with y-intercept ln k (Fig. 6.7.6). This technique makes it easy to see whether

Values of ln y

Slope m

Values of ln x

y-intercept ln k

FIGURE 6.7.6 Plotting the logarithms of
data may reveal a hidden relationship.
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or not the data lie on a straight line. And if they do, this technique makes it easy
also to measure the slope and y-intercept of the line and thereby find the values of k
and m.

EXAMPLE 3 (Planetary Motion) The table in Fig. 6.7.7 gives the period of revo-
lution T and the major semiaxis a of the elliptical orbit of each of the first six planets
around the sun, together with the logarithms of these numbers. If we plot ln T against
ln a, it is immediately apparent that the resulting points lie on a straight line of slope
m = 3

2 . Hence T and a satisfy an equation of the form T = ka3/2, so

T 2 = Ca3.

This means that the square of the period T is proportional to the cube of the major
semiaxis a. This is Kepler’s third law of planetary motion, which Johannes Kepler
(1571–1630) discovered empirically in 1619. ◗

Planet T (in days) a (in 106 km) ln T ln a

Mercury 87.97 58 4.48 4.06
Venus 224.70 108 5.41 4.68
Earth 365.26 149 5.90 5.00
Mars 686.98 228 6.53 5.43
Jupiter 4332.59 778 8.37 6.66
Saturn 10,759.20 1426 9.28 7.26

FIGURE 6.7.7 Data for Example 3.

The Natural Exponential Function
We know that the natural logarithm function ln x is continuous and increasing for x > 0
and that it attains arbitrarily large positive and negative values (because of the limits in
(4)). It follows that ln x has an inverse function that is defined for all x . To see this, let
y be any (fixed) real number. If a and b are positive numbers such that ln a < y < ln b,
then the intermediate value property gives a number x > 0, with x between a and b,
such that ln x = y. Because ln x is an increasing function, there is only one such
number x such that ln x = y (Fig. 6.7.8). Because y determines precisely one such
value x , we see that x is a function of y.

x

y

y = ln x

x = exp y

y = ln x

FIGURE 6.7.8 To get x = exp y, move
straight over from y to the graph y = ln x ,
then move straight down (or up) to x .

This function x of y is the inverse function of the natural logarithm function,
and it is called the natural exponential function. It is commonly denoted by exp (for
“exponential”), so

x = exp y provided that y = ln x .

Interchanging x and y yields the following definition.
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DEFINITION The Natural Exponential Function
The natural exponential function exp is defined for all x as follows:

exp x = y if and only if ln y = x . (10)

Thus exp x is simply that (positive) number whose natural logarithm is x . It is an
immediate consequence of Eq. (10) that

ln(exp x) = x for all x (11)

and that
exp(ln y) = y for all y > 0. (12)

As in the case of the graphs of y = ax and y = loga x discussed informally in
Section 3.8, the fact that exp x and ln x are inverse functions implies that the graphs
of y = exp x and y = ln x are reflections of each other across the line y = x . (See
Fig. 6.7.9.) Therefore, the graph of the exponential function looks like the one shown
in Fig. 6.7.10. In particular, exp x is positive-valued for all x , and

exp 0 = 1,

lim
x→∞ exp x = +∞, and

lim
x→−∞ exp x = 0.

(13)

(14)

(15)

These facts follow from the equation ln 1 = 0 and the limits in (4).

y

y = ln x

y = x

y = ex

x(1, 0)

(0, 1)

FIGURE 6.7.9 The graphs y = ex and
y = ln x are reflections of each other
across the 45◦ line y = x .

(0, 1)

y

x

y = exp x

FIGURE 6.7.10 The graph of the
natural exponential function, exp.

Exponentials and Powers of e
Recall that we have now defined the number e ≈ 2.71828 as the number whose natural
logarithm is 1. If r is any rational number, it follows that

ln(er ) = r ln e = r.

But Eq. (10) implies that ln(er ) = r if and only if

exp r = er .

Thus exp x is equal to ex (e raised to the power x) if x is a rational number. We
therefore define ex for irrational as well as rational values of x by

ex = exp x . (16)

This is our first legitimate instance of powers with irrational exponents.
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Equation (16) is the reason for calling exp the natural exponential function. With
this notation, Eqs. (10) through (12) become

ex = y if and only if ln y = x , (17)

ln(ex) = x for all x , (18)
and

eln x = x for all x > 0. (19)

To justify Eq. (16), we should show rigorously that powers of e satisfy the laws of
exponents. We can do this immediately.

THEOREM 2 Laws of Exponents
If x and y are real numbers and r is rational, then

ex ey = ex+y, (20)

e−x = 1

ex
, (21)

and

(ex)r = er x . (22)

Proof The laws of logarithms and Eq. (18) give

ln(ex ey) = ln(ex) + ln(ey) = x + y = ln(ex+y).

Then Eq. (20) follows from the fact that ln is an increasing function and therefore is
one-to-one—if x1 	= x2, then ln x1 	= ln x2. Similarly,

ln
([ex ]r

) = r ln(ex) = r x = ln(er x).

So Eq. (22) follows in the same way. The proof of Eq. (21) is almost identical. We will
see presently that the restriction that r is rational in Eq. (22) is unnecessary; that is, the
equation (ex)y = exy holds for all real numbers x and y. ◆

General Exponential Functions
The natural exponential function ex and the natural logarithm function ln x are often
called the exponential and logarithm functions with base e. We now define general
exponential and logarithm functions, with the forms ax and loga x , whose base is a
positive number a 	= 1. But it is convenient here to reverse the order of treatment, so
we first consider the general exponential function.

If r is a rational number, then the law of exponents in Eq. (22) gives

ar = (eln a)r = er ln a.

We therefore define arbitrary powers (rational and irrational) of the positive number a
in this way:

ax = ex ln a (23)

for all x . Thus
3

√
2 = e

√
2 ln 3 ≈ e1.5537 ≈ 4.7289

and
(0.5)−π = e−π ln(0.5) ≈ e2.1776 ≈ 8.8251.

Then f (x) = ax is called the exponential function with base a. Note that ax > 0 for
all x and that a0 = e0 = 1 for all a > 0.
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The laws of exponents for general exponentials follow almost immediately from
the definition in Eq. (23) and from the laws of exponents for the natural exponential
function:

ax ay = ax+y , (24)

a−x = 1

ax
, (25)

and

(ax)y = axy (26)

for all x and y. To prove Eq. (24), we write

ax ay = ex ln aey ln a = e(x ln a)+(y ln a) = e(x+y) ln a = ax+y .

To derive Eq. (26), note first from Eq. (23) that ln ax = x ln a. Then

(ax)y = ey ln(ax ) = exy ln a = axy .

This follows for all real numbers x and y, so the restriction that r is rational in the
formula (ex)r = er x (Eq. (22)) has now been removed.

If a > 1, so that ln a > 0, then Eqs. (14) and (15) immediately give us the results

lim
x→∞ ax = +∞ and lim

x→−∞ ax = 0. (27)

Because

Dx ax = Dx(e
x ln a) = (ln a)ex ln a = ax ln a (28)

is positive for all x if a > 1, we see that—in this case— f (x) = ax is an increasing
function of x . The graph y = ax then resembles that of the natural exponential function

x

y

−2

0

2

4

6

8

10

1 2−2 −1 30 4

y = 3x

y = 2x

y = 7x

FIGURE 6.7.11 If a > 1 then
lim

x→−∞ ax = 0, lim
x→∞ ax = +∞.

y = ex , but its relative steepness depends on the magnitude of a (Fig. 6.7.11).
If 0 < a < 1, then ln a < 0. In this case it therefore follows from (28) that

f (x) = ax is a decreasing function, and the values of the two limits in (27) are in-

x

y

−2

0

2

4

6

8

10

−5 −4 −3 −2 −1 43210

y = ( )x2
3

y = ( )x1
2

y = ( )x1
5

FIGURE 6.7.12 If 0 < a < 1 then
lim

x→−∞ ax = +∞, lim
x→∞ ax = 0.

terchanged (Fig. 6.7.12). Whether a > 1 or 0 < a < 1, it follows from (28) that
f ′′(x) = ax(ln a)2 > 0 for all x , so the graphs in both Figs. 6.7.11 and 6.7.12 are
concave upward for all x .

Derivatives and Integrals
If u = u(x) is a differentiable function of x , then Eq. (28) combined with the chain
rule gives

Dx au = (au ln a)
du

dx
. (29)

The corresponding integral formula is

∫
au du = au

ln a
+ C . (30)

But rather than using these general formulas, it usually is simpler to rely solely on the
definition in Eq. (23), as in Examples 4, 5, and 6.

EXAMPLE 4 To differentiate f (x) = 3x2
, we may first write

3x2 = (eln 3)x2 = ex2 ln 3.

Then

Dx 3x2 = Dx ex2 ln 3 = ex2 ln 3 Dx(x2 ln 3) = 3x2
(ln 3)(2x). ◗
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EXAMPLE 5 Find
∫

10
√

x

√
x

dx .

Solution We first write 10
√

x = (eln 10)
√

x = e
√

x ln 10. Then

∫
10

√
x

√
x

dx =
∫

e
√

x ln 10

√
x

dx

=
∫

2eu

ln 10
du

(
u = √

x ln 10, du = ln 10

2
√

x
dx

)

= 2eu

ln 10
+ C = 2

ln 10
10

√
x + C. ◗

EXAMPLE 6 The function

P(t) = 3 · (1.07)t

describes a population that starts with P(0) = 3 (million) bacteria at time t = 0 (h)
and increases in number by 7% every hour. After 10 hours the population is

P(10) = 3 · (1.07)10 ≈ 5.90 (million),

so the population has almost doubled. The derivative of P(t) is

P ′(t) = Dt [3 · (1.07)t ] = 3 · Dt
(
et ln(1.07)

)
= 3 · [ln(1.07)]et ln(1.07) = 3(ln 1.07)(1.07)t ,

so at time t = 10 the rate of growth of this bacteria population is

P ′(10) = 3(ln 1.07)(1.07)10 ≈ 0.40 (million per hour). ◗

Whether or not the exponent r is rational, the general power function f (x) = xr

is now defined for x > 0 by

xr = er ln x .

We may now prove the power rule of differentiation for an arbitrary (constant) expo-
nent as follows:

Dx xr = Dx(e
r ln x) = er ln x Dx(r ln x) = xr · r

x
= r xr−1.

For example, we now know that

Dx xπ = πxπ−1 ≈ (3.14159)x2.14159.

General Logarithm Functions

If a > 1, then the general exponential function ax is continuous and increasing for all
x and attains all positive values. It therefore has an inverse function that is defined for
all x > 0. This inverse function of ax is called the logarithm function with base a
and is denoted by loga x . Thus

y = loga x if and only if x = ay . (31)

The logarithm function with base e is the natural logarithm function: loge x = ln x .
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The following laws of logarithms are easy to derive from the laws of exponents
in Eqs. (24) through (26).

loga xy = loga x + loga y, (32)

loga

(
1

x

)
= − loga x , (33)

loga x y = y loga x . (34)

These formulas hold for any positive base a 	= 1 and for all positive values of x and y;
in Eq. (34), y may be negative or zero as well.

Logarithms with one base are related to logarithms with another base, and the
relationship is most easily expressed by the formula

(loga b)(logb c) = loga c. (35)

This formula holds for all values of a, b, and c for which it makes sense—the bases a
and b are positive numbers other than 1 and c is positive. The proof of this formula is
outlined in Problem 39. Equation (35) should be easy to remember—it is as if some
arcane cancellation law applies.

If we take c = a in Eq. (35), this gives

(loga b)(logb a) = 1, (36)

which in turn, with b = e, gives

ln a = 1

loga e
. (37)

If we replace a with e, b with a, and c with x in Eq. (35), we obtain

(loge a)(loga x) = loge x,

so

loga x = loge x

loge a
= ln x

ln a
. (38)

On most calculators, the LOG key denotes common (base 10) logarithms: log x =
log10 x . In contrast, in many programming languages, such as BASIC, and some
symbolic algebra programs, such as Mathematica, only the natural logarithm appears
explicitly—as LOG(X) (in BASIC) and as Log[x] (in Mathematica). To get log10 x
we write LOG(X)/LOG(10) and Log[10,x], respectively.

Differentiating both sides of Eq. (38) yields

Dx loga x = 1

x ln a
= loga e

x
. (39)

For example,

Dx log10 x = log10 e

x
≈ 0.4343

x
.

If we combine the formula Dx ln |x | = 1/x (see Eq. (22) in Section 3.8) and
Eq. (38) with u in place of x , the chain rule gives

Dx loga |u| = Dx ln |u|
ln a

= 1

u ln a
· du

dx
= loga e

u
· du

dx
(40)

if u is a differentiable function of x .
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EXAMPLE 7

Dx log2

√
x2 + 1 = 1

2
Dx log2(x2 + 1) = 1

2
· log2 e

x2 + 1
· 2x ≈ (1.4427)x

x2 + 1
.

In the last step we substituted log2 e = 1/(ln 2) ≈ 1/0.69315 ≈ 1.4427. ◗

6.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. By definition, ln x =
∫ x

1

1

t
dt for x > 0.

2. lim
x→+∞ ln x = +∞ and lim

x→0+ ln x = 0.

3. According to Theorem 1 of Section 6.7, ln
1

x
= 1

ln x
if x > 0.

4. The definition of the natural exponential function states that exp x = y if and
only if ln y = x .

5. lim
x→−∞ exp x = −∞.

6. By definition, if a > 0 and x is a real number, then ax = ex ln a .
7. If 0 < a < 1, then lim

x→∞ ax = 0.

8. Dx ax = xax−1.

9.
∫

au du = au · ln a + C .

10. Dx log10 x = log10 e

x
.

6.7 CONCEPTS: QUESTIONS AND DISCUSSION
1. Contrast the “ex first” approach to exponentials and logarithms in Section 3.8

with the “ln x first” approach in this section. Outline each approach and point
out key differences. What, if anything, is not fully defined in each approach?
How is the number e introduced in each approach? How do the derivations of
the differentiation formulas Dx ex = ex and Dx ln x = 1/x differ in the two
approaches?

2. Outline the way in which the precise definitions of the exponential and logarithm
functions in this section are used to define and differentiate the power function
f (x) = xr (for both positive and negative values of x and both rational and
irrational values of the exponent r ).

6.7 PROBLEMS

In Problems 1 through 24, find the derivative of the given func-
tion f (x).

1. f (x) = 10x 2. f (x) = 21/x2

3. f (x) = 3x

4x
4. f (x) = log10 cos x

5. f (x) = 7cos x 6. f (x) = 2x 3x2

7. f (x) = 2x
√

x 8. f (x) = log100 10x

9. f (x) = 2ln x 10. f (x) = 78x

11. f (x) = 17x 12. f (x) = 2
√

x

13. f (x) = 101/x 14. f (x) = 3
√

1−x2

15. f (x) = 22x
16. f (x) = log2 x

17. f (x) = log3

√
x2 + 4 18. f (x) = log10(e

x )

19. f (x) = log3(2
x ) 20. f (x) = log10(log10 x)

21. f (x) = log2(log3 x) 22. f (x) = π x + xπ + ππ

23. f (x) = exp(log10 x) 24. f (x) = π x3

Evaluate the integrals given in Problems 25 through 32.

25.
∫

32x dx 26.
∫

x · 10−x2
dx

27.
∫

2
√

x

√
x

dx 28.
∫

101/x

x2
dx
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29.
∫

x27x3+1 dx 30.
∫

1

x log10 x
dx

31.
∫

log2 x

x
dx 32.

∫
(2x )3(2x ) dx

33. The heart rate R (in beats per minute) and weight W (in
pounds) of various mammals were measured, with the re-
sults shown in Fig. 6.7.13. Use the method of Example 3 to
find a relation between the two of the form R = kW m .

W 25 67 127 175 240 975

R 131 103 88 81 75 53

FIGURE 6.7.13 Data for Problem 33.

34. During the adiabatic expansion of a certain diatomic gas, its
volume V (in liters) and pressure p (in atmospheres) were
measured, with the results shown in Fig. 6.7.14. Use the
method of Example 3 to find a relation between V and p of
the form p = kV m .

V 1.46 2.50 3.51 5.73 7.26

p 28.3 13.3 8.3 4.2 3.0

FIGURE 6.7.14 Data for Problem 34.

35. Find the highest point on the curve f (x) = x ·2−x for x > 0.

36. Approximate the area of the first-quadrant region bounded
by the curves y = 2−x and y = (x − 1)2. One of the points
of intersection of these two curves should be evident, but you
will need to approximate the other point.

37. Approximate the volume of the solid generated by rotation
of the region of Problem 36 around the x-axis.

38. Approximate the area of the first-quadrant region bounded
by the curves y = 32−x and y = (3x − 4)2. You will need
to approximate the two points of intersection of these two
curves.

39. Prove Eq. (35). [Suggestion: Let x = loga b, y = logb c,
and z = loga c. Then show that az = axy , and conclude that
z = xy.]

40. Consider the function

f (x) = 1

1 + 21/x
for x 	= 0.

Show that both the left-hand and right-hand limits of f (x) at
x = 0 exist but are unequal.

41. Find dy/dx if y = logx 2.

6.7 INVESTIGATION: Natural Functional Equations
Provide complete details in the proofs of Fact 1 and Fact 2 that are outlined here.

Fact 1 If f is a continuous function such that

f (x + y) = f (x) + f (y) (1)

for all real numbers x and y, then f (x) = kx for some constant k.

Outline of Proof Let us substitute t for y in Eq. (1) and then integrate from t = 0
to t = y with x held constant:∫ y

t=0
f (x + t) dt =

∫ y

t=0
f (x) dt +

∫ y

t=0
f (t) dt.

Then substituting u = u(t) = x + t , du = dt on the left-hand side yields the equation∫ x+y

u=x
f (u) du = y · f (x) +

∫ y

t=0
f (t) dt,

from which we find that

y · f (x) =
∫ x+y

t=0
f (t) dt −

∫ x

t=0
f (t) dt −

∫ y

t=0
f (t) dt.

The right-hand side is symmetric in the variables x and y, so interchanging them gives

y · f (x) = x · f (y), so that
f (x)

x
= f (y)

y

for all x and y. Because x and y are independent, it follows that the function f (x)/x
must be constant-valued, and therefore

f (x) = kx

for some constant k. ◆
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This subtle proof is due to H. N. Shapiro, “A micronote on a functional equation,”
Amer. Math. Monthly 80 (1973), p. 1041. There exist discontinuous functions that
satisfy Eq. (1). But it is known that any such function must be truly bizarre—its graph
must intersect every circular disk in the xy-plane. Can you see that this implies not only
that such a function not only is discontinuous at every point, but also is unbounded near
every point?

Fact 2 If f is a positive-valued continuous function such that

f (x + y) = f (x) · f (y) (2)

for all real numbers x and y, then

f (x) = ekx

for some constant k.

Outline of Proof Let g(x) = ln( f (x)). Taking the natural logarithm of both sides
in Eq. (2) gives

g(x + y) = ln( f (x + y)) = ln( f (x) · f (y)) = ln( f (x)) + ln( f (y)) = g(x) + g(y).

Application of Fact 1 to g now yields

ln( f (x)) = kx, so that f (x) = ekx . ◆

Challenge Use similar methods to establish the following result:

Fact 3 If f is a continuous function such that

f (xy) = f (x) · f (y) (3)

for all positive real numbers x and y, then

f (x) = xk

for some constant k.

6.8 INVERSE TRIGONOMETRIC FUNCTIONS

Recall that the function f is said to be one-to-one on its domain of definition D if,

−4

−2

0

2

4

−4 −2 0 2 4
x

y

y = ex

y = ln x

y = x

FIGURE 6.8.1 The graphs y = ex

and y = ln x are reflections across
the line y = x .

given x1 and x2 in D, x1 	= x2 implies that f (x1) 	= f (x2): “Different inputs give
different outputs.” (To prove that f is one-to-one, it is usually easier to prove the
contrapositive—that if f (x1) = f (x2), then x1 = x2.) What is important here is that if
f is one-to-one on its domain of definition, then it has an inverse function f −1. This
inverse function is defined by

f −1(x) = y if and only if f (y) = x . (1)

For example, from Section 3.8 we are familiar with the pair of inverse functions

f (x) = ex and f −1(x) = ln x .

From a geometric viewpoint, Eq. (1) implies that the graphs y = f (x) and y = f −1(x)

are reflections across the 45◦ line y = x , like the familiar graphs y = ex and y = ln x
in Fig. 6.8.1.
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The Inverse Tangent Function

Here we want to define the inverses of the trigonometric functions, beginning with the
inverse tangent function. We must, however, confront the fact that the trigonometric
functions fail to be one-to-one because the period of each of the six is π or 2π . For
example, tan x = 1 if x is π/4 or π/4 plus any integral multiple of π . These many
values of x , all with tangent equal to 1, correspond to the multiple points of intersection
of the graph y = tan x and the horizontal line y = 1 in Fig. 6.8.2.

y

x

4

y = 1

−7   
4
π −3   

4
π 5  

4
π 9  

4
ππ

FIGURE 6.8.2 The tangent
function takes on every real
number value infinitely often.

x = 1

x

y

FIGURE 6.8.3 Simply reflecting
the graph of y = tan x across the
45◦-line y = x does not produce the
graph of a function.

Figure 6.8.3 is the reflection of Fig. 6.8.2 across the 45◦ line y = x . The multiple
intersections of x = tan y and the vertical line x = 1 indicate that we must make a
choice in order to define tan−1 1. That is, we cannot define y = tan−1 x , the inverse of
the tangent function, by saying simply that y is the number such that tan y = x . There
are many such values of y, and we must specify just which particular one of these is to
be used. (Note that the symbol −1 in the notation tan−1 x is not an exponent—it does
not mean (tan x)−1.)

We do this by suitably restricting the domain of the tangent function. Because
the function tan x is increasing on (−π/2, π/2) and its range of values is (−∞, +∞),
for each x in (−∞, +∞) there is one number y in (−π/2, π/2) such that tan y = x .
This observation leads to the following definition of the inverse tangent (or arctangent)
function, denoted by tan−1 x or arctan x .

DEFINITION The Inverse Tangent Function
The inverse tangent (or arctangent) function is defined as follows:

y = tan−1 x if and only if tan y = x and −π/2 < y < π/2 (2)

where x is an arbitrary real number.

Because the tangent function attains all real values, tan−1 x is defined for all real
numbers x ; tan−1 x is that number y in the interval (−π/2, π/2) whose tangent is x .
The graph of y = tan−1 x is the reflection of the graph of y = tan x , −π/2 < x < π/2,
across the line y = x (Fig. 6.8.4).

y

x

2
y = −

y = tan−1 x

π

2
y = π

FIGURE 6.8.4 The inverse tangent
function tan−1 x is defined for all x .

It follows from Eq. (2) that

tan(tan−1 x) = x for all x (3a)

and

tan−1(tan x) = x if −π/2 < x < π/2. (3b)
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Because the derivative of tan x is positive for all x in the interval (−π/2, π/2), it
follows from Theorem 1 in Section 3.8 that tan−1 x is differentiable for all x . We may,
therefore, differentiate both sides of the identity in Eq. (3a). First we write that identity
in the form

tan y = x,

where y = tan−1 x . Then differentiation with respect to x yields

(sec2 y)
dy

dx
= 1;

dy

dx
= 1

sec2 y
= 1

1 + tan2 y
= 1

1 + x2
.

Thus

Dx tan−1 x = 1

1 + x2
, (4)

and if u is any differentiable function of x , then

Dx tan−1 u = 1

1 + u2
· du

dx
. (5)

The definition of the inverse cotangent function is similar to that of the inverse
tangent function, except that we begin by restricting the cotangent function to the inter-
val (0, π), where it is a decreasing function attaining all real values. Thus the inverse
cotangent (or arccotangent) function is defined as

y = cot−1 x if and only if cot y = x and 0 < y < π (6)

where x is any real number. Then differentiation of both sides of the identity
cot(cot−1 x) = x leads, as in the derivation of Eq. (4), to

Dx cot−1 x = − 1

1 + x2
.

If u is a differentiable function of x , then the chain rule gives

Dx cot−1 u = − 1

1 + u2
· du

dx
. (7)

Upon comparing Eqs. (5) and (7) we see that Dx cot−1 x = −Dx tan−1 x , so the two
inverse functions are closely related. Indeed, perhaps you can show—using either
calculus or just the definitions of the two functions—that tan−1 x + cot−1 x ≡ π/2.

EXAMPLE 1 A mountain climber on one edge of a deep canyon 800 ft wide sees a
large rock fall from the opposite edge at time t = 0. As he watches the rock plummet
downward, his eyes first move slowly, then faster, then more slowly again. Let α be the
angle of depression of his line of sight below the horizontal. At what angle α would
the rock seem to be moving the most rapidly? That is, when would dα/dt be maximal?

Solution From our study of constant acceleration in Section 5.2, we know that theObserver Rock800 ft

α

16t2

FIGURE 6.8.5 The falling rock of
Example 1.

rock will fall 16t2 feet in the first t seconds. We refer to Fig. 6.8.5 and see that the value
of α at time t will be

α = α(t) = tan−1

(
16t2

800

)
= tan−1

(
t2

50

)
.

Hence
dα

dt
= 1

1 +
(

t2

50

)2 · 2t

50
= 100t

t4 + 2500
.
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To find when dα/dt is maximal, we find when its derivative is zero:

d

dt

(
dα

dt

)
= 100(t4 + 2500) − (100t)(4t3)

(t4 + 2500)2
= 100(2500 − 3t4)

(t4 + 2500)2
.

So d2α/dt2 is zero when 3t4 = 2500—that is, when

t = 4
√

2500
3 ≈ 5.37 (s).

This is the value of t when dα/dt is maximal, and at this time we have t2 = 50/
√

3.
So the angle at this time is

α = arctan

(
1

50
· 50√

3

)
= arctan

(
1√
3

)
= π

6
.

The apparent speed of the falling rock is greatest when the climber’s line of sight is
30◦ below the horizontal. The actual speed of the rock is then 32t with t ≈ 5.37 and
thus is about 172 ft/s. ◗

The Inverse Sine Function

Figure 6.8.6 shows the graph of the sine function and the horizontal line y = 1
2 .

Because this line meets the graph of the sine function in more than one point (indeed,
at infinitely many points), the sine function takes on the value 1

2 for many different

y

x

y = sin x

1
2

y =

π 2π−2 π−π

FIGURE 6.8.6 Multiple values of x
such that sin x = 1

2 .

values of x . For example, sin x = 1
2 if x is either π/6 plus any integral multiple of 2π

or 5π/6 plus any integral multiple of 2π .
Figure 6.8.7 is the reflection of Fig. 6.8.6 across the 45◦ line y = x . The multiple

intersections of x = sin y and the vertical line x = 1
2 indicate that we must make ay

x

x = sin y

1
2

x =
π

2π

π−

−2π

FIGURE 6.8.7 There are many
possible choices for y = sin−1 1

2 .

choice in order to define sin−1( 1
2 ). That is, we cannot define y = sin−1 x , the inverse

of the sine function, by saying merely that y is the number such that sin y = x . There
are many such values of y, and we must specify just which particular one of these is to
be used.

We do this by suitably restricting the domain of the sine function. Because the
function sin x is increasing on [−π/2, π/2] and its range of values is [−1, 1], for
each x in [−1, 1] there is one number y in [−π/2, π/2] such that sin y = x . This
observation leads to the following definition of the inverse sine (or arcsine) function,
denoted by sin−1 x or by arcsin x .

DEFINITION The Inverse Sine Function
The inverse sine (or arcsine) function is defined as follows:

y = sin−1 x if and only if sin y = x and −π/2 � y � π/2 (8)

where −1 � x � 1.

Thus, if x is between −1 and +1 (inclusive), then sin−1 x is that number y be-
tween −π/2 and π/2 such that sin y = x . Even more briefly, arcsin x is the angle (in
radians) nearest zero whose sine is x . For instance,

sin−1 1 = π

2
, sin−1 0 = 0, sin−1(−1) = −π

2
,

and sin−1 2 does not exist.
Because interchanging x and y in the equation sin y = x yields y = sin x , it

follows from Eq. (8) that the graph of y = sin−1 x is the reflection of the graph of
y = sin x , −π/2 � x � π/2, across the line y = x (Fig. 6.8.8).
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(a)  Graph of the sine function (b)  Graph of the arcsine function

x

y

y = x

y = sin x
1

−1

x

y

y = x

y = sin−1 x

1−1

2
π

−
2
π

2
π−

2
π

FIGURE 6.8.8 The graphs y = sin x and y = sin−1 x are reflections of each
other across the line y = x .

It also follows from Eq. (8) that

sin(sin−1 x) = x if −1 � x � 1 (9a)

and

sin−1(sin x) = x if −π/2 � x � π/2. (9b)

Because the derivative of sin x is positive for −π/2 < x < π/2, it follows from
Theorem 1 of Section 3.8 that sin−1 x is differentiable on (−1, 1). We may, therefore,
differentiate both sides of the identity in (9a), but we begin by writing it in the form

sin y = x,

where y = sin−1 x . Then differentiation with respect to x gives

(cos y)
dy

dx
= 1,

so
dy

dx
= 1

cos y
= 1√

1 − sin2 y
= 1√

1 − x2
.

We are correct in taking the positive square root in this computation because
cos y > 0 for −π/2 < y < π/2. Thus

Dx sin−1 x = 1√
1 − x2

(10)

provided that −1 < x < 1. When we combine this result with the chain rule, we get

Dx sin−1 u = 1√
1 − u2

· du

dx
(11)

if u is a differentiable function with values in the interval (−1, 1).

EXAMPLE 2 If y = sin−1 x2, then Eq. (11) with u = x2 yields

dy

dx
= 1√

1 − (x2)2
· 2x = 2x√

1 − x4
. ◗
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The definition of the inverse cosine function is similar to that of the inverse sine

x

y

y = cos x
1

−1

π
2
π

FIGURE 6.8.9 The cosine function
is decreasing on the interval
0 � x � π .

function, except that we begin by restricting the cosine function to the interval [0, π ],
where it is a decreasing function (Fig. 6.8.9). Thus the inverse cosine (or arccosine)
function is defined by means of the rule

y = cos−1 x if and only if cos y = x and 0 � y � π (12)

where −1 � x � 1. Thus cos−1 x is the angle in [0, π ] whose cosine is x . For
instance,

cos−1 1 = 0, cos−1 0 = π

2
, cos−1(−1) = π.

We may compute the derivative of cos−1 x , also written arccos x , by differentiat-
ing both sides of the identity

cos(cos−1 x) = x (−1 < x < 1).

The computations are similar to those for Dx sin−1 x and lead to the result

x

y

1−1

π

2
π

FIGURE 6.8.10 The graph
y = cos−1 x of the arccosine
function.

Dx cos−1 x = − 1√
1 − x2

.

And if u denotes a differentiable function of x , the chain rule then gives

Dx cos−1 u = − 1√
1 − u2

· du

dx
. (13)

Figure 6.8.10 shows the graph of y = cos−1 x as the reflection of the graph of y =
cos x , 0 � x � π , across the line y = x .

The Inverse Secant Function

Figure 6.8.11 shows that the secant function is increasing on each of the intervals
[0, π/2) and (π/2, π ]. On the union of these two intervals, the secant function attains
all real values y such that |y| � 1. We may, therefore, define the inverse secant func-

y

x

y = sec x

1

−1
π

FIGURE 6.8.11 Restriction of the
secant function to the union of the
two intervals [0, π/2) and
(π/2, π].

tion, denoted by sec−1 x or by arcsec x , by restricting the secant function to the union
of the two intervals [0, π/2) and (π/2, π ].

DEFINITION The Inverse Secant Function
The inverse secant (or arcsecant) function is defined as follows:

y = sec−1 x if and only if sec y = x and 0 � y � π (14)

where |x | � 1.

REMARK 1 Because sec(π/2) is not defined, the restriction 0 � y � π in (14)
implies that the range of the inverse secant function is the union [0, π/2) ∪ (π/2, π ].
REMARK 2 Some textbooks offer alternative definitions of the inverse secant based
on different intervals of definition of sec x . The definition given here, however, satisfies
the condition that

sec−1 x = cos−1 1

x
(if |x | > 1),

which is convenient for calculator-computer calculations. (See Problem 62.) More-
over, our definition of sec−1 x is the same as that used in computer algebra systems
such as Maple and Mathematica. (See Problem 61.)
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The graph of y = sec−1 x is the reflection of the graph of y = sec x , suitably
restricted to the intervals 0 � x < π/2 and π/2 < x � π , across the line y = x
(Fig. 6.8.12). It follows from the definition of the inverse secant that

sec(sec−1 x) = x if |x | � 1, (15a)

sec−1(sec x) = x for x in [0, π/2) ∪ (π/2, π ]. (15b)

Following the now-familiar pattern, we find Dx sec−1 x by differentiating both sides of

π

y

x

y = sec−1 x

1−1

FIGURE 6.8.12 The graph of
y = arcsec x = sec−1 x .

Eq. (15a) in the form

sec y = x,

where y = sec−1 x . This yields

(sec y tan y)
dy

dx
= 1,

so

dy

dx
= 1

sec y tan y
= 1

±x
√

x2 − 1
,

because tan y = ±√
sec2 y − 1 = ±√

x2 − 1.
To obtain the correct choice of sign here, note what happens in the two cases

x > 1 and x < −1. In the first case, 0 < y < π/2 and tan y > 0, so we choose the
plus sign. If x < −1, then π/2 < y < π and tan y < 0, so we take the minus sign.
Thus

dy

dx
= 1

|x | √x2 − 1
(|x | > 1). (16)

If u is a differentiable function of x with values that exceed 1 in magnitude, then by
the chain rule we have

Dx sec−1 u = 1

|u| √u2 − 1
· du

dx
. (17)

EXAMPLE 3 The function f (x) = sec−1 ex is defined if x > 0, because then ex > 1.
Then by Eq. (17),

Dx sec−1 ex = ex

|ex | √e2x − 1
= 1√

e2x − 1

because |ex | = ex for all x . ◗

The inverse cosecant (or arccosecant) function is the inverse of the function
y = csc x , where x is restricted to the union of the intervals [−π/2, 0) and (0, π/2].
Thus

y = csc−1 x if and only if csc y = x and −π/2 < y < π/2 (18)

where |x | � 1. Its derivative formula, which has a derivation similar to that of the
inverse secant function, is

Dx csc−1 u = − 1

|u| √u2 − 1
· du

dx
. (19)
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SUMMARY
The following table summarizes the domains, ranges, and derivatives of the six
inverse trigonometric functions.

Domain of Range of
Function Definition Values Derivative

sin−1 x −1 � x � 1 −π/2 � y � π/2
1√

1 − x2

cos−1 x −1 � x � 1 0 � y � π − 1√
1 − x2

tan−1 x −∞ < x < +∞ −π/2 < y < π/2
1

1 + x2

cot−1 x −∞ < x < +∞ 0 < y < π − 1

1 + x2

sec−1 x |x | � 1 0 � y < π/2, π/2 < y � π
1

|x | √x2 − 1

csc−1 x |x | � 1 −π/2 < y < 0, 0 < y < π/2 − 1

|x | √x2 − 1

It is worth noting that

• sin−1 x has the range [−π/2, π/2] and tan−1 x has the range (−π/2, π/2),
whereas

• cos−1 x has the range [0, π ] and sec−1 x has the range [0, 1
2π) ∪ ( 1

2π, π ].
Observe also the “difference only in sign” of the derivatives of function/cofunction
pairs of inverse functions.

Integrals Involving Inverse Trigonometric Functions
The derivatives of the six inverse trigonometric functions are all simple algebraic func-
tions. As a consequence, inverse trigonometric functions typically occur when we in-
tegrate algebraic functions. Moreover, as mentioned earlier, the derivatives of cos−1 x ,
cot−1 x , and csc−1 x differ only in sign from the derivatives of their respective co-
functions. For this reason only the arcsine, arctangent, and arcsecant functions are
necessary for integration, and only these three are in common use. That is, you need
commit to memory the integral formulas only for the latter three functions. They fol-
low immediately from Eqs. (5), (11), and (17) and may be written in the forms shown
next: ∫

du√
1 − u2

= sin−1 u + C , (20)

∫
du

1 + u2
= tan−1 u + C , (21)

∫
du

u
√

u2 − 1
= sec−1 |u| + C . (22)

It is easy to verify that the absolute value on the right-hand side in Eq. (22) follows
from the one in Eq. (17). (See Problem 57.) And remember that because sec−1 |u| is
undefined unless |u| � 1, the definite integral∫ b

a

du

u
√

u2 − 1

is meaningful only when the limits a and b are both at least 1 or both at most −1.
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EXAMPLE 4 It follows immediately from Eq. (21) that∫ 1

0

dx

1 + x2
=

[
tan−1 x

]1

0
= tan−1 1 − tan−1 0 = π

4
. ◗

EXAMPLE 5 The substitution u = 3x , du = 3 dx gives∫
1

1 + 9x2
dx = 1

3

∫
3

1 + (3x)2
dx

= 1

3

∫
du

1 + u2
= 1

3
tan−1 u + C = 1

3
tan−1 3x + C. ◗

EXAMPLE 6 The substitution u = 1
2 x , du = 1

2 dx gives∫
1√

4 − x2
dx =

∫
1

2
√

1 − (x/2)2
dx

=
∫

1√
1 − u2

du = arcsin u + C = arcsin

(
x

2

)
+ C. ◗

EXAMPLE 7 The substitution u = x
√

2, du = √
2 dx gives∫ √

2

1

1

x
√

2x2 − 1
dx =

∫ 2

√
2

1

u
√

u2 − 1
du

=
[

sec−1 |u|
]2

√
2

= sec−1 2 − sec−1
√

2

= π

3
− π

4
= π

12
. ◗

6.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The function f is said to be one-to-one on its domain D provided that, whenever
x1 and x2 are in D and x1 = x2, then f (x1) = f (x2).

2. If f (x) = tan x then f −1(x) = 1

tan x
.

3. y = tan−1 x if and only if tan y = x .
4. For every real number x , tan

(
tan−1 x

) = x .

5. Dx tan−1 x = 1

1 + x2
.

6. y = sin−1 x if and only if sin y = x and −π

2
� y �

π

2
, where −1 � x � 1.

7. sin
(
sin−1 x

) = x if −1 � x � 1.

8. Dx sin−1 x = 1√
1 − x2

.

9. Dx sec−1 x = 1

x
√

x2 − 1
.

10.
∫

1

u
√

u2 − 1
du = sec−1 |u| + C .
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6.8 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that f and g are inverse functions. Outline the way the derivative of g

can be found if the derivative of f is known.
2. Discuss the differences and similarities in the domains and ranges of the six in-

verse trigonometric functions.

6.8 PROBLEMS

Find the values indicated in Problems 1 through 4.

1. (a) sin−1
(

1
2

)
; (b) sin−1

(− 1
2

)
; (c) sin−1

(
1
2

√
2

)
;

(d) sin−1
(
− 1

2

√
3

)
2. (a) cos−1

(
1
2

)
; (b) cos−1

(− 1
2

)
; (c) cos−1

(
1
2

√
2

)
(d) cos−1

(
− 1

2

√
3

)
3. (a) tan−1 0; (b) tan−1 1; (c) tan−1(−1);

(d) tan−1
√

3

4. (a) sec−1 1; (b) sec−1(−1); (c) sec−1 2;

(d) sec−1
(
−√

2
)

Differentiate the functions in Problems 5 through 26.

5. f (x) = sin−1(x100) 6. f (x) = arctan(ex )

7. f (x) = sec−1(ln x) 8. f (x) = ln(tan−1 x)

9. f (x) = arcsin(tan x) 10. f (x) = x arctan x

11. f (x) = sin−1 ex 12. f (x) = arctan
√

x

13. f (x) = cos−1 x + sec−1

(
1

x

)
14. f (x) = cot−1

(
1

x2

)

15. f (x) = csc−1 x2 16. f (x) = arccos

(
1√
x

)

17. f (x) = 1

arctan x
18. f (x) = (arcsin x)2

19. f (x) = tan−1(ln x) 20. f (x) = arcsec
√

x2 + 1

21. f (x) = tan−1 ex + cot−1 e−x 22. f (x) = exp(arcsin x)

23. f (x) = sin(arctan x) 24. f (x) = sec(sec−1 ex )

25. f (x) = arctan x

(1 + x2)2
26. f (x) = (sin−1 2x2)−2

In Problems 27 through 30, find dy/dx by implicit differentia-
tion. Then find the line tangent to the graph of the equation at
the indicated point P.

27. tan−1 x + tan−1 y = π

2
; P(1, 1)

28. sin−1 x + sin−1 y = π

2
; P

(
1
2 , 1

2

√
3

)

29. (sin−1 x)(sin−1 y) = π2

16
; P

(
1
2

√
2, 1

2

√
2

)

30. (sin−1 x)2 + (sin−1 y)2 = 5π2

36
; P

(
1
2 , 1

2

√
3

)
Evaluate or antidifferentiate, as appropriate, in Problems 31
through 55.

31.
∫ 1

0

dx

1 + x2
32.

∫ 1/2

0

dx√
1 − x2

33.
∫ 2

√
2

dx

x
√

x2 − 1
34.

∫ −2/
√

3

−2

dx

x
√

x2 − 1

35.
∫ 3

0

dx

9 + x2
36.

∫ √
12

0

dx√
16 − x2

37.
∫

dx√
1 − 4x2

38.
∫

dx

9x2 + 4

39.
∫

dx

x
√

x2 − 25
40.

∫
dx

x
√

4x2 − 9

41.
∫

ex

1 + e2x
dx 42.

∫
x2

x6 + 25
dx

43.
∫

dx

x
√

x6 − 25
44.

∫ √
x

1 + x3
dx

45.
∫

dx√
x(1 − x)

46.
∫

sec x tan x

1 + sec2 x
dx

47.
∫

x49

1 + x100
dx 48.

∫
x4

√
1 − x10

dx

49.
∫

1

x[1 + (ln x)2] dx 50.
∫

arctan x

1 + x2
dx

51.
∫ 1

0

1

1 + (2x − 1)2
dx 52.

∫ 1

0

x3

1 + x4
dx

53.
∫ e

1

dx

x
√

1 − (ln x)2
54.

∫ 2

1

dx

x
√

x2 − 1

55.
∫ 3

1

dx

2
√

x (1 + x)
[Suggestion: Let u = x1/2.]

56. Conclude from the formula Dx cos−1 x = −Dx sin−1 x that
sin−1 x + cos−1 x = π/2 if 0 � x � 1.

57. The integral formula in (22) is equivalent to

Du sec−1 |u| = 1

u
√

u2 − 1
if |u| > 1. (22′)

This is the same as (16) if u > 1. Assuming that u < −1,
substitute x = −u in y = sec−1 |u| and use the chain rule
dy/du = (dy/dx)(dx/du) to verify (22′).

In Problems 58 through 60, substitute u = ax (assuming that
a > 0) to derive the given integral formula.

58.
∫

1√
a2 − u2

du = sin−1
(u

a

)
+ C (u < a).

59.
∫

1

a2 + u2
du = 1

a
tan−1

(u

a

)
+ C .

60.
∫

1

u
√

u2 − a2
du = 1

a
sec−1

∣∣∣u

a

∣∣∣ + C (u > a).

497

www.konkur.in



498 CHAPTER 6 Applications of the Integral

61. If f (x) = sec−1 x then the computer algebra systems Math-
ematica and Maple both give

f ′(x) = 1

x2

√
1 − 1

x2

for the derivative of f . Verify carefully that (if either x <

−1 or x > 1) this result is equivalent to the derivative for-
mula for sec−1 x given in this section.

62. Show that

Dx sec−1 x = Dx cos−1 1

x
if |x | > 1,

and conclude that

sec−1 x = cos−1 1

x
if |x | > 1.

This fact can be used to find arcsecant values on a calcula-
tor that has a key for the arccosine function, usually written
INV COS or COS−1 , but no arcsecant key.

63. Some calculus textbooks define the inverse secant func-
tion as that function g such that y = g(x) if and only if
sec y = x with y in either [0, π/2) or [π, 3π/2) (the latter
instead of the interval (π/2, π ] used in this text). In con-
trast with Fig. 6.8.12, show that the graph of this “alternative
arcsecant function” is as shown in Fig. 6.8.13. Then show
that its derivative is given by

g′(x) = 1

x
√

x2 − 1

(with no absolute value on the right).

x

y

y = g(x)

y = g(x)

1−1

3

π

2
π

2
π

FIGURE 6.8.13 Graph of the
alternative inverse secant function
of Problem 63.

64. (a) Deduce from the addition formula for tangents (Problem
28 in Appendix C) that

arctan x + arctan y = arctan
x + y

1 − xy

provided that xy < 1. (b) Apply part (a) to show that each
of the following numbers is equal to π/4: (i) arctan( 1

2 ) +
arctan( 1

3 ); (ii) 2 arctan( 1
3 ) + arctan( 1

7 ); (iii) arctan( 120
119 ) −

arctan( 1
239 ); (iv) 4 arctan( 1

5 ) − arctan( 1
239 ).

65. A billboard to be built parallel to a highway will be 12 m
high and its bottom will be 4 m above the eye level of the
average passing motorist. How far from the highway should
the billboard be placed in order to maximize the vertical an-
gle it subtends at the motorist’s eyes?

66. Use inverse trigonometric functions to prove that the vertical
angle subtended by a rectangular painting on a wall is great-
est when the painting is hung with its center at the level of
the observer’s eyes.

67. Show that the circumference of a circle of radius a is 2πa
by finding the length of the circular arc

y =
√

a2 − x2

from x = 0 to x = a/
√

2 and then multiplying by 8.

68. Find the volume generated by revolving around the y-axis
the area under y = 1/(1 + x4) from x = 0 to x = 1.

69. The unbounded region R is bounded on the left by the y-
axis, below by the x-axis, and above by the graph of y =
1/(1 + x2). Show that the area of R is finite by evaluating

lim
a→∞

∫ a

0

dx

1 + x2
.

70. A building 250 ft high is equipped with an external eleva-
tor. The elevator starts at the top at time t = 0 and descends
at the constant rate of 25 ft/s. You are watching the elevator
from a window that is 100 ft above the ground and in a build-
ing 50 ft from the elevator. At what height does the elevator
appear to you to be moving the fastest?

71. Suppose that the function f is defined for all x such that
|x | > 1 and has the property that

f ′(x) = 1

x
√

x2 − 1

for all such x . (a) Explain why there exist two constants A
and B such that

f (x) = arcsec x + A if x > 1;
f (x) = − arcsec x + B if x < −1.

(b) Determine the values of A and B so that f (2) = 1 =
f (−2). Then sketch the graph of y = f (x).

In some computing languages the arctangent is the only inverse
trigonometric function that is programmed directly, so it is neces-
sary to express sin−1 x and sec−1 x in terms of tan−1 x. In Prob-
lems 72 and 73 verify each given identity by differentiating both
sides. What else must be done?

72. sin−1 x = tan−1

(
x√

1 − x2

)
.

73. (a) sec−1 x = tan−1
√

x2 − 1 if x > 1;

(b) sec−1 x = π − tan−1
√

x2 − 1 if x < −1.

In Problems 74 through 76, estimate the absolute maximum value
of f (x) for x > 0. You may want to begin by locating the perti-
nent critical point graphically.

74. f (x) = x−1/2 tan−1 x 75. f (x) = e−x/10 tan−1 x

76. f (x) = e−x/100 sec−1 x
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6.9 HYPERBOLIC FUNCTIONS

The hyperbolic cosine and the hyperbolic sine of the real number x are denoted by
cosh x and sinh x and are defined to be

cosh x = ex + e−x

2
and sinh x = ex − e−x

2
. (1)

These particular combinations of familiar exponentials are useful in certain applica-
tions of calculus and are also helpful in evaluating certain integrals. The other four
hyperbolic functions—the hyperbolic tangent, cotangent, secant, and cosecant—are
defined in terms of cosh x and sinh x by analogy with trigonometry:

tanh x = sinh x

cosh x
= ex − e−x

ex + e−x
,

coth x = cosh x

sinh x
= ex + e−x

ex − e−x
(x 	= 0); (2)

sech x = 1

cosh x
= 2

ex + e−x
,

csch x = 1

sinh x
= 2

ex − e−x
(x 	= 0). (3)

The trigonometric terminology and notation for these hyperbolic functions stemsy

(1, 0)
x

(cos   , sin   )

 x2 + y2 = 1

θ θ

θ
2

Area

FIGURE 6.9.1 Relation of the
ordinary cosine and sine functions to
the circle x2 + y2 = 1.

from the fact that these functions satisfy a list of identities that, apart from an occa-
sional difference of sign, much resemble familiar trigonometric identities:

cosh2 x − sinh2 x = 1; (4)

1 − tanh2 x = sech2 x; (5)

coth2 x − 1 = csch2 x; (6)

sinh(x + y) = sinh x cosh y + cosh x sinh y; (7)

cosh(x + y) = cosh x cosh y + sinh x sinh y; (8)

sinh 2x = 2 sinh x cosh x; (9)

cosh 2x = cosh2 x + sinh2 x; (10)

cosh2 x = 1
2 (cosh 2x + 1); (11)

sinh2 x = 1
2 (cosh 2x − 1). (12)

The identities in Eqs. (4), (7), and (8) follow directly from the definitions of cosh x and
sinh x , as in Example 1.

EXAMPLE 1 To establish the “fundamental identity” in Eq. (4), we simply substitute
the definitions of cosh x and sinh x on the left-hand side and write

cosh2 x − sinh2 x = 1
4 (ex + e−x)2 − 1

4 (ex − e−x)2

= 1
4 (e2x + 2 + e−2x) − 1

4 (e2x − 2 + e−2x) = 1.

The other identities listed previously may be derived from Eqs. (4), (7), and (8) in ways
that parallel the derivations of the corresponding trigonometric identities. ◗

The trigonometric functions are sometimes called the circular functions because
the point (cos θ, sin θ) lies on the circle x2 + y2 = 1 for all θ (Fig. 6.9.1). Similarly, the
identity in Eq. (4) tells us that the point (cosh θ, sinh θ) lies on the hyperbola x2 − y2 =
1, and this is how the name hyperbolic function originated (Fig. 6.9.2).

θθ(cosh , sinh   )

 x2 − y2 = 1 

x

y

θ
2

Area

(1, 0)

FIGURE 6.9.2 Relation of the
hyperbolic cosine and hyperbolic
sine functions to the hyperbola
x2 − y2 = 1.
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1
1

x

−1

y = − e−x

2

y = ex

2

y = sinh x

(a)

1

x

y = cosh x

(b)

x

y

y = tanh x

(c)

−1

x

−1

y = coth x

(d)

1

x

−1

y = sech x

(e)

x

y = csch x

(f)

y = e−x

2 y = ex

2

1

yy

y y y

FIGURE 6.9.3 Graphs of the six hyperbolic functions.

The graphs of y = cosh x and y = sinh x are easy to construct. Add (for cosh)
or subtract (for sinh) the ordinates of the graphs of y = 1

2 ex and y = 1
2 e−x . The graphs

of the other four hyperbolic functions can then be constructed by dividing ordinates.
The graphs of all six are shown in Fig. 6.9.3.

These graphs show a striking difference between the hyperbolic functions and the
ordinary trigonometric functions: None of the hyperbolic functions is periodic. They
do, however, have even-odd properties, as the circular functions do. Like cosine and
secant, the two functions cosh and sech are even, because

cosh(−x) = cosh x and sech(−x) = sech x

for all x . The other four hyperbolic functions, like the sine and tangent functions, are
odd:

sinh(−x) = − sinh x, tanh(−x) = − tanh x,

and so on.

Derivatives and Integrals of Hyperbolic Functions

The formulas for the derivatives of the hyperbolic functions parallel those for the
trigonometric functions, with occasional sign differences. For example,

Dx cosh x = Dx
(

1
2 ex + 1

2 e−x
) = 1

2 ex − 1
2 e−x = sinh x .
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The chain rule then gives

Dx cosh u = (sinh u)
du

dx
(13)

if u is a differentiable function of x . The other five differentiation formulas are

Dx sinh u = (cosh u)
du

dx
,

Dx tanh u = (sech2 u)
du

dx
,

Dx coth u = (− csch2 u)
du

dx
,

Dx sech u = (− sech u tanh u)
du

dx
,

Dx csch u = (− csch u coth u)
du

dx
.

(14)

(15)

(16)

(17)

(18)

Equation (14) is derived exactly as Eq. (13) is. Then Eqs. (15) through (18) follow
from Eqs. (13) and (14) with the aid of the quotient rule and the identities in Eqs. (5)
and (6).

As indicated in Example 2, the differentiation of hyperbolic functions using
Eqs. (13) through (18) is very similar to the differentiation of trigonometric functions.

EXAMPLE 2

(a) Dx cosh 2x = 2 sinh 2x .
(b) Dx sinh2 x = 2 sinh x cosh x .
(c) Dx(x tanh x) = tanh x + x sech2 x .
(d) Dx sech(x2) = −2x sech(x2) tanh(x2). ◗

The antiderivative versions of the differentiation formulas in Eqs. (13) through
(18) are the following integral formulas:

∫
sinh u du = cosh u + C, (19)

∫
cosh u du = sinh u + C, (20)

∫
sech2 u du = tanh u + C, (21)

∫
csch2 u du = − coth u + C, (22)

∫
sech u tanh u du = − sech u + C, (23)

∫
csch u coth u du = − csch u + C. (24)

The integrals in Example 3 illustrate the fact that simple hyperbolic integrals may
be treated in much the same way as simple trigonometric integrals.
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EXAMPLE 3

(a) With u = 3x , we have∫
cosh 3x dx =

∫
(cosh u)

(
1
3 du

) = 1
3 sinh u + C = 1

3 sinh 3x + C.

(b) With u = sinh x , we have∫
sinh x cosh x dx =

∫
u du = 1

2 u2 + C = 1
2 sinh2 x + C.

(c) Using Eq. (12), we find that∫
sinh2 x dx =

∫
1
2 (cosh 2x − 1) dx = 1

4 sinh 2x − 1
2 x + C.

(d) Finally, using Eq. (5), we see that∫ 1

0
tanh2 x dx =

∫ 1

0
(1 − sech2 x) dx =

[
x − tanh x

]1

0

= 1 − tanh 1 = 1 − e − e−1

e + e−1
= 2

e2 + 1
≈ 0.238406. ◗

Inverse Hyperbolic Functions
Figure 6.9.3 shows that

• The functions sinh x and tanh x are increasing for all x ;
• The functions coth x and csch x are decreasing and defined for all x 	= 0;
• The function cosh x is increasing on the half-line x � 0; and
• The function sech x is decreasing on the half-line x � 0.

It follows that each of the six hyperbolic functions can be “inverted” on the indicated
domain where it is either increasing or decreasing. The resulting inverse hyperbolic
functions and their domains of definition are listed in the following table:

Inverse Hyperbolic Function Defined for

sinh−1 x All x
cosh−1 x x � 1
tanh−1 x |x | < 1
coth−1 x |x | > 1
sech−1 x 0 < x � 1
csch−1 x x 	= 0

EXAMPLE 4 Find the numerical value of tanh−1
(

1
2

)
.

Solution If y = tanh−1 x , then

tanh y = x;
ey − e−y

ey + e−y
= x [by Eq. (2)];

ey − e−y = xey + xe−y;
(1 − x)ey = (1 + x)e−y;

e2y = 1 + x

1 − x
;

y = 1
2 ln

1 + x

1 − x
.
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Hence, with x = 1
2 , we find that

tanh−1
(

1
2

) = 1
2 ln 3 ≈ 0.549306. ◗

Scientific calculators ordinarily are used to find values of hyperbolic and inverse
hyperbolic functions. Many calculators give values only of sinh−1, cosh−1, and tanh−1.
Values of the other three inverse hyperbolic functions can then be found by using the
identities

sech−1 x = cosh−1

(
1

x

)
, (25)

csch−1 x = sinh−1

(
1

x

)
, (26)

and

coth−1 x = tanh−1

(
1

x

)
. (27)

For example,

coth−1 2 = tanh−1
(

1
2

) ≈ 0.549306.

Derivatives of Inverse Hyperbolic Functions
Here are the derivatives of the six inverse hyperbolic functions:

Dx sinh−1 x = 1√
1 + x2

, (28)

Dx cosh−1 x = 1√
x2 − 1

, (29)

Dx tanh−1 x = 1

1 − x2
, (30)

Dx coth−1 x = 1

1 − x2
, (31)

Dx sech−1 x = − 1

x
√

1 − x2
, (32)

Dx csch−1 x = − 1

|x | √1 + x2
. (33)

We can derive these formulas by the standard method of finding the derivative of
the inverse of a function when the derivative of the function itself is known. The only
requirement is that the inverse function is known in advance to be differentiable.

EXAMPLE 5 To differentiate tanh−1 x , we begin with the inverse function relation

tanh(tanh−1 x) = x

and substitute u = tanh−1 x . Then, because this equation is actually an identity,

Dx tanh u = Dx x = 1,

so

(sech2 u)
du

dx
= 1.

Thus

Dx tanh−1 x = du

dx
= 1

sech2 u
= 1

1 − tanh2 u

= 1

1 − tanh2(tanh−1 x)
= 1

1 − x2
.
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This establishes Eq. (30). We can use similar methods to verify the formulas for the
derivatives of the other five hyperbolic functions. ◗

The hyperbolic functions are defined in terms of the natural exponential ex , so
it’s no surprise that their inverses may be expressed in terms of ln x . (See Example 4.)
In fact,

sinh−1 x = ln
(
x +

√
x2 + 1

)
for all x ; (34)

cosh−1 x = ln
(
x +

√
x2 − 1

)
for all x � 1; (35)

tanh−1 x = 1
2 ln

(
1 + x

1 − x

)
for |x | < 1; (36)

coth−1 x = 1
2 ln

(
x + 1

x − 1

)
for |x | > 1; (37)

sech−1 x = ln

(
1 + √

1 − x2

x

)
if 0 < x � 1; (38)

csch−1 x = ln

(
1

x
+

√
1 + x2

|x |

)
if x 	= 0. (39)

Each of these identities may be established by showing that each side has the same
derivative and also that the two sides agree for at least one value of x in every interval
of their respective domains.

EXAMPLE 6 To establish the identity in (34), we begin by differentiating each side:

Dx ln
(
x +

√
x2 + 1

) =
1 + x√

x2 + 1
x + √

x2 + 1
= 1√

x2 + 1
= Dx sinh−1 x .

Thus

sinh−1 x = ln
(
x +

√
x2 + 1

) + C.

But sinh−1(0) = 0 = ln(0 + √
0 + 1 ). This implies that C = 0 and thus establishes

Eq. (34). It is not quite so easy to show that C = 0 in the proofs of Eqs. (37) and (39);
see Problems 64 and 65. ◗

Equations (34) through (39) may be used to calculate the values of inverse hy-
perbolic functions. This is convenient if you own a calculator whose repertoire does
not include the inverse hyperbolic functions or if you are programming in a language
such as BASIC, most forms of which do not include these functions.

Integrals Involving Inverse Hyperbolic Functions
The principal applications of inverse hyperbolic functions are to the evaluation of al-
gebraic integrals. The differentiation formulas in Eqs. (28) through (33) may, in the
usual way, be written as the following integral formulas:∫

du√
u2 + 1

= sinh−1 u + C, (40)

∫
du√

u2 − 1
= cosh−1 u + C, (41)

∫
du

1 − u2
= tanh−1 u + C if |u| < 1, (42a)

∫
du

1 − u2
= coth−1 u + C if |u| > 1, (42b)
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du

1 − u2
= 1

2 ln

∣∣∣∣1 + u

1 − u

∣∣∣∣ + C, (42c)

∫
du

u
√

1 − u2
= − sech−1 |u| + C, (43)

∫
du

u
√

1 + u2
= − csch−1 |u| + C. (44)

The distinction between the two cases |u| < 1 and |u| > 1 in Eqs. (42a) and (42b)
results from the fact that the inverse hyperbolic tangent is defined for |x | < 1, whereas
the inverse hyperbolic cotangent is defined for |x | > 1.

EXAMPLE 7 The substitution u = 2x , dx = 1
2 du yields∫

dx√
4x2 − 1

= 1

2

∫
du√

u2 + 1
= 1

2
sinh−1 2x + C. ◗

EXAMPLE 8∫ 1/2

0

dx

1 − x2
=

[
tanh−1 x

]1/2

0

= 1

2

[
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣
]1/2

0

= 1

2
ln 3 ≈ 0.549306. ◗

EXAMPLE 9∫ 5

2

dx

1 − x2
=

[
coth−1 x

]5

2
= 1

2

[
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣
]5

2

= 1

2

[
ln

(
6

4

)
− ln 3

]
= −1

2
ln 2 ≈ − 0.346574. ◗

6.9 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. cosh x = ex − e−x

2
.

2. tanh x = sinh x

cosh x
.

3. Dx cosh x = − sinh x .

4. Dx sinh u = (cosh u)
du

dx
.

5.
∫

sech2 u du = tanh u + C .

6.
∫

sinh2 x dx = 1

4
sinh 2x − 1

2
x + C .

7. Dx sinh−1 x = 1√
1 − x2

.

8. Dx tanh−1 x = 1

1 − x2
.

9. sinh−1 x = ln
(

x + √
x2 + 1

)
for all x .

10.
∫

1√
u2 + 1

du = sinh−1 u + C .
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6.9 CONCEPTS: QUESTIONS AND DISCUSSION
1. Discuss the differences and similarities in the domains and ranges of the six in-

verse hyperbolic functions.
2. Beginning with the graphs of the hyperbolic functions in Fig. 6.9.3, sketch the

graphs of the six inverse hyperbolic functions. Then identify the domain and
range of each.

3. Discuss the analogy between trigonometric identities (such as cos2 x + sin2 x =
1) and hyperbolic identities (such as cosh2 x − sinh2 x = 1).

6.9 PROBLEMS

Find the derivatives of the functions in Problems 1 through 14.

1. f (x) = cosh(3x − 2) 2. f (x) = sinh
√

x

3. f (x) = x2 tanh

(
1

x

)
4. f (x) = sech e2x

5. f (x) = coth3 4x 6. f (x) = ln sinh 3x

7. f (x) = ecsch x 8. f (x) = cosh ln x

9. f (x) = sin(sinh x) 10. f (x) = tan−1(tanh x)

11. f (x) = sinh x4 12. f (x) = sinh4 x

13. f (x) = 1

x + tanh x
14. f (x) = cosh2 x − sinh2 x

Evaluate the integrals in Problems 15 through 28.

15.
∫

x sinh x2 dx 16.
∫

cosh2 3u du

17.
∫

tanh2 3x dx 18.
∫

sech
√

x tanh
√

x√
x

dx

19.
∫

sinh2 2x cosh 2x dx 20.
∫

tanh 3x dx

21.
∫

sinh x

cosh3 x
dx 22.

∫
sinh4 x dx

23.
∫

coth x csch2 x dx 24.
∫

sech x dx

25.
∫

sinh x

1 + cosh x
dx 26.

∫
sinh ln x

x
dx

27.
∫

1

(ex + e−x )2
dx 28.

∫
ex + e−x

ex − e−x
dx

Find the derivatives of the functions in Problems 29 through 38.

29. f (x) = sinh−1 2x 30. f (x) = cosh−1(x2 + 1)

31. f (x) = tanh−1 √
x 32. f (x) = coth−1

√
x2 + 1

33. f (x) = sech−1

(
1

x

)
34. f (x) = csch−1 ex

35. f (x) = (sinh−1 x)3/2 36. f (x) = sinh−1(ln x)

37. f (x) = ln(tanh−1 x) 38. f (x) = 1

tanh−1 3x

Use inverse hyperbolic functions to evaluate the integrals in
Problems 39 through 48.

39.
∫

dx√
x2 + 9

40.
∫

dy√
4y2 − 9

41.
∫ 1

1/2

dx

4 − x2
42.

∫ 10

5

dx

4 − x2

43.
∫

dx

x
√

4 − 9x2
44.

∫
dx

x
√

x2 + 25

45.
∫

ex

√
e2x + 1

dx 46.
∫

x√
x4 − 1

dx

47.
∫

1√
1 − e2x

dx 48.
∫

cos x√
1 + sin2 x

dx

49. Apply the definitions in Eq. (1) to prove the identity in
Eq. (7).

50. Derive the identities in Eqs. (5) and (6) from the identity in
Eq. (4).

51. Deduce the identities in Eqs. (10) and (11) from the identity
in Eq. (8).

52. Suppose that A and B are constants. Show that the function
x(t) = A cosh kt + B sinh kt is a solution of the differential
equation

d2x

dt2
= k2x(t).

53. Find the length of the curve y = cosh x over the interval
[0, a].

54. Find the volume of the solid obtained by revolving around
the x-axis the area under y = sinh x from x = 0 to x = π .

55. Show that the area A(θ) of the shaded sector in Fig. 6.9.2 is
θ/2. This corresponds to the fact that the area of the sector
of the unit circle between the positive x-axis and the radius
to the point (cos θ, sin θ) is θ/2. [Suggestion: Note first that

A(θ) = 1
2 cosh θ sinh θ −

∫ cosh θ

1

√
x2 − 1 dx .

Then use the fundamental theorem of calculus to show that
A′(θ) = 1

2 for all θ .]

56. Evaluate the following limits:

(a) lim
x→0

sinh x

x
; (b) lim

x→∞ tanh x ; (c) lim
x→∞

cosh x

ex
.

57. Use the method of Example 4 to find the numerical value of
sinh−1 1.

58. Apply Eqs. (34) and (39) to verify the identity

csch−1 x = sinh−1

(
1

x

)
if x 	= 0.

59. Establish the formula for Dx sinh−1 x in Eq. (28).

60. Establish the formula for Dx sech−1 x in Eq. (32).

61. Prove Eq. (36) by differentiating both sides.
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62. Establish Eq. (34) by solving the equation

x = sinh y = ey − e−y

2

for y in terms of x .

63. Establish Eq. (37) by solving the equation

x = coth y = ey + e−y

ey − e−y

for y in terms of x .

64. (a) Differentiate both sides of Eq. (37) to show that they dif-
fer by a constant C . (b) Then prove that C = 0 by using the
definition of coth x to show that coth−1 2 = 1

2 ln 3.

65. (a) Differentiate both sides of Eq. (39) to show that they dif-
fer by a constant C . (b) Then prove that C = 0 by using the
definition of csch x to show that csch−1 1 = ln(1 + √

2 ).

66. Estimate (graphically or numerically) the points of intersec-
tion of the curves y = x + 2 and y = cosh x . Then approxi-
mate the area of the region bounded by these two curves.

In Problems 67 and 68, show first that f (x) → 0 as x → +∞.
Then estimate (graphically or numerically) the absolute maxi-
mum value of f (x) for x > 0. Differentiate f (x) to verify that
you have an approximate critical point.

67. f (x) = e−2x tanh x 68. f (x) = e−x sinh−1 x

Problems 69 and 70 deal with the hanging cable illustrated in
Fig. 6.9.4. If the cable is flexible and has uniform density, then
elementary principles of physics can be used to show that its

shape function y = y(x) satisfies the differential equation

d2 y

dx2
= k

√
1 +

(
dy

dx

)2

(45)

where k is a constant determined by the density and tension of
the cable.

y0

Sag: H − y0

y

(−L, H) (L, H)

x

FIGURE 6.9.4 A flexible uniform
cable suspended between two points
at equal heights.

69. Verify that the function

y(x) = y0 + 1

k
(−1 + cosh kx) (46)

satisfies the differential equation in (45) and also satisfies
the initial conditions y(0) = y0, y′(0) = 0. A curve with
this shape is called a catenary, from the Latin word catena
(chain).

70. A high-voltage line is to be strung between two 50-ft towers
200 ft apart. (a) If the line sags 20 ft at its middle (where
x = 0)—so y0 = 30 (ft) in Eq. (46)—estimate graphically
or numerically the value of the parameter k. (b) Then ap-
proximate the total length of the high-voltage line.
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CHAPTER 6: REVIEW

Understanding: Concepts, Definitions, Formulas
Refer to the listed pages to review the concepts, definitions, and formulas in this chapter that you need to understand.

Section Pages
6.1 The general method of setting up an integral formula for a quantity by . . . . . . . . . . . . . . . 414

approximating it and then recognizing the approximation to be a Riemann sum
that corresponds to the desired integral: If the interval [a, b] is partitioned into
n subintervals of equal length �x = (b − a)/n and if x�

i denotes a point of the

i th subinterval, then
∫ b

a
f (x) dx = lim

�x→0

n∑
i=1

f (x�
i �x .

Riemann sums approximating other quantities defined by integrals . . . . . . . . . . . . . . . . . . 415–416

Net distance traveled as the integral of velocity: s =
∫ b

a
v(t) dt . . . . . . . . . . . . . . . . . . . . . 418

As compared with total distance traveled: s =
∫ b

a
|v(t)| dt . . . . . . . . . . . . . . . . . . . . . . . . . 418

Fluid flow F with velocity v(x) in a circular pipe: F =
∫ b

a
2πxv(x) dx . . . . . . . . . . . . . 420

6.2 The method of cross sections for computing volumes: V =
∫ b

a
A(x) dx . . . . . . . . . . . . . 427

where A(x) denotes the area of a slice with infinitesimal thickness dx .

The volume of a solid of revolution whose cross-sections are disks: . . . . . . . . . . . . . . . . . 427, 429

V =
∫ b

a
πy2 dx (around the x-axis ) or V =

∫ d

c
πx2 dy (around the y-axis).

The volume of a solid of revolution whose cross-sections are annular rings: . . . . . . . . . . 430

V =
∫ b

a
π(y2

top − y2
bot) dx or V =

∫ d

c
π(x2

right − x2
left) dy .

6.3 Finding the volume of a solid of revolution by the method of cylindrical shells: . . . . . . 438–439

V =
∫ −

−
2πr d A where r denotes the radius of the circle through which the area

element d A is revolved. Thus V =
∫ b

a
2πx · y dx (around y-axis) or

V =
∫ d

c
2πy · x dy (around x-axis).

The volume obtained by revolving the area between two curves: . . . . . . . . . . . . . . . . . . . . . 440

V =
∫ b

a
2πx[ytop − ybot] dx or V =

∫ d

c
2πy[xright − xleft] dy .

6.4 The arc length s =
∫ −

−
ds of a smooth arc where ds = √

1 + (dy/dx)2 dx . . . . . . . . . . .447–448

if the arc is described by y = f (x), while ds = √
1 + (dx/dy)2 dy

if it is described by x = g(y).

The symbolic device ds = √
dx2 + dy2 =

√
1 +

(
dy

dx

)2

dx =
√

1 +
(

dx

dy

)2

dy . . . . . 449

Surface area of revolution: V =
∫ b

a
2πy ds ( y = f (x) around the x-axis) . . . . . . . . . . . 451

V =
∫ d

c
2πx ds ( x = g(y) around the y-axis) . . . . . . . . . . . 452
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CHAPTER 6: REVIEW (Continued)

6.5 The work W =
∫ b

a
F(x) dx done by a force function F(x) in moving a . . . . . . . . . . . . . 457

particle parallel to the x-axis from x = a to x = b

Hooke’s law and the work done in stretching or compressing an elastic spring . . . . . . . . 458

Work done against the varying force of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

The work W =
∫ b

a
ρy A(y) dy done in pumping fluid of density ρ from . . . . . . . . . . . . . 460

the ground into a tank with cross-sectional area A(y) at height y

The work W =
∫ b

a
ρ(h − y)A(y) dy done in pumping all the fluid from . . . . . . . . . . . . . 462

its position in the tank to a level of height h

The force F =
∫ b

a
ρ(c − y)w(y) dy exerted by a liquid on the face of a submerged . . . 464

vertical plate with width w(y) at depth y

6.6 The coordinates x = 1

A

∫ b

a
x f (x) dx and y = 1

A

∫ b

a

1

2
f (x)2 dx of the . . . . . . . . . . . . . . 470

centroid of the region under y = f (x) from x = a to x = b

The moments of a plane region about the x- and y-axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
The first theorem of Pappus—volume of revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
Moments and centroids of plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
The second theorem of Pappus—surface area of revolution . . . . . . . . . . . . . . . . . . . . . . . . . 473

6.7 The natural logarithm ln x =
∫ x

1
(1/t) dt of the number x > 0 . . . . . . . . . . . . . . . . . . . . . . 476

Definition of the number e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
The laws of logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Definition of exp x = ex as the inverse function of ln x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
The laws of exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
General exponential functions, and their derivatives and integrals . . . . . . . . . . . . . . . . . . . . 482–483
General logarithm functions and their derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484–485

6.8 The inverse tangent function and its derivative Dx tan−1 u = 1

1 + u2

du

dx
. . . . . . . . . . . . . . 489–490

The inverse sine function and its derivative Dx sin−1 u = 1√
1 − u2

du

dx
. . . . . . . . . . . . . . . 491–492

The inverse secant function and its derivative Dx sec−1 u = 1

|u|√u2 − 1

du

dx
. . . . . . . . . . 493–494

The integral formulas corresponding to the derivatives of the inverse sine, . . . . . . . . . . . . 495
inverse tangent, and inverse secant functions.

6.9 The definitions of the six hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
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CHAPTER 6: REVIEW (Continued)

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
6.1 Recognizing the integral corresponding to a limit of Riemann sums . . . . . . . . . . . . . . . . . . 1, 3, 5, 13

Calculating net and total distance traveled by a moving particle . . . . . . . . . . . . . . . . . . . . . 25, 29
Using integrals to calculate water flow and population growth . . . . . . . . . . . . . . . . . . . . . . . 39, 41, 43

6.2 Calculating volumes with circular (or disk) cross sections. . . . . . . . . . . . . . . . . . . . . . . . . . .3, 5, 11
Calculating volumes with annular ring (or washer) cross sections . . . . . . . . . . . . . . . . . . . . 7, 15, 17, 23
Calculating volumes with other cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 39, 45, 47

6.3 Calculating volumes using cylindrical shells centered on the x-axis . . . . . . . . . . . . . . . . . . 7, 9, 21
Calculating volumes using cylindrical shells centered on the y-axis . . . . . . . . . . . . . . . . . . 3, 5, 11
Calculating volumes using cylindrical shells centered on other lines . . . . . . . . . . . . . . . . . 15, 17, 23

6.4 Setting up arc length integrals and calculating arc lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9, 21, 23
Setting up and evaluating surface area integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 19, 29, 31

6.5 Calculating work done by a variable force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 7, 9
Calculating work done in filling or emptying a tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 13, 15, 17
Calculating the force exerted by a liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 33

6.6 Finding centroids of plane regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 9, 15, 19
Applying the theorems of Pappus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 22, 24, 28

6.7 Calculating derivatives of general exponential and general logarithmic functions . . . . . . 1, 5, 7, 17, 19
Evaluating integrals involving exponentials and logarithms . . . . . . . . . . . . . . . . . . . . . . . . . 25, 27, 31

6.8 Differentiating inverse trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 7, 9, 19
Evaluating integrals involving inverse trigonometric functions. . . . . . . . . . . . . . . . . . . . . . .31, 33, 37, 39

6.9 Differentiating hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 11
Evaluating integrals involving hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 17, 19
Differentiating inverse hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 31, 33
Evaluating integrals involving inverse hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . 39, 41, 43

MISCELLANEOUS PROBLEMS

In Problems 1 through 3, find both the net distance and the to-
tal distance traveled between times t = a and t = b by a
particle moving along a line with the given velocity function
v = f (t).

1. v = t2 − t − 2; a = 0, b = 3

2. v = ∣∣t2 − 4
∣∣; a = 1, b = 4

3. v = π sin 1
2 π(2t − 1); a = 0, b = 3

2

In Problems 4 through 8, a solid extends along the x-axis from
x = a to x = b, and its cross-section area at x is A(x). Find its
volume.

4. A(x) = x3; a = 0, b = 1

5. A(x) = √
x ; a = 1, b = 4

6. A(x) = x3; a = 1, b = 2

7. A(x) = π(x2 − x4); a = 0, b = 1

8. A(x) = x100; a = −1, b = 1

9. Suppose that rainfall begins at time t = 0 and that the rate
after t hours is (t + 6)/12 inches per hour. How many
inches of rain fall during the first 12 h?

10. The base of a certain solid is the region in the first quad-
rant bounded by the curves y = x3 and y = 2x − x2. Find
the solid’s volume if each cross section perpendicular to the
x-axis is a square with one edge in the base of the solid.

11. Find the volume of the solid generated by revolving around
the x-axis the first-quadrant region of Problem 10.

12. Find the volume of the solid generated by revolving the
region bounded by y = 2x4 and y = x2 + 1 around (a) the
x-axis; (b) the y-axis.

13. A wire made of copper (density 8.5 g/cm3) is shaped like a
helix that spirals around the x-axis from x = 0 to x = 20.
Each cross section of this wire perpendicular to the x-axis
is a circular disk of radius 0.25 cm. What is the total mass
of the wire?

14. Derive the formula V = 1
3 πh(r 2

1 + r1r2 + r 2
2 ) for the vol-

ume of a frustum of a cone with height h and base radii r1

and r2.

15. Suppose that the point P lies on a line perpendicular to the
xy-plane at the origin O , with |O P| = h. Consider the
“elliptical cone” that consists of all points on line segments
from P to points on and within the ellipse with equation

( x

a

)2 +
( y

b

)2 = 1.

Show that the volume of this elliptical cone is V = 1
3 πabh.

16. Figure 6.MP.1 shows the region R bounded by the ellipse
(x/a)2 + (y/b)2 = 1 and by the line x = a − h, where

510

www.konkur.in
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0 < h < a. Revolution of R around the x-axis gener-
ates a “segment of an ellipsoid” of radius r , height h, and
volume V . Show that

r 2 = b2(2ah − h2)

a2
and that V = 1

3
πr 2h

3a − h

2a − h
.

x

y

x = a − h

x2

a2
 = 1+ 

y2

b2

h

(a, 0) 
r

R

FIGURE 6.MP.1 A segment
of an ellipse (Problem 16).

17. Figure 6.MP.2 shows the region R bounded by the hyper-
bola (x/a)2 − (y/b)2 = 1 and the line x = a + h, where
h > 0. Revolving R around the x-axis generates a “seg-
ment of a hyperboloid” of radius r , height h, and volume
V . Show that

r 2 = b2(2ah + h2)

a2
and that V = 1

3
πr 2h

3a + h

2a + h
.

x

y x = a + h x2

a2
 = 1− 

y2

b2

r

(a, 0) 

h

R

FIGURE 6.MP.2 The region
R of Problem 17.

In Problems 18 through 20, the function f (x) is nonnegative and
continuous for x � 1. When the region lying under y = f (x)

from x = 1 to x = t is revolved around the indicated axis, the
volume of the resulting solid is V (t). Find the function f (x).

18. V (t) = π
(

1 − 1

t

)
; the x-axis

19. V (t) = 1
6 π [(1 + 3t)2 − 16]; the x-axis

20. V (t) = 2
9 π [(1 + 3t2)3/2 − 8]; the y-axis

21. Use the integral formula∫
u sin u du = sin u − u cos u + C

to find the volume of the solid generated by revolving
around the y-axis the first-quadrant region bounded by
y = x and y = sin( 1

2 πx).

22. Use the method of cylindrical shells to find the volume of
the solid generated by revolving around the line x = −2
the region bounded by y = x2 and y = x + 2.

23. Find the length of the curve y = 1
3 x3/2 − x1/2 from x = 1

to x = 4.

24. Find the area of the surface generated by revolving the
curve of Problem 23 around (a) the x-axis; (b) the y-axis.

25. Find the length of the curve x = 3
8 (y4/3−2y2/3) from y = 1

to y = 8.

26. Find the area of the surface generated by revolving the
curve of Problem 25 around (a) the x-axis; (b) the y-axis.

27. Find the area of the surface generated by revolving the
curve of Problem 23 around the line x = 1.

28. If −r � a < b � r , then a “spherical zone” of “height”
h = b − a is generated by revolving around the x-axis the
circular arc y = √

r 2 − x2, a � x � b. Show that the area
of this spherical zone is A = 2πrh, the same as that of a
cylinder of radius r and height h.

29. Apply the result of Problem 28 to show that the surface area
of a sphere of radius r is A = 4πr 2.

30. Let R denote the region bounded by the curves y = 2x3

and y2 = 4x . Find the volumes of the solids obtained by
revolving the region R around (a) the x-axis; (b) the y-axis;
(c) the line y = −1; (d) the line x = 2. In each case use
both the method of cross sections and the method of cylin-
drical shells.

31. Find the natural length L of a spring if five times as much
work is required to stretch it from a length of 2 ft to a length
of 5 ft as is required to stretch it from a length of 2 ft to a
length of 3 ft.

32. A steel beam weighing 1000 lb hangs from a 50-ft cable
that weighs 5 lb per linear foot. How much work is done in
winding in 25 ft of the cable with a windlass?

33. A spherical tank of radius R (in feet) is initially full of oil
of density ρ lb/ft3. Find the total work done in pumping all
the oil from the sphere to a height of 2R above the top of
the tank.

34. How much work is done by a colony of ants in building a
conical anthill of height and diameter 1 ft, using sand ini-
tially at ground level and with a density of 150 lb/ft3?

35. The gravitational attraction below the earth’s surface is
directly proportional to the distance from the center of the
earth. Suppose that a straight cylindrical hole of radius 1
ft is dug from the earth’s surface to its center. Assume that
the earth has radius 3960 mi and uniform density 350 lb/ft3.
How much work, in foot-pounds, is done in lifting a 1-lb
weight from the bottom of this hole to its top?

36. How much work is done in digging the hole of Problem
35—that is, in lifting all the material it initially contained
to the earth’s surface?

37. Suppose that a dam is shaped like a trapezoid of height
100 ft, 300 ft long at the top and 200 ft long at the bot-
tom. When the water level behind the dam is even with its
top, what is the total force that the water exerts on the dam?

38. Suppose that a dam has the same top and bottom lengths
as the dam of Problem 37 and the same vertical height of
100 ft, but that its face toward the water is slanted at an an-
gle of 30◦ from the vertical. What is the total force of water
pressure on this dam?

39. For c > 0, the graphs of y = c2x2 and y = c bound
a plane region. Revolve this region around the horizontal
line y = −1/c to form a solid. For what value of c is the
volume of this solid maximal? Minimal?
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Find the centroids of the curves in Problems 40 through 43.

40. y = x5

5
+ 1

12x3
, 1 � x � 2

41. x = y4

8
+ 1

4y2
, 1 � y � 2

42. y = x3/2

3
− x1/2, 1 � x � 4

43. x = 3

8
(y4/3 − 2y2/3), 1 � y � 8

44. Find the centroid of the plane region in the first quadrant
that is bounded by the curves y = x3 and y = 2x − x2.

45. Find the centroid of the plane region bounded by the curves
x = 2y4 and x = y2 + 1.

46. Let T be the plane triangle with vertices (0, 0), (a, b),
and (c, 0). Show that the centroid of T is the point of in-
tersection of its medians.

47. Use the first theorem of Pappus to find the y-coordinate of
the centroid of the upper half of the ellipse

x2

a2
+ y2

b2
= 1.

Use the facts that the area of this semiellipse is A = 1
2 πab

and the volume of the ellipsoid it generates when rotated
around the x-axis is V = 4

3 πab2.

48. (a) Use the first theorem of Pappus to find the centroid of
the first-quadrant part of the annular ring with boundary
circles x2 + y2 = a2 and x2 + y2 = b2, with 0 < a < b.
(b) Show that the limiting position of this centroid as b →
a is the centroid of a quarter-circular arc of radius a.

49. Let T be the triangle in the first quadrant with one vertex
at (0, 0) and the opposite side L , of length w, joining the
other two vertices (a, b) and (c, d), where a > c > 0 and
d > b > 0. Let A denote the area of T , y the y-coordinate
of the centroid of T , p the perpendicular distance from
(0, 0) to L , V the volume generated by revolving T around
the x-axis, and S the surface area generated by revolving
L around the x-axis. Derive the following formulas in the
order listed.

(a) A = 1
2 (ad − bc) (b) y = 1

3 (b + d)

(c) V = 1
3 π(b + d)(ad − bc) (d) p = ad − bc

w

(e) S = π(b + d)w (f) V = 1
3 pS

50. Suppose that n is an even positive integer. Let J be an
n-sided regular polygon inscribed in the circle of radius r
centered at the origin. Let S be the surface area generated
by rotating J around a diameter of the circle through two
opposite vertices of J ; let V be the volume of the solid en-
closed by that surface. Conclude from part (f) of Problem
49 that

V = 1

3

(
r cos

π

n

)
· S.

Archimedes deduced from this result that, if the surface
area of a sphere of radius r is 4πr 2, then its volume is 4

3 πr 3.
Supply the details of his reasoning.

51. Suppose that n is a positive integer. Let Rn denote the re-
gion bounded by the curves y = x and y = xn for 0 � x � 1.
Show that the limiting position as n → +∞ of the centroid
of Rn is the centroid of the triangle with vertices (0, 0),
(1, 0), and (1, 1). Why does this seem plausible?

52. Let the region R be the union of the semicircular disk
x2 + y2 � 9, x � 0, and the square with vertices (1, 0),
(−1, 0), (1, −2), and (−1, −2). (a) Find the centroid of
R. (b) Then find the volume of the solid obtained by rotat-
ing R around the line y = −4.

Evaluate the indefinite integrals in Problems 53 through 64.

53.
∫

dx

1 − 2x
54.

∫ √
x

1 + x3/2
dx

55.
∫

3 − x

1 + 6x − x2
dx 56.

∫
ex − e−x

ex + e−x
dx

57.
∫

sin x

2 + cos x
dx 58.

∫
e−1/x2

x3
dx

59.
∫

10
√

x

√
x

dx 60.
∫

1

x(ln x)2
dx

61.
∫

ex
√

1 + ex dx 62.
∫

1

x

√
1 + ln x dx

63.
∫

2x 3x dx 64.
∫

dx

x1/3(1 + x2/3)

65. A grain warehouse holds B bushels of grain, which is dete-
riorating in such a way that only B · 2−t/12 bushels will be
salable after t months. Meanwhile, the grain’s market price
is increasing linearly: After t months it will be 2 + 1

12 t dol-
lars per bushel. After how many months should the grain
to sold to maximize the revenue obtained?

66. You have borrowed $1000 at 10% annual interest, com-
pounded continuously, to plant timber on a tract of land.
Your agreement is to repay the loan, plus interest, when the
timber is cut and sold. If the cut timber can be sold after t
years for 800 exp( 1

2

√
t ) dollars, when should you cut and

sell to maximize the profit?

67. Blood samples from 1000 students are to be tested for a cer-
tain disease known to occur in 1% of the population. Each
test costs $5, so it would cost $5000 to test the samples
individually. Suppose, however, that “lots” made up of x
samples each are formed by pooling halves of individual
samples, and that these lots are tested first (for $5 each).
Only in case a lot tests positive—the probability of this is
1− (0.99)x —will the x samples used to make up this lot be
tested individually. (a) Show that the total expected number
of tests is

f (x) = 1000

x

[
(1)(0.99)x + (x + 1)(1 − (0.99)x )

]
= 1000 + 1000

x
− 1000 · (0.99)x

if x � 2. (b) Show that the value of x that minimizes f (x)

is a root of the equation

x = (0.99)−x/2

√
ln(100/99)

.

Because the denominator is approximately 0.1, it may
be convenient to solve instead the simpler equation x =
10 · (0.99)−x/2. (c) From the results in parts (a) and (b),
compute the minimum (expected) cost of using this batch
method to test the original 1000 samples.

68. Find the length of the curve y = 1
2 x2 − 1

4 ln x from x = 1
to x = e.
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Differentiate the functions in Problems 69 through 88.

69. f (x) = sin−1 3x 70. f (x) = tan−1 7x

71. g(t) = sec−1 t2 72. g(t) = tan−1 et

73. f (x) = sin−1(cos x) 74. f (x) = sinh−1 2x

75. g(t) = cosh−1 10t 76. h(u) = tanh−1

(
1

u

)

77. f (x) = sin−1

(
1

x2

)
78. f (x) = tan−1

(
1

x

)
79. f (x) = arcsin

√
x 80. f (x) = x sec−1 x2

81. f (x) = tan−1(1 + x2) 82. f (x) = sin−1
√

1 − x2

83. f (x) = ex sinh ex 84. f (x) = ln cosh x

85. f (x) = tanh2 3x + sech2 3x

86. f (x) = sinh−1
√

x2 − 1

87. f (x) = cosh−1
√

x2 + 1

88. f (x) = tanh−1(1 − x2)

Evaluate the integrals in Problems 89 through 108.

89.
∫

dx√
1 − 4x2

90.
∫

dx

1 + 4x2

91.
∫

dx√
4 − x2

92.
∫

dx

4 + x2

93.
∫

ex

√
1 − e2x

dx 94.
∫

x

1 + x4
dx

95.
∫

1√
9 − 4x2

dx 96.
∫

1

9 + 4x2
dx

97.
∫

x2

1 + x6
dx 98.

∫
cos x

1 + sin2 x
dx

99.
∫

1

x
√

4x2 − 1
dx 100.

∫
1

x
√

x4 − 1
dx

101.
∫

1√
e2x − 1

dx 102.
∫

x2 cosh x3 dx

103.
∫

sinh
√

x√
x

dx 104.
∫

sech2(3x − 2) dx

105.
∫

arctan x

1 + x2
dx 106.

∫
1√

4x2 − 1
dx

107.
∫

1√
4x2 + 9

dx 108.
∫

x√
x4 + 1

dx

109. Find the volume generated by revolving around the y-axis
the region under y = 1/

√
1 − x4 from x = 0 to x = 1/

√
2.

110. Find the volume generated by revolving around the y-axis
the region under y = 1/

√
x4 + 1 from x = 0 to x = 1.

111. Use Eqs. (35) through (38) of Section 6.9 to show that

(a) coth−1 x = tanh−1

(
1

x

)
;

(b) sech−1 x = cosh−1

(
1

x

)
.

112. Show that x ′′(t) = k2x(t) if

x(t) = A cosh kt + B sinh kt,

where A and B are constants. Determine A and B if
(a) x(0) = 1, x ′(0) = 0; (b) x(0) = 0, x ′(0) = 1.

113. Use Newton’s method to find the least positive solution of
the equation cos x cosh x = 1. Begin by sketching the
graphs of y = cos x and y = sech x .

114. (a) Verify by differentiation that∫
sec x dx = sinh−1(tan x) + C.

(b) Show similarly that∫
sech x dx = tan−1(sinh x) + C.

115. Figure 6.MP.3 shows the graphs of f (x) = x1/2, g(x) =
ln x , and h(x) = x1/3 plotted on the interval [0.2, 10]. You
can see that the graph of f remains above the graph of ln x ,
whereas the graph of h dips below the graph of ln x . But
because ln x increases less rapidly than any positive power
of x , the graph of h must eventually cross the graph of ln x
and rise above it. Finally, it is easy to believe that, for a suit-
able choice of p between 2 and 3, the graph of j (x) = x1/p

never dips below the graph of ln x but does drop down just
far enough to be tangent to the graph of ln x at a certain
point. (a) Show that f (x) > ln x for all x > 0 by finding
the global minimum value of f (x) − ln x on the interval
(0, +∞). (b) Use Newton’s method to find the value at
which h(x) crosses the graph of ln x and rises above it—
the value of x not shown in Fig. 6.MP.3. (c) Find the value
of p for which the graph of j (x) is tangent to the graph of
ln x at the point (q, ln q).

g (x) = ln x
x

y

f (x) = x1/2

h (x) = x1/3

FIGURE 6.MP.3 The three functions
of Problem 115.
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Techniques of Integration 7

Leonhard Euler (1707–1783)

The most prolific
mathematician in
all history was

Leonhard Euler, who
was born in 1707 in
Basel, Switzerland, the
home of the Bernoulli
family of mathemati-
cians. His father pre-
ferred a theological
career for his son, but
young Euler learned
mathematics from John
Bernoulli and thereby

found his true vocation. During his lifetime Euler pub-
lished more than 500 books and papers. His work contin-
ued unabated even after he lost his sight in 1766. Upon
his death in 1783, he left behind more than 300 additional
manuscripts whose publication continued in a steady flow
for another half century. His collected works fill approxi-
mately 75 substantial volumes.

No other mathematician of the past more directly
affects the modern student of mathematics, because it
was largely Euler who shaped the notation and termi-
nology still used today in teaching high school algebra
and trigonometry as well as calculus. His Introductio in
Analysin Infinitorium (Introduction to Infinitesimal Analy-
sis) is the earliest mathematics textbook whose exposition
would (in translation from the original Latin) be accessible
to a modern student. Here are some now-familiar notations
whose use was popularized and standardized by Euler:

e for the base of natural logarithms;
a, b, c for the sides of the triangle ABC ;
i for the square root of −1;∑

for the summation symbol;
f (x) for function notation;
π for the area of the unit circle;

and the trigonometric abbreviations sin, cos, tang, cot, sec,
and cosec, which are close to their current forms. It was
Euler’s Introductio that once and for all based calculus
squarely on the function concept. His 1755 and 1768 cal-
culus treatises provide the original source for much of the
content and methods of modern calculus courses and texts.

Euler originally discovered so many of the standard
formulas and identities of mathematics that it is customary
to attribute a formula to the first mathematician after Eu-
ler to rediscover it. But the identity eix = cos x + i sin x
relating the exponential and trigonometric functions is still
known as Euler’s formula. Substituting x = π yields the
relation eiπ +1 = 0, which links five of the most important
constants in mathematics.

The photograph—part of a page from Chapter VII of
the Introductio—shows the first appearance in public print
of the number e ≈ 2.71828. Immediately following its
definition as the sum of the infinite series

∞∑
n=0

1

n! = 1 + 1

1! + 1

2! + · · · + 1

n! + · · · ,

Euler gives the numerical value of e accurate to 23 decimal
places.

From Chapter 7 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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516 CHAPTER 7 Techniques of Integration

7.1 INTRODUCTION

We saw in Chapter 6 that many geometric and physical quantities can be expressed
as definite integrals. The fundamental theorem of calculus reduces the problem of
calculating the definite integral

∫ b

a
f (x) dx

to that of finding an antiderivative G(x) of f (x). Once this is accomplished, then

∫ b

a
f (x) dx =

[
G(x)

]b

a
= G(b) − G(a).

But as yet we have relied largely on trial-and-error methods for finding the re-
quired antiderivative G(x). In some cases a knowledge of elementary derivative for-
mulas, perhaps in combination with a simple substitution, allows us to integrate a given
function. This approach can, however, be inefficient and time-consuming, especially
in view of the following surprising fact: Some simple-looking integrals, such as

∫
e−x2

dx,

∫
sin x

x
dx, and

∫ √
1 + x4 dx,

cannot be evaluated in terms of finite combinations of the familiar algebraic and ele-
mentary transcendental functions. For example, the antiderivative

H(x) =
∫ x

0
e−t2

dt

of exp(−x2) has no finite expression in terms of elementary functions. Any attempt to
find such an expression will, therefore, inevitably be unsuccessful.

The presence of such integrals indicates that we cannot hope to reduce integration
to a routine process such as differentiation. In fact, finding antiderivatives is an art, the
mastery of which depends on experience and practice. Nevertheless, there are a number
of techniques whose systematic use can substantially reduce our dependence on chance
and intuition alone. This chapter deals with some of these systematic techniques of
integration.

7.2 INTEGRAL TABLES AND SIMPLE SUBSTITUTIONS

Integration would be a simple matter if we had a list of integral formulas, an integral
table, in which we could locate any integral that we needed to evaluate. But the diver-
sity of integrals that we encounter is too great for such an all-inclusive integral table to
be practical. It is more sensible to print or memorize a short table of integrals of the
sort seen frequently and to learn techniques by which the range of applicability of this
short table can be extended. We begin with the list of integrals in Fig. 7.2.1, which are
familiar from earlier chapters. Each formula is equivalent to one of the basic derivative
formulas.

A table of 113 integral formulas appears in the endpapers of this book. Even more
extensive integral tables are readily available. For example, the volume of Standard
Mathematical Tables and Formulae, edited by Daniel Zwillinger and published by the
CRC Press, Inc. (Boca Raton, Florida), contains over 700 integral formulas. But even
such a lengthy table can be expected to include only a small fraction of the integrals
we may need to evaluate. Thus it is necessary to learn techniques for deriving new
formulas and for transforming a given integral either into one that’s already familiar or
into one that appears in an accessible table.

516

www.konkur.in



Integral Tables and Simple Substitutions SECTION 7.2 517

The principal such technique is the method of substitution, which we first con-∫
un du = un+1

n + 1
+ C [n �= −1] (1)

∫
du

u
= ln |u| + C (2)

∫
eu du = eu + C (3)

∫
cos u du = sin u + C (4)

∫
sin u du = − cos u + C (5)

∫
sec2 u du = tan u + C (6)

∫
csc2 u du = − cot u + C (7)

∫
sec u tan u du = sec u + C (8)

∫
csc u cot u du = − csc u + C (9)

∫
du√

1 − u2
= sin−1 u + C (10)

∫
du

1 + u2
= tan−1 u + C (11)

∫
du

u
√

u2 − 1
= sec−1 |u| + C (12)

FIGURE 7.2.1 A short table of
integrals.

sidered in Section 5.7. Recall that if∫
f (u) du = F(u) + C,

then ∫
f (g(x)) · g′(x) dx = F(g(x)) + C.

Thus the substitution

u = g(x), du = g′(x) dx

transforms the integral∫
f (g(x)) · g′(x) dx into the simpler integral

∫
f (u) du.

The key to making this simplification lies in spotting the composition f (g(x)) in the
given integrand. For this integrand to be converted into a function of u alone, the
remaining factor must be a constant multiple of the derivative g′(x) of the “inside
function” g(x). In this case we replace f (g(x)) with the simpler f (u) and g′(x) dx
with the simpler du. Chapter 6 contains numerous illustrations of this method of sub-
stitution, and the problems at the end of this section provide an opportunity to review
it.

EXAMPLE 1 Find
∫

1

x
(1 + ln x)5 dx .

Solution We need to spot both the inner function g(x) and its derivative g′(x). If we
choose g(x) = 1 + ln x , then g′(x) = 1/x . Hence the given integral is of the form
discussed above with f (u) = u5, u = 1 + ln x , and du = dx/x . Therefore,∫

1

x
(1 + ln x)5 dx =

∫
u5 du = 1

6 u6 + C = 1
6 (1 + ln x)6 + C. ◗

EXAMPLE 2 Find
∫

x

1 + x4
dx .

Solution Here it is not so clear what the inside function is. But, looking at the integral
formula in Eq. (11) (Fig. 7.2.1), we try the substitution u = x2, du = 2x dx . We take
advantage of the factor x dx = 1

2 du that is available in the integrand and compute as
follows: ∫

x

1 + x4
dx = 1

2

∫
du

1 + u2
= 1

2 tan−1 u + C = 1
2 tan−1 x2 + C.

Note that the substitution u = x2 would have been of no use had the integrand been
either 1/(1 + x4) or x2/(1 + x4). ◗

Example 2 illustrates how to make a substitution that converts a given integral
into a familiar one. This is a kind of pattern-matching. Often an integral that does
not appear in any integral table can be transformed into one that does by using the
techniques of this chapter. In Example 3 we employ an appropriate substitution to
match the given integral with the standard integral formula∫

u2

√
a2 − u2

du = a2

2
sin−1

(
u

a

)
− u

2

√
a2 − u2 + C, (13)

which is Formula (56) (in the endpapers).
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EXAMPLE 3 Find
∫

x2

√
25 − 16x2

dx .

Solution So that 25 − 16x2 will be equal to a2 − u2 in Eq. (13), we take a = 5 and
u = 4x . Then du = 4 dx , and so dx = 1

4 du. This gives

∫
x2

√
25 − 16x2

dx =
∫ (

1
4 u

)2

√
25 − u2

· 1

4
du = 1

64

∫
u2

√
25 − u2

du

= 1

64

[
25

2
sin−1

(
u

5

)
− u

2

√
25 − u2

]
+ C

= 25

128
sin−1

(
4x

5

)
− x

32

√
25 − 16x2 + C. ◗

In Section 7.6 we will see how to derive integral formulas such as that in Eq. (13).

Computer Algebra Systems
Systems such as Derive, Maple, and Mathematica have integral formulas stored inter-
nally and can perform pattern matching substitutions like the one used in Example 3.
For instance, the Mathematica command

Integrate[ x∧2 / Sqrt[ 25 - 16 x∧2 ], x ]

and the Maple command

int( x∧2 / sqrt(25 - 16*x∧2), x );

as well as the corresponding Derive command, all produce precisely the same result as
that found in Example 3 (except without adding the arbitrary constant of integration,
which computer algebra systems generally omit).

Sometimes different methods (whether manual, table, or computer methods)

x
0−5

−1.5

−1

−0.5

0

0.5

1

1.5

5

y

tan−1 x2y = 1
2

tan−1 x−2y = − 1
2

FIGURE 7.2.2 The graphs
y = 1

2 tan−1 x2 and
y = − 1

2 tan−1 x−2 do not agree.
What is the relationship between
them?

produce integrals that appear to differ. For instance, Derive and Maple yield the
same antiderivative 1

2 tan−1 x2 of x/(1 + x4) found in Example 2, whereas Mathe-
matica returns the function − 1

2 tan−1 x−2 as the result. Naturally we wonder whether
1
2 tan−1 x2 ≡ − 1

2 tan−1 x−2. Figure 7.2.2 shows that the answer is No! In Problem 55
we ask you to reconcile these apparently different antiderivatives of the same function.

If computer algebra systems can match patterns with tables of integrals stored in
computer memory, you may wonder why manual integration techniques should still be
learned. One answer is that a hand computation may yield an integral in a simpler or
more convenient form than a computer result. For instance, a computer algebra system
may yield a result of the form∫

1

x
(1 + ln x)5 dx = ln x + 5

2 (ln x)2 + 10
3 (ln x)3 + 5

2 (ln x)4 + (ln x)5 + 1
6 (ln x)6

that looks considerably less appealing than the hand result 1
6 (1 + ln x)6 of Example 1.

Is the relationship between the two obvious? See Problem 54.

7.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. An effective substitution for evaluation of
∫

1

x
(1 + ln x)5 dx is u = 1 + ln x .

2. An effective substitution for evaluation of
∫

x

1 + x4
dx is u = x4.

3. An effective substitution for evaluation of
∫

x2

√
25 − 16x2

dx is u = 4x and

a = 5.
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4.
∫

sec u tan u du = sec2 u + C .

5.
∫

1

u
√

u2 − 1
du = sec−1 |u| + C .

6. The general procedure for evaluation of an integral of the form∫
f (g(x)) · g′(x) dx

by substitution is to let u = g(x).

7. An effective substitution for evaluation of
∫

1

1 + x4
dx is u = x2.

8.
∫

x

1 + x4
dx = 1

2
tan−1 x + C .

9. One antiderivative of
1

x
(1 + ln x)5 (with respect to x) is

ln x + 5

2
(ln x)2 + 10

3
(ln x)3 + 5

2
(ln x)4 + (ln x)5 + 1

6
(ln x)6.

10.
1

2
tan−1 x2 = −1

2
tan−1 x−2.

7.2 CONCEPTS: QUESTIONS AND DISCUSSION
As illustrated at the end of this section (and in Problems 54 through 57), two different
methods may yield antiderivatives G(x) and H(x) quite different in appearance, even
though they are supposed to be antiderivatives of the same function f (x). Discuss
different means for reconciling these antiderivatives, such as:

1. Calculating numerical values of G(x) and H(x) for selected values of x . What
can you conclude from such results?

2. Using a calculator or computer to graph G(x) and H(x) simultaneously. What
would it mean if the two graphs do not coincide, but intersect at one or more
isolated points?

3. Graphing the derivatives G ′(x) and H ′(x) to see if the graphs coincide. If so,
does it follow that G(x) and H(x) are both antiderivatives of f (x)?

4. Using a calculator or computer to calculate the numerical values of∫ b

a
f (x) dx, G(b) − G(a), and H(b) − H(a)

for selected values of a and b. What can you conclude from such results?
5. Simply differentiating G(x) and H(x). Will a glance at the results always settle

the matter immediately?

7.2 PROBLEMS

Evaluate the integrals in Problems 1 through 30.

1.
∫

(2 − 3x)4 dx 2.
∫

1

(1 + 2x)2
dx

3.
∫

x2
√

2x3 − 4 dx 4.
∫

5t

5 + 2t2
dt

5.
∫

2x
3
√

2x2 + 3
dx 6.

∫
x sec2 x2 dx

7.
∫

cot
√

y csc
√

y√
y

dy 8.
∫

sin π(2x + 1) dx

9.
∫

(1 + sin θ)5 cos θ dθ 10.
∫

sin 2x

4 + cos 2x
dx

11.
∫

e− cot x csc2 x dx 12.
∫

e
√

x+4

√
x + 4

dx

13.
∫

(ln t)10

t
dt 14.

∫
t√

1 − 9t2
dt

15.
∫

1√
1 − 9t2

dt 16.
∫

e2x

1 + e2x
dx

17.
∫

e2x

1 + e4x
dx 18.

∫
earctan x

1 + x2
dx
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19.
∫

3x√
1 − x4

dx 20.
∫

sin3 2x cos 2x dx

21.
∫

tan4 3x sec2 3x dx 22.
∫

1

1 + 4t2
dt

23.
∫

cos θ

1 + sin2 θ
dθ 24.

∫
sec2 θ

1 + tan θ
dθ

25.
∫ (

1 + √
x
)4

√
x

dx 26.
∫

t−1/3
√

t2/3 − 1 dt

27.
∫

1

(1 + t2) arctan t
dt 28.

∫
sec 2x tan 2x

(1 + sec 2x)3/2
dx

29.
∫

1√
e2x − 1

dx 30.
∫

x√
exp(2x2) − 1

dx

In Problems 31 through 35, evaluate the given integral by making
the indicated substitution.

31.
∫

x2
√

x − 2 dx ; u = x − 2

32.
∫

x2

√
x + 3

dx ; u = x + 3

33.
∫

x√
2x + 3

dx ; u = 2x + 3

34.
∫

x 3
√

x − 1 dx ; u = x − 1

35.
∫

x
3
√

x + 1
dx ; u = x + 1

In Problems 36 through 50, evaluate the given integral. First
make a substitution that transforms it into a standard form. The
standard forms with the given formula numbers are in the end-
papers of this book. If a computer algebra system is available,
compare and reconcile (if necessary) the result found using the
integral table formula with a machine result.

36.
∫

1

100 + 9x2
dx ; Formula (17)

37.
∫

1

100 − 9x2
dx ; Formula (18)

38.
∫ √

9 − 4x2 dx ; Formula (54)

39.
∫ √

4 + 9x2 dx ; Formula (44)

40.
∫

1√
16x2 + 9

dx ; Formula (45)

41.
∫

x2

√
16x2 + 9

dx ; Formula (49)

42.
∫

x2

√
25 + 16x2

dx ; Formula (49)

43.
∫

x2
√

25 − 16x2 dx ; Formula (57)

44.
∫

x
√

4 − x4 dx ; Formula (54)

45.
∫

ex
√

9 + e2x dx ; Formula (44)

46.
∫

cos x

(sin2 x)
√

1 + sin2 x
dx ; Formula (50)

47.
∫ √

x4 − 1

x
dx ; Formula (47)

48.
∫

e3x

√
25 + 16e2x

dx ; Formula (49)

49.
∫

(ln x)2

x

√
1 + (ln x)2 dx ; Formula (48)

50.
∫

x8
√

4x6 − 1 dx ; Formula (48)

51. The substitution u = x2, x = √
u, dx = du/(2

√
u) appears

to lead to this result:∫ 1

−1
x2 dx = 1

2

∫ 1

1

√
u du = 0.

Do you believe this result? If not, why not?

52. Use the fact that x2 + 4x + 5 = (x + 2)2 + 1 to evaluate∫
1

x2 + 4x + 5
dx .

53. Use the fact that 1 − (x − 1)2 = 2x − x2 to evaluate∫
1√

2x − x2
dx .

54. Use the binomial expansion

(1 + t)6 = 1 + 6t + 15t2 + 20t3 + 15t4 + 6t5 + t6

to reconcile the result of Example 1 with the machine result
listed at the end of this section. Are the two results precisely
equal?

55. Establish the precise relationship between the two functions

1
2 tan−1 x2 and − 1

2 tan−1 x−2

graphed in Fig. 7.2.2. Are both actually antiderivatives of
x/(1 + x4)?

56. With u = x and a = 1, Formula (45) in the endpapers yields∫ √
x2 + 1 dx = 1

2 x
√

x2 + 1 + 1
2 ln

∣∣x +
√

x2 + 1
∣∣,

whereas Maple and Mathematica both give∫ √
x2 + 1 dx = 1

2 x
√

x2 + 1 + 1
2 sinh−1 x .

Consult Section 6.9 to reconcile these two results.

57. According to Formula (44) in the endpapers of this book,∫ √
x2 + 1 dx = G(x) + C

where

G(x) = 1
2 x

√
x2 + 1 + 1

2 ln
(
x +

√
x2 + 1

)
.

But another calculus book states that
∫ √

x2 + 1 dx =
H(x) + C where

H(x) = 1
8

[(
x +

√
x2 + 1

)2

+ 4 ln
(
x +

√
x2 + 1

) − (
x +

√
x2 + 1

)−2]
.

Which book is correct? Use a computer algebra system if
you wish.
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7.3 INTEGRATION BY PARTS

One reason for transforming a given integral into another is to make its evaluation eas-
ier. There are two general ways to accomplish this. We have seen the first, integration
by substitution. The second is integration by parts.

The formula for integration by parts is a simple consequence of the product rule
for derivatives,

Dx(uv) = v
du

dx
+ u

dv

dx
.

If we write this formula in the form

u(x)v′(x) = Dx [u(x)v(x)] − v(x)u′(x), (1)

then antidifferentiation gives

∫
u(x)v′(x) dx = u(x)v(x) −

∫
v(x)u′(x) dx . (2)

This is the formula for integration by parts. With du = u′(x) dx and dv = v′(x) dx ,
Eq. (2) becomes

∫
u dv = uv −

∫
v du. (3)

To apply the integration by parts formula to a given integral, we must first factor
its integrand into two “parts,” u and dv, the latter including the differential dx . We try
to choose the parts in accordance with two principles:

1. The antiderivative v = ∫
dv is easy to find.

2. The new integral
∫

v du is easier to compute than the original integral
∫

u dv.

An effective strategy is to choose for dv the most complicated factor that can
readily be integrated. Then we differentiate the other part, u, to find du.

We begin with two examples in which we have little flexibility in choosing the
parts u and dv.

EXAMPLE 1 Find
∫

ln x dx . (See Fig. 7.3.1.)

1 32 4
x

y

−4

4

3

2

1

0

−1

−2

−3

FIGURE 7.3.1 Graphs of the
functions ln x and x ln x − x of
Example 1. If you did not recognize
either graph, but noted that the zero
of one corresponds to a critical point
of the other, which would you
conclude is the antiderivative?

Solution Here there is little alternative to the natural choice u = ln x and dv = dx .
It is helpful to systematize the procedure of integration by parts by writing u, dv, du,
and v in a rectangular array like this:

Let u = ln x and dv = dx .

Then du = 1

x
dx and v = x .

The first line in the array specifies the choice of u and dv; the second line is computed
from the first. Then Eq. (3) gives

∫
ln x dx = x ln x −

∫
dx = x ln x − x + C. ◗

COMMENT 1 The constant of integration appears only at the last step. We know that
once we have found one antiderivative, any other may be obtained by adding a constant
C to the one we have found.
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COMMENT 2 In computing v = ∫
dv, we ordinarily take the constant of integration

to be zero. Had we written v = x + C1 in Example 1, the answer would have been∫
ln x dx = (x + C1) ln x −

∫ (
1 + C1

x

)
dx

= x ln x + C1 ln x − (x + C1 ln x) + C = x ln x − x + C

as before, so introducing the extra constant C1 has no effect.

EXAMPLE 2 Find
∫

arcsin x dx .

Solution Again, there is only one plausible choice for u and dv:

Let u = arcsin x and dv = dx .

Then du = dx√
1 − x2

and v = x .

Then Eq. (3) gives ∫
arcsin x dx = x arcsin x −

∫
x√

1 − x2
dx

= x arcsin x +
√

1 − x2 + C. ◗

EXAMPLE 3 Find
∫

xe−x dx .

Solution Here we appear to have some flexibility. Suppose that we try

u = e−x , dv = x dx

so that

du = −e−x dx, v = 1
2 x2.

Then integration by parts gives∫
xe−x dx = 1

2 x2e−x + 1
2

∫
x2e−x dx .

The new integral on the right looks more troublesome than the original problem on the
left! Let us begin anew.

Let u = x and dv = e−x dx .

Then du = dx and v = −e−x .

Now integration by parts gives∫
xe−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C. ◗

Integration by parts can be applied to definite integrals as well as to indefinite
integrals. We integrate Eq. (1) from x = a to x = b and apply the fundamental
theorem of calculus. This gives∫ b

a
u(x)v′(x) dx =

∫ b

a
Dx [u(x)v(x)] dx −

∫ b

a
v(x)u′(x) dx

=
[
u(x)v(x)

]b

a
−

∫ b

a
v(x)u′(x) dx .
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In the notation of Eq. (3), this equation would be written

∫ x=b

x=a
u dv =

[
uv

]b

a
−

∫ x=b

x=a
v du, (4)

although we must not forget that u and v are functions of x . For example, with u = x
and dv = e−x dx , as in Example 3, we obtain∫ 1

0
xe−x dx =

[
− xe−x

]1

0
+

∫ 1

0
e−x dx = −e−1 +

[
− e−x

]1

0
= 1 − 2

e
.

EXAMPLE 4 Find
∫

x2e−x dx .

Solution If we choose u = x2, then du = 2x dx , so we will reduce the exponent of x
by this choice.

Let u = x2 and dv = e−x dx .

Then du = 2x dx and v = −e−x .

Then integration by parts gives∫
x2e−x dx = −x2e−x + 2

∫
xe−x dx .

We apply integration by parts a second time to the right-hand integral and obtain the
result ∫

xe−x dx = −xe−x − e−x

of Example 3. Substitution then yields∫
x2e−x dx = −x2e−x − 2xe−x − 2e−x + C

= −(x2 + 2x + 2)e−x + C.

In effect, we have annihilated the original factor x2 by integrating by parts twice in

70 1 2 3 4 5 6−1
x

y

−2

2

1

0

−1

FIGURE 7.3.2 Graphs of the
functions x2e−x and
−(x2 + 2x + 2)e−x + 1. Noting only
that the zero of one corresponds to a
critical point of the other, which do
you conclude is the antiderivative?

succession. See Fig. 7.3.2. ◗

EXAMPLE 5 Find
∫

e2x sin 3x dx .

Solution This is another example in which repeated integration by parts succeeds,
but with a twist:

Let u = sin 3x, dv = e2x dx .

Then du = 3 cos 3x dx, v = 1
2 e2x .

Therefore, ∫
e2x sin 3x dx = 1

2 e2x sin 3x − 3
2

∫
e2x cos 3x dx .

At first it might appear that little progress has been made, for the integral on the right
is as difficult to integrate as the one on the left. We ignore this objection and try again,
applying integration by parts to the new integral:

Let u = cos 3x, dv = e2x dx .

Then du = −3 sin 3x dx, v = 1
2 e2x .

Now we find that∫
e2x cos 3x dx = 1

2 e2x cos 3x + 3
2

∫
e2x sin 3x dx .
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When we substitute this result into the previous equation, we discover that∫
e2x sin 3x dx = 1

2 e2x sin 3x − 3
4 e2x cos 3x − 9

4

∫
e2x sin 3x dx .

So we are back where we started. Or are we? In fact we are not, because we can solve

x
1−1

0

10

20

30

−10

−20

−30

20 3

y

FIGURE 7.3.3 Graphs of the
functions e2x sin 3x and
1

13 e2x (2 sin 3x − 3 cos 3x). Noting
only that the zeros of one correspond
to the critical points of the other,
which do you conclude is the
antiderivative?

this last equation for the desired integral. We add the right-hand integral here to both
sides of the last equation. This gives

13
4

∫
e2x sin 3x dx = 1

4 e2x(2 sin 3x − 3 cos 3x) + C1,

so ∫
e2x sin 3x dx = 1

13 e2x(2 sin 3x − 3 cos 3x) + C.

(See Fig. 7.3.3.) ◗

EXAMPLE 6 Find a reduction formula for
∫

secn x dx .

Solution The idea is that n is a (large) positive integer and that we want to express
the given integral in terms of the integral of a lower power of sec x . The easiest power
of sec x to integrate is sec2 x , so we proceed as follows:

Let u = secn−2 x, dv = sec2 x dx .

Then du = (n − 2) secn−2 x tan x dx, v = tan x .

This gives∫
secn x dx = secn−2 x tan x − (n − 2)

∫
secn−2 x tan2 x dx

= secn−2 x tan x − (n − 2)

∫
(secn−2 x)(sec2 x − 1) dx .

Hence∫
secn x dx = secn−2 x tan x − (n − 2)

∫
secn x dx + (n − 2)

∫
secn−2 x dx .

We solve this equation for the original integral and find that

∫
secn x dx = secn−2 x tan x

n − 1
+ n − 2

n − 1

∫
secn−2 x dx . (5)

This is the desired reduction formula. For example, if we take n = 3 in this formula,
we find that ∫

sec3 x dx = 1
2 sec x tan x + 1

2

∫
sec x dx

and thus

∫
sec3 x dx = 1

2 sec x tan x + 1
2 ln |sec x + tan x | + C . (6)

In the last step we used the integral formula

∫
sec x dx = ln |sec x + tan x | + C , (7)
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which is tricky to derive systematically (see Section 7.4) but is easy to verify by differ-
entiation:

Dx(ln | sec x + tan x |) = Dx(sec x + tan x)

sec x + tan x

= sec x tan x + sec2 x

sec x + tan x
= (sec x)(tan x + sec x)

sec x + tan x
= sec x .

The reason for using the reduction formula in Eq. (5) to integrate secn x is that—if n is
a positive integer—repeated application of the formula must yield either Eq. (7) or the
elementary integral

∫
sec2 x dx = tan x + C. ◗

EXAMPLE 7 With n = 4 in Eq. (5) we get∫
sec4 x dx = 1

3 sec2 x tan x + 2
3

∫
sec2 x dx

= 1
3 sec2 x tan x + 2

3 tan x + C, (8)

and with n = 5 we get∫
sec5 x dx = 1

4 sec3 x tan x + 3
4

∫
sec3 x dx

= 1
4 sec3 x tan x + 3

8 sec x tan x + 3
8 ln |sec x + tan x | + C, (9)

using Eq. (6) in the last step. ◗

7.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The general formula for integration by parts is
∫

u dv = uv −
∫

v du.

2. The general formula for integration by parts is
∫

u dv = uv +
∫

v du.

3. To use integration by parts to evaluate
∫

ln x dx , let u = ln x and dv = dx .

4. To use integration by parts to evaluate
∫

arcsin x dx , let u = arcsin x and

dv = dx .

5. To use integration by parts to evaluate
∫

xe−x dx , let u = e−x and dv = x dx .

6. To use integration by parts to evaluate
∫

xe−x dx , let u = x and dv = e−x dx .

7.
∫ 1

0
xe−x dx =

[
− xe−x

]1

0

+
∫ 1

0
e−x dx .

8.
∫ 1

0
xe−x dx = 1 − 2

e
.

9. To use integration by parts to evaluate
∫

x2e−x dx , begin by letting u = e−x and

dv = x2 dx .

10. To derive a reduction formula for
∫

secn x dx (where n is an integer and n � 2),

begin by letting u = (sec x)n−2 and dv = sec2 x dx .
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7.3 CONCEPTS: QUESTIONS AND DISCUSSION

1. Given an integral
∫

f (x) dx , state in your own words, with a minimum of jargon,
your strategy for factoring the integrand into a product f (x) = g(x)h(x) so that
the separation into parts u = g(x), dv = h(x) dx is effective in evaluating the
integral.

2. Give an example of an integral
∫

f (x) dx for which the integrand can be factored
in at least three different ways—some that lead to a successful integration by
parts and some that do not.

7.3 PROBLEMS

Use integration by parts to compute the integrals in Problems 1
through 34.

1.
∫

xe2x dx 2.
∫

x2e2x dx

3.
∫

t sin t dt 4.
∫

t2 sin t dt

5.
∫

x cos 3x dx 6.
∫

x ln x dx

7.
∫

x3 ln x dx 8.
∫

e3z cos 3z dz

9.
∫

arctan x dx 10.
∫

ln x

x2
dx

11.
∫ √

y ln y dy 12.
∫

x sec2 x dx

13.
∫

(ln t)2 dt 14.
∫

t (ln t)2 dt

15.
∫

x
√

x + 3 dx 16.
∫

x3
√

1 − x2 dx

17.
∫

x5
√

x3 + 1 dx 18.
∫

sin2 θ dθ

19.
∫

csc3 θ dθ 20.
∫

sin(ln t) dt

21.
∫

x2 arctan x dx 22.
∫

ln(1 + x2) dx

23.
∫

sec−1 √
x dx 24.

∫
x tan−1 √

x dx

25.
∫

tan−1 √
x dx 26.

∫
x2 cos 4x dx

27.
∫

x csc2 x dx 28.
∫

x arctan x dx

29.
∫

x3 cos x2 dx 30.
∫

e−3x sin 4x dx

31.
∫

ln x

x
√

x
dx 32.

∫
x7

(1 + x4)3/2
dx

33.
∫

x cosh x dx 34.
∫

ex cosh x dx

In Problems 35 through 38, first make a substitution of the form
t = xk and then integrate by parts.

35.
∫

x3 sin x2 dx 36.
∫

x7 cos x4 dx

37.
∫

exp
(−√

x
)

dx 38.
∫

x2 sin x3/2 dx

In Problems 39 through 42, use the method of cylindrical shells
to calculate the volume of the solid obtained by revolving the re-
gion R around the y-axis.

39. R is bounded below by the x-axis and above by the curve
y = cos x , −π/2 � x � π/2.

40. R is bounded below by the x-axis and above by the curve
y = sin x , 0 � x � π .

41. R is bounded below by the x-axis, on the right by the line
x = e, and above by the curve y = ln x .

42. R is bounded below by the x-axis, on the left by the
y-axis, on the right by the line x = 1, and above by the curve
y = e−x .

In Problems 43 through 45, first estimate graphically or numer-
ically the points of intersection of the two given curves, then
approximate the volume of the solid that is generated when
the region bounded by these two curves is revolved around the
y-axis.

43. y = x2 and y = cos x

44. y = 10x − x2 and y = ex − 1

45. y = x2 − 2x and y = ln(x + 1)

46. Use integration by parts to evaluate∫
2x arctan x dx,

with dv = 2x dx , but let v = x2 + 1 rather than v = x2. Is
there a reason why v should not be chosen in this way?

47. Use integration by parts to evaluate
∫

xex cos x dx .

48. Use integration by parts to evaluate
∫

sin 3x cos x dx .

Derive the reduction formulas given in Problems 49 through 54.
Throughout, n denotes a positive integer with an appropriate side
condition (such as n � 1 or n � 2).

49.
∫

xnex dx = xnex − n
∫

xn−1ex dx

50.
∫

xne−x2
dx = −1

2
xn−1e−x2 + n − 1

2

∫
xn−2e−x2

dx

51.
∫

(ln x)n dx = x(ln x)n − n
∫

(ln x)n−1 dx

52.
∫

xn cos x dx = xn sin x − n
∫

xn−1 sin x dx

53.
∫

sinn x dx = − sinn−1 x cos x

n
+ n − 1

n

∫
sinn−2 x dx

54.
∫

cosn x dx = cosn−1 x sin x

n
+ n − 1

n

∫
cosn−2 x dx
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Use appropriate reduction formulas from the preceding list to
evaluate the integrals in Problems 55 through 57.

55.
∫ 1

0
x3ex dx 56.

∫ 1

0
x5e−x2

dx

57.
∫ e

1
(ln x)3 dx

58. Apply the reduction formula in Problem 53 to show that for
each positive integer n,∫ π/2

0
sin2n x dx = π

2
· 1

2
· 3

4
· 5

6
· · · 2n − 1

2n

and ∫ π/2

0
sin2n+1 x dx = 2

3
· 4

5
· 6

7
· 8

9
· · · 2n

2n + 1
.

59. Derive the formula∫
ln(x + 10) dx = (x + 10) ln(x + 10) − x + C

in three different ways: (a) by substituting u = x + 10 and
applying the result of Example 1; (b) by integrating by parts
with u = ln(x + 10) and dv = dx , noting that

x

x + 10
= 1 − 10

x + 10
;

and (c) by integrating by parts with u = ln(x + 10) and
dv = dx , but with v = x + 10.

60. Derive the formula∫
x3 tan−1 x dx = 1

4 (x4 − 1) tan−1 x − 1
12 x3 + 1

4 x + C

by integrating by parts with u = tan−1 x and v = 1
4 (x4 − 1).

61. Let Jn = ∫ 1
0 xne−x dx for each integer n � 0. (a) Show that

J0 = 1 − 1

e
and that Jn = n Jn−1 − 1

e

for n � 1. (b) Deduce by mathematical induction that

Jn = n! − n!
e

n∑
k=0

1

k!
for each integer n � 0. (c) Explain why Jn → 0 as n → +∞.
(d) Conclude that

e = lim
n→∞

n∑
k=0

1

k! .

62. Let m and n be positive integers. Derive the reduction for-
mula∫

xm(ln x)n dx = xm+1

m + 1
(ln x)n − n

m + 1

∫
xm(ln x)n−1 dx .

63. An advertisement for a symbolic algebra program claims
that an engineer worked for three weeks on the integral∫

(k ln x − 2x3 + 3x2 + b)4 dx,

which deals with turbulence in an aerospace application. The
advertisement said that the engineer never got the same an-
swer twice in the three weeks. Explain how you could use
the reduction formula of Problem 62 to find the engineer’s
integral (but don’t actually do it). Can you see any reason
why it should have taken three weeks?

64. Figure 7.3.4 shows the region bounded by the x-axis and the
graph of y = 1

2 x2 sin x , 0 � x � π . Use Formulas (42) and
(43) (in the endpapers)—which are derived by integration
by parts—to find (a) the area of this region; (b) the volume
obtained by revolving this region around the y-axis.

0

1

2

3

0 1 2 3
x

y

y = (1/2)x2 sin x

FIGURE 7.3.4 The region of
Problem 64.

65. The top shown in Fig. 7.3.5 has the shape of the solid ob-
tained by revolving the region of Problem 64 around the x-
axis. Find the volume of this top.

FIGURE 7.3.5 The top of
Problem 65.

66. A particle is set in motion at time t = 0 and moves to the
right along the x-axis. (a) Suppose that its acceleration at
time t is a = 100e−t . Show that the particle moves infinitely
far to the right along the x-axis. (b) Suppose that its acceler-
ation at time t is a = 100(1 − t)e−t . Show that the particle
never moves beyond a certain point to the right of its initial
position and find that point. Explain why the particle “effec-
tively” comes to a stop at that point.

67. Find the area and centroid of the region that is bounded by
the curves y = x2 and y = 2x for 2 � x � 4.

68. For each positive integer k, let

Ik =
∫ π/2

0
sink x dx .

(a) Show that I2n � I2n+1 � I2n+2 for each positive integer n.
(b) Use Problem 58 to show that

lim
n→∞

I2n+2

I2n
= 1.

(c) Conclude from parts (a) and (b) that

lim
n→∞

I2n+1

I2n
= 1.

(d) Conclude from part (c) and Problem 58 that

lim
n→∞

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · 2n

2n − 1
· 2n

2n + 1
= π

2
.

This result is usually written as the infinite product

π

2
= 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · ,

which was discovered by the English mathematician
John Wallis in 1655.

527

www.konkur.in



528 CHAPTER 7 Techniques of Integration

7.4 TRIGONOMETRIC INTEGRALS

Here we discuss the evaluation of certain integrals in which the integrand is either a
power of a trigonometric function or the product of two such powers. Such integrals
are among the most common trigonometric integrals in applications of calculus.

To evaluate the integrals

∫
sin2 u du and

∫
cos2 u du

that appear in numerous applications, we use the half-angle identities

sin2 θ = 1
2 (1 − cos 2θ),

cos2 θ = 1
2 (1 + cos 2θ)

(1)

(2)

of Eqs. (11) and (10) in Appendix C.

EXAMPLE 1 Find
∫

sin2 3x dx . (See Fig. 7.4.1.)

x
0−1

−1

0

−0.5

0.5

1

2

1.5

1 2

y

FIGURE 7.4.1 Graphs of the
functions sin2 3x and
1

12 (6x − sin 6x) of Example 1. The
zeros of which correspond to the
critical points of the other? So which
is the antiderivative?

Solution The identity in Eq. (1)—with 3x in place of θ—yields∫
sin2 3x dx =

∫
1
2 (1 − cos 6x) dx

= 1
2

(
x − 1

6 sin 6x
) + C = 1

12 (6x − sin 6x) + C. ◗

To integrate tan2 x and cot2 x , we use the identities

1 + tan2 x = sec2 x and 1 + cot2 x = csc2 x . (3)

The first of these follows from the fundamental identity sin2 x + cos2 x = 1 upon
division of both sides by cos2 x . To obtain the second formula in (3), we divide both
sides of the fundamental identity by sin2 x .

EXAMPLE 2 Compute the antiderivative
∫

cot2 3x dx .

Solution By using the second identity in (3) with 3x in place of x , we obtain∫
cot2 3x dx =

∫
(csc2 3x − 1) dx

=
∫

(csc2 u − 1)
(

1
3 du

)
(u = 3x)

= 1
3 (− cot u − u) + C = − 1

3 cot 3x − x + C. ◗

Integrals of Products of Sines and Cosines
The substitution u = sin x , du = cos x dx gives∫

sin3 x cos x dx =
∫

u3du = 1
4 u4 + C = 1

4 sin4 x + C.

This substitution, or the similar substitution u = cos x , du = − sin x dx , can be used
to evaluate an integral of the form

∫
sinm x cosn x dx (4)

in the first of the following two cases:
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• Case 1: At least one of the two numbers m and n is an odd positive integer. If so,
then the other may be any real number.

• Case 2: Both m and n are nonnegative even integers.

Suppose, for example, that m = 2k + 1 is an odd positive integer. Then we
isolate one sin x factor and use the identity sin2 x = 1−cos2 x to express the remaining
sinm−1 x factor in terms of cos x , as follows:∫

sinm x cosn x dx =
∫

sinm−1 x cosn x sin x dx =
∫

(sin2 x)k cosn x sin x dx

=
∫

(1 − cos2 x)k cosn x sin x dx .

Now the substitution u = cos x , du = − sin x dx yields∫
sinm x cosn x dx = −

∫
(1 − u2)kundu.

The exponent k = (m − 1)/2 is a nonnegative integer because m is an odd positive
integer. Thus the factor (1 − u2)k of the integrand is a polynomial in the variable u,
and so its product with un is easy to integrate.

In essence, this method consists of peeling off one copy of sin x (if m is odd) and
then converting the remaining sines into cosines. If n is odd, then we can split off one
copy of cos x and convert the remaining cosines into sines.

EXAMPLE 3

(a)
∫

sin3 x cos2 x dx =
∫

(1 − cos2 x) cos2 x sin x dx

=
∫

(u4 − u2) du (u = cos x)

= 1
5 u5 − 1

3 u3 + C = 1
5 cos5 x − 1

3 cos3 x + C.

(b)
∫

cos5 x dx =
∫

(1 − sin2 x)2 cos x dx

=
∫

(1 − u2)2 du (u = sin x)

=
∫

(1 − 2u2 + u4) du = u − 2
3 u3 + 1

5 u5 + C

= sin x − 2
3 sin3 x + 1

5 sin5 x + C. ◗

In case 2 of the sine-cosine integral in (4), with both m and n nonnegative even
integers, we use the half-angle formulas in Eqs. (1) and (2) to halve the even powers
of sin x and cos x . If we repeat this process with the resulting powers of cos 2x (if
necessary), we get integrals involving odd powers, and we have seen how to handle
these in Case 1.

EXAMPLE 4 Use of Eqs. (1) and (2) gives∫
sin2 x cos2 x dx =

∫
1
2 (1 − cos 2x) 1

2 (1 + cos 2x) dx

= 1
4

∫
(1 − cos2 2x) dx = 1

4

∫ [
1 − 1

2 (1 + cos 4x)
]

dx

= 1
8

∫
(1 − cos 4x) dx = 1

8 x − 1
32 sin 4x + C.

In the third step we used Eq. (2) with θ = 2x . ◗
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EXAMPLE 5 Here we apply Eq. (2), first with θ = 3x and then with θ = 6x .∫
cos4 3x dx =

∫ [
1
2 (1 + cos 6x)

]2
dx

= 1
4

∫
(1 + 2 cos 6x + cos2 6x) dx

= 1
4

∫ (
3
2 + 2 cos 6x + 1

2 cos 12x
)

dx

= 3
8 x + 1

12 sin 6x + 1
96 sin 12x + C. ◗

Integrals of Products of Secants and Tangents
To integrate tan x , we use the substitution

u = cos x, du = − sin x dx

and get ∫
tan x dx =

∫
sin x

cos x
dx = −

∫
1

u
du = − ln |u| + C.

Thus ∫
tan x dx = − ln | cos x | + C = ln | sec x | + C . (5)

In Eq. (5) we used the fact that | sec x | = 1/| cos x |.
Similarly,

∫
cot x dx = ln |sin x | + C = − ln |csc x | + C . (6)

The first person to integrate sec x may well have spent much time doing so. Here
is one of several methods. First we “prepare” the function for integration:

sec x = 1

cos x
= cos x

cos2 x
= cos x

1 − sin2 x
.

Next we use the algebraic identity

1

1 + z
+ 1

1 − z
= 2

1 − z2
,

which you can verify by finding a common denominator on the left. Similarly, we see
that

2 cos x

1 − sin2 x
= cos x

1 + sin x
+ cos x

1 − sin x
.

Therefore, ∫
sec x dx = 1

2

∫ (
cos x

1 + sin x
+ cos x

1 − sin x

)
dx

= 1
2 (ln |1 + sin x | − ln |1 − sin x |) + C.

It’s customary to simplify this result:∫
sec x dx = 1

2 ln

∣∣∣∣1 + sin x

1 − sin x

∣∣∣∣ + C = 1
2 ln

∣∣∣∣ (1 + sin x)2

1 − sin2 x

∣∣∣∣ + C

= ln

∣∣∣∣ (1 + sin x)2

cos2 x

∣∣∣∣
1/2

+ C = ln

∣∣∣∣1 + sin x

cos x

∣∣∣∣ + C

= ln | sec x + tan x | + C.
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After we verify by differentiation that

∫
sec x dx = ln |sec x + tan x | + C , (7)

we could always “derive” this result by using an unmotivated trick:

∫
sec x dx =

∫
(sec x)

tan x + sec x

sec x + tan x
dx

=
∫

sec x tan x + sec2 x

sec x + tan x
dx = ln | sec x + tan x | + C.

A similar technique yields

∫
csc x dx = − ln |csc x + cot x | + C . (8)

EXAMPLE 6 The substitution u = 1
2 x , du = 1

2 dx gives

∫ π/2

0
sec

x

2
dx = 2

∫ π/4

0
sec u du

= 2
[

ln | sec u + tan u|
]π/4

0
= 2 ln

(
1 + √

2
) ≈ 1.76275. ◗

An integral of the form

∫
tanm x secn x dx (9)

can be routinely evaluated in either of the following two cases:

• Case 1: m is an odd positive integer.
• Case 2: n is an even positive integer.

In Case 1, we split off the factor sec x tan x to form, along with dx , the differential
sec x tan x dx of sec x . We then use the identity tan2 x = sec2 x − 1 to convert the
remaining even power of tan x into powers of sec x . This prepares the integrand for the
substitution u = sec x .

EXAMPLE 7

∫
tan3 x sec3 x dx =

∫
(sec2 x − 1) sec2 x sec x tan x dx

=
∫

(u4 − u2) du (u = sec x)

= 1
5 u5 − 1

3 u3 + C = 1
5 sec5 x − 1

3 sec3 x + C. ◗

To evaluate the integral in (9) in Case 2, we split off sec2 x to form, along with
dx , the differential of tan x . We then use the identity sec2 x = 1 + tan2 x to convert the
remaining even power of sec x into powers of tan x . This prepares the integrand for the
substitution u = tan x .
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EXAMPLE 8 Method 1. Use of the secant-tangent form sec2 u = 1 + tan2 u of the

0
x

y

0.4−0.4 0.8−0.8
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 7.4.2 After an initial
attempt to evaluate

∫
sec6 2x dx

using the two methods of Example 8,
a computer was used to plot the two
alleged antiderivatives. Why does
this figure indicate the presence of
an error in the calculations? What is
the relationship between any two
antiderivatives of a given function?

fundamental identity of trigonometry gives∫
sec6 2x dx =

∫
(1 + tan2 2x)2 sec2 2x dx

= 1
2

∫
(1 + tan2 2x)2(2 sec2 2x) dx

= 1
2

∫
(1 + u2)2 du (u = tan 2x, du = 2 sec2 2x dx)

= 1
2

∫
(1 + 2u2 + u4) du = 1

2 u + 1
3 u3 + 1

10 u5 + C

= 1
2 tan 2x + 1

3 tan3 2x + 1
10 tan5 2x + C. (10)

Method 2. Alternatively, we could apply the reduction formula∫
secn x dx = secn−2 x tan x

n − 1
+ n − 2

n − 1

∫
secn−2 x dx

of Section 7.3, first with n = 6 and then with n = 4. This gives∫
sec6 2x dx = 1

2

∫
sec6 u du (u = 2x)

= 1
2

(
1
5 sec4 u tan u + 4

5

∫
sec4 u du

)

= 1
10 sec4 u tan u + 2

5

(
1
3 sec2 u tan u + 2

3

∫
sec2 u du

)
= 1

10 sec4 2x tan 2x + 2
15 sec2 2x tan 2x + 4

15 tan 2x + C. (11)

(See Figs. 7.4.2 and 7.4.3.) ◗

Similar methods are effective with integrals of the form∫
cscm x cotn x dx,

because the cotangent and cosecant functions satisfy analogous differentiation formu-
las and trigonometric identities:

1 + tan2 x = sec2 x, Dx tan x = sec2 x, Dx sec x = sec x tan x

and

1 + cot2 x = csc2 x, Dx cot x = − csc2 x, Dx csc x = − csc x cot x .

The method of Case 1 succeeds with the integral

y

−5
−4
−3
−2
−1

0
1
2
3
4
5

0
x

0.4−0.4 0.8−0.8

FIGURE 7.4.3 After the error made
initially was found and corrected,
this figure resulted when the two
antiderivatives in (10) and (11) were
plotted simultaneously (each with
C = 0). It indicates that the two
antiderivative formulas are, in fact,
equivalent.

∫
tann x dx

only when n is an odd positive integer, but there is another approach that works equally
well whether n is even or odd. We split off the factor tan2 x and replace it with
sec2 x − 1: ∫

tann x dx =
∫

(tann−2 x)(sec2 x − 1) dx

=
∫

tann−2 x sec2 x dx −
∫

tann−2 x dx .

We integrate what we can and find that∫
tann x dx = tann−1 x

n − 1
−

∫
tann−2 x dx . (12)
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Equation (12) is another example of a reduction formula. Its use effectively re-
duces the original exponent from n to n − 2. If we apply Eq. (12) repeatedly, we
eventually get either∫

tan2 x dx =
∫

(sec2 x − 1) dx = tan x − x + C

or ∫
tan x dx = ln |sec x | + C.

EXAMPLE 9 Two applications of Eq. (12) give∫
tan6 x dx = 1

5 tan5 x −
∫

tan4 x dx

= 1
5 tan5 x −

(
1

3
tan3 x −

∫
tan2 x dx

)

= 1
5 tan5 x − 1

3
tan3 x + tan x − x + C. ◗

Finally, in the case of an integral involving an unusual mixture of trigonometric
functions—tangents and cosecants, for example—expressing the integrand entirely in
terms of sines and cosines may yield an expression that’s easy to integrate.

7.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. sin2 θ = 1 − cos 2θ

2
.

2.
∫

sin2 3x dx = 1

12
(6x − sin 6x) + C .

3.
∫

sin3 x cos x dx = 1

4
sin4 x + C .

4. To evalaute
∫

cos5 x dx , begin by replacing cos4 x with (1 − sin2 x)2.

5.
∫

tan x dx = ln | sec x | + C . 6.
∫

sec x dx = ln | sec x + tan x |+C .

7.
∫

tan3 x sec3 x dx = 1

4
tan4 x sec4 x + C .

8. If n is an integer and n � 2, then∫
secn x dx = secn−2 x tan x

n − 1
+ n − 2

n − 1

∫
secn−2 x dx .

9.
∫

tan2 x dx = 1

3
tan3 x + C . 10.

∫
tan2 x dx =

∫
(sec2 x − 1) dx .

7.4 CONCEPTS: QUESTIONS AND DISCUSSION
In the following questions, the term “trigonometric integral” means an integral of a
positive whole-number power of a trigonometric function or an integral of the product
of two such powers.

1. Describe the types of trigonometric integrals that can be evaluated using the
methods of this section.

2. Give examples of several trigonometric integrals that cannot be evaluated using
the methods of this section.
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7.4 PROBLEMS

Evaluate the integrals in Problems 1 through 44.

1.
∫

sin2 x dx 2.
∫

cos2 5x dx

3.
∫

sec2 x

2
dx 4.

∫
tan2 x

2
dx

5.
∫

tan 3x dx 6.
∫

cot 4x dx

7.
∫

sec 3x dx 8.
∫

csc 2x dx

9.
∫

1

csc2 x
dx 10.

∫
sin2 x cot2 x dx

11.
∫

sin3 x dx 12.
∫

sin4 x dx

13.
∫

sin2 θ cos3 θ dθ 14.
∫

sin3 t cos3 t dt

15.
∫

cos5 x dx 16.
∫

sin t

cos3 t
dt

17.
∫

sin3 x√
cos x

dx 18.
∫

sin3 φ cos4 φ dφ

19.
∫

sin5 2z cos2 2z dz 20.
∫

sin3/2 x cos3 x dx

21.
∫

sin3 4x

cos2 4x
dx 22.

∫
cos6 4θ dθ

23.
∫

sec4 t dt 24.
∫

tan3 x dx

25.
∫

cot3 2x dx 26.
∫

tan θ sec4 θ dθ

27.
∫

tan5 2x sec2 2x dx 28.
∫

cot3 x csc2 x dx

29.
∫

csc6 2t dt 30.
∫

sec4 t

tan2 t
dt

31.
∫

tan3 θ

sec4 θ
dθ 32.

∫
cot3 x

csc2 x
dx

33.
∫

tan3 t√
sec t

dt 34.
∫

1

cos4 2x
dx

35.
∫

cot θ

csc3 θ
dθ 36.

∫
sin2 3α cos2 3α dα

37.
∫

cos3 5t dt 38.
∫

tan4 x dx

39.
∫

cot4 3t dt 40.
∫

tan2 2t sec4 2t dt

41.
∫

sin5 2t cos3/2 2t dt 42.
∫

cot3 ξ csc3/2 ξ dξ

43.
∫

tan x + sin x

sec x
dx 44.

∫
cot x + csc x

sin x
dx

In Problems 45 through 48, find the area of the region bounded
by the two given curves.

45. The x-axis and the curve y = sin3 x , from x = 0 to x = π

46. y = cos2 x and y = sin2 x , from x = −π/4 to x = π/4

47. y = sin x cos x and y = sin2 x , from x = π/4 to x = π

48. y = cos3 x and y = sin3 x , from x = π/4 to x = 5π/4

In Problems 49 and 50, first graph the integrand function and
guess the value of the integral. Then verify your guess by actu-
ally evaluating the integral.

49.
∫ 2π

0
sin3 x cos2 x dx 50.

∫ π

0
sin5 2x dx

In Problems 51 through 54, find the volume of the solid generated
by revolving the given region R around the x-axis.

51. R is bounded by the x-axis and the curve y = sin2 x ,
0 � x � π .

52. R is the region of Problem 46.

53. R is bounded by y = 2 and y = sec x for −π/3 � x � π/3.

54. R is bounded by y = 4 cos x and y = sec x for −π/3 �
x � π/3.

55. Let R denote the region that lies between the curves y =
tan2 x and y = sec2 x for 0 � x � π/4. Find: (a) the area
of R; (b) the volume of the solid obtained by revolving R
around the x-axis.

56. Find the length of the graph of y = ln(cos x) from x = 0 to
x = π/4.

57. Find ∫
tan x sec4 x dx

in two different ways. Then show that your two results are
equivalent.

58. Find ∫
cot3 x dx

in two different ways. Then show that your two results are
equivalent.

Problems 59 through 62 are applications of the trigonometric
identities

sin A sin B = 1
2 [cos(A − B) − cos(A + B)],

sin A cos B = 1
2 [sin(A − B) + sin(A + B)],

cos A cos B = 1
2 [cos(A − B) + cos(A + B)].

59. Find
∫

sin 3x cos 5x dx .

60. Find
∫

sin 2x sin 4x dx .

61. Find
∫

cos x cos 4x dx .

62. Suppose that m and n are positive integers with m �= n.
Show that

(a)
∫ 2π

0
sin mx sin nx dx = 0;

(b)
∫ 2π

0
cos mx sin nx dx = 0;

(c)
∫ 2π

0
cos mx cos nx dx = 0.

63. Substitute sec x csc x = (sec2 x)/(tan x) to derive the
formula ∫

sec x csc x dx = ln | tan x | + C.
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64. Show that

csc x = 1

2 sin
(

1
2 x

)
cos

(
1
2 x

) ,

then apply the result of Problem 63 to derive the formula∫
csc x dx = ln

∣∣∣ tan
x

2

∣∣∣ + C.

65. Substitute x = 1
2 π − u into the integral formula of Prob-

lem 64 to show that∫
sec x dx = ln

∣∣∣cot
(π

4
− x

2

)∣∣∣ + C.

66. Use appropriate trigonometric identities to deduce from the
result of Problem 65 that∫

sec x dx = ln |sec x + tan x | + C.

67. Show first that the reduction formula in Eq. (12) gives∫
tan4 x dx = 1

3 tan3 x − tan x + x + C.

Then compare this result with the alleged antiderivative∫
tan4 x dx = 1

12 (sec3 x)(9x cos x + 3x cos 3x − 4 sin 3x)

given by some versions of Mathematica.

68. Compare the result given in Example 9 with the integral∫
tan6 x dx

as given by your favorite computer algebra system.

7.5 RATIONAL FUNCTIONS AND PARTIAL FRACTIONS

We now discuss methods with which every rational function can be integrated in terms
of elementary functions. Recall that a rational function R(x) is a function that can be
expressed as the quotient of two polynomials. That is,

R(x) = P(x)

Q(x)
, (1)

where P(x) and Q(x) are polynomials. The method of partial fractions is an alge-
braic technique that decomposes R(x) into a sum of terms:

R(x) = P(x)

Q(x)
= p(x) + F1(x) + F2(x) + · · · + Fk(x), (2)

where p(x) is a polynomial and each expression Fi (x) is a fraction that can be inte-
grated with little difficulty.

EXAMPLE 1 We can verify (by finding a common denominator on the right) that

x3 − 1

x3 + x
= 1 − 1

x
+ x − 1

x2 + 1
. (3)

It follows that∫
x3 − 1

x3 + x
dx =

∫ (
1 − 1

x
+ x

x2 + 1
− 1

x2 + 1

)
dx

= x − ln |x | + 1
2 ln(x2 + 1) − tan−1 x + C.

The key to this simple integration lies in finding the decomposition given in Eq. (3).
The existence of such a decomposition and the technique of finding it are what the
method of partial fractions is about. (See Fig. 7.5.1.) ◗

0
x

y

1−1−2 2
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 7.5.1 Graphs of the
function f (x) = (x3 − 1)/(x3 + x)

of Example 1 and its indefinite
integral with C = 0. Which is
which?

According to a theorem proved in advanced algebra, every rational function can
be written in the form in Eq. (2) with each Fi (x) being a fraction either of the form

A

(ax + b)n
(4)
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or of the form

Bx + C

(ax2 + bx + c)n
(5)

(where A, B, C , a, b, and c are constants). Here the quadratic polynomial ax2 +bx +c
is irreducible: It is not a product of linear factors with real coefficients. This is the
same as saying that the equation ax2 + bx + c = 0 has no real roots, and the quadratic
formula tells us that this is the case exactly when its discriminant is negative:
b2 − 4ac < 0.

Fractions of the forms in (4) and (5) are called partial fractions, and the sum in
Eq. (2) is called the partial-fraction decomposition of R(x). Thus Eq. (3) gives the
partial-fraction decomposition of (x3 − 1)/(x3 + x). A partial fraction of the form in
(4) may be integrated immediately, and we will see in Section 7.7 how to integrate one
of the form in (5).

The first step in finding the partial-fraction decomposition of R(x) is to find the
polynomial p(x) in Eq. (2). It turns out that p(x) ≡ 0 provided that the degree of
the numerator P(x) is less than that of the denominator Q(x); such a rational function
R(x) = P(x)/Q(x) is said to be proper. If R(x) is not proper, then p(x) may be
found by dividing Q(x) into P(x), as in Example 2.

EXAMPLE 2 Find
∫

x3 + x2 + x − 1

x2 + 2x + 2
dx . (See Fig. 7.5.2.)

0
x

y

−5 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 7.5.2 Graphs of the
function f (x) = (x3 + x2 + x − 1)/

(x2 + 2x + 2) of Example 2 and its
indefinite integral with C = 0.
Which is which?

Solution Long division of denominator into numerator may be carried out as
follows:

x − 1←−−−−−−−−−−−−−− p(x) (quotient)
x2 + 2x + 2 ) x3 + x2 + x − 1

x3 + 2x2 + 2x
− x2 − x − 1
− x2 − 2x − 2

x + 1 ←−−−− r(x) (remainder)

As in simple arithmetic,

“fraction = quotient + remainder

divisor
.”

Thus

x3 + x2 + x − 1

x2 + 2x + 2
= (x − 1) + x + 1

x2 + 2x + 2
,

and hence∫
x3 + x2 + x − 1

x2 + 2x + 2
dx =

∫ (
x − 1 + x + 1

x2 + 2x + 2

)
dx

= 1
2 x2 − x + 1

2 ln(x2 + 2x + 2) + C. ◗

By using long division as in Example 2, any rational function R(x) can be written
as a sum of a polynomial p(x) and a proper rational fraction,

R(x) = p(x) + r(x)

Q(x)
.

To see how to integrate an arbitrary rational function, we therefore need only see how
to find the partial-fraction decomposition of a proper rational fraction.

To obtain such a decomposition, the first step is to factor the denominator Q(x)

into a product of linear factors (those of the form ax + b) and irreducible quadratic
factors (those of the form ax2 + bx + c with b2 − 4ac < 0). This is always possible in
principle but may be difficult in practice. But once we have found the factorization of
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Q(x), we can obtain the partial-fraction decomposition by routine algebraic methods
(described next). Each linear or irreducible quadratic factor of Q(x) leads to one or
more partial fractions of the forms in (4) and (5).

Linear Factors
Let R(x) = P(x)/Q(x) be a proper rational fraction, and suppose that the linear factor
ax + b occurs n times in the complete factorization of Q(x). That is, (ax + b)n is the
highest power of ax + b that divides “evenly” into Q(x). In this case we call n the
multiplicity of the factor ax + b.

RULE 1 Linear Factor Partial Fractions
The part of the partial-fraction decomposition of R(x) that corresponds to the linear
factor ax + b of multiplicity n is a sum of n partial fractions, specifically

A 1

ax + b
+ A 2

(ax + b)2
+ · · · + A n

(ax + b)n
, (6)

where A 1, A 2, . . . , A n are constants.

If all the factors of Q(x) are linear, then the partial-fraction decomposition of

0
x

y

−5 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 7.5.3 Graphs of
the function f (x) =
5/[(2x + 1)(x − 2)] of Example 3
and its indefinite integral with
C = 0. Which is which?

R(x) is a sum of expressions like the one in (6). The situation is especially simple
if each of these linear factors is nonrepeated—that is, if each has multiplicity n = 1.
In this case, the expression in (6) reduces to its first term, and the partial-fraction
decomposition of R(x) is a sum of such terms. The solutions in Examples 3 and 4
illustrate how the constant numerators can be determined.

EXAMPLE 3 Find
∫

5

(2x + 1)(x − 2)
dx . (See Fig. 7.5.3.)

Solution The linear factors in the denominator are distinct, so we seek a partial-
fraction decomposition of the form

5

(2x + 1)(x − 2)
= A

2x + 1
+ B

x − 2
.

To find the constants A and B, we multiply both sides of this identity by the left-hand
(common) denominator (2x + 1)(x − 2). The result is

5 = A(x − 2) + B(2x + 1) = (A + 2B)x + (−2A + B).

Next we equate coefficients of x and coefficients of 1 on the left-hand and right-hand
sides of this equation. This yields the equations

A + 2B = 0,

−2A + B = 5,

which we readily solve for A = −2, B = 1. Hence

5

(2x + 1)(x − 2)
= −2

2x + 1
+ 1

x − 2
,

and therefore∫
5

(2x + 1)(x − 2)
dx = − ln |2x + 1| + ln |x − 2| + C = ln

∣∣∣∣ x − 2

2x + 1

∣∣∣∣ + C.

◗

EXAMPLE 4 Find
∫

4x2 − 3x − 4

x3 + x2 − 2x
dx . (See Fig. 7.5.4.)

0
x

y

−5 5
−10

−5

0

10

5

FIGURE 7.5.4 Graphs of the
function f (x) = (4x2 − 3x − 4)/

(x3 + x2 − 2x) of Example 4 and its
indefinite integral with C = 0.
Which is which?
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Solution The rational function to be integrated is proper, so we immediately factor
its denominator:

x3 + x2 − 2x = x(x2 + x − 2) = x(x − 1)(x + 2).

We are dealing with three nonrepeated linear factors, so the partial-fraction decompo-
sition has the form

4x2 − 3x − 4

x3 + x2 − 2x
= A

x
+ B

x − 1
+ C

x + 2
.

To find the constants A, B, and C , we multiply both sides of this equation by the
common denominator x(x − 1)(x + 2) and find thereby that

4x2 − 3x − 4 = A(x − 1)(x + 2) + Bx(x + 2) + Cx(x − 1). (7)

Then we collect coefficients of like powers of x on the right:

4x2 − 3x − 4 = (A + B + C)x2 + (A + 2B − C)x + (−2A).

Because two polynomials are (identically) equal only if the coefficients of correspond-
ing powers of x are the same, we conclude that

A + B + C = 4,

A + 2B − C = −3,

−2A = −4.

We solve these simultaneous equations and thus find that A = 2, B = −1, and C = 3.
There is an alternative way to find A, B, and C that is especially effective in the

case of nonrepeated linear factors. Substitute the values of x = 0, x = 1, and x = −2
(the zeros of the linear factors of the denominator) into Eq. (7). Substituting x = 0
into Eq. (7) immediately gives −4 = −2A, so A = 2. Substituting x = 1 into Eq. (7)
gives −3 = 3B, so B = −1. Substituting x = −2 gives 18 = 6C , so C = 3.

With these values of A = 2, B = −1, and C = 3, however obtained, we find that∫
4x2 − 3x − 4

x3 + x2 − 2x
dx =

∫ (
2

x
− 1

x − 1
+ 3

x + 2

)
dx

= 2 ln |x | − ln |x − 1| + 3 ln |x + 2| + C.

Laws of logarithms allow us to write this antiderivative in the more compact form∫
4x2 − 3x − 4

x3 + x2 − 2x
dx = ln

∣∣∣∣ x2(x + 2)3

x − 1

∣∣∣∣ + C. ◗

EXAMPLE 5 Find
∫

x3 − 4x − 1

x(x − 1)3
dx .

Solution Here we have the linear factor x of multiplicity 1 but also the linear factor
x − 1 of multiplicity 3. According to Rule 1, the partial-fraction decomposition of the
integrand has the form

x3 − 4x − 1

x(x − 1)3
= A

x
+ B

x − 1
+ C

(x − 1)2
+ D

(x − 1)3
.

To find the constants A, B, C , and D, we multiply both sides of this equation by the
least common denominator x(x − 1)3. We find that

x3 − 4x − 1 = A(x − 1)3 + Bx(x − 1)2 + Cx(x − 1) + Dx .

We expand and then collect coefficients of like powers of x on the right-hand side. This
yields

x3 − 4x − 1 = (A + B)x3 + (−3A − 2B + C)x2 + (3A + B − C + D)x − A.
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Then we equate coefficients of like powers of x on each side of this equation. We get
the four simultaneous equations

A + B = 1,

−3A − 2B + C = 0,

3A + B − C + D = −4,

−A = −1.

The last equation gives A = 1, and then the first equation gives B = 0. Next, the
second equation gives C = 3. When we substitute these values into the third equation,
we finally get D = −4. Hence∫

x3 − 4x − 1

x(x − 1)3
dx =

∫ (
1

x
+ 3

(x − 1)2
− 4

(x − 1)3

)
dx

= ln |x | − 3

x − 1
+ 2

(x − 1)2
+ C. ◗

Quadratic Factors
Suppose that R(x) = P(x)/Q(x) is a proper rational fraction and that the irreducible
quadratic factor ax2+bx+c occurs n times in the factorization. That is, (ax2+bx+c)n

is the highest power of ax2 + bx + c that divides evenly into Q(x). As before, we call
n the multiplicity of the quadratic factor ax2 + bx + c.

RULE 2 Quadratic Factor Partial Fractions
The part of the partial-fraction decomposition of R(x) that corresponds to the irre-
ducible quadratic factor ax2 +bx +c of multiplicity n is a sum of n partial fractions.
It has the form

B1x + C1

ax2 + bx + c
+ B2x + C2

(ax2 + bx + c)2
+ · · · + Bnx + Cn

(ax2 + bx + c)n
, (8)

where B1, B2, . . . , Bn, C1, C2, . . . , and Cn are constants.

If Q(x) has both linear and irreducible quadratic factors, then the partial-fraction
decomposition of R(x) is simply the sum of the expressions of the form in (6) that
correspond to the linear factors plus the sum of the expressions of the form in (8) that
correspond to the quadratic factors. In the case of an irreducible quadratic factor of
multiplicity n = 1, the expression in (8) reduces to its first term alone.

The most important case is that of a nonrepeated quadratic factor of the sum
of squares form x2 + k2 (where k is a positive constant). The corresponding partial
fraction (Bx + C)/(x2 + k2) is readily integrated by using the familiar integrals

∫
x

x2 + k2
dx = 1

2
ln(x2 + k2) + C ,

∫
1

x2 + k2
dx = 1

k
arctan

x

k
+ C .

We will discuss in Section 7.7 the integration of more general partial fractions involv-
ing irreducible quadratic factors.

EXAMPLE 6 Find
∫

5x3 − 3x2 + 2x − 1

x4 + x2
dx .

Solution The denominator x4 + x2 = x2(x2 + 1) is the product of an irreducible
quadratic factor and a repeated linear factor. The partial-fraction decomposition of the
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integrand takes the form

5x3 − 3x2 + 2x − 1

x4 + x2
= A

x
+ B

x2
+ Cx + D

x2 + 1
.

We multiply both sides by x4 + x2 and obtain

5x3 − 3x2 + 2x − 1 = Ax(x2 + 1) + B(x2 + 1) + (Cx + D)x2

= (A + C)x3 + (B + D)x2 + Ax + B.

As before, we equate coefficients of like powers of x . This yields the four simultaneous
equations

A + C = 5,

B + D = −3,

A = 2,

B = −1.

These equations are easily solved for A = 2, B = −1, C = 3, and D = −2. Thus

∫
5x3 − 3x2 + 2x − 1

x4 + x2
dx =

∫ (
2

x
− 1

x2
+ 3x − 2

x2 + 1

)
dx

= 2 ln |x | + 1

x
+ 3

2

∫
2x dx

x2 + 1
− 2

∫
dx

x2 + 1

= 2 ln |x | + 1

x
+ 3

2
ln(x2 + 1) − 2 tan−1 x + C. ◗

REMARK Numerical solution for the coefficients in a partial-fraction decomposition
frequently is more tedious than in Examples 3 through 6. But computer algebra sys-
tems can do this work automatically. For instance, if we write

f := (5*x∧3 - 3*x∧2 + 2*x -1)/(x∧4 + x∧2)

then either the Mathematica command Apart[ f ] or the Maple command

convert( f, parfrac, x )

quickly produces the partial-fraction decomposition found in Example 6. Figure 7.5.5
shows this decomposition as generated by a graphing calculator.

FIGURE 7.5.5 Using the TI-89 expand command to
produce the partial-fraction decomposition in Example 6.
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7.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The partial-fraction decomposition of
x3 − 1

x3 + x
is

1 − 1

x
+ x − 1

x2 + 1
.

2. The partial-fraction decomposition of
x3 + x2 + x − 1

x2 + 2x + 2
is

x − 1 + x + 1

x2 + 2x + 2
.

3.
∫

x3 + x2 + x − 1

x2 + 2x + 2
dx = (x3 + x2 + x − 1) ln(x2 + 2x + 2) + C .

4. The partial-fraction decomposition of
5

(2x + 1)(x − 2)
has the form

A

2x + 1
+ B

x − 2

(where A and B are constants).

5.
5

(2x + 1)(x − 2)
= − ln |2x + 1| + ln |x − 2| + C .

6. The partial-fraction decomposition of
x3 − 4x − 1

x(x − 1)3
has the form

A

x
+ B

x − 1
+ C

(x − 1)2
+ D

(x − 1)3

(where A, B, C , and D are constants).
7. If we look at the partial-fraction decomposition of a given rational function, then

the number of partial fractions that we see corresponding to a repeated linear
factor in the denominator is precisely equal to the multiplicity of this factor.

8. The partial-fraction decomposition of
5x3 − 3x2 + 2x − 1

x4 + x2
has the form

A

x
+ B

x2
+ C

x2 + 1

(where A, B, and C are constants).

9.
∫

1

x2 + k2
dx = 1

k
arctan

x

k
+ C .

10.
∫

5x3 − 3x2 + 2x − 1

x4 + x2
= 2 ln |x | + 1

x
+ 3

2
ln(x2 + 1) − 2 tan−1 x + C .

7.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that a factorization of the polynomial Q(x) into two or more linear

factors of the form x − a is known. Explain why the methods of this section
suffice to integrate any rational function of the form f (x) = P(x)/Q(x). Will
the integral ∫

f (x) dx

ever be a rational function? If so, give an example illustrating this possibility.
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542 CHAPTER 7 Techniques of Integration

2. Suppose that a factorization of the polynomial Q(x) into two or more
quadratic factors of the form x2 + a2 is known. Explain why the methods of this
section suffice to integrate any rational function of the form f (x) = P(x)/Q(x).
Will the integral ∫

f (x) dx

ever be a rational function? If so, give an example illustrating this possibility.

7.5 PROBLEMS

Find the integrals in Problems 1 through 36.

1.
∫

x2

x + 1
dx 2.

∫
x3

2x − 1
dx

3.
∫

1

x2 − 3x
dx 4.

∫
x

x2 + 4x
dx

5.
∫

1

x2 + x − 6
dx 6.

∫
x3

x2 + x − 6
dx

7.
∫

1

x3 + 4x
dx 8.

∫
1

(x + 1)(x2 + 1)
dx

9.
∫

x4

x2 + 4
dx 10.

∫
1

(x2 + 1)(x2 + 4)
dx

11.
∫

x − 1

x + 1
dx 12.

∫
2x3 − 1

x2 + 1
dx

13.
∫

x2 + 2x

(x + 1)2
dx 14.

∫
2x − 4

x2 − x
dx

15.
∫

1

x2 − 4
dx 16.

∫
x4

x2 + 4x + 4
dx

17.
∫

x + 10

2x2 + 5x − 3
dx 18.

∫
x + 1

x3 − x2
dx

19.
∫

x2 + 1

x3 + 2x2 + x
dx 20.

∫
x2 + x

x3 − x2 − 2x
dx

21.
∫

4x3 − 7x

x4 − 5x2 + 4
dx 22.

∫
2x2 + 3

x4 − 2x2 + 1
dx

23.
∫

x2

(x + 2)3
dx 24.

∫
x2 + x

(x2 − 4)(x + 4)
dx

25.
∫

1

x3 + x
dx 26.

∫
6x3 − 18x

(x2 − 1)(x2 − 4)
dx

27.
∫

x + 4

x3 + 4x
dx 28.

∫
4x4 + x + 1

x5 + x4
dx

29.
∫

x

(x + 1)(x2 + 1)
dx 30.

∫ (
x + 2

x2 + 4

)2

dx

31.
∫

x2 − 10

2x4 + 9x2 + 4
dx 32.

∫
x2

x4 − 1
dx

33.
∫

x3 + x2 + 2x + 3

x4 + 5x2 + 6
dx 34.

∫
x2 + 4

(x2 + 1)2(x2 + 2)
dx

35.
∫

x4 + 3x2 − 4x + 5

(x − 1)2(x2 + 1)
dx 36.

∫
2x3 + 5x2 − x + 3

(x2 + x − 2)2
dx

In Problems 37 through 40, make a preliminary substitution
before using the method of partial fractions to find the integrals.

37.
∫

e4t

(e2t − 1)3
dt 38.

∫
cos θ

sin2 θ − sin θ − 6
dθ

39.
∫

1 + ln t

t (3 + 2 ln t)2
dt 40.

∫
sec2 t

tan3 t + tan2 t
dt

In Problems 41 through 44, find the area of the region R between
the curve and the x-axis over the given interval.

41. y = x − 9

x2 − 3x
, 1 � x � 2

42. y = x + 5

3 + 2x − x2
, 0 � x � 2

43. y = 3x − 15 − 2x2

x3 − 9x
, 1 � x � 2

44. y = x2 + 10x + 16

x3 + 8x2 + 16x
, 2 � x � 5

In Problems 45 through 48, find the volume of the solid obtained
by revolving the region R around the y-axis.

45. The region R of Problem 41

46. The region R of Problem 42

47. The region R of Problem 43

48. The region R of Problem 44

In Problems 49 and 50, find the volume of the solid obtained by
revolving the region R around the x-axis.

49. The region R of Problem 41

50. The region R of Problem 42

51. The plane region R shown in Fig. 7.5.6 is bounded by the
curve

y2 = 1 − x

1 + x
x2, 0 � x � 1.

Find the volume generated by revolving R around the
x-axis.

−0.4

−0.2

0

0.2

0.4

0 1
x

y

0.5

y2 = [(1 − x)/(1 + x)]x2

FIGURE 7.5.6 The region of
Problem 51.
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52. Figure 7.5.7 shows the region bounded by the curve

y2 = (1 − x)2

(1 + x)2
x4, 0 � x � 1.

Find the volume generated by revolving this region around:
(a) the x-axis; (b) the y-axis.

−0.2

−0.1

0

0.1

0.2

0 0.5 1
x

y

y2 = [(1 − x)2/(1 + x)2]x4

FIGURE 7.5.7 The region of
Problem 52.

In Problems 53 through 56, write the general form of a partial-
fraction decomposition of the given rational function f (x) (with
coefficients A, B, C, . . . remaining to be determined). Then use a
computer algebra system (as in the remark following Example 6)
to find the numerical values of the coefficients in the decomposi-
tion. Finally, find the indefinite integral

∫
f (x) dx both by hand

and using the computer algebra system, and resolve any apparent
discrepancy between the two results.

53. f (x) = 98(x3 − 50x + 100)

x2(x2 − 12x + 35)

54. f (x) = 16(2x3 + 77x − 99)

(x2 + 10x + 21)2

55. f (x) = 324(x3 + 8)

(x2 − x − 6)(x2 + x − 20)2

56. f (x) = 500(4x4 − 23x2 + 16)

(x2 − 4)2(x − 3)2

In Problems 57 and 58, first use a computer algebra system
to find a partial-fraction decomposition of the given integrand.
Then proceed as in Problems 53 through 56 to evaluate the given
integral, both manually and automatically.

57.
∫

2(54x4 + 859x2 − 581x + 85)

18x5 − 21x4 + 458x3 − 526x2 + 200x − 25
dx

58.
∫

3750x5 + 125x4 − 9900x3 − 495x2 + 2x − 20

625x6 − 2450x4 − 199x2 − 4
dx

In Problems 59 through 61, find values of the coefficients a, b,
and c (not all zero) such that the given indefinite integral involves
no logarithms, and is therefore a rational function.

59.
∫

ax2 + bx + c

x2(x − 1)
dx

60.
∫

ax2 + bx + c

x3(x − 1)2
dx

61.
∫

ax2 + bx + c

x3(x − 4)4
dx

7.6 TRIGONOMETRIC SUBSTITUTION

The method of trigonometric substitution can be very effective in dealing with integrals
when the integrands contain algebraic expressions such as (a2 − u2)1/2, (u2 − a2)3/2,
and 1/(a2 + u2)2. There are three basic trigonometric substitutions:

If the integral then and use
involves substitute the identity

a2 − u2 u = a sin θ 1 − sin2 θ = cos2 θ

a2 + u2 u = a tan θ 1 + tan2 θ = sec2 θ

u2 − a2 u = a sec θ sec2 θ − 1 = tan2 θ

What we mean by the substitution u = a sin θ is, more precisely, the inverse
trigonometric substitution

θ = sin−1 u

a
, −π

2
� θ �

π

2
,

where |u| � a. Suppose, for example, that an integral contains the expression
(a2 − u2)1/2. Then this substitution yields

(a2 − u2)1/2 = (a2 − a2 sin2 θ)1/2 = (a2 cos2 θ)1/2 = a cos θ.

We chose the nonnegative square root in the last step because cos θ � 0 for −π/2 �
θ � π/2. Thus the troublesome factor (a2 − u2)1/2 becomes a cos θ and, meanwhile,
du = a cos θ dθ . If the trigonometric integral that results from the substitution can
be evaluated by earlier methods of this chapter, the result will ordinarily involve θ =
sin−1(u/a) and trigonometric functions of θ . The final step will be to express the
answer in terms of the original variable. For this purpose the values of the various

a2 − u2

a

θ

u

FIGURE 7.6.1 The reference
triangle for the substitution
u = a sin θ.

trigonometric functions can be read from the right triangle in Fig. 7.6.1, which contains
an angle θ such that sin θ = u/a (if u is negative, then θ is negative).
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EXAMPLE 1 Evaluate
∫

x3

√
1 − x2

dx , where |x | < 1.

Solution Here a = 1 and u = x , so we substitute

x = sin θ, dx = cos θ dθ.

This gives ∫
x3

√
1 − x2

dx =
∫

sin3 θ cos θ√
1 − sin2 θ

dθ

=
∫

sin3 θ dθ =
∫

(sin θ)(1 − cos2 θ) dθ

= 1
3 cos3 θ − cos θ + C.

Figure 7.6.2, in which sin θ = x , reminds us that

1 − x2

x 
1 

θ

FIGURE 7.6.2 Reference triangle
for the substitution x = sin θ .

cos θ = (1 − sin2 θ)1/2 =
√

1 − x2,

so our final result in terms of x is∫
x3

√
1 − x2

dx = 1

3
(1 − x2)3/2 −

√
1 − x2 + C. ◗

Example 2 illustrates the use of trigonometric substitution to find integrals like
those in Formulas (44) through (62) in the endpapers.

EXAMPLE 2 Find
∫ √

a2 − u2 du, where |u| � a.

Solution The substitution u = a sin θ , du = a cos θ dθ gives∫ √
a2 − u2 du =

∫ √
a2 − a2 sin2 θ (a cos θ) dθ

=
∫

a2 cos2 θ dθ = 1
2 a2

∫
(1 + cos 2θ) dθ

= 1
2 a2

(
θ + 1

2 sin 2θ
) + C = 1

2 a2(θ + sin θ cos θ) + C.

(We used the identity sin 2θ = 2 sin θ cos θ in the last step.) Now from Fig. 7.6.1 we
see that

sin θ = u

a
and cos θ =

√
a2 − u2

a
.

Hence ∫ √
a2 − u2 du = 1

2
a2

(
sin−1 u

a
+ u

a
·
√

a2 − u2

a

)
+ C

= u

2

√
a2 − u2 + a2

2
sin−1 u

a
+ C.

Thus we have obtained Formula (54) in the endpapers. ◗

What we mean by the substitution u = a tan θ in an integral that contains
a2 + u2 is the substitution

θ = tan−1 u

a
, −π

2
< θ <

π

2
.

In this case √
a2 + u2 =

√
a2 + a2 tan2 θ =

√
a2 sec2 θ = a sec θ,

under the assumption that a > 0. We take the positive square root in the last step here
because sec θ > 0 for −π/2 < θ < π/2. The values of the various trigonometric
functions of θ under this substitution can be read from the right triangle of Fig. 7.6.3,
which shows a [positive or negative] acute angle θ such that tan θ = u/a.

a2 + u2

a

u

θ

FIGURE 7.6.3 The reference
triangle for the substitution
u = a tan θ .
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EXAMPLE 3 Find
∫

1

(4x2 + 9)2
dx .

Solution The factor 4x2 + 9 corresponds to u2 + a2 with u = 2x and a = 3. Hence
the substitution u = a tan θ amounts to

2x = 3 tan θ, x = 3
2 tan θ, dx = 3

2 sec2 θ dθ.

This gives ∫
1

(4x2 + 9)2
dx =

∫ 3
2 sec2 θ

(9 tan2 θ + 9)2
dθ

= 3
2

∫
sec2 θ

(9 sec2 θ)2
dθ = 1

54

∫
1

sec2 θ
dθ

= 1
54

∫
cos2 θ dθ = 1

108 (θ + sin θ cos θ) + C.

(The integration in the last step is the same as in Example 2.) Now θ = tan−1(2x/3),
and the triangle of Fig. 7.6.4 gives

4x2 + 9

3

2x

θ

2x = 3 tan θ

FIGURE 7.6.4 The reference
triangle for Example 3.

sin θ = 2x√
4x2 + 9

, cos θ = 3√
4x2 + 9

.

Hence ∫
1

(4x2 + 9)2
dx = 1

108

[
tan−1

(
2x

3

)
+ 2x√

4x2 + 9
· 3√

4x2 + 9

]
+ C

= 1

108
tan−1

(
2x

3

)
+ x

18(4x2 + 9)
+ C. ◗

What we mean by the substitution u = a sec θ in an integral that contains u2 −a2

is the substitution
θ = sec−1 u

a
, 0 � θ � π,

where |u| � a > 0 (because of the domain and range of the inverse secant function).
Then √

u2 − a2 =
√

a2 sec2 θ − a2 =
√

a2 tan2 θ = ±a tan θ.

Here we must take the plus sign if u > a, so that 0 < θ < π/2 and tan θ > 0. If
u < −a, so π/2 < θ < π and tan θ < 0, we take the minus sign. In either case the
values of the various trigonometric functions of θ can be read from the right triangle in

u2 − a2

θ

u

a

FIGURE 7.6.5 The reference
triangle for the substitution
u = a sec θ .

Fig. 7.6.5.

EXAMPLE 4 Find
∫ √

x2 − 25

x
dx , where x > 5.

Solution We substitute x = 5 sec θ , dx = 5 sec θ tan θ dθ . Then√
x2 − 25 =

√
25(sec2 θ − 1) = 5 tan θ,

because x > 5 implies that 0 < θ < π/2, so tan θ > 0. Hence this substitution gives∫ √
x2 − 25

x
dx =

∫
5 tan θ

5 sec θ
(5 sec θ tan θ) dθ

= 5
∫

tan2 θ dθ = 5
∫

(sec2 θ − 1) dθ

= 5 tan θ − 5θ + C =
√

x2 − 25 − 5 sec−1

(
x

5

)
+ C.

The substitutions in the last step may be read from the reference triangle in Fig. 7.6.6.

θ

5 

x2 − 25
x 

FIGURE 7.6.6 The reference
triangle for the substitution
x = 5 sec θ .

◗

545

www.konkur.in



546 CHAPTER 7 Techniques of Integration

Hyperbolic substitutions may be used in a similar way—and with the same effect—
as trigonometric substitutions. The three basic hyperbolic substitutions, which are not
ordinarily memorized, are listed in the following table for reference.

If the integral then and use
involves substitute the identity

a2 − u2 u = a tanh θ 1 − tanh2 θ = sech2 θ

a2 + u2 u = a sinh θ 1 + sinh2 θ = cosh2 θ

u2 − a2 u = a cosh θ cosh2 θ − 1 = sinh2 θ

EXAMPLE 5 Find
∫

1√
x2 − 1

dx , where x > 1.

Solution For purposes of comparison, we evaluate this integral both by trigonometric
substitution and by hyperbolic substitution. The trigonometric substitution

x = sec θ, dx = sec θ tan θ dθ, tan θ =
√

x2 − 1

gives ∫
1√

x2 − 1
dx =

∫
sec θ tan θ

tan θ
dθ =

∫
sec θ dθ

= ln | sec θ + tan θ | + C [Eq. (7), Section 7.4]

= ln
∣∣x +

√
x2 − 1

∣∣ + C.

Using instead the hyperbolic substitution x = cosh θ , dx = sinh θ dθ , we have√
x2 − 1 =

√
cosh2 θ − 1 = sinh θ.

We take the positive square root here, because x > 1 implies that θ = cosh−1 x > 0
and thus that sinh θ > 0. Hence∫

1√
x2 − 1

dx =
∫

sinh θ

sinh θ
dθ =

∫
1 dθ = θ + C = cosh−1 x + C.

The two results appear to differ, but Eq. (35) in Section 6.9 shows that they are equiv-
alent. ◗

7.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If an integral with respect to u contains the expression a2 − u2, then the appro-
priate trigonometric substitution has the form u = a sin θ .

2. If an integral with respect to u contains the expression a2 + u2, then the appro-
priate trigonometric substitution has the form u = a sec θ .

3. If an integral with respect to u contains the expression u2 − a2, then the appro-
priate trigonometric substitution has the form u = a sec θ .

4. An effective substitution for the evaluation of
∫

x3

√
1 − x2

dx is x = sin θ .

5. An effective substitution for the evaluation of
∫

1

(4x2 + 9)2
dx is x = 3

2 tan θ .

6.
∫

1

(4x2 + 9)2
dx = 1

108
tan−1

(
2x

3

)
+ x

18(4x2 + 9)
+ C .

7. An effective substitution for the evaluation of
∫ √

x2 − 25

x
dx is x = 5 sec θ .

8.
∫

1√
x2 − 1

dx = ln
∣∣∣x +

√
x2 − 1

∣∣∣ + C .
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9.
∫

1√
x2 − 1

dx = cosh−1 x + C .

10. If an integral with respect to u contains the expression a2 − u2, then the appro-
priate hyperbolic substitution is u = a tanh θ .

7.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. For each of the three trigonometric substitutions discussed in this section,

describe—perhaps by means of examples—the types of integrals for which sub-
stitution permits evaluation.

2. Explain why these trigonometric substitutions do not appear to suffice for the
evaluation of integrals such as∫ √

1 + x3 dx and
∫ √

x4 − 1 dx .

7.6 PROBLEMS

Use trigonometric substitutions to evaluate the integrals in Prob-
lems 1 through 36.

1.
∫

1√
16 − x2

dx 2.
∫

1√
4 − 9x2

dx

3.
∫

1

x2
√

4 − x2
dx 4.

∫
1

x2
√

x2 − 25
dx

5.
∫

x2

√
16 − x2

dx 6.
∫

x2

√
9 − 4x2

dx

7.
∫

1

(9 − 16x2)3/2
dx 8.

∫
1

(25 + 16x2)3/2
dx

9.
∫ √

x2 − 1

x2
dx 10.

∫
x3

√
4 − x2 dx

11.
∫

x3
√

9 + 4x2 dx 12.
∫

x3

√
x2 + 25

dx

13.
∫ √

1 − 4x2

x
dx 14.

∫
1√

1 + x2
dx

15.
∫

1√
9 + 4x2

dx 16.
∫ √

1 + 4x2 dx

17.
∫

x2

√
25 − x2

dx 18.
∫

x3

√
25 − x2

dx

19.
∫

x2

√
1 + x2

dx 20.
∫

x3

√
1 + x2

dx

21.
∫

x2

√
4 + 9x2

dx 22.
∫

(1 − x2)3/2 dx

23.
∫

1

(1 + x2)3/2
dx 24.

∫
1

(4 − x2)2
dx

25.
∫

1

(4 − x2)3
dx 26.

∫
1

(4x2 + 9)3
dx

27.
∫ √

9 + 16x2 dx 28.
∫

(9 + 16x2)3/2 dx

29.
∫ √

x2 − 25

x
dx 30.

∫ √
9x2 − 16

x
dx

31.
∫

x2
√

x2 − 1 dx 32.
∫

x2

√
4x2 − 9

dx

33.
∫

1

(4x2 − 1)3/2
dx 34.

∫
1

x2
√

4x2 − 9
dx

35.
∫ √

x2 − 5

x2
dx 36.

∫
(4x2 − 5)3/2 dx

Use hyperbolic substitutions to evaluate the integrals in Prob-
lems 37 through 41.

37.
∫

1√
25 + x2

dx 38.
∫ √

1 + x2 dx

39.
∫ √

x2 − 4

x2
dx 40.

∫
1√

1 + 9x2
dx

41.
∫

x2
√

1 + x2 dx

42. Use the result of Example 2 to show that the area bounded
by the ellipse

x2

a2
+ y2

b2
= 1

of Fig. 7.6.7 is given by A = πab. (The special case b = a
is the familiar circular area formula A = πa2.)

(0, b) 

(a, 0) 

y 

x

FIGURE 7.6.7 The ellipse of
Problem 42.
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43. Derive the formula A = 1
2 a2θ for the area of a circular sector

with radius a and central angle θ by calculating and adding
the areas of the right triangle OAC and the region ABC of
Fig. 7.6.8.

y

x

C(x, y) 

O BA(x, 0)

x2 + y2 = a2

θ

FIGURE 7.6.8 The circular sector
of Problem 43.

44. Compute the arc length of the parabola y = x2 over the in-
terval [0, 1].

45. Compute the area of the surface obtained by revolving
around the x-axis the parabolic arc of Problem 44.

46. Show that the length of one arch of the sine curve y = sin x
is equal to half the circumference of the ellipse x2+ 1

2 y2 = 1.
[ Suggestion: Substitute x = cos θ into the arc-length inte-
gral for the ellipse. ] (See Fig. 7.6.9.)

−2

−1

0

1

2

0 2

Sine
Ellipse

x

y

FIGURE 7.6.9 Two arcs with
the same length (Problem 46).

47. Compute the arc length of the curve y = ln x over the inter-
val [1, 2].

48. Compute the area of the surface obtained by revolving
around the y-axis the curve of Problem 47.

FIGURE 7.6.10 The torus
of Problem 49.

49. A torus (see Fig. 7.6.10) is obtained by revolving around the
y-axis the circle

(x − b)2 + y2 = a2 (0 < a � b).

Show that the surface area of the torus is 4π 2ab.

50. Find the area under the curve y = √
9 + x2 over the interval

[0, 4].

51. Find the area of the surface obtained by revolving around the
x-axis the curve y = sin x , 0 � x � π . (See Fig. 7.6.11.)

FIGURE 7.6.11 The pointed
football of Problem 51.

52. An ellipsoid of revolution is obtained by revolving the el-
lipse x2/a2 + y2/b2 = 1 around the x-axis. Suppose that
a > b. Show that the ellipsoid has surface area

A = 2πab

[
b

a
+ a

c
sin−1

(
c

a

)]
,

where c = √
a2 − b2. Assume that a ≈ b, so that c ≈ 0 and

sin−1(c/a) ≈ c/a. Conclude that A ≈ 4πa2.

53. Suppose that b > a for the ellipsoid of revolution of Problem
52. Show that its surface area is then

A = 2πab

[
b

a
+ a

c
ln

(
b + c

a

)]
,

where c = √
b2 − a2. Use the fact that ln(1 + x) ≈ x if

x ≈ 0, and thereby conclude that A ≈ 4πa2 if a ≈ b.

54. A road is to be built from the point (2, 1) to the point (5, 3),
following the path of the parabola

y = −1 + 2
√

x − 1.

Calculate the length of this road (the units on the coordinate
axes are in miles). [Suggestion: Substitute x = sec2 θ into
the arc-length integral.]

55. Suppose that the cost of the road in Problem 54 is
√

x million
dollars per mile. Calculate the total cost of the road.

56. A kite is flying at a height of 500 ft and at a horizontal dis-
tance of 100 ft from the stringholder on the ground. The kite
string weighs 1/16 oz/ft and is hanging in the shape of the
parabola y = x2/20 that joins the stringholder at (0, 0) to
the kite at (100, 500) (Fig. 7.6.12). Calculate the work (in
foot-pounds) done in lifting the kite string from the ground
to its present position.

500 ft

100 ft

FIGURE 7.6.12 The kite string of
Problem 56.
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7.7 INTEGRALS INVOLVING QUADRATIC POLYNOMIALS

Many integrals containing a square root or negative power of a quadratic polynomial
ax2 + bx + c can be simplified by the process of completing the square. For example,

x2 + 2x + 2 = (x + 1)2 + 1,

and hence the substitution u = x + 1, du = dx yields

∫
1

x2 + 2x + 2
dx =

∫
1

u2 + 1
du = tan−1 u + C = tan−1(x + 1) + C.

In general, the objective is to convert ax2+bx +c into either a sum or difference of two
squares—either u2 ± a2 or a2 − u2—so that the method of trigonometric substitution
can then be used. To see how this works in practice, suppose first that a = 1, so that the
quadratic in question has the form x2 + bx + c. The sum x2 + bx of the first two terms
can be completed to a perfect square by adding b2/4, the square of half the coefficient
of x , and in turn subtracting b2/4 from the constant term c. This gives

x2 + bx + c =
(

x2 + bx + b2

4

)
+

(
c − b2

4

)

=
(

x + b

2

)2

+
(

c − b2

4

)
.

With u = x + 1
2 b, this result is of the form u2 + A2 or u2 − A2, depending on the sign of

c − 1
4 b2. If the coefficient a of x2 is not 1, we first factor it out and proceed as before:

ax2 + bx + c = a

(
x2 + b

a
x + c

a

)
.

EXAMPLE 1 Find
∫

1

9x2 + 6x + 5
dx .

Solution The first step is to complete the square:

9x2 + 6x + 5 = 9
(
x2 + 2

3 x
) + 5 = 9

(
x2 + 2

3 x + 1
9

) − 1 + 5

= 9
(
x + 1

3

)2 + 4 = (3x + 1)2 + 22.

Hence ∫
1

9x2 + 6x + 5
dx =

∫
1

(3x + 1)2 + 4
dx

= 1

3

∫
1

u2 + 4
du (u = 3x + 1)

= 1

6

∫ 1
2(

1
2 u

)2 + 1
du

= 1

6

∫
1

v2 + 1
dv

(
v = 1

2 u
)

= 1

6
tan−1 v + C = 1

6
tan−1

(
u

2

)
+ C

= 1

6
tan−1

(
3x + 1

2

)
+ C. ◗
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EXAMPLE 2 Find
∫

1√
9 + 16x − 4x2

dx .

Solution First we complete the square:

9 + 16x − 4x2 = 9 − 4(x2 − 4x)

= 9 − 4(x2 − 4x + 4) + 16 = 25 − 4(x − 2)2.

Hence ∫
1√

9 + 16x − 4x2
dx =

∫
1√

25 − 4(x − 2)2
dx

= 1

5

∫
1√

1 − 4
25 (x − 2)2

dx

= 1

2

∫
1√

1 − u2
du

(
u = 2

5 (x − 2)
)

= 1
2 sin−1 u + C = 1

2 sin−1
(

2
5 (x − 2)

) + C.

An alternative approach is to make the trigonometric substitution

2(x − 2) = 5 sin θ, 2 dx = 5 cos θ dθ

immediately after completing the square. This yields∫
1√

9 + 16x − 4x2
dx =

∫
1√

25 − 4(x − 2)2
dx

=
∫ 5

2 cos θ√
25 − 25 sin2 θ

dθ

= 1

2

∫
1 dθ = 1

2
θ + C

= 1

2
arcsin

2(x − 2)

5
+ C. ◗

Some integrals that contain a quadratic expression can be split into two simpler
integrals. Examples 3 and 4 illustrate this technique.

EXAMPLE 3 Find
∫

2x + 3

9x2 + 6x + 5
dx .

Solution Because Dx(9x2 + 6x + 5) = 18x + 6, this would be a simpler integral if
the numerator 2x + 3 were a constant multiple of 18x + 6. Our strategy is to write

2x + 3 = A · (18x + 6) + B

so that we can split the given integral into a sum of two integrals, one of which has
numerator 18x + 6 in its integrand. By matching coefficients in

2x + 3 = 18Ax + (6A + B),

we find that A = 1
9 and B = 7

3 . Hence∫
2x + 3

9x2 + 6x + 5
dx = 1

9

∫
18x + 6

9x2 + 6x + 5
dx + 7

3

∫
1

9x2 + 6x + 5
dx .

The first integral on the right is a logarithm, and the second is given in Example 1.
Thus ∫

2x + 3

9x2 + 6x + 5
dx = 1

9
ln(9x2 + 6x + 5) + 7

18
tan−1

(
3x + 1

2

)
+ C.
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Alternatively, we could first complete the square in the denominator. The substitution
u = 3x + 1, x = 1

3 (u − 1), dx = 1
3 du then gives

∫
2x + 3

(3x + 1)2 + 4
dx =

∫ 2
3 (u − 1) + 3

u2 + 4
· 1

3
du

= 1

9

∫
2u

u2 + 4
du + 7

9

∫
1

u2 + 4
du

= 1

9
ln(u2 + 4) + 7

18
tan−1

(
u

2

)
+ C

= 1

9
ln(9x2 + 6x + 5) + 7

18
tan−1

(
3x + 1

2

)
+ C. ◗

EXAMPLE 4 Find
∫

2 + 6x

(3 + 2x − x2)2
dx given |x − 1| < 2.

Solution Because Dx(3 + 2x − x2) = 2 − 2x , we first write∫
2 + 6x

(3 + 2x − x2)2
dx = −3

∫
2 − 2x

(3 + 2x − x2)2
dx + 8

∫
1

(3 + 2x − x2)2
dx .

Then let u = 3 + 2x − x2, du = (2 − 2x) dx in the first integral to obtain

−3
∫

2 − 2x

(3 + 2x − x2)2
dx = −3

∫
du

u2
= 3

u
+ C1 = 3

3 + 2x − x2
+ C1.

Therefore,∫
2 + 6x

(3 + 2x − x2)2
dx = 3

3 + 2x − x2
+ 8

∫
1

(3 + 2x − x2)2
dx . (1)

(We can drop the constant C1 because it can be absorbed by the constant C , which
we will obtain when we evaluate the remaining integral.) To evaluate the remaining
integral, we complete the square:

3 + 2x − x2 = 4 − (x2 − 2x + 1) = 4 − (x − 1)2.

Because |x − 1| < 2, this suggests the substitution

x − 1 = 2 sin θ, dx = 2 cos θ dθ,

with which
3 + 2x − x2 = 4 − 4 sin2 θ = 4 cos2 θ.

This substitution yields

8
∫

1

(3 + 2x − x2)2
dx = 8

∫
2 cos θ

(4 cos2 θ)2
dθ =

∫
sec3 θ dθ

= 1
2 sec θ tan θ + 1

2

∫
sec θ dθ [Section 7.3, Eq. (5)]

= 1
2 sec θ tan θ + 1

2 ln |sec θ + tan θ | + C

= x − 1

3 + 2x − x2
+ 1

2 ln

∣∣∣∣ x + 1√
3 + 2x − x2

∣∣∣∣ + C. (2)

In the last step we read the values of sec θ and tan θ from the right triangle in Fig. 7.7.1.
When we substitute Eq. (2) into Eq. (1), we finally obtain the result

θ

2

4 − (x − 1)2  =    3 + 2x − x2 

x − 1

FIGURE 7.7.1 The reference
triangle for Example 4. ∫

2 + 6x

(3 + 2x − x2)2
dx = x + 2

3 + 2x − x2
+ 1

2
ln

∣∣∣∣ x + 1√
3 + 2x − x2

∣∣∣∣ + C. ◗
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The method of Example 4 can be used to evaluate a general integral of the form

∫
Ax + B

(ax2 + bx + c)n
dx , (3)

where n is a positive integer. By splitting such an integral into two simpler ones and
then completing the square in the quadratic expression in the denominator, the problem
of evaluating the integral in (3) can be reduced to that of computing

∫
1

(a2 ± u2)n
du. (4)

If the sign in the denominator in (4) is the plus sign, then the substitution u =
a tan θ transforms the integral into the form∫

cosm θ dθ.

(See Problem 35.) This integral can be handled by the methods of Section 7.4 or by
using the reduction formula∫

cosk θ dθ = 1

k
cosk−1 θ sin θ + k − 1

k

∫
cosk−2 θ dθ

of Problem 54 in Section 7.3.
If the sign of the denominator in Eq. (4) is the minus sign, then the substitution

u = a sin θ transforms the integral into the form∫
secm θ dθ.

(See Problem 36.) This integral may be evaluated with the aid of the reduction formula∫
seck θ dθ = 1

k − 1
seck−2 θ tan θ + k − 2

k − 1

∫
seck−2 θ dθ

[Eq. (5) of Section 7.3].

7.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If you correctly complete the square in the expression x2 + bx + c, you should

obtain

(
x + b

2

)2

+
(

c − b2

4

)
.

2. 9x2 + 6x + 5 = 1

6
tan−1

(
3x + 1

2

)
+ C .

3. 9x2 + 6x + 5 = (3x + 1)2 + 22.
4. 9 + 16x − 4x2 = 25 − 4(x − 2)2.

5. Example 2 gives two different ways to evaluate
∫

1√
9 + 16x − 4x2

dx .

6. It is impossible to evaluate
∫

2x + 3

9x2 + 6x + 5
dx .

7. One of the examples in Section 7.7 gives the evaluation of
∫

2 + 6x

(3 + 2x − x2)2
dx

under the assumption that |x − 1| < 2.
8. If |x − 1| < 2, then∫

2 + 6x

(3 + 2x − x2)2
dx = x − 1

3 + 2x − x2
+ 1

2
ln

∣∣∣∣ x + 1√
3 + 2x − x2

∣∣∣∣ + C.
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9. If n is a positive integer, then the substitution u = a tan θ transforms∫
1

(a2 + u2)n
du into

∫
cosm θ dθ.

10. If n is a positive integer, then the substitution u = a sin θ transforms∫
1

(a2 − u2)n
du into

∫
secm θ dθ.

7.7 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that the factorization of the polynomial Q(x) yields two or more

quadratic factors. Explain why the methods of this section suffice to integrate
any rational function of the form f (x) = P(x)/Q(x).

2. Will the integral
∫

f (x) dx in Question 1 ever be a rational function? If so, give
an example illustrating this possibility.

7.7 PROBLEMS

Evaluate the antiderivatives in Problems 1 through 34.

1.
∫

1

x2 + 4x + 5
dx 2.

∫
2x + 5

x2 + 4x + 5
dx

3.
∫

5 − 3x

x2 + 4x + 5
dx 4.

∫
x + 1

(x2 + 4x + 5)2
dx

5.
∫

1√
3 − 2x − x2

dx 6.
∫

x + 3√
3 − 2x − x2

dx

7.
∫

x
√

3 − 2x − x2 dx 8.
∫

1

4x2 + 4x − 3
dx

9.
∫

3x + 2

4x2 + 4x − 3
dx 10.

∫ √
4x2 + 4x − 3 dx

11.
∫

1

x2 + 4x + 13
dx 12.

∫
1√

2x − x2
dx

13.
∫

1

3 + 2x − x2
dx 14.

∫
x
√

8 + 2x − x2 dx

15.
∫

2x − 5

x2 + 2x + 2
dx 16.

∫
2x − 1

4x2 + 4x − 15
dx

17.
∫

x√
5 + 12x − 9x2

dx

18.
∫

(3x − 2)
√

9x2 + 12x + 8 dx

19.
∫

(7 − 2x)
√

9 + 16x − 4x2 dx

20.
∫

2x + 3√
x2 + 2x + 5

dx

21.
∫

x + 4

(6x − x2)3/2
dx 22.

∫
x − 1

(x2 + 1)2
dx

23.
∫

2x + 3

(4x2 + 12x + 13)2
dx 24.

∫
x3

(1 − x2)4
dx

25.
∫

3x − 1

x2 + x + 1
dx 26.

∫
3x − 1

(x2 + x + 1)2
dx

27.
∫

1

(x2 − 4)2
dx 28.

∫
(x − x2)3/2 dx

29.
∫

x2 + 1

x3 + x2 + x
dx 30.

∫
x2 + 2

(x2 + 1)2
dx

31.
∫

2x2 + 3

x4 − 2x2 + 1
dx 32.

∫
x2 + 4

(x2 + 1)2(x2 + 2)
dx

33.
∫

3x + 1

(x2 + 2x + 5)2
dx 34.

∫
x3 − 2x

x2 + 2x + 2
dx

35. Show that the substitution u = a tan θ gives

∫
1

(a2 + u2)n
du = 1

a2n−1

∫
cos2n−2 θ dθ.

36. Show that the substitution u = a sin θ gives

∫
1

(a2 − u2)n
du = 1

a2n−1

∫
sec2n−1 θ dθ.

In Problems 37 through 39 the region R lies between the curve
y = 1/(x2 − 2x + 5) and the x-axis from x = 0 to x = 5.

37. Find the area of the region R.

38. Find the volume of the solid generated by revolving R
around the y-axis.

39. Find the volume of the solid generated by revolving R
around the x-axis.

In Problems 40 through 42 the region R lies between the curve
y = 1/(4x2 − 20x + 29) and the x-axis from x = 1 to x = 4.

40. Find the area of the region R.

41. Find the volume of the solid generated by revolving R
around the y-axis.

42. Find the volume of the solid generated by revolving R
around the x-axis.

43. Your task is to build a road that joins the points (0, 0)

and (3, 2) and follows the path of the circle with equation
(4x + 4)2 + (4y − 19)2 = 377. Find the length of this road.
(Units on the coordinate axes are measured in miles.)
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44. Suppose that the road of Problem 43 (Fig. 7.7.2) costs
10/(1 + x) million dollars per mile. (a) Calculate its total
cost. (b) With the same cost per mile, calculate the total cost
of a straight line road from (0, 0) to (3, 2). You should find
that it is more expensive than the longer circular road!

(3, 2)

1

1

2

2 3

y 

x

FIGURE 7.7.2 According to Problem 44,
the circular-arc road is less expensive to
construct than the shorter straight road!

In Problems 45 through 47, factor the denominator by first not-
ing by inspection a root r of the denominator and then employing
long division by x −r . Finally, use the method of partial fractions
to aid in finding the indicated antiderivative.

45.
∫

3x + 2

x3 + x2 − 2
dx 46.

∫
1

x3 + 8
dx

47.
∫

x4 + 2x2

x3 − 1
dx

48. (a) Find constants a and b such that

x4 + 1 = (x2 + ax + 1)(x2 + bx + 1).

(b) Prove that ∫ 1

0

x2 + 1

x4 + 1
dx = π

2
√

2
.

[Suggestion: If u and v are positive numbers and uv = 1,
then

arctan u + arctan v = 1

2
π.]

49. Factor x4 + x2 + 1 with the aid of ideas suggested in Prob-
lem 48. Then evaluate∫

2x3 + 3x

x4 + x2 + 1
dx .

50. Evaluate the integral to show that

∫ 1

0

16(x − 1)

x4 − 2x3 + 4x − 4
dx = π.

This integral was (in effect) used by D. Bailey, P. Borwein,
and S. Plouffe as a starting point in their recent determina-
tion of the 10 billionth hexagesimal digit of the number π

(it’s a 9). [Suggestion: Long divide to verify that x2 − 2 is a
factor of the denominator and to find the other factor.]

In Problems 51 through 54, write the general form of a partial-
fraction decomposition of the given rational function f (x) (with
coefficients A , B, C, . . . remaining to be determined). Then use
a computer algebra system (as in the remark following Example
6 in Section 7.5) to find the numerical values of the coefficients in
the decomposition. Finally, find the indefinite integral

∫
f (x) dx

both by hand and by using the computer algebra system, and re-
solve any apparent discrepancy between the two results.

51.
∫

7x4 + 28x3 + 50x2 + 67x + 23

(x − 1)(x2 + 2x + 2)2
dx

52.
∫

35 + 84x + 55x2 − x3 + 5x4 − 4x5

(x2 + 1)2(x2 + 6x + 10)
dx

53.
∫

32x5 + 16x4 + 19x3 − 98x2 − 107x − 15

(x2 − 2x − 15)(4x2 + 4x + 5)2
dx

54.
∫

63x5 + 302x4 + 480x3 + 376x2 − 240x − 300

(x2 + 6x + 10)2(4x2 + 4x + 5)2
dx

In Problems 55 through 58, find values of the coefficients a, b, c,
and d (not all zero) such that the given indefinite integral involves
no logarithms or inverse tangents, and is therefore a rational
function.

55.
∫

ax + b

(x2 + 4x + 5)2
dx

56.
∫

ax2 + bx + c

(x2 + 4x + 5)2
dx

57.
∫

ax2 + bx + c

(x2 + 2x + 2)(x2 + 4x + 5)
dx

58.
∫

ax3 + bx2 + cx + d

(x2 + 4x + 5)3
dx

7.8 IMPROPER INTEGRALS

To show the existence of the definite integral, we have relied until now on the existence
theorem stated in Section 5.4. This is the theorem that guarantees the existence of the
definite integral ∫ b

a
f (x) dx

provided that the function f is continuous on the closed and bounded interval [a, b].
Certain applications of calculus, however, lead naturally to the formulation of integrals
in which either

1. The interval of integration is not bounded; it has one of the forms

[a, +∞), (−∞, a], or (−∞, +∞); or
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2. The integrand has an infinite discontinuity at some point c in the interval [a, b]:

lim
x→c

f (x) = ±∞.

An example of Case 1 is the integral

∫ ∞

1

1

x2
dx .

A geometric interpretation of this integral is the area of the unbounded region (shaded
in Fig. 7.8.1) that lies between the curve y = 1/x2 and the x-axis and to the right of
the vertical line x = 1. An example of Case 2 is the integral

∫ 1

0

1√
x

dx .

This integral may be interpreted as the area of the unbounded region (shaded in
Fig. 7.8.2) that lies under the curve y = 1/

√
x from x = 0 to x = 1.

x

y

y = 1

x = 1

x2

FIGURE 7.8.1 The shaded area
cannot be measured by using our
earlier techniques.

y

xx = 1

y =
x

1

FIGURE 7.8.2 Another area that
must be measured with an improper
integral.

Such integrals are called improper integrals. The natural interpretation of an
improper integral is the area of an unbounded region. It is perhaps surprising that such
an area can nevertheless be finite, and here we shall show how to find such areas—that
is, how to evaluate improper integrals.

To see why improper integrals require special care, let us consider the integral

∫ 1

−1

1

x2
dx .

This integral is improper because its integrand f (x) = 1/x2 is unbounded as x → 0,
and thus f is not continuous at x = 0. If we thoughtlessly applied the fundamental
theorem of calculus, we would obtain

∫ 1

−1

1

x2
dx =

[
− 1

x

]1

−1

= (−1) − (+1) = −2. (Wrong!)

The negative answer is obviously incorrect, because the area shown in Fig. 7.8.3 lies
above the x-axis and hence the integral cannot be negative. This simple example
emphasizes that we cannot ignore the hypotheses—continuous function and bounded

y

x

y = 1
x2

1−1

FIGURE 7.8.3 The area under
y = 1/x2, −1 � x � 1.

closed interval—of the fundamental theorem of calculus.
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Infinite Limits of Integration
Suppose that the function f is continuous and nonnegative on the unbounded intervaly

x

y = f (x)

A(t)

x = a x = t

FIGURE 7.8.4 The shaded area
A(t) exists provided that f is
continuous.

[a, +∞). Then, for any fixed t > a, the area A(t) of the region under y = f (x) from
x = a to x = t (shaded in Fig. 7.8.4) is given by the (ordinary) definite integral

A(t) =
∫ t

a
f (x) dx .

Suppose now that we let t → +∞ and find that the limit of A(t) exists. Then we
may regard this limit as the area of the unbounded region that lies under y = f (x) and
over [a, +∞). For f continuous on [a, +∞), we therefore define

∫ ∞

a
f (x) dx = lim

t→∞

∫ t

a
f (x) dx (1)

provided that this limit exists (as a finite real number). If this limit exists, we say that
the improper integral on the left converges; if the limit does not exist, we say that
the improper integral diverges. If f (x) is nonnegative on [a, +∞), then the limit in
Eq. (1) either exists or is infinite, and in the latter case we write∫ ∞

a
f (x) dx = +∞

and say that the improper integral diverges to infinity.
If the function f has both positive and negative values on [a, +∞), then the

improper integral can diverge by oscillation—that is, without diverging to infinity. This
occurs with

∫ ∞
0 sin x dx , because it is easy to verify that

∫ t
0 sin x dx is zero if t is an

even integral multiple of π but is 2 if t is an odd integral multiple of π . Thus
∫ t

0 sin x dx
oscillates between 0 and 2 as t → +∞, and so the limit in Eq. (1) does not exist.

We handle an infinite lower limit of integration similarly: We define

∫ b

−∞
f (x) dx = lim

t→−∞

∫ b

t
f (x) dx (2)

provided that the limit exists. If the function f is continuous on the whole real line, we
define ∫ ∞

−∞
f (x) dx =

∫ c

−∞
f (x) dx +

∫ ∞

c
f (x) dx (3)

for any convenient choice of c, provided that both improper integrals on the right-hand
side converge. Note that the leftmost integral in Eq. (3) is not necessarily equal to

lim
t→∞

∫ t

−t
f (x) dx .

(See Problem 52.)
It makes no difference what value of c is used in Eq. (3), because if c < d, then∫ c

−∞
f (x) dx +

∫ ∞

c
f (x) dx =

∫ c

−∞
f (x) dx +

∫ d

c
f (x) dx +

∫ ∞

d
f (x) dx

=
∫ d

−∞
f (x) dx +

∫ ∞

d
f (x) dx,

under the assumption that the limits involved all exist.

EXAMPLE 1 Investigate the improper integrals

(a)
∫ ∞

1

1

x2
dx and (b)

∫ 0

−∞
1√

1 − x
dx .
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Solution

(a)
∫ ∞

1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞

[
− 1

x

]t

1

= lim
t→∞

(
−1

t
+ 1

)
= 1.

Thus this improper integral converges, and this is the area of the region shaded
in Fig. 7.8.1.

(b)
∫ 0

−∞
1√

1 − x
dx = lim

t→−∞

∫ 0

t

1√
1 − x

dx

= lim
t→−∞

[
− 2

√
1 − x

]0

t
= lim

t→−∞
(
2
√

1 − t − 2
) = +∞.

Thus the second improper integral of this example diverges to +∞ (Fig. 7.8.5).

x

y

y = 1 (0, 1)
1 − x

FIGURE 7.8.5 The unbounded
region represented by the improper
integral in Example 1(b).

◗

EXAMPLE 2 Investigate the improper integral
∫ ∞

−∞
1

1 + x2
dx .

Solution The choice c = 0 in Eq. (3) gives

∫ ∞

−∞
1

1 + x2
dx =

∫ 0

−∞
1

1 + x2
dx +

∫ ∞

0

1

1 + x2
dx

= lim
s→−∞

∫ 0

s

1

1 + x2
dx + lim

t→∞

∫ t

0

1

1 + x2
dx

= lim
s→−∞

[
tan−1 x

]0

s
+ lim

t→∞

[
tan−1 x

]t

0

= lim
s→−∞(− tan−1 s) + lim

t→∞(tan−1 t) = π

2
+ π

2
= π.

The shaded region in Fig. 7.8.6 is a geometric interpretation of the integral of

x

y = 1
1 + x2

y

FIGURE 7.8.6 The area measured
by the integral in Example 2.

Example 2. ◗

Infinite Integrands
Suppose that the function f is continuous and nonnegative on [a, b) but that f (x) →y

xx = a

y = f(x)

x = bx = t

FIGURE 7.8.7 An improper
integral of the second type:
f (x) → ∞ as x → b−.

+∞ as x → b−. The graph of such a function appears in Fig. 7.8.7. The area A(t) of
the region lying under y = f (x) from x = a to x = t < b is the value of the (ordinary)
definite integral

A(t) =
∫ t

a
f (x) dx .

If the limit of A(t) exists as t → b−, then this limit may be regarded as the area of the
(unbounded) region under y = f (x) from x = a to x = b. For f continuous on [a, b),
we therefore define

∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx , (4)

provided that this limit exists (as a finite number), in which case we say that the im-
proper integral on the left converges; if the limit does not exist, we say that the integral
diverges. If ∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx = ∞,

then we say that the improper integral diverges to infinity.
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If f is continuous on (a, b] but the limit of f (x) as x → a+ is infinite, then we
define

∫ b

a
f (x) dx = lim

t→a+

∫ b

t
f (x) dx , (5)

provided that the limit exists. If f is continuous at every point of [a, b] except for the
point c in (a, b) and one or both one-sided limits of f at c are infinite, then we define

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx (6)

provided that both improper integrals on the right converge.

EXAMPLE 3 Investigate the improper integrals

(a)
∫ 1

0

1√
x

dx and (b)
∫ 2

1

1

(x − 2)2
dx .

Solution
(a) The integrand 1/

√
x becomes infinite as x → 0+, so∫ 1

0

1√
x

dx = lim
t→0+

∫ 1

t

1√
x

dx

= lim
t→0+

[
2
√

x
]1

t
= lim

t→0+ 2
(
1 − √

t
) = 2.

Thus the area of the unbounded region shown in Fig. 7.8.2 is 2.
(b) Here the integrand becomes infinite as x approaches the right-hand endpoint, so∫ 2

1

1

(x − 2)2
dx = lim

t→2−

∫ t

1

1

(x − 2)2
dx

= lim
t→2−

[
− 1

x − 2

]t

1

= lim
t→2−

(
−1 − 1

t − 2

)
= +∞.

Hence this improper integral diverges to infinity (Fig. 7.8.8). It follows that the

•

x

y

y = 1

1 2

x = 2

(x − 2)2

1
(1, 1)

FIGURE 7.8.8 The unbounded
region represented by the improper
integral in Example 3(b).

improper integral∫ 3

1

1

(x − 2)2
dx =

∫ 2

1

1

(x − 2)2
dx +

∫ 3

2

1

(x − 2)2
dx

also diverges, because not both of the right-hand improper integrals converge.
(You can verify that the second one also diverges to +∞.) ◗

EXAMPLE 4 Investigate the improper integral∫ 2

0

1

(2x − 1)2/3
dx .

Solution This improper integral corresponds to the region shaded in Fig. 7.8.9. The
integrand has an infinite discontinuity at the point c = 1

2 within the interval of integra-
tion, so we write∫ 2

0

1

(2x − 1)2/3
dx =

∫ 1/2

0

1

(2x − 1)2/3
dx +

∫ 2

1/2

1

(2x − 1)2/3
dx
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y

x

y = 1
(2x − 1)2/3

2

(0, 1)

(2, 
3

3 ) 

1
2

1
3

FIGURE 7.8.9 The region of Example 4.

and investigate separately the two improper integrals on the right. We find that

∫ 1/2

0

1

(2x − 1)2/3
dx = lim

t→(1/2)−

∫ t

0

1

(2x − 1)2/3
dx

= lim
t→(1/2)−

[
3
2 (2x − 1)1/3

]t

0

= lim
t→(1/2)−

3
2

[
(2t − 1)1/3 − (−1)1/3

] = 3
2 ,

and ∫ 2

1/2

1

(2x − 1)2/3
dx = lim

t→(1/2)+

∫ 2

t

1

(2x − 1)2/3
dx

= lim
t→(1/2)+

[
3
2 (2x − 1)1/3

]2

t

= lim
t→(1/2)+

3
2

[
31/3 − (2t − 1)1/3

] = 3
2

3
√

3.

Therefore, ∫ 2

0

1

(2x − 1)2/3
dx = 3

2

(
1 + 3

√
3
)
. ◗

Special Functions and Improper Integrals
Special functions in advanced mathematics frequently are defined by means of im-

1 52 63 74 8 90 10
x

y = e−x

y

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

y = xe−x

y = x2e−x

y = x3e−x

FIGURE 7.8.10 The graphs
y = xt−1e−x for t = 1, 2, 3, 4.

proper integrals. An important example is the gamma function �(t) that the prolific
Swiss mathematician Leonhard Euler (1707–1783) introduced to “interpolate” values
of the factorial function

n! = 1 · 2 · 3 · · · (n − 1) · n.

The gamma function is defined for all real numbers t > 0 by the improper integral

�(t) =
∫ ∞

0
xt−1e−x dx . (7)

Thus for a fixed positive number t , the value �(t) is the area under the curve y =
xt−1e−x from x = 0 to ∞ (Fig. 7.8.10). It turns out that the improper integral in (7)
converges for all t > 0. The following example treats the illustrative cases t = 1 and
t = 2.
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EXAMPLE 5 If t = 1, then

�(1) =
∫ ∞

0
e−x dx = lim

b→∞

∫ b

0
e−x dx

= lim
b→∞

[
− e−x

]b

0
= lim

b→∞(1 − e−b) = 1.

If t = 2, then integration by parts with u = x , dv = e−x dx yields

�(2) =
∫ ∞

0
xe−x dx = lim

b→∞

∫ b

0
xe−x dx

= lim
b→∞

([
− xe−x

]b

0
+

∫ b

0
e−x dx

)

= lim
b→∞(0 − be−b) +

∫ ∞

0
e−x dx = 0 + 1 = 1

as well. ◗

Because 0! = 1 by definition and 1! = 1, Example 5 can be interpreted to say
that �(1) = 0! and �(2) = 1!. More generally, it turns out—see Problems 47 and
48—that

�(n + 1) = n! (8)

for every nonnegative integer n. But remember, the gamma function is defined for all
positive real numbers. In Problem 57 we ask you to show that

�
(

1
2

) = 2
∫ ∞

0
e−x2

dx . (9)

Figure 7.8.11 shows the graph y = e−x2
in comparison with y = e−x for x � 0.

Because e−x2
< e−x for x > 1 and the improper integral∫ ∞

0
e−x dx

converges by Example 5, it is plausible that the area under y = e−x2
for x � 0 is finite,

and hence that the improper integral in (9) converges as well. Indeed, we will see in
Section 13.4 that �( 1

2 ) = √
π .

0 51 32 4
x

y

0

1.2

1

0.8

0.6

0.4

0.2 y = e−x

y = e−x2

FIGURE 7.8.11 The graphs

y = e−x and y = e−x2
.

Escape Velocity
We saw in Section 6.5 how to compute the work Wr required to lift a body of mass m
from the surface of a planet of mass M and radius R to a distance r > R from the
center of the planet. According to Eq. (7) there with k = G Mm, the answer is

Wr =
∫ r

R

G Mm

x2
dx .

So the work required to move the mass m “infinitely far” from the planet is

W = lim
r→∞ Wr =

∫ ∞

R

G Mm

x2
dx = lim

r→∞

[
− G Mm

x

]r

R

= G Mm

R
.

EXAMPLE 6 Suppose that the mass is projected with initial velocity v straight up-
ward from the planet’s surface, as in Jules Verne’s novel From the Earth to the Moon
(1865), in which a spacecraft was fired from an immense cannon. Then the initial ki-
netic energy 1

2 mv2 of the mass is available to supply this work—by conversion into
potential energy. From the equation

1

2
mv2 = G Mm

R
,
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we find that

v =
√

2G M

R
.

Substituting appropriate numerical values for the constants G, M , and R yields the
value v ≈ 11.2 km/s (about 25,000 mi/h) for the escape velocity from the earth.

◗

Present Value of a Perpetuity
Consider a perpetual annuity, under which you and your heirs (and theirs, ad infinitum)
will be paid A dollars annually. The question we pose is this: What is the fair market
value of such an annuity? What should you pay to purchase it?

EXAMPLE 7 If the interest is compounded continuously at the annual rate r , then a
dollar deposited in a savings account would grow to ert dollars in t years. Hence e−r t

dollars deposited now would yield $1 after t years. Consequently, the present value
of the amount you (and your heirs) will receive between time t = 0 (the present) and
time t = T > 0 is defined to be

PT =
∫ T

0
Ae−r t dt.

Hence the total present value of the perpetual annuity is

P = lim
T →∞ PT =

∫ ∞

0
Ae−r t dt = lim

T →∞

[
− A

r
e−r t

]T

0

= A

r
.

Thus A = r P . For instance, at an annual interest rate of 8% (r = 0.08), you should
be able to purchase for P = ($50,000)/(0.08) = $625,000 a perpetuity that pays you
(and your heirs) an annual sum of $50,000 forever. ◗

Statistics and Probability Integrals
Figure 7.8.12 shows the famous bell-shaped curve with equation

1−1−2−3−4 2 3 4

y 

x1−1−2−3−4 2 3 4

y 

FIGURE 7.8.12 The bell-shaped

curve y = 1√
2π

e− 1
2 x2

.

y = 1√
2π

exp
( − 1

2 x2
)
.

Problem 63 gives the value

1√
2π

∫ ∞

−∞
exp

( − 1
2 x2

)
dx = 1. (10)

Thus the area of the region under the bell-shaped curve—with “infinite tails” extending
in both directions—is exactly 1. By numerical integration (using Simpson’s approxi-
mation, for instance) it can be verified that

1√
2π

∫ 1

−1
exp

( − 1
2 x2

)
dx ≈ 0.6827,

1√
2π

∫ 2

−2
exp

( − 1
2 x2

)
dx ≈ 0.9545,

and
1√
2π

∫ 3

−3
exp

( − 1
2 x2

)
dx ≈ 0.9973. (11)

It follows that:

• Just over two-thirds of the area under the bell-shaped curve lies between x = −1
and x = 1;

• Almost 95.5% of the area lies between x = −2 and x = 2; and
• Almost 99.75% of the total area lies between x = −3 and x = 3.
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The bell-shaped curve is used in describing the distributions of a wide range of
typical attributes of individual members of large populations. Many such attributes—
such as the height, weight, IQ, or SAT score of a college student—are distributed
among members of the population in a manner that has both random and systematic
aspects. For instance, let X (s) denote the height of the college-age male s. Then X
is a real-valued function defined on the set S of all college-age males. In statistics,
such a real-valued function defined on a population set is called a random variable on
S. Given a random variable X defined on a set S and two numbers a and b, we may
ask what is the fraction or proportion P{a � X (s) � b} of elements s of the set S such
that the value X (s) lies between a and b (inclusive). This fraction may be regarded as
the probability P{a � X (s) � b} that X (s) lies in [a, b].

A normal random variable X with mean value μ and standard deviation σ is
one such that

P

{
a �

X (s) − μ

σ
� b

}
= 1√

2π

∫ b

a
exp

( − 1
2 x2

)
dx (12)

if a < b. You can easily verify that

a �
X (s) − μ

σ
� b if and only if μ + aσ � X (s) � μ + bσ, (13)

so Eq. (12) is equivalent to

P{μ + aσ � X (s) � μ + bσ } = 1√
2π

∫ b

a
exp

( − 1
2 x2

)
dx . (14)

The next example reveals the meanings of the parameters μ and σ .

EXAMPLE 8 If we take a = 0 and b = +∞ in Eqs. (13) and (14), we see that

P{μ � X (s) < +∞} = 1√
2π

∫ ∞

0
exp

( − 1
2 x2

)
dx = 1

2

(using (10) and the symmetry of the graph in Fig. 7.8.12). Thus the value X (s) is
greater than or equal to the mean value μ for half the elements of the set S. If we take
a = −1 and b = 1, we see that

P{μ − σ � X (s) � μ + σ } = 1√
2π

∫ 1

−1
exp

( − 1
2 x2

)
dx ≈ 0.6827

(using (11)). Thus the value X (s) lies within one standard deviation σ of the mean
value μ for a bit over two-thirds of the elements of S. Similarly,

P{μ − 2σ � X (s) � μ + 2σ } = 1√
2π

∫ 2

−2
exp

( − 1
2 x2

)
dx ≈ 0.9545,

so the value X (s) lies within two standard deviations of the mean value for over 95%
of the elements of S. ◗

Numerical values of the integral in (12) and (14) are frequently calculated using
values of the special function

erf(x) = 2√
π

∫ x

0
exp

( − t2
)

dx (15)

(erf is for “error function”), which is tabulated in mathematical handbooks and in-
cluded in most computer algebra systems. In Problem 64 we ask you to show that

1√
2π

∫ u

0
exp

( − 1
2 x2

)
dx = 1

2
erf

(
u√
2

)
. (16)
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EXAMPLE 9 Scoring for the Scholastic Aptitude Test (SAT) has been changed in
recent years, so that the same performance now receives a higher score than before.
This test was originally designed so that the SAT math score X (s) of a college-bound
student s would (theoretically) be a random variable with mean value μ = 500 and
standard deviation σ = 100.

(a) In this case, what percentage of students tested should score at least 750?
(b) What percentage should score no more than 350?

Solution
(a) If we write μ + aσ = 500 + 100a = 750, we find that a = 2.5. Then the

proportion of students with scores of at least 750—that is, 750 � X (s) < +∞—
is given (with b = +∞) by

P{750 � X (s) < +∞} = 1√
2π

∫ ∞

2.5
exp

( − 1
2 x2

)
dx [ using (14) ]

= 1√
2π

∫ ∞

0
exp

( − 1
2 x2

)
dx − 1√

2π

∫ 2.5

0
exp

( − 1
2 x2

)
dx

= 1

2
− 1

2
erf

(
2.5√

2

)
[ using (16) ]

≈ 1

2
(1 − 0.98758) = 0.00621

(using the approximation erf(2.5/
√

2) ≈ 0.98758 given by a computer algebra
system). Thus about 0.62% of all students tested—fewer than one in a hundred—
should score at least 750 (under the original grading system).

(b) If we write μ + bσ = 500 + 100b = 350, we find that b = −1.5. Then the
proportion of students with scores at most 350—that is, −∞ < X (s) � 350—is
given (with a = −∞) by

P{−∞ < X (s) � 350} = 1√
2π

∫ −1.5

−∞
exp

( − 1
2 x2

)
dx [ using (14) ]

= 1√
2π

∫ ∞

1.5
exp

( − 1
2 x2

)
dx [ by symmetry ]

= 1√
2π

∫ ∞

0
exp

( − 1
2 x2

)
dx − 1√

2π

∫ 1.5

0
exp

( − 1
2 x2

)
dx

= 1

2
− 1

2
erf

(
1.5√

2

)
[ using (16) ]

≈ 1

2
(1 − 0.86639) ≈ 0.06681

(using the value erf(1.5/
√

2) ≈ 0.86639 given by a computer algebra system).
Thus about 6.68% of all students tested—about one in fifteen—should score 350
or less. ◗

Random Sampling
A binary event is one with two possible outcomes that occur with probabilities p and
q = 1 − p, respectively. Examples include:

• The toss of a coin with possible outcomes “heads” and “tails.”
• Polling the preference of a randomly selected voter who may be either a Demo-

crat or a Republican.
• Quality testing an electronic component chosen at random from a shipment; it

may be either defective or not.
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Given a particular binary event, the result of carrying out the event N times—for
instance, tossing a coin N times—is called an N -event sample (or a sample of size N ).
Given an N -event sample s, let X (s) denote the number of “successful” outcomes with
probability p. For instance, if s consists of N tosses of a coin, then X (s) might denote
the number of heads obtained. Then X is a random variable defined on the set S of all
N -event samples.

If the sample size N is large, then the central limit theorem of advanced probabil-
ity theory implies that X is closely approximated by a normal random variable whose
mean value and standard deviation are given by

μ = N p and σ = √
N pq. (17)

The probability that the number of successes lies between μ + aσ and μ + bσ is then
given approximately by

P{μ + aσ � X (s) � μ + bσ } ≈ 1√
2π

∫ b

a
exp

( − 1
2 x2

)
dx . (18)

It is common statistical practice to assume equality in (18) if N > 30.

EXAMPLE 10 Suppose that a fair coin (one with p = q = 1
2 ) is tossed N = 400

times.

(a) Calculate the approximate probability that the number of heads obtained is be-
tween 185 and 215 inclusive.

(b) Calculate the approximate probability that the number is more than 230.

Solution First note that by the equations in (17), the mean and standard deviation of
X (s) are

μ = N p = 400 · 1
2 = 200 and σ = √

N pq =
√

400 · 1
2 · 1

2 = 10.

(a) If we write μ + aσ = 200 + 10a = 185 and μ + bσ = 200 + 10b = 215, we
find that a = −1.5 and b = 1.5. Hence the probability that the number of heads
lies in the interval [185, 215] is

P{185 � X (s) � 215} ≈ 1√
2π

∫ 1.5

−1.5
exp

( − 1
2 x2

)
dx [ using (18) ]

= 2 · 1√
2π

∫ 1.5

0
exp

( − 1
2 x2

)
dx [ by symmetry ]

= 2 · 1

2
erf

(
1.5√

2

)
[ using (16) ]

≈ 0.86639 [ computer algebra system ].

In common language, the probability of getting 185 to 215 heads in 400 tosses
of a fair coin is thus about 87%, which is about 7 chances out of 8.

(b) If we write μ + aσ = 200 + 10a = 230, we get a = 3. Then the probability that
the number of heads is at least 230—that is, 230 � X (s) < +∞—is given (with
b = +∞) by

P{230 � X (s) < +∞} ≈ 1√
2π

∫ ∞

3
exp

( − 1
2 x2

)
dx [ using (18) ]

= 1√
2π

∫ ∞

0
exp

( − 1
2 x2

)
dx − 1√

2π

∫ 3

0
exp

( − 1
2 x2

)
dx

= 1

2
− 1

2
erf

(
3√
2

)
[ using (16) ]

≈ 1

2
(1 − 0.99730) = 0.00135
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(using the value erf (3/
√

2 ) ≈ 0.99730 given by a computer algebra system).
Thus there is less than two chances in a thousand of obtaining at least 230 heads
in 400 tosses of a fair coin. ◗

REMARK The decimal-place answers calculated in Example 10 are only rough ap-
proximations, although the final conclusions—“about 7 chances in 8” in part (a) and
“less than two chances in a thousand” in part (b)—are correct. One reason is that (18)
is, after all, only an approximation whose accuracy we have not discussed. More-
over, because a count of coin tosses is discrete rather than continuous, one might well
argue that in part (a) we should calculate P{184.5 � X (s) � 215.5} rather than
P{185 � X (s) � 215}, and “extend by half integers” similarly in part (b). Such
issues as these are discussed in statistics courses.

7.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.
∫ ∞

1

1

x2
dx is an example of an improper integral.

2.
∫ 1

0

1√
x

dx is not an improper integral.

3.
∫ 1

−1

1

x2
dx =

[
− 1

x

]1

−1

= (−1) − (+1) = −2.

4. If f (x) is nonnegative on [a, +∞) and lim
t→∞

∫ t

a
f (x) dx does not exist, then∫ ∞

a
f (x) dx = +∞.

5. If the limit exists, then
∫ ∞

a
f (x) dx = lim

t→∞

∫ t

a
f (x) dx .

6. If f is continuous on the entire real line, then—by definition—∫ ∞

−∞
f (x) dx =

∫ c

−∞
f (x) dx +

∫ ∞

c
f (x) dx

for any convenient choice of c, provided that both the improper integrals on the
right-hand side exist.

7. If f is continuous on [a, b), then—by definition—∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx

provided that the limit on the right exists.

8.
∫ 1

0

1√
x

dx = 2.

9.
∫ 1

0

1√
x

dx does not exist.

10. The gamma function is defined by �(t) =
∫ ∞

0
xt−1e−x dx .

7.8 CONCEPTS: QUESTIONS AND DISCUSSION
1. List the different types of improper integrals that are discussed in this section. For

each type, give examples of both convergent and divergent improper integrals of
that type.
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2. Discuss and illustrate with examples the difference between “divergence to infin-
ity” and “divergence by oscillation.”

3. Discuss the relation between improper integrals and areas of unbounded regions
in the plane.

7.8 PROBLEMS

Determine whether or not the improper integrals in Problems 1
through 38 converge. Evaluate those that do converge.

1.
∫ ∞

2

1

x
√

x
dx 2.

∫ ∞

1

1

x2/3
dx

3.
∫ 4

0

1

x
√

x
dx 4.

∫ 8

0

1

x2/3
dx

5.
∫ ∞

1

1

x + 1
dx 6.

∫ ∞

3

1√
x + 1

dx

7.
∫ ∞

5

1

(x − 1)3/2
dx 8.

∫ 4

0

1√
4 − x

dx

9.
∫ 9

0

1

(9 − x)3/2
dx 10.

∫ 3

0

1

(x − 3)2
dx

11.
∫ −2

−∞

1

(x + 1)3
dx 12.

∫ 0

−∞

1√
4 − x

dx

13.
∫ 8

−1

1
3
√

x
dx 14.

∫ 4

−4

1

(x + 4)2/3
dx

15.
∫ ∞

2

1
3
√

x − 1
dx 16.

∫ ∞

−∞

x

(x2 + 4)3/2
dx

17.
∫ ∞

−∞

x

x2 + 4
dx 18.

∫ ∞

0
e−(x+1) dx

19.
∫ 1

0

e
√

x

√
x

dx 20.
∫ 2

0

x

x2 − 1
dx

21.
∫ ∞

0
xe−3x dx 22.

∫ 2

−∞
e2x dx

23.
∫ ∞

0
xe−x2

dx 24.
∫ ∞

−∞
|x |e−x2

dx

25.
∫ ∞

0

1

1 + x2
dx 26.

∫ ∞

0

x

1 + x2
dx

27.
∫ ∞

0
cos x dx 28.

∫ ∞

0
sin2 x dx

29.
∫ ∞

1

ln x

x
dx 30.

∫ ∞

2

1

x ln x
dx

31.
∫ ∞

2

1

x(ln x)2
dx 32.

∫ ∞

1

ln x

x2
dx

33.
∫ π/2

0

cos x√
sin x

dx 34.
∫ π/2

0

sin x

(cos x)4/3
dx

35.
∫ 1

0
ln x dx 36.

∫ 1

0

ln x

x
dx

37.
∫ 1

0

ln x

x2
dx 38.

∫ ∞

0
e−x cos x dx

In Problems 39 through 42, the given integral is improper both
because the interval of integration is unbounded and because the
integrand is unbounded near zero. Investigate its convergence by
expressing it as a sum of two integrals—one from 0 to 1, the other
from 1 to ∞. Evaluate those integrals that converge.

39.
∫ ∞

0

1

x + x2
dx 40.

∫ ∞

0

1

x2 + x4
dx

41.
∫ ∞

0

1

x1/2 + x3/2
dx 42.

∫ ∞

0

1

x2/3 + x4/3
dx

In Problems 43 through 46, find all real number values of k for
which the given improper integral converges. Evaluate the inte-
gral for those values of k .

43.
∫ 1

0

1

xk
dx 44.

∫ ∞

1

1

xk
dx

45.
∫ 1

0
xk ln x dx 46.

∫ ∞

1

1

x(ln x)k
dx

47. Beginning with the definition of the gamma function in
Eq. (7), integrate by parts to show that

�(x + 1) = x�(x)

for every positive real number x .

48. Explain how to apply the result of Problem 47 n times
in succession to show that if n is a positive integer, then
�(n + 1) = n!�(1) = n!.

Problems 49 through 51 deal with Gabriel’s horn, the surface ob-
tained by revolving the curve y = 1/x, x � 1, around the x-axis
(Fig. 7.8.13).

x

y

x = 1

y = 1
x

FIGURE 7.8.13 Gabriel’s horn (Problems 49 through 51).

49. Show that the area under the curve y = 1/x , x � 1, is
infinite.

50. Show that the volume of revolution enclosed by Gabriel’s
horn is finite, and compute it.

51. Show that the surface area of Gabriel’s horn is infinite.
[ Suggestion: Let A t denote the surface area from x = 1
to x = t > 1. Prove that A t > 2π ln t . ] In any case, the
implication is that we could fill Gabriel’s horn with a finite
amount of paint (Problem 50), but no finite amount suffices
to paint its surface.
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52. Show that ∫ ∞

−∞

1 + x

1 + x2
dx

diverges, but that

lim
t→∞

∫ t

−t

1 + x

1 + x2
dx = π.

53. Use the substitution x = e−u and the fact that �(n + 1) = n!
(Problem 48) to prove that if m and n are fixed but arbitrary
positive integers, then∫ 1

0
xm(ln x)n dx = n!(−1)n

(m + 1)n+1
.

54. Consider a perpetual annuity under which you and your heirs
will be paid at the rate of 10 + t thousand dollars per year
t years hence. Thus you will receive $20,000 10 years from
now, your heir will receive $110,000 100 years from now,
and so on. Assuming a constant annual interest rate of 10%,
show that the present value of this perpetuity is

P =
∫ ∞

0
(10 + t)e−t/10 dt,

and then evaluate this improper integral.

55. A “semi-infinite” uniform rod occupies the nonnegative
x-axis (x � 0) and has linear density δ; that is, a segment
of length dx has mass δ dx . Show that the force of grav-
itational attraction that the rod exerts on a point mass m at
(−a, 0) is

F =
∫ ∞

0

Gmδ

(a + x)2
dx = Gmδ

a
.

56. A rod of linear density δ (see Problem 55) occupies the en-
tire y-axis. A point mass m is located at (a, 0) on the x-axis,
as indicated in Fig. 7.8.14. Show that the total (horizontal)
gravitational attraction that the rod exerts on m is

F =
∫ ∞

−∞

Gmδ cos θ

r 2
dy = 2Gmδ

a
,

where r 2 = a2 + y2 and cos θ = a/r .

x

y

y

dy

θ
a (a, 0)

m

dF

FIGURE 7.8.14 Gravitational
attraction exerted on a point mass
by an infinite rod (Problem 56).

57. Verify Eq. (9) by substituting x = u2 in the integral that
defines the value �( 1

2 ).

58. Given the fact that ∫ ∞

0
e−x2

dx = 1
2

√
π,

find the volume of the unbounded solid that is obtained by re-
volving around the x-axis the unbounded region R between
the x-axis and the curve y = e−x2

for x � 0.

59. Find the volume of the unbounded solid that is obtained by
revolving around the y-axis the region R of Problem 58.

60. Recall from Problem 47 that �(x + 1) = x�(x) if x > 0.
Suppose that n is a positive integer. Use Eq. (9) to establish
that

�
(
n + 1

2

) = 1 · 3 · 5 · · · (2n − 1)

2n

√
π.

61. (a) Suppose that k > 1. Use integration by parts to show
that∫ ∞

0
xk exp(−x2) dx = k − 1

2

∫ ∞

0
xk−2 exp(−x2) dx .

(b) Suppose that n is a positive integer. Prove that∫ ∞

0
xn−1 exp(−x2) dx = 1

2
�

(
n

2

)
.

62. Suppose that you win the Florida lottery and decide to use
part of your winnings to purchase a perpetual annuity that
will pay you and your heirs $10,000 per year (forever). As-
suming an annual interest rate of 6%, what is a fair price for
an insurance company to charge you for such an annuity?

63. Deduce Eq. (10) in this section from the value∫ ∞

−∞
exp(−t2) dt = √

π

established in Section 14.4.

64. Deduce Eq. (16) in this section from Eq. (15).

In Problems 65 through 70, determine the value of k by using a
calculator or computer to evaluate

∫ b

0
f (x) dx

for successively larger values of b. Continue until it seems cer-
tain that the four-place value of k is an integer.

65.
∫ ∞

0
x5e−x dx = 60k

66.
∫ ∞

0

sin x

x
dx = π

k

67.
∫ ∞

0

1

x2 + 2
dx = π

k
√

2

68.
∫ ∞

0

1 − e−3x

x
dx = ln 10

k

69.
∫ ∞

0
exp(−x2) cos 2x dx =

√
π

ke

70.
∫ ∞

0
sin(x2) dx = 1

k

√
π

2
567

www.konkur.in



568 CHAPTER 7 Techniques of Integration

71. Suppose that the intelligence quotient (IQ) scores of
middle-school students constitute a normal random vari-
able with a mean of 100 and a standard deviation of 15.
(a) Calculate the percentage of students that have an IQ score
between 90 and 110, inclusive. (b) Calculate the percentage
that have an IQ score of 125 or higher.

72. Suppose that the heights of adult U.S. males constitute a nor-
mal random variable with a mean of 69 inches and a stan-
dard deviation of 3 inches. (a) Calculate the percentage of
adult U.S. males who have heights between 67 inches and 72
inches, inclusive. (b) Calculate the percentage having height
76 inches or more.

73. Suppose that the fair coin of Example 10 is tossed N =
900 times. (a) Calculate the probability that the num-
ber of heads obtained is between 425 and 475, inclusive.
(b) Calculate the probability that 500 or more heads are
obtained.

74. Suppose that a biased coin has probability p = 0.6 of heads
and q = 0.4 of tails is tossed N = 600 times. (a) Calculate
the probability that the number of heads obtained is between

345 and 375, inclusive. (b) Calculate the probability that
fewer than 350 heads are obtained.

75. A student randomly guesses the answers on a 50-question
true-false test. (a) What is the probability that he passes
(60% or more correct)? (b) What is the probability that he
makes a C or better (70% or more correct)?

76. A machine prints circuit boards of which 1% are defective.
What is the probability that 10 or more circuit boards out of
500 tested are defective?

77. Suppose that 55% of registered voters in a metropolitan pop-
ulation actually favor the Democratic candidate for mayor. If
750 registered voters are randomly polled, what is the prob-
ability that between 41% and 49% (inclusive) will favor the
Republican candidate?

78. Let

In =
∫ ∞

1

(ln x)n

x2
dx .

Show that (n + 1)In = In+1 for each integer n � 0. Conclude
that In = n! if n is a positive integer.

CHAPTER 7 SUMMARY—INTEGRATION STRATEGIES
When you confront the problem of evaluating a particular integral, you must first de-
cide which of the several methods of this chapter to try. There are only two general
methods of integration:

• Integration by substitution (Section 7.2), and
• Integration by parts (Section 7.3).

These are the analogues for integration of the chain rule and product rule, respectively,
for differentiation.

Look first at the given integral to see if you can spot a substitution that would
transform it into an elementary or familiar integral or one likely to be found in an
integral table. In the case of an integral∫

f (x)g(x) dx,

whose integral is an unfamiliar product of two functions, one of which is easily differ-
entiated and the other easily integrated, then an attempt to integrate by parts is indi-
cated.

Beyond these two general methods, the chapter deals with a number of special
methods. In the case of an integral that is obviously trigonometric,

∫
trig(x) dx , the

simple “spin-off” methods of Section 7.4 may succeed. Remember that reduction for-
mulas [such as Eq. (5) and Problems 53 and 54 of Section 7.3] are available for inte-
grating an integral power of a single trigonometric function.

Any integral of a rational function—that is, an integral of the form∫
p(x)

q(x)
dx,

where the integrand is a quotient of polynomials—can be evaluated by the method of
partial fractions (Section 7.5). If the degree of the numerator is not less than that of
the denominator—that is, if the rational function is not proper—first use long division
to express it as the sum of a polynomial (easily integrated) and a proper rational frac-
tion. Then decompose the latter into partial fractions. Partial fractions corresponding
to linear factors are easily integrated, and those corresponding to irreducible quadratic
factors can be integrated by completing the square and making (if necessary) a trigono-
metric substitution. As we explained in Section 7.7, the trigonometric integrals that
result can always be evaluated.
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In the case of an integral involving
√

ax2 + bx + c, first complete the square
(Section 7.7) and then rationalize the integral by making an appropriate trigonometric
substitution (Section 7.6). This will leave you with a trigonometric integral.

Some additional special substitutions are introduced in the Miscellaneous Prob-
lems that follow. Notable among these is the substitution

u = tan
θ

2
,

which transforms any integral
∫

R(sin θ, cos θ) dθ of a rational function of sin θ and
cos θ into an integral of a rational function of u. The latter integral can then be evalu-
ated by the method of partial fractions.

A final comment: Computer algebra systems are increasingly used for the eval-
uation of integrals such as those studied in this chapter. Nevertheless, the availability
of these systems is no panacea. For instance, such computer systems are likely to be
stumped by the integral ∫

(1 + ln x)
√

1 + (x ln x)2 dx .

But you probably notice that the substitution

u = x ln x, du = (1 + ln x) dx

transforms this integral into the integral∫ √
1 + u2 du,

which is amenable to trigonometric substitution (and can be found in almost any inte-
gral table). Thus the human factor remains—thankfully—essential.

569

www.konkur.in



570 CHAPTER 7 Techniques of Integration

CHAPTER 7: REVIEW

Understanding: Concepts and Techniques
Refer to the listed pages to review the concepts and methods of this chapter that you need to understand.

Section Pages
7.2 The basic method of integration by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Pattern-matching and use of integral tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

7.3 The formula
∫

u dv = uv −
∫

v du for integration by parts . . . . . . . . . . . . . . . . . . . . . . . . 521

Strategy for the choice of the “parts” u and dv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Integration by parts with definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Integration using a reduction formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

7.4 Techniques for integrals of products of sines and cosines . . . . . . . . . . . . . . . . . . . . . . . . . . . 528–529
Techniques for integrals of products of secants and tangents . . . . . . . . . . . . . . . . . . . . . . . . 531

7.5 The concept of partial fractions and partial-fraction decomposition of a . . . . . . . . . . . . . . 535
rational function R(x) = P(x)/Q(x)

Long division (if necessary) to obtain R(x) = p(x) + r(x)/Q(x) where . . . . . . . . . . . . . 536
r(x)/Q(x) is a proper fraction

The partial-fraction decomposition if Q(x) has only linear factors . . . . . . . . . . . . . . . . . . . 537
The partial-fraction decomposition in the case of quadratic factors . . . . . . . . . . . . . . . . . . . 539

7.6 The trigonometric substitution u = a sin θ in an integral involving a2 − u2 . . . . . . . . . . . 543
The trigonometric substitution u = a tan θ in an integral involving a2 + u2 . . . . . . . . . . . 544
The trigonometric substitution u = a sec θ in an integral involving u2 − a2 . . . . . . . . . . . 545

7.7 The technique of completing the square to express an irreducible quadratic . . . . . . . . . . . 549
polynomial as a sum or difference of squares

Divide and conquer techniques for the integral
∫

Ax + b

(ax2 + bx + c)n
dx . . . . . . . . . . . . . . . 550–551

7.8 Improper integrals with infinite limits of integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Improper integrals with infinite integrands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557–558
Probability integrals and the bell-shaped curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561–562
Random sampling and binary events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563–564

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
7.2 Integration by the elementary method of substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 9, 13, 21, 25

Integration by use of a table of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37, 39, 43
7.3 Integration by parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 7, 9, 15, 29, 31

Derivation of reduction formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 53
7.4 Evaluation of sine-cosine integrals by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 11, 13, 15, 19

Evaluation of secant-tangent integrals by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 7, 23, 27, 31
7.5 Evaluating rational integrals involving only linear partial fractions . . . . . . . . . . . . . . . . . . . 1, 5, 13, 17, 19

Evaluating rational integrals involving quadratic partial fractions . . . . . . . . . . . . . . . . . . . . 27, 29, 31, 35
7.6 Evaluating integrals using the substitution u = a sin θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 13, 25

Evaluating integrals using the substitution u = a tan θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 15, 21, 23
Evaluating integrals using the substitution u = a sec θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 29, 31, 33

7.7 Evaluating integrals involving quadratic polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 7, 9, 21, 23, 27
7.8 Testing and evaluating integrals with infinite limits of integration . . . . . . . . . . . . . . . . . . . . 1, 5, 7, 11, 15

Testing and evaluating integrals with infinite integrands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 9, 13, 19
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MISCELLANEOUS PROBLEMS

Evaluate the integrals in Problems 1 through 100.

1.
∫

1

(1 + x)
√

x
dx [Suggestion: Let x = u2. ]

2.
∫

sec2 t

1 + tan t
dt 3.

∫
sin x sec x dx

4.
∫

csc x cot x

1 + csc2 x
dx 5.

∫
tan θ

cos2 θ
dθ

6.
∫

csc4 x dx 7.
∫

x tan2 x dx

8.
∫

x2 cos2 x dx 9.
∫

x5
√

2 − x3 dx

10.
∫

1√
x2 + 4

dx 11.
∫

x2

√
25 + x2

dx

12.
∫

(cos x)
√

4 − sin2 x dx 13.
∫

1

x2 − x + 1
dx

14.
∫ √

x2 + x + 1 dx 15.
∫

5x + 31

3x2 − 4x + 11
dx

16.
∫

x4 + 1

x2 + 1
dx 17.

∫ √
x4 + x7 dx

18.
∫ √

x

1 + x
dx [Suggestion: Let x = u2. ]

19.
∫

cos x√
4 − sin2 x

dx 20.
∫

cos 2x

cos x
dx

21.
∫

tan x

ln(cos x)
dx 22.

∫
x7

√
1 − x4

dx

23.
∫

ln(1 + x) dx 24.
∫

x sec−1 x dx

25.
∫ √

x2 + 9 dx 26.
∫

x2

√
4 − x2

dx

27.
∫ √

2x − x2 dx 28.
∫

4x − 2

x3 − x
dx

29.
∫

x4

x2 − 2
dx 30.

∫
sec x tan x

sec x + sec2 x
dx

31.
∫

x

(x2 + 2x + 2)2
dx

32.
∫

x1/3

x1/2 + x1/4
dx [Suggestion: Let x = u12.]

33.
∫

1

1 + cos 2θ
dθ 34.

∫
sec x

tan x
dx

35.
∫

sec3 x tan3 x dx 36.
∫

x2 tan−1 x dx

37.
∫

x(ln x)3 dx 38.
∫

1

x
√

1 + x2
dx

39.
∫

ex
√

1 + e2x dx 40.
∫

x√
4x − x2

dx

41.
∫

1

x3
√

x2 − 9
dx 42.

∫
x

(7x + 1)17
dx

43.
∫

4x2 + x + 1

4x3 + x
dx 44.

∫
4x3 − x + 1

x3 + 1
dx

45.
∫

tan2 x sec x dx 46.
∫

x2 + 2x + 2

(x + 1)3
dx

47.
∫

x4 + 2x + 2

x5 + x4
dx 48.

∫
8x2 − 4x + 7

(x2 + 1)(4x + 1)
dx

49.
∫

3x5 − x4 + 2x3 − 12x2 − 2x + 1

(x3 − 1)2
dx

50.
∫

x

x4 + 4x2 + 8
dx 51.

∫
(ln x)6 dx

52.
∫ (

1 + x2/3
)3/2

x1/3
dx [Suggestion: Let x = u3. ]

53.
∫

(arcsin x)2

√
1 − x2

dx

54.
∫

1

x3/2
(
1 + x1/3

) dx [Suggestion: Let x = u6. ]

55.
∫

tan3 z dz 56.
∫

sin2 ω cos4 ω dω

57.
∫

xex2

1 + e2x2 dx 58.
∫

cos3 x√
sin x

dx

59.
∫

x3e−x2
dx 60.

∫
sin

√
x dx

61.
∫

arcsin x

x2
dx 62.

∫ √
x2 − 9 dx

63.
∫

x2
√

1 − x2 dx 64.
∫

x
√

2x − x2 dx

65.
∫

x − 2

4x2 + 4x + 1
dx 66.

∫
2x2 − 5x − 1

x3 − 2x2 − x + 2
dx

67.
∫

e2x

e2x − 1
dx 68.

∫
cos x

sin2 x − 3 sin x + 2
dx

69.
∫

2x3 + 3x2 + 4

(x + 1)4
dx 70.

∫
sec2 x

tan2 x + 2 tan x + 2
dx

71.
∫

x3 + x2 + 2x + 1

x4 + 2x2 + 1
dx 72.

∫
sin x cos 3x dx

73.
∫

x5
√

x3 − 1 dx 74.
∫

ln(x2 + 2x) dx

75.
∫ √

1 + sin x

sec x
dx 76.

∫
1

x2/3
(
1 + x2/3

) dx

77.
∫

sin x

sin 2x
dx 78.

∫ √
1 + cos t dt

79.
∫ √

1 + sin t dt 80.
∫

sec2 t

1 − tan2 t
dt

81.
∫

ln(x2 + x + 1) dx 82.
∫

ex sin−1(ex ) dx

83.
∫

arctan x

x2
dx 84.

∫
x2

√
x2 − 25

dx

85.
∫

x3

(x2 + 1)2
dx 86.

∫
1

x
√

6x − x2
dx

87.
∫

3x + 2

(x2 + 4)3/2
dx 88.

∫
x3/2 ln x dx

89.
∫ √

1 + sin2 x

sec x csc x
dx 90.

∫
exp

(√
sin x

)
(sec x)

√
sin x

dx

91.
∫

xex sin x dx 92.
∫

x2ex3/2
dx
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93.
∫

arctan x

(x − 1)3
dx 94.

∫
ln

(
1 + √

x
)

dx

95.
∫

2x + 3√
3 + 6x − 9x2

dx 96.
∫

1√
e2x − 1

dx

97.
∫

x4

(x − 1)2
dx [Suggestion: Let u = x − 1. ]

98.
∫

x3/2 tan−1
(√

x
)

dx 99.
∫

arcsec
(√

x
)

dx

100.
∫

x

√
1 − x2

1 + x2
dx

101. Find the area of the surface generated by revolving the
curve y = cosh x , 0 � x � 1, around the x-axis.

102. Find the length of the curve y = e−x , 0 � x � 1.

103. (a) Find the area A t of the surface generated by revolving
the curve y = e−x , 0 � x � t , around the x-axis. (b) Find
limt→∞ A t .

104. (a) Find the area A t of the surface generated by revolving
the curve y = 1/x , 1 � x � t , around the x-axis. (b) Find
limt→∞ A t .

105. Find the area of the surface generated by revolving the
curve y = √

x2 − 1, 1 � x � 2, around the x-axis.

106. (a) Derive the reduction formula∫
xm(ln x)n dx = 1

m + 1
xm+1(ln x)n

− n

m + 1

∫
xm(ln x)n−1 dx .

(b) Evaluate
∫ e

1 x3(ln x)3 dx .

107. Derive the reduction formula∫
sinm x cosn x dx = − 1

m + n
sinm−1 x cosn+1 x

+ m − 1

m + n

∫
sinm−2 x cosn x dx .

108. Use the reduction formulas of Problem 107 here and Prob-
lem 54 of Section 7.3 to evaluate∫ π/2

0
sin6 x cos5 x dx .

109. Find the area bounded by the curve y2 = x5(2 − x),
0 � x � 2. [Suggestion: Substitute x = 2 sin2 θ , then use
the result of Problem 58 of Section 7.3. ]

110. Show that

0 <

∫ 1

0

t4(1 − t)4

1 + t2
dt

and that ∫ 1

0

t4(1 − t)4

1 + t2
dt = 22

7
− π.

111. Evaluate ∫ 1

0
t4(1 − t)4 dt;

then apply the results of Problem 110 to conclude
that

22

7
− 1

630
< π <

22

7
− 1

1260
.

Thus 3.1412 < π < 3.1421.

112. Find the length of the curve y = 4
5 x5/4, 0 � x � 1.

113. Find the length of the curve y = 4
3 x3/4, 1 � x � 4.

114. An initially empty water tank is shaped like a cone whose
axis is vertical. Its vertex is at the bottom; the cone is 9 ft
deep and has a top radius of 4.5 ft. Beginning at time t = 0,
water is poured into this tank at 50 ft3/min. Meanwhile,
water leaks from a hole at the tank’s bottom at the rate of
10

√
y cubic feet per minute, where y is the depth of wa-

ter in the tank. (This is consistent with Torricelli’s law of
draining.) How long does it take to fill the tank?

115. (a) Evaluate ∫
1

1 + ex + e−x
dx .

(b) Explain why your substitution in part (a) suffices to in-
tegrate any rational function of ex .

116. (a) The equation x3 + x + 1 = 0 has at least one real
root r . Use Newton’s method to find it, accurate to at least
two places. (b) Use long division to find (approximately)
the irreducible quadratic factor of x3 + x + 1. (c) Use
the factorization obtained in part (b) to evaluate (approxi-
mately)

∫ 1

0

1

x3 + x + 1
dx .

117. Evaluate
∫

1

1 + ex
dx .

118. The integral

∫
1 + 2x2

x5(1 + x2)3
dx =

∫
x + 2x3

(x4 + x2)3
dx

would require you to solve 11 equations in 11 unknowns if
you were to use the method of partial fractions to evaluate
it. Use the substitution u = x4 + x2 to evaluate it much
more simply.

119. Evaluate ∫ √
tan θ dθ.

[Suggestion: First substitute u = tan θ . Then substitute
u = x2. Finally, use the method of partial fractions; see
Problem 48 of Section 7.7. ]

120. Prove that if p(x) is a polynomial, then the substitution
un = (ax + b)/(cx + d) transforms the integral

∫
p(x)

(
ax + b

cx + d

)1/n

dx

into the integral of a rational function of u. (The substitu-
tion indicated here is called a rationalizing substitution; its
name comes from the fact that it converts the integrand into
a rational function of u.)

In Problems 121 through 129, use the rationalizing substitution
indicated in Problem 120 to evaluate the integral.

121.
∫

x3
√

3x − 2 dx 122.
∫

x3 3
√

x2 + 1 dx
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123.
∫

x3

(x2 − 1)4/3
dx 124.

∫
x2(x − 1)3/2 dx

125.
∫

x5

√
x3 + 1

dx 126.
∫

x7 3
√

x4 + 1 dx

127.
∫ √

1 + x

1 − x
dx 128.

∫
x√

x + 1
dx

129.
∫ 3

√
x + 1

x
dx

130. Substitute x = u2 to find∫ √
1 + √

x dx .

131. Substitute u2 = 1 + e2x to find∫ √
1 + e2x dx .

132. Find the area A of the surface obtained by revolving the
curve y = 2

3 x3/2, 3 � x � 8, around the x-axis. [Sugges-
tion: Substitute x = u2 into the surface area integral. Note:
A ≈ 732.39. ]

133. Find the area bounded by one loop of the curve

y2 = x2(1 − x), 0 � x � 1.

134. Find the area bounded by the loop of the curve

y2 = x2

(
1 − x

1 + x

)
, 0 � x � 1.

More General Trigonometric Integrals
As a last resort, any trigonometric integral can be transformed
into an integral ∫

R(sin θ, cos θ) dθ (1)

of sines and cosines. If the integrand in Eq. (1) is a quotient
of polynomials in the variables sin θ and cos θ , then the special
substitution

u = tan
θ

2
(2)

suffices for its evaluation.
To carry out the substitution indicated in Eq. (2), we must

express sin θ , cos θ , and dθ in terms of u and du. Note first that

θ = 2 tan−1 u, so dθ = 2 du

1 + u2
. (3)

We see from the triangle in Fig. 7.MP.1 that

sin
θ

2
= u√

1 + u2
, cos

θ

2
= 1√

1 + u2
.

1 + u2

1

/2

u

θ

FIGURE 7.MP.1 The special
rationalizing substitution

u = tan
θ

2
.

Hence

sin θ = 2 sin
θ

2
cos

θ

2
= 2u

1 + u2
, (4)

cos θ = cos2 θ

2
− sin2 θ

2
= 1 − u2

1 + u2
. (5)

These substitutions will convert the integral in Eq. (1) into an in-
tegral of a rational function of u. The latter can then be evaluated
by the methods of Section 7.5.

EXAMPLE With the substitutions in Eqs. (3) and (5),∫
1

5 + 3 cos θ
dθ =

∫
1

5 + 3 · 1 − u2

1 + u2

· 2

1 + u2
du

=
∫

2

8 + 2u2
du =

∫
1

4 + u2
du

= 1

2
tan−1 u

2
+ C = 1

2
tan−1

(
1

2
tan

θ

2

)
+ C.

◗

In Problems 135 through 142, use the rationalizing substitution
given in Eqs. (2) through (5).

135.
∫

1

1 + cos θ
dθ 136.

∫
1

5 + 4 cos θ
dθ

137.
∫

1

1 + sin θ
dθ 138.

∫
1

(1 − cos θ)2
dθ

139.
∫

1

sin θ + cos θ
dθ 140.

∫
1

2 + sin φ + cos φ
dφ

141.
∫

sin θ

2 + cos θ
dθ 142.

∫
sin θ − cos θ

sin θ + cos θ
dθ

143. (a) Substitute u = tan(θ/2) to show that

∫
sec θ dθ = ln

∣∣∣∣∣∣∣
1 + tan

θ

2

1 − tan
θ

2

∣∣∣∣∣∣∣ + C.

(b) Use the trigonometric identity

tan
θ

2
=

√
1 − cos θ

1 + cos θ

to derive our earlier formula∫
sec θ dθ = ln |sec θ + tan θ | + C

from the solution in part (a).

144. (a) Use the method of Problem 143 to show that∫
csc θ dθ = ln

∣∣∣∣ tan
θ

2

∣∣∣∣ + C.

(b) Use trigonometric identities to derive the formula∫
csc θ dθ = ln |csc θ − cot θ | + C

from part (a).
PHOTO CREDITS

p. 515 (top left) Library of Congress; (bottom right) David E. Penney 573
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Differential Equations 8

John Bernoulli (1667–1748)

In the eighteenth cen-
tury the remarkable
Swiss family Bernoulli

was to mathematics what
the Bach family was to
music. Eight different
Bernoullis were sufficient-
ly prominent that more than
two centuries later, they
rate entries in the Dictio-
nary of Scientific Biogra-
phy. The brothers James
(Jakob, 1654–1705) and
John (Johann, 1667–1748)

Bernoulli played crucial rules in the early development of
Leibniz’s version of the calculus based on infinitely small
differentials, which in continental European science pre-
dominated over Newton’s version based more explicitly on
limits of ratios. It was James Bernoulli who introduced the
word “integral” in suggesting the name calculus integralis
(instead of Leibniz’s original calculus summatorius) for
the subject inverse to the calculus differentialis.

John Bernoulli first studied mathematics under his
older brother James at the university in Basel, Switzerland,
but soon they were on an equal footing in mathematical
understanding. In 1691, John Bernoulli visited Paris and
there met the young Marquis de l’Hôpital (1661–1704),
who was anxious to learn the secrets of the new infinites-
imal calculus. In return for a generous monthly stipend,
Bernoulli agreed to tutor the wealthy Marquis and contin-
ued the lessons (and the financial arrangement) by mail
after his return to Basel. The result of this correspondence
was the first differential calculus textbook, published by
l’Hôpital in 1696. This text is remembered mainly for its
inclusion of the theorem concerning indeterminate forms
now known as l’Hôpital’s rule (Section 4.8), although it
was actually discovered by John Bernoulli.

The Bernoulli brothers were pioneers in the use of
differential equations to model physical phenomena, and
they introduced now-familiar techniques such as “sepa-
ration of variables” to solve these differential equations.
For instance, both James and John worked on the cate-
nary problem, which asks for the shape of a hanging cable
suspended between two fixed points, assuming that it is in-
elastic (unstretchable) but perfectly flexible. They showed
that the shape function y(x) of the cable satisfies the dif-
ferential equation

a
d 2 y

dx2
=

√
1 +

(
dy

dx

)2

,

(where the constant a = T/ρ is the ratio of the ca-
ble’s tension at its lowest point and its density [assumed
constant]). They succeeded in solving this differential
equation to show that the shape of the hanging cable is
described by

y = a cosh

(
x

a

)
.

x

y 

What is the shape of a hanging cable?

From Chapter 8 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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576 CHAPTER 8 Differential Equations

8.1 SIMPLE EQUATIONS AND MODELS

Mathematical models of changing real-world phenomena frequently involve differen-
tial equations—that is, equations containing derivatives of unknown functions. For
instance, in Section 5.2 we mentioned the simple differential equations

d P

dt
= k P (natural population growth) (1)

and
dy

dt
= −k

√
y (Torricelli’s law). (2)

Each equation involves the independent variable t , a proportionality constant k, and an
unknown function P(t) or y(t) of t . The dependent variable P in Eq. (1) denotes a
population for which the time rate of change is proportional to the size of the popula-
tion. The dependent variable y in Eq. (2) denotes the depth of water in a tank draining
slowly through a small hole in its bottom.

A (first-order) differential equation is an equation that can be written in the form

dy

dx
= F(x, y) (3)

where F(x, y) is a given expression involving the independent variable x and the de-
pendent variable y, the latter representing an unknown function y(x) of x . A solution
of Eq. (3) is a specific function y(x) such that y′(x) = F(x, y(x)) for all x in some
appropriate interval I . That is, Eq. (3) reduces to an identity in x when the dependent
variable y is replaced with the solution function y(x).

A differential equation frequently appears together with an initial condition
y(a) = b that specifies a desired value b of the solution at the point x = a. The
two together constitute an initial value problem

dy

dx
= F(x, y), y(a) = b, (4)

which asks for a particular solution y(x) of the differential equation that also satisfies
the given initial condition.

EXAMPLE 1 To verify that a given function y(x) is a solution of Eq. (3), it suffices
to calculate the derivative dy/dx and then to verify that it is equal to F(x, y(x)). For
instance, if y = x7 then

dy

dx
= 7x6 = 7 · x7

x
= 7y

x

if x > 0. This calculation verifies that the function y(x) = x7 is a solution (on the
interval x > 0) of the differential equation

dy

dx
= 7y

x
. (5)

You can verify similarly that y(x) = Cx7 satisfies Eq. (5) for any value of the
constant C . ◗

When a solution of a differential equation contains an arbitrary constant C , we
call the solution a general solution of the equation. A general solution actually de-
scribes an infinite collection of particular solutions of the differential equation, be-
cause different choices of C yield different solutions of the equation. Thus the choices
C = 11 and C = 23 in Example 1 yield the two particular solutions y1(x) = 11x7 and
y2(x) = 23x7. The former satisfies the initial value problem

dy

dx
= 7y

x
, y(1) = 11,

while y2(x) satisfies the initial condition y(1) = 23.
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Equations with One Variable Missing
If the dependent variable y does not appear explicitly on the right-hand side in (3), then
the differential equation reduces to the form

dy

dx
= f (x) (6)

where f is a given function of x . As we noted in Section 5.2, the solution of a differ-
ential equation of this simple form reduces to integration:

y(x) =
∫

y′(x) dx =
∫

f (x) dx + C.

If the indefinite integral F(x) = ∫
f (x) dx can be evaluated, then y(x) = F(x) + C

is a general solution of Eq. (6). For instance, a general solution of the differential
equation dy/dx = 21x6 is given by

y(x) =
∫

21x6 dx = 3x7 + C.

If, on the other hand, the independent variable x does not appear explicitly on the
right-hand side in (3), then the differential equation reduces to the form

dy

dx
= g(y), (7)

which implies that y′(x) = g(y(x)) if y(x) is a solution. To solve the equation in (7),
we can first divide both sides by g(y(x)) and then attempt to integrate with respect
to x : ∫

y′(x)

g(y(x))
dx =

∫
1 dx; [substitute y = y(x), dy = y′(x) dx]

∫
1

g(y)
dy = x + C. (8)

If the indefinite integral

G(y) =
∫

1

g(y)
dy

in (8) can be evaluated, then we may call the resulting equation

G(y) = x + C (9)

an implicit solution of Eq. (7)—whether or not we can solve explicitly for y as a
function of x .

REMARK Note that Eq. (8) results formally from the differential equation in (7) if we
first divide both sides by g(y) and multiply by dx to “separate the variables,”

1

g(y)
dy = dx,

then integrate each side with respect to its “own” variable—y on the left and x on the
right.

EXAMPLE 2 Solve the initial value problem

dy

dx
= y2, y(0) = 2. (10)
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Solution Separating the variables as in Eqs. (8) and (9), we write∫
1

y2
dy =

∫
dx; −1

y
= x + C.

This is an implicit general solution from which we readily obtain the explicit general
solution

y(x) = − 1

x + C
. (11)

We find C by substituting the initial values x = 0, y = 2. This gives C = − 1
2 , so the

desired particular solution of the initial value problem in (10) is

y(x) = − 1

x − 1

2

= 2

1 − 2x
.

The graph of this solution, passing through the point (0, 2), is highlighted in

x

y

−6 −4 −2 6420

(0, 2)

−6

0

−4

2

−2

4

6

FIGURE 8.1.1 Solution curves of
the differential equation y′ = y2.

Fig. 8.1.1. ◗

The graph of a solution of a differential equation is called a solution curve of
the equation. Figure 8.1.1 shows a variety of different solution curves of the differen-
tial equation dy/dx = y2 of Example 2. It appears that these solution curves fill the
xy-plane. Indeed, given any fixed point (a, b) of the plane with b �= 0, we can sub-
stitute x = a and y = b in Eq. (11) and solve for C to obtain the solution curve
that passes through this point. The x-axis is also a solution curve of the differential
equation. (Why?)

The Natural Growth Equation
With x(t) in place of P(t) in Eq. (1), we have the differential equation

dx

dt
= k x , (12)

which serves as the mathematical model for an extraordinarily wide range of natural
phenomena. It is easily solved if we first “separate the variables” and then
integrate:

dx

x
= k dt;

∫
dx

x
=

∫
k dt;

ln x = k t + C.

We apply the exponential function to both sides of the last equation to solve for x :

x = eln x = ek t+C = ek t eC = Aek t .

Here, A = eC is a constant that remains to be determined. But we see that A is simply
the value x0 = x(0) of x(t) when t = 0, and thus A = x0.

THEOREM 1 The Natural Growth Equation
The solution of the initial value problem

dx

dt
= k x, x(0) = x0 (13)

is

x(t) = x0ek t . (14)
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As a consequence, Eq. (12) is often called the exponential growth equation, or
the natural growth equation. We see from Eq. (14) that, with x0 > 0, the solution x(t)
is an increasing function if k > 0 and a decreasing function if k < 0. (The situation
k < 0 is sometimes called exponential decay.) These two cases are illustrated in
Figs. 8.1.2 and 8.1.3, respectively. The remainder of this section concerns examples of
natural phenomena for which this differential equation serves as a mathematical model.

x = x0
 ekt

     (k > 0)

t

x

x0

FIGURE 8.1.2 Solution of the
exponential growth equation for k > 0.

x = x0
 ekt

     (k < 0)

t

x

x0

FIGURE 8.1.3 Solution of the
exponential growth equation—now
actually a decay equation—for the
case k < 0.

Population Growth
When we compare Eqs. (1), (12), and (14), we see that a population P(t) with growth
rate proportional to its size is given by

P(t) = P0ek t , (15)

where P0 = P(0). If t is measured in years, then the proportionality constant k in (15)
is called the annual growth rate, which can be positive, negative, or zero. Its value
is often given as a percentage (its decimal value multiplied by 100). If k is close to
zero, then this value is fairly close to the annual percentage increase (or decrease) of
the population each year.

EXAMPLE 3 According to data posted at www.census.gov, the world’s total
population reached 6 billion persons in mid-1999, and was then increasing at the rate
of about 212 thousand persons each day. Assuming that natural population growth at
this rate continues, we want to answer these questions:

(a) What is the annual growth rate k?
(b) What will the world population be at the middle of the 21st century?
(c) How long will it take for the world population to increase tenfold—thereby reach-

ing the 60 billion that some demographers believe to be the maximum for which
the planet can provide adequate food supplies?

Solution
(a) We measure the world population P(t) in billions and measure time in years. We

take t = 0 to correspond to mid-1999, so that P0 = 6. The fact that P(t) is
increasing by 212,000, or 0.000212 billion, persons per day at time t = 0 means
that

P ′(0) = (0.000212)(365.25) ≈ 0.07743

billion per year. From the natural growth equation d P/dt = k P with t = 0 we
now obtain

k = P ′(0)

P(0)
≈ 0.07743

6
≈ 0.0129.
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Thus the world population was growing at the rate of about 1.29% annually in
mid-1999. This value of k gives the world population function

P(t) = P0ek t = 6e(0.0129)t .

(b) With t = 51 we obtain the prediction

P(51) = 6e(0.0129)(51) ≈ 11.58

(billion) for the world population in mid-2050, so the population will almost
double in the 51 years following 1999.

(c) The world population should reach 60 billion when

60 = 6e(0.0129)t ; that is, when t = ln 10

0.0129
≈ 178,

thus in the year 2177. ◗

NOTE Actually, the rate of growth of the world population is expected to slow some-
what during the next half-century, and the best current prediction for the popula-
tion in the year 2050 is “only” 9.1 billion. A simple mathematical model cannot be
expected to mirror precisely the complexity of the real world.

Radioactive Decay and Radiocarbon Dating
Consider a sample of material that contains N (t) atoms of a certain radioactive isotope
at time t . Many experiments have confirmed that a constant fraction of these radioac-
tive atoms will spontaneously decay (into atoms of another element or another isotope
of the same element) during each given unit of time. Consequently, the sample behaves
exactly like a population with a constant death rate but with no births occurring. To
write a model for N (t), we use Eq. (1) with N in place of P and with −k in place of
k (so that k > 0 corresponds to a decreasing number of atoms). We thus obtain the
differential equation

d N

dt
= −k N . (16)

From the solution (14) of Eq. (12), with k replaced with −k, we conclude that

N (t) = N0e−k t , (17)

where N0 = N (0), the number of radioactive atoms of the original isotope present in
the sample at time t = 0.

The value of the decay constant k depends on the particular isotope with which
we are dealing. If k is large, then the isotope decays rapidly. If k is near zero, the
isotope decays quite slowly and thus may be a relatively persistent factor in its environ-
ment. The decay constant k is often specified in terms of another empirical parameter
that is more convenient, the half-life of the isotope. The half-life τ of a sample of a
radioactive isotope is the time required for half of that sample to decay. To find the
relationship between k and τ , we set

t = τ and N = 1
2 N0

in Eq. (17), so that

1
2 N0 = N0e−kτ . (18)

When we solve for τ , we find that

τ = ln 2

k
. (19)
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Note that the concept of half-life is meaningful—the value of τ depends only on k and
thus depends only on the particular isotope involved. It does not depend on the amount
of that isotope present.

The method of radiocarbon dating is based on the fact that the radioactive carbon
isotope 14C has a known half-life of about 5700 yr. Living organic matter maintains a
constant level of 14C by “breathing” air (or by consuming organic matter that does so).
But air contains 14C along with the much more common, stable isotope 12C of carbon,
mostly in the gas CO2. Thus all living organisms maintain the same percentage of
14C as in air, because organic processes seem to make no distinction between the two
isotopes. But when an organism dies, it ceases to metabolize carbon, and the process
of radioactive decay begins to deplete its 14C content. The fraction of 14C in the air
remains roughly constant because new 14C is continuously generated by the bombard-
ment of nitrogen atoms in the upper atmosphere by cosmic rays, and this generation has
long been in steady-state equilibrium with the loss of 14C through radioactive decay.

EXAMPLE 4 A specimen of charcoal found at Stonehenge contains 63% as much
14C as a sample of present-day charcoal. What is the age of the sample?

Solution We take t = 0 (in years) as the time of death of the tree from which the
Stonehenge charcoal was made. From Eq. (18), we know that

1
2 N0 = N0e−5700k,

so

k = ln 2

τ
= ln 2

5700
≈ 0.0001216.

We are given that N = (0.63)N0 at present, so we solve the equation

(0.63)N0 = N0e−k t

with this value of k. We thus find that

t = − ln(0.63)

0.0001216
≈ 3800 (yr).

Therefore, the sample is about 3800 yr old. If it is connected in any way with the
builders of Stonehenge, our computations suggest that this observatory, monument, or
temple—whichever it may be—dates from almost 1800 B.C. ◗

EXAMPLE 5 According to one cosmological theory, there were equal amounts of
the uranium isotopes 235U and 238U at the creation of the universe in the “big bang.”
At present there are 137.7 238U atoms for each 235U atom. Using the known half-lives

4.51billion yr for 238U,

0.71 billion yr for 235U,

calculate the age of the universe.

Solution Let N8(t) and N5(t) be the numbers of 238U and 235U atoms, respectively,
at time t , in billions of years after the creation of the universe. Then

N8(t) = N0e−k t and N5(t) = N0e−ct ,

where N0 is the initial number of atoms of each isotope. Also,

k = ln 2

4.51
and c = ln 2

0.71
,

a consequence of Eq. (19). We divide the equation for N8 by the equation for N5 and
find that when t has the value corresponding to “now,”

137.7 = N8

N5
= e(c−k)t .
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Finally, we solve this equation for t :

t = ln(137.7)(
1

0.71
− 1

4.51

)
ln 2

≈ 5.99.

Thus we estimate the age of the universe to be about 6 billion years, which is roughly
on the same order of magnitude as recent estimates of 10 to 15 billion years (based on
astronomical observations of the rate of expansion of the universe). ◗

More Natural Growth and Decay Models

Continuously Compounded Interest Consider a savings account that is opened with
an initial deposit of A 0 dollars and earns interest at the annual rate r . If there are A(t)
dollars in the account at time t and the interest is compounded at time t + �t , this
means that r A(t)�t dollars in interest are added to the account then. So

A(t + �t) = A(t) + r A(t) �t,

and thus
�A

�t
= A(t + �t) − A(t)

�t
= rA(t).

Continuous compounding of interest results from taking the limit as �t → 0, so

d A

dt
= r A. (20)

This is an exponential growth equation with solution

A(t) = A 0ert . (21)

EXAMPLE 6 If A 0 = $1000 is invested at an annual interest rate of 6% compounded
continuously, then r = 0.06, and Eq. (21) gives

A(1) = 1000e(0.06)(1) = $1061.84

for the value of the investment after one year. Hence the effective annual interest rate is
6.184%. Thus the more often interest is compounded, the more rapidly savings grow,
but bank advertisements sometimes overemphasize this advantage. For instance, 6%
compounded monthly multiplies your investment by

1 + 0.06

12
= 1.005

at the end of each month, so an initial investment of $1000 would grow in one year to

(1000)(1.005)12 = $1061.68,

only 16/c less than would be yielded by continuous compounding. ◗

Drug Elimination The amount A(t) of a certain drug in the human bloodstream, as
measured by the excess above the natural level of the drug in the bloodstream, typically
declines at a rate proportional to that excess amount. That is,

d A

dt
= −λA, so A(t) = A 0e−λt . (22)

The parameter λ is called the elimination constant of the drug, and T = 1/λ is called
the elimination time.

EXAMPLE 7 The elimination time for alcohol varies from one person to another.
If a person’s “sobering time” T = 1/λ is 2.5 h, how long will it take the excess
bloodstream alcohol concentration to be reduced from 0.10% to 0.02%?
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Solution We assume that the normal concentration of alcohol in the blood is zero,
so any amount is an excess amount. In this problem, we have λ = 1/2.5 = 0.4, so
Eq. (22) yields

0.02 = (0.10)e−(0.4)t .

Thus

t = − ln(0.2)

0.4
≈ 4.02 (h). ◗

Sales Decline According to marketing studies, if advertising for a particular product
is halted and other market conditions—such things as number and promotion of com-
peting products, their prices, and so on—remain unchanged, then the sales of the un-
advertised product will decline at a rate that is proportional at any time t to the current
sales S. That is,

d S

dt
= −λS, so S(t) = S0e−λt .

Here S0 denotes the initial value of the sales, which we take to be sales in the final
month of advertising. If we take months as the units for time t , then S(t) gives the
number of sales t months after advertising is halted, and λ might be called the sales
decay constant.

Linguistics Consider a basic list of N0 words in use in a given language at time t =
0. Let N (t) denote the number of these words that are still in use at time t—those
that have neither disappeared from the language nor been replaced. According to one
theory in linguistics, the rate of decrease of N is proportional to N . That is,

d N

dt
= −λN , so N (t) = N0e−λt .

If t is measured in millennia (as is standard in linguistics), then k = e−λ is the fraction
of the words in the original list that survive for 1000 yr.

Torricelli's Law
Suppose that a water tank has a hole with area a at its bottom and that water is drain-y

x

y

dy

dt

Area a

Area
A(y)

FIGURE 8.1.4 Derivation of
Torricelli’s law.

ing from the hole. Denote by y(t) the depth (in feet) of water in the tank at time t
(in seconds) and by V (t) the volume of water (in cubic feet) in the tank then. It is
plausible—and true under ideal conditions—that the velocity of the stream of water
exiting through the hole is

v = √
2gy (g ≈ 32 ft/s2), (23)

which is the velocity that a drop of water would acquire in falling freely from the water
surface to the hole. This is Torricelli’s law of draining.

As indicated in Fig. 8.1.4, the amount of water that leaves through the bot-
tom hole during a short time interval dt amounts to a cylinder with base area a and
height v dt . Hence the resulting change dV in the volume of water in the tank is
given by

dV = −av dt = −a
√

2gy dt. (24)

But if A(y) denotes the horizontal cross-sectional area of the tank at height y above
the hole, then

dV = A(y) dy, (25)

as usual. Comparing Eqs. (24) and (25), we see that y(t) satisfies the differential
equation

A(y)
dy

dt
= −a

√
2gy. (26)
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In some applications this is a very convenient form of Torricelli’s law. In other situa-
tions you may prefer to work with the differential equation in (24) in the form

dV

dt
= −a

√
2gy (27)

or, if the area of the bottom hole is unknown, the form

y

FIGURE 8.1.5 A cylindrical water
tank has constant cross-sectional
area.

dV

dt
= −c

√
y, (general tank) (28)

where c = a
√

2g is a positive constant.
Cylindrical water tanks are common (Fig. 8.1.5). In this case the cross-sectional

area function in Eq. (26) is constant: A(y) ≡ A. Consequently Eq. (26) reduces to the
simple differential equation

dy

dt
= −k

√
y (cylindrical tank) (29)

where k = (a/A)
√

2g is a positive constant that frequently is determined from given
tank-draining data (rather than from a knowledge of the areas a and A).

EXAMPLE 8 The water in a draining cylindrical tank is 10 ft deep at noon. At
1:00 P.M. it is 5 ft deep. When will the tank be empty?

Solution If we write Eq. (29) in the form

1√
y

· dy

dt
= −k,

then integration yields

2
√

y = −k t + C.

Substituting the initial data y = 10 when t = 0 (noon) gives C = 2
√

10, so

2
√

y = −k t + 2
√

10. (30)

Then substituting the additional data y = 5 when t = 1 (1:00 P.M.) gives k = 2
√

10 −
2
√

5. Substituting this value in Eq. (30) and dividing by 2 yields

√
y = (√

5 − √
10

)
t + √

10. (31)

Finally, the tank is empty when y = 0 in Eq. (31), and thus when

t =
√

10√
10 − √

5
≈ 3.414,

about 3 h 25 min. So we see that—whereas a natural (but naive and wrong) guess
might have been 2:00 P.M. (one more hour for the remaining 5 ft of water to drain)—
the tank actually is not empty until about 3:25 P.M. You should use Eq. (31) to show
that the actual water depth in the tank at 2:00 P.M. is about 1.72 ft, and the depth at
3:00 P.M. is about 2 in., so it takes about 25 min for the last 2 in. of water in the tank
to drain! ◗

EXAMPLE 9 A hemispherical tank has top radius 4 ft and, at time t = 0, is full of
water. At that moment a circular hole of diameter 1 in. is opened in the bottom of the
tank. How long will it take for all the water to drain from the tank?
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Solution From the right triangle in Fig. 8.1.6, we see that

Water flow

4 − y

y

4

r

FIGURE 8.1.6 Draining a
hemispherical tank.

A(y) = πr2 = π [16 − (4 − y)2] = π(8y − y2).

With g = 32 ft/s2, Eq. (26) takes the form

π(8y − y2)
dy

dt
= −π

(
1

24

)2 √
64y;∫ (

8y1/2 − y3/2
)

dy = −
∫

1

72
dt + C;

16

3
y3/2 − 2

5
y5/2 = − 1

72
t + C.

Now y(0) = 4, so

C = 16
3 · 43/2 − 2

5 · 45/2 = 448
15 .

The tank is empty when y = 0—that is, when

t = 72 · 448
15 ≈ 2150 (s),

about 35 min 50 s. So it takes slightly less than 36 min for the tank to drain. ◗

8.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. An initial condition for a differential equation with independent variable x must
specify the value of the solution when x = 0.

2. A given differential equation ordinarily has only a single solution.
3. By “separating the variables,” the problem of solving a differential equation with

the independent variable missing can always be reduced to the problem of evalu-
ating an integral.

4. A single differential equation can have many different solution curves.
5. A solution of a natural growth equation dx/dt = kx (with k > 0) may or may

not involve exponential functions.
6. The population of the world can reasonably be expected to double between the

years 2000 and 2010.
7. The half-life of a sample of a radioactive isotope is half the time required for that

sample to decay.
8. The method of radiocarbon dating involves the assumption that all living organ-

isms maintain the same percentage of the radioactive isotope of carbon as is
found in the air.

9. If a savings account earns interest that is compounded continuously, then the
amount in the account at time t is described by an exponential function of t .

10. Torricelli’s law implies that, for any draining tank with an open bottom hole, the
time rate of decrease of the depth y of the water is proportional to

√
y.

8.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. Do the solution curves of the natural growth equation dy/dx = ky (with k a

constant) fill the entire xy-plane?
2. Do the solution curves of the differential equation dy/dx = k

√
y (with k a

constant) fill the entire xy-plane?
3. Can one solve the differential equation dy/dx = xy simply by integrating both

sides with respect to x? Justify your answer.
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8.1 PROBLEMS

In each of Problems 1 through 10, first find a general solution of
the given differential equation. Then find a particular solution
that satisfies the given initial condition.

1.
dy

dx
= 2y, y(1) = 3 2.

dy

dx
= −3y, y(5) = −10

3.
dy

dx
= 2y2, y(7) = 3 4.

dy

dx
= 7

y
, y(0) = 6

5.
dy

dx
= 2

√
y, y(0) = 9 6.

dy

dx
= 6y2/3, y(1) = 8

7.
dy

dx
= 1 + y, y(0) = 5 8.

dy

dx
= (2+ y)2, y(5) = 3

9.
dy

dx
= e−y, y(0) = 2 10.

dy

dx
= 2 sec y, y(0) = 0

In Problems 11 through 15, a function y = g(x) is described
by a geometric property of its graph. Write a differential equa-
tion of the form dy/dx = F(x, y) having the function g as a
solution.

11. The slope of the graph of g at the point (x, y) is the sum of
x and y.

12. The line tangent to the graph of g at the point (x, y) inter-
sects the x-axis at the point (x/2, 0).

13. Every straight line normal to the graph of g passes through
the point (0, 1).

14. The graph of g is normal to every curve of the form y = kx2

(k is a constant) where they meet.

15. The line tangent to the graph of g at the point (x, y) passes
through the point (−y, x).

In Problems 16 through 20, write—in the manner of Eqs. (1) and
(2) of this section—a differential equation that is a mathematical
model of the situation described.

16. The time rate of change of a population P = P(t) is propor-
tional to the square root of P .

17. The time rate of change of the velocity v = v(t) of a coasting
motorboat is proportional to the square of v.

18. The acceleration dv/dt of a Lamborghini is proportional to
the difference between 250 km/h and the velocity of the car.

19. In a city having a fixed population P of persons, the time
rate of change of the number N of those persons who have
heard a certain rumor is proportional to the number of those
who have not yet heard the rumor.

20. In a city with a fixed population P of persons, the time rate
of change of the number N of those persons infected with a
certain contagious disease is proportional to the product of
the number who have the disease and the number who do
not.

21. Continuously Compounded Interest Suppose that $1000
is deposited in a savings account that pays 8% annual inter-
est compounded continuously. At what rate (in dollars per
year) is it earning interest after 5 yr? After 20 yr?

22. Population Growth Coopersville had a population of
25,000 in 1970 and a population of 30,000 in 1980. As-
sume that its population will continue to grow exponentially
at a constant rate. What population can the Coopersville city
planners expect in the year 2010?

23. Population Growth In a certain culture of bacteria, the
number of bacteria increased sixfold in 10 h. Assuming nat-
ural growth, how long did it take for their number to double?

24. Radiocarbon Dating Carbon extracted from an ancient
skull recently unearthed contained only one-sixth as much
radioactive 14C as carbon extracted from present-day bone.
How old is the skull?

25. Radiocarbon Dating Carbon taken from a relic purported
to date from A.D. 30 contained 4.6 × 1010 atoms of 14C per
gram. Carbon extracted from a present-day specimen of the
same substance contained 5.0 × 1010 atoms of 14C per gram.
Compute the approximate age of the relic. What is your
opinion as to its authenticity?

26. Continuously Compounded Interest Upon the birth of
their first child, a couple deposited $5000 in a savings ac-
count that pays 6% annual interest compounded continu-
ously. The interest payments are allowed to accumulate.
How much will the account contain when the child is ready
to go to college at age 18?

27. Continuously Compounded Interest You discover in your
attic an overdue library book on which your great-great-
great-grandfather owed a fine of 30/c exactly 100 years ago.
If an overdue fine grows exponentially at a 5% annual in-
terest rate compounded continuously, how much would you
have to pay if you returned the book today?

28. Drug Elimination Suppose that sodium pentobarbital will
anesthetize a dog when its bloodstream contains at least
45 mg of sodium pentobarbital per kilogram of body weight
of the dog. Suppose also that sodium pentobarbital is elim-
inated exponentially from a dog’s bloodstream, with a half-
life of 5 h. What single dose should be administered to anes-
thetize a 50-kg dog for 1 h?

29. Sales Decline Moonbeam Motors has discontinued adver-
tising of their sports-utility vehicle. The company plans to
resume advertising when sales have declined to 75% of their
initial rate. If after 1 week without advertising, sales have
declined to 95% of their initial rate, when should the com-
pany expect to resume advertising?

30. Linguistics The English language evolves in such a way
that 77% of all words disappear (or are replaced) every 1000
yr. Of a basic list of words used by Chaucer in A.D. 1400,
what percentage should we expect to find still in use today?

31. Radioactive Decay The half-life of radioactive cobalt is
5.27 yr. Suppose that a nuclear accident has left the level
of cobalt radiation in a certain region at 100 times the level
acceptable for human habitation. How long will it be before
the region is again habitable? (Ignore the likely presence of
other radioactive substances.)

32. Radioactive Decay Suppose that a rare mineral deposit
formed in an ancient cataclysm—such as the collision of a
meteorite with the earth—originally contained the uranium
isotope 238U (which has a half-life of 4.51×109 yr) but none
of the lead isotope 207Pb, the end product of the radioactive
decay of 238U. If the ratio of 238U atoms to 207Pb atoms in the
mineral deposit today is 0.9, when did the cataclysm occur?
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33. A bacteria population P(t) undergoing natural growth num-
bers 49 at 12 noon. (a) Suppose that there are 294 bacteria at
1:00 P.M. Write a formula giving P(t) after t hours. (b) How
many bacteria are there at 1:40 P.M.? (c) At what time—to
the nearest minute—will there be 20 thousand bacteria?

34. The amount A(t) of atmospheric pollutants in a certain
mountain valley satisfies the natural growth equation and
triples every 7.5 years. (a) If the initial amount is 10
pu (“pollution units”), write a formula for A(t) giving the
amount (in pu) present after t years. (b) What will be the
amount of pollutants present in the valley atmosphere after 5
years? (c) If it will be dangerous to stay in the valley when
the amount of pollutants reaches 100 pu, how long will this
take?

35. An accident at a nuclear power plant has left the surround-
ing area polluted with radioactive material that undergoes
natural decay. The initial amount of radioactive material
present is 15 su (“safe units”) and 5 months later it is 10 su.
(a) Write a formula giving the amount A(t) of radioactive
material (in su) remaining after t months. (b) What amount
of radioactive material will remain after 8 months? (c) How
long—total number of months or fraction thereof—will it be
until A(t) = 1 (su), so it is safe for people to return to the
area?

36. There are now about 3300 different human language fam-
ilies in the whole world. Assume that all of these are de-
rived from a single original language and that a language
family develops into 1.5 language families every 6 thousand
years. About how long ago was the single original human
language spoken?

37. Thousand of years ago ancestors of the Native Americans
crossed the Bering Strait from Asia and entered the west-
ern hemisphere. Since then, they have fanned out across
North and South America. The single language that the orig-
inal Native Americans spoke has since split into many lan-
guage families. Assume (as in Problem 36) that the number
of these language families has been multiplied by 1.5 every
6000 years. There are now 150 Native American language
families in the western hemisphere. About when did the an-
cestors of today’s Native Americans arrive?

38. In 1998 there were 40 million Internet users in the world and
this number was then doubling every 100 days. Assuming
that this rate of growth continued, how long would it be until
all the world’s 6 billion human beings were using the Inter-
net?

39. A tank shaped like a vertical cylinder initially contains
water to a depth of 9 ft (Fig. 8.1.7). A bottom plug is pulled
at time t = 0 (t in hours). After 1 h the depth has dropped
to 4 ft. How long will it take all the water to drain from this
tank?

9

y

r

FIGURE 8.1.7 The cylindrical
tank of Problem 39.

40. Suppose that the tank of Problem 39 has a radius of 3 ft and
that its bottom hole is circular with radius 1 in. How long
will it take for the water, initially 9 ft deep, to drain com-
pletely?

41. A water tank is in the shape of a right circular cone with its
axis vertical and its vertex at the bottom. The tank is 16 ft
high and the radius of its top is 5 ft. At time t = 0, a plug
at its vertex is removed and the tank, initially full of water,
begins to drain. After 1 h the water in the tank is 9 ft deep.
When will the tank be empty (Fig. 8.1.8)?

r

5

16

y

FIGURE 8.1.8 The conical
tank of Problem 41.

42. Suppose that a cylindrical tank (axis vertical) initially con-
taining V0 liters of water drains through a bottom hole in T
minutes. Use Torricelli’s law to show that the volume of wa-
ter in the tank after t � T minutes is V (t) = V0[1 − (t/T )]2.

43. The shape of a water tank is obtained by revolving the
curve y = x4/3 around the y-axis (units on the coordi-
nate axes are in feet). A plug at the bottom is removed at
12 noon, when the water depth in the tank is 12 ft. At 1 P.M.
the water depth is 6 ft. When will the tank be empty?

44. The shape of a water tank is obtained by revolving the
parabola y = x2 around the y-axis (units on the coordinate
axes are in feet; see Fig. 8.1.9). The water depth is 4 ft at
12 noon; at that time, a plug in a circular hole at the bot-
tom of the tank is removed. At 1 P.M. the water level is 1 ft.
(a) Find the water depth y(t) after t hours. (b) When will the
tank be empty? (c) What is the radius of the circular hole at
the bottom?

y

x

y

(2, 4)

y = x2

x

FIGURE 8.1.9 The tank of
Problem 44.
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45. A cylindrical tank of length 5 ft and radius 3 ft is situated
with its axis horizontal. If a circular bottom hole of radius 1
in. is opened and the tank is initially half full of xylene, how
long will it take the liquid to drain completely?

46. A spherical tank of radius 25 cm is full of mercury when a
circular bottom hole of radius 5 mm is opened. How long
will it be before all of the mercury drains from the tank?
(Use g = 9.8 m/s2.)

47. The Clepsydra, or Water Clock A 12-h water clock is to be
designed with the dimensions shown in Fig. 8.1.10, shaped
like the surface obtained by revolving the curve y = f (x)

around the y-axis. What equation should this curve have,
and what radius should the bottom hole have, so that the wa-
ter level will fall at the constant rate of 4 in./h?

y

y = f(x)
or

x = g(y)

x

x

1 ft

y

4 ft

FIGURE 8.1.10 The clepsydra
of Problem 47.

8.2 SLOPE FIELDS AND EULER'S METHOD

Consider a differential equation of the form dy/dx = F(x, y), where F(x, y) contains
both the variables x and y. To solve it, we might think of integrating both sides with
respect to x , and hence write y(x) = ∫

F(x, y(x)) dx + C . Unfortunately, this does
not provide a solution of the differential equation because the integral involves the
unknown function y(x) itself. In fact, there exists no straightforward procedure by
which a general differential equation can be solved explicitly. Indeed, the solutions of
such a simple-looking differential equation as dy/dx = x2 + y2 cannot be expressed
in terms of the ordinary elementary functions studied in calculus. Nevertheless, the
graphical and numerical methods of this section can be used to construct approximate
solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions
There is a simple geometric way to think about solutions of a given differential equationy

(x1, y1)

(x2, y2)

(x3, y3)

x

FIGURE 8.2.1 A solution curve for
the differential equation y′ = x − y
together with tangent lines having

• slope m1 = x1 − y1 at the
point (x1, y1);

• slope m2 = x2 − y2 at the
point (x2, y2); and

• slope m3 = x3 − y3 at the
point (x3, y3).

dy/dx = F(x, y). At each point (x, y) of the xy-plane at which F is defined, the value
of F(x, y) determines a slope m = y′(x) = F(x, y). A solution of the differential
equation is simply a function whose graph has this “correct slope” at each point through
which it passes. Thus a solution curve of the differential equation dy/dx = F(x, y)—
the graph of a solution of this equation—is simply a curve in the xy-plane whose
tangent line at each point (x, y) has slope m = F(x, y). For instance, Fig. 8.2.1 shows
a solution curve of the differential equation dy/dx = x − y together with lines tangent
at three typical points.

This geometric viewpoint suggests a graphical method for constructing approx-
imate solutions of the differential equation dy/dx = F(x, y). Through each of a
representative collection of points (x, y) in the plane we draw a short line segment
having the proper slope m = F(x, y). All these line segments constitute a slope field
(or direction field) for the equation dy/dx = F(x, y).

This slope field suggests visually the general shapes of solution curves of the
differential equation. Through each point a solution curve should proceed in such a
direction that its tangent line is nearly parallel to the nearby line segments of the slope
field. Beginning at any initial point (a, b), we can attempt to sketch freehand a solution
curve that threads its way through the slope field, following the visible line segments
as closely as possible.

EXAMPLE 1 Construct a slope field for the differential equation dy/dx = x − y and
use it to sketch a solution curve that passes through the point (−4, 4).

Solution Figure 8.2.2 shows a table of slopes for the given equation. The numerical
slope m = x − y appears at the intersection of the horizontal x-row and the vertical
y-column of the table. If you inspect the pattern of upper-left to lower-right diagonals
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�
��x

y −4 −3 −2 −1 0 1 2 3 4

−4 0 −1 −2 −3 −4 −5 −6 −7 −8
−3 1 0 −1 −2 −3 −4 −5 −6 −7
−2 2 1 0 −1 −2 −3 −4 −5 −6
−1 3 2 1 0 −1 −2 −3 −4 −5

0 4 3 2 1 0 −1 −2 −3 −4
1 5 4 3 2 1 0 −1 −2 −3
2 6 5 4 3 2 1 0 −1 −2
3 7 6 5 4 3 2 1 0 −1
4 8 7 6 5 4 3 2 1 0

FIGURE 8.2.2 Values of the slope y ′ = x − y for −4 ≤ x , y ≤ 4.

in this table, you can see that it was easily and quickly constructed. (Of course, a
more complicated function F(x, y) on the right-hand side of the differential equation
would necessitate more complicated calculations.) Figure 8.2.3 shows the correspond-
ing slope field; Fig. 8.2.4 shows a solution curve sketched through the point (−4, 4) in
such a way as to follow this slope field as closely as possible. At each point the solution
curve appears to proceed in the direction indicated by the nearby line segments of the
slope field. ◗

x

y

−5 50
−5

0

5

FIGURE 8.2.3 Slope field for
y′ = x − y corresponding to the
table of slopes in Fig. 8.2.2.

x

y

−5 50
−5

0

−4

1

−3

2

−2

3

−1

4
5

(−4, 4)

FIGURE 8.2.4 The solution curve
through (−4, 4).

The 81 slope segments in Fig. 8.2.3 are tedious to construct by hand. Fortunately,
most computer algebra systems include commands for quick and ready construction of
slope fields with as many line segments as desired; such commands are illustrated in
the project material for this section. The more line segments are constructed, the more
accurately solution curves can be visualized and sketched. Figure 8.2.4 shows a “finer”
slope field for the differential equation dy/dx = x − y of Example 1, together with
typical solution curves threading through this slope field.

If you look closely at Fig. 8.2.5, you may detect a solution curve that appears to
be a straight line! Indeed, you can verify that the linear function y = x −1 is a solution
of the equation dy/dx = x − y, and it appears likely that the other solution curves
approach this straight line as an asymptote as x → +∞. This inference illustrates
the fact that a slope field can suggest tangible information about solutions that is not
at all evident from the differential equation itself. Can you, by tracing the appropriate
solution curve in this figure, infer that y(3) ≈ 2 if y(x) is the solution of the initial

x

y

−4 0−3 1−2 2−1 3 4

0

−4

1

−3

2

−2

3

−1

4

FIGURE 8.2.5 Slope field and
typical solution curves for
y′ = x − y.

value problem dy/dx = x − y, y(−4) = 4?
The next two examples illustrate the use of slope fields to glean useful informa-

tion in physical situations that are modeled by differential equations. Example 2 is
based on the fact that a baseball moving through the air at moderate velocity v (less
than about 300 ft/s) encounters air resistance that is approximately proportional to the
magnitude of v. If the baseball is thrown straight downward from the top of a tall
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building or from a hovering helicopter, then it experiences both the downward accel-
eration of gravity and an upward acceleration due to air resistance. If the y-axis is
directed downward, then the ball’s velocity v = dy/dx and its gravitational acceler-
ation g = 32 ft/s2 are both positive, whereas its acceleration due to air resistance is
negative. Hence its total acceleration has the form

dv

dt
= g − kv. (1)

A typical value of the air resistance proportionality constant might be k = 0.16.

EXAMPLE 2 Suppose that you throw a baseball straight downward from a helicopter
hovering at an altitude of 3000 ft. You wonder whether someone standing on the
ground directly below could conceivably catch the ball. To estimate the speed with
which the ball will land, you use your laptop’s computer algebra system to construct a
slope field for the differential equation

dv

dt
= 32 − (0.16)v. (2)

The result is shown in Fig. 8.2.6, together with a number of solution curves cor-
responding to different values of the initial velocity v(0) with which you might throw
the baseball downward. Note that all these solution curves appear to approach the hor-
izontal line v = 200 as an asymptote. This means that—however you throw it—the
baseball should approach the limiting velocity v = 200 ft/s instead of accelerating in-
definitely (as it would in the absence of air resistance). The useful fact that 60 mi/h is
the same speed as 88 ft/s yields

v = 200
ft

s
× 60 mi/h

88 ft/s
≈ 136.36

mi

h
.

Perhaps a catcher accustomed to 100 mi/h fastballs would have some chance of fielding
this speeding ball. ◗

t

v

250 5 10 15 20
0

200

100

300

400

FIGURE 8.2.6 Slope field and typical
solution curves for v′ = 32 − 0.16v.

COMMENT If the initial velocity of the ball is v(0) = 200, then Eq. (2) gives v′(0) =
32 − (0.16) · (200) = 0, so the ball experiences no initial acceleration. Its velocity
therefore remains unchanged, and hence v(t) ≡ 200 is a constant “equilibrium solu-
tion” of the differential equation. If the initial velocity is greater than 200, then the
initial acceleration given in Eq. (2) is negative, so the ball slows as it falls. But if the
initial velocity is less than 200, then the initial acceleration given in (2) is positive, so
the ball gains speed as it falls. It therefore seems quite reasonable that, because of air
resistance, the baseball will approach a limiting velocity of 200 ft/s, whatever its initial
velocity might be. You might like to verify that—in the absence of air resistance—this
ball would hit the ground at over 300 mi/h.
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In Section 8.5 we will discuss in detail the logistic differential equation

d P

dt
= k P(M − P), (3)

which often is used to model a population P(t) that inhabits an environment with car-
rying capacity M. This means that M is the maximum population that this environment
can sustain on a long-term basis (in terms of available food and space, for instance).

EXAMPLE 3 If we take k = 0.0004 and M = 150, then the logistic equation in (3)
takes the form

d P

dt
= (0.0004)P · (150 − P) = (0.06)P − (0.0004)P2. (4)

The positive term (0.06)P on the right in (4) corresponds to natural growth at a 6%
annual rate (with time t measured in years). The negative term −(0.0004)P2 represents
the inhibition of growth due to limited resources in the environment.

Figure 8.2.7 shows a slope field for Eq. (4) together with a number of solution
curves corresponding to possible different values of the initial population P(0). Note
that all these solution curves appear to approach the horizontal line P = 150 as an
asymptote. This means that—whatever the initial population—the population P(t)
approaches the limiting population P = 150 as t → +∞. ◗

t

P

0 25 50 75 100
0

50

100

150

200

250

300

FIGURE 8.2.7 Slope field and typical
solution curves for P ′ = 0.06P − 0.0004P2.

COMMENT If the initial population is P(0) = 150, then Eq. (4) gives

P ′(0) = (0.0004)(150) · (150 − 150) = 0,

so the population experiences no initial (instantaneous) change. It therefore remains
unchanged, and hence P(t) ≡ 150 is a constant “equilibrium solution” of the differen-
tial equation in (4). If the initial population is greater than 150, then the initial rate of
change given by (4) is negative, so the population immediately begins to decrease. But
if the initial population is less than 150 (but positive), then the initial rate of change
given by (4) is positive, so the population immediately begins to increase. It there-
fore seems quite reasonable that the population will approach a limiting value of 150,
whatever the (positive) initial population.

Euler's Method and Numerical Solutions
An old-fashioned computer plotter—one that uses an ink pen to draw curves mechan-
ically—can be programmed to draw a solution curve that begins at the point (x0, y0)

and threads its way through the slope field of a given differential equation dy/dx =
F(x, y). The procedure that the plotter carries out can be described as follows.

• The plotter pen begins at the initial point (x0, y0) and moves a tiny distance along
the slope segment through (x0, y0). This takes it to the point (x1, y1).
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• At (x1, y1) the pen changes direction and now moves a tiny distance along the
slope segment through this new starting point (x1, y1). This takes it to the next
starting point (x2, y2).

• At (x2, y2) the pen direction changes again and now moves a tiny distance along
the slope segment through (x2, y2). This takes it to the next starting point (x3, y3).

Figure 8.2.8 illustrates the result of continuing in this fashion—by a sequence
of discrete straight-line steps from one starting point to the next. In this figure we
see a polygonal curve consisting of line segments that connect the successive points
(x0, y0), (x1, y1), (x2, y2), (x3, y3), . . . . But suppose that each “tiny distance” that the
pen travels along a slope segment—before the course correction that sends it along a
fresh new slope segment—is so small that the naked eye cannot distinguish the individ-
ual line segments constituting the polygonal curve. Then the resulting polygonal curve
looks like a smooth, continuously turning solution curve of the differential equation.
Indeed, this is (in essence) how the solution curves shown in the figures of this chapter

y

(x1, y1)(x0, y0)

(x3, y3)

Solution curve

(x2, y2)

x

FIGURE 8.2.8 The first few steps
in approximating a solution curve.

were computer-generated.
Euler did not have a computer plotter (it was the 18th century), and his idea was

to do all this numerically rather than graphically. To approximate the solution of the
initial value problem

dy

dx
= F(x, y), y(x0) = y0, (5)

we first choose a fixed (horizontal) step size h to use in making each step from one
point to the next. Suppose that we have begun at the initial point (x0, y0) and, after
n steps, have reached the point (xn, yn). Then the step from (xn, yn) to the next point

(xn, yn) h

h ⋅F (xn, yn)

slope
F (xn, yn)

(xn + 1, yn)

(xn + 1, yn + 1)

FIGURE 8.2.9 The step from
(xn, yn) to (xn+1, yn+1).

(xn+1, yn+1) is illustrated in Fig. 8.2.9. The slope of the direction segment through
(xn, yn) is m = F(xn, yn). Hence a horizontal change of size h from xn to xn+1

corresponds to a vertical change of size m · h = h·F(xn, yn) from yn to yn+1. Therefore
the coordinates of the new point (xn+1, yn+1) are given in terms of the old coordinates
by

xn+1 = xn + h, yn+1 = yn + h · F(xn, yn). (6)

Given the initial value problem in (5), Euler’s method with step size h consists
of beginning with the initial point (x0, y0) and applying the formulas

x1 = x0 + h, y1 = y0 + h · F(x0, y0);
x2 = x1 + h, y2 = y1 + h · F(x1, y1);
x3 = x2 + h, y3 = y2 + h · F(x2, y2);

...
...

(7)

to calculate successive points (x1, y1), (x2, y2), (x3, y3), . . . on an approximate solu-
tion curve.

But we do not ordinarily sketch the corresponding polygonal approximation. In-
stead, the numerical result of applying Euler’s method is the sequence of approxima-
tions

y1, y2, y3, . . . , yn, . . .

to the true values

y(x1), y(x2), y(x3), . . . , y(xn), . . .

at the points x1, x2, x3, . . . , xn, . . . of the exact (although unknown) solution of the
initial value problem. These results typically are presented in the form of a table of
approximate values of the desired solution.
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EXAMPLE 4

(a) Apply Euler’s method to approximate the solution of the initial value problem

dy

dx
= x + 1

5
y, y(0) = −3, (8)

with step size h = 1 on the interval [0, 5].
(b) Repeat part (a), but use step size h = 0.2 and the interval [0, 1].

Solution
(a) With x0 = 0, y0 = −3, F(x, y) = x + 1

5 y, and h = 1, the equations in (7)
yield the approximate values

y1 = y0 + h · [
x0 + 1

5 y0
] = (−3) + 1 · [

0 + 1
5 (−3)

] = −3.6,

y2 = y1 + h · [
x1 + 1

5 y1
] = (−3.6) + 1 · [

1 + 1
5 (−3.6)

] = −3.32,

y3 = y2 + h · [
x2 + 1

5 y2
] = (−3.32) + 1 · [

2 + 1
5 (−3.32)

] = −1.984,

y4 = y3 + h · [
x3 + 1

5 y3
] = (−1.984) + 1 · [

3 + 1
5 (−1.984)

] = 0.6192,

and

y5 = y4 + h · [
x4 + 1

5 y4
] = (0.6912) + 1 · [

4 + 1
5 (0.6912)

] = 4.74304

at the points x1 = 1, x2 = 2, x3 = 3, x4 = 4, and x5 = 5. Note how the result of
each calculation feeds into the next. The resulting table of approximate values is
shown next.

x 0 1 2 3 4 5

Approx. y −3 −3.6 −3.32 −1.984 0.6912 4.74304

Figure 8.2.10 shows the graph of this approximation, together with the
graphs of the Euler approximations obtained with step sizes h = 0.2 and h =
0.05. The exact solution is the highest curve in the figure. We see that decreasing
the step size increases the accuracy, but with any given step size, the accuracy
decreases with distance from the initial point.

x

Exact solution

h = 0.05

y

50 1 2 3 4
−5

−3

10

5

0

h = 0.2
h = 1

FIGURE 8.2.10 Graphs of Euler approximations with step
sizes h = 1, h = 0.2, and h = 0.05.
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(b) We begin anew with x0 = 0, y0 = 3, F(x, y) = x + 1
5 y, and h = 0.2. The

equations in (7) yield the approximate values

y1 = y0 + h · [
x0 + 1

5 y0
]

= (−3) + (0.2) · [
0 + 1

5 (−3)
] = −3.12,

y2 = y1 + h · [
x1 + 1

5 y1
]

= (−3.12) + (0.2) · [
0.2 + 1

5 (−3.12)
] ≈ −3.205,

y3 = y2 + h · [
x2 + 1

5 y2
]

= (−3.205) + (0.2) · [
0.4 + 1

5 (−3.205)
] ≈ −3.253,

y4 = y3 + h · [
x3 + 1

5 y3
]

= (−3.253) + (0.2) · [
0.6 + 1

5 (−3.253)
] ≈ −3.263, and

y5 = y4 + h · [
x4 + 1

5 y4
]

= (−3.263) + (0.2) · [
0.8 + 1

5 (−3.263)
] ≈ −3.234

at the points x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, and x5 = 1. The resulting
table of values is next.

x 0 0.2 0.4 0.6 0.8 1

Approx. y −3 −3.12 −3.205 −3.253 −3.263 −3.234

High accuracy with Euler’s method usually requires a very small step size,
and hence a larger number of steps than can reasonably be carried out by hand.
The project material for this section contains calculator and computer programs
for automating Euler’s method. One of these programs was used to calculate the
entries in the table in Fig. 8.2.11. We see that 500 Euler steps (with step size
h = 0.002) from x = 0 to x = 1 yield values with errors not exceeding 0.001.

◗

Approx. y Approx. y Approx. y Actual
x with h = 0.2 with h = 0.02 with h = 0.002 Value of y

0 −3.000 −3.000 −3.000 −3.000
0.2 −3.120 −3.104 −3.102 −3.102
0.4 −3.205 −3.171 −3.168 −3.168
0.6 −3.253 −3.201 −3.196 −3.195
0.8 −3.263 −3.191 −3.184 −3.183
1 −3.234 −3.140 −3.130 −3.129

FIGURE 8.2.11 Euler approximations with step sizes h = 0.2, h = 0.02, and h = 0.002.

EXAMPLE 5 Suppose that the baseball of Example 2 is simply dropped (instead of
being thrown downward) from the helicopter. Then its velocity v(t) after t seconds
satisfies the initial value problem

dv

dt
= 32 − (0.16)v, v(0) = 0. (9)

We use Euler’s method with h = 1 to track the ball’s increasing velocity at 1-second
intervals for the first 10 seconds of fall. With t0 = 0, v0 = 0, F(t, v) = 32 − (0.16)v,
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and h = 1, the equations in (7) yield the approximate values

v1 = v0 + h · [32 − (0.16)v0] = (0) + 1 · [32 − (0.16)(0)] = 32,

v2 = v1 + h · [32 − (0.16)v1] = (32) + 1 · [32 − (0.16)(32)] = 58.88,

v3 = v2 + h · [32 − (0.16)v2] = (58.88) + 1 · [32 − (0.16)(58.88)] ≈ 81.46,

v4 = v3 + h · [32 − (0.16)v3] = (81.46) + 1 · [32 − (0.16)(81.46)] ≈ 100.43, and

v5 = v4 + h · [32 − (0.16)v4] = (100.43) + 1 · [32 − (0.16)(100.43)] ≈ 116.36.

Continuing in this fashion, we complete the column of values of v corresponding to
h = 1 in the table of Fig. 8.2.12. (We have rounded velocity to the nearest foot per
second). The values corresponding to h = 0.1 were calculated using a computer, and
we see that they are accurate to within about 1 ft/s. Note also that after 10 seconds the
falling ball has attained about 80% of its limiting velocity of 200 ft/s. ◗

Approx. v Approx. v Actual
t with h = 1 with h = 0.1 Value of v

1 32 30 30
2 59 55 55
3 81 77 76
4 100 95 95
5 116 111 110
6 130 124 123
7 141 135 135
8 150 145 144
9 158 153 153

10 165 160 160

FIGURE 8.2.12 Euler approximations in
Example 5 with step sizes h = 1 and h = 0.1.

Existence and Uniqueness
Just like an algebraic equation, an initial value problem can have either several different
solutions or no solution at all. Consequently, before we can speak of “the” solution of a
given initial value problem, we need to know that it has one and only one solution. The
following theorem is discussed in differential equations courses and textbooks. (For
instance, see Section 1.3 of Edwards and Penney, Differential Equations: Computing
and Modeling, 3rd edition, Upper Saddle River, N.J.: Prentice Hall, 2004.)

THEOREM Existence and Uniqueness of Solutions
The initial value problem

dy

dx
= F(x, y), y(a) = b

has one and only one solution defined on some open x-interval containing the point
x = a provided that both the function F and its partial derivative ∂ F/∂y are
continuous at and near the point (a, b) in the xy-plane.

Continuity and partial derivatives of functions of two variables are defined and
discussed in Chapter 12. Briefly, continuity of F at (a, b) means that the value F(a, b)

is defined and that the value F(x, y) is close to F(a, b) if the point (x, y) is close to
(a, b). The partial derivative ∂ F/∂y denotes the derivative of the expression F(x, y)

with respect to the variable y, with x regarded as a constant. For many subsequent
applications in this chapter, it will suffice to know that the hypotheses of the theorem
above are satisfied everywhere if F(x, y) is a polynomial in the variables x and y. The
following two examples illustrate what can happen if the hypotheses of the theorem
are not satisfied.
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EXAMPLE 6 The initial value problem

dy

dx
= 1

x
, y(0) = 0

has no solution, because no solution y(x) = ln |x | + C of the differential equation
dy/dx = 1/x is defined at x = 0. The reason this non-existence does not contradict the
theorem is that the function F(x, y) = 1/x is not defined, and hence not continuous,
at the point (0, 0) in the xy-plane. ◗

EXAMPLE 7 You can verify by direct substitution that the initial value problem

dy

dx
= 2

√
y, y(0) = 0

has the two different solutions y1(x) = x2 and y2(x) ≡ 0 for x > 0. The reason this
non-unique-ness does not contradict the theorem is that the partial derivative ∂ F/∂y =
Dy

(
2
√

y
) = 1/

√
y of the function F(x, y) = 2

√
y is not defined, and hence not

continuous, at the point (0, 0) in the xy-plane. ◗

8.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Given a solution curve of the differential equation dy/dx = F(x, y), its tangent
line at each point (x0, y0) has slope F(x0, y0).

2. Given both a solution curve and a slope field of the differential equation dy/dx =
F(x, y), the solution curve is tangent to each line segment of the slope field that
it touches.

3. The differential equation dy/dx = x − y has a solution curve that is a straight
line.

4. The dropped baseball of Example 2 accelerates indefinitely under the influence
of gravity, going faster and faster until it hits the ground.

5. The solution curves of the differential equation dv/dt = 32 − 0.16t all appear to
have the same horizontal asymptote as t → +∞.

6. If P1(t) and P2(t) are solutions of the logistic differential equation d P/dt =
0.06P − 0.004P2 corresponding to different (positive) initial populations, then
P1(t) and P2(t) may approach different limiting values as t → +∞.

7. Euler was the first person to use electronic computers to solve differential equa-
tions.

8. When Euler’s method is used to approximate the solution of an initial value prob-
lem, the successive steps taken all have the same step size h.

9. Euler’s method produces a sequence of true values yn = y(xn) of the particular
solution y(x) that satisfies the initial condition y0 = y(x0).

10. When Euler’s method is used to approximate the solution of the initial value
problem of Example 4, the accuracy of the approximation appears to increase as
the step size is decreased.

8.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Compare the advantages of graphical and numerical approximation of

solutions of differential equations.
2. For what purposes does a graph of one or more solutions give more useful infor-

mation than a table of values, and for what purposes is a table preferable?
3. Simple examples of the failure of existence and uniqueness of solutions of initial

value problem are given near the end of this section. Provide two or three similar
examples of your own.
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8.2 PROBLEMS

In Problems 1 through 10, we have provided the slope field of the
indicated differential equation, together with one or more solu-
tion curves. Sketch likely solution curves through the additional
points marked in each slope field. (One method: Photocopy the
slope field and draw your solution curves in a second color. An-
other method: Use a computer algebra program to construct and
print the given slope field.)

1.
dy

dx
= −y − sin x (Fig. 8.2.13)

2.
dy

dx
= x + y (Fig. 8.2.14)
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FIGURE 8.2.13
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FIGURE 8.2.14

3.
dy

dx
= y − sin x (Fig. 8.2.15)

4.
dy

dx
= x − y (Fig. 8.2.16)
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FIGURE 8.2.15
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FIGURE 8.2.16

5.
dy

dx
= y − x + 1 (Fig. 8.2.17)

6.
dy

dx
= x − y + 1 (Fig. 8.2.18)
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FIGURE 8.2.17
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FIGURE 8.2.18

7.
dy

dx
= sin x + sin y (Fig. 8.2.19)

8.
dy

dx
= x2 − y (Fig. 8.2.20)
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FIGURE 8.2.19
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FIGURE 8.2.20

9.
dy

dx
= x2 − y − 2 (Fig. 8.2.21)

10.
dy

dx
= −x2 + sin y (Fig. 8.2.22)
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FIGURE 8.2.21
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FIGURE 8.2.22

In Problems 11 through 20, an initial value problem and its ex-
act solution y(x) are given. Apply Euler’s method twice to ap-
proximate this solution on the interval [0, 1

2 ], first with step size
h = 0.25, then with step size h = 0.1. Compare the three-place
values of the two approximations at x = 1

2 with the value y( 1
2 ) of

the exact solution.

11.
dy

dx
= −y, y(0) = 2; y(x) = 2e−x

12.
dy

dx
= 2y, y(0) = 1

2
; y(x) = 1

2
e2x

13.
dy

dx
= y + 1, y(0) = 1; y(x) = 2ex − 1

14.
dy

dx
= x − y, y(0) = 1; y(x) = 2e−x + x − 1

15.
dy

dx
= y − x − 1, y(0) = 1; y(x) = 2 + x − ex

16.
dy

dx
= −2xy, y(0) = 2; y(x) = 2 exp(−x2)

17.
dy

dx
= −3x2 y, y(0) = 3; y(x) = 3 exp(−x3)

18.
dy

dx
= e−y, y(0) = 0; y(x) = ln(x + 1)

19.
dy

dx
= 1

4
(1 + y2), y(0) = 1; y(x) = tan

(
x + π

4

)
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20.
dy

dx
= 2xy2, y(0) = 1; y(x) = 1

1 − x2

In Problems 21 and 22, first use the method of Example 1 to con-
struct a slope field for the given differential equation. Then sketch
the solution curve corresponding to the given initial condition.
Finally, use this solution curve to estimate the desired value of
the solution y(x).

21.
dy

dx
= x + y, y(0) = 0; y(−4) = ?

22.
dy

dx
= y − x, y(4) = 0; y(−4) = ?

Problems 23 and 24 are like Problems 21 and 22, but now use
a computer algebra system to plot and print out a slope field for
the given differential equation. If you wish (and know how), you
can check your manually sketched solution curve by plotting it
with the computer.

23.
dy

dx
= x2 + y2 − 1, y(0) = 0; y(2) = ?

24.
dy

dx
= x + 1

2
y2, y(−2) = 0; y(2) = ?

25. You bail out of the helicopter of Example 2 and your
parachute opens immediately. Now k = 1.6 in Eq. (1), so
your downward velocity satisfies the initial value problem

dv

dt
= 32 − (1.6)v, v(0) = 0.

To investigate your chances of survival, construct a slope
field for this differential equation and sketch the appropriate
solution curve. What will your limiting velocity be? Will a
strategically located haystack do any good? How long will
it take you to reach 95% of your limiting velocity?

26. Suppose that the deer population P(t) in a small forest sat-
isfies the logistic equation

d P

dt
= (0.0225)P − (0.0003)P2.

Construct a slope field and appropriate solution curve to an-
swer the following questions: If there are 25 deer at time
t = 0 and t is measured in months, how long will it take for
the number of deer to double? What will be the limiting deer
population?

27. Use Euler’s method with a programmable calculator or com-
puter system to find the desired solutions in Problem 23. Be-
gin with step size h = 0.1, and then use successively smaller
step sizes h = 0.01, h = 0.001, . . . , until successive ap-
proximate solutions at x = 2 agree to two decimal places.

28. Use Euler’s method with a programmable calculator or com-
puter system to find the desired solutions in Problem 24.
Begin with step size h = 0.1, and then use successively
smaller step sizes h = 0.01, h = 0.001, . . . , until succes-
sive approximate solutions at x = 2 agree to two decimal
places.

Problems 29 through 32 illustrate the fact that, if the hypotheses
of the theorem cited near the end of this section are not satis-
fied, then the initial value problem dy/dx = F(x, y), y(a) = b
may have either no solutions, finitely many solutions, or infinitely
many solutions.

29. Show that on the interval [0, π ], the functions y1(x) ≡ 1 and
y2(x) = cos x both satisfy the initial value problem

dy

dx
+

√
1 − y2 = 0, y(0) = 1.

Why does this fact not contradict the existence-uniqueness
theorem cited in this section? Explain your answer carefully.

30. Find by inspection two different solutions of the initial value
problem

dy

dx
= 3y2/3, y(0) = 0.

Why does the existence of different solutions not contradict
the existence-uniqueness theorem of this section?

31. Use Fig. 8.2.23 as a suggestion for showing that the initial
value problem

dy

dx
= 3y2/3, y(−1) = −1

has infinitely many solutions. Why does this not contradict
the existence-uniqueness theorem of this section?

x

(−1, −1)

y = x3

y = (x − a)3

y

a

FIGURE 8.2.23 A suggestion for
Problem 31.

32. Verify that if k is a constant, then the function y(x) = k x
satisfies the differential equation x(dy/dx) = y. Hence con-
clude that the initial value problem

x
dy

dx
= y, y(0) = 0

has infinitely many solutions on any open interval containing
x = 0.

8.2 INVESTIGATIONS: Computer-Assisted Slope Fields and Euler's Method
The project manual illustrates the use of Maple, Mathematica, and MATLAB to con-
struct slope fields and solution curves for a given differential equation. Use your system
to carry out the following investigation.
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Investigation Plot a direction field and typical solution curves for the differential

FIGURE 8.2.24 Direction field and
solution curves for y′ = sin(x − y)

generated by a TI-89 graphing
calculator.

equation dy/dx = sin(x−y), but with a bigger viewing window than that of Fig. 8.2.24.
With −10 � x � 10, −10 � y � 10, for instance, a number of apparent straight-line
solution curves should be visible. (a) Substitute y = ax + b in the differential equa-
tion to determine what the coefficients a and b must be in order to get a solution.
(b) Perhaps your computer algebra system will give the general solution

y(x) = x − 2 tan−1

(
x − 2 + C

x − C

)
.

Can you determine a value of the arbitrary constant C that yields the linear solution
y(x) = x − 1

2π determined by the initial condition y( 1
2π) = 0? (Verify this.)

Famous Numbers Investigation
The project manual illustrates Maple, Mathematica, and MATLAB routines for the
implementation of Euler’s method. The problems below describe the numbers e ≈
2.71828, ln 2 ≈ 0.69315, and π ≈ 3.14159 as specific values of solutions of certain
initial value problems. In each case, apply Euler’s method with n = 50, 100, 200, . . .

subintervals (doubling n each time). How many subintervals are needed to obtain—
twice in succession—the correct value of the target number rounded to three decimal
places?

1. The number e = y(1), where y(x) is the solution of the initial value problem
dy/dx = y, y(0) = 1.

2. The number ln 2 = y(2), where y(x) is the solution of the initial value problem
dy/dx = 1/x, y(1) = 0.

3. The number π = y(1), where y(x) is the solution of the initial value problem

dy

dx
= 4

1 + x2
, y(0) = 0.

Also, explain in each of these problems what the point is—why the indicated
famous number is, indeed, the expected result.

8.3 SEPARABLE EQUATIONS AND APPLICATIONS

In Section 8.1 we saw that a general solution of a differential equation dy/dx =
R(x, y) can be written in terms of integrals if either the independent variable x or the
dependent variable y is missing from the expression R(x, y) on the right-hand side.
The method we used there also can be used if R(x, y) can be expressed as the product
of a function g(x) of x and a function h(y) of y. In this case the differential equation
takes the form

dy

dx
= g(x)h(y). (1)

Such a differential equation is said to be separable because—upon formal multiplica-
tion of both sides by dx and by f (y) = 1/h(y)—it takes the symbolic form

f (y) dy = g(x) dx , (2)

in which the variables x and y (and their respective differentials dx and dy) are sep-
arated on opposite sides of the equation. The equation in (2) is literally an equation
relating differentials, a “differential equation,” but we take Eq. (2) to be concise nota-
tion for the more familiar “derivative” equation

f (y)
dy

dx
= g(x), (3)

and abuse the terminology slightly by referring to Eq. (3) as a differential equation as
well.
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The process of rewriting Eq. (1) in the form in (2) is called separating the vari-
ables. It is then tempting to find a solution of (1) simply by integrating each side in (2)
with respect to its “own” variable:

∫
f (y) dy =

∫
g(x) dx . (4)

Indeed, if the antiderivatives F(y) = ∫
f (y) dy and G(x) = ∫

g(x) dx can be found,
then the resulting equation

F(y) = G(x) + C (5)

provides an implicit solution of Eq. (3). That is, any differentiable function y(x) de-
fined implicitly by (5) is an actual (explicit) solution of Eq. (3).

To verify this claim, suppose that y = y(x) satisfies Eq. (5) for some fixed value
of the arbitrary constant C . Then differentiating each side yields

Dx [F(y(x))] = Dx [G(x) + C];
F ′(y(x)) · y′(x) = G ′(x) [using the chain rule];

f (y(x))
dy

dx
= g(x) [because F ′ = f and G ′ = g].

Thus y(x) does, indeed, satisfy the differential equation in (3).

EXAMPLE 1

(a) Solve the differential equation dy/dx = −6xy with the initial condition
y(0) = 7.

(b) Repeat with the initial condition y(0) = −4.

Solution
(a) Separation of variables gives

1

y
dy = −6x dx .

Integration then yields ∫
1

y
dy =

∫
(−6x) dx;

ln |y| = −3x2 + C. (6)

The initial condition y(0) = 7 indicates a positive-valued solution, so we replace
|y| with y in the implicit solution in (6). This gives

ln y = −3x2 + C, so that y(x) = e−3x2+C = eC e−3x2
.

Then substituting x = 0 and y = 7 gives C = ln 7, so the desired particular
solution is

y(x) = eln 7e−3x2 = 7e−3x2
.

(b) Beginning with Eq. (6), we note that the initial condition y(0) = −4 indicates a
negative-valued solution, so we replace |y| with −y in the implicit solution there.
This gives

ln(−y) = −3x2 + C, so that y(x) = −e−3x2+C = −eC e−3x2
.

Then substituting x = 0, y = −4 gives C = ln 4, so the desired particular
solution is

y(x) = −eln 4e−3x2 = −4e−3x2
. ◗
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REMARK 1 An alternative approach in Example 1 would be to solve Eq. (6) for

x

(0, −4)

(0, 7)

y(x) = 7e−3x2

y(x) ≡ 0

y(x) = −4e−3x2

y

FIGURE 8.3.1 Three different
solutions of the differential equation
dy

dx
= −6xy.

|y| = eC e−3x2 = Be−3x2
, so that y(x) = ±Be−3x2

.

The constant B = eC is necessarily positive. (Why?) In spite of this, we can accom-
modate both positive and negative values of y by writing A = ±B (thereby absorbing
the sign in the coefficient A). This gives the general solution

y(x) = A e−3x2
(7)

of the differential equation dy/dx = −6xy. The values A = 7 and A = −4 give the
two particular solutions found in parts (a) and (b) of Example 1. The graphs of both of
these solutions are shown in color in Fig. 8.3.1.

REMARK 2 The value A = 0 in Eq. (7) gives the trivial solution y(x) ≡ 0 of the
differential equation dy/dx = −6xy. Examine the solution

ln |y| = −3x2 + C (6)

obtained by the method of separation of variables—which requires that y �= 0 in order
to divide both sides of the differential equation by y. Can you see that no value of C
in Eq. (6) yields the trivial solution y(x) ≡ 0? This observation illustrates the fact that
constant-valued solutions of a differential equation can be “lost” when we separate the
variables. That is, if y = y0 is a root of the equation h(y) = 0, then the constant-valued
solution y(x) ≡ y0 of the differential equation dy/dx = g(x)h(y) may not satisfy the
new differential equation obtained upon division by h(y). Therefore, it is important
to note in advance any such constant-valued solutions of a given separable differential
equation.

EXAMPLE 2 Find all solutions of the differential equation dy/dx = 6x(y − 1)2/3.

Solution Obviously we intend to divide both sides by the factor (y −1)2/3 to separate
the variables. But first we note that (y − 1)2/3 = 0 when y(x) ≡ 1, and that the latter
is a solution of the given differential equation. Putting aside this trivial solution for the
time being, we proceed to the separation of variables and integration. This leads to∫

1

3(y − 1)2/3
dy =

∫
2x dx;

(y − 1)1/3 = x2 + C.

We can solve this implicit solution for the general solution

y(x) = 1 + (x2 + C)3. (8)

Positive values of the arbitrary constant C give the solution curves that lie above the
line y = 1 (see Fig. 8.3.2) and negative values of C yield those that dip below this line.
The value C = 0 gives the solution y(x) = 1 + x6, rather than the so-called “singular”
solution y(x) ≡ 1. Apparently the latter solution was lost when the variables were
separated. (See Questions 1 through 3 at the end of this section.) ◗

x

y = 1

C = −

C = −1

C = 0 C = 1

y

7
4

C = 4
3

FIGURE 8.3.2 Solution curves of
the differential equation
dy

dx
= 6x(y − 1)2/3 corresponding

to different values of C in Eq. (8).

EXAMPLE 3 Solve the initial value problem

dy

dx
= 4 − 2x

3y2 − 5
, y(1) = 3. (9)

Solution We proceed to separate the variables and integrate. This gives∫
(3y2 − 5) dy =

∫
(4 − 2x) dx;

y3 − 5y = 4x − x2 + C. (10)
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If we substitute x = 1 and y = 3 in the implicit solution in Eq. (10), we find that
C = 9. Hence the desired particular solution y(x) is defined implicitly by the equation

y3 − 5y = 4x − x2 + 9.

The graph of this equation—generated by the contour plotting command of a computer
algebra system—is the upper solution curve shown in Fig. 8.3.3. (See Question 4 at
the end of this section.) ◗

Cooling and Heating
According to Newton’s law of cooling (or heating), the time rate of change of the tem-
perature u(t) of a body immersed in a medium of constant temperature A (Fig. 8.3.4)
is proportional to the temperature difference u − A. It follows that

du

dt
= −k(u − A), (11)

where the proportionality constant k is positive. Note that if u > A then du/dt < 0,

x

y

0

(1, 3)

2−4 4−2 6 8

C = 9

C = 0
0

−4

2

−2

4

FIGURE 8.3.3 Solution curves of
the differential equation
dy

dx
= 4 − 2x

3y2 − 5
corresponding to

different values of C in Eq. (10).
so that the body is cooling. But if u < A then du/dt > 0, so the temperature u is
increasing.

EXAMPLE 4 A 4-lb roast, initially at 50◦F, is placed in a 375◦ oven at 5:00 P.M. At

Temperature T

Temperature A

FIGURE 8.3.4 Newton’s law of
cooling, Eq. (11), describes the
cooling of a hot rock in water.

6:15 P.M. the temperature of the roast is 125◦F. When will it be ready to serve medium
rare (at 150◦F)?

Solution With A = 375, Eq. (11) gives

du

dt
= −k(u − 375) = k(375 − u).

While the roast is cooking, its temperature satisfies the inequality u < 375. That noted,
we separate the variables and integrate:∫

1

375 − u
du =

∫
k dt;

−ln(375 − u) = k t + C;
375 − u = e−(k t+C ) = Be−k t

where B = e−C . Next, u(0) = 50 implies that B = 375 − 50 = 325, so

u(t) = 375 − 325e−k t .

We also know that u = 125 when t = 75. Substituting these values then yields
k = − 1

75 ln
(

250
325

) ≈ 0.003498. We finally solve the equation 150 = 375 − 325e−k t for

t = − ln
(

225
325

)
k

≈ − ln
(

225
325

)
0.003498

≈ 105.12

minutes. This is the total cooking time required for the roast. Because it was placed in
the oven at 5:00 P.M., it should be removed at about 6:45 P.M. ◗

Linear Differential Equations
The differential equation

dx

dt
= ax + b (12)

is said to be linear in the dependent variable x (and its derivative) if the coefficients a
and b do not involve x . The general case in which a and b may involve the independent
variable t is discussed in Section 8.4.
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Equation (12) is separable if a and b are constants (with a �= 0). Separating the
variables and integrating, we get∫

a

ax + b
dx =

∫
a dt;

ln |ax + b| = at + C.

It follows that

ax + b = ±eC eat = K eat .

If an initial condition x(0) = x0 is given, we see immediately that K = ax0 + b, so

ax + b = (ax0 + b)eat .

Finally, we readily solve for the solution

x(t) = x0eat + b

a
(eat − 1) (13)

of the initial value problem dx/dt = ax + b, x(0) = x0.
The remaining examples of this section illustrate the numerous applications of

the solution in (13) of a linear differential equation with constant coefficients.

Population Growth with Immigration Consider a national population P(t) with con-
stant birth and death rates β and δ (in births or deaths per year per unit of population). If
also there is a constant net immigration rate of I persons entering the country annually,
then P satisfies the linear differential equation

d P

dt
= k P + I (14)

where k = β − δ. According to Eq. (13) with P , k, and I in place of x , a, and b, the
solution of Eq. (14) for which P(0) = P0 is

P(t) = P0ek t + I

k
(ek t − 1). (15)

The first term on the right-hand side is the net effect after t years of natural popu-
lation growth via births and deaths; the second term represents the effect of immi-
gration.

EXAMPLE 5 In the year 2000 the U.S. population was approximately P0 = 280
million and about 14.6 births and 8.6 deaths per thousand population were occurring
annually. In addition, a net immigration into the country at the rate of about 960
thousand people per year was occurring. Let’s examine the effects of these birth, death,
and immigration rates, assuming that they hold constant for the next 20 years. With

β = 14.6

1000
= 0.0146, δ = 8.6

1000
= 0.0086, k = β − δ = 0.006,

and I = 0.96 (counting people by the million in each case), the differential equation
in (14) takes the form

d P

dt
= (0.006)P + 0.96.

Its solution, given by (15) with P0 = 280, is

P(t) = 280e(0.006)t + 160
(
e(0.006)t − 1

)
.

The predicted population for the year 2020 is P(20) ≈ 336.1 million. Of the 20-year
predicted U.S. population increase of 336.1 − 280 = 56.1 million, the amount due to
the 0.6% natural growth rate (as if there were no immigration) is

280e(0.006)(20) − 280 ≈ 35.7 (million),
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and the remaining amount due ultimately to immigration is

160
(
e(0.006)(20) − 1

) ≈ 20.4 (million). ◗

Savings Account with Continuous Deposits Consider a savings account that con-
tains A 0 dollars initially and earns interest at the annual rate r compounded con-
tinuously (as in Section 8.1). Now suppose that deposits are added to this account
at the rate of Q dollars per year. To simplify the mathematical model, we assume
that these deposits are made continuously rather than (for instance) monthly. We
may then regard the amount A(t) in the account at time t as a “population” of dol-
lars, with a natural (annual) growth rate r and “immigration” (deposits) at the rate of
Q dollars annually. Then by merely changing the notation in Eqs. (14) and (15), we
get the differential equation

d A

dt
= r A + Q, (16)

which has the solution

A(t) = A 0ert + Q

r
(ert − 1). (17)

EXAMPLE 6 Suppose that you wish to arrange, at the time of her birth, for your
daughter to have $100,000 available for her college expenses when she is 18 years old.
You plan to do so by making frequent, small—essentially continuous—deposits in a
mutual fund at the rate of Q dollars per year. This fund will accumulate 9% annual
interest compounded continuously. What should Q be so that you achieve your goal?

Solution With A 0 = 0 and r = 0.09, we want the value of Q so that Eq. (17) yields
the result

A(18) = 100000.

That is, we must find Q so that

100000 = Q

0.09

(
e(0.09)(18) − 1

)
.

When we solve this equation we find that Q ≈ 2220.53. Thus you should deposit
$2220.53 per year, or about $185.04 per month, in order to have $100,000 in the fund
after 18 years. You may wish to verify that your total deposits will be $39,969.50 and
that the total interest accumulated will be $60,030.50. (You should also remember that
you will have to pay taxes on an interest income averaging about $3335 per year.)

◗

Diffusion of Information and Spread of Disease Let N (t) denote the number of peo-
ple (in a fixed population P) who by time t have heard a certain news item spread by
the mass media. Under certain common conditions, the time rate of increase of N will
be proportional to the number of people who have not yet heard the news. Thus

d N

dt
= k(P − N ). (18)

If N (0) = 0, the solution of Eq. (18) is

N (t) = P · (1 − e−k t). (19)

If P and some later value N (t1) are known, we can then solve for k and thereby deter-
mine N (t) for all t . Problem 35 illustrates this situation.

Different infectious diseases spread in different ways. A simple model may be
built on the assumption that some infectious diseases spread like information—in a
fixed population P , the rate of increase of the number N (t) of people infected with the
disease is proportional to the number P − N who are not yet infected. Then N satisfies
the differential equation in (18). See Problems 39 and 40 for applications.
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8.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The differential equation dy/dx = R(x, y) is separable if the expression R(x, y)

on the right-hand side can be expressed as a product of a function of x and a
function of y.

2. The problem of solving a given separable differential equation can always be
reduced (by separating the variables) to a problem of evaluating indefinite inte-
grals.

3. When we solve a separable differentiable equation by separation of variables, the
general solution we obtained always “includes” all possible particular solutions
of the differentiable equation. (That is, every particular solution corresponds to
some specific choice of the arbitrary constant C in the general solution.)

4. The differential equation dy/dx = 6x(y−1)2/3 of Example 2 has a singular solu-
tion that is “lost” when the variables are separated. (That is, the given differential
equation has a particular solution that corresponds to no choice of the arbitrary
constant C in the general solution that is obtained by separation of variables.)

5. Separation of variables yields an explicit general solution y(x) of the differential
equation dy/dx = (4 − 2x)/(3y2 − 5) of Example 3.

6. Newton’s law of cooling implies that, if a body is immersed in a medium of
constant temperature, then the time rate of change of the temperature u(t) of the
body is proportional to u itself.

7. The temperature function u(t) of the roast of Example 4 is a linear function of t .
8. The differential equation dx/dt = ax + b is linear if a and b are constants.
9. The differential equation dx/dt = ax +b is linear provided that a and b are both

linear functions of both x and t .
10. In a linear differential equation dx/dt = ax + b, the coefficients a and b may

involve the independent variable t .

8.3 CONCEPTS: QUESTIONS AND DISCUSSION
Questions 1 through 3 pertain to the general solution y(x) = 1 + (x2 + C)3 of the
differential equation dy/dx = 6x(y − 1)2/3 discussed in Example 2.

1. Is there a value of the arbitrary constant C that yields the constant-valued solution
y(x) ≡ 1?

2. Does every point of the xy-plane lie on precisely one solution curve of the form
y(x) = 1 + (x2 + C)3? (See Fig. 8.3.2.)

3. Find two different solutions of the differential equation, both of which satisfy the
initial condition y(1) = 1. Can you show that the entire singular solution curve
y ≡ 1 consists of points where the differential equation has two different solu-
tions? If so, why does this fact not contradict the existence-uniqueness theorem
discussed at the end of Section 8.1?

4. Examine the solution curves of the differential equation

dy

dx
= 4 − 2x

3y2 − 5

shown in Fig. 8.3.3. (a) Explain why the solution satisfying the initial condition
y(0) = 0 is defined on the interval 0 � x � 4 but not on the interval −2 � x � 6.
(b) Explain why the solution satisfying the initial condition y(1) = 3 is defined
on the interval −1 � x � 5 but not on the interval −3 � x � 7.
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8.3 PROBLEMS

Find general solutions (implicit if necessary, explicit if possible)
of the differential equations in Problems 1 through 10.

1.
dy

dx
= 2x

√
y 2.

dy

dx
= 2xy2

3.
dy

dx
= x2 y2 4.

dy

dx
= (xy)3/2

5.
dy

dx
= 2x

√
y − 1 6.

dy

dx
= 4x3(y − 4)2

7.
dy

dx
= 1 + √

x

1 + √
y

8.
dy

dx
= x + x3

y + y3

9.
dy

dx
= x2 + 1

x2(3y2 + 1)
10.

dy

dx
= (x3 − 1)y3

x2(2y3 − 3)

Solve the initial value problems in Problems 11 through 20.

11.
dy

dx
= y2, y(0) = 1 12.

dy

dx
= √

y, y(0) = 4

13.
dy

dx
= 1

4y3
, y(0) = 1 14.

dy

dx
= 1

x2 y
, y(1) = 2

15.
dy

dx
= √

xy3, y(0) = 4 16.
dy

dx
= x

y
, y(3) = 5

17.
dy

dx
= − x

y
, y(12) = −5

18. y2 dy

dx
= x2 + 2x + 1, y(1) = 2

19.
dy

dx
= 3x2 y2 − y2, y(0) = 1

20.
dy

dx
= 2xy3(2x2 + 1), y(1) = 1

In Problems 21 through 30, use the method of derivation of
Eq. (13), rather than the equation itself, to find the solution of
the given initial value problem.

21.
dy

dx
= y + 1; y(0) = 1 22.

dy

dx
= 2 − y; y(0) = 3

23.
dy

dx
= 2y − 3; y(0) = 2

24.
dy

dx
= 1

4
− y

16
; y(0) = 20

25.
dx

dt
= 2(x − 1); x(0) = 0

26.
dx

dt
= 2 − 3x; x(0) = 4

27.
dx

dt
= 5(x + 2); x(0) = 25

28.
dx

dt
= −3 − 4x; x(0) = −5

29.
dv

dt
= 10(10 − v); v(0) = 0

30.
dv

dt
= −5(10 − v); v(0) = −10

31. Zembla had a population of 1.5 million in 1990. Assume
that this country’s population is growing continuously at a
4% annual rate and that Zembla absorbs 50,000 newcomers
per year. What will its population be in the year 2010?

32. When a cake is removed from an oven, the temperature of
the cake is 210◦F. The cake is left to cool at room tempera-
ture, which is 70◦F. After 30 min the temperature of the cake
is 140◦F. When will it be 100◦F?

33. Payments are made continuously on a mortgage of origi-
nal amount P0 dollars at the constant rate of c dollars per
month. Let P(t) denote the balance (amount still owed)
after t months and let r denote the monthly interest rate paid
by the mortgage holder. (For example, r = 0.06/12 = 0.005
if the annual interest rate is 6%.) Derive the differential
equation

d P

dt
= rP − c, P(0) = P0.

34. Your cousin must pay off an auto loan of $3600 continuously
over a period of 36 months. Apply the result of Problem 33
to determine the monthly payment required if the annual in-
terest rate is (a) 12%; (b) 18%.

35. A rumor about phenylethylamine in the drinking water be-
gan to spread one day in a city with a population of 100,000.
Within a week, 10,000 people had heard this rumor. As-
suming that the rate of increase of the number of people who
have heard the rumor is proportional to the number who have
not yet heard it, how long will it be until half the population
of the city has heard the rumor?

36. Rework Example 5, assuming that new conditions, effective
in the year 2000, result in 17 births and 7 deaths annually
per thousand population, as well as an immigration rate of
1.5 million persons per year.

37. You would like to be a multimillionaire but cannot rely on
winning the lottery. How much would you need to invest
per month—in effect, continuously—in an investment ac-
count that pays an annual interest rate of 10%, compounded
continuously, in order for the account to be worth $5 million
after 30 years?

38. Just before midday the body of an apparent homicide victim
is found in a room that is kept at a constant temperature of
70◦F. At 12 noon the temperature of the body is 80◦F and at
1 P.M. it is 75◦F. Assume that the temperature of the body at
the time of death was 98.6◦F and that is has cooled in accord
with Newton’s law of cooling. What was the time of death?

39. Pottstown has a fixed population of 10,000 people. On
January 1, 1000 people have the flu; on April 1, 2000 people
have it. Assume that the rate of increase of the number N (t)
who have the flu is proportional to the number who don’t
have it. How many will have the disease on October 1?

40. Let x(t) denote the number of people in Athens, Georgia,
of population 100,000, who have the Tokyo flu. The rate
of change of x(t) is proportional to the number of those in
Athens who do not yet have the disease. Suppose that 20,000
have the flu on March 1 and that 60,000 have it on March 16.
(a) Set up and solve a differential equation to find x(t).
(b) On what date will the number of people infected with
the disease reach 80,000? (c) What happens in the long run?

41. Early one morning it began to snow at a constant rate. At 7
A.M. a snowplow set off to clear a road. By 8 A.M. it had
traveled 2 miles, but it took two more hours (until 10 A.M.)
for the snowplow to clear an additional 2 miles of road.
(a) Let t = 0 when it began to snow and let x(t) denote
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the distance traveled by the snowplow at time t . Assuming
that the snowplow clears snow from the road at a constant
rate (in cubic feet per hour, say), show that

k
dx

dt
= 1

t

where k is a constant. (b) What time did it begin to snow?
(Answer: 6 A.M.)

42. A snowplow sets off at 7 A.M. as in Problem 41. Suppose
now that by 8 A.M. it had traveled 4 miles and that by 9
A.M. it had moved an additional 3 miles. What time did it
begin to snow? This is a more difficult snowplow problem
because now a transcendental equation must be solved nu-
merically to find the value of k. (Answer: 4:27 A.M.)

43. The catenary Suppose that a uniform flexible cable is sus-
pended between two points (±L , H ) at equal height lo-
cated symmetrically on either side of the y-axis (Fig. 8.3.5).
Principles of physics can be used to show that the shape
y = y(x) of the hanging cable satisfies the differential equa-
tion

a
d 2 y

dx2
=

√
1 +

(
dy

dx

)2

,

where the constant a = T/ρ is the ratio of the tension T
of the cable at its lowest point to its linear (constant) den-
sity ρ. Note that the lowest point of the cable occurs where

x = 0 and that y′(0) = 0. Substitute v = dy/dx in this
second-order differential equation to show that it becomes
the first-order equation

a
dv

dx
=

√
1 + v2.

Solve this differential equation for y′(x) = v(x) =
sinh(x/a). Then integrate to get the shape function

y(x) = a cosh

(
x

a

)
+ C

of the hanging cable. This curve is called a catenary, from
the Latin word for chain.

y0

Sag: H − y0

y

(−L, H) (L, H)

x

FIGURE 8.3.5 A flexible uniform
cable suspended between two points
at equal heights.

8.4 LINEAR EQUATIONS AND APPLICATIONS

A linear first-order differential equation is one that can be written in the form

dy

dx
+ P(x) · y = Q(x) (1)

where P(x) and Q(x) are given functions of x . If the “coefficients” P and Q are
actually constants, then the differential equation is separable and can be solved as in
Section 8.3.

In this section we discuss the general case of variable coefficients. We will show
how to multiply each side in (1) by an appropriately selected function ρ(x) so that
each side of the resulting equation can be integrated, thereby eliminating the unknown
derivative term dy/dx . Such a function ρ(x), multiplication by which makes it possi-
ble to integrate the equation, is called an integrating factor for the differential equa-
tion. The following example indicates how this can happen.

EXAMPLE 1 The differential equation

x3 dy

dx
+ x2 y = 2x3 + 1

is not of the form in (1). But division of both sides by x3 gives the linear equation

dy

dx
+ 1

x
y = 2 + 1

x3
, (2)

which is of the form in (1), with P(x) = 1/x and Q(x) = 2 + (1/x3). For whatever
reason, let us multiply both sides in (2) by the factor ρ(x) = x . The result is

x
dy

dx
+ y = 2x + 1

x2
.

607

www.konkur.in



608 CHAPTER 8 Differential Equations

We now recognize the left-hand side as the derivative Dx(x · y) = xy′ + y of the
product x · y. Thus the last equation can be written as follows:

Dx(x · y) = 2x + 1

x2
.

We can now integrate both sides with respect to x . An indefinite integral of the deriva-
tive on the left is simply the product x · y. Because the integrals of the two sides differ
by a constant, integration yields

x · y =
∫ (

2x + 1

x2

)
dx = x2 − 1

x
+ C.

Finally, we divide by x to solve for y and thereby obtain the general solution

y(x) = x − 1

x2
+ C

x

of the linear differential equation in (2). ◗

The crucial integrating factor ρ(x) = x in Example 1 was simply “pulled out of
a hat.” Next we will show that the integrating factor given by

ρ(x) = exp

(∫
P(x) dx

)
(3)

always effects the solution of the linear equation y′ + P(x)y = Q(x). Note first that,
in Example 1 where P(x) = 1/x , Eq. (3) gives

ρ(x) = exp

(∫
1

x
dx

)
= eln x = x,

and this is how we actually obtained the integrating factor ρ(x) = x of Example 1—it
was not “pulled out of a hat.”

In general, we begin with the linear equation y′ + Py = Q and multiply both
sides by the integrating factor ρ(x) in Eq. (3). The result is

e
∫

P(x) dx dy

dx
+ P(x)e

∫
P(x) dx y = Q(x)e

∫
P(x) dx . (4)

Because

Dx

[∫
P(x) dx

]
= P(x),

the left-hand side in Eq. (4) is the derivative of the product y(x) · e
∫

P(x) dx , so Eq. (4)
is equivalent to

Dx

[
y(x) · e

∫
P(x) dx

]
= Q(x)e

∫
P(x) dx .

Integrating both sides of this equation yields

y(x)e
∫

P(x) dx =
∫ (

Q(x)e
∫

P(x) dx
)

dx + C.

Finally solving for y, we obtain the general solution of the linear first-order differential
equation in (1):

y(x) = e−∫
P(x) dx

[∫ (
Q(x)e

∫
P(x) dx

)
dx + C

]
. (5)

There is no need to memorize such a formula. In a specific problem it generally is
simpler to use the method by which we developed the formula. That is, in order to
solve an equation written in the form in (1) with the coefficient functions P(x) and
Q(x) displayed explicitly, you should carry out the following steps.
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Method: Solution of First-Order Linear Equations
1. Begin by calculating the integrating factor ρ(x) = e

∫
P(x) dx .

2. Then multiply both sides of the differential equation by ρ(x).
3. Next, recognize the left-hand side of the resulting equation as the derivative

of a product:

Dx [ρ(x)y(x)] = ρ(x)Q(x).

4. Finally, integrate this equation to obtain

ρ(x)y(x) =
∫

ρ(x)Q(x) dx + C,

then solve for y to obtain the general solution of the original differential
equation.

REMARK 1 Given an initial condition y(x0) = y0, you can (as usual) substitute
x = x0 and y = y0 in the general solution and solve for the value of C that yields
the particular solution satisfying this initial condition.

REMARK 2 The integrating factor ρ(x) is determined only to within a multiplicative
constant. If we replace ∫

P(x) dx with
∫

P(x) dx + K

in Eq. (3), the result is

ρ(x) = eK+∫
P(x) dx = eK e

∫
P(x) dx .

But the constant factor eK does not affect the result of multiplying both sides of the dif-
ferential equation in (1) by ρ(x). Hence we may choose for

∫
P(x) dx any convenient

antiderivative of P(x).

EXAMPLE 2 Solve the initial value problem

dy

dx
− y = 11

8
e−x/3, y(0) = 0.

Solution Here we have P(x) ≡ −1 and Q(x) = 11
8 e−x/3, so the integrating factor

is

ρ(x) = e
∫
(−1) dx = e−x .

Multiplying both sides of the given equation by e−x yields

e−x dy

dx
− e−x y = 11

8
e−4x/3, (6)

which we recognize as

d

dx
(e−x y) = 11

8
e−4x/3.

Hence integration with respect to x gives

e−x y =
∫

11

8
e−4x/3 dx = −33

32
e−4x/3 + C,

and then multiplication by ex gives the general solution

y(x) = Cex − 33

32
e−x/3. (7)
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Substituting x = y = 0 now gives C = 33
32 , so the desired particular solution is

y(x) = 33

32
ex − 33

32
e−x/3 = 33

32

(
ex − e−x/3

)
. ◗

REMARK Figure 8.4.1 shows some typical solution curves for Eq. (6), including the

x

y

0 2 4 6−2

C = 0
(0, −33/32)

C = 3

C = 1/4

C = 33/32

C = −1

C = −1/4

0

−4

2

−2

4

FIGURE 8.4.1 Solution curves of
the differential equation
dy

dx
− y = 11

8
e−x/3 corresponding

to different values of C in Eq. (7).

one passing through the origin. Note that some solutions grow rapidly in the positive
direction as x increases, while others grow rapidly in the negative direction. Such
behavior of a given solution curve is determined by its initial condition y(0) = y0. The
two types of behavior in Example 2 are separated by the particular solution

y(x) = −33

32
e−x/3

for which C = 0 in Eq. (7), so y0 = − 33
32 . If y0 > − 33

32 then C > 0 in Eq. (7), so
the term ex eventually dominates the behavior of y(x), and hence y(x) → +∞ as
x → +∞. But if y0 < − 33

32 then C < 0, so both terms in y(x) are negative and
therefore y(x) → −∞ as x → +∞. Thus the initial condition y0 = − 33

32 is critical
in the sense that solutions that start above − 33

32 on the y-axis grow in the positive
direction, whereas solutions that start lower than − 33

32 grow in the negative direction as
x → +∞. The interpretation of a mathematical model often hinges on finding such
a critical condition that separates one kind of behavior of a solution from a different
kind of behavior.

EXAMPLE 3 Find a general solution of

(x2 + 1)
dy

dx
+ 3xy = 6x . (8)

Solution After dividing both sides of the equation by x2 + 1, we recognize the result

dy

dx
+ 3x

x2 + 1
y = 6x

x2 + 1

as a first-order linear equation with P(x) = 3x/(x2 + 1) and Q(x) = 6x/(x2 + 1).
Multiplication by the integrating factor

ρ(x) = exp

(∫
3x

x2 + 1
dx

)
= exp

(
3
2 ln(x2 + 1)

) = (x2 + 1)3/2

yields

(x2 + 1)3/2 dy

dx
+ 3x(x2 + 1)1/2 y = 6x(x2 + 1)1/2,

and thus

Dx
[
(x2 + 1)3/2 y

] = 6x(x2 + 1)1/2.

Integration then yields

(x2 + 1)3/2 y =
∫

6x(x2 + 1)1/2 dx = 2(x2 + 1)3/2 + C.

Multiplying both sides by (x2 + 1)−3/2 then gives the general solution

y(x) = 2 + C(x2 + 1)−3/2. (9)
◗

REMARK Figure 8.4.2 shows some typical solution curves for Eq. (8). Note that as
x → +∞, all other solution curves approach the constant solution curve y(x) ≡ 2
that corresponds to C = 0 in Eq. (9). This constant solution can be described as
an equilibrium solution of the differential equation, because y(0) = 2 implies that
y(x) = 2 for all x (and thus the value of the solution remains forever where it begins).

x

y

0 21 3 4−2 −1−3−4

C = 4

C = −4

2

−2

4

0

6

FIGURE 8.4.2 Solution curves of
the differential equation

(x2 + 1)
dy

dx
+ 3xy = 6x

corresponding to different values of
C in Eq. (9).

610

www.konkur.in



Linear Equations and Applications SECTION 8.4 611

A Closer Look at the Method
The preceding derivation of the solution in Eq. (5) of the linear first-order equation
y′ + Py = Q bears closer examination. Suppose that the coefficient functions P(x)

and Q(x) are continuous on the (possibly unbounded) open interval I . Then the an-
tiderivatives ∫

P(x) dx and
∫ (

Q(x)e
∫

P(x) dx
)

dx

exist on I . Our derivation of Eq. (5) shows that if y = y(x) is a solution of Eq. (1) on I ,
then y(x) is given by the formula in (5) for some choice of the constant C . Conversely,
you may verify by direct substitution that the function y(x) given in Eq. (5) satisfies
Eq. (1). Finally, given a point x0 of I and any number y0, there is—as previously
noted—a unique value of C such that y(x0) = y0. Consequently, we have proved the
following existence-uniqueness theorem.

THEOREM 1 The Linear First-Order Equation
If the functions P(x) and Q(x) are continuous on the open interval I containing the
point x0, then the initial value problem

dy

dx
+ P(x)y = Q(x), y(x0) = y0 (10)

has a unique solution y(x) on I , given by the formula in (5) with an appropriate
value of C .

REMARK 1 Theorem 1 gives a solution on the entire interval I for a linear differ-
ential equation, in contrast with the existence-uniqueness theorem mentioned in the
last paragraphs of Section 8.2. That theorem guarantees only a solution on a possibly
smaller interval J .

REMARK 2 Theorem 1 tells us that every solution of Eq. (1) is included in the general
solution given in Eq. (5). Thus a linear first-order differential equation has no “singular
solution” that is not included in its general solution.

REMARK 3 The appropriate value of the constant C in Eq. (5)—as needed to solve
the initial value problem in (10)—can be selected “automatically” by writing

ρ(x) = exp

(∫ x

x0

P(t) dt

)
,

y(x) = 1

ρ(x)

[
y0 +

∫ x

x0

ρ(t)Q(t) dt

]
.

(11)

The indicated limits x0 and x effect a choice of indefinite integrals in Eq. (5) that
guarantees in advance that ρ(x0) = 1 and that y(x0) = y0 (as you can verify directly
by substituting x = x0 in the equations in (11)).

EXAMPLE 4 Solve the initial value problem

x2 dy

dx
+ xy = sin x, y(1) = y0. (12)

Solution Division by x2 gives the linear first-order equation

dy

dx
+ 1

x
y = sin x

x2

in which P(x) = 1/x and Q(x) = (sin x)/x2. With x0 = 1 the integrating factor in
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(11) is

ρ(x) = exp

(∫ x

1

1

t
dt

)
= exp(ln x) = x,

so the desired particular solution is given by

y(x) = 1

x

[
y0 +

∫ x

1

sin t

t
dt

]
. (13)

In accord with Theorem 1, this solution is defined on the whole positive x-axis. ◗

COMMENT Ordinarily an integral such as the one in Eq. (13) might (for a given
value of x) need to be approximated numerically—using Simpson’s approximation,
for instance—to find the value y(x) of the solution at x . But the integral serves per-
fectly well to define the function y(x). For instance, using a computer algebra system,
one can use the Maple command

y := (1/x)*(1 + int(sin(t)/t, t=1..x));

or the Mathematica command

y = (1/x)*(1 + Integrate[Sin[t]/t, { t, 1, x } ]);

to define the particular solution with y(1) = 1, then plot this solution in the usual
manner. Figure 8.4.3 shows solution curves plotted in this way with initial values
y(1) = y0 ranging from y0 = −2 to y0 = 2. It appears that on each solution curve,

x

y

10 1512.5 17.50 52.5 7.5 20
−3

−2

−1

(1, 2)

(1, −2)

0

1

2

3

FIGURE 8.4.3 Solution curves of
the differential equation

x2 dy

dx
+ xy = sin x corresponding to

different values of y0 in Eq. (13).
y(x) → 0 as x → +∞.

Mixture Problems
As a first application of linear first-order equations, we consider a tank containing a
solution—a mixture of solute and solvent—such as salt dissolved in water. There is
both inflow and outflow, and we want to compute the amount x(t) of solute in the
tank at time t , given the amount x(0) = x0 at time t = 0. Suppose that solution with
a concentration of ci grams of solute per liter of solution flows into the tank at the
constant rate of ri liters per second, and that the solution in the tank—kept thoroughly
mixed by stirring—flows out at the constant rate of ro liters per second.

To set up a differential equation for x(t), we estimate the change �x in x during
the brief time interval [t, t + �t]. The amount of solute that flows into the tank during
�t seconds is ri ci �t grams. To check this, observe how the cancellation of units in(

ri
liters

second

)
×

(
ci

grams

liter

)
× (�t seconds)

yields a quantity measured in grams.
The amount of solute that flows out of the tank during the same time intervalInput: ri  L /s, ci  gm /L

Output:
ro  L /s,
co  gm /L

x
V

Amount x(t)
Volume V(t)
Concentration co(t) =

FIGURE 8.4.4 The single-tank
mixture problem.

depends on the concentration co(t) of solute in the solution at time t . But as noted
in Fig. 8.4.4, co(t) = x(t)/V (t), where V (t) denotes the volume (not constant unless
ri = ro) of solution in the tank at time t . Then

�x = {grams input} − {grams output} ≈ ri ci �t − roco �t. (14)

We now divide by �t :
�x

�t
≈ ri ci − roco.

Finally, we take the limit as �t → 0; if all the functions involved are continuous and
x(t) is differentiable, then the error in this approximation also approaches zero, and
we obtain the differential equation

dx

dt
= ri ci − roco, (15)
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in which ri , ci , and ro are constants, but co denotes the variable concentration

co(t) = x(t)

V (t)
(16)

of solute in the tank at time t . Thus the amount x(t) of solution in the tank satisfies the
differential equation

dx

dt
= ri ci − ro

V
x . (17)

If V0 = V (0), then V (t) = V0 + (ri −ro)t , so Eq. (17) is a linear first-order differential
equation for the amount x(t) of solute in the tank at time t .

IMPORTANT Equation (17) is not one you should commit to memory. It is the pro-
cess we used to obtain that equation—examination of the behavior of the system over
the short time interval [t, t + �t]—that you should strive to understand, because it is a
very useful tool for obtaining all sorts of differential equations.

REMARK In deriving Eq. (17) we used g/L mass/volume units for convenience.
Any other consistent system of units can be used to measure amounts of solute and vol-
umes of solution. In the following example we measure both in cubic kilo-
meters.

EXAMPLE 5 Assume that Lake Erie has a volume of 480 km3 and that its rates of
inflow (from Lake Huron) and outflow (to Lake Ontario) are both 350 km3 per year.
Suppose that at the time t = 0 (in years), the pollutant concentration of Lake Erie—
caused by past industrial pollution that has now been ordered to cease—is five times
that of Lake Huron. If the outflow from Lake Erie henceforth is perfectly mixed lake
water, how long will it take to reduce the pollution concentration in Lake Erie to twice
that of Lake Huron?

Solution Here our “mixing tank” is Lake Erie and x(t) denotes the volume of pollu-
tants in the lake after t years. If c denotes the constant (although unknown) pollutant
concentration in Lake Huron, then the initial concentration of pollutants in Lake Erie
is 5c. Summarizing the given information, we therefore have

V = 480 (km3),

ri = ro = r = 350 (km3/yr),

ci = c (the pollutant concentration of Lake Huron), and

x0 = x(0) = 5cV .

The question is this: When is x(t) = 2cV ? With this notation, Eq. (17) is the separable
equation

dx

dt
= rc − r

V
x, (18)

which we rewrite in the linear first-order form

dx

dt
+ px = q (19)

with constant coefficients p = r/V , q = rc, and integrating factor ρ = ept . You can
either solve this equation directly or apply the formula in (11). The latter gives

x(t) = e−pt

[
x0 +

∫ t

0
qept dt

]
= e−pt

[
x0 + q

p
(ept − 1)

]

= e−r t/V

[
5cV + rc

r/V

(
ert/V − 1

)] ;

x(t) = cV + 4cV e−r t/V . (20)
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To find when x(t) = 2cV , we therefore need only solve the equation

2cV = cV + 4cV e−r t/V ,

which simplifies upon cancellation of cV to 4e−r t/V = 1:

t = V

r
ln 4 = 480

350
ln 4 ≈ 1.091 (years). ◗

EXAMPLE 6 A 120-gal tank initially contains 90 lb of salt dissolved in 90 gal of
water. Brine containing 2 lb/gal of salt flows into the tank at the rate of 4 gal/min, and
the well-stirred mixture flows out of the tank at the rate of 3 gal/min. How much salt
does the tank contain when it is full?

Solution The interesting feature of this example is that, due to the differing rates of
inflow and outflow, the volume of brine in the tank increases steadily with V (t) =
90 + t gallons. The change �x in the amount x of salt in the tank from time t to time
t + �t is given by

�x ≈ 4 · 2 · �t − 3 ·
(

x

90 + t

)
�t,

so the differential equation that models this example is

dx

dt
+ 3

90 + t
x = 8.

An integrating factor is

ρ(x) = exp

(∫
3

90 + t
dt

)
= e3 ln(90+t) = (90 + t)3,

which gives

Dt [(90 + t)3x] = 8 · (90 + t)3;
(90 + t)3x = 2(90 + t)4 + C.

Substituting x(0) = 90 gives C = −(90)4, so the amount of salt in the tank at time t is

x(t) = 2 · (90 + t) − 904

(90 + t)3
.

The tank is full after 30 min, and when t = 30, we have

x(30) = 2 · (90 + 30) − 904

1203
≈ 202 (lb)

of salt in the tank. ◗

Motion with Resistance
In Section 8.2 we explored graphical and numerical solutions of the differential equa-
tion

dv

dt
= g − kv (21)

satisfied by the downward velocity v of a ball that is dropped from a hovering heli-
copter and is thereafter affected both by gravity and by air resistance proportional to v.
Here we explore symbolic solutions of similar problems.
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Suppose that a ball is thrown straight up in the air. We set up a coordinate system

x

y

m m

Ground level

FR

FG

Net force F = FR + FG

(Note: FR acts upward when
the body is falling.)

FIGURE 8.4.5 Vertical motion with
air resistance.

with the y-axis directed upward and with y = 0 at ground level. As illustrated in
Fig. 8.4.5, the ball of mass m is acted on by the force FG = −mg of gravity—negative
because it is directed downward—and by the force FR of air resistance. If the air
resistance is proportional to the velocity of the ball, then

FR = −Rv (22)

where R > 0 is a proportionality constant. Observe that the minus sign here correctly
indicates that the force acts downward (FR < 0) when the motion is upward (v > 0)
and that the force acts upward (FR > 0) when the motion is downward (v < 0).

By Newton’s second law of motion, the total force F = FG + FR is equal to the
acceleration ma = m(dv/dt) of the ball, and hence

m
dv

dt
= −mg − Rv. (23)

Division by the mass m of the ball yields the equation

dv

dt
= −g − kv (24)

where k = R/m > 0 and g ≈ 32 ft/s2 (or 9.8 m/s2). (You should verify that if
the positive y-axis were directed downward instead of upward, then this derivation
would yield Eq. (21) with a single sign changed on the right-hand side.)

EXAMPLE 7 Suppose that the ball of Section 8.2 (with k = 0.16 in fps units) is pro-
jected straight upward from the ground—perhaps by a pitching machine—with initial
velocity 160 ft/s. Find

(a) the maximum height it attains;
(b) its time of ascent to that height and the time of its descent back to the ground;
(c) the velocity with which it strikes the ground.

Before proceeding with the solution, let’s first consider (for the purpose of later
comparison) the case of no air resistance. With k = 0 in Eq. (24), we readily
calculate

dv

dt
= −32, v = −32t + 160, and y =

∫
v dt = −16t2 + 160t

(with v0 = 160 and y0 = 0) as in Section 5.2. The ball reaches its maximum height
when v = −32t + 160 = 0, thus when t = 5 (s). Hence its maximum height is
y(5) = 400 (ft). It strikes the ground after 10 seconds, with velocity v(10) = −160
ft/s (and thus with the same speed as its launch from the ground).

Solution If we rewrite Eq. (24) in the form

dv

dt
+ (0.16)v = −32,

we see that we have a linear differential equation with integrating factor

ρ(t) = e
∫
(0.16) dt = e(0.16)t .

After we multiply both sides of the differential equation by ρ(t) and integrate, we get

e(0.16)t dv

dt
+ (0.16)e(0.16)tv = −32e(0.16)t ;

Dt
(
e(0.16)tv

) = −32e(0.16)t ;

e(0.16)tv =
∫ [−32e(0.16)t

]
dt = −200e(0.16)t + C1.
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Substituting t = 0, v = 160 gives C1 = 360, so after t seconds the velocity of the ball
is

v(t) = e−(0.16)t
(−200e(0.16)t + 360

) = −200 + 360e−(0.16)t . (25)

Now an easy antidifferentiation yields

y =
∫

v dt =
∫ (−200 + 360e−(0.16)t

)
dt = −200t − 2250e−(0.16)t + C2.

Finally, substituting t = 0, y = 0 gives C2 = 2250, so the height of the ball after
t seconds in the air is

y(t) = −200t + 2250
(
1 − e−(0.16)t

)
. (26)

Figure 8.4.6 shows the graph of y(t). We see at a glance that air resistance has reduced

t

y

2

100

50

200

150

250

300

4 6 8 91 3 5 7

FIGURE 8.4.6 Graph of the ball’s
height function y(t).

the maximum height of the ball from 400 ft to under 300 ft, and its total time in the air
from 10 s to a bit over 8 s:

(a) The ball reaches its apex when y′(t) = v(t) = −200 + 360e−(0.16)t = 0, so its
time of ascent is

t = ln(360/200)

0.16
≈ 3.67 (s).

Thus its maximum height in the air is given by Eq. (26) as y(3.67) ≈ 265.27 ft.
(b) The ball returns to the ground when

y(t) = 0; that is, when − 200t + 2250
(
1 − e−(0.16)t

) = 0.

Using Newton’s method, or the Solve command on a calculator or computer
algebra system, we find that t ≈ 8.24 s. Thus the time of descent of the ball
(from its apex back to the ground) is approximately 8.24 − 3.67 = 4.57 s. Note
that this time of descent is somewhat greater than its time of ascent, as every
major-league catcher knows.

(c) Finally, the velocity with which the ball strikes the ground is given by Eq. (25)
as v(8.24) ≈ −103.68 ft/s. Note that the ball’s impact speed is considerably less
than its initial launch speed of 160 ft/s. ◗

REMARK Suppose that instead of striking the ground, the ball of Example 7 falls into
a virtually bottomless pit (such as a deep mine shaft). Note that Eq. (25) implies that it
does not fall with uniformly increasing speed—as it would in a vacuum—but instead
approaches a limiting speed of 200 ft/s (as we observed graphically and numerically in
Section 8.2). This phenomenon is analyzed more generally in Problem 43. It explains
why one occasionally reads of someone whose parachute failed to open completely but
nevertheless survived (perhaps with the aid of a conveniently located haystack).

8.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If P(x) and Q(x) are linear functions of x , then the differential equation dy/dx+
P(x)y = Q(x) is linear.

2. If P(y) and Q(y) are linear functions of y, then the differential equation dy/dx+
P(y)y = Q(y) is linear.

3. There is an explicit formula that gives an integrating factor ρ(x) for the differen-
tial equation dy/dx + P(x)y = Q(x) in terms of the functions P(x) and Q(x).

4. If two people calculate the two integrating factors ρ1(x) and ρ2(x) for the same
linear differential equation, and these two alleged integrating factors are not ab-
solutely identical, then one of the two people made a mistake.
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5. If y(x) is a solution of the differential equation

dy

dx
− y = 11

8 e−x/3

of Example 2, then |y(x)| → ∞ as x → +∞.
6. If y(x) is a solution of the differential equation

(x2 + 1)
dy

dx
+ 3xy = 6x

of Example 3, then y(x) → 2 as x → +∞.
7. If the functions P(x) and Q(x) are continuous for all x , then the initial value

problem
dy

dx
+ P(x)y = Q(x), y(x0) = y0

has a solution that is defined for all x .
8. Every linear differential equation has both a general solution and at least one

singular solution that is not included in the general solution.
9. In the differential equation

dx

dt
= ri ci − roco

that is derived in the subsection entitled Mixture Problems, the dependent vari-
able x(t) represents the concentration of solute in the tank at time t .

10. In the differential equation
dv

dt
= −g − kv

that is derived in the subsection entitled Motion with Resistance, the dependent
variable v(t) represents the downward velocity of a falling body subject to gravity
and air resistance proportional to velocity.

8.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. Write several differential equations that are linear but not separable.
2. Write several differential equations that are both linear and separable. Compare

their solutions by separation of variables with their solutions using the method
of this section. Are the two general solutions identical in each case? If not,
reconcile the two results. Does one method seem generally easier than the other?
Does this depend on the particular differential equation?

3. Consider the up-and-down motion of a ball subject both to gravity and to a force
FR = −Rv p of air resistance that is proportional to some power p �= 1 of the
velocity. Is the resulting differential equation—analogous to (24)—still linear?
If not, can you think of a value of p for which you might still be able to solve for
the velocity function v(t)?

8.4 PROBLEMS

Find general solutions of the differential equations in Problems 1
through 20. If an initial condition is given, find the corresponding
particular solution.

1.
dy

dx
+ y = 2, y(0) = 0

2.
dy

dx
− 2y = 3e2x , y(0) = 0

3.
dy

dx
+ 3y = 2xe−3x

4.
dy

dx
− 2xy = ex2

5. x
dy

dx
+ 2y = 3x , y(1) = 5

6. x
dy

dx
+ 5y = 7x2, y(2) = 5

7. 2x
dy

dx
+ y = 10

√
x

8. 3x
dy

dx
+ y = 12x

617

www.konkur.in



618 CHAPTER 8 Differential Equations

9. x
dy

dx
− y = x , y(1) = 7

10. 2x
dy

dx
− 3y = 9x3

11. x
dy

dx
+ y = 3xy, y(1) = 0

12. x
dy

dx
+ 3y = 2x5, y(2) = 1

13.
dy

dx
+ y = ex , y(0) = 1

14. x
dy

dx
− 3y = x3, y(1) = 10

15.
dy

dx
+ 2xy = x , y(0) = −2

16.
dy

dx
= (1 − y) cos x , y(π) = 2

17. (1 + x)
dy

dx
+ y = cos x , y(0) = 1

18. x
dy

dx
= 2y + x3 cos x

19.
dy

dx
+ y cot x = cos x

20.
dy

dx
= 1 + x + y + xy, y(0) = 0

21. Express the general solution of dy/dx = 1 + 2xy in terms
of the error function

erf(x) = 2√
π

∫ x

0
e−t2

dt.

22. Express the solution of the initial value problem

2x
dy

dx
= y + 2x cos x, y(1) = 0

as an integral as in Example 4.

23. A tank contains 1000 L of a solution consisting of 100 kg
of salt dissolved in water. Pure water is pumped into the
tank at the rate of 5 L/s, and the mixture—kept uniform by
stirring—is pumped out at the same rate. How long will it
be until only 10 kg of salt remains in the tank?

24. Consider a reservoir with a volume of 8 billion cubic feet
(ft3) and an initial pollutant concentration of 0.25%. There
is a daily inflow of 500 million ft3 of water with a pollu-
tant concentration of 0.05% and an equal daily outflow of
the well-mixed water in the reservoir. How long will it
take to reduce the pollutant concentration in the reservoir
to 0.10%?

25. Rework Example 5 for the case of Lake Ontario. The only
differences are that this lake has a volume of 1640 km3 and
an inflow-outflow rate of 410 km3/year.

26. A tank initially contains 60 gal of pure water. Brine contain-
ing 1 lb of salt per gallon enters the tank at 2 gal/min, and
the (perfectly mixed) solution leaves the tank at 3 gal/min;
thus the tank is empty after exactly 1 h. (a) Find the amount
of salt in the tank after t minutes. (b) What is the maximum
amount of salt ever in the tank?

27. A 400-gal tank initially contains 100 gal of brine containing
50 lb of salt. Brine containing 1 lb of salt per gallon enters
the tank at the rate of 5 gal/s, and the well-mixed brine in the
tank flows out at the rate of 3 gal/s. How much salt will the
tank contain when it is full of brine?

28. Consider the cascade of two tanks shown in Fig. 8.4.7, with
V1 = 100 (gal) and V2 = 200 (gal) the volumes of brine
in the two tanks. Each tank also initially contains 50 lb of
salt. The three flow rates indicated in the figure are each
5 gal/min, with pure water flowing into tank 1. (a) Find the
amount x(t) of salt in tank 1 at time t . (b) Suppose that
y(t) is the amount of salt in tank 2 at time t . Show first
that

dy

dt
= 5x

100
− 5y

200
,

then solve for y(t), using the function x(t) found in
part (a). (c) Finally, find the maximum amount of salt ever
in tank 2.

Tank 1
Volume V1
Amount x

Tank 2
Volume V2
Amount y

FIGURE 8.4.7 A cascade of
two tanks.

29. A 30-year-old woman accepts an engineering position with
a starting salary of $30,000 per year. Her salary S(t) in-
creases exponentially, with S(t) = 30et/20 thousand dollars
after t years. Meanwhile, 12% of her salary is deposited
continuously in a retirement account, which accumulates in-
terest at a continuous annual rate of 6%. (a) Estimate �A
in terms of �t to derive the differential equation satisfied
by the amount A(t) in her retirement account after t years.
(b) Compute A(40), the amount available for her retirement
at age 70.

30. Suppose that a falling hailstone with density δ = 1 starts
from rest with negligible radius r = 0. Thereafter its radius
is r = kt (k is a constant) as it grows by accretion during its
fall. Set up and solve the initial value problem

d

dt
(mv) = mg, v(0) = 0,

where m is the variable mass of the hailstone, v = dy/dt is
its velocity, and the positive y-axis points downward. Then
show that dv/dt = g/4. Thus the hailstone falls as though
it were under one-fourth the influence of gravity.

31. The acceleration of a Maserati is proportional to the differ-
ence between 250 km/h and the velocity of this sports car.
If this machine can accelerate from rest to 100 km/h in 10 s,
how long will it take for the car to accelerate from rest to 200
km/h?
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32. Suppose that a body moves through a resisting medium with
resistance proportional to its velocity v, so that dv/dt =
−kv. (a) Show that its velocity and position at time t are
given by

v(t) = v0e−k t

and

x(t) = x0 +
(

v0

k

)
(1 − e−k t ).

(b) Conclude that the body travels only a finite distance, and
find that distance.

33. Suppose that a motorboat is moving at 40 ft/s when its motor
suddenly quits, and that 10 s later the boat has slowed to 20
ft/s. Assume, as in Problem 32, that the resistance it encoun-
ters while coasting is proportional to its velocity. How far
will the boat coast in all?

34. Consider a body that moves horizontally through a medium
whose resistance is proportional to the square of the velocity
v, so that dv/dt = −kv2. Show that

v(t) = v0

1 + v0k t

and that

x(t) = x0 + 1

k
ln(1 + v0k t).

Note that, in contrast with the result of Problem 32, x(t) →
+∞ as t → +∞.

35. Assuming resistance proportional to the square of the ve-
locity (as in Problem 34), how far does the motorboat
of Problem 33 coast in the first minute after its motor
quits?

36. Assume that a body moving with velocity v encounters
resistance of the form dv/dt = −kv3/2. Show that

v(t) = 4v0(
k t

√
v0 + 2

)2

and that

x(t) = x0 + 2

k

√
v0

(
1 − 2

k t
√

v0 + 2

)
.

Conclude that under a 3
2 -power resistance a body coasts only

a finite distance before coming to a stop.

37. Suppose that a car starts from rest, its engine providing an
acceleration of 10 ft/s2, while air resistance provides 0.1 ft/s2

of deceleration for each foot per second of the car’s veloc-
ity. (a) Find the car’s maximum possible (limiting) velocity.
(b) Find how long it takes the car to attain 90% of its limiting
velocity, and how far it travels while doing so.

38. Rework both parts of Problem 37, with the sole differ-
ence that the deceleration due to air resistance now is
(0.001)v2 ft/s2 when the car’s velocity is v feet per second.

39. A motorboat weighs 32,000 lb and its motor provides a
thrust of 5000 lb. Assume that the water resistance is
100 pounds for each foot per second of the speed v of the
boat. Then

1000
dv

dt
= 5000 − 100v.

If the boat starts from rest, what is the maximum velocity
that it can attain?

40. It is proposed to dispose of nuclear wastes—in drums with
weight W = 640 lb and volume 8 ft3—by dropping them
into the ocean (v0 = 0). The force equation for a drum
falling through water is

m
dv

dt
= −W + B + FR,

where the buoyant force B is equal to the weight
(at 62.5 lb/ft3) of the volume of water displaced by the drum
(Archimedes’ principle) and FR is the force of water resis-
tance, found empirically to be 1 lb for each foot per second
of the velocity of a drum. If the drums are likely to burst
upon an impact of more than 75 ft/s, what is the maximum
depth to which they can be dropped in the ocean without
likelihood of bursting?

41. Rework Example 7, but for a crossbow bolt for which v′ =
−9.8−0.04v (mks units) launched straight upward from the
ground with an initial velocity of 49 m/s.

42. Consider anew the ball of Examples 2 and 5 in Section 8.2,
which is dropped from a helicopter hovering at a height of
3000 ft. (a) Solve the initial value problem

dv

dt
= 32 − (0.16)v, v(0) = 0

to find its velocity v(t) after t seconds. (b) Show that the
limiting velocity of the ball is exactly 200 ft/s. (c) Find the
ball’s time of descent to the ground.

43. Solve the general initial velocity problem dv/dt = −g−kv,
v(0) = v0 for a projectile moving in a vertical line subject to
gravity and air resistance. Show that

v(t) = v0e−kt + g

k
(e−kt − 1).

Conclude that the projectile approaches a limiting terminal
velocity given by

vτ = lim
t→∞ v(t) = − g

k
.

44. A woman bails out of an airplane at an altitude of 10,000 ft,
falls freely for 20 s, then opens her parachute. How long will
it take her to reach the ground? Assume linear air resistance
of k feet per second per second, taking k = 0.15 without
the parachute and k = 1.5 with the parachute. (Suggestion:
First determine her height and velocity when the parachute
opens.)

8.5 POPULATION MODELS

In Section 8.1 we introduced the exponential differential equation d P/dt = k P , with
solution P(t) = P0ek t , as a mathematical model for natural population growth that oc-
curs as a result of constant birth and death rates. Here we present a more general popu-
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lation model that accommodates birth and death rates that are not necessarily constant.
As before, however, our population function P(t) will be a continuous approximation
to the actual population, which of course grows by integral increments.

Suppose that the population changes only by the occurrence of births and deaths—
there is no immigration to or emigration from outside the country or environment under
consideration. It is customary to track the growth or decline of a population in terms
of its birth rate and death rate functions defined as follows:

• β(t) is the number of births per unit of population per unit of time at time t ;
• δ(t) is the number of deaths per unit of population per unit of time at time t .

Then the numbers of births and deaths that occur during the (short) time interval
[t, t + �t] are given (approximately) by

births: β(t) · P(t) · �t; deaths: δ(t) · P(t) · �t.

Hence the change �P in the population during the time interval [t, t + �t] of
length �t is

�P = {births} − {deaths} ≈ β(t) · P(t) · �t − δ(t) · P(t) · �t,

so

�P

�t
≈ [β(t) − δ(t)] · P(t).

The error in this approximation should approach zero as �t → 0, so—taking the
limit—we get the differential equation

d P

dt
= (β − δ) · P , (1)

in which we write β = β(t), δ = δ(t), and P = P(t) for brevity. Equation (1) is the
general population equation. If β and δ are constant, Eq. (1) reduces to the natural
growth equation with k = β − δ. But it also includes the possibility that β and δ are
variable functions of t . The birth and death rates need not be known in advance; they
may well depend on the unknown function P(t).

EXAMPLE 1 Suppose that an alligator population numbers 100 initially, and that
its death rate is δ = 0 (so none of the alligators is dying). If the birth rate is β =
(0.0005)P—and thus the rate increases as the population does—then Eq. (1) gives the
initial value problem

d P

dt
= (0.0005)P2, P(0) = 100

(with t in years). Upon separating the variables we get∫
1

P2
d P =

∫
(0.0005) dt;

− 1

P
= (0.0005)t + C.

Substituting t = 0, P = 100 gives C = −1/100, and then we readily solve for

P(t) = 2000

20 − t
.

For instance, P(10) = 2000/10 = 200, so after 10 years the alligator population
has doubled. But we see that P(t) → +∞ as t → 20, so a real “population explosion”
occurs in 20 years. Indeed, the direction field and solution curves shown in Fig. 8.5.1
indicate that a population explosion always occurs, whatever the size of the (positive)
initial population P(0) = P0. In particular, it appears that the population always
becomes unbounded in a finite period of time. ◗
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FIGURE 8.5.1 Direction field and solution
curves for the equation d P/dt = (0.0005)P2

in Example 1.

Bounded Populations and the Logistic Equation
In situations as diverse as the human population of a nation and a fruit fly population
in a closed container, it is often observed that the birth rate decreases as the population
itself increases. The reasons may range from increased scientific or cultural sophisti-
cation to limitations on available food or space. Suppose, for example, that the birth
rate β is a linear decreasing function of the population size P , so that β = β0 − β1 P
where β0 and β1 are positive constants. If the death rate δ = δ0 remains constant, then
Eq. (1) takes the form

d P

dt
= (β0 − β1 P − δ0)P;

that is,

d P

dt
= a P − bP2 (2)

where a = β0 − δ0 and b = β1.
If the coefficients a and b are both positive, then Eq. (2) is called the logistic

equation. For the purpose of relating the behavior of the population P(t) to the values
of the parameters in the equation, it is useful to rewrite the logistic equation in the form

d P

dt
= k P(M − P) (3)

where k = b and M = a/b are constants.

EXAMPLE 2 In Example 3 of Section 8.2 we explored graphically a population
modeled by the logistic equation

d P

dt
= (0.0004)P · (150 − P) = (0.06)P − (0.0004)P2. (4)

To solve this differential equation symbolically, we separate the variables and integrate.
We get ∫

1

P(150 − P)
d P =

∫
(0.0004) dt;

1

150

∫ (
1

P
+ 1

150 − P

)
d P =

∫
(0.0004) dt [partial fractions];

ln |P| − ln |150 − P| = (0.06)t + C;
P

150 − P
= ±eC e(0.06)t = Be(0.06)t [where B = ±eC ].
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If we substitute t = 0 and P = P0 into this last equation, we find that B = P0/(150 −
P0). Hence

t

P

P0 = 20

P0 = 300

100755025

150
180

240

300

120

60
20

FIGURE 8.5.2 Typical solution
curves for the logistic equation
P ′ = 0.06P − 0.0004P2.

P

150 − P
= P0e(0.06)t

150 − P0
.

Finally, this last equation is easy to solve for the population

P(t) = 150P0

P0 + (150 − P0)e−(0.06)t
(5)

at time t in terms of the initial population P0 = P(0). Figure 8.5.2 shows a number
of solution curves corresponding to different values of the initial population ranging
from P0 = 20 to P0 = 300. Note that all these solution curves appear to approach the
horizontal line P = 150 as an asymptote. Indeed, you should be able to see directly
from Eq. (5) that P(t) → 150 as t → +∞, whatever the initial value P0 > 0. ◗

Limited Populations and Carrying Capacity
The finite limiting population discovered in Example 2 is characteristic of logistic pop-
ulations. In Problem 31 we ask you to use the method of solution of Example 2 to show
that the solution of the logistic initial value problem

d P

dt
= k P(M − P), P(0) = P0 (6)

is

P(t) = M P0

P0 + (M − P0)e−k Mt
. (7)

Actual populations are positive-valued. If P0 = M then (7) reduces to the un-
changing (constant-valued) equilibrium population P(T ) ≡ M . Otherwise, the be-
havior of a logistic population depends upon whether 0 < P0 < M or P0 > M . If
0 < P0 < M then we see from Eqs. (6) and (7) that P ′(t) > 0 and

P(t) = M P0

P0 + (M − P0)e−k Mt
= M P0

P0 + {positive number} <
M P0

P0
= M.

But if P0 > M then we see from Eqs. (6) and (7) that P ′(t) < 0 and

P(t) = M P0

P0 + (M − P0)e−k Mt
= M P0

P0 + {negative number} >
M P0

P0
= M.

In each case, the “positive number” or “negative number” in the denominator has ab-
solute value less than P0 and—because of the exponential factor—approaches zero as
t → +∞. It follows that

lim
t→∞ P(t) = M P0

P0 + 0
= M. (8)

Thus a population that satisfies the logistic equation does not grow without bound
like a naturally growing population modeled by the exponential equation d P/dt = k P .
Instead, it approaches the finite limiting population M as t → +∞. As illustrated by
the typical solution curves of the logistic equation shown in Fig. 8.5.3, the population
P(t) steadily increases and approaches M from below if 0 < P0 < M , but steadily
decreases and approaches M from above if P0 > M . Sometimes M is called the
carrying capacity of the environment, considering it to be the maximum population
that the environment can support on a long-term basis.

t

P

M

M/2
P = M/2

P = M

FIGURE 8.5.3 Typical solution
curves for the logistic equation
P ′ = k P(M − P). Each solution
curve that starts below the line
P = M/2 has an inflection point
on this line. (See Problem 33.)
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EXAMPLE 3 Suppose that in 1885 the population of a certain country was 50 million
and was growing at the rate of 750,000 people per year at that time. Suppose also that
in 1940 its population was 100 million and was then growing at the rate of 1 million
per year. Assume that this population satisfies the logistic equation. Determine both
the limiting population M and the predicted population for the year 2000.

Solution We substitute the two given pairs of data in Eq. (6) and find that

0.75 = 50k(M − 50) and 1.00 = 100k(M − 100).

We solve simultaneously for M = 200 and k = 0.0001. Thus the limiting population
of the country in question is 200 million. With these values of M and k, and with
t = 0 corresponding to the year 1940 (in which P0 = 100), we find that—according to
Eq. (7)—the population in the year 2000 will be

P(60) = 200 · 100

100 + (200 − 100)e−(0.0001)(200)(60)
,

about 153.7 million people. ◗

HISTORICAL NOTE The logistic equation was introduced (around 1840) as a pos-
sible model for human population growth by the Belgian mathematician and demogra-
pher P. F. Verhulst (1804–1849). In Examples 4 and 5 we compare natural growth and
logistic model fits to census data for the U.S. population in the 19th century.

EXAMPLE 4 The U.S. population in 1800 was 5.308 million and in 1900 was 76.212
million. If we take P0 = 5.308 (with t = 0 in 1800) in the natural growth model
P(t) = P0ert and substitute t = 100, P = 76.212, we find that

76.212 = 5.308e100r , so r = 1

100
ln

76.212

5.308
≈ 0.026643.

Thus our natural growth model for the U.S. population during the 19th century is

P(t) = (5.308)e(0.026643)t (9)

(with t in years and P in millions). Because e0.026643 ≈ 1.02700, the average popula-
tion growth between 1800 and 1900 was about 2.7% per year. This rate of growth was
not sustained during the 20th century. Whereas Eq. (9) predicts P(150) ≈ 288.780
and P(200) ≈ 1094.240 (over a billion), the actual population of the United States in
the year 2000 was “only” about 280 million. ◗

EXAMPLE 5 The U.S. population in the year 1850 was 23.192 million. If we take
P0 = 5.308 and substitute the data pairs t = 50, P = 23.192 (for 1850) and t =
100, P = 76.212 (for 1900) in the logistic model formula in Eq. (7), we get the two
equations

(5.308)M

5.308 + (M − 5.308)e−50k M
= 23.192,

(5.308)M

5.308 + (M − 5.308)e−100k M
= 76.212

(10)

in the two unknowns k and M . A computer algebra system yields the approximate
solution

k = 0.000167716, M = 188.121

of the simultaneous equations in (10). Substituting these values in Eq. (7) yields the
logistic model

P(t) = 998.546

5.308 + (182.813)e−(0.031551)t
, (11)
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which agrees with the U.S. population data for 1850 and 1900. It predicts P(150) =
144.354, a fairly good approximation to the actual 1950 U.S. population of 151.326
million. Nevertheless, by the year 2000, the U.S. population had already greatly ex-
ceeded the limiting population of 188.121 million predicted by Eq. (11). ◗

The moral of Examples 4 and 5 is simply that one cannot expect too much of
models that are based on severely limited information (such as a mere pair of data
points). Much of the science of statistics is devoted to the analysis of large “data sets”
to formulate useful (and perhaps reliable) mathematical models.

More Applications of the Logistic Equation
We next describe some situations that illustrate the varied circumstances in which the
logistic equation is a satisfactory mathematical model.

1. Limited environment situation. A certain environment can support a population
of at most M individuals. It is then reasonable to expect the growth rate β−δ (the
combined birth and death rates) to be proportional to M − P , because we may
think of M − P as the potential for further expansion. Then β − δ = k(M − P),
so that

d P

dt
= (β − δ)P = k P(M − P).

The classic example of a limited environment situation is a fruit fly population in
a closed container.

2. Competition situation. If the birth rate β is constant but the death rate δ is
proportional to P , so that δ = αP , then

d P

dt
= (β − αP)P = k P(M − P).

This might be a reasonable working hypothesis in a study of a cannibalistic popu-
lation, in which all deaths result from chance encounters between individuals. Of
course, competition between individuals is not usually so deadly, nor its effects
so immediate and decisive.

3. Joint proportion situation. Let P(t) denote the number of individuals in a
constant-size susceptible population M who are infected with a certain conta-
gious and incurable disease. The disease is spread by chance encounters. Then
P ′(t) should be proportional to the product of the number P of individuals hav-
ing the disease and the number M − P of those not having it, and therefore
d P/dt = k P(M − P). Again we discover that the mathematical model is the
logistic equation. The mathematical description of the spread of a rumor in a
population of M individuals is identical.

EXAMPLE 6 Suppose that at time t = 0 (weeks), 10 thousand people in a city with
population M = 100 thousand have heard a certain rumor. After 1 week the number
P(t) of those who have heard it has increased to P(1) = 20 thousand. Assuming that
P(t) satisfies a logistic equation, when will 80% of the city’s population have heard
the rumor?

Solution Substituting P0 = 10 and M = 100 (thousand) in Eq. (7), we get

P(t) = 1000

10 + 90e−100kt
. (12)

Then substituting t = 1, P = 20 gives the equation

20 = 1000

10 + 90e−100k

that is readily solved for

e−100k = 4

9
, so k = 1

100
ln

9

4
≈ 0.008109.
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With P(t) = 80, Eq. (12) takes the form

80 = 1000

10 + 90e−100k t
,

which we solve for e−100kt = 1
36 . It follows that 80% of the population has heard the

rumor when

t = ln 36

100k
= ln 36

ln(9/4)
≈ 4.42,

thus after about four weeks and three days. ◗

Doomsday versus Extinction
Consider a population P(t) of unsophisticated animals that rely solely on chance en-
counters between females and males for reproductive purposes. It is reasonable to
expect such encounters to occur at a rate that is proportional to the product of the
number P/2 of males and the number P/2 of females, hence at a rate proportional
to P2. We therefore assume that births occur at the rate k P2 (per unit time, with
k constant). The birth rate (in births per unit time per unit of population) is then given
by β = k P . If the death rate δ is constant, then the general population equation
in (1) yields the differential equation

d P

dt
= k P2 − δP = k P(P − M ) (13)

(where M = δ/k > 0) as a mathematical model of the population.
Note that the right-hand side in Eq. (13) is the negative of the right-hand side

in the logistic equation in (3). We will see that the constant M is now a threshold
population, with the way the population behaves in the future depending critically on
whether the initial population P0 is less than or greater than M .

EXAMPLE 7 Consider an animal population P(t) that is modeled by the equation

d P

dt
= (0.0004)P · (P − 150) = (0.0004)P2 − (0.06)P. (14)

We want to find P(t) in the following two cases: (a) P(0) = 200; (b) P(0) = 100.

Solution To solve the equation in (14), we separate the variables and integrate. We
get ∫

1

P(P − 150)
d P =

∫
(0.0004) dt;

− 1

150

∫ (
1

P
− 1

P − 150

)
d P =

∫
(0.0004) dt [partial fractions];

ln |P| − ln |P − 150| = −(0.06)t + C;
P

P − 150
= ±eC e−(0.06)t = Be−(0.06)t [where B = ±eC ]. (15)

(a) Substituting t = 0 and P = 200 in (15) gives B = 4. With this value of B we
solve Eq. (15) for

P(t) = 600e−(0.06)t

4e−(0.06)t − 1
. (16)

Note that as t increases and approaches T = (ln 4)/0.06) ≈ 23.105, the positive
denominator on the right in (16) decreases and approaches zero. Consequently
P(t)→ + ∞ as t → T −. This is a doomsday situation—a real population explo-
sion.
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(b) Substituting t = 0 and P = 100 in (15) gives B = −2. With this value of B we
solve Eq. (15) for

P(t) = 300e−(0.06)t

2e−(0.06)t + 1
= 300

2 + e(0.06)t
. (17)

Note that as t increases without bound, the positive denominator in the right in
Eq. (17) approaches +∞. Consequently P(t) → 0 as t → +∞. This is an
(eventual) extinction situation. ◗

Thus the population in Example 7 either explodes or is an endangered species
threatened with extinction, depending on whether or not its initial size exceeds the
threshold population M = 150. An approximation to this phenomenon is sometimes
observed with animal populations, such as the alligator population in certain areas of
the southern United States.

Figure 8.5.4 shows typical solution curves that illustrate the two possibilities for

t

P

M
P = M

FIGURE 8.5.4 Typical solution
curves for the explosion-extinction
equation P ′ = k P(P − M).

a population P(t) satisfying Eq. (13). If P0 = M (exactly!), then the population
remains constant. But this equilibrium situation is highly unstable. If P0 exceeds
M , no matter how slightly, then P(t) increases rapidly without bound, whereas if the
initial (positive) population is less than M (however slightly), then it decreases—more
gradually—toward zero as t → +∞.

Predator-Prey Populations
Consider the two differential equations

dx

dt
= px − axy,

dy

dt
= −qy + bxy

(18)

(19)

with positive coefficients a, b, p, and q. In ecology this system of simultaneous equa-
tions is often used to model a prey population (such as rabbits) and a predator popula-
tion (such as foxes) that occupy the same environment. Typically, there is a food supply
ample to feed the prey, whereas the predators feed on the prey—thereby impeding the
growth of the prey population and promoting the growth of the predator population.

Note that if a were zero then Eq. (18) would reduce to the natural growth equation
dx/dt = px , and thereby would imply that the prey population x(t) would increase
without bound as t → +∞. On the other hand, if b were zero, then Eq. (19) would
reduce to the natural decay equation dy/dx = −qy, and would therefore imply that the
predator population y(t) would decline and die out as t → +∞. If a and b are positive,
then the negative term −axy in (18) represents a decrease in the rate of growth of the
prey due to life-threatening “interaction” with the predators, while the positive term
bxy in (19) represents a concomitant decrease in the rate of decline of the predators
(who prosper at the expense of the prey).

If the coefficients in Eqs. (18) and (19) are all positive, then it generally is im-
possible to solve for x and y explicitly as elementary functions of the time variable t .
But if we think of y as a function of x , then the chain rule in the form

dy

dt
= dy

dx

dx

dt

yields

dy

dx
= dy/dt

dx/dt
= −qy + bxy

px − axy
. (20)

In Problem 34 we ask you to separate the variables in Eq. (20) to derive the implicit
general solution

xq y p = Cebx eay (21)
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of Eq. (20). The value of the arbitrary constant C can be determined by substitution of
specific numerical values of the coefficients a, b, p, and q together with initial values
x0 = x(0) and y0 = y(0) of the two populations.

The graph of Eq. (21) is typically a closed curve in the shape of an oval in the first
quadrant of the xy-plane. For instance, with the values a = 0.0003, b = 0.0002, p =
0.08, and q = 0.07 of the coefficients and with initial populations of x0 = 800 rab-

x

y

200

200

400

600

800

400 600 800

(x0, y0)
P1 P2

Q1

Q2

1000 1200

FIGURE 8.5.5 A typical
prey-predator solution curve.

bits and y0 = 75 foxes, the implicit plotting command of a computer algebra system
generates the solution curve shown in Fig. 8.5.5.

We can “zoom in” on the leftmost and rightmost points P1 and P2 on the curve
by plotting it in appropriately selected smaller viewing windows. Of course we may
also zoom in on the lowest and highest points Q1 and Q2. Doing so, we determine the
approximate coordinates P1(50, 267), P2(1146, 267), Q1(350, 45), and Q2(350, 820)

of these extreme points on the solution curve.
A more detailed analysis of Eqs. (18) and (19) reveals that the point (x(t), y(t))

traverses the solution curve repeatedly in a counterclockwise direction as time t ad-
vances. Consequently, if we begin with x0 = 800 rabbits and y0 = 75 foxes, then:

• The numbers of rabbits and foxes both increase initially until there are 1146
rabbits and 267 foxes (at P2);

• Next the number of rabbits decreases and the number of foxes continues to in-
crease until there are 350 rabbits and 820 foxes (at Q2);

• Next the numbers of rabbits and foxes both decrease until there are 50 rabbits
and 267 foxes (at P1);

• Next the number of rabbits increases and the number of foxes continues to de-
crease until there are 350 rabbits and 45 foxes (at Q1);

• Finally the numbers of rabbits and foxes both increase until there are again 800
rabbits and 75 foxes.

This process of cyclical variation of the rabbit and fox populations continues indefi-
nitely. In particular, we see that the number of rabbits oscillates between 50 and 1146,
while the number of foxes oscillates between 45 and 820. This classical model of a
predator-prey situation was developed in the 1920s by the Italian mathematician Vito
Volterra (1860–1940) in order to analyze the cyclic variations observed in the shark
and food fish populations in the Adriatic Sea. The time lag of the predator population
behind that of the prey population is worthy of note. A similar (but more complicated)
analysis might help explain—and even predict—the time lag of economic prosperity
of a nation subsequent to certain fiscal policies of its government.

8.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. In the general population equation d P/dt = (β − δ)P , the birth rate β and the
death rate δ must be constants.

2. If a population P(t) of rodents satisfies the differential equation d P/dt =
0.0005P2 of Example 1 and its initial population P(0) = P0 is positive, then
a population explosion always occurs.

3. A logistic equation is one of the form

d P

dt
= a P2 − bP

where the coefficients a and b are both positive.
4. If P(t) satisfies the logistic equation

d P

dt
= 0.06P − 0.0004P2

of Example 2 and its initial population P(0) = P0 is positive, then P(t) → 250
as t → +∞.
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5. If P(t) satisfies the initial value problem

d P

dt
= k P(M − P), P(0) = P0

with k, M , and P0 all positive, then P(t) → M as t → +∞.
6. During the 20th century, the population of the United States continued to grow at

the average annual growth rate of 2.7 percent that it experienced during the 19th
century.

7. Now, early in the 21st century, the United States population continues to satisfy
the logistic equation

d P

dt
= 998.546

5.308 + 182.813e−0.031551t

that is determined by the U.S. population data for 1850 and 1900.
8. If P(t) satisfies the initial value problem

d P

dt
= k P(P − M), P(0) = P0

with k, M , and P0 all positive, then P(t) → 0 as t → +∞ if P0 > M , whereas
P(t) increases without bound if P0 < M .

9. If a rabbit population x(t) and a fox population y(t) satisy the predator-prey
equations

dx

dt
= 0.08x − 0.0003xy,

dy

dt
= −0.07x + 0.0002xy

and start out with initial populations x(0) = 800 and y(0) = 75, then both
populations remain positive and both remain less than 1500 forever (so neither
population experiences either extinction or doomsday).

10. P. R. Verhulst was a 19th century Italian mathematician, and Vito Volterra was
an 18th century Belgian mathematician and demographer.

8.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Describe the general features of populations that are modeled by the differential

equation d P/dt = k P(M − P) with k > 0 and M > 0. In what way do solutions
depend on the value of the initial population P(0) = P0?

2. Describe the general features of populations that are modeled by the differential
equation d P/dt = k P(P−M ) with k > 0 and M > 0. In what way do solutions
depend on the value of the initial population P(0) = P0?

3. What are the similarities and differences between the two situations in Questions
1 and 2? Distinguish the roles played by the critical population M in the two
cases.

4. Explain the behaviors of the rabbit and fox populations starting at the points P1,
P2, Q1, and Q2 in Fig. 8.5.5; do so by calculating the signs of the derivatives
dx/dt and dy/dt at these points.

8.5 PROBLEMS

Use partial fractions to solve the initial value problems in Prob-
lems 1 through 8.

1.
dx

dt
= x − x2, x(0) = 2

2.
dx

dt
= 10x − x2, x(0) = 1

3.
dx

dt
= 1 − x2, x(0) = 3

4.
dx

dt
= 9 − 4x2, x(0) = 0

5.
dx

dt
= 3x(5 − x), x(0) = 8

6.
dx

dt
= 3x(x − 5), x(0) = 2

7.
dx

dt
= 4x(7 − x), x(0) = 11
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8.
dx

dt
= 7x(x − 13), x(0) = 17

9. The time rate of change of a rabbit population P is propor-
tional to the square root of P . At time t = 0 (in months) the
population numbers 100 rabbits and is increasing at the rate
of 20 rabbits per month. How many rabbits will there be one
year later?

10. Suppose that the fish population P(t) in a lake was attacked
by a disease at time t = 0, with the result that the fish ceased
to reproduce (so that the birth rate was β = 0) and the death
rate δ (deaths per week per fish) was thereafter proportional
to 1/

√
P . If there were initially 900 fish in the lake and 441

were left after 6 weeks, how long did it take all the fish in
the lake to die?

11. Suppose that when a certain lake is stocked with fish, the
birth and death rates β and δ are both inversely proportional
to

√
P . (a) Show that

P(t) =
(

1
2 k t − √

P0

)2

where k is a constant. (b) If P0 = 100 and after 6 months
there are 169 fish in the lake, how many will there be after
one year?

12. The time rate of change of an alligator population P in a
swamp is proportional to the square of P . The swamp con-
tained a dozen alligators in 1988, two dozen in 1998. When
will there be four dozen alligators in the swamp? What hap-
pens thereafter?

13. Consider a prolific breed of rabbits whose birth and death
rates, β and δ, are each proportional to the rabbit population
P = P(t), with β > δ. (a) Show that

P(t) = P0

1 − k P0t

where k is a constant. Note that P(t) → +∞ as t →
1/(k P0). This is doomsday. (b) Suppose that P0 = 6 and that
there are nine rabbits after ten months. When does dooms-
day occur?

14. Repeat part (a) of Problem 13 in the case β < δ. What now
happens to the rabbit population in the long run?

15. Suppose that the population P(t) (in millions) of Ruritania
satisfies the differential equation

d P

dt
= k · P · (200 − P) (k constant).

Its population in 1940 was 100 million and was then grow-
ing at the rate of 1 million per year. Predict this country’s
population for the year 2000.

16. Suppose that a community contains 15000 people who are
susceptible to Michaud’s syndrome, a contagious disease.
At time t = 0 the number N (t) of people who have de-
veloped Michaud’s syndrome is 5000 and is increasing at
the rate of 500 per day. Assume that N ′(t) is propor-
tional to the product of the numbers of those who have
caught the disease and those who have not. How long
will it take for another 5000 people to develop Michaud’s
syndrome?

17. As the salt KNO3 dissolves in methanol, the number x(t)
of grams of the salt in solution after t seconds satisfies the
differential equation

dx

dt
= (0.8)x − (0.004)x2.

(a) If x = 50 when t = 0, how long will it take an addi-
tional 50 g of the salt to dissolve? (b) What is the maximum
amount of the salt that will ever dissolve in the methanol?

18. A population P(t) (t in months) of squirrels satisfies the dif-
ferential equation

d P

dt
= (0.001)P2 − k P (k constant).

If P(0) = 100 and P ′(0) = 8, how long will it take for this
population to double to 200 squirrels?

19. Consider an animal population P(t) (t in years) that satisfies
the differential equation

d P

dt
= k P2 − (0.01)P (k constant).

Suppose also that P(0) = 200 and that P ′(0) = 2. (a) When
is P = 1000? (b) When will doomsday occur for this popu-
lation?

20. Suppose that the number x(t) (t in months) of alligators in a
swamp satisfies the differential equation

dx

dt
= (0.0001)x2 − (0.01)x .

(a) If initially there are 25 alligators, solve this equation to
determine what happens to this alligator population in the
long run. (b) Repeat part (a), but use 150 alligators initially.

21. Consider a population P(t) satisfying the logistic equation
d P/dt = a P − bP2, where B = a P is the time rate at
which births occur and D = bP2 is the rate at which deaths
occur. If the initial population is P(0) = P0 and B 0 births
per month and D0 deaths per month are occurring at time
t = 0, show that the limiting population is M = B 0 P0/D0.

22. Consider a rabbit population P(t) satisfying the logistic
equation as in Problem 21. If the initial population is
120 rabbits and there are 8 births per month and 6 deaths
per month occurring at time t = 0, how many months does
it take for P(t) to reach 95% of the limiting population M?

23. Consider a rabbit population P(t) satisfying the logistic
equation as in Problem 21. If the initial population is
240 rabbits and there are 9 births per month and 12 deaths
per month occurring at time t = 0, how many months does
it take for P(t) to reach 105% of the limiting population M?

24. Consider a population P(t) satisfying the extinction/
explosion equation

d P

dt
= a P2 − bP,

where B = a P2 is the time rate at which births occur and
D = bP is the rate at which deaths occur. If the initial
population is P(0) = P0 and B 0 births per month and D0

deaths per month are occurring at time t = 0, show that the
threshold population is M = D0 P0/B 0.

25. Consider an alligator population P(t) satisfying the
extinction/explosion equation as in Problem 24. If the initial
population is 100 alligators and there are 10 births per month
and 9 deaths per month occurring at time t = 0, how many
months does it take for P(t) to reach 10 times the threshold
population M?
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26. Consider an alligator population P(t) satisfying the
extinction/explosion equation as in Problem 24. If the initial
population is 110 alligators and there are 11 births per month
and 12 deaths per month occurring at time t = 0, how many
months does it take for P(t) to reach 10% of the threshold
population M?

27. Suppose that at time t = 0, half of a “logistic” population
of 100,000 persons has heard a certain rumor, and that the
number of those who have heard it is then increasing at the
rate of 1000 persons per day. How long will it take for this
rumor to spread to 80% of the population? (Suggestion:
Find the value of k by substituting P(0) and P ′(0) in the
logistic equation in (3).)

28. The data in the table in Fig. 8.5.6 are given for a certain
population P(t) that satisfies the logistic equation in (3).
(a) What is the limiting population M? (Suggestion: Use the
approximation

P ′(t) ≈ P(t + h) − P(t − h)

2h
with h = 1 to estimate the values of P ′(t) when P = 25.00
and when P = 47.54. Then substitute these values in the
logistic equation and solve for k and M .) (b) Use the values
of k and M found in part (a) to determine when P = 75.
(Suggestion: Take t = 0 to correspond to the year 1925.)

Year P (millions)

1924 24.63
1925 25.00
1926 25.38

...
...

1974 47.04
1975 47.54
1976 48.04

FIGURE 8.5.6 Population
data for Problem 28.

29. During the period from 1790 to 1930, the U.S. population
P(t) (t in years) grew from 3.9 million to 123.2 million.
Throughout this period, P(t) remained close to the solution
of the initial value problem

d P

dt
= (0.03135)P − (0.0001489)P2, P(0) = 3.9.

(a) What population does this logistic equation predict for
the year 1930? (b) What limiting population does this equa-
tion predict? (c) Has this logistic equation continued since
1930 to accurately model the U.S. population? [This prob-
lem is based on a computation by Verhulst, who in 1845
used the 1790–1840 U.S. population data to predict accu-
rately the U.S. population through the year 1930 (long after
his own death, of course).]

30. Consider two populations P1(t) and P2(t), both of which
satisfy the logistic equation with the same limiting popula-
tion M , but with different values k1 and k2 of the constant
k in Eq. (3). Assume that k1 < k2. Which population ap-
proaches M more rapidly? You can reason geometrically by
examining slope fields (especially if appropriate software is
available), symbolically by analyzing the solution given in
Eq. (7), or numerically by substituting successive values of t .

31. (a) Derive the solution given in Eq. (7) for the logistic initial
value problem in (6). (b) How does this solution behavior
(as t increases) if the initial value P0 is negative?

32. (a) Derive the solution

P(t) = M P0

P0 + (M − P0)ek Mt

satisfying the initial condition P(0) = P0 for the explo-
sion/extinction equation in (13). (b) How does this solution
behave (as t increases) if the initial value P0 is negative?

33. If P(t) satisfies the logistic equation in (3), use the chain
rule to show that

P ′′(t) = 2k2 P · (
P − 1

2 M
) · (P − M).

Conclude that

P ′′(t) > 0 if 0 < P < 1
2 M; P ′′(t) = 0 if P = 1

2 M;
P ′′(t) < 0 if 1

2 M < P < M; and P ′′(t) > 0 if P > M.

In particular, it follows that any solution curve that crosses
the horizontal line P = 1

2 M has an inflection point where it
crosses that line, and therefore resembles one of the lower
S-shaped curves in Fig. 8.5.3.

34. Derive the solution in Eq. (21) of the separable differential
equation in (20).

8.5 INVESTIGATION: Predator-Prey Equations and Your Own Game Preserve
You own a large forested game preserve that you originally stocked with F0 foxes and
R0 rabbits. The following differential equations model the numbers R(t) of rabbits and
F(t) of foxes t months later.

d R

dt
= (0.01)pR − (0.0001)aRF,

d F

dt
= −(0.01)q F + (0.0001)bRF

where p and q are the two largest digits (with p < q), and a and b the two smallest
nonzero digits (with a < b), in your student I.D. number.
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The numbers of foxes and rabbits will oscillate periodically, as in the situation
illustrated by Fig. 8.5.5. Choose your initial numbers F0 of foxes and R 0 of rabbits—
perhaps several hundred of each—so that the resulting solution curve in the RF-plane
is a fairly eccentric closed curve. (The eccentricity may be increased if you begin with
a relatively large number of rabbits and a relatively small number of foxes, as any game
preserve manager would naturally do.)

Your task is then to determine the maximum and minimum number of rabbits
and foxes that will ever be observed in your game preserve. Use the implicit curve-
plotting facility of a graphing calculator or computer algebra system to zoom in on
the rightmost, leftmost, lowest, and highest points of the solution curve with suf-
ficient precision to determine their coordinates accurate to the nearest integer.

8.6 LINEAR SECOND-ORDER EQUATIONS

A second-order differential equation is one that involves the second derivative y′′ (and
perhaps also the first derivative y′) of the dependent variable y. It is called linear
provided that it is linear in the unknown function y(x) and its derivatives. Thus a
linear second-order differential equation is one of the form

A(x)
d2 y

dx2
+ B(x)

dy

dx
+ C(x)y = F(x), (1)

where the coefficients A(x), B(x), C(x), and F(x) are given continuous functions
of the independent variable on an appropriate open interval I where we may hope to
determine a solution. A solution of (1) is simply a function y = y(x) that satisfies the
differential equation at every point of the interval I .

The coefficient functions in (1) need not be linear in x . Thus the second-order
equation

ex y′′ + (cos x)y′ + (
1 + √

x
)
y = tan−1 x

is linear even though the coefficients are quite nonlinear functions of x . By contrast,
the equations

y′′ = yy′ and y′′ + 3(y′)2 + 4y3 = 0

are not linear, because products or powers of y or its derivatives appear in each.
In this section we restrict our attention to the case in which F(x) ≡ 0 in Eq. (1).

Such a linear equation is said to be homogeneous. Thus a homogeneous linear second-
order differential equation is one of the form

A(x)
d2 y

dx2
+ B(x)

dy

dx
+ C(x)y = 0. (2)

Homogeneous linear equations have the useful feature that we can construct new
solutions by forming linear combinations of known solutions. In particular, any linear
combination y = c1 y1 + c2 y2 of two known solutions y1 and y2 of Eq. (2) is another
solution of the differential equation.

THEOREM 1 Linear Combinations of Solutions
Suppose that the two functions y1 and y2 are both solutions of the homogeneous
linear equation in (2) and that c1 and c2 are constants. Then the new function y
defined by

y(x) = c1 y1(x) + c2 y2(x)

also satisfies Eq. (2).
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Proof The fact that y1 and y2 are both solutions of Eq. (2) means that

Ay′′
1 + By′

1 + Cy1 = 0 and Ay′′
2 + By′

2 + Cy2 = 0.

It follows (using linearity of differentiation) that

Ay′′ + By′ + Cy = A(c1 y1 + c2 y2)
′′ + B(c1 y1 + c2 y2)

′ + C(c1 y1 + c2 y2)

= A(c1 y′′
1 + c2 y′′

2 ) + B(c1 y′
1 + c2 y′

2) + C(c1 y1 + c2 y2)

= c1(Ay′′
1 + By′

1 + Cy1) + c2(Ay′′
2 + By′

2 + Cy2)

= c1 · 0 + c2 · 0 = 0.

Thus we have verified that the linear combination y = c1 y1 + c2 y2 is also a solution of
Eq. (2). ◆

Theorem 1 implies that any constant multiple cy of the solution y is also a so-
lution of the differential equation—choose c2 = 0. But we do not regard y and cy as
“really different” solutions. The two solutions y1 and y2 are called independent pro-
vided that neither is a constant multiple of the other. We can always determine whether
two given solutions y1 and y2 are independent by noting whether either of the two quo-
tients y1/y2 or y2/y1 is a constant. For instance, the following pairs of functions are
obviously independent:

x and x2; ex and e−2x ; cos x and sin x .

Theorem 1 provides us with the means to solve initial value problems by forming
linear combinations of independent solutions.

EXAMPLE 1

(a) Verify that y1(x) = x2 and y2(x) = x−3 are independent solutions (for x > 0) of
the homogeneous linear equation

x2 y′′ + 2xy′ − 6y = 0.

(b) Find a solution satisfying the two initial conditions y(1) = 10 and y′(1) = 5.

Solutions For part (a), we readily calculate

x2 y′′
1 + 2xy′

1 − 6y1 = x2 · 2 + 2x · 2x − 6 · x2 = (2 + 4 − 6)x2 = 0

and

x2 y′′
2 + 2xy′

2 − 6y2 = x2 · 12x−5 + 2x · (−3x−4) − 6 · x−3 = (12 − 6 − 6)x−3 = 0.

Thus both y1 and y2 are solutions of the given differential equation. Because neither
y1/y2 = x5 nor y2/y1 = x−5 is a constant, it follows that these two solutions are
independent.

To solve part (b), we see (by Theorem 1) that the linear combination

y(x) = c1 y1(x) + c2 y2(x) = c1x2 + c2x−3

is also a solution (for any choice of the constants c1 and c2). When we impose the
given initial conditions on this new solution and its derivative y′(x) = 2c1x − 3c2x−4,
we get the equations

c1 + c2 = 10 and 2c1 − 3c2 = 5.

We readily solve these equations—for instance, by substituting c1 = 10 − c2 from the
first equation into the second—for c1 = 7 and c2 = 3. Consequently, a solution of the
initial value problem

x2 y′′ + 2xy′ − 6y = 0, y(1) = 10, y′(1) = 5

is y(x) = 7x2 + 3x−3. ◗
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The leading coefficient function A(x) = x2 in the differential equation of Exam-
ple 1 vanishes at x = 0. On any interval where the function A(x) is nonzero, we can
divide by A(x) to write the homogeneous equation Ay′′ + By′ + Cy = 0 in the form

d2 y

dx2
+ P(x)

dy

dx
+ Q(x)y = 0. (3)

One key to solving homogeneous second-order equations is the fact that every solution
of such an equation is a linear combination of any two given independent solutions.
Unlike Theorem 1, the theorem that follows is not elementary, and its proof is therefore
omitted.

THEOREM 2 General Solutions
Suppose that y1 and y2 are independent solutions of the homogeneous linear equa-
tion in (3) on an interval I where the coefficient functions P(x) and Q(x) are con-
tinuous. If y is any given solution of the equation on this interval, then there exist
constants c1 and c2 such that

y(x) = c1 y1(x) + c2 y2(x)

for all x in I .

As a result of Theorem 2, we know every solution of a homogeneous linear
second-order differential equation once we know just two independent solutions y1

and y2. For this reason, we may call y = c1 y1 + c2 y2 the general solution of the dif-
ferential equation—there is no other solution of it. For instance, y(x) = c1x2 + c2x−3

is the general solution (for x > 0) of the differential equation in Example 1, and no
function not of this form can satisfy the equation.

Because the general solution of a second-order differential equation involves two
arbitrary constants, we can hope to satisfy two initial conditions by selecting the values
of c1 and c2 appropriately. This is why a second-order linear initial value problem
typically takes the form

Ay′′ + By′ + Cy = F, y(a) = b0, y′(a) = b1 (4)

with two initial conditions specifying given values of the solution y and its derivative
y′ at the same point x = a.

A general existence-uniqueness theorem asserts that an initial value problem of
the form in (4) has exactly one solution on an interval where the coefficient functions
are continuous and A(x) is nonzero. For instance, the coefficient functions in the
differential equation of Example 1 are all continuous and A(x) = x2 is nonzero for
x > 0. Therefore the only solution for x > 0 of the initial value problem

x2 y′′ + 2xy′ − 6y = 0, y(1) = 10, y′(1) = 5

is the solution y(x) = 7x2 + 3x−3 that we found in part (b) of Example 1.

Constant-Coefficient Equations
We saw in Section 8.4 that the general solution of a linear first-order equation is given
by an explicit integral formula involving the coefficients in the equation. In contrast,
this is far from true for second-order linear equations. It can be a formidable task to
find the two independent solutions that are needed to construct a general solution of a
given homogeneous linear second-order equation. For instance, the general solution of
the differential equation 6y′′ +2xy′ − x2 y = 0—which may appear to resemble super-
ficially the equation of Example 1—cannot be expressed simply in terms of familiar
elementary functions. This difficulty somehow arises from the variable coefficients in
the last equation.
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Fortunately, it is possible to solve explicitly a homogeneous linear second-order
differential equation of the form

a
d2 y

dx2
+ b

dy

dx
+ cy = 0 (5)

with constant coefficients a, b, and c. And we will see in Section 8.7 that such differ-
ential equations have important physical applications.

To construct the general solution y = c1 y1 + c2 y2 of the differential equation

ay′′ + by′ + cy = 0 (6)

with a �= 0, we need to find two independent particular solutions y1 and y2. The
key idea is to find a plausible form of a possible solution of Eq. (6). Because—if r
is a constant—Dx(er x) is a constant multiple of y(x) = er x , it follows that y′′ and y′
would have that form as well. Indeed, substitution of y(x) = er x , y′(x) = rer x , and
y′′ = r2er x into Eq. (6) yields the equation

ar2er x + brer x + cer x = (ar2 + br + c)er x = 0.

Because er x is never zero, the product (ar2 + br + c)er x is zero exactly when

ar2 + br + c = 0. (7)

This is a simple quadratic equation that we can solve to find the value (or values) of r
such that y = er x is, indeed, a solution of Eq. (6).

Equation (7) is called the characteristic equation (or auxiliary equation) of
the homogeneous linear second-order differential equation ay′′ + by′ + cy = 0. We
can solve it by any of various techniques; the familiar quadratic formula yields the
solutions

r1, r2 = −b ± √
b2 − 4ac

2a
,

in which the two possible choices of sign yield the two roots r1 and r2. If b2 −4ac > 0
then both are real, and the two distinct possibilities r1 and r2 for the value of r yield
the two independent solutions y1 = er1x and y2 = er2x of the differential equation
in (6). (Do you see why neither is a constant multiple of the other?) Remember that
once we have found two independent solutions, we have found them all. Examples 2
through 4 illustrate how to proceed if r1 and r2 are distinct and real. It remains to be
seen how we should proceed should b2 − 4ac be zero or negative.

CASE 1 Distinct Real Roots
Suppose that the characteristic equation of the linear homogeneous differential
equation ay′′ + by′ + cy = 0 has unequal real roots r1 and r2. Then a general
solution of this differential equation is

y(x) = c1er1x + c2er2x . (8)

Thus, in this case, the solution of the differential equation reduces to the simple
matter of solving a quadratic equation.

EXAMPLE 2 Solve the differential equation 3y′′ + 7y′ + 2y = 0.

Solution We can solve the characteristic equation 3r2 + 7r + 2 = 0 by factoring:

3r2 + 7r + 2 = (3r + 1)(r + 2) = 0.
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The roots r1 = − 1
3 and r2 = −2 are real and distinct. Therefore the general solution

of the differential equation—given in (8)—is

y(x) = c1e−x/3 + c2e−2x . ◗

REMARK A first-order differential equation generally has only a single solution curve
passing through a given initial point (a, b) and, therefore, only a single tangent line
through the initial point is tangent to a solution curve of the equation. By contrast,
Fig. 8.6.1 illustrates the fact that a second-order differential equation generally has
infinitely many solution curves passing through a given point (a, b0)—one for each
(real) value of the initial slope y′(a) = b1. That is, every nonvertical straight line
through (a, b0) is tangent to some solution curve. Figure 8.6.1 shows several solution
curves of the differential equation 3y′′ + 7y′ + 2y = 0 all having the same initial value
y(0) = 1; Fig. 8.6.2 shows several solution curves all having the same initial slope
y′(0) = 1.

x

y

y'(0) = 9

y'(0) = −9

y'(0) = 0

2 4 6 8 10

2

−2

4

FIGURE 8.6.1 Solutions of
3y ′′ + 7y ′ + 2y = 0 with the same
initial value y(0) = 1 but with different
values of the initial slope ranging from
y ′(0) = −9 to y ′(0) = 9.

x

y

y (0) = 9

y (0) = −9

y (0) = 0

2 4 6 8 10

5

−5

−10

10

FIGURE 8.6.2 Solutions of
3y ′′ + 7y ′ + 2y = 0 with the same
initial slope y ′(0) = 1 but with
different initial values ranging from
y (0) = −9 to y (0) = 9.

EXAMPLE 3 Solve the differential equation 5y′′ − 2y′ = 0.

Solution Here the coefficient of y in the differential equation is zero, corresponding
to the constant term zero in its characteristic equation: 5r2 −2r = 0. The factorization

5r2 − 2r = r(5r − 2) = 5r
(
r − 2

5

) = 0

reveals the distinct real roots r1 = 0 and r2 = 2
5 . Because er1x = e0·x = e0 = 1, the

general solution of the given equation is

y(x) = c1 + c2e2x/5.

As illustrated in Fig. 8.6.3, the solution curves with a given value of c1 and different
values of c2 all have the line y = c1 as an asymptote as x → −∞. ◗

42−2−4

−2

−4

−6

2

4

6

c2 = 0

c2 = 1c2 = 3

c2 = −1c2 = −3

x

y

FIGURE 8.6.3 Solutions
y(x) = 1 + c2e 2x/5 of
5y ′′ − 2y ′ = 0 with different values
of c2 ranging from c2 = −3 to
c2 = 3.

EXAMPLE 4 Solve the differential equation y′′ − 4y = 0.

Solution Now the coefficient of y′ in the differential equation is zero, and hence the
coefficient of r is zero in its characteristic equation: r2 − 4 = 0. The factorization
r2 − 4 = (r + 2)(r − 2) reveals the roots r1 = −2 and r2 = 2, and thus we obtain the
general solution

y(x) = c1e−2x + c2e2x .

But you can readily verify (by differentiating y3 and y4 twice each) that y3(x) =
cosh 2x and y4(x) = sinh 2x are also independent solutions of the differential equation
y′′ − 4y = 0. Therefore

y(x) = c1 cosh 2x + c2 sinh 2x

635

www.konkur.in



636 CHAPTER 8 Differential Equations

is another general solution of the same differential equation. Thus there is nothing
unique about the form of a given general solution—any two different pairs of indepen-

e2xcosh 2x

sinh 2x

e−2x

0.5 1 1.5−0.5−1−1.5

−1

−2

−3

1

2

3

4

x

y

FIGURE 8.6.4 Four different
solutions of the equation
y ′′ − 4y = 0.

dent solutions of the same linear homogeneous second-order differential equation will
yield two different expressions for the general solution. Moreover, the graphs of the
two functions in one such pair can appear quite different from those in the other pair.
Figure 8.6.4 shows the graphs of the four solutions e−2x , e2x , cosh 2x , and sinh 2x of
y′′ − 4y = 0. ◗

REMARK Because cosh 2x and sinh 2x are solutions of the linear differential equation
y′′ − 4y = 0 with general solution y(x) = c1e−2x + c2e2x , it follows from Theorem 2
that each of the functions cosh 2x and sinh 2x can be expressed as a linear combination
of the functions e−2x and e2x . Of course this is no surprise, because

cosh 2x = 1
2 e2x + 1

2 e−2x and sinh 2x = 1

2
e2x − 1

2 e−2x

by the definitions of the hyperbolic sine and cosine functions (Section 6.9).

If b2 − 4ac = 0, then the characteristic equation ar2 + br + c = 0 has equal
(and necessarily real) roots r1 = r2 = −b/(2a). Hence, at first, we obtain only the
single solution y1(x) = er1x of the corresponding differential equation. In this case the
problem that remains is to produce the “missing” second independent solution of the
differential equation.

A double root r = r1 can occur only if the characteristic equation factors as

ar2 + br + c = a(r − r1)
2 = a

(
r2 − 2r1r + r2

1

) = 0.

The corresponding differential equation is then a constant multiple of the equation

y′′ − 2r1 y′ + r2
1 y = 0.

But it is easy to verify (and you should do so) that y2 = xer1x is a second solution of
this differential equation. Obviously the solutions y1(x) = er1x and y2(x) = xer1x are
independent, and therefore enable us to write a general solution of the given differential
equation.

CASE 2 Equal Real Roots
Suppose that the characteristic equation of the linear homogeneous differential
equation ay′′ + by′ + cy = 0 has equal real roots r1 = r2. Then a general so-
lution of this differential equation is

y(x) = c1er1x + c2xer1x = (c1 + c2x)er1x . (9)

EXAMPLE 5 Solve the initial value problem

4y′′ + 12y′ + 9y = 0, y(0) = 4, y′(0) = −3.

Solution The characteristic equation

4r2 + 12r + 9 = (2r + 3)2 = 0

of the given differential equation has equal real roots r1 = r2 = − 3
2 . Hence the general

solution—as given in Eq. (9)—is

y(x) = c1e−3x/2 + c2xe−3x/2.

Differentiation gives

y′(x) = − 3
2 c1e−3x/2 + c2e−3x/2 − 3

2 c2xe−3x/2.
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Therefore the given initial conditions yield the simultaneous equations

y(0) = c1 = 4,

y′(0) = − 3
2 c1 + c2 = −3,

which imply that c1 = 4 and c2 = 3. Thus the solution of the given initial value
problem is

y(x) = 4e−3x/2 + 3xe−3x/2 = (4 + 3x)e−3x/2.

This particular solution of the differential equation is illustrated in Fig. 8.6.5, together
with several others of the form y(x) = c1e−3x/2 + 3xe−3x/2. ◗

Complex Roots
If b2 − 4ac < 0, then solution of the characteristic equation ar2 + br + c = 0 using
the quadratic formula gives

r = −b ± √
b2 − 4ac

2a
= −b ± √

(−1) · (4ac − b2)

2a
= p ± iq

where

1 2 3−1

−2

−4

2

4

x
c1 = −4

c1 = 4
c1 = 0

y

FIGURE 8.6.5 Solutions
y(x) = (c1 + 3x)e−3x/2 of
4y ′′ + 12y ′ + 9y = 0 with different
values of c1 ranging from c1 = −4
to c1 = 4.

p = − b

2a
, q =

√
4ac − b2

2a
, and i = √−1.

Thus we obtain a complex conjugate pair of roots.
But what does y = er x mean when r is a complex number? The answer stems

from Euler’s formula

eiθ = cos θ + i sin θ , (10)

which we discuss in detail in Section 10.4. If r = p + iq, we therefore define the
complex exponential er x (for x real) by writing

er x = e(p+iq)x = epx+iqx = epx eiqx ,

so
er x = epx(cos qx + i sin qx), (11)

using Euler’s formula with θ = qx .
As defined by Eq. (11), the exponential er x is a complex-valued function of the

real variable x . Such a function is differentiated by differentiating separately its real
and imaginary parts. That is,

Dx(e
r x) = Dx(e

px cos qx) + i Dx(e
px sin qx)

= (pepx cos qx − qepx sin qx) + i(pepx sin qx + qepx cos qx)

= (p + iq)(epx cos qx + iepx sin qx) = rer x .

Thus Dx er x = rer x when r is complex, exactly as when r is real.
This familiar differentiation formula is the basis for the fact that y = er x is a

solution of the homogeneous linear differential equation ay′′ + by′ + cy = 0 precisely
when r is a root of the associated characteristic equation ar2 + br + c = 0. In the
case of complex conjugate roots r1, r2 = p ± qi , we get the general complex-valued
solution

y(x) = C1er1x + C2er2x ,

which we can rewrite as

y(x) = C1e(p+iq)x + C2e(p−iq)x

= C1epx(cos qx + i sin qx) + C2epx(cos qx − i sin qx)

= (C1 + C2)e
px cos qx + i(C1 − C2)e

px sin qx;
thus

y(x) = c1epx cos qx + c2epx sin qx
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where c1 = C1 + C2 and c2 = i(C1 − C2). In the last line here, we have expressed
the solution y(x) as a linear combination of the real-valued functions epx cos qx and
epx sin qx . Thus the complex conjugate roots p ± iq of the characteristic equation lead
to the independent real-valued solutions y1 = epx cos qx and y2 = epx sin qx of the
differential equation.

CASE 3 Complex Conjugate Roots
Suppose that the characteristic equation of the linear homogeneous differential
equation ay′′ + by′ + cy = 0 has complex conjugate roots p ± iq (with q �= 0).
Then a general solution of the differential equation is

y(x) = epx(c1 cos qx + c2 sin qx). (12)

EXAMPLE 6 The characteristic equation r2 + 4 = 0 of the differential equation

y′′ + 4y = 0

has complex conjugate roots ±2i . With p = 0 and q = 2 in Eq. (12) we get the general
solution

y(x) = c1 cos 2x + c2 sin 2x .

Figures 8.6.6 and 8.6.7 show some typical solution curves. Each is shaped like the
graph of a constant multiple of the sine or cosine of 2x . Figure 8.6.6 illustrates the

effect of varying the joint amplitude c =
√

c2
1 + c2

2 of the constants c1 and c2. Fig-
ure 8.6.7 illustrates the effect of varying their ratio. ◗

2 4−2
−5

−10

−15

5

10

15

x

c = −3

c = 3

y

FIGURE 8.6.6 Solutions
y(x) = c(3 cos 2x + 4 sin 2x) of
y ′′ + 4y = 0 with different values
of c ranging from c = −3 to c = 3.

2 64−2

−2

2

4

−4

x

y

FIGURE 8.6.7 Solutions
y1 = 5 cos 2x , y2 = 5 sin 2x ,
y3 = 3 cos 2x + 4 sin 2x , and
y4 = −4 cos 2x + 3 sin 2x of
y′′ + 4y = 0. Can you determine
which is which?

EXAMPLE 7 Solve the initial value problem

9y′′ + 6y′ + 325y = 0, y(0) = 12, y′(0) = 50.

Solution The roots of the characteristic equation 9r2 + 6r + 325 = 0 are given by

r = −6 ± √
(6)2 − 4 · 9 · 325

2 · 9
= −6 ± 6

√−324

18
= −1

3
± 6i.

Therefore the general solution is

y(x) = e−x/3(c1 cos 6x + c2 sin 6x).
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Its derivative is

y′(x) = − 1
3 e−x/3(c1 cos 6x + c2 sin 6x) + 6e−x/3(c2 cos 6x − c1 sin 6x).

When we impose the given initial conditions we obtain the simultaneous equations

y(0) = c1 = 12,

y′(0) = − 1
3 c1 + 6c2 = 50

with solution c1 = 12, c2 = 9. Thus the solution of the given initial value problem is

y(x) = e−x/3(12 cos 6x + 9 sin 6x).

The graph of this solution is shown in Fig. 8.6.8. It is worth nothing that y(x) → 0 as
x → +∞. ◗

2 6 84

−10

10

−15

5

−5

15

x

y

y = +15e−x/3

y = −15e−x/3

FIGURE 8.6.8 The solution
y(x) = e−x/3(12 cos 6x + 9 sin 6x)
of the initial value problem in
Example 7 oscillates between the
dashed “envelope curves”
y = +15e−x/3 and y = −15e−x/3.

8.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If A(x), B(x), C(x), and F(x) are linear functions of x , then the differential
equation A(x)y′′ + B(x)y′ + C(x)y = F(x) is linear.

2. If A(y), B(y), C(y), and F(y) are linear functions of y, then the differential
equation A(y)y′′ + B(y)y′ + C(y)y = F(y) is linear.

3. A linear second-order differential equation of the form y′′ = P(x)y′ + Q(x)y is
homogeneous.

4. If both y1(x) and y2(x) are solutions of the same homogeneous second-order
linear differential equation, then their sum y1(x) + y2(x) is also a solution of the
equation.

5. Two solutions of a differential equation are called independent provided that each
is a constant multiple of the other.

6. Theorem 2 in this section implies that a second-order linear initial value problem
of the form

Ay′′ + By′ + Cy = F, y(a) = b

typically has a unique solution.
7. If a, b, and c are constants with a �= 0, then the characteristic equation of the

homogeneous linear differential equation ay′′ + by′ + cy = 0 is a quadratic
equation.

8. If a, b, and c are constants with a �= 0, and both roots of its characteristic
equation are real, then the general solution of the equation ay′′ + by′ + cy = 0 is
a linear combination of exponential functions.
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9. If a, b, and c are real constants with a �= 0, and the roots of its characteristic
equation are not real, then the general solution of the differential equation ay′′ +
by′ + cy = 0 is a linear combination of sine and cosine functions.

10. Euler’s formula expresses the exponential eiθ with imaginary exponent as a linear
combination A cos θ + B sin θ with real coefficients A and B.

8.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. Complete the entries in the following table summarizing the various cases

for the solutions of the constant-coefficient differential equation ay′′ +
by′ + cy = 0.

Roots of ar 2 + br + c = 0 General Solution

2. For each case in Question 1, give your own example of such a differential equa-
tion and its general solution—preferably one with rather large and interesting
integer coefficients. (Suggestion: Begin with the numerical roots r1 and r2 and
work backward to construct the corresponding differential equation.)

3. Show that the function y(x) = |x−3| is a solution for x �= 0 of the differential
equation x2 y′′ + 2xy′ − 6y = 0 of Example 1. Is y(x) a linear combination of
the independent solutions y1(x) = x2 and y2(x) = x−3 of this equation? If not,
then why does this fact not contradict Theorem 2?

8.6 PROBLEMS

Find general solutions of the differential equations in Problems 1
through 14.

1. y′′ − 7y′ + 10y = 0 2. y′′ + 2y′ − 15y = 0

3. 4y′′ − 4y′ − 3y = 0 4. 12y′′ + 13y′ + 3y = 0

5. y′′ + 4y′ + y = 0 6. 4y′′ − 4y′ − 19y = 0

7. 4y′′ + 12y′ + 9y = 0

8. 9y′′ − 30y′ + 25y = 0

9. 25y′′ − 20y′ + 4y = 0

10. 49y′′ + 126y′ + 81y = 0

11. y′′ + 6y′ + 13y = 0

12. y′′ − 10y′ + 74y = 0

13. 9y′′ + 6y′ + 226y = 0

14. 9y′′ + 90y′ + 226y = 0

Solve the initial value problems in Problems 15 through 26.

15. 2y′′ − 11y′ + 12y = 0; y(0) = 5, y′(0) = 15

16. y′′ − 2y′ − 35y = 0; y(0) = 12, y′(0) = 0

17. y′′ − 18y′ + 77y = 0; y(0) = 4, y′(0) = 8

18. 12y′′ − y′ − 6y = 0; y(0) = 2, y′(0) = 10

19. y′′ + 22y′ + 121y = 0; y(0) = 2, y′(0) = −25

20. 9y′′ + 42y′ + 49y = 0; y(0) = 6, y′(0) = −11

21. y′′ + 25y = 0; y(0) = 7, y′(0) = 10

22. 9y′′ + 100y = 0; y(0) = 99, y′(0) = 100

23. y′′ + 4y′ + 20y = 0; y(0) = 9, y′(0) = 10

24. y′′ + 10y′ + 106y = 0; y(0) = 11, y′(0) = −10

25. 4y′′ + 4y′ + 101y = 0; y(0) = 10, y′(0) = 25

26. 100y′′ + 20y′ + 10001y = 0; y(0) = 30, y′(0) = −33

Each of Problems 27 through 34 gives the general solution of a
homogeneous linear second-order differential equation with con-
stant coefficients. Find that equation.

27. y(x) = c1 + c2e−10x

28. y(x) = c1e10x + c2e−10x

29. y(x) = c1e−10x + c2xe−10x

30. y(x) = c1e10x + c2e100x

31. y(x) = c1 + c2x

32. y(x) = ex
[
c1 exp

(
x
√

2
) + c2 exp

(−x
√

2
)]

33. y(x) = e−5x
(

c1 cos
x

5
+ c2 sin

x

5

)
34. y(x) = e−x/5 (c1 cos 5x + c2 sin 5x)

35. Given: The differential equation y′′ + 25y = 0. (a) Show
that this equation has infinitely many different solutions y(x)

such that y(0) = y(π) = 0. (b) Show that this equation has
no nontrivial solution y(x) such that y(0) = y(3) = 0.

36. Suppose that y(x) is a solution of the equation ay′′ + by′ +
cy = 0 and that a, b, and c are all positive. Show that
y(x) → 0 as x → ±∞.
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8.7 MECHANICAL VIBRATIONS

Many natural phenomena exhibit either steady growth (or decline) or periodic oscilla-
tions (ebb and flow). Phenomena of steady growth are typically modeled by first-order
differential equations (as in Section 8.5), whereas periodic phenomena and vibrations
are typically modeled by second-order differential equations.

The motion of a mass attached to a spring serves as a relatively simple example
of the vibrations that occur in more complex mechanical systems. For many such sys-
tems, the analysis of these vibrations is a problem in the solution of linear differential
equations with constant coefficients (Section 8.6).

We consider a body of mass m attached to one end of an ordinary spring that

Equilibrium
position

m c
k

x

FIGURE 8.7.1 A mass-spring-
dashpot system.

resists compression as well as stretching; the other end of the spring is attached to a
fixed structure, as shown in Fig. 8.7.1. Assume that the body rests on a frictionless
horizontal plane so that it can move only back and forth as the spring compresses and
stretches. Denote by x the distance of the body from its equilibrium position—its
position when the spring is unstretched. We take x > 0 when the spring is stretched,
and thus x < 0 when it is compressed.

According to Hooke’s law, the restorative force FS that the spring exerts on the
mass is proportional to the distance x that the spring has been stretched or compressed.
Because this is the same as the displacement x of the mass m from its equilibrium
position, it follows that

FS = −k x . (1)

The positive constant of proportionality k is called the spring constant. Note that FS

and x have opposite signs: FS < 0 when x > 0, FS > 0 when x < 0.
Figure 8.7.1 shows the mass attached to a dashpot—a device that, like a shock

absorber, provides a force directed opposite to the instantaneous direction of motion of
the mass m. We assume that the dashpot is so designed that this force FR is proportional
to the velocity v = dx /dt of the mass; that is, that

FR = −cv = −c
dx

dt
. (2)

The positive constant c is the damping constant of the dashpot. More generally, we
may regard Eq. (2) as specifying frictional forces in our system (including air resistance
to the motion of the mass).

If, in addition to the forces FS and FR , the mass is subjected to a given external
force FE = F(t), then the total force acting on the mass is FT = FS + FR + FE . Using
Newton’s second law in the form

FT = ma = m
d2x

dt2
= mx ′′,

we obtain the linear second-order differential equation

mx ′′ + cx ′ + kx = F(t) (3)

that governs the motion of the mass.
For an alternative example, we might attach the mass to the lower end of a spring

that is suspended vertically from a fixed support, as in Fig. 8.7.2. In this case the weight
W = mg of the mass would stretch the spring a distance s0 determined by Eq. (1) with
FS = −W and x = s0. That is, mg = ks0, so that s0 = mg/k. This gives the static
equilibrium position of the mass. If y denotes the displacement of the mass in motion,
measured downward from its static equilibrium position, then we ask you to show (in
Problem 23) that y = y(t) satisfies Eq. (3); specifically, that

my′′ + cy′ + ky = F(t) (4)

if we include damping and external forces.

Unstretched
spring

Static
equilibrium

System
in motion

s0

y

y = 0

m

m

FIGURE 8.7.2 A mass suspended
vertically from a spring.
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Free Undamped Motion
If there is no external force acting on the spring, then F(t) ≡ 0 in Eq. (3), and we call
the resulting motion free. Thus the homogeneous equation

mx ′′ + cx ′ + kx = 0 (5)

describes free motion of a mass on a spring with dashpot but with no external force
applied.

If we have only a mass on a spring, with neither damping nor external force, then
c = 0 as well, so Eq. (5) reduces to the equation

mx ′′ + kx = 0 (6)

that models free undamped motion. It is convenient to rewrite Eq. (6) in the form

x ′′ + ω2
0x = 0 (7)

where

ω0 =
√

k

m
(8)

is the natural frequency of vibration of the mass on the spring. [The Greek letter ω

(omega) is often used to denote frequency.]

EXAMPLE 1 A body with mass m = 1
2 kilograms (kg) is attached to the end of

a spring that is stretched 2 meters (m) by a force of 100 Newtons (N). This body is
displaced one-half meter to the right (from its equilibrium position when the spring is
unstretched) and then released from rest. Describe the motion that results.

Solution The spring constant is k = 100/2 = 50 (N/m), so the position function x(t)
of the body satisfies the initial value problem

1
2 x ′′ + 50x = 0; x(0) = 1

2 , x ′(0) = 0. (9)

The equivalent differential equation x ′′ + 100x = 0 has characteristic equation r2 +
100 = 0 with roots r = ±10i . Therefore the general solution of the differential
equation in (9) and its derivative are

x(t) = A cos 10t + B sin 10t and x ′(t) = −10A sin 10t + 10B cos 10t.

(We write A and B for the coefficients merely to avoid subscripts.) The initial
conditions immediately give A = 1

2 and B = 0. Thus the position function of the
body is

x(t) = 1
2 cos 10t.

This function describes a back-and-forth oscillation between the rightmost position
x = 1

2 (when t = 0, π/5, 2π/5, . . . ) and its leftmost position x = − 1
2 (when t = π/10,

3π/10, 5π/10, . . . ). ◗

The general solution of Eq. (7) is

A

B
C

α

FIGURE 8.7.3 The angle α.

x(t) = A cos ω0t + B sin ω0t. (10)

To analyze the motion described by this solution, we choose constants C and α so that

C =
√

A2 + B2, cos α = A

C
, and sin α = B

C
, (11)

as indicated in Fig. 8.7.3. Note that, although tan α = B/A, the angle α is not given
by the principal branch of the inverse tangent function (which gives values only in the
interval −π/2 < x < π/2). Instead, α is the angle between 0 and 2π whose cosine
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and sine have the signs given in (11), where either A or B or both may be negative.
Thus

α =
⎧⎨
⎩

tan−1(B/A) if A > 0, B > 0 (first quadrant),
π + tan−1(B/A) if A < 0 (second or third quadrant),
2π + tan−1(B/A) if A > 0, B < 0 (fourth quadrant),

where tan−1(B/A) is the angle in (−π/2, π/2) given by a calculator or computer.
In any event, from (10) and (11) we get

x(t) = C

(
A

C
cos ω0t + B

C
sin ω0t

)
= C(cos α cos ω0t + sin α sin ω0t).

With the aid of the cosine addition formula, we find that

x(t) = C cos(ω0t − α). (12)

Thus the mass oscillates to and fro about its equilibrium position with

Amplitude C,

Circular frequency ω0, and

Phase angle α.

Such motion is called simple harmonic motion. A typical graph of x(t) is shown in

t

−C

C

x

α
ω0ω
α

2π
ω0ω

π

x(t) = C cos(ω0t − α)ω α

FIGURE 8.7.4 Simple harmonic
motion.

Fig. 8.7.4. If time t is measured in seconds, the circular frequency ω0 has dimensions
of radians per second (rad/s). The period of the motion is the time required for the
system to complete one full oscillation, so it is given by

T = 2π

ω0
(13)

seconds; its frequency is

ν = 1

T
= ω0

2π
(14)

in hertz (Hz), which measures the number of complete cycles per second. Note that
frequency is measured in cycles per second, whereas circular frequency has the dimen-
sions of radians per second.

If the initial position x(0) = x0 and initial velocity x ′(0) = v0 of the mass are
given, we first determine the values of the coefficients A and B in Eq. (10), then find
the amplitude C and phase angle α by carrying out the transformation of x(t) to the
form in Eq. (12), as indicated previously.

EXAMPLE 2 Suppose that the mass m = 1
2 (kg) of Example 1 is attached to the

same spring with Hooke’s constant k = 50 (N/m). But now it is set in motion with
initial position x(0) = 1

2 (m) and initial velocity x ′(0) = −10 (m/s). (Thus the mass is
displaced to the right and moving to the left at time t = 0.) Find the position function
of the body as well as the amplitude, frequency, period of oscillation, and phase angle
of its motion.

Solution With m = 1
2 and k = 50, Eq. (6) yields 1

2 x ′′ + 50x = 0; that is,

x ′′ + 100x = 0.

Consequently, we see from Eq. (8) that the circular frequency will be ω0 = √
100 = 10

(rad/s). Hence the body will oscillate with

frequency:
10

2π
≈ 1.59 Hz
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and

period:
2π

10
≈ 0.63 s.

We now impose the initial conditions x(0) = 0.5 and x ′(0) = −10 on the general
solution x(t) = A cos 10t + B sin 10t , and it follows that A = 0.5 and B = −1. So
the position function of the body is

x(t) = 1
2 cos 10t − sin 10t.

Hence its amplitude of motion is

C =
√(

1
2

)2 + (−1)2 = 1
2

√
5 ≈ 1.12 (m).

To find the phase angle, we use the cosine addition formula to write

x(t) =
√

5

2

(
1√
5

cos 10t − 2√
5

sin 10t

)
=

√
5

2
cos(10t − α).

Thus we require

cos α = 1√
5

> 0 and sin α = − 2√
5

< 0.

Hence α is the fourth-quadrant angle

α = 2π − tan−1

(
2
5

√
5

1
5

√
5

)
≈ 5.1760 (rad).

In the form in which the amplitude and phase angle are made explicit, the position
function is

x(t) ≈
√

5

2
cos(10t − 5.1760). ◗

Free Damped Motion

We assume now that c > 0 in Eq. (5) and consider damped motion of a mass on
a spring (still with no external force). The characteristic equation of the differential
equation mx ′′ + cx ′ + kx = 0 has roots

r = −c ± √
c2 − 4km

2m
. (15)

Therefore the type of motion that occurs depends on whether c2 > 4km (distinct real
roots), c2 = 4km (equal real roots), or c2 < 4km (complex conjugate roots).

Overdamped Case c2 > 4km. Because c is relatively large in this case, we are deal-
ing with a strong resistance in comparison with a relatively weak spring (or a small
mass). In this case Eq. (15) gives negative distinct real roots r1 = −p1 and r2 = −p2

(where p1, p2 > 0). Hence the position function has the form

x(t) = c1e−p1t + c2e−p2t . (16)

Obviously x(t) → 0 as t → +∞, and hence the mass m settles to its equilibrium
position without any oscillations. That is, any would-be oscillations are damped out.
(See Problem 36.) Figure 8.7.5 shows some typical graphs of the position function in

0
t

x
0

(0, x0)

FIGURE 8.7.5 Overdamped
motion. x(t) = c1e r1t + c2e r2t with
r1 < 0 and r2 < 0. Solution curves
are graphed with the same initial
position x0 and different initial
velocities.

this overdamped case.
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Critically Damped Case c2 = 4km. In this case Eq. (15) gives equal real roots r =
−p = −c/(2m) < 0. The position function therefore has the form

x(t) = (c1 + c2t)e−pt . (17)

Figure 8.7.6 shows some typical graphs of the position function in this critically damped

0
t

0

(0, x0)

x

FIGURE 8.7.6 Critically damped
motion. x(t) = (c1 + c2t)e−pt with
p > 0. Solution curves are graphed
with the same initial position x0 and
different initial velocities.

case. The damping is just large enough to damp out any would-be oscillations, but even
a slight decrease in the damping brings us to the remaining case, the one that shows
the most dramatic behavior.

Underdamped Case c2 < 4km. Now Eq. (15) gives the complex conjugate roots

r = −c ± √−(4km − c2)

2m
= − c

2m
± i

√
k

m
−

(
c

2m

)2

.

Let us write

p = c

2m
and ω1 =

√
ω2

0 − p2 (18)

(recalling from (8) the undamped circular frequency ω0 = √
k/m ). Then the complex

conjugate roots of the characteristic equation are r = −p±iω1, so the general solution
of mx ′′ + cx ′ + kx = 0 is

x(t) = e−pt(A cos ω1t + B sin ω1t) = Ce−pt

(
A

C
cos ω1t + B

C
sin ω1t

)

where C =
√

A2 + B2 . Using the cosine addition formula, it follows that x(t) can be
written in the form

x(t) = Ce−pt cos(ω1t − α) (19)

similar to Eq. (12), with

C =
√

A2 + B2, cos α = A

C
, and sin α = B

C
.

The solution in (19) represents exponentially damped oscillations of the body
around its equilibrium position. The graph of x(t) lies between the curves x = −Ce−pt

and x = Ce−pt and touches them when ω1t−α is an integral multiple of π . The motion
is not actually periodic, but it is nevertheless useful to call ω1 its circular frequency,
T1 = 2π/ω1 its pseudoperiod of oscillation, and Ce−pt its time-varying amplitude.
Most of these quantities are shown in the typical graph of underdamped motion shown
in Fig. 8.7.7. Note from Eq. (18) that in this case ω1 is less than the undamped circular
frequency ω0, so T1 is larger than the period T of oscillation of the same mass without

x = Ce−pt cos(   1t −    )

x = +Ce−pt

x = −Ce−pt

0
t

2T1 =

x

α

αω
ω 1

π
ω 1

0

FIGURE 8.7.7 Underdamped
oscillations:
x(t) = Ce−pt cos(ω1t − α).

damping on the same spring. Thus the action of the dashpot has at least three effects:

1. It exponentially damps the oscillations, in accord with the time-varying
amplitude.

2. It slows the motion; that is, the dashpot decreases the frequency of the
motion.

3. It delays the motion by increasing the phase angle α in Eq. (19); compare the
phase angles in Examples 2 and 3.

EXAMPLE 3 The mass and spring of Example 2 are now attached also to a dashpot
that provides 6 N of resistance for each meter per second of velocity. The mass is set
in motion with the same initial position x(0) = 1

2 (m) and the same initial velocity
x ′(0) = −10 (m/s). Find the position function of the mass as well as its new frequency
of oscillation, its pseudoperiod, and the phase angle of its motion.
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Solution Rather than memorizing the various formulas given in the preceding dis-
cussion, it is better practice in a particular case to set up the differential equation and
then solve it directly. Recall that m = 1

2 and k = 50; we are now given c = 6 in mks
units. Hence Eq. (3) is 1

2 x ′′ + 6x ′ + 50x = 0; that is,

x ′′ + 12x ′ + 100x = 0.

The roots of the characteristic equation r2 + 12r + 100 = 0 are

r1, r2 = −12 ± √
144 − 400

2
= −6 ± 8i,

so the general solution is

x(t) = e−6t(A cos 8t + B sin 8t). (20)

The new circular frequency is ω1 = 8 (rad/s), and the pseudoperiod and new frequency
are

T1 = 2π

8
≈ 0.79 (s)

and

1

T1
= 8

2π
≈ 1.27 (Hz)

(in contrast with 0.63 s and 1.59 Hz, respectively, in the undamped case).
From Eq. (20) we compute

x ′(t) = e−6t(−8A sin 8t + 8B cos 8t) − 6e−6t(A cos 8t + B sin 8t).

The initial conditions therefore produce the equations

x(0) = A = 1
2 and x ′(0) = −6A + 8B = −10,

so A = 1
2 and B = − 7

8 . Thus

x(t) = e−6t
(

1
2 cos 8t − 7

8 sin 8t
)
,

and so with

C =
√(

1
2

)2 + (
7
8

)2 = 1
8

√
65

we have

x(t) =
√

65

8
e−6t

(
4√
65

cos 8t − 7√
65

sin 8t

)
.

We require

cos α = 4√
65

> 0 and sin α = − 7√
65

< 0,

so α is the fourth-quadrant angle

α = 2π − tan−1
(

7
4

) ≈ 5.2315 (rad).

In summary, the position function of the oscillating mass is given approximately by

x(t) =
√

65

8
e−6t cos(8t − 5.2315). (21)

Figure 8.7.8 shows the graph of this position function. Although the oscillations the-

10.80.60.40.2

0.4

0.2

−0.2

t

x

FIGURE 8.7.8 Graph of the
position function in Eq. (21).

oretically occur indefinitely, we see that—from a practical point of view—they are
effectively damped out after a second or so. ◗
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Forced Oscillations
Masses on springs in mechanical systems often are subject to periodic external forces.
A typical example would be a car being driven down a road with periodic pavement
oscillations. The mass is the car itself; the dashpot and spring consist of its suspension
(shock absorbers and leaf or coil springs). The road provides the external force and the
driver feels the periodic motion of the car.

If we include in Eq. (3) a periodic external force F(t) = F0 cos ωt with amplitude
F0 and circular frequency ω, we get the nonhomogeneous differential equation

mx ′′ + cx ′ + kx = F0 cos ωt . (22)

In Section 8.6 we solved only homogeneous differential equations, but a nonho-
mogeneous equation of the special form in (22) frequently can be solved by a method
of “shrewd guessing.” Because derivatives of sines and cosines of ωt are again sines
and cosines of ωt , it is reasonable to guess that Eq. (22) might have a particular solu-
tion of the form

x p(t) = A cos ωt + B sin ωt . (23)

If so, we can hope to discover the values of A and B by substituting (23) for x in
Eq. (22) and then collecting coefficients of cos ωt and sin ωt .

Now let xc(t) denote the general solution—involving arbitrary constants c1 and
c2—of the associated (force-free) equation mx ′′ + c′x + kx = 0. Then the sum

x(t) = xc(t) + x p(t) (24)

will be a general solution of Eq. (22), because we find that

mx ′′ + cx ′ + kx = m(xc + x p)
′′ + c(xc + x p)

′ + k(xc + x p)

= (mx ′′
c + cx ′

c + kxc) + (mx ′′
p + cx ′

p + kx p)

= 0 + F0 cos ωt = F0 cos ωt.

In summary, the general solution of the nonhomogeneous equation in (22) is
the sum of the particular solution x p and the general solution xc of the associated
homogeneous equation. Finally, we can impose given initial conditions on x(t) to
determine the numerical values of the constants c1 and c2 that appear in xc. Examples 4
and 5 illustrate this procedure.

EXAMPLE 4 Suppose that m = 1, c = 0, k = 9, F0 = 80, and ω = 5, so that the
nonhomogeneous differential equation in (22) is

x ′′ + 9x = 80 cos 5t. (25)

Find x(t) if x(0) = x ′(0) = 0.

Solution The associated homogeneous differential equation x ′′ + 9x = 0 has general
solution

xc(t) = c1 cos 3t + c2 sin 3t.

The particular solution given by (23) with ω = 5 takes the form x p(t) = A cos 5t +
B sin 5t . Substituting x p for x in the nonhomogeneous equation in (25) yields

(−25A cos 5t − 25B sin 5t) + 9(A cos 5t + B sin 5t) = 80 cos 5t.

When we group and compare coefficients of cos 5t and sin 5t on the two sides of this
equation, we see that −16A = 80 and −16B = 0. Consequently A = −5 and
B = 0, so the particular solution is x p(t) = −5 cos 5t . The general solution x(t) =
xc(t) + x p(t) in (24) is therefore

x(t) = c1 cos 3t + c2 sin 3t − 5 cos 5t.

647

www.konkur.in



648 CHAPTER 8 Differential Equations

Finally, we apply the given initial conditions x(0) = x ′(0) = 0 to x(t) and its
derivative

6π4π2π

Period 2π

−10

10

5

−5

t

x

FIGURE 8.7.9 The response
function x(t) = 5 cos 3t − 5 cos 5t
in Example 4.

x ′(t) = −3c1 sin 3t + 3c2 cos 3t + 25 sin 5t.

We thereby obtain x(0) = c1 − 5 = 0 and x ′(0) = 3c2 = 0, so c1 = 5 and c2 = 0.
This gives the desired solution

x(t) = 5 cos 3t − 5 cos 5t

of the original initial value problem. As indicated in Fig. 8.7.9, the period of x(t) is
the least common integral multiple 2π of the periods 2π/3 and 2π/5 of the two cosine
terms. ◗

REMARK Suppose that the frequency ω of the external force F(t) = 80 cos ωt in Ex-
ample 4 had been equal to the natural frequency ω0 = 3 of the mass-and-spring system.
Then substituting the “trial solution” x p(t) = A cos 3t + B sin 3t in the nonhomoge-
neous differential equation would have led to the contradictory equation 0 = 80 cos 3t .
(Verify this for yourself.) Thus we would not have been able to determine A and B in
this way. The case in which the external and natural frequencies are equal leads to the
phenomenon of resonance, with oscillations of larger and larger amplitudes occurring.
(See Problem 37.) This phenomenon does not occur when nonzero damping is present,
as in Example 5.

EXAMPLE 5 Suppose that m = 1, c = 2, k = 26, F0 = 82, and ω = 4, so the
nonhomogeneous differential equation in (22) is

x ′′ + 2x ′ + 26x = 82 cos 4t. (26)

Find x(t) if x(0) = 6 and x ′(0) = 0.

Solution The associated homogeneous differential equation x ′′ + 2x ′ + 26x = 0 has
characteristic equation

r2 + 2r + 26 = (r + 1)2 + 25 = 0

with complex conjugate roots r = −1 ± 5i . Hence its general solution is

xc(t) = e−t(c1 cos 5t + c2 sin 5t).

The particular solution given in (23) with ω = 4 is x p(t) = A cos 4t + B sin 4t .
When we substitute this trial solution in the nonhomogeneous equation in (26), collect
like terms, and equate coefficients of cos 4t and sin 4t , we get the equations

10A + 8B = 82,

−8A + 10B = 0

with solution A = 5, B = 4. This gives the particular solution

x p(t) = 5 cos 4t + 4 sin 4t

of Eq. (26). The general solution x(t) = xc(t) + x p(t) in (24) is therefore

x(t) = e−t(c1 cos 5t + c2 sin 5t) + 5 cos 4t + 4 sin 4t.

Finally, we apply the given initial conditions x(0) = 6 and x ′(0) = 0 to x(t) and
its derivative

x ′(t) = −e−t(c1 cos 5t + c2 sin 5t) + e−t(−5c1 sin 5t + 5c2 cos 5t)

− 20 sin 4t + 16 cos 4t.

Thereby we get the simultaneous equations

x(0) = c1 + 5 = 6,

x ′(0) = −c1 + 5c2 + 16 = 0
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with solution c1 = 1, c2 = −3. These coefficients yield the desired solution

x(t) = e−t(cos 5t − 3 sin 5t) + 5 cos 4t + 4 sin 4t (27)

of the original initial value problem. ◗

REMARK The solution in (27) is the sum of a transient solution

xtr (t) = e−t(cos 5t − 3 sin 5t)

—thus named because it dies out as t → +∞—and the steady periodic solution

xsp(t) = 5 cos 4t + 4 sin 4t

= √
41

(
5√
41

cos 4t + 4√
41

sin 4t

)
= √

41 cos

(
4t − tan−1 4

5

)

that represents a motion in which the mass perpetually continues to oscillate with con-
stant amplitude

√
41 and circular frequency ω = 4.

Figure 8.7.10 shows graphs of the solution x(t) = xtr (t) + xsp(t) of the initial
value problem

x ′′ + 2x ′ + 26x = 82 cos 4t; x(0) = x0, x ′(0) = 0 (28)

for the different initial positions x0 = −20, −10, 0, 10, and 20. Here we see clearly
what it means for the transient solution xtr (t) to “die out with the passage of time,”
leaving only the steady periodic solution xsp(t). Indeed, because xtr (t) → 0 expo-
nentially, within a very few cycles the graphs of the full solution x(t) and the steady
periodic solution xsp(t) are virtually indistinguishable.

1 2 3 4 5

−10

10

−20

20

t

x

xsp(t)

x0 = 20

x0 = −20

FIGURE 8.7.10 Solutions of the initial value problem in (28) with x0 = −20, −10, 0, 10,
20, and also the steady periodic solution xsp(t).
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8.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Periodic phenomena are typically modeled by first order differential equations,
whereas phenomena of steady growth are typically modeled by second order
equations.

2. If a moving mass is attached to a spring, then Hooke’s law implies that the force
exerted on the mass by the spring is proportional to the velocity of the mass.

3. Suppose a moving mass is attached to both a spring and a dashpot (or shock
absorber), and also is acted upon by an external force separate from the spring
or dashpot. Then the position function x(t) of the mass satisfies a differential
equation of the form mx ′′ + cx ′ + kx = 0.

4. If a moving mass is attached to a spring, but is subject neither to damping nor to
any external force, then the position function x(t) of the mass is a linear combi-
nation of a sine function and a cosine function.

5. If a mass in free undamped motion has position function x(t) = A cos ω0t +
B sin ω0t , then the amplitude of its to-and-fro oscillations equals

√
A2 + B2.

6. If a mass in free undamped motion has position function x(t) = A cos ω0t +
B sin ω0t with A and B both positive, then x(t) can be written in the form x(t) =
C cos(ωt − α) with the phase angle α being a second-quadrant angle.

7. If a mass moves in simple harmonic motion with circular frequency ω0 (in radians
per second), then the number T of seconds required for it to complete one full

oscillation is given by T = 2π

ω0
.

8. Suppose a mass attached to both a spring and a dashpot undergoes free under-
damped motion. Then its position function can be written in the form x(t) =
Cept cos(ω1t − α), where the circular frequency ω1 is less than the natural cir-
cular frequency ω0 of oscillations of the same mass on the same spring without
damping.

9. If x p(t) is a particular solution of the nonhomogeneous differential equation

mx ′′ + cx ′ + kx = F0 cos ωt

and xc(t) is the general solution of the associated homogeneous equation mx ′′ +
cx ′ + kx = 0, then the sum x(t) = xc(t) + x p(t) is a general solution of the
original nonhomogeneous equation displayed above.

10. Suppose a mass attached to both a spring and a dashpot undergoes periodically
forced damped oscillations. Then its position function x(t) is a sum x(t) =
xtr (t) + xsp(t) of a steady periodic solution xsp(t) and a transient solution xtr (t)
that dies out as t → +∞.

8.7 CONCEPTS: QUESTIONS AND DISCUSSION
In each of Questions 1 through 4, describe differences between the indicated varieties
of motion of a mass attached to a spring.

1. Damped and undamped free motions
2. Overdamped and underdamped free motions
3. Damped and undamped forced motions
4. Transient and steady periodic forced motions
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8.7 PROBLEMS

Problems 1 through 4 concern undamped free motion of a mass
m on a spring with Hooke’s (spring) constant k. Suppose that the
mass is set in motion with initial position x(0) = x0 and initial
velocity x ′(0) = v0. Write the position function of the mass in
the form x(t) = C cos(ω0t − α).

1. m = 2, k = 50; x0 = 4, v0 = 15

2. m = 3, k = 48; x0 = −6, v0 = 32

3. m = 4, k = 36; x0 = −5, v0 = −36

4. m = 5, k = 80; x0 = 15, v0 = −32

Problems 5 through 10 deal with damped free motion of a mass
m that is attached both to a spring with Hooke’s constant k and
to a dashpot with damping constant c. Suppose that the mass is
set in motion with initial position x(0) = x0 and initial velocity
x ′(0) = v0. Find the position function x(t) of the mass. De-
termine whether the resulting motion is overdamped, critically
damped, or underdamped; in the latter case, write the position
function in the form x(t) = Ce−pt cos(ω1t − α).

5. m = 1
2 , c = 3, k = 4, x0 = 2, v0 = 0

6. m = 3, c = 30, k = 63, x0 = 2, v0 = 2

7. m = 1, c = 8, k = 16, x0 = 5, v0 = −10

8. m = 2, c = 12, k = 50, x0 = 0, v0 = −8

9. m = 2, c = 16, k = 40, x0 = 5, v0 = 4

10. m = 1, c = 10, k = 125, x0 = 6, v0 = 50

The initial value problems in Problems 11 through 14 describe
forced undamped motion of a mass on a spring. Express the po-
sition function x(t) as the sum of two oscillations (as in Exam-
ple 4). Throughout, primes denote derivatives with respect to t .

11. x ′′ + 9x = 10 cos 2t ; x(0) = x ′(0) = 0

12. x ′′ + 4x = 5 sin 3t ; x(0) = x ′(0) = 0

13. x ′′ + 100x = 300 sin 5t ; x(0) = 0, x ′(0) = 0

14. x ′′ + 25x = 90 cos 4t ; x(0) = 25, x ′(0) = 10

In Problems 15 through 18, find the steady periodic solution of
the given differential equation. If initial conditions are given,
also find the transient solution.

15. x ′′ + 4x ′ + 4x = 130 cos 3t

16. x ′′ + 3x ′ + 5x = −500 cos 5t

17. x ′′ + 4x ′ + 5x = 40 cos 3t ; x(0) = x ′(0) = 0

18. x ′′+8x ′+25x = 200 cos t+520 sin t ; x(0) = 5, x ′(0) = 0

19. Determine the period and frequency of the simple harmonic
motion of a 4-kg mass on the end of a spring with spring
constant 16 N/m.

20. Determine the period and frequency of the simple harmonic
motion of a body of mass 0.75 kg on the end of a spring with
spring constant 48 N/m.

21. A mass of 3 kg is attached to the end of a spring that is
stretched 20 cm by a force of 15 N. It is set in motion with
initial position x0 = 0 and initial velocity v0 = −10 m/s.
Find the amplitude, period, and frequency of the resulting
motion.

22. A body with mass 250 g is attached to the end of a spring
that is stretched 25 cm by a force of 9 N. At time t = 0
the body is pulled 1 m to the right, stretching the spring,
and set in motion with an initial velocity of 5 m/s to the left.
(a) Find x(t) in the form C cos(ω0t + α). (b) Find the am-
plitude and period of motion of the body.

23. Derive Eq. (4) describing the motion of a mass attached to
the bottom of a vertically suspended spring. (Suggestion:
First denote by x(t) the displacement of the mass below
the unstretched position of the spring; set up the differential
equation for x . Then substitute y = x −x0 in this differential
equation.)

24. Consider a floating cylindrical buoy with radius r , height
h, and uniform density ρ � 0.5 (recall that the density of
water is 1 g/cm3). The buoy is initially suspended at rest
with its bottom at the top surface of the water and is re-
leased at time t = 0. Thereafter it is acted on by two
forces: a downward gravitational force equal to its weight
mg = ρπr 2hg and an upward force of buoyancy equal to
the weight πr 2xg of water displaced, where x = x(t) is the
depth of the bottom of the buoy beneath the surface at time t
(Fig. 8.7.11). Conclude that the buoy undergoes simple har-
monic motion around its equilibrium position xe = ρh with
period p = 2π

√
ρh/g. Compute p and the amplitude of the

motion if ρ = 0.5 g/cm3, h = 200 cm, and g = 980 cm/s2.

Waterline

r

x

h

FIGURE 8.7.11 The buoy of
Problem 24.

25. A cylindrical buoy weighing 100 lb (thus of mass m = 3.125
slugs in ft-lb-s (fps) units) floats in water with its axis vertical
(as in Problem 24). When depressed slightly and released, it
oscillates up and down four times every 10 s. Assume that
friction is negligible. Find the radius of the buoy.

26. Assume that the earth is a solid sphere of uniform density,
with mass M and radius R = 3960 (mi). For a particle
of mass m within the earth at distance r from the center
of the earth, the gravitational force attracting m toward the
center is Fr = −G Mr m/r 2, where Mr is the mass of the
part of the earth within a sphere of radius r . (a) Show that
Fr = −G Mmr/R3. (b) Now suppose that a small hole is
drilled straight through the center of the earth, thus connect-
ing two antipodal points on its surface. Let a particle of
mass m be dropped at time t = 0 into this hole with ini-
tial speed zero, and let r(t) be its distance from the center
of the earth at time t (Fig. 8.7.12). Conclude from New-
ton’s second law and part (a) that r ′′(t) = −k2r(t), where
k2 = G M/R3 = g/R. (c) Take g = 32.2 ft/s2, and conclude
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from part (b) that the particle undergoes simple harmonic
motion back and forth between the ends of the hole, with a
period of about 84 min. (d) Look up (or derive) the period
of a satellite that just skims the surface of the earth; com-
pare it with the result in part (c). How do you explain the
coincidence? Or is it a coincidence? (e) With what speed
(in miles per hour) does the particle pass through the center
of the earth? (f) Look up (or derive) the orbital velocity of
a satellite that just skims the surface of the earth; compare it
with the result in part (e). How do you explain the coinci-
dence? Or is it a coincidence?

R
r

m

FR

FIGURE 8.7.12 A mass m falling
down a hole through the center of
the earth (Problem 26).

27. Suppose that the mass in a free mass-spring-dashpot system
with m = 10, c = 9, and k = 2 is set in motion with
x(0) = 0 and x ′(0) = 5. (a) Find the position function
x(t) and show that its graph looks as indicated in Fig. 8.7.13.
(b) Find how far the mass moves to the right before starting
back toward the origin.

0 10 15 205
t

x

5

0

−2

1

2

3

4

−1

FIGURE 8.7.13 The position
function x(t) of Problem 27.

28. Suppose that the mass in a free mass-spring-dashpot system
with m = 25, c = 10, and k = 226 is set in motion with
x(0) = 20 and x ′(0) = 41. (a) Find the position function
x(t) and show that its graph looks as indicated in Fig. 8.7.14.
(b) Find the pseudoperiod of the oscillations and the equa-
tions of the “envelope curves” that are dashed in the figure.

x

t
0 5 10 15 20

0

−20

10

−10

20

FIGURE 8.7.14 The position
function x(t) of Problem 28.

29. A 12-lb weight (mass m = 0.375 slugs in fps units) is at-
tached both to a vertically suspended spring that it stretches
6 in. and to a dashpot that provides 3 lb of resistance for ev-
ery foot per second of velocity. (a) If the weight is pulled
down 1 ft below its static equilibrium position and then re-
leased from rest at time t = 0, find its position function x(t).
(b) Find the frequency, time-varying amplitude, and phase
angle of the motion.

30. This problem deals with a highly simplified model of a car
of weight 3200 lb (mass m = 100 slugs in fps units). As-
sume that the suspension system acts like a single spring and
its shock absorbers like a single dashpot, so that its vertical
vibrations satisfy Eq. (4) with appropriate values of the co-
efficients. (a) Find the stiffness coefficient k of the spring
if the car undergoes free vibrations at 80 cycles per minute
(cycles/min) when its shock absorbers are disconnected.
(b) With the shock absorbers connected the car is set into vi-
bration by driving it over a bump, and the resulting damped
vibrations have a frequency of 78 cycles/min. After how
long will the time-varying amplitude be 1% of its initial
value?

Problems 31 through 36 deal with damped free vibrations of a
mass-spring-dashpot system whose position function satisfies the
equation mx ′′ + cx ′ + kx = 0. The mass is set in motion with
initial position x(0) = x0 and initial velocity x ′(0) = v0. Recall
the notation p = c/(2m) and ω0 = √

k/m in Eqs. (18) and (8),
respectively. The system is critically damped or overdamped as
specified in each problem.

31. (Critically damped) Show in this case that

x(t) = (x0 + v0t + px0t)e−pt .

32. (Critically damped) Deduce from Problem 31 that the mass
passes through x = 0 at some instant t > 0 if and only if x0

and v0 + px0 have opposite signs.

33. (Critically damped) Deduce from Problem 31 that x(t) has
a local maximum or minimum at some instant t > 0 if and
only if v0 and v0 + px0 have the same sign.

34. (Overdamped) Show in this case that

x(t) = 1

2γ
[(v0 − r2x0)e

r1t − (v0 − r1x0)e
r2t ],

where r1, r2 = −p ±
√

p2 − ω2
0 and γ = (r1 − r2)/2 > 0.

35. (Overdamped) If x0 = 0, deduce from Problem 34 that

x(t) = v0

γ
e−pt sinh γ t.
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36. (Overdamped) Prove that in this case the mass can pass
through its equilibrium position x = 0 at most once.

37. Consider the mass-and-spring system of Example 4, except
with the external force F(t) = 60 cos 3t having frequency
ω equal to the natural frequency ω0 = 3 of the system.
Then the position function of the mass satisfies the differ-
ential equation x ′′ + 9x = 60 cos 3t . (a) Show that this
nonhomogeneous differential equation has no solution of
the form x(t) = A cos 3t + B sin 3t . (As suggested in
the text, try to find one and observe what happens.) (b)
Verify that x p(t) = 10t sin 3t is a particular solution of
x ′′ + 9x = 60 cos 3t . The graph of x p(t), which is shown
in Fig. 8.7.15, indicates that any solution

x(t) = c1 cos 3t + c2 sin 3t + 10t sin 3t

of this equation exhibits oscillations of unbounded magni-
tude as t → +∞.

π2 π4 π6 π8 π10

200

100

−100

−200

t

x

x = +10t

x = −10t

FIGURE 8.7.15 The resonance
solution x p(t) = 10t sin 3t of the
differential equation
x ′′ + 9x = 60 cos 3t oscillates
between the lines x = −10t and
x = +10t .
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MISCELLANEOUS PROBLEMS

In Problems 1 through 26, find the general solution of the given
differential equation. If an initial condition is given, find the cor-
responding particular solution.

1.
dy

dx
= 2x + cos x ; y(0) = 0

2.
dy

dx
= 3

√
x + 1√

x
; y(1) = 10

3.
dy

dx
= (y + 1)2

4.
dy

dx
= √

y + 1

5.
dy

dx
= 3x2 y2; y(0) = 1

6.
dy

dx
= 3

√
xy; y(1) = 1

7. x2 y2 dy

dx
= 1

8.
√

xy
dy

dx
= 1

9.
dy

dx
= y2 cos x ; y(0) = 1

10.
dy

dx
= √

y sin x ; y(0) = 4

11.
dy

dx
= y2

(
1 − √

x
)

x2
(
1 − √

y
)

12.
dy

dx
=

√
y(x + 1)3

√
x(y + 1)3

13. x3 + 3y − x
dy

dx
= 0

14. xy2 + 3y2 − x2 dy

dx
= 0

15. 3y + x4 dy

dx
= 2xy

16. 2xy2 + x2 dy

dx
= y2

17. 2x2 y + x3 dy

dx
= 1

18.
dy

dx
= 1 + x2 + y2 + x2 y2

19.
dy

dx
+ 3y = 3x2e−3x
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20. 3x5 y2 + x3 dy

dx
= 2y2

21. x
dy

dx
+ 3y = 3x−3/2

22. (x2 − 1)
dy

dx
+ (x − 1)y = 1

23. 9x2 y2 + x3/2 dy

dx
= y2

24. 2y + (x + 1)
dy

dx
= 3x + 3

25.
dy

dx
= ex + y

26. y + x
dy

dx
= 2e2x

Each of the differential equations in Problems 27 and 28 is both
separable and linear. Derive and reconcile the two general solu-
tions you find by the two indicated methods.

27.
dy

dx
= 3(y + 7)x2

28.
dy

dx
= 2xy + 2x

x2 + 1

Solve the initial value problems in 29 and 30.

29.
dx

dt
= x2 + 5x + 6; x(0) = 5

30.
dx

dt
= 2x2 + x − 15; x(0) = 10

31. Radioactive Decay A certain moon rock contains equal
numbers of potassium atoms and argon atoms. Assume that
all the argon is present because of radioactive decay of potas-
sium (its half-life is about 1.28 × 109 yr) and that 1 out of
every 9 potassium atom disintegrations yields an atom of ar-
gon. What is the age of the rock, measured from the time it
contained only potassium?

32. Newton’s Law of Cooling If a body is cooling in a medium
with constant temperature A, then—according to Newton’s
law of cooling (Section 8.3)—the rate of change of tempera-
ture T of the body is proportional to T − A. We plan to cool
a pitcher of buttermilk initially at 25◦C by setting it on the
front porch, where the temperature is 0◦C. If the temperature
of the buttermilk drops to 15◦C after 20 min, when will it be
at 5◦C?

33. When sugar is dissolved in water, the amount A of sugar that
remains undissolved after t minutes satisfies the differential
equation d A/dt = −k A (k > 0). If 25% of the sugar dis-
solves in 1 min, how long does it take for half the sugar to
dissolve?

34. The intensity I of light at a depth x meters below the sur-
face of a lake satisfies the differential equation d I/dx =
−(1.4)I . (a) At what depth is the intensity half the intensity
I0 at the surface (where x = 0)? (b) What is the intensity at
a depth of 10 m (as a fraction of I0)? (c) At what depth will
the intensity be 1% of its value at the surface?

35. The barometric pressure p (in inches of mercury) at an al-
titude x miles above sea level satisfies the differential equa-
tion dp/dx = −(0.2)p with initial condition p(0) = 29.92.
(a) Calculate the barometric pressure at 10,000 ft and again
at 30,000 ft. (b) Without prior conditioning, few people can
survive when the pressure drops to less than 15 in. of mer-
cury. How high is that? (c) The highest mountain in North

America is Mt. McKinley, in Denali National Park, Alaska,
U.S.A. What is the atmospheric pressure at its summit,
approximately 20,320 ft above sea level?

36. An accident at a nuclear power plant has left the surrounding
area polluted with a radioactive element that decays at a rate
proportional to its current amount A(t). The initial level of
radiation is 10 times the maximum amount S that is safe, and
100 days later it is still 7 times that amount. (a) Set up and
solve a differential equation to find A(t). (b) How long (to
the nearest day after the original accident) will it be before it
is safe for people to return to the area?

37. Suppose that a nuclear accident was confined to a single
room of a nuclear research laboratory but has left that room
contaminated with polonium-210, which has a half-life of
140 days. If the initial contamination of the room is five
times the amount safe for long-term human exposure, how
long should laboratory workers wait before entering the
room to decontaminate it?

38. Suppose that the national government’s current annual bud-
get is $2 trillion, but only $1.85 trillion in taxes is being
collected annually (so the current deficit is $150 billion per
year). Suppose also that both the annual budget and the
annual tax revenues increase exponentially. If revenues in-
crease at 3% annually, what annual percentage increase in
the national budget will yield a balanced budget seven years
in the future? You may choose either a symbolic approach or
a graphical approach (in which case you need to determine
the budget’s rate of increase so that the budget and revenue
graphs intersect seven years from now).

Solve the initial value problems in 39 through 44. Primes denote
derivatives with respect to x.

39. 6y′′ − 19y′ + 15y = 0; y(0) = 13, y′(0) = 21

40. 50y′′ − 5y′ − 28y = 0; y(0) = 25, y′(0) = −10

41. 121y′′ + 154y′ + 49y = 0; y(0) = 11, y′(0) = 10

42. 169y′′ − 130y′ + 25y = 0; y(0) = 26, y′(0) = 39

43. 100y′′ + 20y′ + 10001y = 0; y(0) = 10, y′(0) = 9

44. 100y′′ + 2000y′ + 10001y = 0; y(0) = 1, y′(0) = −9

45. (a) In 1979 the typical microcomputer contained 29 thousand
transistors. Assuming natural growth at the annual rate r ,
write a formula giving the number N (t) of transistors in a
typical microcomputer t years later. (b) In 1993 the typical
microcomputer CPU contained 3.1 million transistors. Find
the annual growth rate r of part (a), expressed as a percent-
age. (c) At the rate you found in part (b), how many months
are required to double the number of transistors in a typi-
cal microcomputer? (d) Assuming the rate of parts (b) and
(c) remains constant, how many transistors (rounded to the
nearest million) did the typical microcomputer contain in the
year 2001?

46. Dinosaurs became extinct late in the Cretaceous Era, about
70 million years ago. Suppose that you find a dinosaur bone
containing exactly one atom of 14C. Obtain a sound under-
estimate of the weight of the dinosaur. You will need to
look up Avogadro’s number and perhaps read about what it
tells you.

47. Suppose that the fish population P(t) in a lake is attacked by
disease at time t = 0, with the result that

d P

dt
= −k

√
P (k > 0)
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thereafter. If there were initially 900 fish in the lake and only
441 remained after 6 weeks, how long would it take for all
of the fish in the lake to die?

48. Prove that the solution of the initial value problem

d P

dt
= k

√
P, P(0) = P0 (P0 > 0)

is given by

P(t) =
(

1
2 kt + √

P0

)2
.

49. Suppose that the population of Fremont satisfies the differ-
ential equation of Problem 48. (a) If P = 100,000 in 1970
and P = 121,000 in 1980, what should the population be in
2000? (b) When will the population reach 200,000?

50. The population P(t) of a certain group of rabbits satisfies
the initial value problem

d P

dt
= k P2, P(0) = P0,

where k is a positive constant. Derive the solution

P(t) = P0

1 − k P0t
.

51. In Problem 50, suppose that P0 = 2 and that there are 4
rabbits after 3 months. What happens in the next 3 months?

52. Suppose that a motorboat is traveling at v040 ft/s when its
motor is cut off at time t = 0. Thereafter its deceleration
(due to water resistance) is given by dv/dt−kv2, where k
is a positive constant. (a) Solve this differential equation to
show that the speed of the boat at time t > 0 is

v(t) = 40

1 + 40kt

feet per second. (b) If the speed of the boat after 10 s is
20 ft/s, how long does it take (since the motor was cut off)
for the boat to slow to 5 ft/s?

53. Suppose that the fish population P(t) in a lake is attacked by
disease at time t = 0, with the result that

d P

dt
= −3

√
P

thereafter. Time t is measured in weeks. Initially there are
P0 = 900 fish in the lake. How long will it take for all of the
fish to die?

54. A race car sliding along a level surface is decelerated by fric-
tional forces proportional to its speed. Suppose that it decel-
erates initially at 2 m/s2 and travels a total distance of 1800
m. What was its initial velocity? (See Problem 32 of Sec-
tion 8.4.)

55. A home mortgage of $120,000 is to be paid off continu-
ously over a period of 25 yr. Apply the result of Problem
33 in Section 8.3 to determine the monthly payment if the
annual interest rate, compounded continuously, is (a) 8%;
(b) 12%.

56. A powerboat weighs 32000 lb and its motor provides a thrust
of 5000 lb. Assume that the water resistance is 100 lb for
each foot per second of the boat’s speed. Then the velocity

v(t) (in ft/s) of the boat at time t (in seconds) satisfies the
differential equation

1000
dv

dt
= 5000 − 100v.

Find the maximum velocity that the boat can attain if it starts
from rest.

57. The temperature in my freezer is −16◦C and the room tem-
perature is a constant 20◦C. At 11 P.M. one evening the
power goes off because of an ice storm. At 6 A.M. the
next morning I see that the temperature in the freezer has
risen to −10◦C. At what time will the temperature in the
freezer reach the critical value of 0◦C if the power is not
restored?

58. Suppose that the action of fluorocarbons depletes the ozone
in the upper atmosphere by 0.25% annually, so that the
amount A of ozone in the upper atmosphere satisfies the dif-
ferential equation

d A

dt
= − 1

400
A (t in years).

(a) What percentage of the original amount A 0 of upper-
atmospheric ozone will remain 25 yr from now? (b) How
long will it take for the amount of upper-atmospheric ozone
to be reduced to half its initial amount?

59. A car starts from rest and travels along a straight and level
road. Its engine provides a constant acceleration of a feet per
second per second. Air resistance and road friction cause a
deceleration of ρ feet per second per second for every foot
per second of the car’s velocity v. (a) Show that the velocity
of the car after t seconds is

v(t) = a

ρ
(1 − e−ρt ).

(b) If a17.6 ft/s2 and ρ0.1, find v when t10 s and find the
limiting velocity of the car as t → +∞. (Give each answer
in miles per hour as well as in feet per second.)

60. Immediately after an accident in a nuclear power plant, the
level of radiation there was 10 times the safe limit. After
6 months it dropped to 9 times the safe limit. Assuming ex-
ponential decay, how long (in years) after the accident will
the radiation level drop to the safe limit?

61. A 22-yr-old engineer accepts a position with a starting salary
of $30,000/yr. Her annual salary S increases exponentially,
with

S(t) = 30e(0.05)t

thousand dollars after t years. Meanwhile, she deposits 12%
of her salary continuously in a retirement account that accu-
mulates interest at an annual rate of 6% compounded con-
tinuously. (a) Estimate �A in terms of �t to derive this
equation for the amount A(t) in her retirement account at
time t :

d A

dt
− (0.06)A = (3.6)e(0.05)t .

(b) Solve this equation with the initial condition A(0) = 0
and then compute A(40), the amount available for her retire-
ment at age 62.
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62. A tumor may be regarded as a population P of multiplying
cells. It is found empirically that the “birth rate” β of the
cells in a tumor decreases exponentially with time, so that
β(t) = β0e−αt (where α and β0 are positive constants), and
hence

d P

dt
= β0e−αt P, P(0) = P0.

Solve this initial value problem to obtain

P(t) = P0 exp

(
β0

α
(1 − e−αt )

)
.

Observe that P(t) approaches the finite limiting population
P0 exp (β0/α) as t → +∞.

63. For the tumor of Problem 62, suppose that at time t = 0 there
are P0 = 106 cells and that P(t) is then increasing at the rate
of 3 × 105 cells per month. After 6 months the tumor has
doubled (in size and in number of cells). Solve numerically
for α, and then find the limiting population of the tumor.

Differential Equations and Determinism Given a mass m, a
dashpot constant c, and a spring constant k, the differential
equation

mx ′′ + cx ′ + kx = 0 (1)

has a unique solution for t � 0 satisfying given initial conditions
x(0) = x0, x ′(0) = v0. Thus the future motion of an ideal mass-
spring-dashpot system is completely determined by the differen-

tial equation and the initial conditions. Of course, in a real phys-
ical system it is impossible to measure the parameters m, c, and
k precisely. Problems 64 through 67 explore the resulting uncer-
tainty in predicting the future behavior of a physical system.

64. Suppose that m1, c2, and k1. Show that the solution of
Eq. (1) with x(0)0 and x ′(0)1 is

x1(t) = te−t .

65. Suppose that m = 1 and c = 2 but k = 1−10−2n . Show that
the solution of Eq. (1) with x(0) = 0 and x ′(0) = 1 is

x2(t) = 10ne−t sinh 10−nt.

66. Suppose that m = 1 and c = 2 but that k = 1+10−2n . Show
that the solution of Eq. (1) with x(0) = 0 and x ′(0) = 1 is

x3(t) = 10ne−t sin 10−nt.

67. Whereas the graphs of x1(t) and x2(t) resemble those shown
in Figs. 8.7.5 and 8.7.6, the graph of x3(t) exhibits damped
oscillations like those illustrated in Fig. 8.7.7, but with a very
long pseudoperiod. Nevertheless, show that for each fixed
t > 0 it is true that

lim
n→∞ x2(t) = lim

n→∞ x3(t) = x1(t).

Conclude that on a given finite time interval the three solu-
tions are in “practical” agreement if n is sufficiently large.

PHOTO CREDITS

p. 575 Corbis/Bettmann 
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Polar Coordinates and
Parametric Curves 9

Pierre de Fermat(1601–1665)

Pierre de Fermat ex-
emplifies the distin-
guished tradition of

great amateurs in mathe-
matics. Like his contem-
porary René Descartes,
he was educated as a law-
yer. But unlike Descartes,
Fermat actually practiced
law as his profession and
served in the regional par-
liament. His ample leisure
time was, however, devoted
to mathematics and to other

intellectual pursuits, such as the study of ancient Greek
manuscripts.

In a margin of one such manuscript (by the Greek
mathematician Diophantus) was found a handwritten note
that has remained an enigma ever since. Fermat asserts
that for no integer n > 2 do positive integers x , y, and
z exist such that xn + yn = zn . For instance, although
152 + 82 = 172, the sum of two (positive integer) cubes
cannot be a cube. “I have found an admirable proof of
this,” Fermat wrote, “but this margin is too narrow to con-
tain it.” Despite the publication of many incorrect proofs,
“Fermat’s last theorem” remained unproved for three and
one-half centuries. But in a June 1993 lecture, the British
mathematician Andrew Wiles of Princeton University an-
nounced a long and complex proof of Fermat’s last theo-
rem. Although the proof as originally proposed contained
some gaps, these have been repaired, and experts in the
field agree that Fermat’s last conjecture is, finally, a theo-
rem.

Descartes and Fermat shared in the discovery of an-
alytic geometry. But whereas Descartes typically used ge-
ometrical methods to solve algebraic equations (see the

Chapter 1 opening), Fermat concentrated on the investiga-
tion of geometric curves defined by algebraic equations.
For instance, he introduced the translation and rotation
methods of this chapter (and Chapter 11) to show that the
graph of an equation of the form A x2 + Bxy + Cy2 +
Dx + Ey + F = 0 is generally a conic section. Most of
his mathematical work remained unpublished during his
lifetime, but it contains numerous tangent line (derivative)
and area (integral) computations.

The brilliantly colored left-hand photograph below
is a twentieth-century example of a geometric object de-
fined by means of algebraic operations. Starting with the
point P(a, b) in the xy-plane, we interpret P as the com-
plex number c = a + bi and define the sequence {zn} of
points of the complex plane iteratively (as in Section 3.10)
by the equations

z0 = c, zn+1 = z2
n + c (for n � 0).

If this sequence of points remains inside the circle x2 +
y2 = 4 for all n, then the original point P(a, b) is colored
black. Otherwise, the color assigned to P is determined by
the speed with which this sequence “escapes” that circular
disk. The set of all black points is the famous Mandel-
brot set, discovered in 1980 by the French mathematician
Benoit Mandelbrot.

The object in the right-hand figure is a subset of that in the
left-hand figure.

From Chapter 9 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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9.1 ANALYTIC GEOMETRY AND THE CONIC SECTIONS

Plane analytic geometry, a central topic of this chapter, is the use of algebra and
calculus to study the properties of curves in the xy-plane. The ancient Greeks used
deductive reasoning and the methods of axiomatic Euclidean geometry to study lines,
circles, and the conic sections (parabolas, ellipses, and hyperbolas). The properties of
conic sections have played an important role in diverse scientific applications since the
seventeenth century, when Kepler discovered—and Newton explained—the fact that
the orbits of planets and other bodies in the solar system are conic sections.

The French mathematicians Descartes and Fermat, working almost independently
of one another, initiated analytic geometry in 1637. The central idea of analytic geom-
etry is the correspondence between an equation F(x, y) = 0 and its locus (typically, a
curve), the set of all those points (x, y) in the plane with coordinates that satisfy this
equation.

A central idea of analytic geometry is this: Given a geometric locus or curve,
its properties can be derived algebraically or analytically from its defining equation
F(x, y) = 0. For example, suppose that the equation of a given curve turns out to be
the linear equation

A x + By = C , (1)

where A, B, and C are constants with B �= 0. This equation may be written in the
form

y = mx + b, (2)

where m = −A /B and b = C/B. But Eq. (2) is the slope-intercept equation of the
straight line with slope m and y-intercept b. Hence the given curve is this straight line.
We use this approach in Example 1 to show that a specific geometrically described
locus is a particular straight line.

EXAMPLE 1 Prove that the set of all points equidistant from the points (1, 1) and
(5, 3) is the perpendicular bisector of the line segment that joins these two points.

−2

0

2

4

6

0 4 8
x

y

(1, 1)

(x, y)

(5, 3)

y = −2x + 8

FIGURE 9.1.1 The perpendicular
bisector of Example 1.

Solution The typical point P(x, y) in Fig. 9.1.1 is equally distant from (1, 1) and
(5, 3) if and only if

(x − 1)2 + (y − 1)2 = (x − 5)2 + (y − 3)2;
x2 − 2x + 1 + y2 − 2y + 1 = x2 − 10x + 25 + y2 − 6y + 9;

2x + y = 8;
y = −2x + 8. (3)

Thus the given locus is the straight line in Eq. (3) whose slope is −2. The straight line
through (1, 1) and (5, 3) has equation

y − 1 = 1
2 (x − 1) (4)

and thus has slope 1
2 . Because the product of the slopes of these two lines is −1, it

follows (from Theorem 2 in Appendix B) that these lines are perpendicular. If we
solve Eqs. (3) and (4) simultaneously, we find that the intersection of these lines is,
indeed, the midpoint (3, 2) of the given line segment. Thus the locus described is the
perpendicular bisector of this line segment. ◗

The circle shown in Fig. 9.1.2 has center (h, k) and radius r . It may be described

x

y

(h, k)

(x, y)
r

FIGURE 9.1.2 The circle with
center (h, k) and radius r .

geometrically as the set or locus of all points P(x, y) whose distance from (h, k) is r .
The distance formula then gives

(x − h)2 + (y − k)2 = r2 (5)

660

www.konkur.in



Analytic Geometry and the Conic Sections SECTION 9.1 661

as the equation of this circle. In particular, if h = k = 0, then Eq. (5) takes the simple
form

x2 + y2 = r2. (6)

We can see directly from this equation, without further reference to the definition of
circle, that a circle centered at the origin has the following symmetry properties:

• Symmetry around the x-axis: The equation of the curve is unchanged when y is
replaced with −y.

• Symmetry around the y-axis: The equation of the curve is unchanged when x is
replaced with −x .

• Symmetry with respect to the origin: The equation of the curve is unchanged
when x is replaced with −x and y is replaced with −y.

• Symmetry around the 45◦ line y = x: The equation is unchanged when x and y
are interchanged.

The relationship between Eqs. (5) and (6) is an illustration of the translation
principle stated informally in Section 1.2. Imagine a translation (or “slide”) of the
plane that moves each point (x, y) to the new position (x + h, y + k). Under such a
translation, a curve C is moved to a new position. The equation of the new translated
curve is easy to obtain from the old equation—we simply replace x with x − h and y
with y − k. Conversely, we can recognize a translated circle from its equation: Any
equation of the form

x2 + y2 + A x + By + C = 0 (7)

can be rewritten in the form

(x − h)2 + (y − k)2 = p

by completing squares, as in Example 3 of Section 1.2. Thus the graph of Eq. (7) is
either a circle (if p > 0), a single point (if p = 0), or no points at all (if p < 0).
We use this approach in Example 2 to discover that the locus described is a particular
circle.

EXAMPLE 2 Determine the locus of a point P(x, y) if its distance |AP| from A(7, 1)

is twice its distance |BP| from B(1, 4).

Solution The points A, B, and P appear in Fig. 9.1.3, along with a curve through Py

x

B (1, 4) 

A(7, 1) 

P (x, y) 

FIGURE 9.1.3 The locus of
Example 2.

that represents the given locus. From

|AP|2 = 4|BP|2 (because |AP| = 2|BP|),

we get the equation

(x − 7)2 + (y − 1)2 = 4[(x − 1)2 + (y − 4)2].

Hence

3x2 + 3y2 + 6x − 30y + 18 = 0;
x2 + y2 + 2x − 10y = −6;
(x + 1)2 + (y − 5)2 = 20.

Thus the locus is a circle with center (−1, 5) and radius r = √
20 = 2

√
5. ◗
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Conic Sections
Conic sections are so named because they are the curves formed by a plane intersectingGeneratorsGenerator

Upper
nappe

Vertex

Lower
nappe

Axis

FIGURE 9.1.4 A cone with two
nappes.

a cone. The cone used is a right circular cone with two nappes extending infinitely far
in both directions (Fig. 9.1.4). There are three types of conic sections, as illustrated
in Fig. 9.1.5. If the cutting plane is parallel to some generator of the cone (a line
that, when revolved around an axis, forms the cone), then the curve of intersection is
a parabola. If the plane is not parallel to a generator, then the curve of intersection is
either a single closed curve—an ellipse—or a hyperbola with two branches.

Ellipse Parabola Hyperbola

FIGURE 9.1.5 The conic sections.

In Appendix J we use the methods of three-dimensional analytic geometry to
show that if an appropriate xy-coordinate system is set up in the intersecting plane,
then the equations of the three conic sections take the following forms:

Parabola: y2 = kx;

Ellipse:
x2

a2
+ y2

b2
= 1;

Hyperbola:
x2

a2
− y2

b2
= 1.

(8)

(9)

(10)

In Section 9.6 we discuss these conic sections on the basis of definitions that are two-
dimensional—they do not require the three-dimensional setting of a cone and an inter-
secting plane. Example 3 illustrates one such approach to the conic sections.

EXAMPLE 3 Let e be a given positive number (not to be confused with the natural

x

yL

F(p, 0)

P(x, y)Q(–p, y)

x = −p

FIGURE 9.1.6 The locus of
Example 3.

logarithm base; in the context of conic sections, e stands for eccentricity). Determine
the locus of a point P(x, y) if its distance from the fixed point F(p, 0) is e times its
distance from the vertical line L whose equation is x = −p (Fig. 9.1.6).

Solution Let PQ be the perpendicular from P to the line L . Then the condition

|PF| = e|PQ|
takes the analytic form √

(x − p)2 + y2 = e|x − (−p)|.
That is,

(x2 − 2px + p2) + y2 = e2(x2 + 2px + p2),

so

x2(1 − e2) − 2p(1 + e2)x + y2 = −p2(1 − e2). (11)
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• Case 1: e = 1. Then Eq. (11) reduces to

y2 = 4px . (12)

We see upon comparison with Eq. (8) that the locus of P is a parabola if e = 1.
• Case 2: e < 1. Dividing both sides of Eq. (11) by 1 − e2, we get

x2 − 2p · 1 + e2

1 − e2
x + y2

1 − e2
= −p2.

We now complete the square in x . The result is(
x − p · 1 + e2

1 − e2

)2

+ y2

1 − e2
= p2

[(
1 + e2

1 − e2

)2

− 1

]
= a2.

This equation has the form

(x − h)2

a2
+ y2

b2
= 1, (13)

where

h = +p · 1 + e2

1 − e2
and b2 = a2(1 − e2). (14)

When we compare Eqs. (9) and (13), we see that if e < 1, then the locus of P is
an ellipse with (0, 0) translated to (h, 0), as illustrated in Fig. 9.1.7.

x = −p

y

x(h, 0)

FIGURE 9.1.7 An ellipse: e < 1
(Example 3).

• Case 3: e > 1. In this case, Eq. (11) reduces to a translated version of Eq. (10),
so the locus of P is a hyperbola. The details, which are similar to those in Case 2,
are left for Problem 35.

Thus the locus in Example 3 is a parabola if e = 1, an ellipse if e < 1, and a
hyperbola if e > 1. The number e is called the eccentricity of the conic section. The
point F(p, 0) is commonly called its focus in the parabolic case. Figure 9.1.8 shows
the parabola of Case 1; Fig. 9.1.9 illustrates the hyperbola of Case 3. ◗

x = —p

xF(p, 0)

y

FIGURE 9.1.8 A parabola: e = 1
(Example 3).

y

xF(p, 0)

x = —p

FIGURE 9.1.9 A hyperbola: e > 1
(Example 3).

If we begin with Eqs. (8) through (10), we can derive the general characteristics
of the three conic sections shown in Figs. 9.1.7 through 9.1.9. For example, in the case
of the parabola of Eq. (8) with k > 0, the curve passes through the origin, x � 0 at
each of the curve’s points, y → ±∞ as x → ∞, and the graph is symmetric around
the x-axis (because the curve is unchanged when y is replaced with −y).

In the case of the ellipse of Eq. (9), the graph must be symmetric around both
coordinate axes. At each point (x, y) of the graph, we must have |x | � a and |y| � b.
The graph intersects the axes at the four points (±a, 0) and (0, ±b).

Finally, the hyperbola of Eq. (10)—or its alternative form

y = ±b

a

√
x2 − a2
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664 CHAPTER 9 Polar Coordinates and Parametric Curves

—is symmetric around both coordinate axes. Its meets the x-axis at the two points
(±a, 0) and has one branch consisting of points with x � a and has another branch
where x � −a. Also, |y| → ∞ as |x | → ∞.

9.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Descartes and Fermat initiated analytic geometry in 1937.
2. The set of all points in the plane equally distant from the points (1, 1) and (5, 3)

is the perpendicular bisector of the line segment joining (1, 1) with (5, 3).
3. If the equation of a plane curve is unchanged when x is replaced with −x , then

the curve is symmetric around the x-axis.
4. Given the ponts A(7, 1) and B(1, 4) in the plane, the locus of points P(x, y) such

that |AP| = 2 · |BP| is a straight line passing between A and B.
5. A conic section is formed by intersecting two cones.
6. With appropriate choice of the x- and y-axes, every plane hyperbola has an equa-

tion of the form
x2

a2
+ y2

b2
= 1

where a and b are constants.
7. An ellipse is a conic section with eccentricity e = 1.
8. Every nondegenerate conic section is a parabola or a hyperbola.
9. A circle is a conic section.

10. If a conic section has eccentricity e = 1, then it is a circle.

9.1 CONCEPTS: QUESTIONS AND DISCUSSION
You may want to use the implicit plotting facility of a computer algebra system to
investigate the following questions.

1. The graph of the equation x2 − y2 = 0 consists of the two lines x − y = 0 and
x + y = 0 through the origin. What is the graph of the equation xn − yn = 0?
Does it depend on whether the positive integer n is even or odd? Explain your
answers.

2. How do the graphs of the equations x3 + y3 = 1 and x4 + y4 = 1 differ from
the unit circle x2 + y2 = 1 (and from each other)? How does the graph of the
equation xn + yn = 1 change as the positive integer n gets larger and larger?
Discuss the possibility of a “limiting set” as n → +∞. Do these questions
depend on whether n is even or odd?

3. The graph of the equation x2 − y2 = 1 is a hyperbola. Discuss (as in Question 2)
the graph of the equation xn − yn = 1.

9.1 PROBLEMS

In Problems 1 through 6, write an equation of the specified
straight line.

1. The line through the point (1, −2) that is parallel to the line
with equation x + 2y = 5

2. The line through the point (−3, 2) that is perpendicular to
the line with equation 3x − 4y = 7

3. The line that is tangent to the circle x2 + y2 = 25 at the point
(3, −4)

4. The line that is tangent to the curve y2 = x + 3 at the point
(6, −3)

5. The line that is perpendicular to the curve x2 + 2y2 = 6 at
the point (2, −1)

6. The perpendicular bisector of the line segment with end-
points (−3, 2) and (5, −4)

In Problems 7 through 16, find the center and radius of the circle
described in the given equation.

7. x2 + 2x + y2 = 4 8. x2 + y2 − 4y = 5

9. x2 + y2 − 4x + 6y = 3 10. x2 + y2 + 8x − 6y = 0

11. 4x2 + 4y2 − 4x = 3 12. 4x2 + 4y2 + 12y = 7
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13. 2x2 + 2y2 − 2x + 6y = 13

14. 9x2 + 9y2 − 12x = 5

15. 9x2 + 9y2 + 6x − 24y = 19

16. 36x2 + 36y2 − 48x − 108y = 47

In Problems 17 through 20, show that the graph of the given
equation consists either of a single point or of no points.

17. x2 + y2 − 6x − 4y + 13 = 0

18. 2x2 + 2y2 + 6x + 2y + 5 = 0

19. x2 + y2 − 6x − 10y + 84 = 0

20. 9x2 + 9y2 − 6x − 6y + 11 = 0

In Problems 21 through 24, write the equation of the specified
circle.

21. The circle with center (−1, −2) that passes through the point
(2, 3)

22. The circle with center (2, −2) that is tangent to the line
y = x + 4

23. The circle with center (6, 6) that is tangent to the line y =
2x − 4

24. The circle that passes through the points (4, 6), (−2, −2),
and (5, −1)

In Problems 25 through 30, derive the equation of the set of all
points P(x, y) that satisfy the given condition. Then sketch the
graph of the equation.

25. The point P(x, y) is equally distant from the two points
(3, 2) and (7, 4).

26. The distance from P to the point (−2, 1) is half the distance
from P to the point (4, −2).

27. The point P is three times as far from the point (−3, 2) as it
is from the point (5, 10).

28. The distance from P to the line x = −3 is equal to its dis-
tance from the point (3, 0).

29. The sum of the distances from P to the points (4, 0) and
(−4, 0) is 10.

30. The sum of the distances from P to the points (0, 3) and
(0, −3) is 10.

31. Find all the lines through the point (2, 1) that are tangent to
the parabola y = x2.

32. Find all lines through the point (−1, 2) that are normal to the
parabola y = x2.

33. Find all lines that are normal to the curve xy = 4 and
simultaneously are parallel to the line y = 4x .

34. Find all lines that are tangent to the curve y = x3 and are
also parallel to the line 3x − y = 5.

35. Suppose that e > 1. Show that Eq. (11) of this section can
be written in the form

(x − h)2

a2
− y2

b2
= 1,

thus showing that its graph is a hyperbola. Find a, b, and h
in terms of p and e.

9.2 POLAR COORDINATES

A familiar way to locate a point in the coordinate plane is by specifying its rectan-
gular coordinates (x, y)—that is, by giving its abscissa x and ordinate y relative to
given perpendicular axes. In some problems it is more convenient to locate a point
by means of its polar coordinates. The polar coordinates give its position relative to
a fixed reference point O (the pole) and to a given ray (the polar axis) beginning
at O .

For convenience, we begin with a given xy-coordinate system and then take the
origin as the pole and the nonnegative x-axis as the polar axis. Given the pole O and
the polar axis, the point P with polar coordinates r and θ , written as the ordered pair
(r, θ), is located as follows. First find the terminal side of the angle θ , given in radians,
where θ is measured counterclockwise (if θ > 0) from the x-axis (the polar axis) as its
initial side. If r � 0, then P is on the terminal side of this angle at the distance r from
the origin. If r < 0, then P lies on the ray opposite the terminal side at the distance
|r | = −r > 0 from the pole (Fig. 9.2.1). The radial coordinate r can be described as
the directed distance of P from the pole along the terminal side of the angle θ . Thus,

y

x

r > 0

r

θ

P y

x

r < 0|r |

θ

P

FIGURE 9.2.1 The difference between the two cases r > 0
and r < 0.
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666 CHAPTER 9 Polar Coordinates and Parametric Curves

if r is positive, the point P lies in the same quadrant as θ , whereas if r is negative,
then P lies in the opposite quadrant. If r = 0, the angle θ does not matter; the polar
coordinates (0, θ) represent the origin whatever the angular coordinate θ might be.
The origin, or pole, is the only point for which r = 0.

EXAMPLE 1 Polar coordinates differ from rectangular coordinates in that any point

y

x

r

θ

θ π+

P

FIGURE 9.2.2 The polar
coordinates (r, θ) and (−r, θ + π)

represent the same point P
(Example 1).

has more than one representation in polar coordinates. For example, the polar coordi-
nates (r, θ) and (−r, θ + π) represent the same point P , as shown in Fig. 9.2.2. More
generally, this point P has the polar coordinates (r, θ + nπ) for any even integer n and
the coordinates (−r, θ + nπ) for any odd integer n. Thus the polar-coordinate pairs(

2,
π

3

)
,

(
− 2,

4π

3

)
,

(
2,

7π

3

)
, and

(
− 2, −2π

3

)
all represent the same point P in Fig. 9.2.3. (The rectangular coordinates of P
are (1,

√
3 ).) ◗

x

P

P'

y

1

2

3
π

3
4π

3

FIGURE 9.2.3 The point P of
Example 1 can be described in many
different ways using polar
coordinates.

To convert polar coordinates into rectangular coordinates, we use the basic rela-
tions

x = r cos θ, y = r sin θ (1)

that we read from the right triangle in Fig. 9.2.4. Converting in the opposite direction,
we have

r2 = x2 + y2, tan θ = y

x
if x �= 0. (2)

Some care is required in making the correct choice of θ in the formula tan θ = y/x . If
x > 0, then (x, y) lies in either the first or fourth quadrant, so −π/2 < θ < π/2, which
is the range of the inverse tangent function. Hence if x > 0, then θ = arctan(y/x). But
if x < 0, then (x, y) lies in the second or third quadrant. In this case a proper choice
for the angle is θ = π + arctan(y/x). In any event, the signs of x and y in Eqs. (1)
with r > 0 indicate the quadrant in which θ lies.y

x

r y

xPole Polar axis

θ

FIGURE 9.2.4 Read Eqs. (1) and
(2)—conversions between polar and
rectangular coordinates—from this
figure.

Polar-Coordinate Equations
Some curves have simpler equations in polar coordinates than in rectangular coordi-
nates; this is an important reason for the usefulness of polar coordinates. The graph
of an equation in the polar-coordinate variables r and θ is the set of all those points P
such that P has some pair of polar coordinates (r, θ) that satisfy the given equation.
The graph of a polar equation r = f (θ) can be constructed by computing a table of val-
ues of r against θ and then plotting the corresponding points (r, θ) on polar-coordinate
graph paper.

EXAMPLE 2 One reason for the importance of polar coordinates is that many real-
world problems involve circles, and the polar-coordinate equation (or polar equation)
of the circle with center (0, 0) and radius a > 0 (Fig. 9.2.5) is very simple:

r = a. (3)

Note that if we begin with the rectangular-coordinates equation x2+y2 = a2 of this cir-
cle and transform it using the first relation in (2), we get the polar-coordinate equation
r2 = a2. Then Eq. (3) results upon taking positive square roots. ◗

EXAMPLE 3 Construct the polar-coordinate graph of the equation r = 2 sin θ .

Solution Figure 9.2.6 shows a table of values of r as a function of θ . The corre-
sponding points (r, θ) are plotted in Fig. 9.2.7, using the rays at multiples of π/6 and
the circles (centered at the pole) of radii 1 and 2 to locate these points. A visual inspec-
tion of the smooth curve connecting these points suggests that it is a circle of radius 1.
Let us assume for the moment that this is so. Note then that the point P(r, θ) moves

x

a

y

FIGURE 9.2.5 The circle r = a
centered at the origin (Example 2).
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θ r

0 0.00
π/6 1.00
π/3 1.73
π/2 2.00

2π/3 1.73
5π/6 1.00

π 0.00
7π/6 −1.00
4π/3 −1.73
3π/2 −2.00
5π/3 −1.73
11π/6 −1.00

2π 0.00
(data rounded)

FIGURE 9.2.6 Values of
r = 2 sin θ (Example 3).

y

= 2   /3πθ

= 5   /6πθ

πθ =

= 7   /6πθ

= 4   /3πθ

= 3   /2πθ

=

=    /2πθ
=    /3πθ

=    /6πθ

= 11   /6πθ

= 5   /3πθ

= 2πθ

r = 2 sinθ

r = 2

x
θ 0

r = 1

FIGURE 9.2.7 The graph of the polar equation
r = 2 sin θ (Example 3).

once around this circle counterclockwise as θ increases from 0 to π and then moves
around this circle a second time as θ increases from π to 2π . This is because the neg-
ative values of r for θ between π and 2π give—in this example—the same geometric
points as do the positive values of r for θ between 0 and π . (Why?) ◗

The verification that the graph of r = 2 sin θ is the indicated circle illustrates
the general procedure for transferring back and forth between polar and rectangular
coordinates, using the relations in (1) and (2).

EXAMPLE 4 To transform the equation r = 2 sin θ of Example 3 into rectangular
coordinates, we first multiply both sides by r to get

r2 = 2r sin θ.

Equations (1) and (2) now give

x2 + y2 = 2y.

Finally, after we complete the square in y, we have

x2 + (y − 1)2 = 1,

the rectangular-coordinate equation (or rectangular equation) of a circle whose center

y

x(1, 0)

(0, 1)

r = 2 sin θ

r = 2 cos θ

FIGURE 9.2.8 The graphs of the
circles whose equations appear in
Eqs. (4) with a = 1.

is (0, 1) and whose radius is 1. ◗

More generally, the graphs of the equations

r = 2a sin θ and r = 2a cos θ (4)

are circles of radius a centered, respectively, at the points (0, a) and (a, 0). This is
illustrated (with a = 1) in Fig. 9.2.8.

By substituting the equations given in (1), we can transform the rectangular equa-
tion ax + by = c of a straight line into

ar cos θ + br sin θ = c.

Let us take a = 1 and b = 0. Then we see that the polar equation of the vertical line
x = c is r = c sec θ , as we can deduce directly from Fig. 9.2.9.

y

x

r

c

x = c

θ

FIGURE 9.2.9 Finding the polar
equation of the vertical line x = c.
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668 CHAPTER 9 Polar Coordinates and Parametric Curves

EXAMPLE 5 Sketch the graph of the polar equation r = 2 + 2 sin θ .

Solution If we scan the second column of the table in Fig. 9.2.6, mentally adding 2
to each entry for r , we see that

• r increases from 2 to 4 as θ increases from 0 to π/2;
• r decreases from 4 to 2 as θ increases from π/2 to π ;
• r decreases from 2 to 0 as θ increases from π to 3π/2;
• r increases from 0 to 2 as θ increases from 3π/2 to 2π .

This information tells us that the graph resembles the curve shown in Fig. 9.2.10.
This heart-shaped graph is called a cardioid. The graphs of the equations

r = a(1 ± sin θ) and r = a(1 ± cos θ)

are all cardioids, differing only in size (determined by a), axis of symmetry (horizontal
or vertical), and the direction in which the cusp at the pole points. ◗

θy

x

r = 2 + 2 sin

FIGURE 9.2.10 A cardioid
(Example 5).

EXAMPLE 6 Sketch the graph of the equation r = 2 cos 2θ .

Solution Rather than constructing a table of values of r as a function of θ and then

θ

r

1 4

2 3

5 8

6 7

2
π

2
3ππ 2π

FIGURE 9.2.11 The rectangular-
coordinate graph of r = 2 cos 2θ as a
function of θ . Numbered portions of
the graph correspond to numbered
portions of the polar-coordinate
graph in Fig. 9.2.12.

plotting individual points, let us begin with a rectangular-coordinate graph of r as a
function of θ . In Fig. 9.2.11, we see that r = 0 if θ is an odd integral multiple of π/4,
and that r is alternately positive and negative on successive intervals of length π/2
from one odd integral multiple of π/4 to the next.

Now let’s think about how r changes as θ increases, beginning at θ = 0. As
θ increases from 0 to π/4, r decreases in value from 2 to 0, and so we draw the
first portion (labeled “1”) of the polar curve in Fig. 9.2.12. As θ increases from π/4
to 3π/4, r first decreases from 0 to −2 and then increases from −2 to 0. Because
r is now negative, we draw the second and third portions (labeled “2” and “3”) of
the polar curve in the third and fourth quadrants (rather than in the first and second
quadrants) in Fig. 9.2.12. Continuing in this fashion, we draw the fourth through
eighth portions of the polar curve, with those portions where r is negative in the
quadrants opposite those in which θ lies. The arrows on the resulting polar curve
in Fig. 9.2.12 indicate the direction of motion of the point P(r, θ) along the curve as
θ increases. The whole graph consists of four loops, each of which begins and ends at
the pole. ◗

The curve in Example 6 is called a four-leaved rose. The equations r = a cos nθ

x

y

4
π

4
3π

4
5π

4
7π

r = 2 cos 2θ

1

8

4

5

2 3

7 6

FIGURE 9.2.12 A four-leaved rose
(Example 6).

and r = a sin nθ represent “roses” with 2n “leaves,” or loops, if n is even and n � 2
but with n loops if n is odd and n � 3.

The four-leaved rose exhibits several types of symmetry. The following are some
sufficient conditions for symmetry in polar coordinates:

• For symmetry around the x-axis: The equation is unchanged when θ is replaced
with −θ .

• For symmetry around the y-axis: The equation is unchanged when θ is replaced
with π − θ .

• For symmetry with respect to the origin: The equation is unchanged when r is
replaced with −r .

Because cos 2θ = cos(−2θ) = cos 2(π − θ), the equation r = 2 cos 2θ of the
four-leaved rose satisfies the first two symmetry conditions, and therefore its graph is
symmetric around both the x-axis and the y-axis. Thus it is also symmetric around
the origin. Nevertheless, this equation does not satisfy the third condition, the one for
symmetry around the origin. This illustrates that although the symmetry conditions
given are sufficient for the symmetries described, they are not necessary conditions.
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EXAMPLE 7 Figure 9.2.13 shows the lemniscate with equation

r2 = −4 sin 2θ.

To see why it has loops only in the second and fourth quadrants, we examine a table of
signs of values of −4 sin 2θ .

θ 2θ −4 sin 2θ

0 < θ < 1
2 π

1
2 π < θ < π

π < θ < 3
2 π

3
2 π < θ < 2π

0 < 2θ < π

π < 2θ < 2π

2π < 2θ < 3π

3π < 2θ < 4π

Negative

Positive

Negative

Positive

When θ lies in the first or the third quadrant, the quantity −4 sin 2θ is negative, so the
equation r2 = −4 sin 2θ cannot be satisfied for any real values of r . ◗

Polar axis

FIGURE 9.2.13 The lemniscate
r2 = −4 sin 2θ (Example 7).

Example 6 illustrates a peculiarity of graphs of polar equations, caused by the
fact that a single point has multiple representations in polar coordinates. The point with
polar coordinates (2, π/2) clearly lies on the four-leaved rose, but these coordinates do
not satisfy the equation r = 2 cos 2θ . This means that a point may have one pair of
polar coordinates that satisfy a given equation and others that do not. Hence we must
be careful to understand this: The graph of a polar equation consists of all those points
with at least one polar-coordinate representation that satisfies the given equation.

Another result of the multiplicity of polar coordinates is that the simultaneous
solution of two polar equations does not always give all the points of intersection of
their graphs. For instance, consider the circles r = 2 sin θ and r = 2 cos θ shown in
Fig. 9.2.8. The origin is clearly a point of intersection of these two circles. Its polar
representation (0, π) satisfies the equation r = 2 sin θ , and its representation (0, π/2)

satisfies the other equation, r = 2 cos θ . But the origin has no single polar repre-
sentation that satisfies both equations simultaneously! If we think of θ as increasing
uniformly with time, then the corresponding moving points on the two circles pass
through the origin at different times. Hence the origin cannot be discovered as a point
of intersection of the two circles merely by solving their equations r = 2 sin θ and
r = 2 cos θ simultaneously in a straightforward manner. But one fail-safe way to find
all points of intersection of two polar-coordinate curves is to graph both curves.

EXAMPLE 8 Find all points of intersection of the graphs of the equations r =
1 + sin θ and r2 = 4 sin θ .

Solution The graph of r = 1 + sin θ is a scaled-down version of the cardioid of
Example 5. In Problem 52 we ask you to show that the graph of r2 = 4 sin θ is the
figure-eight curve shown with the cardioid in Fig. 9.2.14. The figure shows four points
of intersection: A , B, C , and O . Can we find all four using algebra?

Given the two equations, we begin by eliminating r . Because

(1 + sin θ)2 = r2 = 4 sin θ,

it follows that

sin2 θ − 2 sin θ + 1 = 0;
(sin θ − 1)2 = 0;

and thus that sin θ = 1. So θ must be an angle of the form 1
2π + 2nπ where n is an

integer. All points on the cardioid and all points on the figure-eight curve are produced
by letting θ range from 0 to 2π , so θ = π/2 will produce all the solutions that we can
obtain by simple algebraic elimination. The only such point is A(2, π/2), and the other
three points of intersection are detected only when the two equations are graphed.

y

x

A

B C
O

FIGURE 9.2.14 The cardioid
r = 1 + sin θ and the figure eight
r2 = 4 sin θ meet in four points
(Example 8).

◗
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Calculator/Computer-Generated Polar Curves

It might take you quite a while to construct by hand the “butterfly curve” shown iny

x3−3

3

−3

FIGURE 9.2.15 r = e cos θ −
2 cos 4θ + sin3(θ/4).

Fig. 9.2.15. But most graphing calculators and computer algebra systems have facil-
ities for plotting polar curves. For instance, with a TI calculator set in “polar graph
mode,” one need only enter and graph the equation

r = e∧(cos(θ)) - 2*cos(4θ) + sin(θ/4)∧3

on the interval 0 � θ � 8π . With Maple and Mathematica the graphics package
commands

polarplot(exp(cos(t)) - 2*cos(4*t) + sin(t/4)∧3, t=0..8*Pi);

and

PolarPlot[ Exp[Cos[t]] - 2*Cos[4*t] + Sin[t/4]∧3,{t, 0, 8*Pi}];

(respectively) give the same result (with t in place of θ ).
Because of the presence of the term sin3(θ/4), the more usual interval 0 � θ �

2π gives only a part of the curve shown in Fig. 9.2.15. (Try it to see for yourself.) But

sin3

(
θ + 8π

4

)
= sin3

(
θ

4
+ 2π

)
= sin3

(
θ

4

)
,

so values of sin3(θ/4) repeat themselves when θ exceeds 8π . Therefore the inter-
val 0 � θ � 8π suffices to give the entire butterfly curve. You might try plotting a
butterfly curve with the term sin3(θ/4) replaced with sin5(θ/12)—as originally rec-
ommended by Temple H. Fay in his article “The Butterfly Curve” (American Mathe-
matical Monthly, May 1989, p. 442). What range of values of θ will now be required
to obtain the whole butterfly?

9.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. In polar coordinates, the radial coordinate of the point P of the plane is the di-
rected distance of P from the pole.

2. The polar coordinates
(

2,
π

3

)
and

(
−2,

4π

3

)
represent the same point P of the

plane.
3. To convert polar coordinates into rectangular coordinates, use the equations

x = r cos θ and y = r sin θ .
4. The graph of the polar-coordinate equation r = 2 sin θ is a circle.
5. The graph of the polar-coordinate equation r2 = −4 sin 2θ is a four-leaved rose.
6. If a polar equation is unchanged when θ is replaced with −θ , then its graph is

symmetric around the x-axis.
7. The graph of the polar equation r = 1 + sin θ is a cardioid.
8. The graph of the polar equation r2 = −4 sin 2θ has no points in the first quadrant

other than the origin.
9. The graphs of the polar equations r = 1 + sin θ and r2 = 4 sin θ intersect only

when sin θ = 1.
10. The graphs of the polar equations r = 1 + sin θ and r2 = 4 sin θ intersect at

exactly four points.
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9.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Figures 9.2.16 through 9.2.18 illustrate the polar curve r = a + b cos θ for var-

ious values of a and b. What determines whether the curve exhibits a cusp
(Fig. 9.2.16), a loop (Fig. 9.2.17), or neither (Fig. 9.2.18)? Does your answer
apply also to polar curves of the form r = a + b sin θ? Given a and b, what is
the difference between the curves r = a + b cos θ and r = a + b sin θ?

y

x5 10

5

−5

FIGURE 9.2.16 r = 4 + 4 cos θ.

y

x5 10

5

−5

FIGURE 9.2.17 r = 4 + 7 cos θ.

y

x5 10

5

−5

FIGURE 9.2.18 r = 4 + 3 cos θ.

2. Figures 9.2.19 and 9.2.20 show the graphs of the equations r = cos 3θ and
r = sin 4θ . Given a positive integer n, what is the difference between the “rose
graphs” r = cos nθ and r = sin nθ? Explain precisely how the number of
leaves in the complete graph depends on n. What determines whether 0 � θ � π

or 0 � θ � 2π gives all the leaves?

y

x1−1

1

−1

FIGURE 9.2.19 r = cos 3θ.

y

x1−1

1

−1

FIGURE 9.2.20 r = sin 4θ.

9.2 PROBLEMS

1. Plot the points with the given polar coordinates, and then
find the rectangular coordinates of each.

(a) (1, π/4) (b) (−2, 2π/3) (c) (1, −π/3)

(d) (3, 3π/2) (e) (2, −π/4) (f) (−2, −7π/6)

(g) (2, 5π/6)

2. Find two polar-coordinate representations, one with r > 0
and the other with r < 0, for the points with the given rect-
angular coordinates.

(a) (−1, −1) (b)
(√

3, −1
)

(c) (2, 2)

(d)
( − 1,

√
3

)
(e)

(√
2, −√

2
)

(f)
( − 3,

√
3

)
In Problems 3 through 10, express the given rectangular equation
in polar form.

3. x = 4 4. y = 6

5. x = 3y 6. x2 + y2 = 25

7. xy = 1 8. x2 − y2 = 1

9. y = x2 10. x + y = 4

In Problems 11 through 18, express the given polar equation in
rectangular form.

11. r = 3 12. θ = 3π/4

13. r = −5 cos θ 14. r = sin 2θ

15. r = 1 − cos 2θ 16. r = 2 + sin θ

17. r = 3 sec θ 18. r 2 = cos 2θ
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For the curves described in Problems 19 through 28, write equa-
tions in both rectangular and polar form.

19. The vertical line through (2, 0)

20. The horizontal line through (1, 3)

21. The line with slope −1 through (2, −1)

22. The line with slope 1 through (4, 2)

23. The line through the points (1, 3) and (3, 5)

24. The circle with center (3, 0) that passes through the origin

25. The circle with center (0, −4) that passes through the origin

26. The circle with center (3, 4) and radius 5

27. The circle with center (1, 1) that passes through the origin

28. The circle with center (5, −2) that passes through the point
(1, 1)

In Problems 29 through 32, transform the given polar-coordinate
equation into a rectangular-coordinate equation, then match the
equation with its graph among those in Figs. 9.2.21 through
9.2.24.

29. r = −4 cos θ 30. r = 5 cos θ + 5 sin θ

31. r = −4 cos θ + 3 sin θ 32. r = 8 cos θ − 15 sin θ

y

x5

5

FIGURE 9.2.21

y

x10

−10

FIGURE 9.2.22

y

x−4 −2

−2

2

FIGURE 9.2.23

y

x−4 −2

2

4

FIGURE 9.2.24

The graph of a polar equation of the form r = a + b cos θ

(or r = a + b sin θ ) is called a limaçon (from the French
word for snail). In Problems 33 through 36, match the given
polar-coordinate equation with its graph among the limaçons in
Figs. 9.2.25 through 9.2.28.

33. r = 8 + 6 cos θ 34. r = 7 + 7 cos θ

35. r = 5 + 9 cos θ 36. r = 3 + 11 cos θ

37. Show that the graph of the polar equation r = a cos θ +
b sin θ is a circle if a2 + b2 �= 0. Express the center (h, k)

and radius r of this circle in terms of a and b.

38. Show that if 0 < a < b, then the limaçon with polar equa-
tion r = a + b cos θ has an inner loop (as in Figs. 9.2.25 and
9.2.27). In this case, find (in terms of a and b) the range of
values of θ that correspond to points of the inner loop.

y

x5 10

5

−5

FIGURE 9.2.25
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y

x5 10

5

−5

FIGURE 9.2.26

y

x5 10

5

−5

FIGURE 9.2.27

y

x5 10

5

−5

FIGURE 9.2.28

Sketch the graphs of the polar equations in Problems 39 through
52. Indicate any symmetries around either coordinate axis or the
origin.

39. r = 2 cos θ (circle)

40. r = 2 sin θ + 2 cos θ (circle)

41. r = 1 + cos θ (cardioid)

42. r = 1 − sin θ (cardioid)

43. r = 2 + 4 sin θ (limaçon)

44. r = 4 + 2 cos θ (limaçon)

45. r 2 = 4 sin 2θ (lemniscate)

46. r 2 = 4 cos 2θ (lemniscate)

47. r = 2 sin 2θ (four-leaved rose)

48. r = 3 sin 3θ (three-leaved rose)

49. r = 3 cos 3θ (three-leaved rose)

50. r = 3θ (spiral of Archimedes)

51. r = 2 sin 5θ (five-leaved rose)

52. r 2 = 4 sin θ (figure eight)

In Problems 53 through 58, find all points of intersection of the
curves with the given polar equations.

53. r = 1, r = cos θ

54. r = sin θ , r 2 = 3 cos2 θ

55. r = sin θ , r = cos 2θ

56. r = 1 + cos θ , r = 1 − sin θ

57. r = 1 − cos θ , r 2 = 4 cos θ

58. r 2 = 4 sin θ , r 2 = 4 cos θ

59. (a) The straight line L passes through the point with polar
coordinates (p, α) and is perpendicular to the line segment
joining the pole and the point (p, α). Write the polar-
coordinate equation of L. (b) Show that the rectangular-
coordinate equation of L is

x cos α + y sin α = p.

60. Find a rectangular-coordinate equation of the cardioid
with polar equation r = 1 − cos θ .

61. Use polar coordinates to identify the graph of the
rectangular-coordinate equation

a2(x2 + y2) = (x2 + y2 − by)2.

62. Plot the polar equations

r = 1 + cos θ and r = −1 + cos θ

on the same coordinate plane. Comment on the results.

63. Figures 9.2.29 and 9.2.30 show the graphs of the equations
r = cos(5θ/3) and r = cos(5θ/2). Why does one have five
(overlapping) loops while the other has ten loops? In each
case, what range of values of θ is required to obtain all the
loops? In the more general case r = (cos pθ/q) where p and
q are positive integers, is it p or q (or both) that determine
the number of loops and the range of values of θ required to
show all the loops in the complete graph?

y

x1−1

1

−1

FIGURE 9.2.29 r = cos

(
5θ

3

)
.

64. Figures 9.2.31 and 9.2.32 show the graphs of the equations
r = 1 + 4 sin 3θ and r = 1 + 4 cos 4θ . What determines
whether a polar curve of the form r = a + b sin(nθ)—
with a and b positive constants and n a positive integer—has
both larger and smaller loops? What determines whether the
smaller loops are within or outside of the larger ones?
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y

x1−1

1

−1

FIGURE 9.2.30 r = cos

(
5θ

2

)
.

y

x4−4

4

−4

FIGURE 9.2.31 r = 1 + 4 sin 3θ.

y

x4−4

4

−4

FIGURE 9.2.32 r = 1 + 4 cos 4θ.

9.3 AREA COMPUTATIONS IN POLAR COORDINATES

The graph of the polar-coordinate equation r = f (θ) may bound an area, as does they

x2

R

4

2

−2

FIGURE 9.3.1 What is the area of
the region R bounded by the
cardioid r = 2(1 + cos θ)?

cardioid r = 2(1 + cos θ)—see Fig. 9.3.1. To calculate the area of this region, we
may find it convenient to work directly with polar coordinates rather than to change to
rectangular coordinates.

To see how to set up an area integral using polar coordinates, we consider the
region R of Fig. 9.3.2. This region is bounded by the two radial lines θ = α and
θ = β and by the curve r = f (θ), α � θ � β. To approximate the area A of R, we
begin with a partition

α = θ0 < θ1 < θ2 < · · · < θn = β

of the interval [α, β] into n subintervals, all with the same length �θ = (β − α)/n.
We select a point θ�

i in the i th subinterval [θi−1, θi ] for i = 1, 2, . . . , n.

θ

Polar axis

R

Δ AiArea 

Δθ

βθ  =

θ  = θi

θ θi –1=

r = f (  )

θ α=

)= f(ir = r θi

θi
★

★ ★

FIGURE 9.3.2 We obtain the area formula
from Riemann sums.

Let �A i denote the area of the sector bounded by the lines θ = θi−1 and θ = θi

and by the curve r = f (θ). We see from Fig. 9.3.2 that for small values of �θ , �A i is
approximately equal to the area of the circular sector that has radius r �

i = f (θ�
i ) and

is bounded by the same lines. That is,

�A i ≈ 1
2 (r �

i )2 �θ = 1
2

[
f (θ�

i )
]2

�θ.

We add the areas of these sectors for i = 1, 2, . . . , n and thereby find that

A =
n∑

i=1

�A i ≈
n∑

i=1

1
2

[
f (θ�

i )
]2

�θ.
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The right-hand sum is a Riemann sum for the integral∫ β

α

1
2 [ f (θ)]2 dθ.

Hence, if f is continuous, the value of this integral is the limit, as �θ → 0, of the
preceding sum. We therefore conclude that the area A of the region R bounded by the
lines θ = α and θ = β and the curve r = f (θ) is

A =
∫ β

α

1
2 [ f (θ)]2 dθ . (1)

The infinitesimal sector shown in Fig. 9.3.3, with radius r , central angle dθ , and area
d A = 1

2r2 dθ , serves as a useful device for remembering Eq. (1) in the abbreviated
form

A =
∫ β

α

1
2r2 dθ . (2)

Polar axis

β

θd

r = f (  )θ

α

FIGURE 9.3.3 Nonrigorous derivation of
the area formula in polar coordinates.

EXAMPLE 1 Find the area of the region bounded by the limaçon with equation r =
3 + 2 cos θ , 0 � θ � 2π (Fig. 9.3.4).

Solution We could apply Eq. (2) with α = 0 and β = 2π . Here, instead, we will

d

Polar
axis

θ

θ

r = 3 + 2 cos

FIGURE 9.3.4 The limaçon of
Example 1.

make use of symmetry. We will calculate the area of the upper half of the region and
then double the result. Note that the infinitesimal sector shown in Fig. 9.3.4 sweeps
out the upper half of the limaçon as θ increases from 0 to π (Fig. 9.3.5). Hence

 =  =
Polar
axis

r = 3 + 2 cos θ

θ π θ 0

FIGURE 9.3.5 Infinitesimal sectors
from θ = 0 to θ = π (Example 1).

A = 2
∫ β

α

1
2r2 dθ =

∫ π

0
(3 + 2 cos θ)2 dθ

=
∫ π

0
(9 + 12 cos θ + 4 cos2 θ) dθ.

Because

4 cos2 θ = 4 · 1 + cos 2θ

2
= 2 + 2 cos 2θ,

we now get

A =
∫ π

0
(11 + 12 cos θ + 2 cos 2θ) dθ

=
[
11θ + 12 sin θ + sin 2θ

]π

0
= 11π. ◗
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EXAMPLE 2 Find the area bounded by each loop of the limaçon with equation r =
π

π

Polar
axis

 = 2  / 3

 = 4  / 3

θ

θ
θ r = 1 + 2 cos

FIGURE 9.3.6 The limaçon of
Example 2.

1 + 2 cos θ (Fig. 9.3.6).

Solution The equation 1+2 cos θ = 0 has two solutions for θ in the interval [0, 2π ]:
θ = 2π/3 and θ = 4π/3. The upper half of the outer loop of the limaçon corresponds
to values of θ between 0 and 2π/3, where r is positive. Because the curve is sym-
metric around the x-axis, we can find the total area A 1 bounded by the outer loop by
integrating from 0 to 2π/3 and then doubling. Thus

A 1 = 2
∫ 2π/3

0

1
2 (1 + 2 cos θ)2 dθ =

∫ 2π/3

0
(1 + 4 cos θ + 4 cos2 θ) dθ

=
∫ 2π/3

0
(3 + 4 cos θ + 2 cos 2θ) dθ

=
[
3θ + 4 sin θ + sin 2θ

]2π/3

0
= 2π + 3

2

√
3.

The inner loop of the limaçon corresponds to values of θ between 2π/3 and
4π/3, where r is negative. Hence the area bounded by the inner loop is

A 2 =
∫ 4π/3

2π/3

1
2 (1 + 2 cos θ)2 dθ

= 1
2

[
3θ + 4 sin θ + sin 2θ

]4π/3

2π/3
= π − 3

2

√
3 .

The area of the region lying between the two loops of the limaçon is then

A = A 1 − A 2 = 2π + 3
2

√
3 − (

π − 3
2

√
3

) = π + 3
√

3 . ◗

The Area Between Two Polar Curves
Now consider two curves r = f (θ) and r = g(θ), with f (θ) � g(θ) � 0 for α � θ �

Polar axis

β

r = f (  )θ

α r = g(  )θ

FIGURE 9.3.7 The area between
the graphs of f and g.

β. Then we can find the area of the region bounded by these curves and the rays (radial
lines) θ = α and θ = β (Fig. 9.3.7) by subtracting the area bounded by the inner curve
from that bounded by the outer curve. That is, the area A between the two curves is
given by

A =
∫ β

α

1
2 [ f (θ)]2 dθ −

∫ β

α

1
2 [g(θ)]2 dθ,

so that

A = 1
2

∫ β

α

{[ f (θ)]2 − [g(θ)]2
}

dθ . (3)

With router for the outer curve and rinner for the inner curve, we get the abbreviated
formula

A = 1
2

∫ β

α

[(router)
2 − (rinner)

2] dθ (4)

for the area of the region shown in Fig. 9.3.8.

EXAMPLE 3 Find the area A of the region that lies within the limaçon r = 1 +
2 cos θ and outside the circle r = 2.

Solution The circle and limaçon are shown in Fig. 9.3.9, with the area A between
them shaded. The points of intersection of the circle and limaçon are given by

1 + 2 cos θ = 2, so cos θ = 1
2 ,

676

www.konkur.in



Area Computations in Polar Coordinates SECTION 9.3 677

Polar axis

router

α
θ

β

r inner

FIGURE 9.3.8 The radial line segment
illustrates the radii rinner and router of Eq. (4).

θ

Polar
axis

r = 1 + 2 cosr = 2

= 0θ

θ
3
π=

FIGURE 9.3.9 The region of
Example 3.

and the figure shows that we should choose the solutions θ = ±π/3. These two values
of θ are the needed limits of integration. When we use Eq. (3), we find that

A = 1
2

∫ π/3

−π/3
[(1 + 2 cos θ)2 − 22] dθ

=
∫ π/3

0
(4 cos θ + 4 cos2 θ − 3) dθ (by symmetry)

=
∫ π/3

0
(4 cos θ + 2 cos 2θ − 1) dθ

=
[
4 sin θ + sin 2θ − θ

]π/3

0
= 15

√
3 − 2π

6
. ◗

9.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The area A of the region R bounded by the lines θ = α and θ = β and the curve

r = f (θ) is A =
∫ β

α

1
2 [ f (θ)]2 dθ.

2. The area bounded by the limaçon with equation r = 3 + 2 cos θ (0 � θ � 2π ) is

A =
∫ 2π

0
(3 + 2 cos θ) dθ.

3. The area bounded by the limaçon with equation r = 3 + 2 cos θ (0 � θ � 2π ) is
11π .

4. The area bounded by the inner loop of the limaçon with polar equation r =
1 + 2 cos θ is A =

∫ 4π/2

2π/3

1
2 (1 + 2 cos θ)2 dθ.

5. The area A of the region that lies within the limaçon r = 1 + 2 cos θ and outside

the circle r = 2 is A = 1
2

∫ π/3

−π/3

[
(1 + 2 cos θ)2 − 22

]
dθ.

6. The limaçon and circle of Question 5 meet in the two points for which θ = ±π

3
.

7. Given the two curves with polar equations r = f (θ) and r = g(θ), with f (θ) �
g(θ) � 0 for α � θ � β, the area bounded by these two curves and the rays

θ = α and θ = β is A = 1
2

∫ β

α

{
[ f (θ)]2 − [g(θ)]2} dθ.
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8. The area of the region between the two loops of the limaçon with polar equation
r = 1 + 2 cos θ is π + 3

√
3.

9. The area bounded by the outer loop of the limaçon with polar equation
r = 1 + 2 cos θ is 2π + 3

2

√
3.

10. The area bounded by the inner loop of the limaçon with polar equation
r = 1 + 2 cos θ is π + 3

2

√
3.

9.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. Give an example of a plane region whose area can be calculated both by a

rectangular-coordinate integral and a polar-coordinate integral, but the latter is
easier to evaluate.

2. Give an example of a plane region whose area can be calculated both by a
rectangular-coordinate integral and a polar-coordinate integral, but the former
is easier to evaluate.

3. Give an example of an unbounded plane region such that its polar-coordinate area
integral is improper but convergent.

9.3 PROBLEMS

In Problems 1 through 6, sketch the plane region bounded by the
given polar curve r = f (θ), α � θ � β, and the rays θ = α,
θ = β.

1. r = θ , 0 � θ � π 2. r = θ , 0 � θ � 2π

3. r = 1/θ , π � θ � 3π 4. r = 1/θ , 3π � θ � 5π

5. r = e−θ , 0 � θ � π 6. r = e−θ , π/2 � θ � 3π/2

In Problems 7 through 16, find the area bounded by the given
curve.

7. r = 2 cos θ 8. r = 4 sin θ

9. r = 1 + cos θ

10. r = 2 − 2 sin θ (Fig. 9.3.10) 11. r = 2 − cos θ

12. r = 3 + 2 sin θ (Fig. 9.3.11)

−4

0

4

r = 2 − 2 sin θ

FIGURE 9.3.10 The
cardioid of Problem 10.

r = 3 + 2 sin θ
−4

0

4

FIGURE 9.3.11 The
limaçon of Problem 12.

13. r = −4 cos θ 14. r = 5(1 + sin θ)

15. r = 3 − cos θ 16. r = 2 + sin θ + cos θ

In Problems 17 through 24, find the area bounded by one loop of
the given curve.

17. r = 2 cos 2θ 18. r = 3 sin 3θ (Fig. 9.3.12)

19. r = 2 cos 4θ (Fig. 9.3.13)

20. r = sin 5θ (Fig. 9.3.14)

r = 3 sin 3θ

−3

0

3

FIGURE 9.3.12 The three-
leaved rose of Problem 18.

−2

0

2

r = 2 cos 4θ

FIGURE 9.3.13 The eight-
leaved rose of Problem 19.

21. r 2 = 4 sin 2θ 22. r 2 = 4 cos 2θ (Fig. 9.3.15)

23. r 2 = 4 sin θ 24. r = 6 cos 6θ

−0.8

0

0.8

r = sin 5θ

FIGURE 9.3.14 The five-
leaved rose of Problem 20.

−2

0

2

r2 = 4 cos 2θ

FIGURE 9.3.15 The
lemniscate of Problem 22.

In Problems 25 through 36, find the area of the region des-
cribed.

25. Inside r = 2 sin θ and outside r = 1

26. Inside both r = 4 cos θ and r = 2

27. Inside both r = cos θ and r = √
3 sin θ

28. Inside r = 2 + cos θ and outside r = 2

29. Inside r = 3 + 2 cos θ and outside r = 4

30. Inside r 2 = 2 cos 2θ and outside r = 1

31. Inside r 2 = cos 2θ and r 2 = sin 2θ (Fig. 9.3.16)

32. Inside the large loop and outside the small loop of r =
1 − 2 sin θ (Fig. 9.3.17)
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−1

0

1 r2 = sin 2θ

r2 = cos 2θ

FIGURE 9.3.16 Problem 31.

−4

−2

0

2

4

r = 1 − 2 sin θ

FIGURE 9.3.17 Problem 32.

33. Inside r = 2(1 + cos θ) and outside r = 1

34. Inside the figure-eight curve r 2 = 4 cos θ and outside r =
1 − cos θ

35. Inside both r = 2 cos θ and r = 2 sin θ

36. Inside r = 2 + 2 sin θ and outside r = 2

37. Find the area of the circle r = sin θ + cos θ by integration
in polar coordinates (Fig. 9.3.18). Check your answer by
writing the equation of the circle in rectangular coordinates,
finding its radius, and then using the familiar formula for the
area of a circle.

38. Find the area of the region that lies interior to all three circles
r = 1, r = 2 cos θ , and r = 2 sin θ .

39. The spiral of Archimedes, shown in Fig. 9.3.19, has the
simple equation r = aθ (a is a constant). Let A n de-
note the area bounded by the nth turn of the spiral, where
2(n − 1)π � θ � 2nπ , and by the portion of the polar axis
joining its endpoints. For each n � 2, let Rn = A n − A n−1

denote the area between the (n−1)th and the nth turns. Then
derive the following results of Archimedes:

(a) A 1 = 1
3 π(2πa)2; (b) A 2 = 7

12 π(4πa)2;

(c) R 2 = 6A 1; (d) R n+1 = n R2 for n � 2.

40. Two circles both have radius a, and each circle passes
through the center of the other. Find the area of the region
that lies within both circles.

41. A polar curve of the form r = ae−kθ is called a logarith-
mic spiral, and the portion given by 2(n − 1)π � θ � 2nπ is
called the nth turn of this spiral. Figure 9.3.20 shows the
first five turns of the logarithmic spiral r = e−θ/10, and the
area of the region lying between the second and third turns
is shaded. Find:

(a) The area of the region that lies between the first and sec-
ond turns.

(b) The area of the region that lies between the nth and
(n + 1)st turns for n > 1.

42. Figure 9.3.21 shows the first turn of the logarithmic spiral
r = 2e−θ/10 together with the two circles, both centered at
(0, 0), through the endpoints of the spiral. Find the areas of
the two shaded regions and verify that their sum is the area
of the annular region between the two circles.

43. The shaded region R in Fig. 9.3.22 is bounded by the car-
dioid r = 2(1 + cos θ), the spiral r = e−θ/5, 0 � θ � π , and
the spiral r = eθ/5, −π � θ � 0. Graphically estimate the
points of intersection of the cardioid and the spirals, then
approximate the area of the region R.

44. The shaded region R in Fig. 9.3.23 lies inside both the car-
dioid r = 3 + 3 sin θ and the polar curve r = 3 + cos 4θ .
Graphically estimate the points of intersection of the two
curves; then approximate the area of the region R.

−1

0

1

r = sin θ + cos θ

FIGURE 9.3.18 The circle
r = sin θ + cos θ (Problem 37).

Polar axis

r = aθ

R4 R3 R2 A1

FIGURE 9.3.19 The spiral of
Archimedes (Problem 39).

y

x10.5−1 −0.5

−1

−0.5

1

0.5

FIGURE 9.3.20 The logarithmic
spiral of Problem 41.

y

x21

R1

R2

−2

−2

2

−1

−1

1

FIGURE 9.3.21 The two regions
of Problem 42.

R

0 2 4
x

2

−2

0y

r = 2(1 + cos    )

r = e −   /5

θ

θ

r = e   /5θ

FIGURE 9.3.22 The region of
Problem 43.

x

Ry

−6 60−4 2−2 4
−6

−4

−2

0

2

4

6

8

FIGURE 9.3.23 The region of
Problem 44.
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9.4 PARAMETRIC CURVES

Until now we have encountered curves mainly as graphs of equations. An equation
of the form y = f (x) or of the form x = g(y) determines a curve by giving one of
the coordinate variables explicitly as a function of the other. An equation of the form
F(x, y) = 0 may also determine a curve, but then each variable is given implicitly as
a function of the other.

Another important type of curve is the trajectory of a point moving in the coordi-
nate plane. The motion of the point can be described by giving its position (x(t), y(t))
at time t . Such a description involves expressing both the rectangular-coordinate vari-
ables x and y as functions of a third variable, or parameter, t rather than as functions
of one another. In this context a parameter is an independent variable (not a con-
stant, as is sometimes meant in popular usage). This approach motivates the following
definition.

DEFINITION Parametric Curve
A parametric curve C in the plane is a pair of functions

x = f (t), y = g(t), (1)

that give x and y as continuous functions of the real number t (the parameter) in
some interval I .

Each value of the parameter t determines a point ( f (t), g(t)), and the set of all
such points is the graph of the curve C . Often the distinction between the curve—the
pair of coordinate functions f and g—and the graph is not made. Therefore, we may
refer interchangeably to the curve and to its graph when the context makes clear the
intended meaning. The two equations in (1) are called the parametric equations of
the curve.

The graph of a parametric curve may be sketched by plotting enough points to
indicate its likely shape. In some cases we can eliminate the parameter t and thus
obtain an equation in x and y. This equation may give us more information about the
shape of the curve.

EXAMPLE 1 Determine the graph of the curve

x = cos t, y = sin t, 0 � t � 2π. (2)

Solution Figure 9.4.1 shows a table of values of x and y that correspond to multiples

t x y

0 1 0

π/4 1/
√

2 1/
√

2

π/2 0 1

3π/4 −1/
√

2 1/
√

2

π −1 0

5π/4 −1/
√

2 −1/
√

2

3π/2 0 −1

7π/4 1/
√

2 −1/
√

2

2π 1 0

FIGURE 9.4.1 A table of values for
Example 1.

of π/4 for the parameter t . These values give the eight points highlighted in Fig. 9.4.2,
all of which lie on the unit circle. This suggests that the graph is, in fact, the unit circle.
To verify this, we note that the fundamental identity of trigonometry gives

x2 + y2 = cos2 t + sin2 t ≡ 1,

so every point of the graph lies on the circle with equation x2 + y2 = 1. Conversely,
the point of the circle with angular (polar) coordinate t is the point (cos t, sin t) of the
graph. Thus the graph is precisely the unit circle. ◗

What is lost in the process in Example 1 is the information about how the graph is
produced as t goes from 0 to 2π . But this is easy to determine by inspection. As t trav-
els from 0 to 2π , the point (cos t, sin t) begins at (1, 0) and travels counterclockwise
around the circle, ending at (1, 0) when t = 2π .

A given figure in the plane may be the graph of different curves. To speak more
loosely, a given curve may have different parametrizations.

x
t

y

(cos t, sin t)

FIGURE 9.4.2 The graph of the
parametric functions of Example 1.

EXAMPLE 2 The graph of the parametric curve

x = 1 − t2

1 + t2
, y = 2t

1 + t2
, −∞ < t < +∞
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also lies on the unit circle, because we find that x2 + y2 = 1 here as well. If t
begins at 0 and increases, then the point P(x(t), y(t)) begins at (1, 0) and travels
along the upper half of the circle. If t begins at 0 and decreases, then the point
P(x(t), y(t)) travels along the lower half of the circle. As t approaches either +∞
or −∞, the point P approaches the point (−1, 0). Thus the graph consists of the
unit circle with the single point (−1, 0) deleted. A slight modification of the curve of
Example 1,

x = cos t, y = sin t, −π < t < π,

is a different parametrization of this same graph. ◗

EXAMPLE 3 Eliminate the parameter to determine the graph of the parametric curve

x = t − 1, y = 2t2 − 4t + 1, 0 � t � 2.

Solution We substitute t = x + 1 (from the equation for x) into the equation for y.
This yields

y = 2(x + 1)2 − 4(x + 1) + 1 = 2x2 − 1

for −1 � x � 1. Thus the graph of the given curve is a portion of the parabola
y = 2x2 − 1 (Fig. 9.4.3). As t increases from 0 to 2, the point (t − 1, 2t2 − 4t + 1)

travels along the parabola from (−1, 1) to (1, 1). ◗

y

x

y = 2x2 − 1

(−1, 1)

(0, −1)

(1, 1)

FIGURE 9.4.3 The curve of
Example 3 is part of a parabola.

REMARK The parabolic arc of Example 3 can be reparametrized with

x = sin t, y = 2 sin2 t − 1.

Now, as t increases, the point (sin t, 2 sin2 t − 1) travels back and forth along the
parabola between the two points (−1, 1) and (1, 1), rather like the bob of a pendu-
lum.

The parametric curve of Example 3 is one in which we can eliminate the param-
eter and thus obtain an explicit equation y = f (x). Moreover, any explicitly presented
curve y = f (x) can be viewed as a parametric curve by writing

x = t, y = f (t),

with the parameter t taking on values in the original domain of f . By contrast, the
circle of Example 1 illustrates a parametric curve whose graph is not the graph of any
single function. (Why not?) Example 4 exhibits another way in which parametric
curves can differ from graphs of functions—they can have self-intersections.

EXAMPLE 4 The parametric equations

x = cos at, y = sin bt

(with a and b constant) define the Lissajous curves that typically appear on oscillo-
scopes in physics and electronics laboratories. The Lissajous curve with a = 3 and
b = 5 is shown in Fig. 9.4.4. You probably would not want to calculate and plot by
hand enough points to produce a Lissajous curve. Figure 9.4.4 was plotted with a com-

0
x

y

10.5−1 −0.5

0

1

0.5

−0.5

−1

FIGURE 9.4.4 The Lissajous curve
with a = 3, b = 5.

puter program that generated it almost immediately. But it is perhaps more instructive
to watch a slower graphing calculator plot a parametric curve like this, because the
curve is traced by a point that moves on the screen as the parameter t increases (from 0
to 2π in this case). For instance, with a TI calculator set in “parametric graph mode,”
one need only enter and graph the equations

XT = cos(3T) yT = sin(5T)

on the interval 0 � t � 2π . With Maple and Mathematica the commands

plot([cos(3*t),sin(5*t),t=0..2*pi]);
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and

ParametricPlot[{Cos[3*t],Sin[5*t]},{t,0,2*Pi}];

(respectively) give the same figure. ◗

The use of parametric equations x = x(t), y = y(t) is most advantageous when
elimination of the parameter is either impossible or would lead to an equation y =
f (x) that is considerably more complicated than the original parametric equations.
This often happens when the curve is a geometric locus or the path of a point moving
under specified conditions.

EXAMPLE 5 The curve traced by a point P on the edge of a rolling circle is called
a cycloid. The circle rolls along a straight line without slipping or stopping. (You will
see a cycloid if you watch a patch of bright paint on the tire of a bicycle that crosses
your path.) Find parametric equations for the cycloid if the line along which the circle
rolls is the x-axis, the circle is above the x-axis but always tangent to it, and the point
P begins at the origin.

Solution Evidently the cycloid consists of a series of arches. We take as parameter t
the angle (in radians) through which the circle has turned since it began with P at the
origin. This is the angle TCP in Fig. 9.4.5.

y

x

C (at, a)

Q

P (x, y)

T (at, 0)O

a

P (x, y) a sin t Q (at, y)

t

C (at, a)

a cos t

FIGURE 9.4.5 The cycloid and the right triangle CPQ (Example 5).

The distance the circle has rolled is |OT|, so this is also the length of the circum-
ference subtended by the angle TCP. Thus |OT| = at if a is the radius of the circle, so
the center C of the rolling circle has coordinates (at, a) when the angle TCP is t . The
right triangle CPQ in Fig. 9.4.5 provides us with the relations

at − x = a sin t and a − y = a cos t.

Therefore the cycloid—the path of the moving point P—has parametric equations

x = a(t − sin t), y = a(1 − cos t). (3)

◗

HISTORICAL NOTE Figure 9.4.6 shows a bead sliding down a frictionless wire
from point P to point Q. The brachistochrone problem asks what shape the wire
should be to minimize the bead’s time of descent from P to Q. In June of 1696,
John Bernoulli proposed the brachistochrone problem as a public challenge, with a
6-month deadline (later extended to Easter 1697 at Leibniz’s request). Isaac Newton,
then retired from academic life and serving as Warden of the Mint in London, received
Bernoulli’s challenge on January 29, 1697. The very next day he communicated his
own solution—the curve of minimal descent time is an arc of an inverted cycloid—to
the Royal Society of London.

Q

P

FIGURE 9.4.6 A bead sliding
down a wire—the brachistochrone
problem.
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Lines Tangent to Parametric Curves
The parametric curve x = f (t), y = g(t) is called smooth if the derivatives f ′(t) and
g′(t) are continuous and never simultaneously zero. In some neighborhood of each
point of its graph, a smooth parametric curve can be described in one or possibly both
of the forms y = F(x) and x = G(y). To see why this is so, suppose (for example)
that f ′(t) > 0 on the interval I . Then f (t) is an increasing function on I and therefore
has an inverse function t = φ(x) there. If we substitute t = φ(x) into the equation
y = g(t), then we get

y = g(φ(x)) = F(x).

We can use the chain rule to compute the slope dy/dx of the line tangent to a
smooth parametric curve at a given point. Differentiating y = F(x) with respect to t
yields

dy

dt
= dy

dx
· dx

dt
,

so

dy

dx
= dy/dt

dx/dt
= g′(t)

f ′(t)
= y′

x ′ (4)

at any point where x ′ = f ′(t) �= 0. The tangent line is horizontal at any such point
where y′ = g′(t) = 0, and is vertical at any point where x ′ = 0 but y′ �= 0.

Equation (4) gives y′ = dy/dx as a function of t . Another differentiation with
respect to t , again with the aid of the chain rule, results in the formula

dy′

dt
= dy′

dx
· dx

dt
,

so

d2 y

dx2
= dy′

dx
= dy′/dt

dx/dt
. (5)

EXAMPLE 6 Calculate dy/dx and d2 y/dx2 for the cycloid with the parametric equa-
tions in (3).

Solution We begin with

x = a(t − sin t), y = a(1 − cos t). (3)

Then Eq. (4) gives

dy

dx
= dy/dt

dx/dt
= a sin t

a(1 − cos t)
= sin t

1 − cos t
. (6)

This derivative is zero when t is an odd integral multiple of π , so the tangent line is
horizontal at the midpoint of each arch of the cycloid. The endpoints of the arches cor-
respond to even integral multiples of π , where both the numerator and the denominator
in Eq. (6) are zero. These are isolated points (called cusps) at which the cycloid fails
to be a smooth curve. (See Fig. 9.4.7.)

x

y

0 2 aπ

a, 2a)(πa, 2a)(−π a, 2a)(3π

−2 aπ 4 aπ

FIGURE 9.4.7 Horizontal tangents and cusps of the cycloid.
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Next, Eq. (5) yields

d2 y

dx2
= (cos t)(1 − cos t) − (sin t)(sin t)

(1 − cos t)2 · a(1 − cos t)
= − 1

a(1 − cos t)2
.

Because d2 y/dx2 < 0 for all t (except for the isolated even integral multiples of π ),
this shows that each arch of the cycloid is concave downward (Fig. 9.4.5). ◗

REMARK In Fig. 9.4.7 it appears that the cycloid has a vertical tangent line at each
cusp point (2nπa, 0). We can verify this observation by calculating the limit as t →
2nπ of the derivative in (6). Using l’Hôpital’s rule, we get

lim
t→2nπ

dy

dx
= lim

t→2nπ

sin t

1 − cos t
= lim

t→2nπ

cos t

sin t
= ±∞,

because cos t → 1 and sin t → 0 as t → 2nπ . The limit is +∞ or −∞ according as t
approaches 2nπ from the right or the left. In either event, we conclude that the tangent
line is, indeed, vertical at the cusp point.

EXAMPLE 7 It would be impractical to attempt to graph the curve

x3 = 2y6 − 5y4 + 9y (7)

by solving for y as a function of x . However, we can parametrize this curve by defining

y = t, x = (2t6 − 5t4 + 9t)1/3. (8)

Figure 9.4.8 shows a computer plot of this parametric curve for −2.5 � t � 2.5. We
see at least four likely critical and inflection points. It appears that there are horizontal
tangent lines at the points P1 and P2 on the y-axis, and vertical tangent lines at P3

and P4. Let’s investigate the character of these points by calculating the pertinent
derivatives.

y

x2 4 6P1

t = 0

t → +∞

t → −∞

P3
P2 P5

P4

−2

−2

2

FIGURE 9.4.8 The parametric
curve of Example 7.

To investigate the possibility of horizontal and vertical tangent lines, we use
Eq. (4) to calculate the first derivative

dy

dx
= dy/dt

dx/dt
= 3(2t6 − 5t4 + 9t)2/3

12t5 − 20t3 + 9
. (9)

Using a computer algebra system, we find that the only real zeros of the polynomial
2t6 − 5t4 + 9t in the numerator are t = 0 and t ≈ −1.8065. These values of t yield
the points P1(0, 0) and P2(0, −1.8065), respectively, that are shown in the figure.

The denominator polynomial 12t5 − 20t3 + 9 in (9) has only the single real zero
t ≈ −1.3941, which yields the single point P3(−2.5587, −1.3941) on the curve where
the tangent line is vertical. In particular, there is no vertical tangent line near the point
P4 indicated in the figure.

To investigate the possibility of possible inflection points, we use Eq. (5) and a
computer algebra system to calculate the second derivative

d2 y

dx2
= d

dt

(
dy

dx

)
÷ dx

dt

= − 6(2t6 − 5t4 + 9t)1/3(36t10 − 150t8 + 50t6 + 594t5 − 450t3 − 81)

(12t5 − 20t3 + 9)3
.

(10)

The two trinomials that appear in the numerator and denominator here are the same as
those in (9), and correspond to the three critical points already found. Our computer
algebra system reports that the tenth-degree numerator polynomial in (10) has only two
real zeros: t ≈ 1.0009 and t ≈ −2.2614. These two zeros of the second derivative
yield the two points P4(1.8172, 1.0009) and P5(4.8820, −2.2614) that are shown in
the figure. It is visually clear that the concavity of the curve changes at P4—where
dy/dx ≈ 9.9063 so the tangent line is steep but not vertical—but the character of the
remaining point is not so obvious. However, you can graph the second derivative in
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(10) to verify that it is positive to the right and negative to the left of P5—so this final
candidate is, indeed, also an inflection point.

Finally, because our viewing window in Fig. 9.4.8 is large enough to include all
the critical points and inflection points on the curve in (7)—and since it is clear from
the equations in (8) that |x | and |y| → ∞ as |t | → ∞—we are assured that the figure
shows all of the principal features of the curve. ◗

Polar Curves as Parametric Curves
A curve given in polar coordinates by the equation r = f (θ) can be regarded as a
parametric curve with parameter θ . To see this, we recall that the equations x = r cos θ

and y = r sin θ allow us to change from polar to rectangular coordinates. We replace
r with f (θ), and this gives the parametric equations

x = f (θ) cos θ, y = f (θ) sin θ, (11)

which express x and y in terms of the parameter θ .

EXAMPLE 8 The spiral of Archimedes has the polar-coordinate equation r = aθ

(Fig. 9.4.9). The equations in (11) give the spiral the parametrization

x = aθ cos θ, y = aθ sin θ. ◗

y

r = a

x

θ

FIGURE 9.4.9 The spiral of Archimedes
(Example 8).

The slope dy/dx of a tangent line can be computed in terms of polar coordinates
as well as rectangular coordinates. Given a polar-coordinate curve r = f (θ), we use
the parametrization shown in (11). Then Eq. (4), with θ in place of t , gives

dy

dx
= dy/dθ

dx/dθ
= f ′(θ) sin θ + f (θ) cos θ

f ′(θ) cos θ − f (θ) sin θ
, (12)

or, alternatively, denoting f ′(θ) by r ′,

dy

dx
= r ′ sin θ + r cos θ

r ′ cos θ − r sin θ
. (13)

Equation (13) has the following useful consequence. Let ψ denote the angle be-
tween the tangent line at P and the radius OP (extended) from the origin (Fig. 9.4.10).
Then

cot ψ = 1

r
· dr

dθ
(0 < ψ < π). (14)

In Problem 32 we indicate how Eq. (14) can be derived from Eq. (13).
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y

x

r = f (  )θ
ψ

θ
P 

θ
O

FIGURE 9.4.10 The interpretation of
the angle ψ . [See Eq. (14).]

y

x

r = eθ

/2

45˚

x + y = eπ

FIGURE 9.4.11 The angle ψ is always
45◦ for the logarithmic spiral (Example 9).

EXAMPLE 9 Consider the logarithmic spiral with polar equation r = eθ . Show that
ψ = π/4 at every point of the spiral, and write an equation of its tangent line at the
point (eπ/2, π/2).

Solution Because dr/dθ = eθ , Eq. (14) tells us that cot ψ = eθ /eθ = 1. Thus
ψ = π/4. When θ = π/2, Eq. (13) gives

dy

dx
= eπ/2 sin(π/2) + eπ/2 cos(π/2)

eπ/2 cos(π/2) − eπ/2 sin(π/2)
= −1.

But when θ = π/2, we have x = 0 and y = eπ/2. It follows that an equation of the
desired tangent line is

y − eπ/2 = −x; that is, x + y = eπ/2.

The line and the spiral appear in Fig. 9.4.11.

9.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. A parametric curve C in the plane is a pair of functions x = x(t), y = y(t) that
give x and y as continuous functions of the real number t in some interval I .

2. The graph of the curve x = cos t , y = sin t , 0 � t � 2π is the circle with center
(0, 0) and radius 1.

3. A given curve in the plane may have several different parametrizations.
4. The graph of the parametric curve x = t − 1, y = 2t2 − 4t + 1, 0 � t � 2 is the

part of the parabola y = 2x2 − 1 from (−1, 1) to (1, 1).
5. The parametric equations x = cos at , y = sin bt (with a and b constants) define

Lissajous curves.
6. The curve traced by a point P on the edge of a rolling circle is called a cycloid.
7. The parametric equations x = a(t − sin t), y = a(1 − cos t) are the equations of

a cycloid generated by a circle of radius a.
8. Newton solved the brachistochrone problem in about a day.
9. The parametric curve x = f (t), y = g(t) is said to be smooth provided that

f ′(t) and g′(t) are continuous and never simultaneously zero.
10. Given x = a(t − sin t), y = a(1 − cos t), it is very little trouble to show that

dy

dx
= sin t

1 − cos t
.
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9.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. Pick two points A and B in the plane. Then define a parametrization

P(t) = (x(t), y(t)) of the line segment AB such that P(0) = A and P(1) = B.
2. Pick two points A and B equidistant from the origin. Then define a parametriza-

tion of a circular arc AB such that P(0) = A and P(1) = B.
3. Pick two points A and B on the parabola y = x2. Then define a parametrization

of the parabola such that P(0) = A and P(1) = B.
4. Let A and B be two points on a given parametric curve. Is it always pos-

sible to define a parametrization of the curve such that P(0) = A and P(1) = B?

9.4 PROBLEMS

In Problems 1 through 12, eliminate the parameter and then
sketch the curve.

1. x = t + 1, y = 2t − 1 2. x = t2 + 1, y = 2t2 − 1

3. x = t2, y = t3 4. x = √
t, y = 3t − 2

5. x = t + 1, y = 2t2 − t − 1

6. x = t2 + 3t, y = t − 2

7. x = et , y = 4e2t 8. x = 2et , y = 2e−t

9. x = 5 cos t, y = 3 sin t 10. x = sinh t, y = cosh t

11. x = 2 cosh t, y = 3 sinh t

12. x = sec t, y = tan t

In Problems 13 through 16, first eliminate the parameter and
sketch the curve. Then describe the motion of the point
(x(t), y(t)) as t varies in the given interval.

13. x = sin 2π t , y = cos 2π t ; 0 � t � 1

14. x = 3 + 2 cos t , y = 5 − 2 sin t ; 0 � t � 2π

15. x = sin2 π t , y = cos2 π t ; 0 � t � 2

16. x = cos t , y = sin2 t ; −π � t � π

In Problems 17 through 20, (a) first write the equation of the
line tangent to the given parametric curve at the point that cor-
responds to the given value of t , and (b) then calculate d2 y/dx2

to determine whether the curve is concave upward or concave
downward at this point.

17. x = 2t2 + 1, y = 3t3 + 2; t = 1

18. x = cos3 t, y = sin3 t; t = π/4

19. x = t sin t, y = t cos t; t = π/2

20. x = et , y = e−t ; t = 0

In Problems 21 through 24, find the angle ψ between the radius
O P and the tangent line at the point P that corresponds to the
given value of θ .

21. r = exp
(
θ
√

3
)
, θ = π/2

22. r = 1/θ, θ = 1

23. r = sin 3θ, θ = π/6

24. r = 1 − cos θ, θ = π/3

In Problems 25 through 28, find

(a) The points on the curve where the tangent line is horizontal.

(b) The slope of each tangent line at any point where the curve
intersects the x-axis.

25. x = t2, y = t3 − 3t (Fig. 9.4.12)

26. x = sin t , y = sin 2t (Fig. 9.4.13)

0 5
x

y

2−1 1−2−3 3 4
−5
−4
−3
−2
−1

0
1
2
3
4
5

FIGURE 9.4.12 The curve
of Problem 25.

0
x

y

10.5−1 −0.5

0

1

0.5

−0.5

−1

FIGURE 9.4.13 The curve
of Problem 26.

27. r = 1 + cos θ

28. r 2 = 4 cos 2θ (See Fig. 9.3.15.)

29. The curve C is determined by the parametric equations
x = e−t , y = e2t . Calculate dy/dx and d2 y/dx2 directly
from these parametric equations. Conclude that C is con-
cave upward at every point. Then sketch C .

30. The graph of the folium of Descartes with rectangular equa-
tion x3 + y3 = 3xy appears in Fig. 9.4.14. Parametrize its
loop as follows: Let P be the point of intersection of the line
y = t x with the loop; then solve for the coordinates x and y
of P in terms of t .

x3 + y3 = 3xy 

x

P (x, y)

y = tx

y

FIGURE 9.4.14 The loop of
the folium of Descartes
(Problem 30).

31. Parametrize the parabola y2 = 4px by expressing x and y
as functions of the slope m of the tangent line at the point
P(x, y) of the parabola.
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32. Let P be a point of the curve with polar equation r = f (θ),
and let ψ be the angle between the extended radius OP and
the tangent line at P . Let α be the angle of inclination of this
tangent line, measured counterclockwise from the horizon-
tal. Then ψ = α−θ . Verify Eq. (14) by substituting tan α =
dy/dx from Eq. (13) and tan θ = y/x = (sin θ)/(cos θ) into
the identity

cot ψ = 1

tan(α − θ)
= 1 + tan α tan θ

tan α − tan θ
.

33. Let P0 be the highest point of the circle of Fig. 9.4.5—the
circle that generates the cycloid of Example 5. Show that
the line through P0 and the point P of the cycloid (the point
P is shown in Fig. 9.4.5) is tangent to the cycloid at P . This
fact gives a geometric construction of the line tangent to the
cycloid.

34. A circle of radius b rolls without slipping inside a circle of
radius a > b. The path of a point fixed on the circumference
of the rolling circle is called a hypocycloid (Fig. 9.4.15). Let
P begin its journey at A(a, 0) and let t be the angle AOC,
where O is the center of the large circle and C is the cen-
ter of the rolling circle. Show that the coordinates of P are
given by the parametric equations

x = (a − b) cos t + b cos

(
a − b

b
t

)
,

y = (a − b) sin t − b sin

(
a − b

b
t

)
.

y

x
A (a, 0)

C

b

t
O P

FIGURE 9.4.15 The hypocycloid of
Problem 34.

35. If b = a/4 in Problem 34, show that the parametric equa-
tions of the hypocycloid reduce to

x = a cos3 t, y = a sin3 t.

36. (a) Prove that the hypocycloid of Problem 35 is the graph of
the equation

x2/3 + y2/3 = a2/3.

(b) Find all points of this hypocycloid where its tangent
line is either horizontal or vertical, and find the intervals on
which it is concave upward and those on which it is concave
downward. (c) Sketch this hypocycloid.

37. Consider a point P on the spiral of Archimedes, the
curve shown in Fig. 9.4.16 with polar equation r = aθ .
Archimedes viewed the path of P as compounded of two
motions, one with speed a directly away from the origin O
and another a circular motion with unit angular speed around

O . This suggests Archimedes’ result that the line PQ in the
figure is tangent to the spiral at P . Prove that this is indeed
true.

aθ

a

Q

Polar axis

P

r = aθ

θ
θa

FIGURE 9.4.16 The segment PQ is
tangent to the spiral (a result of
Archimedes; see Problem 37).

38. (a) Deduce from Eq. (6) that if t is not an integral multiple
of 2π , then the slope of the tangent line at the correspond-
ing point of the cycloid is cot(t/2). (b) Conclude that at the
cusp of the cycloid where t is an integral multiple of 2π , the
cycloid has a vertical tangent line.

39. A loxodrome is a curve r = f (θ) such that the tangent line
at P and the radius OP in Fig. 9.4.10 make a constant angle.
Use Eq. (14) to prove that every loxodrome is of the form
r = A ekθ , where A and k are constants. Thus every loxo-
drome is a logarithmic spiral similar to the one considered in
Example 9.

40. Let a curve be described in polar coordinates by r = f (θ)

where f is continuous. If f (α) = 0, then the origin is the
point of the curve corresponding to θ = α. Deduce from
the parametrization x = f (θ) cos θ , y = f (θ) sin θ that the
line tangent to the curve at this point makes the angle α with
the positive x-axis. For example, the cardioid r = f (θ) =
1 − sin θ shown in Fig. 9.4.17 is tangent to the y-axis at the
origin. And, indeed, f (π/2) = 0. The y-axis is the line
θ = α = π/2.

y

x

r = 1 − sin θ

FIGURE 9.4.17 The cardioid
of Problem 40.

41. Use the technique of Problem 30 to parametrize the first-
quadrant loop of the folium-like curve x5 + y5 = 5x2 y2.

42. A line segment of length 2a has one endpoint constrained
to lie on the x-axis and the other endpoint constrained to lie
on the y-axis, but its endpoints are free to move along those
axes. As they do so, its midpoint sweeps out a locus in the
xy-plane. Obtain a rectangular-coordinate equation of this
locus and thereby identify this curve.
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In Problems 43–46, investigate (as in Example 7) the given curve
and construct a sketch that shows all the critical points and in-
flection points on it.

43. x = y3 − 3y2 + 1

44. x = y4 − 3y3 + 5y

45. x3 = y5 − 5y3 + 4

46. x5 = 5y6 − 17y3 + 13y

9.4 INVESTIGATION: Trochoids Galore
A trochoid is traced by a point P on a spoke of a wheel of radius a as it rolls along the
x-axis. If the distance of P from the center of the rolling wheel is b > 0, show that the
trochoid is described by the parametric equations

x = at − b sin t, y = a − b cos t.

x

y

8π6

6

π4π2π−2π 10π

FIGURE 9.4.18 The trochoid with a = 2 and b = 4.

Note that the trochoid is a familiar cycloid if b = a. We allow the possibility that
b > a. Figure 9.4.18 shows the trochoid with a = 2 and b = 4. Experiment with
different values of a and b. What determines whether the trochoid has loops, cusps, or
neither?

P

FIGURE 9.4.19 The hypotrochoid
with a = 10, b = 2, c = 4.

Hypotrochoids
A hypotrochoid is to a hypocycloid (Problem 34) as a trochoid is to a cycloid. Thus a
hypotrochoid is traced by a point P on a spoke of a wheel of radius b as it rolls around
inside a circle of radius a. If the distance of P from the center of the rolling wheel is
c > 0, show that the hypotrochoid is described by the parametric equations

x = (a − b) cos t + c cos

(
a − b

b
t

)
, y = (a − b) sin t − c sin

(
a − b

b
t

)
.

Note that the hypotrochoid is a hypocycloid if c = b. There are a number of different
ways a hypotrochoid can look. Figures 9.4.19 and 9.4.20 illustrate two possibilities.
Experiment with different values of a, b, and c. What determines whether the hypotro-

P

FIGURE 9.4.20 The hypotrochoid
with a = 10, b = 4, c = 2.

choid has loops, cusps, or neither? If there are loops, what determines how many there
are? Does a hypotrochoid always repeat itself after a finite number of turns around the
origin? What happens if a is an integer but b is an irrational number?

Epitrochoids
An epitrochoid is generated in the same way as a hypotrochoid, except now the small
circle rolls around on the outside of the large circle. With the same notation otherwise,
show that the epitrochoid is described by the parametric equations

x = (a + b) cos t − c cos

(
a + b

b
t

)
, y = (a + b) sin t − c sin

(
a + b

b
t

)
.

If b = c—so the point P lies on the rim of the rolling circle, then the epitrochoid is
an epicycloid (illustrated in Fig. 9.4.21). Experiment with different values of a, b, and
c, and investigate for epitrochoids the same questions posed previously for hypotro-

P

FIGURE 9.4.21 The epitrochoid
with a = 10, b = 2, c = 2.

choids.
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9.5 INTEGRAL COMPUTATIONS WITH PARAMETRIC CURVES

In Chapter 6 we discussed the computation of a variety of geometric quantities associ-
ated with the graph y = f (x) of a nonnegative function on the interval [a, b]. These
included the following.

• The area under the curve:

A =
∫ b

a
y dx . (1)

• The volume of revolution around the x-axis:

Vx =
∫ b

a
πy2 dx . (2a)

• The volume of revolution around the y-axis:

Vy =
∫ b

a
2πxy dx . (2b)

• The arc length of the curve:

s =
∫ s

0
ds =

∫ b

a

√
1 + (dy/dx)2 dx . (3)

• The area of the surface of revolution around the x-axis:

Sx =
∫ b

x=a
2πy ds. (4a)

• The area of the surface of revolution around the y-axis:

Sy =
∫ b

x=a
2πx ds. (4b)

We substitute y = f (x) into each of these integrals before we integrate from x = a to

dx

dy
ds

FIGURE 9.5.1 Nearly a right
triangle for dx and dy close to zero.

x = b.
We now want to compute these same quantities for a smooth parametric curve

x = f (t), y = g(t), α � t � β. (5)

The area, volume, arc length, and surface integrals in Eqs. (1) through (4) can then be
evaluated by making the formal substitutions

x = f (t), y = g(t),

dx = f ′(t) dt, dy = g′(t) dt, and

ds = √[ f ′(t)]2 + [g′(t)]2 dt.

(6)

The infinitesimal “right triangle” in Fig. 9.5.1 serves as a convenient device for re-
membering the latter substitution for ds. The Pythagorean theorem then leads to the
symbolic manipulation

ds = √
dx2 + dy2 =

√(
dx

dt

)2

+
(

dy

dt

)2

dt = √[ f ′(t)]2 + [g′(t)]2 dt . (7)

It simplifies the discussion to assume that the graph of the parametric curve in (5)
resembles Fig. 9.5.2, in which y = g(t) � 0 and x = f (t) is either increasing on
the entire interval α � t � β or is decreasing there. The two parts of Fig. 9.5.2
illustrate the two possibilities—whether as t increases the curve is traced in the positive
x-direction from left to right, or in the negative x-direction from right to left. How and
whether to take this direction of motion into account depends on which integral we are
computing.

y

x

y

x

a b

t = β

t = α

a b

t = α

βt =

f (t) decreasing

(a)

(b)

f (t) increasing

FIGURE 9.5.2 Tracing a
parametrized curve: (a) f (t)
increasing; (b) f (t) decreasing.
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CASE 1 Area and Volume of Revolution To evaluate the integrals in (1) and (2),
which involve dx , we integrate either from t = α to t = β or from t = β to t = α—
the proper choice of limits on t being the one that corresponds to traversing the curve
in the positive x-direction from left to right. Specifically,

A =
∫ β

α

g(t) f ′(t) dt if f (α) < f (β),

whereas

A =
∫ α

β

g(t) f ′(t) dt if f (β) < f (α).

The validity of this method of evaluating the integrals in Eqs. (1) and (2) follows from
Theorem 1 of Section 5.7, on integration by substitution.

CASE 2 Arc Length and Surface Area To evaluate the integrals in (3) and (4), which
involve ds rather than dx , we integrate from t = α to t = β irrespective of the direction
of motion along the curve. To see why this is so, recall from Eq. (4) of Section 9.4 that
dy/dx = g′(t)/ f ′(t) if f ′(t) �= 0 on [α, β]. Hence

s =
∫ b

a

√
1 +

(
dy

dx

)2

dx =
∫ f −1(b)

f −1(a)

√
1 +

[
g′(t)
f ′(t)

]2

f ′(t) dt.

Assuming that f ′(t) > 0 if f (α) = a and f (β) = b, whereas f ′(t) < 0 if f (α) = b
and f (β) = a, it follows in either event that

s =
∫ β

α

√
1 +

[
g′(t)
f ′(t)

]2

| f ′(t)| dt,

and so

s =
∫ β

α

√
[ f ′(t)]2 + [g′(t)]2 dt =

∫ β

α

√(
dx

dt

)2

+
(

dy

dt

)2

dt . (8)

This formula, derived under the assumption that f ′(t) �= 0 on [α, β], may be taken
to be the definition of arc length for an arbitrary smooth parametric curve. Similarly,
the area of a surface of revolution is defined for smooth parametric curves as the re-
sult of first substituting (6) into Eq. (4a) or (4b) and then integrating from t = α

to t = β.

EXAMPLE 1 Use the parametrization x = a cos t , y = a sin t (0 � t � 2π ) of the
circle with center (0, 0) and radius a to find (a) the area A of this circle; (b) the volume
V of the sphere obtained by revolving the circle around the x-axis; and (c) the surface
area S of this sphere.

Solution
(a) The left-to-right direction along the quarter circle shown in Fig. 9.5.3 is fromy

x

πt =

x = a
t = 0

/2

FIGURE 9.5.3 The quarter-circle
of Example 1.

t = π/2 to t = 0, and dx = −a sin t dt . Therefore Eq. (1) and multiplication by
4 give

A = 4
∫ 0

t=π/2
y dx = 4

∫ 0

π/2
(a sin t)(−a sin t) dt

= 4a2
∫ π/2

0
sin2 t dt = 2a2

∫ π/2

0
(1 − cos 2t) dt

= 2a2

[
t − 1

2
sin 2t

]π/2

0

= 2a2 · π

2
= πa2
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for yet another derivation of the familiar formula A = πa2 for the area of a circle
of radius a.

(b) To calculate the volume of the sphere, we apply Eq. (2a) and double to get

V = 2
∫ 0

t=π/2
πy2 dx

= 2
∫ 0

π/2
π(a sin t)2(−a sin t dt) = 2πa3

∫ π/2

0
(1 − cos2 t) sin t dt

= 2πa3

[
− cos t + 1

3
cos3 t

]π/2

0

= 4

3
πa3.

(c) To find the surface area of the sphere, we calculate first the arc-length differential

ds =
√

(−a sin t)2 + (a cos t)2 dt = a dt

of the parametrized curve. Then Eq. (4a) gives

S = 2
∫ π/2

t=0
2πy ds = 2

∫ π/2

0
2π(a sin t) · a dt

= 4πa2
∫ π/2

0
sin t dt = 4πa2

[
− cos t

]π/2

0
= 4πa2. ◗

Of course, the results of Example 1 are familiar. In contrast, Example 2 requires
the methods of this section.

EXAMPLE 2 Find the area under, and the arc length of, the cycloidal arch ofy

xπ a2

FIGURE 9.5.4 The cycloidal arch
of Example 2.

Fig. 9.5.4. Its parametric equations are

x = a(t − sin t), y = a(1 − cos t), 0 � t � 2π.

Solution Because dx = a(1−cos t) dt and the left-to-right direction along the curve
is from t = 0 to t = 2π , Eq. (1) gives

A =
∫ 2π

t=0
y dx

=
∫ 2π

0
a(1 − cos t) · a(1 − cos t) dt = a2

∫ 2π

0
(1 − cos t)2 dt

for the area. Now we use the half-angle identity

1 − cos t = 2 sin2

(
t

2

)

and a consequence of Problem 58 in Section 7.3:∫ π

0
sin2n u du = π · 1

2
· 3

4
· 5

6
· · · 2n − 1

2n
.

We thereby get

A = 4a2
∫ 2π

0
sin4

(
t

2

)
dt = 8a2

∫ π

0
sin4 u du

(
u = t

2

)

= 8a2 · π · 1

2
· 3

4
= 3πa2

for the area under one arch of the cycloid. The arc-length differential is

ds =
√

a2(1 − cos t)2 + (a sin t)2 dt

= a
√

2(1 − cos t) dt = 2a sin

(
t

2

)
dt,
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so Eq. (3) gives

s =
∫ 2π

0
2a sin

t

2
dt =

[
− 4a cos

t

2

]2π

0

= 8a

for the length of one arch of the cycloid. ◗

Parametric Polar Coordinates
Suppose that a parametric curve is determined by giving its polar coordinates

r = r(t), θ = θ(t), α � t � β

as functions of the parameter t . Then this curve is described in rectangular coordinates
by the parametric equations

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t), α � t � β,

giving x and y as functions of t . The latter parametric equations may then be used in
the integral formulas in Eqs. (1) through (4).

To compute ds, we first calculate the derivatives

dx

dt
= (cos θ)

dr

dt
− (r sin θ)

dθ

dt
,

dy

dt
= (sin θ)

dr

dt
+ (r cos θ)

dθ

dt
.

Upon substituting these expressions for dx/dt and dy/dt in Eq. (8) and making alge-
braic simplifications, we find that the arc-length differential in parametric polar coor-
dinates is

ds =
√(

dr

dt

)2

+
(

r
dθ

dt

)2

dt. (9)

In the case of a curve with the explicit polar-coordinate equation r = f (θ), we may
use θ itself as the parameter. Then Eq. (9) takes the simpler form

ds =
√(

dr

dθ

)2

+ r2 dθ . (10)

The formula ds = √
(dr)2 + (r dθ)2 , equivalent to Eq. (9), is easy to remember with

the aid of the tiny “almost-triangle” shown in Fig. 9.5.5.

ds

dθ

O

dr

r

r dθ

FIGURE 9.5.5 The differential
triangle in polar coordinates.

EXAMPLE 3 Find the perimeter (arc length) s of the cardioid with polar equationy

x

r = 1 + cosθ

FIGURE 9.5.6 The cardioid of
Example 3.

r = 1 + cos θ (Fig. 9.5.6.). Find also the surface area S generated by revolving the
cardioid around the x-axis.

Solution Because dr/dθ = − sin θ , Eq. (10) and the identity

1 + cos θ = 2 cos2

(
θ

2

)
(11)

give

ds =
√

(− sin θ)2 + (1 + cos θ)2 dθ = √
2(1 + cos θ) dθ

=
√

4 cos2

(
θ

2

)
dθ =

∣∣∣∣2 cos

(
θ

2

)∣∣∣∣ dθ.
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Hence ds = 2 cos(θ/2) dθ on the upper half of the cardioid, where 0 � θ � π , and
thus cos(θ/2) � 0. Therefore

s = 2
∫ π

0
2 cos

θ

2
dθ = 8

[
sin

θ

2

]π

0

= 8.

The surface area of revolution around the x-axis (Fig. 9.5.7) is given by

FIGURE 9.5.7 The surface
generated by rotating the cardioid
around the x-axis.

S =
∫ π

θ=0
2πy ds

=
∫ π

θ=0
2π(r sin θ) ds =

∫ π

0
2π(1 + cos θ)(sin θ) · 2 cos

(
θ

2

)
dθ

= 16π

∫ π

0
cos4 θ

2
sin

θ

2
dθ = 16π

[
− 2

5
cos5 θ

2

]π

0

= 32π

5
,

using the identity

sin θ = 2 sin

(
θ

2

)
cos

(
θ

2

)

as well as the identity in Eq. (11). ◗

9.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

NOTE In the questions that follow, assume that x = f (t), y = g(t), α � t � β

determines a smooth parametric curve C in the xy-plane; moreover, assume as well
that g(t) � 0 and that f (t) is either increasing for α � t � β or decreasing for
α � t � β. Let R denote the region bounded above by C , below by the x-axis, and
having sides parallel to the y-axis.

1. The area of R is given by A =
∫ β

α

g(t) f ′(t) dt if f (α) < f (β).

2. If f (β) < f (α) in Question 1, then the limits of integration must be reversed.

3. The length of C is given by s =
∫ β

α

√
[ f ′(t)]2 + [g′(t)]2 dt no matter whether

f (α) < f (β) or f (β) < f (α).
4. If f (t) = a(t − sin t) and g(t) = a(1 − cos t) for 0 � t � 2π , so that C is the

“first” arch of a cycloid generated by a circle of radius a, then the area bounded

by C and the x-axis is A = a2
∫ 2π

0
(1 − cos t)2 dt.

5. The value of the integral in Question 4 is 8a.
6. If r = r(t), θ = θ(t), α � t � β determines a smooth parametric curve C in

polar coordinates, then the arc length differential for C is given by

ds =
√(

dr

dt

)2

+
(

r
dθ

dt

)2

dt.

7. If r = f (θ) determines the smooth parametric curve C in polar coordinates, then

the arc length differential for C is ds =
√(

dr

dθ

)2

+ r2 dθ.

8. The length of the cardioid with polar equation r = 1 + cos θ is

s = 2
∫ π

0
2 cos

θ

2
dθ.
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9. The surface area generated by rotation of the cardioid of Question 8 around the
x-axis is

S = 16π

∫ 2π

0
cos4 θ

2
sin

θ

2
dθ.

10. The volume of a sphere of radius a is given by

V = 2πa3
∫ π/2

0
(1 − cos2 t) sin t dt.

9.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. If the circle of radius a is parametrized by x = a cos t , y = a sin t as in Exam-

ple 1, explain carefully why the integral∫ 2π

t=0
y dx =

∫ π

t=0
y dx +

∫ 2π

t=π

y dx

does not give the correct area of the circle. Relate the two integrals on the right
to the upper and lower halves of the circle.

2. If the circle of radius a is parametrized by x = a sin π t , y = a cos π t , explain
carefully why the integral∫ 2

t=0
y dx =

∫ 1/2

t=0
y dx +

∫ 3/2

t=1/2
y dx +

∫ 2

t=3/2
y dx

does give the correct area. Relate the three integrals on the right to appropriate
parts of the circular area.

9.5 PROBLEMS

In Problems 1 through 6, find the area of the region that lies be-
tween the given parametric curve and the x-axis.

1. x = t3, y = 2t2 + 1; −1 � t � 1

2. x = e3t , y = e−t ; 0 � t � ln 2

3. x = cos t , y = sin2 t ; 0 � t � π

4. x = 2 − 3t , y = e2t ; 0 � t � 1

5. x = cos t , y = et ; 0 � t � π

6. x = 1 − et , y = 2t + 1; 0 � t � 1

In Problems 7 through 10, find the volume obtained by revolving
around the x-axis the region described in the given problem.

7. Problem 1 8. Problem 2

9. Problem 3 10. Problem 5

In Problems 11 through 16, find the arc length of the given curve.

11. x = 2t , y = 2
3 t3/2; 5 � t � 12

12. x = 1
2 t2, y = 1

3 t3; 0 � t � 1

13. x = sin t − cos t , y = sin t + cos t ; 1
4 π � t � 1

2 π

14. x = et sin t , y = et cos t ; 0 � t � π

15. r = eθ/2; 0 � θ � 4π

16. r = θ ; 2π � θ � 4π

In Problems 17 through 22, find the area of the surface of revolu-
tion generated by revolving the given curve around the indicated
axis.

17. x = 1 − t , y = 2
√

t , 1 � t � 4; the x-axis

18. x = 2t2 + t−1, y = 8
√

t , 1 � t � 2; the x-axis

19. x = t3, y = 2t + 3, −1 � t � 1; the y-axis

20. x = 2t + 1, y = t2 + t , 0 � t � 3; the y-axis

21. r = 4 sin θ , 0 � θ � π ; the x-axis

22. r = eθ , 0 � θ � 1
2 π ; the y-axis

23. Find the volume generated by revolving around the x-axis
the region under the cycloidal arch of Example 2.

24. Find the area of the surface generated by revolving around
the x-axis the cycloidal arch of Example 2.

25. Use the parametrization x = a cos t , y = b sin t to find:
(a) the area bounded by the ellipse x2/a2 + y2/b2 = 1;
(b) the volume of the ellipsoid generated by revolving this
ellipse around the x-axis.

26. Find the area bounded by the loop of the parametric curve
x = t2, y = t3 − 3t of Problem 25 in Section 9.4.

27. Use the parametrization x = t cos t , y = t sin t of the
Archimedean spiral to find the arc length of the first full turn
of this spiral (corresponding to 0 � t � 2π ).

28. The circle (x − b)2 + y2 = a2 with radius a < b and center
(b, 0) can be parametrized by

x = b + a cos t, y = a sin t, 0 � t � 2π.

Find the surface area of the torus obtained by revolving this
circle around the y-axis (Fig. 9.5.8).
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y

FIGURE 9.5.8 The torus of
Problem 28.

29. The astroid (four-cusped hypocycloid) has equation x2/3 +
y2/3 = a2/3 (Fig. 9.4.15) and the parametrization

x = a cos3 t, y = a sin3 t, 0 � t � 2π.

Find the area of the region bounded by the astroid.

30. Find the total length of the astroid of Problem 29.

31. Find the area of the surface obtained by revolving the astroid
of Problem 29 around the x-axis.

32. Find the area of the surface generated by revolving the lem-
niscate r 2 = 2a2 cos 2θ around the y-axis (Fig. 9.5.9). [Sug-
gestion: Use Eq. (10); note that r dr = −2a2 sin 2θ dθ .]

y

FIGURE 9.5.9 The surface
generated by rotating the lemniscate
of Problem 32 around the y-axis.

33. Figure 9.5.10 shows the graph of the parametric curve

x = t2
√

3, y = 3t − 1
3 t3.

The shaded region is bounded by the part of the curve for
which −3 � t � 3. Find its area.

y

x

FIGURE 9.5.10 The parametric
curve of Problems 33 through 36.

34. Find the arc length of the loop of the curve of Problem 33.

35. Find the volume of the solid obtained by revolving around
the x-axis the shaded region in Fig. 9.5.10.

36. Find the surface area of revolution generated by revolving
around the x-axis the loop of Fig. 9.5.10.

37. (a) With reference to Problem 30 and Fig. 9.4.14 in Sec-
tion 9.4, show that the arc length of the first-quadrant loop
of the folium of Descartes is

s = 6
∫ 1

0

√
1 + 4t2 − 4t3 − 4t5 + 4t6 + t8

(1 + t3)2
dt.

(b) Use a programmable calculator or a computer to approx-
imate this length.

38. Find the surface area generated by rotating around the
y-axis the cycloidal arch of Example 2. [Suggestion:

√
x2 =

x only if x � 0.]

39. Find the volume generated by rotating around the y-axis the
region under the cycloidal arch of Example 2.

40. Suppose that after a string is wound clockwise around a cir-
cle of radius a, its free end is at the point A(a, 0). (See
Fig. 9.5.11.) Now the string is unwound, always stretched
tight so the unwound portion TP is tangent to the circle at
T . The locus of the string’s free endpoint P is called the
involute of the circle.

(a) Show that the parametric equations of the involute (in
terms of the angle t of Fig. 9.5.11) are

x = a(cos t + t sin t), y = a(sin t − t cos t).

(b) Find the length of the involute from t = 0 to t = π .

B

T

P

A

t
x

y

FIGURE 9.5.11 The involute
of a circle.

41. Suppose that the circle of Problem 40 is a water tank and the
“string” is a rope of length πa. It is anchored at the point B
opposite A. Figure 9.5.12 depicts the total area that can be
grazed by a cow tied to the free end of the rope. Find this
total area. (The three labeled arcs of the curve in the fig-
ure represent, respectively, an involute APQ generated as the
cow unwinds the rope in the counterclockwise direction, a
semicircle QR of radius πa centered at B, and an involute
RSA generated as the cow winds the rope around the tank
proceeding in the counterclockwise direction from B to A .
These three arcs form a closed curve that resembles a car-
dioid, and the cow can reach every point that lies inside this
curve and outside the original circle.)
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x

AB

P

S

R

Q

y

FIGURE 9.5.12 The area that the
cow of Problem 41 can graze.

42. Now suppose that the rope of the previous problem has
length 2πa and is anchored at the point A before being
wound completely around the tank. Now find the total area
that the cow can graze. Figure 9.5.13 shows an involute
APQ, a semicircle QR of radius 2πa centered at A, and an
involute RSA. The cow can reach every point that lies inside
the outer curve and outside the original circle.

x

AS
P

Q

R

y

FIGURE 9.5.13 The area that the
cow of Problem 42 can graze.

In Problems 43 through 54, use a graphing calculator or com-
puter algebra system as appropriate. Approximate (by integrat-
ing numerically) the desired quantity if it cannot be calculated
exactly.

43. Find the total arc length of the 3-leaved rose r = 3 sin 3θ of
Fig. 9.3.12.

44. Find the total surface area generated by rotating around the
y-axis the 3-leaved rose of Problem 43.

45. Find the total length of the 4-leaved rose r = 2 cos 2θ of
Fig. 9.2.12.

46. Find the total surface area generated by revolving around the
x-axis the 4-leaved rose of Problem 45.

47. Find the total arc length of the limaçon (both loops) r =
5 + 9 cos θ of Fig. 9.2.25.

48. Find the total surface area generated by revolving around the
x-axis the limaçon of Problem 47.

49. Find the total arc length (all seven loops) of the polar curve
r = cos( 7

3 θ) of Fig. 9.5.14.

y

x

FIGURE 9.5.14 The curve
r = cos( 7

3 θ) of Problem 49.

50. Find the total arc length of the figure-8 curve x = sin t ,
y = sin 2t of Fig. 9.4.13.

51. Find the total surface area and volume generated by revolv-
ing around the x-axis the figure-8 curve of Problem 50.

52. Find the total surface area and volume generated by revolv-
ing around the y-axis the figure-8 curve of Problem 50.

53. Find the total arc length of the Lissajous curve x = cos 3t ,
y = sin 5t of Fig. 9.4.4.

54. Find the total arc length of the epitrochoid x = 8 cos t −
5 cos 4t , y = 8 sin t − 5 sin 4t of Fig. 9.5.15.

y

x

FIGURE 9.5.15 The epitrochoid of
Problem 54.

55. Frank A. Farris of Santa Clara University, while design-
ing a computer laboratory exercise for his calculus stu-
dents, discovered an extremely lovely curve with the para-
metrization

x(t) = cos t + 1
2 cos 7t + 1

3 sin 17t,

y(t) = sin t + 1
2 sin 7t + 1

3 cos 17t.

For information on what these equations represent, see his
article “Wheels on Wheels on Wheels—Surprising Symme-
try” in the June 1996 issue of Mathematics Magazine. Plot
these equations so you can enjoy this extraordinary figure,
then numerically integrate to approximate the length of its
graph. What kind of symmetry does the graph have? Is this
predictable from the coefficients of t in the parametric equa-
tions?
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9.5 INVESTIGATIONS: Moon Orbits and Race Tracks
The investigations in this project call for the use of numerical integration techniques
(using a calculator or computer) to approximate the parametric arc-length integral

s =
∫ b

a

√
[x ′(t)]2 + [y′(t)]2 dt. (1)

Consider the ellipse with equation

x2

a2
+ y2

b2
= 1 (a > b) (2)

and eccentricity ε = √
1 − (b/a)2. Substitute the parametrization

x = a cos t, y = b sin t (3)

into Eq. (1) to show that the perimeter of the ellipse is given by the elliptic integral

p = 4a
∫ π/2

0

√
1 − ε2 cos2 t dt. (4)

This integral is known to be nonelementary if 0 < ε < 1. A common simple approxi-
mation to it is

p ≈ π(A + R), (5)

where

A = 1

2
(a + b) and R =

√
a2 + b2

2
denote the arithmetic mean and root-square mean, respectively, of the semiaxes a and
b of the ellipse.

Investigation A As a warm-up, consider the ellipse whose major and minor semiaxes
a and b are, respectively, the largest and smallest nonzero digits of your student I.D.
number. For this ellipse, compare the arc-length estimate given by (5) and by numerical
evaluation of the integral in (4).

Investigation B If we ignore the perturbing effects of the sun and the planets other
than the earth, the orbit of the moon is an almost perfect ellipse with the earth at one
focus. Assume that this ellipse has major semiaxis a = 384,403 km (exactly) and
eccentricity ε = 0.0549 (exactly). Approximate the perimeter p of this ellipse [using
Eq. (4)] to the nearest meter.

Investigation C Suppose that you are designing an elliptical auto racetrack. Choose
semiaxes for your racetrack so that its perimeter will be somewhere between a half
mile and two miles. Your task is to construct a table with time and speed columns that
an observer can use to determine the average speed of a particular car as it circles the
track. The times listed in the first column should correspond to speeds up to perhaps
150 mi/h. The observer clocks a car’s circuit of the track and locates its time for the
lap in the first column of the table. The corresponding figure in the second column
then gives the car’s average speed (in miles per hour) for that circuit of the track. Your
report should include a convenient table to use in this way—so you can successfully
sell it to racetrack patrons attending the auto races.

9.6 CONIC SECTIONS AND APPLICATIONS

Here we discuss in more detail the three types of conic sections—parabolas, ellipses,
and hyperbolas—that were introduced in Section 9.1.

The Parabola
The case e = 1 of Example 3 in Section 9.1 is motivation for this formal definition.
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DEFINITION The Parabola
A parabola is the set of all points P in the plane that are equidistant from a fixed
point F (called the focus of the parabola) and a fixed line L (called the parabola’s
directrix) not containing F .

If the focus of the parabola is F(p, 0) and its directrix is the vertical line x = −p,
p > 0, then it follows from Eq. (12) of Section 9.1 that the equation of this parabola is

y2 = 4px . (1)

When we replace x with −x both in the equation and in the discussion that precedes it,
we get the equation of the parabola whose focus is (−p, 0) and whose directrix is the
vertical line x = p. The new parabola has equation

y2 = −4px . (2)

The old and new parabolas appear in Fig. 9.6.1.
We could also interchange x and y in Eq. (1). This would give the equation of a

parabola whose focus is (0, p) and whose directrix is the horizontal line y = −p. This
parabola opens upward, as in Fig. 9.6.2(a); its equation is

x2 = 4py. (3)

y

xF(p, 0)

x = −p

x

y

(a)

(b)

F(−p, 0)

x = p

y2 = 4px

y2 = −4px

FIGURE 9.6.1 Two parabolas with
vertical directrices.

x

F(0, p)

y = −p

(a)

(b)

F(0, −p)

y = p

y

x2 = 4py

x2 = −4py

x

y

FIGURE 9.6.2 Two parabolas with
horizontal directrices: (a) opening
upward; (b) opening downward.
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Finally, we replace y with −y in Eq. (3). This gives the equation

x2 = −4py (4)

of a parabola opening downward, with focus (0, −p) and with directrix y = p, as in
Fig. 9.6.2(b).

Each of the parabolas discussed so far is symmetric around one of the coordinate
axes. The line around which a parabola is symmetric is called the axis of the parabola.
The point of a parabola midway between its focus and its directrix is called the vertex
of the parabola. The vertex of each parabola that we discussed in connection with
Eqs. (1) through (4) is the origin (0, 0).

EXAMPLE 1 Determine the focus, directrix, axis, and vertex of the parabola
x2 = 12y.

Solution We write the given equation as x2 = 4 · (3y). In this form it matches Eq. (3)
with p = 3. Hence the focus of the given parabola is (0, 3) and its directrix is the
horizontal line y = −3. The y-axis is its axis of symmetry, and the parabola opens
upward from its vertex at the origin. ◗

Suppose that we begin with the parabola of Eq. (1) and translate it in such a way
that its vertex moves to the point (h, k). Then the translated parabola has equation

(y − k)2 = 4p(x − h). (1a)

The new parabola has focus F(p+h, k) and its directrix is the vertical line x = −p+h
(Fig. 9.6.3). Its axis is the horizontal line y = k.

We can obtain the translates of the other three parabolas in Eqs. (2) through (4)
in the same way. If the vertex is moved from the origin to the point (h, k), then the
three equations take these forms:

F(p + h, k)

y = k

x = −p + h x

y

(h, k)

FIGURE 9.6.3 A translation of the
parabola y2 = 4px .

(y − k)2 = −4p(x − h),

(x − h)2 = 4p(y − k), and

(x − h)2 = −4p(y − k).

(2a)

(3a)

(4a)

Equations (1a) and (2a) both take the general form

y2 + A x + B y + C = 0 (A �= 0), (5)

whereas Eqs. (3a) and (4a) both take the general form

x2 + A x + B y + C = 0 (B �= 0). (6)

What is significant about Eqs. (5) and (6) is what they have in common: Both are linear
in one of the coordinate variables and quadratic in the other. In fact, we can reduce any
such equation to one of the standard forms in Eqs. (1a) through (4a) by completing the
square in the coordinate variable that appears quadratically. This means that the graph
of any equation of the form of either Eqs. (5) or (6) is a parabola. The features of the
parabola can be read from the standard form of its equation, as in Example 2.

EXAMPLE 2 Determine the graph of the equation

4y2 − 8x − 12y + 1 = 0.
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Solution This equation is linear in x and quadratic in y. We divide through by the
coefficient of y2 and then collect on one side of the equation all terms that include y:

y2 − 3y = 2x − 1
4 .

Then we complete the square in the variable y and thus find that

y2 − 3y + 9
4 = 2x − 1

4 + 9
4 = 2x + 2 = 2(x + 1).

The final step is to write in the form 4p(x − h) the terms on the right-hand side that
include x : (

y − 3
2

)2 = 4 · 1
2 · (x + 1).

This equation has the form of Eq. (1a) with p = 1
2 , h = −1, and k = 3

2 . Thus the graph
is a parabola that opens to the right from its vertex at (−1, 3

2 ). Its focus is at (− 1
2 , 3

2 ),
its directrix is the vertical line x = − 3

2 , and its axis is the horizontal line y = 3
2 . It

appears in Fig. 9.6.4. ◗

x

y

(−1,    )3
2

y =y = 3
2

FIGURE 9.6.4 The parabola of
Example 2.

Applications of Parabolas
The parabola y2 = 4px (p > 0) is shown in Fig. 9.6.5 along with an incoming ray of

(c, 0) x

α

α

α

Q (a, b)

y

2

FIGURE 9.6.5 The reflection
property of the parabola: α = β.

light traveling to the left and parallel to the x-axis. This light ray strikes the parabola at
the point Q(a, b) and is reflected toward the x-axis, which it meets at the point (c, 0).
The light ray’s angle of reflection must equal its angle of incidence, which is why both
of these angles—measured with respect to the tangent line L at Q—are labeled α in the
figure. The angle vertical to the angle of incidence is also equal to α. Hence, because
the incoming ray is parallel to the x-axis, the angle the reflected ray makes with the
x-axis at (c, 0) is 2α.

Using the points Q and (c, 0) to compute the slope of the reflected light ray, we
find that

b

a − c
= tan 2α = 2 tan α

1 − tan2 α
.

(The second equality follows from a trigonometric identity in Problem 28 in Ap-
pendix C.) But the angle α is related to the slope of the tangent line L at Q. To
find that slope, we begin with

y = 2
√

px = 2(px)1/2

and compute
dy

dx
=

(
p

x

)1/2

.

Hence the slope of L is both tan α and dy/dx evaluated at (a, b); that is,

tan α =
(

p

a

)1/2

.

Therefore,

b

a − c
= 2 tan α

1 − tan2 α
=

2

√
p

a

1 − p

a

= 2
√

pa

a − p
= b

a − p
,

because b = 2
√

pa. Hence c = p. The surprise is that c is independent of a and b and
depends only on the equation y2 = 4px of the parabola. Therefore all incoming light
rays parallel to the x-axis will be reflected to the single point F(p, 0). This is why F
is called the focus of the parabola.

This reflection property of the parabola is exploited in the design of parabolic
mirrors. Such a mirror has the shape of the surface obtained by revolving a parabola
around its axis of symmetry. Then a beam of incoming light rays parallel to the axis
will be focused at F , as shown in Fig. 9.6.6. The reflection property can also be
used in reverse—rays emitted at the focus are reflected in a beam parallel to the axis,

Parabola

Focus F

FIGURE 9.6.6 Incident rays
parallel to the axis reflect through
the focus.

thus keeping the light beam intense. Moreover, applications are not limited to light
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702 CHAPTER 9 Polar Coordinates and Parametric Curves

rays alone; parabolic mirrors are used in visual and radio telescopes, radar antennas,
searchlights, automobile headlights, microphone systems, satellite ground stations, and
solar heating devices.

Galileo discovered early in the seventeenth century that the trajectory of a pro-

Ground

α

Firing point

0y

0

0x

FIGURE 9.6.7 Resolution of the
initial velocity v0 into its horizontal
and vertical components.

jectile fired from a gun is a parabola (under the assumptions that air resistance can be
ignored and that the gravitational acceleration remains constant). Suppose that a pro-
jectile is fired with initial velocity v0 at time t = 0 from the origin and at an angle α of
inclination from the horizontal x-axis. Then the initial velocity of the projectile splits
into the components

v0x = v0 cos α and v0y = v0 sin α,

as indicated in Fig. 9.6.7. The fact that the projectile continues to move horizontally
with constant speed v0x , together with Eq. (34) of Section 5.2, implies that its x- and
y-coordinates after t seconds are

x = (v0 cos α)t, (7)

y = − 1
2 gt2 + (v0 sin α)t. (8)

By substituting t = x/(v0 cos α) from Eq. (7) into Eq. (8) and then completing the
square, we can derive (as in Problem 70) an equation of the form

y − M = −4p
(
x − 1

2 R
)2

. (9)

Here,

M = v2
0 sin2 α

2g
(10)

is the maximum height attained by the projectile, and

R = v2
0 sin 2α

g
(11)

is its range, the horizontal distance the projectile will travel before it returns to the
ground. Thus its trajectory is the parabola shown in Fig. 9.6.8.

α

y

xR/2 R

(R/2, M )

0

FIGURE 9.6.8 The trajectory of the
projectile, showing its maximum
altitude M and its range R.

The Ellipse
An ellipse is a conic section with eccentricity e less than 1, as in Example 3 of Sec-
tion 9.1.

DEFINITION The Ellipse
Suppose that e < 1, and let F be a fixed point and L a fixed line not containing F .
The ellipse with eccentricity e, focus F , and directrix L is the set of all points P
such that the distance |PF| is e times the (perpendicular) distance from P to the line
L .

The equation of the ellipse is especially simple if F is the point (c, 0) on they

xF (c, 0)

P (x, y)

c 
e2L: x =

c 
e2Q(     , y)

FIGURE 9.6.9 Ellipse: focus F,
directrix L, eccentricity e.

x-axis and L is the vertical line x = c/e2. The case c > 0 is shown in Fig. 9.6.9. If Q
is the point (c/e2, y), then PQ is the perpendicular from P(x, y) to L . The condition
|PF| = e|PQ| then gives

(x − c)2 + y2 = e2

(
x − c

e2

)2

;

x2 − 2cx + c2 + y2 = e2x2 − 2cx + c2

e2
;

x2(1 − e2) + y2 = c2

(
1

e2
− 1

)
= c2

e2
(1 − e2).

Thus

x2(1 − e2) + y2 = a2(1 − e2),

702

www.konkur.in



Conic Sections and Applications SECTION 9.6 703

where

a = c

e
. (12)

We divide both sides of the next-to-last equation by a2(1 − e2) and get

x2

a2
+ y2

a2(1 − e2)
= 1.

Finally, with the aid of the fact that e < 1, we may let

b2 = a2(1 − e2) = a2 − c2. (13)

Then the equation of the ellipse with focus (c, 0) and directrix x = c/e2 = a/e takes
the simple form

x2

a2
+ y2

b2
= 1. (14)

We see from Eq. (14) that this ellipse is symmetric around both coordinate axes.
Its x-intercepts are (±a, 0) and its y-intercepts are (0, ±b). The points (±a, 0) are
called the vertices of the ellipse, and the line segment joining them is called its major
axis. The line segment joining (0, b) and (0, −b) is called the minor axis [note from
Eq. (13) that b < a]. The alternative form

a2 = b2 + c2 (15)

of Eq. (13) is the Pythagorean relation for the right triangle of Fig. 9.6.10. Indeed,
visualization of this triangle is an excellent way to remember Eq. (15). The numbers a
and b are the lengths of the major and minor semiaxes, respectively.

y

x

L

(0, −b)

(−a, 0)

(0, b)

(a, 0)
F(c, 0)

a

c

b

FIGURE 9.6.10 The parts of an ellipse.

y

x

|PF1| = e |PQ1|

P

L2L1

Q1

F1(−c, 0) F2(c, 0)

Q2

x = a
ex = − a

e

and
|PF2| = e |PQ2|

FIGURE 9.6.11 The ellipse as a conic
section: two foci, two directrices.

Because a = c/e, the directrix of the ellipse in Eq. (14) is x = a/e. If we had
begun instead with the focus (−c, 0) and directrix x = −a/e, we would still have
obtained Eq. (14), because only the squares of a and c are involved in its derivation.
Thus the ellipse in Eq. (14) has two foci, (c, 0) and (−c, 0), and two directrices, x =
a/e and x = −a/e (Fig. 9.6.11).

The larger the eccentricity e < 1, the more elongated the ellipse. (Remember
that e = 1 is the eccentricity of every parabola). But if e = 0, then Eq. (13) gives
b = a, so Eq. (14) reduces to the equation of a circle of radius a. Thus a circle is an
ellipse of eccentricity zero. Compare the three cases shown in Fig. 9.6.12.

e = 0.97 e = 0e = 0.70

FIGURE 9.6.12 The relation
between the eccentricity of an ellipse
and its shape.

703

www.konkur.in
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EXAMPLE 3 Find an equation of the ellipse with foci (±3, 0) and vertices (±5, 0).

Solution We are given c = 3 and a = 5, so Eq. (13) gives b = 4. Thus Eq. (14) gives

x2

25
+ y2

16
= 1

for the desired equation. This ellipse is shown in Fig. 9.6.13. ◗

y

x
(5, 0)

(0, 4)

(3, 0)

+x2

25
y2

16
= 1

FIGURE 9.6.13 The ellipse of
Example 3.

If the two foci of an ellipse are on the y-axis, such as F1(0, c) and F2(0, −c),
then the equation of the ellipse is

x2

b2
+ y2

a2
= 1, (16)

and it is still true that a2 = b2 + c2, as in Eq. (15). But now the major axis of length 2a
is vertical and the minor axis of length 2b is horizontal. The derivation of Eq. (16) isy

x

(0, a)
F2(0, c)

(b, 0)

a
c

b

F1

FIGURE 9.6.14 An ellipse with
vertical major axis.

similar to that of Eq. (14); see Problem 79. Figure 9.6.14 shows the case of an ellipse
whose major axis is vertical. The vertices of such an ellipse are at (0, ±a); they are
always the endpoints of the major axis.

In practice there is little chance of confusing Eqs. (14) and (16). The equation or
the given data will make it clear whether the major axis of the ellipse is horizontal or
vertical. Just use the equation to read the ellipse’s intercepts. The two intercepts that
are farthest from the origin are the endpoints of the major axis; the other two are the
endpoints of the minor axis. The two foci lie on the major axis, each at distance c from
the center of the ellipse—which will be the origin if the equation of the ellipse has the
form of either Eq. (14) or Eq. (16).

EXAMPLE 4 Sketch the graph of the equation

x2

16
+ y2

25
= 1.

Solution The x-intercepts are (±4, 0); the y-intercepts are (0, ±5). So the major
axis is vertical. We take a = 5 and b = 4 in Eq. (15) and find that c = 3. The foci are
thus at (0, ±3). Hence this ellipse has the appearance of the one shown in Fig. 9.6.15y

x(4, 0)

(0, 5)

(0, 3)

(0, −3)

+ = 1x2

16
y2

25

FIGURE 9.6.15 The ellipse of
Example 4.

◗

Any equation of the form

A x2 + Cy2 + Dx + Ey + F = 0, (17)

in which the coefficients A and C of the squared variables are both nonzero and have
the same sign, may be reduced to the form

A (x − h)2 + C(y − k)2 = G

by completing the square in x and y. We may assume that A and C are both positive.
Then if G < 0, there are no points that satisfy Eq. (17), and the graph is the empty set.
If G = 0, then there is exactly one point on the locus—the single point (h, k). And
if G > 0, we can divide both sides of the last equation by G and get an equation that
resembles one of these two:

(x − h)2

a2
+ (y − k)2

b2
= 1,

(x − h)2

b2
+ (y − k)2

a2
= 1.

(18a)

(18b)

Which equation should you choose? Select the one that is consistent with the condition
a � b > 0. Finally, note that either of the equations in (18) is the equation of a
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translated ellipse. Thus, apart from the exceptional cases already noted, the graph of
Eq. (17) is an ellipse if AC > 0.

EXAMPLE 5 Determine the graph of the equation

3x2 + 5y2 − 12x + 30y + 42 = 0.

Solution We collect terms containing x , terms containing y, and complete the square
in each variable. This gives

3(x2 − 4x) + 5(y2 + 6y) = −42;
3(x2 − 4x + 4) + 5(y2 + 6y + 9) = 15;

(x − 2)2

5
+ (y + 3)2

3
= 1.

Thus the given equation is that of a translated ellipse with center at (2, −3).
Its horizontal major semiaxis has length a = √

5 and its minor semiaxis has length
b = √

3 (Fig. 9.6.16). The distance from the center to each focus is c = √
2 and the

(2 +        −3)(2, −3)

y

x

5

2

3

(2, −3 +     )3

5,

(2 +        −3)2,

FIGURE 9.6.16 The ellipse of
Example 5.

eccentricity is e = c/a = √
2/5. ◗

Applications of Ellipses

EXAMPLE 6 The orbit of the earth is an ellipse with the sun at one focus. The
planet’s maximum distance from the center of the sun is 94.56 million miles and its
minimum distance is 91.44 million miles. What are the major and minor semiaxes of
the earth’s orbit, and what is its eccentricity?

Solution As Fig. 9.6.17 shows, we have

Sun

a c

Perihelion

Aphelion

FIGURE 9.6.17 The orbit of the
earth with its eccentricity
exaggerated (Example 6).

a + c = 94.56 and a − c = 91.44,

with units in millions of miles. We conclude from these equations that a = 93.00, that
c = 1.56, and then that

b =
√

(93.00)2 − (1.56)2 ≈ 92.99

million miles. Finally,

e = c

a
= 1.56

93.00
≈ 0.017,

a number relatively close to zero. This means that the earth’s orbit is nearly circular.
Indeed, the major and minor semiaxes are so nearly equal that, on any usual scale, the
earth’s orbit would appear to be a perfect circle. But the difference between uniform
circular motion and the earth’s actual motion has some important aspects, including
the facts that the sun is 1.56 million miles off center and that the orbital speed of the
earth is not constant. ◗

EXAMPLE 7 One of the most famous comets is Halley’s comet, named for Edmund
Halley (1656–1742), a disciple of Newton. By studying the records of the paths of
earlier comets, Halley deduced that the comet of 1682 was the same one that had been
sighted in 1607, in 1531, in 1456, and in 1066 (an omen at the Battle of Hastings). In
1682 Halley predicted that this comet would return in 1759, in 1835, and in 1910; he
was correct each time. The period of Halley’s comet is about 76 years—it can vary a
couple of years in either direction because of perturbations of its orbit by the planet
Jupiter. The orbit of Halley’s comet is an ellipse with the sun at one focus. In terms of
astronomical units (1 AU is the mean distance from the earth to the sun), the major and
minor semiaxes of this elliptical orbit are 18.09 AU and 4.56 AU, respectively. What
are the maximum and minimum distances from the sun of Halley’s comet?
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Solution We are given that a = 18.09 (all distance measurements are in astronomical
units) and that b = 4.56, so

c =
√

(18.09)2 − (4.56)2 ≈ 17.51.

Hence the maximum distance of the comet from the sun is a + c ≈ 35.60 AU,
and its minimum distance is a − c ≈ 0.58 AU. The eccentricity of its orbit is

e = c

a
≈ 17.51

18.09
≈ 0.97,

a very eccentric orbit (but see Problem 77). ◗

The reflection property of the ellipse states that the tangent line at a point P of
an ellipse makes equal angles with the two lines PF1 and PF2 from P to the two foci
of the ellipse (Fig. 9.6.18). This property is the basis of the “whispering gallery” phe-
nomenon, which has been observed in the so-called whispering gallery of the U.S. Sen-
ate. Suppose that the ceiling of a large room is shaped like half an ellipsoid obtained by
revolving an ellipse around its major axis. Sound waves, like light waves, are reflected
with equal angles of incidence and reflection. Thus if two diplomats are holding a quiet
conversation near one focus of the ellipsoidal surface, a reporter standing near the other

Tangent line

F2

α

P
β α = β=

F1

FIGURE 9.6.18 The reflection
property: α = β.

focus—perhaps 50 feet away—might be able to eavesdrop on their conversation even
if the conversation were inaudible to others in the same room.

Some billiard tables are manufactured in the shape of an ellipse. The foci of such
tables are plainly marked for the convenience of enthusiasts of this unusual game.

A more serious application of the reflection property of ellipses is the nonsurgi-
cal kidney-stone treatment called shockwave lithotripsy. An ellipsoidal reflector with a
transducer (an energy transmitter) at one focus is positioned outside the patient’s body
so that the offending kidney stone is located at the other focus. The stone then is pul-
verized by reflected shockwaves emanating from the transducer. (For further details,
see the COMAP Newsletter 20, November, 1986.)

An alternative definition of the ellipse with foci F1 and F2 and major axis of
length 2a is this: It is the locus of a point P such that the sum of the distances |PF1|
and |PF2| is the constant 2a. (See Problem 82.) This fact gives us a convenient way
to draw the ellipse by using two tacks placed at F1 and F2, a string of length 2a, and a
pencil (Fig. 9.6.19).

FIGURE 9.6.19 One way to draw
an ellipse.

The Hyperbola
A hyperbola is a conic section defined in the same way as is an ellipse, except that the
eccentricity e of a hyperbola is greater than 1.

DEFINITION The Hyperbola
Suppose that e > 1, and let F be a fixed point and L a fixed line not containing F.
Then the hyperbola with eccentricity e, focus F , and directrix L is the set of all
points P such that the distance |PF| is e times the (perpendicular) distance from P
to the line L .

As with the ellipse, the equation of a hyperbola is simplest if F is the point

y

x

P(x, y)

c 
e2Q(     , y)

L

F (c, 0)

x = c 
e2

FIGURE 9.6.20 The definition of
the hyperbola.

(c, 0) on the x-axis and L is the vertical line x = c/e2. The case c > 0 is shown in
Fig. 9.6.20. If Q is the point (c/e2, y), then PQ is the perpendicular from P(x, y) to
L . The condition |PF| = e|PQ| gives

(x − c)2 + y2 = e2

(
x − c

e2

)2

;

x2 − 2cx + c2 + y2 = e2x2 − 2cx + c2

e2
;

(e2 − 1)x2 − y2 = c2

(
1 − 1

e2

)
= c2

e2
(e2 − 1).
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Thus
(e2 − 1)x2 − y2 = a2(e2 − 1),

where

a = c

e
. (19)

If we divide both sides of the next-to-last equation by a2(e2 − 1), we get

x2

a2
− y2

a2(e2 − 1)
= 1.

To simplify this equation, we let

b2 = a2(e2 − 1) = c2 − a2. (20)

This is permissible because e > 1. So the equation of the hyperbola with focus (c, 0)

and directrix x = c/e2 = a/e takes the form

x2

a2
− y2

b2
= 1. (21)

The minus sign on the left-hand side is the only difference between the equation of a
hyperbola and that of an ellipse. Of course, Eq. (20) also differs from the relation

b2 = a2(1 − e2) = a2 − c2

for the case of the ellipse.
The hyperbola of Eq. (21) is clearly symmetric around both coordinate axes and

has x-intercepts (±a, 0). But it has no y-intercept. If we rewrite Eq. (21) in the form

y = ±b

a

√
x2 − a2, (22)

then we see that there are points on the graph only if |x | � a. Hence the hyperbola has
two branches, as shown in Fig. 9.6.21. We also see from Eq. (22) that |y| → ∞ as
|x | → ∞.

xF (c, 0)

a
ex =

(a, 0)

(−a, 0)
a

b
c

FIGURE 9.6.21 A hyperbola has two
branches.

The x-intercepts V1(−a, 0) and V2(a, 0) are the vertices of the hyperbola, and
the line segment joining them is its transverse axis (Fig. 9.6.22). The line segment
joining W1(0, −b) and W2(0, b) is its conjugate axis. The alternative form

c2 = a2 + b2 (23)

of Eq. (20) is the Pythagorean relation for the right triangle shown in Fig. 9.6.22.
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a

b
c

W1 (0, −b)

W2 (0, b)
Transverse

axis

Conjugate
axis

y

x
F2 (c, 0)F1 (−c, 0)

V1 (−a, 0) V2 (a, 0)

b
ay =     x

b
ay = −    x

−x2

a2
y2

b2 = 1

FIGURE 9.6.22 The parts of a hyperbola.

y

x

a
b

c

F1 (0, −c)

V2 (0, a)

a
b

y =     xa
b

y = −    x

−y2

a2
x2

b2 = 1

F2 (0, c)

V1 (0, −a)

FIGURE 9.6.23 The hyperbola of Eq. (25) has horizontal
directrices.

The lines y = ±bx/a that pass through the center (0, 0) and the opposite vertices
of the rectangle in Fig. 9.6.22 are asymptotes of the two branches of the hyperbola in
both directions. That is, if

y1 = bx

a
and y2 = b

a

√
x2 − a2,

then

lim
x→∞(y1 − y2) = 0 = lim

x→−∞(y1 − (−y2)). (24)

To verify the first limit (for instance), note that

lim
x→∞

b

a

(
x −

√
x2 − a2

) = lim
x→∞

b

a
·
(
x − √

x2 − a2
)(

x + √
x2 − a2

)
x + √

x2 − a2

= lim
x→∞

b

a
· a2

x + √
x2 − a2

= 0.

Just as in the case of the ellipse, the hyperbola with focus (c, 0) and directrix
x = a/e also has focus (−c, 0) and directrix x = −a/e (Fig. 9.6.22). Because c = ae
by Eq. (19), the foci (±ae, 0) and the directrices x = ±a/e take the same forms in
terms of a and e for both the hyperbola (e > 1) and the ellipse (e < 1).

If we interchange x and y in Eq. (21), we obtain

y2

a2
− x2

b2
= 1. (25)

This hyperbola has foci at (0, ±c). The foci as well as this hyperbola’s transverse axis
lie on the y-axis. Its asymptotes are y = ±ax/b, and its graph generally resembles the
one in Fig. 9.6.23.

When we studied the ellipse, we saw that its orientation—whether the major
axis is horizontal or vertical—is determined by the relative sizes of a and b. In the
case of the hyperbola, the situation is quite different, because the relative sizes of a
and b make no such difference: They affect only the slopes of the asymptotes. The
direction in which the hyperbola opens—horizontal as in Fig. 9.6.22 or vertical as in
Fig. 9.6.23—is determined by the signs of the terms that contain x2 and y2.
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EXAMPLE 8 Sketch the graph of the hyperbola with equation

y2

9
− x2

16
= 1.

Solution This is an equation of the form in Eq. (25), so the hyperbola opens vertically.
Because a = 3 and b = 4, we find that c = 5 by using Eq. (23): c2 = a2 + b2. Thus
the vertices are (0, ±3), the foci are the two points (0, ±5), and the asymptotes are the
two lines y = ±3x/4. This hyperbola appears in Fig. 9.6.24. ◗

y

x

3
4y =     x

3
4y = −    x

−y2

9 
x2

16 
= 1

F2 (0, 5)

V1 (0, −3)

V2 (0, 3)

F1 (0, −5)

FIGURE 9.6.24 The hyperbola of
Example 8.

EXAMPLE 9 Find an equation of the hyperbola with foci (±10, 0) and asymptotes
y = ±4x/3.

Solution Because c = 10, we have

a2 + b2 = 100 and
b

a
= 4

3
.

Thus b = 8 and a = 6, and the standard equation of the hyperbola is

x2

36
− y2

64
= 1. ◗

As we noted earlier, any equation of the form

A x2 + Cy2 + Dx + Ey + F = 0 (26)

with both A and C nonzero can be reduced to the form

A (x − h)2 + B(y − k)2 = G

by completing the square in x and y. Now suppose that the coefficients A and C of the
quadratic terms have opposite signs. For example, suppose that A = p2 and B = −q2.
The last equation then becomes

p2(x − h)2 − q2(y − k)2 = G. (27)

If G = 0, then factorization of the difference of squares on the left-hand side yields
the equations

p(x − h) + q(y − k) = 0 and p(x − h) − q(y − k) = 0
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of two straight lines through (h, k) with slopes m = ±p/q. If G �= 0, then division of
Eq. (27) by G gives an equation that looks either like

(x − h)2

a2
− (y − k)2

b2
= 1 (if G > 0)

or like

(y − k)2

a2
− (x − h)2

b2
= 1 (if G < 0).

Thus if AC < 0 in Eq. (26), the graph is either a pair of intersecting straight lines or a
hyperbola.

EXAMPLE 10 Determine the graph of the equation

9x2 − 4y2 − 36x + 8y = 4.

Solution We collect the terms that contain x and those that contain y, and we then
complete the square in each variable. We find that

9(x − 2)2 − 4(y − 1)2 = 36,

so

(x − 2)2

4
− (y − 1)2

9
= 1.

Hence the graph is a hyperbola with a horizontal transverse axis and center (2, 1).
Because a = 2 and b = 3, we find that c = √

13. The vertices of the hyperbola are
(0, 1) and (4, 1), and its foci are the two points (2 ± √

13, 1). Its asymptotes are the
two lines

y − 1 = ± 3
2 (x − 2),

translates of the asymptotes y = ±3x/2 of the hyperbola 1
4 x2 − 1

9 y2 = 1. Figure
9.6.25 shows the graph of the translated hyperbola. ◗

y

x
(0, 1) (2, 1)

(4, 1)

3
2y − 1 =      (x − 2) 3

2y − 1 =  −    (x − 2)

9x2  − 4y2 − 36x
+ 8y = 4

FIGURE 9.6.25 The hyperbola of
Example 10, a translate of the hyperbola
x2/4 − y 2/9 = 1.
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Applications of Hyperbolas

The reflection property of the hyperbola takes the same form as that for the ellipse.
If P is a point on a hyperbola, then the two lines PF1 and PF2 from P to the two
foci make equal angles with the tangent line at P . In Fig. 9.6.26 this means that
α = β.

F1 F2

P

βα

Tangent
line

FIGURE 9.6.26 The reflection property of
the hyperbola.

F1 F2

P

β

α

Light ray

α = β=

FIGURE 9.6.27 How a hyperbolic mirror
reflects a ray aimed at one focus: α = β

again.

For an important application of this reflection property, consider a mirror that is
shaped like one branch of a hyperbola and is reflective on its outer (convex) surface.
An incoming light ray aimed toward one focus will be reflected toward the other focus
(Fig. 9.6.27). Figure 9.6.28 indicates the design of a reflecting telescope that makes
use of the reflection properties of the parabola and the hyperbola. The parallel incom-
ing light rays first are reflected by the parabola toward its focus at F . Then they are
intercepted by an auxiliary hyperbolic mirror with foci at E and F and reflected into
the eyepiece located at E .

Incoming parallel
light rays

F (common focus of 
parabola and hyperbola)

Auxiliary mirror

Main mirror

E

FIGURE 9.6.28 One type of reflecting
telescope: main mirror parabolic, auxiliary
mirror hyperbolic.

Example 11 illustrates how hyperbolas are used to determine the positions of
ships at sea.

EXAMPLE 11 A ship lies in the Labrador Sea at point A due east of Wesleyville, on
the long north-south coastline of Newfoundland. Simultaneous radio signals are trans-
mitted by radio stations at A and at St. John’s, point B, which is on the coast 200 km
due south of A. The ship receives the signal from A 500 microseconds (μs) before it
receives the signal from B. Assume that the speed of radio signals is 300 m/μs. How
far out at sea is the ship?
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Solution The situation is diagrammed in Fig. 9.6.29. The difference between the

x

B (0, −100)

(0, 0)

A(0, 100)
S

Ship

y

Coastline

x

FIGURE 9.6.29 A navigation
problem (Example 11).

distances of the ship at S from A and B is

|SB| − |SA| = 500 · 300 = 150,000

meters; that is, 150 km. Thus (by Problem 88) the ship lies on a hyperbola with
foci A and B, with 2a = |SB| − |SA|. From Fig. 9.6.29 we see that c = 100, so a =
1
2 · 150 = 75, and thus

b =
√

c2 − a2 =
√

1002 − 752 = 25
√

7.

In the coordinate system of Fig. 9.6.29, the hyperbola has equation

y2

752
− x2

7 · 252
= 1.

We substitute y = 100 because the ship is due east of A. Thus we find that the ship’s
distance from the coastline is x = 175

3 ≈ 58.3 km. ◗

Conics in Polar Coordinates
In order to investigate orbits of satellites—such as planets or comets orbiting the sun or

Q
P

O

p

r

x = −p

Directrix

Conic

x

θ

θ

y

FIGURE 9.6.30 A conic section:
|OP| = e|PQ|.

natural or artificial moons orbiting a planet—we need equations of the conic sections
in polar coordinates. As a bonus, we find that all three conic sections have the same
general equation in polar coordinates.

To derive the polar equation of a conic section, suppose its focus is the origin O
and that its directrix is the vertical line x = −p (with p > 0). In the notation of
Fig. 9.6.30, the fact that |OP| = e|PQ| then tells us that r = e(p + r cos θ). Solution
of this equation for r yields

r = pe

1 − e cos θ
.

If the directrix is the vertical line x = +p > 0 to the right of the origin, then a similar
calculation gives the same result, except with a change of sign in the denominator.

Polar-Coordinate Equation of a Conic Section
The polar equation of a conic section with eccentricity e, focus O , and directrix
x = ±p is

r = pe

1 ± e cos θ
. (28)

Figure 9.6.31 shows an ellipse with eccentricity e < 1 and directrix x = −p. Its
vertices correspond to θ = 0 and θ = π , where maximal and minimal radii r0 and r1

occur. It follows that the length 2a of its major axis is

2a = r0 + r1 = pe

1 − e
+ pe

1 + e
= 2pe

1 − e2
.

Cross multiplication gives the relation

r0r1

FIGURE 9.6.31 The maximal

radius r0 = pe

1 − e
and the minimal

radius r1 = pe

1 + e
of the ellipse.

pe = a(1 − e2), (29)

and substituting in (28) then yields the equation

r = a(1 − e2)

1 ± e cos θ
(30)

of an ellipse with eccentricity e and major semiaxis a.
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EXAMPLE 12 Sketch the graph of the equation

r = 16

5 − 3 cos θ
.

Solution First we divide numerator and denominator by 5 and find that

r =
16
5

1 − 3
5 cos θ

.

Thus e = 3
5 and pe = 16

5 . Equation (29) then implies that a = 5. Finally, c = ae = 3
and

b =
√

a2 − c2 = 4.

So we have here an ellipse with major semiaxis a = 5, minor semiaxis b = 4, and
center at (3, 0) in Cartesian coordinates. The ellipse is shown in Fig. 9.6.32. ◗

r =

O

y

x(−2, 0) (8, 0)(3, 0)

16
5 − 3cosθ

FIGURE 9.6.32 The ellipse of
Example 12.

REMARK 1 The limiting form of Eq. (30) as e → 0 is the equation r = a of a circle.
Because p → ∞ as e → 0 with a fixed in Eq. (29), we may therefore regard any circle
as an ellipse with eccentricity zero and with directrix at infinity.

REMARK 2 If we begin with an ellipse with eccentricity e < 1 and directrix x = −p,
then the limiting form of Eq. (30) as e → 1− is the equation

r = p

1 − cos θ
(31)

of a parabola. For instance, Fig. 9.6.33 shows a parabola and an ellipse of eccentricity
e = 0.99, both with directrix p = −1. Observe that the two curves appear to almost
coincide near the origin where 30◦ < θ < 330◦. This sort of approximation of an
ellipse by a parabola is useful in studying comets with highly eccentric elliptical orbits.

y

x

FIGURE 9.6.33 The parabola r = 1

1 − cos θ
and the ellipse r = 0.99

1 − 0.99 cos θ
.

EXAMPLE 13 A certain comet is known to have a highly eccentric elliptical orbit
with the sun at one focus. Two successive observations as this comet approached the
sun gave the measurements r = 6 AU when θ = 60◦, and r = 2 AU when θ = 90◦
(relative to a fixed polar-coordinate system). Estimate the position of the comet at its
point of closest approach to the sun.

Solution Because the elliptical orbit is highly eccentric, we assume that near the
sun it can be approximated closely by a parabola. The angle θ = α of the axis is
unknown, but a preliminary sketch indicates that α will be less than the initial angle of
observation; thus 0 < α < π/3. Using the polar coordinate system with this unknown
polar axis and counterclockwise angular variable φ = θ −α (Fig. 9.6.34), the equation
in (31) of the parabola takes the form

r = p

1 − cos φ
= p

1 − cos(θ − α)
. (32)
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The vertex of a parabola is its point closest to its focus (Problem 65), so they

xSun

Comet

α

φ

FIGURE 9.6.34 The comet of
Example 13.

minimum distance of the comet from the sun will be r = p/2 when θ = π + α. Our
problem, then, is to determine the values of p and α.

Substituting the given observational data into Eq. (32) yields the two equations

6 = p

1 − cos(π/3 − α)
and 2 = p

1 − cos(π/2 − α)
. (33)

Elimination of p yields

6 − 6 cos

(
π

3
− α

)
= 2 − 2 cos

(
π

2
− α

)
;

6 − 6

(
1

2
cos α +

√
3

2
sin α

)
= 2 − 2 sin α.

We therefore need to solve the single equation

3 cos α + (
3
√

3 − 2
)

sin α − 4 = 0.

A calculator or computer yields the approximate root α = 0.3956 ≈ 22.67◦. Then the
second equation in (33) gives p = 2(1 − sin α) ≈ 1.2293(AU). Since 1 astronomical
unit is about 93 million miles, the comet’s closest approach to the sun is about 1

2 p =
(0.5)(1.2293)(93) ≈ 57.16 million miles. ◗

9.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. In this section, a parabola is defined to be the locus of all points in the plane
equally distant from a fixed point F and a fixed line L not containing F .

2. If a parabola has focus F(p, 0) and directrix the vertical line x = −p (where
p > 0), then its equation is y2 = 4px .

3. Incoming light rays parallel to the axis of a parabolic mirror will be reflected so
that all pass through its focus.

4. In this section there appears the following definition: Suppose that e < 1, and
let F be a fixed point and L a fixed line not containing F . Then the ellipse with
eccentricity e, focus F , and directrix L is the set of all points P such that the
distance |PF| is e times the (perpendicular) distance from P to the line L .

5. If F is the point (c, 0) and L is the vertical line x = c/e2, then the ellipse with
focus F and directrix L has equation

x2

a2
+ y2

b2
= 1

where a = c/e and b2 = a2 − c2.
6. Equation (13) implies that an ellipse of eccentricity zero is a circle.
7. A hyperbola is defined in the same way as an ellipse, except that the eccentricity

e of a hyperbola is greater than 1.
8. The hyperbola with focus F(c, 0) and directrix the vertical line x = c/e2 has

equation
x2

a2
− y2

b2
= 1

where a = c/e and b2 = c2 − a2.
9. The hyperbola with the equation in Question 8 has two asymptotes with equations

y = bx/a and y = −bx/a.
10. If we begin with an ellipse having eccentricity e < 1 and directix x = −p, then

the limiting form of its polar coordinates equation as e → 1− is the equation of
a parabola.
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9.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. Summarize the definitions and alternative constructions of the parabola, ellipse,

and hyperbola.
2. Compare the reflection properties of the three types of conic sections.
3. Summarize the applications of the conic sections. You might like to consult an

encyclopedia or do a web search.

9.6 PROBLEMS

In Problems 1 through 5, find the equation and sketch the graph
of the parabola with vertex V and focus F.

1. V (0, 0), F(3, 0)

2. V (0, 0), F(0, −2)

3. V (2, 3), F(2, 1)

4. V (−1, −1), F(−3, −1)

5. V (2, 3), F(0, 3)

In Problems 6 through 10, find the equation and sketch the graph
of the parabola with the given focus and directrix.

6. F(1, 2), x = −1

7. F(0, −3), y = 0

8. F(1, −1), x = 3

9. F(0, 0), y = −2

10. F(−2, 1), x = −4

In Problems 11 through 18, sketch the parabola with the given
equation. Show and label its vertex, focus, axis, and directrix.

11. y2 = 12x

12. x2 = −8y

13. y2 = −6x

14. x2 = 7y

15. x2 − 4x − 4y = 0

16. y2 − 2x + 6y + 15 = 0

17. 4x2 + 4x + 4y + 13 = 0

18. 4y2 − 12y + 9x = 0

In Problems 19 through 33, find an equation of the ellipse
specified.

19. Vertices (±4, 0) and (0, ±5)

20. Foci (±5, 0), major semiaxis 13

21. Foci (0, ±8), major semiaxis 17

22. Center (0, 0), vertical major axis 12, minor axis 8

23. Foci (±3, 0), eccentricity 3
4

24. Foci (0, ±4), eccentricity 2
3

25. Center (0, 0), horizontal major axis 20, eccentricity 1
2

26. Center (0, 0), horizontal minor axis 10, eccentricity 1
2

27. Foci (±2, 0), directrices x = ±8

28. Foci (0, ±4), directrices y = ±9

29. Center (2, 3), horizontal axis 8, vertical axis 4

30. Center (1, −2), horizontal major axis 8, eccentricity 3
4

31. Foci (−2, 1) and (4, 1), major axis 10

32. Foci (−3, 0) and (−3, 4), minor axis 6

33. Foci (−2, 2) and (4, 2), eccentricity 1
3

Sketch the graphs of the equations in Problems 34 through 38.
Indicate centers, foci, and lengths of axes.

34. 4x2 + y2 = 16

35. 4x2 + 9y2 = 144

36. 4x2 + 9x2 = 24x

37. 9x2 + 4y2 − 32y + 28 = 0

38. 2x2 + 3y2 + 12x − 24y + 60 = 0

In Problems 39 through 52, find an equation of the hyperbola
described.

39. Foci (±4, 0), vertices (±1, 0)

40. Foci (0, ±3), vertices (0, ±2)

41. Foci (±5, 0), asymptotes y = ±3x/4

42. Vertices (±3, 0), asymptotes y = ±3x/4

43. Vertices (0, ±5), asymptotes y = ±x

44. Vertices (±3, 0), eccentricity e = 5
3

45. Foci (0, ±6), eccentricity e = 2

46. Vertices (±4, 0) and passing through (8, 3)

47. Foci (±4, 0), directrices x = ±1

48. Foci (0, ±9), directrices y = ±4

49. Center (2, 2), horizontal transverse axis of length 6, eccen-
tricity e = 2

50. Center (−1, 3), vertices (−4, 3) and (2, 3), foci (−6, 3) and
(4, 3)

51. Center (1,−2), vertices (1, 1) and (1, −5), asymptotes
3x − 2y = 7 and 3x + 2y = −1

52. Focus (8, −1), asymptotes 3x − 4y = 13 and 3x + 4y = 5

Sketch the graphs of the equations given in Problems 53 through
58; indicate centers, foci, and asymptotes.

53. x2 − y2 − 2x + 4y = 4

54. x2 − 2y2 + 4x = 0

55. y2 − 3x2 − 6y = 0

56. x2 − y2 − 2x + 6y = 9

57. 9x2 − 4y2 + 18x + 8y = 31

58. 4y2 − 9x2 − 18x − 8y = 41

In each of Problems 59 through 64, identify and sketch the conic
section with the given polar equation.

59. r = 6

1 + cos θ
60. r = 6

1 + 2 cos θ
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61. r = 3

1 − cos θ
62. r = 8

8 − 2 cos θ

63. r = 6

2 − sin θ
64. r = 12

3 + 2 cos θ

65. Prove that the point of the parabola y2 = 4px closest to its
focus is its vertex.

66. Find an equation of the parabola that has a vertical axis and
passes through the points (2, 3), (4, 3), and (6, −5).

67. Show that an equation of the line tangent to the parabola
y2 = 4px at the point (x0, y0) is

2px − y0 y + 2px0 = 0.

Conclude that the tangent line intersects the x-axis at the
point (−x0, 0). This fact provides a quick method for con-
structing a line tangent to a parabola at a given point.

68. A comet’s orbit is a parabola with the sun at its focus. When
the comet is 100

√
2 million miles from the sun, the line from

the sun to the comet makes an angle of 45◦ with the axis
of the parabola (Fig. 9.6.35). What will be the minimum
distance between the comet and the sun? [Suggestion: Write
the equation of the parabola with the origin at the focus, then
use the result of Problem 65.]

Comet

C

Sun

S 45°

FIGURE 9.6.35 The comet
of Problem 68 in parabolic
orbit around the sun.

69. Suppose that the angle of Problem 68 increases from 45◦ to
90◦ in 3 days. How much longer will be required for the
comet to reach its point of closest approach to the sun? As-
sume that the line segment from the sun to the comet sweeps
out area at a constant rate (Kepler’s second law).

70. Use Eqs. (7) and (8) to derive Eq. (9) with the values of M
and R given in Eqs. (10) and (11).

71. Deduce from Eq. (11) that, given a fixed initial velocity v0,
the maximum range of the projectile is Rmax = v2

0/g and is
attained when α = 45◦.

In Problems 72 through 74, assume that a projectile is fired with
initial velocity v0 = 50 m/s from the origin and at an angle of
inclination α. Use g = 9.8 m/s2.

72. If α = 45◦, find the range of the projectile and the maximum
height it attains.

73. For what value or values of α is the range R = 125 m?

74. Find the range of the projectile and the length of time it re-
mains above the ground if (a) α = 30◦; (b) α = 60◦.

75. The book Elements of Differential and Integral Calculus
by William Granville, Percey Smith, and William Longley
(Ginn and Company: Boston, 1929) lists a number of
“curves for reference”; the curve with equation

√
x + √

y =√
a is called a parabola. Verify that the curve in question

actually is a parabola, or show that it is not.

76. The 1992 edition of the study guide for the national actuarial
examinations has a problem quite similar to this one: Every
point on the plane curve K is equally distant from the point
(−1, −1) and the line x + y = 1, and K has equation

x2 + Bxy + Cy2 + Dx + Ey + F = 0.

Which is the value of D: −2, 2, 4, 6, or 8?

77. (a) The orbit of the comet Kahoutek is an ellipse of ex-
treme eccentricity e = 0.999925; the sun is at one focus
of this ellipse. The minimum distance between the sun and
Kahoutek is 0.13 AU. What is the maximum distance be-
tween Kahoutek and the sun? (b) The orbit of the comet
Hyakutake is an ellipse of extreme eccentricity e =
0.999643856; the sun is at one focus of this ellipse. The
minimum distance between the sun and Hyakutake is
0.2300232 AU. What is the maximum distance between
Hyakutake and the sun?

78. The orbit of the planet Mercury is an ellipse of eccentric-
ity e = 0.206. Its maximum and minimum distances from
the sun are 0.467 and 0.307 AU, respectively. What are the
major and minor semiaxes of the orbit of Mercury? Does
“nearly circular” accurately describe the orbit of Mercury?

79. Derive Eq. (16) for an ellipse whose foci lie on the y-axis.

80. Show that the line tangent to the ellipse

x2

a2
+ y2

b2
= 1

at the point P(x0, y0) of that ellipse has equation

x0x

a2
+ y0 y

b2
= 1.

81. Use the result of Problem 80 to establish the reflection prop-
erty of the ellipse. [Suggestion: Let m be the slope of the
line normal to the ellipse at P(x0, y0) and let m1 and m2 be
the slopes of the lines PF1 and PF2, respectively, from P to
the two foci F1 and F2 of the ellipse. Show that

m − m1

1 + m1m
= m2 − m

1 + m2m
;

then use the identity for tan(A − B).]

82. Given F1(−c, 0) and F2(c, 0) with a > c > 0, prove that the
ellipse

x2

a2
+ y2

b2
= 1

(with b2 = a2 − c2) is the locus of those points P such that
|P F1| + |P F2| = 2a.

83. Find an equation of the ellipse with horizontal and vertical
axes that passes through the points (−1, 0), (3, 0), (0, 2),
and (0, −2).

84. Derive an equation for the ellipse with foci (3, −3) and
(−3, 3) and major axis of length 10. Note that the foci of
this ellipse lie on neither a vertical line nor a horizontal line.
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85. Show that the graph of the equation

x2

15 − c
− y2

c − 6
= 1

is (a) a hyperbola with foci (±3, 0) if 6 < c < 15 and (b) an
ellipse if c < 6. (c) Identify the graph in the case c > 15.

86. Establish that the line tangent to the hyperbola

x2

a2
− y2

b2
= 1

at the point P(x0, y0) has equation

x0x

a2
− y0 y

b2
= 1.

87. Use the result of Problem 86 to establish the reflection prop-
erty of the hyperbola. (See the suggestion for Problem 81.)

88. Suppose that 0 < a < c, and let b = √
c2 − a2. Show

that the hyperbola x2/a2 − y2/b2 = 1 is the locus of a point
P such that the difference between the distances |PF1| and
|PF2| is equal to 2a (F1 and F2 are the foci of the hyperbola).

89. Derive an equation for the hyperbola with vertices
(±3/

√
2, ±3/

√
2) and foci (±5, ±5). Use the difference

definition of a hyperbola implied by Problem 88.

90. Two radio signaling stations at A and B lie on an east-west
line, with A 100 mi west of B. A plane is flying west on a
line 50 mi north of the line AB. Radio signals are sent (trav-
eling at 980 ft/μs) simultaneously from A and B, and the
one sent from B arrives at the plane 400 μs before the one
sent from A. Where is the plane?

91. Two radio signaling stations are located as in Problem 90
and transmit radio signals that travel at the same speed. But
now we know only that the plane is generally somewhere

north of the line AB, that the signal from B arrives 400 μs
before the one sent from A, and that the signal sent from A
and reflected by the plane takes a total of 600 μs to reach B.
Where is the plane?

92. A comet has a parabolic orbit with the sun at one focus.
When the comet is 150 million miles from the sun, the sun-
comet line makes an angle of 45◦ with the axis of the
parabola. What will be the minimum distance between the
comet and the sun?

93. A satellite has an elliptical orbit with the center of the earth
(take its radius to be 4000 mi) at one focus. The lowest point
of its orbit is 500 mi above the North Pole and the highest
point is 5000 mi above the South Pole. What is the height of
the satellite above the surface of the earth when the satellite
crosses the equatorial plane?

94. Find the closest approach to the sun of a comet as in Exam-
ple 13 of this section; assume that r = 2.5 AU when θ = 45◦
and that r = 1 AU when θ = 90◦.

95. An ellipse has semimajor axis a and semiminor axis b. Use
the polar-coordinate equation of an ellipse to derive the for-
mula A = πab for its area.

96. The orbit of a certain comet approaching the sun is the
parabola

r = 1

1 − cos θ
.

The units for r are in astronomical units. Suppose that
it takes 15 days for the comet to travel from the position
θ = 60◦ to the position θ = 90◦. How much longer will it
require for the comet to reach its point of closest approach
to the sun? Assume that the radius from the sun to the comet
sweeps out area at a constant rate as the comet moves (Ke-
pler’s second law of planetary motion).

CHAPTER 9: REVIEW

Understanding: Concepts, Definitions, and Formulas
Refer to the listed pages to review the concepts, definitions, and formulas of this chapter that you need to understand.

Section Pages
9.1 The parabola, ellipse, and hyperbola as plane sections of a cone . . . . . . . . . . . . . . . . . . . . 662
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9.2 Polar coordinates in the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
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Polar coordinate equations of plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666
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Tangent lines to parametric curves:
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= y′(t)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

9.5 Parametric area, volume, arc length, and surface area computations . . . . . . . . . . . . . . . . . 690–691
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CHAPTER 9: REVIEW (Continued)

Quick Summary of Conic Section Properties
The parabola with focus (p, 0) and directrix x = −p has eccentricity e = 1 and equation y2 = 4px. The table below
compares the properties of an ellipse and a hyperbola, each having foci (±c, 0) and major axis of length 2a.

Ellipse Hyperbola

Eccentricity e = c

a
< 1 e = c

a
> 1

a, b, c relation a2 = b2 + c2 c2 = a2 + b2

Equation
x2

a2
+ y2

b2
= 1

x2

a2
− y2

b2
= 1

Vertices (±a, 0) (±a, 0)

y-intercepts (0, ±b) None

Directrices x = ±a

e
x = ±a

e

Asymptotes None y = ±bx

a

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
9.1 Writing the equation of a geometrically described straight line . . . . . . . . . . . . . . . . . . . . . . 1, 3

Recognizing a circle from its equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Writing the equation of a specified circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Writing the equation of a geometrically described locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 27, 29

9.2 Conversion between rectangular and polar equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7, 11, 13, 29, 31
Writing rectangular and polar equations of geometric curves . . . . . . . . . . . . . . . . . . . . . . . 21, 25
Sketching the graph of a polar equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 43, 47
Finding the points of intersection of two polar curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.3 Finding the area bounded by a given polar curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9, 15
Finding the area of a region bounded by two given polar curves . . . . . . . . . . . . . . . . . . . . . 25, 29, 35

9.4 Sketching parametric curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 7, 13
Finding tangent lines to parametric curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 19, 25

9.5 Finding areas bounded by parametric curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3
Finding arc lengths of parametric curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 13
Finding volumes and surface areas of revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 19, 23, 25

9.6 Writing an equation of a geometrically described parabola . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3
Writing an equation of a geometrically described ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 29
Writing an equation of a geometrically described hyperbola . . . . . . . . . . . . . . . . . . . . . . . . 39, 41, 45
Sketching the graph of a conic section with given equation . . . . . . . . . . . . . . . . . . . . . . . . . 17, 37, 57
Identifying the conic section with given polar equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61, 63

MISCELLANEOUS PROBLEMS

Sketch the graphs of the equations in Problems 1 through 30. In
Problems 1 through 18, if the graph is a conic section, label its
center, foci, and vertices.

1. x2 + y2 − 2x − 2y = 2 2. x2 + y2 = x + y

3. x2 + y2 − 6x + 2y + 9 = 0 4. y2 = 4(x + y)

5. x2 = 8x − 2y − 20

6. x2 + 2y2 − 2x + 8y + 8 = 0

7. 9x2 + 4y2 = 36x

8. x2 − y2 = 2x − 2y − 1

9. y2 − 2x2 = 4x + 2y + 3

10. 9y2 − 4x2 = 8x + 18y + 31

11. x2 + 2y2 = 4x + 4y − 12
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12. y2 − 6y + 4x + 5 = 0

13. 9(x2 − 2x + 1) = 4(y2 + 9)

14. (x2 − 4)(y2 − 1) = 0

15. x2 − 8x + y2 − 2y + 16 = 0

16. (x − 1)2 + 4(y − 2)2 = 1

17. (x2 − 4x + y2 − 4y + 8)(x + y)2 = 0

18. x = y2 + 4y + 5 19. r = −2 cos θ

20. cos θ + sin θ = 0 21. r = 1

sin θ + cos θ

22. r sin2 θ = cos θ 23. r = 3 csc θ

24. r = 2(cos θ − 1) 25. r 2 = 4 cos θ

26. rθ = 1 27. r = 3 − 2 sin θ

28. r = 1

1 + cos θ
29. r = 4

2 + cos θ

30. r = 4

1 − 2 cos θ

In Problems 31 through 38, find the area of the region described.

31. Inside both r = 2 sin θ and r = 2 cos θ

32. Inside r 2 = 4 cos θ

33. Inside r = 3 − 2 sin θ and outside r = 4

34. Inside r 2 = 2 sin 2θ and outside r = 2 sin θ

35. Inside r = 2 sin 2θ and outside r = √
2

36. Inside r = 3 cos θ and outside r = 1 + cos θ

37. Inside r = 1 + cos θ and outside r = cos θ

38. Between the loops of r = 1 − 2 sin θ

In Problems 39 through 43, eliminate the parameter and sketch
the curve.

39. x = 2t3 − 1, y = 2t3 + 1 40. x = cosh t , y = sinh t

41. x = 2 + cos t , y = 1 − sin t 42. x = cos4 t , y = sin4 t

43. x = 1 + t2, y = t3

In Problems 44 through 48, write an equation of the line tangent
to the given curve at the indicated point.

44. x = t2, y = t3; t = 1

45. x = 3 sin t , y = 4 cos t ; t = π/4

46. x = et , y = e−t ; t = 0

47. r = θ ; θ = π/2

48. r = 1 + sin θ ; θ = π/3

In Problems 49 through 52, find the area of the region between
the given curve and the x-axis.

49. x = 2t + 1, y = t2 + 3; −1 � t � 2

50. x = et , y = e−t ; 0 � t � 10

51. x = 3 sin t , y = 4 cos t ; 0 � t � π/2

52. x = cosh t , y = sinh t ; 0 � t � 1

In Problems 53 through 57, find the arc length of the given curve.

53. x = t2, y = t3; 0 � t � 1

54. x = ln(cos t), y = t ; 0 � t � π/4

55. x = 2t , y = t3 + 1

3t
; 1 � t � 2

56. r = sin θ ; 0 � θ � π

57. r = sin2(θ/3); 0 � θ � π

In Problems 58 through 62, find the area of the surface generated
by revolving the given curve around the x-axis.

58. x = t2 + 1, y = 3t ; 0 � t � 2

59. x = 4
√

t , y = t3

3
+ 1

2t2
; 1 � t � 4

60. r = cos θ

61. r = eθ/2; 0 � θ � π

62. x = et cos t , y = et sin t ; 0 � t � π/2

63. Consider the rolling circle of radius a that was used to gen-
erate the cycloid in Example 5 of Section 9.4. Suppose that
this circle is the rim of a disk, and let Q be a point of this
disk at distance b < a from its center. Find parametric equa-
tions for the curve traced by Q as the circle rolls along the
x-axis. Assume that Q begins at the point (0, a − b). Sketch
this curve, which is called a trochoid.

64. If the smaller circle of Problem 34 in Section 9.4 rolls around
the outside of the larger circle, the path of the point P is
called an epicycloid. Show that it has parametric equations

x = (a + b) cos t − b cos

(
a + b

b
t

)
,

y = (a + b) sin t − b sin

(
a + b

b
t

)
.

65. Suppose that b = a in Problem 64. Show that the epicycloid
is then the cardioid r = 2a(1 − cos θ) translated a units to
the right.

66. Find the area of the surface generated by revolving the lem-
niscate r 2 = 2a2 cos 2θ around the x-axis.

67. Find the volume generated by revolving around the y-axis
the area under the cycloid

x = a(t − sin t), y = a(1 − cos t), 0 � t � 2π.

68. Show that the length of one arch of the hypocycloid of Prob-
lem 34 in Section 9.4 is s = 8b(a − b)/a.

69. Find a polar-coordinate equation of the circle that passes
through the origin and is centered at the point with polar
coordinates (p, α).

70. Find a simple equation of the parabola whose focus is the
origin and whose directrix is the line y = x + 4. Re-
call from Miscellaneous Problem 93 of Chapter 3 that the
distance from the point (x0, y0) to the line with equation
A x + By + C = 0 is

|A x0 + By0 + C |√
A2 + B2

.

71. A diameter of an ellipse is a chord through its center. Find
the maximum and minimum lengths of diameters of the el-
lipse with equation

x2

a2
+ y2

b2
= 1.

72. Use calculus to prove that the ellipse of Problem 71 is nor-
mal to the coordinate axes at each of its four vertices.

73. The parabolic arch of a bridge has base width b and height
h at its center. Write its equation, choosing the origin on the
ground at the left end of the arch.

719

www.konkur.in



720 CHAPTER 9 Polar Coordinates and Parametric Curves

74. Use methods of calculus to find the points of the ellipse

x2

a2
+ y2

b2
= 1

that are nearest to and farthest from (a) the center (0, 0); (b)
the focus (c, 0).

75. Consider a line segment Q R that contains a point P such
that |QP| = a and |PR| = b. Suppose that Q is constrained
to move on the y-axis, whereas R must remain on the x-axis.
Prove that the locus of P is an ellipse.

76. Suppose that a > 0 and that F1 and F2 are two fixed points
in the plane with |F1 F2| > 2a. Imagine a point P that moves
in such a way that |PF2| = 2a + |PF1|. Prove that the lo-
cus of P is one branch of a hyperbola with foci F1 and F2.
Then—as a consequence—explain how to construct points
on a hyperbola by drawing appropriate circles centered at its
foci.

77. Let Q1 and Q2 be two points on the parabola y2 = 4px . Let
P be the point of the parabola at which the tangent line is
parallel to Q1 Q2. Prove that the horizontal line through P
bisects the segment Q1 Q2.

78. Determine the locus of a point P such that the product of its
distances from the two fixed points F1(−a, 0) and F2(a, 0)

is a2.

79. Find the eccentricity of the conic section with equation
3x2 − y2 + 12x + 9 = 0.

80. Find the area bounded by the loop of the strophoid

r = sec θ − 2 cos θ

shown in Fig. 9.MP.1.

FIGURE 9.MP.1 The
strophoid of Problem 80.

y

x

x + y + 1 = 0:
Asymptote 

x3 + y3 = 3xy 

(  ,    )3
2

3
2

FIGURE 9.MP.2 The folium
of Descartes x3 + y3 = 3xy
(Problem 81).

81. Find the area bounded by the loop of the folium of Descartes
with equation x3 + y3 = 3xy shown in Fig. 9.MP.2. (Sug-
gestion: Change to polar coordinates and then substitute
u = tan θ to evaluate the area integral.)

82. Use the method of Problem 81 to find the area bounded by
the first-quadrant loop of the curve x5 + y5 = 5x2 y2 (similar
to the folium of Problem 81).

83. The graph of a conic section in the xy-plane has intercepts at
(5, 0), (−5, 0), (0, 4), and (0, −4). Deduce all the informa-
tion you can about this conic. Can you determine whether it
is a parabola, a hyperbola, or an ellipse? What if you also
know that the graph of this conic is normal to the y-axis at
the point (0, 4)?

PHOTO CREDITS

p. 659 (top left) Stock Montage, Inc./Historical Pictures Collection; (bottom right) Stephen Gerard/
Science Service/Photo Researchers, Inc. 
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Srinivasa Ramanujan
(1887–1920)

On a cold January day
in 1913, the eminent
Cambridge mathe-

matics professor G. H.
Hardy received a letter
from an unknown 25-year-
old clerk in the account-
ing department of a govern-
ment office in Madras, In-
dia. Its author, Srinivasa
Ramanujan, had no uni-
versity education, he
admitted—he had flunked
out—but “after leaving
school I have employed the
spare time at my disposal

to work at Mathematics. . . . I have not trodden through the
conventional regular course . . . but am striking out a new
path for myself.” The ten pages that followed listed in neat
handwritten script approximately 50 formulas, most deal-
ing with integrals and infinite series that Ramanujan had
discovered, and asked Hardy’s advice whether they con-
tained anything of value. The formulas were of such ex-
otic and unlikely appearance that Hardy at first suspected
a hoax, but he and his colleague J. E. Littlewood soon real-
ized that they were looking at the work of an extraordinary
mathematical genius.

Thus began one of the most romantic episodes in the
history of mathematics. In April 1914 Ramanujan arrived
in England a poor, self-taught Indian mathematical ama-
teur called to collaborate as an equal with the most sophis-
ticated professional mathematicians of the day. For the
next three years a steady stream of remarkable discoveries
poured forth from his pen. But in 1917 he fell seriously
ill, apparently with tuberculosis. The following year he
returned to India to attempt to regain his health but never
recovered, and he died in 1920 at the age of 32. Up to
the very end he worked feverishly to record his final dis-
coveries. He left behind notebooks outlining work whose
completion occupied prominent mathematicians through-
out the twentieth century.

With the possible exception of Euler, no one be-
fore or since has exhibited Ramanujan’s virtuosity with

infinite series. An example of his discoveries is the infi-
nite series

1

π
=

√
8

9801

∞∑
n=0

(4n)!
(n!)4

· (1103 + 26390n)

3964n
,

whose first term yields the familiar approximation π ≈
3.14159, and with each additional term giving π to
roughly eight more decimal places of accuracy. For in-
stance, just four terms of Ramanujan’s series are needed
to calculate the 30-place approximation

π ≈ 3.14159 26535 89793 23846 26433 83279

that suffices for virtually any imaginable “practical”
application—if the universe were a sphere with a radius
of 10 billion light years, then this value of π would give
its circumference accurate to the nearest hundredth of an
inch. But in recent years Ramanujan’s ideas have been
used to calculate the value of π accurate to a billion dec-
imal places. Indeed, such gargantuan computations of π

are commonly used to check the accuracy of new super-
computers.

A typical page of Ramanujan’s
letter to Hardy, listing formulas
Ramanujan had discovered, but
with no hint of proof or derivation.

From Chapter 10 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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722 CHAPTER 10 Infinite Series

10.1 INTRODUCTION

In the fifth century B.C., the Greek philosopher Zeno proposed the following paradox:
In order for a runner to travel a given distance, the runner must first travel halfway,
then half the remaining distance, then half the distance that yet remains, and so on
ad infinitum. But, Zeno argued, it is clearly impossible for a runner to accomplish
infinitely many such tasks in a finite period of time, so motion from one point to another
is impossible.

Zeno’s paradox suggests the infinite subdivision of [0, 1] indicated in Fig. 10.1.1.

1
2

0

1
4

1
8

1
16

1

FIGURE 10.1.1 Subdivision of an
interval to illustrate Zeno’s paradox.

There is one subinterval of length 1/2n for each integer n = 1, 2, 3, . . . . If the length
of the interval is the sum of the lengths of the subintervals into which it is divided, then
it would appear that

1 = 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · + 1

2n
+ · · · ,

with infinitely many terms somehow adding up to 1. But the formal infinite sum

1 + 2 + 3 + · · · + n + · · ·
of all the positive integers seems meaningless—it does not appear to add up to any
(finite) value.

The question is this: What, if anything, do we mean by the sum of an infinite
collection of numbers? This chapter explores conditions under which an infinite sum

a1 + a2 + a3 + · · · + an + · · · ,

known as an infinite series, is meaningful. We discuss methods for computing the
sum of an infinite series and applications of the algebra and calculus of infinite series.
Infinite series are important in science and mathematics because many functions either
arise most naturally in the form of infinite series or have infinite series representations
(such as the Taylor series of Section 10.4) that are useful for numerical computations.

10.2 INFINITE SEQUENCES

An infinite sequence of real numbers is an ordered, unending list

a1, a2, a3, a4, . . . , an, an+1, . . . (1)

of numbers. That this list is ordered implies that it has a first term a1, a second term
a2, a third term a3, and so forth. That the sequence is unending, or infinite, implies
that (for every n) the nth term an has a successor an+1. Thus, as indicated by the
final ellipsis in (1), an infinite sequence never ends and—despite the fact that we write
explicitly only a finite number of terms—it actually has an infinite number of terms.
Concise notation for the infinite sequence in (1) is

{an}∞n=1, {an}∞1 , or simply {an}. (2)

Frequently an infinite sequence {an} of numbers can be described “all at once”
by a single function f that gives the successive terms of the sequence as successive
values of the function:

an = f (n) for n = 1, 2, 3, . . . . (3)

Here an = f (n) is simply a formula for the nth term of the sequence. Conversely, if the
sequence {an} is given in advance, we can regard (3) as the definition of the function
f having the set of positive integers as its domain of definition. Ordinarily we will use
the subscript notation an in preference to the function notation f (n).
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EXAMPLE 1 The following table exhibits several particular infinite sequences. Each
is described in three ways: in the concise sequential notation {an} of (2), by writing the
formula as in (3) for its nth term, and in extended list notation as in (1). Note that n
need not begin with the initial value 1.

{
1

n

}∞

1

an = 1

n
1,

1

2
,

1

3
,

1

4
, · · · ,

1

n
, · · ·

{
1

10n

}∞

0

an = 1

10n
1,

1

10
,

1

100
,

1

1000
, · · · ,

1

10n
· · ·

{√
3n − 7

}∞
3 an = √

3n − 7
√

2,
√

5,
√

8,
√

11, . . . ,
√

3n − 7, . . .{
sin

nπ

2

}∞

1

an = sin
nπ

2
1, 0, −1, 0, . . . , sin

nπ

2
, . . .

{
3 + (−1)n

}∞
1 an = 3 + (−1)n 2, 4, 2, 4, . . . , 3 + (−1)n, . . . ◗

Sometimes it is inconvenient or impossible to give an explicit formula for the nth
term of a particular sequence. The following example illustrates how sequences may
be defined in other ways.

EXAMPLE 2 Here we give the first ten terms of each sequence.

(a) The sequence of prime integers (those positive integers n having precisely two
divisors, 1 and n with n > 1):

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

(b) The sequence whose nth term is the nth decimal digit of the famous number
π = 3.14159265358979323846 . . . :

1, 4, 1, 5, 9, 2, 6, 5, 3, 5, . . .

(c) The Fibonacci sequence {Fn}, which may be defined by

F1 = 1, F2 = 1, and Fn+1 = Fn + Fn−1 for n � 2.

Thus each term after the second is the sum of the preceding two terms:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

This is an example of a recursively defined sequence in which each term (after
the first few) is given by a formula involving its predecessors. The 13th-century
Italian mathematician Fibonacci asked the following question: If we start with
a single pair of rabbits that gives birth to a new pair after two months, and each
such new pair does the same, how many pairs of rabbits will we have after n
months? See Problems 55 and 56.

(d) If the amount A 0 = 100 dollars is invested in a savings account that draws 10%
interest compounded annually, then the amount A n in the account at the end of n
years is defined (for n � 1) by the iterative formula A n = (1.10)A n−1 (rounded
to the nearest number of cents) in terms of the preceding amount:

110.00, 121.00, 133.10, 146.41, 161.05, 177.16,

194.87, 214.36, 235.79, 259.37, . . . ◗
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724 CHAPTER 10 Infinite Series

Limits of Sequences
The limit of a sequence is defined in much the same way as the limit of an ordinary
function (Section 2.2).

DEFINITION Limit of a Sequence
We say that the sequence {an} converges to the real number L , or has the limit L ,
and we write

lim
n→∞ an = L , (4)

provided that an can be made as close to L as we please merely by choosing n to be
sufficiently large. That is, given any number ε > 0, there exists an integer N such
that

|an − L| < ε for all n � N . (5)

If the sequence {an} does not converge, then we say that {an} diverges.

1 x2 3 4 5

y

 L 

n 

y = L + ∋

y = L − ∋

N

FIGURE 10.2.1 The point (n, an) approaches the line
y = L as n → +∞.

Figure 10.2.1 illustrates geometrically the definition of the limit of a sequence.

L

an

L − ∋ L + ∋

FIGURE 10.2.2 The inequality
|an − L| < ε means that an lies
somewhere between L − ε and
L + ε.

Because

|an − L| < ε means that L − ε < an < L + ε,

the condition in (5) means that if n � N , then the point (n, an) lies between the
horizontal lines y = L − ε and y = L + ε. Alternatively, if n � N , then the number
an lies between the points L − ε and L + ε on the real line (Fig. 10.2.2).

EXAMPLE 3 Suppose that we want to establish rigorously the intuitively evident
fact that the sequence {1/n}∞1 converges to zero,

lim
n→∞

1

n
= 0. (6)

Because L = 0 here, we need only convince ourselves that to each positive number ε

there corresponds an integer N such that∣∣∣∣1

n

∣∣∣∣ = 1

n
< ε if n � N .

But evidently it suffices to choose any fixed integer N > 1/ε. Then n � N implies
immediately that

1

n
�

1

N
< ε,

as desired (Fig. 10.2.3). ◗

0− ∋ ∋

1
n

1
N

FIGURE 10.2.3 If N >
1

ε
and

n � N then 0 <
1

n
�

1

N
< ε.
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EXAMPLE 4 (a) The sequence {(−1)n} diverges because its successive terms “os-
cillate” between the two values +1 and −1. Hence (−1)n cannot approach any single
value as n → ∞. (b) The terms of the sequence {n2} increase without bound as
n → ∞. Thus the sequence {n2} diverges. In this case, we might also say that {n2}
diverges to infinity. ◗

Using Limit Laws
The limit laws in Section 2.2 for limits of functions have natural analogues for limits of
sequences. Their proofs are based on techniques similar to those used in
Appendix D.

THEOREM 1 Limit Laws for Sequences
If the limits

lim
n→∞ an = A and lim

n→∞ bn = B

exist (so A and B are real numbers), then

1. lim
n→∞ can = cA (c any real number);

2. lim
n→∞(an + bn) = A + B;

3. lim
n→∞ anbn = AB;

4. lim
n→∞

an

bn
= A

B
.

In part 4 we must assume that B �= 0 (so that bn �= 0 for all sufficiently large values
of n).

THEOREM 2 Substitution Law for Sequences
If limn→∞ an = A and the function f is continuous at x = A , then

lim
n→∞ f (an) = f (A).

THEOREM 3 Squeeze Law for Sequences
If an � bn � cn for all n and

lim
n→∞ an = L = lim

n→∞ cn,

then limn→∞ bn = L as well.

These theorems can be used to compute limits of many sequences formally, with-
out recourse to the definition. For example, Eq. (6) and the product law of limits yield

lim
n→∞

1

nk
= 0 (7)

for every positive integer k.

EXAMPLE 5 Eq. (7) and the limit laws give (after dividing numerator and denomi-
nator by the highest power of n that is present)

lim
n→∞

7n2

5n2 − 3
= lim

n→∞
7

5 − 3

n2

=
lim

n→∞ 7(
lim

n→∞ 5
)

− 3 ·
(

lim
n→∞

1

n2

) = 7

5 − 3 · 0
= 7

5
. ◗
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726 CHAPTER 10 Infinite Series

EXAMPLE 6 Show that lim
n→∞

cos n

n
= 0.

Solution This follows from the squeeze law and the fact that 1/n → 0 as n → ∞,
because

−1

n
�

cos n

n
�

1

n

for every positive integer n. ◗

REMARK With a typical graphing calculator (in “dot plot mode”) or computer algebra
system (using its “list plot” facility), one can plot the points (n, an) in the xy-plane cor-
responding to a given sequence {an}. Figure 10.2.4 shows such a plot for the sequence
of Example 6 and provides visual evidence of its convergence to zero.

−0.6

−0.4

−0.2

0.2

0.4

0.6

x

y

5 10 15 20 25 30

FIGURE 10.2.4 The points
(n, (cos n)/n) for n = 1, 2, . . . , 30.

EXAMPLE 7 Show that if a > 0, then limn→∞ n
√

a = 1.

Solution We apply the substitution law with f (x) = ax , an = 1/n, and A = 0.
Because 1/n → 0 as n → ∞ and f is continuous at x = 0, this gives

lim
n→∞ a1/n = lim

n→∞ f (1/n) = f (0) = a0 = 1. ◗

EXAMPLE 8 The limit laws and the continuity of f (x) = √
x at x = 4 yield

lim
n→∞

√
4n − 1

n + 1
=

⎛
⎜⎜⎝ lim

n→∞

4 − 1

n

1 + 1

n

⎞
⎟⎟⎠

1/2

= √
4 = 2. ◗

EXAMPLE 9 Show that if |r | < 1, then limn→∞ rn = 0.

Solution Because |rn| = |(−r)n|, we may assume that 0 < r < 1. Then 1/r = 1+a
for some number a > 0, so the binomial formula yields

1

rn
= (1 + a)n = 1 + na + {positive terms} > 1 + na;

0 < rn <
1

1 + na
.

Now 1/(1 + na) → 0 as n → ∞. Therefore, the squeeze law implies that rn → 0 as
n → ∞. ◗

Figure 10.2.5 shows the graph of a function f such that limx→∞ f (x) = L . If
the sequence {an} is defined by the formula an = f (n) for each positive integer n, then
all the points (n, f (n)) lie on the graph of y = f (x). It therefore follows from the
definition of the limit of a function that limn→∞ an = L as well.

THEOREM 4 Limits of Functions and Sequences
If an = f (n) for each positive integer n, then

lim
x→∞ f (x) = L implies that lim

n→∞ an = L . (8)

The converse of the statement in (8) is generally false. For example, take f (x) =
sin πx and, for each positive integer n, let an = f (n) = sin nπ . Then sin nπ ≡ 0, but
sin nx oscillates between 1 and −1, so

lim
n→∞ an = lim

n→∞ sin nπ = 0, but

lim
x→∞ f (x) = lim

x→∞ sin πx does not exist.

726

www.konkur.in



Infinite Sequences SECTION 10.2 727

y

(2, a2)

(3, a3)

(1, a1)

(n, an)

y = L 

1 x2 3 4 5

 L 

… n 

y = L + ∋

y = L − ∋

FIGURE 10.2.5 If limx→∞ f (x) = L and an = f (n),
then limn→∞ an = L .

Because of (8) we can use l’Hôpital’s rule for sequences: If an = f (n), bn =
g(n), and f (x)/g(x) has the indeterminate form ∞/∞ as x → ∞, then

lim
n→∞

an

bn
= lim

x→∞
f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)
, (9)

provided that f and g satisfy the other hypotheses of l’Hôpital’s rule, including the
important assumption that the right-hand limit exists.

EXAMPLE 10 Show that lim
n→∞

ln n

n
= 0.

Solution The function (ln x)/x is defined for all x � 1 and agrees with the given
sequence {(ln n)/n} when x = n, a positive integer. Because (ln x)/x has the indeter-
minate form ∞/∞ as x → ∞, l’Hôpital’s rule gives

lim
n→∞

ln n

n
= lim

x→∞
ln x

x
= lim

x→∞

1

x
1

= 0. ◗

EXAMPLE 11 Show that lim
n→∞

n
√

n = 1.

Solution First we note that

ln n
√

n = ln n1/n = ln n

n
→ 0 as n → ∞,

by Example 10. By the substitution law with f (x) = ex , this gives

lim
n→∞ n1/n = lim

n→∞ exp
(

ln n1/n
) = e0 = 1. ◗

EXAMPLE 12 Find lim
n→∞

3n3

e2n
.

Solution We apply l’Hôpital’s rule repeatedly, although we must be careful at each
intermediate step to verify that we still have an indeterminate form. Thus we find that

lim
n→∞

3n3

e2n
= lim

x→∞
3x3

e2x
= lim

x→∞
9x2

2e2x
= lim

x→∞
18x

4e2x
= lim

x→∞
18

8e2x
= 0. ◗
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Bounded Monotonic Sequences
The set of all rational numbers has by itself all of the most familiar elementary al-
gebraic properties of the entire real number system. To guarantee the existence of
irrational numbers, we must assume in addition a “completeness property” of the real
numbers. Otherwise, the real line might have “holes” where the irrational numbers
ought to be. One way of stating this completeness property is in terms of the conver-
gence of an important type of sequence, a bounded monotonic sequence.

The sequence {an}∞1 is said to be increasing if

a1 � a2 � a3 � · · · � an � · · ·
and decreasing if

a1 � a2 � a3 � · · · � an � · · · .

The sequence {an} is monotonic if it is either increasing or decreasing. The sequence
{an} is bounded if there is a number M such that |an| � M for all n. The following
assertion may be taken to be an axiom for the real number system.

Bounded Monotonic Sequence Property
Every bounded monotonic infinite sequence converges—that is, has a finite limit.

Suppose, for example, that the increasing sequence {an}∞1 is bounded above by a
number M , meaning that an � M for all n � 1. Because the sequence is also bounded
below (by a1, for instance), the bounded monotonic sequence property implies that

lim
n→∞ an = A for some real number A � M,

as in Fig. 10.2.6(a). If the increasing sequence {an} is not bounded above, then it
follows that

lim
n→∞ an = +∞

as in Fig. 10.2.6(b). (See Problem 52.) Figure 10.2.7 illustrates the graph of a typi-
cal bounded increasing sequence, with the heights of the points (n, an) steadily rising
toward A .

a1 a2 a3 a4 a5 a6 a7

…

(b)

a1 a2 a3 a4 a5 A M

(a)

FIGURE 10.2.6 (a) If the increasing
sequence {an} is bounded above by M , then
its terms “pile up” at some point A � M .
(b) If the sequence is unbounded, then its
terms ”keep going” and diverge to infinity.

A

x

y

FIGURE 10.2.7 Graph of a
bounded increasing sequence with
limit A.

EXAMPLE 13 Investigate the sequence {an} that is defined recursively by

a1 = √
6, an+1 = √

6 + an for n � 1. (10)

Solution The first four terms of this sequence are

√
6,

√
6 + √

6,

√
6 +

√
6 + √

6,

√
6 +

√
6 +

√
6 + √

6. (11)
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If the sequence {an} converges, then its limit A would seem to be the natural interpre-
tation of the infinite expression√

6 +
√

6 +
√

6 + √
6 + · · ·.

A calculator gives 2.449, 2.907, 2.984, and 2.997 for the approximate values of
the terms in (11). This suggests that the sequence may be bounded above by M = 3.
Indeed, if we assume that a particular term an satisfies the inequality an < 3, then it
follows that

an+1 = √
6 + an <

√
6 + 3 = 3;

that is, an+1 < 3 as well. Can you see that this implies that all terms of the sequence
are less than 3? (If there were a first term not less than 3, then its predecessor would
be less than 3, and we would have a contradiction. This is a “proof by mathematical
induction.”)

In order to apply the bounded monotonic sequence property to conclude that the
sequence {an} converges, it remains to show that it is an increasing sequence. But

(an+1)
2 − (an)

2 = (6 + an) − (an)
2 = (2 + an)(3 − an) > 0

because an < 3. Because all terms of the sequence are positive (why?), it therefore
follows that an+1 > an for all n � 1, as desired.

Now that we know that the limit A of the sequence {an} exists, we can write

A = lim
n→∞ an+1 = lim

n→∞
√

6 + an = √
6 + A,

and thus A 2 = 6 + A . The roots of this quadratic equation are −2 and 3. Because
A > 0 (why?), we conclude that A = limn→∞ an = 3, and so√

6 +
√

6 +
√

6 + √
6 + · · · = 3. (12)

The graph in Fig. 10.2.8 of the first ten terms of the sequence {an} shows that the
convergence to its limit 3 is quite rapid. ◗

4

3

2

1

0 x

y

2 4 6 8 10

FIGURE 10.2.8 Graph of the
sequence of Example 13.

To indicate what the bounded monotonic sequence property has to do with the
“completeness property” of the real numbers, in Problem 63 we outline a proof, using
this property, of the existence of the number

√
2. In Problems 61 and 62, we outline

a proof of the equivalence of the bounded monotonic sequence property and another
common statement of the completeness of the real number system—the least upper
bound property.

10.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. According to Section 10.2,

1,
1

2
,

1

3
,

1

4
, · · · ,

1

n
, . . .

is an example of a sequence.
2. The Fibonacci sequence is an example of a recursively defined sequence.
3. The sequence {an} has limit L provided that, for every number ε > 0, there exists

an integer N such that

|an − L| < ε for all n � N .
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4. In Section 10.2 it is proved rigorously that

lim
n→∞

1

n
= 1.

5. The sequence {(−1)n} has no limit.
6. If lim

n→∞ an = A and lim
n→∞ bn = B, then

lim
n→∞(an + bn) = A + B.

7. If lim
n→∞ an = A and f is continuous at x = A, then

lim
n→∞ f (an) = f (A).

8. If |r | < 1, then lim
n→∞ rn = 0.

9. If an = f (n) for each positive integer n, then

lim
n→∞ an = L implies that lim

x→∞ f (x) = L .

10. Every bounded monotonic sequence diverges.

10.2 CONCEPTS: QUESTIONS AND DISCUSSION

1. Can a sequence {an}∞1 converge to two different numbers?
2. Suppose it is known that every open interval containing the point L contains

all but finitely many members of the sequence {an}∞1 . Does this imply that
limn→∞ an = L?

3. Suppose that the sequence {an}∞1 is obtained by interspersing the members of
the two convergent infinite sequences {pn}∞1 and {qn}∞1 . Does it follow that the
sequence {an}∞1 also converges?

10.2 PROBLEMS

In Problems 1 through 8, find a pattern in the sequence with given
terms a1, a2, a3, a4 and (assuming that it continues as indicated)
write a formula for the general term an of the sequence.

1. 1, 4, 9, 16, . . . 2. 2, 7, 12, 17, . . .

3. 1
3 , 1

9 , 1
27 , 1

81 , . . . 4. 1, − 1
2 , 1

4 , − 1
8 , . . .

5. 1
2 , 1

5 , 1
8 , 1

11 , . . . 6. 1
2 , 1

5 , 1
10 , 1

17 , . . .

7. 0, 2, 0, 2, . . . 8. 10, 5, 10, 5, . . .

In Problems 9 through 42, determine whether or not the sequence
{an} converges, and find its limit if it does converge.

9. an = 2n

5n − 3
10. an = 1 − n2

2 + 3n2

11. an = n2 − n + 7

2n3 + n2
12. an = n3

10n2 + 1

13. an = 1 + (
9
10

)n
14. an = 2 − (− 1

2

)n

15. an = 1 + (−1)n 16. an = 1 + (−1)n

√
n

17. an = 1 + (−1)n√n(
3
2

)n 18. an = sin n

3n

19. an = sin2 n√
n

20. an =
√

2 + cos n

n

21. an = n sin πn 22. an = n cos πn

23. an = π−(sin n)/n 24. an = 2cos πn

25. an = ln n√
n

26. an = ln 2n

ln 3n

27. an = (ln n)2

n
28. an = n sin

(
1

n

)

29. an = tan−1 n

n
30. an = n3

en/10

31. an = 2n + 1

en
32. an = sinh n

cosh n

33. an =
(

1 + 1

n

)n

34. an = (2n + 5)1/n

35. an =
(

n − 1

n + 1

)n

36. an = (0.001)−1/n

37. an = n
√

2n+1 38. an =
(

1 − 2

n2

)n

39. an =
(

2

n

)3/n

40. an = (−1)n(n2 + 1)1/n

41. an =
(

2 − n2

3 + n2

)n

42. an =
(

2
3

)n

1 − n
√

n

In Problems 43 through 50, investigate the given sequence {an}
numerically or graphically. Formulate a reasonable guess for the
value of its limit. Then apply limit laws to verify that your guess
is correct.
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43. an = n − 2

n + 13
44. an = 2n + 3

5n − 17

45. an =
√

4n2 + 7

n2 + 3n
46. an =

(
n3 − 5

8n3 + 7n

)1/3

47. an = e−1/
√

n 48. an = n sin
2

n

49. an = 4 tan−1 n − 1

n + 1
50. an = 3 sin−1

√
3n − 1

4n + 1
51. Prove that if limn→∞ an = A �= 0, then the sequence

{(−1)nan} diverges.

52. Prove that if the increasing sequence {an} is not bounded,
then limn→∞ an = +∞. (It’s largely a matter of saying pre-
cisely what this means.)

53. Suppose that A > 0. Given x1 �= 0 but otherwise arbitrary,
define the sequence {xn} recursively by

xn+1 = 1

2
·
(

xn + A

xn

)
if n � 1.

Prove that if L = limn→∞ xn exists, then L = ±√
A.

54. Suppose that A is a fixed real number. Given x1 �= 0 but
otherwise arbitrary, define the sequence {xn} recursively by

xn+1 = 1

3
·
(

2xn + A

(xn)2

)
if n � 1.

Prove that if L = limn→∞ xn exists, then L = 3
√

A .

55. (a) Suppose that every newborn pair of rabbits becomes pro-
ductive after two months, and thereafter gives birth to a new
pair of rabbits every month. If we begin with a single new-
born pair of rabbits, denote by Fn the total number of pairs of
rabbits we have after n months. Explain carefully why {Fn}
is the Fibonacci sequence of Example 2. (b) If, instead, ev-
ery newborn pair of rabbits becomes productive after three
months, denote by {Gn} the number of pairs of rabbits we
have after n months. Give a recursive definition of the se-
quence {Gn} and calculate its first ten terms.

56. Let {Fn} be the Fibonacci sequence of Example 2, and
assume that

τ = lim
n→∞

Fn+1

Fn

exists. (It does.) Show that τ = 1
2 (1 + √

5). (Suggestion:
Write an = Fn/Fn−1 and show that an+1 = 1 + (1/an).)

57. Let the sequence {an} be defined recursively as follows:

a1 = 2; an+1 = 1
2 (an + 4) for n � 1.

(a) Prove by induction on n that an < 4 for each n and that
{an} is an increasing sequence. (b) Find the limit of this se-
quence.

58. Investigate as in Example 13 the sequence {an} that is
defined recursively by

a1 = √
2, an+1 = √

2 + an for n � 1.

In particular, show that

√
2 +

√
2 +

√
2 + √

2 + · · · = 2.

Verify the results stated in Problems 59 and 60.

59.

√
20 +

√
20 +

√
20 + √

20 + · · · = 5.

60.

√
90 +

√
90 +

√
90 + √

90 + · · · = 10.

Problems 61 and 62 deal with the least upper bound property of
the real numbers: If the nonempty set S of real numbers has an
upper bound, then S has a least upper bound. The number M is
an upper bound for the set S if x � M for all x in S. The upper
bound L of S is a least upper bound for S if no number smaller
than L is an upper bound for S. You can easily show that if the
set S has least upper bounds L 1 and L 2, then L 1 = L 2; in other
words, if a least upper bound for a set exists, then it is unique.

61. Prove that the least upper bound property implies the
bounded monotonic sequence property. (Suggestion: If {an}
is a bounded increasing sequence and A is the least upper
bound of the set {an : n � 1} of terms of the sequence, you
can prove that A = limn→∞ an .)

62. Prove that the bounded monotonic sequence property im-
plies the least upper bound property. (Suggestion: For each
positive integer n, let an be the least integral multiple of
1/10n that is an upper bound of the set S. Prove that {an} is a
bounded decreasing sequence and then that A = limn→∞ an

is a least upper bound for S.)

63. For each positive integer n, let an be the largest integral
multiple of 1/10n such that a2

n � 2. (a) Prove that {an} is
a bounded increasing sequence, so A = limn→∞ an exists.
(b) Prove that if A 2 > 2, then a2

n > 2 for n sufficiently large.
(c) Prove that if A 2 < 2, then a2

n < B for some number
B < 2 and all sufficiently large n. (d) Conclude that A 2 = 2.

64. Investigate the sequence {an}, where

an = [[
n + 1

2 + √
n

]]
.

You may need a computer or programmable calculator to
discover what is remarkable about this sequence.

10.2 INVESTIGATION: Nested Radicals and Continued Fractions
This is an investigation of the relation√

q + p

√
q + p

√
q + p

√
q + · · · = p + q

p + q

p + q

p + · · ·

(1)
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where p and q are positive. We ask not only whether this equation could possibly
be true, but also what it means. In the following two numerical explorations, you
can (for instance) take p and q to be the last two nonzero digits in your student
I.D. number.

Exploration 1 Define the infinite sequence {an} recursively by

a1 = √
q and an+1 = √

q + pan for n � 1. (2)

Use a calculator or computer to approximate enough terms of this sequence numeri-
cally to determine whether it appears to converge. Assuming that it does, write the
first several terms symbolically and conclude that A = limn→∞ an is a natural inter-
pretation of the nested radical on the left-hand side in (1). Finally, take the limit in
the recursion in (2) to show that A is the positive solution of the quadratic equation
x2 − px − q = 0. Does the quadratic formula then yield a result consistent with your
numerical evidence?

Exploration 2 Define the infinite sequence {bn} recursively by

b1 = p and bn+1 = p + q

bn
for n � 1. (3)

Use a calculator or computer to approximate enough terms of this sequence numeri-
cally to determine whether or not it appears to converge. Assuming that it does, write
the first several terms symbolically and conclude that B = limn→∞ bn is a natural in-
terpretation of the continued fraction on the right-hand side in (1). Finally, take the
limit in the recursion in (3) to show that B is also the positive solution of the quadratic
equation x2 − px − q = 0. Conclude thereby that Eq. (1) is indeed true.

10.3 INFINITE SERIES AND CONVERGENCE

An infinite series is an expression of the form

∞∑
n=1

an = a1 + a2 + a3 + · · · + an + · · · , (1)

where {an} is an infinite sequence of real numbers. The number an is called the nth
term of the series. The symbol

∑∞
n=1 an is simply an abbreviation for the right-hand

side of Eq. (1). In this section we discover what is meant by the sum of an infinite
series.

EXAMPLE 1 Consider the infinite series

∞∑
n=1

1

2n
= 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · + 1

2n
+ · · · (2)

that was mentioned in Section 10.1; its nth term is an = 1/2n . Although we cannot
literally add an infinite number of terms, we can add any finite number of the terms in
(2). For instance, the sum of the first five terms is

1

2
+ 1

4
+ 1

8
+ 1

16
+ 1

32
= 31

32
= 0.96875.

We could add five more terms, then five more, and so forth. The table in Fig. 10.3.1
shows what happens. It appears that the sums get closer and closer to 1 as we add more
and more terms. If indeed this is so, then it is natural to say that the sum of the (whole)
infinite series in (2) is 1, and hence to write

Sum of First
n n Terms

5 0.96875000
10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997

FIGURE 10.3.1 Sums of terms in
the infinite series of Example 1.

∞∑
n=1

1

2n
= 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · + 1

2n
+ · · · = 1. ◗
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Motivated by Example 1, we introduce the partial sums of the general infinite
series in (1). The nth partial sum Sn of the series is the sum of its first n terms:

Sn = a1 + a2 + a3 + · · · + an =
n∑

k=1

ak . (3)

Thus each infinite series has not only an infinite sequence of terms, but also an infinite
sequence of partial sums S1, S2, S3, . . . , Sn, . . . , where

S1 = a1,

S2 = a1 + a2,

S3 = a1 + a2 + a3,

...

S10 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10,

and so forth. We define the sum of the infinite series to be the limit of its sequence of
partial sums, provided that this limit exists.

DEFINITION The Sum of an Infinite Series
We say that the infinite series

∞∑
n=1

an converges (or is convergent)

with sum S provided that the limit of its sequence of partial sums,

S = lim
n→∞ Sn, (4)

exists (and is finite). Otherwise we say that the series diverges (or is divergent). If
a series diverges, then it has no sum.

Thus the sum of an infinite series is a limit of finite sums,

S =
∞∑

n=1

an = lim
N→∞

N∑
n=1

an ,

provided that this limit exists.

EXAMPLE 1 (continued) Show that the series

∞∑
n=1

(
1

2

)n

= 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · ·

converges. Then find its sum.

Solution The first four partial sums are

S1 = 1

2
, S2 = 3

4
, S3 = 7

8
, and S4 = 15

16
.

It seems likely that Sn = (2n − 1)/2n , and indeed this follows easily by induction,
because

Sn+1 = Sn + 1

2n+1
= 2n − 1

2n
+ 1

2n+1
= 2n+1 − 2 + 1

2n+1
= 2n+1 − 1

2n+1
.

Hence the sum of the given series is

S = lim
n→∞ Sn = lim

n→∞
2n − 1

2n
= lim

n→∞

(
1 − 1

2n

)
= 1.
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The graph in Fig. 10.3.2 illustrates the convergence of the partial sums to the
1.6

1.2

0.8

0.4
0.2

1.4

1

0.6

0 x

y

5 10 15 20

FIGURE 10.3.2 Graph of the first
20 partial sums of the infinite series
in Example 1.

number 1. ◗

EXAMPLE 2 Show that the series

∞∑
n=1

(−1)n+1 = 1 − 1 + 1 − 1 + · · ·

diverges.

Solution The sequence of partial sums of this series is

1, 0, 1, 0, 1, . . . ,

which has no limit. Therefore the series diverges. ◗

EXAMPLE 3 Show that the infinite series

∞∑
n=1

1

n(n + 1)

converges. Then find its sum.

Solution We need a formula for the nth partial sum Sn so that we can evaluate its
limit as n → ∞. To find such a formula, we begin with the observation that the nth
term of the series is

an = 1

n(n + 1)
= 1

n
− 1

n + 1
.

(In more complicated cases, such as those in Problems 50 through 55, such a decom-
position can be obtained by the method of partial fractions.) It follows that the sum of
the first n terms of the given series is

Sn =
(

1 − 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)

+
(

1

4
− 1

5

)
+ · · · +

(
1

n
− 1

n + 1

)

= 1 − 1

n + 1
= n

n + 1
.

Hence

∞∑
n=1

1

n(n + 1)
= lim

n→∞
n

n + 1
= 1. ◗

The sum for Sn in Example 3, called a telescoping sum, provides us with a way
to find the sums of certain series. The series in Examples 1 and 2 are examples of a
more common and more important type of series, the geometric series.

DEFINITION Geometric Series
The series

∑∞
n=0 an is said to be a geometric series if each term after the first is a

fixed multiple of the term immediately before it. That is, there is a number r , called
the ratio of the series, such that

an+1 = ran for all n � 0.
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If we write a = a0 for the initial constant term, then a1 = ar , a2 = ar2, a3 =
ar3, and so forth. Thus every geometric series takes the form

a + ar + ar2 + ar3 + · · · =
∞∑

n=0

arn . (5)

Note that the summation begins at n = 0 (rather than at n = 1). It is therefore
convenient to regard the sum

Sn = a(1 + r + r2 + r3 + · · · + rn)

of the first n + 1 terms as the nth partial sum of the series.

EXAMPLE 4 The infinite series

∞∑
n=0

2

3n
= 2 + 2

3
+ 2

9
+ · · · + 2

3n
+ · · ·

is a geometric series whose first term is a = 2 and whose ratio is r = 1
3 . ◗

THEOREM 1 The Sum of a Geometric Series
If |r | < 1, then the geometric series in Eq. (5) converges, and its sum is

S =
∞∑

n=0

arn = a

1 − r
. (6)

If |r | � 1 and a �= 0, then the geometric series diverges.

Proof If r = 1, then Sn = (n + 1)a, so the series certainly diverges if a �= 0. If
r = −1 and a �= 0, then the series diverges by an argument like the one in Example 2.
So we may suppose that |r | �= 1. Then the elementary identity

1 + r + r2 + r3 + · · · + rn = 1 − rn+1

1 − r

follows if we multiply each side by 1 − r . Hence the nth partial sum of the geometric
series is

Sn = a(1 + r + r2 + r3 + · · · + rn) = a

(
1

1 − r
− rn+1

1 − r

)
.

If |r | < 1, then rn+1 → 0 as n → ∞, by Example 9 in Section 10.2. So in this case
the geometric series converges to

S = lim
n→∞ a ·

(
1

1 − r
− rn+1

1 − r

)
= a

1 − r
.

But if |r | > 1, then limn→∞ rn+1 does not exist, so limn→∞ Sn does not exist. This
establishes the theorem. ◆

EXAMPLE 5 With a = 1 and r = − 2
3 , we find that

1 − 2

3
+ 4

9
− 8

27
+ · · · =

∞∑
n=0

(
−2

3

)n

= 1

1 − (− 2
3

) = 3

5
.

The graph in Fig. 10.3.3 shows the partial sums of this series approaching its
sum 3

5 alternately from above and below. ◗

0.8

1

0.6

0.4

0.2

0 x

y

2 4 6 8 10 12

FIGURE 10.3.3 Graph of the first
dozen partial sums of the infinite
series in Example 5.

EXAMPLE 6 Determine whether or not the infinite series
∞∑

n=1

22n−1

3n
converges.
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Solution If we write this series in the form

∞∑
n=1

22n−1

3n
= 2

3
+ 8

9
+ 32

27
+ 128

81
+ · · ·

= 2

3

(
1 + 4

3
+ 16

9
+ 64

27
+ · · ·

)
= 2

3

∞∑
n=0

(
4

3

)n

,

then we recognize it as a geometric series with first term a = 2
3 and ratio r = 4

3 .
Because r > 1, the second part of Theorem 1 implies that this series diverges. ◗

Theorem 2 implies that the operations of addition and of multiplication by a
constant can be carried out term by term in the case of convergent series. Because
the sum of an infinite series is the limit of its sequence of partial sums, this theorem
follows immediately from the limit laws for sequences (Theorem 1 of Section 10.2).

THEOREM 2 Termwise Addition and Multiplication
If the series A = ∑

an and B = ∑
bn converge to the indicated sums and c is a

constant, then the series
∑

(an + bn) and
∑

can also converge, with sums

1.
∑

(an + bn) = A + B;

2.
∑

can = cA .

The geometric series in Eq. (6) may be used to find the rational number repre-
sented by a given infinite repeating decimal.

EXAMPLE 7

0.55555 · · · = 5

10
+ 5

100
+ 5

1000
+ · · · = 5

10

(
1 + 1

10
+ 1

100
+ · · ·

)

=
∞∑

n=0

5

10

(
1

10

)n

=
5

10

1 − 1
10

= 5

10
· 10

9
= 5

9
.

In a more complicated situation, we may need to use the termwise algebra of
Theorem 2:

0.7282828 · · · = 7

10
+ 28

103
+ 28

105
+ 28

107
+ · · ·

= 7

10
+ 28

103

(
1 + 1

102
+ 1

104
+ · · ·

)

= 7

10
+ 28

1000

∞∑
n=0

(
1

100

)n

= 7

10
+ 28

1000

(
1

1 − 1
100

)

= 7

10
+ 28

1000
· 100

99
= 7

10
+ 28

990
= 721

990
.

This technique can be used to show that every repeating infinite decimal repre-
sents a rational number. Consequently, the decimal expansions of irrational numbers
such as π , e, and

√
2 must be nonrepeating as well as infinite. Conversely, if p and

q are integers with q �= 0, then long division of q into p yields a repeating decimal
expansion for the rational number p/q, because such a division can yield at each stage
only q possible different remainders. ◗

EXAMPLE 8 Suppose that Paul and Mary toss a fair six-sided die in turn until one
of them wins by getting the first “six.” If Paul tosses first, calculate the probability that
he will win the game.
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Solution Because the die is fair, the probability that Paul gets a “six” on the first
round is 1

6 . The probability that he gets the game’s first “six” on the second round is(
5
6

)2( 1
6

)
—the product of the probability

(
5
6

)2
that neither Paul nor Mary rolls a “six” in

the first round and the probability 1
6 that Paul rolls a “six” in the second round. Paul’s

probability p of getting the first “six” in the game is the sum of his probabilities of
getting it in the first round, in the second round, in the third round, and so on. Hence

p = 1

6
+

(
5

6

)2 (
1

6

)
+

(
5

6

)2 (
5

6

)2 (
1

6

)
+ · · ·

= 1

6

[
1 +

(
5

6

)2

+
(

5

6

)4

+ · · ·
]

= 1

6
· 1

1 − (
5
6

)2 = 1

6
· 36

11
= 6

11
.

Because he has the advantage of tossing first, Paul has more than the fair probability 1
2

of getting the first “six” and thus winning the game. ◗

Theorem 3 is often useful in showing that a given series does not converge.

THEOREM 3 The nth-Term Test for Divergence
If either

lim
n→∞ an �= 0

or this limit does not exist, then the infinite series
∑

an diverges.

Proof We want to show under the stated hypothesis that the series
∑

an diverges.
It suffices to show that if the series

∑
an does converge, then limn→∞ an = 0. So

suppose that
∑

an converges with sum S = limn→∞ Sn , where

Sn = a1 + a2 + a3 + · · · + an

is the nth partial sum of the series. Because an = Sn − Sn−1,

lim
n→∞ an = lim

n→∞(Sn − Sn−1) =
(

lim
n→∞ Sn

)
−

(
lim

n→∞ Sn−1

)
= S − S = 0.

Consequently, if limn→∞ an �= 0, then the series
∑

an diverges. ◆

REMARK It is important to remember also the contrapositive of the nth-term diver-
gence test: If the infinite series

∑
an converges with sum S, then its sequence {an} of

terms converges to 0. Thus we have two sequences associated with the single infinite
series

∑
an: its sequence {an} of terms and its sequence {Sn} of partial sums. And

(assuming that the series converges to S) these two sequences have generally different
limits:

lim
n→∞ an = 0 and lim

n→∞ Sn = S.

EXAMPLE 9 The series

∞∑
n=1

(−1)n−1n2 = 1 − 4 + 9 − 16 + 25 − · · ·

diverges because limn→∞ an does not exist, whereas the series

∞∑
n=1

n

3n + 1
= 1

4
+ 2

7
+ 3

10
+ 4

13
+ · · ·
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diverges because

lim
n→∞

n

3n + 1
= 1

3
�= 0. ◗

WARNING The converse of Theorem 3 is false! The condition

lim
n→∞ an = 0

is necessary but not sufficient to guarantee convergence of the series

∞∑
n=1

an.

That is, a series may satisfy the condition an → 0 as n → ∞ and yet diverge. An
important example of a divergent series with terms that approach zero is the harmonic
series

∞∑
n=1

1

n
= 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · · . (7)

THEOREM 4
The harmonic series diverges.

Proof The nth term of the harmonic series in (7) is an = 1/n, and Fig. 10.3.4 shows
the graph of the related function f (x) = 1/x on the interval 1 � x � n + 1. For each
integer k, 1 � k � n, we have erected on the subinterval [k, k + 1] a rectangle with
height f (k) = 1/k. All of these n rectangles have base length 1, and their respective
heights are the successive terms 1, 1/2, 1/3, . . . , 1/n of the harmonic series. Hence
the sum of their areas is the nth partial sum

Sn = 1 + 1

2
+ 1

3
+ 1

4
+ · · · + 1

n

of the series. Because these rectangles circumscribe the area under the curve y = 1/x
from x = 1 to x = n + 1, we therefore see that Sn must exceed this area. That is,

Sn >

∫ n+1

1

1

x
dx =

[
ln x

]n+1

1
= ln(n + 1).

But ln(n + 1) takes on arbitrarily large positive values with increasing n. Because
Sn > ln(n + 1), it follows that the partial sums of the harmonic series also take on
arbitrarily large positive values. Now the terms of the harmonic series are positive, so
its sequence of partial sums is increasing. We may therefore conclude that Sn → +∞
as n → +∞, and hence that the harmonic series diverges. ◆

(1, 1)

1 2 3

1
2(2, ) 1

3(3, ) 1
n

Area 1 Area 2

y

Area n
n…

(n, )

y =

xn + 1

1
x

FIGURE 10.3.4 Idea of the proof of Theorem 4.
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If the sequence of partial sums of the series
∑

an diverges to infinity, then we
say that the series diverges to infinity, and we write

∞∑
n=1

an = ∞.

The series
∑

(−1)n+1 of Example 2 is a series that diverges but does not diverge to
infinity. In the nineteenth century it was common to say that such a series was divergent
by oscillation; today we say merely that it diverges.

Our proof of Theorem 4 shows that

∞∑
n=1

1

n
= ∞.

But the partial sums of the harmonic series diverge to infinity very slowly. If NA de-
notes the smallest integer such that

NA∑
n=1

1

n
� A ,

then with the aid of a programmable calculator you can verify that N5 = 83. With the
aid of a computer and refinements of estimates like those in the proof of Theorem 4,
one can show that

N10 = 12,367,

N20 = 272,400,600,

N100 ≈ 1.5 × 1043, and

N1000 ≈ 1.1 × 10434.

Thus you would need to add more than a quarter of a billion terms of the harmonic
series to get a partial sum that exceeds 20. At this point each of the next few terms
would be approximately 0.000000004 = 4 × 10−9. The number of terms you’d have
to add to reach 1000 is far greater than the estimated number of elementary particles in
the entire universe (1080). If you enjoy such large numbers, see the article “Partial sums
of infinite series, and how they grow,” by R. P. Boas, Jr., in American Mathematical
Monthly 84 (1977): 237–248.

Theorem 5 says that if two infinite series have the same terms from some point
on, then either both series converge or both series diverge. The proof is left for Problem
63.

THEOREM 5 Series that Are Eventually the Same
If there exists a positive integer k such that an = bn for all n > k, then the series∑

an and
∑

bn either both converge or both diverge.

It follows that a finite number of terms can be changed, deleted from, or
adjoined to an infinite series without altering its convergence or divergence (al-
though the sum of a convergent series will generally be changed by such alterations).
In particular, taking bn = 0 for n � k and bn = an for n > k, we see that the series

∞∑
n=1

an = a1 + a2 + a3 + · · · + ak + ak+1 + · · ·

and the series
∞∑

n=k+1

an = ak+1 + ak+2 + ak+3 + ak+4 + · · ·

that is obtained by deleting its first k terms either both converge or both diverge.
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10.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. According to Section 10.3, an infinite series is an expression of the form

∞∑
n=1

an = a1 + a2 + a3 + · · · + an + · · · .

2. The first part of Example 1 presents a rigorous proof that

∞∑
n=1

1

2n
= 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · + 1

2n
+ · · · = 1.

3. The nth partial sum of the series

∞∑
k=1

ak is Sn =
n∑

k=1

ak = a1 + a2 + a3 + · · · + an.

4. The sum of the infinite series
∞∑

k=1

ak is

S = lim
n→∞ Sn = lim

n→∞

n∑
k=1

ak

provided that the limit exists.
5. 1 − 1 + 1 − 1 + 1 − 1 + · · · = 0.

6. The sum of the series
∞∑

n=1

1

n(n + 1)
is 1.

7. If a series is geometric with ratio r , first term a, and |r | < 1, then its sum is
a

1 − r
.

8. If lim
n→∞ an is either nonzero or does not exist, then

∞∑
n=1

an diverges.

9.
∞∑

n=1

1

n
diverges.

10. If lim
n→∞ an = 0, then

∞∑
n=1

an converges.

10.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. Can one ever obtain a convergent infinite series by interspersing the terms of two

divergent series?
2. Suppose that an infinite series has the property that, given any positive number,

all but finitely many terms of the series are positive and less than this number.
Does it follows that this series converges? What if it’s true that, given any posi-
tive number, all but finitely many partial sums of the series are greater than this
number? Does it then follow that this series diverges?

3. Can one determine whether a given infinite series converges or diverges merely
by computing a sufficiently large number of partial sums?

4. Can one determine the sum—accurate to a given fixed number of decimal
places—of a convergent geometric series merely by computing a sufficiently
large number of partial sums?
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10.3 PROBLEMS

In Problems 1 through 37, determine whether the given infinite
series converges or diverges. If it converges, find its sum.

1. 1 + 1

3
+ 1

9
+ · · · + 1

3n
+ · · ·

2. 1 + e−1 + e−2 + e−3 + · · · + e−n + · · ·
3. 1 + 3 + 5 + 7 + · · · + (2n − 1) + · · ·
4.

1

2
+ 1√

2
+ 1

3
√

2
+ · · · + 1

n
√

2
+ · · ·

5. 1 − 2 + 4 − 8 + 16 − · · · + (−2)n + · · ·
6. 1 − 1

4
+ 1

16
− · · · +

(
−1

4

)n

+ · · ·

7. 4 + 4

3
+ 4

9
+ 4

27
+ · · · + 4

3n
+ · · ·

8.
1

3
+ 2

9
+ 4

27
+ 8

81
+ · · · + 2n−1

3n
+ · · ·

9. 1 + (1.01) + (1.01)2 + (1.01)3 + · · · + (1.01)n + · · ·
10. 1 + 1√

2
+ 1

3
√

3
+ · · · + 1

n
√

n
+ · · ·

11.
∞∑

n=0

(−1)nn

n + 1
12.

∞∑
n=1

(
e

10

)n

13.
∞∑

n=0

(−1)n

(
3

e

)n

14.
∞∑

n=0

3n − 2n

4n

15.
∞∑

n=1

(√
2
)1−n

16.
∞∑

n=1

(
2

n
− 1

2n

)

17.
∞∑

n=1

n

10n + 17
18.

∞∑
n=1

√
n

ln(n + 1)

19.
∞∑

n=1

(5−n − 7−n) 20.
∞∑

n=0

1

1 + (
9
10

)n

21.
∞∑

n=1

(
e

π

)n

22.
∞∑

n=1

(
π

e

)n

23.
∞∑

n=0

(
100

99

)n

24.
∞∑

n=0

(
99

100

)n

25.
∞∑

n=0

1 + 2n + 3n

5n
26.

∞∑
n=0

1 + 2n + 5n

3n

27.
∞∑

n=0

7 · 5n + 3 · 11n

13n
28.

∞∑
n=1

n
√

2

29.
∞∑

n=1

[(
7

11

)n

−
(

3

5

)n]
30.

∞∑
n=1

2n√
4n2 + 3

31.
∞∑

n=1

n2 − 1

3n2 + 1
32.

∞∑
n=1

sinn 1

33.
∞∑

n=1

tann 1 34.
∞∑

n=1

(arcsin 1)n

35.
∞∑

n=1

(arctan 1)n 36.
∞∑

n=1

arctan n

37.
∞∑

n=2

1

n ln n
(Suggestion: Mimic the proof of Theorem 4 to

show divergence.)

38. Use the method of Example 7 to verify that

(a) 0.666666666 · · · = 2
3 ; (b) 0.111111111 · · · = 1

9 ;

(c) 0.249999999 · · · = 1
4 ; (d) 0.999999999 · · · = 1.

In Problems 39 through 43, find the rational number represented
by the given repeating decimal.

39. 0.4747 4747 . . . 40. 0.2525 2525 . . .

41. 0.123 123 123 . . . 42. 0.3377 3377 3377 . . .

43. 3.14159 14159 14159 . . .

In Problems 44 through 49, find the set of all those values of x
for which the given series is a convergent geometric series, then
express the sum of the series as a function of x.

44.
∞∑

n=1

(2x)n 45.
∞∑

n=1

(
x

3

)n

46.
∞∑

n=1

(x − 1)n 47.
∞∑

n=1

(
x − 2

3

)n

48.
∞∑

n=1

(
x2

x2 + 1

)n

49.
∞∑

n=1

(
5x2

x2 + 16

)n

In Problems 50 through 55, express the nth partial sum of the in-
finite series as a telescoping sum (as in Example 3) and thereby
find the sum of the series if it converges.

50.
∞∑

n=1

1

4n2 − 1
51.

∞∑
n=1

1

9n2 + 3n − 2

52.
∞∑

n=1

ln
n + 1

n
53.

∞∑
n=1

1

16n2 − 8n − 3

54.
∞∑

n=1

1

n(n + 2)
55.

∞∑
n=2

1

n2 − 1

In Problems 56 through 60, use a computer algebra system to
find the partial fraction decomposition of the general term, then
apply the method of Problems 50 through 55 to sum the series.

56.
∞∑

n=1

2n + 1

n2(n + 1)2
57.

∞∑
n=1

6n2 + 2n − 1

n(n + 1)(4n2 − 1)

58.
∞∑

n=1

2

n(n + 1)(n + 2)
59.

∞∑
n=1

6

n(n + 1)(n + 2)(n + 3)

60.
∞∑

n=3

6n

n4 − 5n2 + 4

61. Prove: If
∑

an diverges and c is a nonzero constant, then∑
can diverges.

62. Suppose that
∑

an converges and that
∑

bn diverges. Prove
that

∑
(an + bn) diverges.

63. Let Sn and Tn denote the nth partial sums of
∑

an and
∑

bn ,
respectively. Suppose that k is a fixed positive integer and
that an = bn for all n � k. Show that Sn − Tn = Sk − Tk for
all n > k. Hence prove Theorem 5.
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64. A ball has bounce coefficient r < 1 if, when it is dropped
from a height h, it bounces back to a height of rh
(Fig. 10.3.5). Suppose that such a ball is dropped from the
initial height a and subsequently bounces infinitely many
times. Use a geometric series to show that the total up-and-
down distance it travels in all its bouncing is

D = a · 1 + r

1 − r
.

Note that D is finite.

…

Initial height h

Height rh
Height r2h

FIGURE 10.3.5 Successive bounces of the
ball of Problems 64 and 65.

65. A ball with bounce coefficient r = 0.64 (see Problem 64)
is dropped from an initial height of a = 4 ft. Use a ge-
ometric series to compute the total time required for it to
complete its infinitely many bounces. The time required for
a ball to drop h feet (from rest) is

√
2h/g seconds, where

g = 32 ft/s2.

66. Suppose that the government spends $1 billion and that each
recipient of a fraction of this wealth spends 90% of the dol-
lars that he or she receives. In turn, the secondary recipients
spend 90% of the dollars they receive, and so on. How much
total spending thereby results from the original injection of
$1 billion into the economy?

67. A tank initially contains a mass M0 of air. Each stroke of a
vacuum pump removes 5% of the air in the container. Com-
pute: (a) The mass Mn of air remaining in the tank after n
strokes of the pump; (b) limn→∞ Mn .

68. Paul and Mary toss a fair coin in turn until one of them wins
the game by getting the first “head.” Calculate for each the
probability that he or she wins the game.

69. Peter, Paul, and Mary toss a fair coin in turn until one of
them wins by getting the first “head.” Calculate for each
the probability that he or she wins the game. Check your
answer by verifying that the sum of the three probabili-
ties is 1.

70. Peter, Paul, and Mary roll a fair die in turn until one of them
wins by getting the first “six.” Calculate for each the prob-
ability that he or she wins the game. Check your answer by
verifying that the sum of the three probabilities is 1.

71. A pane of a certain type of glass reflects half the incident
light, absorbs one-fourth, and transmits one-fourth. A win-
dow is made of two panes of this glass separated by a small
space (Fig. 10.3.6). What fraction of the incident light I is
transmitted by the double window?

Outer
pane

I

Inner
pane

I/2 I/4

I/8
I/16

I/32

I/32

I/16

I/64

FIGURE 10.3.6 The double-pane
window of Problem 71.

72. Criticize the following evaluation of the sum of an infinite
series:

Let x = 1 − 2 + 4 − 8 + 16 − 32 + 64 − · · · .
Then 2x = 2 − 4 + 8 − 16 + 32 − 64 + · · · .
Add the equations to obtain 3x = 1. Thus x = 1

3 ,
and “therefore”

1 − 2 + 4 − 8 + 16 − 32 + 64 − · · · = 1
3 .

10.3 INVESTIGATION: Numerical Summation and Geometric Series
With a modern calculator or computer, the computation of partial sums of infinite
series—historically a tedious and time-consuming task—is now (ordinarily) a simple
matter. Graphing calculators and computer algebra systems typically include one-line
command such as

sum(seq(a,k), k,1,n)) TI calculator
sum( a(k), k = 1..n ) Maple
Sum[ a[k], { k, 1, n } ] Mathematica

for the calculation of the nth partial sum of the infinite series
∑∞

k=1 ak whose kth term
is denoted by a(k). For instance, we can check numerically the fact that

∞∑
k=0

(
1

5

)k

= 5

4

by very quickly calculating the first seven partial sums 1.0000, 1.2000, 1.2400, 1.2480,
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1.2496, 1.2499, and 1.2500. While not conclusive, this numerical evidence is never-
theless reassuring.

Investigation A Calculate partial sums of the geometric series
∞∑

n=0

rn

with r = 0.2, 0.5, 0.75, 0.9, and 0.99. For each value of r , calculate the partial sums Sn

with n = 10, 20, 30, . . . , continuing until two successive results agree to four or five
decimal places. (For r = 0.9 and 0.99, you may decide to use n = 100, 200, 300, . . . .)
How does the apparent rate of convergence—as measured by the number of terms
required for the desired accuracy—depend on the value of r?

Investigation B Archaeological evidence indicates that the ancient (pre-Roman) Etr-
uscans played dice using a dodecahedral die having 12 pentagonal faces numbered 1
through 12 (Fig. 10.3.7). One could simulate such a die by drawing a random card
from a deck of 12 cards numbered 1 through 12. Here let’s think of a deck having k
cards numbered 1 through k. For your own personal value of k, begin with the largest
digit in the sum of the digits in your student ID number. This is your value of k unless
this digit is less than 5, in which case subtract it from 10 to get your value of k.

FIGURE 10.3.7 The 12-sided
dodecahedron.

(a) John and Mary draw alternately from a shuffled deck of k cards. The first
one to draw an ace—the card numbered 1—wins. Assume that John draws
first. Use the formula for the sum of a geometric series to calculate (both
as a rational number and as a four-place decimal) the probability J that John
wins, and similarly the probability M that Mary wins. Check that J +M = 1.

(b) Now John, Mary, and Paul draw alternately from the deck of k cards.
Calculate separately their respective probabilities of winning, given that John
draws first and Mary draws second. Check that J + M + P = 1.

10.4 TAYLOR SERIES AND TAYLOR POLYNOMIALS

The infinite series we studied in Section 10.3 have constant terms, and the sum of
such a series (assuming it converges) is a number. In contrast, much of the practical
importance of infinite series derives from the fact that many functions have useful
representations as infinite series with variable terms.

EXAMPLE 1 If we write r = x for the ratio in a geometric series, then Theorem 1

1−1

−1

1

2

3

−2

−2 2

y

S1(x)S2(x)

S3(x)

x

y = 1
1 − x

FIGURE 10.4.1 Graphs of the
partial sums S1(x), S2(x), and S3(x)

of the power series
∞∑

n=0

xn = 1

1 − x
of Example 1.

in Section 10.3 gives the infinite series representation

1

1 − x
=

∞∑
n=0

xn = 1 + x + x2 + x3 + · · · (1)

of the function f (x) = 1/(1 − x). That is, for each fixed number x with |x | < 1, the
infinite series in (1) converges to the number 1/(1 − x). The nth partial sum

Sn(x) = 1 + x + x2 + x3 + · · · + xn (2)

of the geometric series in (1) is now an nth-degree polynomial that approximates the
function f (x) = 1/(1 − x). The convergence of the infinite series for |x | < 1 suggests
that the approximation

1

1 − x
≈ 1 + x + x2 + x3 + · · · + xn (3)

should then be accurate if n is sufficiently large. Figure 10.4.1 shows the graphs of
1/(1 − x) and the three approximations S1(x), S2(x), and S3(x). It appears that the
approximations are more accurate when n is larger and when x is closer to zero.

◗

743

www.konkur.in



744 CHAPTER 10 Infinite Series

REMARK The approximation in (3) could be used to calculate numerical quotients
with a calculator that has only +, −, × keys (but no ÷ key). For instance,

329

73
= 3.29

0.73
= 3.29 × 1

1 − 0.27
≈ (3.29)[1 + (0.27) + (0.27)2 + · · · + (0.27)10]
≈ (3.29)(1.36986); thus

329

73
≈ 4.5068,

rounded off to four decimal places. This is a simple illustration of the use of polynomial
approximation for numerical computation.

The definitions of the various elementary transcendental functions leave it un-
clear how to compute their values precisely, except at a few isolated points. For exam-
ple,

ln x =
∫ x

1

1

t
dt (x > 0)

by definition, so obviously ln 1 = 0, but no other value of ln x is obvious. The natural
exponential function is the inverse of ln x , so it is clear that e0 = 1, but it is not at all
clear how to compute ex for x �= 0. Indeed, even such an innocent-looking expression
as

√
x is not computable (precisely and in a finite number of steps) unless x happens

to be the square of a rational number.
But any value of a polynomial

P(x) = c0 + c1x + c2x2 + · · · + cnxn

with known coefficients c0, c1, c2, . . . , cn is easy to calculate—as in the preceding
remark, only addition and multiplication are required. One goal of this section is to
use the fact that polynomial values are so readily computable to help us calculate ap-
proximate values of functions such as ln x and ex .

Polynomial Approximations
Suppose that we want to calculate (or, at least, closely approximate) a specific value

x

y

a

y = f (a) + f '(a)(x − a)

y = f (x)

FIGURE 10.4.2 The tangent line at
(a, f (a)) is the best linear
approximation to y = f (x) near a.

f (x0) of a given function f . It would suffice to find a polynomial P(x) with a graph
that is very close to that of f on some interval containing x0. For then we could use
the value P(x0) as an approximation to the actual value of f (x0). Once we know
how to find such an approximating polynomial P(x), the next question would be how
accurately P(x0) approximates the desired value f (x0).

The simplest example of polynomial approximation is the linear approximation

f (x) ≈ f (a) + f ′(a)(x − a)

obtained by writing �x = x − a in the linear approximation formula, Eq. (3) of
Section 4.2. The graph of the first-degree polynomial

P1(x) = f (a) + f ′(a)(x − a) (4)

is the line tangent to the curve y = f (x) at the point (a, f (a)); see Fig. 10.4.2. This
first-degree polynomial agrees with f and with its first derivative at x = a. That is,

P1(a) = f (a) and P ′
1(a) = f ′(a).

EXAMPLE 2 Suppose that f (x) = ln x and that a = 1. Then f (1) = 0 and f ′(1) =
1, so P1(x) = x − 1. Hence we expect that ln x ≈ x − 1 for x near 1. With x = 1.1,
we find that

P1(1.1) = 0.1000, whereas ln(1.1) ≈ 0.0953.

The error in this approximation is about 5%.

744

www.konkur.in



Taylor Series and Taylor Polynomials SECTION 10.4 745

To better approximate ln x near x = 1, let us find a second-degree polynomial

P2(x) = c0 + c1x + c2x2

that not only has the same value and the same first derivative as does f at x = 1, but
also has the same second derivative there: P ′′

2 (1) = f ′′(1) = −1. To satisfy these
conditions, we must have

P2(1) = c2 + c1 + c0 = 0,

P ′
2(1) = 2c2 + c1 = 1, and

P ′′
2 (1) = 2c2 = −1.

When we solve these equations, we find that c0 = − 3
2 , c1 = 2, and c2 = − 1

2 , so

P2(x) = − 3
2 + 2x − 1

2 x2.

With x = 1.1 we find that P2(1.1) = 0.0950, which is accurate to three decimal places
because ln(1.1) ≈ 0.0953. The graph of y = P2(x) is a parabola through (1, 0) with
the same value, slope, and curvature there as y = ln x (Fig. 10.4.3). ◗

x

y

y = x − 1
y = ln x 

(2, 1
2 )

y = −   x2 + 2x  −
(1, 0)

1
2

3
2

FIGURE 10.4.3 The linear and parabolic
approximations to y = ln x near the point
(1, 0) (Example 2).

The tangent line and the parabola used in the computations of Example 2 illus-
trate one general approach to polynomial approximation. To approximate the function
f (x) near x = a, we look for an nth-degree polynomial

Pn(x) = c0 + c1x + c2x2 + · · · + cnxn

such that its value at a and the values of its first n derivatives at a agree with the
corresponding values of f . That is, we require that

Pn(a) = f (a),

P ′
n(a) = f ′(a),

P ′′
n (a) = f ′′(a),

...

P (n)
n (a) = f (n)(a).

(5)

We can use these n + 1 conditions to evaluate the values of the n + 1 coefficients
c0, c1, c2, . . . , cn .

The algebra involved is much simpler, however, if we begin with Pn(x) expressed
as an nth-degree polynomial in powers of x − a rather than in powers of x :

Pn(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n. (6)

Then substituting x = a in Eq. (6) yields

c0 = Pn(a) = f (a)
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by the first condition in Eq. (5). Substituting x = a into

P ′
n(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · · + ncn(x − a)n−1

yields

c1 = P ′
n(a) = f ′(a)

by the second condition in Eq. (5). Next, substituting x = a into

P ′′
n (x) = 2c2 + 3 · 2c3(x − a) + · · · + n(n − 1)cn(x − a)n−2

yields 2c2 = P ′′
n (a) = f ′′(a), so

c2 = 1
2 f ′′(a).

We continue this process to find c3, c4, . . . , cn . In general, the constant term in
the kth derivative P (k)

n (x) is k!ck , because it is the kth derivative of the kth-degree term
bk(x − a)k in Pn(x):

P (k)
n (x) = k!ck + {powers of x − a}.

(Recall that k! = 1 · 2 · 3 · · · (k − 1) · k denotes the factorial of the positive integer k,
read “k factorial.”) So when we substitute x = a into P (k)

n (x), we find that

k!ck = P (k)
n (a) = f (k)(a)

and thus that

ck = f (k)(a)

k! (7)

for k = 1, 2, 3, . . . , n.
Indeed, Eq. (7) holds also for k = 0 if we use the universal convention that

0! = 1 and agree that the zeroth derivative g(0) of the function g is just g itself. With
such conventions, our computations establish the following theorem.

THEOREM 1 The nth-Degree Taylor Polynomial
Suppose that the first n derivatives of the function f (x) exist at x = a. Let Pn(x)

be the nth-degree polynomial

Pn(x) =
n∑

k=0

f (k)(a)

k! (x − a)k

= f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n.

(8)

Then the values of Pn(x) and its first n derivatives agree, at x = a, with the values
of f and its first n derivatives there. That is, the equations in (5) all hold.

The polynomial in Eq. (8) is called the nth-degree Taylor polynomial of the
function f at the point x = a. Note that Pn(x) is a polynomial in powers of x − a
rather than in powers of x . To use Pn(x) effectively for the approximation of f (x) near
a, we must be able to compute the value f (a) and the values of its derivatives f ′(a),
f ′′(a), and so on, all the way to f (n)(a).

The line y = P1(x) is simply the line tangent to the curve y = f (x) at the
point (a, f (a)). Thus y = f (x) and y = P1(x) have the same slope at this point.
Now recall from Section 4.6 that the second derivative measures the way the curve
y = f (x) is bending as it passes through (a, f (a)). Therefore, let us call f ′′(a) the
“concavity” of y = f (x) at (a, f (a)). Then, because P ′′

2 (a) = f ′′(a), it follows that
y = P2(x) has the same value, the same slope, and the same concavity at (a, f (a)) as
does y = f (x). Moreover, P3(x) and f (x) will also have the same rate of change of
concavity at (a, f (a)). Such observations suggest that the larger n is, the more closely
the nth-degree Taylor polynomial will approximate f (x) for x near a.
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EXAMPLE 3 Find the nth-degree Taylor polynomial of f (x) = ln x at a = 1.

Solution The first few derivatives of f (x) = ln x are

f ′(x) = 1

x
, f ′′(x) = − 1

x2
, f (3)(x) = 2

x3
, f (4)(x) = − 3!

x4
, f (5)(x) = 4!

x5
.

The pattern is clear:

f (k)(x) = (−1)k−1 (k − 1)!
xk

for k � 1.

Hence f (k)(1) = (−1)k−1(k − 1)!, so Eq. (8) gives

Pn(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4 + · · · + (−1)n−1

n
(x − 1)n.

With n = 2 we obtain the quadratic polynomial

P2(x) = (x − 1) − 1
2 (x − 1)2 = − 1

2 x2 + 2x − 3
2 ,

the same as in Example 2. With the third-degree Taylor polynomial

P3(x) = (x − 1) − 1
2 (x − 1)2 + 1

3 (x − 1)3

we can go a step further in approximating ln(1.1) = 0.095310179 . . . ≈ 0.0953. The
value

P3(1.1) = (0.1) − 1
2 (0.1)2 + 1

3 (0.1)3 ≈ 0.095333 ≈ 0.0953

is accurate to four decimal places (rounded). In Fig. 10.4.4 we see that, the higher
the degree and the closer x is to 1, the more accurate the approximation ln x ≈ Pn(x)

1 2 3 4

−1

1

2

3

−2

−1

y

P1(x)P3(x)

P2(x)

x

y = ln x

FIGURE 10.4.4 The first three
Taylor polynomials approximating
f (x) = ln x near x = 1.

appears to be. ◗

In the common case a = 0, the nth-degree Taylor polynomial in Eq. (8) reduces
to

Pn(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn . (9)

EXAMPLE 4 Find the nth-degree Taylor polynomial for f (x) = ex at a = 0.

Solution This is the easiest of all Taylor polynomials to compute, because f (k)(x) =
ex for all k � 0. Hence f (k)(0) = 1 for all k � 0, so Eq. (9) yields

Pn(x) = 1 + x + x2

2! + x3

3! + · · · + xn

n! . ◗

The first few Taylor polynomials of the natural exponential function at a = 0 are,
therefore,

P0(x) = 1,

P1(x) = 1 + x,

P2(x) = 1 + x + 1
2 x2,

P3(x) = 1 + x + 1
2 x2 + 1

6 x3,

P4(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4,

P5(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4 + 1

120 x5.

Figure 10.4.5 shows the graphs of P1(x), P2(x), and P3(x). The table in Fig. 10.4.6
shows how these polynomials approximate f (x) = ex for x = 0.1 and for x = 0.5. At
least for these two values of x , the closer x is to a = 0, the more rapidly Pn(x) appears
to approach f (x) as n increases.

2

2

4

6

8

10

12

14

−2

−4

−4 −2 4

y

P1(x)

P2(x)

P3(x)

x

y = ex

FIGURE 10.4.5 The first three
Taylor polynomials approximating
f (x) = ex near x = 0.
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x = 0.1

n Pn(x) ex ex − Pn(x)

0 1.00000 1.10517 0.10517
1 1.10000 1.10517 0.00517
2 1.10500 1.10517 0.00017
3 1.10517 1.10517 0.00000
4 1.10517 1.10517 0.00000

x = 0.5

n Pn(x) ex ex − Pn(x)

0 1.00000 1.64872 0.64872
1 1.50000 1.64872 0.14872
2 1.62500 1.64872 0.02372
3 1.64583 1.64872 0.00289
4 1.64844 1.64872 0.00028
5 1.64879 1.64872 0.00002

FIGURE 10.4.6 Approximating y = ex with
Taylor polynomials at a = 0.

Taylor's Formula
The closeness with which the polynomial Pn(x) approximates the function f (x) is
measured by the difference

Rn(x) = f (x) − Pn(x),

for which

f (x) = Pn(x) + Rn(x). (10)

This difference Rn(x) is called the nth-degree remainder for f (x) at x = a. It is the
error made if the value f (x) is replaced with the approximation Pn(x).

The theorem that lets us estimate the error, or remainder, Rn(x) is called
Taylor’s formula, after Brook Taylor (1685–1731), a follower of Newton who in-
troduced Taylor polynomials in an article published in 1715. The particular expression
for Rn(x) that we give next is called the Lagrange form for the remainder because it
first appeared in 1797 in a book written by the French mathematician Joseph Louis
Lagrange (1736–1813).

THEOREM 2 Taylor's Formula
Suppose that the (n + 1)st derivative of the function f exists on an interval contain-
ing the points a and b. Then

f (b) = f (a) + f ′(a)(b − a) + f ′′(a)

2! (b − a)2

+ f (3)(a)

3! (b − a)3 + · · · + f (n)(a)

n! (b − a)n + f (n+1)(z)

(n + 1)! (b − a)n+1

(11)

for some number z between a and b.

REMARK With n = 0, Eq. (11) reduces to the equation

f (b) = f (a) + f ′(z)(b − a),

the conclusion of the mean value theorem (Section 4.3). Thus Taylor’s formula is a
far-reaching generalization of the mean value theorem of differential calculus.
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A proof of Taylor’s formula is given in Appendix I. If we replace b with x in
Eq. (11), we get the nth-degree Taylor formula with remainder at x = a,

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f (3)(a)

3! (x − a)3

+ · · · + f (n)(a)

n! (x − a)n + f (n+1)(z)

(n + 1)! (x − a)n+1, (12)

where z is some number between a and x . Thus the nth-degree remainder term is

Rn(x) = f (n+1)(z)

(n + 1)! (x − a)n+1, (13)

which is easy to remember—it’s the same as the last term of Pn+1(x), except that
f (n+1)(a) is replaced with f (n+1)(z).

EXAMPLE 3 (continued) To estimate the accuracy of the approximation

ln 1.1 ≈ 0.095333,

we substitute x = 1 into the formula

f (k)(x) = (−1)k−1 (k − 1)!
xk

for the kth derivative of f (x) = ln x and get

f (k)(1) = (−1)k−1(k − 1)!.
Hence the third-degree Taylor formula with remainder at x = 1 is

ln x = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − 3!

4!z4
(x − 1)4

with z between a = 1 and x . With x = 1.1 this gives

ln(1.1) ≈ 0.095333 − (0.1)4

4z4
,

where 1 < z < 1.1. The value z = 1 gives the largest possible magnitude (0.1)4/4 =
0.000025 of the remainder term. It follows that

0.095308 < ln(1.1) < 0.095334,

so we can conclude that ln(1.1) = 0.0953 to four-place accuracy. ◗

Taylor Series
If the function f has derivatives of all orders, then we can write Taylor’s formula
(Eq. (11)) with any degree n that we please. Ordinarily, the exact value of z in the
Taylor remainder term in Eq. (13) is unknown. Nevertheless, we can sometimes use
Eq. (13) to show that the remainder approaches zero as n → +∞:

lim
n→∞ Rn(x) = 0 (14)

for some particular fixed value of x . Then Eq. (10) gives

f (x) = lim
n→∞ [Pn(x) + Rn(x)] = lim

n→∞ Pn(x) = lim
n→∞

n∑
k=0

f (k)(a)

k! (x − a)k;

that is,

f (x) =
∞∑

k=0

f (k)(a)

k! (x − a)k . (15)
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The infinite series

∞∑
n=0

f (n)(a)

n! (x − a)n = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

+ · · · + f (n)(a)

n! (x − a)n + · · · (16)

is called the Taylor series of the function f at x = a. Its partial sums are the successive
Taylor polynomials of f at x = a.

We can write the Taylor series of a function f without knowing that it converges.
But if the limit in Eq. (14) can be established, then it follows as in Eq. (15) that the
Taylor series in Eq. (16) actually converges to f (x). If so, then we can approximate the
value of f (x) sufficiently accurately by calculating the value of a Taylor polynomial
of f of sufficiently high degree.

EXAMPLE 5 In Example 4 we noted that if f (x) = ex , then f (k)(x) = ex for all
integers k � 0. Hence the Taylor formula

f (x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn + f (n+1)(z)

(n + 1)! xn+1

at a = 0 gives

ex = 1 + x + x2

2! + x3

3! + · · · + xn

n! + ez xn+1

(n + 1)! (17)

for some z between 0 and x . If x and hence z are negative then ez < 1, whereas ez < ex

if both are positive. Thus the remainder term Rn(x) satisfies the inequalities

0 < |Rn(x)| <
|x |n+1

(n + 1)! if x < 0,

0 < |Rn(x)| <
ex xn+1

(n + 1)! if x > 0.

Therefore, the fact that

lim
n→∞

xn

n! = 0 (18)

for all x (see Problem 55) implies that limn→∞ Rn(x) = 0 for all x . This means that
the Taylor series for ex converges to ex for all x , and we may write

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · . (19)

The series in Eq. (19) is the most famous and most important of all Taylor series.
With x = 1, Eq. (19) yields a numerical series

e =
∞∑

n=0

1

n! = 1 + 1

1! + 1

2! + 1

3! + 1

4! + · · · (20)

for the number e itself. The 10th and 20th partial sums of this series give the approxi-
mations

e ≈ 1 + 1

1! + 1

2! + · · · + 1

10! ≈ 2.7182818
and

e ≈ 1 + 1

1! + 1

2! + · · · + 1

20! ≈ 2.71828 18284 59045 235,

both of which are accurate to the number of decimal places shown. ◗
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EXAMPLE 6 To find the Taylor series at a = 0 for f (x) = cos x , we first calculate
the derivatives

f (x) = cos x, f ′(x) = − sin x,

f ′′(x) = − cos x, f (3)(x) = sin x,

f (4)(x) = cos x, f (5)(x) = − sin x,

...
...

f (2n)(x) = (−1)n cos x, f (2n+1)(x) = −1n+1 sin x,

It follows that

f (2n)(0) = (−1)n but f (2n+1)(0) = 0,

so the Taylor polynomials and Taylor series of f (x) = cos x include only terms of
even degree. The Taylor formula of degree 2n for cos x at a = 0 is

cos x = 1 − x2

2! + x4

4! − · · · + (−1)n x2n

(2n)! + (−1)n+1 cos z

(2n + 2)! x2n+2,

where z is between 0 and x . Because | cos z| � 1 for all z, it follows from Eq. (18) that
the remainder term approaches zero as n → ∞ for all x . Hence the desired Taylor
series of f (x) = cos x at a = 0 converges to cos x for all x , so we may write

cos x =
∞∑

n=0

(−1)nx2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · · . (21)

◗

In Problem 41 we ask you to show similarly that the Taylor series at a = 0 of
f (x) = sin x is

sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · · . (22)

Figures 10.4.7 and 10.4.8 illustrate the increasingly better approximations to cos x and
sin x that we get by using more and more terms of the series in Eqs. (21) and (22).

n = 8

2
1

−1
− 2

π

y

y = cos x

n = 16 n = 24

2π 3π

n = 6 n = 14 n = 22

x

FIGURE 10.4.7 Approximating cos x with
nth-degree Taylor polynomials.

x

n = 5

2
1

−1

− 2

n = 13 n = 21

y = sin x

3π2ππ

n = 7 n = 15 n = 23

y

FIGURE 10.4.8 Approximating sin x with
nth-degree Taylor polynomials.

The case a = 0 of Taylor’s series in (16) is called the Maclaurin series of the
function f (x),

∞∑
n=0

f (n)(0)

n! xn = f (0) + f ′(0)x + f ′′(0)

2! x2 + f (3)(0)

3! x3 + · · · . (23)
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Colin Maclaurin (1698–1746) was a Scottish mathematician who used this series as a
basic tool in a calculus book he published in 1742. The three Maclaurin series

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · , (19)

cos x =
∞∑

n=0

(−1)nx2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · · , and (21)

sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · · (22)

(which actually were discovered by Newton) bear careful examination and comparison.
Observe that:

• The terms in the even cosine series are the even-degree terms in the exponential
series but with alternating signs.

• The terms in the odd sine series are the odd-degree terms in the exponential series
but with alternating signs.

Equations (19), (21), and (22) are identities that hold for all values of x . Consequently,
new series can be derived by substitution, as in Examples 7 and 8.

EXAMPLE 7 Substituting x = −t2 into Eq. (19) yields

e−t2 = 1 − t2 + t4

2! − t6

3! + · · · + (−1)n t2n

n! + · · · . ◗

EXAMPLE 8 Substituting x = 2t into Eq. (22) gives

sin 2t = 2t − 4

3
t3 + 4

15
t5 − 8

315
t7 + · · · . ◗

Euler's Formula
The sum of an infinite series

∑
cn with complex terms cn = an + ibn is defined by

∞∑
n=1

cn =
∞∑

n=1

an + i
∞∑

n=1

bn

provided that the two infinite series of real terms on the right-hand side converge, in
which case we say that the series of complex terms on the left-hand side converges.

It can be shown that the exponential series in (19) converges whenever the num-
ber x is replaced with a complex number z = x + iy. Consequently, the exponential
function ez can be defined (for complex as well as for real arguments) by means of the
series

ez =
∞∑

n=0

zn

n! = 1 + z + z2

2! + z3

3! + z4

4! + · · · .

If we substitute the pure imaginary number z = iθ (with θ real), we get

eiθ =
∞∑

n=0

(iθ)n

n! = 1 + iθ + (iθ)2

2! + (iθ)3

3! + (iθ)4

4! + · · ·

= 1 + iθ − θ2

2! − iθ3

3! + θ4

4! + iθ5

5! − · · ·

=
(

1 − θ2

2! + θ4

4! − · · ·
)

+ i

(
θ − θ3

3! + θ5

5! − · · ·
)

,
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using the facts that i2 = −1, i3 = −i , i4 = 1, and so on. We recognize the Maclaurin
series for cos θ and sin θ on the right-hand side and conclude that

eiθ = cos θ + i sin θ

for every real number θ . This is the famous Euler’s Formula. For instance, with
θ = π it gives eiπ = cos π + i sin π = −1, and hence the extraordinary relation

eiπ + 1 = 0

relating the five most important special numbers in mathematics: 0, 1, i , π , and e.

The Number π

In Section 5.3 we described how Archimedes used polygons inscribed in and circum-
scribed about the unit circle to show that 3 10

71 < π < 3 1
7 . With the aid of electronic

computers, π has been calculated to well over a billion decimal places. We describe
now some of the methods that have been used for such computations. [For a chronicle
of humanity’s perennial fascination with the number π , see Peter Beckmann, A History
of π , New York: St. Martin’s Press, 1971.]

We begin with the elementary algebraic identity

1

1 + x
= 1 − x + x2 − x3 + · · · + (−1)k−1xk−1 + (−1)k xk

1 + x
, (24)

which can be verified by multiplying both sides by 1 + x . We substitute t2 for x and
n + 1 for k and thus find that

1

1 + t2
= 1 − t2 + t4 − t6 + · · · + (−1)nt2n + (−1)n+1t2n+2

1 + t2
.

Because Dt tan−1 t = 1/(1+ t2), integrating both sides of this last equation from t = 0
to t = x gives

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ · · · + (−1)n x2n+1

2n + 1
+ R2n+1, (25)

where

|R2n+1| =
∣∣∣∣
∫ x

0

t2n+2

1 + t2
dx

∣∣∣∣ �
∣∣∣∣
∫ x

0
t2n+2 dx

∣∣∣∣ = |x |2n+3

2n + 3
. (26)

This estimate of the error makes it clear that

lim
n→∞ Rn = 0

if |x | � 1. Hence we obtain the Taylor series for the inverse tangent function:

tan−1 x =
∞∑

n=0

(−1)n x2n+1

2n + 1
= x − x3

3
+ x5

5
− x7

7
+ · · · , (27)

valid for −1 � x � 1.
If we substitute x = 1 into Eq. (27), we obtain Leibniz’s series

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · .

Although this is a beautiful series, it is not an effective way to compute π . But the
error estimate in Eq. (26) shows that we can use Eq. (25) to calculate tan−1 x if |x | is
small. For example, if x = 1

5 , then the fact that

1

9 · 59
≈ 0.000000057 < 0.0000001
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implies (using n = 3) that the approximation

tan−1
(

1
5

) ≈ 1
5 − 1

3

(
1
5

)3 + 1
5

(
1
5

)5 − 1
7

(
1
5

)7

is accurate to six decimal places.
Accurate inverse tangent calculations lead to accurate computations of the num-

ber π . For example, we can use the addition formula for the tangent function to show
(Problem 52) that

π

4
= 4 tan−1

(
1

5

)
− tan−1

(
1

239

)
. (28)

HISTORICAL NOTE In 1706, John Machin used Eq. (28) to calculate the first
100 decimal places of π . (In Problem 54 we ask you to use it to show that π = 3.14159
to five decimal places.) In 1844 the lightning-fast mental calculator Zacharias Dase of
Germany computed the first 200 decimal places of π , using the related formula

π

4
= tan−1

(
1

2

)
+ tan−1

(
1

5

)
+ tan−1

(
1

8

)
. (29)

You might enjoy verifying this formula. (See Problem 53.) A recent computation of 1
million decimal places of π used the formula

π

4
= 12 tan−1

(
1

18

)
+ 8 tan−1

(
1

57

)
− 5 tan−1

(
1

239

)
.

For derivations of this formula and others like it, with further discussion of the com-
putations of the number π , see the article “An algorithm for the calculation of π” by
George Miel in the American Mathematical Monthly 86 (1979), pp. 694–697. Al-
though few practical applications require more than ten or twelve decimal places of
π , these computations provide dramatic evidence of the power of Taylor’s formula.
Moreover, the number π continues to serve as a challenge both to human ingenuity
and to the accuracy and efficiency of modern electronic computers. For an account
of how investigations of the Indian mathematical genius Srinivasa Ramanujan (1887–
1920) have led recently to the computation of over a billion decimal places of π , see
the article “Ramanujan and pi,” Jonathan M. Borwein and Peter B. Borwein, Scientific
American (Feb. 1988), pp. 112–117.

10.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.
1

1 − x
= 1 + x + x2 + x3 + · · · + xn .

2. If f is differentiable at x = a and x is close to a, then

f (x) ≈ f (a) + f ′(a)(x − a).

3. The nth-degree Taylor polynomial of f (x) = ln x at a = 1 is

Pn(x) = (x −1)− 1

2
(x −1)2 + 1

3
(x −1)3 − 1

4
(x −1)4 +· · ·+ (−1)n−1

n
(x −1)n.

4. The third-degree Taylor polynomial of f (x) = ex at a = 0 is

P3(x) = 1 + x + 1

2
x2 + 1

3
x3.

5. The third-degree Taylor formula with remainder at x = 1 yields

0.0953083 < ln(1.1) < 0.0953334.
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6. For every real number x ,

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

7. For every real number x ,

cos x = 1 − x2

2! + x4

4! − x6

6! + · · · .

8. For every real number x ,

sin x = x − x3

3! + x5

5! − x7

7! + · · · .

9. If −1 � x � 1, then

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ · · · .

10. Euler’s formula implies that eπ i = 1.

10.4 CONCEPTS: QUESTIONS AND DISCUSSION

1. Suppose that we take Euler’s formula eiθ = cos θ + i sin θ as a starting point and
define the exponential ez = ex+iy by writing

ez = ex eiy = ex(cos y + i sin y).

Can you then prove on this basis that ez+w = ezew if z = x + iy and w = u + iv
are complex numbers?

2. Can you use the definition of ez in Question 1 to prove that Dx ekx = kekx if
k = a + bi is a complex constant and x is a real variable?

10.4 PROBLEMS

In Problems 1 through 10, find Taylor’s formula for the given
function f at a = 0. Find both the Taylor polynomial Pn(x) of
the indicated degree n and the remainder term R n(x).

1. f (x) = e−x ; n = 5

2. f (x) = sin x; n = 4

3. f (x) = cos x; n = 4

4. f (x) = 1

1 − x
; n = 4

5. f (x) = √
1 + x; n = 3

6. f (x) = ln(1 + x); n = 4

7. f (x) = tan x; n = 3

8. f (x) = arctan x; n = 2

9. f (x) = sin−1 x; n = 2

10. f (x) = x3 − 3x2 + 5x − 7; n = 4

In Problems 11 through 20, find the Taylor polynomial with re-
mainder by using the given values of a and n.

11. f (x) = ex ; a = 1, n = 4

12. f (x) = cos x; a = π/4, n = 3

13. f (x) = sin x; a = π/6, n = 3

14. f (x) = √
x; a = 100, n = 3

15. f (x) = 1

(x − 4)2
; a = 5, n = 5

16. f (x) = tan x; a = π/4, n = 4

17. f (x) = cos x; a = π, n = 4

18. f (x) = sin x; a = π/2, n = 4

19. f (x) = x3/2; a = 1, n = 4

20. f (x) = 1√
1 − x

; a = 0, n = 4

In Problems 21 through 28, find the Maclaurin series of the given
function f by substituting in one of the known series in Eqs. (19),
(21), and (22).

21. f (x) = e−x 22. f (x) = e2x

23. f (x) = e−3x 24. f (x) = exp(x3)

25. f (x) = sin 2x 26. f (x) = sin
x

2
27. f (x) = sin x2

28. f (x) = sin2 x = 1
2 (1 − cos 2x)

In Problems 29 through 40, find the Taylor series [Eq. (16)] of
the given function at the indicated point a.

29. f (x) = ln(1 + x); a = 0

30. f (x) = 1

1 − x
; a = 0

31. f (x) = e−x ; a = 0

32. f (x) = sin x; a = π/2
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33. f (x) = ln x; a = 1

34. f (x) = e2x ; a = 0

35. f (x) = cos x; a = π/4

36. f (x) = 1

(1 − x)2
; a = 0

37. f (x) = 1

x
; a = 1

38. f (x) = cos x; a = π/2

39. f (x) = sin x; a = π/4

40. f (x) = √
1 + x; a = 0

41. Derive, as in Example 6, the Taylor series in Eq. (22) of
f (x) = sin x at a = 0.

42. Granted that it is valid to differentiate the sine and cosine
Taylor series in a term-by-term manner, use these series to
verify that Dx cos x = − sin x and Dx sin x = cos x .

43. Use the differentiation formulas Dx sinh x = cosh x and
Dx cosh x = sinh x to derive the Maclaurin series

cosh x =
∞∑

n=0

x2n

(2n)! and sinh x =
∞∑

n=0

x2n+1

(2n + 1)!
for the hyperbolic sine and cosine functions. What is their
relationship to the Maclaurin series of the ordinary sine and
cosine functions?

44. Derive the Maclaurin series stated in Problem 43 by substi-
tuting the known Maclaurin series for the exponential func-
tion in the definitions

cosh x = ex + e−x

2
and sinh x = ex − e−x

2

of the hyperbolic functions.

The sum commands listed for several computer algebra systems
in the Section 10.3 Investigation can be used to calculate Tay-
lor polynomials efficiently. For instance, when the TI graphing
calculator definitions

Y1 = sin(x)

Y2 = sum(seq((-1)∧N*X∧(2N+1)/
(2N+1)!,N,0,6))

are graphed, the result is Fig. 10.4.9, showing that the 13th-
degree Taylor polynomial P13(x) approximates sin x rather
closely if −3π/2 < x < 3π/2 but not outside this range. By
plotting several successive Taylor polynomials of a function f (x)

simultaneously, we can get a visual sense of the way in which
they approximate the function. Do this for each function given in
Problems 45 through 50.

x

P13(x)

−

1

−1

y

y = sin x

3
2
π3

2
π

FIGURE 10.4.9 Graphs of y = sin x
and its 13th-degree Taylor polynomial
P13(x).

45. f (x) = e−x 46. f (x) = sin x

47. f (x) = cos x 48. f (x) = ln(1 + x)

49. f (x) = 1

1 + x
50. f (x) = 1

1 − x2

51. Let the function

f (x) =
∞∑

n=0

(−1)n xn

(2n)! = 1 − x

2! + x2

4! − x3

6! + · · ·

be defined by replacing x with
√

x in the Maclaurin series
for cos x . Plot partial sums of this series to verify graphi-
cally that f (x) agrees with the function g(x) defined by

g(x) =
{

cos
√

x if x � 0,

cosh
√|x | if x < 0.

52. Beginning with α = tan−1( 1
5 ), use the addition formula

tan(A + B) = tan A + tan B

1 − tan A tan B

to show in turn that (a) tan 2α = 5
12 ; (b) tan 4α = 120

119 ;
(c) tan (π/4 − 4α) = − 1

239 . Finally, show that part (c) im-
plies Eq. (28).

53. Apply the addition formula for the tangent function to verify
Eq. (29).

54. Every young person deserves the thrill, just once, of calcu-
lating personally the first several decimal places of the num-
ber π . The seemingly random nature of this decimal ex-
pansion demands an explanation; how, indeed, are the digits
3.14159 26535 89793 . . . determined? For a partial answer,
set your calculator to display nine decimal places. Then add
enough terms of the arctangent series in (27) with x = 1

5 to
calculate arctan( 1

5 ) accurate to nine places. Next, calculate
the value of arctan( 1

239 ) similarly. Finally, substitute these
numerical results in Eq. (28) and solve for π . How many
accurate decimal places do you get?

55. Prove that

lim
n→∞

xn

n! = 0

if x is a real number. [Suggestion: Choose an integer k such
that k > |2x |, and let L = |x |k/k!. Then show that

|x |n
n! <

L

2n−k

if n > k.]

56. Suppose that 0 < x � 1. Integrate both sides of the identity

1

1 + t
= 1 − t + t2 − t3 + · · · + (−1)ntn + (−1)n+1tn+1

1 + t

from t = 0 to t = x to show that

ln(1 + x) = x − x2

2
+ x3

3
− · · · + (−1)n xn+1

n + 1
+ R n,

where limn→∞ R n = 0. Hence conclude that

ln(1 + x) =
∞∑

n=1

(−1)n+1 xn

n

if 0 < x � 1.
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57. Criticize the following “proof” that 2 = 1. Substituting
x = 1 into the result in Problem 56 yields the fact that

ln 2 = 1 − 1
2 + 1

3 − 1
4 + · · · .

If
S = 1 + 1

2 + 1
3 + 1

4 + · · · ,

then

ln 2 = S − 2 · (
1
2 + 1

4 + 1
6 + 1

8 + · · · ) = S − S = 0.

Hence 2 = eln 2 = e0 = 1.

58. Deduce from the result of Problem 56 first that

ln(1 − x) = −
∞∑

n=1

xn

n
= −x − x2

3
− x3

3
− · · ·

and then that

ln
1 + x

1 − x
=

∑
n odd

2xn

n
= 2

(
x + x3

3
+ x5

5
+ · · ·

)

if 0 � x � 1.

59. Approximate the number ln 2 ≈ 0.69315 first by substitut-
ing x = 1 in the Maclaurin series of Problem 56, and then
by substituting x = 1

3 (why?) in the second series of Prob-
lem 58. Which approach appears to require the fewest terms
to yield the value of ln 2 accurate to a given number of deci-
mal places?

10.4 INVESTIGATION: Calculating Logarithms on a Deserted Island
The problem is that you’re stranded for life on a desert island with only a very basic
calculator that does not calculate natural logarithms. So to get modern science going
on this miserable island, you need to use the infinite series for ln[(1 + x)/(1 − x)]
in Problem 58 to produce a simple table of logarithms (with five-place accuracy, say),
giving ln x at least for the integers x = 1, 2, 3, . . . , 9, and 10.

The most direct way might be to use the series for ln[(1+x)/(1−x)] to calculate
first ln 2, ln 3, ln 5, and ln 7. Then use the law of logarithms ln xy = ln x + ln y to fill
in the other entries in the table by simple addition of logarithms already computed.
Unfortunately, larger values of x result in series that are more slowly convergent. So
you could save yourself time and work by exercising some ingenuity: Calculate from
scratch some four other logarithms from which you can build up the rest. For example,
if you know ln 2 and ln 1.25, then ln 10 = ln 1.25 + 3 ln 2. (Why?) Be as ingenious as
you wish. Can you complete your table of ten logarithms by calculating directly (using
the series) fewer than four logarithms to begin with?

For a finale, calculate somehow (from scratch, and accurate to five rounded dec-
imal places) the natural logarithm ln(pq.rs), where p, q, r , and s denote the last four
nonzero digits in your student I.D. number.

10.5 THE INTEGRAL TEST

A Taylor series (as in Section 10.4) is a special type of infinite series with variable
terms. We saw that Taylor’s formula can sometimes be used—as in the case of the
exponential, sine, and cosine series—to establish the convergence of such a series.

But given an infinite series
∑

an with constant terms, it is the exception rather
than the rule when a simple formula for the nth partial sum of that series can be found
and used directly to determine whether the series converges or diverges. There are,
however, several convergence tests that use the terms of an infinite series rather than
its partial sums. Such a test, when successful, will tell us whether or not the series
converges. Once we know that the series

∑
an does converge, it is then a separate

matter to find its sum S. It may be necessary to approximate S by adding sufficiently
many terms; in this case we shall need to know how many terms are required for the
desired accuracy.

Here and in Section 10.6, we concentrate our attention on positive-term series—
that is, series with terms that are all positive. If an > 0 for all n, then

S1 < S2 < S3 < · · · < Sn < · · · ,

so the sequence {Sn} of partial sums of the series is increasing. Hence there are just two
possibilities. If the sequence {Sn} is bounded—there exists a number M such that Sn <

M for all n—then the bounded monotonic sequence property (Section 10.2) implies
that S = limn→∞ Sn exists, so the series

∑
an converges. Otherwise, it diverges to

infinity (by Problem 52 in Section 10.2).
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A similar alternative holds for improper integrals. Suppose that the function f is
continuous and positive-valued for x � 1. Then it follows (from Problem 51) that the
improper integral

∫ ∞

1
f (x) dx = lim

b→∞

∫ b

1
f (x) dx (1)

either converges (the limit is a real number) or diverges to infinity (the limit is +∞).
This analogy between positive-term series and improper integrals of positive functions
is the key to the integral test. We compare the behavior of the series

∑
an with that of

the improper integral in Eq. (1), where f is an appropriately chosen function. [Among
other things, we require that f (n) = an for all n.]

THEOREM 1 The Integral Test
Suppose that

∑
an is a positive-term series and that f is a positive-valued, decreas-

ing, continuous function for x � 1. If f (n) = an for all integers n � 1, then the
series and the improper integral

∞∑
n=1

an and
∫ ∞

1
f (x) dx

either both converge or both diverge.

Proof Because f is a decreasing function, the rectangular polygon with area

Sn = a1 + a2 + a3 + · · · + an

shown in Fig. 10.5.1 contains the region under y = f (x) from x = 1 to x = n + 1.
Hence ∫ n+1

1
f (x) dx � Sn. (2)

Similarly, the rectangular polygon with area

Sn − a1 = a2 + a3 + a4 + · · · + an

shown in Fig. 10.5.2 is contained in the region under y = f (x) from x = 1 to x = n.
Hence

Sn − a1 �
∫ n

1
f (x) dx . (3)

x1 2 3 4 5 6 7

a1
a2

a3 a4 a5 a6 an

y = f(x)

y

n n + 1

FIGURE 10.5.1 Underestimating the partial sums
with an integral.

y

1 2 3 4 5

a2 a3 a4 a5
an

y = f(x)

xnn − 1

FIGURE 10.5.2 Overestimating the partial sums
with an integral.
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Suppose first that the improper integral
∫ ∞

1 f (x) dx diverges (necessarily
to +∞). Then

lim
n→∞

∫ n+1

1
f (x) dx = +∞,

so it follows from (2) that limn→∞ Sn = +∞ as well, and hence the infinite series∑
an likewise diverges.

Now suppose instead that the improper integral
∫ ∞

1 f (x) dx converges and has
the (finite) value I . Then (3) implies that

Sn � a1 +
∫ n

1
f (x) dx � a1 + I,

so the increasing sequence {Sn} is bounded. Thus the infinite series

∞∑
n=1

an = lim
n→∞ Sn

converges as well. Hence we have shown that the infinite series and the improper
integral either both converge or both diverge. ◆

EXAMPLE 1 We used a version of the integral test to prove in Section 10.3 that the
harmonic series ∞∑

n=1

1

n
= 1 + 1

2
+ 1

3
+ 1

4
+ · · ·

diverges. Using the test as stated in Theorem 1 is a little simpler: We note that f (x) =
1/x is positive, continuous, and decreasing for x � 1 and that f (n) = 1/n for each
positive integer n. Now∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞

[
ln x

]b

1
= lim

b→∞(ln b − ln 1) = +∞.

Thus the improper integral diverges and, therefore, so does the harmonic series. ◗

The harmonic series is the case p = 1 of the p-series

∞∑
n=1

1

n p
= 1 + 1

2p
+ 1

3p
+ · · · + 1

n p
+ · · · . (4)

Whether the p-series converges or diverges depends on the value of p.

EXAMPLE 2 Show that the p-series converges if p > 1 but diverges if 0 < p � 1.

Solution The case p = 1 has already been settled in Example 1. If p > 0 but p �= 1,
then the function f (x) = 1/x p satisfies the conditions of the integral test, and∫ ∞

1

1

x p
dx = lim

b→∞

∫ b

1

1

x p
dx = lim

b→∞

[
− 1

(p − 1)x p−1

]b

1

= lim
b→∞

1

p − 1

(
1 − 1

bp−1

)
.

If p > 1, then ∫ ∞

1

1

x p
dx = 1

p − 1
< ∞,

so the integral and the series both converge. But if 0 < p < 1, then∫ ∞

1

1

x p
dx = lim

b→∞
1

1 − p
(b1−p − 1) = ∞,

and in this case the integral and the series both diverge. ◗
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As specific examples, the series

∞∑
n=1

1

n2
= 1 + 1

22
+ 1

32
+ · · · + 1

n2
+ · · ·

converges (p = 2 > 1), whereas the series

∞∑
n=1

1√
n

= 1 + 1√
2

+ 1√
3

+ · · · + 1√
n

+ · · ·

diverges (p = 1
2 � 1).

Now suppose that the positive-term series
∑

an converges by the integral test
and that we wish to approximate its sum by adding sufficiently many of its initial
terms. The difference between the sum S of the series and its nth partial sum Sn is the
remainder

Rn = S − Sn = an+1 + an+2 + an+3 + · · · . (5)

This remainder is the error made when the sum is estimated by using in its place the
partial sum Sn .

THEOREM 2 The Integral Test Remainder Estimate
Suppose that the infinite series and improper integral

∞∑
n=1

an and
∫ ∞

1
f (x) dx

satisfy the hypotheses of the integral test, and suppose in addition that both con-
verge. Then ∫ ∞

n+1
f (x) dx � Rn �

∫ ∞

n
f (x) dx, (6)

where Rn is the remainder given in Eq. (5).

Proof We see from Fig. 10.5.3 that

xk + 1

ak ak

y = f(x)

y

k − 1 k

FIGURE 10.5.3 Establishing the
integral test remainder estimate.

∫ k+1

k
f (x) dx � ak �

∫ k

k−1
f (x) dx

for k = n + 1, n + 2, . . . . We add these inequalities for all such values of k, and the
result is the inequality in (6), because

Rn =
∞∑

k=n+1

ak,

∞∑
k=n+1

∫ k+1

k
f (x) dx =

∫ ∞

n+1
f (x) dx,

and

∞∑
k=n+1

∫ k

k−1
f (x) dx =

∫ ∞

n
f (x) dx . ◆

If we substitute Rn = S − Sn , then it follows from (6) that the sum S of the series
satisfies the inequality

Sn +
∫ ∞

n+1
f (x) dx � S � Sn +

∫ ∞

n
f (x) dx . (7)
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If the nth partial sum Sn is known and the difference∫ n+1

n
f (x) dx

between the two integrals is small, then (7) provides an accurate estimate of the sum S
of the infinite series.

EXAMPLE 3 We will see in Section 10.8 that the exact sum of the p-series with
p = 2 is π2/6, thus giving the beautiful formula

π2

6
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · . (8)

Use this series to approximate the number π by applying the integral test remainder
estimate, first with n = 50, then with n = 200.

Solution Obviously we take f (x) = 1/x2 in the remainder estimate. Because∫ ∞

n

1

x2
dx = lim

b→∞

[
−1

x

]b

n

= lim
b→∞

(
1

n
− 1

b

)
= 1

n
,

Eq. (7) gives

Sn + 1

n + 1
�

π2

6
� Sn + 1

n
, (9)

where

Sn = 1 + 1

22
+ 1

32
+ · · · + 1

n2

is the nth partial sum of the series in (8). Upon multiplying by 6 and taking square
roots, (9) gives the inequality√

6

(
Sn + 1

n + 1

)
� π �

√
6

(
Sn + 1

n

)
. (10)

You could add the first 50 terms in (8) one by one in a few minutes using a simple
four-function calculator, but this kind of arithmetic is precisely the task for which a
modern calculator or computer algebra system is designed. A one-line instruction such
as the calculator command sum(seq(1/n∧2,n,1,50)) yields

S50 =
50∑

n=1

1

n2
≈ 1.625132734.

Then, using (9) for illustration rather than (10), we calculate

1.62513273 + 1

51
<

π2

6
< 1.62513274 + 1

50
;

1.64474057 <
π2

6
< 1.64513274;

3.14140787 < π < 3.14178237.

Finally, rounding down on the left and up on the right (why?), we conclude that
3.1414 < π < 3.1418. The average of these two bounds is the traditional four-place
approximation π ≈ 3.1416.

The 200th partial sum of the series in (8) is

S200 =
200∑
n=1

1

n2
≈ 1.639946546.

Substituting this sum and n = 200 in (10), we get

3.14158081 < π < 3.14160457.

This proves that π ≈ 3.1416 rounded accurate to four decimal places. ◗
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EXAMPLE 4 Show that the series

∞∑
n=2

1

n(ln n)2
(11)

converges, and determine how many terms you would need to add to find its sum
accurate to within 0.01. That is, how large must n be in order that the remainder
satisfy the inequality Rn < 0.01?

Solution We begin the sum at n = 2 because ln 1 = 0. Let f (x) = 1/[x(ln x)2].
Then ∫ ∞

n

1

x(ln x)2
dx = lim

b→∞

[
− 1

ln x

]b

n

= lim
b→∞

(
1

ln n
− 1

ln b

)
= 1

ln n
.

Substituting n = 2 shows that the series in (11) converges (by the integral test). Our
calculations and the right-hand inequality in (6) now give Rn < 1/(ln n), so we need

1

ln n
� 0.01; ln n � 100; n � e100 ≈ 2.7 × 1043.

A computer that could calculate a billion (109) terms per second would require about
8.5 × 1026 years—far longer than the expected lifetime of the universe—to sum this
many terms. But you can check that accuracy to only one decimal place—that is,
Rn < 0.05—would require only about n = 4.85 × 108 (fewer than a half billion)
terms, well within the range of a powerful desktop computer. ◗

10.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The integral test is a test to determine whether a positive-term series converges
or diverges.

2. The integral test can be used to show that the harmonic series
∞∑

n=1

1

n
diverges.

3. The p-series
∞∑

n=1

1

n p
converges if p > 1.

4. The series
∞∑

n=1

1√
n

converges.

5. The integral test remainder estimate is used in Section 10.5 to show that

3.14158081 < π < 3.14160457.

6. The series
∞∑

n=2

1

n(ln n)2
diverges.

7. The integral test shows that the series
∞∑

n=1

(−1)n+1

n
diverges.

8. The integral test shows that the series
∞∑

n=1

(−1)n+1

n2
converges.

9. The p-series diverges if 0 < p � 1.
10. Example 3 shows that

π2

6
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · .
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10.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. What might it mean to say that one infinite series converges more slowly than

another? Perhaps that more terms of one than the other must be added to make
the remainder Rn less than a preassigned error? If so, compare the rates at which
the series

∑
n−2,

∑
n−3/2,

∑
n−4/3, . . . ,

∑
n−101/100, . . . , converge.

2. Can you use infinite series such as those listed in Question 1 to illustrate the
claim that, however slowly one infinite series converges, there’s another one that
converges even more slowly?

3. Can you think of a way in which the convergent infinite series in Question 1
seem to resemble more and more closely the divergent harmonic series

∑
n−1?

Discuss the possibility that two infinite series can resemble each other arbitrarily
closely, yet one converges and the other diverges.

10.5 PROBLEMS

In Problems 1 through 30, use the integral test to test the given
series for convergence.

1.
∞∑

n=1

n

n2 + 1
2.

∞∑
n=1

n

en2

3.
∞∑

n=1

1√
n + 1

4.
∞∑

n=1

1

(n + 1)4/3

5.
∞∑

n=1

1

n2 + 1
6.

∞∑
n=1

1

n(n + 1)

7.
∞∑

n=2

1

n ln n
8.

∞∑
n=1

ln n

n

9.
∞∑

n=1

1

2n
10.

∞∑
n=1

n

en

11.
∞∑

n=1

n2

en
12.

∞∑
n=1

1

17n − 13

13.
∞∑

n=1

ln n

n2
14.

∞∑
n=1

n + 1

n2

15.
∞∑

n=1

n

n4 + 1
16.

∞∑
n=1

1

n3 + n

17.
∞∑

n=1

2n + 5

n2 + 5n + 17
18.

∞∑
n=1

ln

(
n + 1

n

)

19.
∞∑

n=1

ln

(
1 + 1

n2

)
20.

∞∑
n=1

21/n

n2

21.
∞∑

n=1

n

4n2 + 5
22.

∞∑
n=1

n

(4n2 + 5)3/2

23.
∞∑

n=2

1

n
√

ln n
24.

∞∑
n=2

1

n(ln n)3

25.
∞∑

n=1

1

4n2 + 9
26.

∞∑
n=1

n + 1

n + 100

27.
∞∑

n=1

n

n4 + 2n2 + 1
28.

∞∑
n=1

1

(n + 1)3

29.
∞∑

n=1

arctan n

n2 + 1
30.

∞∑
n=3

1

n(ln n)[ln(ln n)]

In Problems 31 through 34, tell why the integral test does not
apply to the given series.

31.
∞∑

n=1

(−1)n

n
32.

∞∑
n=1

e−n sin n

33.
∞∑

n=1

2 + sin n

n2
34.

∞∑
n=1

(
sin n

n

)4

In Problems 35 through 38, determine the values of p for which
the given series converges.

35.
∞∑

n=1

1

pn
36.

∞∑
n=1

n

(n2 + 1)p

37.
∞∑

n=2

1

n(ln n)p
38.

∞∑
n=3

1

n(ln n) [ln(ln n)]p

In Problems 39 through 42, find the least positive integer n such
that the remainder R n in Theorem 2 is less than E.

39.
∞∑

n=1

1

n2
; E = 0.0001 40.

∞∑
n=1

1

n2
; E = 0.00005

41.
∞∑

n=1

1

n3
; E = 0.00005 42.

∞∑
n=1

1

n6
; E = 2 × 10−11

In Problems 43 through 46, find the sum of the given series ac-
curate to the indicated number k of decimal places. Begin by
finding the smallest value of n such that the remainder satisfies
the inequality R n < 5 × 10−(k+1). Then use a calculator to com-
pute the partial sum Sn and round off appropriately.

43.
∞∑

n=1

1

n3/2
; k = 2 44.

∞∑
n=1

1

n3
; k = 3

45.
∞∑

n=1

1

n5
; k = 5 46.

∞∑
n=1

1

n7
; k = 7

In Problems 47 and 48, use a computer algebra system (if nec-
essary) to determine the values of p for which the given infinite
series converges.

47.
∞∑

n=1

ln n

n p
48.

∞∑
n=1

1

pln n

763

www.konkur.in



764 CHAPTER 10 Infinite Series

49. Deduce from the inequalities in (2) and (3) with the function
f (x) = 1/x that

ln n � 1 + 1

2
+ 1

3
+ · · · + 1

n
� 1 + ln n

for n = 1, 2, 3, . . . . If a computer adds 1 million terms of
the harmonic series per second, how long will it take for the
partial sum to reach 50?

50. (a) Let

cn = 1 + 1

2
+ 1

3
+ · · · + 1

n
− ln n

for n = 1, 2, 3, . . . . Deduce from Problem 49 that
0 � cn � 1 for all n. (b) Note that

∫ n+1

n

1

x
dx �

1

n + 1
.

Conclude that the sequence {cn} is decreasing. Therefore the

sequence {cn} converges. The number

γ = lim
n→∞ cn = lim

n→∞

(
1 + 1

2
+ 1

3
+ · · · + 1

n
− ln n

)
≈ 0.57722

is known as Euler’s constant.

51. Suppose that the function f is continuous and positive-
valued for x � 1. Let

bn =
∫ n

1
f (x) dx

for n = 1, 2, 3, . . . . (a) Suppose that the increasing
sequence {bn} is bounded, so that B = limn→∞ bn exists.
Prove that ∫ ∞

1
f (x) dx = B.

(b) Prove that if the sequence {bn} is not bounded, then∫ ∞

1
f (x) dx = +∞.

10.5 INVESTIGATION: The Number π , Once and for All

When we replace the parameter p in the p-series
∑

1/n p with the variable x , we get
one of the most important transcendental functions in higher mathematics, the Rie-
mann zeta function

ζ(x) =
∞∑

n=1

1

nx
= 1 + 1

2x
+ 1

3x
+ 1

4x
+ · · · .

REMARK One can substitute a complex number x = a +bi in the zeta function. Now
that Fermat’s last theorem has been proved, the most famous unsolved conjecture in
mathematics is the Riemann hypothesis—that ζ(a + bi) = 0 implies that a = 1

2 ; that
is, that the only complex zeros of the Riemann zeta function have real part 1

2 . (The
smallest such example is approximately 1

2 + 14.13475i .) The truth of the Riemann
hypothesis would have profound implications in number theory, including information
about the distribution of the prime numbers.

In Problems 1 through 4, use the given value of the zeta function and the integral-
test remainder estimate (as in Example 3 of this section) with the given value of n to
determine how accurately the value of the number π is thereby determined. Knowing
that

π ≈ 3.14159 26535 89793 23846,

write each final answer in the form π ≈ 3.abcde . . . , giving precisely those digits that
are correct or correctly rounded.

1. ζ(2) = π2

6
with n = 25. 2. ζ(4) = π4

90
with n = 20.

3. ζ(6) = π6

945
with n = 15. 4. ζ(8) = π8

9450
with n = 10.

5. Finally, use one of the preceding four problems and your own careful choice of
n to show that π ≈ 3.141592654 with all digits correct or correctly rounded.

Euler showed that if n is even then ζ(n) is a rational multiple of πn (as in the
cases n = 2, 4, 6, 8 cited above). Because any integral power of π is irrational, it
follows that the number ζ(n) is irrational if n is even. But little was known about ζ(n)
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for n odd until 1978, when Roger Apéry proved that ζ(3) is irrational. In Section 7.7
of Andrews, Askey, and Roy, Special Functions (Cambridge Univ. Press: 1999), the
authors show that there exist infinite sequences {An} and {Bn} of integers such that

0 < |A n + Bnζ(3)| < 3 ·
(

9

10

)n

for each integer n � 1. Can you explain why this implies that ζ(3) is irrational?
(Assume, to the contrary, that ζ(3) = p/q is rational.)

10.6 COMPARISON TESTS FOR POSITIVE-TERM SERIES

With the integral test we attempt to determine whether or not an infinite series con-
verges by comparing it with an improper integral. The methods of this section involves
comparing the terms of the positive-term series

∑
an with those of another positive-

term series
∑

bn whose convergence or divergence is known. We have already devel-
oped two families of reference series for the role of the known series

∑
bn; these are

the geometric series of Section 10.3 and the p-series of Section 10.5. They are well
adapted for our new purposes because their convergence or divergence is quite easy to
determine. Recall that the geometric series

∑
rn converges if |r | < 1 and diverges if

|r | � 1, and that the p-series
∑

1/n p converges if p > 1 and diverges if 0 < p � 1.
Let

∑
an and

∑
bn be positive-term series. Then we say that the series

∑
bn

dominates the series
∑

an provided that an � bn for all n. Theorem 1 says that
the positive-term series

∑
an converges if it is dominated by a convergent series and

diverges if it dominates a positive-term divergent series.

THEOREM 1 Comparison Test
Suppose that

∑
an and

∑
bn are positive-term series. Then

1.
∑

an converges if
∑

bn converges and an � bn for all n;

2.
∑

an diverges if
∑

bn diverges and an � bn for all n.

Proof Denote the nth partial sums of the series
∑

an and
∑

bn by Sn and Tn , respec-
tively. Then {Sn} and {Tn} are increasing sequences. To prove part (1), suppose that∑

bn converges, so T = limn→∞ Tn exists (so that T is a real number). Then the fact
that an � bn for all n implies that Sn � Tn � T for all n. Thus the sequence {Sn} of
partial sums of

∑
an is bounded and increasing and therefore converges. Thus

∑
an

converges.
Part (2) is merely a restatement of part (1). If the series

∑
an converged,

then the fact that
∑

an dominates
∑

bn would imply—by part (1), with an and bn

interchanged—that
∑

bn converged. But
∑

bn diverges, so it follows that
∑

an must
also diverge. ◆

We know by Theorem 5 of Section 10.3 that the convergence or divergence of an
infinite series is not affected by the insertion or deletion of a finite number of terms.
Consequently, the conditions an � bn and an � bn in the two parts of the comparison
test really need to hold only for all n � k, where k is some fixed positive integer. Thus
we can say that the positive-term series

∑
an converges if it is “eventually dominated”

by the convergent positive-term series
∑

bn .

EXAMPLE 1 Because

1

n(n + 1)(n + 2)
<

1

n3

for all n � 1, the series

∞∑
n=1

1

n(n + 1)(n + 2)
= 1

1 · 2 · 3
+ 1

2 · 3 · 4
+ 1

3 · 4 · 5
+ · · ·
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is dominated by the series
∑

1/n3, which is a convergent p-series with p = 3. Both
are positive-term series, and hence the series

∑
1/[n(n + 1)(n + 2)] converges by

part (1) of the comparison test. ◗

EXAMPLE 2 Because

1√
2n − 1

>
1√
2n

for all n � 1, the positive-term series

∞∑
n=1

1√
2n − 1

= 1 + 1√
3

+ 1√
5

+ 1√
7

+ · · ·

dominates the series

∞∑
n=1

1√
2n

= 1√
2

∞∑
n=1

1

n1/2
.

But
∑

1/n1/2 is a divergent p-series with p = 1
2 , and a constant nonzero multiple of

a divergent series diverges. So part (2) of the comparison test implies that the series∑
1/

√
2n − 1 also diverges. ◗

EXAMPLE 3 Test the series

∞∑
n=0

1

n! = 1 + 1

1! + 1

2! + 1

3! + · · ·

for convergence.

Solution We note first that if n � 1, then

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1

� 2 · 2 · 2 · · · 2 · 2 · 1 (the same number of factors);

that is, n! � 2n−1 for n � 1. Thus

1

n! �
1

2n−1
for n � 1,

so the series

∞∑
n=0

1

n! is dominated by the series 1 +
∞∑

n=1

1

2n−1
= 1 +

∞∑
n=0

1

2n
,

which is a convergent geometric series (after the first term). Both are positive-term
series, so by the comparison test the given series converges. We saw in Section 10.4
that the sum of the series is the number e, so

e = 1 + 1

1! + 1

2! + 1

3! + · · · + 1

n! + · · · .

Indeed, this series provides perhaps the simplest way of showing that

e ≈ 2.71828 1828 459045 23536. ◗
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Limit Comparison of Terms
Suppose that

∑
an is a positive-term series such that an → 0 as n → +∞. Then, in

connection with the nth-term divergence test of Section 10.3, the series
∑

an has at
least a chance of converging. How do we choose an appropriate positive-term series∑

bn with which to compare it? A good idea is to express bn as a simple function of
n, simpler than an but such that an and bn approach zero at the same rate as n → +∞.
If the formula for an is a fraction, we can try discarding all but the terms of largest
magnitude in its numerator and denominator to form bn . For example, if

an = 3n2 + n

n4 + √
n
,

then we reason that n is small in comparison with 3n2, and that
√

n is small in compari-
son with n4, when n is quite large. This suggests that we choose bn = 3n2/n4 = 3/n2.
The series

∑
3/n2 converges (p = 2), but when we attempt to compare

∑
an and∑

bn , we find that an � bn (rather than an � bn). Consequently, the comparison test
does not apply immediately—the fact that

∑
an dominates a convergent series does not

imply that
∑

an itself converges. Theorem 2 provides a convenient way of handling
such a situation.

THEOREM 2 Limit Comparison Test
Suppose that

∑
an and

∑
bn are positive-term series. If the limit

L = lim
n→∞

an

bn

exists and 0 < L < +∞, then either both series converge or both series diverge.

Proof Choose two fixed positive numbers P and Q such that P < L < Q. Then
P < an/bn < Q for n sufficiently large, and so

Pbn < an < Qbn

for all sufficiently large values of n. If
∑

bn converges, then
∑

an is eventually dom-
inated by the convergent series

∑
Qbn = Q

∑
bn , so part (1) of the comparison test

implies that
∑

an also converges. If
∑

bn diverges, then
∑

an eventually dominates
the divergent series

∑
Pbn = P

∑
bn , so part (2) of the comparison test implies that∑

an also diverges. Thus the convergence of either series implies the convergence of
the other. ◆

EXAMPLE 4 With

an = 3n2 + n

n4 + √
n

and bn = 1

n2

(motivated by the discussion preceding Theorem 2), we find that

lim
n→∞

an

bn
= lim

n→∞
3n4 + n3

n4 + √
n

= lim
n→∞

3 + 1

n

1 + 1

n7/2

= 3.

Because
∑

1/n2 is a convergent p-series (p = 2), the limit comparison test tells us
that the series ∞∑

n=1

3n2 + n

n4 + √
n

also converges. ◗

EXAMPLE 5 Test for convergence:
∞∑

n=1

1

2n + ln n
.
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Solution Because limn→∞(ln n)/n = 0 (by l’Hôpital’s rule), ln n is very small in
comparison with 2n when n is large. We therefore take an = 1/(2n + ln n) and,
ignoring the constant coefficient 2, we take bn = 1/n. Then we find that

lim
n→∞

an

bn
= lim

n→∞
n

2n + ln n
= lim

n→∞
1

2 + ln n

n

= 1

2
.

Because the harmonic series
∑

1/n = ∑
bn diverges, it follows that the given series∑

an also diverges. ◗

It is important to remember that if L = limn→∞(an/bn) is either zero or infinite,
then the limit comparison test does not apply. (See Problem 52 for a discussion of
what conclusions may sometimes be drawn in these cases.) Note, for example, that if
an = 1/n2 and bn = 1/n, then limn→∞(an/bn) = 0. But in this case

∑
an converges,

whereas
∑

bn diverges.

Estimating Remainders
Suppose that 0 � an � bn for all n and we know that

∑
bn converges, so the compari-

son test implies that
∑

an converges as well. Let us write s = ∑
an and S = ∑

bn . If
a numerical estimate is available for the remainder

Rn = S − Sn = bn+1 + bn+2 + · · ·
in the dominating series

∑
bn , then we can use it to estimate the remainder

rn = s − sn = an+1 + an+2 + · · ·
in the series

∑
an . The reason is that 0 � an � bn (for all n) implies that 0 � rn � Rn .

We can apply this fact if, for instance, we have used the integral test remainder estimate
to calculate an upper bound for Rn—which is, then, an upper bound for rn as well.

EXAMPLE 6 The series

∞∑
n=1

an =
∞∑

n=1

1

n3 + √
n

converges because it is dominated by the convergent p-series

∞∑
n=1

bn =
∞∑

n=1

1

n3
.

It therefore follows by the integral test remainder estimate (Section 10.5) that

0 < rn � Rn �
∫ ∞

n

1

x3
dx = lim

b→∞

[
− 1

2x2

]b

n

= 1

2n2
.

Now a calculator gives

s100 =
100∑
n=1

1

n3 + √
n

≈ 0.680284 and R100 �
1

2 · 1002
= 0.00005.

It follows that 0.680284 � s � 0.680334. In particular,

∞∑
n=1

1

n3 + √
n

≈ 0.6803

rounded accurate to four decimal places. ◗
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Rearrangement and Grouping
We close our discussion of positive-term series with the observation that the sum of a
convergent positive-term series is not altered by grouping or rearranging its terms. For
example, let

∑
an be a convergent positive-term series and consider

∞∑
n=1

bn = (a1 + a2 + a3) + a4 + (a5 + a6) + · · · .

That is, the new series has terms

b1 = a1 + a2 + a3,

b2 = a4,

b3 = a5 + a6,

and so on. Then every partial sum Tn of
∑

bn is equal to some partial sum Sn′ of
∑

an .
Because {Sn} is an increasing sequence with limit S = ∑

an , it follows easily that {Tn}
is an increasing sequence with the same limit. Thus

∑
bn = S as well. The argument

is more subtle if terms of
∑

an are moved “out of place,” as in

∞∑
n=1

bn = a1 + a2 + a4 + a3 + a6 + a8 + a5 + a10 + a12 + · · · ,

but the same conclusion holds: Any rearrangement of a convergent positive-term series
also converges, and it converges to the same sum.

Similarly, it is easy to prove that any grouping or rearrangement of a divergent
positive-term series also diverges. But these observations all fail in the case of an
infinite series with both positive and negative terms. For example, the series

∑
(−1)n

diverges, but it has the convergent grouping

(−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 0 + 0 + 0 + · · · = 0.

It follows from Problem 56 of Section 10.4 that

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · · ,

but the rearrangement

1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ 1

9
+ 1

11
− 1

6
+ · · ·

converges instead to 3
2 ln 2. This series for ln 2 even has rearrangements that converge

to zero and others that diverge to +∞. (See Problem 64 of Section 10.7.)

10.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The comparison test is a convergence test for positive-term series.
2. The positive-term series

∑
an is said to dominate the positive-term series

∑
bn

provided that an � bn for all n.

3. The series
∞∑

n=1

1

n(n + 1)(n + 2)
converges.

4. The series
∞∑

n=1

1√
2n − 1

dominates the series
∞∑

n=1

1√
2n

.

5. Suppose that
∑

an and
∑

bn are positive-term series. If

L = lim
n→∞

an

bn

exists and 0 < L < +∞, then either both series converges or both diverge.
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6. The series
∞∑

n=1

1

2n + ln n
converges.

7. Any rearrangement of a convergent positive-term series also converges, and to
the same sum.

8. The divergent series
∞∑

n=1

(−1)n has a rearrangement that converges.

9. The series
∞∑

n=1

1

n3 + √
n

converges.

10. The sum of the series in Question 9 is approximately 0.6803.

10.6 CONCEPTS: QUESTIONS AND DISCUSSION

1. Can you give examples of a pair of positive-term infinite series
∑

an and
∑

bn

such that limn→∞(an/bn) = 0 and (a) both series converge; (b) both diverge; (c)
one converges and the other diverges?

2. Can you give an example of two convergent positive-term infinite series
∑

an

and
∑

bn such that limn→∞(an/bn) = 1 but neither series dominates the other?
3. Can you give an example of two positive-term infinite series

∑
an and

∑
bn that

either both converge or both diverge, but the limit limn→∞(an/bn) does not exist?

10.6 PROBLEMS

Use comparison tests to determine whether the infinite series in
Problems 1 through 36 converge or diverge.

1.
∞∑

n=1

1

n2 + n + 1
2.

∞∑
n=1

n3 + 1

n4 + 2

3.
∞∑

n=1

1

n + √
n

4.
∞∑

n=1

1

n + n3/2

5.
∞∑

n=1

1

1 + 3n
6.

∞∑
n=1

10n2

n4 + 1

7.
∞∑

n=2

10n2

n3 − 1
8.

∞∑
n=1

n2 − n

n4 + 2

9.
∞∑

n=1

1√
37n3 + 3

10.
∞∑

n=1

1√
n2 + 1

11.
∞∑

n=1

√
n

n2 + n
12.

∞∑
n=1

1

3 + 5n

13.
∞∑

n=2

1

ln n
14.

∞∑
n=1

1

n − ln n

15.
∞∑

n=1

sin2 n

n2 + 1
16.

∞∑
n=1

cos2 n

3n

17.
∞∑

n=1

n + 2n

n + 3n
18.

∞∑
n=1

1

2n + 3n

19.
∞∑

n=2

1

n2 ln n
20.

∞∑
n=1

1

n1+√
n

21.
∞∑

n=1

ln n

n2
22.

∞∑
n=1

arctan n

n

23.
∞∑

n=1

sin2(1/n)

n2
24.

∞∑
n=1

e1/n

n

25.
∞∑

n=1

ln n

en
26.

∞∑
n=1

n2 + 2

n3 + 3n

27.
∞∑

n=1

n3/2

n2 + 4
28.

∞∑
n=1

1

n · 2n

29.
∞∑

n=1

3

4 + √
n

30.
∞∑

n=1

n2 + 1

en(n + 1)2

31.
∞∑

n=1

2n2 − 1

n2 · 3n
32.

∞∑
n=1

1
3
√

2n4 + 1

33.
∞∑

n=1

2 + sin n

n2
34.

∞∑
n=1

ln n

n3

35.
∞∑

n=1

(n + 1)n

nn+1

[
Suggestion: lim

n→∞

(
1 + 1

n

)n

= e.

]

36.
∞∑

n=1

(
sin n

n

)4

In Problems 37 through 40, calculate the sum of the first ten terms
of the series, then estimate the error made in using this partial
sum to approximate the sum of the series.

37.
∞∑

n=1

1

n2 + 1
38.

∞∑
n=1

1

3n + 1

39.
∞∑

n=1

cos2 n

n2
40.

∞∑
n=2

1

(n + 1)(ln n)2

In Problems 41 through 44, first determine the smallest posi-
tive integer n such that the remainder satisfies the inequality
R n < 0.005. Then use a calculator or computer to approximate
the sum of the series accurate to two decimal places.

41.
∞∑

n=1

1

n3 + 1
42.

∞∑
n=1

n

(n + 1)2n
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43.
∞∑

n=1

cos4 n

n4
44.

∞∑
n=1

1

n2+(1/n)

45. Show that if
∑

an is a convergent positive-term series, then
the series

∑
sin(an) also converges.

46. (a) Prove that ln n < n1/8 for all sufficiently large values of n.
(b) Explain why part (a) shows that the series

∑
1/(ln n)8

diverges.

47. Prove that if
∑

an is a convergent positive-term series, then∑
(an/n) converges.

48. Suppose that
∑

an is a convergent positive-term series and
that {cn} is a sequence of positive numbers with limit zero.
Prove that

∑
ancn converges.

49. Use the result of Problem 48 to prove that if
∑

an and
∑

bn

are convergent positive-term series, then
∑

anbn converges.

50. Prove that the series
∞∑

n=1

1

1 + 2 + 3 + · · · + n

converges.

51. Use the result of Problem 50 in Section 10.5 to prove that
the series

∞∑
n=1

1

1 + 1

2
+ 1

3
+ · · · + 1

n

diverges.

52. Adapt the proof of the limit-comparison test to prove the
following two results. (a) Suppose that

∑
an and

∑
bn are

positive-term series and that
∑

bn converges. If

L = lim
n→∞

an

bn
= 0,

then
∑

an converges. (b) Suppose that
∑

an and
∑

bn are
positive-term series and that

∑
bn diverges. If

L = lim
n→∞

an

bn
= +∞,

then
∑

an diverges.

10.7 ALTERNATING SERIES AND ABSOLUTE CONVERGENCE

In Sections 10.5 and 10.6 we considered only positive-term series. Now we discuss
infinite series that have both positive terms and negative terms. An important example
is a series with terms that are alternatively positive and negative. An alternating series
is an infinite series of the form

∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + a5 − · · · (1)

or of the form
∑∞

n=1(−1)nan , where an > 0 for all n. For example, the alternating
harmonic series ∞∑

n=1

(−1)n+1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

and the geometric series
∞∑

n=0

(
−1

2

)n

= 1 − 1

2
+ 1

4
− 1

8
+ 1

16
− · · ·

are both alternating series. Theorem 1 shows that both these series converge because
the sequence of absolute values of their terms is decreasing and has limit zero.

THEOREM 1 Alternating Series Test
If the alternating series in Eq. (1) satisfies the two conditions

1. an � an+1 > 0 for all n and

2. lim
n→∞ an = 0,

then the infinite series converges.

Proof We first consider the even-numbered partial sums S2, S4, S6, . . . , S2n, . . . . We
may write

S2n = (a1 − a2) + (a3 − a4) + · · · + (a2n−1 − a2n).

Because ak − ak+1 � 0 for all k, the sequence {S2n} is increasing. Also, because

S2n = a1 − (a2 − a3) − · · · − (a2n−2 − a2n−1) − a2n,
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S2n � a1 for all n. So the increasing sequence {S2n} is bounded above. Hence the limit

S = lim
n→∞ S2n

exists by the bounded monotonic sequence property of Section 10.2. It remains only
for us to verify that the odd-numbered partial sums S1, S3, S5, . . . also converge to S.
But S2n+1 = S2n + a2n+1 and limn→∞ a2n+1 = 0, so

lim
n→∞ S2n+1 =

(
lim

n→∞ S2n

)
+

(
lim

n→∞ a2n+1

)
= S.

Thus limn→∞ Sn = S, and therefore the series in Eq. (1) converges. ◆

Figure 10.7.1 illustrates the way in which the partial sums of a convergent al-
ternating series (with positive first term) approximate its sum S, with the even partial
sums {S2n} approaching S from below and the odd partial sums {S2n+1} approaching S

S2 S4 S6

S
S5 S3 S1

FIGURE 10.7.1 The even partial
sums {S2n} increase and the odd
partial sums {S2n+1} decrease.

from above.

EXAMPLE 1 The series

0.8

1

0.6

0.4

0.2

0 x

y

2 4 6 8 10 12 14

FIGURE 10.7.2 Graph of the first
14 partial sums of the alternating
series in Example 1.

∞∑
n=1

(−1)n+1

2n − 1
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

satisfies the conditions of Theorem 1 and therefore converges. The alternating series
test does not tell us the sum of this series, but we saw in Section 10.4 that its sum is
π/4. The graph in Fig. 10.7.2 of the partial sums of this series illustrates the typical
convergence of an alternating series, with its partial sums approaching its sum alter-
nately from above and below. ◗

EXAMPLE 2 The series

∞∑
n=1

(−1)n+1n

2n − 1
= 1 − 2

3
+ 3

5
− 4

7
+ 5

9
− · · ·

is an alternating series, and by expanding we verify that n(2n + 1) > (n + 1)(2n − 1),
so it follows that

an = n

2n − 1
>

n + 1

2n + 1
= an+1

for all n � 1. But

lim
n→∞ an = 1

2
�= 0,

so the alternating series test does not apply. (This fact alone does not imply that the se-
ries in question diverges—many series in Sections 10.5 and 10.6 converge even though
the alternating series test does not apply. But the series of this example diverges by the
nth-term divergence test.) ◗

If a series converges by the alternating series test, then Theorem 2 shows how to
approximate its sum with any desired degree of accuracy—if you have a computer fast
enough to add a large number of its terms.

THEOREM 2 Alternating Series Remainder Estimate
Suppose that the series

∑
(−1)n+1an satisfies the conditions of the alternating series

test and therefore converges. Let S denote the sum of the series. Denote by Rn =
S − Sn the error made in replacing S with the nth partial sum Sn of the series. Then
this remainder Rn has the same sign as the next term (−1)n+2an+1 of the series,
and

0 � |Rn| < an+1. (2)
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In particular, the sum S of a convergent alternating series lies between any two
consecutive partial sums. This follows from the proof of Theorem 1, where we saw
that {S2n} is an increasing sequence and that {S2n+1} is a decreasing sequence, both
converging to S. The resulting inequalities

S2n−1 > S > S2n = S2n−1 − a2n

and

S2n < S < S2n+1 = S2n + a2n+1

(see Fig. 10.7.3) imply the inequality in (2).

S2n S2n + 1 S2n − 1

a2n

a2n + 1

S

FIGURE 10.7.3 Illustrating the
proof of the alternating series
remainder estimate.

REMARK The inequality in (2) means the following. Suppose that you are given an
alternating series that satisfies the conditions of Theorem 2 and has sum S. Then, if
S is replaced with a partial sum Sn , the error made is numerically less than the first
term an+1 not retained and has the same sign as this first neglected term. Important:
This error estimate does not apply to other types of series.

EXAMPLE 3 We saw in Section 10.4 that

ex =
∞∑

n=0

xn

n!

for all x and thus (with x = −1) that

1

e
= e−1 = 1 − 1 + 1

2! − 1

3! + 1

4! − · · · .

Use this alternating series to compute e−1 accurate to four decimal places.

Solution To attain four-place accuracy, we want the error to be less than a half unit
in the fourth place. Thus we want

|Rn| <
1

(n + 1)! � 0.00005.

If we use a calculator to compute the reciprocals of the factorials of the first several
integers, we find that the least value of n for which this inequality holds is n = 7. Then

e−1 = 1 − 1

1! + 1

2! − 1

3! + 1

4! − 1

5! + 1

6! − 1

7! + R7 ≈ 0.367857 + R7.

(Relying on a common “+2 rule of thumb,” we are carrying six decimal places because
we want four-place accuracy in the final answer.) Now the first neglected term 1/8! is
positive, so the inequality in (2) gives

0 < R7 <
1

8! < 0.000025.

Therefore

S7 ≈ 0.367857 < e−1 < S7 + 0.000025 ≈ 0.367882.

The two bounds here both round to e−1 ≈ 0.3679. Although this approximation is
accurate to four decimal places, its reciprocal

e = 1/e−1 ≈ 1/(0.3679) ≈ 2.7181 ≈ 2.718

gives the number e accurate to only three decimal places (because e ≈ 2.7183). ◗
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Absolute Convergence
The series

∞∑
n=1

(−1)n+1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

converges, but if we simply replace each term with its absolute value, we get the diver-
gent series

1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · · .

In contrast, the convergent series

∞∑
n=0

(−1)n

2n
= 1 − 1

2
+ 1

4
− 1

8
+ · · · = 2

3

has the property that the associated positive-term series

1 + 1

2
+ 1

4
+ 1

8
+ · · · = 2

also converges. Theorem 3 tells us that if a series of positive terms converges, then we
may insert minus signs in front of any of the terms—every other one, for instance—and
the resulting series will also converge.

THEOREM 3 Absolute Convergence Implies Convergence
If the series

∑ |an| converges, then so does the series
∑

an .

Proof Suppose that the series
∑ |an| converges. Note that

0 � an + |an| � 2|an|
for all n. Let bn = an +|an|. It then follows from the comparison test that the positive-
term series

∑
bn converges, because it is dominated by the convergent series

∑
2|an|.

It is easy to verify, too, that the termwise difference of two convergent series also
converges. Hence we now see that the series∑

an =
∑

(bn − |an|) =
∑

bn −
∑

|an|
converges. ◆

Thus we have another convergence test, one not limited to positive-term series
nor limited to alternating series: Given the series

∑
an , test the series

∑ |an| for con-
vergence. If the latter converges, then so does the former. (But the converse is not
true!) This phenomenon motivates us to make the following definition.

DEFINITION Absolute Convergence
The series

∑
an is said to converge absolutely (and is called absolutely conver-

gent) provided that the series∑
|an| = |a1| + |a2| + |a3| + · · · + |an| + · · ·

converges.

Thus we have explained the title of Theorem 3, and we can rephrase the theorem
as follows: If a series converges absolutely, then it converges. The two examples
preceding Theorem 3 show that a convergent series may either converge absolutely or
fail to do so:

1 − 1

2
+ 1

4
− 1

8
+ 1

16
− · · ·
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is an absolutely convergent series because the geometric series

1 + 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · ·

converges, whereas the alternating harmonic series

1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

is a series that, though convergent, is not absolutely convergent. A series that con-
verges but does not converge absolutely is said to be conditionally convergent. Con-
sequently, the terms absolutely convergent, conditionally convergent, and divergent
are simultaneously all inclusive and mutually exclusive: Any given numerical series
belongs to exactly one of those three classes.

There is some advantage in the application of Theorem 3, because to apply it we
test the positive-term series

∑ |an| for convergence—and we have a variety of tests,
such as comparison tests or the integral test, designed for use on positive-term series.

Note also that absolute convergence of the series
∑

an means that a different
series

∑ |an| converges, and the two sums will generally differ. For example, with
an = ( − 1

3

)n
, the formula for the sum of a geometric series gives

∞∑
n=0

an =
∞∑

n=0

(
−1

3

)n

= 1

1 − (− 1
3

) = 3

4
,

whereas

∞∑
n=0

|an| =
∞∑

n=0

(
1

3

)n

= 1

1 − 1
3

= 3

2
.

EXAMPLE 4 Discuss the convergence of the series

∞∑
n=1

cos n

n2
= cos 1 + cos 2

4
+ cos 3

9
+ · · · .

Solution Let an = (cos n)/n2. Then

|an| = | cos n|
n2

�
1

n2

for all n � 1. Hence the positive-term series
∑ |an| converges by the comparison test,

because it is dominated by the convergent p-series
∑

(1/n2). Thus the given series is
absolutely convergent, and it therefore converges by Theorem 3. ◗

One reason for the importance of absolute convergence is the fact (proved in
advanced calculus) that the terms of an absolutely convergent series may be regrouped
or rearranged without changing the sum of the series. As we suggested at the end of
Section 10.6, this is not true of conditionally convergent series.

The Ratio Test and the Root Test

Our next two convergence tests involve a way of measuring the rate of growth or de-
crease of the sequence {an} of terms of a series to determine whether

∑
an converges

absolutely or diverges.
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THEOREM 4 The Ratio Test
Suppose that the limit

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (3)

either exists or is infinite. Then the infinite series
∑

an of nonzero terms

1. Converges absolutely if ρ < 1;

2. Diverges if ρ > 1.

If ρ = 1, the ratio test is inconclusive.

Proof If ρ < 1, choose a (fixed) number r with ρ < r < 1. Then Eq. (3) implies
that there exists an integer N such that |an+1|�r |an| for all n�N . It follows that

|aN+1| � r |aN |,
|aN+2| � r |aN+1| � r2|aN |,
|aN+3| � r |aN+2| � r3|aN |,

and in general that

|aN+k | � rk |aN | for k � 0.

Hence the series

|aN | + |aN+1| + |aN+2| + · · ·
is dominated by the geometric series

|aN |(1 + r + r2 + r3 + · · · ),

and the latter converges because |r | < 1. Thus the series
∑ |an| converges, so the

series
∑

an converges absolutely.
If ρ > 1, then Eq. (3) implies that there exists a positive integer N such that

|an+1| > |an| for all n � N . It follows that |an| > |aN | > 0 for all n > N . Thus the
sequence {an} cannot approach zero as n → +∞, and consequently, by the nth-term
divergence test, the series

∑
an diverges. ◆

To see that
∑

an may either converge or diverge if ρ = 1, consider the divergent
series

∑
(1/n) and the convergent series

∑
(1/n2). You should verify that, for both

series, the value of the ratio ρ is 1.

EXAMPLE 5 Consider the series

∞∑
n=1

(−1)n2n

n! = −2 + 4

2! − 8

3! + 16

4! − · · · .

Then

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣∣

(−1)n+12n+1

(n + 1)!
(−1)n2n

n!

∣∣∣∣∣∣∣∣∣
= lim

n→∞
2

n + 1
= 0.

Because ρ < 1, the series converges absolutely. ◗

EXAMPLE 6 Test for convergence:
∞∑

n=1

n

2n
.
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Solution We have

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n + 1

2n+1

n

2n

= lim
n→∞

n + 1

2n
= 1

2
.

Because ρ < 1, this series converges (absolutely). ◗

EXAMPLE 7 Test for convergence:
∞∑

n=1

3n

n2
.

Solution Here we have

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

3n+1

(n + 1)2

3n

n2

= lim
n→∞

3n2

(n + 1)2
= 3.

In this case ρ > 1, so the given series diverges. ◗

THEOREM 5 The Root Test
Suppose that the limit

ρ = lim
n→∞

n
√|an| (4)

exists or is infinite. Then the infinite series
∑

an

1. Converges absolutely if ρ < 1;

2. Diverges if ρ > 1.

If ρ = 1, the root test is inconclusive.

Proof If ρ < 1, choose a (fixed) number r such that ρ < r < 1. Then |an|1/n < r ,
and hence |an| < rn , for n sufficiently large. Thus the series

∑ |an| is eventually
dominated by the convergent geometric series

∑
rn . Therefore

∑ |an| converges, and
so the series

∑
an converges absolutely.

If ρ > 1, then |an|1/n > 1, and hence |an| > 1, for n sufficiently large. Therefore
the nth-term test for divergence implies that the series

∑
an diverges. ◆

The ratio test is generally simpler to apply than the root test, and therefore it
is ordinarily the one to try first. But there are certain series for which the root test
succeeds and the ratio test fails, as in Example 8.

EXAMPLE 8 Consider the series

∞∑
n=0

1

2n+(−1)n = 1

2
+ 1

1
+ 1

8
+ 1

4
+ 1

32
+ 1

16
+ · · · .

Then an+1/an = 2 if n is even, whereas an+1/an = 1
8 if n is odd. So the limit required

for the ratio test does not exist. But

lim
n→∞ |an|1/n = lim

n→∞

∣∣∣∣ 1

2n+(−1)n

∣∣∣∣
1/n

= lim
n→∞

1

2

∣∣∣∣ 1

2(−1)n/n

∣∣∣∣ = 1

2
,

so the given series converges by the root test. (Its convergence also follows from the
fact that it is a rearrangement of the positive-term convergent geometric series

∑
1/2n .)

◗
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10.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. An alternating series is one of the form
∞∑

n=1

(−1)n+1an or of the form
∞∑

n=1

(−1)nan,

where an > 0 for all n.

2. If an � an+1 > 0 for all n and lim
n→∞ an = 0, then

∞∑
n=1

(−1)n+1an converges.

3. The series 1 − 2

3
+ 3

5
− 4

7
+ 5

9
− · · · converges.

4. The series 1 + 1

2
− 1

3
− 1

4
+ 1

5
+ 1

6
− 1

7
− · · · diverges by the alternating series

test.

5. The series
∞∑

n=1

an is said to converge absolutely if
∞∑

n=1

|an| coverges.

6. If a series converges absolutely, then it converges.

7. The series
∞∑

n=1

(−1)n+12n

n! converges by the ratio test.

8. Suppose that ρ = lim
n→∞ |an|1/n exists or is infinite. Then the series

∑
an con-

verges absolutely if ρ < 1 and diverges if ρ > 1.
9. There are certain series for which the ratio test fails while the root test succeeds.

10. The series 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · · is conditionally convergent.

10.7 CONCEPTS: QUESTIONS AND DISCUSSION

1. Can you give an example of a divergent alternating series
∑

(−1)n+1an such that
limn→∞ an = 0? In view of the alternating series test stated in Theorem 1 of this
section, how is such an example possible?

2. Give your own example of an infinite series such that both
∑

an and
∑ |an|

converge but have different sums, both of which you can calculate. What can
you conclude about the series if

∑
an and

∑ |an| have the same sum?
3. Can you give an example of a conditionally convergent positive-term series?

Why or why not?

10.7 PROBLEMS

Determine whether or not the alternating series in Problems 1
through 20 converge or diverge.

1.
∞∑

n=1

(−1)n+1

n2
2.

∞∑
n=1

(−1)n+1

√
n2 + 1

3.
∞∑

n=1

(−1)nn

3n + 2
4.

∞∑
n=1

(−1)nn

3n2 + 2

5.
∞∑

n=1

(−1)n+1n√
n2 + 2

6.
∞∑

n=1

(−1)n+1n2

√
n5 + 5

7.
∞∑

n=2

(−1)n+1n

ln n
8.

∞∑
n=1

(−1)n ln n√
n

9.
∞∑

n=1

(−1)nn

2n
10.

∞∑
n=1

n ·
(

−2

3

)n+1

11.
∞∑

n=1

(−1)nn√
2n + 1

12.
∞∑

n=1

(
− nπ

10

)n+1

13.
∞∑

n=1

1

n2/3
sin

(
nπ

2

)
14.

∞∑
n=1

cos nπ

n3/2

15.
∞∑

n=1

(−1)n sin

(
1

n

)
16.

∞∑
n=1

(−1)nn sin

(
π

n

)

17.
∞∑

n=1

(−1)n+1

n
√

2
18.

∞∑
n=1

(−1.01)n+1

n4
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19.
∞∑

n=1

(−1)n+1

n
√

n
20.

∞∑
n=1

(−1)n+1n!
(2n)!

Determine whether the series in Problems 21 through 42 con-
verge absolutely, converge conditionally, or diverge.

21.
∞∑

n=1

(−1)n+1

2n
22.

∞∑
n=1

1

n2 + 1

23.
∞∑

n=1

(−1)n ln n

n
24.

∞∑
n=1

1

nn

25.
∞∑

n=1

(
10

n

)n

26.
∞∑

n=1

3n

n!n

27.
∞∑

n=0

(−10)n

n! 28.
∞∑

n=1

(−1)n+1n!
nn

29.
∞∑

n=1

(−1)n+1

(
n

n + 1

)n

30.
∞∑

n=1

n!n2

(2n)!

31.
∞∑

n=1

(
ln n

n

)n

32.
∞∑

n=0

(−1)n23n

7n

33.
∞∑

n=0

(−1)n
(√

n + 1 − √
n
)

34.
∞∑

n=1

n · (
3
4

)n

35.
∞∑

n=1

[
ln

(
1

n

) ]n

36.
∞∑

n=0

(n!)2

(2n)!

37.
∞∑

n=1

(−1)n+13n

n(2n + 1)
38.

∞∑
n=1

(−1)n+1 arctan n

n

39.
∞∑

n=1

(−1)n+1n!
1 · 3 · 5 · · · (2n − 1)

40.
∞∑

n=1

(−1)n+1 1 · 3 · 5 · · · (2n − 1)

1 · 4 · 7 · · · (3n − 2)

41.
∞∑

n=1

(n + 2)!
3n(n!)2

42.
∞∑

n=1

(−1)n+1nn

3n2

In Problems 43 through 48, sum the indicated number of initial
terms of the given alternating series. Then apply the alternating
series remainder estimate to estimate the error in approximating
the sum of the series with this partial sum. Finally, approximate
the sum of the series, writing precisely the number of decimal
places that thereby are guaranteed to be correct (after rounding).

43.
∞∑

n=1

(−1)n+1

n3
, 5 terms 44.

∞∑
n=1

(−1)n+1

3n
, 8 terms

45.
∞∑

n=1

(−1)n+1

n! , 6 terms 46.
∞∑

n=1

(−1)n+1

nn
, 7 terms

47.
∞∑

n=1

(−1)n+1

n
, 12 terms 48.

∞∑
n=1

(−1)n+1

n2
, 15 terms

In Problems 49 through 54, sum enough terms (tell how many)
to approximate the sum of the series, writing the sum rounded to
the indicated number of correct decimal places.

49.
∞∑

n=1

(−1)n+1

n4
, 3 decimal places

50.
∞∑

n=1

(−1)n+1

n5
, 4 decimal places

51.
1√
e

=
∞∑

n=0

(−1)n

n!2n
, 4 decimal places

52. cos 1 =
∞∑

n=0

(−1)n

(2n)! , 5 decimal places

53. sin 60◦ =
∞∑

n=0

(−1)n

(2n + 1)!
(

π

3

)2n+1

, 5 decimal places

54. ln(1.1) =
∞∑

n=1

(−1)n+1

n · 10n
, 7 decimal places

In Problems 55 and 56, show that the indicated alternating series∑
(−1)n+1an satisfies the condition that an → 0 as n → +∞,

but nevertheless diverges. Tell why the alternating series test
does not apply. It may be informative to graph the first 10 or
20 partial sums.

55. an =

⎧⎪⎪⎨
⎪⎪⎩

1

n
if n is odd,

1

n2
if n is even.

56. an =

⎧⎪⎪⎨
⎪⎪⎩

1√
n

if n is odd,

1

n3
if n is even.

57. Give an example of a pair of convergent series
∑

an and∑
bn such that

∑
anbn diverges.

58. Prove that
∑ |an| diverges if the series

∑
an diverges.

59. Prove that

lim
n→∞

an

n! = 0

(for any real number a) by applying the ratio test to show
that the infinite series

∑
an/n! converges.

60. (a) Suppose that r is a (fixed) number such that |r | < 1. Use
the ratio test to prove that the series

∑∞
n=0 nrn converges. Let

S denote its sum. (b) Show that

(1 − r)S =
∞∑

n=1

rn .

Show how to conclude that
∞∑

n=0

nrn = r

(1 − r)2
.

61. Let

Hn =
n∑

k=1

1

k
and Sn =

n∑
k=1

(−1)k+1

k

denote the nth partial sums of the harmonic and alternating
harmonic series, respectively. (a) Show that S2n = H2n − Hn

for all n � 1. (b) Problem 50 in Section 10.5 says that

lim
n→∞(Hn − ln n) = γ

(where γ ≈ 0.57722 denotes Euler’s constant). Explain why
it follows that

lim
n→∞(H2n − ln 2n) = γ.

(c) Conclude from parts (a) and (b) that limn→∞ S2n = ln 2.
Thus

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · · .
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62. Suppose that
∑

an is a conditionally convergent infinite se-
ries. For each n, let

a+
n = an + |an|

2
and a−

n = an − |an|
2

.

(a) Explain why
∑

a+
n consists of the positive terms of∑

an and why
∑

a−
n consists of the negative terms of

∑
an .

(b) Given a real number r , show that some rearrangement
of the conditionally convergent series

∑
an converges to r .

Suggestion: If r is positive, for instance, begin with the first
partial sum of the positive series

∑
a+

n that exceeds r . Then
add just enough terms of the negative series

∑
a−

n so that the
cumulative sum is less than r . Next add just enough terms
of the positive series that the cumulative sum is greater than
r , and continue in this way to define the desired rearrange-
ment. Why does it follow that this rearranged infinite series
converges to r?

63. Use the method of Problem 62 to write the first dozen terms
of a rearrangement of the alternating harmonic series (Prob-
lem 61) that converges to 1 rather than to ln 2.

64. Describe a way to rearrange the terms of the alternat-
ing harmonic series to obtain (a) A rearranged series that
converges to −2; (b) A rearranged series that diverges
to +∞.

65. Here is another rearrangement of the alternating harmonic
series of Problem 61:

1 − 1

2
− 1

4
− 1

6
− 1

8

+ 1

3
− 1

10
− 1

12
− 1

14
− 1

16

+ 1

5
− 1

18
− 1

20
− 1

22
− 1

24

+ 1

7
− 1

26
− 1

28
− 1

30
− 1

32
+ · · · .

Use a computer to collect evidence about the value of its
sum.

10.8 POWER SERIES

The most important infinite series representations of functions are those whose terms
are constant multiples of (successive) integral powers of the independent variable x—
that is, series that resemble “infinite polynomials.” For example, we discussed in Sec-
tion 10.4 the geometric series

1

1 − x
= 1 + x + x2 + x3 + · · · (|x | < 1) (1)

and the Taylor series

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · , (2)

cos x =
∞∑

n=0

(−1)nx2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · · , and (3)

sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · · . (4)

There we used Taylor’s formula to show that the series in Eqs. (2) through (4) converge,
for all x , to the functions ex , cos x , and sin x , respectively. Here we investigate the
convergence of a “power series” without knowing in advance the function (if any) to
which it converges.

All the infinite series in Eqs. (1) through (4) have the form

∞∑
n=0

anxn = a0 + a1x + a2x2 + · · · + anxn + · · · (5)

with the constant coefficients a0, a1, a2, . . . . An infinite series of this form is called a
power series in (powers of) x . In order that the initial terms of the two sides of Eq. (5)
agree, we adopt here the convention that x0 = 1 even if x = 0.

Convergence of Power Series
The partial sums of the power series in (5) are the polynomials

s1(x) = a0 + a1x, s2(x) = a0 + a1x + a2x2, s3(x) = a0 + a1x + a2x2 + a3x3,
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and so forth. The nth partial sum is an nth-degree polynomial. When we ask where the
power series converges, we seek those values of x for which the limit

s(x) = lim
n→∞ sn(x)

exists. The sum s(x) of a power series is then a function of x that is defined wherever
the series converges.

The power series in (5) obviously converges when x = 0. In general, it will
converge for some nonzero values of x and diverge for others. Because of the way in
which powers of x are involved, the ratio test of Section 10.7 is particularly effective
in determining the values of x for which a given power series converges.

Assume that the limit

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (6)

exists. This is the limit that we need if we want to apply the ratio test to the series
∑

an

of constants. To apply the ratio test to the power series in Eq. (5), we write un = anxn

and compute the limit

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1xn+1

anxn

∣∣∣∣ = ρ |x | . (7)

If ρ = 0, then
∑

anxn converges absolutely for all x . If ρ = +∞, then
∑

anxn

diverges for all x �= 0. If ρ is a positive real number, we see from Eq. (7) that
∑

anxn

converges absolutely for all x such that ρ · |x | < 1—that is, when

|x | < R = 1

ρ
= lim

n→∞

∣∣∣∣ an

an+1

∣∣∣∣. (8)

In this case the ratio test also implies that
∑

anxn diverges if |x | > R but is incon-
clusive when x = ±R. We have therefore proved Theorem 1, under the additional
hypothesis that the limit in Eq. (6) exists. In Problems 69 and 70 we outline a proof
that does not require this additional hypothesis.

THEOREM 1 Convergence of Power Series
If

∑
anxn is a power series, then either

1. The series converges absolutely for all x , or

2. The series converges only when x = 0, or

3. There exists a number R > 0 such that
∑

anxn converges absolutely if
|x | < R and diverges if |x | > R.

The number R of Case 3 is called the radius of convergence of the power series∑
anxn . We write R = ∞ in Case 1 and R = 0 in Case 2. The set of all real numbers

x for which the series converges is called its interval of convergence (Fig. 10.8.1);

− R 0 R

Converges?
Diverges?

Converges?
Diverges?

Series
diverges

Series
converges

Series
diverges

FIGURE 10.8.1 The interval of

convergence if 0 < R = lim
n→∞

∣∣∣ an

an+1

∣∣∣ < ∞.
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note that this set is an interval. If 0 < R < ∞, then the interval of convergence is one
of the intervals

(−R, R), (−R, R], [−R, R), or [−R, R].
When we substitute either of the endpoints x = ±R into the series

∑
anxn , we obtain

an infinite series with constant terms whose convergence must be determined sepa-
rately. Because these will be numerical series, the earlier tests of this chapter are
appropriate.

EXAMPLE 1 Find the interval of convergence of the series
∞∑

n=1

xn

n · 3n
.

Solution With un = xn/(n · 3n) we find that

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣∣∣

xn+1

(n + 1) · 3n+1

xn

n · 3n

∣∣∣∣∣∣∣∣∣∣
= lim

n→∞
n |x |

3(n + 1)
= |x |

3
.

Now |x |/3 < 1 provided that |x | < 3, so the ratio test implies that the given series
converges absolutely if |x | < 3 and diverges if |x | > 3. When x = 3, we have the
divergent harmonic series

∑
(1/n), and when x = −3 we have the convergent alter-

nating series
∑

(−1)n/n. Thus the interval of convergence of the given power series
is [−3, 3). We see dramatically in Fig. 10.8.2 the difference between convergence at
x = −3 and divergence at x = +3. ◗

x

2

4

6

5−5

y

y = S(x)

 S4(x)

S6(x) S10(x)

x = 3x = −3

FIGURE 10.8.2 Graphs of the partial sums S4(x), S6(x), and S10(x) of the power series

S(x) =
∞∑

n=1

xn

n · 3n
of Example 1. We see convergence at x = −3, but apparently S(x) → ∞

as x approaches +3, where the series diverges harmonically.

EXAMPLE 2 Find the interval of convergence of the power series
∞∑

n=0

(−2)nxn

(2n)! = 1 − 2x

2! + 4x2

4! − 8x3

6! + 16x4

8! − · · · .
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Solution With un = (−2)nxn/(2n)! we find that

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣∣

(−2)n+1xn+1

(2n + 2)!
(−2)nxn

(2n)!

∣∣∣∣∣∣∣∣∣
= lim

n→∞
2|x |

(2n + 1)(2n + 2)
= 0

for all x [using the fact that (2n + 2)! = (2n)!(2n + 1)(2n + 2)]. Hence the ratio test
implies that the given power series converges for all x , and its interval of convergence
is therefore (−∞, +∞), the entire real line. ◗

REMARK The power series of Example 2 results upon substituting
√

2x for x in the
Taylor series for cos x [Eq. (3)]. But only for x > 0 does the sum S(x) of the series
exhibit the oscillatory character of the function cos

√
2x (Fig. 10.8.3). For x < 0 the

power series converges to the quite different (and nonoscillatory) function cosh
√|2x |.

x

−1

1

50 100 150

y

S5(x) S15(x)

S10(x) S20(x)

y = cos 2x

FIGURE 10.8.3 Graphs of the partial sums S5(x), S10(x), S15(x), and S20(x) of the

power series S(x) =
∞∑

n=0

(−2x)n

(2n)! of Example 2, which converges to cos
√

2x for x > 0.

EXAMPLE 3 Find the interval of convergence of the series
∑∞

n=1 nnxn .

Solution With un = nnxn we find that

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣ = lim
n→∞ (n + 1)

(
1 + 1

n

)n

|x | = +∞

for all x �= 0, because

lim
n→∞

(
1 + 1

n

)n

= e.

Thus the given series diverges for all x �= 0, and its interval of convergence consists of
the single point x = 0. ◗

EXAMPLE 4 Use the ratio test to verify that the Taylor series for cos x in Eq. (3)
converges for all x .
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Solution With un = (−1)nx2n/(2n)! we find that

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣∣

(−1)n+1x2n+2

(2n + 2)!
(−1)nx2n

(2n)!

∣∣∣∣∣∣∣∣∣
= lim

n→∞
x2

(2n + 1)(2n + 2)
= 0

for all x , so the series converges for all x . ◗

IMPORTANT In Example 4, the ratio test tells us only that the series for cos x con-
verges to some number, not necessarily the particular number cos x . The argument of
Section 10.4, using Taylor’s formula with remainder, is required to establish that the
sum of the series is actually cos x .

Power Series in Powers of x−c

An infinite series of the form

∞∑
n=0

an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + · · · , (9)

where c is a constant, is called a power series in (powers of) x − c. By the same
reasoning that led us to Theorem 1, with xn replaced with (x − c)n throughout, we
conclude that either

1. The series in Eq. (9) converges absolutely for all x , or
2. The series converges only when x − c = 0—that is, when x = c—or
3. There exists a number R > 0 such that the series in Eq. (9) converges absolutely

if |x − c| < R and diverges if |x − c| > R.

As in the case of a power series with c = 0, the number R is called the radius of
convergence of the series, and the interval of convergence of the series

∑
an(x − c)n

is the set of all numbers x for which it converges (Fig. 10.8.4). As before, when
0 < R < ∞, the convergence of the series at the endpoints x = c − R and x = c + R
of its interval of convergence must be checked separately.

Series
diverges

Series
converges

Series
diverges

c − R c

Converges?
Diverges?

c + R

Converges?
Diverges?

FIGURE 10.8.4 The interval of
convergence of

∑∞
n=0 an(x − c)n .

EXAMPLE 5 Determine the interval of convergence of the series

∞∑
n=1

(−1)n(x − 2)n

n · 4n
.
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Solution We let un = (−1)n(x − 2)n/(n · 4n). Then

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+1(x − 2)n+1

(n + 1) · 4n+1

(−1)n(x − 2)n

n · 4n

∣∣∣∣∣∣∣∣
= lim

n→∞
|x − 2|

4
· n

n + 1
= |x − 2|

4
.

Hence the given series converges when |x − 2| < 4, so the radius of convergence is
R = 4. Because c = 2, the series converges when −2 < x < 6 and diverges if either
x < −2 or x > 6. When x = −2, the series reduces to the divergent harmonic series,
and when x = 6 it reduces to the convergent alternating series

∑
(−1)n/n. Thus the

interval of convergence of the given power series is (−2, 6]. ◗

Power Series Representations of Functions

Power series are important tools for computing (or approximating) values of functions.
Suppose that the series

∑
anxn converges to the value f (x); that is,

f (x) = a0 + a1x + a2x2 + · · · + anxn + · · ·

for each x in the interval of convergence of the power series. Then we call
∑

anxn

a power series representation of f (x). For example, the geometric series
∑

xn in
Eq. (1) is a power series representation of the function f (x) = 1/(1 − x) on the
interval (−1, 1).

We saw in Section 10.4 how Taylor’s formula with remainder can often be used
to find a power series representation of a given function. Recall that the nth-degree
Taylor’s formula for f (x) at x = a is

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f (3)(a)

3! (x − a)3

+ · · · + f (n)(a)

n! (x − a)n + Rn(x). (10)

The remainder Rn(x) is given by

Rn(x) = f (n+1)(z)

(n + 1)! (x − a)n+1,

where z is some number between a and x . If we let n → +∞ in Eq. (10) and replace
a with c, we obtain Theorem 2.

THEOREM 2 Taylor Series Representations
Suppose that the function f has derivatives of all orders on some interval containing
c and also that

lim
n→∞ Rn(x) = 0 (11)

for each x in that interval. Then

f (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n (12)

for each x in the interval.
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The power series in Eq. (12) is the Taylor series of the function f at x = c (or
in powers of x − c, or with center c). If c = 0, we obtain the power series

f (x) =
∞∑

n=0

f (n)(0)

n! xn = f (0) + f ′(0)x + f ′′(0)

2! x2 + · · · , (13)

commonly called the Maclaurin series of f . Thus the power series in Eqs. (2) through
(4) are the Maclaurin series of the functions ex , cos x , and sin x , respectively.

EXAMPLE 6 New power series can be constructed from old ones. For instance, upon
replacing x with −x in the Maclaurin series for ex , we obtain

e−x = 1 − x + x2

2! − x3

3! + · · · + (−1)n xn

n! + · · · .

Let us now add the series for ex and e−x and divide by 2. This gives

cosh x = ex + e−x

2
= 1

2

(
1 + x + x2

2! + x3

3! + x4

4! + · · ·
)

+ 1

2

(
1 − x + x2

2! − x3

3! + x4

4! − · · ·
)

,

so

cosh x = 1 + x2

2! + x4

4! + x6

6! + · · · .

Similarly,

sinh x = x + x3

3! + x5

5! + x7

7! + · · · .

Note the strong resemblance to Eqs. (3) and (4), the series for cos x and sin x ,
respectively.

Upon replacing x with −x2 in the series for ex , we obtain

e−x2 =
∞∑

n=0

(−1)n x2n

n! = 1 − x2 + x4

2! − x6

3! + · · · .

Because this power series converges to exp(−x2) for all x , it must be the Maclaurin
series for exp(−x2). (See Problem 66.) Think how tedious it would be to com-
pute the derivatives of exp(−x2) needed to write its Maclaurin series directly from
Eq. (13). ◗

EXAMPLE 7 Sometimes a function is originally defined by means of a power series.
One of the most important “higher transcendental functions” of applied mathematics
is the Bessel function J0(x) of order zero defined by

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2
= 1 − x2

4
+ x4

64
− x6

2304
+ · · · .

Only terms of even degree appear, so let us write un = (−1)nx2n/[22n(n!)2] for the nth
term in this series (not counting its constant term). Then

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+1x2n+2

22n+2[(n + 1)!]2

(−1)nx2n

22n(n!)2

∣∣∣∣∣∣∣∣
= lim

n→∞
x2

4(n + 1)2
= 0

for all x , so the ratio test implies that J0(x) is defined on the whole real line. The
series for J0(x) resembles somewhat the cosine series, but the graph of J0(x) exhibits
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damped oscillations (Fig. 10.8.5). Bessel functions are important in such applications
as the distribution of temperature in a cylindrical steam pipe and distribution of thermal
neutrons in a cylindrical nuclear reactor. ◗

x

−1

1

20−20

y

P14(x) P30(x)

P8(x) P24(x)

y = J0(x)

FIGURE 10.8.5 Graphs of the Bessel function J0(x) and its Taylor polynomials
P8(x), P14(x), P24(x), and P30(x).

The Binomial Series
Example 8 gives one of the most famous and useful of all series, the binomial series,
which was discovered by Newton in the 1660s. It is the infinite series generalization
of the (finite) binomial theorem of elementary algebra.

EXAMPLE 8 Suppose that α is a nonzero real number. Show that the Maclaurin
series of f (x) = (1 + x)α is

(1 + x)α = 1 +
∞∑

n=1

α(α − 1)(α − 2) · · · (α − n + 1)

n! xn

= 1 + αx + α(α − 1)

2! x2 + α(α − 1)(α − 2)

3! x3 + · · · . (14)

Also determine the interval of convergence of this binomial series.

Solution To derive the series itself, we simply list all the derivatives of f (x) =
(1 + x)α , including its “zeroth” derivative:

f (x) = (1 + x)α

f ′(x) = α(1 + x)α−1

f ′′(x) = α(α − 1)(1 + x)α−2

f (3)(x) = α(α − 1)(α − 2)(1 + x)α−3,
...

f (n)(x) = α(α − 1)(α − 2) · · · (α − n + 1)(1 + x)α−n.

Thus

f (n)(0) = α(α − 1)(α − 2) · · · (α − n + 1).

If we substitute this value of f (n)(0) into the Maclaurin series formula in Eq. (13), we
get the binomial series in Eq. (14).

To determine the interval of convergence of the binomial series, we let

un = α(α − 1)(α − 2) · · · (α − n + 1)

n! xn.
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We find that

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
α(α − 1)(α − 2) · · · (α − n)xn+1

(n + 1)!
α(α − 1)(α − 2) · · · (α − n + 1)xn

n!

∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣ (α − n)x

n + 1

∣∣∣∣ = |x |.

Hence the ratio test shows that the binomial series converges absolutely if |x | < 1 and
diverges if |x | > 1. Its convergence at the endpoints x = ±1 depends on the value of
α; we shall not pursue this problem. Problem 67 outlines a proof that the sum of the
binomial series actually is (1 + x)α if |x | < 1. ◗

If α = k, a positive integer, then the coefficient of xn is zero for n > k, and the
binomial series reduces to the binomial formula

(1 + x)k =
k∑

n=0

k!
n!(k − n)! xn .

Otherwise Eq. (14) is an infinite series. For example, with α = 1
2 , we obtain

√
1 + x = 1 +

1
2

1! x +
(

1
2

)(− 1
2

)
2! x2 +

(
1
2

)(− 1
2

)(− 3
2

)
3! x3

+
(

1
2

)(− 1
2

)(− 3
2

)(− 5
2

)
4! x4 + · · ·

= 1 + 1
2 x − 1

8 x2 + 1
16 x3 − 5

128 x4 + · · · . (15)

If we replace x with −x and take α = − 1
2 , we get the series

1√
1 − x

= 1 + − 1
2

1! (−x) +
(− 1

2

)(− 3
2

)
2! (−x)2 + · · · + 1 · 3 · 5 · · · (2n − 1)

n! · 2n
xn + · · · ,

which in summation notation takes the form

1√
1 − x

= 1 +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
xn. (16)

We will find this series quite useful in Example 12 and in Problem 68.

Differentiation and Integration of Power Series

Sometimes it is inconvenient to compute the repeated derivatives of a function in order
to find its Taylor series. An alternative method of finding new power series is by the
differentiation and integration of known power series.

Suppose that a power series representation of the function f (x) is known. Then
Theorem 3 (we leave its proof to advanced calculus) implies that the function f (x)

may be differentiated by separately differentiating the individual terms in its power
series. That is, the power series obtained by termwise differentiation converges to the
derivative f ′(x). Similarly, a function can be integrated by termwise integration of its
power series.
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THEOREM 3 Termwise Differentiation and Integration
Suppose that the function f has a power series representation

f (x) =
∞∑

n=0

anxn = a0 + a1x + a2x2 + a3x3 + · · ·

with nonzero radius of convergence R. Then f is differentiable on (−R, R) and

f ′(x) =
∞∑

n=1

nanxn−1 = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · . (17)

Also, ∫ x

0
f (t) dt =

∞∑
n=0

anxn+1

n + 1
= a0x + 1

2 a1x2 + 1
3 a2x3 + · · · (18)

for each x in (−R, R). Moreover, the power series in Eqs. (17) and (18) have the
same radius of convergence R.

REMARK 1 Although we omit the proof of Theorem 3, we observe that the radius of
convergence of the series in Eq. (17) is

R = lim
n→∞

∣∣∣∣ nan

(n + 1)an+1

∣∣∣∣ =
(

lim
n→∞

n

n + 1

)
·
(

lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣
)

= lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ .
Thus, by Eq. (8), the power series for f (x) and the power series for f ′(x) have the
same radius of convergence (under the assumption that the preceding limit exists).

REMARK 2 Theorem 3 has this important consequence: If both the power series∑
anxn and

∑
bnxn converge and, for all x with |x | < R (R > 0),

∑
anxn = ∑

bnxn ,
then an = bn for all n. In particular, the Taylor series of a function is its unique power
series representation (if any). (See Problem 66.)

EXAMPLE 9 Termwise differentiation of the geometric series for

f (x) = 1

1 − x

yields

1

(1 − x)2
= Dx

(
1

1 − x

)
= Dx (1 + x + x2 + x3 + · · · )

= 1 + 2x + 3x2 + 4x3 + · · · .

Thus

1

(1 − x)2
=

∞∑
n=1

nxn−1 =
∞∑

n=0

(n + 1)xn.

The series converges to 1/(1 − x)2 if −1 < x < 1. ◗

EXAMPLE 10 Replacing x with −t in the geometric series of Example 9 gives

1

1 + t
= 1 − t + t2 − t3 + · · · + (−1)ntn + · · · .

Because Dt ln(1+ t) = 1/(1+ t), termwise integration from t = 0 to t = x now gives

ln(1 + x) =
∫ x

0

1

1 + t
dt

=
∫ x

0
(1 − t + t2 − · · · + (−1)ntn + · · · ) dt;
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ln(1 + x) = x − 1

2
x2 + 1

3
x3 − 1

4
x4 + · · · + (−1)n+1

n
xn + · · · (19)

if |x | < 1. ◗

EXAMPLE 11 Find a power series representation for the arctangent function.

Solution Because Dt tan−1 t = 1/(1 + t2), termwise integration of the geometric
series

1

1 + t2
= 1 − t2 + t4 − t6 + t8 − · · ·

gives

tan−1 x =
∫ x

0

1

1 + t2
dt =

∫ x

0
(1 − t2 + t4 − t6 + t8 − · · · ) dt

if x is in the interval (−1, 1) where the geometric series converges. Therefore

tan−1 x =
∞∑

n=1

(−1)n+1x2n−1

2n − 1
= x − 1

3 x3 + 1
5 x5 − 1

7 x7 + 1
9 x9 − · · · (20)

if −1 < x < 1. Figure 10.8.6 illustrates both the convergence of the power series
within this interval and the divergence outside it. ◗

x

y

y = tan−1 x

x = 1

n = 3

n = 7

n = 5n = 9

x = −1

−
4
π

4
π

FIGURE 10.8.6 The graphs of the Taylor polynomials of degrees n = 3, 5, 7, and 9 illustrate
the convergence within the interval −1 < x < 1 and divergence outside this interval.

EXAMPLE 12 Find a power series representation for the arcsine function.

Solution First we substitute t2 for x in Eq. (16). This yields

1√
1 − t2

= 1 +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
t2n

790

www.konkur.in



Power Series SECTION 10.8 791

if |t | < 1. Because Dt sin−1 t = 1/
√

1 − t2 , termwise integration of this series from
t = 0 to t = x gives

sin−1 x =
∫ x

0

1√
1 − t2

dt = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
· x2n+1

2n + 1
(21)

if |x | < 1. Problem 68 shows how to use this series to derive the series

π2

6
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · + 1

n2
+ · · · ,

which we used in Example 3 of Section 10.5 to approximate the number π . ◗

10.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. A power series in (powers of) x has the form

a0 + a1x + a2x2 + a3x3 + · · · + anxn + · · · .

2. Given the series in Question 1, assume that ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists. If ρ = 0,

then the series in Question 1 converges absolutely for all x . If ρ = +∞, then
the series diverges for all x �= 0. If 0 < ρ < +∞, then the series converges
absolutely for all x such that ρ · |x | < 1.

3. The interval of convergence of the series
∞∑

n=1

xn

n · 3n
is [−3, 3).

4. The series
∞∑

n=1

nnxn converges for all x �= 0.

5. The ratio test shows that the Taylor series for cos x converges only for those
values of x for which −1 < x < 1.

6. cosh x = 1 + x2

2! + x4

4! + x6

6! + · · · .

7. If α is a nonzero real number, then

(1 + x)α = 1 + αx + α(α − 1)

2! x2 + α(α − 1)(α − 2)

3! x3 + · · ·

and this binomial series converges absolutely if −1 < x < 1.
8. If f (x) = a0 +a1x +a2x2 +a3x3 +· · · and this series has radius of convergence

R, then f is differentiable on (−R, R) and

f ′(x) = a1 + 2a2x + 3a3a2 + 4a4x3 + · · · .

9. ln x = x + 1

2
x2 + 1

3
x3 + 1

4
x4 + · · · if −1 < x < 1.

10. sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
· x2n+1

2n + 1
if −1 < x < 1.

10.8 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that you started with the Maclaurin series of the sine and cosine func-

tions as their definitions. How many of the familiar properties of cos x and
sin x—such as their derivatives and addition formulas—could you establish using
only these series?
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2. Use the Maclaurin series for the sine and cosine functions and the corresponding
hyperbolic series in Example 6 to explore relations between function pairs trig i x
and trigh x , where trig denotes one of the cos/sin/tan trigonometric functions, and
trigh denotes the corresponding hyperbolic function.

10.8 PROBLEMS

Find the interval of convergence of each power series in Prob-
lems 1 through 30.

1.
∞∑

n=1

nxn 2.
∞∑

n=1

xn

√
n

3.
∞∑

n=1

nxn

2n
4.

∞∑
n=1

(−1)n xn

n1/25n

5.
∞∑

n=1

n!xn 6.
∞∑

n=1

(−1)n xn

nn

7.
∞∑

n=1

3n xn

n3
8.

∞∑
n=1

(−4)n xn

√
2n + 1

9.
∞∑

n=1

(−1)nn1/2(2x)n 10.
∞∑

n=1

n2xn

3n − 1

11.
∞∑

n=1

(−1)nnxn

2n(n + 1)3
12.

∞∑
n=1

n10xn

10n

13.
∞∑

n=1

(ln n)xn

3n
14.

∞∑
n=2

(−1)n4n xn

n ln n

15.
∞∑

n=0

(5x − 3)n 16.
∞∑

n=1

(2x − 1)n

n4 + 16

17.
∞∑

n=1

2n(x − 3)n

n2

18.
∞∑

n=1

n!
nn

xn (Do not test the endpoints; the series diverges

at each.)

19.
∞∑

n=1

(2n)!
n! xn

20.
∞∑

n=1

1 · 3 · 5 · · · (2n + 1)

n! xn (Do not test the endpoints; the

series diverges at each.)

21.
∞∑

n=1

n3(x + 1)n

3n
22.

∞∑
n=1

(−1)n+1(x − 2)n

n2

23.
∞∑

n=1

(3 − x)n

n3
24.

∞∑
n=1

(−1)n+110n

n! (x − 10)n

25.
∞∑

n=1

n!
2n

(x − 5)n 26.
∞∑

n=1

(−1)n+1

n · 10n
(x − 2)n

27.
∞∑

n=0

x (2n ) 28.
∞∑

n=0

(
x2 + 1

5

)n

29.
∞∑

n=1

(−1)n xn

1 · 3 · 5 · · · (2n − 1)

30.
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 5 · 8 · · · (3n − 1)
xn

In Problems 31 through 42, use power series established in this
section to find a power series representation of the given func-
tion. Then determine the radius of convergence of the resulting
series.

31. f (x) = x

1 − x
32. f (x) = 1

10 + x

33. f (x) = x2e−3x 34. f (x) = x

9 − x2

35. f (x) = sin(x2)

36. f (x) = cos2 2x = 1
2 (1 + cos 4x)

37. f (x) = 3
√

1 − x 38. f (x) = (1 + x2)3/2

39. f (x) = (1 + x)−3 40. f (x) = 1√
9 + x3

41. f (x) = ln(1 + x)

x
42. f (x) = x − arctan x

x3

In Problems 43 through 48, find a power series representation
for the given function f (x) by using termwise integration.

43. f (x) =
∫ x

0
sin t3 dt 44. f (x) =

∫ x

0

sin t

t
dt

45. f (x) =
∫ x

0
exp(−t3) dt 46. f (x) =

∫ x

0

arctan t

t
dt

47. f (x) =
∫ x

0

1 − exp(−t2)

t2
dt

48. tanh−1 x =
∫ x

0

1

1 − t2
dt

Beginning with the geometric series
∑∞

n=0 xn as in Example 9,
differentiate termwise to find the sums (for |x | < 1) of the power
series in Problems 49 through 51.

49.
∞∑

n=1

nxn 50.
∞∑

n=1

n(n − 1)xn 51.
∞∑

n=1

n2xn

52. Use the power series of the preceding problems to sum the
numerical series

∞∑
n=1

n

2n
and

∞∑
n=1

n2

3n
.

53. Verify by termwise differentiation of its Maclaurin series
that the exponential function y = ex satisfies the differ-
ential equation dy/dx = y. (Thus the exponential series
arises naturally as a power series that is its own termwise
derivative.)

54. Verify by termwise differentiation of their Maclaurin series
that the sine function y = sin x and the cosine function
y = cos x both satisfy the differential equation

d2 y

dx2
+ y = 0.
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55. Verify by termwise differentiation of the hyperbolic sine and
cosine series in Example 6 that each of the functions cosh x
and sinh x is the derivative of the other, and that each satis-
fies the differential equation y′′ − y = 0.

56. In elementary mathematics one sees various definitions
(some circular!) of the trigonometric functions. One ap-
proach to a rigorous foundation for these functions is to be-
gin by defining cos x and sin x by means of their Maclaurin
series. For instance, never having heard of sine, cosine, or
the number π , we might define the function

S(x) =
∞∑

n=1

(−1)n−1x2n−1

(2n − 1)!
and verify using the ratio test that this series converges for
all x . Use a computer algebra system to plot graphs of high-
degree partial sums sn(x) of this series. Does it appear that
the function S(x) appears to have a zero somewhere near the
number 3? Solve the equation sn(x) = 0 numerically (for
some large values of n) to verify that this least positive zero
of the sine function is approximately 3.14159 (and thus the
famous number π makes a fresh new appearance).

57. The Bessel function of order 1 is defined by

J1(x) =
∞∑

n=0

(−1)n x2n+1

22n+1n!(n + 1)! = x

2
− x3

16
+ x5

384
− · · · .

Verify that this series converges for all x and that the deriva-
tive of the Bessel function of order zero is given by J ′

0(x) =
−J1(x). Are the graphs in Fig. 10.8.7 consistent with this
latter fact?

0
x

y

−20 −10 2010

−1

0

−0.5

0.5

1

y = J1(x)

y = J0(x)

FIGURE 10.8.7 Graphs of the
Bessel functions J0(x) and J1(x).
Note that their zeros are interlaced,
like the zeros of the cosine and sine
functions.

58. Verify by termwise integration that∫
x J0(x) dx = x J1(x) + C.

59. Bessel’s equation of order n is the second-order differential
equation

x2 y′′ + xy′ + (x2 − n2)y = 0.

Verify by termwise differentiation that y = J0(x) satisfies
Bessel’s equation of order zero.

60. Verify that y = J1(x) satisfies Bessel’s equation of order 1
(Problem 59).

61. First use the sine series to find the Taylor series of f (x) =
(sin x)/x . Then use a graphing calculator or computer to il-
lustrate the approximation of f (x) by its Taylor polynomials
with center a = 0.

62. First find the Taylor series of the function

g(x) =
∫ x

0

sin t

t
dt.

Then determine where this power series converges. Finally,
use a graphing calculator or computer to illustrate the ap-
proximation of g(x) by its Taylor polynomials with center
a = 0.

63. Deduce from the arctangent series (Example 11) that

π = 6√
3

∞∑
n=0

(−1)n

2n + 1

(
1

3

)n

.

Then use this alternating series to show that π = 3.14 accu-
rate to two decimal places.

64. Substitute the Maclaurin series for sin x , and then assume
the validity of termwise integration of the resulting series, to
derive the formula∫ ∞

0
e−t sin xt dt = x

1 + x2
(|x | < 1).

Use the fact from Section 7.8 that∫ ∞

0
tne−t dt = �(n + 1) = n!.

65. (a) Deduce from the Maclaurin series for et that

1

x x
=

∞∑
n=0

(−1)n

n! (x ln x)n .

(b) Assuming the validity of termwise integration of the se-
ries in part (a), use the integral formula of Problem 53 in
Section 7.8 to conclude that∫ 1

0

1

x x
dx =

∞∑
n=1

1

nn
.

66. Suppose that f (x) is represented by the power series

∞∑
n=0

an xn

for all x in some open interval centered at x = 0. Show by
repeated differentiation of the series, substituting x = 0 after
each differentiation, that an = f (n)(0)/n! for all n � 0. Thus
the only power series in x that represents a function at and
near x = 0 is its Maclaurin series.

67. (a) Consider the binomial series

f (x) =
∞∑

n=0

α(α − 1)(α − 2) · · · (α − n + 1)

n! xn,

which converges (to something) if |x | < 1. Compute the
derivative f ′(x) by termwise differentiation, and show that
it satisfies the differential equation (1 + x) f ′(x) = α f (x).
(b) Solve the differential equation in part (a) to obtain
f (x) = C(1 + x)α for some constant C . Finally, show that
C = 1. Thus the binomial series converges to (1 + x)α if
|x | < 1.
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68. (a) Show by direct integration that

∫ 1

0

arcsin x√
1 − x2

dx = π2

8
.

(b) Use the result of Problem 58 in Section 7.3 to show that

∫ 1

0

x2n+1

√
1 − x2

dx = 2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n + 1)
.

(c) Substitute the series of Example 10 for arcsin x into the
integral of part (a); then use the integral of part (b) to inte-
grate termwise. Conclude that

∫ 1

0

arcsin x√
1 − x2

dx = 1 + 1

32
+ 1

52
+ 1

72
+ · · · .

(d) Note that

∞∑
n=1

1

n2
=

∞∑
n=1

1

(2n − 1)2
+

∞∑
n=1

1

(2n)2
.

Use this information and parts (a) and (c) to show that

∞∑
n=1

1

n2
= π2

6
.

69. Prove that if the power series
∑

an xn converges for some
x = x0 �= 0, then it converges absolutely for all x such
that |x | < |x0|. [Suggestion: Conclude from the fact that
limn→∞ an xn

0 = 0 that |an xn| � |x/x0|n for all n suffi-
ciently large. Thus the series

∑ |an xn| is eventually dom-
inated by the geometric series

∑ |x/x0|n , which converges
if |x | < |x0|.]

70. Suppose that the power series
∑

an xn converges for some
but not all nonzero values of x . Let S be the set of real num-
bers for which the series converges absolutely. (a) Conclude
from Problem 69 that the set S is bounded above. (b) Let
λ be the least upper bound of the set S. (See Problem 61
of Section 10.2.) Then show that

∑
an xn converges abso-

lutely if |x | < λ and diverges if |x | > λ. Explain why
this proves Theorem 1 without the additional hypothesis that
limn→∞ |an+1/an| exists.

10.9 POWER SERIES COMPUTATIONS

Power series often are used to approximate numerical values of functions and integrals.
Alternating power series (such as the sine and cosine series) are especially common and
useful. Recall the alternating series remainder (or “error”) estimate of Theorem 2 in
Section 10.7. It applies to a convergent alternating series

∑
(−1)n+1an whose terms

are decreasing (so an > an+1 for every n). If we write

∞∑
k=1

(−1)k+1ak = (a1 − a2 + a3 − · · · ± an) + E , (1)

then E = ∓an+1 ± an+2 ∓ an+3 ± · · · is the error made when the series is truncated—
the terms following (−1)n+1an are simply chopped off and discarded, and the n-term
partial sum is used in place of the actual sum of the whole series. The remainder
estimate then says that the error E has the same sign as the first term not retained, and
is less in magnitude than this first neglected term; that is, |E | < an+1.

EXAMPLE 1 Use the first four terms of the binomial series
√

1 + x = 1 + 1
2 x − 1

8 x2 + 1
16 x3 − 5

128 x4 + · · · (2)

to estimate the number
√

105 and to estimate the accuracy in the approximation.

Solution If x > 0 then the binomial series is, after the first term, an alternating series.
In order to match the pattern on the left-hand side in Eq. (2), we first write

√
105 = √

100 + 5 = 10
√

1 + 5
100 = 10

√
1 + 0.05.

Then with x = 0.05 the series in (2) gives
√

105 = 10
[
1 + 1

2 (0.05) − 1
8 (0.05)2 + 1

16 (0.05)3 + E
]

≈ 10 [1.02469531 + E ] = 10.2469531 + 10E .

Note that the error 10E in our approximation
√

105 ≈ 10.2469531 is 10 times the
error E in the truncated series itself. It follows from the remainder estimate that E is
negative and that

|10E | < 10 · 5
128 (0.05)4 ≈ 0.0000024.
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Therefore,

10.2469531 − 0.0000024 = 10.2469507 <
√

105 < 10.2469531,

so it follows that
√

105 ≈ 10.24695 rounded accurate to five decimal places. ◗

REMARK Suppose that we had been asked in advance to approximate
√

105 accu-
rate to five decimal places. A convenient way to do this is to continue writing terms
of the series until it is clear that they have become too small in magnitude to affect the
fifth decimal place. A good rule of thumb is to use two more decimal places in the
computations than are required in the final answer. Thus we use seven decimal places
in this case and get

√
105 = 10 · (1 + 0.05)1/2

≈ 10 · (1 + 0.025 − 0.00031 25 + 0.00000 78 − 0.00000 02 + · · · )
≈ 10.246951 ≈ 10.24695.

EXAMPLE 2 Figure 10.9.1 shows the graph of the function f (x) = (sin x)/x . Ap-

−8 0−6 2−4 4−2 6 8
x

π−π

y

1

1.5

0.5

0

−0.5

sin x
x

y =

FIGURE 10.9.1 The graph

y = sin x

x
of Example 2.

proximate (accurate to three decimal places) the area

A =
∫ π

−π

sin x

x
dx = 2

∫ π

0

sin x

x
dx (3)

of the shaded region lying under the “principal arch” from x = −π to π .

Solution When we substitute the Taylor series for sin x in Eq. (3) and integrate
termwise, we get

A = 2
∫ π

0

1

x

(
x − x3

3! + x5

5! − x7

7! + · · ·
)

dx

= 2
∫ π

0

(
1 − x2

3! + x4

5! − x6

7! + · · ·
)

dx

= 2

[
x − x3

3!3 + x5

5!5 − x7

7!7 + · · ·
]π

0

,

and thus

A = 2π − 2π3

3!3 + 2π5

5!5 − 2π7

7!7 + 2π9

9!9 − 2π11

11!11
+ · · · .

Following the “+2 rule of thumb” and retaining five decimal places, we calculate

A = 6.28319 − 3.44514 + 1.02007 − 0.17122 + 0.01825 − 0.00134 + 0.00007 − · · · .

The sum of the first six terms gives A ≈ 3.70381. Because we are summing an
alternating series, the error in this approximation is positive and less than the next
term 0.00007. Neglecting possible roundoff in the last place, we would conclude
that 3.70381 < A < 3.70388. Thus A ≈ 3.704 rounded accurate to three decimal
places. ◗

The Algebra of Power Series

Theorem 1, which we state without proof, implies that power series may be added and
multiplied much like polynomials. The guiding principle is that of collecting coeffi-
cients of like powers of x .
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THEOREM 1 Adding and Multiplying Power Series
Let

∑
anxn and

∑
bnxn be power series with nonzero radii of convergence. Then

∞∑
n=0

anxn +
∞∑

n=0

bnxn =
∞∑

n=0

(an + bn)xn (4)

and ( ∞∑
n=0

anxn

)( ∞∑
n=0

bnxn

)
=

∞∑
n=0

cnxn

= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · · , (5)

where

cn = a0bn + a1bn−1 + a2bn−2 + · · · + an−1b1 + anb0. (6)

The series in Eqs. (4) and (5) converge for any x that lies interior to the intervals of
convergence of both

∑
anxn and

∑
bnxn .

Thus if
∑

anxn and
∑

bnxn are power series representations of the functions
f (x) and g(x), respectively, then the product power series

∑
cnxn found by “ordinary

multiplication” and collection of terms is a power series representation of the product
function f (x)g(x). This fact can also be used to divide one power series by another,
provided that the quotient is known to have a power series representation.

EXAMPLE 3 Assume that the tangent function has a power series representation
tan x = ∑

anxn (it does). Use the Maclaurin series for sin x and cos x to find a0,
a1, a2, and a3.

Solution We multiply series to obtain

sin x = tan x cos x

= (a0 + a1x + a2x2 + a3x3 + · · · )
(

1 − x2

2
+ x4

24
− · · ·

)
.

If we multiply each term in the first factor by each term in the second, then collect
coefficients of like powers, the result is

sin x = a0 + a1x + (
a2 − 1

2 a0
)
x2 + (

a3 − 1
2 a1

)
x3 + · · · .

But because

sin x = x − 1
6 x3 + 1

120 x5 − · · · ,

comparison of coefficients gives the equations

a0 = 0,

a1 = 1,

− 1
2 a0 + a2 = 0,

− 1
2 a1 + a3 = − 1

6 .

Thus we find that a0 = 0, a1 = 1, a2 = 0, and a3 = 1
3 . So

tan x = x + 1
3 x3 + · · · .

Things are not always as they first appear. A computer algebra system gives the con-
tinuation

tan x = x + 1
3 x3 + 2

15 x5 + 17
315 x7 + 62

2835 x9 + 1382
155,925 x11 + · · · (7)

of the tangent series. For the general form of the nth coefficient, see K. Knopp’s Theory
and Application of Infinite Series (New York: Hafner Press, 1971), p. 204. You may
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also check that the first few terms agree with the result of ordinary division of the
Maclaurin series for cos x into the Maclaurin series for sin x :

1 − 1

2
x2 + 1

24
x4 − · · ·

) x + 1

3
x3 + 2

15
x5 + · · ·

x − 1

6
x3 + 1

120
x5 − · · ·

Figure 10.9.2 shows the approximation of the tangent function (on −π/2 < x < π/2)
by the first four odd-degree polynomial partial sums corresponding to the terms exhib-
ited in Eq. (7). Evidently these polynomial approximations have difficulty “keeping
up” with tan x as it approaches ±∞ as x → ±π/2. ◗

Power Series and Indeterminate Forms
According to Theorem 3 of Section 10.8, a power series is differentiable and therefore

0

y = tan x

x

y

2−1 1−2−3 3
−10
−8
−6
−4
−2

0
2
4
6
8

10

π
2

−
π
2

y = S1(x)

y = S3(x)
y = S5(x)

y = S7(x)

FIGURE 10.9.2 The graphs of
y = tan x and the first four partial
sums of the power series in (7).

continuous within its interval of convergence. It follows that

lim
x→c

∞∑
n=0

an(x − c)n = a0. (8)

Examples 4 and 5 illustrate the use of this simple observation to find the limit of the
indeterminate form f (x)/g(x). The technique is to first substitute power series repre-
sentations for f (x) and g(x).

EXAMPLE 4 Find lim
x→0

sin x − arctan x

x2 ln(1 + x)
.

Solution The power series of Eqs. (4), (19), and (20) in Section 10.8 give

sin x − arctan x = (
x − 1

6 x3 + 1
120 x5 − · · · ) − (

x − 1
3 x3 + 1

5 x5 − · · · )
= 1

6 x3 − 23
120 x5 + · · ·

and

x2 ln(1 + x) = x2 · (
x − 1

2 x2 + 1
3 x3 + · · · ) = x3 − 1

2 x4 + 1
3 x5 − · · · .

Hence

lim
x→0

sin x − arctan x

x2 ln(1 + x)
= lim

x→0

1
6 x3 − 23

120 x5 + · · ·
x3 − 1

2 x4 + · · ·

= lim
x→0

1
6 − 23

120 x2 + · · ·
1 − 1

2 x + · · · = 1

6
. ◗

EXAMPLE 5 Find lim
x→1

ln x

x − 1
.

Solution We first replace x with x − 1 in the power series for ln(1 + x) used in
Example 4. [Equation (8) makes it clear that this method requires all series to have
center c if we are taking limits as x → c.] This gives us

ln x = (x − 1) − 1
2 (x − 1)2 + 1

3 (x − 1)3 − · · · .

Hence

lim
x→1

ln x

x − 1
= lim

x→1

(x − 1) − 1
2 (x − 1)2 + 1

3 (x − 1)3 − · · ·
x − 1

= lim
x→1

[
1 − 1

2 (x − 1) + 1
3 (x − 1)2 − · · · ] = 1. ◗

The method of Examples 4 and 5 provides a useful alternative to l’Hôpital’s rule,
especially when repeated differentiation of numerator and denominator is inconvenient
or too time-consuming. (See Problems 59 and 60.)
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Numerical and Graphical Error Estimation
The following examples show how to investigate the accuracy in a power-series partial-
sum approximation for a specified interval of values of x . We will take the statement
that a given approximation is “accurate to p decimal places” to mean that its error E is
numerically less than half a unit in the pth decimal place; that is, that |E | < 0.5×10−p.
For instance, four-place accuracy means that |E | < 0.00005. (Note that p = 4 is the
number of zeros here.) Nevertheless, we should remember that in some cases a result
accurate to within a half unit in the pth place may round “the wrong way,” so that the
result rounded to p places may still be in error by a unit in the pth decimal place (as in
Problem 12).

EXAMPLE 6 Consider the polynomial approximation

sin x ≈ x − x3

3! + x5

5! − · · · + (−1)n+1 x2n−1

(2n − 1)! (9)

obtained by truncating the alternating Taylor series of the sine function.

(a) How accurate is the cubic approximation P3(x) ≈ x − x3/3! for angles from 0◦
to 10◦? Use this approximation to estimate sin 10◦.

(b) How many terms in (9) are needed to guarantee six-place accuracy in calculating
sin x for angles from 0◦ to 45◦? Use the corresponding polynomial to approxi-
mate sin 30◦ and sin 40◦.

(c) For what values of x does the fifth-degree approximation yield five-place accu-
racy?

Solution (a) Of course we must substitute x in radians in (9), so we deal here with
values of x in the interval 0 � x � π/18. For any such x , the error E is positive
(Why?) and is bounded by the magnitude of the next term:

|E | <
x5

5! �
(π/18)5

5! ≈ 0.00000135 < 0.000005.

We count five zeros on the right, and thus we have five-place accuracy. For instance,
substituting x = π/18 in the cubic polynomial P3(x) gives

sin 10◦ = sin

(
π

18

)
≈ π

18
− 1

3! ·
(

π

18

)3

≈ 0.1736468 ≈ 0.17365.

This five-place approximation sin 10◦ ≈ 0.17365 is correct, because the actual seven-
place value of sin 10◦ is 0.1736482 ≈ 0.17365.

Solution (b) For any x in the interval 0 � x � π/4, the error E made if we use

n
(π/4)2n+1

(2n + 1)!
1 0.08074551
2 0.00249039
3 0.00003658
4 0.00000031
5 0.00000000

FIGURE 10.9.3 Estimating the
error in Example 6(b).

the polynomial value in (9) in place of the actual value sin x is bounded by the first
neglected term,

|E | <
x2n+1

(2n + 1)! �
(π/4)2n+1

(2n + 1)! .

The table in Fig. 10.9.3 shows calculator values for n = 1, 2, 3, . . . of this maxi-
mal error (rounded to eight decimal places). For six-place accuracy we want |E | <

0.0000005, so we see that n = 4 will suffice. We therefore use the seventh-degree
Taylor polynomial

P7(x) = x − x3

3! + x5

5! − x7

7! (10)

to approximate sin x for 0 � x � π/4. With x = π/6 we get

sin 30◦ ≈ π

6
− (π/6)3

3! + (π/6)5

5! − (π/6)7

7! ≈ 0.49999999 ≈ 1

2
,
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as expected. Substituting x = 2π/9 in (10) similarly gives sin 40◦ ≈ 0.64278750,
whereas the actual eight-place value of sin 40◦ is 0.64278761 ≈ 0.642788.

Solution (c) The fifth-degree approximation

sin x ≈ P5(x) = x − x3

3! + x5

5! (11)

gives five-place accuracy when x is such that the error E satisfies the inequality

|E | <
|x |7
7! = |x |7

5040
� 0.000005;

that is, when |x | � [(5040) · (0.000005)]1/7 ≈ 0.5911 (radians). In degrees, this
corresponds to angles between −33.86◦ and +33.86◦. In Fig. 10.9.4 the graph of y =
x7/7! in the viewing window −1 � x � 1, −0.00001 � y � 0.00001 provides visual
corroboration of this analysis—we see clearly that x7/7! remains between −0.000005
and 0.000005 when x is between −0.59 and 0.59. ◗

x

x = −0.59 x = 0.59

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

x7

7!
y =

× 10−5

FIGURE 10.9.4 The graph of the

maximal error y = x7

7! in

Example 6(c).

EXAMPLE 7 Suppose now that we want to approximate f (x) = sin x with three-
place accuracy on the whole interval from 0◦ to 90◦. Now it makes sense to begin with
a Taylor series centered at the midpoint x = π/4 of the interval. Because the function
f (x) and its successive derivatives are sin x , cos x , − sin x , − cos x , and so forth, their
values at x = π/4 are 1

2

√
2, 1

2

√
2, − 1

2

√
2, − 1

2

√
2, and so forth. Consequently Taylor’s

formula with remainder (Section 10.4) for f (x) = sin x centered at x = π/4 takes the
form

sin x =
√

2

2
·
[

1 +
(

x − π

4

)
− 1

2!
(

x − π

4

)2

− 1

3!
(

x − π

4

)3

+ · · · ± 1

n!
(

x − π

4

)n]
+ E(x) (12)

where

|E(x)| =
∣∣∣∣ f (n+1)(z)

(n + 1)!
(

x − π

4

)n+1∣∣∣∣ �
1

(n + 1)!
∣∣∣∣x − π

4

∣∣∣∣
n+1

(13)

for some z in the interval 0 � x � π/2. Observe that the corresponding Taylor series is
not alternating—if x > π/4 it has instead a “++−−++−−” pattern of signs—but we
can still use the remainder estimate in (13). For three-place accuracy we need to choose
n so that y = E(x) remains within the viewing window −0.0005 � y � 0.0005 on
the whole interval 0 � x � π/2. Looking at the graphs plotted in Fig. 10.9.5, we see
that this is so if n = 5 but not if n = 4. The desired approximation is therefore

sin x ≈
√

2

2
·
[

1 +
(

x − π

4

)
− 1

2!
(

x − π

4

)2

− 1

3!
(

x − π

4

)3

+ 1

4!
(

x − π

4

)4

+ 1

5!
(

x − π

4

)5]
.

For instance, substituting x = 0 we get sin 0◦ ≈ 0.00020 ≈ 0.000 as desired, and

x
1 1.50 0.5

−5

0

5

y

× 10−4

1
6!

y = (x − )6π
4

1
5!

y = (x − )5π
4

FIGURE 10.9.5 Comparing errors
in Example 7.

x = π/2 gives sin 90◦ ≈ 1.00025 ≈ 1.000. ◗

10.9 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. To use the binomial series to approximate
√

105, first write
√

105 = √
100 + 5 = 10 + √

5.
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2. The area of the region shaded in Fig. 10.9.1 is

A = 2
∫ π

0

sin x

x
dx = 2

[
−cos x

x2

]π

0
= 4

π2
≈ 0.405284735.

3. If
∑

anxn and
∑

bnxn are power series with nonzero radii of convergence, then( ∞∑
n=0

anxn

)
·
( ∞∑

n=0

bnxn

)
=

∞∑
n=0

anbnxn.

4. The Maclaurin series for the tangent function is

tan x = x + 1

3
x3 + 1

5
x5 + 1

7
x7 + · · · .

5. lim
x→0

sin x − arctan x

x2 ln(1 + x)
= 1

ln 2
.

6. lim
x→1

ln x

x − 1
= ln 1

1 − 1
= 0

0
= 1.

7. sin 10◦ ≈ 1.7365.
8. sin 40◦ ≈ 0.745113 (to six-place accuracy).
9. To approximate sin x for x in the interval from 0◦ to 90◦, it makes sense to use a

Taylor series centered at 45◦, the midpoint of the interval.
10. Power series can sometimes be used to evaluate indeterminate forms.

10.9 CONCEPTS: QUESTIONS AND DISCUSSION
1. Outline how you might use the binomial series (as in Example 1) to construct a

table of roots—perhaps the square roots, cube roots, and fourth roots of the first
100 positive integers.

2. Give your own examples of several integrals for which numerical approximation
using series (as in Example 2) would be useful.

3. Give your own examples of several indeterminate forms for which numerical
evaluation using series (as in Examples 4 and 5) would be useful.

10.9 PROBLEMS

In Problems 1 through 10, use an infinite series to approximate
the indicated number accurate to three decimal places.

1. 3
√

65 2. 4
√

630

3. sin(0.5) 4. e−0.2

5. tan−1(0.5) 6. ln(1.1)

7. sin

(
π

10

)
8. cos

(
π

20

)
9. sin 10◦ 10. cos 5◦

In Problems 11 through 22, use power series to approximate the
value of the given integrals accurate to four decimal places.

11.
∫ 1

0

sin x

x
dx 12.

∫ 1

0

sin x√
x

dx

13.
∫ 1/2

0

arctan x

x
dx 14.

∫ 1

0
sin x2 dx

15.
∫ 1/10

0

ln(1 + x)

x
dx 16.

∫ 1/2

0

1√
1 + x4

dx

17.
∫ 1/2

0

1 − e−x

x
dx 18.

∫ 1/2

0

√
1 + x3 dx

19.
∫ 1

0
e−x2

dx 20.
∫ 1

0

1 − cos x

x2
dx

21.
∫ 1/2

0

3
√

1 + x2 dx 22.
∫ 1/2

0

x√
1 + x3

dx

In Problems 23 through 28, use power series rather than
l’Hôpital’s rule to evaluate the given limit.

23. lim
x→0

1 + x − ex

x2
24. lim

x→0

x − sin x

x3 cos x

25. lim
x→0

1 − cos x

x(ex − 1)
26. lim

x→0

ex − e−x − 2x

x − arctan x

27. lim
x→0

(
1

x
− 1

sin x

)
28. lim

x→1

ln(x2)

x − 1

In Problems 29 through 32, calculate the indicated number with
the required accuracy using Taylor’s formula for an appropriate
function centered at the given point x = a.

29. sin 80◦; a = π/4, four decimal places

30. cos 35◦; a = π/4, four decimal places

31. cos 47◦; a = π/4, six decimal places

32. sin 58◦; a = π/3, six decimal places
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In Problems 33 through 36, determine the number of decimal
places of accuracy the given appropriate formula yields for
|x | � 0.1.

33. ex ≈ 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4

34. sin x ≈ x − 1
6 x3 + 1

120 x5

35. ln(1 + x) ≈ x − 1
2 x2 + 1

3 x3 − 1
4 x4

36.
√

1 + x ≈ 1 + 1
2 x − 1

8 x2

37. Show that the approximation in Problem 33 gives the value
of ex accurate to within 0.001 if |x | � 0.5. Then calculate 3

√
e

accurate to two decimal places.

38. For what values of x is the approximation sin x ≈ x − 1
6 x3

accurate to five decimal places?

39. (a) Show that the values of the cosine function for angles be-
tween 40◦ and 50◦ can be calculated with five-place accuracy
using the approximation

cos x ≈
√

2

2

[
1 −

(
x − π

4

)
− 1

2

(
x − π

4

)2

+ 1

6

(
x − π

4

)3]
.

(b) Show that this approximation yields eight-place accuracy
for angles between 44◦ and 46◦.

40. Extend the approximation in Problem 39 to one that yields
the values of cos x accurate to five decimal places for angles
between 30◦ and 60◦.

In Problems 41 through 44, use termwise integration of an appro-
priate power series to approximate the indicated area or volume
accurate to two decimal places.

41. Figure 10.9.1 shows the region that lies between the graph of
y = (sin x)/x and the x-axis from x = −π to x = π . Sub-
stitute sin2 x = 1

2 (1 − cos 2x) to approximate the volume
of the solid that is generated by revolving this region around
the x-axis.

42. Approximate the area of the region that lies between the
graph of y = (1 − cos x)/x2 and the x-axis from x = −2π

to x = 2π (Fig. 10.9.6).

−10 0−5 5 10
x

y

−0.1

0

0.1

0.2

0.3

0.4

0.5 1 − cos x
x2

y =

FIGURE 10.9.6 The region of
Problem 42.

43. Approximate the volume of the solid generated by rotating
the region of Problem 42 around the y-axis.

44. Approximate the volume of the solid generated by rotating
the region of Problem 42 around the x-axis.

45. Derive the geometric series by long division of 1 − x into 1.

46. Derive the series for tan x listed in Example 3 by long di-
vision of the Maclaurin series of cos x into the Maclaurin
series of sin x .

47. Derive the geometric series representation of 1/(1 − x) by
finding a0, a1, a2, . . . such that

(1 − x)(a0 + a1x + a2x2 + a3x3 + · · · ) = 1.

48. Derive the first five coefficients in the binomial series for√
1 + x by finding a0, a1, a2, a3, and a4 such that

(a0 + a1x + a2x2 + a3x3 + a4x4 + · · · )2 = 1 + x .

49. Use the method of Example 3 to find the coefficients a0, a1,
a2, a3, and a4 in the series

sec x = 1

cos x
=

∞∑
n=0

an xn .

50. Multiply the geometric series for 1/(1− x) and the series for
ln(1 − x) to show that if |x | < 1, then

ln(1 − x)

1 − x
= −x − (

1 + 1
2

)
x2 − (

1 + 1
2 + 1

3

)
x3

− (
1 + 1

2 + 1
3 + 1

4

)
x4 − · · · .

51. Take as known the logarithmic series

ln(1 + x) = x − 1
2 x2 + 1

3 x3 − 1
4 x4 + · · · .

Find the first four coefficients in the series for ex by finding
a0, a1, a2, and a3 such that

1 + x = eln(1+x) =
∞∑

n=0

an

(
x − 1

2 x2 + 1
3 x3 − 1

4 x4 + · · · )n
.

This is exactly how the power series for ex was first discov-
ered (by Newton)!

52. Use the method of Example 3 to show that

x

sin x
= 1 + 1

6
x2 + 7

360
x4 + · · · .

53. Show that long division of power series gives

2 + x

1 + x + x2
= 2 − x − x2 + 2x3 − x4 − x5 + 2x6

− x7 − x8 + 2x9 − x10 − x11 + · · · .

Show also that the radius of convergence of this series is
R = 1.

54. Use the series in Problem 53 to approximate with two-place
accuracy the value of the integral∫ 1/2

0

x + 2

x2 + x + 1
dx .

Compare your estimate with the exact result given by a com-
puter algebra system.

Use the power series in Problem 53 to approximate with two-
place accuracy the rather formidable integrals in Problems 55
and 56. Compare your estimates with the exact values given by a
computer algebra system.

55.
∫ 1/2

0

1

1 + x2 + x4
dx

56.
∫ 1/2

0

1

1 + x4 + x8
dx
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In Problems 57 and 58, graph the given function and several of
its Taylor polynomials of the indicated degrees.

57. f (x) = sin x

x
; degrees n = 2, 4, 6, . . . .

58. f (x) =
∫ x

0

sin t

t
dt ; degrees n = 3, 5, 7, . . . .

59. Use known power series to evaluate lim
x→0

sin x − tan x

sin−1 x − tan−1 x
.

60. Substitute series such as

sin(tan x) = x + x3

6
− x5

40
− 55x7

1008
+ · · ·

provided by a computer algebra system to evaluate

lim
x→0

sin(tan x) − tan(sin x)

sin−1(tan−1 x) − tan−1(sin−1 x)
.

61. (a) First use the parametrization x(t) = a cos t , y(t) =
b sin t , 0 � t � 2π of the ellipse (x/a)2 + (y/b)2 = 1
to show that its perimeter (arc length) p is given by

p = 4a
∫ π/2

0

√
1 − ε2 cos2 t dt

where ε = √
1 − (b/a)2 is the eccentricity of the ellipse.

This so-called elliptic integral is nonelementary, and so must
be approximated numerically. (b) Use the binomial series to
expand the integrand in the perimeter formula in part (a).
Then integrate termwise—using Formula 113 from the table
of integrals inside the back cover—to show that the perime-
ter of the ellipse is given in terms of its major semiaxis and
eccentricity by the power series

p = 2πa

(
1 − 1

4
ε2 − 3

64
ε4 − 5

256
ε6 − 175

16384
ε8 − · · ·

)
.

62. The arithmetic mean of the major and minor semiaxes of the
ellipse of Problem 61 is A = 1

2 (a + b); their root-square

mean is R =
√

1
2 (a2 + b2). Substitute b = a

√
1 − ε2 and

use the binomial series to derive the expansions

A = a

(
1 − 1

4
ε2 − 1

16
ε4 − 1

32
ε6 − 5

256
ε8 − · · ·

)

and

R = a

(
1 − 1

4
ε2 − 1

32
ε4 − 1

128
ε6 − 5

2048
ε8 − · · ·

)
.

Something wonderful happens when you average these two
series; show that

1

2
(A + R) =

a

(
1 − 1

4
ε2 − 3

64
ε6 − 5

5

256
ε6 − 180

16384
ε8 − · · ·

)
,

and then note that the first four terms of the series within the
parentheses here are the same as in the ellipse perimeter se-
ries of Problem 61(b). Conclude that the perimeter p of the
ellipse is given by

p = π(A + R) + 5πa

8192
ε8 + · · · . (14)

If ε is quite small—as in a nearly circular ellipse—then the
difference between the exact value of p and the simple ap-
proximation

p ≈ π(A + R) = π

(
1
2 (a + b) +

√
1
2 (a2 + b2)

)

is extremely small. For instance, suppose that the orbit of
the moon around the earth is an ellipse with major semi-
axis a exactly 238,857 miles long and eccentricity ε exactly
0.0549. Then use Eq. (14) and a computer algebra system
with extended-precision arithmetic to find the perimeter of
the moon’s orbit accurate to the nearest inch; give your an-
swer in miles-feet-inches format.

10.9 INVESTIGATION: Calculating Trigonometric Functions on a Deserted Island
Again (as in the 10.4 Investigation) you’re stranded for life on a desert island with only
a very basic calculator that doesn’t know about transcendental functions. Now your
task is to use the (alternating) sine and cosine series to construct a table presenting
(with five-place accuracy) the sines, cosines, and tangents of angles from 0◦ to 90◦ in
increments of 5◦.

To begin with, you can find the sine, cosine, and tangent of an angle of 45◦ from
the familiar 1-1-

√
2 right triangle. Then you can find the values of these functions at an

angle of 60◦ from an equilateral triangle. Once you know all about 45◦ and 60◦ angles,
you can use the sine and cosine addition formulas

sin(α ± β) = sin α cos β ± cos α sin β

and
cos(α ± β) = cos α cos β ∓ sin α sin β

and/or equivalent forms to find the sine, cosine, and tangent of such angles as 15◦, 30◦,
75◦, and 90◦.

But algebra and simple trigonometric identities will probably never give you the
sine or cosine or an angle of 5◦. For this you will need to use the power series for sine
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and cosine. Sum enough terms (and then some) so you know your result is accurate
to nine decimal places. Then fill in all the entries in your table, rounding them to five
places. Tell—honestly—whether your entries agree with those your real calculator
gives.

Finally, explain what strategy you would use to complete a similar table of values
of trigonometric functions with angles in increments of 1◦ rather than 5◦.

10.10 SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS

In Section 8.6 we saw that solving a homogeneous linear differential equation with
constant coefficients can be reduced to the algebraic problem of finding the roots of its
characteristic equation. There is no simple or similarly routine procedure for solving
linear differential equations with variable coefficients. Even such a simple-looking
equation as y′′ − xy = 0 has no solution that can be expressed in terms of the standard
elementary functions of calculus. One of the most important applications of power
series is their use to solve such differential equations.

The Power Series Method

The power series method for solving a differential equation consists of substituting the
power series

y =
∞∑

n=0

cnxn = c0 + c1x + c2x2 + c3x3 + · · · (1)

in the differential equation, and then attempting to determine what the values of the co-
efficients c0, c1, c2, c3, . . . must be in order that the series in (1) will actually satisfy the
given differential equation. At first glance this might seem to be a formidable problem,
because we have infinitely many unknowns c0, c1, c2, c3, . . . to find. Nevertheless, we
will see that the method frequently succeeds. When it does, we obtain a power series
representation of a solution, in contrast to the closed form solutions that result from
the solution techniques we saw in Chapter 8.

Before we can substitute the series in (1) in a differential equation, we must first
know what to substitute for the derivatives y′, y′′, . . . of the unknown function y(x).
But recall from Theorem 3 in Section 10.8 that the derivative of a power series can be
calculated by termwise differentiation. Hence the first and second derivatives of the
series in (1) are given by

y′ =
∞∑

n=1

ncnxn−1 = c1 + 2c2x + 3c3x2 + · · · (2)

and

y′′ =
∞∑

n=2

n(n − 1)cnxn−2 = 2c2 + 6c3x + 12c4x2 + · · · . (3)

Also, these two series have the same radius of convergence as the original series in (1).
The process of determining the coefficients c0, c1, c2, c3, . . . in the series so that

it will satisfy a given differential equation depends also on the following consequence
of termwise differentiation: If two power series represent the same function on an
open interval, then they are identical series. That is, they are one and the same power
series. (See Problem 66 in Section 10.8.) In particular, if

∑
anxn ≡ 0 on an open

interval, then it follows that an = 0 for all n. This fact is sometimes called the identity
principle for power series.
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EXAMPLE 1 Solve the equation y′ + 2y = 0.

Solution We substitute the series

y =
∞∑

n=0

cnxn and y′ =
∞∑

n=1

ncnxn−1,

and obtain ∞∑
n=1

ncnxn−1 + 2
∞∑

n=0

cnxn = 0. (4)

To compare coefficients here, we need the general term in each sum to be the term
containing xn . To accomplish this, we shift the index of summation in the first sum.
To see how to do this, note that

∞∑
n=1

ncnxn−1 = c1 + 2c2x + 3c3x2 + · · · =
∞∑

n=0

(n + 1)cn+1xn.

Thus we can replace n with n +1 if, at the same time, we start counting one step lower;
that is, at n = 0 rather than at n = 1. This is a shift of +1 in the index of summation.
The result of making this shift in Eq. (4) is the identity

∞∑
n=0

(n + 1)cn+1xn + 2
∞∑

n=0

cnxn = 0;

that is,
∞∑

n=0

[(n + 1)cn+1 + 2cn]xn = 0.

If this equation holds on some interval, then it follows from the identity principle that
(n + 1)cn+1 + 2cn = 0 for all n � 0; consequently,

cn+1 = − 2cn

n + 1
(5)

for all n � 0. Equation (5) is a recurrence relation from which we can successively
compute c1, c2, c3, . . . in terms of c0; the latter will turn out to be the arbitrary constant
that we expect to find in a general solution of a first-order differential equation.

With n = 0, Eq. (5) gives

c1 = −2c0

1
.

With n = 1, Eq. (5) gives

c2 = −2c1

2
= +22c0

1 · 2
= 22c0

2! .

With n = 2, Eq. (5) gives

c3 = −2c2

3
= − 23c0

1 · 2 · 3
= −23c0

3! .

By now it should be clear that after n such steps, we will have

cn = (−1)n 2nc0

n! , n � 1.

(This is easy to prove by induction on n.) Consequently, our solution takes the form

y(x) =
∞∑

n=0

cnxn =
∞∑

n=0

(−1)n 2nc0

n! xn = c0

∞∑
n=0

(−2x)n

n! = c0e−2x .

In the final step we have used the familiar exponential series to identify our power
series solution as the same solution y(x) = c0e−2x we could have obtained by the
method of separation of variables. ◗
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Shift of Index of Summation
In the solution of Example 1 we wrote

∞∑
n=1

ncnxn−1 =
∞∑

n=0

(n + 1)cn+1xn (6)

by shifting the index of summation by +1 in the series on the left. That is, we simul-
taneously increased the index of summation by 1 (replacing n with n + 1, n → n + 1)
and decreased the starting point by 1, from n = 1 to n = 0, thereby obtaining the
series on the right. This procedure is valid because each infinite series in (6) is simply
a compact notation for the single series

c1 + 2c2x + 3c3x2 + 4c4x3 + · · · . (7)

More generally, we can shift the index of summation by k in an infinite series by
simultaneously increasing the summation index by k (n → n + k) and decreasing the
starting point by k. For instance, a shift by +2 (n → n + 2) yields

∞∑
n=3

anxn−1 =
∞∑

n=1

an+2xn+1.

If k is negative we interpret a “decrease by k” as an increase by −k = |k|. Thus a shift
by −2 (n → n − 2) in the index of summation yields

∞∑
n=1

ncnxn−1 =
∞∑

n=3

(n − 2)cn−2xn−3;

we have decreased the index of summation by 2, but increased the starting point
by 2, from n = 1 to n = 3. You should check that the summation on the right is
merely another representation of the series in (7).

EXAMPLE 2 Solve the equation (x − 3)y′ + 2y = 0.

Solution As before, we substitute

y =
∞∑

n=0

cnxn and y′ =
∞∑

n=1

ncnxn−1

to obtain

(x − 3)

∞∑
n=1

ncnxn−1 + 2
∞∑

n=0

cnxn = 0,

so that
∞∑

n=1

ncnxn − 3
∞∑

n=1

ncnxn−1 + 2
∞∑

n=0

cnxn = 0.

In the first sum we can replace n = 1 with n = 0 with no effect on the sum. In the
second sum we shift the index of summation by +1. This yields

∞∑
n=0

ncnxn − 3
∞∑

n=0

(n + 1)cn+1xn + 2
∞∑

n=0

cnxn = 0;

that is,

∞∑
n=0

[
ncn − 3(n + 1)cn+1 + 2cn

]
xn = 0.

The identity principle then gives

ncn − 3(n + 1)cn+1 + 2cn = 0,
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from which we obtain the recurrence relation

cn+1 = n + 2

3(n + 1)
cn for n � 0.

We apply this formula with n = 0, n = 1, and n = 2 in turn, and find that

c1 = 2

3
c0, c2 = 3

3 · 2
c1 = 3

32
c0, and c3 = 4

3 · 3
c2 = 4

33
c0.

This is almost enough to make the pattern evident; it is not difficult to show by induc-
tion on n that

cn = n + 1

3n
c0 if n � 1.

Hence our proposed power series solution is

y(x) = c0

∞∑
n=0

n + 1

3n
xn. (8)

Its radius of convergence is

ρ = lim
n→∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→∞

(n + 1)/3n

(n + 2)/3n+1
= lim

n→∞
3n + 3

n + 2
= 3.

Thus the series in (8) converges if −3 < x < 3 and diverges if |x | > 3. In this
particular example we can explain why. An elementary solution (obtained by separa-
tion of variables) of our differential equation is y = 1/(3 − x)2. If we differentiate
termwise the geometric series

1

3 − x
=

1

3

1 − x

3

= 1

3

∞∑
n=0

xn

3n
,

we get a constant multiple of the series in (8). Thus this series (with the arbitrary
constant c0 appropriately chosen) represents the solution

y(x) = 1

(3 − x)2

on the interval −3 < x < 3, and the singularity at x = 3 is the reason why the radius
of convergence of the power series solution turned out to be ρ = 3. ◗

EXAMPLE 3 Solve the equation x2 y′ = y − x − 1.

Solution We make the usual substitutions y = ∑
cnxn and y′ = ∑

ncnxn−1, which
yield

x2
∞∑

n=1

ncnxn−1 = −1 − x +
∞∑

n=0

cnxn,

so that
∞∑

n=1

ncnxn+1 = −1 − x +
∞∑

n=0

cnxn.

Because of the presence of the two terms −1 and −x on the right-hand side, we need
to split off the first two terms, c0 + c1x , of the series on the right for comparison. If we
also shift the index of summation on the left by −1 (replace n = 1 with n = 2 and n
with n − 1), we get

∞∑
n=2

(n − 1)cn−1xn = −1 − x + c0 + c1x +
∞∑

n=2

cnxn.
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Because the left-hand side contains neither a constant term nor a term containing x to
the first power, the identity principle now yields c0 = 1, c1 = 1, and cn = (n − 1)cn−1

for n � 2. It follows that

c2 = 1 · c1 = 1!, c3 = 2 · c2 = 2!, c4 = 3 · c3 = 3!,
and, in general, that

cn = (n − 1)! for n � 2.

Thus we obtain the power series

y(x) = 1 + x +
∞∑

n=2

(n − 1)!xn.

But the radius of convergence of this series is

ρ = lim
n→∞

(n − 1)!
n! = lim

n→∞
1

n
= 0,

so the series converges only for x = 0. What does this mean? Simply that the given
differential equation does not have a [convergent] power series solution of the assumed
form y = ∑

cnxn . This example serves as a warning that the simple act of writing
y = ∑

cnxn involves an assumption that may be false. ◗

EXAMPLE 4 Solve the equation y′′ + y = 0.

Solution If we assume a solution of the form

y =
∞∑

n=0

cnxn,

we find that

y′ =
∞∑

n=1

ncnxn−1 and y′′ =
∞∑

n=2

n(n − 1)cnxn−2.

Substituting for y and y′′ in the differential equation then yields
∞∑

n=2

n(n − 1)cnxn−2 +
∞∑

n=0

cnxn = 0.

We shift the index of summation in the first sum by +2 (replace n = 2 with n = 0 and
n with n + 2). This gives

∞∑
n=0

(n + 2)(n + 1)cn+2xn +
∞∑

n=0

cnxn = 0.

The identity (n + 2)(n + 1)cn+2 + cn = 0 now follows from the identity principle, and
thus we obtain the recurrence relation

cn+2 = − cn

(n + 1)(n + 2)
(9)

for n � 0. It is evident that this formula will determine the coefficients cn with even
subscript in terms of c0 and those of odd subscript in terms of c1; c0 and c1 are not
predetermined, and thus will be the two arbitrary constants we expect to find in a
general solution of a second-order equation.

When we apply the recurrence relation in (9) with n = 0, 2, and 4 in turn, we get

c2 = −c0

2! , c4 = c0

4! , and c6 = −c0

6! .
Taking n = 1, 3, and 5 in turn, we find that

c3 = −c1

3! , c5 = c1

5! , and c7 = −c1

7! .
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Again, the pattern is clear; we leave it for you to show (by induction) that for k � 1,

c2k = (−1)kc0

(2k)! and c2k+1 = (−1)kc1

(2k + 1)! .

Thus we get the power series solution

y(x) = c0

(
1 − x2

2! + x4

4! − x6

6! + · · ·
)

+ c1

(
x − x3

3! + x5

5! − x7

7! + · · ·
)

;

that is, y(x) = c0 cos x + c1 sin x . Note that we have no problem with the radius of
convergence here; the Taylor series for the sine and cosine functions converge for all x .

◗

Power Series Definitions of Functions

The solution of Example 4 can bear further comment. Suppose that we had never
heard of the sine and cosine functions, let alone their Taylor series. We would then
have discovered the two power series solutions

C(x) =
∞∑

n=0

(−1)nx2n

(2n)! = 1 − x2

2! + x4

4! − · · · (10)

and

S(x) =
∞∑

n=0

(−1)nx2n+1

(2n + 1)! = x − x3

3! + x5

5! − · · · (11)

of the differential equation y′′ + y = 0. It is clear that C(0) = 1 and that S(0) = 0.
After verifying that the two series in (10) and (11) converge for all x , we can differen-
tiate them term by term to find that

C ′(x) = −S(x) and S′(x) = C(x). (12)

Consequently C ′(0) = 0 and S′(0) = 1. Thus with the aid of the power series method
(all the while knowing nothing about the sine and cosine functions), we have discov-
ered that y = C(x) is the unique solution of

y′′ + y = 0

that satisfies the initial conditions y(0) = 1 and y′(0) = 0, and that y = S(x) is the
unique solution that satisfies the initial conditions y(0) = 0 and y′(0) = 1. It follows
that C(x) and S(x) are linearly independent, and—recognizing the importance of the
differential equation y′′ + y = 0—we can agree to call C the cosine function and S the
sine function. Indeed, all the usual properties of these two functions can be established,
using only their initial values (at x = 0) and the derivatives in (12); there is no need
to refer to triangles or even to angles. (Can you use the series in (10) and (11) to show
that [C(x)]2 + [S(x)]2 = 1 for all x?) This demonstrates that the cosine and sine
functions are fully determined by the differential equation y′′ + y = 0 of which they
are the natural linearly independent solutions. Figures 10.10.1 and 10.10.2 show how
the geometric character of the graphs of cos x and sin x is revealed by the graphs of the
Taylor polynomial approximations that we get by truncating the infinite series in (10)
and (11).

This is by no means an uncommon situation. Many important special functions of
mathematics occur in the first instance as power series solutions of differential equa-
tions, and thus are in practice defined by means of these power series. Example 5
introduces in this manner the Airy functions that appear in applications ranging from
the propagation of radio waves to vibrations in atoms and molecules.

808

www.konkur.in



Series Solutions of Differential Equations SECTION 10.10 809

2
3

1

−1
−2
−3

π

y

y = cos x

2π 3π

P6(x) P14(x) P22(x)

P24(x)P8(x) P16(x)

x

FIGURE 10.10.1 Graphs of cos x and its
Taylor polynomial approximations P6(x),
P8(x), P14(x), P16(x), P22(x), and P24(x).

x

2
3

1

−1
−2
−3

y = sin x

y

P7(x) P15(x) P23(x)

P21(x)P5(x) P13(x)

π 2π 3π

FIGURE 10.10.2 Graphs of sin x and its
Taylor polynomial approximations P5(x),
P7(x), P13(x), P15(x), P21(x), and P23(x).

EXAMPLE 5 Solve the Airy equation y′′ − xy = 0.

Solution Substituting y = ∑
cnxn and y′′ = ∑

n(n − 1)cnxn−2 as usual yields

∞∑
n=2

n(n − 1)cnxn−2 −
∞∑

n=0

cnxn+1 = 0.

A shift of indices—replacing n with n + 2 in the first sum and with n − 1 in the
second—yields

∞∑
n=0

(n + 2)(n + 1)cn+2xn −
∞∑

n=1

cn−1xn = 0.

Splitting off the term corresponding to n = 0 in the first sum and combining the
remaining terms, we get

2c2 +
∞∑

n=1

[
(n + 2)(n + 1)cn+2 − cn−1

]
xn = 0.

The identity principle now gives c2 = 0—because there is no other constant term on
the left-hand side—and the recurrence relation (n + 2)(n + 1)cn+2 − cn−1 = 0 for
n � 1. Replacement of n with n + 1 gives the recurrence relation

cn+3 = cn

(n + 2)(n + 3)
(13)

for n � 0. Thus each coefficient (after the first three) depends on the third previous
one. Hence the fact that c2 = 0 implies that

c2 = c5 = c8 = · · · = 0.

Beginning with c0 as an arbitrary constant, we apply (13) with n = 0, n = 3, and
n = 6 in turn and calculate

c3 = c0

2 · 3
= c0

6
, c6 = c3

5 · 6
= c0

180
, and c9 = c6

8 · 9
= c0

12960
.

Beginning with c1 as a second arbitrary constant, we calculate similarly

c4 = c1

3 · 4
= c1

12
, c7 = c4

6 · 7
= c1

504
, and c10 = c7

9 · 10
= c1

45360
.

When we collect the terms that involve c0 and those that involve c1, we get the general
solution

y(x) = c0

(
1 + x3

6
+ x6

180
+ x9

12960
+ · · ·

)
+ c1

(
x + x4

12
+ x7

504
+ x10

45360
+ · · ·

)
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of the Airy equation, with arbitrary constants c0 and c1. We see here the independent
(why?) particular solutions

y1(x) = 1 + x3

6
+ x6

180
+ x9

12960
+ · · ·

and

y2(x) = x + x4

12
+ x7

504
+ x10

45360
+ · · · .

Recognizing the pattern of coefficients is not so easy as in Example 4, but you can
verify that the terms shown agree with the formulas

y1(x) = 1 +
∞∑

k=1

1 · 4 · · · (3k − 2)

(3k)! x3k

and

y2(x) = x +
∞∑

k=1

2 · 5 · · · (3k − 1)

(3k + 1)! x3k+1.

The special combinations

Ai(x) = y1(x)

32/3�
(

2
3

) − y2(x)

31/3�
(

1
3

) and Bi(x) = y1(x)

31/6�
(

2
3

) + y2(x)

3−1/6�
(

1
3

)
—with �(x) denoting the gamma function defined in Section 7.8—are the standard
Airy functions, which appear in mathematical tables and computer algebra systems.
Their graphs in Fig. 10.10.3 exhibit oscillatory behavior for x < 0, but Ai(x) decreases
exponentially and Bi(x) increases exponentially as x → ∞. ◗

x

−0.5

1

−10 −5

y

Ai(x)

Bi(x)

FIGURE 10.10.3 The graphs y = Ai(x) and
y = Bi(x) of the Airy functions.

10.10 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The power series method consists of substituting a general power series∑∞
n=0 cnxn into a given differential equation, and then attempting to determine

what the values of the coefficients c0, c1, c2, . . . must be in order that the power
series will actually satisfy the differential equation.

2. The sum of a power series is differentiated by differentiating each term of the
series.

3. If two power series represent the same function on an open interval, then they
have precisely the same coefficients.

4.
∑∞

n=1 ncnxn−1 = ∑∞
n=0(n + 1)cn+1xn
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5. The recurrence relation in the solution of Example 1 expresses cn+1 in terms of
n and cn .

6. A shift of the index of summation by +3 yields
∞∑

n=3

anxn−1 =
∞∑

n=0

an+3xn+2

7. Every differential equation has a power series solution that converges on some
nonempty open interval.

8. If y = ∑∞
n=0 cnxn then y′′ = ∑∞

n=2 n(n − 1)cnxn−2.
9. The recurrence relation in the solution of Example 4 expresses cn+1 in terms of

n and cn .
10. The sine and cosine functions can be defined as particular solutions of the differ-

ential equation y′′ + y = 0.

10.10 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that the exponential function E(x) = ex is defined as the solution of

the initial value problem y′ = y, y(0) = 1. Beginning with this definition, what
properties of the function E(x) can be established?

2. Suppose that the hyperbolic functions Ch(x) = cosh x and Sh(x) = sinh x are
defined as the solutions of the differential equation y′′ = y that satisfy the initial
conditions y(0) = 1, y′(0) = 0 and y(0) = 0, y′(0) = 1, respectively. Beginning
with these definitions, what properties of the functions Ch(x) and Sh(x) can be
established? Can you discover a connection between these functions and the
function E(x) of Question 1?

10.10 PROBLEMS

In Problems 1 through 10, find a power series solution of the
given differential equation. Determine the radius of conver-
gence of the resulting series, and use your knowledge of familiar
Maclaurin series and the binomial series to identify the series so-
lution in terms of familiar elementary functions. (Of course, no
one can prevent you from checking your work by also solving the
equations by the methods of Chapter 8!)

1. y′ = y 2. y′ = 4y

3. 2y′ + 3y = 0 4. y′ + 2xy = 0

5. y′ = x2 y 6. (x − 2)y′ + y = 0

7. (2x − 1)y′ + 2y = 0 8. 2(x + 1)y′ = y

9. (x − 1)y′ + 2y = 0 10. 2(x − 1)y′ = 3y

In Problems 11 through 14, use the method of Example 4 to find
two linearly independent power series solutions of the given dif-
ferential equation. Determine the radius of convergence of each
series, and identify the general solution in terms of familiar ele-
mentary functions.

11. y′′ = y 12. y′′ = 4y

13. y′′ + 9y = 0 14. y′′ + y = x

Show (as in Example 3) that the power series method fails to
yield a power series solution of the form y = ∑

cn xn for the
differential equations in Problems 15 through 18.

15. xy′ + y = 0 16. 2xy′ = y

17. x2 y′ + y = 0 18. x3 y′ = 2y

In Problems 19 through 22, first derive a recurrence relation giv-
ing cn for n � 2 in terms of c0 or c1 (or both). Then apply the
given initial conditions to find the values of c0 and c1. Next de-
termine cn (in terms of n, as in the text) and, finally, identify the
particular solution in terms of familiar elementary functions.

19. y′′ + 4y = 0; y(0) = 0, y′(0) = 3

20. y′′ − 4y = 0; y(0) = 2, y′(0) = 0

21. y′′ − 2y′ + y = 0; y(0) = 0, y′(0) = 1

22. y′′ + y′ − 2y = 0; y(0) = 1, y′(0) = −2

23. Show that the equation

x2 y′′ + x2 y′ + y = 0

has no power series solution of the form y = ∑
cn xn .

24. Use the power series method to discover the solution

J0(x) =
∞∑

k=0

(−1)k x2k

22k(k!)2
= 1 − x2

4
+ x4

64
− x6

2304
+ · · ·

of the Bessel equation xy′′ + y′ + xy = 0. Explain why
the series method does not yield an independent second
solution.

25. (a) Show that the solution of the initial value problem

y′ = 1 + y2, y(0) = 0

is y(x) = tan x . (b) Because y(x) = tan x is an odd function
with y′(0) = 1, its Taylor series is of the form

y = x + c3x3 + c5x5 + c7x7 + · · · .
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Substitute this series in y′ = 1 + y2 and equate like powers
of x to derive the following relations:

3c3 = 1, 5c5 = 2c3,

7c7 = 2c5 + (c3)
2, 9c9 = 2c7 + 2c3c5,

11c11 = 2c9 + 2c3c7 + (c5)
2.

(c) Conclude that

tan x = x + 1

3
x3 + 2

15
x5 + 17

315
x7

+ 62

2835
x9 + 1382

155925
x11 + · · · .

CHAPTER 10: REVIEW
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CHAPTER 10: REVIEW (Continued)

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
10.2 Recognizing the pattern of an infinite sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5

Testing an infinite sequence for convergence; finding its limit if convergent . . . . . . . . 9, 11, 13, 15, 19, 29, 31
10.3 Using geometric series and the nth-term test to test for convergence . . . . . . . . . . . . . . .7, 9, 13, 17, 21, 31

Finding the rational number represented by a given repeated decimal . . . . . . . . . . . . . 41
Determining where a geometric series involving x converges . . . . . . . . . . . . . . . . . . . . . 47
Finding the sum of a telescoping series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10.4 Finding a Taylor polynomial of given degree for a given function . . . . . . . . . . . . . . . . . 1, 3, 5
Finding a Taylor polynomial with remainder, given a and n . . . . . . . . . . . . . . . . . . . . . . 11, 13
Using known Maclaurin series to find a desired power series . . . . . . . . . . . . . . . . . . . . . 21, 25
Finding a Taylor series for a given function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 31, 35, 37

10.5 Using the integral test to test a given series for convergence . . . . . . . . . . . . . . . . . . . . . . 1, 3, 7, 21, 23, 25
10.6 Using comparison tests to test a given series for convergence . . . . . . . . . . . . . . . . . . . . . 1, 3, 5, 11, 15, 17, 21
10.7 Determining whether or not a given alternating series converges . . . . . . . . . . . . . . . . . . 3, 5, 9, 17

Testing a series for absolute or conditional convergence . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 25, 27, 29
Applying numerically the alternating test remainder estimate . . . . . . . . . . . . . . . . . . . . . 43

10.8 Determining the interval of convergence of a power series . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 5, 7, 15, 17, 25
Substituting known power series to find a desired power series . . . . . . . . . . . . . . . . . . . 31, 33, 35, 41
Termwise integration of a given power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43, 45

10.9 Using known power series to approximate a numerical expression . . . . . . . . . . . . . . . . 1, 3
Using power series to numerically approximate a given integral . . . . . . . . . . . . . . . . . . 11, 15, 17
Using power series (rather than l’Hôpital’s rule) to evaluate limits . . . . . . . . . . . . . . . . 23, 25
Using power series to approximate values of transcendental functions . . . . . . . . . . . . . 29, 37

10.10 Finding a power series solution of a first-order differential equation . . . . . . . . . . . . . . . 3, 5
Finding two independent series solutions of a second-order equation . . . . . . . . . . . . . . 11, 13

MISCELLANEOUS PROBLEMS

In Problems 1 through 15, determine whether or not the sequence
{an} converges, and find its limit if it does converge.

1. an = n2 + 1

n2 + 4
2. an = 8n − 7

7n − 8
3. an = 10 − (0.99)n 4. an = n sin πn

5. an = 1 + (−1)n√n

n + 1
6. an =

√
1 + (−0.5)n

n + 1

7. an = sin 2n

n
8. an = 2−(ln n)/n

9. an = (−1)sin(nπ/2) 10. an = (ln n)3

n2

11. an = 1

n
sin

1

n
12. an = n − en

n + en

13. an = sinh n

n
14. an =

(
1 + 2

n

)2n

15. an = (2n2 + 1)1/n

Determine whether each infinite series in Problems 16 through
30 converges or diverges.

16.
∞∑

n=1

(n2)!
nn

17.
∞∑

n=1

(−1)n+1 ln n

n

18.
∞∑

n=0

3n

2n + 4n
19.

∞∑
n=0

n!
en2

20.
∞∑

n=1

1

n3/2
sin

1

n
21.

∞∑
n=0

(−2)n

3n + 1

22.
∞∑

n=1

2−(2/n2) 23.
∞∑

n=2

(−1)nn

(ln n)3

24.
∞∑

n=1

(−1)n

101/n
25.

∞∑
n=1

√
n + 3

√
n

n2 + n3

26.
∞∑

n=1

(−1)n+1

n[1+(1/n)] 27.
∞∑

n=1

(−1)n+1 arctan n√
n

28.
∞∑

n=1

n sin
1

n
29.

∞∑
n=3

1

n(ln n)(ln ln n)

30.
∞∑

n=3

1

n(ln n)(ln ln n)2

Find the interval of convergence of the power series in Problems
31 through 40.

31.
∞∑

n=0

2n xn

n! 32.
∞∑

n=0

(3x)n

2n+1

33.
∞∑

n=1

(x − 1)n

n · 3n
34.

∞∑
n=0

(2x − 3)n

4n
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35.
∞∑

n=1

(−1)n xn

4n2 − 1
36.

∞∑
n=0

(2x − 1)n

n2 + 1

37.
∞∑

n=0

n!x2n

10n
38.

∞∑
n=2

xn

ln n

39.
∞∑

n=0

1 + (−1)n

2(n!) xn 40.
∞∑

n=1

(
1 + 1

n

)n

(x − 1)n

Find the set of all values of x for which the series in Problems 41
through 43 converge.

41.
∞∑

n=1

(x − n)n 42.
∞∑

n=1

(ln x)n

43.
∞∑

n=0

enx

n!
44. Find the rational number that has repeated decimal expan-

sion 2.7 1828 1828 1828 . . . .

45. Give an example of two convergent numerical series
∑

an

and
∑

bn such that the series
∑

anbn diverges.

46. Prove that if
∑

an is a convergent positive-term series, then∑
a2

n converges.

47. Let the sequence {an} be defined recursively as follows:

a1 = 1; an+1 = 1 + 1

1 + an
if n � 1.

The limit of the sequence {an} is the value of the continued
fraction

1 + 1

2 + 1

2 + 1

2 + 1

2 + · · ·

.

Assuming that A = limn→∞ an exists, prove that A = √
2.

48. Let {Fn}∞
1 be the Fibonacci sequence of Example 2 in Sec-

tion 10.2. (a) Prove that 0 < Fn � 2n for all n � 1, and hence
conclude that the power series

F(x) =
∞∑

n=1

Fn xn

converges if |x | < 1
2 . (b) Show that (1 − x − x2)F(x) = x ,

so

F(x) = x

1 − x − x2
.

49. We say that the infinite product indicated by

∞∏
n=1

(1 + an) = (1 + a1)(1 + a2)(1 + a3) · · ·

converges provided that the infinite series

S =
∞∑

n=1

ln(1 + an)

converges, in which case the value of the infinite product is,
by definition, eS . Use the integral test to prove that

∞∏
n=1

(
1 + 1

n

)

diverges.

50. Prove that the infinite product (see Problem 49)

∞∏
n=1

(
1 + 1

n2

)

converges, and use the integral test remainder estimate to ap-
proximate its value. The actual value of this infinite product
is known to be

sinh π

π
≈ 3.67607 79103 74977 72069 56975.

In Problems 51 through 55, use infinite series to approximate the
indicated number accurate to three decimal places.

51. 5
√

1.5 52. ln(1.2)

53.
∫ 0.5

0
e−x2

dx 54.
∫ 0.5

0

3
√

1 + x4 dx

55.
∫ 1

0

1 − e−x

x
dx

56. Substitute the Maclaurin series for sin x into that for ex to
obtain

esin x = 1 + x + 1
2 x2 − 1

8 x4 + · · · .

57. Substitute the Maclaurin series for the cosine and then inte-
grate termwise to derive the formula

∫ ∞

0
e−t2

cos 2xt dt =
√

π

2
e−x2

.

Use the reduction formula∫ ∞

0
t2ne−t2

dt = 2n − 1

2

∫ ∞

0
t2n−2e−t2

dt

that follows from the one derived in Problem 50 of Sec-
tion 7.3. The validity of this improper termwise integration
is subject to verification.

58. Prove that

tanh−1 x =
∫ x

0

1

1 − t2
dt =

∞∑
n=0

x2n+1

2n + 1

if |x | < 1.

59. Prove that

sinh−1 x =
∫ x

0

1√
1 + t2

dt

=
∞∑

n=0

(−1)n 1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
· x2n+1

2n + 1

if |x | < 1.

60. Suppose that tan y = ∑
an yn . Determine a0, a1, a2, and a3

by substituting the inverse tangent series [Eq. (27) of Section
10.4] into the equation

x = tan(tan−1 x) =
∞∑

n=0

an(tan−1 x)n .
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61. According to Stirling’s series, the value of n! for large n is
given to a close approximation by

n! ≈ √
2πn

(
n

e

)n

eμ(n),

where

μ(n) = 1

12n
− 1

360n3
+ 1

1260n5
.

Substitute μ(n) into Maclaurin’s series for ex to show that

eμ(n) = 1 + 1

12n
+ 1

288n2
− 139

51840n3
+ · · · .

Can you show that the next term in the last series is
−571/(2,488,320n4)?

62. Define

T (n) =
∫ π/4

0
tann x dx

for n � 0. (a) Show by “reduction” of the integral that

T (n + 2) = 1

n + 1
− T (n)

for n � 0. (b) Conclude that T (n) → 0 as n → ∞. (c) Show
that T (0) = π/4 and that T (1) = 1

2 ln 2. (d) Prove by
induction on n that

T (2n) = (−1)n+1

(
1 − 1

3
+ 1

5
− · · · ± 1

2n − 1
− π

4

)
.

(e) Conclude from parts (b) and (d) that

1 − 1

3
+ 1

5
− 1

7
+ · · · = π

4
.

(f) Prove by induction on n that

T (2n + 1) = 1

2
(−1)n

(
1 − 1

2
+ 1

3
− · · · ± 1

n
− ln 2

)
.

(g) Conclude from parts (b) and (f) that

1 − 1
2 + 1

3 − 1
4 + · · · = ln 2.

63. Prove as follows that the number e is irrational. First suppose
to the contrary that e = p/q , where p and q are positive in-
tegers. Note that q > 1. Write

p

q
= e = 1 + 1

1! + 1

2! + 1

3! + · · · + 1

q! + Rq ,

where 0 < R q < 3/(q + 1)!. (Why?) Then show that multi-
plying of both sides of this equation by q! would lead to the
contradiction that one side of the result is an integer but the
other side is not.

64. Evaluate the infinite product (see Problem 49)

∞∏
n=2

n2

n2 − 1

by finding an explicit formula for

k∏
n=2

n2

n2 − 1
(k � 2)

and then taking the limit as k → ∞.

65. Find a continued fraction representation (see Problem 47)

a0 + 1

a1 + 1

a2 + 1

a3 + 1

a4 + · · ·

of
√

5.

66. Evaluate

1 + 1

2
− 2

3
+ 1

4
+ 1

5
− 2

6
+ 1

7
+ 1

8
− 2

9
+ 1

10
+ · · · .
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Vectors, Curves, and
Surfaces in Space 11

Johannes Kepler (1571–1630)

Ancient Greek math-
ematicians and
astronomers deve-

loped an elaborate mathe-
matical model to account
for the complicated mo-
tions of the sun, moon, and
six planets then known as
viewed from the earth. A
combination of uniform cir-
cular motions was used to
describe the motion of each
body around the earth—
if the earth is arbitrarily

placed at the origin of coordinates, then each body does
orbit the earth.

In this system, it was typical for a planet P to travel
uniformly around a small circle (the epicycle) with center
C , which in turn traveled uniformly around a circle cen-
tered at the earth (labeled E in the figure at the lower left).
The radii of the circles and the angular speeds of P and C
were chosen to match the observed motion of the planet as
closely as possible. For greater accuracy, secondary “cir-
cles on circles” could be used. In fact, several circles were
required for each body in the Greek theory of epicycles,
which reached its definitive form in Ptolemy’s Almagest
of the second century A.D.

In 1543, Copernicus altered Ptolemy’s approach
by placing the center of each primary circle at the sun
rather than at the earth. But this change was of greater

E

C
P

The small circle is the epicycle.

philosophical than mathematical significance. His helio-
centric system was still overly complicated, still requiring
many secondary circles, and still beset with inaccuracies
in representing the motions of the heavenly bodies.

It was Johannes Kepler who finally got rid of all
these circles. On the basis of a detailed analysis of plan-
etary observations accumulated by the Danish astronomer
Tycho Brahe, Kepler stated his three famous laws of plan-
etary motion, which describe elliptical (rather than circu-
lar) orbits of planets around the sun (Section 11.6). Iron-
ically, his original goal had been to prove that the place-
ment of Mercury, Venus, Earth, Mars, and Jupiter is de-
termined by the five regular polyhedra as indicated in the
figure at the lower right, which appeared in his Mysterium
Cosmographicum (1596). This model of the solar sys-
tem shows a cube inscribed in the sphere containing Sat-
urn’s orbit, and the sphere of Jupiter’s orbit is inscribed
in this cube. A tetrahedron (with four triangular faces)
is inscribed in Jupiter’s sphere, and in this tetrahedron is
inscribed the sphere of the orbit of Mars. Continuing in
this way, the spheres of the three remaining planets then
known were interspersed with the remaining three regular
solids—the octahedron (eight triangular faces), the dodec-
ahedron (12 pentagonal faces), and the icosahedron (20
triangular faces). It is said that Kepler always remained
prouder of his five solids than of his three laws.

Kepler’s regular polyhedron model
of the solar system.

From Chapter 11 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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818 CHAPTER 11 Vectors, Curves, and Surfaces in Space

In his Principia Mathematica (1687), Newton showed that Kepler’s laws follow
from the basic principles of mechanics (F = m a and so on) and the inverse-square
law of gravitational attraction. His success in using mathematics to explain natural
phenomena (“I now demonstrate the frame of the System of the World”) inspired con-
fidence that the universe could be understood and perhaps even mastered. This new
confidence permanently altered humanity’s perception of itself and of its place in the
scheme of things. Newton employed a powerful but now antiquated form of geometri-
cal calculus in the Principia. In Section 11.6 we apply the modern calculus of vector-
valued functions to outline the relation between Newton’s laws and Kepler’s laws.

11.1 VECTORS IN THE PLANE

A physical quantity such as length, temperature, or mass can be specified in terms ofy

x

v

FIGURE 11.1.1 A velocity vector
may be represented by an arrow.

a single real number, its magnitude. Such a quantity is called a scalar. Other physical
quantities, such as force and velocity, possess both magnitude and direction; these
quantities are called vector quantities, or simply vectors.

For example, to specify the velocity of a moving point in the coordinate plane, we
must give both the rate at which it moves (its speed) and the direction of that motion.
The velocity vector of the moving point incorporates both pieces of information—
direction and speed. It is convenient to represent this velocity vector by an arrow, with
its initial point located at the current position of the moving point on its trajectory
(Fig. 11.1.1).

Although the arrow, a directed line segment, carries the desired information—
both magnitude (the segment’s length) and direction—it is a pictorial representation
rather than a quantitative object. The following formal definition of a vector captures
the essence of magnitude in combination with direction.

DEFINITION Vector
A vector v in the Cartesian plane is an ordered pair of real numbers that has the
form 〈a, b〉. We write v = 〈a, b〉 and call a and b the components of the vector v.

The directed line segment O P
−−→

from the origin O to the point P(a, b) is one
geometric representation of the vector v. (See Fig. 11.1.2.) For this reason, the vector
v = 〈a, b〉 is called the position vector of the point P(a, b). In fact, the relationship
between v = 〈a, b〉 and P(a, b) is so close that, in certain contexts, it is convenient to
confuse the two deliberately—to regard v and P as the same mathematical object.

The directed line segment from the point Q(a1, b1) to the point R(a2, b2) has the
same direction and magnitude as the directed line segment from the origin O(0, 0) to
the point P(a, b) with a = a2 − a1 and b = b2 − b1 (Fig. 11.1.2), and consequently
they represent the same vector v = O P

−−→ = Q R
−−→

. This observation makes it easy to find
the components of the vector with arbitrary initial point Q and arbitrary terminal point

xO

P(a, b)

Q(a1, b1)

R(a2, b2)

y

v = 〈a, b〉

FIGURE 11.1.2 The position vector
v of the point P and another

representation Q R
−−→

of v.
R.

REMARK When discussing vectors we often use the term scalar to refer to an ordinary
numerical quantity, one that is not a vector. In printed work we use bold type to
distinguish the names of vectors from those of other mathematical objects, such as the
scalars a and b that are the components of the vector v = 〈a, b〉. In handwritten work a
suitable alternative is to place an arrow—or just a bar—over every symbol that denotes
a vector. Thus you may write v→ = 〈a, b〉 or v = 〈a, b〉. There is no need for an arrow
or a bar over a vector 〈a, b〉 already identified by angle brackets, so none should be
used there.

A directed line segment has both length and direction. The length of the vector
v = 〈a, b〉 is denoted by v = |v| and is defined as follows:

v = |v| = |〈a, b〉| = √
a2 + b2. (1)
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The notation v = |v| is used because the length of a vector is in many ways analogous
to the absolute value of a real number (Fig. 11.1.3).

x

P(a, b)

|v|

|a|

|b|

y

FIGURE 11.1.3 The length v = |v|
of the vector v.

EXAMPLE 1 The length of the vector v = 〈1, −2〉 is

v = |〈1, −2〉| =
√

(1)2 + (−2)2 = √
5. ◗

The only vector with length zero is the zero vector with both components zero,
denoted by 0 = 〈0, 0〉. The zero vector is unique in that it has no specific direction.
Every nonzero vector has a specified direction; the vector represented by the arrow O P

−−→
from the origin O to another point P in the plane has direction specified (for instance)
by the counterclockwise angle from the positive x-axis to O P

−−→
.

What is important about the vector v = 〈a, b〉 represented by O P
−−→

often is not
where it is, but how long it is and which way it points. If the directed line segment
Q R
−−→

with endpoints Q(a1, b1) and R(a2, b2) has the same length and directiony

x

v = 〈a, b〉 v = 〈a, b〉

v = 〈a, b〉

v = 〈a, b〉

v = 〈a, b〉
v = 〈a, b〉

P(a, b)

FIGURE 11.1.4 All these arrows
represent the same vector
v = 〈a, b〉.

as O P
−−→

, then we say that Q R
−−→

represents (or is a representation of) the vector v
(Fig. 11.1.2). Thus a single vector has many representatives (Fig. 11.1.4).

Algebraic Operations with Vectors
The operations of addition and multiplication of real numbers have analogues for vec-
tors. We shall define each of these operations of vector algebra in terms of components
of vectors and then give a geometric interpretation in terms of arrows.

DEFINITION Equality of Vectors
The two vectors u = 〈u1, u2〉 and v = 〈v1, v2〉 are equal provided that u1 = v1 and
u2 = v2.

In other words, two vectors are equal if and only if corresponding compo-
nents are the same. Moreover, two directed line segments P Q

−−→
and RS

−−→
represent

the same vector provided that they have the same length and direction. This will be
the case provided that the segments P Q

−−→
and RS

−−→
are opposite sides of a parallelogram

(Fig. 11.1.5).

DEFINITION Addition of Vectors
The sum u + v of the two vectors u = 〈u1, u2〉 and v = 〈v1, v2〉 is the vector

u + v = 〈u1 + v1, u2 + v2〉. (2)

Thus we add vectors by adding corresponding components—that is, by compo-

R

P

S

Q

FIGURE 11.1.5 Parallel directed
segments representing equal vectors.

nentwise addition. The geometric interpretation of vector addition is the triangle law
of addition, illustrated in Fig. 11.1.6, where the labeled lengths indicate why this inter-
pretation is valid. An equivalent interpretation is the parallelogram law of addition,
illustrated in Fig. 11.1.7.

y

x

u + v

u1

2

1

u2

(u1 + 1, u2 + 2)  

v

u

FIGURE 11.1.6 The triangle law
is a geometric interpretation of vector
addition.

y

x

u + v

(u1 + 1, u2 + 2)  

v

u

( 1, 2)  

(u1, u2)  

FIGURE 11.1.7 The parallelogram
law for vector addition.
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820 CHAPTER 11 Vectors, Curves, and Surfaces in Space

EXAMPLE 2 The sum of the vectors u = 〈4, 3〉 and v = 〈−5, 2〉 is the vector

u + v = 〈4, 3〉 + 〈−5, 2〉 = 〈4 + (−5), 3 + 2〉 = 〈−1, 5〉. ◗

It is natural to write 2u = u + u. But if u = 〈u1, u2〉, then

2u = u + u = 〈u1, u2〉 + 〈u1, u2〉 = 〈2u1, 2u2〉.
This suggests that multiplication of a vector by a scalar (real number) also is defined
in a componentwise manner.

DEFINITION Multiplication of a Vector by a Scalar
If u = 〈u1, u2〉 and c is a real number, then the scalar multiple cu is the vector

cu = 〈cu1, cu2〉. (3)

Note thaty

x
c > 0

u

cu

y

x
c < 0

u

cu

FIGURE 11.1.8 The vector c u may
have the same direction as u or the
opposite direction, depending on the
sign of c.

|cu| =
√

(cu1)2 + (cu2)2 = |c|
√

(u1)2 + (u2)2 = |c| · |u|.
Thus the length of |cu| is |c| times the length of u. The negative of the vector u is the
vector

−u = (−1)u = 〈−u1, −u2〉,
with the same length as u but the opposite direction. We say that the two nonzero
vectors u and v have

• The same direction if u = cv for some c > 0;
• Opposite directions if u = cv for some c < 0.

The geometric interpretation of scalar multiplication is that cu is the vector with
length |c| · |u|, with the same direction as u if c > 0 but with the opposite direction if
c < 0 (Fig. 11.1.8).

The difference u − v of the vectors u = 〈u1, u2〉 and v = 〈v1, v2〉 is defined toy

x

u − v

v

u

−v

P

−v

u − v = 

Q

QP

FIGURE 11.1.9 Geometric
interpretation of the difference u − v.

be
u − v = u + (−v) = 〈u1 − v1, u2 − v2〉. (4)

If we think of 〈u1, u2〉 and 〈v1, v2〉 as position vectors of the points P and Q, respec-
tively, then u−v may be represented by the arrow Q P

−−→
from Q to P . We may therefore

write

u − v = O P
−−→− O Q

−−→ = Q P
−−→

,

as illustrated in Fig. 11.1.9.

EXAMPLE 3 Suppose that u = 〈4, −3〉 and v = 〈−2, 3〉. Find |u| and the vectors
u + v, u − v, 3u, −2v, and 2u + 4v.

Solution

|u| =
√

42 + (−3)2 = √
25 = 5.

u + v = 〈4 + (−2), −3 + 3〉 = 〈2, 0〉.
u − v = 〈4 − (−2), −3 − 3〉 = 〈6, −6〉.

3u = 〈3 · 4, 3 · (−3)〉 = 〈12, −9〉.
−2v = 〈−2 · (−2), −2 · 3〉 = 〈4, −6〉.

2u + 4v = 〈2 · 4 + 4 · (−2), 2 · (−3) + 4 · 3〉 = 〈0, 6〉. ◗
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Vectors in the Plane SECTION 11.1 821

The familiar algebraic properties of real numbers carry over to the following
analogous properties of vector addition and scalar multiplication. Let a, b, and c be
vectors and r and s real numbers. Then

1. a + b = b + a,

2. a + (b + c) = (a + b) + c,

3. r(a + b) = ra + rb,

4. (r + s)a = ra + sa,

5. (rs)a = r(sa) = s(ra).

(5)

You can easily verify these identities by working with components. For example, if
a = 〈a1, a2〉 and b = 〈b1, b2〉, then

r(a + b) = r〈a1 + b1, a2 + b2〉 = 〈r(a1 + b1), r(a2 + b2)〉
= 〈ra1 + rb1, ra2 + rb2〉 = 〈ra1, ra2〉 + 〈rb1, rb2〉 = ra + rb.

The proofs of the other four identities in (5) are left as exercises.

The Unit Vectors i and j

A unit vector is a vector of length 1. If a = 〈a1, a2〉 �= 0, then

u = a
|a| (6)

is the unit vector with the same direction as a, because

|u| =
√(

a1

|a|
)2

+
(

a2

|a|
)2

= 1

|a|
√

a2
1 + a2

2 = 1.

For example, if a = 〈3, −4〉, then |a| = 5. Thus 〈 3
5 , − 4

5 〉 is a unit vector that has they

x(1, 0)

(0, 1)

j

i

FIGURE 11.1.10 The vectors i
and j.

same direction as a.
Two particular unit vectors play a special role, the vectors

i = 〈1, 0〉 and j = 〈0, 1〉.
The first points in the positive x-direction; the second points in the positive y-direction
(Fig. 11.1.10). Together they provide a useful alternative notation for vectors. If a =
〈a1, a2〉, then

a = 〈a1, 0〉 + 〈0, a2〉 = a1〈1, 0〉 + a2〈0, 1〉 = a1i + a2j. (7)

Thus every vector in the plane is a linear combination of i and j. The usefulness
of this notation is based on the fact that such linear combinations of i and j may be
manipulated as if they were ordinary sums. For example, if

a = a1i + a2j and b = b1i + b2j,

then

a + b = (a1i + a2j) + (b1i + b2j) = (a1 + b1)i + (a2 + b2)j.

Also,

ca = c(a1i + a2j) = (ca1)i + (ca2)j.

EXAMPLE 4 Suppose that a = 2i − 3j and b = 3i + 4j. Express 5a − 3b in terms
of i and j.

Solution

5a − 3b = 5 · (2i − 3j) − 3 · (3i + 4j)
= (10 − 9)i + (−15 − 12)j = i − 27j. ◗
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822 CHAPTER 11 Vectors, Curves, and Surfaces in Space

EXAMPLE 5 When the vectors a = 8i+5j and b = −11i+17j are plotted carefully

x

a

b

b − a

P(8, 5)

Q(−11, 17)

y

15−15 −10 −5 1050

25

20

15

10

5

0
0

−5

FIGURE 11.1.11 The vectors a, b,
and b − a of Example 5.

(Fig. 11.1.11), they look as though they might be perpendicular. Determine whether or
not this is so.

Solution If the vectors a and b are regarded as position vectors of the points P(8, 5)

and Q(−11, 17), then their difference c = b − a = −19i + 12j represents the third
side P Q

−−→
of the triangle OPQ (Fig. 11.1.11). According to the Pythagorean theorem,

this triangle is a right triangle with hypotenuse P Q if and only if |c|2 = |a|2 + |b|2.
But

|c|2 = (−19)2 + 122 = 505
whereas

|a|2 + |b|2 = [82 + 52] + [(−11)2 + 172] = 499.

It follows that the vectors a and b are not perpendicular. ◗

Equation (7) expresses the vector a = 〈a1, a2〉 as the sum of a horizontal vectory

x

(a1, a2)

a2 j

j

a1ii

a

FIGURE 11.1.12 Resolution of
a = 〈a1, a2〉 into its horizontal and
vertical components.

a1i and a vertical vector a2j, as Fig. 11.1.12 shows. The decomposition or resolution
of a vector into its horizontal and vertical components is an important technique in
the study of vector quantities. For example, a force F may be decomposed into its
horizontal and vertical components F1i and F2j, respectively. The physical effect of
the single force F is the same as the combined effect of the separate forces F1i and
F2j. (This is an instance of the empirically verifiable parallelogram law of addition
of forces.) Because of this decomposition, many two-dimensional problems can be
reduced to one-dimensional problems, the latter solved, and the two results combined
(again by vector methods) to give the solution of the original problem.

EXAMPLE 6 A 100-lb weight is suspended from the ceiling by means of two per-
pendicular flexible cables of equal length (Fig. 11.1.13). Find the tension (in pounds)
in each cable.

Solution Each cable is inclined at an angle of 45◦ from the horizontal, so it follows
readily upon calculating horizontal and vertical components that the indicated tension
force vectors T1 and T2 are given by

T1

F

T2

90°

100 lb

FIGURE 11.1.13 The suspended
weight of Example 6.

T1 = (T1 cos 45◦)i + (T1 sin 45◦)j and T2 = (−T2 cos 45◦)i + (T2 sin 45◦)j,

where T1 = |T1| and T2 = |T2| are the tension forces we seek. The downward force
of gravity acting on the weight is given by F = −100j. In order that the weight hangs
motionless, the three forces must “balance,” so that T1 + T2 + F = 0; that is,

[(T1 cos 45◦)i + (T1 sin 45◦)j] + [(−T2 cos 45◦)i + (T2 sin 45◦)j] = 100j.

When we equate the components of i in this equation and separately equate the com-
ponents of j, we get the two scalar equations

T1 cos 45◦ − T2 cos 45◦ = 0 and T1 sin 45◦ + T2 sin 45◦ = 100.

The first of these scalar equations implies that T1 = T2 = T , and then the second yields
T = 100/(2 sin 45◦) = 50

√
2 ≈ 70.71 (pounds) for the tension in each cable. ◗

11.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. A vector v in the Cartesian plane is an ordered pair of real numbers of the form
〈a, b〉.

2. The length of the vector v = 〈a, b〉 is |v| = √
a2 + b2.

3. The two vectors u = 〈u1, u2〉 and v = 〈v1, v2〉 are equal provided that u1 = u2

and v1 = v2.
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4. The sum of the two vectors u = 〈u1, u2〉 and v = 〈v1, v2〉 is the vector u + v =
〈u1 + v1, u2 + v2〉.

5. If u = 〈4, −3〉 and v = 〈−2, 3〉, then u − v = 〈−6, 6〉.
6. If r and s are scalars and a is a vector, then (r + s)a = ra + sa.

7. If a �= 0, then a unit vector with the same direction as a is u = a
|a| .

8. If a = 2i − 3j and b = 3i + 4j, then 5a − 3b = i + 27j.
9. The vectors 8i + 5j and −11i + 17j are perpendicular.

10. In Fig. 11.1.13, the tension T1 in the right-hand cable is 50
√

2 pounds.

11.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. Discuss the relation between a 2-dimensional vector and a point in the plane.
2. Give several examples of quantities that possess both magnitude and direction.

For each, discuss whether and how such quantities might be added.
3. If a person owns stock in two companies, how might the worth of his portfolio

be described by a 2-dimensional vector? If several people owning stock in these
same two companies form a partnership, is the “worth vector” of the partnership
equal to the sum of the worth vectors of the partners?

11.1 PROBLEMS

In Problems 1 through 4, find a vector v = 〈a, b〉 that is rep-

resented by the directed line segment RS
−→

. Then sketch both RS
−→

and the position vector of the point P(a, b).

1. R(1, 2), S(3, 5) 2. R(−2, −3), S(1, 4)

3. R(5, 10), S(−5, −10) 4. R(−10, 20), S(15, −25)

In Problems 5 through 8, find the sum w = u + v and illustrate it
geometrically.

5. u = 〈1, −2〉, v = 〈3, 4〉 6. u = 〈4, 2〉, v = 〈−2, 5〉
7. u = 3i + 5j, v = 2i − 7j 8. u = 7i + 5j, v = −10i

In Problems 9 through 16, find |a|, |−2b|, |a − b|, a + b, and
3a − 2b.

9. a = 〈1, −2〉, b = 〈−3, 2〉
10. a = 〈3, 4〉, b = 〈−4, 3〉
11. a = 〈−2, −2〉, b = 〈−3, −4〉
12. a = −2〈4, 7〉, b = −3〈−4, −2〉
13. a = i + 3j, b = 2i − 5j

14. a = 2i − 5j, b = i − 6j

15. a = 4i, b = −7j

16. a = −i − j, b = 2i + 2j

In Problems 17 through 20, find a unit vector u with the same di-
rection as the given vector a. Express u in terms of i and j. Also
find a unit vector v with the direction opposite that of a.

17. a = 〈−3, −4〉 18. a = 〈5, −12〉
19. a = 8i + 15j 20. a = 7i − 24j

In Problems 21 through 24, find the vector a, expressed in terms

of i and j, that is represented by the arrow P Q
−−→

in the plane.

21. P = (3, 2), Q = (3, −2)

22. P = (−3, 5), Q = (−3, 6)

23. P = (−4, 7), Q = (4, −7)

24. P = (1, −1), Q = (−4, −1)

In Problems 25 through 28, determine whether or not the given
vectors a and b are perpendicular.

25. a = 〈6, 0〉, b = 〈0, −7〉
26. a = 3j, b = 3i − j

27. a = 2i − j, b = 4j + 8i

28. a = 8i + 10j, b = 15i − 12j

In Problems 29 and 30, express i and j in terms of a and b.

29. a = 2i + 3j, b = 3i + 4j

30. a = 5i − 9j, b = 4i − 7j

In Problems 31 and 32, write c in the form ra + sb where r and
s are scalars.

31. a = i + j, b = i − j, c = 2i − 3j

32. a = 3i + 2j, b = 8i + 5j, c = 7i + 9j

33. Find a vector that has the same direction as 5i − 7j and is (a)
three times its length; (b) one-third its length.

34. Find a vector that has the opposite direction from −3i + 5j
and is (a) four times its length; (b) one-fourth its length.

35. Find a vector of length 5 with (a) the same direction as
7i − 3j; (b) the direction opposite that of 8i + 5j.

36. For what numbers c are the vectors 〈c, 2〉 and 〈c, −8〉
perpendicular?

37. For what numbers c are the vectors 2ci − 4j and 3i + cj per-
pendicular?

38. Given the three points A(2, 3), B(−5, 7), and C(1, −5), ver-
ify by direct computation of the vectors and their sum that

A B
−−→+ B C

−−→+ C A
−−→ = 0.
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824 CHAPTER 11 Vectors, Curves, and Surfaces in Space

In Problems 39 through 42, give a componentwise proof of the
indicated property of vector algebra. Take a = 〈a1, a2〉, b =
〈b1, b2〉, and c = 〈c1, c2〉 throughout.

39. a + (b + c) = (a + b) + c

40. (r + s)a = ra + sa

41. (rs)a = r(sa)

42. If a + b = a, then b = 0.

43. Find the tension in each cable of Example 6 if the angle be-
tween them is 120◦.

In Problems 44 through 46, a given weight (in pounds) is sus-
pended by two cables as shown in the figure. Find the tension in
each cable.

44.
45° 30°

50

FIGURE 11.1.14

45.
55° 40°

125

FIGURE 11.1.15

46.

3 ft4 ft

150

90°

FIGURE 11.1.16

In Problems 47 through 49, assume the following fact: If an air-
plane flies with velocity vector va relative to the air and the veloc-
ity of the wind is w, then the velocity vector of the plane relative
to the ground is vg = va + w (Fig. 11.1.17). The vector va is
called the apparent velocity vector and the vector vg is called the
true velocity vector.

47. Suppose that the wind is blowing from the northeast at
50 mi/h and that the pilot wishes to fly due east at 500 mi/h.
What should the plane’s apparent velocity vector be?

48. Repeat Problem 47 with the phrase due east replaced with
due west.

49. Repeat Problem 47 in the case that the pilot wishes to fly
northwest at 500 mi/h.

y

x

vg

va

w

FIGURE 11.1.17 The vectors
of Problems 47 through 49
• Apparent velocity: va

• Wind velocity: w
• True velocity: vg = va + w

50. Given any three points A, B, and C in the plane, show that

AB
−−→+ BC

−−→+ C A
−−→ = 0. [Suggestion: Picture the triangle

A BC .]

51. If a and b are the position vectors of the points P and
Q in the plane and M is the point with position vector
v = 1

2 (a + b), show that M is the midpoint of the line seg-

ment P Q. Is it sufficient to show that the vectors P M
−−→

and
QM
−−→

are equal and opposite?

52. In the triangle A BC , let M and N be the midpoints of A B

and A C , respectively. Show that M N
−−→ = 1

2 BC
−−→

. Conclude
that the line segment joining the midpoints of two sides of
a triangle is parallel to the third side. How are their lengths
related?

53. Prove that the diagonals of a parallelogram ABCD bisect
each other. [Suggestion: If M and N are the midpoints of
the diagonals AC and B D, respectively, and O is the origin,

show that O M
−−→ = O N

−−→
.]

54. Use vectors to prove that the midpoints of the four sides of
an arbitrary quadrilateral are the vertices of a parallelogram.

55. Figure 11.1.18 shows the vector a⊥ obtained by rotating
the vector a = a1i + a2j through a counterclockwise angle
of 90◦. Show that

a⊥ = −a2i + a1j.

[Suggestion: Begin by writing a = (r cos θ)i + (r sin θ)j.]

y

x

a
90˚

θ

r

a⊥

FIGURE 11.1.18 Rotate a
counterclockwise 90◦ to
obtain a⊥ (Problem 55).

11.2 THREE-DIMENSIONAL VECTORS

In the first ten chapters we discussed many aspects of the calculus of functions of
a single variable. The geometry of such functions is two-dimensional, because the
graph of a function of a single variable is a curve in the coordinate plane. Most of
the remaining chapters deal with the calculus of functions of several (two or more)
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independent variables. The geometry of functions of two variables is three-dimensional
because the graphs of such functions are generally surfaces in space.

Rectangular coordinates in the plane may be generalized to rectangular coordi-

y

z

x

FIGURE 11.2.1 The right-handed
coordinate system.

nates in space. A point in space is determined by giving its location relative to three
mutually perpendicular coordinate axes that pass through the origin O . We shall
usually draw the x-, y-, and z-axes as shown in Fig. 11.2.1, sometimes with arrows
indicating the positive direction along each axis; the positive x-axis will always be la-
beled x , and similarly for the positive y- and z-axes. With this configuration of axes,
our rectangular coordinate system is said to be right-handed: If you curl the fingers
of your right hand in the direction of a 90◦ rotation from the positive x-axis to the
positive y-axis, then your thumb points in the direction of the positive z-axis. If the
x- and y-axes were interchanged, then the coordinate system would be left-handed.
These two coordinate systems are different in that it is impossible to bring one into
coincidence with the other by means of rotations and translations. This is why the
L- and D-alanine molecules shown in Fig. 11.2.2 are different; you can metabolize
the left-handed (“levo”) version but not the right-handed (“dextro”) version. In this
book we ordinarily use right-handed coordinate systems with the axes in our figures
oriented as in Fig. 11.2.1, but left-handed coordinate systems are sometimes seen in
computer-generated plots.

C

COOH NH2

CH3

H

COOHNH2

CH3

C

H

L -(+) -alanine D -(−) -alanine

FIGURE 11.2.2 The stereoisomers of the amino acid alanine are physically
and biologically different even through they have the same molecular formula.

The three coordinate axes taken in pairs determine the three coordinate planes
(Fig. 11.2.3):

• The (horizontal) xy-plane, where z = 0;
• The (vertical) yz-plane, where x = 0; and
• The (vertical) xz-plane, where y = 0.

z

y

x

yz-plane

xy-plane

xz-plane

FIGURE 11.2.3 The coordinate
planes in space.

The point P in space is said to have rectangular coordinates (x, y, z) if

• x is its signed distance from the yz-plane,
• y is its signed distance from the xz-plane, and

y

x

P

x : distance
from the
yz -plane

distance
from the
xy -plane

y : distance
from the
xz -plane

z

z :

FIGURE 11.2.4 Locating the
point P in rectangular coordinates.

• z is its signed distance from the xy-plane.

(See Fig. 11.2.4.) In this case we may describe the location of P simply by calling it
“the point P(x, y, z).” There is a natural one-to-one correspondence between ordered
triples (x, y, z) of real numbers and points P in space; this correspondence is called
a rectangular coordinate system in space. In Fig. 11.2.5 the point P is located in
the first octant—the eighth of space in which all three rectangular coordinates are
positive.

If we apply the Pythagorean theorem to the right triangles P1 Q R and P1 R P2 in
Fig. 11.2.6, we get

|P1 P2|2 = |R P2|2 + |P1 R|2 = |R P2|2 + |Q R|2 + |P1 Q|2
= (x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2.
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z 

x

P(x, y, z)

y

FIGURE 11.2.5 Completing the
box to show P with the illusion of
the third dimension.

x

y

z

P1(x1, y1, z1)

|z1 − z2|

R (x1, y2, z2)

|x1 − x2|
P2(x2, y2, z2)|y1 − y2|

Q (x1, y1, z2)

FIGURE 11.2.6 The distance between P1
and P2 is the length of the long diagonal
of the box.

Thus the distance formula for the distance |P1 P2| between the points P1 and P2 is

|P1 P2| = √
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (1)

EXAMPLE 1 The distance between the points A (1, 3, −2) and B(4, −3, 1) is

|A B| =
√

(4 − 1)2 + (−3 − 3)2 + (1 + 2)2 = √
54 ≈ 7.348. ◗

You can apply the distance formula in Eq. (1) to show that the midpoint M of
the line segment joining P1(x1, y1, z1) and P2(x2, y2, z2) is

M

(
x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

)
. (2)

(See Problem 63.)
The graph of an equation in three variables x , y, and z is the set of all points in

space with rectangular coordinates that satisfy that equation. In general, the graph of
an equation in three variables is a two-dimensional surface in R3 (three-dimensional
space with rectangular coordinates).

EXAMPLE 2 Given a fixed point C(h, k, l) and a number r > 0, find an equation of
the sphere with radius r and center C .

Solution By definition, the sphere is the set of all points P(x, y, z) such that the
distance from P to C is r . That is, |C P| = r , and thus |C P|2 = r2. Therefore

(x − h)2 + (y − k)2 + (z − l)2 = r2. (3)
◗

Equation (3) is worth remembering as the equation of the sphere with radius r
and center C(h, k, l) shown in Fig. 11.2.7. Moreover, given an equation of the form

x2 + y2 + z2 + A x + By + Cz + D = 0,

we can attempt—by completing the square in each variable—to write it in the form of
Eq. (3) and thereby show that its graph is a sphere.

y

z

x

P (x, y, z)

r

C (h, k, l )

FIGURE 11.2.7 The sphere with
center (h, k, l) and radius r .

EXAMPLE 3 Determine the graph of the equation

x2 + y2 + z2 + 4x + 2y − 6z − 2 = 0.
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Solution We complete the square in each variable. The equation then takes the form

(x2 + 4x + 4) + (y2 + 2y + 1) + (z2 − 6z + 9) = 2 + (4 + 1 + 9) = 16;
that is,

(x + 2)2 + (y + 1)2 + (z − 3)2 = 42.

Thus the graph of the given equation is the sphere with radius 4 and center
(−2, −1, 3). ◗

Vectors in Space
The discussion of vectors in space parallels the discussion in Section 11.1 of vectors in
the plane. The difference is that a vector in space has three components rather than two.
The point P(x, y, z) has position vector v = O P

−−→ = 〈x, y, z〉, which is represented
by the directed line segment (or arrow) O P

−−→
from the origin O to the point P (as well

z

x

yO x
y

zv

P (x, y, z)

FIGURE 11.2.8 The arrow OP
−−→

represents the position vector
v = 〈x, y, z〉.

as by any parallel translate of this arrow—see Fig. 11.2.8). The distance formula in
Eq. (1) gives

|v| = √
x2 + y2 + z2 (4)

for the length (or magnitude) of the vector v = 〈x, y, z〉.
Given two points A (a1, a2, a3) and B(b1, b2, b3) in space, the directed line seg-

ment A B
−−→

in Fig. 11.2.9 represents the vector

v = 〈b1 − a1, b2 − a2, b3 − a3〉.
Its length is the distance between the two points A and B:

|v| = |A B
−−→| =

√
(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2.

What it means for two vectors in space to be equal is essentially the same as in

z

x

y

A

B
AB

FIGURE 11.2.9 The arrowAB
−→

represents the vector
v = 〈b1 − a1, b2 − a2, b3 − a3〉.

the case of two-dimensional vectors: The vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉
are equal provided that a1 = b1, a2 = b2, and a3 = b3. That is, two vectors are equal
exactly when corresponding components are equal.

We define addition and scalar multiplication of three-dimensional vectors exactly
as we did in Section 11.1, taking into account that the vectors now have three compo-
nents rather than two: The sum of the vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 is
the vector

a

b a + b

FIGURE 11.2.10 The
parallelogram law for addition
of vectors.

a + b = 〈a1 + b1, a2 + b2, a3 + b3〉. (5)

Because a and b lie in a plane (although not necessarily the xy-plane) if their initial
points coincide, addition of three-dimensional vectors obeys the same parallelogram
law as in the two-dimensional case (Fig. 11.2.10).

If c is a real number, then the scalar multiple ca is the vector

ca = 〈ca1, ca2, ca3〉. (6)

The length of ca is |c| times the length of a, and ca has the same direction as a if
c > 0 but the opposite direction if c < 0. The following algebraic properties of vector
addition and scalar multiplication for three-dimensional vectors are easy to establish;
they follow from computations with components, exactly as in Section 11.1:

a + b = b + a,

a + (b + c) = (a + b) + c,

r(a + b) = ra + rb,

(r + s)a = ra + sa,

(rs)a = r(sa) = s(ra).

(7)
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828 CHAPTER 11 Vectors, Curves, and Surfaces in Space

EXAMPLE 4 If a = 〈3, 4, 12〉 and b = 〈−4, 3, 0〉, then

a + b = 〈3 − 4, 4 + 3, 12 + 0〉 = 〈−1, 7, 12〉,
|a| =

√
32 + 42 + 122 = √

169 = 13,

2a = 〈2 · 3, 2 · 4, 2 · 12〉 = 〈6, 8, 24〉, and

2a − 3b = 〈6 + 12, 8 − 9, 24 − 0〉 = 〈18, −1, 24〉. ◗

A unit vector is a vector of length 1. We can express any vector in space (or

y

x

z

k

j
i

FIGURE 11.2.11 The basic unit
vectors i, j, and k.

space vector) in terms of the three basic unit vectors

i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉.
When located with their initial points at the origin, these basic unit vectors form a right-
handed triple of vectors pointing in the positive directions along the three coordinate
axes (Fig. 11.2.11).

The space vector a = 〈a1, a2, a3〉 can be written as

a = a1i + a2j + a3k,

a linear combination of the basic unit vectors. As in the two-dimensional case, the
usefulness of this representation is that algebraic operations involving vectors may be
carried out simply by collecting coefficients of i, j, and k.

EXAMPLE 5 Given the vectors a = 〈3, −4, 2〉 and b = 〈5, 2, −7〉, we can write

a = 3i − 4j + 2k and b = 5i + 2j − 7k

in order to calculate

7a + 5b = 7 · (3i − 4j + 2k) + 5 · (5i + 2j − 7k)

= (21 + 25)i + (−28 + 10)j + (14 − 35)k
= 46i − 18j − 21k = 〈46, −18, −21〉. ◗

The Dot Product of Two Vectors
The dot product of the two vectors

a = a1i + a2j + a3k and b = b1i + b2j + b3k

is the number obtained when we multiply corresponding components of a and b and
add the results. That is,

a · b = a1b1 + a2b2 + a3b3. (8)

Thus the dot product of two vectors is the sum of the products of their corresponding
components. In the case of plane vectors a = 〈a1, a2〉 and b = 〈b1, b2〉, we simply
dispense with third components and write a · b = a1b1 + a2b2.

EXAMPLE 6 To apply the definition to calculate the dot product of the two vectors
a = 〈3, 4, 12〉 and b = 〈−4, 3, 0〉, we simply follow the pattern in Eq. (8):

a · b = (3)(−4) + (4)(3) + (12)(0) = −12 + 12 + 0 = 0.

And if c = 〈4, 5, −3〉, then

a · c = (3)(4) + (4)(5) + (12)(−3) = 12 + 20 − 36 = −4. ◗

IMPORTANT The dot product of two vectors is a scalar—that is, an ordinary real
number. For this reason the dot product is often called the scalar product. Example 6
illustrates the fact that the scalar product of two nonzero vectors (with positive lengths)
may be zero or even a negative number.
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The following properties of the dot product show that dot products of vectors
behave in many ways in analogy to the ordinary algebra of real numbers.

a · a = |a|2,
a · b = b · a,

a · (b + c) = a · b + a · c,

(ra) · b = r(a · b) = a · (rb).

(9)

Each of the properties in (9) can be established by working with components of the
vectors involved. For instance, to establish the second equation, suppose that a =
〈a1, a2, a3〉 and b = 〈b1, b2, b3〉. Then

a · b = a1b1 + a2b2 + a3b3 = b1a1 + b2a2 + b3a3 = b · a.

This derivation makes it clear that the commutative law for the dot product is a conse-
quence of the commutative law ab = ba for multiplication of ordinary real numbers.

Example 6 shows that the algebraic definition of the dot product is easy to applyz 

x

yO

Q

P

a
bθ

FIGURE 11.2.12 The angle θ

between the vectors a and b.

in routine calculations. But what does it mean? The significance and meaning of the
dot product lie in its geometric interpretation.

Let the vectors a and b be represented as position vectors by the directed seg-
ments O P

−−→
and O Q

−−→
, respectively. Then the angle θ between a and b is the angle at O

in triangle OPQ of Fig. 11.2.12. We say that a and b are parallel if θ = 0 or if θ = π

and that a and b are perpendicular if θ = π/2. For convenience, we regard the zero
vector 0 = 〈0, 0, 0〉 as both parallel to and perpendicular to every vector.

THEOREM 1 Interpretation of the Dot Product
If θ is the angle between the vectors a and b, then

a · b = |a| |b| cos θ. (10)

Proof If either a = 0 or b = 0, then Eq. (10) follows immediately. If the vectors a
and b are parallel, then b = ta with either t > 0 and θ = 0 or t < 0 and θ = π . In
either case, both sides in Eq. (10) reduce to t |a|2, so again the conclusion of Theorem 1
follows.

We turn to the general case in which the vector a = O P
−−→

and b = O Q
−−→

are
nonzero and nonparallel. Then

|Q P
−−→|2 = |a − b|2 = (a − b) · (a − b)

= a · a − a · b − b · a + b · b

= |a|2 + |b|2 − 2a · b.

But c = |Q P
−−→| is the side of triangle OPQ (Fig. 11.2.12) that is opposite the angle θ in-

cluded between the sides a = |a| and b = |b|. Hence the law of cosines (Appendix M)
gives

|Q P
−−→|2 = c2 = a2 + b2 − 2ab cos θ

= |a|2 + |b|2 − 2 |a| |b| cos θ.

Finally, comparing these two expressions for |Q P
−−→|2 yields Eq. (10). ◆

This theorem tells us that the angle θ between the nonzero vectors a and b can
be found by using the equation

cos θ = a · b
|a| |b| . (11)
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For instance, given the vectors a = 〈8, 5〉 and b = 〈−11, 17〉 of Example 5 in Sec-
tion 11.1, we calculate

cos θ = 〈8, 5〉 · 〈−11, 17〉
|〈8, 5〉| |〈−11, 17〉| = (8)(−11) + (5)(17)√

82 + 52
√

(−11)2 + 172
= −3√

89
√

410
.

It follows that θ = arccos(−3/
√

89
√

410) ≈ 1.5865 (radians) ≈ 90.90◦ �= 90◦, so
we see again that the vectors a and b are not perpendicular.

More generally, the two nonzero vectors a and b are perpendicular if and only
if they make a right angle, so that θ = π/2. By (11), this in turn is so if and only if
a · b = 0. Hence we have a quick computational check for perpendicularity of vectors.

COROLLARY Test for Perpendicular Vectors
The two nonzero vectors a and b are perpendicular if and only if a · b = 0.

EXAMPLE 7 (a) To show that the plane vectors a = 〈8, 5〉 and b = 〈−11, 17〉
of Example 5 in Section 11.1 were not perpendicular, we need only have calculated
their dot product a · b = −88 + 85 = −3 and observed that its value is not zero.
(b) Given the space vectors a = 〈8, 5, −1〉 and b = 〈−11, 17, −3〉, we find that

a · b = (8)(−11) + (5)(17) + (−1)(−3) = −88 + 85 + 3 = 0.

We may therefore conclude that a and b are perpendicular. ◗

EXAMPLE 8 Find the angles shown in the triangle of Fig. 11.2.13 with vertices at

B (5, −4, 3)
∠B

∠C

∠A

C (1, −3, 2)

A (2, −1, 0)

FIGURE 11.2.13 The triangle
of Example 8.

A (2, −1, 0), B(5, −4, 3), and C(1, −3, 2).

Solution We apply Eq. (11) with θ = � A, a = A B
−−→ = 〈3, −3, 3〉, and b = A C

−−→ =
〈−1, −2, 2〉. This yields

� A = cos−1

(
AB
−−→ · AC

−−→

|AB
−−→| |AC

−−→|

)
= cos−1

( 〈3, −3, 3〉 · 〈−1, −2, 2〉√
27

√
9

)

= cos−1

(
9√

27
√

9

)
≈ 0.9553 (rad) ≈ 54.74◦.

Similarly,

� B = cos−1

(
B A
−−→ · BC

−−→

|B A
−−→| |BC

−−→|

)
= cos−1

( 〈−3, 3, −3〉 · 〈−4, 1, −1〉√
27

√
18

)

= cos−1

(
18√

27
√

18

)
≈ 0.6155 (rad) ≈ 35.26◦.

Then � C = 180◦ − � A − � B ≈ 90◦. As a check, note that

C A
−−→ · C B

−−→ = 〈1, 2, −2〉 · 〈4, −1, 1〉 = 0.

So the angle at C is, indeed, a right angle. ◗

Direction Angles and Projections

The direction angles of the nonzero vector a = 〈a1, a2, a3〉 are the angles α, β, and
γ that it makes with the vectors i, j, and k, respectively (Fig. 11.2.14). The cosines of
these angles, cos α, cos β, and cos γ , are called the direction cosines of the vector a.
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When we replace b in Eq. (11) with i, j, and k in turn, we find that

cos α = a · i
|a| |i| = a1

|a| ,

cos β = a · j
|a| |j| = a2

|a| , and (12)

cos γ = a · k
|a| |k| = a3

|a| .
That is, the direction cosines of a are the components of the unit vector a/|a| with the

z

x

y

a

α
β

γ

FIGURE 11.2.14 The direction
angles of the vector a.

same direction as a. Consequently

cos2 α + cos2 β + cos2 γ = 1. (13)

EXAMPLE 9 Find the direction angles of the vector a = 2i + 3j − k.

Solution Because |a| = √
14, the equations in (12) give

α = cos−1

(
2√
14

)
≈ 57.69◦, β = cos−1

(
3√
14

)
≈ 36.70◦,

and γ = cos−1

( −1√
14

)
≈ 105.50◦. ◗

Sometimes we need to find the component of one vector a in the direction of
another nonzero vector b. Think of the two vectors located with the same initial point
(Fig. 11.2.15). Then the (scalar) component of a along b, denoted by compba, is
numerically the length of the perpendicular projection of a onto the straight line de-
termined by b. The number compba is positive if the angle θ between a is acute
(so a and b point in the same general direction) and negative if θ > π/2. Thus
compba = |a| cos θ in either case. Equation (10) then gives

compba = |a| |b| cos θ

|b| = a · b
|b| . (14)

There is no need to memorize this formula, for—in practice—we can always read

− compb(a)

a θ b

b
a

θ

compb(a)

FIGURE 11.2.15 The component
of a along b.

compba = |a| cos θ from the figure and then apply Eq. (10) to eliminate cos θ . Note
that compba is a scalar, not a vector.

EXAMPLE 10 Given a = 〈4, −5, 3〉 and b = 〈2, 1, −2〉, express a as the sum of a

a
a⊥

a

b

FIGURE 11.2.16 Construction
of a‖ and a⊥.

vector a‖ parallel to b and a vector a⊥ perpendicular to b.

Solution Our method of solution is motivated by the diagram in Fig. 11.2.16. We
take

a‖ = (compba)
b
|b| = a · b

|b|2 b = 8 − 5 − 6

9
b

= −1

3
〈2, 1, −2〉 =

〈
−2

3
, −1

3
,

2

3

〉
,

and

a⊥ = a − a‖ = 〈4, −5, 3〉 −
〈
−2

3
, −1

3
,

2

3

〉
=

〈
14

3
, −14

3
,

7

3

〉
.

The diagram makes our choice of a‖ plausible, and we have deliberately chosen a⊥ so
that a = a‖ + a⊥. To verify that the vector a‖ is indeed parallel to b, we simply note
that it is a scalar multiple of b. To verify that a⊥ is perpendicular to b, we compute the
dot product

a⊥· b = 28
3 − 14

3 − 14
3 = 0.

Thus a‖ and a⊥ have the required properties. ◗
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One important application of vector components is to the definition and compu-
tation of work. Recall that the work W done by a constant force F exerted along the
line of motion in moving a particle a distance d is given by W = Fd . But what if the
force is a constant vector F pointing in some direction other than the line of motion, as
when a child pulls a sled against the resistance of friction (Fig. 11.2.17)? Suppose that
F moves a particle along the line segment from P to Q, and let D = P Q

−−→
be the re-

sulting displacement vector of the object (Fig. 11.2.18). Then the work W done by the
force F in moving the object along the line from P to Q is, by definition, the product
of the component of F along D and the distance moved:

W = (compDF) |D| . (15)

If we use Eq. (14) and substitute compDF = (F · D)/|D|, we get

W = F · D (16)

for the work done by the constant force F in moving an object along the displacement
vector D = P Q

−−→
. This formula is the vector generalization of the scalar work for-

mula W = Fd. Work is measured in foot-pounds (ft·lb) if distance is measured in
feet and force in pounds. If metric units of meters (m) for distance and newtons (N)
for force are used, then work is measured in joules (J). (One joule is approximately
0.7376 ft·lb.)

Line of motion
ROSEBUD

Sled
F

FIGURE 11.2.17 The vector force F is
constant but acts at an angle to the line of
motion (Example 10).

P

Q

D =

F

θ
PQ

FIGURE 11.2.18 The force
vector F and displacement
vector D in Eq. (16).

EXAMPLE 11 Suppose that the force vector in Fig. 11.2.17 is inclined at an angle
of 30◦ from the ground. If the child exerts a constant force of 20 lb, how much work is
done in pulling the sled a distance of one mile?

Solution We are given that |F| = 20 (lb) and |D| = 5280 (ft). Because cos 30◦ =
1
2

√
3, Eq. (16) yields

W = F · D = |F| |D| cos 30◦ = (20)(5280)
(

1
2

√
3
) ≈ 91452 (ft·lb).

This may seem like a lot of work for a child to do. If the 1-mile trip takes an hour,
then the child is generating power (work per unit time) at the rate of (91452 ft·lb)/
(3600 s) ≈ 25.4 ft·lb/s. Because 1 horsepower (hp) is defined to be 550 ft·lb/s, the
child’s “power rating” is 25.4/550 ≈ 1

20 hp. By comparison, an adult in average
physical condition can climb the 1760 steps up to the lookout level of the CNN tower
in Toronto in about 30 minutes. On October 29, 1989, Brendan Keenoy of Toronto
set the world’s record for the fastest stairclimb there with a time of 7 min, 52 sec.
Assuming that he climbed 1122 ft and weighed 160 lb, he generated an average of just
under 0.7 hp over this time interval. ◗
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11.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The coordinate system in Fig. 11.2.3 is left-handed.
2. The point P(x, y, z) in Fig. 11.2.5 is in the first octant.
3. The distance between the two points P1(x1, y1, z1) and P2(x2, y2, z2) is√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

4. The graph of the equation x2 + y2 + z2 + 4x + 2y − 6z − 2 = 0 is the sphere
with radius 4 and center (2, 1, −3).

5. The two space vectors 〈a1, a2, a3〉 and 〈b1, b2, b3〉 are said to be equal provided
that a1 = a2 = a3 and b1 = b2 = b3.

6. If a = 〈3, 4, 12〉 then |a| = √
3 + 4 + 12 = √

19.
7. If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, then the dot product of a and b is

a · b = a1b1 + a2b2 + a3b3.

8. If a = 〈3, 4, 12〉 and b = 〈−4, 3, 0〉, then a · b = 3 · (−4) + 4 · 3 + 12 · 0 = 0.
9. If θ is the angle between the vectors a and b, then a · b = |a||b| cos θ.

10. The two nonzero vectors a and b are perpendicular if and only if a · b = 0.

11.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Discuss the relation between a 3-dimensional vector and a point in space.
2. How does the dot product of two vectors resemble the ordinary product of two

numbers? How do the two products differ?
3. Discuss the analogy between the absolute value of a number and the length of a

vector.
4. Give an example of a real-world situation described by a triple of real numbers.

In your example, do vector addition and scalar multiplication make any sense?

11.2 PROBLEMS

In Problems 1 through 6, find (a) 2a+b, (b) 3a−4b, (c) a · b,
(d) |a − b|, and (e) a/|a|.
1. a = 〈2, 5, −4〉, b = 〈1, −2, −3〉
2. a = 〈−1, 0, 2〉, b = 〈3, 4, −5〉
3. a = i + j + k, b = j − k

4. a = 2i − 3j + 5k, b = 5i + 3j − 7k

5. a = 2i − j, b = j − 3k

6. a = i − 2j + 3k, b = i + 3j − 2k

7. through 12. Find, to the nearest degree, the angle between
the vectors a and b in Problems 1 through 6.

13. through 18. Find compab and compba for the vectors a and
b given in Problems 1 through 6.

In Problems 19 through 24, write the equation of the indicated
sphere.

19. Center (3, 1, 2), radius 5

20. Center (−2, 1, −5), radius
√

7

21. One diameter: the segment joining (3, 5, −3) and (7, 3, 1)

22. Center (4, 5, −2), passing through the point (1, 0, 0)

23. Center (0, 0, 2), tangent to the xy-plane

24. Center (3, −4, 3), tangent to the xz-plane

In Problems 25 through 28, find the center and radius of the
sphere with the given equation.

25. x2 + y2 + z2 + 4x − 6y = 0

26. x2 + y2 + z2 − 8x − 9y + 10z + 40 = 0

27. 3x2 + 3y2 + 3z2 − 18z − 48 = 0

28. 2x2 + 2y2 + 2z2 = 7x + 9y + 11z

In Problems 29 through 38, describe the graph of the given equa-
tion in geometric terms, using plain, clear language.

29. z = 0 30. x = 0

31. z = 10 32. xy = 0

33. xyz = 0 34. x2 + y2 + z2 + 7 = 0

35. x2 + y2 + z2 = 0 36. x2 + y2 + z2 − 2x + 1 = 0

37. x2 + y2 + z2 − 6x + 8y + 25 = 0

38. x2 + y2 = 0
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Two vectors are parallel provided that one is a scalar multiple of
the other. Determine whether the vectors a and b in Problems 39
through 42 are parallel or perpendicular or neither.

39. a = 〈4, −2, 6〉 and b = 〈6, −3, 9〉
40. a = 〈4, −2, 6〉 and b = 〈4, 2, 2〉
41. a = 12i − 20j + 16k and b = −9i + 15j − 12k

42. a = 12i − 20j + 17k and b = −9i + 15j + 24k

In Problems 43 and 44, determine whether or not the three given
points lie on a single straight line.

43. P(0, −2, 4), Q(1, −3, 5), R(4, −6, 8)

44. P(6, 7, 8), Q(3, 3, 3), R(12, 15, 18)

In Problems 45 through 48, find (to the nearest degree) the three
angles of the triangle with the given vertices.

45. A(1, 0, 0), B(0, 1, 0), C(0, 0, 1)

46. A(1, 0, 0), B(1, 2, 0), C(1, 2, 3)

47. A(1, 1, 1), B(3, −2, 3), C(3, 4, 6)

48. A(1, 0, 0), B(0, 1, 0), C(−1, −2, −2)

In Problems 49 through 52, find the direction angles of the vector

represented by P Q
−−→

.

49. P(1, −1, 0), Q(3, 4, 5)

50. P(2, −3, 5), Q(1, 0, −1)

51. P(−1, −2, −3), Q(5, 6, 7)

52. P(0, 0, 0), Q(5, 12, 13)

In Problems 53 and 54, find the work W done by the force F in
moving a particle in a straight line from P to Q.

53. F = i − k; P(0, 0, 0), Q(3, 1, 0)

54. F = 2i − 3j + 5k; P(5, 3, −4), Q(−1, −2, 5)

55. Suppose that the force vector in Fig. 11.2.17 is inclined at an
angle of 40◦ from the ground. If the child exerts a constant
force of 40 N, how much heat energy (in calories) does the
child expend in pulling the sled a distance of 1 km along
the ground? [Note: 1 J of work requires an expenditure
of 0.239 calories of energy.]

56. A 1000-lb dog sled has a coefficient of sliding friction of 0.2,
so it requires a force with a horizontal component of 200 lb
to keep it moving at a constant speed. Suppose that a
dog-team harness is attached so that the team’s force vec-
tor makes an angle of 5◦ with the horizontal. If the dog
team pulls this sled at a speed of 10 mi/h, how much power
(in horsepower) are the dogs generating? [Note: 1 hp is
550 ft·lb/s.]

57. Suppose that the horizontal and vertical components of the
three vectors shown in Fig. 11.2.19 balance (the algebraic
sum of the horizontal components is zero, as is the sum of
the vertical components). How much work is done by the
constant force F (parallel to the inclined plane) in pulling
the weight mg up the inclined plane a vertical height h?

h

mg

F
N

α

FIGURE 11.2.19 The inclined
plane of Problem 57.

58. Prove the Cauchy-Schwarz inequality:

|a · b| � |a| |b|
for all pairs of vectors a and b.

59. Given two arbitrary vectors a and b, prove that they satisfy
the triangle inequality,

|a + b| � |a| + |b|.
[Suggestion: Square both sides.]

60. Prove that if a and b are arbitrary vectors, then

|a − b| � |a| − |b|.
[Suggestion: Write a = (a − b) + b; then apply the triangle
inequality of Problem 59.]

61. Use the dot product to construct a nonzero vector w =
〈w1, w2, w3〉 perpendicular to both of the vectors u =
〈1, 2, −3〉 and v = 〈2, 0, 1〉.

62. The unit cube in the first octant in space has opposite ver-
tices O(0, 0, 0) and P(1, 1, 1). Find the angle between the
edge of the cube on the x-axis and the diagonal O P .

63. Prove that the point M given in Eq. (2) is indeed the mid-
point of the segment P1 P2. [Note: You must prove both that
M is equally distant from P1 and P2 and that M lies on the
segment P1 P2.]

64. Given vectors a and b, let a = |a| and b = |b|. Prove that
the vector

c = (ba + ab)

(a + b)

bisects the angle between a and b.

65. Let a, b, and c be three vectors in the xy-plane with a and b
nonzero and nonparallel. Show that there exist scalars α and
β such that c = αa + βb. [Suggestion: Begin by expressing
a, b, and c in terms of i, j, and k.]

66. Let ax + by + c = 0 be the equation of the line L in the
xy-plane with normal vector n. Let P0(x0, y0) be a point on
this line and P1(x1, y1) be a point not on L . Prove that the
perpendicular distance from P1 to L is

d = |n · P0 P1
−−−→|
|n| = |ax1 + by1 + c|√

a2 + b2
.

67. Given the two points A(3, −2, 4) and B(5, 7, −1), write an
equation in x , y, and z that says that the point P(x, y, z) is
equally distant from the points A and B. Then simplify this
equation and give a geometric description of the set of all
such points P(x, y, z).

68. Given the fixed point A (1, 3, 5), the point P(x, y, z), and
the vector n = i − j + 2k, use the dot product to help you

write an equation in x , y, and z that says this: n and A P
−−→

are perpendicular. Then simplify this equation and give a
geometric description of all such points P(x, y, z).
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69. Prove that the points (0, 0, 0), (1, 1, 0), (1, 0, 1), and
(0, 1, 1) are the vertices of a regular tetrahedron by show-
ing that each of the six edges has length

√
2. Then use the

dot product to find the angle between any two edges of the
tetrahedron.

70. The methane molecule CH4 is arranged with the four hydro-
gen atoms at the vertices of a regular tetrahedron and with
the carbon atom at its center (Fig. 11.2.20). Suppose that the
axes and scale are chosen so that the tetrahedron is that of
Problem 69, with its center at ( 1

2 , 1
2 , 1

2 ). Find the bond an-
gle α between the lines from the carbon atom to two of the
hydrogen atoms.

C

H

H

H

H α

FIGURE 11.2.20 The methane
bond angle α of Problem 70.

11.3 THE CROSS PRODUCT OF VECTORS

We often need to find a vector that is perpendicular to each of two vectors a and b in

b

a

+a    b

FIGURE 11.3.1 The cross product
a × b is perpendicular to both a and
b.

space. A routine way of doing this is provided by the cross product a × b of the vectors
a and b. This vector product is quite unlike the dot product a · b in that a · b is a scalar,
whereas a × b is a vector. For this reason a × b is sometimes called the vector product
of the two vectors a and b.

The cross product (or vector product) of the vectors a = 〈a1, a2, a3〉 and b =
〈b1, b2, b3〉 is defined algebraically by the formula

a × b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉. (1)

Although this formula seems unmotivated, it has a redeeming feature: The product
a × b is perpendicular both to a and to b, as suggested in Fig. 11.3.1.

THEOREM 1 Perpendicularity of the Cross Product
The cross product a × b is perpendicular both to a and to b.

Proof We show that a × b is perpendicular to a by showing that the dot product of a
and a × b is zero. With the components as in Eq. (1), we find that

a · (a × b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1)

= a1a2b3 − a1a3b2 + a2a3b1 − a2a1b3 + a3a1b2 − a3a2b1

= 0.

A similar computation shows that b · (a × b) = 0 as well, so a × b is also perpendicular
to the vector b. ◆

You need not memorize Eq. (1), because there is an alternative version involving
determinants that is easy both to remember and to use. Recall that a determinant of
order 2 is defined as follows: ∣∣∣∣a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1. (2)

EXAMPLE 1 ∣∣∣∣2 −1
3 4

∣∣∣∣ = 2 · 4 − (−1) · 3 = 11. ◗

A determinant of order 3 can be defined in terms of determinants of order 2:∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = +a1

∣∣∣∣b2 b3

c2 c3

∣∣∣∣ − a2

∣∣∣∣b1 b3

c1 c3

∣∣∣∣ + a3

∣∣∣∣b1 b2

c1 c2

∣∣∣∣. (3)
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Each element ai of the first row is multiplied by the 2-by-2 “subdeterminant” obtained
by deleting the row and column that contain ai . Note in Eq. (3) that signs are attached
to the ai in accord with the checkerboard pattern∣∣∣∣∣∣

+ − +
− + −
+ − +

∣∣∣∣∣∣ .
Equation (3) is an expansion of the 3-by-3 determinant along its first row. It can

be expanded along any other row or column as well. For example, its expansion along
its second column is∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = −a2

∣∣∣∣b1 b3

c1 c3

∣∣∣∣ + b2

∣∣∣∣a1 a3

c1 c3

∣∣∣∣ − c2

∣∣∣∣a1 a3

b1 b3

∣∣∣∣ .
In linear algebra it is shown that all such expansions yield the same value for the
determinant.

Although we can expand a determinant of order 3 along any row or column, here
we will use only expansions along the first row, as in Eq. (3) and Example 2.

EXAMPLE 2∣∣∣∣∣∣
1 3 −2
2 −1 4

−3 7 5

∣∣∣∣∣∣ = 1 ·
∣∣∣∣−1 4

7 5

∣∣∣∣ − 3 ·
∣∣∣∣ 2 4
−3 5

∣∣∣∣ + (−2) ·
∣∣∣∣ 2 −1
−3 7

∣∣∣∣
= 1 · (−5 − 28) + (−3) · (10 + 12) + (−2) · (14 − 3)

= −33 − 66 − 22 = −121. ◗

Equation (1) for the cross product of the vectors a = a1i + a2j + a3k and b =
b1i + b2j + b3k is equivalent to

a × b =
∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k. (4)

This is easy to verify by expanding the 2-by-2 determinants on the right-hand side and
noting that the three components of the right-hand side of Eq. (1) result. Motivated by
Eq. (4), we write

a × b =
∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣. (5)

The “symbolic determinant” in this equation is to be evaluated by expansion along its
first row, just as in Eq. (3) and just as though it were an ordinary determinant with
real number entries. The result of this expansion is the right-hand side of Eq. (4). The
components of the first vector a in a × b form the second row of the 3-by-3 determi-
nant, and the components of the second vector b form the third row. The order of the
vectors a and b is important because, as we soon shall see, a × b is generally not equal
to b × a: The cross product is not commutative.

Equation (5) for the cross product is the form most convenient for computational
purposes.

EXAMPLE 3 If a = 3i − j + 2k and b = 2i + 2j − k, then

a × b =
∣∣∣∣∣∣
i j k
3 −1 2
2 2 −1

∣∣∣∣∣∣ =
∣∣∣∣−1 2

2 −1

∣∣∣∣ i −
∣∣∣∣3 2
2 −1

∣∣∣∣ j +
∣∣∣∣3 −1
2 2

∣∣∣∣ k

= (1 − 4)i − (−3 − 4)j + (6 − (−2))k.
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Thus

a × b = −3i + 7j + 8k.

You might now pause to verify (by using the dot product) that the vector −3i+7j+8k
is perpendicular both to a and to b. ◗

If the vectors a and b share the same initial point, then Theorem 1 implies that

θ
a b

a    b+

FIGURE 11.3.2 The vectors a, b,
and a × b—in that order—form a
right-handed triple.

a × b is perpendicular to the plane determined by a and b (Fig. 11.3.2). There are
still two possible directions for a × b, but if a × b �= 0, then the triple a, b, a × b is a
right-handed triple in exactly the same sense as the triple i, j, k. Thus if the thumb of
your right hand points in the direction of a × b, then your fingers curl in the direction
of rotation (less than 180◦) from a to b.

Once we have established the direction of a × b, we can describe the cross prod-
uct in completely geometric terms by telling what the length |a × b| of the vector a × b
is. This is given by the formula

|a × b|2 = |a|2|b|2 − (a · b)2. (6)

We can verify this vector identity routinely (though tediously) by writing a =
〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, computing both sides of Eq. (6), and then noting
that the results are equal (Problem 36).

Geometric Significance of the Cross Product
Equation (6) tells us what |a × b| is, but Theorem 2 reveals the geometric significance
of the cross product.

THEOREM 2 Length of the Cross Product
Let θ be the angle between the nonzero vectors a and b (measured so that
0 � θ � π ). Then

|a × b| = |a| |b| sin θ. (7)

Proof We begin with Eq. (6) and use the fact that a · b = |a| |b| cos θ . Thus

|a × b|2 = |a|2|b|2 − (a · b)2 = |a|2|b|2 − (|a| |b| cos θ)2

= |a|2|b|2(1 − cos2 θ) = |a|2|b|2 sin2 θ.

Equation (7) now follows after we take the positive square root of both sides. (This is
the correct root on the right-hand side because sin θ � 0 for 0 � θ � π .) ◆

COROLLARY Parallel Vectors
Two nonzero vectors a and b are parallel (θ = 0 or θ = π ) if and only if a × b = 0.

In particular, the cross product of any vector with itself is the zero vector. Also,

aP Q

θ

S R

b

θ

|b| sin

FIGURE 11.3.3 The area of the
parallelogram PQRS is |a × b|.

Eq. (1) shows immediately that the cross product of any vector with the zero vector is
the zero vector itself. Thus

a × a = a × 0 = 0 × a = 0 (8)

for every vector a.
Equation (7) has an important geometric interpretation. Suppose that a and b are

represented by adjacent sides of a parallelogram PQRS, with a = P Q
−−→

and b = P S
−−→

(Fig. 11.3.3). The parallelogram then has base of length |a| and height |b| sin θ , so its
area is

A = |a| |b| sin θ = |a × b|. (9)
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Thus the length of the cross product a × b is numerically the same as the area of the
parallelogram determined by a and b. It follows that the area of the triangle PQS in
Fig. 11.3.4, whose area is half that of the parallelogram, is

1
2 A = 1

2 |a × b| = 1
2 |P Q

−−→ × P S
−−→|. (10)

Equation (10) gives a quick way to compute the area of a triangle—even one in space—

P

Q

a

b

S

FIGURE 11.3.4 The area of �PQS
is 1

2 |a × b|.

without the need of finding any of its angles.

EXAMPLE 4 Find the area of the triangle with vertices A(3, 0, −1), B(4, 2, 5), and
C(7, −2, 4).

Solution A B
−−→ = 〈1, 2, 6〉 and A C

−−→ = 〈4, −2, 5〉, so

A B
−−→ × A C

−−→ =

∣∣∣∣∣∣∣
i j k

1 2 6
4 −2 5

∣∣∣∣∣∣∣ = 22i + 19j − 10k.

Therefore, by Eq. (10), the area of triangle A BC is

1
2

√
222 + 192 + (−10)2 = 1

2

√
945 ≈ 15.37. ◗

Now let u, v, w be a right-handed triple of mutually perpendicular unit vectors.

k = i     j

i
j

z

x

y

+

FIGURE 11.3.5 The basic unit
vectors in space.

The angle between any two of these is θ = π/2, and |u| = |v| = |w| = 1. Thus it
follows from Eq. (7) that u × v = w. When we apply this observation to the basic unit
vectors i, j, and k (Fig. 11.3.5), we see that

i × j = k, j × k = i, and k × i = j. (11a)

But

j × i = −k, k × j = −i, and i × k = −j. (11b)

These observations, together with the fact that

i × i = j × j = k × k = 0, (11c)

also follow directly from the original definition of the cross product [in the form in
Eq. (5)]. The products in Eqs. (11a) are easily remembered in terms of the sequence

i, j, k, i, j, k, . . . .

The product of any two consecutive unit vectors, in the order in which they appear in
this sequence, is the next one in the sequence.

NOTE The cross product is not commutative: i × j �= j × i. Instead, it is anticom-
mutative: For any two vectors a and b, a × b = −(b × a). This is the first part of
Theorem 3.

THEOREM 3 Algebraic Properties of the Cross Product
If a, b, and c are vectors and k is a real number, then

1. a × b = −(b × a); (12)
2. (k a) × b = a × (k b) = k(a × b); (13)
3. a × (b + c) = (a × b) + (a × c); (14)
4. a · (b × c) = (a × b) · c; (15)
5. a × (b × c) = (a · c)b − (a · b)c. (16)
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The proofs of Eqs. (12) through (15) are straightforward applications of the def-
inition of the cross product in terms of components. See Problem 33 for an outline of
the proof of Eq. (16).

We can find cross products of vectors expressed in terms of the basic unit vec-
tors i, j, and k by means of computations that closely resemble those of ordinary al-
gebra. We simply apply the algebraic properties summarized in Theorem 3 together
with the relations in (11) giving the various products of the three unit vectors. We
must be careful to preserve the order of factors, because vector multiplication is not
commutative—although, of course, we should not hesitate to use Eq. (12).

EXAMPLE 5 (i − 2j + 3k) × (3i + 2j − 4k)

= 3(i × i) + 2(i × j) − 4(i × k) − 6(j × i) − 4( j × j)

+ 8(j × k) + 9(k × i) + 6(k × j) − 12(k × k)

= 3 · 0 + 2k − 4 · (−j) − 6 · (−k) − 4 · 0 + 8i + 9j + 6 · (−i) − 12 · 0

= 2i + 13j + 8k. ◗

Scalar Triple Products
Let us examine the product a · (b × c) that appears in Eq. (15). This expression would
not make sense were the parentheses instead around a · b, because a · b is a scalar, and
thus we could not form the cross product of a · b with the vector c. This means that we
may omit the parentheses—the expression a · b × c is not ambiguous—but we keep
them for extra clarity. The dot product of the vectors a and b × c is a real number,
called the scalar triple product of the vectors a, b, and c. Equation (15) implies the
curious fact that we can interchange the operations · (dot) and × (cross) without
affecting the value of the expression:

a · (b × c) = (a × b) · c

for all vectors a, b, and c.
To compute the scalar triple product in terms of components, write a =

〈a1, a2, a3〉, b = 〈b1, b2, b3〉, and c = 〈c1, c2, c3〉. Then

b × c = (b2c3 − b3c2)i − (b1c3 − b3c1)j + (b1c2 − b2c1)k,

so

a · (b × c) = a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1).

But the expression on the right is the value of the 3-by-3 determinant

a · (b × c) =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣. (17)

This is the quickest way to compute the scalar triple product.

EXAMPLE 6 If a = 2i − 3k, b = i + j + k, and c = 4j − k, then

a · (b × c) =
∣∣∣∣∣∣
2 0 −3
1 1 1
0 4 −1

∣∣∣∣∣∣
= +2 ·

∣∣∣∣1 1
4 −1

∣∣∣∣ − 0 ·
∣∣∣∣1 1
0 −1

∣∣∣∣ + (−3) ·
∣∣∣∣1 1
0 4

∣∣∣∣
= 2 · (−5) + (−3) · 4 = −22. ◗
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The importance of the scalar triple product for applications depends on the fol-

b

a

c

b     c

h θ

+

FIGURE 11.3.6 The volume of the
parallelepiped is |a · (b × c)|.

lowing geometric interpretation. Let a, b, and c be three vectors with the same initial
point. Figure 11.3.6 shows the parallelepiped determined by these vectors—that is,
with arrows representing these vectors as adjacent edges. If the vectors a, b, and c are
coplanar (lie in a single plane), then the parallelepiped is degenerate and its volume
is zero. Theorem 4 holds whether or not the three vectors are coplanar, but it is most
useful when they are not.

THEOREM 4 Scalar Triple Products and Volume
The volume V of the parallelepiped determined by the vectors a, b, and c is the
absolute value of the scalar triple product a · (b × c); that is,

V = |a · (b × c)|. (18)

Proof If the three vectors are coplanar, then a and b × c are perpendicular, so V =
|a · (b × c)| = 0. Assume, then, that they are not coplanar. By Eq. (9) the area of the
base (determined by b and c) of the parallelepiped is A = |b × c|.

Now let α be the acute angle between a and the vector b × c that is perpendicular
to the base. Then the height of the parallelepiped is h = |a| cos α. If θ is the angle
between the vectors a and b × c, then either θ = α or θ = π − α. Hence cos α =
|cos θ |, so

V = A h = |b × c| |a| cos α = |a| |b × c| |cos θ | = |a · (b × c)|.
Thus we have verified Eq. (18). ◆

EXAMPLE 7 Figure 11.3.7 shows the pyramid OPQR and the parallelepiped both

O

P

b

Qc

R

a

FIGURE 11.3.7 The pyramid (and
parallelepiped) of Example 7.

determined by the vectors

a = O P
−−→ = 〈3, 2, −1〉, b = O Q

−−→ = 〈−2, 5, 1〉, and c = O R
−−→ = 〈2, 1, 5〉.

The volume of the pyramid is V = 1
3 A h, where h is its height and the area A of its

base OPQ is half the area of the corresponding base of the parallelepiped. It therefore
follows from Eq. (17) and (18) that V is one-sixth the volume of the parallelepiped:

V = 1

6
|a · (b × c)| = 1

6

∣∣∣∣∣∣
3 2 −1

−2 5 1
2 1 5

∣∣∣∣∣∣ = 108

6
= 18. ◗

EXAMPLE 8 Use the scalar triple product to show that the points A(1, −1, 2),
B(2, 0, 1), C(3, 2, 0), and D(5, 4, −2) are coplanar.

Solution It’s enough to show that the vectors A B
−−→ = 〈1, 1, −1〉, AC

−−→ = 〈2, 3, −2〉,
and A D

−−→ = 〈4, 5, −4〉 are coplanar. But their scalar triple product is∣∣∣∣∣∣
1 1 −1
2 3 −2
4 5 −4

∣∣∣∣∣∣ = 1 · (−2) − 1 · 0 + (−1) · (−2) = 0,

so Theorem 4 guarantees that the parallelepiped determined by these three vectors has
volume zero. Hence the four given points are coplanar. ◗

The cross product occurs quite often in scientific applications. For example,
suppose that a body in space is free to rotate around the fixed point O . If a force F acts
at a point P of the body, that force causes the body to rotate. This effect is measured
by the torque vector τ defined by the relation

τ = r × F,
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where τ = O P
−−→

, the straight line through O determined by τ is the axis of rotation,
and the length

|τ | = |r| |F| sin θ

is the moment of the force F around this axis (Fig. 11.3.8).
Another application of the cross product involves the force exerted on a moving

charged particle by a magnetic field. This force is important in particle accelerators,
mass spectrometers, and television picture tubes; controlling the paths of the ions is
accomplished through the interplay of electric and magnetic fields. In such circum-
stances, the force F on the particle due to a magnetic field depends on three things: the
charge q of the particle, its velocity vector v, and the magnetic field vector B at the
instantaneous location of the particle. And it turns out that

O

r

P

θ
F

θ

|F| sin

FIGURE 11.3.8 The torque vector
τ is normal to both r and F.

F = (qv) × B.

11.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The cross product of the vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 is defined
to be

a × b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.
2. The cross product a × b of a and b is perpendicular both to a and to b.
3. If a = 3i − j + 2k and b = 2i + 2j − k, then a × b = −3i + 7j + 8k.
4. Let θ be the angle between the vectors a and b, measured in such a way that

0 � θ � π . Then the length of a × b is |a × b| = |a||b| sin θ .
5. The nonzero vectors a and b are parallel if and only if a × b = 0.

6. If a and b represent adjacent sides of the parallelogram PQRS, so that a = P Q
−−→

and b = P S
−−→

, then the area of P Q RS is |a × b|.
7. If a and b are vectors in space, then a × b = −(b × a).
8. If a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, and c = 〈c1, c2, c3〉 are space vectors, then

a · (b × c) = (a × b) · c =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ .
9. If a, b, and c are space vectors with the same initial point, then they form three

sides of a parallelepiped whose volume is V = |a · (b × c)|.
10. The scalar triple product can be used to show that the points A(1, −1, 2),

B(2, 0, 1), C(3, 2, 0), and D(5, 4, −2) are coplanar.

11.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. How does the cross product of two vectors resemble the ordinary product of two

numbers? How do the two products differ?
2. Discuss the differences and the similarities between the dot product and the cross

product of two vectors.
3. A surveyor measures a polygonal plot of land by first finding the coordinates

of the vertices of its bounding polygon. Outline how the surveyor might then
proceed to use cross products to calculate the area of the plot.
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11.3 PROBLEMS

Find a × b in Problems 1 through 4.

1. a = 〈5, −1, −2〉, b = 〈−3, 2, 4〉
2. a = 〈3, −2, 0〉, b = 〈0, 3, −2〉
3. a = i − j + 3k, b = −2i + 3j + k

4. a = 4i + 2j − 2k, b = 2i − 5j + 5k

In Problems 5 and 6, find the cross product of the given
2-dimensional vectors a = 〈a1, a2〉 and b = 〈b1, b2〉 by first
“extending” them to 3-dimensional vectors a = 〈a1, a2, 0〉 and
b = 〈b1, b2, 0〉.

5. a = 〈2, −3〉 and b = 〈4, 5〉
6. a = −5i + 2j and b = 7i − 11j

In Problems 7 and 8, find two different unit vectors u and v both
of which are perpendicular to both the given vectors a and b.

7. a = 〈3, 12, 0〉 and b = 〈0, 4, 3〉
8. a = i + 2j + 3k and b = 2i + 3j + 5k

9. Apply Eq. (5) to verify the equations in (11a).

10. Apply Eq. (5) to verify the equations in (11b).

11. Prove that the vector product is not associative by comparing
a × (b × c) with (a × b) × c in the case a = i, b = i + j, and
c = i + j + k.

12. Find nonzero vectors a, b, and c such that a × b = a × c but
b �= c.

13. Suppose that the three vectors a, b, and c are mutually per-
pendicular. Prove that a × (b × c) = 0.

14. Find the area of the triangle with vertices P(1, 1, 0),
Q(1, 0, 1), and R(0, 1, 1).

15. Find the area of the triangle with vertices P(1, 3, −2),
Q(2, 4, 5), and R(−3, −2, 2).

16. Find the volume of the parallelepiped with adjacent edges

O P
−−→

, O Q
−−→

, and O R
−−→

, where P , Q, and R are the points given
in Problem 14.

17. (a) Find the volume of the parallelepiped with adjacent edges

O P
−−→

, O Q
−−→

, and O R
−−→

, where P , Q, and R are the points given
in Problem 15. (b) Find the volume of the pyramid with ver-
tices O , P , Q, and R.

18. Find a unit vector n perpendicular to the plane through the
points P , Q, and R of Problem 15. Then find the distance

from the origin to this plane by computing n · O P
−−→

.

In Problems 19 through 22, determine whether or not the four
given points A, B, C, and D are coplanar. If not, find the volume
of the pyramid with these four points as its vertices, given that its

volume is one-sixth that of the parallelepiped spanned by A B
−−→

,

A C
−−→

, and A D
−−→

.

19. A(1, 3, −2), B(3, 4, 1), C(2, 0, −2), and D(4, 8, 4)

20. A(13, −25, −37), B(25, −14, −22), C(24, −38, −25), and
D(26, 10, −19)

21. A(5, 2, −3), B(6, 4, 0), C(7, 5, 1), and D(14, 14, 18)

22. A(25, 22, −33), B(36, 34, −20), C(27, 25, −29), and
D(34, 34, −12)

23. Figure 11.3.9 shows a polygonal plot of land, with angles
and lengths measured by a surveyor. First find the coor-
dinates of each vertex. Then use the vector product [as in
Eq. (10)] to calculate the area of the plot.

(0, 0)

15°

37 °

83 m

176 m

FIGURE 11.3.9 Problem 23.

24. Repeat Problem 23 with the plot shown in Fig. 11.3.10.

27°

255'

225'
18°

(0, 0)

FIGURE 11.3.10 Problem 24.

25. Repeat Problem 23 with the plot shown in Fig. 11.3.11.
[Suggestion: First divide the plot into two triangles.]

(0, 0)

25°

65°

92°

85°

220'

210'

150'

FIGURE 11.3.11 Problem 25.

26. Repeat Problem 23 with the plot shown in Fig. 11.3.12.

(0, 0) (175, 0)

110° 130° 200 m

90°

150 m

115°

125 m

FIGURE 11.3.12 Problem 26.

27. Apply Eq. (5) to verify Eq. (12), the anticommutativity of
the vector product.

28. Apply Eq. (17) to verify the identity for scalar triple products
stated in Eq. (15).

29. Suppose that P and Q are points on a line L in space. Let A
be a point not on L (Fig. 11.3.13). (a) Calculate in two ways
the area of the triangle APQ to show that the perpendicular
distance from A to the line L is

d = |AP
−−→ × AQ

−−→|
|P Q
−−→|

.
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(b) Use this formula to compute the distance from the
point (1, 0, 1) to the line through the two points P(2, 3, 1)

and Q(−3, 1, 4).

A

P

Q
L

d

FIGURE 11.3.13 Problem 29.

30. Suppose that A is a point not on the plane determined by
the three points P , Q, and R. Calculate in two ways the
volume of the pyramid APQR to show that the perpendicular
distance from A to this plane is

d = |AP
−−→ · (AQ

−−→ × AR
−→

)|
|P Q
−−→ × P R

−−→|
.

Use this formula to compute the distance from the
point (1, 0, 1) to the plane through the points P(2, 3, 1),
Q(3, −1, 4), and R(0, 0, 2).

31. Suppose that P1 and Q1 are two points on the line L 1 and
that P2 and Q2 are two points on the line L 2. If the lines
L 1 and L 2 are not parallel, then the shortest distance d be-

tween them is the projection of P1 P2
−−−→

onto a vector n that is

perpendicular both to P1 Q1
−−−→

and P2 Q2
−−−→

. Prove that

d = |P1 P2
−−−→· (P1 Q1

−−−→ × P2 Q2
−−−→

)|
|P1 Q1
−−−→ × P2 Q2

−−−→|
.

32. Use the following method to establish that the vector triple
product (a × b) × c is equal to (a · c)b − (b · c)a. (a) Let I
be a unit vector in the direction of a and let J be a unit vector
perpendicular to I and parallel to the plane of a and b. Let
K = I × J. Explain why there are scalars a1, b1, b2, c1, c2,
and c3 such that

a = a1I, b = b1I + b2J, and c = c1I + c2J + c3K.

(b) Now show that

(a × b) × c = −a1b2c2I + a1b2c1J.

(c) Finally, substitute for I and J in terms of a and b.

33. By permutation of the vectors a, b, and c, deduce from Prob-
lem 32 that

a × (b × c) = (a · c)b − (a · b)c

[this is Eq. (16)].

34. Deduce from the orthogonality properties of the vector prod-
uct that the vector (a × b) × (c × d) can be written in the
form r1a + r2b and in the form s1c + s2d.

35. Consider the triangle in the xy-plane that has vertices
(x1, y1, 0), (x2, y2, 0), and (x3, y3, 0). Use the vector prod-
uct to prove that the area of this triangle is half the absolute
value of the determinant∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ .
36. Given the vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, ver-

ify Eq. (6),

|a × b|2 = |a|2 |b|2 − (a · b)2,

by computing each side in terms of the components of a
and b.

11.4 LINES AND PLANES IN SPACE

Just as in the plane, a straight line in space is determined by any two points P0 and P1

that lie on it. We may write v = P0 P1
−−−→

—meaning that the directed line segment P0 P1
−−−→

z

x
y

r0
r

v

P0

P

L

FIGURE 11.4.1 Finding the
equation of the line L that passes
through the point P0 and is parallel
to the vector v.

represents the vector v—to describe the “direction of the line.” Thus, alternatively, a
line in space can be specified by giving a point P0 on it and a [nonzero] vector v that
determines the direction of the line.

To investigate equations that describe lines in space, let us begin with a straight
line L that passes through the point P0(x0, y0, z0) and is parallel to the vector v =
ai + bj + ck (Fig. 11.4.1). Then another point P(x, y, z) lies on the line L if and only
if the vectors v and P0 P

−−−→
are parallel, in which case

P0 P
−−−→ = tv (1)

for some real number t . If r0 = O P0
−−−→

and r = O P
−−→

are the position vectors of the points
P0 and P , respectively, then P0 P

−−−→ = r − r0. Hence Eq. (1) gives the vector equation

r = r0 + tv (2)

describing the line L . As indicated in Fig. 11.4.1, r is the position vector of an arbitrary
point P on the line L , and Eq. (2) gives r in terms of the parameter t , the position vector
r0 of a fixed point P0 on L , and the fixed vector v that determines the direction of L .
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The left- and right-hand sides of Eq. (2) are equal, and each side is a vector. So
corresponding components are also equal. When we write the resulting equations, we
get a scalar description of the line L . Because r0 = 〈x0, y0, z0〉 and r = 〈x, y, z〉,
Eq. (2) thereby yields the three scalar equations

x = x0 + at, y = y0 + bt, z = z0 + ct . (3)

These are parametric equations of the line L that passes through the point (x0, y0, z0)

P1

L

P2v

FIGURE 11.4.2 The line L of
Example 1.

and is parallel to the vector v = 〈a, b, c〉.

EXAMPLE 1 Write parametric equations of the line L that passes through the
points P1(1, 2, 2) and P2(3, −1, 3) of Fig. 11.4.2.

Solution The line L is parallel to the vector

v = P1 P2
−−−→ = (3i − j + 3k) − (i + 2j + 2k) = 2i − 3j + k,

so we take a = 2, b = −3, and c = 1. With P1 as the fixed point, the equations in (3)
give

x = 1 + 2t, y = 2 − 3t, z = 2 + t

as parametric equations of L . In contrast, with P2 as the fixed point and with the vector

−2v = −4i + 6j − 2k

(parallel to v) as the direction vector, the equations in (3) yield the parametric
equations

x = 3 − 4t, y = −1 + 6t, z = 3 − 2t.

Thus the parametric equations of a line are not unique. ◗

Given two straight lines L 1 and L 2 with parametric equations

v1

L1

L2

v2

O

v2

v1

FIGURE 11.4.3 Parallel lines.

x = x1 + a1t, y = y1 + b1t, z = z1 + c1t (4)

and

x = x2 + a2s, y = y2 + b2s, z = z2 + c2s, (5)

respectively, we can see at a glance whether or not L 1 and L 2 are parallel. Because L 1

is parallel to v1 = 〈a1, b1, c1〉 and L 2 is parallel to v2 = 〈a2, b2, c2〉, it follows that the
lines L 1 and L 2 are parallel if and only if the vectors v1 and v2 are scalar multiples of
each other (Fig. 11.4.3). If the two lines are not parallel, we can attempt to find a point
of intersection by solving the equations

x1 + a1t = x2 + a2s and y1 + b1t = y2 + b2s

simultaneously for s and t . If these values of s and t also satisfy the equation z1+c1t =

v1 L1

L2
v2

v1

O
v2

FIGURE 11.4.4 Skew lines.

z2 + c2s, then we have found a point of intersection. Its rectangular coordinates can
be found by substituting the resulting value of t into Eq. (4) [or the resulting value of
s into Eq. (5)]. Otherwise, the lines L 1 and L 2 do not intersect. Two nonparallel and
nonintersecting lines in space are called skew lines (Fig. 11.4.4).

EXAMPLE 2 The line L 1 with parametric equations

x = 1 + 2t, y = 2 − 3t, z = 2 + t

passes through the point P1(1, 2, 2) (discovered by substituting t = 0) and is parallel
to the vector v1 = 〈2, −3, 1〉. The line L 2 with parametric equations

x = 3 + 4t, y = 1 − 6t, z = 5 + 2t

passes through the point P2(3, 1, 5) and is parallel to the vector v2 = 〈4, −6, 2〉. Be-
cause v2 = 2v1, we see that L1 and L 2 are parallel.

844

www.konkur.in



Lines and Planes in Space SECTION 11.4 845

But are L 1 and L 2 actually different lines, or are we perhaps dealing with two
different parametrizations of the same line? To answer this question, we note that
P1P2
−−−→ = 〈2, −1, 3〉 is not a multiple of, and therefore is not parallel to, v1 = 〈2, −3, 1〉.
Thus the point P2 does not lie on the line L 1, and hence the lines L 1 and L 2 are indeed
distinct. ◗

If all the coefficients a, b, and c in (3) are nonzero, then we can eliminate the
parameter t . Simply solve each equation for t and then set the resulting expressions
equal to each other. This gives

x − x0

a
= y − y0

b
= z − z 0

c
. (6)

These are called the symmetric equations of the line L . If one or more of a or b or c
is zero, this means that L lies in a plane parallel to one of the coordinate planes, and
in this case the line does not have symmetric equations. For example, if c = 0, then L
lies in the horizontal plane z = z0. Of course, it is still possible to write equations for
L that don’t include the parameter t ; if c = 0, for instance, but a and b are nonzero,
then we could describe the line L as the set of points (x, y, z) satisfying the equations

x − x0

a
= y − y0

b
, z = z0.

EXAMPLE 3 Find both parametric and symmetric equations of the line L through
the points P0(3, 1, −2) and P1(4, −1, 1). Find also the points at which L intersects the
three coordinate planes.

Solution The line L is parallel to the vector v = P0 P1
−−−→ = 〈1, −2, 3〉, so we take

a = 1, b = −2, and c = 3. The equations in (3) then give the parametric equations

x = 3 + t, y = 1 − 2t, z = −2 + 3t

of L , and the equations in (6) give the symmetric equations

x − 3

1
= y − 1

−2
= z + 2

3
.

To find the point at which L intersects the xy-plane, we set z = 0 in the symmetric
equations. This gives

x − 3

1
= y − 1

−2
= 2

3
,

and so x = 11
3 and y = − 1

3 . Thus L meets the xy-plane at the point ( 11
3 , − 1

3 , 0).
Similarly, x = 0 gives (0, 7, −11) for the point where L meets the yz-plane, and y = 0
gives ( 7

2 , 0, − 1
2 ) for its intersection with the xz-plane. ◗

Planes in Space
A plane P in space is determined by a point P0(x0, y0, z0) through which P passes and
a line through P0 that is normal to P . Alternatively, we may be given P0 on P and
a vector n = 〈a, b, c〉 normal to the plane P . The point P(x, y, z) lies on the plane
P if and only if the vectors n and P0 P

−−−→
are perpendicular (Fig. 11.4.5), in which case

n · P0 P
−−−→ = 0. We write P0 P

−−−→ = r−r0, where r and r0 are the position vectors r = O P
−−→

and r0 = O P0
−−−→

of the points P and P0, respectively. Thus we obtain a vector equation

z

x
y

P0

P

n

FIGURE 11.4.5 Because n is
normal to P, it follows that n is
normal to P0 P

−−→
for all points P in P.

n · (r − r0) = 0 (7)

of the plane P .
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If we substitute n = 〈a, b, c〉, r = 〈x, y, z〉, and r0 = 〈x0, y0, z0〉 into Eq. (7),
we thereby obtain a scalar equation

a(x − x0) + b(y − y0) + c(z − z0) = 0 (8)

of the plane through P0(x0, y0, z0) with normal vector n = 〈a, b, c〉.
EXAMPLE 4 An equation of the plane through P0(−1, 5, 2) with normal vector n =
〈1, −3, 2〉 is

1 · (x + 1) + (−3) · (y − 5) + 2 · (z − 2) = 0;
that is, x − 3y + 2z = −12. ◗

IMPORTANT The coefficients of x , y, and z in the last equation are the components
of the normal vector. This is always the case, because we can write Eq. (8) in the form

ax + by + cz = d, (9)

where d = ax0 + by0 + cz0. Conversely, every linear equation in x , y, and z of the
form in Eq. (9) represents a plane in space provided that the coefficients a, b, and c
are not all zero. The reason is that if c �= 0 (for instance), then we can choose x0 and
y0 arbitrarily and solve the equation ax0 + by0 + cz0 = d for z0. With these values,
Eq. (9) takes the form

ax + by + cz = ax0 + by0 + cz0;
that is,

a(x − x0) + b(y − y0) + c(z − z0) = 0,

so this equation represents the plane through (x0, y0, z0) with normal vector 〈a, b, c〉.

Q

n

R

P

FIGURE 11.4.6 The normal vector
n as a cross product (Example 5).

EXAMPLE 5 Find an equation for the plane through the three points P(2, 4, −3),
Q(3, 7, −1), and R(4, 3, 0).

Solution We want to use Eq. (8), so we first need a vector n that is normal to the
plane in question. One easy way to obtain such a normal vector is by using the cross
product. Let

n = P Q
−−→ × P R

−−→ =

∣∣∣∣∣∣∣
i j k

1 3 2
2 −1 3

∣∣∣∣∣∣∣ = 11i + j − 7k.

Because P Q
−−→

and P R
−−→

are in the plane, their cross product n is normal to the plane
(Fig. 11.4.6). Hence the plane has equation

11(x − 2) + (y − 4) − 7(z + 3) = 0.

After simplifying, we write the equation as

FIGURE 11.4.7 The intersection of
two nonparallel planes is a straight
line.

11x + y − 7z = 47. ◗

Two planes with normal vectors n and m are said to be parallel provided that n
and m are parallel. Otherwise, the two planes meet in a straight line (Fig. 11.4.7), and
we can find the angle θ between the normal vectors n and m (Fig. 11.4.8). We then
define the angle between the two planes to be either θ or π − θ , whichever is an acute
angle.

EXAMPLE 6 Find the angle θ between the planes with equations

2x + 3y − z = −3 and 4x + 5y + z = 1.

Then write symmetric equations of their line of intersection L .

mn

θ

FIGURE 11.4.8 Vectors m and n
normal to the planes P and Q,
respectively.
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Solution The vectors n = 〈2, 3, −1〉 and m = 〈4, 5, 1〉 are normal to the two planes,
so

cos θ = n · m
|n| |m| = 22√

14
√

42
.

Hence θ = cos−1( 11
21

√
3) ≈ 24.87◦.

To determine the line of intersection L of the two planes, we need first to find a
point P0 that lies on L . We can do this by substituting an arbitrarily chosen value of
x into the equations of the given planes and then solving the resulting equations for y
and z. With x = 1 we get the equations

2 + 3y − z = −3,

4 + 5y + z = 1.

The common solution is y = −1, z = 2. Thus the point P0(1, −1, 2) lies on the line
L .

Next we need a vector v parallel to L . The vectors n and m normal to the two
planes are both perpendicular to L , so their cross product is parallel to L . Alterna-
tively, we can find a second point P1 on L by substituting a second value of x into the
equations of the given planes and solving for y and z, as before. With x = 5 we obtain
the equations

10 + 3y − z = −3,

20 + 5y + z = 1,

with common solution y = −4, z = 1. Thus we obtain a second point P1(5, −4, 1) on
L and thereby the vector

v = P0 P1
−−−→ = 〈4, −3, −1〉

parallel to L . From (6) we now find symmetric equations

x − 1

4
= y + 1

−3
= z − 2

−1

of the line of intersection of the two given planes. ◗

Finally, we may note that the symmetric equations of a line L present the line as
an intersection of planes: We can rewrite the equations in (6) in the form

b(x − x0) − a(y − y0) = 0,

c(x − x0) − a(z − z0) = 0,

c(y − y0) − b(z − z0) = 0.

(10)

These are the equations of three planes that intersect in the line L . The first has normal
vector 〈b, −a, 0〉, a vector parallel to the xy-plane. So the first plane is perpendicular
to the xy-plane. Similarly, the second plane is perpendicular to the xz-plane and the
third is perpendicular to the yz-plane.

The equations in (10) are symmetric equations of the line that passes through the
point P0(x0, y0, z0) and is parallel to v = 〈a, b, c〉. Unlike the equations in (6), these
equations are meaningful whether or not all the components a, b, and c are nonzero.
They have a special form, though, if one of the three components is zero. If, say,
a = 0, then the first two equations in (10) take the form x = x0. The line is then the
intersection of the two planes x = x0 and c(y − y0) = b(z − z0).

EXAMPLE 7 In Example 3 we saw that the line L through the point P0(3, 1, −2)

and P1(4, −1, 1) has symmetric equations

x − 3

1
= y − 1

−2
= z + 2

3
.
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Proceeding to rewrite these equations as in (10), we obtain first the equations

−2(x − 3) = y − 1,

3(x − 3) = z + 2,

3(y − 1) = −2(z + 2)

and then (upon simplification) the equations

2x + y = 7,

3x − z = 11,

3y + 2z = −1

that represent L as the intersection of three planes, each of them parallel to one of the
three coordinate axes in space. Figure 11.4.9 shows a computer plot of these three
planes intersecting in the line L . ◗

x

z

y
1

2

3

FIGURE 11.4.9 The line L of
Example 7 is the intersection of the
plane P1 parallel to the z-axis, the
plane P2 parallel to the y-axis, and
the plane P3 parallel to the x-axis.

11.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The equations x = 1 + 2t , y = 2 − 3t , z = 2 + t are parametric equations of the
line through the two points (1, 2, 2) and (3, −1, 3).

2. The symmetric equations of a straight line in space have the form

x − x0

a
= y − y0

b
= z − z0

c
.

3. Two nonparallel and nonintersecting lines in space are called skew lines.
4. The line through the two points (3, 1, −2) and (4, −1, 1) is parallel to the vector

〈1, −2, 3〉.
5. It is impossible to determine where a given line in space meets the three coordi-

nate planes.
6. Every plane in space has an equation of the form ax + by + cz = d where not

all three of a, b, and c are zero.
7. If a plane in space has normal vector n = 〈a, b, c〉, then it has a Cartesian equa-

tion of the form ax + by + cz = d.
8. An equation for the plane through the three points (2, 4, −3), (3, 7, −1), and

(4, 3, 0) is 11x + y − 7z = 46.
9. If two planes in space have normal vectors n and m, then the angle between those

two planes is, by definition, the angle between n and m.
10. The equations

2x + y = 7, 3x − z = 11, 3y + 2z = −1

represent a certain line as the intersection of three planes, each of which is paral-
lel to one of the coordinate axes in space.

11.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. Figure 11.4.10 shows the possible configuration of two lines L1 and L2 in the

xy-plane. We see that the intersection of L1 and L2 can consists of either one
point, no points, or infinitely many points. Explain why this geometric observa-
tion implies that two linear equations a1x + b1 y = c1 and a2x + b2 y = c2 in
two unknowns x and y can have either a single simultaneous solution (x, y), no
solution, or infinitely many different solutions.
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L1

x

y L2

(a) Two intersecting lines:

a unique solution.

L1

x

y

L2

(b) Two parallel lines:

no solution.

L1 = L2

x

y

(c) Two coincident lines:

infinitely many solutions.

FIGURE 11.4.10 (a) The nonparallel lines L1 and L2 intersect in a single point. (b) The distinct parallel
lines L1 and L2 have no point of intersection. (c) The coincident lines L1 and L2 have infinitely many points
in common.

In each of the following cases, describe similarly the possible configurations and hence
the possible number of points of intersection of the indicated number of lines or planes.
Translate your geometric conclusion into a statement about the possible number of
solutions of a system of two or three linear equations in two or three unknowns.

2. Three lines in the plane.
3. Two lines in space.
4. Three planes in space.

11.4 PROBLEMS

In Problems 1 through 4, write parametric equations of the
straight line that passes through the point P and is parallel to
the vector v.

1. P(0, 0, 0), v = i + 2j + 3k

2. P(3, −4, 5), v = −2i + 7j + 3k

3. P(4, 13, −3), v = 2i − 3k

4. P(17, −13, −31), v = 〈−17, 13, 31〉
In Problems 5 through 8, write parametric equations of the
straight line that passes through the points P1 and P2.

5. P1(0, 0, 0), P2(−6, 3, 5)

6. P1(3, 5, 7), P2(6, −8, 10)

7. P1(3, 5, 7), P2(6, 5, 4)

8. P1(29, −47, 13), P2(73, 53, −67)

In Problems 9 through 14, write both parametric and symmetric
equations for the indicated straight line.

9. Through P(2, 3, −4) and parallel to v = 〈1, −1, −2〉
10. Through P(2, 5, −7) and Q(4, 3, 8)

11. Through P(1, 1, 1) and perpendicular to the xy-plane

12. Through the origin and perpendicular to the plane with equa-
tion x + y + z = 1

13. Through P(2, −3, 4) and perpendicular to the plane with
equation 2x − y + 3z = 4

14. Through P(2, −1, 5) and parallel to the line with parametric
equations x = 3t , y = 2 + t , z = 2 − t

In Problems 15 through 20, determine whether the two lines L 1

and L 2 are parallel, skew, or intersecting. If they intersect, find
the point of intersection.

15. L 1: x − 2 = 1
2 (y + 1) = 1

3 (z − 3);
L 2: 1

3 (x − 5) = 1
2 (y − 1) = z − 4

16. L 1: 1
4 (x − 11) = y − 6 = − 1

2 (z + 5);
L 2: 1

6 (x − 13) = − 1
3 (y − 2) = 1

8 (z − 5)

17. L 1: x = 6 + 2t , y = 5 + 2t , z = 7 + 3t ;
L 2: x = 7 + 3s, y = 5 + 3s, z = 10 + 5s

18. L 1: x = 14 + 3t , y = 7 + 2t , z = 21 + 5t ;
L 2: x = 5 + 3s, y = 15 + 5s, z = 10 + 7s

19. L 1: 1
6 (x − 7) = 1

4 (y + 5) = − 1
8 (z − 9);

L 2: − 1
9 (x − 11) = − 1

6 (y − 7) = 1
12 (z − 13)

20. L 1: x = 13 + 12t , y = −7 + 20t , z = 11 − 28t ;
L 2: x = 22 + 9s, y = 8 + 15s, z = −10 − 21s

In Problems 21 through 24, write an equation of the plane with
normal vector n that passes through the point P.

21. P(0, 0, 0), n = 〈1, 2, 3〉
22. P(3, −4, 5), n = 〈−2, 7, 3〉
23. P(5, 12, 13), n = i − k

24. P(5, 12, 13), n = j

In Problems 25 through 32, write an equation of the indicated
plane.

25. Through P(5, 7, −6) and parallel to the xz-plane

26. Through P(1, 0, −1) with normal vector n = 〈2, 2, −1〉
27. Through P(10, 4, −3) with normal vector n = 〈7, 11, 0〉
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28. Through P(1, −3, 2) with normal vector n = O P
−−→

29. Through the origin and parallel to the plane with equation
3x + 4y = z + 10

30. Through P(5, 1, 4) and parallel to the plane with equation
x + y − 2z = 0

31. Through the origin and the points P(1, 1, 1) and Q(1, −1, 3)

32. Through the points A(1, 0, −1), B(3, 3, 2), and C(4, 5, −1)

In Problems 33 and 34, write an equation of the plane that con-
tains both the point P and the line L .

33. P(2, 4, 6); L : x = 7 − 3t , y = 3 + 4t , z = 5 + 2t

34. P(13, −7, 29); L : x = 17 − 9t , y = 23 + 14t ,
z = 35 − 41t

In Problems 35 through 38, determine whether the line L and
the plane P intersect or are parallel. If they intersect, find the
point(s) of intersection.

35. L: x = 7 − 4t , y = 3 + 6t , z = 9 + 5t ;
P: 4x + y + 2z = 17

36. L: x = 15 + 7t , y = 10 + 12t , z = 5 − 4t ;
P: 12x − 5y + 6z = 50

37. L: x = 3 + 2t , y = 6 − 5t , z = 2 + 3t ;
P: 3x + 2y − 4z = 1

38. L: x = 15 − 3t , y = 6 − 5t , z = 21 − 14t ;
P: 23x + 29y − 31z = 99

In Problems 39 through 42, find the angle between the planes
with the given equations.

39. x = 10 and x + y + z = 0

40. 2x − y + z = 5 and x + y − z = 1

41. x − y − 2z = 1 and x − y − 2z = 5

42. 2x + y + z = 4 and 3x − y − z = 3

In Problems 43 through 46, write both parametric and symmetric
equations of the line of intersection of the indicated planes.

43. The planes of Problem 39 44. The planes of Problem 40

45. The planes of Problem 41 46. The planes of Problem 42

47. Write symmetric equations for the line through P(3, 3, 1)

that is parallel to the line of Problem 46.

48. Find an equation of the plane through P(3, 3, 1) that is
perpendicular to the planes x + y = 2z and 2x + z = 10.

49. Find an equation of the plane through (1, 1, 1) that intersects
the xy-plane in the same line as does the plane 3x +2y − z =
6.

50. Find an equation for the plane that passes through the point
P(1, 3, −2) and contains the line of intersection of the
planes x − y + z = 1 and x + y − z = 1.

51. Find an equation of the plane that passes through the points
P(1, 0, −1) and Q(2, 1, 0) and is parallel to the line of in-
tersection of the planes x + y + z = 5 and 3x − y = 4.

52. Prove that the lines x − 1 = 1
2 (y + 1) = z − 2 and

x − 2 = 1
3 (y − 2) = 1

2 (z − 4) intersect. Find an equation of
the [only] plane that contains them both.

53. Prove that the line of intersection of the planes x+2y−z = 2
and 3x + 2y + 2z = 7 is parallel to the line x = 1 + 6t ,
y = 3 − 5t , z = 2 − 4t . Find an equation of the plane
determined by these two lines.

54. Show that the perpendicular distance D from the point
P0(x0, y0, z0) to the plane ax + by + cz = d is

D = |ax0 + by0 + cz0 − d|√
a2 + b2 + c2

.

[Suggestion: The line that passes through P0 and is per-
pendicular to the given plane has parametric equations x =
x0 + at , y = y0 + bt , z = z0 + ct . Let P1(x1, y1, z1) be
the point of this line, corresponding to t = t1, at which it
intersects the given plane. Solve for t1, and then compute

D = |P0 P1
−−−→|.]

In Problems 55 and 56, use the formula of Problem 54 to find the
distance between the given point and the given plane.

55. The origin and the plane x + y + z = 10

56. The point P(5, 12, −13) and the plane with equation 3x +
4y + 5z = 12

57. Prove that any two skew lines lie in parallel planes.

58. Use the formula of Problem 54 to show that the perpendic-
ular distance D between the two parallel planes ax + by +
cz + d1 = 0 and ax + by + cz + d2 = 0 is

D = |d1 − d2|√
a2 + b2 + c2

.

59. The line L 1 is described by the equations

x − 1 = 2y + 2, z = 4.

The line L 2 passes through the points P(2, 1, −3) and
Q(0, 8, 4). (a) Show that L 1 and L 2 are skew lines. (b) Use
the results of Problems 57 and 58 to find the perpendicular
distance between L 1 and L 2.

60. Find the shortest distance between points of the line L 1 with
parametric equations

x = 7 + 2t, y = 11 − 5t, z = 13 + 6t

and the line L2 of intersection of the planes 3x − 2y + 4z =
10 and 5x + 3y − 2z = 15.
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11.5 CURVES AND MOTION IN SPACE

In Section 9.4 we discussed parametric curves in the plane. Now think of a point that
moves along a curve in three-dimensional space. We can describe this point’s changing
position by means of parametric equations

x = f (t), y = g(t), z = h(t) (1)

that specify its coordinates as functions of time t . A parametric curve C in space is

FIGURE 11.5.1 A tubular knot
whose centerline is the parametric
curve of Example 1.

(by definition) simply a triple ( f, g, h) of such coordinate functions. But often it is
useful to refer informally to C as the trajectory in space that is traced out by a moving
point with these coordinate functions. Space curves exhibit a number of interesting
new phenomena that we did not see with plane curves.

EXAMPLE 1 Figure 11.5.1 shows a common trefoil knot in space defined by the
parametric equations

x(t) = (
2 + cos 3

2 t
)

cos t, y(t) = (
2 + cos 3

2 t
)

sin t, z(t) = sin 3
2 t.

Actually, to enhance the three-dimensional appearance of this curve’s shape, we have
plotted in the figure a thin tubular surface whose centerline is the knot itself. The
viewpoint for the computer plot is so chosen that we are looking down on the curve
from a point on the positive z-axis. ◗

EXAMPLE 2 Figure 11.5.2 shows simultaneously the circle

x(t) = 4 cos t, y(t) = 4 sin t, z(t) ≡ 0

in the xy-plane, the ellipse

x(t) = 5 cos t, y(t) ≡ 0, z(t) = 3 sin t

in the xz-plane, and the ellipse

x(t) ≡ 0, y(t) = 3 cos t, z(t) = 5 sin t

in the yz-plane. Here, again, we actually have plotted thin tubular tori having these
closed curves as centerlines. Can you see that any two of these curves are unlinked,
but that the three together apparently cannot be “pulled apart”? ◗

−5

−2.5

0

2.5

5

z

−5
−2.5

0
2.5

5

x

−4

−2

0

2

4

y

FIGURE 11.5.2 The Borromean rings of Example 2.
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y

z

x

r
(x, y, z)

FIGURE 11.5.3 The position vector
r = 〈x, y, z〉 of a moving particle in space.

x

y

x2 + y2 = a2

Trajectory:
Helix

z

FIGURE 11.5.4 The point of
Example 3 moves in a helical path.

Vector-Valued Functions
The changing location of a point moving along the parametric curve in (1) can be
described by giving its position vector

r(t) = x(t)i + y(t)j + z(t)k = 〈x(t), y(t), z(t)〉, (2)

or simply

r = x i + yj + zk = 〈x, y, z〉,
whose components are the coordinate functions of the moving point (Fig. 11.5.3).
Equation (2) defines a vector-valued function that associates with the number t the
vector r(t). In the case of a plane curve described by a two-dimensional position vec-
tor, we may suppress the third component in Eq. (2) and write r(t) = x(t)i + y(t)j =
〈x(t), y(t)〉.

EXAMPLE 3 The position vector

r(t) = i cos t + j sin t + tk (3)

describes the helix of Fig. 11.5.4. Because x2 + y2 = cos2 t + sin2 t = 1 for all t ,
the projection (x(t), y(t)) into the xy-plane moves around and around the unit circle.
Meanwhile, because z = t , the point (cos t, sin t, t) steadily moves upward on the
vertical cylinder in space that stands above and below the circle x2 + y2 = 1 in the xy-
plane. The familiar corkscrew shape of the helix appears everywhere from the coiled
springs of an automobile to the double helix model of the DNA molecule that carries
the genetic information of living cells (Fig. 11.5.5). ◗

Much of the calculus of (ordinary) real-valued functions applies to vector-valued
functions. To begin with, the limit of a vector-valued function r = 〈 f, g, h〉 is defined
as follows:

lim
t→a

r(t) =
〈
lim
t→a

f (t), lim
t→a

g(t), lim
t→a

h(t)
〉

= i
(

lim
t→a

f (t)
)
+ j

(
lim
t→a

g(t)
)
+ k

(
lim
t→a

h(t)
)
, (4)

provided that the limits in the last three expressions exist. Thus we take limits of
vector-valued functions by taking limits of their component functions.

FIGURE 11.5.5 The intertwined
helices that model the DNA
molecule served as a model for the
DNA Tower in Kings Park, Perth,
Australia. For a fascinating account
of the discovery of the role of the
helix as the genetic basis for life
itself, see James D. Watson, The
Double Helix (New York:
Atheneum, 1968).
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We say that r = r(t) is continuous at the number a provided that

r(t)

r(t + h)

r(t + h) − r(t)
h

r(t + h) − r(t)

C

r(t + h) − r(t)
h

r(t + h) − r(t)

r(t)

r(t + h)

x

y

FIGURE 11.5.6 Geometry of the
derivative of a vector-valued
function.

lim
t→a

r(t) = r(a).

This amounts to saying that r is continuous at a if and only if its component functions
f , g, and h are continuous at a.

The derivative r′(t) of the vector-valued function r(t) is defined in almost ex-
actly the same way as the derivative of a real-valued function. Specifically,

r′(t) = lim
�t→0

r(t + �t) − r(t)
�t

, (5)

provided that this limit exists. Figures 11.5.6 and 11.5.7 correctly suggest that the
derivative vector

r′(t) = dr
dt

= Dt [r(t)]

will be tangent to the curve C with position vector r(t). For this reason, we call r′(t) a
C

r′(t)r(t)

x

y

FIGURE 11.5.7 The derivative
vector is tangent to the curve at the
point of evaluation.

tangent vector to the curve C at the corresponding point P provided that r′(t) exists
and is nonzero there. The tangent line to C at this point P with position vector r(t) is
then the line through P determined by r′(t).

Our next result implies the simple but important fact that the derivative vector
r′(t) can be calculated by componentwise differentiation of r(t)—that is, by differ-
entiating separately the component functions of r(t).

THEOREM 1 Componentwise Differentiation
Suppose that

r(t) = 〈 f (t), g(t), h(t)〉 = f (t)i + g(t)j + h(t)k,

where f , g, and h are differentiable functions. Then

r′(t) = 〈 f ′(t), g′(t), h′(t)〉 = f ′(t)i + g′(t)j + h′(t)k. (6)

That is, if r = x i + yj + zk, then

dr
dt

= dx

dt
i + dy

dt
j + dz

dt
k.

Proof We take the limit in Eq. (5) simply by taking limits of components. We find
that

r′(t) = lim
�t→0

�r
�t

= lim
�t→0

r(t + �t) − r(t)
�t

= lim
�t→0

f (t + �t)i + g(t + �t)j + h(t + �t)k − f (t)i − g(t)j − h(t)k
�t

=
(

lim
�t→0

f (t + �t) − f (t)

�t

)
i +

(
lim

�t→0

g(t + �t) − g(t)

�t

)
j

+
(

lim
�t→0

h(t + �t) − h(t)

�t

)
k

= f ′(t)i + g′(t)j + h′(t)k. ◆

EXAMPLE 4 Find parametric equations of the line tangent to the helix C of
Example 3 at the point P(−1, 0, π) where t = π .

Solution Componentwise differentiation of r(t) = i cos t + j sin t + tk yields

r′(t) = −i sin t + j cos t + k,
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so the vector tangent to C at P is r′(π) = −j + k = 〈0, −1, 1〉. It follows that the
parametric equations of the line tangent at P—with its own position vector r(π) +
tr′(π)—are

x = −1, y = −t, z = π + t.

In particular, we see that this tangent line lies in the vertical plane x = −1. ◗

Theorem 2 tells us that the formulas for computing derivatives of sums and prod-
ucts of vector-valued functions are formally similar to those for real-valued functions.

THEOREM 2 Differentiation Formulas
Let u(t) and v(t) be differentiable vector-valued functions. Let h(t) be a differen-
tiable real-valued function and let c be a (constant) scalar. Then

1. Dt [u(t) + v(t)] = u′(t) + v′(t),
2. Dt [cu(t)] = cu′(t),
3. Dt [h(t)u(t)] = h′(t)u(t) + h(t)u′(t),
4. Dt [u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t), and
5. Dt [u(t) × v(t)] = u′(t) × v(t) + u(t) × v′(t).

Proof We’ll prove part (4), working with two-dimensional vectors for simplicity, and
leave the other parts as exercises. If

u(t) = 〈 f1(t), f2(t)〉 and v(t) = 〈g1(t), g2(t)〉,
then

u(t) · v(t) = f1(t)g1(t) + f2(t)g2(t).

Hence the product rule for ordinary real-valued functions gives

Dt [u(t) · v(t)] = Dt [ f1(t)g1(t) + f2(t)g2(t)]
= [ f ′

1(t)g1(t) + f1(t)g
′
1(t)] + [ f ′

2(t)g2(t) + f2(t)g
′
2(t)]

= [ f ′
1(t)g1(t) + f ′

2(t)g2(t)] + [ f1(t)g
′
1(t) + f2(t)g

′
2(t)]

= u′(t) · v(t) + u(t) · v′(t). ◆

REMARK The order of the factors in part (5) of Theorem 2 must be preserved because
the cross product is not commutative.

EXAMPLE 5 The trajectory of the parametric curve r(t) = ai cos t + aj sin t is the
circle of radius a centered at the origin in the xy-plane. Because r(t) · r(t) = a2, a
constant, part 4 of Theorem 2 gives

0 ≡ d

dt
(a2) = d

dt
[r(t) · r(t)] = r′(t) · r(t) + r(t) · r′(t) = 2r′(t) · r(t).

Because r′(t) · r(t) ≡ 0, we see that (consistent with elementary geometry) the tangent
vector r′(t) is perpendicular to the position vector r(t) at every point of the circle

P
r(t)

r'(t)

x

x2 + y2 = a2

y

FIGURE 11.5.8 The position and
tangent vectors for the circle of
Example 5.

(Fig. 11.5.8). ◗

Velocity and Acceleration Vectors
Looking at Fig. 11.5.6 and the definition of r′(t) in Eq. (5), we note that |r(t + �t) −
r(t)| is the distance from the point with position vector r(t) to the point with position
vector r(t + �t). It follows that the quotient

|r(t + �t) − r(t)|
�t

is the average speed of a particle that travels from r(t) to r(t + �t) in time �t . Con-
sequently, the limit in Eq. (5) yields both the direction of motion and the instantaneous
speed of a particle moving along a curve with position vector r(t).
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We therefore define the velocity vector v(t) at time t of a point moving along a
curve with position vector r(t) as the derivative

v(t) = r′(t) = f ′(t)i + g′(t)j + h′(t)k; (7a)

in differential notation,

v = dr
dt

= dx

dt
i + dy

dt
j + dz

dt
k. (7b)

Its acceleration vector a(t) is given by

a(t) = v′(t) = f ′′(t)i + g′′(t)j + h′′(t)k; (8a)

alternatively,

a = dv
dt

= d2x

dt2
i + d2 y

dt2
j + d2z

dt2
k. (8b)

Thus, for motion in the plane or in space, just as for motion along a line,

velocity is the time derivative of position;
acceleration is the time derivative of velocity.

The speed v(t) and scalar acceleration a(t) of the moving point are the lengths of its
velocity and acceleration vectors, respectively:

v(t) = |v(t)| =
√(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

(9)

and

a(t) = |a(t)| =
√(

d 2x

dt2

)2

+
(

d 2 y

dt2

)2

+
(

d 2z

dt2

)2

. (10)

NOTE The scalar acceleration a = |dv/dt | is generally not equal to the derivative
dv/dt of the speed of a moving point. The difference between the two is discussed in
Section 11.6.

EXAMPLE 6 A particle moving along the parabola y = x2 in the plane has position
vector r(t) = t i + t2j. Find its velocity and acceleration vectors and its speed and
scalar acceleration at the instant when t = 2.

Solution Because r(2) = 2i + 4j, the location of the particle at time t = 2 is (2, 4).
Its velocity vector and speed are given by

v = i + 2tj and v(t) = |v(t)| =
√

1 + 4t2,

so v(2) = i + 4j (a vector) and v(2) = √
17 (a scalar). Its acceleration is a(t) =

v′(t) = 2j (a constant vector), so a = 2j and a = |a| = 2 (scalar acceleration) for all t ,
including the instant at which t = 2. Figure 11.5.9 shows the trajectory of the particle
with its velocity and acceleration vectors v(2) and a(2) attached at its location (2, 4)

y

x

a

y = x2

(2, 4)

v

FIGURE 11.5.9 The velocity and
acceleration vectors at t = 2
(Example 6).

when t = 2. ◗

EXAMPLE 7 Find the velocity, acceleration, speed, and scalar acceleration of a mov-
ing point P whose trajectory is the helix with position vector

r(t) = (a cos ωt)i + (a sin ωt)j + btk. (11)
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Solution Equation (11) is a generalization of the position vector r(t) = i cos t +
j sin t + tk of the helix in Example 3. Here x2 + y2 = a2, so the xy-projection
(a cos ωt, a sin ωt) of P lies on the circle of radius a centered at the origin. This projec-
tion moves around the circle with angular speed ω (radians per unit time). Meanwhile,
the point P itself also is moving upward (if b > 0) on the vertical cylinder of radius a;
the z-component of its velocity is dz/dt = b. Except for the radius of the cylinder, the
picture looks the same as Fig. 11.5.4.

The derivative of the position vector in (11) is the velocity vector

v(t) = (−aω sin ωt)i + (aω cos ωt)j + bk. (12)

Another differentiation gives its acceleration vector

a(t) = (−aω2 cos ωt)i + (−aω2 sin ωt)j

= −aω2(i cos ωt + j sin ωt). (13)

The speed of the moving point is a constant, because

v(t) = |v(t)| =
√

a2ω2 + b2.

Note that the acceleration vector is a horizontal vector of length aω2. Moreover, if we
think of a(t) as attached to the moving point at the time t of evaluation—so that the
initial point of a(t) is the terminal point of r(t)—then a(t) points directly toward the
point (0, 0, bt) on the z-axis. ◗

REMARK The helix of Example 7 is a typical trajectory of a charged particle in a
constant magnetic field. Such a particle must satisfy both Newton’s law F = m a and
the magnetic force law F = (qv) × B mentioned in Section 11.3. Hence its velocity
and acceleration vectors must satisfy the equation

(qv) × B = m a. (14)

If the constant magnetic field is vertical, B = B k, then with the velocity vector of
Eq. (12) we find that

qv × B = q

∣∣∣∣∣∣
i j k

−aω sin ωt aω cos ωt b
0 0 B

∣∣∣∣∣∣ = qaωB(i cos ωt + j sin ωt).

The acceleration vector in Eq. (13) gives

m a = −m aω2(i cos ωt + j sin ωt).

When we compare the last two results, we see that the helix of Example 7 satisfies
Eq. (14) provided that

qaωB = −m aω2; that is, ω = −q B

m
.

For example, this equation would determine the angular speed ω for the helical tra-
jectory of electrons (q < 0) in a cathode-ray tube placed in a constant magnetic field
parallel to the axis of the tube (Fig. 11.5.10).

FIGURE 11.5.10 A spiraling
electron in a cathode-ray tube.

Integration of Vector-Valued Functions
Integrals of vector-valued functions are defined by analogy with the definition of an
integral of a real-valued function:

∫ b

a
r(t) dt = lim

�t→0

n∑
i=1

r(t	
i ) �t,

where t	
i is a point of the i th subinterval of a division of [a, b] into n subintervals, all

with the same length �t = (b − a)/n.
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If r(t) = f (t)i+g(t)j is continuous on [a, b], then—by taking limits component-
wise—we get∫ b

a
r(t) dt = lim

�t→0

n∑
i=1

r(t	
i ) �t

= i

(
lim

�t→0

n∑
i=1

f (t	
i ) �t

)
+ j

(
lim

�t→0

n∑
i=1

g(t	
i ) �t

)
.

This gives the result that

∫ b

a
r(t) dt = i

(∫ b

a
f (t) dt

)
+ j

(∫ b

a
g(t) dt

)
. (15)

Thus a vector-valued function may be integrated componentwise. The three-
dimensional version of Eq. (15) is derived in the same way, merely including third
components.

Now suppose that R(t) is an antiderivative of r(t), meaning that R′(t) = r(t).
That is, if R(t) = F(t)i + G(t)j, then

R′(t) = F ′(t)i + G ′(t)j = f (t)i + g(t)j = r(t).

Then componentwise integration yields

∫ b

a
r(t) dt = i

(∫ b

a
f (t) dt

)
+ j

(∫ b

a
g(t) dt

)
= i

[
F(t)

]b

a
+ j

[
G(t)

]b

a

= [F(b)i + G(b)j] − [F(a)i + G(a)j].

Thus the fundamental theorem of calculus for vector-valued functions takes the form

∫ b

a
r(t) dt =

[
R(t)

]b

a
= R(b) − R(a), (16)

where R′(t) = r(t) is continuous on [a, b].
Indefinite integrals of vector-valued functions may be computed as well. If

R′(t) = r(t), then every antiderivative of r(t) is of the form R(t)+C for some constant
vector C. We therefore write∫

r(t) dt = R(t) + C if R′(t) = r(t), (17)

on the basis of a componentwise computation similar to the one leading to Eq. (16).
If r(t), v(t), and a(t) are the position, velocity, and acceleration vectors of a point

moving in space, then the vector derivatives

dr
dt

= v and
dv
dt

= a

imply the indefinite integrals

v(t) =
∫

a(t) dt (18)

and

r(t) =
∫

v(t) dt. (19)

Both of these integrals involve a vector constant of integration.
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EXAMPLE 8 Suppose that a moving point has given initial position vector r(0) = 2i,
initial velocity vector v(0) = i − j, and acceleration vector a(t) = 2i + 6tj. Find its
position and velocity at time t .

Solution Equation (18) gives

v(t) =
∫

a(t) dt =
∫

(2i + 6tj) dt = 2t i + 3t2j + C1.

To evaluate the constant vector C1, we substitute t = 0 in this equation and find that
v(0) = (0)i + (0)j + C1, so C1 = v(0) = i − j. Thus the velocity vector of the moving
point at time t is

v(t) = (2t i + 3t2j) + (i − j) = (2t + 1)i + (3t2 − 1)j.

A second integration, using Eq. (19), gives

r(t) =
∫

v(t) dt

=
∫

[(2t + 1)i + (3t2 − 1)j] dt = (t2 + t)i + (t3 − t)j + C2.

Again we substitute t = 0 and find that C2 = r(0) = 2i. Hence

r(t) = (t2 + t)i + (t3 − t)j + 2i = (t2 + t + 2)i + (t3 − t)j

is the position vector of the point at time t . ◗

Vector integration is the basis for at least one method of navigation. If a subma-
rine is cruising beneath the icecap at the North Pole, as in Fig. 11.5.11, and thus can
use neither visual nor radio methods to determine its position, there is an alternative.
Build a sensitive gyroscope-accelerometer combination and install it in the submarine.
The device continuously measures the sub’s acceleration vector, beginning at the time
t = 0 when its position r(0) and velocity v(0) are known. Because v′(t) = a(t),
Eq. (16) gives ∫ t

0
a(t) dt =

[
v(t)

]t

0
= v(t) − v(0),

so

v(t) = v(0) +
∫ t

0
a(t) dt.

Thus the velocity at every time t� 0 is known. Similarly, because r′(t) = v(t), a
second integration gives

r(t) = r(0) +
∫ t

0
v(t) dt

for the position of the sub at every time t� 0. On-board computers can be programmed
to carry out these integrations (perhaps by using Simpson’s approximation) and con-
tinuously provide captain and crew with the submarine’s (almost) exact position and
velocity.

r

v

z

x

y

FIGURE 11.5.11 A submarine beneath the polar icecap.
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Motion of Projectiles
Suppose that a projectile is launched from the point (x0, y0), with y0 denoting its ini-y

x

α
(x0, y0)

Trajectory of
projectile

Horizontal

Ground level

0

FIGURE 11.5.12 Trajectory of a
projectile launched at the angle α.

tial height above the surface of the earth. Let α be the angle of inclination from the
horizontal of its initial velocity vector v0 (Fig. 11.5.12). Then its initial position vector
is

r0 = x0i + y0j, (20a)

and from Fig. 11.5.12 we see that

v0 = (v0 cos α)i + (v0 sin α)j, (20b)

where v0 = |v0| is the initial speed of the projectile.
We suppose that the motion takes place sufficiently close to the surface that we

may assume that the earth is flat and that gravity is perfectly uniform. Then, if we also
ignore air resistance, the acceleration of the projectile is

a = dv
dt

= −gj,

where g ≈ 32 ft/s2 ≈ 9.8 m/s2. Antidifferentiation gives

v(t) = −gtj + C1.

Put t = 0 in both sides of this last equation. This shows that C1 = v0 (as expected!)
and thus that

v(t) = dr
dt

= −gtj + v0.

Another antidifferentiation gives

r(t) = − 1
2 gt2j + v0t + C2.

Now substituting t = 0 yields C2 = r0, so the position vector of the projectile at
time t is

r(t) = − 1
2 gt2j + v0t + r0. (21)

Equations (20a) and (20b) now give

r(t) = [(v0 cos α)t + x0]i + [ − 1
2 gt2 + (v0 sin α)t + y0

]
j,

so parametric equations of the trajectory of the particle are

x(t) = (v0 cos α)t + x0, (22)

y(t) = − 1
2 gt2 + (v0 sin α)t + y0. (23)

EXAMPLE 9 An airplane is flying horizontally at an altitude of 1600 ft to pass di-
rectly over snowbound cattle on the ground and release hay to land there. The plane’s
speed is a constant 150 mi/h (220 ft/s). At what angle of sight φ (between the horizon-
tal and the direct line to the target) should a bale of hay be released in order to hit the
target?

Solution See Fig. 11.5.13. We take x0 = 0 where the bale of hay is released at time
t = 0. Then y0 = 1600 (ft), v0 = 220 (ft/s), and α = 0. Then Eqs. (22) and (23) take
the forms

x(t) = 220t, y(t) = −16t2 + 1600.

From the second of these equations we find that t = 10 (s) when the bale of hay hits
the ground (y = 0). It has then traveled a horizontal distance

x(10) = 220 · 10 = 2200 (ft).
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2200

φ

Bale

1600

Airplane

FIGURE 11.5.13 Trajectory of the hay bale of Example 9.

Hence the required angle of sight is

φ = tan−1

(
1600

2200

)
≈ 36◦. ◗

EXAMPLE 10 A ball is thrown northward into the air from the origin in xyz-space

North

x

y

East

z

?

FIGURE 11.5.14 The trajectory of
the ball of Example 10.

(the xy-plane represents the ground and the positive y-axis points north). The initial
velocity (vector) of the ball is

v0 = v(0) = 80j + 80k.

The spin of the ball causes an eastward acceleration of 2 ft/s2 in addition to gravi-
tational acceleration. Thus the acceleration vector produced by the combination of
gravity and spin is

a(t) = 2i − 32k.

First find the velocity vector v(t) of the ball and its position vector r(t). Then determine
where and with what speed the ball hits the ground (Fig. 11.5.14).

Solution When we antidifferentiate a(t) we get

v(t) =
∫

a(t) dt =
∫

(2i − 32k) dt = 2t i − 32tk + C1.

We substitute t = 0 to find that C1 = v0 = 80j + 80k, so

v(t) = 2t i + 80j + (80 − 32t)k.

Another antidifferentiation yields

r(t) =
∫

v(t) dt =
∫

[2t i + 80j + (80 − 32t)k] dt

= t2i + 80tj + (80t − 16t2)k + C2,

and substituting t = 0 gives C2 = r(0) = 0. Hence the position vector of the ball is

r(t) = t2i + 80tj + (80t − 16t2)k.

The ball hits the ground when z = 80t − 16t2 = 0; that is, when t = 5. Its
position vector then is

r(5) = 52i + 80 · 5j = 25i + 400j,
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so the ball has traveled 25 ft eastward and 400 ft northward. Its velocity vector at
impact is

v(5) = 2 · 5i + 80j + (80 − 32 · 5)k = 10i + 80j − 80k,

so its speed when it hits the ground is

v(5) = |v(5)| =
√

102 + 802 + (−80)2,

approximately 113.58 ft/s. Because the ball started with initial speed v0 =√
802 + 802 ≈ 113.14 ft/s, its eastward acceleration has slightly increased its terminal

speed. ◗

11.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Figure 11.5.1 shows a trefoil knot.
2. The position vector r(t) = i cos t + j sin t + tk describes a helix.
3. The vector function r = r(t) is said to be continuous at t = a provided that

lim
t→a

r(t) = r(a).

4. If r(t) = 〈 f (t), g(t), h(t)〉 is differentiable, then r′(t) = 〈 f ′(t), g′(t), h′(t)〉.
5. If h and u are differentiable, then Dt [h(t)u(t)] = h′(t)u(t) + h(t)u′(t).
6. If u and v are differentiable, then Dt [u(t) · v(t)] = u′(t) · v′(t).
7. If r(t) is the position vector of a point moving in the plane or in space, then its

velocity vector is v(t) = r′(t).
8. The fundamental theorem of calculus for vector-valued functions takes the form∫ b

a
r(t) dt =

[
R(t)

]b

a

= R(b) − R(a)

where R′(t) = r(t).
9. If a particle moves in the plane with position vector r(t) = t i+ t2j, then its speed

at time t = 2 is
√

5.
10. If r(t) = f (t)i + g(t)j is continuous, then∫ b

a
r(t) dt = i

(∫ b

a
f (t) dt

)
+ j

(∫ b

a
g(t) dt

)
.

11.5 CONCEPTS: QUESTIONS AND DISCUSSION
In Questions 1 through 3, let f : R → R3 be a vector-valued function of a real vari-
able t . In each question you are asked for a “coordinate-free” definition. Compare your
definition with the corresponding componentwise definition or calculation. Do the two
agree?

1. Give a definition of limt→a f(t) that does not involve the component functions
of f.

2. Give a definition of f ′(t) that does not involve the component functions of f.
3. Give a definition of ∫ b

a
f(t) dt

that does not involve the component functions of f.
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11.5 PROBLEMS

In Problems 1 through 4, also match the curves there defined with
their three-dimensional plots in Figs. 11.5.15 through 11.5.18.
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1. Show that the graph of the curve with parametric equations
x = t , y = sin 5t , z = cos 5t lies on the circular cylinder
y2 + z2 = 1 centered along the x-axis.

2. Show that the graph of the curve with parametric equations
x = sin t , y = cos t , z = cos 8t lies on the vertical circular
cylinder x2 + y2 = 1.

3. Show that the graph of the curve with parametric equa-
tions x = t sin 6t , y = t cos 6t , z = t lies on the cone
z = √

x2 + y2 with its vertex at the origin and opening up-
ward.

4. Show that the graph of the curve with parametric equations
x = cos t sin 4t , y = sin t sin 4t , z = cos 4t lies on the sur-
face of the sphere x2 + y2 + z2 = 1.

In Problems 5 through 10, find the values of r ′(t) and r ′′(t) for
the given values of t .

5. r(t) = 3i − 2j; t = 1

6. r(t) = t2i − t3j; t = 2

7. r(t) = e2t i + e−t j; t = 0

8. r(t) = i cos t + j sin t ; t = π/4

9. r(t) = 3i cos 2π t + 3j sin 2π t ; t = 3/4

10. r(t) = 5i cos t + 4j sin t ; t = π

In Problems 11 through 16, the position vector r(t) of a parti-
cle moving in space is given. Find its velocity and acceleration
vectors and its speed at time t.

11. r(t) = t i + t2j + t3k

12. r(t) = t2(3i + 4j − 12k)

13. r(t) = t i + 3et j + 4et k

14. r(t) = et i + e2t j + e3t k

15. r(t) = (3 cos t)i + (3 sin t)j − 4tk

16. r(t) = 12t i + (5 sin 2t)j − (5 cos 2t)k

Calculate the integrals in Problems 17 through 20.

17.
∫ π/4

0
(i sin t + 2j cos t) dt 18.

∫ e

1

(
1

t
i − j

)
dt

19.
∫ 2

0
t2(1 + t3)3/2i dt 20.

∫ 1

0

(
iet − jte−t2)

dt

In Problems 21 through 24, apply Theorem 2 to compute the
derivative Dt [u(t) · v(t)].
21. u(t) = 3t i − j, v(t) = 2i − 5tj

22. u(t) = t i + t2j, v(t) = t2i − tj

23. u(t) = 〈cos t, sin t〉, v(t) = 〈sin t, −cos t〉
24. u = 〈t, t2, t3〉, v = 〈cos 2t, sin 2t, e−3t 〉
In Problems 25 through 34, the acceleration vector a(t), the ini-
tial position r0 = r(0), and the initial velocity v0 = v(0) of a
particle moving in xyz-space are given. Find its position vector
r(t) at time t.

25. a = 0; r0 = i; v0 = k

26. a = 2i; r0 = 3j; v0 = 4k

27. a(t) = 2i − 4k; r0 = 0; v0 = 10j

28. a(t) = i − j + 3k; r0 = 5i; v0 = 7j

29. a(t) = 2j − 6tk; r0 = 2i; v0 = 5k

30. a(t) = 6t i − 5j + 12t2k; r0 = 3i + 4j; v0 = 4j − 5k

31. a(t) = t i + t2j + t3k; r0 = 10i; v0 = 10j

32. a(t) = t i + e−t j; r0 = 3i + 4j; v0 = 5k

33. a(t) = i cos t + j sin t ; r0 = j; v0 = −i + 5k

34. a(t) = 9(i sin 3t + j cos 3t) + 4k; r0 = 3i + 4j;
v0 = 2i − 7k

35. The parametric equations of a moving point are

x(t) = 3 cos 2t, y(t) = 3 sin 2t, z(t) = 8t.

Find its velocity, speed, and acceleration at time t = 7π/8.

36. Use the equations in Theorem 2 to calculate

Dt [u(t) · v(t)] and Dt [u(t) × v(t)]
if u(t) = 〈t, t2, t3〉 and v(t) = 〈et , cos t, sin t〉.

37. Verify part 5 of Theorem 2 in the special case u(t) =
〈0, 3, 4t〉 and v(t) = 〈5t, 0, −4〉.

38. Prove part 5 of Theorem 2.

39. A point moves on a sphere centered at the origin. Show that
its velocity vector is always tangent to the sphere.

40. A particle moves with constant speed along a curve in space.
Show that its velocity and acceleration vectors are always
perpendicular.

41. Find the maximum height reached by the ball in Example 10
and also its speed at that height.
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42. The angular momentum L(t) and torque τ(t) of a moving
particle of mass m with position vector r(t) are defined to be

L(t) = r(t) × mv(t), τ (t) = r(t) × ma(t).

Prove that L′(t) = τ (t). It follows that L(t) must be con-
stant if τ ≡ 0; this is the law of conservation of angular
momentum.

Problems 43 through 48 deal with a projectile fired from the ori-
gin (so x0 = y0 = 0) with initial speed v0 and initial angle of
inclination α. The range of the projectile is the horizontal dis-
tance it travels before it returns to the ground.

43. If α = 45◦, what value of v0 gives a range of 1 mi?

44. If α = 60◦ and the range is R = 1 mi, what is the maximum
height attained by the projectile?

45. Deduce from Eqs. (22) and (23) the fact that the range is

R = 1
16 v2

0 sin α cos α.

46. Given the initial speed v0, find the angle α that maximizes
the range. [Suggestion: Use the result of Problem 45.]

47. Suppose that v0 = 160 (ft/s). Find the maximum height ymax

and the range R of the projectile if (a) α = 30◦; (b) α = 45◦;
(c) α = 60◦.

48. The projectile of Problem 47 is to be fired at a target 600 ft
away, and there is a hill 300 ft high midway between the
gun site and this target. At what initial angle of inclination
should the projectile be fired?

49. A projectile is to be fired horizontally from the top of a 100-
m cliff at a target 1 km from the base of the cliff. What
should be the initial velocity of the projectile? (Use g =
9.8 m/s2.)

50. A bomb is dropped (initial speed zero) from a helicopter
hovering at a height of 800 m. A projectile is fired from
a gun located on the ground 800 m west of the point directly
beneath the helicopter. The projectile is supposed to inter-
cept the bomb at a height of exactly 400 m. If the projectile
is fired at the same instant that the bomb is dropped, what
should be its initial velocity and angle of inclination?

51. Suppose, more realistically, that the projectile of Pro-
blem 50 is fired 1 s after the bomb is dropped. What should
be its initial velocity and angle of inclination?

52. An artillery gun with a muzzle velocity of 1000 ft/s is located
atop a seaside cliff 500 ft high. At what initial inclination an-
gle (or angles) should it fire a projectile in order to hit a ship
at sea 20,000 ft from the base of the cliff?

53. Suppose that the vector-valued functions u(t) and v(t) both
have limits as t → a. Prove:

(a) lim
t→a

(u(t) + v(t)) = lim
t→a

u(t) + lim
t→a

v(t);

(b) lim
t→a

(u(t) · v(t)) =
(

lim
t→a

u(t)
)

·
(

lim
t→a

v(t)
)

.

54. Suppose that both the vector-valued function r(t) and the
real-valued function h(t) are differentiable. Deduce the
chain rule for vector-valued functions,

Dt [r(h(t))] = h′(t)r′(h(t)),

in componentwise fashion from the ordinary chain rule.

55. A point moves with constant speed, so its velocity vector v
satisfies the condition

|v|2 = v · v = C (a constant).

Differentiate this relation to discover the relationship be-
tween the moving point’s velocity and acceleration vectors.

56. A point moves on a circle whose center is at the origin. Use
the dot product to show that the position and velocity vectors
of the moving point are always perpendicular.

57. A point moves on the hyperbola x2 − y2 = 1 with position
vector

r(t) = i cosh ωt + j sinh ωt

(the number ω is a constant). Prove that the acceleration
vector a(t) satisfies the equation a(t) = cr(t), where c is a
positive constant. What sort of external force would produce
this kind of motion?

58. Suppose that a point moves on the ellipse

x2

a2
+ y2

b2
= 1

with position vector r(t) = ia cos ωt + jb sin ωt (ω is a con-
stant). Prove that the acceleration vector a satisfies the equa-
tion a(t) = cr(t), where c is a negative constant. To what
sort of external force F(t) does this motion correspond?

59. A point moves in the plane with constant acceleration vector
a = aj. Prove that its path is a parabola or a straight line.

60. Suppose that a particle is subject to no force, so its acceler-
ation vector a(t) is identically zero. Prove that the particle
travels along a straight line at constant speed (Newton’s first
law of motion).

61. Uniform Circular Motion Consider a particle that moves
counterclockwise around the circle with center (0, 0) and
radius r at a constant angular speed of ω radians per second
(Fig. 11.5.19). If its initial position is (r, 0), then its position
vector is

r(t) = i r cos ωt + j r sin ωt.

(a) Show that the velocity vector of the particle is tangent to
the circle and that the speed of the particle is

v(t) = |v(t | = rω.

(b) Show that the acceleration vector a of the particle is di-
rected opposite to r and that

a(t) = |a(t)| = rω2.

v

a

P(r cos ωt, r sin ωt)

tω

(r, 0)

FIGURE 11.5.19 Uniform circular
motion (Problem 61).
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62. Suppose that a particle is moving under the influence of a
central force field R = k r, where k is a scalar function of x ,
y, and z. Conclude that the trajectory of the particle lies in a
fixed plane through the origin.

63. A baseball is thrown with an initial velocity of 160 ft/s
straight upward from the ground. It experiences a down-
ward gravitational acceleration of 32 ft/s2. Because of spin,
it experiences also a (horizontal) northward acceleration of
0.1 ft/s2; otherwise, the air has no effect on its motion. How
far north of the throwing point will the ball land?

64. A baseball is hit with an initial velocity of 96 ft/s and an ini-
tial inclination angle of 15◦ from ground level straight down
a foul line. Because of spin it experiences a horizontal ac-
celeration of 2 ft/s2 perpendicular to the foul line; otherwise,
the air has no effect on its motion. When the ball hits the
ground, how far is it from the foul line?

65. A projectile is fired northward (in the positive y-direction)
out to sea from the top of a seaside cliff 384 ft high. The
projectile’s initial velocity vector is v0 = 200j + 160k. In
addition to a downward (negative z-direction) gravitational

acceleration of 32 ft/s2, it experiences in flight an eastward
(positive x-direction) acceleration of 2 ft/s2 due to spin.

(a) Find the projectile’s velocity and position vectors t sec-
onds after it is fired.

(b) How long is the projectile in the air?
(c) Where does the projectile hit the water (z = 0)? Give

the answer by telling how far north out to sea and how
far east along the coast is its impact position.

(d) What is the maximum height of the projectile above the
water?

66. A gun fires a shell with a muzzle velocity of 150 m/s. While
the shell is in the air, it experiences a downward (vertical)
gravitational acceleration of 9.8 m/s2 and an eastward (hor-
izontal) Coriolis acceleration of 5 cm/s2; air resistance may
be ignored. The target is 1500 m due north of the gun, and
both the gun and target are on level ground. Halfway be-
tween them is a hill 600 m high. Tell precisely how to aim
the gun—both compass heading and inclination from the
horizontal—so that the shell will clear the hill and hit the
target.

11.5 INVESTIGATION: Does a Pitched Baseball Really Curve?
Have you ever wondered whether a baseball pitch really curves or whether it’sy

x
Pitcher's
mound

Home
plate

60 ft

FIGURE 11.5.20 The x-axis points
toward home plate.

some sort of optical illusion? In this project you’ll use calculus to illuminate the
matter.

Suppose that a pitcher throws a ball toward home plate (60 ft away, as in
Fig. 11.5.20) and gives it a spin of S revolutions per second counterclockwise (as
viewed from above) about a vertical axis through the center of the ball. This spin is de-
scribed by the spin vector S that points along the axis of revolution in the right-handed
direction and has length S (Fig. 11.5.21).

We know from studies of aerodynamics that this spin causes a difference in air
pressure on the sides of the ball toward and away from this spin. Studies also show
that this pressure difference results in a spin acceleration

aS = cS × v (1)

of the ball (where c is an empirical constant). The total acceleration of the ball is then

v

S

FIGURE 11.5.21 The spin and
velocity vectors.

a = (cS × v) − gk, (2)

where g ≈ 32 ft/s2 is the gravitational acceleration. Here we will ignore any other
effects of air resistance.

With the spin vector S = S k pointing upward, as in Fig. 11.5.21, show first that

S × v = −Svy i + Svx j, (3)

where vx is the component of v in the x-direction and vy is the component of v in the
y-direction.

For a ball pitched along the x-axis, vx is much larger than vy , and so the approx-
imation S × v = Svx j is sufficiently accurate for our purposes. We may then take the
acceleration vector of the ball to be

a = cSvx j − gk. (4)

Now suppose that the pitcher throws the ball from the initial position x0 = y0 =
0, z0 = 5 (ft), with initial velocity vector

v0 = 120i − 2j + 4k (5)
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(with components in feet per second, so v0 ≈ 120 ft/s, about 82 mi/h) and with a spin
of S = 80

3 rev/s. A reasonable value of c is

c = 0.005 ft/s2 per ft/s of velocity and rev/s of spin,

although the precise value depends on whether the pitcher has (accidentally, of course)
scuffed the ball or administered some foreign substance to it.

Show first that these values of the parameters yield

a = 16j − 32k

for the ball’s acceleration vector. Then integrate twice in succession to find the ball’s
position vector

r(t) = x(t)i + y(t)j + z(t)k.

Use your results to fill in the following table, giving the pitched ball’s horizontal de-
flection y and height z (above the ground) at quarter-second intervals.

t (s) x (ft) y (ft) z (ft)

0.0 0 0 5
0.25 30 ? ?
0.50 60 ? ?

Suppose that the batter gets a “fix” on the pitch by observing the ball during the
first quarter-second and prepares to swing. After 0.25 s does the pitch still appear to
be straight on target toward home plate at a height of 5 ft?

What happens to the ball during the final quarter-second of its approach to home
plate—after the batter has begun to swing the bat? What were the ball’s horizontal
and vertical deflections during this brief period? What is your conclusion? Does the
pitched ball really “curve” or not?

11.6 CURVATURE AND ACCELERATION

The speed of a moving point is closely related to the arc length of its trajectory. The
arc-length formula for parametric curves in space (or space curves) is a natural gener-
alization of the formula for parametric plane curves [Eq. (8) of Section 9.5]. The arc
length s along the smooth curve with position vector

r(t) = f (t)i + g(t)j + h(t)k = x i + yj + zk (1)

from the point r(a) to the point r(b) is, by definition,

s =
∫ b

a

√
[x ′(t)]2 + [y′(t)]2 + [z′(t)]2 dt

=
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt. (2)

We see from Eq. (9) in Section 11.5 that the integrand is the speed v(t) = |r′(t)| of the
moving point with position vector r(t), so

s =
∫ b

a
v(t) dt. (3)

EXAMPLE 1 Find the arc length of one turn (from t = 0 to t = 2π/ω) of the helix
shown in Fig. 11.6.1. This helix has the parametric equations

x

y

x2 + y2 = a2

Trajectory:
Helix

z

FIGURE 11.6.1 The helix of
Example 1.

x(t) = a cos ωt, y(t) = a sin ωt, z(t) = bt.
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Solution We found in Example 7 of Section 11.5 that

v(t) =
√

a2ω2 + b2.

Hence Eq. (3) gives

s =
∫ 2π/ω

0

√
a2ω2 + b2 dt = 2π

ω

√
a2ω2 + b2.

For instance, if a = b = ω = 1, then s = 2π
√

2, which is
√

2 times the circumference
of the circle in the xy-plane over which the helix lies. ◗

Let s(t) denote the arc length along a smooth curve from its initial point r(a) to
the variable point r(t). Then, from Eq. (3), we obtain the arc-length function s(t) of
the curve:

s(t) =
∫ t

a
v(τ) dτ. (4)

The fundamental theorem of calculus then gives

ds

dt
= v. (5)

Thus the speed of the moving point is the time rate of change of its arc-length function.
If v(t) > 0 for all t , then it follows that s(t) is an increasing function of t and there-
fore has an inverse function t (s). When we replace t with t (s) in the curve’s original
parametric equations, we obtain the arc-length parametrization

x = x(s), y = y(s), z = z(s).

This gives the position of the moving point as a function of arc length measured along
the curve from its initial point. (See Fig. 11.6.2.)

z

x

y

s

(x(s), y(s), z(s))

FIGURE 11.6.2 A curve
parametrized by arc length s.

EXAMPLE 2 If we take a = 5, b = 12, and ω = 1 for the helix of Example 1, then
the velocity formula v = (a2ω2 + b2)1/2 yields

v =
√

52 · 12 + 122 = √
169 = 13.

Hence Eq. (5) gives ds/dt = 13, so

s = 13t,

taking s = 0 when t = 0 and thereby measuring arc length from the natural starting
point (5, 0, 0). When we substitute t = s/13 and the numerical values of a, b, and ω

into the original parametric equations of the helix, we get the arc-length parametriza-
tion

x(s) = 5 cos
s

13
, y(s) = 5 sin

s

13
, z(s) = 12s

13

of the helix. ◗

Curvature of Plane Curves
The word curvature has an intuitive meaning that we need to make precise. Most
people would agree that a straight line does not curve at all, whereas a circle of small
radius is more curved than a circle of large radius (Fig. 11.6.3). This judgment may be
based on a conception of curvature as “rate of change of direction.” The direction of a
curve is determined by its velocity vector, so you would expect the idea of curvature to
have something to do with the rate at which the velocity vector is turning.

Zero
curvature

Large
curvature

Small
curvature

FIGURE 11.6.3 The intuitive idea
of curvature.
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Let

r(t) = x(t)i + y(t)j, a � t � b (6)

be the position vector of a differentiable plane curve that is smooth—meaning that the

x

y

r(a)

r(t)
s

TN

φ

FIGURE 11.6.4 The unit tangent
vector T.

velocity vector v(t) = r ′(t) is nonzero. Then the curve’s unit tangent vector at the
point r(t) is the unit vector

T(t) = v(t)

|v(t)| = v(t)

v(t)
, (7)

where v(t) = |v(t)| is the speed. Now denote by φ the angle of inclination of T ,
measured counterclockwise from the positive x-axis (Fig. 11.6.4). Then

T = i cos φ + j sin φ. (8)

We can express the unit tangent vector T of Eq. (8) as a function of the arc-length
parameter s indicated in Fig. 11.6.4. Then the rate at which T is turning is measured
by the derivative

d T
ds

= d T
dφ

· dφ

ds
= (−i sin φ + j cos φ)

dφ

ds
. (9)

Note that ∣∣∣∣d T
ds

∣∣∣∣ =
∣∣∣∣dφ

ds

∣∣∣∣ (10)

because the vector within parentheses on the right-hand side of Eq. (9) is a unit vector.
The curvature at a point of a plane curve, denoted by κ (lowercase Greek kappa),

is therefore defined to be

κ =
∣∣∣∣dφ

ds

∣∣∣∣ , (11)

the absolute value of the rate of change of the angle φ with respect to arc length s. We
define the curvature κ in terms of dφ/ds rather than dφ/dt because the latter depends
not only on the shape of the curve, but also on the speed of the moving point r(t). For
a straight line the angle φ is a constant, so the curvature given by Eq. (11) is zero. If
you imagine a point that is moving with constant speed along a curve, the curvature
is greatest at points where φ changes the most rapidly, such as the points P and R on
the curve of Fig. 11.6.5. The curvature is least at points such as Q and S, where φ is
changing the least rapidly.

P

Q

R

S

FIGURE 11.6.5 The curvature is
large at P and R, small at Q and S.

We need to derive a formula that is effective in computing the curvature of a
smooth parametric plane curve x = x(t), y = y(t). First we note that

φ = tan−1

(
dy

dx

)
= tan−1

(
y′(t)
x ′(t)

)

provided x ′(t) �= 0. Hence

dφ

dt
= y′′x ′ − y′x ′′

(x ′)2
÷

(
1 +

(
y′

x ′

)2
)

= x ′y′′ − x ′′y′

(x ′)2 + (y′)2
,

where primes denote derivatives with respect to t . Because v = ds/dt > 0, Eq. (11)
gives

κ =
∣∣∣∣dφ

ds

∣∣∣∣ =
∣∣∣∣dφ

dt
· dt

ds

∣∣∣∣ = 1

v

∣∣∣∣dφ

dt

∣∣∣∣;
thus

κ = |x ′y′′ − x ′′y′|
[(x ′)2 + (y′)2]3/2

= |x ′y′′ − x ′′y′|
v3

. (12)
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At a point where x ′(t) = 0, we know that y′(t) �= 0, because the curve is smooth. Thus
we will obtain the same result if we begin with the equation φ = cot−1(x ′/y′).

An explicitly described curve y = f (x) may be regarded as a parametric curve
x = x , y = f (x). Then x ′ = 1 and x ′′ = 0, so Eq. (12)—with x in place of t as the
parameter—becomes

κ = |y′′|
[1 + (y′)2]3/2

= |d 2 y/dx2|
[1 + (dy/dx)2]3/2

. (13)

EXAMPLE 3 Show that the curvature at each point of a circle of radius a is κ = 1/a.

Solution With the familiar parametrization x = a cos t , y = a sin t of such a circle
centered at the origin, we let primes denote derivatives with respect to t and obtain

x ′ = −a sin t, y′ = a cos t,

x ′′ = −a cos t, y′′ = −a sin t.

Hence Eq. (12) gives

κ = |(−a sin t)(−a sin t) − (−a cos t)(a cos t)|
[(−a sin t)2 + (a cos t)2]3/2

= a2

a3
= 1

a
.

Alternatively, we could have used Eq. (13). Our point of departure would then be the
equation x2 + y2 = a2 of the same circle, and we would compute y′ and y′′ by implicit
differentiation. (See Problem 27.) ◗

It follows immediately from Eqs. (8) and (9) that

T · d T
ds

= 0,

so the unit tangent vector T and its derivative vector d T/ds are perpendicular. If
|d T/ds| �= 0, then the unit vector N that points in the direction of d T/ds is called
the principal unit normal vector to the curve. Because κ = |dφ/ds| = |d T/ds| by
Eq. (10), it follows that

d T
ds

= κN. (14)

Intuitively, N is the unit normal vector to the curve that points in the direction in which
the curve is bending.

Suppose that P is a point on a parametrized curve at which κ �= 0. Consider the

C

O

P

T
N ρ

FIGURE 11.6.6 Osculating circle,
radius of curvature, and center of
curvature.

circle that is tangent to the curve at P and has the same curvature there. The center
of the circle is to lie on the concave side of the curve—that is, on the side toward
which the normal vector N points. This circle is called the osculating circle (or circle
of curvature) of the curve at the given point because it touches the curve so closely
there. (Osculum is the Latin word for kiss.) Let ρ be the radius of the osculating circle
and let γ = OC

−−→
be the position vector of its center C (Fig. 11.6.6). Then ρ is called

the radius of curvature of the curve at the point P and γ is called the (vector) center
of curvature of the curve at P .

Example 3 implies that the radius of curvature is

ρ = 1

κ
, (15)

and the fact that |N| = 1 implies that the position vector of the center of curvature is

γ = r + ρN (r = O P
−−→

). (16)

EXAMPLE 4 Determine the vectors T and N, the curvature κ , and the center of cur-
vature of the parabola y = x2 at the point (1, 1).
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Solution If the parabola is parametrized by x = t , y = t2, then its position vector is
r(t) = t i + t2j, so v(t) = i + 2tj. The speed is v(t) = √

1 + 4t2, so Eq. (7) yields

T(t) = v(t)

v(t)
= i + 2tj√

1 + 4t2
.

By substituting t = 1, we find that the unit tangent vector at (1, 1) is

T = 1√
5

i + 2√
5

j.

Because the parabola is concave upward at (1, 1), the principal unit normal vector is
the upward-pointing unit vector

N = − 2√
5

i + 1√
5

j

that is perpendicular to T. (Note that T · N = 0.) If y = x2, then dy/dx = 2x and
d2 y/dx2 = 2, so Eq. (13) yields

κ = |y′′|
[1 + (y′)2]3/2

= 2

(1 + 4x2)3/2
.

So at the point (1, 1) we find the curvature and radius of curvature to be

κ = 2

5
√

5
and ρ = 5

√
5

2
,

respectively.
Next, Eq. (16) gives the center of curvature as

γ = 〈1, 1〉 + 5
√

5

2

〈
− 2√

5
,

1√
5

〉
=

〈
−4,

7

2

〉
.

The equation of the osculating circle to the parabola at (1, 1) is, therefore,

(x + 4)2 + (
y − 7

2

)2 = ρ2 = 125
4 .

Figure 11.6.7 shows this large osculating circle at the point (1, 1), as well as the smaller
osculating circles that are tangent to the parabola at the points (0, 0), ( 1

3 , 1
9 ), and ( 2

3 , 4
9 ).

Is it clear to you which of these osculating circles is which? ◗

−2

2

4

6

8

10

−2− 4−6−8−10 x

y
y = x2

2

(− 4, )2
7

FIGURE 11.6.7 Osculating circles
for the parabola of Example 4.

Curvature of Space Curves
Consider now a moving particle in space with twice-differentiable position vector r(t).
Suppose also that the velocity vector v(t) is never zero. The unit tangent vector at
time t is defined, as before, to be

T(t) = v(t)

|v(t)| = v(t)

v(t)
, (17)

so

v = vT. (18)

We defined the curvature of a plane curve to be κ = |dφ/ds|, where φ is the angle of
inclination of T from the positive x-axis. For a space curve, there is no single angle
that determines the direction of T, so we adopt the following approach (which leads to
the same value for curvature when applied to a space curve that happens to lie in the
xy-plane). Differentiating the identity T · T = 1 with respect to arc length s gives

T · d T
ds

= 0.

It follows that the vectors T and d T/ds are always perpendicular.
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Then we define the curvature κ of the curve at the point r(t) to be

κ =
∣∣∣∣d T

ds

∣∣∣∣ =
∣∣∣∣d T

dt

dt

ds

∣∣∣∣ = 1

v

∣∣∣∣d T
dt

∣∣∣∣. (19)

At a point where κ �= 0, we define the principal unit normal vector N to be

N = d T/ds

|d T/ds| = 1

κ

d T
ds

, (20)

so

d T
ds

= κN. (21)

Equation (21) shows that N has the same direction as d T/ds (Fig. 11.6.8), and
Eq. (20) shows that N is a unit vector. Because Eq. (21) is the same as Eq. (14), we
see that the present definitions of κ and N agree with those given earlier in the two-

r(t)

N

T

FIGURE 11.6.8 The principal unit
normal vector N points in the
direction in which the curve is
turning.

dimensional case.

EXAMPLE 5 Compute the curvature κ of the helix of Example 1, the helix with
parametric equations

x(t) = a cos ωt, y(t) = a sin ωt, z(t) = bt.

Solution In Example 7 of Section 11.5, we computed the velocity vector

v = i(−aω sin ωt) + j(aω cos ωt) + bk

and speed

v = |v| =
√

a2ω2 + b2.

Hence Eq. (17) gives the unit tangent vector

T = v
v

= i(−aω sin ωt) + j(aω cos ωt) + bk√
a2ω2 + b2

.

Then

d T
dt

= i(−aω2 cos ωt) + j(−aω2 sin ωt)√
a2ω2 + b2

,

so Eq. (19) gives

κ = 1

v

∣∣∣∣d T
dt

∣∣∣∣ = aω2

a2ω2 + b2

for the curvature of the helix. Note that the helix has constant curvature. Also note
that, if b = 0 (so that the helix reduces to a circle of radius a in the xy-plane), our
result reduces to κ = 1/a, in agreement with our computation of the curvature of a
circle in Example 3. ◗

Normal and Tangential Components of Acceleration
We may apply Eq. (21) to analyze the meaning of the acceleration vector of a moving
particle with velocity vector v and speed v. Then Eq. (17) gives v = vT, so the
acceleration vector of the particle is

a = dv
dt

= dv

dt
T + v

d T
dt

= dv

dt
T + v

d T
ds

ds

dt
.

But ds/dt = v, so Eq. (21) gives

a = dv

dt
T + κv2N. (22)
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Because T and N are unit vectors tangent and normal to the curve, respectively, Eq. (22)
provides a decomposition of the acceleration vector into its components tangent to and
normal to the trajectory. The tangential component

aT = dv

dt
(23)

is the rate of change of speed of the particle, whereas the normal component

aN = κv2 = v2

ρ
(24)

measures the rate of change of its direction of motion. The decomposition

a = aT T + aN N (25)

is illustrated in Fig. 11.6.9.

N

a

TaT  = d
dt

aN  = κ 2

FIGURE 11.6.9 Resolution of the
acceleration vector a into its
tangential and normal components.

As an application of Eq. (22), think of a train moving along a straight track with
constant speed v, so that aT = 0 = aN (the latter because κ = 0 for a straight line).
Suppose that at time t = 0, the train enters a circular curve of radius ρ. At that instant,
it will suddenly be subjected to a normal acceleration of magnitude v2/ρ, proportional
to the square of the speed of the train. A passenger in the train will experience a sudden
jerk to the side. If v is large, the stresses may be great enough to damage the track or
derail the train. It is for exactly this reason that railroads are built not with curves
shaped like arcs of circles but with approach curves in which the curvature, and hence
the normal acceleration, build up smoothly.

EXAMPLE 6 A particle moves in the xy-plane with parametric equations

x(t) = 3
2 t2, y(t) = 4

3 t3.

Find the tangential and normal components of its acceleration vector when t = 1.

Solution The trajectory and the vectors N and T appear in Fig. 11.6.10. There Ny

N

T

3
2

( , )4
3

x = 3
2 t2, y = 4

3 t3

x

FIGURE 11.6.10 The moving
particle of Example 6.

and T are shown attached at the point of evaluation, at which t = 1. The particle has
position vector

r(t) = 3
2 t2i + 4

3 t3j

and thus velocity
v(t) = 3t i + 4t2j.

Hence its speed is

v(t) =
√

9t2 + 16t4,

from which we calculate

aT = dv

dt
= 9t + 32t3

√
9t2 + 16t4

.

Thus v = 5 and aT = 41
5 when t = 1.

To use Eq. (12) to compute the curvature at t = 1, we compute dx/dt = 3t ,
dy/dt = 4t2, d2x/dt2 = 3, and d2 y/dt2 = 8t . Thus at t = 1 we have

κ = |x ′y′′ − x ′′y′|
v3

= |3 · 8 − 3 · 4|
53

= 12

125
.

Hence

aN = κv2 = 12
125 · 52 = 12

5

when t = 1. As a check (Problem 28), you might compute T and N when t = 1 and
verify that

41
5 T + 12

5 N = a = 3i + 8j. ◗
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It remains for us to see how to compute aT , aN , and N effectively in the case of a
space curve. We would prefer to have formulas that explicitly contain only the vectors
r, v, and a.

If we compute the dot product of v = vT with the acceleration a as given in
Eq. (22) and use the facts that T · T = 1 and T · N = 0, we get

v · a = vT ·
(

dv

dt
T

)
+ (vT) · (κv2N) = v

dv

dt
.

It follows that

aT = dv

dt
= v · a

v
= r ′(t) · r ′′(t)

|r ′(t)| . (26)

Similarly, when we compute the cross product of v = vT with each side of
Eq. (22), we find that

v × a =
(

vT × dv

dt
T

)
+ (vT × κv2N) = κv3(T × N).

Because κ and v are nonnegative and because T × N is a unit vector, we may conclude
that

κ = |v × a|
v3

= |r ′(t) × r ′′(t)|
|r ′(t)|3 . (27)

It now follows from Eq. (24) that

aN = |r ′(t) × r ′′(t)|
|r ′(t)| . (28)

The curvature of a space curve often is not as easy to compute directly from the
definition as we found in the case of the helix of Example 5. It is generally more
convenient to use Eq. (27). Once a, T, aT , and aN have been computed, we can rewrite
Eq. (25) as

N = a − aT T
aN

(29)

to find the principal unit normal vector.

EXAMPLE 7 Compute T, N, κ , aT , and aN at the point (1, 1
2 , 1

3 ) of the twisted cubic
with parametric equations

x(t) = t, y(t) = 1
2 t2, z(t) = 1

3 t3.

Solution Differentiating the position vector

r(t) = 〈
t, 1

2 t2, 1
3 t3

〉
gives

r ′(t) = 〈1, t, t2〉 and r ′′(t) = 〈0, 1, 2t〉.
When we substitute t = 1, we obtain

v(1) = 〈1, 1, 1〉 (velocity),

v(1) = |v(1)| = √
3 (speed), and

a(1) = 〈0, 1, 2〉 (acceleration)

at the point (1, 1
2 , 1

3 ). Then Eq. (26) gives the tangential component of acceleration:

aT = v · a
v

= 3√
3

= √
3.
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Because

v × a =
∣∣∣∣∣∣
i j k
1 1 1
0 1 2

∣∣∣∣∣∣ = 〈1, −2, 1〉,

Eq. (27) gives the curvature:

κ = |v × a|
v3

=
√

6(√
3
)3 =

√
2

3
.

The normal component of acceleration is aN = κv2 = √
2. The unit tangent vector is

T = v
v

= 1√
3
〈1, 1, 1〉 = i + j + k√

3
.

Finally, Eq. (29) gives

N = a − aT T
aN

= 1√
2

(〈0, 1, 2〉 − 〈1, 1, 1〉) = 1√
2
〈−1, 0, 1〉 = −i + k√

2
.

Figure 11.6.11 shows the twisted cubic and its osculating circle at the point P .

−2
−1

−1

0
1

2
x

P
O

C

0
1

2
y

0

1

2

3

z

FIGURE 11.6.11 Osculating circle
for the twisted cubic of Example 7.
It is plotted as the parametric curve
with position vector

r(t) = OC
−−→−(a cos t)N + (a sin t)T.

This osculating circle has radius a = 1/κ = 3
2

√
2 and its center C has position vector

OC
−−→ = O P

−−→+ aN = 〈− 1
2 , 1

2 , 11
6 〉. ◗

Newton, Kepler, and the Solar System
As outlined on the opening page of this chapter, the modern view of our solar system
dates back to the formulation by Johannes Kepler (1571–1630) of the following three
propositions, now known as Kepler’s laws of planetary motion.

1. The orbit of each planet is an ellipse with the sun at one focus.
2. The radius vector from the sun to a planet sweeps out area at a constant rate.
3. The square of the period of revolution of a planet about the sun is proportional

to the cube of the major semiaxis of its elliptical orbit.

Figure 11.6.12 illustrates Kepler’s second law. If the planet traverses the paths
P1 P2 and P3 P4 along its orbit in equal times, then the areas of the shaded elliptical
sectors S P1 P2 and S P3 P4 are equal.

In his Principia Mathematica (1687), Newton employed a powerful but now an-
tiquated form of geometrical calculus to show that Kepler’s laws follow from the basic
principles of mechanics (F = m a, and so on) and the inverse-square law of gravi-

P2

P1

P3

Equal area
in equal times

P4

FIGURE 11.6.12 Kepler’s law
implies that the shaded areas are
equal if the planet’s times of
traversal of the orbital segments
P1 P2 and P3 P4 are equal.

tational attraction. In the remainder of this section we apply the modern calculus of
vector-valued functions to outline the relation between Newton’s laws and Kepler’s
laws.

Radial and Transverse Components of Acceleration
To begin, we set up a coordinate system in which the sun is located at the origin in the
plane of motion of a planet. Let r = r(t) and θ = θ(t) be the polar coordinates at time
t of the planet as it orbits the sun. We want first to split the planet’s position, velocity,
and acceleration vectors r, v, and a into radial and transverse components. To do so,
we introduce at each point (r, θ) of the plane (the origin excepted) the unit vectors

ur = i cos θ + j sin θ, u θ = −i sin θ + j cos θ. (30)

If we substitute θ= θ(t), then ur and u θ become functions of t . The radial unit vec-
tor ur always points directly away from the origin; the transverse unit vector u θ is
obtained from ur by a 90◦ counterclockwise rotation (Fig. 11.6.13).

y

x

uθ (t)

ur(t)

θ(r(t), (t))

FIGURE 11.6.13 The radial and
transverse unit vector ur and uθ .
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In Problem 66 we ask you to verify, by componentwise differentiation of the
equations in (30), that

dur

dt
= u θ

dθ

dt
and

du θ

dt
= −ur

dθ

dt
. (31)

The position vector r points directly away from the origin and has length |r| = r ,
so

r = rur . (32)

Differentiating both sides of Eq. (32) with respect to t gives

v = dr
dt

= ur
dr

dt
+ r

dur

dt
.

We use the first equation in (31) and find that the planet’s velocity vector is

v = ur
dr

dt
+ r

dθ

dt
u θ . (33)

Thus we have expressed the velocity v in terms of the radial vector ur and the trans-
verse vector u θ .

We differentiate both sides of Eq. (33) and thereby find that

a = dv
dt

=
(

ur
d2r

dt2
+ dr

dt

dur

dt

)
+

(
dr

dt

dθ

dt
u θ + r

d2θ

dt2
u θ + r

dθ

dt

du θ

dt

)
.

Then, by using the equations in (31) and collecting the coefficients of ur and uθ (Prob-
lem 67), we obtain the decomposition

a =
[

d2r

dt2
− r

(
dθ

dt

)2
]

ur +
[

1

r

d

dt

(
r2 dθ

dt

)]
u θ (34)

of the acceleration vector into its radial and transverse components.

Planets and Satellites
The key to Newton’s analysis was the connection between his law of gravitational
attraction and Kepler’s second law of planetary motion. Suppose that we begin with
the inverse-square law of gravitation in its vector form

F = m a = −G Mm

r2
ur , (35)

where M denotes the mass of the sun and m the mass of the orbiting planet. So in
addition to (34), the acceleration of the planet is given also by

a = − μ

r2
ur , (36)

where μ = G M . We equate the transverse components in Eqs. (34) and (36) and thus
obtain

1

r
· d

dt

(
r2 dθ

dt

)
= 0.

We drop the factor 1/r , then antidifferentiate both sides. We find that

r2 dθ

dt
= h (h a constant). (37)
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We know from Section 9.3 that if A (t) denotes the area swept out by the planet’s

A(t)

θ(r(0), (0))

θ(r(t), (t))

FIGURE 11.6.14 Area swept out
by the radius vector.

radius vector from time 0 to time t (Fig. 11.6.14), then

A(t) =
∫ θ(t)

θ(0)

1

2
r2 dθ =

∫ t

0

1

2
r2 dθ

dt
dt.

Now we apply the fundamental theorem of calculus, which yields

dA

dt
= 1

2
r2 dθ

dt
. (38)

When we compare Eqs. (37) and (38), we see that

dA

dt
= h

2
. (39)

Because h/2 is a constant, we have derived Kepler’s second law: The radius vector
from sun to planet sweeps out area at a constant rate.

Next we outline the derivation of Newton’s law of gravitation from Kepler’s first

O

P
Q

r θ

x

x = p

y

FIGURE 11.6.15 A polar-
coordinate ellipse with eccentricity
e = |OP|/|PQ|.

and second laws of planetary motion. Figure 11.6.15 shows an ellipse with eccentricity
e and focus at the origin. The defining relation |O P| = e|P Q| of this ellipse gives
r = e(p − r cos θ). Solving this equation then yields the polar-coordinate equation

r = pe

1 + e cos θ
(40)

of an ellipse with eccentricity e < 1 and directrix x = p. In Problem 64 we ask you
to show by differentiating twice, using the chain rule and Kepler’s second law in the
form in Eq. (37), that Eq. (40) implies that

d2r

dt2
= h2

r2

(
1

r
− 1

pe

)
. (41)

Now if Kepler’s second law in the form in Eq. (37) holds, then Eq. (34) gives

a =
[

d2r

dt2
− r

(
dθ

dt

)2
]

ur (42)

for the planet’s acceleration vector. Finally, upon substituting dθ/dt = h/r2 from
Eq. (37) and the expression in Eq. (41) for d2r/dt2, we find (Problem 65) that Eq. (42)
can be simplified to the form

a = − h2

per2
ur . (43)

This is the inverse-square law of gravitation in the form of Eq. (36) with μ = h2/pe.
Now suppose that the elliptical orbit of a planet around the sun has major semi-

axis a and minor semiaxis b. Then the constant

pe = h2

μ

that appears in Eq. (43) satisfies the equations

pe = a(1 − e2) = a

(
1 − a2 − b2

a2

)
= b2

a
.

[See Eq. (29) in Section 9.6.] We equate these two expressions for pe and find that
h2 = μb2/a.

Now let T denote the period of revolution of the planet—the time required for it
to complete one full revolution in its elliptical orbit around the sun. Then we see from
Eq. (39) that the area of the ellipse bounded by this orbit is A = 1

2 hT = πab and thus
that

T 2 = 4π2a2b2

h2
= 4π2a2b2

μb2/a
.
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Therefore

T 2 = γ a3, (44)

where the proportionality constant γ = 4π2/μ = 4π2/G M [compare Eqs. (35) and
(36)] depends on the gravitational constant G and the sun’s mass M . Thus we have
derived Kepler’s third law of planetary motion from his first two laws and Newton’s
law of gravitational attraction.

EXAMPLE 8 The period of revolution of Mercury in its elliptical orbit around the

Jupiter

Mars

Earth

Sun
Venus

Mercury

FIGURE 11.6.16 The inner planets
of the solar system (Example 8).

sun is T = 87.97 days, whereas that of the earth is 365.26 days. Compute the major
semiaxis (in astronomical units) of the orbit of Mercury. See Fig. 11.6.16.

Solution The major semiaxis of the orbit of the earth is, by definition, 1 AU. So
Eq. (44) gives the value of the constant γ = (365.26)2 (in day2/AU3). Hence the major
semiaxis of the orbit of Mercury is

a =
(

T 2

γ

)1/3

=
(

(87.97)2

(365.26)2

)1/3

≈ 0.387 (AU). ◗

As yet we have considered only planets in orbits around the sun. But Kepler’s
laws and the equations of this section apply to bodies in orbit around any common
central mass, so long as they move solely under the influence of its gravitational attrac-
tion. Examples include satellites (artificial or natural) orbiting the earth or the moons
of Jupiter.

EXAMPLE 9 A communications relay satellite is to be placed in a circular orbit

FIGURE 11.6.17 A communi-
cations satellite in orbit around the
earth (Example 9).

around the earth and is to have a period of revolution of 24 h. This is a geosynchronous
orbit in which the satellite appears to be stationary in the sky. Assume that the earth’s
natural moon has a period of 27.32 days in a circular orbit of radius 238,850 mi. What
should be the radius of the satellite’s orbit? (See Fig. 11.6.17.)

Solution Equation (44), when applied to the moon, yields

(27.32)2 = γ (238,850)3.

For the stationary satellite that has period T = 1 (day), it yields 12 = γ r3, where r is
the radius of the geosynchronous orbit. To eliminate γ , we divide the second of these
equations by the first and find that

r3 = (238,850)3

(27.32)2
.

Thus r is approximately 26,330 mi. The radius of the earth is about 3960 mi, so the
satellite will be about 22,370 mi above the surface. ◗

11.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The arc length s along the smooth curve with position vector r(t) = x(t)i +
y(t)j + z(t)k from r(a) to r(b) is, by definition,

s =
∫ b

a

√
[x ′(t)]2 + [y′(t)]2 + [z′(t)]2 dt.

2. If r(t) = x(t)i+y(t)j is the position vector of a smooth plane curve with nonzero
velocity vector v(t) = r′(t), then the unit tangent vector of the curve at the point

r(t) is T(t) = v(t)

|v(t)| .
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3. If the unit tangent vector of Question 2 is expressed as a function of arc length s,

then the rate at which T is turning is measured by the derivative
dT
ds

.

4. If φ is the angle of inclination of the unit tangent vector of Questions 2 and 3
(measured from the horizontal), then the curvature of the plane curve of Question

2 is defined to be κ =
∣∣∣∣dφ

ds

∣∣∣∣.
5. A useful formula for the curvature of the plane curve r(t) = x(t)i + y(t)j is

κ = |x ′y′′ − x ′′y′|[
(x ′)2 + (y′)2

]3/2 .

6. A particle moving in space with position vector r, velocity v, speed v, and ac-
celeration a has tangential component of acceleration aT = dv/dt and normal
component of acceleration aN = κv2.

7. A useful formula for the curvature of the space curve of Question 6 is

κ = |r′(t) × r′′(t)|
|r′(t)|3 .

8. Kepler derived his laws of planetary motion from Newton’s law of universal grav-
itation.

9. Kepler’s first law of planetary motion implies that the orbit of each planet is an
ellipse with the sun at its center.

10. Kepler’s third law of planetary motion implies that the square of a planet’s dis-
tance from the sun is proportional to the cube of its period of revolution around
the sun.

11.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. The curvature of a plane curve is defined in Eq. (11) and the curvature of a space

curve is defined in Eq. (19). Do these two definitions agree in the case of a curve
that lies in the xy-plane? Explain why.

2. Suppose that two bodies move solely under their mutual gravitational attraction.
Then each moves in an elliptical orbit about the other. For instance, in a coordi-
nate system with the earth (rather than the sun) at the origin, the orbit of the sun
is an ellipse with the earth at one focus. Which is really the center of the solar
system? Is this a mathematical or a philosophical question?

11.6 PROBLEMS

Find the arc length of each curve described in Problems 1
through 6.

1. x = 3 sin 2t , y = 3 cos 2t , z = 8t ; from t = 0 to t = π

2. x = t , y = t2/
√

2, z = t3/3; from t = 0 to t = 1

3. x = 6et cos t , y = 6et sin t , z = 17et ; from t = 0 to t = 1

4. x = t2/2, y = ln t , z = t
√

2; from t = 1 to t = 2

5. x = 3t sin t , y = 3t cos t , z = 2t2; from t = 0 to t = 4/5

6. x = 2et , y = e−t , z = 2t ; from t = 0 to t = 1

In Problems 7 through 12, find the curvature of the given plane
curve at the indicated point.

7. y = x3 at (0, 0)

8. y = x3 at (−1, −1)

9. y = cos x at (0, 1)

10. x = t − 1, y = t2 + 3t + 2, where t = 2

11. x = 5 cos t , y = 4 sin t , where t = π/4

12. x = 5 cosh t , y = 3 sinh t , where t = 0

In Problems 13 through 16, find the point or points on the given
curve at which the curvature is a maximum.

13. y = ex

14. y = ln x

15. x = 5 cos t , y = 3 sin t

16. xy = 1

For the plane curves in Problems 17 through 21, find the unit
tangent and normal vectors at the indicated point.

17. y = x3 at (−1, −1)

18. x = t3, y = t2 at (−1, 1)

19. x = 3 sin 2t , y = 4 cos 2t , where t = π/6

20. x = t − sin t , y = 1 − cos t , where t = π/2
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21. x = cos3 t , y = sin3 t , where t = 3π/4

The position vector of a particle moving in the plane is given in
Problems 22 through 26. Find the tangential and normal compo-
nents of the acceleration vector.

22. r(t) = 3i sin π t + 3j cos π t

23. r(t) = (2t + 1)i + (3t2 − 1)j

24. r(t) = i cosh 3t + j sinh 3t

25. r(t) = it cos t + jt sin t

26. r(t) = 〈et sin t, et cos t〉
27. Use Eq. (13) to compute the curvature of the circle with

equation x2 + y2 = a2.

28. Verify the equation 41
5 T + 12

5 N = 3i + 8j given at the end of
Example 6.

In Problems 29 through 31, find the equation of the osculating
circle for the given plane curve at the indicated point.

29. y = 1 − x2 at (0, 1)

30. y = ex at (0, 1)

31. xy = 1 at (1, 1)

Find the curvature κ of the space curves with position vectors
given in Problems 32 through 36.

32. r(t) = t i + (2t − 1)j + (3t + 5)k

33. r(t) = t i + j sin t + k cos t

34. r(t) = 〈t, t2, t3〉
35. r(t) = 〈et cos t, et sin t, et 〉
36. r(t) = it sin t + jt cos t + kt

37. through 41. Find the tangential and normal components
of acceleration aT and aN for the curves of Problems 32
through 36, respectively.

In Problems 42 through 45, find the unit vectors T and N for the
given curve at the indicated point.

42. The curve of Problem 34 at (1, 1, 1)

43. The curve of Problem 33 at (0, 0, 1)

44. The curve of Problem 3 at (6, 0, 17)

45. The curve of Problem 35 at (1, 0, 1)

46. Find T, N, aT , and aN as functions of t for the helix of
Example 1.

47. Find the arc-length parametrization of the line

x(t) = 2 + 4t, y(t) = 1 − 12t, z(t) = 3 + 3t

in terms of the arc length s measured from the initial point
(2, 1, 3).

48. Find the arc-length parametrization of the circle

x(t) = 2 cos t, y(t) = 2 sin t, z = 0

in terms of the arc length s measured counterclockwise from
the initial point (2, 0, 0).

49. Find the arc-length parametrization of the helix

x(t) = 3 cos t, y(t) = 3 sin t, z(t) = 4t

in terms of the arc length s measured from the initial point
(3, 0, 0).

50. Substitute x = t , y = f (t), and z = 0 into Eq. (27) to verify
that the curvature of the plane curve y = f (x) is

κ(x) = | f ′′(x)|
[1 + ( f ′(x))2]3/2

.

51. A particle moves under the influence of a force that is always
perpendicular to its direction of motion. Show that the speed
of the particle must be constant.

52. Deduce from Eq. (24) that (with a = |a|)

κ =
√

a2 − (aT )2

v2
=

√
(x ′′(t))2 + (y′′(t))2 − (v′(t))2

(x ′(t))2 + (y′(t))2
.

53. Apply the formula of Problem 52 to calculate the curvature
of the curve

x(t) = cos t + t sin t, y(t) = sin t − t cos t.

54. The folium of Descartes with equation x3 + y3 = 3xy is
shown in Fig. 11.6.18. Find the curvature and center of cur-
vature of this folium at the point ( 3

2 , 3
2 ). Begin by calculating

dy/dx and d 2y/dx2 by implicit differentiation.

x

y

21−1−2

1

2

−1

−2

(  ,   )3
2

3
2

FIGURE 11.6.18 The folium
of Descartes (Problem 54).

55. Determine the constants A , B, C , D, E , and F so that the
curve

y = A x5 + Bx4 + Cx3 + Dx2 + Ex + F

does, simultaneously, all of the following:
• Joins the two points (0, 0) and (1, 1);
• Has slope 0 at (0, 0) and slope 1 at (1, 1);
• Has curvature 0 at both (0, 0) and (1, 1).

The curve in question is shown in color in Fig. 11.6.19. Why
would this be a good curve to join the railroad tracks, shown
in black in the figure?

x

y

(0, 0)

(1, 1)

FIGURE 11.6.19 Connecting
railroad tracks (Problem 55).
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56. Consider a body in an elliptical orbit with major and minor
semiaxes a and b and period of revolution T . (a) Deduce
from Eq. (33) that v = r(dθ/dt) when the body is nearest
to and farthest from its foci. (b) Then apply Kepler’s second
law to conclude that v = 2πab/(rT ) at the body’s nearest
and farthest points.

In Problems 57 through 60, apply the equation of part (b)
of Problem 56 to compute the speed (in miles per second) of
the given body at the nearest and farthest points of its orbit.
Convert 1 AU, the major semiaxis of the Earth’s orbit, into
92,956,000 mi.

57. Mercury: a = 0.387 AU, e = 0.206, T = 87.97 days

58. The earth: e = 0.0167, T = 365.26 days

59. The earth’s moon: a = 238,900 mi, e = 0.055, T = 27.32
days

60. An artificial earth satellite: a = 10,000 mi, e = 0.5

61. Assuming the earth to be a sphere with radius 3960 mi, find
the altitude above the earth’s surface of a satellite in a circu-
lar orbit that has a period of revolution of 2 h.

62. Given the fact that Jupiter’s period of (almost) circular rev-
olution around the Sun is 11.86 yr, calculate the distance of
Jupiter from the Sun.

63. Suppose that an earth satellite in elliptical orbit varies in alti-
tude from 100 to 1000 mi above the earth’s surface (assumed
spherical). Find this satellite’s period of revolution.

64. (a) Beginning with the polar-coordinates equation of an el-
lipse in Eq. (40), apply the chain rule and Kepler’s sec-
ond law in the form dθ/dt = h/r 2 to differentiate r with
respect to t and thereby show that dr/dt = (h sin θ)/p.
(b) Differentiate again to show that d 2r/dt2 = (h2 cos θ)/

(pr 2). (c) Derive Eq. (41) by solving Eq. (40) for cos θ and
substituting the result in the formula in part (b).

65. Derive Eq. (43) by substituting the expressions for dθ/dt
and d 2r/dt2 given by Eqs. (37) and (41), respectively, into
Eq. (42).

66. Derive both equations in (31) by differentiating the equations
in (30).

67. Derive Eq. (34) by differentiating Eq. (33).

11.7 CYLINDERS AND QUADRIC SURFACES

Just as the graph of an equation f (x, y) = 0 is generally a curve in the xy-plane, the
graph of an equation in three variables is generally a surface in space. A function F of
three variables associates a real number F(x, y, z) with each ordered triple (x, y, z) of
real numbers. The graph of the equation

F(x, y, z) = 0 (1)

is the set of all points whose coordinates (x, y, z) satisfy this equation. We refer to the
graph of such an equation as a surface. For instance, the graph of the equation

x2 + y2 + z2 − 1 = 0

is a familiar surface, the unit sphere centered at the origin. But note that the graph of
Eq. (1) does not always agree with our intuitive notion of a surface. For example, the
graph of the equation

(x2 + y2)(y2 + z2)(z2 + x2) = 0

consists of the points lying on the three coordinate axes in space, because

• x2 + y2 = 0 implies that x = y = 0 (the z-axis);
• y2 + z2 = 0 implies that y = z = 0 (the x-axis);
• z2 + x2 = 0 implies that z = x = 0 (the y-axis).

We leave for advanced calculus the precise definition of surface as well as the study of
conditions sufficient to imply that the graph of Eq. (1) actually is a surface.

Planes and Traces
The simplest example of a surface is a plane with linear equation A x + By+Cz+ D =
0. In this section we discuss examples of other simple surfaces that frequently appear
in multivariable calculus.

In order to sketch a surface S, it is often helpful to examine its intersections with
various planes. The trace of the surface S in the plane P is the intersection of P and
S. For example, if S is a sphere, then we can verify by the methods of elementary
geometry that the trace of S in the plane P is a circle (Fig. 11.7.1), provided that
P intersects the sphere but is not merely tangent to it (Problem 49). Figure 11.7.2
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S

Trace

C

O

BA

FIGURE 11.7.1 The intersection of the
sphere S and the plane P is a circle.

y

z

x

(0, 0, 5)

(0, 0, −5)

FIGURE 11.7.2 A sphere as a union of
circles (and two points).

illustrates the horizontal trace circles that (together with two “polar points”) make up
the sphere x2 + y2 + z2 = 25.

When we want to visualize a specific surface in space, it often suffices to examine
its traces in the coordinate planes and possibly a few planes parallel to them, as in
Example 1.

EXAMPLE 1 Consider the plane with equation 3x +2y+2z = 6. We find its trace in
the xy-plane by setting z = 0. The equation then reduces to the equation 3x+2y = 6 of
a straight line in the xy-plane. Similarly, when we set y = 0 we get the line 3x +2z = 6
as the trace of the given plane in the xz-plane. To find its trace in the yz-plane, we set
x = 0, and this yields the line y + z = 3. Figure 11.7.3 shows the portions of these
three trace lines that lie in the first octant. Together they give us a good picture of how
the plane 3x + 2y + 2z = 6 is situated in space. ◗

z

x

y

(0, 0, 3)

(2, 0, 0)

(0, 3, 0)

3x + 2y + 2z = 6

3x + 2z = 6 y + z = 3

3x + 2y = 6

FIGURE 11.7.3 Traces of the plane
3x + 2y + 2z = 6 in the coordinate
planes (Example 1).

Cylinders and Rulings
Let C be a curve in a plane and let L be a line not parallel to that plane. Then the set of
points on lines parallel to L that intersect C is called a cylinder. These straight lines
that make up the cylinder are called rulings of the cylinder.

EXAMPLE 2 Figure 11.7.4 shows a vertical cylinder for which C is the circle x2 +
y2 = a2 in the xy-plane. The trace of this cylinder in any horizontal plane z = c is
a circle with radius a and center (0, 0, c) on the z-axis. Thus the point (x, y, z) lies
on this cylinder if and only if x2 + y2 = a2. Hence this cylinder is the graph of the
equation x2 + y2 = a2, an equation in three variables—even though the variable z is
technically missing.

The fact that the variable z does not appear explicitly in the equation x2+y2 = a2

means that given any point (x0, y0, 0) on the circle x2 + y2 = a2 in the xy-plane, the
point (x0, y0, z) lies on the cylinder for any and all values of z. The set of all such
points is the vertical line through the point (x0, y0, 0). Thus this vertical line is a ruling
of the cylinder x2 + y2 = a2. Figure 11.7.5 exhibits the cylinder as the union of its
rulings. ◗

A cylinder need not be circular—that is, the curve C can be an ellipse, a rectangle,
or a quite arbitrary curve.

z

x

y

x2 + y2 = a2

(0, 0, c)

(x, y, c)

FIGURE 11.7.4 A right circular
cylinder.

EXAMPLE 3 Figure 11.7.6 shows both horizontal traces and vertical rulings on a
vertical cylinder through the figure-eight curve C in the xy-plane (C has the parametric
equations x = sin t , y = sin 2t , 0 � t � 2π ). ◗
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(x0, y0, z)

z

x

(x0, y0, 0)

y

FIGURE 11.7.5 The cylinder
x2 + y2 = a 2; its rulings are parallel to
the z-axis.

−1
0

1x
−1

0

1

y
−1

0

1

z

FIGURE 11.7.6 The vertical cylinder
through the figure-eight curve
x = sin t , y = sin 2t .

If the curve C in the xy-plane has equation

f (x, y) = 0, (2)

then the cylinder through C with vertical rulings has the same equation in space. This
is so because the point P(x, y, z) lies on the cylinder if and only if the point (x, y, 0)

lies on the curve C . Similarly, the graph of an equation g(x, z) = 0 is a cylinder with
rulings parallel to the y-axis, and the graph of an equation h(y, z) = 0 is a cylinder
with rulings parallel to the x-axis. Thus the graph in space of an equation that includes
only two of the three coordinate variables is always a cylinder; its rulings are parallel
to the axis corresponding to the missing variable.

EXAMPLE 4 The graph of the equation 4y2 + 9z2 = 36 is the elliptic cylinder
shown in Fig. 11.7.7. Its rulings are parallel to the x-axis, and its trace in every plane
perpendicular to the x-axis is an ellipse with semiaxes of lengths 3 and 2. ◗

EXAMPLE 5 The graph of the equation z = 4 − x2 is the parabolic cylinder shown
in Fig. 11.7.8. Its rulings are parallel to the y-axis, and its trace in every plane perpen-
dicular to the y-axis is a parabola that is a parallel translate of the parabola z = 4 − x2

in the xz-plane. ◗

−2
0

2

x

−3
0

3y

−2

0

2

z 0

FIGURE 11.7.7 An elliptical cylinder
(Example 4).

y

z

x

FIGURE 11.7.8 The parabolic cylinder
z = 4 − x2 (Example 5).
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Surfaces of Revolution
Another way to use a plane curve C to generate a surface is to revolve the curve in
space around a line L in its plane. This gives a surface of revolution with axis L . For
example, Fig. 11.7.9 shows the surface generated by revolving the curve f (x, y) = 0z

y

x

R (x, 0, 0)

Q (x, r, 0)

P (x, y, z)

C :  f (x, y) = 0

FIGURE 11.7.9 The surface
generated by rotating C around the
x-axis. (For clarity, only a quarter of
the surface is shown.)

in the first quadrant of the xy-plane around the x-axis. The typical point P(x, y, z) lies
on this surface of revolution provided that it lies on the vertical circle (parallel to the
yz-plane) with center R(x, 0, 0) and radius r such that the point Q(x, r, 0) lies on the
given curve C , in which case f (x, r) = 0. Because

r = |RQ| = |R P| =
√

y2 + z2,

it is therefore necessary that

f
(
x,

√
y2 + z2

) = 0. (3)

This, then, is the equation of a surface of revolution around the x-axis.
The equations of surfaces of revolution around other coordinate axes are obtained

similarly. If the first-quadrant curve f (x, y) = 0 is revolved instead around the y-
axis, then we replace x with

√
x2 + z2 to get the equation f (

√
x2 + z2, y) = 0 of the

resulting surface of revolution. If the curve g(y, z) = 0 in the first quadrant of the
yz-plane is revolved around the z-axis, we replace y with

√
x2 + y2. Thus the equation

of the resulting surface of revolution around the z-axis is g(
√

x2 + y2, z) = 0. These

y

z

x

4x2 + 4y2 + z2 = 4

FIGURE 11.7.10 The ellipsoid of
revolution of Example 6.

assertions are easily verified with the aid of diagrams similar to Fig 11.7.9.

EXAMPLE 6 Write an equation of the ellipsoid of revolution obtained by revolving
the ellipse 4y2 + z2 = 4 around the z-axis (Fig. 11.7.10).

Solution We replace y with
√

x2 + y2 in the given equation. This yields 4x2 +4y2 +
z2 = 4 as an equation of the ellipsoid. ◗

EXAMPLE 7 Determine the graph of the equation z2 = x2 + y2.

Solution First we rewrite the given equation in the form z = ±√
x2 + y2. Thus

the surface is symmetric around the xy-plane, and the upper half has equation z =√
x2 + y2. We can obtain this last equation from the simple equation z = y by replac-

ing y with
√

x2 + y2. Thus we obtain the upper half of the surface by revolving the line
z = y (for y � 0) around the z-axis. The graph is the cone shown in Fig. 11.7.11. Its

y

z

x

z2 = x2 + y2

FIGURE 11.7.11 The cone of
Example 7.

upper half has equation z = √
x2 + y2 and its lower half has equation z = −√

x2 + y2.
The entire cone z2 = x2 + y2 is obtained by revolving the entire line z = y around the
z-axis. ◗

Quadric Surfaces
Cones, spheres, circular and parabolic cylinders, and ellipsoids of revolution are all
surfaces that are graphs of second-degree equations in x , y, and z. The graph of a
second-degree equation in three variables is called a quadric surface. We discuss here
some important special cases of the equation

A x2 + By2 + Cz2 + Dx + Ey + Fz + H = 0. (4)

This is a special second-degree equation in that it contains no terms involving the
products xy, xz, or yz.

EXAMPLE 8 The ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1 (5)
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is symmetric around each of the three coordinate planes and has intercepts (±a, 0, 0),
(0, ±b, 0), and (0, 0, ±c) on the three coordinate axes. (There is no loss of generality
in assuming that a, b, and c are positive.) Each trace of this ellipsoid in a plane parallel
to one of the coordinate planes is either a single point or an ellipse. For example, if
−c < z0 < c, then the trace of the ellipsoid of Eq. (5) in the plane z = z0 has equation

x2

a2
+ y2

b2
= 1 − z2

0

c2
> 0,

which is the equation of an ellipse with semiaxes (a/c)
√

c2 − z2
0 and (b/c)

√
c2 − z2

0.
Figure 11.7.12 shows this ellipsoid with semiaxes a, b, and c labeled. Figure 11.7.13
shows its trace ellipses in planes parallel to the three coordinate planes. ◗

z

y

x

a b

c

O

FIGURE 11.7.12 The ellipsoid of
Example 8.

y

x

z

FIGURE 11.7.13 The traces of the

ellipsoid
x2

a 2
+ y 2

b 2
+ z 2

c2
(Example 8).

EXAMPLE 9 The elliptic paraboloid

x2

a2
+ y2

b2
= z

c
(6)

is shown in Fig. 11.7.14. Its trace in the horizontal plane z = z0 > 0 is the ellipse
x2/a2 + y2/b2 = z0/c with semiaxes a

√
z0/c and b

√
z0/c. Its trace in any vertical

plane is a parabola. For instance, its trace in the plane y = y0 has equation x2/a2 +

y

z

x

FIGURE 11.7.14 An elliptic
paraboloid (Example 9).

y2
0/b2 = z/c, which can be written in the form z − z1 = k(x − x1)

2 by taking z1 =
cy2

0/b2 and x1 = 0. The paraboloid opens upward if c > 0 and downward if c < 0. If
a = b, then the paraboloid is said to be circular. Figure 11.7.15 shows the traces of a

y

z

x

FIGURE 11.7.15 Trace parabolas
of a circular paraboloid (Example 9).

circular paraboloid in planes parallel to the xz- and yz-planes. ◗

EXAMPLE 10 The elliptical cone

x2

a2
+ y2

b2
= z2

c2
(7)

is shown in Fig. 11.7.16. Its trace in the horizontal plane z = z0 �= 0 is an ellipse with
semiaxes a|z0|/c and b|z0|/c. ◗

EXAMPLE 11 The hyperboloid of one sheet with equation

x2

a2
+ y2

b2
− z2

c2
= 1 (8)

is shown in Fig. 11.7.17. Its trace in the horizontal plane z = z0 is the ellipse x2/a2 +
y2/b2 = 1 + z2

0/c2 > 0. Its trace in a vertical plane is a hyperbola except when the
vertical plane intersects the xy-plane in a line tangent to the ellipse x2/a2 + y2/b2 = 1.
In this special case, the trace is a degenerate hyperbola consisting of two intersecting
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y

z

x

=y2

b2

z2

c2
+x2

a2

FIGURE 11.7.16 An elliptic cone
(Example 10).

x

y

z

−y2

b2

z2

c2
+x2

a2
= 1

b

a

FIGURE 11.7.17 A hyperboloid of
one sheet (Example 11).

x

y

z

FIGURE 11.7.18 A circular
hyperboloid of one sheet (Example 11).
Its traces in horizontal planes are
circles; its traces in vertical planes are
hyperbolas.

lines. Figure 11.7.18 shows the traces (in planes parallel to the coordinate planes) of a

x

y

z

O

c

−x2

a2
y2

b2−z2

c2 = 1

FIGURE 11.7.19 A hyperboloid of
two sheets (Example 12).

circular (a = b) hyperboloid of one sheet.
The graphs of the equations

y2

b2
+ z2

c2
− x2

a2
= 1 and

x2

a2
+ z2

c2
− y2

b2
= 1

are also hyperboloids of one sheet, opening along the x- and y-axes, respectively.
◗

EXAMPLE 12 The hyperboloid of two sheets with equation

z2

c2
− x2

a2
− y2

b2
= 1 (9)

consists of two separate pieces, or sheets (Fig. 11.7.19). The two sheets open along the
positive and negative z-axis and intersect it at the points (0, 0, ±c). The trace of this
hyperboloid in a horizontal plane z = z0 with |z0| > c is the ellipse

x2

a2
+ y2

b2
= z2

0

c2
− 1 > 0.

Its trace in any vertical plane is a nondegenerate hyperbola. Figure 11.7.20 shows
traces of a circular hyperboloid of two sheets.

The graphs of the equations

x2

a2
− y2

b2
− z2

c2
= 1 and

y2

b2
− x2

a2
− z2

c2
= 1

are also hyperboloids of two sheets, opening along the x-axis and y-axis, respectively.
When the equation of a hyperboloid is written in standard form with +1 on the right-
hand side [as in Eqs. (8) and (9)], then the number of sheets is equal to the number of
negative terms on the left-hand side. ◗

y

z

x

FIGURE 11.7.20 A circular
hyperboloid of two sheets
(Example 12). Its (nondegenerate)
traces in horizontal planes are
circles; its traces in vertical planes
are hyperbolas.
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x

y

=x2

a2

z
c

−y2

b2
(c > 0)

z

O

FIGURE 11.7.21 A hyperbolic paraboloid is a
saddle-shaped surface (Example 13).

y

z

x

FIGURE 11.7.22 The vertical traces of
the hyperbolic paraboloid z = y 2 − x2

(Example 13).

EXAMPLE 13 The hyperbolic paraboloid

y2

b2
− x2

a2
= z

c
(c > 0) (10)

is saddle shaped, as indicated in Fig. 11.7.21. Its trace in the horizontal plane z = z0

is a hyperbola (or two intersecting lines if z0 = 0). Its trace in a vertical plane parallel
to the xz-plane is a parabola that opens downward, whereas its trace in a vertical plane
parallel to the yz-plane is a parabola that opens upward. In particular, the trace of the
hyperbolic paraboloid in the xz-plane is a parabola opening downward from the origin,
whereas its trace in the yz-plane is a parabola opening upward from the origin. Thus
the origin looks like a local maximum from one direction but like a local minimum
from another. Such a point on a surface is called a saddle point.

Figure 11.7.22 shows the parabolic traces in vertical planes of the hyperbolic
paraboloid z = y2 − x2. Figure 11.7.23 shows its hyperbolic traces in horizontal

y

z

x

FIGURE 11.7.23 The horizontal
traces of the hyperbolic paraboloid
z = y 2 − x2 (Example 13).

planes. ◗

11.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The graph of any equation of the form F(x, y, z) = 0 is always a two-dimensional
surface in space.

2. The graph in space of an equation of the form f (x, y) = 0 is a “cylinder” con-
sisting of vertical straight lines that pass through the curve f (x, y) = 0 in the
xy-plane.

3. If a > 0, then the graph in space of the equation x2 + y2 = a2 is a cylinder.
4. The graph in space of 4y2 + 9z2 = 36 is an elliptic cylinder.
5. The graph of 4x2 + 4y2 + z2 = 4 is an ellipsoid.
6. The graph of z2 = x2 + y2 is a cone.

7. The graph of the equation
x2

a2
+ y2

b2
− z2

c2
= 1 is a hyperboloid of one sheet.

8. The graph of the equation
z2

c2
− x2

a2
− y2

b2
= 1 is a hyperboloid of one sheet.

9. If c > 0, then the graph of
y2

b2
− x2

a2
= z

c
is a hyperbolic paraboloid.

10. The graph in space of the equation z = ax2 + by2 is an elliptic paraboloid if a
and b are both positive, but is a hyperbolic paraboloid if both these coefficients
are negative.
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11.7 CONCEPTS: QUESTIONS AND DISCUSSION
The following questions are concerned with possible graphs of the second-degree
equation

A x2 + By2 + Cz2 + Dx + Ey + Fz + H = 0. (11)

1. Under what conditions on the coefficients A, B, and C is the graph (a) an ellip-
soid; (b) a paraboloid; (c) a hyperboloid?

2. Under what conditions on the coefficients is the graph a cone or cylinder?
3. Besides ellipsoids, paraboloids, hyperboloids, cones, and cylinders, what are the

other possibilities for the graph of the equation in (11)? Give an example to
illustrate each possibility.

11.7 PROBLEMS

Describe and sketch the graphs of the equations given in Prob-
lems 1 through 30.

1. 3x + 2y + 10z = 20 2. 3x + 2y = 30

3. x2 + y2 = 9 4. y2 = x2 − 9

5. xy = 4 6. z = 4x2 + 4y2

7. z = 4x2 + y2 8. 4x2 + 9y2 = 36

9. z = 4 − x2 − y2 10. y2 + z 2 = 1

11. 2z = x2 + y2 12. x = 1 + y2 + z 2

13. z 2 = 4(x2 + y2) 14. y2 = 4x

15. x2 = 4z + 8 16. x = 9 − z 2

17. 4x2 + y2 = 4 18. x2 + z 2 = 4

19. x2 = 4y2 + 9z 2 20. x2 − 4y2 = z

21. x2 + y2 + 4z = 0 22. x = sin y

23. x = 2y2 − z 2 24. x2 + 4y2 + 2z 2 = 4

25. x2 + y2 − 9z 2 = 9 26. x2 − y2 − 9z 2 = 9

27. y = 4x2 + 9z 2 28. y2 + 4x2 − 9z 2 = 36

29. y2 − 9x2 − 4z 2 = 36 30. x2 + 9y2 + 4z 2 = 36

Problems 31 through 40 give the equation of a curve in one of the
coordinate planes. Write an equation for the surface generated
by revolving this curve around the indicated axis. Then sketch
the surface.

31. x = 2z 2; the x-axis

32. 4x2 + 9y2 = 36; the y-axis

33. y2 − z 2 = 1; the z-axis

34. z = 4 − x2; the z-axis

35. y2 = 4x ; the x-axis

36. yz = 1; the z-axis

37. z = exp(−x2); the z-axis

38. (y − z)2 + z 2 = 1; the z-axis

39. The line z = 2x ; the z-axis

40. The line z = 2x ; the x-axis

In Problems 41 through 48, describe the traces of the given sur-
faces in planes of the indicated type.

41. x2 + 4y2 = 4; in horizontal planes (those parallel to the
xy-plane)

42. x2 + 4y2 + 4z 2 = 4; in horizontal planes

43. x2 + 4y2 + 4z 2 = 4; in planes parallel to the yz-plane

44. z = 4x2 + 9y2; in horizontal planes

45. z = 4x2 + 9y2; in planes parallel to the yz-plane

46. z = xy; in horizontal planes

47. z = xy; in vertical planes through the z-axis

48. x2 − y2 + z 2 = 1; in both horizontal and vertical planes
parallel to the coordinate axes

49. Prove that the triangles OAC and OBC in Fig. 11.7.1 are con-
gruent, and thereby conclude that the trace of a sphere in an
intersecting plane is a circle.

50. Prove that the projection into the yz-plane of the curve of in-
tersection of the surfaces x = 1 − y2 and x = y2 + z2 is an
ellipse (Fig. 11.7.24).

x = y2 + z2
0

1x

−1

0

1
y

−1

0

1

z

x = 1 − y2

FIGURE 11.7.24 The
paraboloid and parabolic
cylinder of Problem 50.

−1

0

1
x

−1

0

1
y

0

1

z

z = y

z = x2 + y2

FIGURE 11.7.25 The plane and
paraboloid of Problem 51.

51. Show that the projection into the xy-plane of the intersection
of the plane z = y and the paraboloid z = x2 + y2 is a circle
(Fig. 11.7.25).
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52. Prove that the projection into the xz-plane of the intersection
of the paraboloids y = 2x2 + 3z2 and y = 5 − 3x2 − 2z2 is
a circle (Fig. 11.7.26).

53. Prove that the projection into the xy-plane of the intersection
of the plane x+y+z = 1 and the ellipsoid x2+4y2+4z2 = 4
is an ellipse.

54. Show that the curve of intersection of the plane z = k y and
the cylinder x2 + y2 = 1 is an ellipse. [Suggestion: Intro-
duce uv-coordinates into the plane z = ky as follows: Let
the u-axis be the original x-axis and let the v-axis be the line
z = ky, x = 0.]

0

2

4

x

−1
−1

0

0

1

1
y

z

FIGURE 11.7.26 The two
paraboloids of Problem 52.

11.8 CYLINDRICAL AND SPHERICAL COORDINATES

Rectangular coordinates provide only one of several useful ways of describing points,

x

y

P

yr

x

θ

FIGURE 11.8.1 The relation
between rectangular and polar
coordinates in the xy-plane.

curves, and surfaces in space. Here we discuss two additional coordinate systems in
three-dimensional space. Each is a generalization of polar coordinates in the coordinate
plane.

Recall from Section 9.2 that the relationship between the rectangular coordinates
(x, y) and the polar coordinates (r, θ) of a point in space is given by

x = r cos θ, y = r sin θ (1)

and

r2 = x2 + y2, tan θ = y

x
if x �= 0. (2)

Read these relationships directly from the right triangle in Fig. 11.8.1.

Cylindrical Coordinates

The cylindrical coordinates (r, θ, z) of a point P in space are natural hybrids of its

y

z

x

Q (x, y, 0)

P (r, , z)θ

r
θ

z

FIGURE 11.8.2 Finding the
cylindrical coordinates of the
point P .

polar and rectangular coordinates. We use the polar coordinates (r, θ) of the point in
the plane with rectangular coordinates (x, y) and use the same z-coordinate as in rect-
angular coordinates. (The cylindrical coordinates of a point P in space are illustrated
in Fig. 11.8.2.) This means that we can obtain the relations between the rectangular
coordinates (x, y, z) of the point P and its cylindrical coordinates (r, θ, z) by simply
adjoining the identity z = z to the equations in (1) and (2):

x = r cos θ, y = r sin θ, z = z (3)

and

r2 = x2 + y2, tan θ = y

x
, z = z. (4)

We can use these equations to convert from rectangular to cylindrical coordinates and
vice versa.

EXAMPLE 1

(a) Find the rectangular coordinates of the point P having cylindrical coordinates
(4, 5

3π, 7).
(b) Find the cylindrical coordinates of the point Q having rectangular coordinates

(−2, 2, 5).
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Solution
(a) We apply the equations in (3) to write

x = 4 cos
(

5
3π

) = 4 · 1
2 = 2,

y = 4 sin
(

5
3π

) = 4 · ( − 1
2

√
3
) = −2

√
3,

z = 7.

Thus the point P has rectangular coordinates (2, −2
√

3, 7).
(b) Noting first that the point Q is in the second quadrant of the xy-plane, we apply

the equations in (4) and write

r =
√

(−2)2 + 22 = 2
√

2,

tan θ = −2

2
= −1, so θ = 3π

4
,

z = 5.

Thus the point Q has cylindrical coordinates (2
√

2, 3
4π, 5). We can add any

even integral multiple of π to θ , so other cylindrical coordinates for Q are
(2

√
2, 11

4 π, 5) and (2
√

2, − 5
4π, 5). ◗

The graph of an equation involving r , θ , and z is the set of all points in space

y
x

(0, c, 0)
(c, 0, 0)

z

FIGURE 11.8.3 The cylinder
r = c.

having cylindrical coordinates that satisfy the equation. The name cylindrical coordi-
nates arises from the fact that the graph in space of the equation r = c (a constant)
is a cylinder of radius c symmetric around the z-axis (Fig. 11.8.3). Cylindrical coor-
dinates are useful in describing other surfaces that are symmetric around the z-axis.
The rectangular-coordinate equation of such a surface typically involves x and y only
in the combination x2 + y2, for which we can then substitute r2 to get the cylindrical-
coordinate equation.

EXAMPLE 2

(a) The sphere x2 + y2 + z2 = a2 has cylindrical-coordinate equation r2 + z2 = a2.
(b) The cone z2 = x2 + y2 has cylindrical-coordinate equation z2 = r2. Taking

square roots, we get z = ±r , and the two signs give (for r � 0) the two nappes
of the cone (Fig. 11.8.4).

(c) The paraboloid z = x2 + y2 has cylindrical-coordinate equation z = r2

(Fig. 11.8.5).
(d) The ellipsoid (x/3)2 + (y/3)2 + (z/2)2 = 1 has cylindrical-coordinate equation

(r/3)2 + (z/2)2 = 1 (Fig. 11.8.6). ◗

z = −r

z = r

z

y

x

FIGURE 11.8.4 The cone
z 2 = r2.

y

z

x

θ

, z)θ(r,

θ(r, , 0)

zz = r2

FIGURE 11.8.5 The
paraboloid z = r2.

2

z

x

y

3
3

FIGURE 11.8.6 The

ellipsoid
r2

9
+ z 2

4
= 1.

EXAMPLE 3 Sketch the region that is bounded by the two surfaces with cylindrical-
coordinate equations z = r2 and z = 8 − r2.
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Solution If we substitute r2 = x2 + y2 in the given equations, we get the familiar
rectangular equations

z = x2 + y2 and z = 8 − x2 − y2

that describe paraboloids opening upward from (0, 0, 0) and downward from (0, 0, 8),
respectively. Figure 11.8.7 shows a computer plot of the region in space that is bounded
below by the paraboloid z = x2 + y2 and above by the paraboloid z = 8 − x2 − y2.

0
2

x−2

−1
0

1y

0

4

8

z

z = 8 − x2 − y2

z = x2 + y2

FIGURE 11.8.7 The solid of
Example 3.

◗

REMARK The relations x = r cos θ and y = r sin θ play an important role in the
computer plotting of figures symmetric around the z-axis. For instance, the paraboloid
z = 8 − r2 of Example 3 can be plotted using computer algebra system syntax like the
Maple command

plot3d( [r*cos(θ), r*sin(θ), 8 - r∧2],
r=0..2, θ=0..2*Pi );

or the Mathematica command

ParametricPlot3D[ {r*Cos[θ], r*Sin[θ], 8 - r∧2},
{r,0,2}, {θ,0,2*Pi} ];

In either command the paraboloid is described parametrically by giving x , y, and z in
terms of r and θ .

Spherical Coordinates
Figure 11.8.8 shows the spherical coordinates (ρ, φ, θ) of the point P in space. The
first spherical coordinate ρ is simply the distance ρ = |O P| from the origin O to P .
The second spherical coordinate φ is the angle between O P and the positive z-axis.
Thus we may always choose φ in the interval [0, π ], although it is not restricted to that
domain. Finally, θ is the familiar angle θ of cylindrical coordinates. That is, θ is the

y

z

x Q

rθ

ρ

O

φ
φ

P ( θρ, φ, )

FIGURE 11.8.8 Finding the
spherical coordinates of
the point P .

angular coordinate of the vertical projection Q of P into the xy-plane. Thus we may
always choose θ in the interval [0, 2π ], although it is not restricted to that domain.
Both angles φ and θ are always measured in radians.

The name spherical coordinates is used because the graph of the equation ρ = c
(c is a constant) is a sphere—more precisely, a spherical surface—of radius c centered

= cφ

= −cφ

FIGURE 11.8.9 The two nappes of
a 45◦ cone; φ = π/2 is the spherical
equation of the xy-plane.

at the origin. The equation φ = c (a constant) describes (one nappe of) a cone if
0 < c < π/2 or if π/2 < c < π (Fig. 11.8.9). The spherical equation of the xy-plane
is φ = π/2.

From the right triangle OPQ of Fig. 11.8.8, we see that

r = ρ sin φ and z = ρ cos φ. (5)

Indeed, these equations are most easily remembered by visualizing this triangle. Sub-
stituting the equations in (5) into those in (3) yields

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ. (6)

These three equations give the relationship between rectangular and spherical coordi-
nates. Also useful is the formula

ρ2 = x2 + y2 + z2, (7)

a consequence of the distance formula.
It is important to note the order in which the spherical coordinates (ρ, φ, θ) of a

point P are written—first the distance ρ of P from the origin, then the angle φ down
from the positive z-axis, and last the counterclockwise angle θ measured from the
positive x-axis. You may find this mnemonic device to be helpful: The consonants in
the word “raft” remind us, in order, of rho, f ee (for phi), and theta. Warning: In some
other physics and mathematics books, a different order, or even different symbols, may
be used.
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Given the rectangular coordinates (x, y, z) of the point P , one systematic

y

z

x

Q

r
θ

O

Q

y

x

r

θ

y

z

x

Q

φ
φ

O

P
r

P

ρ

ρz

(a)

(b)

FIGURE 11.8.10 Triangles used in
finding spherical coordinates.

method for finding the spherical coordinates (ρ, φ, θ) of P is this. First we find the
cylindrical coordinates r and θ of P with the aid of the triangle in Fig. 11.8.10(a).
Then we find ρ and φ from the triangle in Fig. 11.8.10(b).

EXAMPLE 4

(a) Find the rectangular coordinates of the point P having the spherical coordinates
(8, 5

6π, 1
3π).

(b) Approximate the spherical coordinates of the point Q having rectangular coordi-
nates (−3, −4, −12).

Solution
(a) We apply the equations in (6) to write

x = 8 sin
(

5
6π

)
cos

(
1
3π

) = 8 · 1
2 · 1

2 = 2,

y = 8 sin
(

5
6π

)
sin

(
1
3π

) = 8 · 1
2 ·( 1

2

√
3
) = 2

√
3,

z = 8 cos
(

5
6π

) = 8 · ( − 1
2

√
3
) = −4

√
3.

Thus the point P has rectangular coordinates (2, 2
√

3, −4
√

3).
(b) First we note that r = √

(−3)2 + (−4)2 = √
25 = 5 and that

ρ =
√

(−3)2 + (−4)2 + (−12)2 = √
169 = 13.

Next,

φ = cos−1

(
z

ρ

)
= cos−1

(
−12

13

)
≈ 2.7468 (rad).

Finally, the point (−3, −4) lies in the third quadrant of the xy-plane, so

θ = π + tan−1

(
4

3

)
≈ 4.0689 (rad).

Thus the approximate spherical coordinates of the point Q are (13, 2.7468,

4.0689). ◗

EXAMPLE 5 Find a spherical-coordinate equation of the paraboloid with
rectangular-coordinates equation z = x2 + y2.

Solution We substitute z = ρ cos φ from Eqs. (5) and x2 + y2 = r2 = ρ2 sin2 φ from
Eq. (6). This gives ρ cos φ = ρ2 sin2 φ. Cancelling ρ gives cos φ = ρ sin2 φ; that is,

ρ = csc φ cot φ

is the spherical-coordinate equation of the paraboloid. We get the whole paraboloid by
using φ in the range 0 < φ � π/2. Note that φ = π/2 gives the point ρ = 0 that
might otherwise have been lost by cancelling ρ. ◗

EXAMPLE 6 Determine the graph of the spherical-coordinate equation ρ = 2 cos φ.

Solution Multiplying by ρ gives

ρ2 = 2ρ cos φ;
then substituting ρ2 = x2 + y2 + z2 and z = ρ cos φ yields

x2 + y2 + z2 = 2z

as the rectangular-coordinate equation of the graph. Completing the square in z now
gives

x2 + y2 + (z − 1)2 = 1,

so the graph is a sphere with center (0, 0, 1) and radius 1. It is tangent to the xy-plane
at the origin (Fig. 11.8.11). ◗

y

z

x

(0, 0, 1)

= 2 cosρ φ

FIGURE 11.8.11 The sphere of
Example 6.
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EXAMPLE 7 Determine the graph of the spherical-coordinate equation ρ =
sin φ sin θ .

Solution We first multiply each side by ρ and get ρ2 = ρ sin φ sin θ . We then use
Eqs. (6) and (7) and find that x2 + y2 + z2 = y. This is a rectangular-coordinate
equation of a sphere with center (0, 1

2 , 0) and radius 1
2 . ◗

REMARK The relations in (6) are used in computer plotting of spherical-coordinate
surfaces. For instance, the spherical surface ρ = 2 cos φ of Example 6 can be plotted
using computer algebra system syntax like the Maple commands

ρ := 2*cos(φ);

plot3d( [ρ*sin(φ)*cos(θ), ρ*sin(φ)*sin(θ), ρ*cos(φ)],

φ = 0..Pi/2, θ = 0..2*Pi );

or the Mathematica commands

ρ = 2 Cos[φ];

ParametricPlot3D[

{ρ*Sin[φ]*Cos[θ], ρ*Sin[φ]*Sin[θ], ρ*Cos[φ]},

{φ, 0, Pi/2}, {θ, 0, 2*Pi} ];

In each case the spherical surface is described parametrically by giving x , y, and z in
terms of ρ, φ, and θ .

Latitude and Longitude
A great circle of a spherical surface is a circle formed by the intersection of the surface
with a plane through the center of the sphere. Thus a great circle of a spherical surface
is a circle (on the surface) that has the same radius as the sphere. Therefore, a great
circle is a circle of maximum possible circumference that lies on the sphere. It’s easy to

y

z

x

North pole

β
α

φP
G

θ

FIGURE 11.8.12 The relations
among latitude, longitude, and
spherical coordinates.

see that any two points on a spherical surface lie on a great circle (uniquely determined
unless the two points lie on the ends of a diameter of the sphere). In the calculus of
variations, it is shown that the shortest distance between two such points—measured
along the curved surface—is the shorter of the two arcs of the great circle that contains
them. The surprise may be that the shortest distance is found by using the largest
circle.

The spherical coordinates φ and θ are closely related to the latitude and longi-
tude of points on the surface of the earth. Assume that the earth is a sphere with radius
ρ = 3960 mi. We begin with the prime meridian (a meridian is a great semicir-
cle connecting the North and South Poles) through Greenwich, England, just outside
London. This is the point marked G in Fig. 11.8.12.

We take the z-axis through the North Pole and the x-axis through the point where
the prime meridian intersects the equator. The latitude α and (west) longitude β of a
point P in the Northern Hemisphere are given by the equations

α = 90◦ − φ◦ and β = 360◦ − θ◦, (8)

where φ◦ and θ◦ are the angular spherical coordinates, measured in degrees, of P .
(That is, φ◦ and θ◦ denote the degree equivalents of the angles φ and θ , respectively,
which are measured in radians unless otherwise specified.) Thus the latitude α is mea-
sured northward from the equator and the longitude β is measured westward from the
prime meridian.

EXAMPLE 8 Find the great-circle distance between New York (latitude 40.75◦ north,
longitude 74◦ west) and London (latitude 51.5◦ north, longitude 0◦). (See Fig. 11.8.13.)

Solution From the equations in (8) we find that φ◦ = 49.25◦, θ◦ = 286◦ for New
York, whereas φ◦ = 38.5◦, θ◦ = 360◦ (or 0◦) for London. Hence the angular spherical
coordinates of New York are φ = (49.25/180)π , θ = (286/180)π , and those of
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Equator

z

Greenwich meridian

North Pole

New York

x

y

London

FIGURE 11.8.13 Finding the great-circle
distance d from New York to London
(Example 8).

London are φ = (38.5/180)π , θ = 0. With these values of φ and θ and with ρ =
3960 (mi), the equations in (6) give the approximate rectangular coordinates

New York: P1(826.90, −2883.74, 2584.93)

and

London: P2(2465.16, 0.0, 3099.13).

The angle γ between the radius vectors u = O P1
−−−→

and v = O P2
−−−→

in Fig. 11.8.14
satisfies the equation

cos γ = u · v
|u| |v|

≈ 826.90 · 2465.16 − 2883.74 · 0 + 2584.93 · 3099.13

(3960)2
≈ 0.641.

Thus γ is approximately 0.875 (rad). Hence the great-circle distance between New
York and London is close to

d ≈ 3960 · 0.875 = 3465 (mi),

about 5576 km. ◗

O

P1

P2

γ

d

New York London

FIGURE 11.8.14 The great-circle
arc between New York and London
(Example 8).

11.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. To convert cylindrical coordinates into rectangular coordinates, use the equations

x = r cos θ, y = r sin θ, z = z.

2. To convert rectangular coordinates into cylindrical coordinates, use the equations

r2 = x2 + y2, tan θ = y

x
, z = z.

3. The sphere x2 + y2 + z2 = a2 has cylindrical-coordinate equation r2 + z2 = a2.
4. The cone z2 = x2 + y2 has cylindrical-coordinate equation z2 = r2.
5. To convert spherical coordinates into rectangular coordinates, use the equations

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ.
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6. Another relation linking rectangular and spherical coordinates is ρ2 = x2 + y2 +
z2.

7. The point P with spherical coordinates
(
8, 5

6π, 1
3π

)
has rectangular coordinates(

2, 2
√

3, −12
)

.

8. The paraboloid with rectangular-coordinate equation z = x2 + y2 has spherical-
coordinate equation ρ = csc φ cot φ.

9. The graph of the spherical-coordinate equation ρ = 2 cos φ is a sphere of ra-
dius 1.

10. The great-circle distance between New York and London is approximately
3465 miles.

11.8 CONCEPTS: QUESTIONS AND DISCUSSION
1. Give several examples of surfaces that are described more simply in rectangular

coordinates than in cylindrical or spherical coordinates.
2. Give several examples of surfaces that are described more simply in cylindrical

coordinates than in rectangular or spherical coordinates.
3. Give several examples of surfaces that are described more simply in spherical

coordinates than in rectangular or cylindrical coordinates.

11.8 PROBLEMS

In Problems 1 through 6, find the rectangular coordinates of the
point with the given cylindrical coordinates.

1.
(
1, 1

2 π, 2
)

2.
(
3, 3

2 π, −1
)

3.
(
2, 3

4 π, 3
)

4.
(
3, 7

6 π, −1
)

5.
(
2, 1

3 π, −5
)

6.
(
4, 5

3 π, 6
)

In Problems 7 through 12, find the rectangular coordinates of the
points with the given spherical coordinates (ρ, φ, θ).

7. (2, 0, π) 8. (3, π, 0)

9.
(
3, 1

2 π, π
)

10.
(
4, 1

6 π, 2
3 π

)
11.

(
2, 1

3 π, 3
2 π

)
12.

(
6, 3

4 π, 4
3 π

)
In Problems 13 through 22, find both the cylindrical coordinates
and the spherical coordinates of the point P with the given rect-
angular coordinates.

13. P(0, 0, 5) 14. P(0, 0, −3)

15. P(1, 1, 0) 16. P(2, −2, 0)

17. P(1, 1, 1) 18. P(−1, 1, −1)

19. P(2, 1, −2) 20. P(−2, −1, −2)

21. P(3, 4, 12) 22. P(−2, 4,−12)

In Problems 23 through 38, describe the graph of the given equa-
tion. (It is understood that equations including r are in cylin-
drical coordinates and those including ρ or φ are in spherical
coordinates.)

23. r = 5 24. θ = 3π/4

25. θ = π/4 26. ρ = 5

27. φ = π/6 28. φ = 5π/6

29. φ = π/2 30. φ = π

31. z2 + 2r 2 = 4 32. z2 − 2r 2 = 4

33. r = 4 cos θ 34. ρ = 4 cos φ

35. r 2 − 4r + 3 = 0 36. ρ2 − 4ρ + 3 = 0

37. z2 = r 4 38. ρ3 + 4ρ = 0

In Problems 39 through 44, convert the given equation both to
cylindrical and to spherical coordinates.

39. x2 + y2 + z2 = 25

40. x2 + y2 = 2x

41. x + y + z = 1

42. x + y = 4

43. x2 + y2 + z2 = x + y + z

44. z = x2 − y2

In Problems 45 through 52, describe and sketch the surface or
solid described by the given equations and /or inequalities.

45. r = 3, −1 � z � 1

46. ρ = 2, 0 � φ � π/2

47. ρ = 2, π/3 � φ � 2π/3

48. 0 � r � 3, −2 � z � 2

49. 1 � r � 3, −2 � z � 2

50. 0 � ρ � 2, 0 � φ � π/2

51. 3 � ρ � 5

52. 0 � φ � π/6, 0 � ρ � 10

53. The parabola z = x2, y = 0 is rotated around the z-
axis. Write a cylindrical-coordinate equation for the surface
thereby generated.

54. The hyperbola y2 − z2 = 1, x = 0 is rotated around the z-
axis. Write a cylindrical-coordinate equation for the surface
thereby generated.
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55. A sphere of radius 2 is centered at the origin. A hole of ra-
dius 1 is drilled through the sphere, with the axis of the hole
lying on the z-axis. Describe the solid region that remains
(Fig. 11.8.15) in (a) cylindrical coordinates; (b) spherical co-
ordinates.

FIGURE 11.8.15 The
sphere-with-hole of Problem 55.

56. Find the great-circle distance in miles and in kilometers from
Atlanta (latitude 33.75◦ north, longitude 84.40◦ west) to San
Francisco (latitude 37.78◦ north, longitude 122.42◦ west).

57. Find the great-circle distance in miles and in kilometers from
Fairbanks (latitude 64.80◦ north, longitude 147.85◦ west)
to St. Petersburg, Russia (latitude 59.91◦ north, longitude
30.43◦ east of Greenwich—alternatively, longitude 329.57◦
west).

58. Because Fairbanks and St. Petersburg, Russia (see Prob-
lem 57) are at approximately the same latitude, a plane could
fly from one to the other roughly along the 62nd parallel of
latitude. Accurately estimate the length of such a trip both
in kilometers and in miles.

59. In flying the great-circle route from Fairbanks to
St. Petersburg, Russia (see Problem 57), how close in kilo-
meters and in miles to the North Pole would a plane fly?

60. The vertex of a right circular cone of radius R and height H
is located at the origin and its axis lies on the nonnegative
z-axis. Describe the solid cone in cylindrical coordinates.

61. Describe the cone of Problem 60 in spherical coordinates.

62. In flying the great-circle route from New York to
London (Example 8), an airplane initially flies generally
east-northeast. Does the plane ever fly at a latitude higher
than that of London? [Suggestion: Express the z-coordinate
of the plane’s route as a function of x , and then maximize z.]

63. Figure 11.8.16 shows the torus that is obtained by revolving
around the z-axis the circle of radius b centered at the point
(a, 0) in the yz-plane. Write a radical-free equation describ-
ing this torus in (a) rectangular coordinates; (b) cylindrical
coordinates; (c) spherical coordinates. (d) Investigate the use

of one of these descriptions with a computer algebra system
to plot this torus with selected values of a and b.

z

x

y

FIGURE 11.8.16 The torus of
Problem 63.

64. The bumpy sphere of Fig. 11.8.17 is an exaggerated rep-
resentation of waves on the surface of a very small planet
that is covered by a very deep ocean. Such bumpy or wrin-
kled spheres may also, perhaps more realistically, be used to
model tumors. Use a computer algebra system to plot the
spherical-coordinate surface

ρ = a + b cos m θ sin nφ

with selected values of the positive numbers a and b and the
positive integers m and n. How does the surface depend on
the value of each of these four parameters?

FIGURE 11.8.17 The bumpy sphere of Problem 64.
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CHAPTER 11: REVIEW

Understanding: Concepts, Definitions, and Results
Refer to the listed pages to review the concepts, definitions, and results of this chapter that you need to understand.

Section Pages
11.1 Vector and scalar quantities; the definition of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

Addition of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
Multiplication of a vector by a scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
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The dot (or scalar) product of vectors, and its properties . . . . . . . . . . . . . . . . . . . . . . . . . 828
Interpretation of the dot product and the test for perpendicularity of vectors . . . . . . . . 829–830
Direction angles and projections of vectors; force-work applications . . . . . . . . . . . . . . 830–832

11.3 Definition of the cross product, and its geometric interpretation . . . . . . . . . . . . . . . . . . .835
The cross product as a determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
The geometric significance of the cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
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CHAPTER 11: REVIEW (Continued)

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
11.1 Using different vector notations and elementary operations . . . . . . . . . . . . . . . . . . . . . . .3, 5, 7

Calculating sums, differences, and lengths of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 13
Using the unit vectors i and j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21, 27, 35
Using vectors to solve applied problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 47

11.2 Elementary operations with 3-dimensional vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3
Finding components and angles between vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9
Writing and using equations of spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 27
Checking whether vectors are parallel; calculating direction angles . . . . . . . . . . . . . . . 41, 43, 49
Using vectors to calculate work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53, 55

11.3 Calculating cross products of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 7
Using cross products to calculate areas and volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 17, 21, 23

11.4 Writing equations of lines in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 7, 9, 13
Determining whether two lines are parallel or skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 17
Writing equations of planes in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23, 27, 31, 33
Calculating angles between and lines of intersections of planes . . . . . . . . . . . . . . . . . . . 41, 45

11.5 Calculating velocity and acceleration vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 13, 35
Calculating integrals of vector functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Integrating acceleration and velocity vectors to find position vectors . . . . . . . . . . . . . . 31
Solving projectile problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 63

11.6 Calculating arc length of a curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Calculating curvature of plane and space curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 11, 27, 33
Calculating unit tangent and normal vectors to a curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 19, 37
Calculating tangential and normal components of acceleration . . . . . . . . . . . . . . . . . . . .23, 43

11.7 Recognizing and sketching graphs of quadric surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 9, 11, 17, 25, 29
Finding equations of surfaces of revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 33
Describing traces of quadric surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 45

11.8 Converting between rectangular, cylindrical, and spherical coordinates . . . . . . . . . . . . 3, 9, 19
Describing graphs of cylindrical and spherical coordinate equations . . . . . . . . . . . . . . .23, 27, 29, 31
Converting between rectangular, cylindrical, and spherical equations . . . . . . . . . . . . . . 43, 53

MISCELLANEOUS PROBLEMS

1. Suppose that M is the midpoint of the segment P Q in space
and that A is another point. Show that

AM
−−→ = 1

2
(AP
−−→+ AQ

−−→
).

2. Let a and b be nonzero vectors. Define

a‖ = (compba)
b
|b| and a⊥ = a − a‖.

Prove that a⊥ is perpendicular to b.

3. Let P and Q be different points in space. Show that the
point R lies on the line through P and Q if and only if
there exist numbers a and b such that a + b = 1 and
O R
−−→ = aO P

−−→+bO Q
−−→

. Conclude that

r(t) = t O P
−−→+(1 − t)O Q

−−→

is a parametric equation of this line.

4. Conclude from the result of Problem 3 that the points P ,
Q, and R are collinear if and only if there exist numbers
a, b, and c, not all zero, such that a + b + c = 0 and
aO P

−−→+bO Q
−−→+cO R

−−→ = 0.

5. Let P(x0, y0), Q(x1, y1), and R(x2, y2) be points in the xy-
plane. Use the cross product to show that the area of the
triangle P Q R is

A = 1
2 |(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)|.

6. Write both symmetric and parametric equations of the line
that passes through P1(1, −1, 0) and is parallel to v =
〈2, −1, 3〉.

7. Write both symmetric and parametric equations of the line
that passes through P1(1, −1, 2) and P2(3, 2, −1).

8. Write an equation of the plane through P(3, −5, 1) with nor-
mal vector n = i + j.

9. Show that the lines with symmetric equations

x − 1 = 2(y + 1) = 3(z − 2)

and

x − 3 = 2(y − 1) = 3(z + 1)

are parallel. Then write an equation of the plane containing
these two lines.
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10. Let the lines L 1 and L 2 have symmetric equations

x − xi

ai
= y − yi

bi
= z − zi

ci

for i = 1, 2. Show that L 1 and L 2 are skew lines if and only
if ∣∣∣∣∣∣

x1 − x2 y1 − y2 z1 − z2

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣ �= 0.

11. Given the four points A(2, 3, 2), B(4, 1, 0), C(−1, 2, 0),
and D(5, 4, −2), find an equation of the plane that passes
through A and B and is parallel to the line through C and D.

12. Given the points A, B, C , and D of Problem 11, find points
P on the line AB and Q on the line C D such that the line
P Q is perpendicular to both AB and C D. What is the per-
pendicular distance d between the lines AB and C D?

13. Let P0(x0, y0, z0) be a point of the plane with equation

ax + by + cz + d = 0.

By projecting O P0
−−→

onto the normal vector n = 〈a, b, c〉,
show that the distance D from the origin to this plane is

D = |d|√
a2 + b2 + c2

.

14. Show that the distance D from the point P1(x1, y1, z1) to the
plane ax + by + cz + d = 0 is equal to the distance from the
origin to the plane with equation

a(x + x1) + b(y + y1) + c(z + z1) + d = 0.

Hence conclude from the result of Problem 13 that

D = |ax1 + by1 + cz1 + d|√
a2 + b2 + c2

.

15. Find the perpendicular distance between the parallel planes
2x − y + 2z = 4 and 2x − y + 2z = 13.

16. Write an equation of the plane through the point (1, 1, 1) that
is normal to the twisted cubic x = t, y = t2, z = t3 at this
point.

17. Let ABC be an isosceles triangle with |AB| = |AC |. Let
M be the midpoint of BC . Use the dot product to show that
AM and BC are perpendicular.

18. Use the dot product to show that the diagonals of a rhom-
bus (a parallelogram with all four sides of equal length) are
perpendicular to each other.

19. The acceleration of a certain particle is

a = i sin t − j cos t.

Assume that the particle begins at time t = 0 at the point
(0, 1) and has initial velocity v0 = −i. Show that its path is
a circle.

20. A particle moves in an attracting central force field with
force proportional to the distance from the origin. This im-
plies that the particle’s acceleration vector is a = −ω2r,
where r is the position vector of the particle. Assume that
the particle’s initial position is r0 = pi and that its initial
velocity is v0 = qωj. Show that the trajectory of the parti-
cle is the ellipse with equation x2/p2 + y2/q2 = 1. [Sug-
gestion: If x ′′(t) = −k2x(t) (where k is constant), then
x(t) = A cos kt + B sin kt for some constants A and B.]

21. At time t = 0, a ground target is 160 ft from a gun and is
moving directly away from it with a constant speed of 80
ft/s. If the muzzle velocity of the gun is 320 ft/s, at what
angle of elevation α should it be fired in order to strike the
moving target?

22. Suppose that a gun with muzzle velocity v0 is located at the
foot of a hill with a 30◦ slope. At what angle of elevation
(from the horizontal) should the gun be fired in order to max-
imize its range, as measured up the hill?

23. A particle moves in space with parametric equations x =
t, y = t2, z = 4

3 t3/2. Find the curvature of its trajectory
and the tangential and normal components of its accelera-
tion when t = 1.

24. The osculating plane to a space curve at a point P of that
curve is the plane through P that is parallel to the curve’s
unit tangent and principal unit normal vectors at P . Write an
equation of the osculating plane to the curve of Problem 23
at the point (1, 1, 4

3 ).

25. Show that the equation of the plane that passes through
the point P0(x0, y0, z0) and is parallel to the vectors
v1 = 〈a1, b1, c1〉 and v2 = 〈a2, b2, c2〉 can be written in the
form

∣∣∣∣∣∣
x − x0 y − y0 z − z0

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣ = 0.

26. Deduce from Problem 25 that the equation of the osculating
plane (Problem 24) to the parametric curve r(t) at the point
r(t0) can be written in the form

[R − r(t0)] · [r′(t0) × r′′(t0)] = 0,

where R = 〈x, y, z〉. Note first that the vectors T and N are
coplanar with r′(t) and r′′(t).

27. Use the result of Problem 26 to write an equation of the os-
culating plane to the twisted cubic x = t, y = t2, z = t3 at
the point (1, 1, 1).

28. Let a parametric curve in space be described by equations
r = r(t), θ = θ(t), z = z(t) that give the cylindrical coor-
dinates of a moving point on the curve for a � t � b. Use the
equations relating rectangular and cylindrical coordinates to
show that the arc length of the curve is

s =
∫ b

a

[(
dr

dt

)2

+
(

r
dθ

dt

)2

+
(

dz

dt

)2
]1/2

dt.

29. A point moves on the unit sphere ρ = 1 with its spheri-
cal angular coordinates at time t given by φ = φ(t), θ =
θ(t), a � t � b. Use the equations relating rectangular and
spherical coordinates to show that the arc length of its path
is

s =
∫ b

a

[(
dφ

dt

)2

+ (sin2 φ)

(
dθ

dt

)2
]1/2

dt.
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30. The vector product B = T × N of the unit tangent vector
and the principal unit normal vector is the unit binormal
vector B of a curve. (a) Differentiate B · T = 0 to show that
T is perpendicular to dB/ds. (b) Differentiate B · B = 1 to
show that B is perpendicular to dB/ds. (c) Conclude from
parts (a) and (b) that dB/ds = −τN for some number τ .
Called the torsion of the curve, τ measures the amount that
the curve twists at each point in space.

31. Show that the torsion of the helix of Example 7 of Sec-
tion 11.5 is constant by showing that its value is

τ = bω

a2ω2 + b2
.

32. Deduce from the definition of torsion (Problem 30) that
τ ≡ 0 for any curve such that r(t) lies in a fixed plane.

33. Write an equation in spherical coordinates for the spherical
surface with radius 1 and center x = 0 = y, z = 1.

34. Let C be the circle in the yz-plane with radius 1 and cen-
ter y = 1, z = 0. Write equations in both rectangular and
cylindrical coordinates of the surface obtained by revolving
C around the z-axis.

35. Let C be the curve in the yz-plane with equation (y2 +z2)2 =
2(z2 − y2). Write an equation in spherical coordinates
of the surface obtained by revolving this curve around the
z-axis. Then sketch this surface. [Suggestion: Remember
that r 2 = 2 cos 2θ is the polar equation of a figure-eight
curve.]

36. Let A be the area of the parallelogram P Q RS in space de-

termined by the vectors a = P Q
−−→

and b = P S
−→

. Let A′ be the
area of the perpendicular projection of P Q RS into a plane
that makes an acute angle γ with the plane of P Q RS. As-
suming that A′ = A cos γ in such a situation (this is true),
prove that the areas of the perpendicular projections of the
parallelogram P Q RS into the three coordinate planes are

|i · (a × b)|, |j · (a × b)|, and |k · (a × b)|.
Conclude that the square of the area of a parallelogram
in space is equal to the sum of the squares of the areas
of its perpendicular projections into the three coordinate
planes.

37. Take a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 in Problem 36.
Show that

A2 =
∣∣∣∣a2 a3

b2 b3

∣∣∣∣
2

+
∣∣∣∣a3 a1

b3 b1

∣∣∣∣
2

+
∣∣∣∣a1 a2

b1 b2

∣∣∣∣
2

.

38. Suppose that y = f (x) is the graph of a function for which
f ′′ is continuous, and suppose also that the graph has an in-
flection point at (a, f (a)). Prove that the curvature of the
graph at x = a is zero.

39. Find the points on the curve y = sin x where the curvature
is maximal and those where it is minimal.

40. The right branch of the hyperbola x2 − y2 = 1 may be
parametrized by x(t) = cosh t, y(t) = sinh t . Find the point
where its curvature is minimal.

41. Find the vectors N and T at the point of the curve x(t) =
t cos t , y(t) = t sin t that corresponds to t = π/2.

42. Find the points on the ellipse x2/a2 + y2/b2 = 1 (with
a > b > 0) where the curvature is maximal and those where
it is minimal.

43. Suppose that the plane curve r = f (θ) is given in polar co-
ordinates. Write r ′ for f ′(θ) and r ′′ for f ′′(θ). Show that its
curvature is given by

κ = |r 2 + 2(r ′)2 − rr ′|
[r 2 + (r ′)2]3/2

.

44. Use the formula in Problem 43 to calculate the curvature
κ(θ) at the point (r, θ) of the spiral of Archimedes with equa-
tion r = θ . Then show that κ(θ) → 0 as θ → +∞.

45. A railway curve must join two straight tracks, one extend-
ing due west from (−1, −1) and the other extending due
east from (1, 1). Determine A, B, and C so that the curve
y = A x + Bx3 + Cx5 joins (−1, −1) and (1, 1) and so that
the slope and curvature of this connecting curve are zero at
both its endpoints.

46. A plane passing through the origin and not parallel to any co-
ordinate plane has an equation of the form A x+By+Cz = 0
and intersects the spherical surface x2 + y2 + z2 = R2 in
a great circle. Find the highest point on this great circle;
that is, find the coordinates of the point with the largest z-
coordinate.

47. Suppose that a tetrahedron in space has a solid right angle at
one vertex (like a corner of a cube). Suppose that A is the
area of the side opposite the solid right angle and that B, C ,
and D are the areas of the other three sides. (a) Prove that

A2 = B2 + C2 + D2.

(b) Of what famous theorem is this a three-dimensional ver-
sion?

PHOTO CREDITS

p. 817 (top left) Library of Congress p. 852 Robert Garvey/Black Star 
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Partial Differentiation 12

Joseph Louis Lagrange
(1736–1813)

Joseph Louis Lagrange
is remembered for his
great treatises on ana-

lytical mechanics and on
the theory of functions
that summarized much of
eighteenth-century pure and
applied mathematics. These
treatises—Mécanique an-
alytique (1788), Théorie
des fonctions analytiques
(1797), and Leçons sur
le calcul des fonctions
(1806)—systematically de-
veloped and applied widely

the differential and integral calculus of multivariable func-
tions expressed in terms of the rectangular coordinates x ,
y, z in three-dimensional space. They were written and
published in Paris during the last quarter-century of La-
grange’s career. But he grew up and spent his first 30 years
in Turin, Italy. His father pointed Lagrange toward the law,
but by age 17 Lagrange had decided on a career in sci-
ence and mathematics. Based on his early work in celes-
tial mechanics (the mathematical analysis of the motions
of the planets and satellites in our solar system), Lagrange
in 1766 succeeded Leonhard Euler as director of the Berlin
Academy in Germany.

Lagrange regarded his far-reaching work on
maximum-minimum problems as his best work in mathe-
matics. This work, which continued throughout his long
career, dated back to a letter to Euler that Lagrange wrote
from Turin when he was only 19. This letter outlined a
new approach to a certain class of optimization problems
that comprise the calculus of variations. A typical example
is the isoperimetric problem, which asks what curve of a
given arc length encloses a plane region with the greatest
area. (The answer: a circle.) In the Mécanique analytique,
Lagrange applied his “method of multipliers” to investi-

gate the motion of a particle in space that is constrained
to move on a surface defined by an equation of the form
g(x, y, z) = 0. Section 12.9 applies the Lagrange multi-
plier method to the problem of maximizing or minimizing
a function f (x, y, z) subject to a “constraint” of the form

g(x, y, z) = 0.

Today this method has applications that range from mini-
mizing the fuel required for a spacecraft to achieve its de-
sired trajectory to maximizing the productivity of a com-
mercial enterprise limited by the availability of financial,
natural, and personnel resources.

Modern scientific visualization often employs com-
puter graphic techniques to present different interpreta-
tions of the same data simultaneously in a single figure.
The following color graphic shows both a graph of a sur-
face z = f (x, y) and a contour map showing level curves
that appear to encircle points (x, y) corresponding to pits
and peaks on the surface. In Section 12.5 we learn how to
locate multivariable maximum-minimum points like those
visible on this surface.
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900 CHAPTER 12 Partial Differentiation

12.1 INTRODUCTION

We turn our attention here and in Chapters 13 and 14 to the calculus of functions of
more than one variable. Many real-world functions depend on two or more variables.
For example:

• In physical chemistry the ideal gas law pV = n RT (where n and R are constants)
is used to express any one of the variables p (pressure), V (volume), and T
(temperature) as a function of the other two.

• The altitude above sea level at a particular location on the earth’s surface depends
on the latitude and longitude of the location.

• A manufacturer’s profit depends on sales, overhead costs, the cost of each raw
material used, and in many cases, additional variables.

• The amount of usable energy a solar panel can gather depends on its efficiency,
its angle of inclination to the sun’s rays, the angle of elevation of the sun above
the horizon, and other factors.

A typical application may call for us to find an extreme value of a function of

z

yx

FIGURE 12.1.1 A box whose total
cost we want to minimize.

several variables. For example, suppose that we want to minimize the cost of making
a rectangular box with a volume of 48 ft3, given that its front and back cost $1/ft2, its
top and bottom cost $2/ft2, and its two ends cost $3/ft2. Figure 12.1.1 shows such a
box of length x , width y, and height z. Under the conditions given, its total cost will
be

C = 2xz + 4xy + 6yz (dollars).

But x , y, and z are not independent variables, because the box has fixed volume

V = xyz = 48.

We eliminate z, for instance, from the first formula by using the second; because z =
48/(xy), the cost we want to minimize is given by

C = 4xy + 288

x
+ 96

y
.

Because neither of the variables x or y can be expressed in terms of the other, the
single-variable maximum-minimum techniques of Chapter 3 cannot be applied
here. We need new optimization techniques applicable to functions of two or more
independent variables. In Section 12.5 we shall return to this problem.

The problem of optimization is merely one example. We shall see in this chap-
ter that many of the main ingredients of single-variable differential calculus—limits,
derivatives and rates of change, chain rule computations, and maximum-minimum
techniques—can be generalized to functions of two or more variables.

12.2 FUNCTIONS OF SEVERAL VARIABLES

Recall from Section 1.1 that a real-valued function is a rule or correspondence f that
associates a unique real number with each element of a set D. The domain D has
always been a subset of the real line for the functions of a single variable that we have
studied up to this point. If D is a subset of the plane, then f is a function of two
variables—for, given a point P of D, we naturally associate with P its rectangular
coordinates (x, y).

DEFINITION Functions of Two or Three Variables
A function of two variables, defined on the domain D in the plane, is a rule f that
associates with each point (x, y) in D a unique real number, denoted by f (x, y).
A function of three variables, defined on the domain D in space, is a rule f that
associates with each point (x, y, z) in D a unique real number f (x, y, z).
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Functions of Several Variables SECTION 12.2 901

We can typically define a function f of two (or three) variables by giving a for-
mula that specifies f (x, y) in terms of x and y (or f (x, y, z) in terms of x , y, and z).
In case the domain D of f is not explicitly specified, we take D to consist of all points
for which the given formula is meaningful.

EXAMPLE 1 The domain of the function f with formula

f (x, y) =
√

25 − x2 − y2

is the set of all (x, y) such that 25−x2 − y2 � 0—that is, the circular disk x2 + y2 � 25
of radius 5 centered at the origin. Similarly, the function g defined as

g(x, y, z) = x + y + z√
x2 + y2 + z2

is defined at all points in space where x2 + y2 + z 2 > 0. Thus its domain consists of
all points in three-dimensional space R3 other than the origin (0, 0, 0). ◗

EXAMPLE 2 Find the domain of definition of the function with formulay

x

x = y2

x = 2y2

FIGURE 12.2.1 The domain of

f (x, y) = y√
x − y2

(Example 2).

f (x, y) = y√
x − y2

. (1)

Find also the points (x, y) at which f (x, y) = ±1.

Solution For f (x, y) to be defined, the radicand x − y2 must be positive—that is,
y2 < x . Hence the domain of f is the set of points lying strictly to the right of the
parabola x = y2. This domain is shaded in Fig. 12.2.1. The parabola in the figure
is dashed to indicate that it is not included in the domain of f ; any point for which
x = y2 would entail division by zero in Eq. (1).

The function f (x, y) has the value ±1 whenever

y√
x − y2

= ±1;

that is, when y2 = x − y2, so x = 2y2. Thus f (x, y) = ±1 at each point of the
parabola x = 2y2 [other than its vertex (0, 0), which is not included in the domain of
f ]. This parabola is shown as a solid curve in Fig. 12.2.1. ◗

In a geometric, physical, or economic situation, a function typically results from
expressing one descriptive variable in terms of others. As we saw in Section 12.1, the
cost C of the box discussed there is given by the formula

C = 4xy + 288

x
+ 96

y

in terms of the length x and width y of the box. The value C of this function is a
variable that depends on the values of x and y. Hence we call C a dependent variable,
whereas x and y are independent variables. And if the temperature T at the point
(x, y, z) in space is given by some formula T = h(x, y, z), then the dependent variable
T is a function of the three independent variables x , y, and z.

We can define a function of four or more variables by giving a formula that in-
cludes the appropriate number of independent variables. For example, if an amount A
of heat is released at the origin in space at time t = 0 in a medium with thermal diffu-
sivity k, then—under appropriate conditions—the temperature T at the point (x, y, z)
at time t > 0 is given by

T (x, y, z, t) = A

(4πk t)3/2
exp

(
− x2 + y2 + z2

4k t

)
.

If A and k are constants, then this formula gives the temperature T as a function of the
four independent variables x , y, z, and t .
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902 CHAPTER 12 Partial Differentiation

We shall see that the main differences between single-variable and multivariable
calculus show up when only two independent variables are involved. Hence many of
our results will be stated in terms of functions of two variables. Most of these results
readily generalize by analogy to the case of three or more independent variables.

Graphs and Level Curves
We can visualize how a function f of two variables “works” in terms of its graph. The
graph of f is the graph of the equation z = f (x, y). Thus the graph of f is the set
of all points in space with coordinates (x, y, z) that satisfy the equation z = f (x, y).
(See Fig. 12.2.2.) The planes and quadric surfaces of Sections 11.4 and 11.7 provide
some simple examples of graphs of functions of two variables.

EXAMPLE 3 Sketch the graph of the function f (x, y) = 2 − 1
2 x − 1

3 y.

z

x y

(x, y, f (x, y))

Height
f (x, y)

(x, y, 0)

D

FIGURE 12.2.2 The graph of a
function of two variables is typically
a surface “over” the domain of the
function.

Solution We know from Section 11.4 that the graph of the equation z = 2 − 1
2 x − 1

3 y
is a plane, and we can visualize it by using its intercepts with the coordinate axes toz 

x

y

(0, 0, 2)

(4, 0, 0)

(0, 6, 0)

z = 2 − x −
2
1 y

3
1

FIGURE 12.2.3 The planar graph
of Example 3.

plot the portion in the first octant of space. Clearly z = 2 if x = y = 0. Also the
equation gives y = 6 if x = z = 0 and x = 4 if y = z = 0. Hence the graph looks as
pictured in Fig. 12.2.3. ◗

EXAMPLE 4 The graph of the function f (x, y) = x2 + y2 is the familiar circular
paraboloid z = x2 + y2 (Section 11.7) shown in Fig. 12.2.4. ◗

EXAMPLE 5 Find the domain of definition of the function

g(x, y) = 1
2

√
4 − 4x2 − y2 (2)

and sketch its graph.

Solution The function g is defined wherever 4−4x2−y2 � 0—that is, x2+ 1
4 y2 � 1—

so that Eq. (2) does not involve the square root of a negative number. Thus the domain
of g is the set of points in the xy-plane that lie on and within the ellipse x2 + 1

4 y2 =
1 (Fig. 12.2.5). If we square both sides of the equation z = 1

2

√
4 − 4x2 − y2 and

simplify the result, we get the equation

x2 + 1
4 y2 + z2 = 1

of an ellipsoid with semiaxes a = 1, b = 2, and c = 1 (Section 11.7). But g(x, y) as
defined in Eq. (2) is nonnegative wherever it is defined, so the graph of g is the upper
half of the ellipsoid (Fig. 12.2.6). ◗

z

y

x

O

FIGURE 12.2.4 The paraboloid is the
graph of the function f (x , y) = x2 + y 2.

y

x2

2

1

1

−1

−2

−2

−1

x2 + y2 = 11
4

FIGURE 12.2.5 The domain of the
function g(x, y) = 1

2

√
4 − 4x2 − y2.

−1
0

1

−2 −1 0 1 2
y

1z

x

0

FIGURE 12.2.6 The graph of the
function g is the upper half of the
ellipsoid.
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The intersection of the horizontal plane z = k with the surface z = f (x, y) isz

y

x

z = k

O

Level
curve

Contour
curve

FIGURE 12.2.7 A contour curve
and the corresponding level curve.

called the contour curve of height k on the surface (Fig. 12.2.7). The vertical projec-
tion of this contour curve into the xy-plane is the level curve f (x, y) = k of the
function f . Thus a level curve of f is simply a set in the xy-plane on which the value
f (x, y) is constant. On a topographic map, such as the one in Fig. 12.2.8, the level
curves are curves of constant height above sea level.

13000

13000

12000

12000

13
00

0

Boulder Field

The
Keyhole

Storm Peak

Mount Lady Washington

13326

Longs Peak

Pagoda Mountain

The
Trough

The
Loft

Mills Glacier

Peacock
Pool

Ships Prow

Keyboard
of the Winds

Chasm
View

13281

14255

Chasm Lake

FIGURE 12.2.8 The region near Longs Peak, Rocky Mountain National Park, Colorado,
showing contour lines at intervals of 200 feet.

Level curves give a two-dimensional way of representing a three-dimensional
surface z = f (x, y), just as the two-dimensional map in Fig. 12.2.8 represents a
three-dimensional mountain range. We do this by drawing typical level curves of
z = f (x, y) in the xy-plane, labeling each with the corresponding (constant) value
of z. Figure 12.2.9 illustrates this process for a simple hill.

EXAMPLE 6 Figure 12.2.10 shows some typical contour curves on the paraboloid
z = 25 − x2 − y2. Figure 12.2.11 shows the corresponding level curves. ◗

Feet

300

200

100

0

400

300
200
100

0

400

FIGURE 12.2.9 Contour curves and level
curves for a hill.

0

5

10

15

20

25

xy

z

z = 24
z = 21

z = 16

z = 9

z = 0

FIGURE 12.2.10 Contour curves on
the surface z = 25 − x2 − y 2.

y z = 24

x4

4

2

2

−2

−4

−4

−2

z = 21
z = 16
z = 9
z = 0

FIGURE 12.2.11 Level curves of the
function f (x, y) = 25 − x2 − y 2.
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0

0

0

+

+
+
+
+

+ + +

1

3

6

−1 −3 −6

x

y

−3 −2 −1 321
−3

0

−2

1

−1

2

3

FIGURE 12.2.12 Level curves for
the function f (x, y) = y 2 − x2.

z

x

y

FIGURE 12.2.13 Contour curves on
z = y 2 − x2 (Example 7).

EXAMPLE 7 Sketch some typical level curves for the function f (x, y) = y2 − x2.

Solution If k �= 0 then the curve y2 − x2 = k is a hyperbola (Section 9.6). It opens
along the y-axis if k > 0, along the x-axis if k < 0. If k = 0 then we have the equation
y2 − x2 = 0, whose graph consists of the two straight lines y = x and y = −x .
Figure 12.2.12 shows some of the level curves, each labeled with the corresponding
constant value of z. Figure 12.2.13 shows contour curves on the hyperbolic paraboloid
z = y2 − x2 (Section 11.7). Note that the saddle point at the origin on the paraboloid
corresponds to the intersection point of the two level curves y = x and y = −x in
Fig. 12.2.12. ◗

The graph of a function f (x, y, z) of three variables cannot be drawn in three
dimensions, but we can readily visualize its level surfaces of the form f (x, y, z) = k.
For example, the level surfaces of the function f (x, y, z) = x2 + y2 + z2 are spheres
(spherical surfaces) centered at the origin. Thus the level surfaces of f are the sets in
space on which the value f (x, y, z) is constant.

If the function f gives the temperature at the location (x, y) or (x, y, z), then its
level curves or surfaces are called isotherms. A weather map typically includes level
curves of the ground-level atmospheric pressure; these are called isobars. Even though
you may be able to construct the graph of a function of two variables, that graph might
be so complicated that information about the function (or the situation it describes) is
obscure. Frequently the level curves themselves give more information, as in weather
maps. For example, Fig. 12.2.14 shows level curves for the annual numbers of days of

Over 70
60–70
50–60
40–50
30–40
20–30
10–20
0–10
none

Days of
high air pollution

potential forecasted

60
5040 30

20

10

0

0 10 20
30

40
10

0

0

10

50

Scale 1 : 34,000,000

Total days

70

FIGURE 12.2.14 Days of high air pollution forecast in the United States (from
National Atlas of the United States, U.S. Department of the Interior, 1970).
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high air pollution forecast at different localities in the United States. The scale of this
figure does not show local variations caused by individual cities. But a glance indicatesz

y

x

1 2

w = −4
w = 0

w = 4

w = −1
w = 1

2

1

FIGURE 12.2.15 Some level
surfaces of the function
w = f (x, y, z) = x2 + y2 − z2

(Example 8).

that western Colorado, south Georgia, and central Illinois all expect the same number
(10, in this case) of high-pollution days each year.

EXAMPLE 8 Figure 12.2.15 shows some level surfaces of the function

f (x, y, z) = x2 + y2 − z2.

If k > 0, then the graph of x2 + y2 − z2 = k is a hyperboloid of one sheet, whereas if
k < 0 it is a hyperboloid of two sheets. The cone x2 + y2 − z2 = 0 lies between these
two types of hyperboloids. ◗

Computer Plots
Many computer systems have surface and contour plotting routines like the Maple
commands

plot3d(y∧2 - x∧2, x = -3..3, y = -3..3);

with(plots): contourplot(y∧2 - x∧2, x = -3..3, y = -3..3);

and the Mathematica commands

Plot3D[ y∧2 - x∧2, {x,-3,3}, {y,-3,3} ]

ContourPlot[ y∧2 - x∧2, {x,-3,3}, {y,-3,3} ]

for the function f (x, y) = y2 − x2 of Example 7.

EXAMPLE 9 Figure 12.2.16 shows both the graph and some projected contour curves
of the function

f (x, y) = (x2 − y2) exp(−x2 − y2).

Observe the patterns of nested level curves that indicate “pits” and “peaks” on the
surface. In Fig. 12.2.17, the level curves that correspond to surface contours above the
xy-plane are shown in red, while those that correspond to contours below the xy-plane
are shown in blue. In this way we can distinguish between peaks and pits. It appears
likely that the surface has peaks above the points (±1, 0) on the x-axis in the xy-plane,
and has pits below the points (0, ±1) on the y-axis. Because f (x, ±x) ≡ 0, the two
45◦ lines y = ±x in Fig. 12.2.17 are also level curves; they intersect at the point (0, 0)

in the plane that corresponds to a saddle point or “pass” (as in mountain pass) on the
surface. ◗

−0.4

−0.3

−0.2

−0.1

0.1

0.2

0.3

0.4

z

−3 −2 −1 0 1 2 3−2
0

2

x

y

0

FIGURE 12.2.16 The graph and projected contour

curves of the function f (x, y) = (x2 − y2)e−x2−y2
.

0−3 −2 −1 321
−3

0

−2

1

−1

2

3

y

x

FIGURE 12.2.17 Level curves
for the function f (x, y) =
(x2 − y2)e−x2−y2

.

REMARK In Section 12.5 we will study analytic methods for locating maximum and
minimum points of functions of two variables exactly. But Example 9 indicates that
plots of level curves provide a valuable tool for locating them approximately.
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EXAMPLE 10 The surfacez

r

FIGURE 12.2.18 The curve
z = sin r (Example 10).

z = sin
√

x2 + y2 (3)

is symmetrical with respect to the z-axis, because Eq. (3) reduces to the equation z =
sin r (Fig. 12.2.18) in terms of the radial coordinate r = √

x2 + y2 that measures
perpendicular distance from the z-axis. The surface z = sin r is generated by revolving
the curve z = sin x around the z-axis. Hence its level curves are circles centered at the
origin in the xy-plane. For instance, z = 0 if r is an integral multiple of π , whereas
z = ±1 if r is any odd integral multiple of π/2. Figure 12.2.19 shows traces of this
surface in planes parallel to the yz-plane. The “hat effect” was achieved by plotting
(x, y, z) for those points (x, y) that lie within a certain ellipse in the xy-plane. ◗

y

z

x

FIGURE 12.2.19 The hat surface
z = sin

√
x2 + y2 (Example 10).

Given an arbitrary function f (x, y), it can be quite a challenge to construct by
hand a picture of the surface z = f (x, y). Example 11 illustrates some special tech-
niques that may be useful. Additional surface-sketching techniques will appear in the
remainder of this chapter.

EXAMPLE 11 Investigate the graph of the function

f (x, y) = 3
4 y2 + 1

24 y3 − 1
32 y4 − x2. (4)

Solution The key feature in Eq. (4) is that the right-hand side is the sum of a function
of x and a function of y. If we set x = 0, we get the curve

z = 3
4 y2 + 1

24 y3 − 1
32 y4 (5)

in which the surface z = f (x, y) intersects the yz-plane. But if we set y = y0 in

x

z 

z = k − x2

FIGURE 12.2.20 The intersection
of z = f (x, y) and the plane y = y0
(Example 11).

Eq. (4), we get

z = (
3
4 y2

0 + 1
24 y3

0 − 1
32 y4

0

) − x2;
that is,

z = k − x2, (6)

which is the equation of a parabola in the xz-plane. Hence the trace of z = f (x, y) in
each plane y = y0 is a parabola of the form in Eq. (6) (Fig. 12.2.20).

We can use the techniques of Section 4.5 to sketch the curve in Eq. (5). Calcu-
lating the derivative of z with respect to y, we get

dz

dy
= 3

2
y + 1

8
y2 − 1

8
y3 = −1

8
y(y2 − y − 12) = −1

8
y(y + 3)(y − 4).

Hence the critical points are y = −3, y = 0, and y = 4. The corresponding values of
z are

f (0, −3) = 99
32 ≈ 3.09, f (0, 0) = 0, and f (0, 4) = 20

3 ≈ 6.67.

Because z → −∞ as y → ±∞, it follows readily that the graph of Eq. (5) looks like
that in Fig. 12.2.21.

Now we can see what the surface z = f (x, y) looks like. Each vertical plane
y = y0 intersects the curve in Eq. (5) at a single point, and this point is the vertex of a
parabola that opens downward like that in Eq. (6); this parabola is the intersection of
the plane and the surface. Thus the surface z = f (x, y) is generated by translating the
vertex of such a parabola along the curve

z = 3
4 y2 + 1

24 y3 − 1
32 y4,

as indicated in Fig. 12.2.22.
Figure 12.2.23 shows some typical contour curves on this surface. They indicate

that the surface resembles two peaks separated by a mountain pass. Figure 12.2.24
shows a computer plot of level curves of the function f (x, y). The nested level curves
enclosing the points (0, −3) and (0, 4) correspond to the peaks at the point (0, −3, 99

32 )

and (0, 4, 20
3 ) on the surface z = f (x, y). The level figure-eight curve through (0, 0)

y

z 

4−3

(−3, 3.09)

6

(4, 6.67)

FIGURE 12.2.21 The curve
z = 3

4 y2 + 1
24 y3 − 1

32 y4

(Example 11).
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y

z

x

FIGURE 12.2.22 Trace parabolas of
z = f (x, y) (Example 11).

y

z

x

FIGURE 12.2.23 Contour curves on
z = f (x, y) (Example 11).

4

3

2

1

321−1−2−3

−1

−2
z = 1.5

z = 3.0

z = −3
z = −1.5
z = 0.0
z = 1.5

z = 3.0
z = 4.5
z = 6.0

x

y

FIGURE 12.2.24 Level curves of the
function f (x , y) = 3

4 y2 +
1

24 y3 − 1
32 y 4 − x2 (Example 11).

marks the saddle point (or pass) that we see at the origin on the surface in Figs. 12.2.22
and 12.2.23. Extreme values and saddle points of functions of two variables are dis-
cussed in Sections 12.5 and 12.10. ◗

12.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose the function f of two variables is defined by a formula giving the value
f (x, y) in terms of x and y. If the domain D is not explicitly specified, then we
take D to consist of all points for which the given formula is meaningful.

2. The domain of the function f defined by the formula

f (x, y) =
√

25 − x2 − y2

is the set of all points (x, y) whose distance from the origin (0, 0) is less than 5.
3. If the cost C(x, y) of a box with base of length x and height y is given by

C = 4xy + 288

x
+ 96

y
,

then C is an independent variable and x and y are dependent variables.
4. The graph of the function f of two variables is the set of all points in space with

coordinates of the form (x, y, f (x, y)).
5. The graph of the function f (x, y) = 2 − 1

2 x − 1
3 y is a plane.

6. The graph of the function g(x, y) = 1
2

√
4 − 4x2 − y2 is an ellipsoid.

7. A level curve of a function f of two variables is precisely the same thing as a
contour curve of f .

8. If k is a constant, then the graph of the equation x2 + y2 −z2 = k is a hyperboloid
of one sheet, because there is one minus sign on the left-hand side of the equation.

9. The pattern of level curves of a function f (x, y) looks essentially the same near
a point (x, y) corresponding to a “peak” on the surface z = f (x, y) as near a
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point corresponding to a saddle point or “pass.” In particular, in either case we
see level curves encircling the point in question.

10. Every level curve of the function

f (x, y) = 3

4
y2 + 1

24
y3 − 1

32
y4 − x2

is a closed curve that encircles either the point (0, −3) or the point (0, 4).

12.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Summarize the relationship between the level curves of a function f (x, y) and

the pits, peaks, and passes on the surface z = f (x, y). In short, how can you
locate likely pits, peaks, and passes by looking at a plot of level curves?

2. Give examples of other types of data for your country that might be presented in
the form of a contour (level curve) map like the one shown in Fig. 12.2.14.

3. The function graphed in Example 11 is of the form z = f (x) + g(y), the sum
of single-variable functions of the two independent variables x and y. Describe
a way of sketching the graph of any such function.

12.2 PROBLEMS

In Problems 1 through 20, state the largest possible domain of
definition of the given function f .

1. f (x, y) = 4 − 3x − 2y 2. f (x, y) = √
x2 + 2y2

3. f (x, y) = 1

x2 + y2
4. f (x, y) = 1

x − y

5. f (x, y) = 3
√

y − x2 6. f (x, y) = √
2x + 3

√
3y

7. f (x, y) = sin−1(x2 + y2) 8. f (x, y) = tan−1
( y

x

)

9. f (x, y) = exp(−x2 − y2) (Fig. 12.2.25)

FIGURE 12.2.25 The graph of the
function of Problem 9.

10. f (x, y) = ln(x2 − y2 − 1)

11. f (x y) = ln(y − x)

12. f (x, y) = √
4 − x2 − y2

13. f (x, y) = 1 + sin xy

xy

14. f (x, y) = 1 + sin xy

x2 + y2
(Fig. 12.2.26)

−4 −2
0 2 4

4
2

0
−2

−4
0

0.5
1

1.5

xy

z

FIGURE 12.2.26 The graph

z = 1 + sin(xy)

x2 + y2
of Problem 14.

15. f (x, y) = xy

x2 − y2

16. f (x, y, z) = 1√
z − x2 − y2

17. f (x, y, z) = exp

(
1

x2 + y2 + z2

)
18. f (x, y, z) = ln(xyz)

19. f (x, y, z) = ln(z − x2 − y2)

20. f (x, y, z) = sin−1(3 − x2 − y2 − z2)

In Problems 21 through 30, describe the graph of the function f .

21. f (x, y) = 10 22. f (x, y) = x

23. f (x, y) = x + y 24. f (x, y) = √
x2 + y2

25. f (x, y) = x2 + y2 26. f (x, y) = 4 − x2 − y2

27. f (x, y) = √
4 − x2 − y2 28. f (x, y) = 16 − y2

29. f (x, y) = 10 − √
x2 + y2

30. f (x, y) = −√
36 − 4x2 − 9y2

In Problems 31 through 40, sketch some typical level curves of
the function f .

31. f (x, y) = x − y 32. f (x, y) = x2 − y2

33. f (x, y) = x2 + 4y2 34. f (x, y) = y − x2
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35. f (x, y) = y − x3 36. f (x, y) = y − cos x

37. f (x, y) = x2 + y2 − 4x

38. f (x, y) = x2 + y2 − 6x + 4y + 7

39. f (x, y) = exp(−x2 − y2)

40. f (x, y) = 1

1 + x2 + y2

In Problems 41 through 46, describe the level surfaces of the
function f .

41. f (x, y, z) = x2 + y2 − z

42. f (x, y, z) = z + √
x2 + y2

43. f (x, y, z) = x2 + y2 + z2 − 4x − 2y − 6z

44. f (x, y, z) = z2 − x2 − y2

45. f (x, y, z) = x2 + 4y2 − 4x − 8y + 17

46. f (x, y, z) = x2 + y2 + 25

In Problems 47 through 52, the function f (x, y) is the sum of a
function of x and a function of y. Hence you can use the method
of Example 11 to construct a sketch of the surface z = f (x, y).
Match each function with its graph among Figs. 12.2.27 through
12.2.32.

−2 −1 0 1 2 −2−1 0 1 2−4

−2

0

2

4

yx

z

FIGURE 12.2.27

−2 −1 0 1 2 −2 −1 0 1 2−4
−2

0
2
4
6

yx

z

FIGURE 12.2.28

−6 −4 −2 0 2 4 6−2 0 2 4−20
−10

0
10
20
30
40
50

y
x

z

FIGURE 12.2.29

−2 −1 0 1 2 −2−1 0 1 2
−4
−2

0
2
4

y
x

z

FIGURE 12.2.30

−2 −1 0 1 2 −2 0 2 4
−15

−10

−5

0

5

yx

z

FIGURE 12.2.31

−2 −1 0 1 2 −4−20 2 4−5
0
5

10
15
20
25

yx

z

FIGURE 12.2.32

47. f (x, y) = x3 + y2

48. f (x, y) = 2x − y2

49. f (x, y) = x3 − 3x + 1
2 y

50. f (x, y) = x2 − y2

51. f (x, y) = x2 + y4 − 4y2

52. f (x, y) = 2y3 − 3y2 − 12y + x2

Problems 53 through 58 show the graphs of six functions z =
f (x, y). Figures 12.2.39 through 12.2.44 show level curve plots
for the same functions but in another order; the level curves in
each figure correspond to contours at equally spaced heights
on the surface z = f (x, y). Match each surface with its level
curves.

53. z = 1

1 + x2 + y2
, |x | � 2, |y| � 2 (Fig. 12.2.33)

x y

z

FIGURE 12.2.33 z = 1

1 + x2 + y2
,

|x | � 2, |y| � 2.

54. z = r 2 exp(−r 2) cos2
(

3
2 θ

)
, |x | � 3, |y| � 3

(Fig. 12.2.34)

z

xy

FIGURE 12.2.34 z = r2 exp(−r2) cos2
(

3
2 θ

)
,

|x | � 3, |y| � 3, r � 0.

55. z = cos
√

x2 + y2 , |x | � 10, |y| � 10 (Fig. 12.2.35)

x y

z

FIGURE 12.2.35 z = cos
√

x2 + y2 ,
|x | � 10, |y| � 10.

56. z = x exp(−x2 − y2), |x | � 2, |y| � 2 (Fig. 12.2.36)

x y

z

FIGURE 12.2.36 z = x exp(−x2 − y 2),
|x | � 2, |y| � 2.

909

www.konkur.in



910 CHAPTER 12 Partial Differentiation

57. z = 3(x2 + 3y2) exp(−x2 − y2), |x | � 2.5, |y| � 2.5
(Fig. 12.2.37)

x

y

z

FIGURE 12.2.37 z = 3(x2 + 3y 2) exp(−x2 − y 2),
|x | � 2.5, |y| � 2.5.

58. z = xy exp
(− 1

2 (x2 + y2)
)
, |x | � 3.5, |y| � 3.5

(Fig. 12.2.38)

x

y

z

FIGURE 12.2.38 z = xy exp
(
− 1

2 (x2 + y 2)
)

,

|x | � 3.5, |y| � 3.5.

59. Use a computer to investigate surfaces of the form z =
(ax + by) exp(−x2 − y2). How do the number and loca-
tions of apparent peaks and pits depend on the values of the
constants a and b?

60. Use a computer to graph the surface z = (ax2 + 2bxy +
cy2) exp(−x2 − y2) with different values of the parameters
a, b, and c. Describe the different types of surfaces that are
obtained in this way. How do the number and locations of
apparent peaks and pits depend on the values of the constants
a, b, and c?

61. Use a computer to investigate surfaces of the form z =
r 2 exp(−r 2) sin nθ . How do the number and locations of ap-
parent peaks and pits depend on the value of the integer n?

62. Repeat Problem 61 with surfaces of the form z =
r 2 exp(−r 2) cos2 nθ .

x

y

FIGURE 12.2.39

x

y

FIGURE 12.2.40

x

y

FIGURE 12.2.41

x

y

FIGURE 12.2.42

x

y

FIGURE 12.2.43

x

y

FIGURE 12.2.44

12.3 LIMITS AND CONTINUITY

We need limits of functions of several variables for the same reasons that we needed
limits of functions of a single variable—so that we can discuss continuity, slopes, and
rates of change. Both the definition and the basic properties of limits of functions
of several variables are essentially the same as those that we stated in Section 2.2
for functions of a single variable. For simplicity, we shall state them here only for
functions of two variables x and y; for a function of three variables, the pair (x, y)

should be replaced with the triple (x, y, z).
For a function f of two variables, we ask what number (if any) the values f (x, y)

approach as (x, y) approaches the fixed point (a, b) in the coordinate plane. For a func-
tion f of three variables, we ask what number (if any) the values f (x, y, z) approach
as (x, y, z) approaches the fixed point (a, b, c) in space.
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EXAMPLE 1 The numerical data in the table of Fig. 12.3.1 suggest that the values
of the function f (x, y) = xy approach 6 as x → 2 and y → 3 simultaneously—that
is, as (x, y) approaches the point (2, 3). It therefore is natural to write

lim
(x,y)→(2,3)

xy = 6. ◗

f (x, y) = xy
x y (rounded)

2.2 2.5 5.50000
1.98 3.05 6.03900
2.002 2.995 5.99599
1.9998 3.0005 6.00040
2.00002 2.99995 5.99996
1.999998 3.000005 6.00000

↓ ↓ ↓
2 3 6

FIGURE 12.3.1 The numerical data of Example 1.

Our intuitive idea of the limit of a function of two variables is this. We say that
the number L is the limit of the function f (x, y) as (x, y) approaches the point (a, b),
and we write

lim
(x,y)→(a,b)

f (x, y) = L , (1)

provided that the number f (x, y) can be made as close as we please to L merely by
choosing the point (x, y) sufficiently close to—but not equal to—the point (a, b).

To make this intuitive idea precise, we must specify how close to L—within

x

y

δ

(a, b)

FIGURE 12.3.2 The circular disk
with center (a, b) and radius δ.

the distance ε > 0, say—we want f (x, y) to be, and then how close to (a, b) the
point (x, y) must be to accomplish this. We think of the point (x, y) as being close to
(a, b) provided that it lies within a small circular disk (Fig. 12.3.2) with center (a, b)

and radius δ, where δ is a small positive number. The point (x, y) lies within this disk
if and only if √

(x − a)2 + (y − b)2 < δ. (2)

This observation serves as motivation for the formal definition, with two additional
conditions. First, we define the limit of f (x, y) as (x, y) → (a, b) only under the
condition that the domain of definition of f contains points (x, y) �= (a, b) that lie
arbitrarily close to (a, b)—that is, within every disk of the sort shown in Fig. 12.3.2
and thus within any and every preassigned positive distance of (a, b). Hence we do not
speak of the limit of f at an isolated point of its domain D. Finally, we do not require
that f be defined at the point (a, b) itself. Thus we deliberately exclude the possibility
that (x, y) = (a, b).

DEFINITION The Limit of f (x, y)
We say that the limit of f (x, y) as (x, y) approaches (a, b) is L provided that for
every number ε > 0, there exists a number δ > 0 with the following property: If
(x, y) is a point of the domain of f such that if

0 <
√

(x − a)2 + (y − b)2 < δ, (2′)

then it follows that

| f (x, y) − L| < ε. (3)

REMARK The “extra” inequality 0 <
√

(x − a)2 + (y − b)2 in Eq. (2′) serves to en-
sure that (x, y) �= (a, b).
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EXAMPLE 2 The computer-generated graph in Fig. 12.3.3 suggests that

0

3
−3

0

3

y

0

1

z

−3

x

FIGURE 12.3.3 The graph

z = sin(x2 + y 2)

x2 + y 2
of Example 2.

lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
= 1.

Show that this is true.

Solution Here a = b = 0 and L = 1 in the definition of the limit. Given ε > 0, we
must find a value δ > 0 such that

0 <
√

x2 + y2 < δ implies that

∣∣∣∣sin(x2 + y2)

x2 + y2
− 1

∣∣∣∣ < ε.

But the familiar single-variable limit

lim
t→0

sin t

t
= 1

implies the existence of a number δ1 such that

0 < |t | < δ1 implies that

∣∣∣∣sin t

t
− 1

∣∣∣∣ < ε.

When we substitute t = x2 + y2, we see that

0 < |x2 + y2| < δ1 implies that

∣∣∣∣sin(x2 + y2)

x2 + y2
− 1

∣∣∣∣ < ε.

Hence we need only choose δ = √
δ1 . Then

0 <
√

x2 + y2 < δ implies that 0 < |x2 + y2| < δ2 = δ1,

which (in turn) implies that

∣∣∣∣sin(x2 + y2)

x2 + y2
− 1

∣∣∣∣ < ε,

as desired. ◗

Continuity and the Limit Laws
We frequently rely on continuity rather than the formal definition of the limit to evalu-
ate limits of functions of several variables. We say that f is continuous at the point
(a, b) provided that f (a, b) exists and f (x, y) approaches f (a, b) as (x, y) approaches
(a, b). That is,

lim
(x,y)→(a,b)

f (x, y) = f (a, b).

Thus f is continuous at (a, b) if it is defined there and its limit there is equal to
its value there, precisely as in the case of a function of a single variable. The function
f is said to be continuous on the set D if it is continuous at each point of D, again
exactly as in the single-variable case.

EXAMPLE 3 Let D be the circular disk consisting of the points (x, y) such that
x2 + y2 � 1 and let f (x, y) = 1 at each point of D (Fig. 12.3.4). Then the limit of
f (x, y) at each point of D is 1, so f is continuous on D. But let the new function
g(x, y) be defined on the entire plane R2 as follows:

g(x, y) =
{

f (x, y) if (x, y) is in D ;

0 otherwise.

Then g is not continuous on R2. For instance, the limit of g(x, y) as (x, y) → (1, 0)

does not exist because there exist both points within D arbitrarily close to (1, 0) at
which g has the value 1 and points outside of D arbitrarily close to (1, 0) at which g
has the value 0. Thus g(x, y) cannot approach any single value as (x, y) → (1, 0).
Because g has no limit at (1, 0), it cannot be continuous there. ◗

x

y 

f (x, y) = 1,
g (x, y) = 0

f (x, y) = 1,
g (x, y) = 1 (1, 0)

FIGURE 12.3.4 The circular disk
of Example 3.
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The limit laws of Section 2.2 have natural analogues for functions of several
variables. If

lim
(x,y)→(a,b)

f (x, y) = L and lim
(x,y)→(a,b)

g(x, y) = M , (4)

then the sum, product, and quotient laws for limits are these:

lim
(x,y)→(a,b)

[ f (x, y) + g(x, y)] = L + M , (5)

lim
(x,y)→(a,b)

[ f (x, y) · g(x, y)] = L · M , (6)

and lim
(x,y)→(a,b)

f (x, y)

g(x, y)
= L

M
if M �= 0. (7)

EXAMPLE 4 Show that lim
(x,y)→(a,b)

xy = ab.

Solution We take f (x, y) = x and g(x, y) = y. Then it follows from the definition
of limit that

lim
(x,y)→(a,b)

f (x, y) = a and lim
(x,y)→(a,b)

g(x, y) = b.

Hence the product law gives

lim
(x,y)→(a,b)

xy = lim
(x,y)→(a,b)

[ f (x, y)g(x, y)]

=
[

lim
(x,y)→(a,b)

f (x, y)
][

lim
(x,y)→(a,b)

g(x, y)
]

= ab. ◗

More generally, suppose that P(x, y) is a polynomial in the two variables x and
y. That is, P(x, y) is a sum of constant multiples of the form xiy j where the exponents
i and j are nonnegative integers. Thus P(x, y) can be written in the form

P(x, y) =
∑

ci j x
iy j .

The sum and product laws for limits then imply that

lim
(x,y)→(a,b)

P(x, y) = lim
(x,y)→(a,b)

∑
ci j x

iy j

=
∑ (

lim
(x,y)→(a,b)

ci j x
iy j

)

=
∑

ci j

(
lim
x→a

xi

)(
lim
y→b

y j

)
=

∑
ci j a

i b j = P(a, b).

It follows that every polynomial in two (or more) variables is an everywhere
continuous function.

EXAMPLE 5 The function f (x, y) = 2x4 y2 − 7xy + 4x2 y3 − 5 is a polynomial, so
we can find its limit at any point (a, b) simply by evaluating f (a, b). For instance,

lim
(x,y)→(−1,2)

f (x, y) = f (−1, 2)

= 2 · (−1)4(2)2 − 7 · (−1)(2) + 4 · (−1)2(2)3 − 5

= 49. ◗
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Just as in the single-variable case, any composition of continuous multivariable
functions is also a continuous function. For example, suppose that the functions f and
g are both continuous at (a, b) and that h is continuous at the point ( f (a, b), g(a, b)).
Then the composite function

H(x, y) = h( f (x, y), g(x, y))

is also continuous at (a, b). As a consequence, any finite combination involving sums,
products, quotients, and compositions of the familiar elementary functions is contin-
uous, except possibly at points where a denominator is zero or where the formula for
the function is otherwise meaningless. This general rule suffices for the evaluation of
most limits that we shall encounter.

EXAMPLE 6 The function g(x, y) = sin(x2 + y2) is the composition of the continu-
ous function sin t and the polynomial x2 + y2, and is therefore continuous everywhere.
Hence the function f defined by

f (x, y) =
⎧⎨
⎩

sin(x2 + y2)

x2 + y2
unless x = y = 0,

1 if x = y = 0

is continuous except possibly at the origin (0, 0), where the denominator is zero. But
we saw in Example 2 that

lim
(x,y)→(0,0)

f (x, y) = 1 = f (0, 0),

so f is continuous at the origin as well. Thus the function f is continuous everywhere.
◗

EXAMPLE 7 If

f (x, y) = exy sin
πy

4
+ xy ln

√
y − x,

then exy is the composition of continuous functions, thus continuous; sin 1
4πy is con-

tinuous for the same reason; their product is continuous because each is continuous.
Also y − x , a polynomial, is continuous everywhere;

√
y − x is therefore continuous

if y � x ; ln
√

y − x is continuous provided that y > x ; xy ln
√

y − x is the product of
functions continuous if y > x . And thus the sum

f (x, y) = exy sin
πy

4
+ xy ln

√
y − x

of functions continuous if y > x is itself continuous if y > x . Because f (x, y) is
continuous if y > x , it follows that

lim
(x,y)→(1,2)

[
exy sin

πy

4
+ xy ln

√
y − x

]
= f (1, 2) = e2 · 1 + 2 ln 1 = e2. ◗

Examples 8 and 9 illustrate techniques that sometimes are successful in handling
cases with denominators that approach zero; in such cases the techniques of Exam-
ples 5 through 7 cannot be applied.

EXAMPLE 8 Show that lim
(x,y)→(0,0)

xy√
x2 + y2

= 0.

Solution Let (r, θ) be the polar coordinates of the point (x, y). Then x = r cos θ

and y = r sin θ , so

xy√
x2 + y2

= (r cos θ)(r sin θ)√
r2(cos2 θ + sin2 θ)

= r cos θ sin θ for r > 0.
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Because r = √
x2 + y2 , it is clear that r → 0 as both x and y approach zero. It

therefore follows that

lim
(x,y)→(0,0)

xy√
x2 + y2

= lim
r→0

r cos θ sin θ = 0,

because |cos θ sin θ | � |cos θ | · |sin θ | � 1 for all θ . So if the function f is defined as

f (x, y) =

⎧⎪⎨
⎪⎩

xy√
x2 + y2

if (x, y) �= (0, 0),

0 if x = y = 0,

then it follows that f is continuous at the origin (0, 0). Figure 12.3.5 shows the graph of
z = f (x, y). It corroborates the zero limit that we found at (0, 0). Near the origin the
graph appears to resemble the saddle point on a hyperbolic paraboloid (Fig. 12.2.13),
but this doesn’t look like a smooth and comfortable saddle. ◗

−1
0

1 y

1
x

0

−0.5

0.5

z

−10

FIGURE 12.3.5 The graph

z = xy√
x2 + y2

(Example 8).

EXAMPLE 9 Show that

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist.

Solution Our plan is to show that f (x, y) = xy/(x2+y2) approaches different values
as (x, y) approaches (0, 0) from different directions. Suppose that (x, y) approaches
(0, 0) along the straight line of slope m through the origin. On this line we have
y = mx . So, on this line,

f (x, y) = f (x, mx) = x · mx

x2 + m2x2
= m

1 + m2

if x �= 0. If we take m = 1, we see that f (x, y) = 1
2 at every point of the line y = x

other than (0, 0). If we take m = −1, then f (x, y) = − 1
2 at every point of the line

y = −x other than (0, 0). Thus f (x, y) approaches two different values as (x, y)

y 

f not defined
at origin

y = x

1
2

here

y = −x
m = −1

f (x, y) = − 1
2

here

f (x, y) =

x

m = 1

FIGURE 12.3.6 The function f of
Example 9 takes on both values + 1

2
and − 1

2 at points arbitrarily close to
the origin.

approaches (0, 0) along these two lines (Fig. 12.3.6). Hence f (x, y) cannot approach
any single value as (x, y) approaches (0, 0), and this implies that the limit in question
cannot exist.

Figure 12.3.7 shows a computer-generated graph of the function f (x, y) =

−1
0

1

x
−1

0

1

y

−0.5

0

0.5

z

(0, 0,    )1
2
1
2

(0, 0, −   )1
2

FIGURE 12.3.7 The graph of

f (x, y) = xy

x2 + y2
(Example 9).

xy/(x2 + y2). It consists of linear rays along each of which the polar angular co-
ordinate θ is constant. For each number z between − 1

2 and 1
2 (inclusive), there are rays

along which f (x, y) has the constant value z. Hence we can make f (x, y) approach
any number we please in [− 1

2 , 1
2 ] by letting (x, y) approach (0, 0) from the appropriate

direction. There are also paths along which (x, y) approaches (0, 0) but the limit of
f (x, y) does not exist (Problem 53). ◗

REMARK In order for

L = lim
(x,y)→(a,b)

f (x, y)

to exist, f (x, y) must approach L for any and every mode of approach of (x, y) to
(a, b). In Problem 51 we give an example of a function f such that f (x, y) → 0
as (x, y) → (0, 0) along any straight line through the origin, but f (x, y) → 1 as
(x, y) → (0, 0) along the parabola y = x2. Thus the method of Example 9 cannot be
used to show that a limit exists, only that it does not. Fortunately, many important app-
lications, including those we discuss in the remainder of this chapter, involve only func-
tions that exhibit no such exotic behavior as the functions of Problems 51 through 53.
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Functions of Three or More Variables
Thus far in this section, we have discussed explicitly only functions of two variables,
but the concepts of limits and continuity generalize in a straightforward manner to
functions of three or more variables. A function f of n variables assigns a single real
number f (x1, x2, . . . , xn) to an n-tuple (x1, x2, . . . , xn) of real numbers. For instance,
the function f might assign to the 4-tuple (x, y, z, t) the temperature u = f (x, y, z, t)
at time t at the point (x, y, z) in three-dimensional space.

Just as three-dimensional space R3 is the set of all triples (x1, x2, x3) of real
numbers, n-dimensional space Rn is the set of all n-tuples of real numbers. Thus the
temperature function mentioned earlier is defined on four-dimensional space R4. We
may therefore write f : R4 → R, with time t playing the role of the fourth dimension
(but without the fanciful implications sometimes enjoyed in science fiction).

It is common practice to identify the n-tuple (x1, x2, . . . , xn) with the vector
x = 〈x1, x2, . . . , xn〉—regarding each notation as simply a way of specifying the same
ordered list x1, x2, . . . , xn of real numbers. Then we may also regard Rn as the set
of all n-vectors. This viewpoint enables us to add points in Rn coordinatewise as n-
vectors, and similarly to multiply points by scalars. In analogy with lengths of vectors
in R2 and R3, we define the length |x| of the vector x in Rn to be

|x| =
√

x2
1 + x2

2 + · · · + x2
n .

For instance, the 4-vector 〈5, −2, 4, 2〉 has length
√

25 + 4 + 16 + 4 = √
49 = 7.

The function f : Rn → R may be regarded either as a function of the n in-
dependent real variables x1, x2, . . . , xn or as a function of the single n-vector x =
〈x1, x2, . . . , xn〉. We may then write either f (x1, x2, . . . , xn) or f (x), depending on
which notation seems most natural in a given situation. For instance, with vector nota-
tion the limit concept takes the form of the statement that

lim
x→a

f (x) = L (8)

provided that, for every number ε > 0, there exists a corresponding number δ > 0
such that

| f (x) − L| < ε whenever 0 < |x − a| < δ. (9)

Then the function f is continuous at the point a = (a1, a2, . . . , an) provided that

lim
x→a

f (x) = f (a). (10)

An attractive feature of vector notation is that the multidimensional statements in (8),
(9), and (10) take precisely the same forms as in the case of functions of a single
variable, as do the multidimensional limit laws. (See the discussion questions for this
section.)

12.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The statement lim(x,y)→(a,b) f (x, y) = L means that for some ε > 0 there is a
δ > 0 such that

0 <
√

(x − a)2 + (y − b)2 < δ implies | f (x, y) − L| < ε.

2. In Example 2, the single-variable limit limt→0(sin t)/t = 1 is used to show that

lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
= 1.

3. If the function f (x, y) is continuous on the unit disk D in the xy-plane, then f is
continuous on the whole plane.
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4. The single-variable limit laws of Section 2.2 have natural analogues for functions
of several variables.

5. The sum and product laws of limits are used in showing that every polynomial in
two or more variables is continuous everywhere.

6. If the functions f, g, and h are continuous at the point (a, b), then it follows that
the composite function

H(x, y) = h( f (x, y), g(x, y))

is also continuous at (a, b).
7. A quotient of two functions f (x, y) and g(x, y) is continuous wherever both

these two functions are continuous.
8. In Example 8, polar coordinates are used to show that

lim
(x,y)→(0,0)

xy√
x2 + y2

= 0.

9. In Example 9, it is proved that

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist by showing that f (x, y) approaches different values as (x, y) ap-
proaches (0, 0) along different straight lines through the origin.

10. If f (x, y) approaches the same value L as (x, y) approaches (a, b) along every
straight line through the point (a, b), then it follows that

lim
(x,y)→(a,b)

f (x, y) = L .

12.3 CONCEPTS: QUESTIONS AND DISCUSSION
1. Give precise statements of the limit laws for real-valued functions of three or

more variables. Explain why any polynomial in three or more variables is con-
tinuous everywhere.

2. State precisely the general principle of the continuity of compositions of contin-
uous multivariable functions. It should apply, for instance, to a function of four
variables each of which is itself a function of three variables.

3. Explain how the reasoning of Examples 2 and 6 applies to the function F defined
except at the origin in R3 by

F(x, y, z) = sin(x2 + y2 + z2)

x2 + y2 + z2
.

What are your conclusions?
4. Give several concrete examples of real-world functions of four or more variables.

12.3 PROBLEMS

Use the limit laws and consequences of continuity to evaluate the
limits in Problems 1 through 16.

1. lim
(x,y)→(0,0)

(7 − x2 + 5xy)

2. lim
(x,y)→(1,−2)

(3x2 − 4xy + 5y2)

3. lim
(x,y)→(1,−1)

e−xy

4. lim
(x,y)→(0,0)

x + y

1 + xy

5. lim
(x,y)→(0,0)

5 − x2

3 + x + y

6. lim
(x,y)→(2,3)

9 − x2

1 + xy

7. lim
(x,y)→(0,0)

ln
√

1 − x2 − y2

8. lim
(x,y)→(2,−1)

ln
1 + x + 2y

3y2 − x

9. lim
(x,y)→(0,0)

ex+2y cos(3x + 4y)

10. lim
(x,y)→(0,0)

cos(x2 + y2)

1 − x2 − y2
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11. lim
(x,y,z)→(1,1,1)

x2 + y2 + z2

1 − x − y − z

12. lim
(x,y,z)→(1,1,1)

(x + y + z) ln xyz

13. lim
(x,y,z)→(1,1,0)

xy − z

cos xyz

14. lim
(x,y,z)→(2,−1,3)

x + y + z

x2 + y2 + z2

15. lim
(x,y,z)→(2,8,1)

√
xy tan

3π z

4

16. lim
(x,y)→(1,−1)

arcsin
xy√

x2 + y2

In Problems 17 through 20, evaluate the limits

lim
h→0

f (x + h, y) − f (x, y)

h
and

lim
k→0

f (x, y + k) − f (x, y)

k
.

17. f (x, y) = xy 18. f (x, y) = x2 + y2

19. f (x, y) = xy2 − 2 20. f (x, y) = x2 y3 − 10

In Problems 21 through 30, find the limit or show that it does not
exist.

21. lim
(x,y)→(1,1)

1 − xy

1 + xy
22. lim

(x,y)→(2,−2)

4 − xy

4 + xy

23. lim
(x,y,z)→(1,1,1)

xyz

yz + xz + xy

24. lim
(x,y,z)→(1,−1,1)

yz + xz + xy

1 + xyz

25. lim
(x,y)→(0,0)

ln(1 + x2 + y2)

26. lim
(x,y)→(1,1)

ln(2 − x2 − y2)

27. lim
(x,y)→(0,0)

cot(x2 + y2)

x2 + y2

28. lim
(x,y)→(0,0)

sin(ln(1 + x + y))

29. lim
(x,y)→(0,0)

exp

(
− 1

x2 + y2

)

30. lim
(x,y)→(0,0)

arctan

(
− 1

x2 + y2

)

In Problems 31 through 36, determine the largest set of points
in the xy-plane on which the given formula defines a continuous
function.

31. f (x, y) = √
x + y 32. f (x, y) = sin−1(x2 + y2)

33. f (x, y) = ln(x2 + y2 − 1) 34. f (x, y) = ln(2x − y)

35. f (x, y) = tan−1

(
1

x2 + y2

)

36. f (x, y) = tan−1

(
1

x + y

)

In Problems 37 through 40, evaluate the limit by making the po-
lar coordinates substitution (x, y) = (r cos θ, r sin θ) and using
the fact that r → 0 as (x, y) → (0, 0).

37. lim
(x,y)→(0,0)

x2 − y2√
x2 + y2

38. lim
(x,y)→(0,0)

x3 − y3

x2 + y2

39. lim
(x,y)→(0,0)

x4 + y4

(x2 + y2)3/2
40. lim

(x,y)→(0,0)

sin
√

x2 + y2√
x2 + y2

41. Determine whether or not

lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2

exists; evaluate it if it does exist. [Suggestion: Substitute
spherical coordinates x = ρ sin φ cos θ , y = ρ sin φ sin θ ,
z = ρ cos φ.]

42. Determine whether or not

lim
(x,y,z)→(0,0,0)

arctan
1

x2 + y2 + z2

exists; evaluate it if it does exist. [See the Suggestion for
Problem 41.]

In Problems 43 and 44, investigate the existence of the given limit
by making the substitution y = mx.

43. lim
(x,y)→(0,0)

x2 − y2

x2 + y2
44. lim

(x,y)→(0,0)

x4 − y4

x4 + x2 y2 + y4

In Problems 45 and 46, show that the given limit does not exist
by considering points of the form (x, 0, 0) or (0, y, 0) or (0, 0, z)
that approach the origin along one of the coordinate axes.

45. lim
(x,y,z)→(0,0,0)

x + y + z

x2 + y2 + z2
46. lim

(x,y,z)→(0,0,0)

x2 + y2 − z2

x2 + y2 + z2

In Problems 47 through 50, use a computer-plotted graph to
explain why the given limit does not exist.

47. lim
(x,y)→(0,0)

x2 − 2y2

x2 + y2
48. lim

(x,y)→(0,0)

x2 y2

x4 + y4

49. lim
(x,y)→(0,0)

xy

2x2 + 3y2
50. lim

(x,y)→(0,0)

x2 + 4xy + y2

x2 + xy + y2

51. Let

f (x, y) = 2x2 y

x4 + y2
.

(a) Show that f (x, y) → 0 as (x, y) → (0, 0) along any
and every straight line through the origin. (b) Show that
f (x, y) → 1 as (x, y) → (0, 0) along the parabola y = x2.
Conclude that the limit of f (x, y) as (x, y) → (0, 0) does
not exist. The graph of f is shown in Fig. 12.3.8.

−2

0

2
−2

0
2

−1

0

1

y

x

z

FIGURE 12.3.8 The graph z = 2x2 y

x4 + y2
of

Problem 51; note the curve y = x2, z = 1.
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52. Suppose that f (x, y) = (x − y)/(x3 − y) except at points of
the curve y = x3, where we define f (x, y) to be 1. Show that
f is not continuous at the point (1, 1). Evaluate the limits of
f (x, y) as (x, y) → (1, 1) along the vertical line x = 1 and
along the horizontal line y = 1. [ Suggestion: Recall that
a3 − b3 = (a − b)(a2 + ab + b2).]

53. Let

lim
(x,y)→(0,0)

xy

x2 + y2

be the limit discussed in Example 9. Show that as (x, y) →
(0, 0) along the hyperbolic spiral rθ = 1, the limit of f (x, y)

does not exist.

Discuss the continuity of the functions defined in Problems 54
through 56.

54. f (x, y) =
⎧⎨
⎩

sin xy

xy
unless xy = 0,

1 if xy = 0.

(See Fig. 12.3.9.)

−2

0
2

y

0

1
z

−2
0

2
x

FIGURE 12.3.9 The graph z = sin xy

xy
of Problem 54.

55. g(x, y) =
⎧⎨
⎩

sin(x2 − y2)

x2 − y2
unless x2 = y2,

1 if x2 = y2.

56. h(x, y, z) =
⎧⎨
⎩

sin xyz

xyz
unless xyz = 0,

1 if xyz = 0.

12.4 PARTIAL DERIVATIVES

Recall that the derivative of the single-variable function u = g(x) is defined as

du

dx
= lim

�x→0

�u

�x
,

where �u = g(x + h) − g(x) is the change in u resulting from the change h = �x
in x . This derivative is interpreted as the instantaneous rate of change of u with respect
to x . For a function z = f (x, y) of two variables, we need a similar understanding of
the rate at which z changes as x and y vary (either singly or simultaneously).

We take a divide-and-conquer approach to this concept. If x is changed by h =
�x but y is not changed, then the resulting change in z is

�z = f (x + h, y) − f (x, y),

and the corresponding instantaneous rate of change of z is

dz

dx
= lim

�x→0

�z

�x
. (1)

On the other hand, if x is not changed but y is changed by the amount k = �y, then
the resulting change in z is

�z = f (x, y + k) − f (x, y),

and the corresponding instantaneous rate of change of z is

dz

dy
= lim

�y→0

�z

�y
. (2)

The limits in Eqs. (1) and (2) are the two partial derivatives of the function f (x, y)

with respect to its two independent variables x and y, respectively.
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DEFINITION Partial Derivatives
The partial derivatives (with respect to x and with respect to y) of the function
f (x, y) are the two functions defined by

fx(x, y) = lim
h→0

f (x + h, y) − f (x, y)

h
, (3)

fy(x, y) = lim
k→0

f (x, y + k) − f (x, y)

k
(4)

whenever these limits exist.

Note that Eqs. (3) and (4) are simply restatements of Eqs. (1) and (2). Just as
with single-variable derivatives, there are several alternative ways of writing partial
derivatives.

Notation for Partial Derivatives
If z = f (x, y), then we may express its partial derivatives with respect to x and y,
respectively, in these forms:

∂z

∂x
= ∂ f

∂x
= fx(x, y) = ∂

∂x
f (x, y) = Dx [ f (x, y)] = D1[ f (x, y)], (5)

∂z

∂y
= ∂ f

∂y
= fy(x, y) = ∂

∂y
f (x, y) = Dy[ f (x, y)] = D2[ f (x, y)]. (6)

Computer algebra systems generally employ variants of the “operator notation”
for partial derivatives, such as diff(f(x,y), x) and D[f[x,y], x] in Maple and
Mathematica, respectively.

Note that if we delete the symbol y throughout Eq. (3), the result is the limit
that defines the single-variable derivative f ′(x). This means that we can calculate
∂z/∂x as an “ordinary” derivative with respect to x simply by regarding y as a constant
during the process of differentiation. Similarly, we can compute ∂z/∂y as an ordinary
derivative by thinking of y as the only variable and treating x as a constant during the
computation.

Consequently, we seldom need to evaluate directly the limits in Eqs. (3) and (4)
in order to calculate partial derivatives. Ordinarily we simply apply familiar differen-
tiation results to differentiate f (x, y) with respect to either independent variable (x or
y) while holding the other variable constant. In short,

• To calculate ∂ f/∂x , regard y as a constant and differentiate with respect to x .
• To calculate ∂ f/∂y, regard x as a constant and differentiate with respect to y.

EXAMPLE 1 Compute both the partial derivatives ∂ f/∂x and ∂ f/∂y of the function
f (x, y) = x2 + 2xy2 − y3.

Solution To compute the partial derivative of f with respect to x , we regard y as a
constant. Then we differentiate normally and find that

∂ f

∂x
= 2x + 2y2.

When we regard x as a constant and differentiate with respect to y, we find that

∂ f

∂y
= 4xy − 3y2. ◗

EXAMPLE 2 Find ∂z/∂x and ∂z/∂y if z = (x2 + y2)e−xy .

Solution Because ∂z/∂x is calculated as if it were an ordinary derivative with respect
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to x , with y held constant, we use the product rule. This gives

∂z

∂x
= (2x)(e−xy) + (x2 + y2)(−ye−xy) = (2x − x2 y − y3)e−xy .

Because x and y appear symmetrically in the expression for z, we get ∂z/∂y when we
interchange x and y in the expression for ∂z/∂x :

∂z

∂y
= (2y − xy2 − x3)e−xy .

You should check this result by differentiating with respect to y directly in order to find
∂z/∂y. ◗

Instantaneous Rates of Change
To get an intuitive feel for the meaning of partial derivatives, we can think of f (x, y)

as the temperature at the point (x, y) of the plane. Then fx(x, y) is the instantaneous
rate of change of temperature at (x, y) per unit increase in x (with y held constant).
Similarly, fy(x, y) is the instantaneous rate of change of temperature per unit increase
in y (with x held constant). For instance, we show in the next example that, with the
temperature function f (x, y) = x2 + 2xy2 − y3 of Example 1, the rate of change of
temperature at the point (1, −1) is +4◦ per unit distance in the positive x-direction
and −7◦ per unit distance in the positive y-direction.

EXAMPLE 3 Suppose that the xy-plane is somehow heated and that its temperature
at the point (x, y) is given by the function f (x, y) = x2 + 2xy2 − y3, whose partial
derivatives fx(x, y) = 2x + 2y2 and fy(x, y) = 4xy − 3y2 were calculated in Ex-
ample 1. Suppose also that distance is measured in miles and temperature in degrees
Celsius (◦C). Then at the point (1, −1), one mile east and one mile south of the ori-
gin, the rate of change of temperature (in degrees per mile) in the (eastward) positive
x-direction is

fx(1, −1) = 2 · (1) + 2 · (−1)2 = 4 (deg/mi),

and the rate of change in the (northward) positive y-direction is

fy(1, −1) = 4 · 1 · (−1) − 3 · (−1)2 = −7 (deg/mi).

Thus, if we start at the point (1, −1) and walk 1
10 mi east, we expect to experience a

temperature increase of about 4 · (0.1) = 0.4◦C. If instead we started at (1, −1) and
walked 0.2 mi north, we would expect to experience a temperature change of about
(−7) · (0.2) = −1.4◦C; that is, a temperature decrease of about 1.4◦C. ◗

EXAMPLE 4 The volume V (in cubic centimeters) of 1 mole (mol) of an ideal gas
is given by

V = (82.06)T

p
,

where p is the pressure (in atmospheres) and T is the absolute temperature (in kel-
vins (K), where K = ◦C + 273). Find the rates of change of the volume of 1 mol of
an ideal gas with respect to pressure and with respect to temperature when T = 300 K
and p = 5 atm.

Solution The partial derivatives of V with respect to its two variables are

∂V

∂p
= − (82.06)T

p2
and

∂V

∂T
= 82.06

p
.

With T = 300 and p = 5, we have the values ∂V/∂p = −984.72 (cm3/atm) and
∂V/∂T = 16.41 (cm3/K). These partial derivatives allow us to estimate the effect of a
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small change in temperature or in pressure on the volume V of the gas, as follows. We
are given T = 300 and p = 5, so the volume of gas with which we are dealing is

V = (82.06)(300)

5
= 4923.60 (cm3).

We would expect an increase in pressure of 1 atm (with T held constant) to decrease
the volume of gas by appropriately 1 L (1000 cm3), because −984.72 ≈ −1000. An
increase in temperature of 1 K (or 1◦C) would, with p held constant, increase the
volume by about 16 cm3, because 16.41 ≈ 16. ◗

Geometric Interpretation of Partial Derivatives
The partial derivatives fx and fy are the slopes of lines tangent to certain curves on
the surface z = f (x, y). Figure 12.4.1 illustrates the intersection of this surface with a
vertical plane y = b parallel to the xz-coordinate plane. Along the intersection curve,
the x-coordinate varies but the y-coordinate is constant: y = b at each point because
the curve lies in the vertical plane y = b. A curve of intersection of z = f (x, y) with
a vertical plane parallel to the xz-plane is therefore called an x-curve on the surface.

−1

0

1

x

−1

0

1

y

0

1

z

z = f (x,  y) y = b

−1

FIGURE 12.4.1 A vertical plane
parallel to the xz-plane intersects the
surface z = f (x, y) in an x-curve.

y

z 

x

Surface
z = f (x, y)

Tangent line

Curve
z = f (x, b)

Q (a, b, 0)

Plane y = b

P

FIGURE 12.4.2 An x-curve and its
tangent line at P .

Figure 12.4.2 shows a point P(a, b, c) in the surface z = f (x, y), the x-curve
through P , and the line tangent to this x-curve at P . Figure 12.4.3 shows the parallel
projection of the vertical plane y = b onto the xz-plane itself. We can now “ignore” thez

x

Δx

Δz

z = f (x, b)

(a, 0)

(a, c)

Tangent line

FIGURE 12.4.3 Projection into the
xz-plane of the x-curve through
P(a, b, c) and its tangent line.

presence of y = b and regard z = f (x, b) as a function of the single variable x . The
slope of the line tangent to the original x-curve through P (see Fig. 12.4.2) is equal
to the slope of the tangent line in Fig. 12.4.3. But by familiar single-variable calculus,
this latter slope is given by

lim
h→0

f (a + h, b) − f (a, b)

h
= fx(a, b).

Thus we see that the geometric meaning of fx is as follows:

Geometric Interpretation of ∂ f /∂x
The value fx(a, b) is the slope of the line tangent at P(a, b, c) to the x-curve through
P on the surface z = f (x, y).

We proceed in much the same way to investigate the geometric meaning of partial
differentiation with respect to y. Figure 12.4.4 illustrates the intersection with the
surface z = f (x, y) of a vertical plane x = a parallel to the yz-coordinate plane. Now
the curve of intersection is a y-curve along which y varies but x = a is constant.
Figure 12.4.5 shows this y-curve z = f (a, y) and its tangent line at P . The projection
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x = a z = f (x,  y)

−1

0

1

z

−1

0

1

x

−1

0

1

y

FIGURE 12.4.4 A vertical plane
parallel to the yz-plane intersects the
surface z = f (x, y) in a y-curve.

y

x

Surface
z = f (x, y)

Curve
z = f (a, y)

Plane x = a

P

Q (a, b, 0)

Tangent line

z 

FIGURE 12.4.5 A y-curve and its tangent
line at P .

z

y

Δy

Δz

z = f (a, y)

(b, 0)

(b, c)

Tangent line

FIGURE 12.4.6 Projection into the
yz-plane of the y-curve through
P(a, b, c) and its tangent line.

of the tangent line in the yz-plane (in Fig. 12.4.6) has slope ∂z/∂y = fy(a, b). Thus
we see that the geometric meaning of fy is as follows:

Geometric Interpretation of ∂ f /∂y
The value fy(a, b) is the slope of the line tangent at P(a, b, c) to the y-curve
through P on the surface z = f (x, y).

EXAMPLE 5 Suppose that the graph z = 5xy exp(−x2 − 2y2) in Fig. 12.4.7 rep-
resents a terrain featuring two peaks (hills, actually) and two pits. With all distances
measured in miles, z is the altitude above the point (x, y) at sea level in the xy-plane.
For instance, the height of the pictured point P is z(−1, −1) = 5e−3 ≈ 0.2489 (mi),

−2
−1

−10

2
1

1

x
−2

0

2

y

−0.5
0

0.5
z

P

FIGURE 12.4.7 The graph
z = 5xy exp(−x2 − 2y2).

about 1314 ft above sea level. We ask at what rate we climb if, starting at the point
P(−1, −1, 0.2489), we head either due east (the positive x-direction) or due north (the
positive y-direction). If we calculate the two partial derivatives of z(x, y), we get

∂z

∂x
= 5y(1 − 2x2) exp(−x2 − 2y2) and

∂z

∂y
= 5x(1 − 4y2) exp(−x2 − 2y2).

(You should check this.) Substituting x = y = −1 now gives

∂z

∂x

∣∣∣∣
(−1,−1)

= 5e−3 ≈ 0.2489 and
∂z

∂y

∣∣∣∣
(−1,−1)

= 15e−3 ≈ 0.7468.

The units here are in miles per mile—that is, the ratio of rise to run in vertical miles

1

0.2489α

FIGURE 12.4.8 The angle of climb
in the x-direction.

per horizontal mile. So if we head east, we start climbing at an angle of

α = tan−1(0.2489) ≈ 0.2440 (rad),

about 13.98◦. (See Fig. 12.4.8.) But if we head north, then we start climbing at an
angle of

β = tan−1(0.7468) ≈ 0.6415 (rad),

approximately 36.75◦. (See Fig. 12.4.9.) Do these results appear to be consistent with
Fig. 12.4.7? ◗

1

0.7468

β

FIGURE 12.4.9 The angle of climb
in the y-direction.
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Planes Tangent to Surfaces
The two tangent lines illustrated in Figs. 12.4.2 and 12.4.5 determine a unique plane
through the point P(a, b, f (a, b)). We will see in Section 12.8 that if the partial deriva-
tives fx and fy are continuous functions of x and y, then this plane contains the line
tangent at P to every smooth curve on the surface z = f (x, y) that passes through P .
This motivates the following definition of the plane tangent to the surface at P .

DEFINITION Plane Tangent to z = f (x, y)
Suppose that the function f (x, y) has continuous partial derivatives on a circular
disk centered at the point (a, b). Then the plane tangent to the surface z = f (x, y)

at the point P(a, b, f (a, b)) is the plane through P that contains the lines tangent
at P to the two curves

z = f (x, b), y = b (x-curve) (7)

and

z = f (a, y), x = a (y-curve). (8)

To find an equation of this tangent plane at the point P(a, b, c) where c =
f (a, b), recall from Section 11.4 that a typical nonvertical plane in space that passes
through the point P has an equation of the form

A (x − a) + B(y − b) + C(z − c) = 0 (9)

where C �= 0. If we solve for z − c we get the equation

z − c = p(x − a) + q(y − b) (10)

where p = −A/C and q = −B/C . This plane will be tangent to the surface z =
f (x, y) at the point P(a, b, c) provided that the line defined in Eq. (10) with y = b is
tangent to the x-curve in Eq. (7), and the line defined in (10) with x = a is tangent to
the y-curve in Eq. (8). But the substitution y = b reduces Eq. (10) to

z − c = p(x − a), so
∂z

∂x
= p,

and the substitution x = a reduces Eq. (10) to

z − c = q(y − b), so
∂z

∂y
= q.

Moreover, our discussion of the geometric interpretation of partial derivatives
gave

∂z

∂x

∣∣∣∣
(a,b)

= fx(a, b) and
∂z

∂y

∣∣∣∣
(a,b)

= fy(a, b)

for the slopes of the lines through P that are tangent there to the x-curve and y-curve,
respectively. Hence we must have p = fx(a, b) and q = fy(a, b) in order for the plane
in Eq. (10) to be tangent to the surface z = f (x, y) at the point P . Substituting these
values in Eq. (10) yields the following result (under the assumption that the partial
derivatives are continuous, so that the tangent plane is defined).

The Plane Tangent to a Surface
The plane tangent to the surface z = f (x, y) at the point P(a, b, f (a, b)) has
equation

z − f (a, b) = fx(a, b)(x − a) + fy(a, b)(y − b). (11)
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If for variety we write (x0, y0, z0) for the coordinates of P , we can rewrite

Normal to plane

z

x

Surface
z = f(x, y)

v u

y

Tangent plane

−n

P

Q (x0, y0, 0)

FIGURE 12.4.10 The surface
z = f (x, y), its tangent plane at
P(x0, y0, z0), and the vector −n
normal to both at P .

Eq. (11) in the form

fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + (−1)(z − z0) = 0, (12)

from which we see (by consulting Eq. (8) in Section 11.4) that the plane tangent to the
surface z = f (x, y) at the point P(x0, y0, z0) has normal vector

n = fx(x0, y0)i + fy(x0, y0)j − k =
〈
∂z

∂x
,
∂z

∂y
, −1

〉
. (13)

Note that n is a downward-pointing vector (Why?); its negative −n is the upward-
pointing vector shown in Fig. 12.4.10.

EXAMPLE 6 Write an equation of the plane tangent to the paraboloid z = 5−2x2 −
y2 at the point P(1, 1, 2).

Solution If f (x, y) = 5 − 2x2 − y2, then

fx(x, y) = −4x, fy(x, y) = −2y;
fx(1, 1) = −4, fy(1, 1) = −2.

Hence Eq. (11) gives

z − 2 = −4(x − 1) − 2(y − 1)

(when simplified, z = 8 − 4x − 2y) as an equation of the plane tangent to the parabo-

−4
0

4x

−4
0

4

−20

0

20

z

P(1, 1, 2)

y

FIGURE 12.4.11 The paraboloid
and tangent plane of Example 6.

loid at P . The computer plot in Fig. 12.4.11 corroborates this result. ◗

Functions of Three or More Variables
Just like functions of two variables, a function of three or more variables has partial
derivatives with respect to each of its independent variables. The partial derivative
with respect to each variable is defined as a limit of a difference quotient involving
increments in the selected variable. For instance, a function f (x, y, z) has three partial
derivatives, which are defined to be

∂ f

∂x
= lim

h→0

f (x + h, y, z) − f (x, y, z)

h
,

∂ f

∂y
= lim

h→0

f (x, y + h, z) − f (x, y, z)

h
,

and
∂ f

∂z
= lim

h→0

f (x, y, z + h) − f (x, y, z)

h
.

(14)

Partial derivatives of functions of still more variables are defined in an analogous
way. A function f (x1, x2, . . . , xn) of n variables has n partial derivatives, one with
respect to each of its independent variables. Limit quotients corresponding to those in
(14) can be written more concisely using vector notation. Let us write

f (x) = f (x1, x2, . . . , xn) where x = 〈x1, x2, . . . , xn〉.
If ei = 〈0, 0, . . . , 1, . . . , 0〉 is the unit n-vector with i th entry 1, then

f (x + hei ) = f (x1, x2, . . . , xi−1, xi + h, xi+1, . . . , xn).

The partial derivative ∂ f/∂xi = fxi = Di f = Dxi f of f with respect to the i th
variable xi is then defined to be

∂ f

∂xi
= lim

h→0

f (x + hei ) − f (x)

h
. (15)
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926 CHAPTER 12 Partial Differentiation

The value of ∂ f/∂xi can be interpreted as the instantaneous rate of change of the func-
tion value f (x) per unit change in the i th variable xi . Just as in the case of two inde-
pendent variables, each of these partial derivatives is calculated by differentiating with
respect to the selected variable, regarding the others as constants.

EXAMPLE 7 The four partial derivatives of the function g(x, y, u, v) = eux sin vy
are

gx = ueux sin vy, gy = veux cos vy, gu = xeux sin vy, and gv = yeux cos vy.

Observe that we get these partial derivatives by differentiating eux sin vy with respect
to the variables x , y, u, and v in turn, in each case holding the remaining three variables
constant. ◗

Higher-Order Partial Derivatives
The first-order partial derivatives fx and fy are themselves functions of x and y, so
they may be differentiated with respect to x or to y. The partial derivatives of fx(x, y)

and fy(x, y) are called the second-order partial derivatives of f . There are four of
them, because there are four possibilities in the order of differentiation:

( fx)x = fxx = ∂ fx

∂x
= ∂

∂x

(
∂ f

∂x

)
= ∂2 f

∂x2
,

( fx)y = fxy = ∂ fx

∂y
= ∂

∂y

(
∂ f

∂x

)
= ∂2 f

∂y ∂x
,

( fy)x = fyx = ∂ fy

∂x
= ∂

∂x

(
∂ f

∂y

)
= ∂2 f

∂x ∂y
,

( fy)y = fyy = ∂ fy

∂y
= ∂

∂y

(
∂ f

∂y

)
= ∂2 f

∂y2
.

If we write z = f (x, y), then we can replace each occurrence of the symbol f here
with z.

NOTE The function fxy is the second-order partial derivative of f with respect to
x first and then to y; fyx is the result of differentiating with respect to y first and
x second. Although fxy and fyx are not necessarily equal, it is proved in advanced
calculus that these two “mixed” second-order partial derivatives are equal if they are
both continuous. More precisely, if fxy and fyx are continuous on a circular disk
centered at the point (a, b), then

fxy(a, b) = fyx(a, b). (16)

But if the mixed second-order derivatives fxy and fyx are merely defined at (a, b)

but not necessarily continuous at and near this point, then it is entirely possible at
fxy �= fyx at (a, b). (See Problem 74.)

Because most functions of interest to us have second-order partial derivatives
that are continuous everywhere they are defined, we will ordinarily need to deal with
only three distinct second-order partial derivatives ( fxx , fyy , and fxy = fyx ) rather
than with four. Similarly, if f (x, y, z) is a function of three variables with continuous
second-order partial derivatives, then

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x
,

∂2 f

∂x ∂z
= ∂2 f

∂z ∂x
, and

∂2 f

∂y ∂z
= ∂2 f

∂z ∂y
.

Third-order and higher-order partial derivatives are defined similarly, and the or-
der in which the differentiations are performed is unimportant as long as all derivatives
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involved are continuous. In such a case, for example, the distinct third-order partial
derivatives of the function z = f (x, y) are

fxxx = ∂

∂x

(
∂2 f

∂x2

)
= ∂3 f

∂x3
,

fxxy = ∂

∂y

(
∂2 f

∂x2

)
= ∂3 f

∂y ∂x2
,

fxyy = ∂

∂y

(
∂2 f

∂y ∂x

)
= ∂3 f

∂y2 ∂x
, and

fyyy = ∂

∂y

(
∂2 f

∂y2

)
= ∂3 f

∂y3
.

EXAMPLE 8 Show that the partial derivatives of third and higher orders of the func-
tion f (x, y) = x2 + 2xy2 − y3 are constant.

Solution We find that

fx(x, y) = 2x + 2y2 and fy(x, y) = 4xy − 3y2.

So

fxx(x, y) = 2, fxy(x, y) = 4y, and fyy(x, y) = 4x − 6y.

Finally,

fxxx(x, y) = 0, fxxy(x, y) = 0, fxyy(x, y) = 4, and fyyy(x, y) = −6.

The function f is a polynomial, so all its partial derivatives are polynomials and are,
therefore, continuous everywhere. Hence we need not compute any other third-order
partial derivatives; each is equal to one of these four. Moreover, because the third-
order partial derivatives are all constant, all higher-order partial derivatives of f are
zero. ◗

12.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The partial derivatives of the function f (x, y) are defined by

fx(x, y) = lim
h→0

f (x, y) − f (x + h, y)

h
,

fy(x, y) = lim
k→0

f (x, y) − f (x, y + k)

k

wherever these limits exist.
2. The partial derivative of f (x, y) with respect to either independent variable can

be calculated by differentiating with respect to that variable, while regarding the
other independent variable as a constant.

3. Given z = (x2 + y2)e−xy, one can calculate ∂z/∂y by first calculating ∂z/∂x ,
and then interchanging x and y.

4. If f (x, y) is the temperature at the point (x, y) of the plane, then the partial
derivative fx(x, y) is the instantaneous rate of change of temperature at the point
(x, y) per unit increase in y (with x held constant).

5. If V = 82.06T/p is the volume of a sample of gas in terms of its temperature
T and pressure p, then ∂V/∂p is the sample’s instantaneous rate of change of
volume per unit increase in pressure (with its temperature held constant).
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928 CHAPTER 12 Partial Differentiation

6. The partial derivative value fx(a, b) is the slope of a line tangent to a curve on
which y is constant and which passes through the point (a, b, f (a, b)) on the
surface z = f (x, y).

7. The partial derivative value fy(a, b) is the slope of a line tangent to a curve on
which y is constant and which passes through the point (a, b, f (a, b)) on the
surface z = f (x, y).

8. If the function f (x, y) has continuous partial derivatives, then the tangent plane
to the surface z = f (x, y) at the point P(a, b, f (a, b)) contains the straight lines
that are tangent to the x-curve and the y-curve through the point P on the surface.

9. The second-order partial derivatives
∂2 f

∂x2
and

∂2 f

∂y∂x
are the partial derivatives of

∂ f/∂x with respect to the variables x and y, respectively.

10. If the mixed second-order partial derivatives
∂2 f

∂x∂y
and

∂2 f

∂y∂x
are continuous on

a circular disk centered at the point (a, b), then these two second-order partial
derivatives have the same value at this point.

12.4 CONCEPTS: QUESTIONS AND DISCUSSION
1. Recall that the absolute value function f (x) = |x | is differentiable except at the

single point x = 0. Can you define an analogous function of two variables—one
that has partial derivatives except at a single point?

2. Suppose that the surface z = f (x, y) has a peak or a pit (that is, either a high
point or a low point) at a point (a, b, c) where the surface has a tangent plane.
What can you say about this tangent plane? What can you say about the values
of the partial derivatives fx(a, b) and fy(a, b)?

3. Can a surface z = f (x, y) have a pit or a peak at a point where the partial
derivatives fx and fy do not exist? Supply an example illustrating your answer.

12.4 PROBLEMS

In Problems 1 through 20, compute the first-order partial deriva-
tives of each function.

1. f (x, y) = x4 − x3 y + x2 y2 − xy3 + y4

2. f (x, y) = x sin y

3. f (x, y) = ex(cos y − sin y)

4. f (x, y) = e2exy

5. f (x, y) = x + y

x − y
6. f (x, y) = xy

x2 + y2

7. f (x, y) = ln(x2 + y2) 8. f (x, y) = (x − y)14

9. f (x, y) = x y 10. f (x, y) = tan−1 xy

11. f (x, y, z) = x2 y3z4

12. f (x, y, z) = x2 + y3 + z4

13. f (x, y, z) = exyz

14. f (x, y, z) = x4 − 16yz

15. f (x, y, z) = x2ey ln z

16. f (u, v) = (2u2 + 3v2) exp(−u2 − v2)

17. f (r, s) = r 2 − s2

r 2 + s2

18. f (u, v) = euv(cos uv + sin uv)

19. f (u, v, w) = uev + vew + weu

20. f (r, s, t) = (1 − r 2 − s2 − t2)e−rst

In Problems 21 through 30, verify that zxy = zyx .

21. z = x2 − 4xy + 3y2

22. z = 2x3 + 5x2 y − 6y2 + xy4

23. z = x2 exp(−y2) 24. z = xye−xy

25. z = ln(x + y) 26. z = (x3 + y3)10

27. z = e−3x cos y 28. z = (x + y) sec xy

29. z = x2 cosh(1/y2) 30. z = sin xy + tan−1 xy

In Problems 31 through 40, find an equation of the plane tangent
to the given surface z = f (x, y) at the indicated point P.

31. z = x2 + y2; P = (3, 4, 25)

32. z = √
50 − x2 − y2 ; P = (4, −3, 5)

33. z = sin
πxy

2
; P = (3, 5, −1)

34. z = 4

π
tan−1 xy; P = (1, 1, 1)

35. z = x3 − y3; P = (3, 2, 19)

36. z = 3x + 4y; P = (1, 1, 7)

37. z = xy; P = (1, −1, −1)

38. z = exp(−x2 − y2); P = (0, 0, 1)

39. z = x2 − 4y2; P = (5, 2, 9)

40. z = √
x2 + y2; P = (3, −4, 5)
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Recall that fxy = fyx for a function f (x, y) with continuous
second-order partial derivatives. In Problems 41 through 44,
apply this criterion to determine whether there exists a function
f (x, y) having the given first-order partial derivatives. If so, try
to determine a formula for such a function f (x, y).

41. fx (x, y) = 2xy3, fy(x, y) = 3x2 y2

42. fx (x, y) = 5xy + y2, fy(x, y) = 3x2 + 2xy

43. fx (x, y) = cos2(xy), fy(x, y) = sin2(xy)

44. fx (x, y) = cos x sin y, fy(x, y) = sin x cos y

Figures 12.4.12 through 12.4.17 show the graphs of a certain
function f (x, y) and its first- and second-order partial deriva-
tives. In Problems 45 through 50, match that function or partial
derivative with its graph.
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FIGURE 12.4.17

45. f (x, y) 46. fx (x, y)

47. fy(x, y) 48. fxx (x, y)

49. fxy(x, y) 50. fyy(x, y)

51. Verify that the mixed second-order partial derivatives fxy

and fyx are equal if f (x, y) = xm yn , where m and n are
positive integers.

52. Suppose that z = ex+y . Show that ex+y is the result of differ-
entiating z first m times with respect to x , then n times with
respect to y.

53. Let f (x, y, z) = exyz . Calculate the distinct second-order
partial derivatives of f and the third-order partial derivative
fxyz .

54. Suppose that g(x, y) = sin xy. Verify that gxy = gyx and
that gxxy = gxyx = gyxx .

55. It is shown in physics that the temperature u(x, t) at time t at
the point x of a long, insulated rod that lies along the x-axis
satisfies the one-dimensional heat equation

∂u

∂t
= k

∂2u

∂x2
(k is a constant).

Show that the function

u = u(x, t) = exp(−n2k t) sin nx

satisfies the one-dimensional heat equation for any choice of
the constant n.

56. The two-dimensional heat equation for an insulated thin
plate is

∂u

∂t
= k

(
∂2u

∂x2
+ ∂2u

∂y2

)
.

Show that the function

u = u(x, y, t) = exp(−[m2 + n2]k t) sin mx cos ny

satisfies this equation for any choice of the constants m
and n.

57. A string is stretched along the x-axis, fixed at each end, and
then set into vibration. It is shown in physics that the dis-
placement y = y(x, t) of the point of the string at location x
at time t satisfies the one-dimensional wave equation

∂2 y

∂t2
= a2 ∂2 y

∂x2
,

where the constant a depends on the density and tension
of the string. Show that the following functions satisfy the
one-dimensional wave equation: (a) y = sin(x + at); (b)
y = cosh(3[x − at]); (c) y = sin k x cos k at (k is a con-
stant).

58. A steady-state temperature function u = u(x, y) for a thin
flat plate satisfies Laplace’s equation

∂2u

∂x2
+ ∂2u

∂y2
= 0.

Determine which of the following functions satisfy
Laplace’s equation:

(a) u = ln
(√

x2 + y2
)
;

(b) u = √
x2 + y2;

(c) u = arctan(y/x);

(d) u = e−x sin y.

59. Suppose that f and g are twice-differentiable functions of a
single variable. Show that y(x, t) = f (x + at) + g(x − at)
satisfies the one-dimensional wave equation of Problem 57.
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60. The electric potential field of a point charge q is defined
(in appropriate units) by φ(x, y, z) = q/r where r =√

x2 + y2 + z2. Show that φ satisfies the three-dimensional
Laplace equation

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0.

61. Let u(x, t) denote the underground temperature at depth x
and time t at a location where the seasonal variation of sur-
face (x = 0) temperature is described by

u(0, t) = T0 + a0 cos ωt,

where T0 is the annual average surface temperature and the
constant ω is so chosen that the period of u(0, t) is one year.
Show that the function

u(x, t) = T0 + a0 exp
( − x

√
ω/2k

)
cos

(
ωt − x

√
ω/2k

)
satisfies both the “surface condition” and the one-
dimensional heat equation of Problem 55.

62. The aggregate electrical resistance R of three resistances R 1,
R 2, and R 3 connected in parallel satisfies the equation

1

R
= 1

R 1
+ 1

R 2
+ 1

R 3
.

Show that

∂ R

∂ R 1
+ ∂ R

∂ R 2
+ ∂ R

∂ R 3

=
(

1

R 2
1

+ 1

R 2
2

+ 1

R 2
3

)
÷

(
1

R 1
+ 1

R 2
+ 1

R 3

)2

.

63. The ideal gas law pV = n RT (n is the number of moles of
the gas, R is a constant) determines each of the three vari-
ables p (pressure), V (volume), and T (temperature) as func-
tions of the other two. Show that

∂p

∂V
· ∂V

∂T
· ∂T

∂p
= −1.

64. cone z2 = x2 + y2 passes through the origin. Show this by
methods of calculus.

65. There is only one point at which the plane tangent to the
surface

z = x2 + 2xy + 2y2 − 6x + 8y

is horizontal. Find it.

66. Show that the plane tangent to the paraboloid with equation
z = x2+y2 at the point (a, b, c) intersects the xy-plane in the
line with equation 2ax +2by = a2 +b2. Then show that this
line is tangent to the circle with equation 4x2+4y2 = a2+b2.

67. According to van der Waals’ equation, 1 mol of a gas satis-
fies the equation(

p + a

V 2

)
(V − b) = (82.06)T

where p, V , and T are as in Example 4. For carbon dioxide,
a = 3.59 × 106 and b = 42.7, and V is 25,600 cm3 when p
is 1 atm and T = 313 K. (a) Compute ∂V/∂p by differen-
tiating van der Waals’ equation with T held constant. Then

estimate the change in volume that would result from an in-
crease of 0.1 atm of pressure with T held at 313 K. (b) Com-
pute ∂V/∂T by differentiating van der Waals’ equation with
p held constant. Then estimate the change in volume that
would result from an increase of 1 K in temperature with p
held at 1 atm.

68. A minimal surface has the least surface area of all surfaces
with the same boundary. Figure 12.4.18 shows Scherk’s min-
imal surface. It has the equation

z = ln(cos x) − ln(cos y).

A minimal surface z = f (x, y) is known to satisfy the par-
tial differential equation(

1 + z2
y

)
zxx − zzx zy zxy + (

1 + z2
x

)
zyy = 0.

Verify this in the case of Scherk’s minimal surface.

y

x

z

FIGURE 12.4.18 Scherk’s minimal
surface (Problem 68).

69. We say that the function z = f (x, y) is harmonic if it sat-
isfies Laplace’s equation zxx + zyy = 0. (See Problem 58.)
Show that each of these four functions is harmonic:

(a) f1(x, y) = sin x sinh(π − y);
(b) f2(x, y) = sinh 2x sin 2y;
(c) f3(x, y) = sin 3x sinh 3y;
(d) f4(x, y) = sinh 4(π − x) sin 4y.

70. Figure 12.4.19 shows the graph of the sum

z(x, y) =
4∑

i=1

fi (x, y)

of the four functions defined in Problem 69. Explain why
z(x, y) is a harmonic function.

0
1

2
3

x

0

1
2

3
y

−1

−0.5

0

0.5

1

z

z = Σ
i = 1

4

fi(x, y)

FIGURE 12.4.19 The surface
z = f (x, y) of Problem 70.
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71. You are standing at the point where x = y = 100 (ft) on a
hillside whose height (in feet above sea level) is given by

z = 100 + 1

100
(x2 − 3xy + 2y2),

with the positive x-axis to the east and the positive y-axis to
the north. (a) If you head due east, will you initially be as-
cending or descending? At what angle (in degrees) from the
horizontal? (b) If you head due north, will you initially be
ascending or descending? At what angle (in degrees) from
the horizontal?

72. Answer questions (a) and (b) in Problem 71, except that now
you are standing at the point where x = 150 and y = 250
(ft) on a hillside whose height (in feet above sea level) is
given by

z = 1000 + 1

1000
(3x2 − 5xy + y2).

73. Figure 12.3.7 shows the graph of the function f defined by

f (x, y) =
⎧⎨
⎩

xy

x2 + y2
unless x = y = 0,

0 if x = y = 0.

(a) Show that the first-order partial derivatives fx and fy are
defined everywhere and are continuous except possibly at
the origin. (b) Consider behavior on straight lines to show
that neither fx nor fy is continuous at the origin. (c) Show
that the second-order partial derivatives of f are all defined
and continuous except possibly at the origin. (d) Show that
the second-order partial derivatives fxx and fyy exist at the
origin, but that the mixed partial derivatives fxy and fyx do
not.

74. Figure 12.4.20 shows the graph of the function g defined by

g(x, y) =
⎧⎨
⎩

xy(x2 − y2)

x2 + y2
unless x = y = 0,

0 if x = y = 0.

(a) Show that the first-order partial derivatives gx and gy

are defined everywhere and are continuous except possi-
bly at the origin. (b) Use polar coordinates to show that
gx and gy are continuous at (0, 0) as well. (c) Show that
the second-order partial derivatives of g are all defined and
continuous except possibly at the origin. (d) Show that all
four second-order partial derivatives of g exist at the ori-
gin, but that gxy(0, 0) �= gyx (0, 0). (e) Consider behavior
on straight lines to show that none of the four second-order
partial derivatives of g is continuous at the origin.

x

y

z

FIGURE 12.4.20 The graph

z = x3 y − xy3

x2 + y2
of Problem 74.

12.5 MULTIVARIABLE OPTIMIZATION PROBLEMS

The single-variable maximum-minimum techniques of Section 3.5 generalize readily

x

C

R

D

y

(a, b)

FIGURE 12.5.1 A plane region R
bounded by the simple closed curve
C and a disk D in R centered at the
interior point (a, b) of R.

to functions of several variables. We consider first a function f of two variables.
Suppose that we are interested in the extreme values attained by f (x, y) on a plane
region R that consists of the points on and within a simple (nonintersecting) closed
curve C (Fig. 12.5.1). We say that the function f attains its absolute, or global,
maximum value M on R at the point (a, b) of R provided that

f (x, y) � M = f (a, b)

for all points (x, y) of R. Similarly, f attains its absolute, or global, minimum value
m at the point (c, d) of R provided that f (x, y) � m = f (c, d) for all points (x, y)

of R. In plain words, the absolute maximum M and the absolute minimum m are the
largest and smallest values (respectively) attained by f (x, y) at points of the domain
R of f .

Theorem 1, proved in advanced calculus courses, guarantees the existence of
absolute maximum and minimum values in many situations of practical interest.

THEOREM 1 Existence of Extreme Values
Suppose that the function f is continuous on the region R that consists of the points
on and within a simple closed curve C in the plane. Then f attains an absolute
maximum value at some point (a, b) of R and attains an absolute minimum value at
some point (c, d) of R.

We are interested mainly in the case in which the function f attains its absolute
maximum (or minimum) value at an interior point of R. The point (a, b) of R is
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called an interior point of R provided that some circular disk centered at (a, b) lies
wholly within R (Fig. 12.5.1). The interior points of a region R of the sort described
in Theorem 1 are precisely those that do not lie on the boundary curve C .

An absolute extreme value attained by the function at an interior point of R is
necessarily a local extreme value. We say that f (a, b) is a local maximum value of
f (x, y) provided that it is the absolute maximum value of f on some disk D that is
centered at (a, b) and lies wholly within the domain R. Similarly, a local minimum
value is an absolute minimum value on some such disk. Thus a local maximum (or
minimum) value f (a, b) is not necessarily an absolute maximum (or minimum) value,
but is the largest (or smallest) value attained by f (x, y) at points near (a, b).

EXAMPLE 1 Figure 12.5.2 shows a computer-generated graph of the function

f (x, y) = 3(x − 1)2e−x2−(y+1)2 − 10
(

1
5 x − x3 − y5

)
e−x2−y2 − 1

3 e−(x+1)2−y2

plotted on the rectangle R for which −3 � x � 3 and −3 � y � 3. Looking at the
labeled extreme values of f (x, y), we see

• A local maximum that is not an absolute maximum,
• A local maximum that is also an absolute maximum,
• A local minimum that is not an absolute minimum, and
• A local minimum that is also an absolute minimum.

We can think of the local maxima on the graph as mountain tops or “peaks” and the
local minima as valley bottoms or “pits.” ◗

Absolute minimum

Local minimum

Absolute maximum

Local maximum

FIGURE 12.5.2 Local extrema contrasted with global
extrema.

Finding Local Extrema
We need a criterion that will provide a practical way to find local extrema of functions
of two (or more) variables. The desired result—stated in Theorem 2—is analogous
to the single-variable criterion of Section 3.5: If f (c) is a local extreme value of the
differentiable single-variable function f , then x = c must be a critical point where
f ′(c) = 0.

Suppose, for instance, that f (a, b) is a local maximum value of f (x, y) attained
at a point (a, b) where both partial derivatives fx and fy exist. We consider vertical
plane cross-section curves on the graph z = f (x, y), just as when we explored the ge-
ometrical interpretation of partial derivatives in Section 12.4. The cross-section curves
parallel to the xz- and yz-planes are the graphs (in these planes) of the single-variable
functions

G(x) = f (x, b) and H(y) = f (a, y)

whose derivatives are the partial derivatives of f :

fx(a, b) = G ′(a) and fy(a, b) = H ′(b). (1)
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Because f (a, b) is a local maximum value of f (x, y), it follows readily that G(a)

and H(b) are local maximum values of G(x) and H(y), respectively. Therefore the
single-variable maximum-minimum criterion of Section 3.5 implies that

G ′(a) = 0 and H ′(b) = 0. (2)

Combining (1) and (2), we conclude that

fx(a, b) = 0 and fy(a, b) = 0. (3)

Essentially the same argument yields the same conclusion if f (a, b) is a local mini-
mum value of f (x, y). This discussion establishes Theorem 2.

THEOREM 2 Necessary Conditions for Local Extrema
Suppose that f (x, y) attains a local maximum value or a local minimum value at the
point (a, b) and that both the partial derivatives fx(a, b) and fy(a, b) exist. Then

fx(a, b) = 0 = fy(a, b). (3)

The equations in (3) imply that the plane tangent to the surface z = f (x, y) must
be horizontal at any local maximum or local minimum point (a, b, f (a, b)), in perfect
analogy to the single-variable case (in which the tangent line is horizontal at any local
maximum or minimum point on the graph of a differentiable function).

EXAMPLE 2 Consider the three familiar surfaces

z = f (x, y) = x2 + y2,

z = g(x, y) = 1 − x2 − y2, and

z = h(x, y) = y2 − x2

shown in Fig. 12.5.3. In each case ∂z/∂x = ±2x and ∂z/∂y = ±2y. Thus both partial
derivatives are zero at the origin (0, 0) (and only there). It is clear from the figure that
f (x, y) = x2 + y2 has a local minimum at (0, 0). In fact, because a square cannot be
negative, z = x2 + y2 has the global minimum value 0 at (0, 0). Similarly, g(x, y) has
a local (indeed, global) maximum value at (0, 0), whereas h(x, y) has neither a local
minimum nor a local maximum there—the origin is a saddle point of h. This example
shows that a point (a, b) where

∂z

∂x
= 0 = ∂z

∂y

may correspond to either a local minimum, a local maximum, or neither. Thus the
necessary condition in Eq. (3) is not a sufficient condition for a local extremum. ◗

y

x

(a) f(x, y) = x2 + y2, local minimum at (0, 0)

z

y

x

(b) g(x, y) = 1 − x2 − y2, local maximum
      at (0, 0)

z

y

x

(c) h(x, y) = y2 − x2, saddle point at (0, 0)

z

FIGURE 12.5.3 Where both partial
derivatives are zero, there may be
(a) a minimum, (b) a maximum, or
(c) neither.

EXAMPLE 3 Find all points on the surface

z = 3
4 y2 + 1

24 y3 − 1
32 y4 − x2

at which the tangent plane is horizontal.

Solution We first calculate the partial derivatives ∂z/∂x and ∂z/∂y:

∂z

∂x
= −2x,

∂z

∂y
= 3

2 y + 1
8 y2 − 1

8 y3

= − 1
8 y(y2 − y − 12) = − 1

8 y(y + 3)(y − 4).

We next equate both ∂z/∂x and ∂z/∂y to zero. This yields

−2x = 0 and − 1
8 y(y + 3)(y − 4) = 0.
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Simultaneous solution of these equations yields exactly three points where both partial
derivatives are zero: (0, −3), (0, 0), and (0, 4). The three corresponding points on the
surface where the tangent plane is horizontal are (0, −3, 99

32 ), (0, 0, 0), and (0, 4, 20
3 ).

These three points are indicated on the graph in Fig. 12.5.4 of the surface. (Recall that
we constructed this surface in Example 11 of Section 12.2.) ◗

Finding Global Extrema
Theorem 2 is a very useful tool for finding the absolute maximum and absolute mini-
mum values attained by a continuous function f on a region R of the type described
in Theorem 1. If f (a, b) is the absolute maximum value, for example, then (a, b) is
either an interior point of R or a point of the boundary curve C . If (a, b) is an inte-
rior point and both the partial derivatives fx(a, b) and fy(a, b) exist, then Theorem 2
implies that both these partial derivatives must be zero. Thus we have the following

32

3

−4 0 4

x

−5

0

5

y

−20

−10

0
z

(0, −3,     )99

(0, 4,     )20

(0, 0, 0)

1
24z = y2 + y3 − 1

32 y4 − x23
4

FIGURE 12.5.4 The surface of
Example 3.

result.

THEOREM 3 Types of Absolute Extrema
Suppose that f is continuous on the plane region R consisting of the points on and
within a simple closed curve C . If f (a, b) is either the absolute maximum or the
absolute minimum value of f (x, y) on R, then (a, b) is either

1. An interior point of R at which

∂ f

∂x
= ∂ f

∂y
= 0,

2. An interior point of R where not both partial derivatives exist, or
3. A point of the boundary curve C of R.

A point (a, b) where either condition (1) or condition (2) holds is called a crit-
ical point of the function f . Thus Theorem 3 says that any extreme value of the
continuous function f on the plane region R must occur at an interior critical point or
at a boundary point. Note the analogy with Theorem 3 of Section 3.5, which implies
that an extreme value of a single-variable function f (x) on a closed and bounded in-
terval I must occur either at an interior critical point of I or at an endpoint (boundary
point) of I .

METHOD As a consequence of Theorem 3, we can find the absolute maximum and
minimum values of f (x, y) on R as follows:

1. First locate the interior critical points.
2. Next find the possible extreme values of f on the boundary curve C .
3. Finally compare the values of f at the points found in steps 1 and 2.

The technique to be used in the second step will depend on the nature of the
boundary curve C , as illustrated in Examples 4 and 5.

EXAMPLE 4 Let f (x, y) = √
x2 + y2 on the region R consisting of the points

on and within the circle x2 + y2 = 1 in the xy-plane. The graph of f is shown in
Fig. 12.5.5. We see that the minimum value 0 of f occurs at the origin (0, 0), where
both the partial derivatives fx and fy fail to exist (Why?), whereas the maximum value
1 of f on R occurs at each and every point of the boundary circle. ◗

z

y

x

R

f (x, y) = x2 + y2

FIGURE 12.5.5 The graph of the
function of Example 4.

EXAMPLE 5 Find the maximum and minimum values attained by the function

f (x, y) = xy − x − y + 3

at points of the triangular region R in the xy-plane with vertices at (0, 0), (2, 0), and
(0, 4).
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Solution The region R is shown in Fig. 12.5.6. Its boundary “curve” C consists ofy

x

2x + y = 4

(1, 1)

(0, 0)

(0, 4)

(2, 0)

R (   ,    )5
4

3
2

FIGURE 12.5.6 The triangular
region of Example 5.

the segment 0 � x � 2 on the x-axis, the segment 0 � y � 4 on the y-axis, and the
part of the line 2x + y = 4 that lies in the first quadrant. Any interior extremum must
occur at a point where both

∂ f

∂x
= y − 1 and

∂ f

∂y
= x − 1

are zero. Hence the only interior critical point is (1, 1).

Along the edge where y = 0: The function f (x, y) takes the form

α(x) = f (x, 0) = 3 − x, 0 � x � 2.

Because α(x) is a decreasing function, its extrema for 0 � x � 2 occur at the
endpoints x = 0 and x = 2. This gives the two possibilities (0, 0) and (2, 0) for
locations of extrema of f (x, y).
Along the edge where x = 0: The function f (x, y) takes the form

β(y) = f (0, y) = 3 − y, 0 � y � 4.

The endpoints of this interval yield the points (0, 0) and (0, 4) as possibilities for
locations of extrema of f (x, y).
On the edge of R where y = 4 − 2x : We may substitute 4 − 2x for y in the
formula for f (x, y) and thus express f as a function of a single variable:

γ (x) = x(4 − 2x) − x − (4 − 2x) + 3

= −2x2 + 5x − 1, 0 � x � 2.

To find the extreme values of γ (x), we first calculate

γ ′(x) = −4x + 5;
γ ′(x) = 0 where x = 5

4 . Thus each extreme value of γ (x) on [0, 2] must occur
either at the interior point x = 5

4 of the interval [0, 2] or at one of the endpoints
x = 0 and x = 2. This gives the possibilities (0, 4), ( 5

4 , 3
2 ), and (2, 0) for

locations of extrema of f (x, y).

We conclude by evaluating f at each of the points we have found:

f (0, 0) = 3, ←− maximum

f
(

5
4 , 3

2

) = 2.125

f (1, 1) = 2,

f (2, 0) = 1,

f (0, 4) = −1. ←− minimum

Thus the maximum value of f (x, y) on the region R is f (0, 0) = 3 and the minimum
value is f (0, 4) = −1. ◗

Note the terminology used in this section. In Example 5, the maximum value of
f is 3, the maximum occurs at the point (0, 0) in the domain of f , and the highest
point on the graph of f is (0, 0, 3).

Highest and Lowest Points of Surfaces
In applied problems we frequently know in advance that the absolute maximum (or
minimum) value of f (x, y) on R occurs at an interior point of R where both partial
derivatives of f exist. In this important case, Theorem 3 tells us that we can locate
every possible point at which the maximum (or minimum) might occur by simultane-
ously solving the two equations

fx(x, y) = 0 and fy(x, y) = 0. (4)
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If we are lucky, these equations will have only one simultaneous solution (x, y) in-y

z

x

FIGURE 12.5.7 The surface
z = x4 + y4 − x2 y2 opens upward.

terior to R. If so, then that solution must be the location of the desired maximum
(or minimum). If we find that the equations in (4) have several simultaneous solu-
tions interior to R, then we simply evaluate f at each solution to determine which
yields the largest (or smallest) value of f (x, y) and is therefore the desired maximum
(or minimum) point.

We can use this method to find the lowest point on a surface z = f (x, y) that
opens upward, as in Fig. 12.5.7. If R is a sufficiently large rectangle, then f (x, y)

attains large positive values everywhere on the boundary of R but smaller values at
interior points. It follows that the minimum value of f (x, y) must be attained at an
interior point of R.

The question of a highest or lowest point is not pertinent for a surface that opens
both upward and downward, as in Fig. 12.5.8.

EXAMPLE 6 Find the highest point on the surfacex

y

z

FIGURE 12.5.8 The surface
z = x4 + y4 − 3x2 y2 opens both
upward and downward.

z = f (x, y) = 8
3 x3 + 4y3 − x4 − y4. (5)

Solution We observe that the negative fourth-degree terms in f (x, y) clearly pre-
dominate when |x | and/or |y| is large, so the surface z = f (x, y) opens downward.
(See Fig. 12.5.9.) To verify this observation, we factor out x4 + y4 and write

f (x, y) = (x4 + y4)

[
8
3 x3 + 4y3

x4 + y4
− 1

]
. (6)

Now consider a fixed point (x, y) and let m denote the smaller, and M the larger, of
the two numbers |x | and |y|. Then∣∣∣∣∣

8
3 x3 + 4y3

x4 + y4

∣∣∣∣∣ �
4|x |3 + 4|y|3

x4 + y4
= 4m3 + 4M 3

m4 + M4
�

4M 3 + 4M 3

04 + M4
= 8

M
.

For instance, if either |x | or |y| is greater than M = 10, then the fraction within

y

z

x

FIGURE 12.5.9 The surface
z = 8

3 x3 + 4y3 − x4 − y4 opens
downward.

brackets in Eq. (6) has absolute value less than 8
10 , so it follows that f (x, y) < 0.

Thus f (x, y) is negative outside the large square R with vertices (±10, ±10)

in the xy-plane. But z = f (x, y) certainly attains positive values within R, such
as f (1, 1) = 14

3 . Consequently Theorem 1 implies that f (x, y) attains an absolute
maximum value at some interior point of R. So let us proceed to find this maximum
value.

Because the partial derivatives ∂z/∂x and ∂z/∂y exist everywhere, Theorem 3
implies that we need only solve the equations ∂z/∂x = 0 and ∂z/∂y = 0 in Eq. (4)—
that is,

∂z

∂x
= 8x2 − 4x3 = 4x2(2 − x) = 0,

∂z

∂y
= 12y2 − 4y3 = 4y2(3 − y) = 0.

If these two equations are satisfied, then

Either x = 0 or x = 2 and either y = 0 or y = 3.

It follows that either

x = 0
and

y = 0
or

x = 0
and

y = 3
or

x = 2
and

y = 0
or

x = 2
and

y = 3.
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Consequently, we need only inspect the values

z(0, 0) = 0,

z(2, 0) = 16
3 = 5.333 333 333 . . . ,

z(0, 3) = 27,

z(2, 3) = 97
3 = 32.333 333 333 . . . . ←− maximum

Thus the highest point on the surface is the point
(
2, 3, 97

3

)
. The four critical points on

the surface are indicated in Fig. 12.5.10. ◗

Applied Maximum-Minimum Problems
The analysis of a multivariable applied maximum-minimum problem involves the same
general steps that we listed at the beginning of Section 3.6. Here, however, we will
express the dependent variable—the quantity to be maximized or minimized—as a

y

(0, 3, 27)
(2, 3,    )

(0, 0, 0)

z

x

97
3

(2, 0,    )16
3

FIGURE 12.5.10 The critical
points of Example 6. function f (x, y) of two independent variables. Once we have identified the appropriate

region in the xy-plane as the domain of f , the methods of this section are applicable.
We often find that a preliminary step is required: If the meaningful domain of definition
of f is an unbounded region, then we first restrict f to a bounded plane region R on
which we know the desired extreme value occurs. This procedure is similar to the one
we used with open-interval maximum-minimum problems in Section 4.4.

EXAMPLE 7 Find the minimum cost of a rectangular box with volume 48 ft3 if the

z

yx

FIGURE 12.5.11 A box whose
total cost we want to minimize
(Example 7).

front and back cost $1/ft2, the top and bottom cost $2/ft2, and the two ends cost $3/ft2.
(We first discussed such a box in Section 12.1.) This box is shown in Fig. 12.5.11.

Solution We found in Section 12.1 that the cost C (in dollars) of this box is given by

C(x, y) = 4xy + 288

x
+ 96

y

in terms of its length x and width y. Let R be a square such as the one shown in
Fig. 12.5.12. Two sides of R are so close to the coordinate axes that 288/x > 1000
on the side nearest the y-axis and 96/y > 1000 on the side nearest the x-axis. Also,
the square is so large that 4xy > 1000 on both of the other two sides. This means thaty

x

is large here
96
y

4xy is large on
these two sides

is large here
288

x

FIGURE 12.5.12 The cost function
C(x, y) of Example 7 takes on large
positive values on the boundary of
the square.

C(x, y) > 1000 at every point (x, y) of the first quadrant that lies on or outside the
boundary of the square R. Because C(x, y) attains reasonably small values within R
(for instance, C(1, 1) = 388), it is clear that the absolute minimum of C must occur at
an interior point of R. Thus, although the natural domain of the cost function C(x, y)

is the entire first quadrant, we have succeeded in restricting its domain to a region R of
the sort to which Theorem 3 applies.

We therefore solve the simultaneous equations

∂C

∂x
= 4y − 288

x2
= 0,

∂C

∂y
= 4x − 96

y2
= 0.

We multiply the first equation by x and the second by y. (Ad hoc methods are fre-
quently required in the solution of simultaneous nonlinear equations.) This procedure
gives

288

x
= 4xy = 96

y
,

so that x = 288y/96 = 3y. We substitute x = 3y into the equation ∂C/∂y = 0 and
find that

12y − 96

y2
= 0, so 12y3 = 96.
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Hence y = 3
√

8 = 2, so x = 6. Therefore, the minimum cost of this box is C(6, 2) =
144 (dollars). Because the volume of the box is V = xyz = 48, its height is z =
48/(6 · 2) = 4 when x = 6 and y = 2. Thus the optimal box is 6 ft wide, 2 ft deep,
and 4 ft high. ◗

REMARK As a check, note that the cheapest surfaces (front and back) are the largest,
whereas the most expensive surfaces (the sides) are the smallest.

We have seen that if fx(a, b) = 0 = fy(a, b), then f (a, b) may be either a max-
imum value, a minimum value, or neither. In Section 12.10 we discuss conditions that
suffice to distinguish between a local maximum, a local minimum, and a saddle point
on the surface z = f (x, y). These conditions involve the second-order derivatives
of f .

Functions of Three or More Variables

The methods of this section generalize readily to functions of three or more variables.
For instance, suppose that the function f (x, y, z) is continuous on a bounded region R
in space bounded by a closed surface S. Then (in analogy with Theorem 1), the func-
tion f attains an absolute maximum value at some point (a, b, c) of R (and likewise
an absolute minimum value at some point of R). If (a, b, c) is an interior point of R
at which the partial derivatives of f exist, then (in analogy with Theorem 3) it follows
that all three vanish there:

fx(a, b, c) = fy(a, b, c) = fz(a, b, c) = 0. (7)

We may therefore attempt to find this point by solving the three simultaneous
equations

fx(x, y, z) = 0, fy(x, y, z) = 0, and fz(x, y, z) = 0 (8)

for the three unknown values x = a, y = b, and z = c. Thus a key step in the method
of solution of a three-variable extreme value problem is essentially the same as in the
method for a two-variable problem—“set the partial derivatives equal to zero and solve
the resulting equations.” But see Problems 68 through 70.

Example 8 illustrates a “line-through-the-point” method that we can sometimes
use to show that a point (a, b, c) where the conditions in (8) hold is neither a local
maximum nor a local minimum point. (The method is also applicable to functions of
two or of more than three variables.)

EXAMPLE 8 Determine whether the function f (x, y, z) = xy + yz − xz has any
local extrema.

Solution The necessary conditions in Eq. (8) give the equations

fx(x, y, z) = y − z = 0,

fy(x, y, z) = x + z = 0,

fz(x, y, z) = y − x = 0.

We easily find that the simultaneous solution of these equations is x = y = z = 0. On
the line x = y = z through (0, 0, 0), the function f (x, y, z) reduces to x2, which is
minimal at x = 0. But on the line x = −y = z, it reduces to −3x2, which is maximal
when x = 0. Hence f can have neither a local maximum nor a local minimum at
(0, 0, 0). Therefore it has no extrema, local or global. ◗

938

www.konkur.in



Multivariable Optimization Problems SECTION 12.5 939

12.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose the function f is defined on a region R in the xy-plane that consists of
the points on and within a simple closed curve C . Then Theorem 1 in this section
implies that f (x, y) attains a maximum value at some point of R.

2. Any absolute extreme value attained by a function f (x, y) at an interior point of
its region of definition is necessarily a local extreme value of the function.

3. Any local extreme value attained by a function f (x, y) is necessarily an absolute
extreme value of the function.

4. Suppose the function f (x, y) attains either a local maximum value or a local
minimum value at a point where both partial derivatives fx and fy exist. Then
both partial derivatives have the value 0 at this point.

5. If fx(a, b) = fy(a, b) = 0 then f (a, b) is either a local maximum or a local
minimum value of the function f .

6. Suppose the function f is continuous on a region R in the xy-plane that consists
of the points on and within a simple closed curve C , and that the partial deriva-
tives fx and fy both exist at every interior point of R. If f (a, b) is the absolute
maximum value of f (x, y) on R, then either fx(a, b) = fy(a, b) = 0 or (a, b)

is a point of the boundary curve C of R.
7. Suppose the function f is continuous on a region R in the xy-plane that consists

of the points on and within a simple closed curve C . Then the absolute minimum
value of f (x, y) on R can occur at an interior point where the partial derivatives
fx and fy do not both exist.

8. Suppose the function f is continuous on a region R in the xy-plane that consists
of the points on and within a simple closed curve C , and that the partial deriva-
tives fx and fy both exist at every interior point of R. If f has no critical point
interior to R, then its absolute maximum value on R occurs at a point of the
boundary curve C of R.

9. Suppose the function f is continuous and has partial derivatives everywhere. If
f (x, y) is negative at every point outside of the rectangle R, but the function
attains positive values within R, then its absolute maximum value must occur at
a critical point in R where both its partial derivatives vanish.

10. The method of solution of a three-variable extreme value problem is essentially
the same as the method for a two-variable problem, except that there are three
“partial derivative equations” to solve (instead of two).

12.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that the function f is continuous on the disk D bounded by the unit

circle x2 + y2 = 1. Is it possible that f (x, y) attains both its maximum and
minimum values on D at points of the boundary circle? Illustrate your answer
with an example.

2. Give an example of a function that is defined at every point of the unit disk D but
attains no maximum value at any point of D.

3. Give an example of a function f defined on the unit disk D that attains its maxi-
mum value at an interior point at which the partial derivatives of D do not exist.

4. How would you alter the proof of Theorem 2 to show that the partial derivatives
of a function of three variables vanish at an interior local maximum or minimum
point? (What would you mean by an interior point of a space region?) Does your
proof apply to the function w = f (x, y, z) = √

x2 + y2 + z2?
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12.5 PROBLEMS

In Problems 1 through 12, find every point on the given surface
z = f (x, y) at which the tangent plane is horizontal.

1. z = x − 3y + 5 2. z = 4 − x2 − y2

3. z = xy + 5 4. z = x2 + y2 + 2x

5. z = x2 + y2 − 6x + 2y + 5 6. z = 10+8x −6y − x2 − y2

7. z = x2 + 4x + y3 8. z = x4 + y3 − 3y

9. z = 3x2 + 12x + 4y3 − 6y2 + 5 (Fig. 12.5.13)

−1 0 1 2
y

−4
−2

0x

−10

0

10

z

FIGURE 12.5.13 The surface of
Problem 9.

10. z = 1

1 − 2x + 2y + x2 + y2

11. z = (2x2 + 3y2) exp(−x2 − y2) (Fig. 12.5.14)

0
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FIGURE 12.5.14 The surface of Problem 11.

12. z = 2xy exp
( − 1

8 (4x2 + y2)
)

(Fig. 12.5.15)
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FIGURE 12.5.15 The surface of Problem 12.

Each of the surfaces defined in Problems 13 through 22 either
opens downward and has a highest point, or opens upward and
has a lowest point. Find this highest or lowest point on the sur-
face z = f (x, y).

13. z = x2 − 2x + y2 − 2y + 3 14. z = 6x − 8y − x2 − y2

15. z = 2x − x2 + 2y2 − y4 16. z = 4xy − x4 − y4

17. z = 3x4 − 4x3 − 12x2 + 2y2 − 12y

18. z = 3x4 + 4x3 + 6y4 − 16y3 + 12y2

19. z = 2x2 + 8xy + y4

20. z = 1

10 − 2x − 4y + x2 + y4

21. z = exp(2x − 4y − x2 − y2)

22. z = (1 + x2) exp(−x2 − y2)

In Problems 23 through 28, find the maximum and minimum val-
ues attained by the given function f (x, y) on the given plane
region R.

23. f (x, y) = x +2y; R is the square with vertices at (±1, ±1).

24. f (x, y) = x2 + y2 − x ; R is the square of Problem 23.

25. f (x, y) = x2 + y2 − 2x ; R is the triangular region with
vertices at (0, 0), (2, 0), and (0, 2).

26. f (x, y) = x2 + y2 − x − y; R is the region of Problem 25.

27. f (x, y) = 2xy; R is the circular disk x2 + y2 � 1.

28. f (x, y) = xy2; R is the circular disk x2 + y2 � 3.

In Problems 29 through 34, the equation of a plane or surface is
given. Find the first-octant point P(x, y, z) on the surface clos-
est to the given fixed point Q(x0, y0, z0). [Suggestion: Minimize
the squared distance |P Q|2 as a function of x and y.]

29. The plane 12x+4y+3z = 169 and the fixed point Q(0, 0, 0)

30. The plane 2x + 2y + z = 27 and the fixed point Q(9, 9, 9)

31. The plane 2x + 3y + z = 49 and the fixed point Q(7, −7, 0)

32. The surface xyz = 8 and the fixed point Q(0, 0, 0)

33. The surface x2 y2z = 4 and the fixed point Q(0, 0, 0)

34. The surface x4 y8z2 = 8 and the fixed point Q(0, 0, 0)

35. Find the maximum possible product of three positive num-
bers whose sum is 120.

36. Find the maximum possible volume of a rectangular box if
the sum of the lengths of its 12 edges is 6 meters.

37. Find the dimensions of the box with volume 1000 in.3 that
has minimal total surface area.

38. Find the dimensions of the open-topped box with volume
4000 cm3 whose bottom and four sides have minimal total
surface area.

In Problems 39 through 42, you are to find the dimensions that
minimize the total cost of the material needed to construct the
rectangular box that is described. It is either closed (top, bot-
tom, and four sides) or open-topped (four sides and a bottom).

39. The box is to be open-topped with a volume of 600 in.3 The
material for its bottom costs 6/c/in.2 and the material for its
four sides costs 5/c/in.2
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40. The box is to be closed with a volume of 48 ft3. The mate-
rial for its top and bottom costs $3/ft2 and the material for its
four sides costs $4/ft2.

41. The box is to be closed with a volume of 750 in.3 The ma-
terial for its top and bottom costs 3/c/in.2, the material for its
front and back costs 6/c/in.2, and the material for its two ends
costs 9/c/in.2

42. The box is to be a closed shipping crate with a volume of
12 m3. The material for its bottom costs twice as much (per
square meter) as the material for its top and four sides.

43. A rectangular building is to have a volume of 8000 ft3. An-
nual heating and cooling costs will amount to $2/ft2 for its
top, front, and back, and $4/ft2 for the two end walls. What
dimensions of the building would minimize these annual
costs?

44. You want to build a rectangular aquarium with a bottom
made of slate costing 28/c/in.2 Its sides will be glass, which
costs 5/c/in.2, and its top will be stainless steel, which costs
2/c/in.2 The volume of this aquarium is to be 24,000 in.3

What are the dimensions of the least expensive such aquar-
ium?

45. A rectangular box is inscribed in the first octant with three of
its sides in the coordinate planes, their common vertex at the
origin, and the opposite vertex on the plane with equation
x + 3y + 7z = 11. What is the maximum possible volume
of such a box?

46. Three sides of a rectangular box lie in the coordinate planes,
their common vertex at the origin; the opposite vertex is on
the plane with equation

x

a
+ y

b
+ z

c
= 1

(a, b, and c are positive constants). In terms of a, b, and c,
what is the maximum possible volume of such a box?

47. Find the maximum volume of a rectangular box that a post
office will accept for delivery if the sum of its length and
girth cannot exceed 108 in.

48. Repeat Problem 47 for the case of a cylindrical box—one
shaped like a hatbox or a fat mailing tube.

49. A rectangular box with its base in the xy-plane is inscribed
under the graph of the paraboloid z = 1 − x2 − y2, z � 0.
Find the maximum possible volume of the box. [Sugges-
tion: You may assume that the sides of the box are parallel
to the vertical coordinate planes, and it follows that the box
is symmetrically placed around these planes.]

50. What is the maximum possible volume of a rectangular box
inscribed in a hemisphere of radius R? Assume that one face
of the box lies in the planar base of the hemisphere.

51. A buoy is to have the shape of a right circular cylinder
capped at each end by identical right circular cones with the
same radius as the cylinder. Find the minimum possible sur-
face area of the buoy, given that it has fixed volume V .

52. A pentagonal window is to have the shape of a rectangle sur-
mounted by an isosceles triangle (with horizontal base, so
the window is symmetric around its vertical axis), and the
perimeter of the window is to be 24 ft. What are the di-
mensions of such a window that will admit the most light
(because its area is the greatest)?

53. Find the point (x, y) in the plane for which the sum of the
squares of its distances from (0, 1), (0, 0), and (2, 0) is a
minimum.

54. Find the point (x, y) in the plane for which the sum of the
squares of its distances from (a1, b1), (a2, b2), and (a3, b3) is
a minimum.

55. An A-frame house is to have fixed volume V . Its front and
rear walls are in the shape of equal, parallel isosceles trian-
gles with horizontal bases. The roof consists of two rectan-
gles that connect pairs of upper sides of the triangles. To
minimize heating and cooling costs, the total area of the A-
frame (excluding the floor) is to be minimized. Describe the
shape of the A-frame of minimal area.

56. What is the maximum possible volume of a rectangular box
whose longest diagonal has fixed length L?

57. A wire 120 cm long is cut into three or fewer pieces, and
each piece is bent into the shape of a square. How should
this be done to minimize the total area of these squares? To
maximize it?

58. You must divide a lump of putty of fixed volume V into three
or fewer pieces and form the pieces into cubes. How should
you do this to maximize the total surface area of the cubes?
To minimize it?

59. A very long rectangle of sheet metal has width L and is to
be folded to make a rain gutter (Fig. 12.5.16). Maximize its
volume by maximizing the cross-sectional area shown in the
figure.

θ
x

FIGURE 12.5.16 Cross section
of the rain gutter of Problem 59.

60. Consider the function f (x, y) = (y − x2)(y − 3x2).
(a) Show that fx (0, 0) = 0 = fy(0, 0). (b) Show that
for every straight line y = mx through (0, 0), the function
f (x, mx) has a local minimum at x = 0. (c) Examine the
values of f at points of the parabola y = 2x2 to show that f
does not have a local minimum at (0, 0). This tells us that we
cannot use the line-through-the-point method of Example 8
to show that a point is a local extremum.

61. Suppose that Alpha, Inc. and Beta, Ltd. manufacture com-
petitive (but not identical) products, with the weekly sales of
each product determined by the selling price of that product
and the price of its competition. Suppose that Alpha sets a
sales price of x dollars per unit for its product, while Beta
sets a sales price of y dollars per unit for its product. Market
research shows that the weekly profit made by Alpha is then

P(x) = −2x2 + 12x + xy − y − 10

and that the weekly profit made by Beta is

Q(y) = −3y2 + 18y + 2xy − 2x − 15

(both in thousands of dollars). The peculiar notation arises
from the fact that x is the only variable under the control
of Alpha and y is the only variable under the control of
Beta. (If this disturbs you, feel free to write P(x, y) in place
of P(x) and Q(x, y) in place of Q(y).) (a) Assume that
both company managers know calculus and that each knows
that the other knows calculus and has some common sense.
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What price will each manager set to maximize his company’s
weekly profit? (b) Now suppose that the two managers enter
into an agreement (legal or otherwise) by which they plan
to maximize their total weekly profit. Now what should be
the selling price of each product? (We suppose that they will
divide the resulting profit in an equitable way, but the details
of this intriguing problem are not the issue.)

62. Three firms—Ajax Products (AP), Behemoth Quicksilver
(BQ), and Conglomerate Resources (CR)—produce prod-
ucts in quantities A , B, and C , respectively. The weekly
profits that accrue to each, in thousands of dollars, obey the
following equations:

AP : P = 1000A − A 2 − 2A B,

BQ : Q = 2000B − 2B2 − 4BC,

CR : R = 1500C − 3C2 − 6AC.

(a) If each firm acts independently to maximize its weekly
profit, what will those profits be? (b) If firms AP and CR
join to maximize their total profit while BQ continues to act
alone, what effects will this have? Give a complete answer
to this problem. Assume that the fact of the merger of AP
and CR is known to the management of BQ.

63. A farmer can raise sheep, hogs, and cattle. She has space
for 80 sheep or 120 hogs or 60 cattle or any combination us-
ing the same amount of space; that is, 8 sheep use as much
space as 12 hogs or 6 cattle. The anticipated profits per ani-
mal are $10 per sheep, $8 per hog, and $20 for each head of
cattle. State law requires that a farmer raise as many hogs as
sheep and cattle combined. How does the farmer maximize
her profit?

Problems 64 and 65 deal with the quadratic form

f (x, y) = ax2 + 2bxy + cy2. (9)

64. Show that the quadratic form f in (9) has only the single
critical point (0, 0) unless ac − b2 = 0, in which case every
point on a certain line through the origin is a critical point.
Experiment with computer graphs to formulate a conjecture
about the shape of the surface z = f (x, y) in the exceptional
case ac − b2 = 0. Can you substantiate your conjecture?

65. Use a computer algebra system to graph the quadratic form
in (9) for a variety of different values of the coefficients a, b,
and c in order to corroborate the following two conclusions.
(a) If ac − b2 > 0, then the graph of z = f (x, y) is an el-
liptic paraboloid and f therefore has either a maximum or a
minimum value at (0, 0). (b) If ac − b2 < 0, then the graph
of z = f (x, y) is a hyperbolic paraboloid and f therefore
has a saddle point at (0, 0).

Figures 12.5.7 and 12.5.8 illustrate (and Problems 66 and 67
deal with) the cases b = − 1

2 and b = − 3
2 (respectively) of the

special quartic form

f (x, y) = x4 + 2bx2 y2 + y4. (10)

66. Show that the quartic form f in (10) has only the single crit-
ical point (0, 0) unless b = −1, in which case every point
on a certain pair of lines through the origin is a critical point
(Fig. 12.5.17). Experiment with computer graphs to formu-
late a conjecture about the shape of the graph of f in each of
the two cases b > −1 and b < −1.

y

0

1

z

x

FIGURE 12.5.17 The graph of the function
f (x, y) = x4 − x2 y2 + y4 having critical points
on the lines y = ±x .

67. To show that the quartic form in (10) has a local minimum
at the origin if b > −1 and a saddle point if b < −1, substi-
tute x = r cos θ , y = r sin θ and write x4 + 2bx2 y2 + y4 =
r 4g(θ). Then find the maximum and minimum values of
g(θ) for 0 � θ � 2π .

68. Find the global maximum and minimum values of

f (x, y, z) = x2 − 6xy + y2 + 2yz + z2 + 12.

What happens at the point or points at which all three partial
derivatives of f are simultaneously zero?

69. Find the global maximum and minimum values of

g(x, y, z) = x4 − 8x2 y2 + y4 + z4 + 12.

What happens at the point or points at which all three
partial derivatives of g are simultaneously zero?

70. The plane P with equation x+y+z = 1 meets the first octant
in the triangle T for which x, y, and z are all non-negative.
Find the maximum value of the expression E = x − y + z on
T. You will probably proceed by solving the equation of the
plane P for z = 1−x −y and substituting for z in the expres-
sion E to obtain the quantity h(x, y) = x − y+(1−x − y) to
be maximized. What happens at the point or points at which
both partial derivatives of h are simultaneously zero?

12.6 INCREMENTS AND LINEAR APPROXIMATION

In Section 4.2 we used the differential

d f = f ′(x) �x

to approximate the increment, or actual change,

� f = f (x + �x) − f (x)
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in the value of a single-variable function that results from the change �x in the inde-
pendent variable. Thus � f ≈ d f ; that is,

f (x + �x) − f (x) ≈ f ′(x) �x . (1)

We now describe the use of the partial derivatives ∂ f/∂x and ∂ f/∂y to approxi-
mate the increment

� f = f (x + �x, y + �y) − f (x, y) (2)

in the value of a function f (of two variables) that results when its two indepen-
dent variables are changed simultaneously. If only x were changed and y were held
constant, we could temporarily regard f (x, y) as a function of x alone. Then, with
fx(x, y) playing the role of f ′(x), the linear approximation in Eq. (1) would give

f (x + �x, y) − f (x, y) ≈ fx(x, y) �x (3)

for the change in f corresponding to the change �x in x . Similarly, if only y were
changed and x were held constant, then—temporarily regarding f (x, y) as a function
of y alone—we would get

f (x, y + �y) − f (x, y) ≈ fy(x, y) �y (4)

for the change in f corresponding to the change �y in y.
If both x and y are changed simultaneously, we might expect the sum of the

approximations in (3) and (4) to be a good estimate of the resulting increment in the
value of f . On this basis we define the differential

d f = fx(x, y) �x + fy(x, y) �y (5)

of a function of two independent variables. The approximation � f ≈ d f then yields
the approximation

f (x + �x, y + �y) ≈ f (x, y) + fx(x, y) �x + fy(x, y) �y. (6)

EXAMPLE 1 Find the differential d f of the function f (x, y) = x2 + 3xy − 2y2.
Then compare d f and the actual increment � f when (x, y) changes from P(3, 5) to
Q(3.2, 4.9).

Solution The differential of f , as given in Eq. (5), is

d f = ∂ f

∂x
�x + ∂ f

∂y
�y = (2x + 3y) �x + (3x − 4y) �y.

At the point P(3, 5) this differential is

d f = (2 · 3 + 3 · 5) �x + (3 · 3 − 4 · 5) �y = 21 �x − 11 �y.

With �x = 0.2 and �y = −0.1, corresponding to the change from P(3, 5) to
Q(3.2, 4.9), we get

d f = 21 · (0.2) − 11 · (−0.1) = 5.3.

The actual change in the value of f from P to Q is the increment

� f = f (3.2, 4.9) − f (3, 5) = 9.26 − 4 = 5.26,

so in this example the differential seems to be a good approximation to the increment.
◗
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At the fixed point P(a, b), the differential

d f = fx(a, b) �x + fy(a, b) �y (7)

is a linear function of �x and �y; the coefficients fx(a, b) and fy(a, b) in this linear
function depend on a and b. Thus the differential d f is a linear approximation to the
actual increment � f . The linear approximation theorem (stated later in this section)
implies that if the function f has continuous partial derivatives, then d f is a very good
approximation to � f when the changes �x and �y in x and y are sufficiently small.
The linear approximation

f (a + �x, b + �y) ≈ f (a, b) + fx(a, b) �x + fy(a, b) �y (8)

may then be used to estimate the value of f (a + �x, b + �y) when �x and �y are
small and the values f (a, b), fx(a, b), and fy(a, b) are all known.

EXAMPLE 2 Use linear approximation to estimate
√

2 · (2.02)3 + (2.97)2.

Solution We begin by letting f (x, y) = √
2x3 + y2, a = 2, and b = 3. It is then

easy to compute the exact value f (2, 3) = √
2 · 8 + 9 = √

25 = 5. Next,

∂ f

∂x
= 3x2√

2x3 + y2
and

∂ f

∂y
= y√

2x3 + y2
,

so

fx(2, 3) = 12
5 and fy(2, 3) = 3

5 .

Hence Eq. (8) with �x = 0.02 and �y = −0.03 gives√
2 · (2.02)3 + (2.97)2 = f (2.02, 2.97)

≈ f (2, 3) + fx(2, 3) · (0.02) + fy(2, 3) · (−0.03)

= 5 + 12
5 · (0.02) − 3

5 · (0.03) = 5.03.

The actual value to four decimal places is 5.0305. ◗

If z = f (x, y), we often write dz in place of d f . So the differential of the
dependent variable z at the point (a, b) is dz = fx(a, b) �x + fy(a, b) �y. At the
arbitrary point (x, y) the differential of z takes the form

dz = fx(x, y) �x + fy(x, y) �y.

More simply, we can write

dz = ∂z

∂x
�x + ∂z

∂y
�y. (9)

It is customary to write dx for �x and dy for �y in this formula. When this is done,
Eq. (9) takes the form

dz = ∂z

∂x
dx + ∂z

∂y
dy. (10)

When we use this notation, we must realize that dx and dy have no connotation of
being “infinitesimal” or even small. The differential dz is still simply a linear function
of the ordinary real variables dx and dy, a function that gives a linear approximation
to the change in z when x and y are changed by the amounts dx and dy, respectively.

EXAMPLE 3 In Example 4 of Section 12.4, we considered 1 mole of an ideal gas—
its volume V in cubic centimeters given in terms of its pressure p in atmospheres and
temperature T in kelvins by the formula V = (82.06)T/p. Approximate the change in
V when p is increased from 5 atm to 5.2 atm and T is increased from 300 K to 310 K.
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Solution The differential of V = V (p, T ) is

dV = ∂V

∂p
dp + ∂V

∂T
dT = −82.06 · T

p2
dp + 82.06

p
dT .

With p = 5, T = 300, dp = 0.2, and dT = 10, we compute

dV = −82.06 · 300

52
· 0.2 + 82.06

5
· 10 ≈ −32.8 (cm3).

This indicates that the gas will decrease in volume by about 33 cm3. The actual change
is

�V = 82.06 · 310

5.2
− 82.06 · 300

5
≈ 4892.0 − 4923.6 ≈ −31.6 (cm3). ◗

EXAMPLE 4 The point (1, 2) lies on the curve with equation

f (x, y) = 2x3 + y3 − 5xy = 0. (11)

(See Fig. 12.6.1.) Approximate the y-coordinate of the nearby point (x, y) on this
curve for which x = 1.2.

Solution The increment between f (1, 2) = 0 and f (x, y) = 0 on this curve is � f =

0

(1, 2) (1.2, ?)

x

y

−3 −2 −1 321
−3

0

−2

1

−1

2

3

FIGURE 12.6.1 The curve of
Example 4.

0 ≈ d f , so when we compute the differentials in Eq. (11), we get

d f = ∂ f

∂x
dx + ∂ f

∂y
dy = (6x2 − 5y) dx + (3y2 − 5x) dy = 0.

Now when we substitute x = 1, y = 2, and dx = 0.2, we obtain the equation

0
y

y ≈ 2.084

g(y)

2−1 1−2−3−4 3 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

FIGURE 12.6.2 The graph of
g(y) = y3 − 6y + 3.456.

(−4)(0.2) + (7) dy = 0. It then follows that dy = (0.8)/7 ≈ 0.114 ≈ 0.1. This
yields (1.2, 2.1) for the approximate coordinates of the nearby point. As a check on
the accuracy of this approximation, we can substitute x = 1.2 into Eq. (11). This gives
the equation

2 · (1.2)3 + y3 − 5 · (1.2)y = y3 − 6y + 3.456 = 0.

The roots of this equation are the x-intercepts of the curve in Fig. 12.6.2. A calculator
or computer with an equation solver (or Newton’s method) then yields y ≈ 2.084 ≈
2.1 for the solution near y = 2. ◗

Functions of Three or More Variables
Increments and differentials of functions of more than two variables are defined simi-
larly. A function w = f (x, y, z) has increment

�w = � f = f (x + �x, y + �y, z + �z) − f (x, y, z)

and differential

dw = d f = ∂ f

∂x
�x + ∂ f

∂y
�y + ∂ f

∂z
�z;

that is,

dw = ∂w

∂x
dx + ∂w

∂y
dy + ∂w

∂z
dz

if, as in Eq. (10), we write dx for �x, dy for �y, and dz for �z.

EXAMPLE 5 You have constructed a metal cube that is supposed to have edge length
100 mm, but each of its three measured dimensions x , y, and z may be in error by as
much as a millimeter. Use differentials to estimate the maximum resulting error in its
calculated volume V = xyz.
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Solution We need to approximate the increment

�V = V (100 + dx, 100 + dy, 100 + dz) − V (100, 100, 100)

when the errors dx , dy, and dz in x , y, and z are maximal. The differential of V = xyz
is

dV = yz dx + xz dy + xy dz.

When we substitute x = y = z = 100 and dx = ±1, dy = ±1, and dz = ±1, we get

dV = 100 · 100 · (±1) + 100 · 100 · (±1) + 100 · 100 · (±1) = ±30000.

It may surprise you to find that an error of only a millimeter in each dimension of a
cube can result in an error of 30,000 mm3 in its volume. (For a cube made of precious
metal, an error of 30 cm3 in its volume could correspond to a difference of hundreds
or thousands of dollars in its cost.) ◗

Linear Approximation and Differentiability
Vector notation simplifies the description of differentials and linear approximation for
functions of several variables. Let f (x) = f (x1, x2, . . . , xn) be a real-valued function
of n variables. If

x = 〈x1, x2, . . . , xn〉 and h = 〈h1, h2, . . . , hn〉 ,

then the linear approximation formula for f takes the form

f (x + h) ≈ f (x) + ∂ f

∂x1
h1 + ∂ f

∂x2
h2 + · · · + ∂ f

∂xn
hn (12)

with one term for each independent variable. We introduce the gradient vector

∇ f (x) = 〈D1 f (x), D2 f (x), . . . , Dn f (x)〉 =
〈

∂ f

∂x1
,

∂ f

∂x2
, . . . ,

∂ f

∂xn

〉
(13)

of the function f (x1, x2, . . . , xn) of n variables; its elements are the n first-order partial
derivatives of f (assuming that they exist). This new vector-valued function is called
the gradient of f and is denoted by ∇ f (pronounced “del f ”). In Section 12.8 we
explore the meaning of the gradient vector ∇ f ; here we use it simply as a notational
device to simplify the formula in (12).

The dot (or scalar) product of two n-vectors is, exactly as in dimensions 2 and
3, the sum of the products of corresponding elements of the two vectors. That is, if
a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉, then

a · b = a1b1 + a2b2 + · · · + anbn.

Consequently, the linear approximation formula in (12) takes the concise form

f (x + h) ≈ f (x) + ∇ f (x) · h, (14)

in pleasant analogy with the original single-variable approximation f (x +h) ≈ f (x)+
f ′(x)h (writing h for �x here). Because ∇ f (x) and h are both vectors with n compo-
nents, the dot product on the right-hand side in (14) is defined and gives

∇ f (x) · h = D1 f (x)h1 + D2 f (x)h2 + · · · + Dn f (x)hn,

thus providing the linear terms on the right-hand side in (12). In analogy with the two-
variable case in (5), the sum of these n linear terms is the differential d f = ∇ f (x) · h
of the function f of n real variables. With h = dx = 〈dx1, dx2, . . . , dxn〉, this
differential takes the form

d f = ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 + · · · + ∂ f

∂xn
dxn

that generalizes the two-dimensional differential in Eq. (10).
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The gradient vector ∇ f (x) is defined wherever all of the first-order partial deriva-
tives of f exist. In Appendix K we give a proof of the linear approximation theorem
stated next. This theorem assures us (in effect) that if the partial derivatives of f are
also continuous, then the linear approximation in (14) is a good approximation when
|h| = √

h2
1 + h2

2 + · · · + h2
n is small.

THEOREM Linear Approximation
Suppose that the function f (x) of n variables has continuous first-order partial
derivatives in a region that contains the neighborhood |x − a| < r consisting of
all points x at distance less than r from the fixed point a. If a + h lies in this
neighborhood, then

f (a + h) = f (a) + ∇ f (a) · h + ε(h) · h (15)

where ε(h) = 〈ε1(h), ε2(h), . . . , εn(h)〉 is a vector such that each element εi (h)

approaches zero as h → 0.

REMARK 1 The multivariable function f is said to be continuously differentiable
at a point provided that its first-order partial derivatives not only exist but are contin-
uous at the point. Thus the hypothesis of the linear approximation theorem is that the
function f is continuously differentiable in the specified neighborhood of the point a.

REMARK 2 The dot product

ε(h) · h = ε1(h)h1 + ε2(h)h2 + · · · + εn(h)hn (16)

in (15) is the error in the linear approximation—it measures the extent to which the
approximation f (a+h) ≈ f (a)+∇ f (a) · h fails to be an equality. We may regard the
conclusion of the linear approximation theorem as saying that if h is “very small,” then
each element εi (h) of ε(h) is also “very small.” In this event, each summand in (16) is
a product of two very small terms, so we might say that the error ε(h) · h is “very very
small.”

Now let us divide by |h| in Eq. (16). Then we see that

ε(h) · h
|h| = ε1(h)

h1

|h| + ε2(h)
h2

|h| + · · · + εn(h)
hn

|h| → 0 (17)

as h → 0. The reason is that, for each i (1 � i � n),

hi

|h| � 1 and εi (h) → 0

as h → 0. Dividing both sides by |h| in Eq. (15) therefore gives the limit

lim
h→0

f (a + h) − f (a) − ∇ f (a) · h
|h| = 0, (18)

under the assumption that the function f is continuously differentiable near a.
The condition in Eq. (18) is central to the study of differentiability of multivari-

able functions. Indeed, the real-valued function f (x) is said to be differentiable at the
point a provided that there exists a constant vector c = 〈c1, c2, . . . , cn〉 such that

lim
h→0

f (a + h) − f (a) − c · h
|h| = 0. (19)

In effect, this definition means that f is differentiable at a if there exists a linear func-
tion c · h = c1h1 + c2h2 + · · · + cnhn (of the components of h) that approximates
the increment f (a + h) − f (a) so closely that the error is small even in comparison
with |h|. Equation (18) implies that if f is continuously differentiable near a, then the
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948 CHAPTER 12 Partial Differentiation

gradient vector ∇ f (a) is precisely such a vector c (and moreover, by Problem 48, is
the only such vector).

Thus a function is differentiable if it is continuously differentiable. This says little
in the case of a single-variable function, which is called differentiable if its derivative
merely exists. In contrast, we have as yet said nothing about the existence of partial
derivatives of a differentiable multivariable function. The following example treats the
case of just n = 2 variables.

EXAMPLE 6 Suppose that the function f (x, y) is differentiable at the point (a, b).
By Eq. (19), this means that there exists a constant vector c = 〈c1, c2〉 such that

lim
(h1,h2)→(0,0)

f (a + h1, b + h2) − f (a, b) − (c1h1 + c2h2)√
h2

1 + h2
2

= 0. (20)

If h1 = h and h2 = 0, then Eq. (20) implies that

lim
h→0

f (a + h, b) − f (a, b) − c1h

h
= 0,

and hence that

lim
h→0

f (a + h, b) − f (a, b)

h
= c1.

Thus the partial derivative fx(a, b) exists and is equal to the first element c1 of c.
Similarly, if we substitute h1 = 0 and h2 = h in (20)—do this yourself—we find that
the partial derivative fy(a, b) exists and is equal to the second element c2 of c. ◗

Example 6 is the case n = 2 of the general theorem that differentiability at a point
implies existence of all first-order partial derivatives at that point. It is also true that
differentiability implies continuity (Problem 47). In summary, we have the following
implications for a function f of several variables:

• If f is continuously differentiable, then f is differentiable.
• If f is differentiable, then all partial derivatives of f exist.
• If f is differentiable, then f is continuous.

Problems 43 through 45 show that none of these implications can be reversed for a
function f of two or more variables. That is, f can have partial derivatives without be-
ing differentiable, and can be differentiable without being continuously differentiable.
Moreover, f can have partial derivatives without being continuous (and vice versa).
Thus the mere existence of partial derivatives—even all of them—appears to imply
much less for a function of several variables than it does for a single-variable function.
But all these distinctions disappear in the case of polynomials and rational functions
of several variables—which have continuous partial derivatives wherever they are de-
fined.

12.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The differential d f = fx(a, b)�x + fy(a, b)�y is a linear approximation to the
actual increment � f = f (a + �x, b + �y) − f (a, b) corresponding to changes
of �x and �y in the independent variables.

2. The linear approximation

f (a + �x, b + �y) ≈ f (a, b) + fx(a, b)�x + fy(a, b)�y

may be used to estimate the value of f (a + �x, b + �y) when �x and �y are
small and the values f (a, b), fx(a, b), and fy(a, b) are all known.
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3. To estimate the numerical value
√

2 · (2.02)3 + (2.97)2, you could use the linear
approximation formula in Question 2 with f (x, y) = √

2x3 + y2, a = 2, b = 3,
and �x = 0.02, �y = −0.03.

4. When we write the differential of z = f (x, y) in the form

dz = ∂z

∂x
dx + ∂z

∂y
dy

we do not necessarily mean to imply that dx and dy are “infinitesimal” or even
small.

5. The differential dw of a function w = f (x, y, z) of three variables looks just
like the differential of a function of two variables, except with three terms rather
than two terms.

6. The gradient vector ∇ f (x) of a function f (x1, x2, . . . , xn) of n real variables is a
vector with n components.

7. The linear approximation formula for a function f (x) of n variables, where x =
(x1, x2, . . . , xn), looks much like the linear approximation formula for a single-
variable function f (x), except with x and h replaced with x and h, and with the
gradient vector ∇ f (x) playing the role of the single-variable derivative f ′(x).

8. If the real-valued function f is continuously differentiable near the point a, then
there exists a constant vector c such that

lim
h→0

f (a + h) − f (a) − c · h
|h| = 0.

9. If a function of n variables is continuously differentiable at a point, then all its
first-order partial derivatives exist at that point.

10. Multivariable functions are continuous wherever they are differentiable.

12.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. Compare the concept of differentiability for single-variable functions with that

for multivariable functions.
2. Compare the roles of the derivative of a single-variable function and the gradient

vector of a multivariable function. For instance, what is the value of the gradient
vector at a local maximum or minimum point?

3. Does a surface z = f (x, y) always have a tangent plane at a point a where f is
differentiable? Describe the way this tangent plane approximates the graph near
the point (a, f (a)).

12.6 PROBLEMS

Find the differential dw in Problems 1 through 16.

1. w = 3x2 + 4xy − 2y3 2. w = exp(−x2 − y2)

3. w = √
1 + x2 + y2 4. w = xyex+y

5. w = arctan
( x

y

)
6. w = xz2 − yx2 + zy2

7. w = ln(x2 + y2 + z2) 8. w = sin xyz

9. w = x tan yz 10. w = xyeuv

11. w = e−xyz 12. w = ln(1 + rs)

13. w = u2 exp(−v2) 14. w = s + t

s − t

15. w = √
x2 + y2 + z2

16. w = pqr exp(−p2 − q2 − r 2)

In Problems 17 through 24, use the exact value f (P) and the
differential d f to approximate the value f (Q).

17. f (x, y) = √
x2 + y2 ; P(3, 4), Q(2.97, 4.04)

18. f (x, y) = √
x2 − y2 ; P(13, 5), Q(13.2, 4.9)

19. f (x, y) = 1

1 + x + y
; P(3, 6), Q(3.02, 6.05)

20. f (x, y, z) = √
xyz ; P(1, 3, 3), Q(0.9, 2.9, 3.1)

21. f (x, y, z) = √
x2 + y2 + z2; P(3, 4, 12),

Q(3.03, 3.96, 12.05)

22. f (x, y, z) = xyz

x + y + z
; P(2, 3, 5), Q(1.98, 3.03, 4.97)

23. f (x, y, z) = e−xyz ; P(1, 0, −2), Q(1.02, 0.03, −2.02)

24. f (x, y) = (x − y) cos 2πxy; P
(
1, 1

2

)
, Q(1.1, 0.4)
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In Problems 25 through 32, use differentials to approximate the
indicated number.

25.
(√

15 + √
99

)2

26.
(√

26
)(

3
√

28
)( 4

√
17

)
27. e0.4 = exp(1.12 − 0.92)

28.
3
√

25
5
√

30

29.
√

(3.1)2 + (4.2)2 + (11.7)2

30. 3
√

(5.1)2 + 2 · (5.2)2 + 2 · (5.3)2

31. The y-coordinate of the point P near (1, 2) on the curve
2x3 + 2y3 = 9xy, if the x-coordinate of P is 1.1.

32. The x-coordinate of the point P near (2, 4) on the curve
4x4 + 4y4 = 17x2 y2, if the y-coordinate of P is 3.9.

33. The base and height of a rectangle are measured as 10 cm
and 15 cm, respectively, with a possible error of as much as
0.1 cm in each measurement. Use differentials to estimate
the maximum resulting error in computing the area of the
rectangle.

34. The base radius r and the height h of a right circular cylin-
der are measured as 3 cm and 9 cm, respectively. There is a
possible error of 1 mm in each measurement. Use differen-
tials to estimate the maximum possible error in computing:
(a) the volume of the cylinder; (b) the total surface area of
the cylinder.

35. The base radius r and height h of a right circular cone are
measured as 5 in. and 10 in., respectively. There is a
possible error of as much as 1

10 in. in each measure-
ment. Use differentials to estimate the maximum resulting
error that might occur in computing the volume of the cone.

36. The dimensions of a closed rectangular box are found by
measurement to be 10 cm by 15 cm by 20 cm, but there is a
possible error of 0.1 cm in each. Use differentials to estimate
the maximum resulting error in computing the total surface
area of the box.

37. A surveyor wants to find the area in acres of a certain field
(1 acre is 43,560 ft2). She measures two different sides, find-
ing them to be a = 500 ft and b = 700 ft, with a possible
error of as much as 1 ft in each measurement. She finds the
angle between these two sides to be θ = 30◦, with a possible
error of as much as 0.25◦. The field is triangular, so its area
is given by A = 1

2 ab sin θ . Use differentials to estimate the
maximum resulting error, in acres, in computing the area of
the field by this formula.

38. Use differentials to estimate the change in the volume of
the gas of Example 3 if its pressure is decreased from 5 atm
to 4.9 atm and its temperature is decreased from 300 K to
280 K.

39. The period of oscillation of a simple pendulum of length L
is given (approximately) by the formula T = 2π

√
L/g . Es-

timate the change in the period of a pendulum if its length
is increased from 2 ft to 2 ft 1 in. and it is simultaneously

moved from a location where g is exactly 32 ft/s2 to one
where g = 32.2 ft/s2.

40. Given the pendulum of Problem 39, show that the relative
error in the determination of T is half the difference of the
relative errors in measuring L and g—that is, that

dT

T
= 1

2

(
d L

L
− dg

g

)
.

41. The range of a projectile fired (in a vacuum) with initial
velocity v0 and inclination angle α from the horizontal is
R = 1

32 v2
0 sin 2α. Use differentials to approximate the

change in range if v0 is increased from 400 to 410 ft/s and α

is increased from 30◦ to 31◦.

42. A horizontal beam is supported at both ends and supports a
uniform load. The deflection, or sag, at its midpoint is given
by

S = k

wh3
, (21)

where w and h are the width and height, respectively, of the
beam and k is a constant that depends on the length and com-
position of the beam and the amount of the load. Show that

d S = −S

(
1

w
dw + 3

h
dh

)
.

If S = 1 in. when w = 2 in. and h = 4 in., approximate the
sag when w = 2.1 in. and h = 4.1 in. Compare your approx-
imation with the actual value you compute from Eq. (21).

43. Let the function f be defined on the whole xy-plane by
f (x, y) = 1 if x = y �= 0, whereas f (x, y) = 0 other-
wise. (a) Show that f is not continuous at (0, 0). (b) Show
that both partial derivatives fx and fy exist at (0, 0).

44. Show that the function f (x, y) = ( 3
√

x + 3
√

y)3 is continu-
ous and has partial derivatives at the origin (0, 0), but is not
differentiable there.

45. Show that the function f defined by f (x, y) = y2 +
x3 sin(1/x) for x �= 0, and f (0, y) = y2, is differentiable
at (0, 0), but is not continuously differentiable there because
fx (x, y) is not continuous at (0, 0).

46. Let f (x) be a function of the single variable x . Show that
the ordinary derivative f ′(a) exists if and only if f is differ-
entiable in the sense of Eq. (19), meaning that there exists a
constant c such that

lim
h→0

f (a + h) − f (a) − ch

|h| = 0,

in which case f ′(a) = c.

47. Deduce from Eq. (19) that the function f is continuous
wherever it is differentiable.

48. Deduce from Eq. (19) that if the multivariable function f (x)

is differentiable at a, then its first-order partial derivatives at
a exist and are given by Di f (a) = ci for i = 1, 2, . . . , n.
Conclude in turn that the vector c = 〈c1, c2, . . . , cn〉 in (19)
is unique.
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12.7 THE MULTIVARIABLE CHAIN RULE

The single-variable chain rule expresses the derivative of a composite function f (g(t))
in terms of the derivatives of f and g:

Dt f (g(t)) = f ′(g(t)) · g′(t). (1)

With w = f (x) and x = g(t), the chain rule implies that

dw

dt
= dw

dx

dx

dt
. (2)

The simplest multivariable chain rule situation involves a function w = f (x, y) where
both x and y are functions of the same single variable t : x = g(t) and y = h(t). The
composite function f (g(t), h(t)) is then a single-variable function of t , and Theorem 1
expresses its derivative in terms of the partial derivatives of f and the ordinary deriva-
tives of g and h. We assume that the stated hypotheses hold on suitable domains such
that the composite function is defined.

THEOREM 1 The Chain Rule
Suppose that w = f (x, y) has continuous first-order partial derivatives and that
x = g(t) and y = h(t) are differentiable functions. Then w is a differentiable
function of t , and

dw

dt
= ∂w

∂x
· dx

dt
+ ∂w

∂y
· dy

dt
. (3)

The variable notation of Eq. (3) ordinarily will be more useful than function no-
tation. Remember, in any case, that the partial derivatives in Eq. (3) are to be evaluated
at the point (g(t), h(t)), so in function notation Eq. (3) is

Dt [ f (g(t), h(t))] = fx(g(t), h(t)) · g′(t) + fy(g(t), h(t)) · h′(t). (4)

A proof of the chain rule is included at the end of this section. In outline, it consists of
beginning with the linear approximation

�w ≈ ∂w

∂x
�x + ∂w

∂y
�y

of Section 12.6 and dividing by �t :

�w

�t
≈ ∂w

∂x

�x

�t
+ ∂w

∂y

�y

�t
.

Then we take the limit as �t → 0 to obtain

dw

dt
= ∂w

∂x
· dx

dt
+ ∂w

∂y
· dy

dt
.

EXAMPLE 1 Suppose that w = exy , x = t2, and y = t3. Then

∂w

∂x
= yexy,

∂w

∂y
= xeyx ,

dx

dt
= 2t, and

dy

dt
= 3t2.

So Eq. (3) yields

dw

dt
= ∂w

∂x
· dx

dt
+ ∂w

∂y
· dy

dt
= (yexy)(2t) + (xexy)(3t2)

= (
t3et5)

(2t) + (
t2et5)

(3t2) = 5t4et5
. ◗

951

www.konkur.in



952 CHAPTER 12 Partial Differentiation

REMARK Had our purpose not been to illustrate the multivariable chain rule, we could
have obtained the same result dw/dt = 5t4 exp t5 more simply by writing

w = exy = e(t2)(t3) = et5

and then differentiating w as a single-variable function of t . But this single-variable
approach is available only if the functions x(t) and y(t) are known explicitly. Some-
times, however, we know only the numerical values of x and y and/or their rates of
change at a given instant. In such cases the multivariable chain rule in (3) can then be
used to find the numerical rate of change of w at that instant.

EXAMPLE 2 Figure 12.7.1 shows a melting cylindrical block of ice. Because of the

FIGURE 12.7.1 Warm sun melting
a cylindrical block of ice
(Example 2).

sun’s heat beating down from above, its height h is decreasing more rapidly than its
radius r . If its height is decreasing at 3 cm/h and its radius is decreasing at 1 cm/h
when r = 15 cm and h = 40 cm, what is the rate of change of the volume V of the
block at that instant?

Solution With V = πr2h, the chain rule gives

dV

dt
= ∂V

∂r

dr

dt
+ ∂V

∂h

dh

dt
= 2πrh

dr

dt
+ πr2 dh

dt
.

Substituting the given numerical values r = 15, h = 40, dr/dt = −1, and dh/dt =
−3, we find that

dV

dt
= 2π(15)(40)(−1) + π(15)2(−3) = −1875π ≈ −5890.49 (cm3/h).

Thus the volume of the cylindrical block is decreasing at slightly less than 6 liters per
hour at the given instant. ◗

In the context of Theorem 1, we may refer to w as the dependent variable, x
and y as intermediate variables, and t as the independent variable. Then note that
the right-hand side of Eq. (3) has two terms, one for each intermediate variable, both
terms like the right-hand side of the single-variable chain rule in Eq. (2). If there are
more than two intermediate variables, then there is still one term on the right-hand side
for each intermediate variable. For example, if w = f (x, y, z) with x , y, and z each a
function of t , then the chain rule takes the form

dw

dt
= ∂w

∂x
· dx

dt
+ ∂w

∂y
· dy

dt
+ ∂w

∂z
· dz

dt
. (5)

The proof of Eq. (5) is essentially the same as the proof of Eq. (3); it requires the linear
approximation theorem for three variables rather than for two variables.

You may find it useful to envision the three types of variables—dependent, in-
termediate, and independent—as though they were lying at three different levels, as
in Fig. 12.7.2, with the dependent variable at the top and the independent variable at
the bottom. Each variable then depends (either directly or indirectly) on those that lie

Dependent
variable

Intermediate
variables

Independent
variable

t

x z

w

y

FIGURE 12.7.2 Levels of chain
rule variables.

below it.

EXAMPLE 3 Find dw/dt if w = x2 + zey + sin xz and x = t , y = t2, z = t3.

Solution Equation (5) gives

dw

dt
= ∂w

∂x
· dx

dt
+ ∂w

∂y
· dy

dt
+ ∂w

∂z
· dz

dt

= (2x + z cos xz)(1) + (zey)(2t) + (ey + x cos xz)(3t2)

= 2t + (3t2 + 2t4)et2 + 4t3 cos t4. ◗
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In Example 3 we could check the result given by the chain rule by first writing w

as an explicit function of t and then computing the ordinary single-variable derivative
of w with respect to t .

Several Independent Variables

There may be several independent variables as well as several intermediate variables.
For example, if w = f (x, y, z) where x = g(u, v), y = h(u, v), and z = k(u, v), so
that

w = f (x, y, z) = f (g(u, v), h(u, v), k(u, v)),

then we have the three intermediate variables x , y, and z and the two independent
variables u and v. In this case we would need to compute the partial derivatives ∂w/∂u
and ∂w/∂v of the composite function. The general chain rule in Theorem 2 implies
that each partial derivative of the dependent variable w is given by a chain rule formula
such as Eq. (3) or (5). The only difference is that the derivatives with respect to the
independent variables are partial derivatives. For instance,

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u
+ ∂w

∂z
· ∂z

∂u
.

The “molecular model” in Fig. 12.7.3 illustrates this formula. The “atom” at the

x z

y

w
x

∂
∂

w
z

∂
∂

w
y

∂
∂

x
u

∂
∂

z∂
∂

y
u

∂
∂

z
u

∂
∂

x∂
u

w

y∂
∂

∂

FIGURE 12.7.3 Diagram for
w = w(x, y, z), where x = x(u, v),
y = y(u, v), and z = z(u, v).

top represents the dependent variable w. The atoms at the next level represent the in-
termediate variables x , y, and z. The atoms at the bottom represent the independent
variables u and v. Each “bond” in the model represents a partial derivative involving
the two variables (the atoms joined by that bond). Finally, note that the formula dis-
played before this paragraph expresses ∂w/∂u as the sum of the products of the partial
derivatives taken along all descending paths from w to u. Similarly, the sum of the
products of the partial derivatives along all descending paths from w to v yields the
correct formula

∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v
+ ∂w

∂z
· ∂z

∂v
.

Theorem 2 describes the most general such situation.

THEOREM 2 The General Chain Rule
Suppose that w is a function of the variables x1, x2, . . . , xm and that each of these
is a function of the variables t1, t2, . . . , tn . If all these functions have continuous
first-order partial derivatives, then

∂w

∂ti
= ∂w

∂x1
· ∂x1

∂ti
+ ∂w

∂x2
· ∂x2

∂ti
+ · · · + ∂w

∂xm
· ∂xm

∂ti
(6)

for each i , 1 � i � n.

Thus there is a formula in Eq. (6) for each of the independent variables t1, t2, . . . ,

tn , and the right-hand side of each such formula contains one typical chain rule term
for each of the intermediate variables x1, x2, . . . , xm .

EXAMPLE 4 Suppose that

z = f (u, v), u = 2x + y, v = 3x − 2y.

Given the values ∂z/∂u = 3 and ∂z/∂v = −2 at the point (u, v) = (3, 1), find the
values ∂z/∂x and ∂z/∂y at the corresponding point (x, y) = (1, 1).
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Solution The relationships among the variables are shown in Fig. 12.7.4. The chain

u

z
u

∂
∂

u
x

∂
∂

∂
∂

u
y

∂
∂

z

yx

z∂
∂

y

∂
∂x

FIGURE 12.7.4 Diagram for
z = z(u, v), where u = u(x, y) and
v = v(x, y) (Example 4).

rule gives

∂z

∂x
= ∂z

∂u
· ∂u

∂x
+ ∂z

∂v
· ∂v

∂x
= 3 · 2 + (−2) · 3 = 0

and
∂z

∂y
= ∂z

∂u
· ∂u

∂y
+ ∂z

∂v
· ∂v

∂y
= 3 · 1 + (−2) · (−2) = 7

at the indicated point (x, y) = (1, 1). ◗

EXAMPLE 5 Let w = f (x, y) where x and y are given in polar coordinates by the
equations x = r cos θ and y = r sin θ . Calculate

∂w

∂r
,

∂w

∂θ
, and

∂2w

∂r2

in terms of r , θ , and the partial derivatives of w with respect to x and y (Fig. 12.7.5).

x y

w
w
x

∂
∂

w
y

∂
∂

x
r

∂
∂

y∂
∂

y
r

∂
∂

x∂
∂θ

θ

θr

FIGURE 12.7.5 Diagram for
w = w(x, y), where x = x(r, θ) and
y = y(r, θ) (Example 5).

Solution Here x and y are intermediate variables; the independent variables are r
and θ . First note that

∂x

∂r
= cos θ,

∂y

∂r
= sin θ,

∂x

∂θ
= −r sin θ, and

∂y

∂θ
= r cos θ.

Then
∂w

∂r
= ∂w

∂x
· ∂x

∂r
+ ∂w

∂y
· ∂y

∂r
= ∂w

∂x
cos θ + ∂w

∂y
sin θ (7a)

and
∂w

∂θ
= ∂w

∂x
· ∂x

∂θ
+ ∂w

∂y
· ∂y

∂θ
= −r

∂w

∂x
sin θ + r

∂w

∂y
cos θ. (7b)

Next,

∂2w

∂r2
= ∂

∂r

(
∂w

∂r

)
= ∂

∂r

(
∂w

∂x
cos θ + ∂w

∂y
sin θ

)

= ∂wx

∂r
cos θ + ∂wy

∂r
sin θ,

where wx = ∂w/∂x and wy = ∂w/∂y. We apply Eq. (7a) to calculate ∂wx/∂r and
∂wy/∂r , and we obtain

∂2w

∂r2
=

(
∂wx

∂x
· ∂x

∂r
+ ∂wx

∂y
· ∂y

∂r

)
cos θ +

(
∂wy

∂x
· ∂x

∂r
+ ∂wy

∂y
· ∂y

∂r

)
sin θ

=
(

∂2w

∂x2
cos θ + ∂2w

∂y∂x
sin θ

)
cos θ +

(
∂2w

∂x∂y
cos θ + ∂2w

∂y2
sin θ

)
sin θ.

Finally, because wyx = wxy , we get

∂2w

∂r2
= ∂2w

∂x2
cos2 θ + 2

∂2w

∂x∂y
cos θ sin θ + ∂2w

∂y2
sin2 θ. (8)

◗

EXAMPLE 6 Suppose that w = f (u, v, x, y), where u and v are functions of x
and y. Here x and y play dual roles as intermediate and independent variables. The
chain rule yields

∂w

∂x
= ∂ f

∂u
· ∂u

∂x
+ ∂ f

∂v
· ∂v

∂x
+ ∂ f

∂x
· ∂x

∂x
+ ∂ f

∂y
· ∂y

∂x

= ∂ f

∂u
· ∂u

∂x
+ ∂ f

∂v
· ∂v

∂x
+ ∂ f

∂x
,
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because ∂x/∂x = 1 and ∂y/∂x = 0. Similarly,

∂w

∂y
= ∂ f

∂u
· ∂u

∂y
+ ∂ f

∂v
· ∂v

∂y
+ ∂ f

∂y
.

These results are consistent with the paths from w to x and from w to y in the molecular
model shown in Fig. 12.7.6. ◗

EXAMPLE 7 Consider a parametric curve x = x(t), y = y(t), z = z(t) that lies on
the surface z = f (x, y) in space. Recall that if

T =
〈

dx

dt
,

dy

dt
,

dz

dt

〉
and N =

〈
∂z

∂x
,
∂z

∂y
, −1

〉
,

then T is tangent to the curve and N is normal to the surface. Show that T and N are

u

 f
u

∂
∂

u
x

∂
∂

∂
u
y

∂
∂

 f ∂
∂

 f
x

∂
∂

 f
y

∂
∂

w

x y

∂
∂y

∂
x

FIGURE 12.7.6 Diagram for
w = f (u, v, x, y), where
u = u(x, y) and v = v(x, y)

(Example 6).
everywhere perpendicular.

Solution The chain rule in Eq. (3) tells us that

dz

dt
= ∂z

∂x
· dx

dt
+ ∂z

∂y
· dy

dt
.

But this equation is equivalent to the vector equation〈
∂z

∂x
,
∂z

∂y
, −1

〉
·

〈
dx

dt
,

dy

dt
,

dz

dt

〉
= 0.

Thus N · T = 0, so N and T are perpendicular. ◗

Implicit Partial Differentiation
Sometimes we need to investigate a function z = g(x, y) that is not defined explicitly
by a formula giving z in terms of x and y, but instead is defined implicitly by an
equation of the form F(x, y, z) = 0. The following implicit function theorem, proved
in advanced calculus, guarantees the existence and differentiability of such implicitly
defined functions under certain natural hypotheses.

THEOREM 3 Implicit Function Theorem
Suppose that the function F(x1, x2, . . . , xn, z) is continuously differentiable near
the point (a, b) = (a1, a2, . . . , an, b) at which F(a, b) = 0 and Dz F(a, b) �= 0.
Then there exists a continuously differentiable function z = g(x1, x2, . . . , xn) such
that g(a) = b and F(x, g(x)) = 0 for x near a.

Moreover, the function g(x) is uniquely defined for x near a. In brief, Theo-
rem 3 implies that the equation F(x1, x2, . . . , xn, z) = 0 implicitly defines one and
only one continuously differentiable function z = g(x1, x2, . . . , xn) near any point
where ∂ F/∂z �= 0. Knowing that the function g exists and is differentiable, we
can calculate its partial derivatives by implicit differentiation of the given equation
F(x1, x2, . . . , xn, z) = 0. Differentiating this equation with respect to xi yields

∂ F

∂x1
· ∂x1

∂xi
+ · · · + ∂ F

∂xi
· ∂xi

∂xi
+ · · · + ∂ F

∂xn
· ∂xn

∂xi
+ ∂ F

∂z
· ∂z

∂xi
= 0. (9)

But ∂x j/∂xi = 0 unless j = i , and ∂xi/∂xi = 1, so Eq. (9) reduces to the equation

∂ F

∂xi
+ ∂ F

∂z
· ∂z

∂xi
= 0,

which (assuming that ∂ F/∂z �= 0) we can solve to obtain the formula

∂z

∂xi
= −∂ F/∂xi

∂ F/∂z
= − Fxi

Fz
(10)
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for the i th partial derivative of z = g(x1, x2, . . . , xn). In a specific example, it usually
is just as simple to differentiate the given equation F(x1, x2, . . . , xn, z) = 0 as in (9),
rather than applying the formula in (10).

EXAMPLE 8 Figure 12.7.7 shows the graph of the equationy

F(x, y) = 0

x21

−2

−1−2

−1

1

2

4 ,
3

2
3

( )

FIGURE 12.7.7 Graph of the
equation F(x, y) = x3 + y3 −
3xy = 0 (Example 8).

F(x, y) = x3 + y3 − 3xy = 0 (11)

(the folium of Descartes that we discussed in Example 3 of Section 3.9). With n = 1,
x in place of x1, and y in place of z, the implicit function theorem implies that this
equation implicitly defines y as a function of x except possibly where

∂ F

∂y
= 3y2 − 3x = 0.

By substituting y2 = x in Eq. (11), you can show that the only such points on the
curve are the origin (0, 0), where two branches of the curve intersect, and the point
(

3
√

4,
3
√

2), where the figure shows a vertical tangent line. At any other point on the
curve we can differentiate with respect to x in Eq. (11) to obtain

∂ F

∂x
· dx

dx
+ ∂ F

∂y
· dy

dx
= (3x2 − 3y) · 1 + (3y2 − 3x) · dy

dx
= 0.

We can then solve for the slope

dy

dx
= − x2 − y

y2 − x

of the line tangent to the curve at any point where there is not a vertical tangent
line. ◗

EXAMPLE 9 Figure 12.7.8 shows the graph of the equation

y

x

z

FIGURE 12.7.8 Graph of the
equation F(x , y, z) = x4 + y 4 +
z 4 + 4x2 y 2z 2 − 34 = 0
(Example 9).

F(x, y, z) = x4 + y4 + z4 + 4x2 y2z2 − 34 = 0. (12)

With n = 2 and x and y in place of x1 and x2, the implicit function theorem implies
that this equation implicitly defines z as a function of x and y except possibly where

∂ F

∂z
= 4z3 + 8x2 y2z = 4z(z2 + 2x2 y2) = 0.

The partial derivative is nonzero wherever z �= 0, so it follows that z is defined as
a function of x and y except at the points of the curve x4 + y4 = 34 in which the
surface intersects the xy-plane (where z = 0). At any other point of the surface we can
differentiate with respect to x and y in (12) to obtain

∂ F

∂x
· ∂x

∂x
+ ∂ F

∂y
· ∂y

∂x
+ ∂ F

∂z
· ∂z

∂x
= (4x3 + 8xy2z2) · 1 + (4z3 + 8x2 y2z) · ∂z

∂x
= 0

and

∂ F

∂x
· ∂x

∂y
+ ∂ F

∂y
· ∂y

∂y
+ ∂ F

∂z
· ∂z

∂y
= (4y3 + 8x2 yz2) · 1 + (4z3 + 8x2 y2z) · ∂z

∂y
= 0.

We can then solve for

∂z

∂x
= − x3 + 2xy2z2

z3 + 2x2 y2z
and

∂z

∂y
= − y3 + 2x2 yz2

z3 + 2x2 y2z
.

For instance, at the point (2, 1, 1) of the surface we find that ∂z/∂x = − 4
3 and

∂z/∂y = −1. Hence the plane tangent to the surface at this point has equation

z − 1 = − 4
3 (x − 2) + (−1)(y − 1); that is, 4x + 3y + 3z = 14. ◗

956

www.konkur.in



The Multivariable Chain Rule SECTION 12.7 957

Matrix Form of the Chain Rule
The case m = n = 2 of the chain rule corresponds to the case of two intermediate
variables (x and y, say) that are functions of two independent variables (u and v, say),

x = f (u, v), y = g(u, v). (13)

These functions describe a transformation T : R2
uv → R2

xy from the coordinate plane
R2

uv of (u, v)-pairs to the coordinate plane R2
xy of (x, y)-pairs. The image of the

point (u, v) of R2
uv is the point T (u, v) = ( f (u, v), g(u, v)) = (x, y) of R2

xy . The
derivative matrix of the transformation T at the point (u, v) is then the 2 × 2 array

T ′(u, v) =

⎡
⎢⎢⎣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

⎤
⎥⎥⎦ (14)

of partial derivatives of the component functions in (13) of the transformation T (all
evaluated at the point (u, v)).

EXAMPLE 10 The polar coordinate transformation T : R2
rθ → R2

xy is defined by
the familiar equations

x = r cos θ, y = r sin θ. (15)

Its derivative matrix is given by

T ′(r, θ) =

⎡
⎢⎢⎣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

⎤
⎥⎥⎦ =

[
cos θ −r sin θ

sin θ r cos θ

]
. (16)

Now suppose that the dependent variable w is a function F(x, y) of the interme-
diate variables x and y, and thereby is given by the composite function

G(u, v) = F(T (u, v)) = F(x(u, v), y(u, v)) (17)

of the independent variables u and v (Fig. 12.7.9). The derivative matrices

F ′(x, y) =
[
∂w

∂x

∂w

∂y

]
and G ′(u, v) =

[
∂w

∂u

∂w

∂v

]
(18)

of F and G are defined in analogy with (14)—there being a single row in each matrix,
corresponding to the single dependent variable w. Those who are familiar with matrix
multiplication will recognize that the two chain rule formulas

∂w

∂u
= ∂w

∂x

∂x

∂u
+ ∂w

∂y

∂y

∂u
,

∂w

∂v
= ∂w

∂x

∂x

∂v
+ ∂w

∂y

∂y

∂v

are the “components” of the single matrix equation

G ′(u, v) = F ′(x, y)T ′(u, v); (19a)

that is,

[
∂w

∂u

∂w

∂v

]
=

[
∂w

∂x

∂w

∂y

] ⎡
⎢⎢⎣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

⎤
⎥⎥⎦. (19b)

Thus the chain rule for the situation indicated in Fig. 12.7.9 implies that the derivative

u

w
x

∂
∂

w
y

∂
∂

x
u

∂
∂

y
u

∂
∂

∂
∂

y
∂
∂x

w

x y

FIGURE 12.7.9 Diagram for
w = F(x, y) where (x, y) =
(x(u, v), y(u, v)) = T (u, v).

matrix of the composite function G = F ◦ T is the matrix product G ′ = F ′T ′. ◗
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EXAMPLE 11 With the polar-coordinate derivative matrix T ′(r, θ) in (16), the ma-
trix multiplication in Eq. (19b) yields[

∂w

∂r

∂w

∂θ

]
=

[
∂w

∂x

∂w

∂y

][
cos θ −r sin θ

sin θ r cos θ

]

=
[
∂w

∂x
cos θ + ∂w

∂y
sin θ − r

∂w

∂x
sin θ + r

∂w

∂y
cos θ

]
.

The components of this matrix equation are the scalar chain rule formulas

∂w

∂r
= ∂w

∂x
cos θ + ∂w

∂y
sin θ,

∂w

∂θ
= −r

∂w

∂x
sin θ + r

∂w

∂y
cos θ

that we saw previously in Example 5. ◗

We have discussed here the 2 × 2 case of a general m × n matrix formulation of
the multivariable chain rule. The 3×3 case and its application to spherical coordinates
are discussed in Problems 58 through 61.

Proof of the Chain Rule Given that w = f (x, y) satisfies the hypotheses of The-
orem 1, we choose a point t0 at which we wish to compute dw/dt and write

a = g(t0), b = h(t0).

Let

�x = g(t0 + �t) − g(t0), �y = h(t0 + �t) − h(t0).

Then

g(t0 + �t) = a + �x and h(t0 + �t) = b + �y.

If

�w = f (g(t0 + �t), h(t0 + �t)) − f (g(t0), h(t0))

= f (a + �x, b + �y) − f (a, b),

then what we need to compute is

dw

dt
= lim

�t→0

�w

�t
.

The linear approximation theorem of Section 12.6 gives

�w = fx(a, b) �x + fy(a, b) �y + ε1 �x + ε2 �y,

where ε1 and ε2 approach zero as �x → 0 and �y → 0. We note that both �x and
�y approach zero as �t → 0, because both the derivatives

dx

dt
= lim

�t→0

�x

�t
and

dy

dt
= lim

�t→0

�y

�t

exist. Therefore,

dw

dt
= lim

�t→0

�w

�t
= lim

�t→0

[
fx(a, b)

�x

�t
+ fy(a, b)

�y

�t
+ ε1

�x

�t
+ ε2

�y

�t

]

= fx(a, b)
dx

dt
+ fy(a, b)

dy

dt
+ 0 · dx

dt
+ 0 · dy

dt
.

Hence

dw

dt
= ∂w

∂x
· dx

dt
+ ∂w

∂y
· dy

dt
.

Thus we have established Eq. (3), writing ∂w/∂x and ∂w/∂y for the partial derivatives
fx(a, b) and fy(a, b) in the final step. ◆
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12.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If w = f (x, y) is a continuously differentiable function of x and y and x(t)
and y(t) are differentiable functions of t , then w is a differentiable function of
t and dw/dt is the sum of two terms—one corresponding to each of the two
intermediate variables x and y.

2. If w = f (x, y, z) is a continuously differentiable function of x , y, and z and
x(t), y(t), and z(t) are differentiable functions of t , then w is a differentiable
function of t and dw/dt is the sum of three terms—one corresponding to each of
the three intermediate variables x , y, and z.

3. In the chain-rule terminology of this section, a dependent variable is a function
of independent variables, each of which is in turn a function of intermediate
variables.

4. If w = f (x1, x2, . . . , xm) is a continuously differentiable function of m variables
and each of these variables is a continuously differentiable function of the inde-
pendent variable t , then w is a differentiable function of t and dw/dt is a sum of
m terms—one corresponding to each of the m intermediate variables.

5. If w is a differentiable function of three intermediate variables, each of which
is a differentiable function of two independent variables, then Theorem 2 yields
three chain-rule formulas that give the partial derivatives of w.

6. If F(x, y) is a continuously differentiable function of x and y, then the graph of
the equation F(x, y) = 0 agrees with the graph y = f (x) of a single-variable
function in a neighborhood of any point where the partial derivative ∂ F/∂x is
nonzero.

7. If F(x, y, z) is a continuously differentiable function of three variables, then the
graph of the equation F(x, y, z) = 0 agrees with the graph z = f (x, y) of a
two-variable function in a neighborhood of any point where the partial derivative
∂ F/∂z is nonzero.

8. The derivative matrix F ′(u, v) of the function F : R2
uv → R2

xy is a square matrix
with 2 columns and 2 rows.

9. The derivative matrix of the polar coordinate transformation T : R2
rθ → R2

xy has
determinant |T ′(r, θ)| = r .

10. Suppose the functions G : R2 → R2 and F : R2 → R2 are differentiable. Then
the chain rule for the composition H = F ◦ G reads just like the chain rule for
the composition h = f ◦ g of differentiable scalar-valued functions, except with
matrix derivatives in place of ordinary single-variable derivatives.

12.7 CONCEPTS: QUESTIONS AND DISCUSSION
1. Give your own example of a composite function situation illustrating the general

chain rule (Theorem 2), but with different numbers of independent, intermediate,
and dependent variables than in any of the examples in this section.

2. Let C be a set in the xy-plane R2. We might call C a smooth curve provided that
every point of C has a neighborhood within which C agrees with the graph of a
continuously differentiable function—either y = f (x) or x = g(y). Under what
conditions on the function F(x, y) does the implicit function theorem imply that
the graph of the equation F(x, y) = 0 is a smooth curve? Explain.

3. Let S be a set in xyz-space R3. We might call S a smooth surface provided
that every point of S has a neighborhood within which S agrees with the graph
of a continuously differentiable function—either z = f (x, y) or x = g(y, z) or
y = h(x, z). Under what conditions on the function F(x, y, z) does the implicit
function theorem imply that the graph of the equation F(x, y, z) = 0 is a smooth
surface? Explain.
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12.7 PROBLEMS

In Problems 1 through 4, find dw/dt both by using the chain rule
and by expressing w explicitly as a function of t before differen-
tiating.

1. w = exp(−x2 − y2); x = t , y = √
t

2. w = 1

u2 + v2
; u = cos 2t , v = sin 2t

3. w = sin xyz; x = t , y = t2, z = t3

4. w = ln(u + v + z); u = cos2 t , v = sin2 t , z = t2

In Problems 5 through 8, find ∂w/∂s and ∂w/∂t .

5. w = ln(x2 + y2 + z2); x = s − t , y = s + t , z = 2
√

st

6. w = pq sin r ; p = 2s + t , q = s − t , r = st

7. w = √
u2 + v2 + z2 ; u = 3et sin s, v = 3et cos s,

z = 4et

8. w = yz + zx + xy; x = s2 − t2, y = s2 + t2, z = s2t2

In Problems 9 through 12, find ∂r/∂x, ∂r/∂y, and ∂r/∂z.

9. r = eu+v+w; u = yz, v = xz, w = xy

10. r = uvw − u2 − v2 − w2; u = y + z, v = x + z,
w = x + y

11. r = sin(p/q); p = √
xy2z3 , q = √

x + 2y + 3z

12. r = p

q
+ q

s
+ s

p
; p = eyz , q = exz , s = exy

In Problems 13 through 18, write chain rule formulas giving the
partial derivative of the dependent variable p with respect to
each independent variable.

13. p = f (x, y); x = x(u, v, w), y = y(u, v, w)

14. p = f (x, y, z); x = x(u, v), y = y(u, v), z = z(u, v)

15. p = f (u, v, w); u = u(x, y, z), v = v(x, y, z), w =
w(x, y, z)

16. p = f (v, w); v = v(x, y, z, t), w = w(x, y, z, t)

17. p = f (w); w = w(x, y, z, u, v)

18. p = f (x, y, u, v); x = x(s, t), y = y(s, t), u = u(s, t),
v = v(s, t)

In Problems 19 through 24, find ∂z/∂x and ∂z/∂y as functions
of x, y, and z, assuming that z = f (x, y) satisfies the given
equation.

19. x2/3 + y2/3 + z2/3 = 1

20. x3 + y3 + z3 = xyz

21. xexy + yezx + zexy = 3

22. x5 + xy2 + yz = 5

23.
x2

a2
+ y2

b2
+ z2

c2
= 1

24. xyz = sin(x + y + z)

In Problems 25 through 28, use the method of Example 6 to find
∂w/∂x and ∂w/∂y as functions of x and y.

25. w = u2 + v2 + x2 + y2; u = x − y, v = x + y

26. w = √
uvxy ; u = √

x − y , v = √
x + y

27. w = xy ln(u + v); u = (x2 + y2)1/3, v = (x3 + y3)1/2

28. w = uv − xy; u = x

x2 + y2
, v = y

x2 + y2

In Problems 29 through 32, write an equation for the plane tan-
gent at the point P to the surface with the given equation.

29. x2 + y2 + z2 = 9; P(1, 2, 2)

30. x2 + 2y2 + 2z2 = 14; P(2, 1, −2)

31. x3 + y3 + z3 = 5xyz; P(2, 1, 1)

32. z3 + (x + y)z2 + x2 + y2 = 13; P(2, 2, 1)

33. The sun is melting a rectangular block of ice. When the
block’s height is 1 ft and the edge of its square base is 2 ft,
its height is decreasing at 2 in./h and its base edge is decreas-
ing at 3 in./h. What is the block’s rate of change of volume
V at that instant?

34. A rectangular box has a square base. Find the rate at which
its volume and surface area are changing if its base edge
is increasing at 2 cm/min and its height is decreasing at
3 cm/min at the instant when each dimension is 1 meter.

35. Falling sand forms a conical sandpile. When the sandpile
has a height of 5 ft and its base radius is 2 ft, its height is
increasing at 0.4 ft/min and its base radius is increasing at
0.7 ft/min. At what rate is the volume of the sandpile in-
creasing at that moment?

36. A rectangular block has dimensions x = 3 m, y = 2 m,
and z = 1 m. If x and y are increasing at 1 cm/min and
2 cm/min, respectively, while z is decreasing at 2 cm/min,
are the block’s volume and total surface area increasing or
decreasing? At what rates?

37. The volume V (in cubic centimeters) and pressure p (in at-
mospheres) of n moles of an ideal gas satisfy the equation
pV = n RT , where T is its temperature (in degrees Kelvin)
and R = 82.06. Suppose that a sample of the gas has a
volume of 10 L when the pressure is 2 atm and the tem-
perature is 300◦K. If the pressure is increasing at 1 atm/min
and the temperature is increasing at 10◦K/min, is the vol-
ume of the gas sample increasing or decreasing? At what
rate?

38. The aggregate resistance R of three variable resistances
R 1, R 2, and R 3 connected in parallel satisfies the harmonic
equation

1

R
= 1

R 1
+ 1

R 2
+ 1

R 3
.

Suppose that R 1 and R 2 are 100 � and are increasing at
1 �/s, while R 3 is 200 � and is decreasing at 2 �/s. Is R
increasing or decreasing at that instant? At what rate?

39. Suppose that x = h(y, z) satisfies the equation F(x, y, z) =
0 and that Fx �= 0. Show that

∂x

∂y
= − ∂ F/∂y

∂ F/∂x
.

40. Suppose that w = f (x, y), x = r cos θ , and y = r sin θ .
Show that(

∂w

∂x

)2

+
(

∂w

∂y

)2

=
(

∂w

∂r

)2

+ 1

r 2

(
∂w

∂θ

)2

.

41. Suppose that w = f (u) and that u = x + y. Show that
∂w/∂x = ∂w/∂y.
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42. Suppose that w = f (u) and that u = x − y. Show that
∂w/∂x = −∂w/∂y and that

∂2w

∂x2
= ∂2w

∂y2
= − ∂2w

∂x∂y
.

43. Suppose that w = f (x, y) where x = u + v and y = u − v.
Show that

∂2w

∂x2
− ∂2w

∂y2
= ∂2w

∂u ∂v
.

44. Assume that w = f (x, y) where x = 2u + v and y = u − v.
Show that

5
∂2w

∂x2
+ 2

∂2w

∂x ∂y
+ 2

∂2w

∂y2
= ∂2w

∂u2
+ ∂2w

∂v2
.

45. Suppose that w = f (x, y), x = r cos θ , and y = r sin θ .
Show that

∂2w

∂x2
+ ∂2w

∂y2
= ∂2w

∂r 2
+ 1

r

∂w

∂r
+ 1

r 2

∂2w

∂θ2
.

[Suggestion: First find ∂2w/∂θ2 by the method of Exam-
ple 7. Then combine the result with Eqs. (7) and (8).]

46. Suppose that

w = 1

r
f
(

t − r

a

)
and that r = √

x2 + y2 + z2. Show that

∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2
= 1

a2

∂2w

∂t2
.

47. Suppose that w = f (r) and that r = √
x2 + y2 + z2. Show

that

∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2
= d2w

dr 2
+ 2

r

dw

dr
.

48. Suppose that w = f (u) + g(v), that u = x − at , and that
v = x + at . Show that

∂2w

∂t2
= a2 ∂2w

∂x2
.

49. Assume that w = f (u, v) where u = x + y and v = x − y.
Show that

∂w

∂x

∂w

∂y
=

(
∂w

∂u

)2

−
(

∂w

∂v

)2

.

50. Given: w = f (x, y), x = eu cos v, and y = eu sin v. Show
that (

∂w

∂x

)2

+
(

∂w

∂y

)2

= e−2u

[ (
∂w

∂u

)2

+
(

∂w

∂v

)2
]

.

51. Assume that w = f (x, y) and that there is a constant α such
that

x = u cos α − v sin α and y = u sin α + v cos α.

Show that(
∂w

∂u

)2

+
(

∂w

∂v

)2

=
(

∂w

∂x

)2

+
(

∂w

∂y

)2

.

52. Suppose that w = f (u), where

u = x2 − y2

x2 + y2
.

Show that xwx + ywy = 0.

Suppose that the equation F(x, y, z) = 0 defines implicitly the
three functions z = f (x, y), y = g(x, z), and x = h(y, z). To
keep track of the various partial derivatives, we use the notation(

∂z

∂x

)
y

= ∂ f

∂x
,

(
∂z

∂y

)
x

= ∂ f

∂y
, (20a)

(
∂y

∂x

)
z

= ∂g

∂x
,

(
∂y

∂z

)
x

= ∂g

∂z
, (20b)

(
∂x

∂y

)
z

= ∂h

∂y
,

(
∂x

∂z

)
y

= ∂h

∂z
, (20c)

In short, the general symbol (∂w/∂u)v denotes the derivative of
w with respect to u, where w is regarded as a function of the
independent variables u and v.

53. Using the notation in the equations in (20), show that(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1.

[Suggestion: Find the three partial derivatives on the right-
hand side in terms of Fx , Fy , and Fz .]

54. Verify the result of Problem 53 for the equation

F(x, y, z) = x2 + y2 + z2 − 1 = 0.

55. Verify the result of Problem 53 (with p, V , and T in place
of x , y, and z) for the equation

F(p, V, T ) = pV − n RT = 0

(n and R are constants), which expresses the ideal gas law.

56. Consider a given quantity of liquid whose pressure p, vol-
ume V , and temperature T satisfy a given “state equation”
of the form F(p, V, T ) = 0. The thermal expansivity α

and isothermal compressivity β of the liquid are defined by

α = 1

V

∂V

∂T
and β = − 1

V

∂V

∂p
.

Apply Theorem 3 first to calculate ∂V/∂p and ∂V/∂T , and
then to calculate ∂p/∂V and ∂p/∂T . Deduce from the re-
sults that ∂p/∂T = α/β.

57. The thermal expansivity and isothermal compressivity of liq-
uid mercury are α = 1.8 × 10−4 and β = 3.9 × 10−6, re-
spectively, in L-atm-◦C units. Suppose that a thermometer
bulb is exactly filled with mercury at 50◦C. If the bulb can
withstand an internal pressure of no more than 200 atm, can
it be heated to 55◦C without breaking? Suggestion: Apply
the result of Problem 56 to calculate the increase in pressure
with each increase of one degree in temperature.

58. Suppose that the transformation T : R3
uvw → R3

xyz is de-
fined by the functions x = x(u, v, w), y = y(u, v, w),
z = z(u, v, w). Then its derivative matrix is defined by

T ′(u, v, w) =
⎡
⎣xu xv xw

yu yv yw

zu zv zw

⎤
⎦ .

Calculate the derivative matrix of the linear transformation
defined by x = a1u + b1v + c1w, y = a2u + b2v + c2w,
z = a3u + b3v + c3w.
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59. Calculate the derivative matrix of the spherical coordi-
nate transformation T defined by x = ρ sin φ cos θ , y =
ρ sin φ sin θ , z = ρ cos φ.

60. Suppose that q = F(x, y, z) with 1 × 3 derivative matrix
F ′ = [

Fx Fy Fz

]
and that (x, y, z) = T (u, v, w) as in

Problem 58. If G = F ◦ T , deduce from the chain rule
in Theorem 2 that G ′ = F ′T ′ (matrix product).

61. If w = F(x, y, z), apply the results of Problems 59 and 60
to calculate by matrix multiplication the partial derivatives
of w with respect to the spherical coordinates ρ, φ, and θ .

12.8 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

Figure 12.8.1 shows temperatures (in degrees Fahrenheit) recorded at U.S. locations
at 2:12 P.M. E.D.T. on Thursday, April 12, 2001. This plot of the U.S. temperature
function T = f (x, y) is contoured “by color”—that is, locations with the same tem-
perature are shown in the same color. If we depart from an airport and fly due east (in
the positive x-direction), then the rate of change of temperature (in degrees per mile)
that we initially observe is given by the partial derivative ∂T/∂x = fx . If we fly due
north, then ∂T/∂y = fy gives the initial rate of change of temperature with respect to
distance. But we need not fly either due east or due north. The directional derivative
introduced in this section enables us to calculate the rate of change of a function in any
specified direction.

FIGURE 12.8.1 Current temperatures (◦F) recorded at
2:12 P.M. on April 12, 2001.

Directional Derivatives
Recall that the first-order partial derivatives of the function z = f (x, y) are defined to
be

fx(x, y) = lim
h→0

f (x + h, y) − f (x, y)

h
and fy(x, y) = lim

h→0

f (x, y + h) − f (x, y)

h

wherever these limits exist. If we write x = 〈x, y〉, then these partial derivatives may
be described a bit more concisely in the form

fx(x) = lim
h→0

f (x + hi) − f (x)

h
, fy(x) = lim

h→0

f (x + hj) − f (x)

h
(1)

where i = 〈1, 0〉 and j = 〈0, 1〉 as usual. Thus fx and fy represent rates of change of z
with respect to distance in the directions of the unit vectors i and j. We get the definition
of the directional derivative upon replacing i or j in (1) with an arbitrary specified unit
vector u.

DEFINITION Directional Derivative
The directional derivative of the function f at the point x in the direction of the
unit vector u is

Du f (x) = lim
h→0

f (x + hu) − f (x)

h
(2)

provided that this limit exists.
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The function f in Eq. (2) can be a function of two or three or more variables.
Comparing Eqs. (1) and (2), we see that the partial derivatives of a function of two
variables x and y can be written as

fx(x, y) = D i f (x, y) and fy(x, y) = D j f (x, y).

Thus fx and fy are, indeed, the directional derivatives of f in the directions of the unitz

x y

P
u Δs

Q

FIGURE 12.8.2 The first step in
computing the rate of change of
f (x , y, z) in the direction of the unit
vector u.

vectors i and j. Similarly, if f is a function of the three variables x, y, and z, then its
partial derivatives

fx = D i f, fy = D j f, and fz = D k f

are the directional derivatives of f in the directions of the three standard unit vectors
i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉 in space.

The limit in Eq. (2) would still make sense if u were not a unit vector. But the
meaning of directional derivatives is easiest to understand when u is a unit vector, and
this is why we define Du f (x) only when |u| = 1. In Fig. 12.8.2 the unit vector u
points in the direction from the fixed point P (with position vector x) to the point Q
(with position vector x + hu). Then

�w = f (Q) − f (P) = f (x + hu) − f (x)

is the increment in the function value w = f (x, y, z) from the point P to the point Q.
If we write �s = |P Q

−−→| = h for the distance from P to Q, then the quotient

�w

�s
= f (Q) − f (P)∣∣P Q

−−→∣∣ = f (x + hu) − f (x)

h

is the average rate of change of w with respect to distance from P to Q. It is therefore
natural to regard the limit

dw

ds
= lim

�s→0

�w

�s
= lim

h→0

f (x + hu) − f (x)

h
= Du f (x) (3)

as the instantaneous rate of change of w at P with respect to distance in the direction
from P to Q. Some science and engineering texts may use the notation

d f

ds

∣∣∣∣
P

= Du f (P),

or simply dw/ds as in Eq. (3), for the instantaneous rate of change of the function
w = f (x, y, z) at the point P , with respect to distance s in the direction of the unit
vector u.

Calculation of Directional Derivatives
Equation (2) defines the directional derivative, but how do we actually calculate direc-
tional derivatives? To answer this question, we recall (from Eq. (18) in Section 12.6)
that if the function f (x1, x2, . . . , xn) is differentiable at x = 〈x1, x2, . . . , xn〉, then its
partial derivatives exist there; moreover,

lim
h→0

f (x + h) − f (x) − ∇ f (x) · h
|h| = 0 (4)

where ∇ f (x) = 〈D1 f (x), D2 f (x), . . . , Dn f (x)〉 is the gradient vector of f at x. If
we substitute h = hu where u is a unit vector and h > 0 (so that |h| = h), then Eq. (4)
implies that

lim
h→0

f (x + h) − f (x) − ∇ f (x) · hu
h

= lim
h→0

(
f (x + hu) − f (x)

h
− ∇ f (x) · u

)
= Du f (x) − ∇ f (x) · u = 0.
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In the last step we have used the definition in (2) of the directional derivative Du f (x)

and the fact that x and u play the role of constants as h → 0. This proves the following
theorem.

THEOREM 1 Calculation of Directional Derivatives
If the real-valued function f is differentiable at x and u is a unit vector, then the
directional derivative Du f (x) exists and is given by

Du f (x) = ∇ f (x) · u. (5)

For instance, if z = f (x, y) is a function of two variables, so that

∇ f (x, y) = 〈
fx(x, y), fy(x, y)

〉
and u = 〈a, b〉,

then Eq. (5) gives

P

u

θ

FIGURE 12.8.3 The unit vector u
of Eq. (7).

D〈a,b〉 f (x, y) = 〈
fx(x, y), fy(x, y)

〉 · 〈a, b〉 = a fx(x, y) + b fy(x, y). (6)

If the unit vector u makes the counterclockwise angle θ with the positive x-axis (as in
Fig. 12.8.3), then u = 〈cos θ, sin θ〉, so Eq. (6) takes the form

Du f (x, y) = fx(x, y) cos θ + fy(x, y) sin θ = ∂w

∂x
cos θ + ∂w

∂y
sin θ. (7)

If w = f (x, y, z) is a function of three variables and u = 〈a, b, c〉 (still a unit vector),
then Eq. (5) similarly yields

D〈a,b,c〉 f (x, y, z) = a fx(x, y, z) + b fy(x, y, z) + c fz(x, y, z). (8)

EXAMPLE 1 Suppose that the temperature (in degrees Celsius) at the point (x, y)

near an airport is given by

f (x, y) = 1

180
[7400 − 4x − 9y − (0.03)xy]

(with distances x and y measured in kilometers). Suppose that your aircraft takes
off from this airport at the location P(200, 200) and heads northeast in the direction
specified by the vector v = 〈3, 4〉. What initial rate of change of temperature will you
observe?

Solution Because v is not a unit vector, we must first replace it with the unit vector u
having the same direction:

u = v
|v| = 〈3, 4〉√

32 + 42
=

〈
3

5
,

4

5

〉
.

Now we may use the formula in (6), which yields

Du f (x, y) =
(

3

5

)
·
(

1

180
[−4 − (0.03)y]

)
+

(
4

5

)
·
(

1

180
[−9 − (0.03)x]

)
.

When we substitute x = y = 200 we find that

Du f (P) =
(

3

5

)
·
(

− 10

180

)
+

(
4

5

)
·
(

− 15

180

)
= − 18

180
= −0.1.

This instantaneous rate of change −0.1◦C/km means that you will observe initially a
decrease of 0.1◦C in temperature per kilometer traveled. ◗
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The Gradient Vector
In Section 12.6 we introduced the gradient vector informally as a notational device for
simplifying the expression of certain multivariable formulas. Most of the remainder
of this section is devoted to exploration of the meaning and geometric interpretation
of gradient vectors, largely in two and three dimensions. We begin with a formal
definition.

DEFINITION Gradient Vector
The gradient of the differentiable real-valued function f : Rn → R is the vector-
valued function ∇ f : Rn → Rn defined by

∇ f (x) = 〈D1 f (x), D2 f (x), . . . , Dn f (x)〉. (9)

In particular, the gradient vectors of functions of two and three variables are given
(respectively) by

∇ f (P) = ∂ f

∂x
i + ∂ f

∂y
j and ∇ f (P) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k; (10)

the partial derivatives in Eq. (10) are to be evaluated at the point P .

EXAMPLE 2 If f (x, y, z) = yz +sin xz +exy , then the second formula in (10) gives

∇ f (x, y, z) = (z cos xz + yexy)i + (z + xexy)j + (y + x cos xz)k.

The value of this gradient vector at the point (0, 7, 3) is

∇ f (0, 7, 3) = (3 · 1 + 7 · 1)i + (3 + 0 · 1)j + (7 + 0 · 1)k = 10i + 3j + 7k. ◗

Theorem 1 says that if the function f is differentiable at x and u is a unit vector,
then the directional derivative of f at x in the direction u is given by

Du f (x) = ∇ f (x) · u. (11)

The chain rule has a similar gradient vector form. For instance, suppose that the dif-
ferentiable vector-valued function

r(t) = x(t)i + y(t)j + z(y)k

is the position vector of a curve in R3 and that f (x, y, z) is a differentiable function.
Then the composition

f (r(t)) = f (x(t), y(t), z(t))

is a differentiable function of t , and its (ordinary) chain-rule derivative with respect to
t is

Dt [ f (r(t))] = Dt [ f (x(t), y(t), z(t))] = ∂ f

∂x
· dx

dt
+ ∂ f

∂y
· dy

dt
+ ∂ f

∂z
· dz

dt
.

We recognize here the dot product

Dt [ f (r(t))] = ∇ f (r(t)) · r′(t), (12)

where

r′(t) = dr
dt

= dx

dt
i + dy

dt
j + dz

dt
k

is the velocity vector of the parametric curve r(t).
If r(t) is a smooth parametric curve with nonzero velocity vector v(t) = r′(t),

then v = vu where v = |v| is the speed of motion along the curve and u = v/v is the
unit vector tangent to the curve (Section 11.6). Then Eq. (12) implies that

Dt [ f (r(t))] = ∇ f (r(t)) · r′(t) = ∇ f (r(t)) · vu = v∇ f (r(t)) · u,
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and hence in turn that

Dt [ f (r(t))] = vDu f (r(t)). (13)

With w = f (r(t)), we may write Du f (r(t)) = dw/ds for the derivative of w with
respect to (unit) distance along the parametrized curve, and v = ds/dt for the speed.
Then Eq. (13) takes the natural chain rule form

dw

dt
= dw

ds
· ds

dt
. (14)

EXAMPLE 3 In Example 1 we found that the temperature function

w = f (x, y) = 1

180
[7400 − 4x − 9y − (0.03)xy]

(with temperature in degrees Celsius and distance in kilometers) has directional deriva-
tive

dw

ds
= Du f (P) = −0.1

◦C

km

at the point P(200, 200) in the direction of the unit vector u = 〈 3
5 , 4

5 〉. If a plane
departs from an airport at P and flies in the direction u with speed v = ds/dt = 5
km/min, then Eq. (14) gives

dw

dt
= dw

ds
· ds

dt
=

(
−0.1

◦C

km

)(
5

km

min

)
= −0.5

◦C

min
.

Thus an initial rate of decrease of a half-degree of temperature per minute is observed.
◗

EXAMPLE 4 Now suppose that the temperature function of Example 3 is replaced
with

w = f (x, y, z) = 1

180
[7400 − 4x − 9y − (0.03)xy] − 2z.

The additional term −2z corresponds to a decrease of 2◦C in temperature per kilome-
ter of altitude z. Suppose that a hawk hovering at the point P(200, 200, 5) above the
airport suddenly dives at a speed of 3 km/min in the direction specified by the vector
〈3, 4, −12〉. What instantaneous rate of change of temperature does the bird experi-
ence?

Solution The unit vector in the direction of the given vector 〈3, 4, −12〉 is

u = 3i + 4j − 12k√
32 + 42 + (−12)2

= 3

13
i + 4

13
j − 12

13
k.

The temperature gradient vector

∇ f (x, y, z) = − 1

180
[4 + (0.03)y]i − 1

180
[9 + (0.03)x] j − 2k

has the value

∇ f (P) = − 10

180
i − 15

180
j − 2k

at the initial position P(200, 200, 5) of the hawk. Therefore the hawk’s initial rate of
change of temperature with respect to distance is

dw

ds
= Du f (P) = ∇ f (P) · u

=
(

− 10

180

)(
3

13

)
+

(
− 15

180

)(
4

13

)
+ (−2)

(
−12

13

)
= 47

26
≈ 1.808

◦C

km
.
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Its speed is ds/dt = 3 km/min, so the time rate of change of temperature experienced
by the hawk is

dw

dt
= dw

ds
· ds

dt
≈

(
1.808

◦C

km

)(
3

km

min

)
= 5.424

◦C

min
.

Thus the hawk initially gets warmer by almost 5.5 degrees per minute as it dives toward
the ground. ◗

Interpretation of the Gradient Vector
The gradient vector ∇ f has an important interpretation that involves the maximum

P

u

f

φ

FIGURE 12.8.4 The angle φ

between ∇ f and the unit vector u.

possible value of the directional derivative of the differentiable function f at a given
point P . If φ is the angle between ∇ f (P) and the unit vector u (Fig. 12.8.4), then
Eq. (11) gives

Du f (P) = ∇ f (P) · u = |∇ f (P)| |u| cos φ = |∇ f (P)| cos φ

because |u| = 1. The maximum possible value of cos φ is 1, and this occurs when
φ = 0. This is so when u is the particular unit vector m = ∇ f (P)/|∇ f (P)| that points
in the direction of the gradient vector ∇ f (P) itself. In this case the previous formula
yields

Dm f (P) = |∇ f (P)|, (15)

so the value of the directional derivative in this direction is equal to the length of the
gradient vector. This argument establishes the following result.

THEOREM 2 Significance of the Gradient Vector
The maximum value of the directional derivative Du f (P) is obtained when u
is the unit vector in the direction of the gradient vector ∇ f (P); that is, when
u = ∇ f (P)/|∇ f (P)|. The value of the maximum directional derivative is |∇ f (P)|,
the length of the gradient vector.

Thus the gradient vector ∇ f points in the direction in which the function f in-
creases the most rapidly, and its length is the rate of increase of f (with respect to
distance) in that direction. For instance, if the function f gives the temperature in
space, then the gradient vector ∇ f (P) points in the direction in which a hawk at P
should initially fly to get warmer the fastest.

EXAMPLE 5 Recall the temperature function

w = f (x, y, z) = 1

180
[7400 − 4x − 9y − (0.03)xy] − 2z

of Example 4 (with distance in kilometers and temperature in degrees Celsius). In what
direction should a hawk, starting at the point P(200, 200, 5) at an altitude of 5 km, dive
in order to get warmer the fastest? How rapidly will its temperature increase as it dives
at a speed of 3 km/min? What will be its compass heading and angle of descent as it
dives in this particular direction?

Solution In Example 4 we calculated the value

∇ f (P) = − 10

180
i − 15

180
j − 2k

of the gradient vector of f at the point P(200, 200, 5). By Theorem 2, the maximum
value

dw

ds
= Dm f (P) = |∇ f (P)| =

√(
− 10

180

)2

+
(

− 15

180

)2

+ (−2)2 ≈ 2.0025
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(◦C/km) of the directional derivative of f at P is attained with the unit vector

m = ∇ f (P)

|∇ f (P)| ≈ 1

2.0025

(
− 10

180
i − 15

180
j − 2k

)
= −10i − 15j − 360k

360.45
.

The speed of the hawk is ds/dt = 3 km/min, so the time rate of change of temperature
experienced by the hawk is

dw

dt
= dw

ds
· ds

dt
≈

(
2.0025

◦C

km

)(
3

km

min

)
= 6.0075

◦C

min
.

Thus the hawk initially gets warmer by slightly more than 6 ◦C/min as it dives toward
the ground.

Figure 12.8.5 shows the third-quadrant vector −10i − 15j that represents the
hawk’s (horizontal) compass heading of π + tan−1( 15

10 ) ≈ 236.31◦ (about 56.31◦ south

of west). The hawk is descending 360 meters vertically for every
√

102 + 152 ≈
18.028 meters it flies horizontally. Hence its angle of descent (measured from the
horizontal) is about tan−1(360/18.028) ≈ 87.13◦. ◗

y

56.31° x

15

10

N

S

EW

FIGURE 12.8.5 The diving hawk’s
compass heading.

The Gradient Vector as a Normal Vector
Consider the graph of the equation

F(x, y, z) = 0, (16)

where the function F is continuously differentiable. The implicit function theorem
stated in Section 12.7 (Theorem 3 there) implies that, near any point P where the
partial derivative ∂ F/∂z is nonzero, Eq. (16) defines z implicitly as a continuously
differentiable function f of x and y. Thus the graph F(x, y, z) = 0 coincides—near
P—with the surface z = f (x, y). Similarly, the graph of Eq. (16) coincides with the
surface of the form x = g(y, z) near any point where ∂ F/∂x is nonzero, and with a
surface y = h(x, z) near any point where ∂ F/∂y is nonzero. In short, the graph of
F(x, y, z) = 0 looks like a surface near any point P at which ∇F(P) �= 0 (so that at
least one of the partial derivatives of F is nonzero). The next theorem implies that the
gradient vector ∇F(P) is then normal to the surface F(x, y, z) = 0 at the point P .

THEOREM 3 Gradient Vector as Normal Vector
Suppose that F(x, y, z) is continuously differentiable and let P0(x0, y0, z0) be a
point of the graph of the equation F(x, y, z) = 0 at which ∇F(P0) �= 0. If r(t) is a
differentiable curve on this surface with r(t0) = 〈x0, y0, z0〉 and r′(t0) �= 0, then

∇F(P0) · r′(t0) = 0. (17)

Thus ∇F(P0) is perpendicular to the tangent vector r′(t0), as indicated in Fig. 12.8.6.

Proof The statement that r(t) lies on the surface F(x, y, z) = 0 implies that F(r(t)) =

F (P0)

F (x, y, z) = 0

P0

r ′(t0)

r (t )

FIGURE 12.8.6 The gradient
vector ∇F is normal to every curve
in the surface F(x , y, z) = 0.

0 for all t . Hence

0 = Dt F(r(t0)) = ∇F(r(t0)) · r′(t0) = ∇F(P0) · r′(t0)

by the chain rule in the form in Eq. (12). Therefore the nonzero vectors ∇F(P0) and
r′(t0) are perpendicular. ◆

Because the gradient vector ∇F(P0) is perpendicular at P0 to every curve on the
surface through P0, it is a normal vector n to the surface F(x, y, z) = 0 at the point
P0:

n = ∂ F

∂x
i + ∂ F

∂y
j + ∂ F

∂z
k. (18)
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If we write the explicit surface equation z = f (x, y) in the form F(x, y, z) = f (x, y)−
z = 0, then

∂ F

∂x
i + ∂ F

∂y
j + ∂ F

∂z
k = ∂ f

∂x
i + ∂ f

∂y
j − k.

Thus Eq. (18) agrees with the definition of a normal vector that we gave in Section 12.4
(Eq. (13) there).

If the tangent vector T to a curve is normal to the vector n at the point P , then
T lies in the plane through P that is normal to n. If the function F is continuously
differentiable, we therefore define the tangent plane to the surface F(x, y, z) = 0 at
a point P(a, b, c) at which ∇F(P) �= 0 to be the plane through P that has the normal
vector n given in Eq. (18). An equation of this tangent plane is then

Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0. (19)

EXAMPLE 6 Write an equation of the plane tangent to the ellipsoid 2x2+4y2+z2 =
45 at the point (2, −3, −1).

Solution If we write

F(x, y, z) = 2x2 + 4y2 + z2 − 45,

then F(x, y, z) = 0 is an equation of the ellipsoid. Thus, by Theorem 3, a vector
normal to the ellipsoidal surface at (x, y, z) is ∇F(x, y, z) = 〈4x, 8y, 2z〉, so

∇F(2, −3, −1) = 8i − 24j − 2k

is normal to the ellipsoid at (2, −3, −1). Equation (19) then gives the answer in the
form

8(x − 2) − 24(y + 3) − 2(z + 1) = 0;
that is, 4x − 12y − z = 45. ◗

If F and G are continuously differentiable functions of three variables, then the
intersection of the surfaces

G(x,
 y,

 z)
 = 0

F

G

F(x,
 y,

 z)
 = 0

C
Tangent

vector

FIGURE 12.8.7 ∇F × ∇G is
tangent to the curve C of
intersection.

F(x, y, z) = 0 and G(x, y, z) = 0 (20)

will generally be some sort of curve C in space. More precisely, if P is a point of
C where the two gradient vectors ∇F(P) and ∇G(P) are not collinear, then a general
multivariable version of the implicit function theorem implies that near P the equations
in (20) can be “solved for two of the variables in terms of the third.” This means that the
two equations implicitly define either x and y as functions of z, or y and z as functions
of x , or x and z as functions of y. In any event, C is a smooth curve that passes through
P . Because this curve lies on both surfaces, its tangent vector at P is perpendicular to
both their normal vectors ∇F(P) and ∇G(P). It follows that the vector

T = ∇F(P) × ∇G(P) (21)

is tangent at P to the curve C of intersection of the two surfaces F(x, y, z) = 0 and
G(x, y, z) = 0. (See Fig. 12.8.7.)

EXAMPLE 7 The point P(1, −1, 2) lies on both the paraboloid

F(x, y, z) = x2 + y2 − z = 0

and the ellipsoid

G(x, y, z) = 2x2 + 3y2 + z2 − 9 = 0.

Write an equation of the plane through P that is normal to the curve of intersection of
these two surfaces (Fig. 12.8.8).

−2
0

2

x

−2
−1

0
1

−2

0

2

z P

L

y

FIGURE 12.8.8 The point
P(1, −1, 2) on the curve of
intersection of the paraboloid
F(x, y, z) = 0 and the ellipsoid
G(x, y, z) = 0 of Example 7, and
the tangent line L through P that is
parallel to the vector
T = ∇F(P) × ∇G(P) =
〈−14, −12, −4〉.
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Solution First we compute

x

y

FIGURE 12.8.9 Gradient vectors
and level curves for the function
F(x , y) = x2 − 7xy + 2y2.

∇F = 〈2x, 2y, −1〉 and ∇G = 〈4x, 6y, 2z〉.
At P(1, −1, 2) these two vectors are

∇F(1, −1, 2) = 〈2, −2, −1〉 and ∇G(1, −1, 2) = 〈4, −6, 4〉.
Hence a vector tangent at P to the curve of intersection of the paraboloid and the
ellipsoid is

T = ∇F × ∇G =
∣∣∣∣∣∣

i j k
2 −2 −1
4 −6 4

∣∣∣∣∣∣ = 〈−14, −12, −4〉.

A slightly simpler vector parallel to T is n = 〈7, 6, 2〉, and n is also normal to the
desired plane through (1, −1, 2). Therefore an equation of the plane is

7(x − 1) + 6(y + 1) + 2(z − 2) = 0;
that is, 7x + 6y + 2z = 5. ◗

A result analogous to Theorem 3 holds in two dimensions (and in higher dimen-
sions). If the function F of two variables is continuously differentiable, then the graph
of the equation F(x, y) = 0 looks like a smooth curve C near each point P at which
∇F(P) �= 0, and then the gradient vector ∇F(P) is normal to C at P . Consequently,
if we use a computer algebra system to plot both a number of level curves and a “field”
of different gradient vectors of the function F(x, y), then (as illustrated in Fig. 12.8.9)
the gradient vector at each point is normal to the level curve through that point.

EXAMPLE 8 Write an equation of the line tangent at the point (1, 2) to the
folium of Descartes with equation F(x, y) = 2x3 +2y3 −9xy = 0. (See Fig. 12.8.10.)

Solution The gradient of F is

∇F(x, y) = (6x2 − 9y)i + (6y2 − 9x)j.

So a vector normal to the folium at (1, 2) is ∇F(1, 2) = −12i+15j. Hence the tangent
line has equation −12(x − 1) + 15(y − 2) = 0. Simplified, this is 4x − 5y + 6 = 0.

2x3 + 2y3 − 9xy = 0

(1, 2)

y

x

4x − 5y + 6 = 0F = 〈−12, 15〉

FIGURE 12.8.10 The folium and
its tangent (Example 8).

◗

12.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The directional derivative of the function f (x, y) at the point (x, y) in the direc-
tion of the unit vector u = 〈a, b〉 is given by

Du f (x, y) = lim
h→0

f (x + ah, y + bh) − f (x, y)

h

provided this limit exists.
2. If w = f (x) is differentiable, then the instantaneous rate of change of w with

respect to distance s in the direction of the unit vector u is given by dw/ds =
Du f (x).

3. The directional derivative of the differentiable function f (x, y, z) at the point
x = 〈x, y, z〉 in the direction of the unit vector u = 〈a, b, c〉 is given by

Du f (x) = a fx(x) + b fy(x) + c fy(x).

4. Suppose the temperature at the point (x, y) near an airport located at the point P
is given by the function f (x, y). If your aircraft takes off from the airport and
heads northwest in the direction specified by the vector v = 〈3, 4〉, then the initial
rate of change of temperature that you observe is Dv f (P).
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5. The gradient of a differentiable real-valued function f of an n-dimensional vector
variable involves the partial derivatives of f and is a vector-valued function of a
real variable.

6. If r(t) is a smooth parametric curve with velocity vector v(t) = r′(t), then
Dt [ f (r(t))] = ∇ f (r(t)) · v(t).

7. Suppose f : R3 → R is differentiable at the point P . If u = ∇ f (P)/|∇ f (P)|,
then the minimum possible value of the directional derivative Du f (P) is |∇ f (P)|.

8. Suppose the temperature at the point (x, y, z) is given by the function f (x, y, z).
A hawk hovering at the point P will get warmest the fastest if it flies in the
direction determined by the gradient vector ∇ f (P).

9. Suppose that F(x, y, z) is a continuously differentiable function, and that P is
a point on the surface F(x, y, z) = 0 where ∇F(P) �= 0. If v is the velocity
vector at P of a smooth curve on this surface, then the vectors ∇ f (P) and v are
perpendicular.

10. Suppose that F(x, y, z) is a continuously differentiable function, and that p =
〈a, b, c〉 is a point on the surface F(x, y, z) = 0 where ∇F(p) �= 0. Then the
equation of the tangent plane to this surface at the point p can be written in the
form ∇F(p) · (x − p) = 0 where x = 〈x, y, z〉.

12.8 CONCEPTS: QUESTIONS AND DISCUSSION
1. The partial derivatives fx(a, b) and fy(a, b) give the slopes (vertical rise per

horizontal run) of the lines tangent to the x-curve z = f (x, b) and the y-curve
z = f (a, y) through the point (a, b, f (a, b)) on the surface z = f (x, y). What
is an analogous interpretation of the directional derivative Du f (a, b)?

2. Suppose that you have a map showing level curves for the function z = f (x, y)

describing a mountain you’re climbing. How can you use the level curves to
sketch a path of “steepest ascent” from your present location on the mountain
side to the peak of the mountain? This will be a path that at each point climbs
as steeply as possible. Would your compass heading on such a path of steepest
ascent always be directly toward the mountain peak?

12.8 PROBLEMS

In Problems 1 through 10, find the gradient vector ∇ f at the in-
dicated point P.

1. f (x, y) = 3x − 7y; P(17, 39)

2. f (x, y) = 3x2 − 5y2; P(2, −3)

3. f (x, y) = exp(−x2 − y2); P(0, 0)

4. f (x, y) = sin 1
4 πxy; P(3, −1)

5. f (x, y, z) = y2 − z2; P(17, 3, 2)

6. f (x, y, z) = √
x2 + y2 + z2 ; P(12, 3, 4)

7. f (x, y, z) = ex sin y + ey sin z + ez sin x ; P(0, 0, 0)

8. f (x, y, z) = x2 − 3yz + z3; P(2, 1, 0)

9. f (x, y, z) = 2
√

xyz ; P(3, −4, −3)

10. f (x, y, z) = (2x − 3y + 5z)5; P(−5, 1, 3)

In Problems 11 through 20, find the directional derivative of f at
P in the direction of v; that is, find

Du f (P), where u = v
|v| .

11. f (x, y) = x2 + 2xy + 3y2; P(2, 1), v = 〈1, 1〉
12. f (x, y) = ex sin y; P(0, π/4), v = 〈1, −1〉

13. f (x, y) = x3 − x2 y + xy2 + y3; P(1, −1), v = 2i + 3j

14. f (x, y) = tan−1
( y

x

)
; P(−3, 3), v = 3i + 4j

15. f (x, y) = sin x cos y; P(π/3, −2π/3), v = 〈4, −3〉
16. f (x, y, z) = xy + yz + zx ; P(1, −1, 2), v = 〈1, 1, 1〉
17. f (x, y, z) = √

xyz ; P(2, −1, −2), v = i + 2j − 2k

18. f (x, y, z) = ln(1 + x2 + y2 − z2); P(1, −1, 1), v =
2i − 2j − 3k

19. f (x, y, z) = exyz ; P(4, 0, −3), v = j − k

20. f (x, y, z) = √
10 − x2 − y2 − z2; P(1, 1, −2), v =

〈3, 4, −12〉
In Problems 21 through 28, find the maximum directional deriva-
tive of f at P and the direction in which it occurs.

21. f (x, y) = 2x2 + 3xy + 4y2; P(1, 1)

22. f (x, y) = arctan
( y

x

)
; P(2, −3)

23. f (x, y) = ln(x2 + y2); P(3, 4)

24. f (x, y) = sin(3x − 4y); P(π/3, π/4)

25. f (x, y, z) = 3x2 + y2 + 4z2; P(1, 5, −2)

971

www.konkur.in



972 CHAPTER 12 Partial Differentiation

26. f (x, y, z) = exp(x − y − z); P(5, 2, 3)

27. f (x, y, z) = √
xy2z3 ; P(2, 2, 2)

28. f (x, y, z) = √
2x + 4y + 6z ; P(7, 5, 5)

In Problems 29 through 34, use the normal gradient vector to
write an equation of the line (or plane) tangent to the given curve
(or surface) at the given point P.

29. exp(25 − x2 − y2) = 1; P(3, 4)

30. 2x2 + 3y2 = 35; P(2, 3)

31. x4 + xy + y2 = 19; P(2, −3)

32. 3x2 + 4y2 + 5z2 = 73; P(2, 2, 3)

33. x1/3 + y1/3 + z1/3 = 1; P(1, −1, 1)

34. xyz + x2 − 2y2 + z3 = 14; P(5, −2, 3)

The properties of gradient vectors listed in Problems 35 through
38 exhibit the close analogy between the gradient operator ∇ and
the single-variable derivative operator D. Verify each, assuming
that a and b are constants and that u and v are differentiable
functions of x and y.

35. ∇(au + bv) = a∇u + b∇v. 36. ∇(uv) = u∇v + v∇u.

37. ∇
(u

v

)
= v∇u − u∇v

v2
if v �= 0.

38. If n is a positive integer, then ∇un = nun−1∇u.

39. Show that the value of a differentiable function f decreases
the most rapidly at P in the direction of the vector −∇ f (P),
directly opposite to the gradient vector.

40. Suppose that f is a function of three independent variables
x , y, and z. Show that D i f = fx , D j f = fy , and
D k f = fz .

41. Show that the equation of the line tangent to the conic sec-
tion A x2 + Bxy + Cy2 = D at the point (x0, y0) is

(A x0)x + 1
2 B(y0x + x0 y) + (Cy0)y = D.

42. Show that the equation of the plane tangent to the quadric
surface A x2 + By2 + Cz2 = D at the point (x0, y0, z0) is

(A x0)x + (By0)y + (Cz0)z = D.

43. Show that an equation of the plane tangent to the para-
boloid z = Ax2 + By2 at the point (x0, y0, z0) is z − z0 =
2A x0x + 2By0 y.

44. Suppose that the temperature at the point (x, y, z) in space,
with distance measured in kilometers, is given by

w = f (x, y, z) = 10 + xy + xz + yz

(in degrees Celsius). Find the rate of change (in degrees
Celsius per kilometer) of temperature at the point P(1, 2, 3)

in the direction of the vector v = i + 2j − 2k.

45. Suppose that the function

w = f (x, y, z) = 10 + xy + xz + yz

of Problem 44 gives the temperature at the point (x, y, z) of
space. (Units in this problem are in kilometers, degrees
Celsius, and minutes.) What time rate of change (in degrees
Celsius per minute) will a hawk observe as it flies through
P(1, 2, 3) at a speed of 2 km/min, heading directly toward
the point Q(3, 4, 4)?

46. Suppose that the temperature w (in degrees Celsius) at the
point (x, y) is given by

w = f (x, y) = 10 + (0.003)x2 − (0.004)y2.

In what direction u should a bumblebee at the point (40, 30)

initially fly in order to get warmer the most quickly? Find the
directional derivative Du f (40, 30) in this optimal direction
u.

47. Suppose that the temperature W (in degrees Celsius) at the
point (x, y, z) in space is given by

W = 50 + xyz.

(a) Find the rate of change of temperature with respect to
distance at the point P(3, 4, 1) in the direction of the vec-
tor v = 〈1, 2, 2〉. (The units of distance in space are feet.)
(b) Find the maximal directional derivative DuW at the point
P(3, 4, 1) and the direction u in which that maximum oc-
curs.

48. Suppose that the temperature (in degrees Celsius) at the point
(x, y, z) in space is given by the formula

W = 100 − x2 − y2 − z 2.

The units of distance in space are meters. (a) Find the rate of
change of temperature at the point P(3, −4, 5) in the direc-
tion of the vector v = 3i − 4j + 12k. (b) In what direction
does W increase most rapidly at P? What is the value of the
maximal directional derivative at P?

49. Suppose that the altitude z (in miles above sea level) of a
certain hill is described by the equation z = f (x, y), where

f (x, y) = 1

10
(x2 − xy + 2y2).

(a) Write an equation (in the form z = ax + by + c) of
the plane tangent to the hillside at the point P(2, 1, 0.4).
(b) Use ∇ f (2, 1) to approximate the altitude of the hill above
the point (2.2, 0.9) in the xy-plane. Compare your result with
the actual altitude at this point.

50. Find an equation for the plane tangent to the paraboloid
z = 2x2 + 3y2 and, simultaneously, parallel to the plane
4x − 3y − z = 10.

51. The cone with equation z2 = x2 + y2 and the plane with
equation 2x + 3y + 4z + 2 = 0 intersect in an ellipse. Write
an equation of the plane normal to this ellipse at the point
P(3, 4, −5) (Fig. 12.8.11).

FIGURE 12.8.11 The
cone and plane of
Problems 51 and 52.

972

www.konkur.in



Lagrange Multipliers and Constrained Optimization SECTION 12.9 973

52. It is apparent from geometry that the highest and lowest
points of the ellipse of Problem 51 are those points where
its tangent line is horizontal. Find those points.

53. Show that the sphere x2 + y2 + z2 = r 2 and the cone
z2 = a2x2 + b2 y2 are orthogonal (that is, have perpen-
dicular tangent planes) at every point of their intersection
(Fig. 12.8.12).

FIGURE 12.8.12 A cut-away
view of the cone and sphere of
Problem 53.

54. Suppose that P1 and P2 are planes tangent to the circular el-
lipsoid x2 + y2 +2z2 = 2 at the two points P1 and P2 having
the same z-coordinate. Show that P1 and P2 intersect the
z-axis at the same point.

55. A plane tangent to the surface xyz = 1 at a point in the first
octant cuts off a pyramid from the first octant. Show that any
two such pyramids have the same volume.

In Problems 56 through 61, the function z = f (x, y) describes
the shape of a hill; f (P) is the altitude of the hill above the point
P(x, y) in the xy-plane. If you start at the point (P, f (P)) of this
hill, then Du f (P) is your rate of climb (rise per unit of horizontal
distance) as you proceed in the horizontal direction u = ai + bj.
And the angle at which you climb while you walk in this direction
is γ = tan−1(Du f (P)), as shown in Fig. 12.8.13.

1

Slice of
z = f (x, y)

γ

u

Du f (x, y)

P (x, y)

FIGURE 12.8.13 The cross section of the part of
the graph above u (Problems 56 through 61).

56. You are standing at the point (−100, −100, 430) on a hill
that has the shape of the graph of

z = 500 − (0.003)x2 − (0.004)y2,

with x , y, and z given in feet. (a) What will be your rate
of climb (rise over run) if you head northwest? At what an-

gle from the horizontal will you be climbing? (b) Repeat
part (a), except now you head northeast.

57. You are standing at the point (−100, −100, 430) on the hill
of Problem 56. In what direction (that is, with what com-
pass heading) should you proceed in order to climb the most
steeply? At what angle from the horizontal will you initially
be climbing?

58. Repeat Problem 56, but now you are standing at the point
P(100, 100, 500) on the hill described by

z = 1000

1 + (0.00003)x2 + (0.00007)y2
.

59. Repeat Problem 57, except begin at the point
P(100, 100, 500) of the hill of Problem 58.

60. You are standing at the point (30, 20, 5) on a hill with the
shape of the surface

z = 100 exp

(
− x2 + 3y2

701

)
.

(a) In what direction (with what compass heading) should
you proceed in order to climb the most steeply? At what
angle from the horizontal will you initially be climbing?
(b) If, instead of climbing as in part (a), you head directly
west (the negative x-direction), then at what angle will you
be climbing initially?

61. (a) You are standing at the point where x = y = 100 (ft) on
the side of a mountain whose height (in feet above sea level)
is given by

z = 1

1000
(3x2 − 5xy + y2),

with the x-axis pointing east and the y-axis pointing north.
If you head northeast, will you be ascending or descending?
At what angle (in degrees) from the horizontal? (b) If you
head 30◦ north of east, will you be ascending or descending?
At what angle (in degrees) from the horizontal?

62. Suppose that the two surfaces f (x, y, z) = 0 and
g(x, y, z) = 0 both pass through the point P where both gra-
dient vectors ∇ f (P) and ∇g(P) exist. (a) Show that the two
surfaces are tangent at P if and only if ∇ f (P) × ∇g(P) = 0.
(b) Show that the two surfaces are orthogonal at P if and
only if ∇ f (P) · ∇g(P) = 0.

63. Suppose that the plane vectors u and v are not collinear and
that the function f (x, y) is differentiable at P . Show that the
values of the directional derivatives Du f (P) and Dv f (P)

determine the value of the directional derivative of f at P in
every other direction.

64. Show that the function f (x, y) = ( 3
√

x + 3
√

y )3 is continuous
at the origin and has directional derivatives in all directions
there, but is not differentiable at the origin.

12.9 LAGRANGE MULTIPLIERS AND CONSTRAINED OPTIMIZATION

In Section 12.5 we discussed the problem of finding the maximum and minimum val-
ues attained by a function f (x, y) at points of the plane region R, in the simple case
in which R consists of the points on and within the simple closed curve C . We saw
that any local maximum or minimum in the interior of R occurs at a point where
fx(x, y) = 0 = fy(x, y) or at a point where f is not differentiable (the latter usually
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signaled by the failure of fx or fy to exist). Here we discuss the very different matter
of finding the maximum and minimum values attained by f at points of the boundary
curve C .

If the curve C is the graph of the equation g(x, y) = 0, then our task is to maxi-
mize or minimize the function f (x, y) subject to the constraint, or side condition,

g(x, y) = 0. (1)

We could in principle try to solve this constraint equation for y = φ(x) and then max-
imize or minimize the single-variable function f (x, φ(x)) by the standard method of
finding its critical points. But what if it is impractical or impossible to solve Eq. (1)
explicitly for y in terms of x? An alternative approach that does not require that we
first solve this equation is the method of Lagrange multipliers. It is named for its dis-
coverer, the Italian-born French mathematician Joseph Louis Lagrange (1736–1813).
The method is based on Theorem 1.

THEOREM 1 Lagrange Multiplier (with one constraint)
Let f (x, y) and g(x, y) be continuously differentiable functions. If the maximum
(or minimum) value of f (x, y) subject to the constraint

g(x, y) = 0 (1)

occurs at a point P where ∇g(P) �= 0, then

∇ f (P) = λ∇g(P) (2)

for some constant λ.

Proof Because ∇g(P) �= 0, the implicit function theorem implies that the graph C
of the constraint equation g(x, y) = 0 agrees near P(x0, y0) with the graph of a con-
tinuously differentiable single-variable function—either y = α(x) or x = β(y). Either
case provides a smooth parametric curve r(t) whose image agrees near P with C . For
instance, in the case y = α(x) we define r(t) = 〈t, α(t)〉. If r(t0) = 〈x0, y0〉, then
r′(t0) = 〈1, α′(t0)〉 �= 0 as indicated in Fig. 12.9.1. If f (x, y) attains its maximum
(or minimum) value on C at P(x0, y0), then the composite function F(t) = f (r(t))
attains its maximum (or minimum) value at t = t0, so that F ′(t0) = 0. Therefore

F ′(t0) = ∇ f (r(t0)) · r′(t0) = ∇ f (P) · r′(t0) = 0 (3)

by the gradient vector form of the chain rule of Eq. (12) in Section 12.8.

y

x

g (x, y) = 0

r′(t0)
g (P)

r(t)

f (P)

P

FIGURE 12.9.1 The conclusion of
Theorem 1 illustrated.

Because r(t) lies on the curve g(x, y) = 0, the composite function G(t) =
g(r(t)) is constant-valued—G(t) ≡ 0—so G ′(t) ≡ 0. Therefore

G ′(t0) = ∇g(r(t0)) · r′(t0) = ∇g(P) · r′(t0) = 0. (4)

Equations (3) and (4), when taken together, imply that the two-dimensional plane vec-
tors ∇ f (P) and ∇g(P) are both perpendicular to the nonzero vector r′(t0), and are
therefore collinear. Because ∇g(P) �= 0, it now follows that ∇ f (P) must be a scalar
multiple of ∇g(P), just as claimed in Eq. (2). ◆

The Method
Let’s see what steps we should follow to solve a problem by using Theorem 1—the
method of Lagrange multipliers. First we need to identify a quantity z = f (x, y) to be
maximized or minimized, subject to the constraint g(x, y) = 0. Then Eq. (1) and the
two scalar components of Eq. (2) yield three equations:

g(x, y) = 0,

fx(x, y) = λgx(x, y), and

fy(x, y) = λgy(x, y).

(1)

(2a)

(2b)
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Thus we have three equations that we can attempt to solve for the three unknowns x, y,
and λ. The points (x, y) that we find (assuming that our efforts are successful) are the
only possible locations for the extrema of f subject to the constraint g(x, y) = 0. The
associated values of λ, called Lagrange multipliers, may be revealed as well but often
are not of much interest. Finally, we calculate the value f (x, y) at each of the solution
points (x, y) in order to identify its maximum and minimum values.

We must bear in mind the additional possibility that the maximum or minimum
(or both) of f may occur at a point where gx(x, y) = 0 = gy(x, y). The Lagrange
multiplier method may fail to locate these exceptional points, but they can usually be
recognized as points where the graph of g(x, y) = 0 fails to be a smooth curve.

EXAMPLE 1 Find the points of the rectangular hyperbola xy = 1 that are closest to
the origin (0, 0).

Solution We need to minimize the distance d = √
x2 + y2 from the origin of a point

P(x, y) on the curve xy = 1. But the algebra is simpler if instead we minimize the
square

f (x, y) = x2 + y2

of this distance subject to the constraint

g(x, y) = xy − 1 = 0

that the point P lies on the hyperbola. Because

∂ f

∂x
= 2x,

∂ f

∂y
= 2y, and

∂g

∂x
= y,

∂g

∂y
= x,

the Lagrange multiplier equations in (2a) and (2b) take the form

2x = λy, 2y = λx .

If we multiply the first of these equations by x and the second by y, we can conclude
that

2x2 = λxy = 2y2

at P(x, y). But the fact that xy = 1 > 0 implies that x and y have the same sign.
Hence the fact that x2 = y2 implies that x = y. Substituting in xy = 1 then gives
x2 = 1, so it follows finally that either x = y = 1 or x = y = −1. The two resulting
possibilities (1, 1) and (−1, −1) are indicated in Fig. 12.9.2. ◗

y

f (x, y) = M

g(x, y) = 0

−2

−2

−1

1

2

−1 1 2 x

(1, 1)

(−1, −1)

FIGURE 12.9.2 The level curve
f (x, y) = M and the constraint
curve g(x, y) = 0 are tangent at
a point P where the maximum
or minimum value M is attained.

REMARK Example 1 illustrates an interesting geometric interpretation of Theorem 1.
We see in Fig. 12.9.2 the constraint curve g(x, y) = 0 together with typical level
curves of the function f (x, y). Because the gradient vectors ∇ f and ∇g are normal
to the level curves of the functions f and g, respectively, it follows that the curves
f (x, y) = M and g(x, y) = 0 are tangent to one another at the point P where the two
gradient vectors are collinear and f attains its maximum (or minimum) value M . In
effect, the Lagrange multiplier criterion serves to select, from among the level curves
of f , the one that is tangent to the constraint curve at P . Thus we see in Fig. 12.9.2
that the circle x2 + y2 = 2 and the hyperbola xy = 1 are, indeed, tangent at the two
points (1, 1) and (−1, −1) where the squared distance f (x, y) = x2 + y2 is minimal
subject to the constraint g(x, y) = xy − 1.

EXAMPLE 2 In the sawmill problem of Example 5 in Section 3.6, we maximized the
cross-sectional area of a rectangular beam cut from a circular log. Now we consider
the elliptical log of Fig. 12.9.3, with semiaxes of lengths a = 2 ft and b = 1 ft. What
is the maximal cross-sectional area of a rectangular beam cut as indicated from this
elliptical log?
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Solution The log is bounded by the ellipse (x/2)2 + y2 = 1; that is, x2 + 4y2 = 4.

x

(x, y)

y

x2 + 4y2 = 4

FIGURE 12.9.3 Cutting a
rectangular beam from an elliptical
log (Example 2).

So with the coordinate system indicated in Fig. 12.9.3, we want to maximize the cross-
sectional area

A = f (x, y) = 4xy (5)

of the beam subject to the constraint

g(x, y) = x2 + 4y2 − 4 = 0. (6)

Because

∂ f

∂x
= 4y,

∂ f

∂y
= 4x and

∂g

∂x
= 2x,

∂g

∂y
= 8y,

Eqs. (2a) and (2b) give

4y = 2λx, 4x = 8λy.

It is clear that neither x = 0 nor y = 0 gives the maximum area, so we can solve these
two multiplier equations for

2y

x
= λ = x

2y
.

Thus x2 = 4y2 at the desired maximum. Because x2 + 4y2 = 4, it follows that x2 =
4y2 = 2. Because we seek (as in Fig. 12.9.3) a first-quadrant solution point (x, y),
we conclude that x = √

2, y = 1/
√

2 gives the maximum possible cross-sectional
area A max = 4(

√
2)(1/

√
2) = 4 ft2 of a rectangular beam cut from the elliptical log.

Note that this maximum area of 4 ft2 is about 64% of the total cross-sectional area
A = πab = 2π ft2 of the original log. ◗

REMARK If we consider all four quadrants, then the condition x2 = 4y2 = 2 yields
the four points (

√
2 , 1/

√
2 ), (−√

2 , 1/
√

2 ), (−√
2 , −1/

√
2 ), and (

√
2 , −1/

√
2 ).

The function f (x, y) = 4xy in Eq. (5) attains its maximum value +4 on the ellipse
x2 + 4y2 = 4 at the first and third of these points and its minimum value −4 at the
second and fourth points. The Lagrange multiplier method thus locates all of the global
extrema of f (x, y) on the ellipse.

In the applied maximum-minimum problems of Section 3.6, we typically began
with a formula such as Eq. (5) of this section, expressing the quantity to be maximized
in terms of two variables x and y, for example. We then used some available relation
such as Eq. (6) between the variables x and y to eliminate one of them, such as y.
Thus we finally obtained a single-variable function by substituting for y in terms of
x in the original formula. As in Example 2, the Lagrange multiplier method frees us
from the necessity of formulating the problem in terms of a single-variable function,
and frequently leads to a solution process that is algebraically simpler and easier.

Lagrange Multipliers in Three Dimensions
Now suppose that f (x, y, z) and g(x, y, z) are continuously differentiable functions
and that we want to find the points on the surface

g(x, y, z) = 0 (7)

at which the function f (x, y, z) attains its maximum and minimum values. Theorem 1
holds precisely as we have stated it, except with three independent variables rather than
two. We leave the details to Problem 45, but an argument similar to the proof of The-
orem 1 shows that—at a maximum or minimum point P of f (x, y, z) on the surface
g(x, y, z) = 0—the two gradient vectors ∇ f (P) and ∇g(P) are both perpendicular
to every smooth curve on the surface through P . Hence they are both normal to the
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surface at P , and are therefore collinear. (See Fig. 12.9.4.) Because ∇g(P) �= 0, it
follows that

∇ f (P) = λ∇g(P) (8)

for some scalar λ. This vector equation corresponds to three scalar equations. To find

f (P)

g (P)

P

g (x, y, z) = 0

FIGURE 12.9.4 The natural
generalization of Theorem 1 holds
for functions of three variables.

the possible locations of the extrema of f subject to the constraint g, we can attempt
to solve simultaneously the four equations

g(x, y, z) = 0,

fx(x, y, z) = λgx(x, y, z),

fy(x, y, z) = λgy(x, y, z),

fz(x, y, z) = λgz(x, y, z)

(7)

(8a)

(8b)

(8c)

for the four unknowns x , y, z, and λ. If successful, we then evaluate f (x, y, z) at each
of the solution points (x, y, z) to see at which it attains its maximum and minimum
values. In analogy to the two-dimensional case, we also check points at which the
surface g(x, y, z) = 0 fails to be smooth. Thus the Lagrange multiplier method with
one constraint is essentially the same in dimension three as in dimension two.

EXAMPLE 3 Find the maximum volume of a rectangular box inscribed in the el-z 

x

a
b

c

y

P(x, y, z)

FIGURE 12.9.5 A rectangular
2x × 2y × 2z box inscribed in an
ellipsoid with semiaxes a, b, and c.
The whole box is determined by its
first-octant vertex P(x , y, z).

lipsoid x2/a2 + y2/b2 + z2/c2 = 1 with its faces parallel to the coordinate planes
(Fig. 12.9.5).

Solution Let P(x, y, z) be the vertex of the box that lies in the first octant (where x ,
y, and z are all positive). We want to maximize the volume V (x, y, z) = 8xyz subject
to the constraint

g(x, y, z) = x2

a2
+ y2

b2
+ z2

c2
− 1 = 0.

Equations (8a), (8b), and (8c) give

8yz = 2λx

a2
, 8xz = 2λy

b2
, 8xy = 2λz

c2
.

Part of the art of mathematics lies in pausing for a moment to find an elegant way
to solve a problem rather than rushing in headlong with brute force methods. Here, if
we multiply the first equation by x , the second by y, and the third by z, we find that

2λ
x2

a2
= 2λ

y2

b2
= 2λ

z2

c2
= 8xyz.

Now λ �= 0 because (at maximum volume) x , y, and z are nonzero. We conclude that

x2

a2
= y2

b2
= z2

c2
.

The sum of the last three expressions is 1, because that is precisely the constraint
condition in this problem. Thus each of these three expressions is equal to 1

3 . All three
of x , y, and z are positive, and therefore

x = a√
3

, y = b√
3

, and z = c√
3

.

Therefore, the box of maximum volume has volume

V = Vmax = 8

3
√

3
abc.

Note that this answer is dimensionally correct—the product of the three lengths a, b,
and c yields a volume. But because the volume of the ellipsoid is V = 4

3πabc, and
[8/(3

√
3)]/(4π/3) = 2/(π

√
3 ) ≈ 0.37, it follows that the maximal box occupies only
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about 37% of the volume of the circumscribed ellipsoid. Considering the 64% result
in Example 2, would you consider this result plausible, or surprising? ◗

Problems that have Two Constraints
Suppose that we want to find the maximum and minimum values of the function
f (x, y, z) at points of the curve of intersection of the two surfaces

g(x, y, z) = 0 and h(x, y, z) = 0. (9)

This is a maximum-minimum problem with two constraints. The Lagrange multiplier
method for such situations is based on Theorem 2.

THEOREM 2 Lagrange Multipliers (with two constraints)
Suppose that f (x, y, z), g(x, y, z), and h(x, y, z) are continuously differentiable
functions. If the maximum (or minimum) value of f (x, y, z) subject to the two
constraints

g(x, y, z) = 0 and h(x, y, z) = 0 (9)

occurs at a point P where the vectors ∇g(P) and ∇h(P) are nonzero and nonparal-
lel, then

∇ f (P) = λ1∇g(P) + λ2∇h(P) (10)

for some two constants λ1 and λ2.

Outline of Proof By an appropriate version of the implicit function theorem, the
curve C of intersection of the two surfaces (Fig. 12.9.6) may be represented near P by
a parametric curve r(t) with nonzero tangent vector r′(t). Let t0 be the value of t such

r′(t0)

Normal plane

P
C

g

f

h

FIGURE 12.9.6 The relation
between the gradient vectors in the
proof of Theorem 2.

that r(t0) = O P
−−→

. We compute the derivatives at t0 of the composite functions f (r(t)),
g(r(t)), and h(r(t)). We find—exactly as in the proof of Theorem 1—that

∇ f (P) · r′(t0) = 0, ∇g(P) · r′(t0) = 0, and ∇h(P) · r′(t0) = 0.

These three equations imply that all three gradient vectors are perpendicular to

λ 2 f (P)h(P)

h(P)

g (P)
λ 1 g (P)

FIGURE 12.9.7 Geometry
of the equation ∇ f (P) =
λ1∇g(P) + λ2∇h(P).

the curve C at P and thus that they all lie in a single plane, the plane normal to the
curve C at the point P .

Now ∇g(P) and ∇h(P) are nonzero and nonparallel, so ∇ f (P) is the sum of its
projections onto ∇g(P) and ∇h(P). (See Problem 65 of Section 11.2.) As illustrated
in Fig. 12.9.7, this fact implies Eq. (10).

In examples we prefer to avoid subscripts by writing λ and μ for the Lagrange
multipliers λ1 and λ2 in the statement of Theorem 2. The equations in (9) and the three
scalar components of the vector equation in (10) then give rise to the five simultaneous
equations

g(x, y, z) = 0,

h(x, y, z) = 0,

fx(x, y, z) = λgx(x, y, z) + μhx(x, y, z),

fy(x, y, z) = λgy(x, y, z) + μhy(x, y, z),

fz(x, y, z) = λgz(x, y, z) + μhz(x, y, z)

(9a)

(9b)

(10a)

(10b)

(10c)

in the five unknowns x , y, z, λ, and μ.

EXAMPLE 4 The plane x + y + z = 12 intersects the paraboloid z = x2 + y2 in an
ellipse (Fig. 12.9.8). Find the highest and lowest points on this ellipse.
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Solution The height of the point (x, y, z) is z, so we want to find the maximum and−5
0

5

x

−5
0

5y

0

10

20

z

x + y + z = 12

P2 

P1 

z = x2 + y2

FIGURE 12.9.8 The plane and
paraboloid intersecting in the ellipse
of Example 4.

minimum values of

f (x, y, z) = z (11)

subject to the two conditions

g(x, y, z) = x + y + z − 12 = 0 (12)

and

h(x, y, z) = x2 + y2 − z = 0. (13)

The conditions in (10a) through (10c) yield

0 = λ + 2μx, (14a)
0 = λ + 2μy, (14b)

and

1 = λ − μ. (14c)

If μ were zero, then Eq. (14a) would imply that λ = 0, which contradicts
Eq. (14c). Hence μ �= 0, and therefore the equations

2μx = −λ = 2μy

imply that x = y. Substituting x = y into Eq. (13) gives z = 2x2, and then Eq. (12)
yields

2x2 + 2x − 12 = 0;
2(x + 3)(x − 2) = 0.

Thus we obtain the two solutions x = −3 and x = 2. Because y = x and z = 2x2,
the corresponding points of the ellipse are P1(2, 2, 8) and P2(−3, −3, 18). It’s clear
which is the lowest and which is the highest. ◗

More Variables, More Constraints
Many practical constrained optimization problems have more than three variables and/or
more than two constraints. For instance, Problem 48 is a concrete plane geometry prob-
lem with four independent variables.

There is a general form of the Lagrange multiplier condition that applies to any
such problem, whatever the numbers of variables and constraints. We need only adjoin
an additional term to the right-hand side in Eq. (10) for each additional constraint.
The resulting condition for maximizing or minimizing the value f (x1, x2, . . . , xn) of
a function of n variables subject to the k constraints

g1(x1, x2, . . . , xn) = 0,

g2(x1, x2, . . . , xn) = 0,

...

gk(x1, x2, . . . , xn) = 0

(15)

is

∇ f (P) = λ1∇g1(P) + λ2∇g2(P) + · · · + λk∇gk(P), (16)

where we write P = (x1, x2, . . . , xn). This condition holds under the assumptions that
the functions f, g1, g2, . . . , and gk are continuously differentiable near the optimal
point P , and that—in the language of linear algebra—the gradient vectors ∇g1(P),
∇g2(P) , . . . , ∇gk(P) are linearly independent in Rn . The latter hypothesis means
that no one of these k vectors can be expressed as a linear combination of the other
k − 1. The corresponding theorem is stated and proved in Chapter II of Edwards:
Advanced Calculus of Several Variables (New York: Dover Publications, 1994).
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Each of the gradient vectors in Eq. (16) has n components. When the resulting n
“scalar component equations” are combined (Problem 61) with the k scalar equations
in (15), we obtain the k + n scalar equations

g1(x1, x2, . . . , xn) = 0, . . . , gk(x1, x2, . . . , xn) = 0,

D1 f (x1, x2, . . . , xn) = λ1 D1g1(x1, x2, . . . , xn) + · · · + λk D1gk(x1, x2, . . . , xn),

D2 f (x1, x2, . . . , xn) = λ1 D2g1(x1, x2, . . . , xn) + · · · + λk D2gk(x1, x2, . . . , xn),

...

Dn f (x1, x2, . . . , xn) = λ1 Dng1(x1, x2, . . . , xn) + · · · + λk Dngk(x1, x2, . . . , xn)

(17)

to solve for the k + n unknowns λ1, λ2, . . . , λk, x1, x2, . . . , xn .
For instance, suppose that we ask for the minimal distance between points

P(x, y, z) and Q(u, v, w) on two different space curves, each of which is presented
as the intersection of two surfaces. We have the six coordinates x, y, z, u, v, and
w of the two points and the four constraint equations of the four given surfaces.
Then the system in (17) becomes a system of ten equations in the ten unknowns
x, y, z, u, v, w, λ1, λ2, λ3, and λ4. See Problem 65, where the two curves are skew
lines in space. This is a comparatively simple case, but you surely will want to use a
computer algebra system to solve the problem. (See the project manual material for
this section.)

12.9 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose you want to maximize or minimize the function f (x, y) subject to the
constraint g(x, y) = 0. One approach would be to try to solve the constraint
equation g(x, y) = 0 for y = φ(x) and then maximize or minimize the single-
variable function f (x, φ(x)).

2. Theorem 1 implies that if f (x, y) and g(x, y) are continuously differentiable
functions, then the function f (x, y) attains a maximum value subject to the con-
straint g(x, y) = 0 at a point P where ∇ f (P) = λ∇g(P).

3. Let f (x, y) and g(x, y) be continuously differentiable functions. If the maxi-
mum value of f (x, y) subject to the constraint g(x, y) = 0 occurs at a point P
where ∇g(P) is nonzero, then ∇g(P) is a scalar multiple of ∇ f (P).

4. The Lagrange multiplier method reduces the problem of finding the extreme val-
ues of f (x, y) subject to the constraint g(x, y) = 0 to a problem of solving three
equations in three unknowns.

5. The maximum value of f (x, y) subject to the constraint g(x, y) = 0 could occur
at a point where ∇g(P) = 0, in which case Theorem 1 would not apply and the
Lagrange multiplier method would fail to locate this maximum value.

6. In Example 1, the problem of finding the point(s) of the hyperbola xy = 1 closest
to the origin is simplified by minimizing the square of the distance of a point of
this hyperbola from the origin.

7. Theorem 1 holds precisely as stated at the beginning of this section, except with
functions f (x, y, z) and g(x, y, z) of three variables instead of two.

8. The Lagrange multiplier method reduces the problem of finding the extreme val-
ues of f (x, y, z) subject to the constraint g(x, y, z) = 0 to a problem of solving
four equations in four unknowns.

9. The Lagrange multiplier method reduces the problem of finding the extreme val-
ues of f (x, y, z) subject to two constraints g(x, y, z) = 0 and h(x, y, z) = 0 to
a problem of solving five equations in five unknowns.

10. Suppose f : R6 → R and g : R6 → R4 are continuously differentiable func-
tions. That is, f and the four component functions g1, g2, g3, g4 of g are real-
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valued functions of the six real variables x1, x2, x3, x4, x5, x6. Then the Lagrange
multiplier method reduces the problem of maximizing f (x) subject to the con-
straint g(x) = 0 to a problem of solving 10 equations in 10 unknowns.

12.9 CONCEPTS: QUESTIONS AND DISCUSSION
Give examples of continuously differentiable functions f , g : R2 → R satisfying the
conditions in Questions 1 through 3.

1. f (x, y) attains a minimum value but no maximum value subject to the constraint
g(x, y) = 0.

2. f (x, y) attains neither a maximum value nor a minimum value subject to the
constraint g(x, y) = 0.

3. f (x, y) attains its maximum value subject to the constraint g(x, y) = 0 at a
point P where ∇ f (P) �= λ∇g(P) for any λ. (In view of Theorem 1, how is this
possible?)

12.9 PROBLEMS

In Problems 1 through 18, find the maximum and minimum
values—if any—of the given function f subject to the given con-
straint or constraints.

1. f (x, y) = 2x + y; x2 + y2 = 1

2. f (x, y) = x + y; x2 + 4y2 = 1

3. f (x, y) = x2 − y2; x2 + y2 = 4

4. f (x, y) = x2 + y2; 2x + 3y = 6

5. f (x, y) = xy; 4x2 + 9y2 = 36

6. f (x, y) = 4x2 + 9y2; x2 + y2 = 1

7. f (x, y, z) = x2 + y2 + z2; 3x + 2y + z = 6

8. f (x, y, z) = 3x + 2y + z; x2 + y2 + z2 = 1

9. f (x, y, z) = x + y + z; x2 + 4y2 + 9z2 = 36

10. f (x, y, z) = xyz; x2 + y2 + z2 = 1

11. f (x, y, z) = xy + 2z; x2 + y2 + z2 = 36

12. f (x, y, z) = x − y + z; z = x2 − 6xy + y2

13. f (x, y, z) = x2 y2z2; x2 + 4y2 + 9z2 = 27

14. f (x, y, z) = x2 + y2 + z2; x4 + y4 + z4 = 3

15. f (x, y, z) = x2 + y2 +z2; x + y+z = 1 and x +2y+3z = 6

16. f (x, y, z) = z; x2 + y2 = 1 and 2x + 2y + z = 5

17. f (x, y, z) = z; x + y + z = 1 and x2 + y2 = 1

18. f (x, y, z) = x ; x + y + z = 12 and 4y2 + 9z2 = 36

19. Find the point on the line 3x + 4y = 100 that is closest to
the origin. Use Lagrange multipliers to minimize the square
of the distance.

20. A rectangular open-topped box is to have volume 700 in.3

The material for its bottom costs 7/c/in.2 and the material for
its four vertical sides costs 5/c/in.2 Use the method of La-
grange multipliers to find what dimensions will minimize the
cost of the material used in constructing this box.

In Problems 21 through 34, use the method of Lagrange multipli-
ers to solve the indicated problem from Section 12.5.

21. Problem 29 22. Problem 30

23. Problem 31 24. Problem 32

25. Problem 33 26. Problem 34

27. Problem 35 28. Problem 36

29. Problem 37 30. Problem 38

31. Problem 39 32. Problem 40

33. Problem 41 34. Problem 42

35. Find the point or points of the surface z = xy + 5 closest
to the origin. [Suggestion: Minimize the square of the dis-
tance.]

36. A triangle with sides x , y, and z has fixed perimeter 2s =
x + y + z. Its area A is given by Heron’s formula:

A = √
s(s − a)(s − b)(s − c).

Use the method of Lagrange multipliers to show that, among
all triangles with the given perimeter, the one of largest area
is equilateral. [Suggestion: Consider maximizing A2 rather
than A.]

37. Use the method of Lagrange multipliers to show that, of all
triangles inscribed in the unit circle, the one of greatest area
is equilateral. [Suggestion: Use Fig. 12.9.9 and the fact that
the area of a triangle with sides a and b and included angle
θ is given by the formula A = 1

2 ab sin θ .]

x2 + y2 = 1

γ
β

α

FIGURE 12.9.9 A triangle
inscribed in a circle (Problem 37).
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38. Find the points on the rotated ellipse x2 + xy + y2 = 3 that
are closest to and farthest from the origin. [Suggestion:
Write the Lagrange multiplier equations in the form

ax + by = 0,

cx + dy = 0.

These equations have a nontrivial solution only if ad −
bc = 0. Use this fact to solve first for λ.]

39. Use the method of Problem 38 to find the points of the
rotated hyperbola x2 + 12xy + 6y2 = 130 that are closest to
the origin.

40. Find the points of the ellipse 4x2 + 9y2 = 36 that are clos-
est to the point (1, 1) as well as the point or points farthest
from it.

41. Find the highest and lowest points on the ellipse formed by
the intersection of the cylinder x2 + y2 = 1 and the plane
2x + y − z = 4.

42. Apply the method of Example 4 to find the highest and low-
est points on the ellipse formed by the intersection of the
cone z2 = x2 + y2 and the plane x + 2y + 3z = 3.

43. Find the points on the ellipse of Problem 42 that are nearest
the origin and those that are farthest from it.

44. The ice tray shown in Fig. 12.9.10 is to be made from
material that costs 1/c/in.2 Minimize the cost function
f (x, y, z) = xy + 3xz + 7yz subject to the constraints that
each of the 12 compartments is to have a square horizontal
cross section and that the total volume (ignoring the parti-
tions) is to be 12 in.3

x

y

z

FIGURE 12.9.10 The ice tray of
Problem 44.

45. Prove Theorem 1 for functions of three variables by showing
that both of the vectors ∇ f (P) and ∇g(P) are perpendicular
at P to every curve on the surface g(x, y, z) = 0.

46. Find the lengths of the semiaxes of the ellipse of Example 4.

47. Figure 12.9.11 shows a right triangle with sides x , y, and z
and fixed perimeter P . Maximize its area A = 1

2 xy sub-
ject to the constraints x + y + z = P and x2 + y2 = z2.
In particular, show that the optimal such triangle is isosceles
(by showing that x = y).

z
y

x

FIGURE 12.9.11 A right
triangle with fixed perimeter
P (Problem 47).

48. Figure 12.9.12 shows a general triangle with sides x , y, and z
and fixed perimeter P . Maximize its area

A = f (x, y, z, α) = 1
2 xy sin α

subject to the constraints x + y + z = P and

z 2 = x2 + y2 − 2xy cos α

(the law of cosines). In particular, show that the optimal such
triangle is equilateral (by showing that x = y = z).

zy

x

α

FIGURE 12.9.12 A general
triangle with fixed perimeter
P (Problem 48).

49. Figure 12.9.13 shows a hexagon with vertices (0, ±1) and
(±x, ±y) inscribed in the unit circle x2 + y2 = 1. Show that
its area is maximal when it is a regular hexagon with equal
sides and angles.

y

x

(−x, −y) (x, −y)

(−x, y) (x, y)

FIGURE 12.9.13 The
inscribed hexagon of
Problem 49.

50. When the hexagon of Fig. 12.9.13 is rotated around the
y-axis, it generates a solid of revolution consisting of a cylin-
der and two cones (Fig. 12.9.14). What radius and cylinder
height maximize the volume of this solid?

x

2y

FIGURE 12.9.14 The
solid of Problem 50.

In Problems 51 through 58, consider the square of the distance
to be maximized or minimized. Use the numerical solution com-
mand in a computer algebra system as needed to solve the ap-
propriate Lagrange multiplier equations.

51. Find the points of the parabola y = (x − 1)2 that are closest
to the origin.

52. Find the points of the ellipse 4x2 + 9y2 = 36 that are closest
to and farthest from the point (3, 2).
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53. Find the first-quadrant point of the curve xy = 24 that is
closest to the point (1, 4).

54. Find the point of the surface xyz = 1 that is closest to the
point (1, 2, 3).

55. Find the points on the sphere with center (1, 2, 3) and radius
6 that are closest to and farthest from the origin.

56. Find the points of the ellipsoid 4x2 + 9y2 + z2 = 36 that are
closest to and farthest from the origin.

57. Find the points of the ellipse 4x2 + 9y2 = 36 that are closest
to and farthest from the straight line x + y = 10.

58. Find the points on the ellipsoid 4x2 + 9y2 + z2 = 36 that are
closest to and farthest from the plane 2x + 3y + z = 10.

59. Find the maximum possible volume of a rectangular box that
has its base in the xy-plane and its upper vertices on the el-
liptic paraboloid z = 9 − x2 − 2y2.

60. The plane 4x + 9y + z = 0 intersects the elliptic paraboloid
z = 2x2 + 3y2 in an ellipse. Find the highest and lowest
points on this ellipse.

61. Explain carefully how the equations in (17) result from those
in (15) and (16). If you wish, consider only a nontrivial spe-
cial case, such as the case n = 4 and k = 3.

62. (a) Suppose that x1, x2, . . . , and xn are positive. Show that
the minimum value of f (x) = x1 + x2 + · · · + xn subject
to the constraint x1x2 · · · xn = 1 is n. (b) Given n positive
numbers a1, a2, . . . , an , let

xi = ai

(a1a2 · · · an)1/n

for 1 � i � n and apply the result in part (a) to deduce the
arithmetic-geometric mean inequality

n
√

a1a2 · · · an �
a1 + a2 + · · · + an

n
.

63. Figure 12.9.15 shows a moat of width a = 10 ft, filled with
alligators, and bounded on each side by a wall of height
b = 6 ft. Soldiers plan to bridge this moat by scaling a
ladder placed across the nearer wall as indicated, anchored
at the ground with a handy boulder, and with the upper end
directly above the far wall on the opposite side of the moat.
They naturally wonder what is the minimal length L of a lad-
der that will suffice for this purpose. This is a particular case
of the problem of minimizing the length of a line segment
in the uv-plane that joins the points P(x, 0) and Q(0, y) on
the two coordinate axes and passes through the given first-
quadrant point (a, b). Show that L min = (a2/3 + b2/3)3/2 by
minimizing the squared length f (x, y) = x2 + y2 subject to
the constraint that u = a and v = b satisfy the uv-equation
u/x + v/y = 1 of the line through P and Q.

a = 10 ft
x

b = 6 ft

Ladder

y

Boulder

Moat

Rope

FIGURE 12.9.15 The alligator-filled moat
of Problem 63.

64. A three-dimensional analog of the two-dimensional prob-
lem in Problem 63 asks for the minimal area A of the
triangle in uvw-space with vertices P(x, 0, 0), Q(0, y, 0),
and R(0, 0, z) on the three coordinate axes and passing
through the given first-octant point (a, b, c). (a) First de-
duce from Miscellaneous Problem 51 of Chapter 11 that
A 2 = 1

4 (x2 y2 + x2z2 + y2z2). (b) If a = b = c = 1
then, by symmetry, x = y = z. Show in this case that
x = y = z = 3, and thus that A = 9

2

√
3. (c) Set up the

Lagrange multiplier equations for minimizing the squared
area A 2 subject to the constraint that the given coordinates
(a, b, c) satisfy the uvw-equation u/x + v/y + w/z = 1
of the plane through the points P , Q, and R. In general,
these equations have no known closed-form solution. Nev-
ertheless, you can use a computer algebra system (as in the
project manual for this section) to approximate numerically
the minimum value of A with given numerical values of a,
b, and c. Show first that with a = b = c = 1 you get an
accurate approximation to the exact value in part (b). Then
repeat the process with your own selection of values of a,
b, and c. [Note: This three-dimensional problem was mo-
tivated by the investigation of the n-dimensional version in
David Spring’s article “Solution of a Calculus Problem on
Minimal Volume” in The American Mathematical Monthly
(March 2001, pp. 217–221), where a Lagrange system of
n + 1 equations is reduced to a single nonlinear equation in
a single unknown.]

65. Suppose that L 1 is the line of intersection of the planes
2x + y + 2z = 15 and x + 2y + 3z = 30, and that L 2

is the line of intersection of the planes x − y − 2z = 15
and 3x − 2y − 3z = 20. Find the closest points P1 and P2

on these two skew lines. Use a computer to solve the corre-
sponding Lagrange multiplier system of 10 linear equations
in 10 unknowns.

12.9 INVESTIGATION: Numerical Solution of Lagrange Multiplier Systems
The Lagrange multiplier problems in Examples 1 through 4 of this section are some-
what atypical in that the equations in these examples can be solved exactly and without
great effort. Frequently a Lagrange multiplier problem leads to a system of equations
that can be solved only numerically and approximately. The project manual material
for this section supplies typical computer algebra system commands for the numerical
solution of such systems, plus a two-ladder moat problem that leads to a system of 12
nonlinear equations in seven coordinate variables and five Lagrange multipliers.
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12.10 CRITICAL POINTS OF FUNCTIONS OF TWO VARIABLES

We saw in Section 12.5 that in order for the differentiable function f (x, y) to have
either a local minimum or a local maximum at an interior critical point P(a, b) of its
domain, it is a necessary condition that P be a critical point of f —that is, that

fx(a, b) = 0 = fy(a, b).

Here we give conditions sufficient to ensure that f has a local extremum at a critical
point. The criterion stated in Theorem 1 involves the second-order partial derivatives of
f at (a, b) and plays the role of the single-variable second derivative test (Section 4.6)
for functions of two variables. To simplify the statement of this result, we use the
following abbreviations:

A = fxx(a, b), B = fxy(a, b), C = fyy(a, b), (1)

and

� = A C − B2 = fxx(a, b) fyy(a, b) − [
fxy(a, b)

]2
. (2)

We outline a proof of Theorem 1 at the end of this section.

THEOREM 1 Two-Variable Second Derivative Test
Suppose that the function f (x, y) has continuous second-order partial derivatives in
a neighborhood of the critical point (a, b) at which its first-order partial derivatives
all vanish. Let A, B, C , and � be defined as in Eqs. (1) and (2). Then:

• f (a, b) is a local minimum value of f if A > 0 and � > 0;
• f (a, b) is a local maximum value of f if A < 0 and � > 0;
• f (a, b) is neither a local minimum nor a local maximum if � < 0.

Thus f has either a local maximum or a local minimum at the critical point (a, b)

provided that the discriminant � = A C − B2 is positive. In this case, A = fxx(a, b)

plays the role of the second derivative of a single-variable function: There is a local
minimum at (a, b) if A > 0 and a local maximum if A < 0.

If � < 0, then f has neither a local maximum nor a local minimum at (a, b).
In this case we call (a, b) a saddle point of f , thinking of the appearance of the
hyperbolic paraboloid f (x, y) = x2 − y2 (Fig. 12.10.1), a typical example of this case.

Theorem 1 does not answer the question of what happens when � = 0. In this
case, the two-variable second derivative test fails—it gives no information. Moreover,
at such a point (a, b), anything can happen, ranging from the local (indeed global)
minimum of f (x, y) = x4 + y4 at (0, 0) to the “monkey saddle” of Example 2.

In the case of a function f (x, y) with several critical points, we must com-
pute the quantities A, B, C , and � separately at each critical point in order to apply
the test.

z

x

y

FIGURE 12.10.1 The origin is a
saddle point of the surface with
equation z = x2 − y2.

EXAMPLE 1 Locate and classify the critical points of

f (x, y) = 3x − x3 − 3xy2.

Solution This function is a polynomial, so all its partial derivatives exist and are
continuous everywhere. When we equate its first partial derivatives to zero (to locate
the critical points of f ), we get

fx(x, y) = 3 − 3x2 − 3y2 = 0 and fy(x, y) = −6xy = 0.

The second of these equations implies that x or y must be zero; then the first implies
that the other must be ±1. Thus there are four critical points: (1, 0), (−1, 0), (0, 1),
and (0, −1).

The second-order partial derivatives of f are

A = fxx(x, y) = −6x, B = fxy(x, y) = −6y, C = fyy(x, y) = −6x .
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Critical Type of
Point A B C � Extremum

(1, 0) −6 0 −6 36 Local maximum
(−1, 0) 6 0 6 36 Local minimum
(0, 1) 0 −6 0 −36 Saddle point

(0, −1) 0 6 0 −36 Saddle point

FIGURE 12.10.2 Critical-point analysis for the function of Example 1.

Hence � = 36(x2 − y2) at each of the critical points. The table in Fig. 12.10.2 sum-
marizes the situation at each of the four critical points, which are labeled in the contour
plot in Fig. 12.10.3. Near the points (±1, 0) we see the nested “ellipse-like” contours
that signal local extrema (Fig. 12.10.4), and near the points (0, ±1) we see “hyperbola-
like” contours that signal saddle points (Fig. 12.10.5). Figure 12.10.6 shows the critical
points on the graph of z = f (x, y). ◗

x

y

0 0.5 1 1.5 2−2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5

(1, 0)

(0, 1)

(0, −1)

(−1, 0)

FIGURE 12.10.3 Level curves for the
function of Example 1.

−0.5

0.5

0

0.5 1.51

(1, 0)

x

y

FIGURE 12.10.4 Level curves near
the critical point (1, 0).

0.50
x

y

−0.5
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

(0, 1)

FIGURE 12.10.5 Level curves near
the critical point (0, 1).

z

x
y

Saddle point
(0, 1, 0)

Local minimum
(−1, 0, −2)

Local maximum
(1, 0, 2)

FIGURE 12.10.6 Graph of the function of
Example 1.

EXAMPLE 2 Find and classify the critical points of the function

f (x, y) = 6xy2 − 2x3 − 3y4.

Solution When we equate the first-order partial derivatives to zero, we get the equa-
tions

fx(x, y) = 6y2 − 6x2 = 0 and fy(x, y) = 12xy − 12y3 = 0.
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It follows that
x2 = y2 and y(x − y2) = 0.

The first of these equations gives x = ±y. If x = y, the second equation implies that
y = 0 or y = 1. If x = −y, the second equation implies that y = 0 or y = −1. Hence
there are three critical points: (0, 0), (1, 1), and (1, −1).

The second-order partial derivatives of f are

A = fxx(x, y) = −12x, B = fxy(x, y) = 12y, C = fyy(x, y) = 12x − 36y2.

These expressions give the data shown in the table in Fig. 12.10.7. The critical point
test fails at (0, 0), so we must find another way to test this point.

Critical Type of
Point A B C � Extremum

(0, 0) 0 0 0 0 Test fails
(1, 1) −12 12 −24 144 Local maximum

(1, −1) −12 −12 −24 144 Local maximum

FIGURE 12.10.7 Critical-point analysis for the function of Example 2.

We observe that f (x, 0) = −2x3 and that f (0, y) = −3y4. Hence, as we move
away from the origin in the

Positive x-direction: f decreases;
Negative x-direction: f increases;
Positive y-direction: f decreases;
Negative y-direction: f decreases.

Consequently, f has neither a local maximum nor a local minimum at the origin. The

f(x, y) = 6xy2 − 2x3 − 3y4

0

2 x

−1 0 1

y

−2

0

2

z

FIGURE 12.10.8 The monkey
saddle of Example 2.

graph of f is shown in Fig. 12.10.8. If a monkey were to sit with its rump at the
origin and face the negative x-direction, then the directions in which f (x, y) decreases
would provide places for both its tail and its two legs to hang. That’s why this particular

FIGURE 12.10.9 The monkey in
its saddle (Example 2).

surface is called a monkey saddle (Fig. 12.10.9). ◗

EXAMPLE 3 Find and classify the critical points of the function

f (x, y) = 1
3 x4 + 1

2 y4 − 4xy2 + 2x2 + 2y2 + 3.

Solution When we equate to zero the first-order partial derivatives of f , we obtain
the equations

fx(x, y) = 4
3 x3 − 4y2 + 4x = 0, (3)

fy(x, y) = 2y3 − 8xy + 4y = 0, (4)

which are not as easy to solve as the corresponding equations in Examples 1 and 2.
But if we write Eq. (4) in the form

2y(y2 − 4x + 2) = 0,

we see that either y = 0 or
y2 = 4x − 2. (5)

If y = 0, then Eq. (3) reduces to the equation
4
3 x3 + 4x = 4

3 x(x2 + 3) = 0,

whose only solution is x = 0. Thus one critical point of f is (0, 0).
If y �= 0, we substitute y2 = 4x − 2 into Eq. (3) to obtain

4
3 x3 − 4(4x − 2) + 4x = 0;

that is,
4
3 x3 − 12x + 8 = 0.
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Thus we need to solve the cubic equation

−20

−10

0

10

20

−4 −2 0
x

2 4

y

FIGURE 12.10.10 The graph of
φ(x) = x3 − 9x + 6 (Example 3).

φ(x) = x3 − 9x + 6 = 0. (6)

The graph of φ(x) in Fig. 12.10.10 shows that this equation has three real solutions
with approximate values x ≈ −3, x ≈ 1, and x ≈ 3. Using either graphical techniques
or Newton’s method (Section 3.10), you can obtain the values

x ≈ −3.2899, x ≈ 0.7057, x ≈ 2.5842, (7)

accurate to four decimal places. The corresponding values of y are given from Eq. (5)
by

y = ±√
4x − 2, (8)

but the first value of x in (7) yields no real value at all for y. Thus the two positive
values of x in (7) add four critical points of f (x, y) to the one critical point (0, 0)

already found.

Critical
Point 1 2 3 4 5

x 0.0000 0.7057 0.7057 2.5842 2.5842
y 0.0000 0.9071 −0.9071 2.8874 −2.8874
z 3.0000 3.7402 3.7402 −3.5293 −3.5293
A 4.00 5.99 5.99 30.71 30.71
B 0.00 −7.26 7.26 −23.10 23.10
C 4.00 3.29 3.29 33.35 33.35
� 16.00 −32.94 −32.94 490.64 490.64

Type Local Saddle Saddle Local Local
minimum point point minimum minimum

FIGURE 12.10.11 Classification of the critical points in Example 3.

These five critical points are listed in the table in Fig. 12.10.11, together with the
corresponding values of

A = fxx(x, y) = 4x2 + 4, B = fxy(x, y) = −8y,

C = fyy(x, y)= 6y2 − 8x + 4, � = A C − B2

(rounded to two decimal places) at each of these critical points. We see that � > 0 and
A > 0 at (0, 0) and at (2.5482, ±2.8874), so these points are local minimum points.
But � < 0 at (0.7057, ±0.9071), so these two are saddle points. The level curve
diagram in Fig. 12.10.12 shows how these five critical points fit together.

−4

−2

0

2

4

−4 −2 0 2 4
x

y

z = 10

z = 3.74
z = 3.2

z = −1
z = −3

Local minimum
(2.58, −2.89)

Saddle point
(0.71, −0.91)

Saddle point
(0.71, 0.91)

Local minimum
(2.58, 2.89)

Local minimum
(0, 0)

z = 75
z = 30

FIGURE 12.10.12 Level curves for the function
of Example 3.
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Finally, we observe that the behavior of f (x, y) is approximately that of 1
3 x4 +

1
2 y4 when |x | or |y| is large, so the surface z = f (x, y) must open upward and, there-
fore, have a global low point (but no global high point). Examining the values

f (0, 0) = 3 and f (2.5842, ±2.8874) ≈ −3.5293,

we see that the global minimum value of f (x, y) is approximately −3.5293. ◗

Proof of Theorem 1
It happens that the behavior of the function f (x, y) near its critical point (a, b) is
determined by the behavior near the origin (0, 0) of the quadratic form

q(h, k) = A h2 + 2Bhk + Ck2 (9)

in h and k (A, B, and C are computed as in Eq. (1)). If A �= 0, then you can verify
readily that

q(h, k) = 1

A
[(A h + Bk)2 + �k2], (10)

either by expanding the right-hand side in (10) or by completing the square in Eq. (9).
The three parts of the following proposition correspond to the three cases in the con-
clusion of Theorem 1.

PROPOSITION Behavior of Quadratic Forms

1. If � > 0 and A > 0, then q(h, k) > 0 unless h and k are both zero.
2. If � > 0 and A < 0, then q(h, k) < 0 unless h and k are both zero.
3. If � < 0, then every neighborhood of (0, 0) contains points at which

q(h, k) > 0 and points at which q(h, k) < 0.

The three parts of this proposition can be visualized by thinking of the graph of q
as an upward-opening elliptic paraboloid in part 1, as a downward-opening paraboloid
in part 2, and as a hyperbolic paraboloid with a saddle point in part 3.

Proof Parts 1 and 2 of the proposition follow immediately by consideration of signs
in Eq. (10), because the quantity within the brackets is positive if � > 0 and h and k
are not both zero, in which case the sign of q(x, y) is the same as the sign of A.

Part 3 leads to several cases depending on the possible values of A, B, and C . If
A = C = 0 and � = −B 2 < 0, then q(h, k) = 2Bhk, so the conclusion in part 3
follows at once.

If B = 0 and � = A C < 0, then A and C have different signs and Q(h, k) =
A h2 + Ck2, so again the conclusion in part 3 follows at once.

If B �= 0 and A �= 0, then the values q(h, 0) = A h2 and q(h, −A h/B) =
�k2/A have different signs if � < 0, so again the conclusion of part 3 follows. The
analysis of the remaining case, in which B �= 0 and C �= 0, is similar. ◆

Now let us consider the critical point (a, b) of the function f (x, y) of Theorem 1.
Draw a circular disk centered at (a, b) as in Fig. 12.10.13. Because the second-order
partial derivatives of f are continuous, we can make the radius of this disk so small
that the quantity fxx(x, y) fyy(x, y) − [

fxy(x, y)
]2

has the same sign as the constant

� = fxx(a, b) fyy(a, b) − [
fxy(a, b)

]2
at every point (x, y) of the disk.

Now consider the single-variable function g defined by

(a, b )

(a + h, b + k)

(x, y)– –

FIGURE 12.10.13 The circular
disk centered at the point (a, b).

g(t) = f (a + th, b + tk)

for 0 � t � 1. Application of Taylor’s formula (Section 10.4) to g(t) gives

g(1) = g(0) + g′(0) + 1
2 g′′( t ) (11)

988

www.konkur.in



Critical Points of Functions of Two Variables SECTION 12.10 989

for some number t between 0 and 1. But the chain rule gives first

g′(t) = ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
= h fx + k fy,

and then

g′′(t) = ∂

∂x
(h fx + k fy)

dx

dt
+ ∂

∂y
(h fx + k fy)

dy

dt

= h2 fxx + 2hk fxy + k2 fyy,

where the indicated partial derivatives of f are to be evaluated at the point (x, y) =
(a + th, b + tk). Consequently g′(0) = 0 because fx(a, b) = 0 = fy(a, b), and

g′′( t ) = A h2 + 2B hk + C k2 (12)

where the coefficients A , B , and C in this quadratic form denote the values of the
second derivatives fxx , fxy , and fyy (respectively) at the point (x, y) = (a+th, b+tk).

Because g(0) = f (a, b) and g(1) = f (a + h, b + k), Eqs. (11) and (12) imply
that

f (a + h, b + k) = f (a, b) + 1
2 (A h2 + 2B hk + C k2). (13)

Now � = A C − B
2

has the same sign as � = A C − B2. And if A �= 0, then we
may assume that the circular disk in Fig. 12.10.13 is so small that A has the same sign
as A. Then the quadratic form

q(h, k) = A h2 + 2B hk + C k2

that appears in Eq. (13) exhibits the same behavior as the quadratic form q(h, k) of
Eq. (9). Theorem 1 now follows from the proposition on the behavior of quadratic
forms. For instance, if � and A are both positive, then the values q(h, k) and hence
q(h, k) are positive unless h and k are both zero. Therefore Eq. (13) gives

f (a + h, b + k) = f (a, b) + 1
2 q(h, k) > f (a, b)

at each point (a + h, b + k)—other than (a, b) itself—of the circular disk of
Fig. 12.10.13. Thus f (a, b) is a local minimum value in this first case of Theorem 1.
The other two cases follow from similar arguments.

12.10 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Theorem 1 of this section pertains to the classification of critical points of func-
tions of two or more independent variables.

2. Let (a, b) be a critical point of the function f (x, y) whose second-order partial
derivatives are continuous near (a, b), and write

A = fxx(a, b), B = fxy(a, b), C = fyy(a, b), � = AC − B2

using the notation of Theorem 1. Then f (a, b) is a local maximum value if
� > 0, a local minimum value if � < 0.

3. With the hypotheses and notation of Question 2, suppose that � > 0. Then
f (a, b) is a local maximum value if A > 0, a local minimum value if A < 0.

4. With the hypotheses and notation of Question 2, suppose that � < 0. Then
f (a, b) is a local maximum value if A > 0, a local minimum value if A < 0.

5. With the hypotheses and notation of Question 2, suppose that � �= 0. Then
f (a, b) is a local extreme value if � < 0, a saddle-point value value if � > 0.

6. With the hypotheses and notation of Question 2, suppose that � = 0. Then
it follows that f (a, b) is neither a local minumum value nor a local maximum
value.
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7. With the hypotheses and notation of Question 2, suppose that A and C have
different signs. Then it follows that f (a, b) is neither a local maximum value
nor a local minimum value.

8. Example 1 in this section illustrates all three cases in Theorem 1.
9. Example 2 in this section illustrates all three cases in Theorem 1.

10. Example 3 in this section illustrates illustrates the possibility of a critical point
whose character is not determined by Theorem 1.

12.10 CONCEPTS: QUESTIONS AND DISCUSSION
Give simple examples of your own, different from any that appear in this section, that
illustrate the following situations.

1. The three cases in Theorem 1.
2. The fact that either a maximum or a minimum, or neither, can occur at a critical

point at which � = A C − B2 = 0.

12.10 PROBLEMS

Find and classify the critical points of the functions in Problems 1
through 22. If a computer algebra system is available, check your
results by means of contour plots like those in Figs. 12.10.14–
12.10.17.

1. f (x, y) = 2x2 + y2 + 4x − 4y + 5

2. f (x, y) = 10 + 12x − 12y − 3x2 − 2y2

3. f (x, y) = 2x2 − 3y2 + 2x − 3y + 7

4. f (x, y) = xy + 3x − 2y + 4

5. f (x, y) = 2x2 + 2xy + y2 + 4x − 2y + 1

6. f (x, y) = x2 + 4xy + 2y2 + 4x − 8y + 3

7. f (x, y) = x3 + y3 + 3xy + 3 (Fig. 12.10.14)

8. f (x, y) = x2 − 2xy + y3 − y

9. f (x, y) = 6x − x3 − y3

10. f (x, y) = 3xy − x3 − y3

11. f (x, y) = x4 + y4 − 4xy

12. f (x, y) = x3 + 6xy + 3y2

13. f (x, y) = x3 + 6xy + 3y2 − 9x (Fig. 12.10.15)

14. f (x, y) = x3 + 6xy + 3y2 + 6x

15. f (x, y) = 3x2 + 6xy + 2y3 + 12x − 24y

16. f (x, y) = 3x2 + 12xy + 2y3 − 6x + 6y

17. f (x, y) = 4xy − 2x4 − y2 (Fig. 12.10.16)

18. f (x, y) = 8xy − 2x2 − y4

19. f (x, y) = 2x3 − 3x2 + y2 − 12x + 10

20. f (x, y) = 2x3 + y3 − 3x2 − 12x − 3y (Fig. 12.10.17)

21. f (x, y) = xy exp(−x2 − y2)

22. f (x, y) = (x2 + y2) exp(x2 − y2)

In Problems 23 through 25, first show that � = fxx fyy −( fxy)
2 is

zero at the origin. Then classify this critical point by visualizing
the surface z = f (x, y).

23. f (x, y) = x4 + y4

24. f (x, y) = x3 + y3

25. f (x, y) = exp(−x4 − y4)

26. Let f (s, t) denote the square of the distance between a typ-
ical point of the line x = t , y = t + 1, z = 2t and a typical
point of the line x = 2s, y = s − 1, z = s + 1. Show that
the single critical point of f is a local minimum. Hence find
the closest points on these two skew lines.

27. Let f (x, y) denote the square of the distance from (0, 0, 2)

to a typical point of the surface z = xy. Find and classify
the critical points of f .

x

y

FIGURE 12.10.14 Contour plot
for Problem 7.

x

y

FIGURE 12.10.15 Contour plot
for Problem 13.

x

y

FIGURE 12.10.16 Contour plot
for Problem 17.

x

y

FIGURE 12.10.17 Contour plot
for Problem 20.
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28. Show that the surface

z = (x2 + 2y2) exp(1 − x2 − y2)

looks like two mountain peaks joined by two ridges with a
pit between them.

29. A wire 120 cm long is cut into three pieces of lengths x , y,
and 120 − x − y, and each piece is bent into the shape of
a square. Let f (x, y) denote the sum of the areas of these
squares. Show that the single critical point of f is a local
minimum. But surely it is possible to maximize the sum of
the areas. Explain.

30. Show that the graph of the function

f (x, y) = xy exp
(

1
8 [x2 + 4y2])

has a saddle point but no local extrema.

31. Find and classify the critical points of the function

f (x, y) = sin
πx

2
sin

πy

2
.

32. Let f (x, y) = x3 −3xy2. (a) Show that its only critical point
is (0, 0) and that � = 0 there. (b) By examining the behav-
ior of x3 − 3xy2 on straight lines through the origin, show
that the surface z = x3 − 3xy2 qualifies as a monkey saddle
(Fig. 12.10.18).

z

yx

FIGURE 12.10.18 The
monkey saddle of Problem 32.

33. Repeat Problem 32 with f (x, y) = 4xy(x2 − y2). Show
that near the critical point (0, 0) the surface z = f (x, y)

qualifies as a “dog saddle” for a dog with a very short tail
(Fig. 12.10.19).

yx

z

FIGURE 12.10.19 The dog saddle
of Problem 33.

34. Let

f (x, y) = xy(x2 − y2)

x2 + y2
.

Classify the behavior of f near the critical point (0, 0).

In Problems 35 through 39, use a computer algebra program
(as illustrated in the project material for this section) to ap-
proximate numerically and classify the critical point of the given
function.

35. f (x, y) = 2x4 − 12x2 + y2 + 8x

36. f (x, y) = x4 + 4x2 − y2 − 16x

37. f (x, y) = x4 + 12xy + 6y2 + 4x + 10

38. f (x, y) = x4 + 8xy − 4y2 − 16x + 10

39. f (x, y) = x4 + 2y4 − 12xy2 − 20y2

12.10 INVESTIGATION: Critical Point Explorations
In the project manual material for this project, the function

f (x, y) = 10 exp
(−x2 − 1

2 xy − 1
2 y2

)
sin x sin y (1)

is used to illustrate computer algebra system techniques for the location and classifica-
tion of critical points for functions of two variables, as follows:

• First, a surface graph shows the “big picture” that we want to investigate in detail.
In Fig. 12.10.20 we see two peaks and two pits, as well as an apparent saddle
point.

• Next, a contour graph as in Fig. 12.10.21 reveals the approximate location of
each of these critical points.

• Then we set up the equations fx(x, y) = 0 and fy(x, y) = 0; we use a computer
algebra solve command to approximate the critical points accurately—with the
known approximate location of each critical point providing an initial guess for
its calculation.

991

www.konkur.in



992 CHAPTER 12 Partial Differentiation

−2

0

2 −2
0

2

−2

−1

0

1

2

y
x

z

FIGURE 12.10.20 Graph of the
function in Eq. (1).

−2 −1 0 1 2
x

−2

−1

0

1

2

y

FIGURE 12.10.21 Contour plot
for the function in Eq. (1).

• Finally, we compute that information about the second-order partial derivatives
needed to apply Theorem 1 to classify each critical point. And a contour plot in
a small neighborhood of a critical point (as in Figs. 12.10.3 through 12.10.5) can
provide satisfying visual corroboration of our results.

You can follow this agenda to investigate a function such as

f (x, y) = (ax2 + 2bxy + cy2) exp(−x2 − y2) (2)

where a, b, and c are selected integers, or the more exotic function

f (x, y) = 10

(
x3 + y5 ± x

p

)
exp(−x2 − y2) + 1

3
exp(−(x − 1)2 − y2) (3)

where p is a small positive integer. With the plus sign in Eq. (3) you are likely to see
a half-dozen critical points, but with the minus sign you can expect to see more (as in
Fig. 12.10.22, in which p = 5 and there appears to be some “action” near the origin,
in addition to the pairs of pits, peaks, and passes that are most evident).

−2
0

2

−2
0

2

−5

0

5

xy

z

FIGURE 12.10.22 Graph of the function in Eq. (3), with p = 5 and the
minus sign.
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CHAPTER 12: REVIEW

Understanding: Concepts, Definitions, and Results
Refer to the listed pages to review the concepts, definitions, and results of this chapter that you need to understand.
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994 CHAPTER 12 Partial Differentiation

CHAPTER 12: REVIEW (Continued)

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
12.2 Finding domains of definition of multivariable functions . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 13, 15

Describing graphs of functions of two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 29
Sketching level curves of two-variable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 37
Describing level surfaces of three-variable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Matching two-variable functions and their graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53, 55, 57

12.3 Applying the limit laws to evaluate limits of multivariable functions . . . . . . . . . . . . . . 3, 7, 11, 13, 25, 29
Using polar and spherical coordinates to evaluate limits . . . . . . . . . . . . . . . . . . . . . . . . . .37, 39, 41

12.4 Calculating first-order partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 7, 13, 17, 19
Calculating higher-order partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23, 27
Finding tangent planes to a surface z = f (x, y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 39
Verifying suggested solutions of partial differential equations . . . . . . . . . . . . . . . . . . . . 55, 56, 57, 58
Using partial derivatives to calculate rate of ascent on a hill . . . . . . . . . . . . . . . . . . . . . . 71

12.5 Finding points on a surface where the tangent plane is horizontal . . . . . . . . . . . . . . . . . 5, 11
Finding the high and low points on a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15, 21
Finding the extreme values of a function on a given plane region . . . . . . . . . . . . . . . . . 23, 27
Solving applied multivariable maximum-minimum problems . . . . . . . . . . . . . . . . . . . . . 29, 39, 41, 45, 47, 57

12.6 Calculating differentials of multivariable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 9
Using differentials to approximate values of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 23, 25, 29
Using differentials to estimate maximal errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 35, 39, 41

12.7 Applying the chain rule to calculate partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 7, 9, 13, 15, 23, 25
Finding tangent planes to surfaces defined implicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Using the chain rule to solve rate-of-change problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 35

12.8 Calculating gradient vectors of multivariable functions . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 9
Calculating directional derivatives of multivariable functions . . . . . . . . . . . . . . . . . . . . . 11, 17
Find the maximal directional derivative at a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 25
Using the gradient vector to find tangent lines and planes . . . . . . . . . . . . . . . . . . . . . . . . 31, 33
Using directional derivatives to solve rate-of-change problems . . . . . . . . . . . . . . . . . . . 45, 47, 49, 61

12.9 Using Lagrange multipliers to solve constrained max-min problems . . . . . . . . . . . . . . 3, 5, 7, 9, 15
Using Lagrange multipliers to solve optimization problems . . . . . . . . . . . . . . . . . . . . . . 23, 31, 33, 39, 41

12.10 Finding and classifying the critical points of a function f (x, y) . . . . . . . . . . . . . . . . . . .3, 5, 7, 11, 15, 19, 28

MISCELLANEOUS PROBLEMS

1. Use polar coordinates to show that

lim
(x,y)→(0,0)

x2 y2

x2 + y2
= 0.

2. Use spherical coordinates to show that

lim
(x,y,z)→(0,0,0)

x3 + y3 − z3

x2 + y2 + z2
= 0.

3. Suppose that

g(x, y) = xy

x2 + y2

if (x, y) �= (0, 0); we define g(0, 0) to be zero. Show that g
is not continuous at (0, 0).

4. Compute gx (0, 0) and gy(0, 0) for the function g of
Problem 3.

5. Find a function f (x, y) such that

fx (x, y) = 2xy3 + ex sin y

and
fy(x, y) = 3x2 y2 + ex cos y + 1.

6. Prove that there is no function f with continuous second-
order partial derivatives such that fx (x, y) = 6xy2 and
fy(x, y) = 8x2 y.

7. Find the point or points on the paraboloid z = x2 + y2 at
which the normal line passes through the point (0, 0, 1).

8. Write an equation of the plane tangent to the surface

sin xy + sin yz + sin xz = 1

at the point (1, π/2, 0).

9. Prove that every line normal to the cone with equation z =√
x2 + y2 intersects the z-axis.
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10. Show that the function

u(x, t) = 1√
4πkt

exp

(
− x2

4kt

)

satisfies the one-dimensional heat equation

∂u

∂t
= k

∂2u

∂x2
.

11. Show that the function

u(x, y, t) = 1

4πkt
exp

(
− x2 + y2

4kt

)

satisfies the two-dimensional heat equation

∂u

∂t
= k

(
∂2u

∂x2
+ ∂2u

∂y2

)
.

12. Suppose that f (x, y, z) = 5
√

xyz. (a) Show that the partial
derivatives fx , fy , and fz all exist at the origin. (b) Show
that the directional derivative Du f (0, 0, 0) exists if and only
if the unit vector u is a linear combination of some two of
the standard unit vectors i, j, and k.

13. Define the partial derivatives rx and ry of the vector-valued
function r(x, y) = ix + jy + k f (x, y) by componentwise
partial differentiation. Then show that the vector rx × ry is
normal to the surface z = f (x, y).

14. An open-topped rectangular box is to have total surface
area 300 cm2. Find the dimensions that maximize its
volume.

15. You must build a rectangular shipping crate with volume 60
ft3. Its sides cost $1/ft2, its top costs $2/ft2, and its bottom
costs $3/ft2. What dimensions would minimize the total cost
of the box?

16. A pyramid is bounded by the three coordinate planes and by
the plane tangent to the surface xyz = 1 at a point in the first
octant. Find the volume of this pyramid (it is independent of
the point of tangency).

17. Two resistors have resistances R 1 and R 2, respectively.
When they are connected in parallel, the total resistance R
of the resulting circuit satisfies the equation

1

R
= 1

R 1
+ 1

R 2
.

Suppose that R 1 and R 2 are measured to be 300 and 600 �

(ohms) respectively, with a maximum error of 1% in each
measurement. Use differentials to estimate the maximum
error (in ohms) in the calculated value of R.

18. Consider a gas that satisfies van der Waals’ equation. (See
Problem 67 of Section 12.4.) Use differentials to approxi-
mate the change in its volume if p is increased from 1 atm
to 1.1 atm and T is decreased from 313 K to 303 K.

19. Each of the semiaxes a, b, and c of an ellipsoid with volume
V = 4

3 πabc is measured with a maximum percentage error
of 1%. Use differentials to estimate the maximum percent-
age error in the calculated value of V .

20. Two spheres have radii a and b, and the distance between
their centers is c < a + b. Thus the spheres meet in a com-
mon circle. Let P be a point on this circle, and let P1 and P2

be the planes tangent at P to the two spheres. Find the angle
between P1 and P2 in terms of a, b, and c. [Suggestion: Re-
call that the angle between two planes is, by definition, the
angle between their normal vectors.]

21. Find every point on the surface of the ellipsoid x2 + 4y2 +
9z2 = 16 at which the normal line at the point passes through
the center (0, 0, 0) of the ellipsoid.

22. Suppose that

F(x) =
∫ h(x)

g(x)

f (t) dt.

Show that

F ′(x) = f (h(x))h′(x) − f (g(x))g′(x).

[Suggestion: Write w = ∫ v

u f (t) dt where u = g(x) and
v = h(x).]

23. Suppose that a, b, and c are mutually perpendicular unit vec-
tors in space and that f is a function of the three independent
variables x , y, and z. Show that

∇ f = a(Da f ) + b(D b f ) + c(Dc f ) .

24. Let R = 〈cos θ, sin θ, 0〉 and Θ = 〈− sin θ, cos θ, 0〉 be
the polar-coordinates unit vectors. Given f (x, y, z) =
w(r, θ, z), show that

DR f = ∂w

∂r
and D� f = 1

r

∂w

∂θ
.

Then conclude from Problem 23 that the gradient vector is
given in cylindrical coordinates by

∇ f = ∂w

∂r
R + 1

r

∂w

∂θ
Θ + ∂w

∂z
k.

25. Suppose that you are standing at the point with coordi-
nates (−100, −100, 430) on a hill that has the shape of the
graph of

z = 500 − (0.003)x2 − (0.004)y2

(in units of meters). In what (horizontal) direction should
you move in order to maintain a constant altitude—that is,
to neither climb nor descend the hill?

26. Suppose that the blood concentration in the ocean at the
point (x, y) is given by

f (x, y) = A exp(−k[x2 + 2y2]),
where A and k are positive constants. A shark always
swims in the direction of ∇ f . Show that its path is a
parabola y = cx2. [Suggestion: Show that the condition
that 〈dx/dt, dy/dt〉 is a multiple of ∇ f implies that

1

x

dx

dt
= 1

2y

dy

dt
.

Then antidifferentiate this equation.]

27. Consider a plane tangent to the surface with equation x2/3 +
y2/3 + z2/3 = 1. Find the sum of the squares of the x-, y-,
and z-intercepts of this plane.

28. Find the points on the ellipse x2/a2+y2/b2 = 1 (with a �= b)
where the normal line passes through the origin.

29. Let

f (x, y) = x2 y2

x2 + y2

if (x, y) �= (0, 0) and define f (0, 0) to be 0. First show that
f is differentiable at the origin. Then classify the origin as a
critical point of f .
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30. Find the point of the surface z = xy + 1 that is closest to the
origin.

31. Use the method of Problem 38 in Section 12.9 to find the
semiaxes of the rotated ellipse

73x2 + 72xy + 52y2 = 100.

32. Use the Lagrange multiplier method to show that the longest
chord of the sphere x2 + y2 + z2 = 1 has length 2. [Sugges-
tion: There is no loss of generality in assuming that (1, 0, 0)

is one endpoint of the chord.]

33. Use the method of Lagrange multipliers, the law of cosines,
and Fig. 12.9.9 to find the triangle of minimum perimeter
inscribed in the unit circle.

34. When a current I enters two resistors, with resistances R1

and R2, that are connected in parallel, it splits into two cur-
rents I1 and I2 (with I = I1 + I2) in such a way to minimize
the total power loss R1 I 2

1 + R2 I 2
2 . Express I1 and I2 in terms

of R1, R2, and I . Then derive the formula in Problem 17.

35. Use the method of Lagrange multipliers to find the points of
the ellipse x2 + 2y2 = 1 that are closest to and farthest from
the line x + y = 2. [Suggestion: Let f (x, y, u, v) denote the
square of the distance between the point (x, y) of the ellipse
and the point (u, v) of the line.]

36. (a) Show that the maximum of

f (x, y, z) = x + y + z

at points of the sphere x2 + y2 + z2 = a2 is a
√

3 . (b) Con-
clude from the result in part (a) that

(x + y + z)2 � 3(x2 + y2 + z2)

for any three numbers x , y, and z.

37. Generalize the method of Problem 36 to show that, for any
n arbitrary real numbers x1, x2, . . . , and xn ,

x1 + x2 + · · · + xn

n
�

√
x2

1 + x2
2 + · · · + x2

n

n
.

Thus the arithmetic mean of the real numbers x1, x2, . . . , xn

is no greater than their root-square mean.

38. Find the maximum and minimum values of f (x, y) = xy −
x − y at points on and within the plane triangle with vertices
(0, 0), (0, 1), and (3, 0).

39. Find the maximum and minimum values of f (x, y, z) =
x2 − yz at points of the sphere x2 + y2 + z2 = 1.

40. Find the maximum and minimum values of f (x, y) = x2 y2

at points of the ellipse x2 + 4y2 = 24.

Locate and classify the critical points (local maxima, local min-
ima, saddle points, and other points at which the tangent plane
is horizontal) of the functions in Problems 41 through 50.

41. f (x, y) = x3 y − 3xy + y2

42. f (x, y) = x2 + xy + y2 − 6x + 2

43. f (x, y) = x3 − 6xy + y3

44. f (x, y) = x2 y + xy2 + x + y

45. f (x, y) = x3 y2(1 − x − y)

46. f (x, y) = x4 − 2x2 + y2 + 4y + 3

47. f (x, y) = exy − 2xy

48. f (x, y) = x3 − y3 + x2 + y2

49. f (x, y) = (x − y)(xy − 1)

50. f (x, y) = (2x2 + y2) exp(−x2 − y2)

51. Given the data points (xi , yi ) for i = 1, 2, . . . , n, the least-
squares straight line y = m x + b is the line that best fits
these data in the following sense. Let di = yi − (m xi + b)

be the deviation of the predicted value m xi +b from the true
value yi . Let

f (m, b) = d2
1 + d2

2 + · · · + d2
n =

n∑
i=1

[yi − (mxi + b)]2

be the sum of the squares of the deviations. The least-
squares straight line is the one that minimizes this sum
(Fig. 12.MP.1). Show how to choose m and b by minimiz-
ing f . [Note: The only variables in this computation are m
and b.]

y

x

P1(x1, y1)

Pi (xi , yi)

Pn (xn, yn)

P2(x2, y2)

Qi (xi , mxi + b)

Q1 

Q2 

Qn 

y = mx + b

di 

FIGURE 12.MP.1 Fitting the best straight line to
the data points (xi , yi ), 1 � i � n (Problem 51).

52. Let f : R2n → R be defined for (x, y) in R2n by

f (x, y) = xT y =
n∑

i=1

xi yi .

Use Lagrange multipliers to show that the maximum value
of f (x, y) subject to the constraints |x| = 1 and |y| = 1 is
1. Given any two vectors a and b in R2, write x = a/|a| and
y = b/|b| to conclude that

aT b � |a| |b|
(the Cauchy-Schwarz inequality).

PHOTO CREDITS

p. 899 Courtesy of the Library of Congress 
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Multiple Integrals 13

Henri Lebesgue (1875–1941)

Geometric problems
of measure—deal-
ing with concepts of

length, area, and volume—
can be traced back 40 cen-
turies to the rise of civi-
lizations in the fertile river
valleys of Africa and Asia,
when such issues as areas of
fields and volumes of gra-
naries became important.
These problems led ulti-
mately to the integral, which
is used to calculate (among

other things) areas and volumes of curvilinear figures.
But only in the early twentieth century were certain long-
standing difficulties with measure and integration finally
resolved, largely as a consequence of the work of the
French mathematician Henri Lebesgue.

In his 1902 thesis presented at the Sorbonne in Paris,
Lebesgue investigated a new definition of the integral,
generalizing Riemann’s definition. In essence, to define
the integral of the function f from x = a to x = b,
Lebesgue replaced Riemann’s subdivision of the interval
[a, b] into nonoverlapping subintervals with a partition of
[a, b] into disjoint measurable sets {Ei }. The Riemann
sum

∑
f (x�

i ) �x was thereby replaced with a sum of the
form

∑
f (x�

i ) mi , where mi is the measure of the i th set
Ei and x�

i is a number in Ei . To see the advantage of the
“Lebesgue integral,” consider the fact that there exist dif-
ferentiable functions whose derivatives are not integrable
in the sense of Riemann. For such a function, the funda-
mental theorem of calculus in the form∫ b

a
f ′(x) dx = f (b) − f (a)

fails to hold. But with his new definition of the inte-
gral, Lebesgue showed that a derivative function f ′ is inte-
grable and that the fundamental theorem holds. Similarly,
the equality of double and iterated integrals (Section 13.1)
holds only under rather drastic restrictions if the Riemann
definition of multiple integrals is used, but the Lebesgue
integral resolves the difficulty.

For such reasons, the Lebesgue theory of measure
and integration predominates in modern mathematical re-
search, both pure and applied. For instance, the Lebesgue
integral is basic to such diverse realms as applied probabil-
ity and mathematical biology, the quantum theory of atoms
and nuclei, and the information theory and electric signals
processing of modern computer technology.

The Section 13.5 Investigation illustrates the appli-
cation of multiple integrals to such concrete problems as
the optimal design of race-car wheels.

We could use multiple integrals to determine the best design for
the wheels of these soapbox derby cars.

From Chapter 13 of  Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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998 CHAPTER 13 Multiple Integrals

13.1 DOUBLE INTEGRALS

This chapter is devoted to integrals of functions of two or three variables. Such in-z

x

z = f(x, y)

c

d

a

b

R

y

FIGURE 13.1.1 We will use a
double integral to compute the
volume V .

tegrals are called multiple integrals. The applications of multiple integrals include
computation of area, volume, mass, and surface area in a wider variety of situations
than can be handled with the single integral of Chapters 5 and 6.

The simplest sort of multiple integral is the double integral∫∫
R

f (x, y) dA

of a continuous function f (x, y) over the rectangle

R = [a, b] × [c, d] = {(x, y) | a � x � b, c � y � d}
in the xy-plane. (We will see that dA represents here a differential element of area A.)
Just as the definition of the single integral is motivated by the problem of computing
areas, the definition of the double integral is motivated by the problem of computing the
volume V of the solid of Fig. 13.1.1—a solid bounded above by the graph z = f (x, y)

of the nonnegative function f over the rectangle R in the xy-plane.
To define the value

V =
∫∫

R

f (x, y) dA

of such a double integral, we begin with an approximation to V . To obtain this

x

y

c

d

a b

(xi
★,  yi

★)

R

Ri

FIGURE 13.1.2 A partition P of
the rectangle R.

approximation, the first step is to construct a partition P of R into subrectangles
R1, R2, . . . , Rk determined by the points

a = x0 < x1 < x2 < · · · < xm = b

of [a, b] and
c = y0 < y1 < y2 < · · · < yn = d

of [c, d]. Such a partition of R into k = mn rectangles is shown in Fig. 13.1.2. The
order in which these rectangles are labeled makes no difference.

Next we choose an arbitrary point (x�
i , y�

i ) of the i th rectangle Ri for each i
(where 1 � i � k). The collection of points S = {(x�

i , y�
i ) | 1 � i � k} is called

a selection for the partition P = {Ri | 1 � i � k}. As a measure of the size of the
rectangles of the partition P , we define its norm |P | to be the maximum of the lengths
of the diagonals of the rectangles {Ri }.

Now consider a rectangular column that rises straight up from the xy-plane. Its
base is the rectangle Ri and its height is the value f (x�

i , y�
i ) of f at the selected point

(x�
i , y�

i ) of Ri . One such column is shown in Fig. 13.1.3. If �A i denotes the area of
Ri , then the volume of the i th column is f (x�

i , y�
i ) �A i . The sum of the volumes of

all such columns (Fig. 13.1.4) is the Riemann sum

k∑
i=1

f (x�
i , y�

i ) �A i , (1)

an approximation to the volume V of the solid region that lies above the rectangle R
and under the graph z = f (x, y).

We would expect to determine the exact volume V by taking the limit of the
Riemann sum in Eq. (1) as the norm |P | of the partition P approaches zero. We
therefore define the (double) integral of the function f over the rectangle R to be

∫∫
R

f (x, y) dA = lim
|P|→0

k∑
i=1

f (x�
i , y�

i ) �A i , (2)

provided that this limit exists. (We will make the concept of the existence of such a
limit more precise in Section 13.2.) It is proved in advanced calculus that the limit
in Eq. (2) does exist if f is continuous on R. To motivate the introduction of the
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z

z = f(x, y)

f(xi
★,  yi

★) R

y

x

FIGURE 13.1.3 Approximating
the volume under the surface by
summing volumes of columns with
rectangular bases.

R

z

x

y

FIGURE 13.1.4 Columns
corresponding to a partition of the
rectangle R.

Riemann sum in Eq. (1), we assumed that f was nonnegative on R, but Eq. (2) serves
to define the double integral over a rectangle whether or not f is nonnegative.

EXAMPLE 1 Approximate the value of the integral

x
R5 R6

R3 R4

R1 R2

y

(1, 1)
1

1 2 3

−1

−2

(3, 1)

(1, −2) (3, −2)

FIGURE 13.1.5 The partition in
Example 1.

∫∫
R

(4x3 + 6xy2) dA

over the rectangle R = [1, 3] × [−2, 1], by calculating the Riemann sum in (1) for the
partition illustrated in Fig. 13.1.5, with the i th point (x�

i , y�
i ) selected as the center of

the i th rectangle Ri (for each i , 1 � i � 6).

Solution Each of the six partition rectangles shown in Fig. 13.1.5 is a unit square with
area �A i = 1. With f (x, y) = 4x3 + 6xy2, the desired Riemann sum is therefore

6∑
i=1

f (x�
i , y�

i ) �A i = f (x�
1, y�

1) �A 1 + f (x�
2, y�

2) �A 2 + f (x�
3, y�

3) �A 3

+ f (x�
4, y�

4) �A 4 + f (x�
5, y�

5) �A 5 + f (x�
6, y�

6) �A 6

= f
(

3
2 , − 3

2

)
(1) + f

(
5
2 , − 3

2

)
(1) + f

(
3
2 , − 1

2

)
(1)

+ f
(

5
2 , − 1

2

)
(1) + f

(
3
2 , 1

2

)
(1) + f

(
5
2 , 1

2

)
(1)

= 135
4 · 1 + 385

4 · 1 + 63
4 · 1 + 265

4 · 1 + 63
4 · 1 + 265

4 · 1 = 294.

Thus we find that ∫∫
R

(4x3 + 6xy2) dA ≈ 294,

but our calculation provides no information about the accuracy of this approximation.
◗

REMARK 1 The single-variable approximation methods of Section 5.9 all have analogs
for double integrals. In Example 1 we calculated the midpoint approximation to the
given double integral ∫∫

R

f (x, y) dA
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1000 CHAPTER 13 Multiple Integrals

using a partition of the rectangle R into six subrectangles. The Riemann sum we cal-
Number of Midpoint

Subrectangles Approximation

6 294.00
24 307.50
96 310.88

384 311.72
1536 311.93
6144 311.98

FIGURE 13.1.6 Midpoint
approximations to the integral in
Example 1.

culated is the sum of the volumes of six rectangular columns or blocks. Each of these
columns has a base consisting of one of the subrectangles in Fig. 13.1.5 and has height
equal to the value f (x�

i , y�
i ) of the function at the midpoint of that subrectangle.

REMARK 2 If we subdivide each rectangle in Fig. 13.1.5 into four equal smaller rect-
angles, we get a partition of R into 24 subrectangles, and the corresponding Riemann
sum is the sum of the volume of 24 rectangular columns with bases these 24 subrectan-
gles. Suppose that we continue in this way, quadrupling the number of subrectangles
(and of rectangular columns) at each step, and use a computer to calculate each time
the Riemann sum defined by selecting the center of each subrectangle to calculate the
height of the corresponding rectangular column. Then we get the midpoint approxi-
mations listed in Fig. 13.1.6 to the actual volume V that lies over the rectangle R and
under the surface z = f (x, y). (See Fig. 13.1.8.) Figure 13.1.7 shows the “rectangu-
lar block approximations” to V that correspond to partitions of R into 24, 96, and 384
subrectangles. In Example 2 we will see (much more easily) that the exact value of V
is given by

V =
∫∫

R

(4x3 + 6xy2) dA = 312.

−2

−1

0

1

y

z

1

2

3

x

(a) 24 blocks, V ≈ 307.50

1

2

3

−2

−1

0

1

y

z

x

(b) 96 blocks, V ≈ 310.88

1

2

3

x

−2

−1

0

1

y

z

384 blocks, V ≈ 311.72

FIGURE 13.1.7 Midpoint sum approximations to the volume V under the surface z = 4x3 + 6xy 2 with 24, 96, and 384 subrectangles.

Iterated Integrals

The direct evaluation of the limit in Eq. (2) is generally even less practical than the
direct evaluation of the limit we used in Section 5.4 to define the single-variable inte-
gral. In practice, we shall calculate double integrals over rectangles by means of the
iterated integrals that appear in Theorem 1.

THEOREM 1 Double Integrals as Iterated Single Integrals
Suppose that f (x, y) is continuous on the rectangle R = [a, b] × [c, d]. Then∫∫

R

f (x, y) dA =
∫ b

a

( ∫ d

c
f (x, y) dy

)
dx =

∫ d

c

( ∫ b

a
f (x, y) dx

)
dy. (3)

Theorem 1 tells us how to compute a double integral by means of two successive

−2

−1

0

1

y

z

1
2

3

x

FIGURE 13.1.8 The surface
z = 4x3 + 6xy2 over the rectangle R.

(or iterated) single-variable integrations, each of which we can compute by using the
fundamental theorem of calculus (if the function f is sufficiently well-behaved on R).
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Let us explain what we mean by the parentheses in the iterated integral∫ b

a

∫ d

c
f (x, y) dy dx =

∫ b

a

(∫ d

c
f (x, y) dy

)
dx . (4)

First we hold x constant and integrate with respect to y, from y = c to y = d. The
result of this first integration is the partial integral of f with respect to y, denoted by∫ d

c
f (x, y) dy,

and it is a function of x alone. Then we integrate this latter function with respect
to x , from x = a to x = b.

Similarly, we calculate the iterated integral∫ d

c

∫ b

a
f (x, y) dx dy =

∫ d

c

(∫ b

a
f (x, y) dx

)
dy (5)

by first integrating from a to b with respect to x (while holding y fixed) and then
integrating the result from c to d with respect to y. The order of integration (either
first with respect to x and then with respect to y, or the reverse) is determined by the
order in which the differentials dx and dy appear in the iterated integrals in Eqs. (4)
and (5). We almost always work “from the inside out.” Theorem 1 guarantees that
the value obtained is independent of the order of integration provided that f is continu-
ous on R.

EXAMPLE 2 Compute the iterated integrals in Eqs. (4) and (5) for the function
f (x, y) = 4x3 + 6xy2 on the rectangle R = [1, 3] × [−2, 1].
Solution The rectangle R is shown in Fig. 13.1.9, where the vertical segment (on

y = 1

y = −2

x

y

FIGURE 13.1.9 The inner limits of
the first iterated integral
(Example 2).

which x is constant) corresponds to the inner integral in Eq. (4). Its endpoints lie at
heights y = −2 and y = 1, which are, therefore, the limits on the inner integral. So
Eq. (4) yields∫ 3

1

( ∫ 1

−2
(4x3 + 6xy2) dy

)
dx =

∫ 3

1

[
4x3 y + 2xy3

]1

y=−2
dx

=
∫ 3

1
[(4x3 + 2x) − (−8x3 − 16x)] dx

=
∫ 3

1
(12x3 + 18x) dx

=
[
3x4 + 9x2

]3

1
= 312.

The horizontal segment (on which y is constant) in Fig. 13.1.10 corresponds to the

x = 1

x

y

x = 3

FIGURE 13.1.10 The inner limits
of the second iterated integral
(Example 2).

inner integral in Eq. (5). Its endpoints lie at x = 1 and x = 3 (the limits of integration
for x), so Eq. (5) gives∫ 1

−2

(∫ 3

1
(4x3 + 6xy2) dx

)
dy =

∫ 1

−2

[
x4 + 3x2 y2

]3

x=1
dy

=
∫ 1

−2
[(81 + 27y2) − (1 + 3y2)] dy

=
∫ 1

−2
(80 + 24y2) dy

=
[
80y + 8y3

]1

−2
= 312. ◗

When we note that iterated double integrals are almost always evaluated from the
inside out, it becomes clear that the parentheses appearing on the right-hand sides in
Eqs. (4) and (5) are unnecessary. They are, therefore, generally omitted, as in Examples
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1002 CHAPTER 13 Multiple Integrals

3 and 4. When dy dx appears in the integrand, we integrate first with respect to y,
whereas the appearance of dx dy tells us to integrate first with respect to x .

EXAMPLE 3 See Fig. 13.1.11.

y = 0x = 0 x

y

y = π
2

x = π

π

FIGURE 13.1.11 Example 3.

∫ π

0

∫ π/2

0
cos x cos y dy dx =

∫ π

0

[
cos x sin y

]π/2

y=0
dx

=
∫ π

0
cos x dx =

[
sin x

]π

0
= 0. ◗

EXAMPLE 4 See Fig. 13.1.12.∫ 1

0

∫ π/2

0
(ey + sin x) dx dy =

∫ 1

0

[
xey − cos x

]π/2

x=0
dy

=
∫ 1

0

(
1

2
πey + 1

)
dy

=
[

1

2
πey + y

]1

0

= 1

2
π(e − 1) + 1. ◗

Iterated Integrals and Cross Sections
An outline of the proof of Theorem 1 illuminates the relationship between iterated in-

π

x

y

x = 0 x = 
2

y = 0

y = 1

FIGURE 13.1.12 Example 4. tegrals and the method of cross sections (for computing volumes) discussed in Section
6.2. First we partition [a, b] into n equal subintervals, each of length �x = (b − a)/n,
and we also partition [c, d] into n equal subintervals, each of length �y = (d − c)/n.
This gives n2 rectangles, each of which has area �A = �x �y. Choose a point x�

i in
[xi−1, xi ] for each i = 1, . . . , n. Then for each j = 1, . . . , n the average value theorem
for single integrals (Section 5.6) gives a point y�

i j in [y j−1, y j ] such that∫ y j

y j−1

f (x�
i , y) dy = f (x�

i , y�
i j ) �y.

This gives us the selected point (x�
i , y�

i j ) in the rectangle [xi−1, xi ] × [y j−1, y j ]. Then

∫∫
R

f (x, y) dA ≈
n∑

i, j=1

f (x�
i , y�

i j ) �A =
n∑

i=1

n∑
j=1

f (x�
i , y�

i j ) �y �x

=
n∑

i=1

( n∑
j=1

∫ y j

y j−1

f (x�
i , y) dy

)
�x

=
n∑

i=1

(∫ d

c
f (x�

i , y) dy

)
�x

=
n∑

i=1

A (x�
i ) �x,

where

A (x) =
∫ d

c
f (x, y) dy.

Moreover, the last sum is a Riemann sum for the integral∫ b

a
A (x) dx,
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so the result of our computation is∫∫
R

f (x, y) dA ≈
n∑

i=1

A (x�
i ) �x

≈
∫ b

a
A (x) dx =

∫ b

a

(∫ d

c
f (x, y) dy

)
dx .

We can convert this outline into a complete proof of Theorem 1 by showing that the
preceding approximations become equalities when we take limits as n → +∞.

In case the function f is nonnegative on R, the function A(x) introduced here gives
the area of the vertical cross section of R perpendicular to the x-axis (Fig. 13.1.13).
Thus the iterated integral in Eq. (4) expresses the volume V as the integral from x = a
to x = b of the cross-sectional area function A(x). Similarly, the iterated integral in
Eq. (5) expresses V as the integral from y = c to y = d of the function

A(y) =
∫ b

a
f (x, y) dx,

which gives the area of a vertical cross section in a plane perpendicular to the y-axis.
[Although it seems appropriate to use the notation A (y) here, note that A (x) and A (y)

z

z = f(x, y)

c

d

a

b

Rx
A(x)

x

y

FIGURE 13.1.13 The area of the
cross section at x is

A(x) =
∫ d

c
f (x, y) dy.

are by no means the same function!]

13.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The definition of the double integral
∫∫

R
f (x, y) d A is motivated by the problem

of calculating the volume V of the solid that lies under the graph z = f (x, y) of
the nonnegative function f and above the rectangle R in the xy-plane.

2. Given a partition of the rectangle R into subrectangles R1, R2, . . . , Rn , the vol-
ume V of Question 1 can be approximated by a Riemann sum that has one term
f (x�

i , y�
i )�Ai for each of the subrectangles in the partition.

3. The double integral
∫∫

R
f (x, y) d A is defined as a limit of Riemann sums as the

norm of the partition approaches zero (provided that this limit exists).
4. Suppose that the function f is continuous on the rectangle R. Then f (x, y) must

be nonnegative on R to assure that the integral
∫∫

R
f (x, y) d A exists.

5. The Riemann sum calculated in Example 1 is a midpoint approximation to the
value of the double integral

∫∫
R
(4x3 + 6xy2) d A.

6. Figures 13.1.6–13.1.8 corroborate the fact that partitions with smaller norms gen-
erally give more accurate Riemann sum approximations to a double integral.

7. Theorem 1 implies that∫ b

a

(∫ d

c
f (x, y) dy

)
dx =

∫ d

c

(∫ b

a
f (x, y) dx

)
dy

for any function f (x, y) defined on the rectangle R = [a, b] × [c, d] in the
xy-plane.

8. In the iterated integral
∫ b

a

(∫ d
c f (x, y) dy

)
dx , the fact that dx appears outside

the big parentheses signifies integration first with respect to x , then with respect
to y.

9. In Example 2, both orders of iterated integration give the same value for the
double integral

∫∫
R
(4x3 + 6xy2) d A of Example 1.

10. An outline of a proof of Theorem 1 appears in the subsection entitled Iterated
Integrals and Cross Sections. This proof is based on the method of cross sections
for calculating single-variable integrals.
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13.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. Describe as completely as possible the analogy between

• a single-variable integral
∫

I f (x) dx over an interval I = [a, b]
and
• a double integral

∫∫
R

f (x, y) dA over a rectangle R = [a, b] × [c, d].
Discuss both the similarities and the differences.

2. Write the “double” Riemann sum
m∑

i=1

n∑
j=1

. . .

corresponding to subdivision of [a, b] and [c, d] into m subintervals each of
length �x and into n subintervals each of length �y (respectively), together with
selections

{
x�

i

}m

i=1 and
{

y�
j

}n

j=1 of points in these subintervals. What choices of
these selections might correspond to left-hand, right-hand, and midpoint sums
for single-variable integrals?

3. Can you describe a way of generalizing the idea of trapezoidal approximations
for single-variable integrals to double-sum approximations for double integrals?
Think of using trapezoidal approximations for the cross-sectional area integrals
discussed at the end of this section.

13.1 PROBLEMS

1. Approximate the integral∫∫
R

(4x3 + 6xy2) dA

of Example 1 using the partition shown in Fig. 13.1.5, but
selecting each (x�

i , y�
i ) as (a) the lower left corner of the rect-

angle R i ; (b) the upper right corner of the rectangle R i .

2. Approximate the integral∫∫
R

(4x3 + 6xy2) dA

as in Problem 1, but selecting each (x�
i , y�

i ) as (a) the upper
left corner of the rectangle R i ; (b) the lower right corner of
the rectangle R i .

In Problems 3 through 8, calculate the Riemann sum for∫∫
R

f (x, y) dA

using the given partition and selection of points (x�
i , y�

i ) for the
rectangle R.

3. f (x, y) = x + y; R = [0, 2]×[0, 2]; the partition P consists
of four unit squares; each (x�

i , y�
i ) is the center point of the

i th rectangle R i .

4. f (x, y) = xy; R = [0, 2] × [0, 2]; the partition P consists
of four unit squares; each (x�

i , y�
i ) is the center point of the

i th rectangle R i .

5. f (x, y) = x2 − 2y; R = [2, 6] × [−1, 1]; the partition P
consists of four equal rectangles of width �x = 2 and height
�y = 1; each (x�

i , y�
i ) is the lower left corner of the i th rect-

angle R i .

6. f (x, y) = x2 + y2; R = [0, 2] × [0, 3]; the partition P
consists of six unit squares; each (x�

i , y�
i ) is the upper right

corner of the i th rectangle R i .

7. f (x, y) = sin x sin y; R = [0, π ] × [0, π ]; the partition
P consists of four equal squares; each (x�

i , y�
i ) is the center

point of the i th rectangle R i .

8. f (x, y) = sin 4xy; R = [0, 1] × [0, π ]; the partition P con-
sists of six equal rectangles of width �x = 1

2 and height
�y = 1

3 π ; each (x�
i , y�

i ) is the center point of the i th rectan-
gle R i .

In Problems 9 and 10, let L, M, and U denote the Riemann sums
calculated for the given function f and the indicated partition P
by selecting the lower left corners, midpoints, and upper right
corners (respectively) of the rectangles in P . Without actually
calculating any of these Riemann sums, arrange them in increas-
ing order of size.

9. f (x, y) = x2 y2; R = [1, 3]× [2, 5]; the partition P consists
of six unit squares.

10. f (x, y) = √
100 − x2 − y2; R = [1, 4] × [2, 5]; the parti-

tion P consists of nine unit squares.

Evaluate the iterated integrals in Problems 11 through 30.

11.
∫ 2

0

∫ 4

0
(3x + 4y) dx dy

12.
∫ 3

0

∫ 2

0
x2 y dx dy

13.
∫ 2

−1

∫ 3

1
(2x − 7y) dy dx

14.
∫ 1

−2

∫ 4

2
x2 y3 dy dx
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15.
∫ 3

0

∫ 3

0
(xy + 7x + y) dx dy

16.
∫ 2

0

∫ 4

2
(x2 y2 − 17) dx dy

17.
∫ 2

−1

∫ 2

−1
(2xy2 − 3x2 y) dy dx

18.
∫ 3

1

∫ −1

−3
(x3 y − xy3) dy dx

19.
∫ π/2

0

∫ π/2

0
(sin x cos y) dx dy

20.
∫ π/2

0

∫ π/2

0
(cos x sin y) dy dx

21.
∫ 1

0

∫ 1

0
xey dy dx

22.
∫ 1

0

∫ 2

−2
x2ey dx dy

23.
∫ 1

0

∫ π

0
ex sin y dy dx

24.
∫ 1

0

∫ 1

0
ex+y dx dy

25.
∫ π

0

∫ π

0
(xy + sin x) dx dy

26.
∫ π/2

0

∫ π/2

0
(y − 1) cos x dx dy

27.
∫ π/2

0

∫ e

1

sin y

x
dx dy

28.
∫ e

1

∫ e

1

1

xy
dy dx

29.
∫ 1

0

∫ 1

0

(
1

x + 1
+ 1

y + 1

)
dx dy

30.
∫ 2

1

∫ 3

1

(
x

y
+ y

x

)
dy dx

In Problems 31 through 34, verify that the values of∫∫
R

f (x, y) dA

given by the iterated integrals in Eqs. (4) and (5) are indeed
equal.

31. f (x, y) = 2xy − 3y2; R = [−1, 1] × [−2, 2]
32. f (x, y) = sin x cos y; R = [0, π ] × [−π/2, π/2]
33. f (x, y) = √

x + y; R = [0, 1] × [1, 2]
34. f (x, y) = ex+y; R = [0, ln 2] × [0, ln 3]
35. Prove that

lim
n→∞

∫ 1

0

∫ 1

0
xn yn dx dy = 0.

36. Suppose that f (x, y) = k is a constant-valued function and
R = [a, b] × [c, d]. Use Riemann sums to prove that∫∫

R

k dA = k(b − a)(d − c).

37. Use Riemann sums to show, without calculating the value of
the integral, that

0 �
∫ π

0

∫ π

0
sin

√
xy dx dy � π 2.

Problems 38 through 40 list properties of double integrals that
are analogous to familiar properties of single integrals. In each
case state the corresponding relation between Riemann sums as-
sociated with a given partition and selection for the rectangle R.

38.
∫∫

R

c f (x, y) dA = c
∫∫

R

f (x, y) dA (c is a constant).

39.
∫∫

R

[ f (x, y) + g(x, y)] dA

=
∫∫

R

f (x, y) dA +
∫∫

R

g(x, y) dA.

40. If f (x, y) � g(x, y) at each point of R, then∫∫
R

f (x, y) dA �
∫∫

R

g(x, y) dA.

13.1 INVESTIGATION: Midpoint Sums Approximating Double Integrals
Suppose that we divide the intervals [a, b] and [c, d] into m subintervals of length �x
and into n subintervals of length �y (respectively). If ui and vj denote the midpoints of
the i th subinterval of [a, b] and the j th subinterval of [c, d] (respectively), then (ui , vj )

is the midpoint of the i j th subrectangle [xi−1, xi ] × [y j−1, y j ]. We thereby obtain the
midpoint sum approximation

Sm n =
m∑

i=1

n∑
j=1

f (ui , vj ) �x �y ≈
∫∫

R

f (x, y) dA

to the double integral of the function f over the rectangle R = [a, b] × [c, d]. Figure
13.1.14 illustrates the case in which m = 3 and n = 2. In the project manual material
for this Investigation we illustrate the use of computer algebra systems to calculate
midpoint sum approximations rapidly and efficiently.

x

y

d

c

a

2

1

u1

(u1, 2)  

(u3, 1)  

u2 u3 b

xΔ

yΔ
(u2, 2)  (u3, 2)  

(u2, 1)  (u1, 1)  

FIGURE 13.1.14 The points used
in the midpoint approximation.
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13.2 DOUBLE INTEGRALS OVER MORE GENERAL REGIONS

Now we want to define and compute double integrals over regions more general than
rectangles. Let the function f be defined on the plane region R, and suppose that R
is bounded—that is, that R lies within some rectangle S. To define the (double) integral
of f over R, we begin with a partition Q of the rectangle S into subrectangles. Some of
the rectangles of Q will lie wholly within R, some will be outside R, and some will lie

R

Ri

(xi
★, yi

★)

FIGURE 13.2.1 The rectangular
partition of S produces an associated
inner partition (shown shaded) of the
region R.

partly within and partly outside R. We consider the collection P = {R1, R2, . . . , Rk}
of all those rectangles in Q that lie completely within the region R. This collection
P is called the inner partition of the region R determined by the partition Q of the
rectangle S (Fig. 13.2.1). By the norm |P | of the inner partition P we mean the norm
of the partition Q that determines P . Note that |P | depends not only on P but on Q as
well.

Using the inner partition P of the region R, we can proceed in much the same
way as in Section 13.1. By choosing an arbitrary point (x�

i , y�
i ) in the i th rectangle

Ri of P for i = 1, 2, 3, . . . , k, we obtain a selection for the inner partition P . Let us
denote by �A i the area of Ri . Then this selection gives the Riemann sum

k∑
i=1

f (x�
i , y�

i ) �A i

associated with the inner partition P . In case f is nonnegative on R, this Riemann sum
approximates the volume of the three-dimensional region that lies under the surface
z = f (x, y) and above the region R in the xy-plane. We therefore define the double
integral of f over the region R by taking the limit of this Riemann sum as the norm |P |
approaches zero. Thus

∫∫
R

f (x, y) dA = lim
|P |→0

k∑
i=1

f (x�
i , y�

i ) �A i , (1)

provided that this limit exists in the sense of the following definition.

DEFINITION The Double Integral
The double integral of the bounded function f over the plane region R is the number

I =
∫∫

R

f (x, y) dA

provided that, for every ε > 0, there exists a number δ > 0 such that∣∣∣∣∣
k∑

i=1

f (x�
i , y�

i ) �A i − I

∣∣∣∣∣ < ε

for every inner partition P = {R1, R2, . . . , Rk} of R that has norm |P | < δ and
every selection of points (x�

i , y�
i ) in Ri (i = 1, 2, . . . , k).

Thus the meaning of the limit in Eq. (1) is that the Riemann sum can be made
arbitrarily close to the number

I =
∫∫

R

f (x, y) dA

merely by choosing the norm of the inner partition P sufficiently small. In this case
we say that the function f is integrable on the region R.

NOTE If R is a rectangle and we choose S = R (so that an inner partition of R is
simply a partition of R), then the preceding definition reduces to our earlier definition
of a double integral over a rectangle. In advanced calculus the double integral of the
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function f over the bounded plane region R is shown to exist provided that f is contin-
uous on R and the boundary of R is reasonably well-behaved. In particular, it suffices
for the boundary of R to consist of a finite number of piecewise smooth simple closed
curves (that is, each boundary curve consists of a finite number of smooth arcs). In this
text we will restrict our attention to double integrals of functions defined on such plane
regions.

EXAMPLE 1 Approximate the value of the integral∫∫
R

(x + y) dA

where R is the region in the first quadrant bounded by the unit circle and the coordinate
axes. Do so by calculating the sum in Eq. (1) for the inner partition and midpoint
selection indicated in Fig. 13.2.2(a).

x

y

0.25

0.25

0.5

0.75

1

0.5 0.75 1

(a) 8 interior squares with

�x = �y = 1
4

x

y

0.25

0.25

0.5

0.75

1

0.5 0.75 1

(b) 41 interior squares with

�x = �y = 1
8

x

y

0.25

0.25

0.5

0.75

1

0.5 0.75 1

(c) 183 interior squares with

�x = �y = 1
16

FIGURE 13.2.2 Inner partitions of the quarter-circle R with �x = �y = 1
4 , �x = �y = 1

8 , and �x = �y = 1
16 .

Solution The figure shows a partition of the unit square into 16 smaller squares each
with side length �x = �y = 1

4 . The inner partition we use consists of the 8 small
squares that are contained wholly within the quarter-circular region R. The midpoints
of these squares are the 8 points ( 1

8 , 1
8 ), ( 3

8 , 1
8 ), ( 5

8 , 1
8 ), ( 1

8 , 3
8 ), ( 3

8 , 3
8 ), ( 5

8 , 3
8 ), ( 1

8 , 5
8 ), and

( 3
8 , 5

8 ). The corresponding Riemann sum is

S = [
f
(

1
8 , 1

8

) + f
(

3
8 , 1

8

) + f
(

5
8 , 1

8

) + f
(

1
8 , 3

8

)
+ f

(
3
8 , 3

8

) + f
(

5
8 , 3

8

) + f
(

1
8 , 5

8

) + f
(

3
8 , 5

8

)]
�x �y

= [(
1
8 + 1

8

) + (
3
8 + 1

8

) + (
5
8 + 1

8

) + (
1
8 + 3

8

)
+ (

3
8 + 3

8

) + (
5
8 + 3

8

) + (
1
8 + 5

8

) + (
3
8 + 5

8

)] · 1
4 · 1

4 ,

and thus

S = 11

32
= 0.34375 ≈ 0.344. ◗

REMARK In Fig. 13.2.2(a) we began by dividing the unit intervals on the x- and y-
axes into n = 4 subintervals each. Figures 13.2.2(b) and 13.2.2(c) show the inner
partitions that result when we begin with n = 8 and n = 16 subintervals (respectively)
in each direction. Suppose that we continue in this way, doubling the number n of
subintervals in each direction at each step, and use a computer to calculate each time
the midpoint Riemann sum corresponding to the resulting inner partition of the quarter-
circular region R. Figure 13.2.3 shows the resulting approximations to the integral

n N S

4 8 0.344

8 41 0.494

16 183 0.580

32 770 0.625

64 3149 0.646

128 12,730 0.656

256 51,209 0.662

512 205,356 0.664

1024 822,500 0.665

FIGURE 13.2.3 The number n of
subintervals in each direction, the
number N of small squares in the
inner partition, and the
corresponding approximate Riemann
sum S. ∫∫

R

(x + y) dA ;
1007
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we also show the total number N of interior squares used at each step. In Problem 51
we ask you to show (using a comparatively simple computation with iterated integrals)

x

y

y = y1(x)

x = a x = b

y = y2(x)

R 

FIGURE 13.2.4 A vertically simple
region R.

that the exact value of this integral is 2
3 . (Thus the approximation in Example 1 is not

very impressive.)

Evaluation of Double Integrals
The explicit evaluation of Riemann sums as in Example 1 is cumbersome and ineffi-
cient. But for certain common types of regions, we can evaluate double integrals by
using iterated integrals in much the same way as we do when the region is a rectangle.
The plane region R is called vertically simple if it can be described by means of the
inequalities

a � x � b, y1(x) � y � y2(x), (2)

where y1(x) and y2(x) are continuous functions of x on [a, b]. Such a region appears
in Fig. 13.2.4. The region R is called horizontally simple if it can be described by the

x

y

x = x1(y)

y = d

R 

y = c
x = x2(y)

FIGURE 13.2.5 A horizontally
simple region R.

inequalities

c � y � d, x1(y) � x � x2(y), (3)

where x1(y) and x2(y) are continuous functions of y on [c, d]. The region in Fig. 13.2.5
is horizontally simple.

Theorem 1 tells us how to compute by iterated integration a double integral over
a region R that is either vertically simple or horizontally simple.

THEOREM 1 Evaluation of Double Integrals
Suppose that f (x, y) is continuous on the region R. If R is the vertically simple
region given in (2), then∫∫

R

f (x, y) dA =
∫ b

a

∫ y2(x)

y1(x)

f (x, y) dy dx . (4)

If R is the horizontally simple region given in (3), then∫∫
R

f (x, y) dA =
∫ d

c

∫ x2(y)

x1(y)

f (x, y) dx dy. (5)

Theorem 1 here includes Theorem 1 of Section 13.1 as a special case (when R
is a rectangle), and it can be proved by a generalization of the argument we outlined
there.

y =    x (1, 1) 

R 

x

y

y = x3

FIGURE 13.2.6 The vertically
simple region of Example 2.

EXAMPLE 2 Compute in two different ways the integral∫∫
R

xy2 dA,

where R is the first-quadrant region bounded by the two curves y = √
x and y = x3.

x = y1/3

(1, 1) 

x

y

x = y2

R 

FIGURE 13.2.7 The horizontally
simple region of Example 2.

Solution Always sketch the region R of integration before attempting to evaluate a
double integral. As indicated in Figs. 13.2.6 and 13.2.7, the given region R is both
vertically and horizontally simple. The vertical segment in Fig. 13.2.6 with endpoints
on the curves y = x3 and y = √

x corresponds to integrating first with respect to y:

∫∫
R

xy2 dA =
∫ 1

0

∫ √
x

x3
xy2 dy dx =

∫ 1

0

[
1

3
xy3

]√
x

y=x3
dx

=
∫ 1

0

(
1

3
x5/2 − 1

3
x10

)
dx = 2

21
− 1

33
= 5

77
.
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We obtain x = y2 and x = y1/3 when we solve the equations y = √
x and y = x3 for

x in terms of y. The horizontal segment in Fig. 13.2.7 corresponds to integrating first
with respect to x :

∫∫
R

xy2 dA =
∫ 1

0

∫ y1/3

y2
xy2 dx dy =

∫ 1

0

[
1

2
x2 y2

]y1/3

x=y2
dy

=
∫ 1

0

(
1

2
y8/3 − 1

2
y6

)
dy = 3

22
− 1

14
= 5

77
. ◗

EXAMPLE 3 Evaluate ∫∫
R

(6x + 2y2) dA,

where R is the region bounded by the parabola x = y2 and the straight line x + y = 2.

Solution The region R appears in Fig. 13.2.8. It is both horizontally and vertically
simple. If we wished to integrate first with respect to y and then with respect to x , we
would need to evaluate two integrals:∫∫

R

f (x, y) dA =
∫ 1

0

∫ √
x

−√
x
(6x + 2y2) dy dx +

∫ 4

1

∫ 2−x

−√
x

(6x + 2y2) dy dx .

The reason is that the formula of the function y = y2(x) describing the “top boundary

x

y

R 

y = +    x

y = −    x

x + y = 2

(1, 1) 

(4, −2) 

y = 2 − x

x = y 2

FIGURE 13.2.8 The vertically
simple region of Example 3.

curve” of R changes at the point (1, 1), from y = √
x on the left to y = 2 − x on the

right. But as we see in Fig. 13.2.9, every horizontal segment in R extends from x = y2

on the left to x = 2 − y on the right. Therefore, integrating first with respect to x
requires us to evaluate only one iterated integral:

x

y

R 

x + y = 2
(1, 1) 

(4, −2) 

x = 2 − y

x = y 2

x = y 2

x = y 2

x = 2 − y

FIGURE 13.2.9 The horizontally
simple region of Example 3.

∫∫
R

f (x, y) dA =
∫ 1

−2

∫ 2−y

y2
(6x + 2y2) dx dy

=
∫ 1

−2

[
3x2 + 2xy2

]2−y

x=y2
dy

=
∫ 1

−2
[3(2 − y)2 + 2(2 − y)y2 − 3(y2)2 − 2y4] dy

=
∫ 1

−2
(12 − 12y + 7y2 − 2y3 − 5y4) dy

=
[

12y − 6y2 + 7

3
y3 − 1

2
y4 − y5

]1

−2

= 99

2
. ◗

Example 3 shows that even when the region R is both vertically and horizontally
simple, it may be easier to integrate in one order rather than the other because of the
shape of R. We naturally prefer the easier route. The choice of the preferable order
of integration may be influenced also by the nature of the function f (x, y). It may be
difficult—or even impossible—to compute a given iterated integral but easy to do so
after we reverse the order of integration. Example 4 shows that the key to reversing
the order of integration is this:

Find and sketch the region R over which
the integration is to be performed.

EXAMPLE 4 Evaluate ∫ 2

0

∫ 1

y/2
yex3

dx dy.

1009
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Solution We cannot integrate first with respect to x , as indicated, because exp(x3)

R 

x

y

y = 2

y = 0

x = 1

x = 
y
2

y = 2x

FIGURE 13.2.10 The region of
Example 4.

is known to have no elementary antiderivative. So we try to evaluate the integral by
first reversing the order of integration. To do so, we sketch the region of integration
specified by the limits in the given iterated integral.

The region R is determined by the inequalities

1
2 y � x � 1 and 0 � y � 2.

Thus all points (x, y) of R lie between the horizontal lines y = 0 and y = 2 and
between the two lines x = y/2 and x = 1. We draw the four lines y = 0, y = 2, x =
y/2, and x = 1 and find that the region of integration is the shaded triangle that appears
in Fig. 13.2.10.

Integrating first with respect to y, from y1(x) ≡ 0 to y2(x) = 2x , we obtain∫ 2

0

∫ 1

y/2
yex3

dx dy =
∫ 1

0

∫ 2x

0
yex3

dy dx =
∫ 1

0

[
1

2
y2

]2x

y=0

ex3
dx

=
∫ 1

0
2x2ex3

dx =
[

2

3
ex3

]1

x=0

= 2

3
(e − 1). ◗

Properties of Double Integrals
We conclude this section by listing some formal properties of double integrals. Let
c be a constant and f and g be continuous functions on a region R on which f (x, y)

attains a minimum value m and a maximum value M . Let a(R ) denote the area of the
region R. If all the indicated integrals exist, then:∫∫

R

c f (x, y) dA = c
∫∫

R

f (x, y) dA, (6)

∫∫
R

[ f (x, y) + g(x, y)] dA =
∫∫

R

f (x, y) dA +
∫∫

R

g(x, y) dA, (7)

m · a(R ) �
∫∫

R

f (x, y) dA � M · a(R ), (8)

∫∫
R

f (x, y) dA =
∫∫

R1

f (x, y) dA +
∫∫

R2

f (x, y) dA. (9)

In Eq. (9), R1 and R2 are simply two nonoverlapping regions (with disjoint interiors)

R2

R1

R

FIGURE 13.2.11 The regions of
Eq. (9).

with union R (Fig. 13.2.11). We indicate in Problems 45 through 48 proofs of the
properties in (6) through (9) for the special case in which R is a rectangle.

The property in Eq. (9) enables us to evaluate double integrals over a region R

x

x = −1 − y2

R1

R2

y

(−2, 3)

(−2, 1)

(−2, −1)

(2, 3)

(2, 1)

(2, −1)

x = 1 + y2

y = 2 + x2
4
1

FIGURE 13.2.12 The nonsimple
region R is the union of the
nonoverlapping simple regions R1
and R2.

that is neither vertically nor horizontally simple. All that is necessary is to divide R
into a finite number of simple regions R1, R2, . . . , Rn . Then we integrate over each
(converting each double integral into an iterated integral, as in the examples of this
section) and add the results.

EXAMPLE 5 Let f be a function that is integrable on the region R of Fig. 13.2.12.
Note that R is not simple, but is the union of the vertically simple region R1 and the
horizontally simple region R2. Using the boundary curves labeled in the figure and the
appropriate order of integration for each region, we see that∫∫

R

f (x, y) dA =
∫∫

R1

f (x, y) dA +
∫∫

R2

f (x, y) dA

=
∫ 2

−2

∫ 2+x2/4

1
f (x, y) dy dx +

∫ 1

−1

∫ 1+y2

−1−y2
f (x, y) dx dy. ◗
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13.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Given an inner partition of the plane region R consisting of rectangles R1, R2,
. . . , Rn lying within R, the double-integral value

∫∫
R

f (x, y) d A can be approx-

imated by a Riemann sum that has one term f (x�
i , y�

i )�Ai for each of the sub-
rectangles in the inner partition.

2. The double integral
∫∫

R
f (x, y) d A is defined as a limit of Riemann sums as the

norm of the (inner) partition approaches zero (provided that this limit exists).

3. If f is integrable, then the Riemann sum
∑k

i=1 f (x�
i , y�

i )�Ai can be made ar-

bitrarily close to the value of the double integral
∫∫

R
f (x, y) d A by choosing an

inner partition of R with sufficiently small norm.
4. The double integral

∫∫
R

f (x, y) d A exists provided that f is continuous on the

region R and the boundary of R consists of a finite number of piecewise smooth
simple closed curves.

5. The Riemann sum calculated in Example 1 is a midpoint approximation to the
value of the given double integral

∫∫
R
(x + y) d A.

6. Figures 13.2.2 and 13.2.3 corroborate the fact that (inner) partitions with smaller
norms generally give more accurate Riemann sum approximations to a double
integral.

7. Theorem 1 implies that, for any function f (x, y) and any region R in the xy-
plane, the double integral

∫∫
R

f (x, y) d A can be evaluated by iterated integration

in either order—either integrating first with respect to x , or integrating first with
respect to y.

8. In Example 2, both orders of iterated integration give the same value for the given
double integral

∫∫
R

xy2 d A.

9. Evaluation of the double integral
∫∫

R
(6x + 2y2) d A of Example 3 by iterated

integration in either order—integrating either first with respect to x or first with
respect to y—would involve roughly the same amount of computation.

10. The integral
∫∫

R
yex3

d A of Example 4 can be evaluated by iterated integration

in either order—integrating either first with respect to x or first with respect to y.

13.2 CONCEPTS: QUESTIONS AND DISCUSSION
1. Sketch a plane region that is (a) both horizontally simple and vertically simple;

(b) horizontally simple but not vertically simple; (c) vertically simple but not
horizontally simple; (d) neither horizontally nor vertically simple.

2. Sketch several different regions that are neither horizontally nor vertically simple
but can be subdivided into different numbers of nonoverlapping regions, each of
which is either horizontally simple or vertically simple. What about an annular
region bounded by two concentric circles?

3. Construct several examples of double integrals that are readily evaluated by inte-
grating in one order but not in the reverse order.

13.2 PROBLEMS

Evaluate the iterated integrals in Problems 1 through 14.

1.
∫ 1

0

∫ x

0
(1 + x) dy dx 2.

∫ 2

0

∫ 2x

0
(1 + y) dy dx

3.
∫ 1

0

∫ 1

y
(x + y) dx dy (Fig. 13.2.13)

4.
∫ 2

0

∫ 1

y/2
(x + y) dx dy (Fig. 13.2.14)

5.
∫ 1

0

∫ x2

0
xy dy dx 6.

∫ 1

0

∫ √
y

y
(x + y) dx dy

7.
∫ 1

0

∫ √
x

x
(2x − y) dy dx (Fig. 13.2.15)

1011

www.konkur.in



1012 CHAPTER 13 Multiple Integrals

y = x x = 1

x

y

FIGURE 13.2.13
Problem 3.

y = 2x

x

y

x = 1

FIGURE 13.2.14
Problem 4.

y = x

x

y

x = y2

FIGURE 13.2.15
Problem 7.

x

y

y = 2

2y = x2

FIGURE 13.2.16
Problem 8.

8.
∫ 2

0

∫ √
2y

−√
2y

(3x + 2y) dx dy (Fig. 13.2.16)

9.
∫ 1

0

∫ x

x4
(y − x) dy dx

10.
∫ 2

−1

∫ y+2

−y
(x + 2y2) dx dy (Fig. 13.2.17)

11.
∫ 1

0

∫ x3

0
ey/x dy dx

12.
∫ π

0

∫ sin x

0
y dy dx (Fig. 13.2.18)

13.
∫ 3

0

∫ y

0

√
y2 + 16 dx dy 14.

∫ e2

1

∫ 1/y

0
exy dx dy

x

y
y = 2

y = x − 2y = −x

FIGURE 13.2.17
Problem 10.

y = 0

y = sin x

x

y

FIGURE 13.2.18
Problem 12.

In Problems 15 through 24, evaluate the integral of the given
function f (x, y) over the plane region R that is described.

15. f (x, y) = xy; R is bounded by the parabola y = x2 and the
line y = 4.

16. f (x, y) = x2; R is bounded by the parabola y = 2 − x2 and
the line y = −4.

17. f (x, y) = x; R is bounded by the parabolas y = x2 and
y = 8 − x2.

18. f (x, y) = y; R is bounded by the parabolas x = 1 − y2 and
x = y2 − 1.

19. f (x, y) = x; R is bounded by the x-axis and the curve
y = sin x, 0 � x � π .

20. f (x, y) = sin x; R is bounded by the x-axis and the curve
y = cos x, −π/2 � x � π/2.

21. f (x, y) = 1/y; R is the triangle bounded by the lines
y = 1, x = e, and y = x .

22. f (x, y) = xy; R is the first-quadrant quarter circle bounded
by x2 + y2 = 1 and the coordinate axes.

23. f (x, y) = 1−x; R is the triangle with vertices (0, 0), (1, 1),
and (−2, 1).

24. f (x, y) = 9− y; R is the triangle with vertices (0, 0), (0, 9),
and (3, 6).

In Problems 25 through 34, first sketch the region of integration,
reverse the order of integration as in Examples 3 and 4, and fi-
nally evaluate the resulting integral.

25.
∫ 2

−2

∫ 4

x2
x2 y dy dx 26.

∫ 1

0

∫ x

x4
(x − 1) dy dx

27.
∫ 3

−1

∫ 2x+3

x2
x dy dx 28.

∫ 2

−2

∫ 4−y2

y2−4
y dx dy

29.
∫ 2

0

∫ 4x−x2

2x
1 dy dx 30.

∫ 1

0

∫ 1

y
e−x2

dx dy

31.
∫ π

0

∫ π

x

sin y

y
dy dx 32.

∫ √
π

0

∫ √
π

y
sin x2 dx dy

33.
∫ 1

0

∫ 1

y

1

1 + x4
dx dy 34.

∫ 1

0

∫ π/4

tan−1 y
sec x dx dy

In Problems 35 through 40, find the approximate value of∫∫
R

x dA,

where R is the region bounded by the two given curves. Before
integrating, use a calculator or computer to approximate (graph-
ically or otherwise) the coordinates of the points of intersection
of the given curves.

35. y = x3 + 1, y = 3x2

36. y = x4, y = x + 4

37. y = x2 − 1, y = 1

1 + x2

38. y = x4 − 16, y = 2x − x2

39. y = x2, y = cos x

40. y = x2 − 2x, y = sin x

In Problems 41 through 44, the region R is the square with
vertices (±1, 0) and (0, ±1). Use the symmetry of this region
around the coordinate axes to reduce the labor of evaluating the
given integrals.

41.
∫∫

R

x dA 42.
∫∫

R

x2 dA

43.
∫∫

R

xy dA 44.
∫∫

R

(x2 + y2) dA

45. Use Riemann sums to prove Eq. (6) for the case in which R
is a rectangle with sides parallel to the coordinate axes.

46. Use iterated integrals and familiar properties of single inte-
grals to prove Eq. (7) for the case in which R is a rectangle
with sides parallel to the coordinate axes.

47. Use Riemann sums to prove the inequalities in (8) for the
case in which R is a rectangle with sides parallel to the
coordinate axes.

1012

www.konkur.in



Area and Volume by Double Integration SECTION 13.3 1013

48. Use iterated integrals and familiar properties of single inte-
grals to prove Eq. (9) if R 1 and R 2 are rectangles with sides
parallel to the coordinate axes and the right-hand edge of R 1

is the left-hand edge of R 2.

49. Use Riemann sums to prove that∫∫
R

f (x, y) dA �
∫∫

R

g(x, y) dA

if f (x, y) � g(x, y) at each point of the region R, a rectangle
with sides parallel to the coordinate axes.

50. Suppose that the continuous function f is integrable on the
plane region R and that f attains a minimum value m and a
maximum value M on R. Assume that R is connected in the
following sense: For any two points (x0, y0) and (x1, y1) of
R, there is a continuous parametric curve r(t) in R for which
r(0) = 〈x0, y0〉 and r(1) = 〈x1, y1〉. Let a(R ) denote the
area of R. Then deduce from (8) the average value property
of double integrals:∫∫

R

f (x, y) dA = f (x, y) · a(R )

for some point (x, y) of R. [Suggestion: If m = f (x0, y0)

and M = f (x1, y1), then you may apply the intermediate
value property of the continuous function f (r(t)).]

51. Show by iterated integration that the exact value of the inte-
gral in Example 1 is 2

3 .

In Problems 52 and 53, first approximate (as in Example 1) the
integral

∫∫
R

f (x, y) dA

of the given function over the region R bounded by the unit circle
and the coordinate axes in the first quadrant, except—unlike Ex-
ample 1—use an inner partition resulting from the use of n = 5
subintervals in each direction. Then use iterated integrals to cal-
culate the exact value of the double integral.

52. f (x, y) = xy 53. f (x, y) = xy exp(y2)

13.3 AREA AND VOLUME BY DOUBLE INTEGRATION

Our definition of the double integral
∫∫

R
f (x, y) dA was motivated in Section 13.2 by

x

y

z

R 

T 

z = f (x, y)

FIGURE 13.3.1 A solid region T
with vertical sides and base R in the
xy-plane.

the problem of computing the volume of the solid

T = {(x, y, z) | (x, y) ∈ R and 0 � z � f (x, y)}
that lies below the surface z = f (x, y) and above the region R in the xy-plane. Such
a solid appears in Fig. 13.3.1. Despite this geometric motivation, the actual definition
of the double integral as a limit of Riemann sums does not depend on the concept of
volume. We may, therefore, turn matters around and use the double integral to define
volume.

DEFINITION Volume below z = f (x, y)
Suppose that the function f is continuous and nonnegative on the bounded plane
region R. Then the volume V of the solid that lies below the surface z = f (x, y)

and above the region R is defined to be

V =
∫∫

R

f (x, y) dA, (1)

provided that this integral exists.

It is of interest to note the connection between this definition and the cross-
sectional approach to volume that we discussed in Section 6.2. If, for example, the
region R is vertically simple, then the volume integral in Eq. (1) takes the form

V =
∫∫

R

z dA =
∫ b

a

∫ y2(x)

y1(x)

f (x, y) dy dx

in terms of iterated integrals. The inner integral

A (x) =
∫ y2(x)

y1(x)

f (x, y) dy

is equal to the area of the region in the yz-plane that lies below the curve

z = f (x, y) (x fixed)
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y

z

z = f (x, y)

y1(x) y2(x)

A =    f (x, y) dy

y2(x)

y1(x)

FIGURE 13.3.2 The inner integral in
Eq. (1) as the area of a region in the
yz-plane.

y

z

y = y2(x)

z = f (x, y)

 Area A(x)

x
y = y1(x)

x

FIGURE 13.3.3 The cross-sectional area is

A =
∫ y2(x)

y1(x)

f (x, y) dy.

and above the interval y1(x) � y � y2(x) (Fig. 13.3.2). But this is the projection of the
cross section shown in Fig. 13.3.3. Hence the value of the inner integral is simply the
area of the cross section of the solid region T in a plane perpendicular to the x-axis.
Thus

V =
∫ b

a
A (x) dx,

and so in this case Eq. (1) reduces to “volume is the integral of cross-sectional area.”

x

y

y = y2(x)

y = y1(x)

a bx

R

FIGURE 13.3.4 A vertically simple
region.

Volume by Iterated Integrals

A three-dimensional region T is typically described in terms of the surfaces that bound
it. The first step in applying Eq. (1) to compute the volume V of such a region is
to determine the region R in the xy-plane over which T lies. The second step is to
determine the appropriate order of integration. This may be done in the following way:

If each vertical line in the xy-plane meets R in a single line segment (if at
all), then R is vertically simple, and you may integrate first with respect
to y. The limits on y will be the y-coordinates y1(x) and y2(x) of the
endpoints of this line segment. (See Fig. 13.3.4.) The limits on x will be
the endpoints a and b of the interval on the x-axis onto which R projects.
Theorem 1 of Section 13.2 then gives

V =
∫∫

R

f (x, y) dA =
∫ b

a

∫ y2(x)

y1(x)

f (x, y) dy dx . (2)

Alternatively,

x

y

x = x1(y)

x = x2(y)

d

y

c

R

FIGURE 13.3.5 A horizontally
simple region.

If each horizontal line in the xy-plane meets R in a single line segment (if at
all), then R is horizontally simple, and you may integrate first with respect
to x . In this case

V =
∫∫

R

f (x, y) dA =
∫ d

c

∫ x2(y)

x1(y)

f (x, y) dx dy. (3)

As indicated in Fig. 13.3.5, x1(y) and x2(y) are the x-coordinates of the
endpoints of this horizontal line segment, and c and d are the endpoints of
the corresponding interval on the y-axis.
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EXAMPLE 1 The rectangle R in the xy-plane consists of those points (x, y) forxy

z

FIGURE 13.3.6 The solid of
Example 1.

which 0 � x � 2 and 0 � y � 1. Find the volume V of the solid that lies below the
surface z = 1 + xy and above R (Fig. 13.3.6).

Solution Here f (x, y) = 1 + xy, so Eq. (1) yields

V =
∫∫

R

z dA =
∫ 2

0

∫ 1

0
(1 + xy) dy dx

=
∫ 2

0

[
y + 1

2
xy2

]1

y=0

dx =
∫ 2

0

(
1 + 1

2
x

)
dx =

[
x + 1

4
x2

]2

0

= 3. ◗

The special case f (x, y) ≡ 1 in Eq. (1) gives the area

1

z

x

yR

(  ,    )yxf

FIGURE 13.3.7 The mesa.

A = a(R ) =
∫∫

R

1 dA =
∫∫

R

dA (4)

of the plane region R. In this case the solid region T resembles a desert mesa
(Fig. 13.3.7)—a solid cylinder with base R of area A and height 1. The volume of
any such cylinder—not necessarily circular—is the product of its height and the area
of its base. In this case, the iterated integrals in Eqs. (2) and (3) reduce to

A =
∫ b

a

∫ ytop

ybot

1 dy dx and A =
∫ d

c

∫ xright

xleft

1 dx dy,

respectively.

EXAMPLE 2 Compute by double integration the area A of the region R in the xy-
plane that is bounded by the parabola y = x2 − 2x and the line y = x .

Solution As indicated in Fig. 13.3.8, the line ytop = x and the parabola ybot = x2−2x

dx

y

x
(0, 0)

(3, 3)

dy

y
top

= x

= x 2y
bot

− x2

FIGURE 13.3.8 The region R of
Example 2.

intersect at the points (0, 0) and (3, 3). (These coordinates are easy to find by solving
the equation ytop = ybot.) Therefore,

A =
∫ b

a

∫ ytop

ybot

1 dy dx =
∫ 3

0

∫ x

x2−2x
1 dy dx

=
∫ 3

0

[
y
]x

y=x2−2x
dx =

∫ 3

0
(3x − x2) dx =

[
3

2
x2 − 1

3
x3

]3

0

= 9

2
. ◗

EXAMPLE 3 Find the volume of the wedge-shaped solid T that lies above the
xy-plane, below the plane z = x , and within the cylinder x2 + y2 = 4. This wedge is
shown in Fig. 13.3.9.

Solution The base region R is a semicircle of radius 2, but by symmetry we may
integrate over the first-quadrant quarter circle S alone and then double the result. A
sketch of the quarter circle (Fig. 13.3.10) helps establish the limits of integration. We
could integrate in either order, but integrating with respect to x first gives a slightly
simpler computation of the volume V :

V =
∫∫

S

z dA = 2
∫ 2

0

∫ √
4−y2

0
x dx dy = 2

∫ 2

0

[
1

2
x2

]√
4−y2

x=0

dy

=
∫ 2

0
(4 − y2) dy =

[
4y − 1

3
y3

]2

0

= 16

3
.

As an exercise, you should integrate in the other order and verify that the result is the
same. ◗

z y

x

(2, 0)

(0, 2)

z = x 

x2 + y2 = 4

FIGURE 13.3.9 The wedge of
Example 3.
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y

x

y =     4 − x2

x =     4 − y2

y = 0

x = 0

(0, 2)

(2, 0)

FIGURE 13.3.10 Half of the base
R of the wedge (Example 3).

R

T

z

x y

z = z2(x, y)

z = z1(x, y)

FIGURE 13.3.11 The solid T has
vertical sides and is bounded above
and below by surfaces.

Volume Between Two Surfaces
Suppose now that the solid region T lies above the plane region R, as before, but

x y

z

zbot = 2y

y = 2 − x2 

ztop = 6

(−1, 1, 0)

(0, 2, 0)

(1, 1, 0)
y = x2 

FIGURE 13.3.12 The solid T of
Example 4.

between the surfaces z = z1(x, y) and z = z2(x, y), where z1(x, y) � z2(x, y) for all
(x, y) in R (Fig. 13.3.11). Then we get the volume V of T by subtracting the volume
below z = z1(x, y) from the volume below z = z2(x, y), so

V =
∫∫

R

[z2(x, y) − z1(x, y)] dA. (5)

More briefly,

V =
∫∫

R

(ztop − zbot) dA

where ztop = z2(x, y) describes the top surface and zbot = z1(x, y) the bottom surface
of T . This is a natural generalization of the formula for the area of the plane region
between the curves y = z1(x) and y = z2(x) over the interval [a, b]. Moreover, like
that formula, Eq. (5) is valid even if z1(x, y), or both z1(x, y) and z2(x, y), are negative
over part or all of the region R.

EXAMPLE 4 Find the volume V of the solid T bounded by the planes z = 6 and
z = 2y and by the parabolic cylinders y = x2 and y = 2 − x2. This solid is sketched
in Fig. 13.3.12.

Solution Because the given parabolic cylinders are perpendicular to the xy-plane, the
solid T has vertical sides. Thus we may think of T as lying between the planes ztop = 6
and zbot = 2y and above the xy-plane region R that is bounded by the parabolas y = x2

and y = 2 − x2. As indicated in Fig. 13.3.13, these parabolas intersect at the points
(−1, 1) and (1, 1).

Integrating first with respect to y (for otherwise we would need two integrals),

x
1

y

−1

y = 2 − x2 

(−1, 1) (1, 1)

y = x2 

FIGURE 13.3.13 The region R of
Example 4.

we get

V =
∫∫

R

(ztop − zbot) dA =
∫ 1

−1

∫ 2−x2

x2
(6 − 2y) dy dx

= 2
∫ 1

0

[
6y − y2

]2−x2

y=x2
dx (by symmetry)

= 2
∫ 1

0

( [6 · (2 − x2) − (2 − x2)2] − [6x2 − x4] )
dx

= 2
∫ 1

0
(8 − 8x2) dx = 16

[
x − 1

3
x3

]1

0

= 32

3
. ◗
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13.3 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Whereas the definition of the double integral in the preceding section was moti-
vated by the problem of computing volumes of solids, in this section the volume
V of the solid that lies under the surface z = f (x, y) and above the region R in
the xy-plane is defined to be the value of the integral

∫∫
R

f (x, y) d A.

2. If the region R of Question 1 is vertically simple, then the volume integral
V = ∫∫

R
f (x, y) d A can be written in the form

V =
∫ b

a
A(x) dx where A(x) =

∫ y2(x)

y1(x)

f (x, y) dy.

3. The description a � x � b, y1(x) � y � y2(x) of the region R leads to an evalu-
ation of the double integral V = ∫∫

R
f (x, y) d A by integrating first with respect

to x and then with respect to y.
4. The description x1(y) � x � x2(y), c � y � d of the region R leads to an evalu-

ation of the double integral V = ∫∫
R

f (x, y) d A by integrating first with respect

to y and then with respect to x .
5. If R is the rectangle in the xy-plane defined by 0 � x � 2, 0 � y � 1, then

the volume of the solid that lies under the surface z = 1 + xy and above R can
be calculated by iterated integration in either order—integrating either first with
respect to x or first with respect to y.

6. Given a region R in the xy-plane, the problem of calculating the area A of R is
equivalent to the problem of calculating the volume of a certain solid that lies
above R.

7. The area of the region R that is bounded by the parabola y = x2 − 2x and the
line y = x in the xy-plane is just as simply calculated by iterated integration in
either order.

8. The volume of the wedge-shaped solid T that lies above the xy-plane, below the
plane z = x , and within the cylinder x2 + y2 = 4 can be evaluated by iterated
integration in either order.

9. In order for the formula

V =
∫∫

R

[z2(x, y) − z1(x, y)] d A

to give the volume that lies between the surfaces z = z1(x, y) and z = z2(x, y)

and above the region R in the xy-plane, it is necessary that z1(x, y) and z2(x, y)

both be nonnegative on R.
10. The volume of the solid that is bounded by the planes z = 6 and z = 2y and by

the parabolic cylinders y = x2 and y = 2 − x2 is just as simply calculated by
iterated integration in either order.

13.3 CONCEPTS: QUESTIONS AND DISCUSSION
These questions involve “trick integrals.” In each case the region R of integration is
the unit disk x2 + y2 � 1 in the xy-plane, and the evaluation of the double integral by
means of iterated single integrals might be tedious. But you should be able to evaluate
the integral mentally either by visualizing the volume represented by the integral or by
exploiting symmetry (or both). Do so.

1.
∫∫

R

√
1 − x2 − y2 dA

2.
∫∫

R

(10 − x + y) dA
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3.
∫∫

R

(
1 −

√
x2 + y2

)
dA

4.
∫∫

R

√
x2 + y2 dA

5.
∫∫

R

(5 − x2 sin x + y3 cos y) dA

13.3 PROBLEMS

In Problems 1 through 10, use double integration to find the area
of the region in the xy-plane bounded by the given curves.

1. y = x , y2 = x

2. y = x , y = x4

3. y = x2, y = 2x + 3 (Fig. 13.3.14)

4. y = 2x + 3, y = 6x − x2 (Fig. 13.3.15)

x

y

y = x2

y = 2x + 3

FIGURE 13.3.14
Problem 3.

x

y = 6x − x2

y

x

y = 2x +3

FIGURE 13.3.15
Problem 4.

5. y = x2 (x � 0), x + y = 2, y = 0

6. y = (x − 1)2, y = (x + 1)2, y = 0

7. y = x2 + 1, y = 2x2 − 3 (Fig. 13.3.16)

8. y = x2 + 1, y = 9 − x2 (Fig. 13.3.17)

y = 2x2 − 3

y = x2 + 1

x

y

FIGURE 13.3.16
Problem 7.

y = 9 − x2

y = x2 + 1

x

y

FIGURE 13.3.17
Problem 8.

9. y = x , y = 2x , xy = 2 (first quadrant)

10. y = x2, y = 2

1 + x2

In Problems 11 through 26, find the volume of the solid that lies
below the surface z = f (x, y) and above the region in the xy-
plane bounded by the given curves.

11. z = 1 + x + y; x = 0, x = 1, y = 0, y = 1

12. z = 2x + 3y; x = 0, x = 3, y = 0, y = 2

13. z = y + ex ; x = 0, x = 1, y = 0, y = 2

14. z = 3 + cos x + cos y; x = 0, x = π , y = 0, y = π

(Fig. 13.3.18)

02
x

z

0
2y

0

2

4

z = 3 + cos x + cos y

FIGURE 13.3.18 The
surface of Problem 14.

15. z = x + y; x = 0, y = 0, x + y = 1

16. z = 3x + 2y; x = 0, y = 0, x + 2y = 4

17. z = 1 + x + y; x = 1, y = 0, y = x2

18. z = 2x + y; x = 0, y = 1, x = √
y

19. z = x2; y = x2, y = 1

20. z = y2; x = y2, x = 4

21. z = x2 + y2; x = 0, x = 1, y = 0, y = 2

22. z = 1 + x2 + y2; y = x , y = 2 − x2

23. z = 9 − x − y; y = 0, x = 3, y = 2
3 x

24. z = 10 + y − x2; y = x2, x = y2

25. z = 4x2 + y2; x = 0, y = 0, 2x + y = 2

26. z = 2x + 3y; y = x2, y = x3

In Problems 27 through 30, find the volume of the given solid.

27. The solid is bounded by the planes x = 0, y = 0, z = 0, and
3x + 2y + z = 6.

28. The solid is bounded by the planes y = 0, z = 0, y = 2x ,
and 4x + 2y + z = 8.

29. The solid lies under the hyperboloid z = xy and above the
triangle in the xy-plane with vertices (1, 2), (1, 4), and (5, 2).

30. The solid lies under the paraboloid z = 25 − x2 − y2 and
above the triangle in the xy-plane with vertices (−3, −4),
(−3, 4), and (5, 0).
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In Problems 31 through 34, first set up an iterated integral that
gives the volume of the given solid. Then use a computer algebra
system (if available) to evaluate this integral.

31. The solid lies inside the cylinder x2 + y2 = 1, above the
xy-plane, and below the plane z = x + 1 (Fig. 13.3.19).

z y

x

z = x + 1

x2 + y2 = 1

FIGURE 13.3.19 The solid
of Problem 31.

32. The solid lies above the xy-plane and below the paraboloid
z = 9 − x2 − y2.

33. The solid lies inside both the cylinder x2 + y2 = 1 and the
sphere x2 + y2 + z2 = 4.

34. The solid lies inside the sphere x2 + y2 + z2 = 2 and above
the paraboloid z = x2 + y2.

35. Use double integration to find the volume of the tetrahedron
in the first octant that is bounded by the coordinate planes
and the plane with equation

x

a
+ y

b
+ z

c
= 1

(Fig. 13.3.20). The numbers a, b, and c are positive con-
stants.

b

c

a

y
x

z

FIGURE 13.3.20 The
tetrahedron of Problem 35.

z

y

x

y2 + z2 = 1

x2 + y2 = 1

FIGURE 13.3.21 The
solid of Problem 37.

36. Suppose that h > a > 0. Show that the volume of the solid
bounded by the cylinder x2 + y2 = a2, the plane z = 0, and
the plane z = x + h is V = πa2h.

37. Find the volume of the first octant part of the solid bounded
by the cylinders x2 + y2 = 1 and y2 + z2 = 1 (Fig. 13.3.21).
[Suggestion: One order of integration is considerably easier
than the other.]

38. Find by double integration the volume of the solid bounded
by the surfaces y = sin x , y = − sin x , z = sin x , and
z = − sin x for 0 � x � π .

In Problems 39 through 45, you may consult Chapter 7 or the in-
tegral table inside the back cover of this book to find antideriva-
tives of such expressions as (a2 − x2)3/2.

39. Find the volume of a sphere of radius a by double in-
tegration.

40. Use double integration to find the formula V = V (a, b, c)
for the volume of an ellipsoid with semiaxes of lengths a, b,
and c.

41. Find the volume of the solid bounded below by the xy-plane
and above by the paraboloid z = 25 − x2 − y2 by evaluating
a double integral (Fig. 13.3.22).

−5
0

5x

−5

0
5

y

0

10

20

z

z = 25 − x2 − y2

FIGURE 13.3.22 The
solid paraboloid of
Problem 41.

z = 12 − 2x2 − y2

z = x2 + 2y2

−202
x

−2
0

2y

0

5

10

z

FIGURE 13.3.23 The solid
of Problem 42.

42. Find the volume of the solid bounded by the two para-
boloids z = x2 + 2y2 and z = 12 − 2x2 − y2 (Fig. 13.3.23).

43. Find the volume removed when a vertical square hole of
edge length R is cut directly through the center of a long
horizontal solid cylinder of radius R.

44. Find the volume of the solid bounded by the two surfaces
z = x2 + 3y2 and z = 4 − y2 (Fig. 13.3.24).

−2
0

2

x

−1
0

1y

0

2

4

z

z = 4 − y2

z = x2 + 3y2

FIGURE 13.3.24 The
solid of Problem 44.

45. Find the volume V of the solid T bounded by the parabolic
cylinders z = x2, z = 2x2, y = x2, and y = 8 − x2.

In Problems 46 and 47, use a computer algebra system to find
(either approximately or exactly) the volume of the solid that
lies under the surface z = f (x, y) and above the region in the
xy-plane that is bounded by y = cos x and y = − cos x for
−π/2 � x � π/2.

46. f (x, y) = 4 − x2 − y2 47. f (x, y) = cos y

48. Repeat Problem 47, but with f (x, y) = |sin x | cos x . Also
try to exploit symmetry to evaluate the volume integral man-
ually.
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In Problems 49 through 51, the equations of a plane and a
paraboloid are given. Use a computer algebra system to evaluate
the double integral that gives the volume of the solid bounded by
the two surfaces.

49. z = 2x + 3 and z = x2 + y2

50. z = 4x + 4y and z = x2 + y2 − 1

51. 16x + 18y + z = 0 and z = 11 − 4x2 − 9y2

52. Suppose that a square hole with sides of length 2 is cut sym-
metrically through the center of a sphere of radius 2. Use a
computer algebra system to compute the volume thereby re-
moved. Show that your result is (exactly or approximately)

equal to the exact value

V = 4

3

(
19π + 2

√
2 − 54 tan−1

√
2
)
.

53. Suppose that a square hole with sides of length 2 is cut off-
center through a sphere of radius 4. Let S be the square cross
section of the hole in an equatorial plane of the sphere. The
midpoint C of S is at distance 2 from the center of the sphere,
and the radius of the sphere that passes through C is perpen-
dicular to two sides of S. Use a computer algebra system to
show that about 10% of the whole volume of the sphere is
removed when the hole is cut.

13.4 DOUBLE INTEGRALS IN POLAR COORDINATES

A double integral may be easier to evaluate after it has been transformed from rectan-

x

y

 r = b 

 r = aα

Δ
β

r

Δr
θ

R

FIGURE 13.4.1 A polar rectangle.

gular xy-coordinates into polar rθ -coordinates. This is likely to be the case when the
region R of integration is a polar rectangle. A polar rectangle is a region described in
polar coordinates by the inequalities

a � r � b, α � θ � β. (1)

This polar rectangle is shown in Fig. 13.4.1. If a = 0, it is a sector of a circular disk of
radius b. If 0 < a < b, α = 0, and β = 2π , it is an annular ring of inner radius a and
outer radius b. Because the area of a circular sector with radius r and central angle θ

is 1
2r2θ , the area of the polar rectangle in (1) is

A = 1
2 b2(β − α) − 1

2 a2(β − α)

= 1
2 (a + b)(a − b)(β − α) = r �r �θ, (2)

where �r = b − a, �θ = β − α, and r = 1
2 (a + b) is the average radius of the polar

rectangle.
Suppose that we want to compute the value of the double integral

y

z

 r = a 
 r = b 

R

z = f (x, y)

x α

β

FIGURE 13.4.2 A solid region
whose base is the polar rectangle R.

∫∫
R

f (x, y) dA,

where R is the polar rectangle in (1). Thus we want the volume of the solid with base
R that lies below the surface z = f (x, y) (Fig. 13.4.2). We defined in Section 13.1
the double integral as a limit of Riemann sums associated with partitions consisting of
ordinary rectangles. We can define the double integral in terms of polar partitions as
well, made up of polar rectangles. We begin with a partition

a = r0 < r1 < r2 < · · · < rm = b

of [a, b] into m subintervals all having the same length �r = (b−a)/m and a partition

α = θ0 < θ1 < θ2 < · · · < θn = β

of [α, β] into n subintervals all having the same length �θ = (β − α)/n. This gives
the polar partition P of R into the k = m n polar rectangles R1, R2, . . . , Rk indicated
in Fig. 13.4.3. The norm |P| of this polar partition is the maximum of the lengths of
the diagonals of its polar subrectangles.

Let the center point of Ri have polar coordinates (r �
i , θ�

i ), where r �
i is the average

radius of Ri . Then the rectangular coordinates of this point are x�
i = r �

i cos θ�
i and

y�
i = r �

i sin θ�
i . Therefore the Riemann sum for the function f (x, y) associated with

the polar partition P is

k∑
i=1

f (x�
i , y�

i ) �A i ,
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x

y

 r = b 

 r = aα
β

R

Ri

Δr

(ri
★, θi

★)θ

Δθθ

FIGURE 13.4.3 A polar partition of the
polar rectangle R.

where �A i = r �
i �r�θ is the area of the polar rectangle Ri [in part a consequence of

Eq. (2)]. When we express this Riemann sum in polar coordinates, we obtain

k∑
i=1

f (x�
i , y�

i ) �A i =
k∑

i=1

f (r �
i cos θ�

i , r �
i sin θ�

i ) r �
i �r �θ

=
k∑

i=1

g(r �
i , θ�

i ) �r �θ,

where g(r, θ) = r · f (r cos θ, r sin θ). This last sum is simply a Riemann sum for the
double integral

∫ β

α

∫ b

a
g(r, θ) dr dθ =

∫ β

α

∫ b

a
f (r cos θ, r sin θ) r dr dθ,

so it finally follows that

∫∫
R

f (x, y) dA = lim
|P|→0

k∑
i=1

f (x�
i , y�

i ) �A i

= lim
�r,�θ→0

k∑
i=1

g(r �
i , θ�

i ) �r �θ =
∫ β

α

∫ b

a
g(r, θ) dr dθ.

That is,

x

y

 dA 

dr 

r

dθθ

 r dθθ

FIGURE 13.4.4 The dimensions of
the small polar rectangle suggest that
its area is d A = dr · r dθ = r dr dθ .

∫∫
R

f (x, y) dA =
∫ β

α

∫ b

a
f (r cos θ, r sin θ) r dr dθ . (3)

Thus we formally transform into polar coordinates a double integral over a polar
rectangle of the form in (1) by substituting

x = r cos θ, y = r sin θ, dA = r dr dθ (4)

and inserting the appropriate limits of integration on r and θ . In particular, note the
“extra” r on the right-hand side of Eq. (3). You may remember it by visualizing the
“infinitesimal polar rectangle” of Fig. 13.4.4, with “area” dA = r dr dθ .

−5

0

5
x

−5

0

5
y

0

10

20

z

z = 25 − x2 − y2

FIGURE 13.4.5 The paraboloid of
Example 1.

EXAMPLE 1 Find the volume V of the solid shown in Fig. 13.4.5. This is the figure
bounded below by the xy-plane and above by the paraboloid z = 25 − x2 − y2.
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1022 CHAPTER 13 Multiple Integrals

Solution The paraboloid intersects the xy-plane in the circle x2 + y2 = 25. We can

x

y

 r = 5

r = 0
θ = 0 θ

θ = 
π
2
π

θ

FIGURE 13.4.6 One-fourth of the
domain of the integral of Example 1.

compute the volume of the solid by integrating over the quarter of that circle that lies
in the first quadrant (Fig. 13.4.6) and then multiplying the result by 4. Thus

V = 4
∫ 5

0

∫ √
25−x2

0
(25 − x2 − y2) dy dx .

There is no difficulty in performing the integration with respect to y, but then we are
confronted with the integrals∫ √

25 − x2 dx,

∫
x2

√
25 − x2 dx, and

∫
(25 − x2)3/2 dx .

Let us instead transform the original integral into polar coordinates. Because
25− x2 − y2 = 25−r2 and because the quarter of the circular disk in the first quadrant
is described by

0 � r � 5, 0 � θ � π/2,

Eq. (3) yields the volume

V = 4
∫ π/2

0

∫ 5

0
(25 − r2) r dr dθ

= 4
∫ π/2

0

[
25

2
r2 − 1

4
r4

]5

r=0

dθ = 4 · 625

4
· π

2
= 625π

2
. ◗

More General Polar-Coordinate Regions
If R is a more general region, then we can transform into polar coordinates the double
integral

y

 r = b 

 r = aα
β

R

x

FIGURE 13.4.7 A polar inner
partition of the region R. ∫∫

R

f (x, y) dA

by expressing it as a limit of Riemann sums associated with “polar inner partitions” of

x

y

α
β θ

 r = r2(θ) θ

 r = r1(θ) θ

R

FIGURE 13.4.8 A radially simple
region R.

the sort indicated in Fig. 13.4.7. Instead of giving the detailed derivation—a general-
ization of the preceding derivation of Eq. (3)—we shall simply give the results in one
special case of practical importance.

Figure 13.4.8 shows a radially simple region R consisting of those points with
polar coordinates that satisfy the inequalities

α � θ � β, r1(θ) � r � r2(θ).

In this case, the formula

∫∫
R

f (x, y) dA =
∫ β

α

∫ r2(θ)

r1(θ)

f (r cos θ, r sin θ) r dr dθ (5)

gives the evaluation in polar coordinates of a double integral over R (under the usual
assumption that the indicated integrals exist). Note that we integrate first with respect
to r , with the limits r1(θ) and r2(θ) being the r -coordinates of a typical radial segment
in R (Fig. 13.4.8).

Figure 13.4.9 shows how we can set up the iterated integral on the right-hand
side of Eq. (5) in a formal way. First, a typical area element dA = r dr dθ is swept
radially from r = r1(θ) to r = r2(θ). Second, the resulting strip is rotated from θ = α

to θ = β to sweep out the region R. Equation (5) yields the volume formula

V =
∫ β

α

∫ router

rinner

z r dr dθ (6)

for the volume V of the solid that lies above the region R of Fig. 13.4.8 and below the
surface z = f (x, y) = f (r cos θ, r sin θ).

x

y

αβ

1
2

 r = r2(θ) θ

 r = r1(θ) θ

r dr dθ

FIGURE 13.4.9 Integrating first
with respect to r and then with
respect to θ .
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Observe that Eqs. (3) and (5) for the evaluation of a double integral in polar
coordinates take the form∫∫

R

f (x, y) dA =
∫∫

S

f (r cos θ, r sin θ) r dr dθ . (7)

The symbol S on the right-hand side represents the appropriate limits on r and θ such
that the region R is swept out in the manner indicated in Fig. 13.4.9.

With f (x, y) ≡ 1, Eq. (7) reduces to the formula

A = a(R ) =
∫∫

S

r dr dθ (8)

for computing the area a(R ) of R by double integration in polar coordinates. Note
again that the symbol S refers not to a new region in the xy-plane, but to a new
description—in terms of polar coordinates—of the original region R.

EXAMPLE 2 Figure 13.4.10 shows the region R bounded on the inside by the circle
r = 1 and on the outside by the limaçon r = 2 + cos θ . By following a typical radial
line outward from the origin, we see that rinner = 1 and router = 2 + cos θ . Hence the

router = 2 + cos θθ

rinner = 1

R

θ

y

x

FIGURE 13.4.10 The region R of
Example 2.

area of R is

A =
∫ β

α

∫ router

rinner

r dr dθ

= 2
∫ π

0

∫ 2+cos θ

1
r dr dθ (symmetry)

= 2
∫ π

0

1

2
[(2 + cos θ)2 − 12] dθ

=
∫ π

0
(3 + 4 cos θ + cos2 θ) dθ

=
∫ π

0

(
3 + 4 cos θ + 1

2
+ 1

2
cos 2θ

)
dθ

=
∫ π

0

(
3 + 1

2

)
dθ = 7

2
π.

The cosine terms in the next-to-last integral contribute nothing, because upon integra-
tion they yield sine terms that are zero at both limits of integration. ◗

EXAMPLE 3 Find the volume of the solid region that is interior to both the sphere

−2

0

2
x

−2

0

2
y

−2

0

2

z

(x − 1)2 + y2 = 1

x2 + y2 + z2 = 4

FIGURE 13.4.11 The sphere with
off-center hole (Example 3).

x2 + y2 + z2 = 4 of radius 2 and the cylinder (x − 1)2 + y2 = 1. This is the volume of
material removed when an off-center hole of radius 1 is bored just tangent to a diameter
all the way through a sphere of radius 2 (Fig. 13.4.11).

Solution We need to integrate the function f (x, y) = √
4 − x2 − y2 over the disk R

that is bounded by the circle with center (1, 0) and radius 1 (Fig. 13.4.12). The desired
volume V is twice that of the part above the xy-plane, so

V = 2
∫∫

R

√
4 − x2 − y2 dA.

But this integral would be awkward to evaluate in rectangular coordinates, so we
change to polar coordinates.

The circle of radius 1 in Fig. 13.4.12 is familiar from Section 9.2; its polar equa-
tion is r = 2 cos θ . Therefore the region R is described by the inequalities

y

x(1, 0) 

(2, 0) 
r

R

θ

(x − 1)2 + y2 = 1 

r = 2 cos θθ

x2 + y2 = 4 

FIGURE 13.4.12 The small circle
is the domain R of the integral of
Example 3.

0 � r � 2 cos θ, −π/2 � θ � π/2.
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1024 CHAPTER 13 Multiple Integrals

We shall integrate only over the upper half of R, taking advantage of the symmetry of
the sphere-with-hole. This involves doubling, for a second time, the integral we write.
So—using Eq. (5)—we find that

V = 4
∫ π/2

0

∫ 2 cos θ

0

√
4 − r2 r dr dθ

= 4
∫ π/2

0

[
− 1

3
(4 − r2)3/2

]2 cos θ

r=0

dθ = 32

3

∫ π/2

0
(1 − sin3 θ) dθ.

Now we see from Formula (113) inside the back cover that∫ π/2

0
sin3 θ dθ = 2

3
,

and therefore

V = 32

3
·
(

π

2
− 2

3

)
= 16

3
π − 64

9
≈ 9.64405. ◗

In Example 4 we use a polar-coordinates version of the familiar volume formula

V =
∫∫

R

(ztop − zbot) dA.

EXAMPLE 4 Find the volume of the solid that is bounded above by the paraboloid
−2

0
2

x

−2

0

2
y

0

2

4

6

8

z

z = 8 − r2

z = r2

FIGURE 13.4.13 The solid of
Example 4.

z = 8 − r2 and below by the paraboloid z = r2 (Fig. 13.4.13).

Solution The curve of intersection of the two paraboloids is found by simultaneous
solution of the equations of the two surfaces. We eliminate z to obtain

r2 = 8 − r2; that is, r2 = 4.

Hence the solid lies above the plane circular disk D with polar description 0 � r � 2,
and so the volume of the solid is

V =
∫∫

D

(ztop − zbot) dA =
∫ 2π

0

∫ 2

0
[(8 − r2) − r2] r dr dθ

=
∫ 2π

0

∫ 2

0
(8r − 2r3) dr dθ = 2π

[
4r2 − 1

2
r4

]2

0

= 16π. ◗

EXAMPLE 5 Here we apply a standard polar-coordinates technique to show that

∫ ∞

0
e−x2

dx =
√

π

2
. (9)

REMARK This important improper integral converges because∫ b

1
e−x2

dx �
∫ b

1
e−x dx �

∫ ∞

1
e−x dx = 1

e
.

(The first inequality is valid because e−x2 � e−x for x � 1.) It follows that∫ b

1
e−x2

dx

is a bounded and increasing function of b.
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Solution Let Vb denote the volume of the region that lies below the surface z =

−2
0

2x

−2
0

2y

z

0

1
z = e−x2 − y2

FIGURE 13.4.14 The surface

z = e−x2−y 2
(Example 5).

e−x2−y2
and above the square with vertices (±b, ±b) in the xy-plane (Fig. 13.4.14).

Then

Vb =
∫ b

−b

∫ b

−b
e−x2−y2

dx dy =
∫ b

−b
e−y2

( ∫ b

−b
e−x2

dx

)
dy

=
( ∫ b

−b
e−x2

dx

)( ∫ b

−b
e−y2

dy

)
=

( ∫ b

−b
e−x2

dx

)2

= 4

( ∫ b

0
e−x2

dx

)2

.

It follows that the volume below z = e−x2−y2
and above the entire xy-plane is

V = lim
b→∞ Vb = lim

b→∞ 4

( ∫ b

0
e−x2

dx

)2

= 4

( ∫ ∞

0
e−x2

dx

)2

= 4I 2,

where I denotes the value of the improper integral in (9).
Now we compute V by another method—by using polar coordinates. We take

z = e−r2

−2
0

2x

−2
0

2y

z

0

1

FIGURE 13.4.15 The surface

z = e−r2
(Example 5).

the limit, as b → +∞, of the volume below z = e−x2−y2 = e−r2
and above the

circular disk with center (0, 0) and radius b (Fig. 13.4.15). This disk is described by
0 � r � b, 0 � θ � 2π , so we obtain

V = lim
b→∞

∫ 2π

0

∫ b

0
re−r2

dr dθ = lim
b→∞

∫ 2π

0

[
− 1

2
e−r2

]b

r=0

dθ

= lim
b→∞

∫ 2π

0

1

2

[
1 − e−b2]

dθ = lim
b→∞ π

(
1 − e−b2) = π.

We equate these two values of V , and it follows that 4I 2 = π . Therefore, I = 1
2

√
π ,

as desired. ◗

13.4 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. If the region R is a polar rectangle—that is, a region that is described in polar
coordinates by inequalities of the form a � r � b, α � θ � β—then the
double integral

∫∫
R

f (x, y) d A is likely to be easier to integrate after it has been

transformed from rectangular xy-coordinates to polar rθ -coordinates.
2. If R is the polar rectangle described by a � r � b, α � θ � β and g(r, θ) =

r · f (r sin θ, r cos θ), then∫∫
R

f (x, y) d A =
∫ β

α

∫ b

a
g(r, θ)dr dθ.

3. If the region R is a polar rectangle, then we can transform the double integral∫∫
R

f (x, y) d A into polar coordinates formally by substituting

x = r cos θ, y = r sin θ, d A = dr dθ

and inserting the appropriate limits of integration on r and θ .
4. An “infinitesimal polar rectangle,” corresponding to the changes dr and dθ in the

polar coordinate variables, can be visualized as an infinitesimal rectangle that has
sides dr and rdθ and therefore has infinitesimal area d A = dr · rdθ = r dr dθ .

5. If the region R in the xy-plane is bounded by the circle x2 + y2 = 25, then
the double integral

∫∫
R
(25 − x2 − y2) d A is readily evaluated using rectangular

coordinates.
6. If the region R in the xy-plane is bounded by the circle x2 + y2 = 25, then the

double integral
∫∫

R
(25−x2 − y2) d A is readily evaluated using polar coordinates.
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1026 CHAPTER 13 Multiple Integrals

7. Suppose the region R in the xy-plane consists of those points with polar coordi-
nates that satisfy the inequalities r1(θ) � r � r2(θ), α � θ � β. Then the double
integral

∫∫
R

f (x, y) d A transforms to a polar-coordinate iterated double integral

that calls for integration first with respect to r and then with respect to θ .
8. The area A of the region that is described by the polar-coordinate inequalities in

Question 7 is given by A =
∫ β

α

∫ r2(θ)

r1(θ)

r dr dθ .

9. In Example 3, the volume of the solid region that is interior to both the sphere
x2 + y2 + z2 = 4 and the cylinder (x − 1)2 + y2 = 1 is calculated using
polar coordinates because the appropriate volume integral would be awkward
to evaluate using rectangular coordinates.

10. In the solution to Example 5, the volume V of the unbounded solid that lies under
the surface z = e−x2−y2

and above the entire xy-plane is calculated twice—both
using rectangular coordinates and using polar coordinates.

13.4 CONCEPTS: QUESTIONS AND DISCUSSION

1. Describe a plane region R such that evaluation of
∫∫

R
f dA by iterated integra-

tion without subdividing the region R would require the use of rectangular coor-
dinates, and another region such that this would require the use of polar coordi-
nates.

2. Can you describe an integral
∫∫

R
f dA such that R is the unit square

0 � x � 1, 0 � y � 1, but the integral is more easily evaluated in polar co-
ordinates than in rectangular coordinates?

3. Can you describe an integral
∫∫

R
f dA such that R is the unit disk 0 � r � 1

but the integral is more easily evaluated in rectangular coordinates than in polar
coordinates?

13.4 PROBLEMS

In Problems 1 through 7, find the indicated area by double inte-
gration in polar coordinates.

1. The area bounded by the circle r = 1

2. The area bounded by the circle r = 3 sin θ

3. The area bounded by the cardioid r = 1 + cos θ

(Fig. 13.4.16)

4. The area bounded by one loop of r = 2 cos 2θ (Fig. 13.4.17)

5. The area inside both the circles r = 1 and r = 2 sin θ

6. The area inside r = 2 + cos θ and outside the circle r = 2

7. The area inside the smaller loop of r = 1 − 2 sin θ

(Fig. 13.4.18)

In Problems 8 through 12, use double integration in polar coordi-
nates to find the volume of the solid that lies below the given sur-
face and above the plane region R bounded by the given curve.

8. z = x2 + y2; r = 3

9. z = √
x2 + y2; r = 2

10. z = x2 + y2; r = 2 cos θ

11. z = 10 + 2x + 3y; r = sin θ

12. z = a2 − x2 − y2; r = a

−2

−1

0

1

2

r = 1 + cos θ

FIGURE 13.4.16 The
cardioid of Problem 3.

−2

−1

0

1

2

r = 2 cos 2θ

FIGURE 13.4.17 The
rose of Problem 4.

−2

0

2

r = 1 − 2 sin θ

FIGURE 13.4.18 The
limaçon of Problem 7.
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In Problems 13 through 18, evaluate the given integral by first
converting to polar coordinates.

13.
∫ 1

0

∫ √
1−y2

0

1

1 + x2 + y2
dx dy (Fig. 13.4.19)

14.
∫ 1

0

∫ √
1−x2

0

1√
4 − x2 − y2

dy dx (Fig. 13.4.19)

15.
∫ 2

0

∫ √
4−x2

0
(x2 + y2)3/2 dy dx

16.
∫ 1

0

∫ 1

x
x2 dy dx

17.
∫ 1

0

∫ √
1−y2

0
sin(x2 + y2) dx dy

18.
∫ 2

1

∫ √
2x−x2

0

1√
x2 + y2

dy dx (Fig. 13.4.20)

x2 + y2 = 1

x

y

FIGURE 13.4.19 The
quarter-circle of
Problems 13 and 14.

x

y

y =     2x − x2

1

FIGURE 13.4.20 The
quarter-circle of
Problem 18.

In Problems 19 through 22, find the volume of the solid that is
bounded above and below by the given surfaces z = z1(x, y)

and z = z2(x, y) and lies above the plane region R bounded by
the given curve r = g(θ).

19. z = 1, z = 3 + x + y; r = 1

20. z = 2 + x , z = 4 + 2x ; r = 2

21. z = 0, z = 3 + x + y; r = 2 sin θ

22. z = 0, z = 1 + x ; r = 1 + cos θ

Solve Problems 23 through 32 by double integration in polar co-
ordinates.

23. Find the volume of a sphere of radius a by double inte-
gration.

24. Find the volume of the solid bounded by the paraboloids
z = 12 − 2x2 − y2 and z = x2 + 2y2.

25. Suppose that h > a > 0. Show that the volume of the solid
bounded by the cylinder x2 + y2 = a2, the plane z = 0, and
the plane z = x + h is V = πa2h.

26. Find the volume of the wedge-shaped solid described in Ex-
ample 3 of Section 13.3 (Fig. 13.4.21).

27. Find the volume bounded by the paraboloids z = x2 + y2

and z = 4 − 3x2 − 3y2.

28. Find the volume bounded by the paraboloids z = x2 + y2

and z = 2x2 + 2y2 − 1.

1

0

−2

y

z

−2

0

2
x

0

1

x2 + y2 = 4

z  =  x

FIGURE 13.4.21 The
wedge of Problem 26.

x2 + y2 + z2 = a2
−0.500.5

x

z

−0.5 0 0.5
y

0

0.5

1

z = x2  +  y2

FIGURE 13.4.22 The fat
ice-cream cone of Problem 29.

29. Find the volume of the “ice-cream cone” bounded by the
sphere x2 + y2 + z2 = a2 and the cone z = √

x2 + y2. When
a = 1 this solid is the one shown in Fig. 13.4.22.

30. Find the volume bounded by the paraboloid z = r 2, the
cylinder r = 2a sin θ , and the plane z = 0.

31. Find the volume that lies below the paraboloid z =
r 2 and above one loop of the lemniscate with equation
r 2 = 2 sin 2θ .

32. Find the volume that lies inside both the cylinder x2+y2 = 4
and the ellipsoid 2x2 + 2y2 + z2 = 18.

33. If 0 < h < a, then the plane z = a − h cuts off a
spherical segment of height h and radius b from the sphere
x2+y2+z2 = a2 (Fig. 13.4.23). (a) Show that b2 = 2ah−h2.
(b) Show that the volume of the spherical segment is V =
1
6 πh(3b2 + h2).

34. Show by the method of Example 5 that∫ ∞

0

∫ ∞

0

1

(1 + x2 + y2)2
dx dy = π

4
.

35. Find the volume of the solid torus obtained by revolving the
disk r � a around the line x = b > a (Fig. 13.4.24). [Sug-
gestion: If the area element dA = r dr dθ is revolved around
the line, the volume generated is dV = 2π(b − x) dA. Ex-
press everything in polar coordinates.]

z = a − h

x2 + y2 + z2 = a2

FIGURE 13.4.23 The
spherical segment of
Problem 33.

−1
2

5x −3

0

3

y
−1
0
1

z

FIGURE 13.4.24 The torus
of Problem 35 (the case
a = 1, b = 2 is shown).

In Problems 36 through 40, use double integrals in polar coordi-
nates to find the volumes of the indicated solids.

36. The solid lies above the plane z = −3 and below the para-
boloid z = 15 − 2x2 − 2y2.

37. The solid is bounded above by the plane z = y+4 and below
by the paraboloid z = x2 + y2 + y.

38. The solid lies inside the cylinder x2 + y2 = 4, above the
xy-plane, and below the plane z = x + y + 3.

39. The solid is bounded by the elliptical paraboloids z = x2 +
2y2 and z = 12 − 2x2 − y2.
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1028 CHAPTER 13 Multiple Integrals

40. The solid lies inside the ellipsoid 4x2 + 4y2 + z2 = 80 and
above the paraboloid z = 2x2 + 2y2.

41. Find the volume removed when a circular hole of radius
a < b is bored symmetrically through the center of a sphere
of radius b. [Check: It’s about 35% of the volume of the
sphere when a = 1 and b = 2.]

42. Suppose that a circular hole with radius 1 is cut off-center
through a sphere of radius 4. The axis of the hole is at
distance 2 from the center of the sphere. Use a computer
algebra system to show that the volume of material removed
is about 8% of the volume of the sphere.

43. Suppose that a hexagonal hole is cut symmetrically through
the center of a sphere of radius 2. The cross section of the
hole is a unit regular hexagon—a six-sided equiangular poly-
gon with each side and “radius” of length 1. Use a computer
algebra system to show that the volume of material removed
is about 29% of the volume of the sphere. [To give your com-
puter algebra system a more vigorous workout, you could try
a pentagonal (five-sided) or heptagonal (seven-sided) hole,
each with “radius” 1. With a unit 17-sided polygon, the
volume of the material removed is over 34% of that of the
sphere, close to the 35% figure cited in Problem 41.]

13.5 APPLICATIONS OF DOUBLE INTEGRALS

In Section 6.6 we discussed the mass m and centroid (x, y) of a plane region that cor-

x

y

R

yi★

Ri

xi
★

FIGURE 13.5.1 The area element
�Ai = a(Ri ).

responds to a thin plate or lamina of uniform (constant) density. This special case is
amenable to calculation using single-variable integrals. Nevertheless, the double inte-
gral provides the proper setting for the general case of a lamina with variable density
that occupies a bounded region R in the xy-plane. We suppose that the density of the
lamina (in units of mass per unit area) at the point (x, y) is given by the continuous
function δ(x, y).

Let P = {R 1, R 2, . . . , R n} be an inner partition of R, and choose a point (x�
i , y�

i )

in each subrectangle Ri (Fig. 13.5.1). Then the mass of the part of the lamina occu-
pying Ri is approximately δ(x�

i , y�
i ) �A i , where �A i denotes the area a(Ri ) of Ri .

Hence the mass of the entire lamina is given approximately by

m ≈
n∑

i=1

δ(x�
i , y�

i ) �A i .

As the norm |P| of the inner partition P approaches zero, this Riemann sum approaches
the corresponding double integral over R. We therefore define the mass m of the lamina
by means of the formula

m =
∫∫

R

δ(x, y) dA. (1)

In brief,

m =
∫∫

R

δ dA =
∫∫

R

dm

in terms of the density δ and the mass element

dm = δ dA.

The coordinates (x, y) of the centroid, or center of mass, of the lamina are de-
fined to be

x = 1

m

∫∫
R

xδ(x, y) dA, (2)

y = 1

m

∫∫
R

yδ(x, y) dA. (3)

You may prefer to remember these formulas in the form

x = 1

m

∫∫
R

x dm, y = 1

m

∫∫
R

y dm.
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Thus x and y are the average values of x and y with respect to mass in the region R.
The centroid (x, y) is the point of the lamina where it would balance horizontally if(x, y)  

FIGURE 13.5.2 A lamina balanced
on its centroid.

placed on the point of an ice pick (Fig. 13.5.2).
If the density function δ has the constant value k > 0, then the coordinates of

x and y are independent of the specific value of k. (Why?) In such a case we will
generally take δ ≡ 1 in our computations. Moreover, in this case m will have the same
numerical value as the area A of R, and (x, y) is then called the centroid of the plane
region R.

Generally, we must calculate all three integrals in Eqs. (1) through (3) in order to
find the centroid of a lamina. But sometimes we can take advantage of the following
symmetry principle: If the plane region R (considered to be a lamina of constant den-
sity) is symmetric with respect to the line L—that is, if R is carried onto itself when
the plane is rotated through an angle of 180◦ around the line L—then the centroid of
R lies on L (Fig. 13.5.3). For example, the centroid of a rectangle (Fig. 13.5.4) is the
point where the perpendicular bisectors of its sides meet, because these bisectors are
also lines of symmetry.

L

R

P

Q

FIGURE 13.5.3 A line of
symmetry.

C

FIGURE 13.5.4 The centroid of
a rectangle.

In the case of a nonconstant density function δ, we require (for symmetry) that
δ—as well as the region itself—be symmetric about the geometric line L of symmetry.
That is, we require that δ(P) = δ(Q ) if (as in Fig. 13.5.3) the points P and Q are
symmetrically located with respect to L. Then the centroid of the lamina R will lie on
the line L of symmetry.

EXAMPLE 1 Consider the semicircular disk of radius a shown in Fig. 13.5.5. If it
has constant density δ ≡ 1, then its mass is m = 1

2πa2 (numerically equal to its area),
and by symmetry its centroid C(x, y) lies on the y-axis. Hence x = 0, and we need

x

y

(a, 0)  

C (0, y)

FIGURE 13.5.5 The centroid of a
semicircular disk (Example 1).

only compute

y = 1

m

∫∫
R

y dm

= 2

πa2

∫ π

0

∫ a

0
(r sin θ) r dr dθ (polar coordinates)

= 2

πa2

[
− cos θ

]π

0

[
1

3
r3

]a

0

= 2

πa2
· 2 · a3

3
= 4a

3π
.

Thus the centroid of the semicircular lamina is located at the point (0, 4a/3π). Note
that the computed value for y has the dimensions of length (because a is a length), as
it should. Any answer that has other dimensions would be suspect. ◗

EXAMPLE 2 A lamina occupies the region bounded by the line y = x + 2 and
the parabola y = x2 (Fig. 13.5.6). The density of the lamina at the point P(x, y) is
proportional to the square of the distance of P from the y-axis—thus δ(x, y) = k x2

(where k is a positive constant). Find the mass and centroid of the lamina.

y

y = x + 2

y = x2

x2−1

FIGURE 13.5.6 The lamina of
Example 2.
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1030 CHAPTER 13 Multiple Integrals

Solution The line and the parabola intersect in the two points (−1, 1) and (2, 4), so
Eq. (1) gives mass

m =
∫ 2

−1

∫ x+2

x2
k x2 dy dx = k

∫ 2

−1

[
x2 y

]x+2

y=x2
dx

= k
∫ 2

−1
(x3 + 2x2 − x4) dx = 63

20
k.

Then Eqs. (2) and (3) give

x = 20

63k

∫ 2

−1

∫ x+2

x2
k x3 dy dx = 20

63

∫ 2

−1

[
x3 y

]x+2

y=x2
dx

= 20

63

∫ 2

−1
(x4 + 2x3 − x5) dx = 20

63
· 18

5
= 8

7
;

y = 20

63k

∫ 2

−1

∫ x+2

x2
k x2 y dy dx = 20

63

∫ 2

−1

[
1

2
x2 y2

]x+2

y=x2
dx

= 10

63

∫ 2

−1
(x4 + 4x3 + 4x2 − x6) dx = 10

63
· 531

35
= 118

49
.

Thus the lamina of this example has mass 63k/20, and its centroid is located at the
point ( 8

7 , 118
49 ). ◗

EXAMPLE 3 A lamina is shaped like the first-quadrant quarter-circle of radius a

y = x

x2 + y2 = a2

(x, y)  

y

xa

FIGURE 13.5.7 Finding mass and
centroid (Example 3).

shown in Fig. 13.5.7. Its density is proportional to distance from the origin—that is, its
density at (x, y) is δ(x, y) = k

√
x2 + y2 = kr (where k is a positive constant). Find

its mass and centroid.

Solution First we change to polar coordinates, because both the shape of the bound-
ary of the lamina and the formula for its density suggest that this will make the com-
putations much simpler. Equation (1) then yields the mass to be

m =
∫∫

R

δ dA =
∫ π/2

0

∫ a

0
kr2 dr dθ

= k
∫ π/2

0

[
1

3
r3

]a

r=0

= k
∫ π/2

0

1

3
a3 dθ = kπa3

6
.

By symmetry of the lamina and its density function, the centroid lies on the line y = x .
So Eq. (3) gives

x = y = 1

m

∫∫
R

yδ dA = 6

k πa3

∫ π/2

0

∫ a

0
kr3 sin θ dr dθ

= 6

πa3

∫ π/2

0

[
1

4
r4 sin θ

]a

r=0

dθ = 6

πa3
· a4

4

∫ π/2

0
sin θ dθ = 3a

2π
.

Thus the given lamina has mass 1
6 kπa3; its centroid is located at the point

(3a/2π, 3a/2π). ◗
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Volume and the First Theorem of Pappus
Now we can give a more general proof of the first theorem of Pappus, which wasAxis of

 revolution

Area  A

Centroid

r

FIGURE 13.5.8 A solid of volume
V = A · d is generated by the area A
as its centroid travels the distance
d = 2πr around a circle of radius r .

discussed from a single-variable viewpoint in Section 6.6.

FIRST THEOREM OF PAPPUS Volume of Revolution
Suppose that a plane region R is revolved around an axis in its plane (Fig. 13.5.8),
generating a solid of revolution with volume V. Assume that the axis does not inter-
sect the interior of R. Then the volume

V = A · d

of the solid is the product of the area A of R and the distance d traveled by the
centroid of R.

x

y

R

y = f (x)

y = g(x)

a b

FIGURE 13.5.9 A region R between
the graphs of two functions.

f (x) − g (x)

dx

y

x

x

FIGURE 13.5.10 A solid of revolution consisting of cylindrical
shells.

Proof In Section 6.6 we treated the special case of a vertically simple region of the
form illustrated in Fig. 13.5.9 and the corresponding volume of revolution illustrated
in Fig. 13.5.10. More generally, let P = {R 1, R 2, . . . , R n} be an inner partition of R,
let (x�

i , y�
i ) be the center of the rectangle Ri , and let �A i denote the area of Ri . Then,

by the formula for the volume of a cylindrical shell (Eq. (1) in Section 6.3), the volume
obtained by revolving the rectangle Ri in a circle of radius x�

i around the y-axis (for
instance) is �Vi = 2πx�

i �A i . Hence the volume of the entire solid of revolution is
given approximately by

V ≈
n∑

i=1

�Vi =
n∑

i=1

2πx�
i �A i .

We see here a Riemann sum approximating the integral

V =
∫∫

R

2πx dA = 2πA · 1

A

∫∫
R

x dA = 2πA · x

(using Eq. (2) with δ = 1). But d = 2πx is the distance traveled by the centroid, so
we conclude that V = A · d, as desired. ◆

EXAMPLE 4 Find the volume V of the sphere of radius a generated by revolving
around the x-axis the semicircular region D of Example 1. See Fig. 13.5.11.

Solution The area of D is A = 1
2πa2, and we found in Example 1 that y = 4a/3π .

Hence Pappus’s theorem gives

y

y

x

z

a

FIGURE 13.5.11 A sphere of
radius a generated by revolving a
semicircular region of area
A = 1

2 πa2 around its diameter on
the x-axis (Example 4). The centroid
of the semicircle travels along a
circle of circumference d = 2π y .

V = 2π y A = 2π · 4a

3π
· πa2

2
= 4

3
πa3. ◗
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1032 CHAPTER 13 Multiple Integrals

EXAMPLE 5 Consider the circular disk of Fig. 13.5.12, with radius a and center at

b a d = 2πb 

 Area: A = π a2

x

y

FIGURE 13.5.12 Rotating the
circular disk around the y-axis to
generated a torus (Example 5).

the point (b, 0) with 0 < a < b. Find the volume V of the solid torus generated by
revolving this disk around the y-axis. Such a torus is shown in Fig. 13.4.24.

Solution The centroid of the circle is at its center (b, 0), so x = b. Hence the centroid
is revolved through the distance d = 2πb. Consequently,

V = d · A = 2πb · πa2 = 2π2a2b.

Note that this result is dimensionally correct. ◗

Surface Area and the Second Theorem of Pappus
Centroids of plane curves are defined in analogy with centroids of plane regions, so
we shall present this topic in less detail. It will suffice for us to treat only the case of
constant density δ ≡ 1 (such as a thin wire with unit mass per unit length). Then the
centroid (x, y) of the plane curve C is defined by the formulas

x = 1

s

∫
C

x ds, y = 1

s

∫
C

y ds (4)

where s is the arc length of C.
The meaning of the integrals in (4) is that of the notation of Section 6.4. That is,

ds is a symbol to be replaced (before the integral is evaluated) with either

ds =
√

1 +
(

dy

dx

)2

dx or ds =
√

1 +
(

dx

dy

)2

dy,

depending on whether C is a smooth arc of the form y = f (x) or one of the form
x = g(y). Alternatively, we may have

ds =
√

(dx)2 + (dy)2 =
√(

dx

dt

)2

+
(

dy

dt

)2

dt

if C is presented in parametric form, as in Section 9.5.

EXAMPLE 6 Let J denote the upper half of the circle (not the disk) of radius a and

x

y

(a, 0)

C (0, y)

FIGURE 13.5.13 The semicircular
arc of Example 6.

center (0, 0), represented parametrically by

x = a cos t, y = a sin t, 0 � t � π.

The arc J is shown in Fig. 13.5.13. Find its centroid.

Solution Note first that x = 0 by symmetry. The arc length of J is s = πa; the
arc-length element is

ds =
√

(−a sin t)2 + (a cos t)2 dt = a dt.

Hence the second formula in (4) yields

y = 1

πa

∫ π

0
(a sin t)a dt = a

π

[
− cos t

]π

0
= 2a

π
.

Thus the centroid of the semicircular arc is located at the point (0, 2a/π) on the y-axis.
Note that the answer is both plausible and dimensionally correct. ◗

The first theorem of Pappus has an analogue for surface area of revolution.
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SECOND THEOREM OF PAPPUS Surface Area of Revolution
Let the plane curve C be revolved around an axis in its plane that does not intersect
the curve (except possibly in its endpoints). Then the area

A = s · d

of the surface of revolution generated is equal to the product of the length s of C and
the distance d traveled by the centroid of C.

Proof Let C be a smooth arc parametrized by x = f (t), y = g(t), a � t � b. If C
is revolved around the y-axis (for instance), then by Eqs. (4) and (8) in Section 9.5 the
resulting surface area of revolution is given by

A =
∫ b

t=a
2πx ds = 2πs · 1

s

∫ b

t=a
x ds

= 2πs · x
(

where ds =
√

[ f ′(t)]2 + [g′(t)]2 dt
)

(using the first equation in (4)). But d = 2πx is the distance traveled by the centroid,
so we see that A = s · d, and this concludes the proof. ◆

EXAMPLE 7 Find the surface area A of the sphere of radius a generated by revolving
around the x-axis the semicircular arc of Example 6.

Solution Because we found that y = 2a/π and we know that s = πa, the second
theorem of Pappus gives

A = 2π ys = 2π · 2a

π
· πa = 4πa2. ◗

EXAMPLE 8 Find the surface area A of the torus of Example 5.

Solution Now we think of revolving around the y-axis the circle (not the disk) of
radius a centered at the point (b, 0). Of course, the centroid of the circle is located at
its center (b, 0); this follows from the symmetry principle or can be verified by using
computations such as those in Example 6. Hence the distance traveled by the centroid
is d = 2πb. Because the circumference of the circle is s = 2πa, the second theorem
of Pappus gives

A = 2πb · 2πa = 4π2ab. ◗

Moments of Inertia
Let R be a plane lamina and L a straight line that may or may not lie in the xy-plane.
Then the moment of inertia I of R around the axis L is defined to be

I =
∫∫

R

p2 dm, (5)

where p = p(x, y) denotes the perpendicular distance to L from the point (x, y) of R.
The most important case is that in which the axis of revolution is the z-axis, so

p = r = √
x2 + y2 (Fig. 13.5.14). In this case we call I = I0 the polar moment of

inertia of the lamina R. Thus the polar moment of inertia of R is defined to be

R

z

x y

p = r

(x, y)  

FIGURE 13.5.14 A lamina in the
xy-plane in space.

I0 =
∫∫

R

r2δ(x, y) dA =
∫∫

R

r2 dm =
∫∫

R

(x2 + y2) dm. (6)
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It follows that

I0 = Ix + Iy,

where

Ix =
∫∫

R

y2 dm =
∫∫

R

y2δ dA (7)

and

Iy =
∫∫

R

x2 dm =
∫∫

R

x2δ dA. (8)

Here Ix is the moment of inertia of the lamina around the x-axis and Iy is its moment
of inertia around the y-axis.

An important application of moments of inertia involves kinetic energy of ro-
tation. Consider a circular disk that is revolving around its center (the origin) with
angular speed ω radians per second. A mass element dm at distance r from the origin
is moving with (linear) velocity v = rω (Fig. 13.5.15). Thus the kinetic energy of the

x

y

ω

r dm 

R

FIGURE 13.5.15 The rotating disk.
mass element is

1
2 (dm)v2 = 1

2ω2r2 dm.

Summing by integration over the whole disk, we find that its kinetic energy due to
rotation at angular speed ω is

KErot =
∫∫

R

1

2
ω2r2 dm = 1

2
ω2

∫∫
R

r2 dm;

that is,

x = −y 4 x = y 4

y

(1, 1)

x

FIGURE 13.5.16 The lamina of
Example 9.

KErot = 1
2 I0ω

2. (9)

Because linear kinetic energy has the formula KE = 1
2 mv2, Eq. (9) suggests (correctly)

that moment of inertia is the rotational analogue of mass.

EXAMPLE 9 Compute Ix for a lamina of constant density δ ≡ 1 that occupies the
region bounded by the curves x = ±y4, −1 � y � 1 (Fig. 13.5.16).

Solution Equation (7) gives

Ix =
∫ 1

−1

∫ y4

−y4
y2 dx dy =

∫ 1

−1

[
xy2

]y4

x=−y4
dy =

∫ 1

−1
2y6 dy = 4

7
. ◗

The region of Example 9 resembles the cross section of an I-beam. It is known
that the stiffness, or resistance to bending, of a horizontal beam is proportional to
the moment of inertia of its cross section with respect to a horizontal axis through the
centroid of the cross section of the beam. Let us compare our I-beam with a rectangular
beam of equal height 2 and equal area

A =
∫ 1

−1

∫ y4

−y4
1 dx dy = 4

5
.

The cross section of such a rectangular beam is shown in Fig. 13.5.17. Its width is 2
5

and the moment of inertia of its cross section is

Ix =
∫ 1

−1

∫ 1/5

−1/5
y2 dx dy = 4

15
.

Because the ratio of 4
7 to 4

15 is 15
7 , we see that the I-beam is more than twice as strong

as a rectangular beam of the same cross-sectional area. This strength is why I-beams
are commonly used in construction.

x

y

2
5

2

FIGURE 13.5.17 A rectangular
beam for comparison with the
I-beam of Example 9.
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EXAMPLE 10 Find the polar moment of inertia of a circular lamina R of radius a
and constant density δ centered at the origin.

Solution In Cartesian coordinates, the lamina R occupies the plane region
x2 + y2 � a2; in polar coordinates, this region has the much simpler description
0 � r � a, 0 � θ � 2π . Equation (6) then gives

I0 =
∫∫

R

r2δ dA =
∫ 2π

0

∫ a

0
δr3 dr dθ = δπa4

2
= 1

2
ma2,

where m = δπa2 is the mass of the circular lamina. ◗

Finally, the radius of gyration r̂ of a lamina of mass m around an axis is defined
to be

r̂ =
√

I

m
, (10)

where I is the moment of inertia of the lamina around that axis. For example, the radii
of gyration x̂ and ŷ around the y-axis and x-axis, respectively, are given by

x̂ =
√

Iy

m
and ŷ =

√
Ix

m
. (11)

Now suppose that this lamina lies in the right half-plane x > 0 and is symmetric around
the x-axis. If it represents the face of a tennis racquet whose handle (considered of
negligible weight) extends along the x-axis from the origin to the face, then the point
(x̂, 0) is a plausible candidate for the racquet’s “sweet spot” that delivers the maximum
impact and control. (See Problem 56.)

The definition in Eq. (10) is motivated by considerating a plane lamina R rotating
with angular speed ω around the z-axis (Fig. 13.5.18). Then Eq. (10) yields

I0 = m r̂2,

so it follows from Eq. (9) that the kinetic energy of the lamina is

z

x
y

R

ω

r

FIGURE 13.5.18 A plane lamina
rotating around the z-axis.

KE = 1
2 m(r̂ω)2.

Thus the kinetic energy of the rotating lamina equals that of a single particle of mass m
revolving at the distance r̂ from the axis of revolution.

13.5 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Suppose a plane lamina occupies the plane region R in the xy-plane and has
continuous density function δ(x, y). If we write m = ∫∫

R
δ(x, y) d A for the

lamina’s mass and dm = δ(x, y) d A for its mass element, then the coordinates
(x̄, ȳ) of its centroid are given by the formulas

x̄ = 1

m

∫∫
R

x dm and ȳ = 1

m

∫∫
R

y dm.

2. If a plane lamina occupies the plane region R in the xy-plane, and R is symmetric
about the line L, then the centroid of the lamina necessarily lies on the line L.

3. The result of Example 1 can be summarized by saying that the centroid of the
uniform semicircular disk occupying the region x2 + y2 � a2, y � 0 lies on its
vertical axis of symmetry, halfway from its base to its topmost point.

4. The lamina of Example 2 occupies the region R in the xy-plane that is bounded
by the line y = x + 2 and the parabola y = x2, and its centroid (x̄, ȳ) turns out
to be a point of R.
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5. Both the quarter-circular lamina of Example 3 and its density function δ = kr
are symmetric about the line y = x , so its centroid necessarily lies on this same
line.

6. The first theorem of Pappus implies that, if a solid sphere of radius a is generated
by revolving a circular disk of radius a about the y-axis, then the volume of the
sphere equals the area of the circle times the distance traveled by the center of
the circle.

7. The result of Example 5 expresses the volume of a torus as the product of the
areas of two circles.

8. If we write s = ∫
C ds for the length of a plane curve C, then the coordinates

(x̄, ȳ) of its centroid are given by the formulas

x̄ = 1

s

∫
C

x ds and ȳ = 1

s

∫
C

y ds.

9. The second theorem of Pappus implies that, if a spherical surface of radius a is
generated by revolving a circle of radius a about the y-axis, then the surface area
of the sphere equals the circumference of the circle times the distance traveled
by the center of the circle.

10. The result of Example 8 expresses the surface area of a torus as the product of
the perimeters of two circles.

13.5 CONCEPTS: QUESTIONS AND DISCUSSION
1. Suppose that a plane lamina has a line of symmetry. Must the centroid of the

lamina lie on this line?
2. Must the centroid of a plane curve lie on the curve? Must the centroid of a plane

region lie within the region? If not, provide counterexamples.

13.5 PROBLEMS

In Problems 1 through 10, find the centroid of the plane region
bounded by the given curves. Assume that the density is δ ≡ 1 for
each region.

1. x = 0, x = 4, y = 0, y = 6

2. x = 1, x = 3, y = 2, y = 4

3. x = −1, x = 3, y = −2, y = 4

4. x = 0, y = 0, x + y = 3

5. x = 0, y = 0, x + 2y = 4

6. y = 0, y = x , x + y = 2

7. y = 0, y = x2, x = 2

8. y = x2, y = 9

9. y = 0, y = x2 − 4

10. x = −2, x = 2, y = 0, y = x2 + 1

In Problems 11 through 30, find the mass and centroid of the
plane lamina with the indicated shape and density.

11. The triangular region bounded by x = 0, y = 0, and
x + y = 1, with δ(x, y) = xy

12. The triangular region of Problem 11, with δ(x, y) = x2

13. The region bounded by y = 0 and y = 4 − x2, with
δ(x, y) = y

14. The region bounded by x = 0 and x = 9 − y2, with
δ(x, y) = x2

15. The region bounded by the parabolas y = x2 and x = y2,
with δ(x, y) = xy

16. The region of Problem 15, with δ(x, y) = x2 + y2

17. The region bounded by the parabolas y = x2 and y = 2−x2,
with δ(x, y) = y

18. The region bounded by x = e, y = 0, and y = ln x for
1 � x � e, with δ(x, y) ≡ 1

19. The region bounded by y = 0 and y = sin x for 0 � x � π ,
with δ(x, y) ≡ 1

20. The region bounded by y = 0, x = −1, x = 1, and
y = exp(−x2), with δ(x, y) = |xy|

21. The square with vertices (0, 0), (0, a), (a, a), and (a, 0),
with δ(x, y) = x + y

22. The triangular region bounded by the coordinate axes and
the line x + y = a (a > 0), with δ(x, y) = x2 + y2

23. The region bounded by y = x2 and y = 4; δ(x, y) = y

24. The region bounded by y = x2 and y = 2x+3; δ(x, y) = x2

25. The region of Problem 19; δ(x, y) = x

26. The semicircular region x2 + y2 � a2, y � 0; δ(x, y) = y

27. The region of Problem 26; δ(x, y) = r (the radial polar co-
ordinate)
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28. The region bounded by the cardioid with polar equation
r = 1 + cos θ ; δ(r, θ) = r (Fig. 13.5.19)

29. The region inside the circle r = 2 sin θ and outside the circle
r = 1; δ(x, y) = y

30. The region inside the limaçon r = 1 + 2 cos θ and
outside the circle r = 2; δ(r, θ) = r (Fig. 13.5.20)

−2

−1

0

1

2

r = 1 + cos θ

FIGURE 13.5.19 The
cardiod of Problem 28.

−4

−2

0

2

4

r = 1 + 2 cos θ

FIGURE 13.5.20 The
limaçon of Problem 30.

In Problems 31 through 35, find the polar moment of inertia I0 of
the indicated lamina.

31. The region bounded by the circle r = a; δ(x, y) = rn , where
n is a fixed positive integer

32. The lamina of Problem 26

33. The disk bounded by r = 2 cos θ ; δ(x, y) = k (a positive
constant)

34. The lamina of Problem 29

35. The region bounded by the right-hand loop of the lemniscate
r 2 = cos 2θ ; δ(x, y) = r 2 (Fig. 13.5.21)

−1

0

1

−1 0 1

r2 = cos 2θ

FIGURE 13.5.21 The
leminscate of Problem 35.

In Problems 36 through 40, find the radii of gyration x̂ and ŷ of
the indicated lamina around the coordinate axes.

36. The lamina of Problem 21

37. The lamina of Problem 23

38. The lamina of Problem 24

39. The lamina of Problem 27

40. The lamina of Problem 33

41. Find the centroid of the first quadrant of the circular disk
x2 + y2 � r 2 by direct computation, as in Example 1.

42. Apply the first theorem of Pappus to find the centroid of the
first quadrant of the circular disk x2 + y2 � r 2. Use the facts
that x = y (by symmetry) and that revolution of this quarter-
disk around either coordinate axis gives a solid hemisphere
with volume V = 2

3 πr 3.

43. Find the centroid of the arc that consists of the first-quadrant
portion of the circle x2 + y2 = r 2 by direct computation, as
in Example 6.

44. Apply the second theorem of Pappus to find the centroid of
the quarter-circular arc of Problem 43. Note that x = y (by
symmetry) and that rotation of this arc around either coordi-
nate axis gives a hemisphere with surface area A = 2πr 2.

45. Show by direct computation that the centroid of the triangle
with vertices (0, 0), (r, 0), and (0, h) is the point (r/3, h/3).
Verify that this point lies on the line from the vertex (0, 0)

to the midpoint of the opposite side of the triangle and two-
thirds of the way from the vertex to the midpoint.

46. Apply the first theorem of Pappus and the result of Problem
45 to verify the formula V = 1

3 πr 2h for the volume of the
cone obtained by revolving the triangle around the y-axis.

47. Apply the second theorem of Pappus to show that the lateral
surface area of the cone of Problem 46 is A = πr L , where
L = √

r 2 + h2 is the slant height of the cone.

48. (a) Find the centroid of the trapezoid shown in Fig. 13.5.22.
(b) Apply the first theorem of Pappus and the result of
part (a) to show that the volume of the conical frustum gen-
erated by revolving the trapezoid around the y-axis is

V = πh

3

(
r 2

1 + r1r2 + r 2
2

)
.

y

x

(r2, h)  

(r1, 0)  

(0, h)  

FIGURE 13.5.22 The trapezoid of Problem 48.

49. Apply the second theorem of Pappus to show that the lat-
eral surface area of the conical frustum of Problem 48 is
a = π(r1 + r2)L , where

L =
√

(r1 − r2)2 + h2

is its slant height.

50. (a) Apply the second theorem of Pappus to verify that the
curved surface area of a right circular cylinder of height h
and base radius r is A = 2πrh. (b) Explain how this follows
also from the result of Problem 49.

51. (a) Find the centroid of the plane region shown in
Fig. 13.5.23, which consists of a semicircular region of ra-
dius a sitting atop a rectangular region of width 2a and
height b whose base is on the x-axis. (b) Then apply the first
theorem of Pappus to find the volume generated by rotating
this region around the x-axis.

(−a, 0) (a, 0) 

b

y

x

FIGURE 13.5.23 The plane
region of Problem 51(a).
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1038 CHAPTER 13 Multiple Integrals

52. (a) Consider the plane region of Fig. 13.5.24, bounded by
x2 = 2py, x = 0, and y = h = r 2/2p (p > 0). Show
that its area is A = 2

3 rh and that the x-coordinate of its cen-
troid is x = 3

8 r . (b) Use Pappus’s theorem and the result of
part (a) to show that the volume of a paraboloid of revolution
with radius r and height h is V = 1

2 πr 2h.

53. A uniform rectangular plate with base length a, height b, and
mass m is centered at the origin. Show that its polar moment
of inertia is I0 = 1

12 m(a2 + b2).

54. The centroid of a uniform plane region is at (0, 0), and the re-
gion has total mass m. Show that its moment of inertia about
an axis perpendicular to the xy-plane at the point (x0, y0) is

I = I0 + m
(
x2

0 + y2
0

)
.

55. Suppose that a plane lamina consists of two nonoverlapping
laminae. Show that its polar moment of inertia is the sum of
theirs. Use this fact together with the results of Problems 53
and 54 to find the polar moment of inertia of the T-shaped
lamina of constant density δ = k > 0 shown in Fig. 13.5.25.

56. A racquet consists of a uniform lamina that occupies the re-
gion inside the right-hand loop of r 2 = cos 2θ on the end of
a handle (assumed to be of negligible mass) corresponding
to the interval −1 � x � 0 (Fig. 13.5.26). Find the radius of
gyration of the racquet around the line x = −1. Where is its
sweet spot?

In Problems 57 through 60, find the mass m and centroid (x, y)

of the indicated plane lamina R. You may use either a computer
algebra system or the sine-cosine integrals of Formula (113) in-
side the back cover.

57. R is bounded by the circle with polar equation r = 2 sin θ

and has density function δ(x, y) = y

58. R is bounded by the circle with polar equation r = 2 sin θ

and has density function δ(x, y) = y
√

x2 + y2

59. R is the semicircular disk bounded by the x-axis and the up-
per half of the circle with polar equation r = 2 cos θ and has
density function δ(x, y) = x

60. R is the semicircular disk bounded by the x-axis and the up-
per half of the circle with polar equation r = 2 cos θ and has
density function δ(x, y) = x2 y2

x

y

(r, h) 

x2 = 2py

FIGURE 13.5.24 The
region of Problem 52.

x

y

(− 4, 4) (4, 4)

(− 1, 3)

(4, 3)

(1, 3)

(1, 0)

(− 4, 3)

(− 1, 0)

FIGURE 13.5.25 One lamina made
of two simpler ones (Problem 55).

y

x

x = −1 r2 =  cos 2 θθ

FIGURE 13.5.26 The racquet of Problem 56.

13.5 INVESTIGATION: Optimal Design of Downhill Race-Car Wheels
To see moments of inertia in action, suppose that your club is designing an unpow-
ered race car for the annual downhill derby. You have a choice of solid wheels, bicy-
cle wheels with thin spokes, or even solid spherical wheels (like giant ball bearings).
Which wheels will make the race car go the fastest?

h

α

ω

a

FIGURE 13.5.27 A circular object rolling
down an incline.

Imagine an experiment in which you roll various types of wheels down an incline
to see which reaches the bottom the fastest (Fig. 13.5.27). Suppose that a wheel of
radius a and mass M starts from rest at the top with potential energy PE = Mgh
and reaches the bottom with angular speed ω and (linear) velocity v = aω. Then (by
conservation of energy) the wheel’s initial potential energy has been transformed into
a sum KEtr + KErot of translation kinetic energy KEtr = 1

2 Mv2 and rotational kinetic
energy

KErot = 1

2
I0ω

2 = I0v
2

2a2
, (1)
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a consequence of Eq. (9) of this section. Thus

Mgh = 1

2
Mv2 + I0v

2

2a2
. (2)

Problems 1 through 8 explore the implications of this formula.

1. Suppose that the wheel’s (polar) moment of inertia is given by

I0 = k Ma2 (3)

for some constant k. (For instance, Example 10 gives k = 1
2 for a wheel in the

shape of a uniform solid disk.) Then deduce from Eq. (2) that

v =
√

2gh

1 + k
. (4)

Thus the smaller k is (and hence the smaller the wheel’s moment of inertia), the
faster the wheel will roll down the incline.

In Problems 2 through 8, take g = 32 ft/s2 and assume that the vertical height of the
incline is h = 100 ft.

2. Why does it follow from Eq. (4) that, whatever the wheel’s design, the maxi-
mum velocity a circular wheel can attain on this incline is 80 ft/s (just under 55
mi/h)?

3. If the wheel is a uniform solid disk (like a medieval wooden wagon wheel) with
I0 = 1

2 Ma2, what is its speed v at the bottom of the incline?
4. Answer Problem 3 if the wheel is shaped like a narrow bicycle tire, with its

entire mass, in effect, concentrated at the distance a from its center. In this case,
I0 = Ma2. (Why?)

5. Answer Problem 3 if the wheel is shaped like an annular ring (or washer) with
outer radius a and inner radius b.

Example 3 and Problems 41 and 42 in Section 13.7 provide the moments of inertia
needed in Problems 6 through 8. In each of these problems, find the velocity of the
wheel when it reaches the bottom of the incline.

6. The wheel is a uniform solid sphere of radius a.
7. The wheel is a very thin, spherical shell whose entire mass is, in effect, concen-

trated at the distance a from its center.
8. The wheel is a spherical shell with outer radius a and inner radius

b = 1
2 a.

Finally, what is your conclusion? What is the shape of the wheels that will yield
the fastest downhill race car?

13.6 TRIPLE INTEGRALS

The definition of the triple integral is the three-dimensional version of the definition
of the double integral of Section 13.2. Let f (x, y, z) be continuous on the bounded
space region T and suppose that T lies inside the rectangular block R determined by
the inequalities

a � x � b, c � y � d, and p � z � q.

We divide [a, b] into subintervals of equal length �x , [c, d] into subintervals of
equal length �y, and [p, q] into subintervals of equal length �z. This generates
a partition of R into smaller rectangular blocks (as in Fig. 13.6.1), each of volume
�V = �x �y �z. Let P = {T1, T2, . . . , Tn} be the collection of these smaller blocks
that lie wholly within T . Then P is called an inner partition of the region T . The

T

z

x y

Ti

FIGURE 13.6.1 One small block in
an inner partition of the bounded
space region T .
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1040 CHAPTER 13 Multiple Integrals

norm |P | of P is the length of a longest diagonal of any of the blocks Ti . If (x�
i , y�

i , z�
i )

is an arbitrarily selected point of Ti (for each i = 1, 2, . . . , n), then the Riemann sum

n∑
i=1

f (x�
i , y�

i , z�
i ) �V

is an approximation to the triple integral of f over the region T.
For example, if T is a solid body with density function f, then such a Riemann

sum approximates its total mass. We define the triple integral of f over T by means of
the equation

∫∫∫
T

f (x, y, z) dV = lim
|P|→0

n∑
i=1

f (x�
i , y�

i , z�
i ) �V . (1)

It is proved in advanced calculus that this limit of Riemann sums exists as the norm
|P | approaches zero provided that f is continuous on T and that the boundary of the
region T is reasonably well-behaved. (For instance, it suffices for the boundary of T to
consist of a finite number of smooth surfaces.)

Just as with double integrals, we ordinarily compute triple integrals by means of
iterated integrals. If the region of integration is a rectangular block, as in Example 1,
then we can integrate in any order we wish.

EXAMPLE 1 If f (x, y, z) = xy + yz and T consists of those points (x, y, z) inz 

x

y

1

1

−1

1 2 3

FIGURE 13.6.2 The rectangular
block T of Example 1, for which
−1 � x � 1, 2 � y � 3, and 0 � z � 1.

space that satisfy the inequalities

−1 � x � 1, 2 � y � 3, and 0 � z � 1

(Fig. 13.6.2), then

∫∫∫
T

f (x, y, z) dV =
∫ 1

−1

∫ 3

2

∫ 1

0
(xy + yz) dz dy dx

=
∫ 1

−1

∫ 3

2

[
xyz + 1

2
yz2

]1

z=0

dy dx

=
∫ 1

−1

∫ 3

2

(
xy + 1

2
y

)
dy dx

=
∫ 1

−1

[
1

2
xy2 + 1

4
y2

]3

y=2

dx

=
∫ 1

−1

(
5

2
x + 5

4

)
dx =

[
5

4
x2 + 5

4
x

]1

−1

= 5

2
. ◗

The applications of double integrals that we saw in earlier sections generalize
immediately to triple integrals. If T is a solid body with the density function δ(x, y, z),
then its mass m is given by

m =
∫∫∫

T

δ dV . (2)

The case δ ≡ 1 gives the volume

V =
∫∫∫

T

dV (3)
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of T . The coordinates of its centroid are

x = 1

m

∫∫∫
T

xδ dV, (4a)

y = 1

m

∫∫∫
T

yδ dV, and (4b)

z = 1

m

∫∫∫
T

zδ dV . (4c)

The moments of inertia of T around the three coordinate axes are

Ix =
∫∫∫

T

(y2 + z2)δ dV, (5a)

Iy =
∫∫∫

T

(x2 + z2)δ dV, and (5b)

Iz =
∫∫∫

T

(x2 + y2)δ dV . (5c)

Iterated Triple Integrals

As indicated previously, we almost always evaluate triple integrals by iterated single
integration. Suppose that the region T with piecewise smooth boundary is z-simple:
Each line parallel to the z-axis intersects T (if at all) in a single line segment. In effect,
this means that T can be described by the inequalities

z1(x, y) � z � z2(x, y), (x, y) in R,

where R is the vertical projection of T into the xy-plane. Then

∫∫∫
T

f (x, y, z) dV =
∫∫

R

( ∫ z2(x,y)

z1(x,y)

f (x, y, z) dz

)
dA. (6)

In Eq. (6), we take dA = dx dy or dA = dy dx , depending on the preferred order of
integration over the set R. The limits z1(x, y) and z2(x, y) are the z-coordinates of the

R

z

x y(x, y)

zbot = z1(x, y)

ztop = z2(x, y)

FIGURE 13.6.3 Obtaining the
limits of integration for z.

endpoints of the line segment in which the vertical line at (x, y) meets T (Fig. 13.6.3).
If the region R has the description

y1(x) � y � y2(x), a � x � b,

then (integrating last with respect to x),

∫∫∫
T

f (x, y, z) dV =
∫ b

a

∫ y2(x)

y1(x)

∫ z2(x,y)

z1(x,y)

f (x, y, z) dz dy dx .

Thus the triple integral reduces in this case to three iterated single integrals. These can
(in principle) be evaluated by using the fundamental theorem of calculus.

EXAMPLE 2 Find the mass m of the pyramid T of Fig. 13.6.4 if its density function
is given by δ(x, y, z) = z.

Solution The region T is bounded below by the xy-plane z = 0 and above by the
plane z = 6 − 3x − 2y. Its base is the plane region R bounded by the x- and y-axes
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and the line y = 1
2 (6 − 3x). Hence Eqs. (2) and (6) yield

m =
∫ 2

0

∫ (6−3x)/2

0

∫ 6−3x−2y

0
z dz dy dx =

∫ 2

0

∫ (6−3x)/2

0

[
1

2
z2

]6−3x−2y

z=0

dy dx

= 1

2

∫ 2

0

∫ (6−3x)/2

0
(6 − 3x − 2y)2 dy dx = 1

2

∫ 2

0

[
−1

6
(6 − 3x − 2y)3

](6−3x)/2

y=0

dx

= 1

12

∫ 2

0
(6 − 3x)3 dx = 1

12

[
− 1

12
(6 − 3x)4

]2

x=0

= 64

122
= 9.

We leave as an exercise (Problem 45) to show that the coordinates of the centroid
(x, y, z) of the pyramid are given by

x = 1

9

∫ 2

0

∫ (6−3x)/2

0

∫ 6−3x−2y

0
xz dz dy dx = 2

5
,

y = 1

9

∫ 2

0

∫ (6−3x)/2

0

∫ 6−3x−2y

0
yz dz dy dx = 3

5
,

z = 1

9

∫ 2

0

∫ (6−3x)/2

0

∫ 6−3x−2y

0
z2 dz dy dx = 12

5
. ◗

If the solid T is bounded by the two surfaces z = z1(x, y) and z = z2(x, y) (as in
Fig. 13.6.5), then we can find the “base region” R in Eq. (6) as follows. Note that the
equation z1(x, y) = z2(x, y) determines a vertical cylinder (not necessarily circular)

z 

x

R

y

(0, 0, 6)

(2, 0, 0)

(0, 3, 0)

y = (6 − 3x)
2
1

z = 6 − 3x − 2y

FIGURE 13.6.4 The pyramid T of
Example 2; its base is the triangle R
in the xy-plane.

that passes through the curve of intersection of the two surfaces. (Why?) This cylinder
intersects the xy-plane in the boundary curve C of the plane region R. In essence, we
obtain the equation of the curve C by equating the height functions of the surfaces that
form the top and bottom of the space region T .

R

T

x y

z

z = z2(x, y)

z = z1(x, y)

FIGURE 13.6.5 To find the
boundary of R, solve the equation
z1(x, y) = z2(x, y).

EXAMPLE 3 Figure 13.6.6 shows the solid T bounded above by the plane z = y +2
and below by the paraboloid z = x2 + y2. The equation

x2 + y2 = y + 2; that is, x2 + (
y − 1

2

)2 = 9
4

describes the boundary circle of the disk R of radius 3
2 and with center (0, 1

2 ) in the xy-
plane (Fig. 13.6.7). Because this disk is not centered at the origin, the volume integral

V =
∫∫

R

( ∫ y+2

z=x2+y2
dz

)
dA

z = y + 2

z = x2 + y2

−2
−1

0
1

2
x

0

2

4

z

−2

0

2
y

FIGURE 13.6.6 The solid T of
Example 3.

0.5

−0.5

−1

1

1.5

2

2.5

−0.5−1−1.5 x

y

0.5 1 1.5

x2 + y2 = y + 2 

FIGURE 13.6.7 The circular disk R
of Example 3.
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is awkward to evaluate directly. In Example 5 we calculate V by integrating in a
different order. ◗

T

x

R

T

x

R

T

y

z

y

z

x
y

z

z = z1(x, y)

z = z2(x, y)

y = y1(x, z)

y = y2(x, z)

x = x1(y, z)

x = x2(y, z)

R

(a) T is z-simple

(b) T is y-simple

(c) T is x-simple

FIGURE 13.6.8 Solids that are
(a) z-simple, (b) y-simple, and
(c) x-simple.

We may integrate first with respect to either x or y if the space region T is ei-
ther x-simple or y-simple. Such situations, as well as a z-simple solid, appear in
Fig. 13.6.8. For example, suppose that T is y-simple, so that it has a description of the
form

y1(x, z) � y � y2(x, z), (x, z) in R,

where R is the projection of T into the xz-plane. Then∫∫∫
T

f (x, y, z) dV =
∫∫

R

( ∫ y2(x,z)

y1(x,z)
f (x, y, z) dy

)
dA, (7)

where dA = dx dz or dA = dz dx and the limits y1(x, z) and y2(x, z) are the
y-coordinates of the endpoints of the line segment in which a typical line parallel to
the y-axis intersects T . If T is x-simple, we have∫∫∫

T

f (x, y, z) dA =
∫∫

R

( ∫ x2(y,z)

x1(y,z)
f (x, y, z) dx

)
dA, (8)

where dA = dy dz or dA = dz dy and R is the projection of T into the yz-plane.

EXAMPLE 4 Compute by triple integration the volume of the region T that is
bounded by the parabolic cylinder x = y2 and the planes z = 0 and x + z = 1.
Also find the centroid of T given that it has constant density δ ≡ 1. ◗

COMMENT The three segments in Fig. 13.6.9 parallel to the coordinate axes indicate
that the region T is simultaneously x-simple, y-simple, and z-simple. We may there-
fore integrate in any order we choose, so there are six ways to evaluate the integral.
Here are three computations of the volume V of T .

x

y

z

ztop = 1 − x

yleft = −    x

xfront = 1 − z
zbot = 0

yright =    x

xback = y2

FIGURE 13.6.9 The region T of Example 4 is x-simple,
y-simple, and z-simple.

x

y

(1, 1)

(1, –1)

(1, 0)

xback = y2

xfront = 1

FIGURE 13.6.10 The vertical
projection of the solid region T into
the xy-plane (Example 4, Solution 1).

Solution 1 The projection of T into the xy-plane is the region shown in Fig. 13.6.10,
bounded by x = y2 and x = 1. So Eq. (6) gives

V =
∫ 1

−1

∫ 1

y2

∫ 1−x

0
dz dx dy = 2

∫ 1

0

∫ 1

y2
(1 − x) dx dy

= 2
∫ 1

0

[
x − 1

2
x2

]1

x=y2
dy = 2

∫ 1

0

(
1

2
− y2 + 1

2
y4

)
dy = 8

15
.
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Solution 2 The projection of T into the xz-plane is the triangle bounded by the coor-

x
(1, 0)

zbot = 0

ztop = 1 − x

z

FIGURE 13.6.11 The vertical
projection of the solid region T into
the xz-plane (Example 4, Solution 2).

dinate axes and the line x + z = 1 (Fig. 13.6.11), so Eq. (7) gives

V =
∫ 1

0

∫ 1−x

0

∫ √
x

−√
x

dy dz dx = 2
∫ 1

0

∫ 1−x

0

√
x dz dx

= 2
∫ 1

0
(x1/2 − x3/2) dx = 8

15
.

Solution 3 The projection of T into the yz-plane is the region bounded by the y-axis
and the parabola z = 1 − y2 (Fig. 13.6.12), so Eq. (8) yields

V =
∫ 1

−1

∫ 1−y2

0

∫ 1−z

y2
dx dz dy,

and evaluation of this integral again gives V = 8
15 .

Now for the centroid of T. Because the region T is symmetric with respect to

(1, 0)

z

z = 0

z = 1 − y2

y(−1, 0)

FIGURE 13.6.12 The vertical
projection of the solid region T into
the yz-plane (Example 4, Solution 3).

the xz-plane, its centroid lies in this plane, and so y = 0. We compute x and z by
integrating first with respect to y:

x = 1

V

∫∫∫
T

x dV = 15

8

∫ 1

0

∫ 1−x

0

∫ √
x

−√
x

x dy dz dx

= 15

4

∫ 1

0

∫ 1−x

0
x3/2 dz dx = 15

4

∫ 1

0
(x3/2 − x5/2) dx = 3

7
;

similarly,

z = 1

V

∫∫∫
T

z dV = 15

8

∫ 1

0

∫ 1−x

0

∫ √
x

−√
x

z dy dz dx = 2

7
.

Thus the centroid of T is located at the point ( 3
7 , 0, 2

7 ). ◗

EXAMPLE 5 Find the volume of the oblique segment of a paraboloid bounded by
the paraboloid z = x2 + y2 and the plane z = y + 2 (Fig. 13.6.13).

Solution The given region T is z-simple, but its projection into the xy-plane is
bounded by the graph of the equation x2 + y2 = y + 2, which is a translated cir-
cle. It would be possible to integrate first with respect to z, but perhaps another choice
will yield a simpler integral.

The region T is also x-simple, so we may integrate first with respect to x . The
projection of T into the yz-plane is bounded by the line z = y +2 and the parabola z =
y2, which intersect at the points (−1, 1) and (2, 4) (Fig. 13.6.14). The endpoints of a
line segment in T parallel to the x-axis have x-coordinates x = ±√

z − y2 . Because T
is symmetric with respect to the yz-plane, we can integrate from x = 0 to x = √

z − y2

and double the result. Hence T has volume

V = 2
∫ 2

−1

∫ y+2

y2

∫ √
z−y2

0
dx dz dy = 2

∫ 2

−1

∫ y+2

y2

√
z − y2 dz dy

= 2
∫ 2

−1

[
2

3

(
z − y2

)3/2 ]y+2

z=y2
dy = 4

3

∫ 2

−1
(2 + y − y2)3/2 dy

= 4

3

∫ 3/2

−3/2

(
9

4
− u2

)3/2

du

(
completing the square; u = y − 1

2

)

= 27

4

∫ π/2

−π/2
cos4 θ dθ

(
u = 3

2
sin θ

)
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y

x

z

xfront = +    z − y2

z = x2 + y2

xback = −    z − y2

z = y + 2

FIGURE 13.6.13 An oblique segment of a paraboloid
(Example 5).

z = y + 2

z = y2

y

(2, 4)

(−1, 1)

z

FIGURE 13.6.14 Projection of the
segment of the paraboloid into the
yz-plane (Example 5).

= 27

4
· 2 · 1

2
· 3

4
· π

2
= 81π

32
.

In the final evaluation, we used symmetry—integrating from θ = 0 to θ = π/2 and
doubling—and then Formula (113) (in the endpapers). ◗

13.6 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The triple integral
∫∫∫

T
f (x, y, z) dV of the function f over the space region T

is a limit of Riemann sums as the mesh of the corresponding inner partition of T
approaches zero, and exists provided that f is continuous on T and the boundary
of T is “reasonably well-behaved.”

2. Triple integrals (just like double integrals) ordinarily are computed using iterated
integrals.

3. The volume of the space region T is the triple integral over T of the constant-
valued function f (x, y, z) ≡ 1.

4. Suppose a solid body occupies the space region T and has continuous density
function δ(x, y, z). If we write m = ∫∫∫

T
δ(x, y, z) dV for the body’s mass and

dm = δ(x, y, z) dV for its mass element, then the coordinates (x̄, ȳ, z̄) of its
centroid are given by the formulas

x̄ = 1

m

∫∫∫
T

x dm, ȳ = 1

m

∫∫∫
T

y dm, z̄ = 1

m

∫∫∫
T

z dm.

5. Using the notation of the preceding question, the moments of inertia of the solid
body about the three coordinate axes are given by

Ix =
∫∫∫

T

(x2 + y2) dm, Iy =
∫∫∫

T

(y2 + z2)dm,

Iz =
∫∫∫

T

(z2 + y2) dm.

6. The description z1(x, y) � z � z2(x, y)—for (x, y) in the xy-plane region R—of
the space region T leads to an evaluation of the triple integral

∫∫∫
T

f (x, y, z) dV

by integrating first with respect to x and y and last with respect to z.
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7. The description y1(x, z) � y � y2(x, z)—for (x, z) in the xz-plane region R—of
the space region T leads to an evaluation of the triple integral

∫∫∫
T

f (x, y, z) dV

by integrating first with respect to x and z and last with respect to y.
8. The description x1(y, z) � x � x2(y, z)—for (y, z) in the yz-plane region R—of

the space region T leads to an evaluation of the triple integral
∫∫∫

T
f (x, y, z) dV

by integrating first with respect to y and z and last with respect to x .
9. Let V = ∫∫∫

T
dV be the volume of the region T of Example 4, which is bounded

by the parabolic cylinder x = y2 and the planes z = 0 and x + z = 1. Then V
can be calculated by iterated integration with respect to the three variables x , y,
and z in any order one pleases.

10. In Example 5, the volume of the solid bounded by the paraboloid z = x2 + y2

and the plane z = y + 2 is calculated by integrating first with respect to z and
then with respect to x and y.

13.6 CONCEPTS: QUESTIONS AND DISCUSSION
1. Describe a region T in space such that you can calculate its volume by iterated

integration in at least three different orders—integrating with respect to x first in
one order, with respect to y first in another order, and finally with respect to z
first. Then find its volume in each of these three ways.

2. (a) Give an example of a space region whose volume is most easily calculated
by integrating first with respect to x . (b) Repeat, but with respect to y first. (c)
Repeat, but with respect to z first.

13.6 PROBLEMS

In Problems 1 through 10, compute the value of the triple integral∫∫∫
T

f (x, y, z) dV .

1. f (x, y, z) = x + y + z; T is the rectangular box 0 � x � 2,
0 � y � 3, 0 � z � 1.

2. f (x, y, z) = xy sin z; T is the cube 0 � x � π, 0 � y � π,

0 � z � π .

3. f (x, y, z) = xyz; T is the rectangular block −1 � x � 3,
0 � y � 2, −2 � z � 6.

4. f (x, y, z) = x + y + z; T is the rectangular block of
Problem 3.

5. f (x, y, z) = x2; T is the tetrahedron bounded by the coordi-
nate planes and the first octant part of the plane with equation
x + y + z = 1.

6. f (x, y, z) = 2x + 3y; T is a first-octant tetrahedron as in
Problem 5, except that the plane has equation 2x + 3y + z =
6.

7. f (x, y, z) = xyz; T lies below the surface z = 1 − x2 and
above the rectangle −1 � x � 0, 0 � y � 2 in the xy-plane.

8. f (x, y, z) = 2y + z; T lies below the surface with equation
z = 4 − y2 and above the rectangle −1 � x � 1, −2 � y � 2
in the xy-plane.

9. f (x, y, z) = x + y; T is the region between the surfaces
z = 2 − x2 and z = x2 for 0 � y � 3 (Fig. 13.6.15).

10. f (x, y, z) = z; T is the region between the surfaces z = y2

and z = 8 − y2 for −1 � x � 1.

z = x2-1
0

1x
0

1

2

3

y
0

1

2

z

z = 2 − x2

FIGURE 13.6.15 The solid
of Problem 9.

In Problems 11 through 20, sketch the solid bounded by the
graphs of the given equations. Then find its volume by triple
integration.

11. 2x + 3y + z = 6, x = 0, y = 0, z = 0

12. z = y, y = x2, y = 4, z = 0 (Fig. 13.6.16)

−2
0

2

x

0
2

4y

−2

0

2

4

z

z = y

z = 0

y = 4

y = x2

FIGURE 13.6.16 The surfaces of
Problem 12.
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13. y + z = 4, y = 4 − x2, y = 0, z = 0

14. z = x2 + y2, z = 0, x = 0, y = 0, x + y = 1

15. z = 10 − x2 − y2, y = x2, x = y2, z = 0

16. x = z2, x = 8 − z2, y = −1, y = −3

17. z = x2, y + z = 4, y = 0, z = 0

18. z = 1 − y2, z = y2 − 1, x + z = 1, x = 0 (Fig. 13.6.17)

z = y2 − 1

0
1

2x −1

0
1

y

−1

0

1

z

z = 1 − y2

x + z = 1

x = 0

FIGURE 13.6.17 The surfaces
of Problem 18.

19. y = z2, z = y2, x + y + z = 2, x = 0

20. y = 4 − x2 − z2, x = 0, y = 0, z = 0, x + z = 2

In Problems 21 through 32, assume that the indicated solid has
constant density δ ≡ 1.

21. Find the centroid of the solid of Problem 12.

22. Find the centroid of the hemisphere

x2 + y2 + z2 � R2, z � 0.

23. Find the centroid of the solid of Problem 17.

24. Find the centroid of the solid bounded by z = 1 − x2, z = 0,
y = −1, and y = 1.

25. Find the centroid of the solid bounded by z = cos x , x =
−π/2, x = π/2, y = 0, z = 0, and y + z = 1.

26. Find the moment of inertia around the z-axis of the solid of
Problem 12.

27. Find the moment of inertia around the y-axis of the solid of
Problem 24.

28. Find the moment of inertia around the z-axis of the solid
cylinder x2 + y2 � R2, 0 � z � H .

29. Find the moment of inertia around the z-axis of the solid
bounded by x + y + z = 1, x = 0, y = 0, and z = 0.

30. Find the moment of inertia around the z-axis of the cube with
vertices (± 1

2 , 3, ± 1
2 ) and (± 1

2 , 4, ± 1
2 ).

31. Consider the solid paraboloid bounded by z = x2 + y2 and
the plane z = h > 0. Show that its centroid lies on its axis of
symmetry, two-thirds of the way from its “vertex” (0, 0, 0)

to its base.

32. Show that the centroid of a right circular cone lies on the axis
of the cone and three-fourths of the way from the vertex to
the base.

In Problems 33 through 40, the indicated solid has uniform den-
sity δ ≡ 1 unless otherwise indicated.

33. For a cube with edge length a, find the moment of inertia
around one of its edges.

34. The density at P(x, y, z) of the first-octant cube with edge
length a, faces parallel to the coordinate planes, and opposite
vertices (0, 0, 0) and (a, a, a) is proportional to the square of
the distance from P to the origin. Find the coordinates of the
centroid of this cube.

35. Find the moment of inertia around the z-axis of the cube of
Problem 34.

36. The cube bounded by the coordinate planes and the planes
x = 1, y = 1, and z = 1 has density δ = kz at the point
P(x, y, z) (k is a positive constant). Find its centroid.

37. Find the moment of inertia around the z-axis of the cube of
Problem 36.

38. Find the moment of inertia around a diameter of a solid
sphere of radius a.

39. Find the centroid of the first-octant region that is interior to
the two cylinders x2 + z2 = 1 and y2 + z2 = 1 (Figs. 13.6.18
and 13.6.19).

−1
0

1x

−1
0

1
y

−1

0

1

z

x2 + z2 = 1

y2 + z2 = 1

FIGURE 13.6.18 The
intersecting cylinders of
Problem 39.

−1

0

1

x
−1

0
1

y

−1

0

1

z

x2 + z2 = 1
y2 + z2 = 1

FIGURE 13.6.19 The solid
of intersection in Problem 39.

40. Find the moment of inertia around the z-axis of the solid of
Problem 39.

41. Find the volume bounded by the elliptic paraboloids z =
2x2 + y2 and z = 12− x2 −2y2. Note that this solid projects
onto a circular disk in the xy-plane.

42. Find the volume bounded by the elliptic paraboloid y =
x2 + 4z2 and the plane y = 2x + 3.

43. Find the volume of the elliptical cone bounded by z =√
x2 + 4y2 and the plane z = 1. [Suggestion: Integrate first

with respect to x .]

44. Find the volume of the region bounded by the paraboloid
x = y2 + 2z2 and the parabolic cylinder x = 2 − y2

(Fig. 13.6.20).

0
1

2
x

−1
0

1y

x = 2 − y2

−1

0

1

z

x = y2 + 2z2

FIGURE 13.6.20 The
surfaces of Problem 44.

45. Find the centroid of the pyramid in Example 2 with density
δ(x, y, z) = z.

46. Find the centroid of the parabolic segment (with density
δ ≡ 1) in Example 5.
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For Problems 47 through 52, the average value f of the function
f (x, y, z) at points of the space region T is defined to be

f = 1

V

∫∫∫
T

f (x, y, z) dV

where V is the volume of T . For instance, if T is a solid with
density δ ≡ 1, then the coordinates x, y, and z of its centroid are
the average values of the “coordinate functions” x, y, and z at
points of T .

47. Find the average value of the density function δ(x, y, z) = z
at points of the pyramid T of Example 2.

48. Suppose that T is the unit cube in the first octant with di-
agonally opposite vertices (0, 0, 0) and (1, 1, 1). Find the
average of the “squared distance” f (x, y, z) = x2 + y2 + z2

of points of T from the origin.

49. Let T be the cube of Problem 48. Find the average squared
distance of points of T from its centroid.

50. Let T be the cube of Problem 48, but with density function
δ(x, y, z) = x + y + z that varies linearly from 0 at the ori-

gin to 3 at the opposite vertex of T . Find the average value
δ of the density of T . Can you guess the value of δ before
evaluating the triple integral?

51. Find the average squared distance from the origin of points
of the pyramid of Example 2.

52. Suppose that T is the pyramid of Example 2, but with den-
sity function δ ≡ 1. Find the average squared distance of
points of T from its centroid.

53. Use a computer algebra system to find the average distance
d of points of the cube T of Problem 48 from the origin.
Note: Different computer algebra systems give exact an-
swers in different forms. Perhaps the simplest possible form
of the answer is

d = 1

72

[
18

√
3 − 3π + 36 ln(2 + √

3)
]

≈ 0.960592,

which we obtained by manual reduction of a computer re-
sult.

13.6 INVESTIGATION: Archimedes' Floating Paraboloid
Archimedes was interested in floating bodies and studied the possible position (see
Fig. 13.6.21) of a floating right circular paraboloid of uniform density. For a paraboloid
that floats in an “inclined position,” he discovered how to determine its angle of incli-
nation in terms of the volume and centroid of the “oblique segment” of the paraboloid
that lies beneath the water line. The principles he introduced for this investigation (over
22 centuries ago) are still important in modern naval architecture.

Water

level

Vertical Inclined Partially
submerged

FIGURE 13.6.21 How a uniform solid paraboloid
might float.

For your own personal paraboloid to investigate, let T be the three-dimensional
solid region bounded below by the paraboloid z = x2 + y2 and above by the plane z =
(b − a)y + ab, where a and b are the smallest and largest nonzero digits (respectively)
of your student I.D. number. (If a = 1 and b = 2 then T is the solid of Example 5.) In
the following problems you can evaluate the triple integrals either by hand—consulting
an integral table if you wish—or by using a computer algebra system.

1. Find the volume V of the solid oblique paraboloid T. Sketch a picture of T similar
to Fig. 13.6.13. Can you see that T is symmetric with respect to the yz-plane?
Describe the region R in the yz-plane that is the vertical projection of T. This
plane region will determine the z-limits and the y-limits of your triple integral
(as in Example 5).

2. Find the coordinates (x, y, z) of the centroid C of T (assume that T has density
δ ≡ 1).

3. Find the coordinates of the point P at which a plane parallel to the original top
plane z = (b−a)y +ab is tangent to the paraboloid. Also find the coordinates of
the point Q in which a vertical line through P intersects the top plane. According
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to Archimedes, the centroid C of Problem 2 should lie on the line P Q two-thirds
of the way from P to Q. Is this so, according to your computations? (Compare
with Problem 31 of this section.)

13.7 INTEGRATION IN CYLINDRICAL AND SPHERICAL COORDINATES

Suppose that f (x, y, z) is a continuous function defined on the z-simple region T ,
which—because it is z-simple—can be described by

z1(x, y) � z � z2(x, y) for (x, y) in R

(where R is the projection of T into the xy-plane, as usual). We saw in Section 13.6
that ∫∫∫

T

f (x, y, z) dV =
∫∫

R

( ∫ z2(x,y)

z1(x,y)

f (x, y, z) dz

)
dA. (1)

If we can describe the region R more naturally in polar coordinates than in rectangular
coordinates, then it is likely that the integration over the plane region R will be simpler
if it is carried out in polar coordinates.

We first express the inner partial integral of Eq. (1) in terms of r and θ by writing∫ z2(x,y)

z1(x,y)

f (x, y, z) dz =
∫ Z 2(r,θ)

Z 1(r,θ)

F(r, θ, z) dz, (2)

where

F(r, θ, z) = f (r cos θ, r sin θ, z) (3a)

and

Z i (r, θ) = zi (r cos θ, r sin θ) (3b)

for i = 1, 2. Substituting Eq. (2) into Eq. (1) with dA = r dr dθ (important) gives

∫∫∫
T

f (x, y, z) dV =
∫∫

S

( ∫ Z 2(r,θ)

Z 1(r,θ)

F(r, θ, z) dz

)
r dr dθ , (4)

where F, Z 1, and Z 2 are the functions given in (3) and S represents the appropriate
limits on r and θ needed to describe the plane region R in polar coordinates (as dis-
cussed in Section 13.4). The limits on z are simply the z-coordinates (in terms of r

x

y

z

T

R

z = Z1(r,   )θ

z = Z2(r,   )θ

(r,   )θ

FIGURE 13.7.1 The limits on z in
a triple integral in cylindrical
coordinates are determined by the
lower and upper surfaces.

and θ ) of a typical line segment joining the lower and upper boundary surfaces of T ,
as indicated in Fig. 13.7.1.

Thus the general formula for triple integration in cylindrical coordinates is∫∫∫
T

f (x, y, z) dV =
∫∫∫

U

f (r cos θ, r sin θ, z) r dz dr dθ , (5)

where U is not a region in xyz-space, but—as in Section 13.4—a representation of lim-
its on z, r , and θ appropriate to describe the space region T in cylindrical coordinates.
Before we integrate, we must replace the variables x and y with r cos θ and r sin θ ,
respectively, but z is left unchanged. The cylindrical-coordinate volume element

dV = r dz dr dθ

may be regarded informally as the product of dz and the polar-coordinate area element
dA = r dr dθ . It is a consequence of the formula �V = r �z �r�θ for the volume
of the cylindrical block shown in Fig. 13.7.2.

Integration in cylindrical coordinates is particularly useful for computations as-
sociated with solids of revolution. So that the limits of integration will be the simplest,
the solid should usually be placed so that the axis of revolution is the z-axis.

z

Δz θΔ

Δr

r

r Δθθ
x

y

FIGURE 13.7.2 The volume of the
cylindrical block is �V =
�r · r̄�θ · �z = r̄�z �r �θ.
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EXAMPLE 1 Find the centroid of the first-octant portion T of the solid ball bounded

y

x

z

a2 − r2ztop =

zbot = 0

FIGURE 13.7.3 The first octant of
the sphere (Example 1).

by the sphere r2 + z2 = a2. The solid T appears in Fig. 13.7.3.

Solution The volume of the first octant of the solid ball is V = 1
8 · 4

3πa3 = 1
6πa3.

Because x = y = z by symmetry, we need calculate only

z = 1

V

∫∫∫
T

z dV = 6

πa3

∫ π/2

0

∫ a

0

∫ √
a2−r2

0
z r dz dr dθ

= 6

πa3

∫ π/2

0

∫ a

0

1

2
r(a2 − r2) dr dθ

= 3

πa3

∫ π/2

0

[
1

2
a2r2 − 1

4
r4

]a

r=0

dθ = 3

πa3
· π

2
· a4

4
= 3a

8
.

Thus the centroid is located at the point ( 3
8 a, 3

8 a, 3
8 a). Observe that the answer is both

plausible and dimensionally correct. ◗z

z = h

y

x

a

z = br2

FIGURE 13.7.4 The paraboloid of
Example 2.

EXAMPLE 2 Find the volume and centroid of the solid T that is bounded by the
paraboloid z = b(x2 + y2) (b > 0) and the plane z = h (h > 0).

Solution Figure 13.7.4 makes it clear that we get the radius of the circular top of T
by equating z = b(x2 + y2) = br2 and z = h. This gives a = √

h/b for the radius
of the circle over which the solid lies. Hence Eq. (4), with f (x, y, z) ≡ 1, gives the
volume:

V =
∫∫∫

T

dV =
∫ 2π

0

∫ a

0

∫ h

br2
r dz dr dθ =

∫ 2π

0

∫ a

0
(hr − br3) dr dθ

= 2π

(
1

2
ha2 − 1

4
ba4

)
= πh2

2b
= 1

2
πa2h

(because a2 = h/b).
By symmetry, the centroid of T lies on the z-axis, so all that remains is to com-

pute z:

Centroid
h

a

2
3

h 

FIGURE 13.7.5 Volume and
centroid of a right circular
paraboloid in terms of the
circumscribed cylinder.

z = 1

V

∫∫∫
T

z dV = 2

πa2h

∫ 2π

0

∫ a

0

∫ h

br2
r z dz dr dθ

= 2

πa2h

∫ 2π

0

∫ a

0

(
1

2
h2r − 1

2
b2r5

)
dr dθ

= 4

a2h

(
1

4
h2a2 − 1

12
b2a6

)
= 2

3
h,

again using the fact that a2 = h/b. Therefore the centroid of T is located at the point
(0, 0, 2

3 h). Again, this answer is both plausible and dimensionally correct. ◗

We can summarize the results of Example 2 as follows: The volume of a right
circular paraboloid is half that of the circumscribed cylinder (Fig. 13.7.5), and its
centroid lies on its axis of symmetry two-thirds of the way from the “vertex” at (0, 0, 0)

to its circular “base” at the top.

Spherical Coordinate Integrals
When the boundary surfaces of the region T of integration are spheres, cones, or
other surfaces with simple descriptions in spherical coordinates, it is generally advan-
tageous to transform a triple integral over T into spherical coordinates. Recall from
Section 11.8 that the relationship between spherical coordinates (ρ, φ, θ) (shown in
Fig. 13.7.6) and rectangular coordinates (x, y, z) is given by

x

z

φ

ρ

P(x, y, z) 

θ

y

FIGURE 13.7.6 The spherical
coordinates (ρ, φ, θ) of the point P . x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ. (6)

1050

www.konkur.in



Integration in Cylindrical and Spherical Coordinates SECTION 13.7 1051

Suppose, for example, that T is the spherical block determined by the simple
inequalities

ρ1 � ρ � ρ2 = ρ1 + �ρ,

φ1 � φ � φ2 = φ1 + �φ,

θ1 � θ � θ2 = θ1 + �θ.

(7)

As indicated by the dimensions labeled in Fig. 13.7.7, this spherical block is (if
�ρ, �φ, and �θ are small) approximately a rectangular block with dimensions �ρ,
ρ1 �φ, and ρ1 sin φ2 �θ . Thus its volume is approximately ρ2

1 sin φ2 �ρ �φ �θ . It
can be shown (see Problem 19 of Section 13.8) that the exact volume of the spherical
block described in (7) is

�V = ρ̂2 sin φ̂ �ρ �φ �θ (8)

for certain numbers ρ̂ and φ̂ such that ρ1 < ρ̂ < ρ2 and φ1 < φ̂ < φ2.
Now suppose that we partition each of the intervals [ρ1, ρ2], [φ1, φ2], and [θ1, θ2]

into n subintervals of lengths

�ρ = ρ2 − ρ1

n
, �φ = φ2 − φ1

n
, and �θ = θ2 − θ1

n
,

respectively. This produces a spherical partition P of the spherical block T into
k = n3 smaller spherical blocks T1, T2, . . . , Tk ; see Fig. 13.7.8. By Eq. (8), there
exists a point (ρ̂i , φ̂i , θ̂i ) of the spherical block Ti such that its volume is �Vi =
ρ̂2

i sin φ̂i �ρ �φ �θ . The norm |P | of P is the length of the longest diagonal of any
of the small spherical blocks T1, T2, . . . , Tk .

If (x�
i , y�

i , z�
i ) are the rectangular coordinates of the point with spherical coordi-

nates (ρ̂i , φ̂i , θ̂i ), then the definition of the triple integral as a limit of Riemann sums
as the norm |P | approaches zero gives∫∫∫

T

f (x, y, z) dV = lim
|P |→0

k∑
i=1

f (x�
i , y�

i , z�
i ) �Vi

= lim
|P |→0

k∑
i=1

F(ρ̂i , φ̂i , θ̂i )ρ̂
2
i sin φ̂i �ρ �φ �θ, (9)

ρ

 2

 1

z

ρΔ

φΔ

θΔ

 1ρ φΔ

φ  1ρr1         =θΔ  2φ θΔsin

 1ρr1         =θΔ  2φ θΔsin

 1ρr1 =  2φsin

y

x

FIGURE 13.7.7 The volume of the spherical block is
approximately r1�θ · ρ1�φ · �ρ = ρ2

1 sin φ2 �ρ �φ �θ .

z

y

x

 1φ

 2φ

 1θ

 2θ

Ti

FIGURE 13.7.8 The spherical block T divided into
k smaller spherical blocks.
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where

F(ρ, φ, θ) = f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) (10)

is the result of substituting (6) into f (x, y, z). But the right-hand sum in Eq. (9) is
simply a Riemann sum for the triple integral∫ θ2

θ1

∫ φ2

φ1

∫ ρ2

ρ1

F(ρ, φ, θ) ρ2 sin φ dρ dφ dθ.

It therefore follows that

∫∫∫
T

f (x, y, z) dV =
∫ θ2

θ1

∫ φ2

φ1

∫ ρ2

ρ1

F(ρ, φ, θ) ρ2 sin φ dρ dφ dθ . (11)

Thus we transform the integral ∫∫∫
T

f (x, y, z) dV

into spherical coordinates by replacing the rectangular-coordinate variables x , y, and z
with their expressions in (6) in terms of the spherical-coordinate variables ρ, φ, and θ .
In addition, we write

dV = ρ2 sin φ dρ dφ dθ

for the volume element in spherical coordinates.
More generally, we can transform the triple integral∫∫∫

T

f (x, y, z) dV

into spherical coordinates whenever the region T is centrally simple—that is, when-
ever it has a spherical-coordinates description of the form

ρ1(φ, θ) � ρ � ρ2(φ, θ), φ1 � φ � φ2, θ1 � θ � θ2. (12)

If so, then

∫∫∫
T

f (x, y, z) dV =
∫ θ2

θ1

∫ φ2

φ1

∫ ρ2(φ,θ)

ρ1(φ,θ)

F(ρ, φ, θ) ρ2 sin φ dρ dφ dθ . (13)

The limits on ρ in Eq. (13) are simply the ρ-coordinates (in terms of φ and θ )
of the endpoints of a typical radial segment that joins the “inner” and “outer” parts of
the boundary of T (Fig. 13.7.9). Thus the general formula for triple integration in

x

y

z

 out = ρ 2 (      )φ, θρρ

 in = ρ1 (      )φ, θρ ρ

FIGURE 13.7.9 A centrally simple
region.

spherical coordinates is

∫∫∫
T

f (x, y, z) dV

=
∫∫∫

U

f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) ρ2 sin φ dρ dφ dθ,

(14)

where, as before, U does not denote a region in xyz-space but rather indicates limits on
ρ, φ, and θ appropriate to describe the region T in spherical coordinates.

EXAMPLE 3 A solid ball T with constant density δ is bounded by the spherical
surface with equation ρ = a. Use spherical coordinates to compute its volume V and
its moment of inertia Iz around the z-axis.
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Solution The points of the ball T are described by the inequalities

0 � ρ � a, 0 � φ � π, 0 � θ � 2π.

We take f = F ≡ 1 in Eq. (11) and thereby obtain

V =
∫∫∫

T

dV =
∫ 2π

0

∫ π

0

∫ a

0
ρ2 sin φ dρ dφ dθ

= 1

3
a3

∫ 2π

0

∫ π

0
sin φ dφ dθ

= 1

3
a3

∫ 2π

0

[
− cos φ

]π

φ=0
dθ = 2

3
a3

∫ 2π

0
dθ = 4

3
πa3.

The distance from the typical point (ρ, φ, θ) of the sphere to the z-axis is r =
ρ sin φ, so the moment of inertia of the sphere around that axis is

Iz =
∫∫∫

T

r2δ dV =
∫ 2π

0

∫ π

0

∫ a

0
δρ4 sin3 φ dρ dφ dθ

= 1

5
δa5

∫ 2π

0

∫ π

0
sin3 φ dφ dθ

= 2

5
πδa5

∫ π

0
sin3 φ dφ = 2

5
πδa5 · 2 · 2

3
= 2

5
ma2,

where m = 4
3πa3δ is the mass of the ball. (In evaluating the final integral, we

used symmetry and Formula (113) inside the back cover.) The answer is dimension-
ally correct because it is the product of mass and the square of a distance. The an-
swer is plausible because it implies that, for purposes of rotational inertia, the sphere
acts as if its mass were concentrated about 63% of the way from the axis to the
equator (because Iz/m = √

2/5 a ≈ 0.63). ◗

EXAMPLE 4 Find the volume and centroid of the uniform “ice-cream cone” C that

y

x

  = 2a cosρ φ

   = 
6

φ π

z

FIGURE 13.7.10 The ice-cream
cone of Example 4 is the part of the
cone that lies within the sphere.

is bounded by the cone φ = π/6 and the sphere ρ = 2a cos φ of radius a. The sphere
and the part of the cone within it are shown in Fig. 13.7.10.

Solution The ice-cream cone is described by the inequalities

0 � θ � 2π, 0 � φ �
π

6
, 0 � ρ � 2a cos φ.

Using Eq. (13) to compute its volume, we get

V =
∫ 2π

0

∫ π/6

0

∫ 2a cos φ

0
ρ2 sin φ dρ dφ dθ

= 8

3
a3

∫ 2π

0

∫ π/6

0
cos3 φ sin φ dφ dθ

= 16

3
πa3

[
− 1

4
cos4 φ

]π/6

0

= 7

12
πa3.

Now for the centroid. It is clear by symmetry that x = y = 0. We may also
assume that C has density δ ≡ 1, so that the mass of C is numerically the same as its
volume. Because z = ρ cos φ, the z-coordinate of the centroid of C is

z = 1

V

∫∫∫
C

z dV = 12

7πa3

∫ 2π

0

∫ π/6

0

∫ 2a cos φ

0
ρ3 cos φ sin φ dρ dφ dθ

= 48a

7π

∫ 2π

0

∫ π/6

0
cos5 φ sin φ dφ dθ = 96a

7

[
− 1

6
cos6 φ

]π/6

0

= 37a

28
.

Hence the centroid of the ice-cream cone is located at the point (0, 0, 37
28 a). ◗
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13.7 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. The general formula for triple integration in cylindrical coordinates is

∫∫∫
T

f (x, y, z) dV =
∫∫∫

U

F(r, θ, z) dz dr dθ,

where F(r, θ, z) = f (r cos θ, r sin θ, z) and U represents the limits on z, r , and
θ that are appropriate to describe the space region T in cylindrical coordinates.

2. As a memory aid, the cylindrical-coordinate volume element can be regarded as
the volume of an infinitesimal rectangular block whose height is dz and whose
base area is the polar-coordinate area element d A = r dr dθ .

3. The result of Example 1 can be summarized by saying that the centroid of the
first-octant part of the solid ball of radius a (centered at the origin) lies on the
line x = y = z, three-eights of the way from the origin to the ball’s spherical
surface.

4. The result of Example 2 can be summarized by saying that the centroid of a right
circular paraboloid lies on its axis, two-thirds of the way from its flat circular
“base” to its curved paraboloidal surface.

5. As a memory aid, the spherical-coordinate volume element can be regarded as
the volume of an infinitesimal rectangular block with edge lengths dρ, ρ dφ, and
ρ sin φ dθ .

6. The general formula for triple integration in spherical coordinates is

∫∫∫
T

f (x, y, z) dV =
∫∫∫

U

F(ρ, φ, θ) sin φ dρ dφ dθ,

where F(ρ, φ, θ) = f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) and U represents the
limits on ρ, φ, and θ that are appropriate to describe the space region T in spher-
ical coordinates.

7. The second part of Example 3 shows that the moment of inertia (around the z-
axis) of a uniform spherical ball with radius a and mass m is Iz = mb2 where
b = √

2/5 a ≈ 0.63a.
8. The volume of the ice-cream cone in Example 4 is more than half of the volume

of the whole sphere of radius a.
9. The centroid of the ice-cream cone in Example 4 lies on its axis of symmetry,

more than two-thirds of the way from its point (or vertex) to its spherical surface.
10. Both in Example 3 and in Example 4, the volume of the pertinent uniform solid

is proportional to the cube of its basic dimension a; both in Example 3 and for a
cylinder of height h = 2a (Problem 16), the moment of inertia of the pertinent
uniform solid is proportional to the fifth power of a.

13.7 CONCEPTS: QUESTIONS AND DISCUSSION
1. Give examples of triple integrals that are most easily evaluated using

(a) cylindrical rather than rectangular or spherical coordinates; (b) spherical
rather than rectangular or cylindrical coordinates.

2. Describe a triple integral that you can most easily evaluate by using cylindrical
coordinates and integrating first with respect to θ . Then evaluate it.

3. Describe a triple integral that you can most easily evaluate by using spherical
coordinates and integrating first with respect to φ. Then evaluate it.
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13.7 PROBLEMS

Solve Problems 1 through 20 by triple integration in cylindrical
coordinates. Assume throughout that each solid has unit density
unless another density function is specified.

1. Find the volume of the solid bounded above by the plane
z = 4 and below by the paraboloid z = r 2.

2. Find the centroid of the solid of Problem 1.

3. Derive the formula for the volume of a sphere of radius a.

4. Find the moment of inertia around the z-axis of the solid
sphere of Problem 3 given that the z-axis passes through its
center.

5. Find the volume of the region that lies inside both the sphere
x2 + y2 + z2 = 4 and the cylinder x2 + y2 = 1.

6. Find the centroid of the half of the region of Problem 5 that
lies on or above the xy-plane.

7. Find the mass of the cylinder 0 � r � a, 0 � z � h if its density
at (x, y, z) is z.

8. Find the centroid of the cylinder of Problem 7.

9. Find the moment of inertia around the z-axis of the cylinder
of Problem 7.

10. Find the volume of the region that lies inside both the sphere
x2 + y2 + z2 = 4 and the cylinder x2 + y2 − 2x = 0
(Fig. 13.7.11).

−2
0

2x

−2
0

2y

−2

0

2

z

x2 + y2 + z2 = 4

x2 + y2 − 2x = 0

FIGURE 13.7.11 The sphere and
cylinder of Problem 10.

11. Find the volume and centroid of the region bounded by the
plane z = 0 and the paraboloid z = 9 − x2 − y2.

12. Find the volume and centroid of the region bounded by the
paraboloids z = x2 + y2 and z = 12 − 2x2 − 2x2.

13. Find the volume of the region bounded by the paraboloids
z = 2x2 + y2 and z = 12 − x2 − 2y2.

14. Find the volume of the region bounded below by the
paraboloid z = x2 + y2 and above by the plane z = 2x
(Fig. 13.7.12).

−2
0

2x −2
0

2

y

0

2

4

z

z = 2x

z = x2 + y2

FIGURE 13.7.12 The plane
and paraboloid of Problem 14.

15. Find the volume of the region bounded above by the spher-
ical surface x2 + y2 + z2 = 2 and below by the paraboloid
z = x2 + y2 (Fig. 13.7.13).

−1
0

1x

−1
0

1y

−1

0

1

z

z = x2 + y2

x2 + y2 + z2 = 2

FIGURE 13.7.13 The
sphere and paraboloid
of Problem 15.

16. A homogeneous solid cylinder has mass m and radius a.
Show that its moment of inertia around its axis of symme-
try is 1

2 m a2.

17. Find the moment of inertia I of a homogeneous solid right
circular cylinder around a diameter of its base. Express I in
terms of the radius a, the height h, and the (constant) density
δ of the cylinder.

18. Find the centroid of a homogeneous solid right circular
cylinder of radius a and height h.

19. Find the volume of the region bounded by the plane z = 1
and the cone z = r .

20. Show that the centroid of a homogeneous solid right circular
cone lies on its axis three-quarters of the way from its vertex
to its base.

Solve Problems 21 through 30 by triple integration in spherical
coordinates.

21. Find the centroid of a homogeneous solid hemisphere of ra-
dius a.

22. Find the mass and centroid of the solid hemisphere x2 +
y2 + z2 � a2, z � 0 if its density δ is proportional to distance
z from its base—so δ = kz (where k is a positive constant).

23. Solve Problem 19 by triple integration in spherical coordi-
nates.

24. Solve Problem 20 by triple integration in spherical coordi-
nates.

25. Find the volume and centroid of the uniform solid that lies
inside the sphere ρ = a and above the cone r = z.

26. Find the moment of inertia Iz of the solid of Problem 25.

27. Find the moment of inertia around a tangent line of a solid
homogeneous sphere of radius a and total mass m.

28. A spherical shell of mass m is bounded by the spheres ρ = a
and ρ = 2a, and its density function is δ = ρ2. Find its mo-
ment of inertia around a diameter.

29. Describe the surface ρ = 2a sin φ and compute the volume
of the region it bounds.
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30. Describe the surface ρ = 1 + cos φ and compute the volume
of the region it bounds. Figure 13.7.14 may be useful.

−1
0

1
x

−1
0

1y

0

1

2

z

= 1 + cos φρ

FIGURE 13.7.14 The
surface of Problem 30.

31. Find the moment of inertia around the x-axis of the region
that lies inside both the cylinder r = a and the sphere
ρ = 2a.

32. Find the moment of inertia around the z-axis of the ice-cream
cone of Example 4.

33. Find the mass and centroid of the ice-cream cone of Example
4 if its density at (x, y, z) is δ(x, y, z) = z.

34. Find the moment of inertia of the ice-cream cone of Problem
33 around the z-axis.

35. Suppose that a gaseous spherical star of radius a has density
function δ = k(1 − ρ2/a2), so its density varies from δ = k
at its center to δ = 0 at its boundary ρ = a. Show that its
mass is 2

5 that of a similar star with uniform density k.

36. Find the moment of inertia around a diameter of the gaseous
spherical star of Problem 35.

37. (a) Use spherical coordinates to evaluate the integral∫∫∫
B

exp(−ρ3) dV

where B is the solid ball of radius a centered at the origin.
(b) Let a → ∞ in the result of part (a) to show that∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(−(x2 + y2 + z2)3/2) dx dy dz = 4

3 π.

38. Use the method of Problem 37 to show that

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2 + z2)1/2

× exp(−x2 − y2 − z2) dx dy dz = 2π.

39. Find the average distance of points of a solid ball of radius
a from the center of the ball. (The definition of the average
value of a function precedes Problem 47 in Section 13.6.)

40. Find the average distance of the points of a solid ball of ra-
dius a from a fixed boundary point of the ball.

Problems 41 and 42 provide results that are needed in the Section
13.5 project.

41. A spherical shell of radius a and negligible thickness has
area density δ, so its mass is m = 4πδa2. Show that its
moment of inertia about an axis of symmetry is I0 = 2

3 m a2.

42. A spherical shell has inner radius a, outer radius b, and uni-
form density δ. Show that its moment of inertia about an axis

of symmetry is I0 = 2
5 mc2, where m is the mass of the shell

and

c2 = b5 − a5

b3 − a3
.

43. A hole of radius a < b is bored symmetrically through the
center of a solid sphere of radius b and uniform density δ,
leaving a “ring” of mass m. Show that the moment of inertia
of this ring about its axis of symmetry is I0 = 1

5 m(3a2+2b2).

44. The three cylinders x2 + y2 = 1, x2 + z2 = 1, and y2 + z2 =
1 intersect as illustrated in Fig. 13.7.15(a); Fig. 13.7.15(b)
shows a view directly from above, looking downward along
the z-axis. Find the volume of the region that lies within all
three cylinders.

FIGURE 13.7.15(a) The three
intersecting cylinders of Problem 44.

FIGURE 13.7.15(b) The view looking
down from a point high on the z-axis.

45. Figure 13.7.16 shows the bumpy sphere with spherical-
coordinates equation ρ = 6 + 3 cos 3θ sin 5φ. Use a com-
puter algebra system to find the volume of the region en-
closed by this bumpy sphere.

x

y

z

FIGURE 13.7.16 The bumpy sphere
of Problem 45.
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46. The bumpy sphere of Fig. 13.7.16 looks somewhat symmet-
rical. Is its centroid actually at the origin?

A crucial discovery of Newton (proved in his Principia Mathe-
matica) was the fact that the gravitational attraction of a uniform
solid sphere (such as an idealized planet) is the same as though
all of the mass of the planet were concentrated at its center. Prob-
lems 47 and 48 deal with this and a related fact.

47. Consider a homogeneous spherical ball of radius a cen-
tered at the origin, with density δ and mass M = 4

3 πa3δ.
Show that the gravitational force F exerted by this ball on
a point mass m located at the point (0, 0, c), where c > a
(Fig. 13.7.17), is the same as though all the mass of the ball
were concentrated at its center (0, 0, 0). That is, show that
|F| = G Mm/c2. [Suggestion: By symmetry you may as-
sume that the force is vertical, so that F = Fzk. Set up the
integral

Fz = −
∫ 2π

0

∫ a

0

∫ π

0

Gm δ cos α

w2
ρ2 sin φ dφ dρ dθ.

Change the first variable of integration from φ to w by using
the law of cosines:

w2 = ρ2 + c2 − 2ρc cos φ.

Then 2w dw = 2ρc sin φ dφ and w cos α + ρ cos φ = c.
(Why?)]

z

α

m

c

(0, 0, c)  

w

ρ

 dV =    2 sin    d   d   d   ρ   φ θ   ρ  φ   

φ

x

y

FIGURE 13.7.17 The system of Problem 47.

48. Consider now the spherical shell a � r � b with uniform den-
sity δ. Show that this shell exerts no net force on a point
mass m located at the point (0, 0, c) inside it—that is, with
|c| < a. The computation will be the same as in Problem 47
except for the limits of integration on ρ and w.

49. If the earth were perfectly spherical with radius R =
6370 km, uniform density δ, and mass M = 4

3 πδR3, then
(according to Example 3) its moment of inertia about its po-
lar axis would be I = 2

5 MR2. In actuality, however, mea-
surements from satellites indicate that

I = k MR2 (15)

where k ≈ 0.371 < 2
5 . The reason is that, instead of having

a uniform interior, a more realistic model of the earth has
a dense core covered with a lighter mantle a few thousand
kilometers thick (Fig. 13.7.18). The density of the core is
δ1 ≈ 11 × 103 kg/m3 and that of the mantle is δ2 ≈ 5 × 103

kg/m3. (a) With this core-mantle model, calculate the mass
M of the earth and its polar moment of inertia I (using Prob-
lem 42) in terms of the unknown radius x of the spherical
core. (b) Substitute your calculated values of M and I in
Eq. (15) and use a computer algebra system to solve the re-
sulting equation for x .

Mantle

Core

FIGURE 13.7.18 The core and
mantle of the earth.

13.8 SURFACE AREA

Until now our concept of a surface has been the graph z = f (x, y) of a function of two
variables. Occasionally we have seen such a surface defined implicitly by an equation
of the form F(x, y, z) = 0. Now we want to introduce the more precise concept of a
parametric surface—the two-dimensional analogue of a parametric curve.

A parametric surface S is the image of a function or transformation r that
is defined on a region R in the uv-plane (Fig. 13.8.1) and has values in xyz-space
(Fig. 13.8.2). The image under r of each point (u, v) in R is the point in xyz-space
with position vector

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉. (1)

The parametric surface S is called smooth provided that the component functions
of r have continuous partial derivatives with respect to u and v and, moreover, the
vectors

ru = ∂r
∂u

= 〈xu, yu, zu〉 = ∂x

∂u
i + ∂y

∂u
j + ∂z

∂u
k (2)
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u

(u, )  

R 

FIGURE 13.8.1 The uv-region R on
which the transformation r is defined.

S 

y

z

x

r (u, )

FIGURE 13.8.2 The parametric
surface S in xyz-space.

and

rv = ∂r
∂v

= 〈xv, yv, zv〉 = ∂x

∂v
i + ∂y

∂v
j + ∂z

∂v
k (3)

are nonzero and nonparallel at each interior point of R. (Compare this with the defini-
tion of smooth parametric curve r(t) in Section 9.4.) We call the variables u and v the
parameters for the surface S, in analogy with the single parameter t for a parametric
curve.

EXAMPLE 1

(a) We may regard the graph z = f (x, y) of a function as a parametric surface
with parameters x and y. In this case the transformation r from the xy-plane to
xyz-space has the component functions

r

θ

(r, θ)

R

θ

FIGURE 13.8.3 A rectangle in the
rθ -plane; the domain of the function
z = g(r, θ) of Example 1.

x = x, y = y, z = f (x, y). (4)

(b) Similarly, we may regard a surface given in cylindrical coordinates by the graph

(r cos θ, r sin θ, g (r, θ))  

S 

y

z

x

(r cos , r sin θ, 0)  

θ θ θ

θθ

FIGURE 13.8.4 A cylindrical
coordinates surface in xyz-space
(Example 1).

of z = g(r, θ) as a parametric surface with parameters r and θ . The transfor-
mation r from the rθ -plane (Fig. 13.8.3) to xyz-space (Fig. 13.8.4) is then given
by

x = r cos θ, y = r sin θ, z = g(r, θ). (5)

(c) We may regard a surface given in spherical coordinates by ρ = h(φ, θ) as a
parametric surface with parameters φ and θ , and the corresponding transforma-
tion from the φθ -plane to xyz-space is then given by

x = h(φ, θ) sin φ cos θ, y = h(φ, θ) sin φ sin θ, z = h(φ, θ) cos φ. (6)

The concept of a parametric surface lets us treat all these special cases, and many
others, with the same techniques. ◗

Surface Area of Parametric Surfaces
Now we want to define the surface area of the general smooth parametric surface given
in Eq. (1). We begin with an inner partition of the region R—the domain of r in the uv-
plane—into rectangles R1, R2, . . . , Rn , each with dimensions �u and �v. Let (ui , vi )

be the lower left-hand corner of Ri (as in Fig. 13.8.5). The image Si of Ri under r will
not generally be a rectangle in xyz-space; it will look more like a curvilinear figure on
the image surface S, with r(ui , vi ) as one “vertex” (Fig. 13.8.6). Let �Si denote the
area of this curvilinear figure Si .

The parametric curves r(u, vi ) and r(ui , v)—with parameters u and v,
respectively—lie on the surface S and meet at the point r(ui , vi ). At this point of
intersection, these two curves have the tangent vectors ru(ui , vi ) and rv(ui , vi ) shown
in Fig. 13.8.7. Hence their vector product

N(ui , vi ) = ru(ui , vi ) × rv(ui , vi ) (7)

is a vector normal to S at the point r(ui , vi ).

(ui,  i  + Δ )

u

Ri

(ui,  i)
(ui + Δu,  i )

(ui + Δ u,  i + Δ  )

R

FIGURE 13.8.5 The rectangle Ri
in the uv-plane.
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r(ui,   i + Δ  )

r(ui,   i )

r(ui + Δu,   i)

r(ui + Δ u,  i + Δ  ) 

Si

x

y

S

z

FIGURE 13.8.6 The image of Ri is a
curvilinear figure.

r(ui,  )  

r

ru 

r(u,  i)

r(ui,  i)  

 N = ru × r z

x

y

FIGURE 13.8.7 The vector N normal to
the surface at r(ui , vi ).

r(ui,  i)  

r

ru 

Si

Pi

z

x

y

FIGURE 13.8.8 The area of the
parallelogram Pi is an approximation to the
area of the curvilinear figure Si .

Now suppose that both �u and �v are small. Then the area �Si of the curvi-
linear figure Si should be approximately equal to the area �Pi of the parallelogram
with adjacent sides ru(ui , vi ) �u and rv(ui , vi ) �v (Fig. 13.8.8). But the area of this
parallelogram is

�Pi = |ru(ui , vi ) �u × rv(ui , vi ) �v| = |N(ui , vi )| �u �v.

This means that the area a(S) of the surface S should be given approximately by

a(S ) =
n∑

i=1

�Si ≈
n∑

i=1

�Pi ,

so

a(S ) ≈
n∑

i=1

|N(ui , vi )| �u �v.

But this last sum is a Riemann sum for the double integral∫∫
R

|N(u, v)| du dv.

We are therefore motivated to define the surface area A of the smooth parametric
surface S by

A = a(S) =
∫∫

R

|N(u, v)| du dv =
∫∫

R

∣∣∣∣ ∂r
∂u

× ∂r
∂v

∣∣∣∣ du dv. (8)

Surface Area in Rectangular Coordinates
In the case of the surface z = f (x, y) for (x, y) in the region R in the xy-plane, the
component functions of r are given by the equations in (4) with parameters x and y (in
place of u and v). Then

N = ∂r
∂x

× ∂r
∂y

=

∣∣∣∣∣∣∣∣∣∣

i j k

1 0
∂ f

∂x

0 1
∂ f

∂y

∣∣∣∣∣∣∣∣∣∣
= −∂ f

∂x
i − ∂ f

∂y
j + k,

so Eq. (8) takes the special form

A = a(S) =
∫∫

R

√
1 +

(
∂ f

∂x

)2

+
(

∂ f

∂y

)2

dx dy =
∫∫

R

√
1 + z2

x + z2
y dx dy. (9)
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EXAMPLE 2 Find the area of the ellipse cut from the plane z = 2x + 2y + 1 by the

−1
0

1

x

−1

0
1y

−2.5

0

2.5

5

z

z = 2x + 2y + 1

x2 + y2 = 1

FIGURE 13.8.9 The cylinder and
plane of Example 2.

cylinder x2 + y2 = 1 (Fig. 13.8.9).

Solution Here, R is the unit circle in the xy-plane with area∫∫
R

1 dx dy = π,

so Eq. (9) gives the area of the ellipse to be

A =
∫∫

R

√
1 + z2

x + z2
y dx dy

=
∫∫

R

√
1 + 22 + 22 dx dy =

∫∫
R

3 dx dy = 3π. ◗

REMARK Computer-generated figures such as Fig. 13.8.9 could not be constructed
easily without using parametric surfaces. For example, the vertical cylinder in
Fig. 13.8.9 was generated by instructing the computer to plot the parametric surface
defined on the zθ -rectangle −5 � z � 5, 0 � θ � 2π by

r(z, θ) = 〈cos θ, sin θ, z〉.
Is it clear that the image of this transformation is the cylinder x2+y2 = 1, −5 � z � 5?

Surface Area in Cylindrical Coordinates
Now consider a cylindrical-coordinate surface z = g(r, θ) parametrized by the equa-
tions in (5) for (r, θ) in a region R of the rθ -plane. Then the normal vector is

N = ∂r
∂r

× ∂r
∂θ

=

∣∣∣∣∣∣∣∣∣∣

i j k

cos θ sin θ
∂z

∂r

−r sin θ r cos θ
∂z

∂θ

∣∣∣∣∣∣∣∣∣∣
= i

(
∂z

∂θ
sin θ − r

∂z

∂r
cos θ

)
− j

(
∂z

∂θ
cos θ + r

∂z

∂r
sin θ

)
+ rk.

After some simplifications, we find that

|N| =
√

r2 + r2

(
∂z

∂r

)2

+
(

∂z

∂θ

)2

.

Then Eq. (8) yields the formula

A =
∫∫

R

√
r2 + (r zr )2 + (zθ )2 dr dθ (10)

for surface area in cylindrical coordinates.

EXAMPLE 3 Find the surface area cut from the paraboloid z = r2 by the cylinder
r = 1 (Fig. 13.8.10).

Solution Equation (10) gives area

z = r2

−1

0

1x

−1

0

1
y

0

0.5

1

z
z = 1

FIGURE 13.8.10 The part of the
paraboloid z = r2 inside the cylinder
r = 1 (Example 3) is the same as the
part beneath the plane z = 1.
(Why?).

A =
∫ 2π

0

∫ 1

0

√
r2 + r2 · (2r)2 dr dθ = 2π

∫ 1

0
r
√

1 + 4r2 dr

= 2π

[
2

3
· 1

8
(1 + 4r2)3/2

]1

0

= π

6

(
5
√

5 − 1
) ≈ 5.3304. ◗
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In Example 3, you would get the same result if you first wrote z = x2 + y2, used
Eq. (9), which gives

A =
∫∫

R

√
1 + 4x2 + 4y2 dx dy,

and then changed to polar coordinates. In Example 4 it would be less convenient to
begin with rectangular coordinates.

EXAMPLE 4 Find the area of the spiral ramp z = θ , 0 � r � 1, 0 � θ � π . This is
the upper surface of the solid shown in Fig. 13.8.11.

Solution Equation (10) gives area

z

x

y

FIGURE 13.8.11 The spiral ramp
of Example 4.

A =
∫ π

0

∫ 1

0

√
r2 + 1 dr dθ = π

2

[√
2 + ln

(
1 + √

2
)] ≈ 3.6059.

We avoided a trigonometric substitution by using the table of integrals inside the back
cover. ◗

EXAMPLE 5 Find the surface area of the torus generated by revolving the circle

(x − b)2 + z2 = a2 (0 < a < b)

in the xz-plane around the z-axis (Fig. 13.8.12).

Solution With the ordinary polar coordinate θ and the angle ψ of Fig. 13.8.13, the
FIGURE 13.8.12 The torus of
Example 5.

torus is described for 0 � θ � 2π and 0 � ψ � 2π by the parametric equations

x = r cos θ = (b + a cos ψ) cos θ,

y = r sin θ = (b + a cos ψ) sin θ,

z = a sin ψ.

When we compute N = rθ × rψ and simplify, we find that

|N| = a(b + a cos ψ).

Hence the general surface-area formula, Eq. (8), gives area

A =
∫ 2π

0

∫ 2π

0
a(b + a cos ψ) dθ dψ = 2πa

[
bψ + a sin ψ

]2π

0
= 4π2ab.

We obtained the same result in Section 13.5 with the aid of Pappus’s first theorem.

a

z

x

r = b + a cos ψ

ψ

b

FIGURE 13.8.13 The circle that
generates the torus of Example 5.

◗

13.8 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. To say that the parametric surface S defined by the function r from the uv-plane
to xyz-space is smooth means simply that the component functions of r are con-
tinuously differentiable.

2. The graph of a function z = f (x, y) in rectangular coordinates—or of a function
z = g(r, θ) in cylindrical coordinates, or of a function ρ = h(φ, θ) in spherical
coordinates—may be regarded as a parametric surface.

3. Given a smooth parametric surface S parametrized by the function r : R2
uv →

R3
xyz , the two vectors ∂r/∂u = ru(u, v) and ∂r/∂v = rv(u, v) are both tangent

to the surface S at the point r(u, v).
4. Given the two tangent vectors ru(u, v) and rv(u, v) defined in Question 3, the

cross product vector N(u, v) = ru(u, v) × rv(u, v) is perpendicular to the surface
S at the point r(u, v).
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5. If the parametrization r of the smooth parametric surface S is defined on the
region R in the uv-plane, then the area A of S is given by

A =
∫∫

R

|ru(u, v) × rv(u, v)| du dv.

6. If the smooth parametric surface S is the graph of the continuously differentiable
function z = f (x, y) for (x, y) in the region R in the xy-plane, then the area A
of S is given by

A =
∫∫

R

√
fx(x, y)2 + fy(x, y)2 dx dy.

7. The image of the transformation r : R2
zθ → R3

xyz defined by

r(z, θ) = 〈cos θ, sin θ, z〉
is a vertical cylinder of radius 2.

8. If the smooth parametric surface S is the cylindrical-coordinate graph of the con-
tinuously differentiable function z = g(r, θ) for (r, θ) in the region R in the
rθ -plane, then the area A of S is given by

A =
∫∫

R

√
r2(1 + gr (r, θ)2) + gθ (r, θ)2 r dr dθ.

9. It is more convenient to use rectangular coordinates than to use cylindrical coor-
dinates to calculate the surface area that is cut from the paraboloid z = x2 + y2

by the cylinder x2 + y2 = 1.
10. In Example 5, the surface area of a torus is fairly easily calculated using spherical

coordinates.

13.8 CONCEPTS: QUESTIONS AND DISCUSSION
1. Compare the calculations of the surface area of a sphere using (a) rectangular

coordinates; (b) cylindrical coordinates; (c) spherical coordinates. (See Problem
18 of this section.)

2. We know that the volume of a solid ball of radius r is V (r) = 4
3πr3 and that

the area of its spherical surface is S(r) = 4πr2. Is it a coincidence that V ′(r) =
S(r)? Think about a thin spherical shell as “volume as product of thickness and
area.”

13.8 PROBLEMS

1. Find the area of the portion of the plane z = x + 3y that lies
inside the elliptical cylinder with equation

x2

4
+ y2

9
= 1.

2. Find the area of the region in the plane z = 1 + 2x + 2y that
lies directly above the region in the xy-plane bounded by the
parabolas y = x2 and x = y2.

3. Find the area of the part of the paraboloid z = 9 − x2 − y2

that lies above the plane z = 5.

4. Find the area of the part of the surface 2z = x2 that lies
directly above the triangle in the xy-plane with vertices at
(0, 0), (1, 0), and (1, 1).

5. Find the area of the surface that is the graph of z = x + y2

for 0 � x � 1, 0 � y � 2.

6. Find the area of that part of the surface of Problem 5 that

lies above the triangle in the xy-plane with vertices at (0, 0),
(0, 1), and (1, 1).

7. Find by integration the area of the part of the plane 2x +3y+
z = 6 that lies in the first octant.

8. Find the area of the ellipse that is cut from the plane 2x +
3y + z = 6 by the cylinder x2 + y2 = 2.

9. Find the area that is cut from the saddle-shaped surface
z = xy by the cylinder x2 + y2 = 1.

10. Find the area that is cut from the surface z = x2 − y2 by the
cylinder x2 + y2 = 4.

11. Find the surface area of the part of the paraboloid z =
16 − x2 − y2 that lies above the xy-plane.

12. Show by integration that the surface area of the conical sur-
face z = br between the planes z = 0 and z = h = ab is
given by A = πaL , where L is the slant height

√
a2 + h2

and a is the radius of the base of the cone.
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13. Let the part of the cylinder x2 + y2 = a2 between the
planes z = 0 and z = h be parametrized by x = a cos θ ,
y = a sin θ , z = z. Apply Eq. (8) to show that the area of
this zone is A = 2πah.

14. Consider the meridional zone of height h = c − b that lies
on the sphere r 2 + z2 = a2 between the planes z = b and
z = c, where 0 � b < c � a. Apply Eq. (10) to show that
the area of this zone is A = 2πah.

15. Find the area of the part of the cylinder x2 + z2 = a2 that lies
within the cylinder r 2 = x2 + y2 = a2.

16. Find the area of the part of the sphere r 2 + z2 = a2 that lies
within the cylinder r = a sin θ .

17. (a) Apply Eq. (8) to show that the surface area of the surface
y = f (x, z), for (x, z) in the region R of the xz-plane, is
given by

A =
∫∫

R

√
1 +

(
∂ f

∂x

)2

+
(

∂ f

∂z

)2

dx dz.

(b) State and derive a similar formula for the area of the sur-
face x = f (y, z) for (y, z) in the region R of the yz-plane.

18. Suppose that R is a region in the φθ -plane. Consider the
part of the sphere ρ = a that corresponds to (φ, θ) in R,
parametrized by the equations in (6) with h(φ, θ) = a. Ap-
ply Eq. (8) to show that the surface area of this part of the
sphere is

A =
∫∫

R

a2 sin φ dφ dθ.

19. (a) Consider the “spherical rectangle” defined by

ρ = a, φ1 � φ � φ2 = φ1 + �φ, θ1 � θ � θ2 = θ1 + �θ.

Apply the formula of Problem 18 and the average value
property (see Problem 50 in Section 13.2) to show that the
area of this spherical rectangle is A = a2 sin φ̂ �φ �θ for
some φ̂ in (φ1, φ2). (b) Conclude from the result in part (a)
that the volume of the spherical block defined by

ρ1 � ρ � ρ2 = ρ1 + �ρ, φ1 � φ � φ2, θ1 � θ � θ2

is

�V = 1
3

(
ρ3

2 − ρ3
1

)
sin φ̂ �φ �θ.

Finally, derive Eq. (8) of Section 13.7 by applying the mean
value theorem to the function f (ρ) = ρ3 on the interval
[ρ1, ρ2].

20. Describe the surface ρ = 2a sin φ. Why is it called a pinched
torus? It is parametrized as in Eq. (6) with h(φ, θ) =
2a sin φ. Show that its surface area is A = 4π2a2. Figure
13.8.14 may be helpful.

FIGURE 13.8.14 Cutaway
view of the pinched torus
of Problem 20.

21. The surface of revolution obtained when we revolve the
curve x = f (z), a � z � b, around the z-axis is parametrized
in terms of θ (0 � θ � 2π ) and z (a � z � b) by x =
f (z) cos θ , y = f (z) sin θ , z = z. From Eq. (8) derive the
surface-area formula

A =
∫ 2π

0

∫ b

a
f (z)

√
1 + [ f ′(z)]2 dz dθ.

This formula agrees with the area of a surface of revolution
as defined in Section 6.4.

22. Apply the formula of Problem 18 in both parts of this prob-
lem. (a) Verify the formula A = 4πa2 for the surface area
of a sphere of radius a. (b) Find the area of that part of
a sphere of radius a and center (0, 0, 0) that lies inside the
cone φ = π/6.

23. Apply the result of Problem 21 to verify the formula A =
2πrh for the lateral surface area of a right circular cylinder
of radius r and height h.

24. Apply Eq. (9) to verify the formula A = 2πrh for the lateral
surface area of the cylinder x2 + z2 = r 2, 0 � y � h of radius
r and height h.

In Problems 25 through 28, use a computer algebra system first to
plot and then to approximate (with four-place accuracy) the area
of the part of the given surface S that lies above the square in the
xy-plane defined by (a) −1 � x � 1, −1 � y � 1; (b) |x | + |y| � 1.

25. S is the paraboloid z = x2 + y2.

26. S is the cone z = √
x2 + y2 .

27. S is the hyperboloid z = 1 + xy.

28. S is the sphere x2 + y2 + z2 = 4.

In Problems 29 through 32, a parametrization of a quadric sur-
face is given. Use identities such as cos2 t + sin2 t = 1 and
cosh2 t − sinh2 t = 1 to identify these surfaces by means of the
quadric surface equations listed in Section 11.7. For visual cor-
roboration you can use the parametric plot command in a com-
puter algebra system to plot each surface (with selected numeri-
cal values of the coefficients a, b, and c).

29. x = au cos v, y = bu sin v, z = cu2; 0 � u � 1,
0 � v � 2π

30. x = a sin u cos v, y = b sin u sin v, z = c cos u;
0 � u � π , 0 � v � 2π

31. x = a sinh u cos v, y = b sinh u sin v, z = c cosh u;
0 � u � 1, 0 � v � 2π

32. x = a cosh u cos v, y = b cosh u sin v, z = c sinh u;
−1 � u � 1, 0 � v � 2π

33. An ellipsoid with semiaxes a, b, and c is defined by the
parametrization

x = a sin φ cos θ, y = b sin φ sin θ, z = c cos φ

(0 � φ � π, 0 � θ � 2π ) in terms of the angular spherical co-
ordinates φ and θ . Use a computer algebra system to ap-
proximate (to four-place accuracy) the area of the ellipsoid
with a = 4, b = 3, and c = 2.
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34. (a) Generalize Example 5 to derive the parametric equations

x = (b + a cos ψ) cos θ, y = (b + a cos ψ) sin θ,

z = c sin ψ

(0 � ψ � 2π, 0 � θ � 2π ) of the “elliptical torus” obtained by
revolving around the z-axis the ellipse (x −b)2/a2 +z2/c2 =

1 (where 0 < a < b) in the xz-plane. (b) Use a computer
algebra system to approximate (to four-place accuracy) the
area of the elliptical torus obtained as in part (a) with a = 2,
b = 3, and c = 1. (c) Also approximate the perimeter of the
ellipse of part (a). Are your results consistent with Pappus’s
theorem for the area of a surface of revolution?

13.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

We have seen in preceding sections that we can evaluate certain multiple integrals by
transforming them from rectangular coordinates into polar or spherical coordinates.
The technique of changing coordinate systems to evaluate a multiple integral is the
multivariable analogue of substitution in a single integral. Recall from Section 5.7 that
if x = g(u), then ∫ b

a
f (x) dx =

∫ d

c
f (g(u)) g′(u) du, (1)

where a = g(c) and b = g(d ). The method of substitution involves a “change of
variables” that is tailored to the evaluation of a given integral.

Suppose that we want to evaluate the double integral∫∫
R

F(x, y) dx dy.

A change of variables for this integral is determined by a continuously differentiable
transformation T from the uv-plane to the xy-plane—that is, a function T that asso-
ciates with the point (u, v) a point (x, y) = T (u, v) given by equations of the form

x = f (u, v), y = g(u, v). (2)

The point (x, y) is called the image of the point (u, v) under the transformation T . If
no two different points in the uv-plane have the same image point in the xy-plane, then
the transformation T is said to be one-to-one. In this case it may be possible to solve
the equations in (2) for u and v in terms of x and y and thus obtain the equations

u = h(x, y), v = k(x, y) (3)

of the inverse transformation T −1 from the xy-plane to the uv-plane.
Often it is convenient to visualize the transformation T geometrically in terms

of its u-curves and v-curves. The u-curves of T are the images in the xy-plane of
the horizontal lines in the uv-plane—on each such curve the value of u varies but v is
constant. The v-curves of T are the images of the vertical lines in the uv-plane—on
each of these, the value of v varies but u is constant. Note that the image under T of
a rectangle bounded by horizontal and vertical lines in the uv-plane is a curvilinear
figure bounded by u-curves and v-curves in the xy-plane (Fig. 13.9.1). If we know the
equations in (3) of the inverse transformation, then we can find the u-curves and the

S

u

R

y

x

-curve

u -curve

FIGURE 13.9.1 The transformation
T turns the rectangle S into the
curvilinear figure R.

v-curves quite simply by writing the equations

k(x, y) = C1 (u-curve on which v = C1 is constant)

and

h(x, y) = C2 (v-curve on which u = C 2 is constant).

EXAMPLE 1 Determine the u-curves and the v-curves of the transformation T
whose inverse T −1 is specified by the equations u = xy, v = x2 − y2.

Solution The u-curves are the hyperbolas

x2 − y2 = v = C1 (constant),
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and the v-curves are the rectangular hyperbolas

xy = u = C2 (constant).

These two familiar families of hyperbolas are shown in Fig. 13.9.2. ◗

y

x

  - curves
with u < 0

  - curves
with u >0

u- curves
with    > 0

FIGURE 13.9.2 The u-curves and
v-curves of Example 1.

Change of Variables in Double Integrals
Now we shall describe the change of variables in a double integral that corresponds
to the transformation T specified by the equations in (2). Let the region R in the xy-
plane be the image under T of the region S in the uv-plane. Let F(x, y) be continuous
on R and let {S1, S2, . . . , Sn} be an inner partition of S into rectangles each with di-
mensions �u by �v. Each rectangle Si is transformed by T into a curvilinear figure R i

in the xy-plane (Fig. 13.9.3). The images {R1, R2, . . . , Rn} under T of the rectangles
Si then constitute an inner partition of the region R (though into curvilinear figures
rather than rectangles).

Let (u�
i , v

�
i ) be the lower left-hand corner point of Si , and write

(x�
i , y�

i ) = ( f (u�
i , v

�
i ), g(u�

i , v
�
i ))

for its image under T . The u-curve through (x�
i , y�

i ) has velocity vectorv

u

y

x

(xi
★, yi

★)  

(ui
★, i

★)  

Ri

tu Δu
t  Δ

Pi

Δu

Si Δ

FIGURE 13.9.3 The effect of the
transformation T . We estimate the
area of Ri = T(Si ) by computing the
area of the parallelogram Pi .

tu = i fu(u
�
i , v

�
i ) + jgu(u

�
i , v

�
i ) = ∂x

∂u
i + ∂y

∂u
j,

and the v-curve through (x�
i , y�

i ) has velocity vector

tv = i fv(u
�
i , v

�
i ) + jgv(u

�
i , v

�
i ) = ∂x

∂v
i + ∂y

∂v
j.

Thus we can approximate the curvilinear figure R i by a parallelogram Pi with edges
that are “copies” of the vectors tu �u and tv �v. These edges and the approximating
parallelogram appear in Fig. 13.9.3.

Our strategy is to approximate the area �A i of the curvilinear figure R i with
the area a(Pi ) of the parallelogram Pi . To calculate this approximating area, we recall
from Section 11.3 that the area of a parallelogram spanned by two vectors a and b is
the length |a × b| of their cross product. Therefore

�A i ≈ a(Pi ) = |(tu �u) × (tv �v)| = |tu × tv| �u �v. (4)

But

tu × tv =

∣∣∣∣∣∣∣∣∣∣

i j k
∂x

∂u

∂y

∂u
0

∂x

∂v

∂y

∂v
0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
k. (5)

The 2×2 determinant on the right in Eq. (5) is called the Jacobian of the transformation
T : R2

uv → R2
xy , after the German mathematician Carl Jacobi (1804–1851), who first

investigated general changes of variables in double integrals.

DEFINITION The Jacobian
The Jacobian of the continuously differentiable transformation T : R2

uv → R2
xy is

the (real-valued) function JT : R2
uv → R defined by

JT (u, v) =
∣∣∣∣∣xu(u, v) xv(u, v)

yu(u, v) yv(u, v)

∣∣∣∣∣. (6)
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Another common and particularly suggestive notation for the Jacobian is

JT = ∂(x, y)

∂(u, v)
,

where the 2 × 2 pattern reminds us that both the dependent variables x and y are
differentiated with respect to both the independent variables u and v.

Recall that we began with an inner partition {S1, S2, . . . , Sn} of the region S
in the uv-plane, with the images of these rectangles forming a curvilinear partition
{R1, R2, . . . , Rn} of the region R = T (S ) in the xy-plane. Now Eqs. (4) and (5)
imply that the area �Ai of Ri is given approximately by

�A i ≈ |JT (u�
i , v�

i )| �u �v

in terms of the absolute value of the Jacobian determinant and the area a(Si ) = �u �v.
Therefore, when we set up Riemann sums for approximating double integrals, we find
that ∫∫

R

F(x, y) dx dy ≈
n∑

i=1

F(x�
i , y�

i ) �A i

≈
n∑

i=1

F( f (u�
i , v

�
i ), g(u�

i , v
�
i ))|JT (u�

i , v
�
i )| �u �v

≈
∫∫

S

F ( f (u, v), g(u, v)) |JT (u, v)| du dv.

This discussion is, in fact, an outline of a proof of the following general change-of-
variables theorem. To ensure the existence of the indicated double integrals, we as-
sume that the boundaries of both regions R and S consist of a finite number of piece-
wise smooth curves. (See Fig. 13.9.4.)

THEOREM 1 Change of Variables
Suppose that the continuously differentiable transformation T : R2

uv → R2
xy takes

the bounded region S in the uv-plane onto the bounded region R in the xy-plane, and
is one-to-one from the interior of S to the interior of R. If F(x, y) is continuous on
R, then ∫∫

R

F(x, y) dx dy =
∫∫

S

F(T (u, v)) |JT (u, v)| du dv. (7)

If we write G(u, v) = F(T (u, v)) for the result of substituting x(u, v) and

x

R

y

(x, y)

T = (f, g)

u

S

F°T defined here

F defined here

)(u,

FIGURE 13.9.4 The domains of
F(x , y) and F(T (u, v)) =
F( f (x , y), g(x , y)).

y(u, v) for x and y in the original integrand F(x, y), then the change-of-variables
formula in (7) takes the form

∫∫
R

F(x, y) dx dy =
∫∫

S

G(u, v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv. (8)

Thus we formally transform the integral
∫∫

R F(x, y) dA by replacing the original vari-
ables x and y with x(u, v) and y(u, v), respectively, and writing

dA =
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

for the area element in terms of u and v.
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Note the analogy between Eq. (8) and the single-variable formula in Eq. (1). In
fact, if g′(x) �= 0 on [c, d] and we denote by α the smaller, and by β the larger, of the
two limits c and d in Eq. (1), then Eq. (1) takes the form∫ b

a
f (x) dx =

∫ β

α

f (g(u)) |g′(u)| du. (1a)

Thus the Jacobian in Eq. (8) plays the role of the derivative g′(u) in Eq. (1).

EXAMPLE 2 Suppose that the transformation T from the rθ -plane to the xy-plane is
determined by the polar equations

x = f (r, θ) = r cos θ, y = g(r, θ) = r sin θ.

The Jacobian of T is

∂(x, y)

∂(r, θ)
=

∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r > 0,

so Eq. (8) reduces to the familiar formula∫∫
R

F(x, y) dx dy =
∫∫

S

F(r cos θ, r sin θ) r dr dθ. ◗

Given a particular double integral
∫∫

R f (x, y) dx dy, how do we find a produc-
tive change of variables? One standard approach is to choose a transformation T such
that the boundary of R consists of u-curves and v-curves. In case it is more convenient
to express u and v in terms of x and y, we can first compute ∂(u, v)/∂(x, y) explicitly
and then find the needed Jacobian ∂(x, y)/∂(u, v) from the formula

∂(x, y)

∂(u, v)
· ∂(u, v)

∂(x, y)
= 1. (9)

Equation (9) is a consequence of the chain rule. (See Problem 18.)

EXAMPLE 3 Suppose that R is the plane region of unit density that is bounded by
the hyperbolas

xy = 1, xy = 3 and x2 − y2 = 1, x2 − y2 = 4.

Find the polar moment of inertia

I0 =
∫∫

R

(x2 + y2) dx dy

of this region.

Solution The hyperbolas bounding R are u-curves and v-curves if u = xy and v =
x2 − y2, as in Example 1. We can most easily write the integrand x2 + y2 in terms of
u and v by first noting that

4u2 + v2 = 4x2 y2 + (x2 − y2)2 = (x2 + y2)2,

so x2 + y2 = √
4u2 + v2. Now

∂(u, v)

∂(x, y)
=

∣∣∣∣ y x
2x −2y

∣∣∣∣ = −2(x2 + y2).

Hence Eq. (9) gives

∂(x, y)

∂(u, v)
= − 1

2(x2 + y2)
= − 1

2
√

4u2 + v2
.

We are now ready to apply the change-of-variables theorem, with the regions S and R
as shown in Fig. 13.9.5. With F(x, y) = x2 + y2, Eq. (8) gives

4

1

1 3 u

R

y

x

x y = 1

x y = 3

S

x2 − y2 = 1

x2 − y2 = 4

FIGURE 13.9.5 The
transformation T and the new region
S constructed in Example 3.
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I0 =
∫∫

R

(x2 + y2) dx dy =
∫ 4

1

∫ 3

1

√
4u2 + v2

1

2
√

4u2 + v2
du dv

=
∫ 4

1

∫ 3

1

1

2
du dv = 3. ◗

Example 4 is motivated by an important application. Consider an engine with
an operating cycle that consists of alternate expansion and compression of gas in a
piston. During one cycle the point (p, V ), which gives the pressure and volume of this
gas, traces a closed curve in the pV -plane. The work done by the engine—ignoring
friction and related losses—is then equal (in appropriate units) to the area enclosed by
this curve, called the indicator diagram of the engine. The indicator diagram for an
ideal Carnot engine consists of two isotherms xy = a, xy = b and two adiabatics
xyγ = c, xyγ = d, where γ is the heat capacity ratio of the working gas in the piston.
A typical value is γ = 1.4.

EXAMPLE 4 Find the area of the region R bounded by the curves xy = 1, xy = 3

x

y

x y = 1

x y1.4 = 2

x y = 3

x y1.4 = 1

R

FIGURE 13.9.6 Finding the area of
the region R (Example 4).

and xy1.4 = 1, xy1.4 = 2 (Fig. 13.9.6).

Solution To force the given curves to be u-curves and v-curves, we define our
change-of-variables transformation by u = xy and v = xy1.4. Then

∂(u, v)

∂(x, y)
=

∣∣∣∣∣ y x

y1.4 (1.4)xy0.4

∣∣∣∣∣ = (0.4)xy1.4 = (0.4)v.

So
∂(x, y)

∂(u, v)
= 1

∂(u, v)/∂(x, y)
= 2.5

v
.

Consequently, the change-of-variables theorem gives the formula

A =
∫∫

R

1 dx dy =
∫ 2

1

∫ 3

1

2.5

v
du dv = 5 ln 2. ◗

Change of Variables in Triple Integrals
The change-of-variables formula for triple integrals is similar to Eq. (8). Suppose that
S and R = T (S) are regions that correspond under the continuously differentiable
transformation T : R3

uvw → R3
xyz . Then the Jacobian of T is the determinant

JT (u, v, w) = ∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣
. (10)

Then (under assumptions equivalent to those stated in Theorem 1) the change-of-
variables formula for triple integrals is

∫∫∫
R

F(x, y, z) dx dy dz =
∫∫∫

S

F(T (u, v, w)) |JT (u, v, w)| du dv dw, (11)

in direct analogy to Eq. (7) for double integrals. That is,∫∫∫
R

F(x, y, z) dx dy dz =
∫∫∫

S

G(u, v, w)

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw, (12)

where G(u, v, w) = F(T (u, v, w)) = F(x(u, v, w), y(u, v, w), z(u, v, w)) is the
function obtained from F(x, y, z) upon expressing the original variables x, y, and z in
terms of the new variables u, v, and w.
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EXAMPLE 5 If T is the spherical-coordinate transformation given by

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ,

then the Jacobian of T is

∂(x, y, z)

∂(ρ, φ, θ)
=

∣∣∣∣∣∣
sin φ cos θ ρ cos φ cos θ −ρ sin φ sin θ

sin φ sin θ ρ cos φ sin θ ρ sin φ cos θ

cos φ −ρ sin φ 0

∣∣∣∣∣∣ = ρ2 sin φ.

Thus Eq. (11) reduces to the familiar formula∫∫∫
R

F(x, y, z) dx dy dz =
∫∫∫

S

G(ρ, φ, θ) ρ2 sin φ dρ dφ dθ.

The sign is correct because ρ2 sin φ � 0 for φ in [0, π ]. ◗

EXAMPLE 6 Find the volume of the solid torus R obtained by revolving around the
z-axis the circular disk

(x − b)2 + z2 � a2, 0 < a < b (13)

in the xz-plane.

Solution This is the torus of Example 5 of Section 13.8. Let us write u for the
ordinary polar coordinate angle θ , v for the angle ψ of Fig. 13.8.13, and w for the
distance from the center of the circular disk described by the inequality in (13). We
then define the transformation T by means of the equations

x = (b + w cos v) cos u, y = (b + w cos v) sin u, z = w sin v.

Then the solid torus R is the image under T of the region in uvw-space described by
the inequalities

0 � u � 2π, 0 � v � 2π, 0 � w � a.

By a routine computation, we find that the Jacobian of T is

∂(x, y, z)

∂(u, v, w)
= w(b + w cos v).

Hence Eq. (11) with F(x, y, z) ≡ 1 yields volume

V =
∫∫∫

R

1 dx dy dz =
∫ 2π

0

∫ 2π

0

∫ a

0
(bw + w2 cos v) dw du dv

= 2π

∫ 2π

0

(
1

2
a2b + 1

3
a3 cos v

)
dv = 2π2a2b,

which agrees with the value V = 2πb · πa2 given by Pappus’s first theorem (Sec-
tion 13.5). ◗

13.9 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. A change of variables for the double integral
∫∫

R
F(x, y) dx dy is determined by

a continuously differentiable transformation from the uv-plane to the xy-plane;
this transformation is called one-to-one provided that no two different points in
the uv-plane have the same image point in the xy-plane.

2. If the transformation T : R2
uv → R2

xy is defined by the equations u = xy and
v = x2 − y2, then the u-curves and v-curves of T are parabolas.
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3. The Jacobian JT (u, v) of the continuously differentiable transformation
T : R2

uv → R2
xy equals the determinant of its derivative matrix T ′(u, v) defined

in Eq. (14) of Section 12.7.
4. If the transformation T : R2

uv → R2
xy is continuously differentiable and one-to-

one and the function F(x, y) is continuous, then the change of variables theorem
implies that ∫∫

R

F(x, y) dx dy =
∫∫

S

F(T (u, v))
∂(x, y)

∂(u, v)
du dv

where S is the image under T of the bounded region R in the xy-plane.
5. Under the continuously differentiable transformation T : R2

uv → R2
xy , the xy-

area element d A = dx dy transforms formally to the uv-area element

d A =
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv.

6. The Jacobian of the polar-coordinate transformation T : R2
rθ → R2

xy (defined by
x = r cos θ , y = r sin θ) is

∂(x, y)

∂(r, θ)
= r.

7. If the continuously differentiable transformation T : R2
uv → R2

xy has an inverse
transformation T −1 : R2

xy → R2
uv with Jacobian JT −1(x, y) = ∂(u, v)/∂(x, y),

then
∂(x, y)

∂(u, v)
· ∂(u, v)

∂(x, y)
= 1.

8. The Jacobian JT (u, v, w) of the continuously differentiable transformation
T : R3

uvw → R3
xyz equals the absolute value of the determinant of its deriva-

tive matrix T ′(u, v, w) defined in Problem 58 of Section 12.7.
9. If the transformation T : R3

uvw → R3
xyz is continuously differentiable and one-

to-one and the function F(x, y, z) is continuous, then the 3-dimensional change
of variables theorem implies that∫∫

R

F(x, y, z) dx dy dz =
∫∫

S

F(T (u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw

where S is the image under T of the bounded region R in xyz-space.
10. The Jacobian of the spherical-coordinate transformation defined by

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ

is
∂(x, y, z)

∂(ρ, φ, θ)
= ρ sin φ.

13.9 CONCEPTS: QUESTIONS AND DISCUSSION
1. Explain why the change-of-variables formula involves the absolute value of the

Jacobian, rather than the Jacobian itself.
2. Suppose that R is a given parallelogram in the xy-plane. Explain how to trans-

form an integral
∫∫

R F(x, y) dA into an integral over a rectangle in the uv-plane.
3. Suppose that your pocket computer contains a routine for the numerical eval-

uation of double integrals, but requires that the domain of integration be a
rectangle. Given an integral

∫∫
R F(x, y) dA where R is a region of the form

a � x � b, f (x) � y � g(x), describe a transformation that converts this
integral into one that your pocket computer can evaluate.

4. Describe a strategy for evaluating an integral over the region R in the
xy-plane that is bounded by a given rotated ellipse ax2 + bxy + cy2 = 1.
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13.9 PROBLEMS

In Problems 1 through 6, solve for x and y in terms of u and v.
Then compute the Jacobian ∂(x, y)/∂(u, v).

1. u = x + y, v = x − y

2. u = x − 2y, v = 3x + y

3. u = xy, v = y/x

4. u = 2(x2 + y2), v = 2(x2 − y2)

5. u = x + 2y2, v = x − 2y2

6. u = 2x

x2 + y2
, v = − 2y

x2 + y2

7. Let R be the parallelogram bounded by the lines x + y = 1,
x + y = 2 and 2x − 3y = 2, 2x − 3y = 5. Substitute
u = x + y, v = 2x − 3y to find its area

A =
∫∫

R

1 dx dy.

8. Substitute u = xy, v = y/x to find the area of the first-
quadrant region bounded by the lines y = x , y = 2x and the
hyperbolas xy = 1, xy = 2 (Fig. 13.9.7).

0

1

2

3

0 1 2 3
x

y

y = 2x

y = x

xy = 2

xy = 1

FIGURE 13.9.7 The region
of Problem 8.

9. Substitute u = xy, v = xy3 to find the area of the first-
quadrant region bounded by the curves xy = 2, xy = 4 and
xy3 = 3, xy3 = 6 (Fig. 13.9.8).

2

4

6

2 4 6

y

0

xy = 4

xy3 = 6

xy = 2
xy3 = 3

FIGURE 13.9.8 The region
of Problem 9.

2

0.5 1 1.5 2
x

y

0

y = 2x2 y = x2

x = y2

x = 4y2

1

FIGURE 13.9.9 The region
of Problem 10.

10. Find the area of the first-quadrant region bounded by the
curves y = x2, y = 2x2 and x = y2, x = 4y2 (Fig. 13.9.9).
[Suggestion: Let y = ux2 and x = vy2.]

11. Use the method of Problem 10 to find the area of the first-
quadrant region bounded by the curves y = x3, y = 2x3 and
x = y3, x = 4y3.

12. Let R be the first-quadrant region bounded by the circles
x2 + y2 = 2x , x2 + y2 = 6x and the circles x2 + y2 = 2y,

x2 + y2 = 8y. Use the transformation

u = 2x

x2 + y2
, v = 2y

x2 + y2

to evaluate the integral∫∫
R

1

(x2 + y2)2
dx dy.

13. Use elliptical coordinates x = 3r cos θ , y = 2r sin θ to
find the volume of the region bounded by the xy-plane, the
paraboloid z = x2 + y2, and the elliptic cylinder

x2

9
+ y2

4
= 1.

14. Let R be the solid ellipsoid with outer boundary surface

x2

a2
+ y2

b2
+ z2

c2
= 1.

Use the transformation x = au, y = bv, z = cw to show
that the volume of this ellipsoid is

V =
∫∫∫

R

1 dx dy dz = 4

3
πabc.

15. Find the volume of the region in the first octant that is
bounded by the hyperbolic cylinders xy = 1, xy = 4; xz =
1, xz = 9; and yz = 4, yz = 9. [Suggestion: Let u = xy,
v = xz, w = yz, and note that uvw = x2 y2z2.]

16. Use the transformation

x = r

t
cos θ, y = r

t
sin θ, z = r 2

to find the volume of the region R that lies between the
paraboloids z = x2 + y2, z = 4(x2 + y2) and the planes
z = 1, z = 4.

17. Let R be the rotated elliptical region bounded by the graph
of x2 + xy + y2 = 3. Let x = u + v and y = u − v. Show
that ∫∫

R

exp(−x2 − xy − y2) dx dy

= 2
∫∫

S

exp(−3u2 − v2) du dv.

Then substitute u = r cos θ , v = √
3 (r sin θ) to evaluate

the latter integral.

18. From the chain rule and from the following property of deter-
minants, derive the relation in Eq. (9) between the Jacobians
of a transformation and its inverse.∣∣∣∣a1 b1

c1 d1

∣∣∣∣ ·
∣∣∣∣a2 b2

c2 d2

∣∣∣∣ =
∣∣∣∣a1a2 + b1c2 a1b2 + b1d2

a2c1 + c2d1 b2c1 + d1d2

∣∣∣∣ .
19. Change to spherical coordinates to show that, for k > 0,∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

√
x2 + y2 + z2

× exp(−k(x2 + y2 + z2)) dx dy dz = 2π

k2
.
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20. Let R be the solid ellipsoid with constant density δ and
boundary surface

x2

a2
+ y2

b2
+ z2

c2
= 1.

Use ellipsoidal coordinates x = aρ sin φ cos θ , y =
bρ sin φ sin θ , z = cρ cos φ to show that the mass of R is
M = 4

3 πδabc.

21. Show that the moment of inertia of the ellipsoid of Prob-
lem 20 with respect to the z-axis is Iz = 1

5 M(a2 + b2).

In Problems 22 through 26, use a computer algebra system (if
necessary) to find the indicated centroids and moments of iner-
tia.

22. The centroid of the plane region of Problem 8 (Fig. 13.9.7)

23. The centroid of the plane region of Problem 9 (Fig. 13.9.8)

24. The centroid of the plane region of Problem 10 (Fig. 13.9.9)

25. The moment of inertia around each coordinate axis of the
solid ellipsoid of Problem 20

26. The centroid of the solid of Problem 16 and its moments of
inertia around the coordinate axes

27. Write the triple integral that gives the average distance of
points of the solid ellipsoid of Problem 20 from the origin.
Then approximate that integral in the case a = 4, b = 3, and
c = 2.

Problems 28 and 29 outline the use of double integrals to evalu-
ate the famous infinite series

ζ(2) =
∞∑

n=1

1

n2
= 1 + 1

22
+ 1

32
+ · · ·

mentioned earlier in the Section 10.5 investigation. These
problems are based on a calculation presented by Dirk Huyle-
brouck in his article “Similarities in Irrationality Proofs for
π , ln 2, ζ(2), and ζ(3),” The American Mathematical Monthly
(March 2001), 222–231.

28. Substitute the geometric series for (1 − xy)−1 to show that∫ 1

0

∫ 1

0

1

1 − xy
dx dy = ζ(2),

assuming the validity of termwise integration of the resulting
series in powers of xy.

29. (a) First find a common denominator in the integrand, then
make the substitution u = x2, v = y2 to show that∫ 1

0

∫ 1

0

(
1

1 − xy
− 1

1 + xy

)
dx dy = 1

2
ζ(2).

(b) Add the equation in part (a) and the identity

∫ 1

0

∫ 1

0

(
1

1 − xy
+ 1

1 + xy

)
dx dy

= 2
∫ 1

0

∫ 1

0

1

1 − x2 y2
dx dy

to show that

ζ(2) = 4

3

∫ 1

0

∫ 1

0

1

1 − x2 y2
dx dy.

(c) Finally, use the transformation T : R2
uv → R2

xy defined
by x = (sin u)/(cos v), y = (sin v)/(cos u) to evaluate the
final integral in part (b) and thereby obtain Euler’s result that
ζ(2) = π2/6. As indicated in Fig. 13.9.10, the transforma-
tion T carries the interior of the triangle 0 � u � (π/2) − v,
0 � v � π/2 in the uv-plane one-to-one to the interior of the
unit square in the xy-plane.

uπ
2

π
2

π
4

π
4

FIGURE 13.9.10(a) Horizontal u-lines in
the domain of the transformation T .

x1

1

0.5 0.75

0.5

0.75

0.25

0.25

y

FIGURE 13.9.10(b) Their image u-curves
in the range of the transformation T .
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CHAPTER 13: REVIEW

Understanding: Concepts, Definitions, and Results
Refer to the listed pages to review the concepts, definitions, and results of this chapter that you need to understand.

Section Pages

13.1 The definition of the double integral
∫∫

R

f (x, y) d A over a rectangle R . . . . . . . . . . . . 998

as a limit of 2-dimensional Riemann sums
∑

f (x�
i , y�

i ) �Ai

Double integrals as iterated single integrals with respect to x and y: . . . . . . . . . . . . . . . . 1000∫∫
R

f (x, y) d A =
∫ d

c

(∫ b

a
f (x, y) dx

)
dy =

∫ b

a

(∫ d

c
f (x, y) dy

)
dx

The double integral
∫∫

R

f (x, y) d A as the single integral
∫ b

a
A(x) dx . . . . . . . . . . . . . 1002

where A(x) =
∫ d

c
f (x, y) dy is a cross-sectional area function

13.2 The definition of the double integral
∫∫

R

f (x, y) d A over a general plane . . . . . . . . . . 1006

region R as a limit of Riemann sums over inner partitions of R
Vertically and horizontally simple regions in the xy-plane . . . . . . . . . . . . . . . . . . . . . . . . . 1008

Evaluation of
∫∫

R

f (x, y) d A by iterated single integrals if the region R . . . . . . . . . . . 1008

is either vertically or horizontally simple
Evaluation of a double integral by reversal of the order of integration . . . . . . . . . . . . . . .1009
Basic properties of double integrals, e. g., linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010

13.3 The volume V =
∫∫

R

f (x, y) d A under the surface z = f (x, y) over . . . . . . . . . . . . . . 1013

the xy-region R
Volume over vertically or horizontally simple xy-regions by iterated integration . . . . . . 1014

The volume V =
∫∫

R

(ztop − zbot) d A between two surfaces . . . . . . . . . . . . . . . . . . . . . . . 1016

13.4 Polar coordinates—polar rectangles and polar partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 1020

Transforming an integral
∫∫

R

f (x, y) d A over a polar rectangle R in polar . . . . . . . . . 1021

coordinates by substituting x = r cos θ , y = r sin θ , d A = r dr dθ

Iterated integration over a radially simple region α � θ � β, r1(θ) � r � r2(θ) . . . . . 1022
13.5 The mass of a lamina R as the integral of its density δ(x, y): . . . . . . . . . . . . . . . . . . . . . . 1028

m =
∫∫

R

δ(x, y) d A

The centroid of a lamina with coordinates x = 1

m

∫∫
R

x dm, y = 1

m

∫∫
R

y dm . . . . . 1028

where dm = δ(x, y) d A
The symmetry principle and centroids lying on lines of symmetry . . . . . . . . . . . . . . . . . 1029
The (first) theorem of Pappus and volume of revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

The centroid of a curve with coordinates x = 1

s

∫∫
C

x ds, y = 1

s

∫∫
C

y ds . . . . . . . . . 1032

where s denotes arc length along the curve C
The (second) theorem of Pappus and surface area of revolution . . . . . . . . . . . . . . . . . . . . 1033

Moment of inertia I =
∫∫

R

p2 dm where p denotes distance to the axis L . . . . . . . . . . 1033
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CHAPTER 13: REVIEW (Continued)

Understanding: Concepts, Definitions, and Results (Continued)

Polar moment of inertia I0 =
∫∫

R

(x2 + y2) dm about the origin . . . . . . . . . . . . . . . . . . . 1033

13.6 The definition of the triple integral
∫∫∫

T

f (x, y, z) dV over a block T . . . . . . . . . . . . . 1040

as a limit of 3-dimensional Riemann sums
∑

f (x�
i , y�

i , z�
i ) �V

The volume, mass, and centroid of a solid in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040–1041
Iterated triple integrals over x-simple, y-simple, or z-simple space regions . . . . . . . . . . 1041, 1043

13.7 Transforming an xyz-integral
∫∫∫

T

f (x, y, z) dV into cylindrical coordinates . . . . . . 1049

by substituting x = r cos θ , y = r sin θ , z = z, dV = r dz dr dθ

Transforming an xyz-integral
∫∫∫

T

f (x, y, z) dV into spherical coordinates . . . . . . . . 1052

by substituting x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ,
dV = ρ2 sin φ dρ dφ dθ

13.8 The parametric surface with position vector r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 . . . . 1057

The tangent vectors ru = ∂r
∂u

and rv = ∂r
∂v

to the surface . . . . . . . . . . . . . . . . . . . . . . . . . 1057–1058

The normal vector N(u, v) = ru(u, v) × rv(u, v) to a parametric surface . . . . . . . . . . . 1058

The surface area A =
∫∫

R

|N(u, v)| du dv of a parametric surface defined . . . . . . . . . 1059

on the uv-parameter region

Surface area in rectangular coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059
Surface area in cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060

13.9 A one-to-one transformation x = x(u, v), y = y(u, v) from the uv-plane to . . . . . . . . . 1064
the xy-plane and the inverse transformation u = u(x, y), v = v(x, y)

The Jacobian determinant JT = ∂(x, y)

∂(u, v)
of the transformation T : R2

uv → R2
xy . . . . . .1065

The change-of-variables formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066∫∫
R

F(x, y) dx dy =
∫∫

S

F(T (u, v)) |JT (u, v)| du dv

The analogous change-of-variables for triple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068

Objectives: Methods and Techniques
Work the listed problems in each section to practice the methods and techniques in this chapter that you need to master.

Section Problems
13.1 Using a Riemann sum to approximate a double integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Evaluating iterated integrals over rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 19, 23, 27
13.2 Evaluating iterated integrals over more general plane regions . . . . . . . . . . . . . . . . . . . . . . 3, 7, 13

Evaluating a double integral over a given plane region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 19, 23
Reversing the order of integration in a double integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 27, 31

13.3 Finding the area of a region bounded by two curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 9
Finding a volume under a surface z = f (x, y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 17, 19, 25
Finding the volume of a geometrically described solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 29
Using integral tables or a computer algebra system (if available) . . . . . . . . . . . . . . . . . . . 31, 33, 41

to evaluate a volume integral
13.4 Calculating areas by double integration in polar coordinates . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 7

Calculating volumes by double integration in polar coordinates . . . . . . . . . . . . . . . . . . . . 9, 11
Converting a rectangular-coordinate integral to polar coordinates . . . . . . . . . . . . . . . . . . 15, 17
Using cylindrical-coordinate integrals to find volumes of solids . . . . . . . . . . . . . . . . . . . . 23, 25, 27, 29, 37
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CHAPTER 13: REVIEW (Continued)

Objectives: Methods and Techniques (Continued)

13.5 Finding centroids of plane regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 7
Finding centroids of plane laminas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11, 15, 17, 23, 27
Calculating moments of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 33, 35
Applying the theorems of Pappus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 47

13.6 Calculating the value of a given triple integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 9
Finding by triple integration the volume of a given solid . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 13, 15, 17
Calculating masses, centroids, and moments of inertia of solids . . . . . . . . . . . . . . . . . . . . 23, 29, 31

13.7 Calculating volumes and centroids by integration in cylindrical coordinates . . . . . . . . . 1, 3, 5, 11, 15, 19
Calculating volumes and centroids by integration in spherical coordinates . . . . . . . . . . 21, 23, 25, 29, 31, 33

13.8 Calculating surface areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 9, 11, 15, 20
13.9 Using change of variables to calculate areas and volumes . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9, 11, 13, 20

MISCELLANEOUS PROBLEMS

In Problems 1 through 5, evaluate the given integral by first re-
versing the order of integration.

1.
∫ 1

0

∫ 1

y1/3

1√
1 + x2

dx dy

2.
∫ 1

0

∫ 1

y

sin x

x
dx dy

3.
∫ 1

0

∫ 1

x
exp(−y2) dy dx

4.
∫ 8

0

∫ 4

x2/3
x cos y4 dy dx

5.
∫ 4

0

∫ 2

√
y

y exp(x2)

x3
dx dy

6. The double integral ∫ ∞

0

∫ ∞

x

e−y

y
dy dx

is an improper integral over the unbounded region in the first
quadrant between the lines y = x and x = 0. Assuming that
it is valid (it is) to reverse the order of integration, evaluate
this integral by integrating first with respect to x .

7. Find the volume of the solid T that lies below the paraboloid
z = x2 + y2 and above the triangle R in the xy-plane that has
vertices at (0, 0, 0), (1, 1, 0), and (2, 0, 0).

8. Find by integration in cylindrical coordinates the volume
bounded by the paraboloids z = 2x2 + 2y2 and z = 48 −
x2 − y2.

9. Use integration in spherical coordinates to find the volume
and centroid of the solid region that is inside the sphere
ρ = 3, below the cone φ = π/3, and above the xy-plane
φ = π/2.

10. Find the volume of the solid bounded by the elliptic
paraboloids z = x2 + 3y2 and z = 8 − x2 − 5y2.

11. Find the volume bounded by the paraboloid y = x2 + 3z2

and the parabolic cylinder y = 4 − z2.

12. Find the volume of the region bounded by the parabolic
cylinders z = x2, z = 2−x2 and the planes y = 0, y+z = 4.

13. Find the volume of the region bounded by the elliptical cylin-
der y2 + 4z2 = 4 and the planes x = 0, x = y + 2.

14. Show that the volume of the solid bounded by the elliptical
cylinder

x2

a2
+ y2

b2
= 1

and the planes z = 0, z = h + x (where h > a > 0) is
V = πabh.

15. Let R be the first-quadrant region bounded by the curve
x4 + x2 y2 = y2 and the line y = x . Use polar coordinates to
evaluate ∫∫

R

1

(1 + x2 + y2)2
dA.

In Problems 16 through 20, find the mass and centroid of a plane
lamina with the given shape and density δ.

16. The region bounded by y = x2 and x = y2; δ(x, y) =
x2 + y2

17. The region bounded by x = 2y2 and y2 = x − 4; δ(x, y) =
y2

18. The region between y = ln x and the x-axis over the interval
1 � x � 2; δ(x, y) = 1/x

19. The circle bounded by r = 2 cos θ ; δ(r, θ) = k (a constant)

20. The region of Problem 19; δ(r, θ) = r

21. Use the first theorem of Pappus to find the y-coordinate of
the centroid of the upper half of the ellipse

x2

a2
+ y2

b2
= 1.

Employ the facts that the area of this semiellipse is A =
πab/2 and the volume of the ellipsoid it generates when ro-
tated around the x-axis is V = 4

3 πab2.

22. (a) Use the first theorem of Pappus to find the centroid of
the first-quadrant portion of the annular ring with boundary
circles x2 + y2 = a2 and x2 + y2 = b2 (where 0 < a < b).
(b) Show that the limiting position of this centroid as b → a
is the centroid of a quarter-circular arc, as we found in Prob-
lem 44 of Section 13.5.

23. Find the centroid of the region in the xy-plane bounded by
the x-axis and the parabola y = 4 − x2.
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24. Find the volume of the solid that lies below the parabolic
cylinder z = x2 and above the triangle in the xy-plane
bounded by the coordinate axes and the line x + y = 1.

25. Use cylindrical coordinates to find the volume of the ice-
cream cone bounded above by the sphere x2 + y2 + z2 = 5
and below by the cone z = 2

√
x2 + y2 .

26. Find the volume and centroid of the ice-cream cone bounded
above by the sphere ρ = a and below by the cone φ = π/3.

27. A homogeneous solid circular cone has mass M and base
radius a. Find its moment of inertia around its axis of sym-
metry.

28. Find the mass of the first octant of the ball ρ � a if its den-
sity at (x, y, z) is δ(x, y, z) = xyz.

29. Find the moment of inertia around the x-axis of the homoge-
neous solid ellipsoid with unit density and boundary surface

x2

a2
+ y2

b2
+ z2

c2
= 1.

30. Find the volume of the region in the first octant that is
bounded by the sphere ρ = a, the cylinder r = a, the plane
z = a, the xz-plane, and the yz-plane.

31. Find the moment of inertia around the z-axis of the homoge-
neous region of unit density that lies inside both the sphere
ρ = 2 and the cylinder r = 2 cos θ .

In Problems 32 through 34, a volume is generated by revolving
a plane region R around an axis. To find the volume, set up a
double integral over R by revolving an area element dA around
the indicated axis to generate a volume element dV .

32. Find the volume of the solid obtained by revolving around
the y-axis the region inside the circle r = 2a cos θ .

33. Find the volume of the solid obtained by revolving around
the x-axis the region enclosed by the cardioid r = 1 + cos θ .

34. Find the volume of the solid torus obtained by revolving the
disk 0 � r � a around the line x = −b, |b| � a.

35. Assume that the torus of Problem 34 has uniform den-
sity δ. Find its moment of inertia around its natural axis of
symmetry.

Problems 36 through 42 deal with average distance. The average
distance d of the point (x0, y0) from the points of the plane region
R with area A is defined to be

d = 1

A

∫∫
R

√
(x − x0)2 + (y − y0)2 dA.

The average distance of a point (x0, y0, z0) from the points of a
space region is defined analogously.

36. Show that the average distance of the points of a disk of ra-
dius a from its center is 2a/3.

37. Show that the average distance of the points of a disk of ra-
dius a from a fixed point on its boundary is 32a/9π .

38. A circle of radius 1 is interior to and tangent to a circle of
radius 2. Find the average distance of the point of tangency
from the points that lie between the two circles.

39. Show that the average distance of the points of a spherical
ball of radius a from its center is 3a/4.

40. Show that the average distance of the points of a spherical
ball of radius a from a fixed point on its surface is 6a/5.

41. A sphere of radius 1 is interior to and tangent to a sphere of
radius 2. Find the average distance of the point of tangency
from the set of all points between the two spheres.

42. A right circular cone has radius R and height H . Find the
average distance of points of the cone from its vertex.

43. Find the surface area of the part of the paraboloid z = 10−r 2

that lies between the two planes z = 1 and z = 6.

44. Find the surface area of the part of the surface z = y2 − x2

that is inside the cylinder x2 + y2 = 4.

45. Let A be the surface area of the zone on the sphere ρ = a
between the planes z = z1 and z = z2 (where −a � z1 <

z2 � a). Use the formula of Problem 18 in Section 13.8 to
show that A = 2πah, where h = z2 − z1.

46. Find the surface area of the part of the sphere ρ = 2 that is
inside the cylinder x2 + y2 = 2x .

47. A square hole with side length 2 is cut through a cone of
height 2 and base radius 2; the centerline of the hole is the
axis of symmetry of the cone. Find the area of the surface
removed from the cone.

48. Numerically approximate the surface area of the part of the
parabolic cylinder 2z = x2 that lies inside the cylinder
x2 + y2 = 1.

49. A “fence” of variable height h(t) stands above the plane
curve (x(t), y(t)). Thus the fence has the parametrization
x = x(t), y = y(t), z = z for a � t � b, 0 � z � h(t).
Apply Eq. (8) of Section 13.8 to show that the area of the
fence is

A =
∫ b

a

∫ h(t)

0

[(
dx

dt

)2

+
(

dy

dt

)2
]1/2

dz dt.

50. Apply the formula of Problem 49 to compute the area of the
part of the cylinder r = a sin θ that lies inside the sphere
r 2 + z2 = a2.

51. Find the polar moment of inertia of the first-quadrant re-
gion of constant density δ that is bounded by the hyperbolas
xy = 1, xy = 3 and x2 − y2 = 1, x2 − y2 = 4.

52. Substitute u = x − y and v = x + y to evaluate

∫∫
R

exp

(
x − y

x + y

)
dx dy,

where R is bounded by the coordinate axes and the line
x + y = 1.

53. Use ellipsoidal coordinates x = aρ sin φ cos θ , y =
bρ sin φ sin θ , z = cρ cos φ to find the mass of the solid el-
lipsoid

x2

a2
+ y2

b2
+ z2

c2
� 1

if its density at the point (x, y, z) is given by

δ(x, y, z) = 1 − x2

a2
− y2

b2
− z2

c2
.
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54. Let R be the first-quadrant region bounded by the lemnis-
cates r 2 = 3 cos 2θ , r 2 = 4 cos 2θ and r 2 = 3 sin 2θ ,
r 2 = 4 sin 2θ (Fig. 13.MP.1). Show that its area is

A = 10 − 7
√

2

4
.

[Suggestion: Define the transformation T from the uv-plane
to the rθ -plane by r 2 = u1/2 cos 2θ , r 2 = v1/2 sin 2θ . Show
first that

r 4 = uv

u + v
, θ = 1

2
arctan

u1/2

v1/2
.

Then show that

∂(r, θ)

∂(u, v)
= − 1

16r(u + v)3/2
.]

x

y
θr2 = 4 sin 2

θr2 = 3 sin 2

θr2 = 3 cos 2

θr2 = 4 cos 2

FIGURE 13.MP.1 The region R of
Problem 54.

55. A 2-by-2 square hole is cut symmetrically through a sphere
of radius

√
3 . (See Fig. 13.MP.2.) (a) Show that the total

surface area of the two pieces cut from the sphere is

A =
∫ 1

0
8
√

3 arcsin

(
1√

3 − x2

)
dx .

Then use Simpson’s rule to approximate this integral.
(b) (Difficult!) Show that the exact value of the integral in
part (a) is A = 4π(

√
3 − 1). [Suggestion: First integrate by

parts, then substitute x = √
2 sin θ .]

FIGURE 13.MP.2 Cutting a square
hole through the sphere of Problem 55.

56. Show that the volume enclosed by the surface

x2/3 + y2/3 + z2/3 = a2/3

is V = 4
35 πa3. [Suggestion: Substitute y = b sin3 θ .]

57. Show that the volume enclosed by the surface

|x |1/3 + |y|1/3 + |z|1/3 = a1/3

is V = 1
210 a3. [Suggestion: Substitute y = b sin6 θ .]

58. Find the average of the square of the distance of points of
the solid ellipsoid (x/a)2 + (y/b)2 + (z/c)2 � 1 from the
origin.

59. A cube C of edge length 1 is rotated around a line pass-
ing through two opposite vertices, thereby sweeping out a
solid S of revolution. Find the volume of S. (Answer:
π/

√
3 ≈ 1.8138.)

PHOTO CREDITS

p. 997 (top left) The Granger Collection, New York; (bottom right) Jeff Greenberg/PhotoEdit 
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Appendices
APPENDIX A: REAL NUMBERS AND INEQUALITIES

The real numbers are already familiar to you. They are just those numbers ordinarily
used in most measurements. The mass, velocity, temperature, and charge of a body
are measured with real numbers. Real numbers can be represented by terminating or
nonterminating decimal expansions; in fact, every real number has a nonterminating
decimal expansion because a terminating expansion can be padded with infinitely many
zeros:

3

8
= 0.375 = 0.375000000 . . . .

Any repeating decimal, such as

7

22
= 0.31818181818 . . . ,

represents a rational number, one that is the ratio of two integers. Conversely, every
rational number is represented by a repeating decimal like the two displayed above.
But the decimal expansion of an irrational number (a real number that is not rational),
such as

√
2 = 1.414213562 . . . or π = 3.14159265358979 . . . ,

is both nonterminating and nonrepeating.
The geometric interpretation of real numbers as points on the real line (or real

number line) R should also be familiar to you. Each real number is represented by
precisely one point of R, and each point of R represents precisely one real number. By
convention, the positive numbers lie to the right of zero and the negative numbers to
the left, as in Fig. A.1.

… …
1 2 30−1−2

π−3
2 2

FIGURE A.1 The real line R.

The following properties of inequalities of real numbers are fundamental and
often used:

If a < b and b < c, then a < c.

If a < b, then a + c < b + c.

If a < b and c > 0, then ac < bc.

If a < b and c < 0, then ac > bc.

(1)

The last two statements mean that an inequality is preserved when its members are
multiplied by a positive number but is reversed when they are multiplied by a negative
number.

From Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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A-2 APPENDICES

ABSOLUTE VALUE

The (nonnegative) distance along the real line between zero and the real number a is
the absolute value of a, written |a|. Equivalently,

|a| =
{

a if a � 0;
−a if a < 0.

(2)

The notation a � 0 means that a is either greater than zero or equal to zero. Equa-
tion (2) implies that |a| � 0 for every real number a and that |a| = 0 if and only if
a = 0.

EXAMPLE 1 As Fig. A.2 shows,

−3 0 4

|−3| = 3 |4| = 4

FIGURE A.2 The absolute value of
a real number is simply its distance
from zero (Example 1).

|4| = 4 and |−3| = 3.

Moreover, |0| = 0 and |√2−2| = 2−√
2, the latter being true because 2 >

√
2. Thus√

2 − 2 < 0, and hence ∣∣√2 − 2
∣∣ = −(√

2 − 2
) = 2 − √

2. ◗

The following properties of absolute values are frequently used:

|a| = |−a| =
√

a2 � 0,

|ab| = |a| |b|,
−|a| � a � |a|,

and |a| < b if and only if − b < a < b.

(3)

The distance between the real numbers a and b is defined to be |a−b| (or |b−a|;
there’s no difference). This distance is simply the length of the line segment of the real

a b

|b − a |  or  |a − b |

FIGURE A.3 The distance between
a and b.

line R with endpoints a and b (Fig. A.3).
The properties of inequalities and of absolute values in Eqs. (1) through (3) imply

the following important theorem.

THEOREM 1 Triangle Inequality
For all real numbers a and b,

|a + b| � |a| + |b|. (4)

Proof There are several cases to consider, depending upon whether the two numbers
a and b are positive or negative and which has the larger absolute value. If both are
positive, then so is a + b; in this case,

|a + b| = a + b = |a| + |b|. (5)

If a > 0 but b < 0 and |b| < |a|, then

0 < a + b < a,

so

|a + b| = a + b < a = |a| < |a| + |b|, (6)

as illustrated in Fig. A.4. The other cases are similar. In particular, we see that the

a + b0 a = |a | |a | + |b |

|b | |b |

FIGURE A.4 The triangle
inequality with a > 0, b < 0, and
|b| < |a|.

triangle inequality is actually an equality [as in Eq. (5)] unless a and b have different
signs, in which case it is a strict inequality [as in Eq. (6)]. ◆
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INTERVALS
Suppose that S is a set (collection) of real numbers. It is common to describe S by the
notation

S = {x : condition},
where the “condition” is true for those numbers x in S and false for those numbers x
not in S. The most important sets of real numbers in calculus are intervals. If a < b,
then the open interval (a, b) is defined to be the set

(a, b) = {x : a < x < b}
of real numbers, and the closed interval [a, b] is

[a, b] = {x : a � x � b}.
Thus a closed interval contains its endpoints, whereas an open interval does not. We

(−∞, 2)

(−1, 1]

[0, 1.5)

[−1, 2]

(1, 3)

1
2

[ , ∞)

FIGURE A.5 Some examples of
intervals of real numbers.

also use the half-open intervals

[a, b) = {x : a � x < b} and (a, b] = {x : a < x � b}.
Thus the open interval (1, 3) is the set of those real numbers x such that 1 < x < 3, the
closed interval [−1, 2] is the set of those real numbers x such that −1 � x � 2, and
the half-open interval (−1, 2] is the set of those real numbers x such that −1 < x � 2.
In Fig. A.5 we show examples of such intervals as well as some unbounded intervals,
which have forms such as

[a, +∞) = {x : x � a},
(−∞, a] = {x : x � a},
(a, +∞) = {x : x > a},

and (−∞, a) = {x : x < a}.
The symbols +∞ and −∞, denoting “plus infinity” and “minus infinity,” are merely
notational conveniences and do not represent real numbers—the real line R does not
have “endpoints at infinity.” The use of these symbols is motivated by the brief and
natural descriptions [π, +∞) and (−∞, 2) for the sets

{x : x � π} and {x : x < 2}
of all real numbers x such that x � π and x < 2, respectively.

INEQUALITIES
The set of solutions of an inequality involving a variable x is often an interval or a
union of intervals, as in the next examples. The solution set of such an inequality is
simply the set of all those real numbers x that satisfy the inequality.

EXAMPLE 2 Solve the inequality 2x − 1 < 4x + 5.

Solution Using the properties of inequalities listed in (1), we proceed much as if we
were solving an equation for x : We isolate x on one side of the inequality. Here we
begin with

2x − 1 < 4x + 5

and it follows that

−1 < 2x + 5;
−6 < 2x;
−3 < x .

Hence the solution set is the unbounded interval (−3, +∞). ◗

EXAMPLE 3 Solve the inequality −13 < 1 − 4x � 7.
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Solution We simplify the given inequality as follows:

−13 < 1 − 4x � 7;
−7 � 4x − 1 < 13;
−6 � 4x < 14;
− 3

2 � x < 7
2 .

Thus the solution set of the given inequality is the half-open interval [− 3
2 , 7

2 ). ◗

EXAMPLE 4 Solve the inequality |3 − 5x | < 2.

Solution From the fourth property of absolute values in (3), we see that the given
inequality is equivalent to

−2 < 3 − 5x < 2.

We now simplify as in the previous two examples:

−5 < −5x < −1;
1
5 < x < 1.

Thus the solution set is the open interval
(

1
5 , 1

)
. ◗

EXAMPLE 5 Solve the inequality

5

|2x − 3| < 1.

Solution It is usually best to begin by eliminating a denominator containing the un-
known. Here we multiply each term by the positive quantity |2x − 3| to obtain the
equivalent inequality

|2x − 3| > 5.

It follows from the last property in (3) that this is so if and only if either

2x − 3 < −5 or 2x − 3 > 5.

The solutions of these two inequalities are the open intervals (−∞, −1) and (4, +∞),
respectively. Hence the solution set of the original inequality consists of all those
numbers x that lie in either of these two open intervals. ◗

The union of the two sets S and T is the set S ∪ T given by

S ∪ T = {x : either x ∈ S or x ∈ T or both}.
Thus the solution set in Example 5 can be written in the form (−∞, −1) ∪ (4, +∞).

EXAMPLE 6 In accord with Boyle’s law, the pressure p (in pounds per square inch)
and volume V (in cubic inches) of a certain gas satisfy the condition pV = 100.
Suppose that 50 � V � 150. What is the range of possible values of the pressure p?

Solution If we substitute V = 100/p in the given inequality 50 � V � 150, we get

50 �
100

p
� 150.

It follows that both

50 �
100

p
and

100

p
� 150;

that is, that both
p � 2 and p � 2

3 .

Thus the pressure p must lie in the closed interval [ 2
3 , 2]. ◗
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The intersection of the two sets S and T is the set S ∩ T defined as follows:

S ∩ T = {x : both x ∈ S and x ∈ T }.
Thus the solution set in Example 6 is the set (−∞, 2] ∩ [ 2

3 , +∞) = [ 2
3 , 2].

APPENDIX A PROBLEMS

Simplify the expressions in Problems 1 through 12 by writing
each without using absolute value symbols.

1. |3 − 17| 2. |−3| + |17|
3.

∣∣−0.25 − 1
4

∣∣ 4. |5| − |−7|

5. |(−5)(4 − 9)| 6.
|−6|

|4| + |−2|
7. |(−3)3| 8.

∣∣3 − √
3
∣∣

9.
∣∣π − 22

7

∣∣ 10. −|7 − 4|
11. |x − 3|, given x < 3

12. |x − 5| + |x − 10|, given |x − 7| < 1

Solve the inequalities in Problems 13 through 31. Write each
solution set in interval notation.

13. 2x − 7 < −3 14. 1 − 4x > 2

15. 3x − 4 � 17 16. 2x + 5 � 9

17. 2 − 3x < 7 18. 6 − 5x > −9

19. −3 < 2x + 5 < 7 20. 4 � 3x − 5 � 10

21. −6 � 5 − 2x < 2 22. 3 < 1 − 5x < 7

23. |3 − 2x | < 5 24. |5x + 3| � 4

25. |1 − 3x | > 2 26. 1 < |7x − 1| < 3

27. 2 � |4 − 5x | � 4 28.
1

2x + 1
> 3

29.
2

7 − 3x
� −5 30.

2

|3x − 4| < 1

31.
1

|1 − 5x | � −1

3

32. Solve the inequality x2 − x −6 > 0. [Suggestion: Conclude
from the factorization x2 − x − 6 = (x − 3)(x + 2) that the
quantities x − 3 and x + 2 are either both positive or both
negative. Consider the two cases separately to deduce that
the solution set is (−∞, −2) ∪ (3, ∞).]

Use the method of Problem 32 to solve the inequalities in Prob-
lems 33 through 36.

33. x2 − 2x − 8 > 0 34. x2 − 3x + 2 < 0

35. 4x2 − 8x + 3 � 0 36. 2x � 15 − x2

37. In accord with Boyle’s law, the pressure p (in pounds per
square inch) and volume V (in cubic inches) of a certain gas
satisfy the condition pV = 800. What is the range of possi-
ble values of the pressure, given 100 � V � 200?

38. The relationship between the Fahrenheit temperature F and
the Celsius temperature C is given by F = 32 + 9

5 C . If
the temperature on a certain day ranged from a low of 70◦F
to a high of 90◦F, what was the range of the temperature in
degrees Celsius?

39. An electrical circuit contains a battery supplying E volts in
series with a resistance of R ohms, as shown in Fig. A.6.
Then the current of I amperes that flows in the circuit satis-
fies Ohm’s law, E = IR. If E = 100 and 25 < R < 50,
what is the range of possible values of I ?

Battery:
E volts

Resistance:
R ohms

Current:  I amperes

FIGURE A.6 A simple electric circuit.

40. The period T (in seconds) of a simple pendulum of length L
(in feet) is given by T = 2π

√
L/32. If 3 < L < 4, when is

the range of possible values of T ?

41. Use the properties of inequalities in (1) to show that the sum
of two positive numbers is positive.

42. Use the properties of inequalities in (1) to show that the prod-
uct of two positive numbers is positive.

43. Prove that the product of two negative numbers is positive
and that the product of a positive number and a negative
number is negative.

44. Suppose that a < b and that a and b are either both positive
or both negative. Prove that 1/a > 1/b.

45. Apply the triangle inequality twice to show that

|a + b + c| � |a| + |b| + |c|
for arbitrary real numbers a, b, and c.

46. Write a = (a −b)+b to deduce from the triangle inequality
that

|a| − |b| � |a − b|
for arbitrary real numbers a and b.

47. Deduce from the definition in (2) that |a| < b if and only if
−b < a < b.
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APPENDIX B: THE COORDINATE PLANE AND STRAIGHT LINES

Imagine the flat, featureless, two-dimensional plane of Euclid’s geometry. Install a

4

x

y

321−1−2−3

3

2

1

−1

−2

−3

FIGURE B.1 The coordinate plane.

copy of the real number line R, with the line horizontal and the positive numbers to
the right. Add another copy of R perpendicular to the first, with the two lines crossing
where the number zero is located on each. The vertical line should have the positive
numbers above the horizontal line, as in Fig. B.1; the negative numbers thus will be
below it. The horizontal line is called the x-axis and the vertical line is called the
y-axis.

With these added features, we call the plane the coordinate plane, because it’s
now possible to locate any point there by a pair of numbers, called the coordinates of
the point. Here’s how: If P is a point in the plane, draw perpendiculars from P to
the coordinate axes, as shown in Fig. B.2. One perpendicular meets the x-axis at the
x-coordinate (or abscissa) of P , labeled x1 in Fig. B.2. The other meets the y-axis in
the y-coordinate (or ordinate) y1 of P . The pair of numbers (x1, y1), in that order, is
called the coordinate pair for P , or simply the coordinates of P . To be concise, we
speak of “the point P(x1, y1).”

This coordinate system is called the rectangular coordinate system, or the
Cartesian coordinate system (because its use was popularized, beginning in the 1630s,
by the French mathematician and philosopher René Descartes [ 1596–1650 ]). The

x

y

y1 P (x1, y1)

x1

FIGURE B.2 The point P has
rectangular coordinates (x1, y1).

plane, thus coordinatized, is denoted by R2 because two copies of R are used; it is
known also as the Cartesian plane.

Rectangular coordinates are easy to use, because P(x1, y1) and Q(x2, y2) denote
the same point if and only if x1 = x2 and y1 = y2. Thus when you know that P and
Q are two different points, you may conclude that P and Q have different abscissas,
different ordinates, or both.

The point of symmetry (0, 0) where the coordinate axes meet is called the origin.
All points on the x-axis have coordinates of the form (x, 0). Although the real number
x is not the same as the geometric point (x, 0), there are situations in which it is useful
to think of the two as the same. Similar remarks apply to points (0, y) on the y-axis.

The concept of distance in the coordinate plane is based on the Pythagorean
theorem: If ABC is a right triangle with its right angle at the point C , with hypotenuse
of length c and the other two sides of lengths a and b (as in Fig. B.3), then

C (right
 angle)

B

a
c

b
A

FIGURE B.3 The Pythagorean
theorem.

c2 = a2 + b2. (1)

The converse of the Pythagorean theorem is also true: If the three sides of a given
triangle satisfy the Pythagorean relation in Eq. (1), then the angle opposite side c must
be a right angle.

The distance d(P1, P2) between the points P1 and P2 is, by definition, the length
of the straight-line segment joining P1 and P2. The following formula gives d(P1, P2)

in terms of the coordinates of the two points.

Distance Formula
The distance between the two points P1(x1, y1) and P2(x2, y2) is

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 . (2)

Proof If x1 �= x2 and y1 �= y2, then Eq. (2) follows from the Pythagorean theo-
rem. Use the right triangle with vertices P1, P2, and P3(x2, y1) shown in Fig. B.4.

If x1 = x2, then P1 and P2 lie in a vertical line. In this case

d(P1, P2) = |y1 − y2| =
√

(y1 − y2)2 .

This agrees with Eq. (2) because x1 = x2. The remaining case (y1 = y2) is similar. ◆

EXAMPLE 1 Show that the triangle P Q R with vertices P(1, 0), Q(5, 4), and
R(−2, 3) is a right triangle (Fig. B.5).
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|x2 − x1|

P1(x1, y1)

x

y
P2(x2, y2)

|y2 − y1|

P3(x2, y1)

FIGURE B.4 Use this triangle to
deduce the distance formula.

a

P (1, 0)

b

c
R (−2, 3)

x

y
Q (5, 4)

FIGURE B.5 Is this a right triangle
(Example 1)?

Solution The distance formula gives

a2 = [d(P, Q)]2 = (5 − 1)2 + (4 − 0)2 = 32,

b2 = [d(P, R)]2 = (−2 − 1)2 + (3 − 0)2 = 18, and

c2 = [d(Q, R)]2 = (−2 − 5)2 + (3 − 4)2 = 50.

Because a2 +b2 = c2, the converse of the Pythagorean theorem implies that R P Q is a
right angle. (The right angle is at P because P is the vertex opposite the longest side,
Q R.) ◗

Another application of the distance formula is an expression for the coordinates

P1

P2

x

y

M

FIGURE B.6 The midpoint M .

of the midpoint M of the line segment P1 P2 with endpoints P1 and P2 (Fig. B.6).
Recall from geometry that M is the one (and only) point of the line segment P1 P2 that
is equally distant from P1 and P2. The following formula tells us that the coordinates
of M are the averages of the corresponding coordinates of P1 and P2.

Midpoint Formula
The midpoint of the line segment with endpoints P1(x1, y1) and P2(x2, y2) is the
point M(x, y ) with coordinates

x = 1
2 (x1 + x2) and y = 1

2 (y1 + y2). (3)

Proof If you substitute the coordinates of P1, M , and P2 in the distance formula, you
find that d(P1, M ) = d(P2, M ). All that remains is to show that M lies on the line
segment P1 P2. We ask you to do this, and thus complete the proof, in Problem 31. ◆

STRAIGHT LINES AND SLOPE
We want to define the slope of a straight line, a measure of its rate of rise or fall fromL

x

y

P1(x1, y1)

P2(x2, y2)

P3(x2, y1)

Δ
Rise

y = y2 − y1

Run
x = x2 − x1Δ

FIGURE B.7 The slope of a straight
line.

left to right. Given a nonvertical straight line L in the coordinate plane, choose two
points P1(x1, y1) and P2(x2, y2) on L . Consider the increments �x and �y (read
“delta x” and “delta y”) in the x- and y-coordinates from P1 to P2. These are defined
as follows:

�x = x2 − x1 and �y = y2 − y1. (4)

Engineers (and others) call �x the run from P1 to P2 and �y the rise from P1 to P2,
as in Fig. B.7. The slope m of the nonvertical line L is then defined to be the ratio of
the rise to the run:

m = �y

�x
= y2 − y1

x2 − x1
. (5)

This is also the definition of a line’s slope in civil engineering (and elsewhere). In a
surveying text you are likely to find the memory aid

“slope = rise

run
.”
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x

y

L

P1(x1, y1)

P2(x2, y2)

P3(x3, y3)

P4(x4, y4)

y2 − y1

x2 − x1

y4 − y3

x4 − x3

FIGURE B.8 The result of the slope
computation does not depend on which two
points of L are used.

Recall that corresponding sides of similar (that is, equal-angled) triangles have
equal ratios. Hence, if P3(x3, y3) and P4(x4, y4) are two other points of L , then the
similarity of the triangles in Fig. B.8 implies that

y4 − y3

x4 − x3
= y2 − y1

x2 − x1
.

Therefore, the slope m as defined in Eq. (5) does not depend on the particular choice
of P1 and P2.

If the line L is horizontal, then �y = 0. In this case Eq. (5) gives m = 0. If L
is vertical, then �x = 0, so the slope of L is not defined. Thus we have the following
statements:

• Horizontal lines have slope zero.
• Vertical lines have no defined slope.

EXAMPLE 2

(a) The slope of the line through the points (3, −2) and (−1, 4) is

m = 4 − (−2)

(−1) − 3
= 6

−4
= −3

2
.

(b) The points (3, −2) and (7, −2) have the same y-coordinate. Therefore, the line
through them is horizontal and thus has slope zero.

(c) The points (3, −2) and (3, 4) have the same x-coordinate. Thus the line through
them is vertical, and so its slope is undefined. ◗

EQUATIONS OF STRAIGHT LINES
Our immediate goal is to be able to write equations of given straight lines. That is,
if L is a straight line in the coordinate plane, we wish to construct a mathematical
sentence—an equation—about points (x, y) in the plane. We want this equation to be
true when (x, y) is a point on L and false when (x, y) is not a point on L . Clearly this
equation will involve x and y and some numerical constants determined by L itself.
For us to write this equation, the concept of the slope of L is essential.

Suppose, then, that P(x0, y0) is a fixed point on the nonvertical line L of slope m.
Let P(x, y) be any other point on L . We apply Eq. (5) with P and P0 in place of P1

and P2 to find that

m = y − y0

x − x0
;

that is,

y − y0 = m(x − x0). (6)
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Because the point (x0, y0) satisfies Eq. (6), as does every other point of L , and because
no other points of the plane can do so, Eq. (6) is indeed an equation for the given line
L . In summary, we have the following result.

The Point-Slope Equation
The point P(x, y) lies on the line with slope m through the fixed point (x0, y0) if
and only if its coordinates satisfy the equation

y − y0 = m(x − x0). (6)

Equation (6) is called the point-slope equation of L , partly because the coordi-
nates of the point (x0, y0) and the slope m of L may be read directly from this equation.

EXAMPLE 3 Write an equation for the straight line L through the points P1(1, −1)

and P2(3, 5).

Solution The slope m of L may be obtained from the two given points:

m = 5 − (−1)

3 − 1
= 3.

Either P1 or P2 will do for the fixed point. We use P1(1, −1). Then, with the aid of
Eq. (6), the point-slope equation of L is

y + 1 = 3(x − 1).

If simplification is appropriate, we may write 3x − y = 4 or y = 3x − 4. ◗

Equation (6) can be written in the form

y = mx + b (7)

where b = y0 − mx0 is a constant. Because y = b when x = 0, the y-intercept of L
is the point (0, b) shown in Fig. B.9. Equations (6) and (7) are different forms of the
equation of a straight line.

(0, b): y-intercept b

Line: Slope my = mx + b

x

y

FIGURE B.9 The straight line with
equation y = mx + b has a slope m
and y-intercept b.

The Slope-Intercept Equation
The point P(x, y) lies on the line with slope m and y-intercept b if and only if the
coordinates of P satisfy the equation

y = m x + b. (7)

Perhaps you noticed that both Eq. (6) and Eq. (7) can be written in the form of
the general linear equation

A x + By = C, (8)

where A , B, and C are constants. Conversely, if B �= 0, then Eq. (8) can be written in
the form of Eq. (7) if we divide each term by B. Therefore Eq. (8) represents a straight
line with its slope being the coefficient of x after solution of the equation for y. If
B = 0, then Eq. (8) reduces to the equation of a vertical line: x = K (where K is a
constant). If A = 0 and B �= 0, then Eq. (8) reduces to the equation of a horizontal
line: y = H (where H is a constant). Thus we see that Eq. (8) is always an equation
of a straight line unless A = B = 0. Conversely, every straight line in the coordinate
plane—even a vertical one—has an equation of the form in (8).

PARALLEL LINES AND PERPENDICULAR LINES
If the line L is not horizontal, then it must cross the x-axis. Then its angle of inclina-
tion is the angle φ measured counterclockwise from the positive x-axis to L . It follows
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that 0◦ < φ < 180◦ if φ is measured in degrees. Figure B.10 makes it clear that this
angle φ and the slope m of a nonvertical line are related by the equation

m = �y

�x
= tan φ. (9)

This is true because if φ is an acute angle in a right triangle, then tan φ is the ratio of
the leg opposite φ to the leg adjacent to φ.

Your intuition correctly assures you that two lines are parallel if and only if they
have the same angle of inclination. So it follows from Eq. (9) that two parallel nonver-
tical lines have the same slope and that two lines with the same slope must be parallel.
This completes the proof of Theorem 1.

THEOREM 1 Slopes of Parallel Lines
Two nonvertical lines are parallel if and only if they have the same slope.

Theorem 1 can also be proved without the use of the tangent function. The two

x

y L

(x1, y1)

(x2, y2)

Δx

Δy

Slope m =
y2 − y1
x2 − x1

φ

φ

FIGURE B.10 How is the angle
of inclination φ related to the
slope m ?

lines shown in Fig. B.11 are parallel if and only if the two right triangles are similar,
which is equivalent to the slopes of the lines being equal.

x

y

FIGURE B.11 Two parallel lines.

EXAMPLE 4 Write an equation of the line L that passes through the point P(3, −2)

and is parallel to the line L ′ with the equation x + 2y = 6.

Solution When we solve the equation of L ′ for y, we get y = − 1
2 x + 3. So L ′ has

slope m = − 1
2 . Because L has the same slope, its point-slope equation is then

y + 2 = − 1
2 (x − 3);

if you prefer, x + 2y = −1. ◗

THEOREM 2 Slopes of Perpendicular Lines
Two lines L 1 and L 2 with slopes m1 and m2, respectively, are perpendicular if and
only if

m1m2 = −1. (10)

That is, the slope of each is the negative reciprocal of the slope of the other.

Proof If the two lines L 1 and L 2 are perpendicular and the slope of each exists,
then neither is horizontal or vertical. Thus the situation resembles the one shown in
Fig. B.12, in which the two lines meet at the point (x0, y0). It is easy to see that the
two right triangles of the figure are similar, so equality of ratios of corresponding sides
yields

m2 = y2 − y0

x2 − x0
= x0 − x1

y1 − y0
= − x1 − x0

y1 − y0
= − 1

m1
.

Thus Eq. (10) holds if the two lines are perpendicular. This argument can be reversed

x

y

(x0, y0)
L1

φ

L2

(x1, y1)

(x2, y2)

φy1 − y0

x0 − x1 x2 − x0

y2 − y0

FIGURE B.12 Illustration of the
proof of Theorem 2.

to prove the converse—that the lines are perpendicular if m1m2 = −1. ◆

EXAMPLE 5 Write an equation of the line L through the point P(3, −2) that is
perpendicular to the line L ′ with equation x + 2y = 6.

Solution As we saw in Example 4, the slope of L ′ is m ′ = − 1
2 . By Theorem 2, the

slope of L is m = −1/m ′ = 2. Thus L has the point-slope equation

y + 2 = 2(x − 3);
equivalently, 2x − y = 8. ◗
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You will find it helpful to remember that the sign of the slope m of the line L
indicates whether L runs upward or downward as your eyes move from left to right. If
m > 0, then the angle of inclination φ of L must be an acute angle, because m = tan φ.
In this case, L “runs upward” to the right. If m < 0, then φ is obtuse, so L “runs
downward.” Figure B.13 shows the geometry behind these observations.

Negative
slope

Positive
slope

acute obtuseφφ

x

y

x

y

FIGURE B.13 Positive and negative slope; effect on φ.

GRAPHICAL INVESTIGATION
Many mathematical problems require the simultaneous solution of a pair of linear
equations of the form

a1x + b1 y = c1,

a2x + b2 y = c2.
(11)

The graph of these two equations consists of a pair of straight lines in the xy-plane.
If these two lines are not parallel, then they must intersect at a single point whose
coordinates (x0, y0) constitute the solution of (11). That is, x = x0 and y = y0 are the
(only) values of x and y for which both equations in (11) are true.

In elementary algebra you studied various elimination and substitution methods
for solving linear systems such as the one in (11). Example 6 illustrates an alterna-
tive graphical method that is sometimes useful when a graphing utility—a graphics
calculator or a computer with a graphing program—is available.

EXAMPLE 6 We want to investigate the simultaneous solution of the linear equa-
tions

10x − 8y = 17,

15x + 18y = 67.
(12)

With many graphics calculators, it is necessary first to solve each equation for y:

TEXAS INSTRUMENTS TI-83 tt

FIGURE B.14 A calculator
prepared to graph the lines in
Eq. (12) (Example 6).

y = (17 − 10x)/(−8),

y = (67 − 15x)/18.
(13)

Figure B.14 shows a calculator prepared to graph the two lines represented by the
equations in (12), and Fig. B.15 shows the result in the viewing window −5 � x � 5,
−5 � y � 5.

Before proceeding, note that in Fig. B.15 the two lines appear to be perpen-
dicular. But their slopes, (−10)/(−8) = 5

4 and (−15)/18 = − 5
6 , are not negative

reciprocals of one another. It follows from Theorem 2 that the two linear are not per-
pendicular.

Figures B.16, B.17, and B.18 show successive magnifications produced by
“zooming in” on the point of intersection of the two lines. The dashed-line box in
each figure is the viewing window for the next figure. Looking at Fig. B.18, we see
that the intersection point is given by the approximations

−4

−2

0

2

4

−4 −2 0 2 4
x

y

FIGURE B.15 −5 � x � 5,
−5 � y � 5 (Example 6).
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1

1.2

1.4

1.6

1.8

2

2 2.2 2.4 2.6 2.8 3
x

y

FIGURE B.16 2 � x � 3, 1 � y � 2
(Example 6).

1.35

1.37

1.39

1.41

1.43

1.45

2.76 2.78 2.8 2.82 2.84
x

y

FIGURE B.17 2.75 � x � 2.85,
1.35 � y � 1.45 (Example 6).

1.38

1.382

1.384

1.386

1.388

1.39

2.8 2.802 2.804 2.806 2.808 2.81
x

y

FIGURE B.18 2.80 � x � 2.81,
1.38 � y � 1.39 (Example 6).

x ≈ 2.807, y ≈ 1.383, (14)

rounded to three decimal places.
The result in (14) can be checked by equating the right-hand sides in (13) and

solving for x . This gives x = 421/150 ≈ 2.8067. Substituting the exact value of x
into either equation in (13) then yields y = 83/60 ≈ 1.3833.

The graphical method illustrated by Example 6 typically produces approximate
solutions that are sufficiently accurate for practical purposes. But the method is espe-
cially useful for nonlinear equations, for which exact algebraic techniques of solution
may not be available. ◗

APPENDIX B PROBLEMS

Three points A , B, and C lie on a single straight line if and only
if the slope of AB is equal to the slope of BC. In Problems 1
through 4, plot the three given points and then determine whether
or not they lie on a single line.

1. A (−1, −2), B(2, 1), C(4, 3)

2. A (−2, 5), B(2, 3), C(8, 0)

3. A (−1, 6), B(1, 2), C(4, −2)

4. A (−3, 2), B(1, 6), C(8, 14)

In Problems 5 and 6, use the concept of slope to show that the
four points given are the vertices of a parallelogram.

5. A (−1, 3), B(5, 0), C(7, 4), D(1, 7)

6. A (7, −1), B(−2, 2), C(1, 4), D(10, 1)

In Problems 7 and 8, show that the three given points are the
vertices of a right triangle.

7. A (−2, −1), B(2, 7), C(4, −4)

8. A (6, −1), B(2, 3), C(−3, −2)

In Problems 9 through 13, find the slope m and y-intercept b of
the line with the given equation. Then sketch the line.

9. 2x = 3y 10. x + y = 1

11. 2x − y + 3 = 0 12. 3x + 4y = 6

13. 2x = 3 − 5y

In Problems 14 through 23, write an equation of the straight
line L described.

14. L is vertical and has x-intercept 7.

15. L is horizontal and passes through (3, −5).

16. L has x-intercept 2 and y-intercept −3.

17. L passes through (2, −3) and (5, 3).

18. L passes through (−1, −4) and has slope 1
2 .

19. L passes through (4, 2) and has angle of inclination 135◦.

20. L has slope 6 and y-intercept 7.

21. L passes through (1, 5) and is parallel to the line with equa-
tion 2x + y = 10.

22. L passes through (−2, 4) and is perpendicular to the line
with equation x + 2y = 17.

23. L is the perpendicular bisector of the line segment that has
endpoints (−1, 2) and (3, 10).

24. Find the perpendicular distance from the point (2, 1) to the
line with equation y = x + 1.

25. Find the perpendicular distance between the parallel lines
y = 5x + 1 and y = 5x + 9.

26. The points A (−1, 6), B(0, 0), and C(3, 1) are three consec-
utive vertices of a parallelogram. What are the coordinates
of the fourth vertex? (What happens if the word consecutive
is omitted?)

27. Prove that the diagonals of the parallelogram of Problem 26
bisect each other.

28. Show that the points A (−1, 2), B(3, −1), C(6, 3), and
D(2, 6) are the vertices of a rhombus—a parallelogram with
all four sides having the same length. Then prove that the
diagonals of this rhombus are perpendicular to each other.

29. The points A (2, 1), B(3, 5), and C(7, 3) are the vertices of a
triangle. Prove that the line joining the midpoints of AB and
BC is parallel to AC .
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30. A median of a triangle is a line joining a vertex to the mid-
point of the opposite side. Prove that the medians of the
triangle of Problem 29 intersect in a single point.

31. Complete the proof of the midpoint formula in Eq. (3). It is
necessary to show that the point M lies on the segment P1 P2.
One way to do this is to show that the slope of M P1 is equal
to the slope of M P2.

32. Let P(x0, y0) be a point of the circle with center C(0, 0) and
radius r . Recall that the line tangent to the circle at the point
P is perpendicular to the radius C P . Prove that the equation
of this tangent line is x0x + y0 y = r 2.

33. The Fahrenheit temperature F and the absolute temperature
K satisfy a linear equation. Moreover, K = 273.16 when
F = 32, and K = 373.16 when F = 212. Express K in
terms of F . What is the value of F when K = 0?

34. The length L (in centimeters) of a copper rod is a linear func-
tion of its Celsius temperature C . If L = 124.942 when
C = 20 and L = 125.134 when C = 110, express L in
terms of C .

35. The owner of a grocery store finds that she can sell 980 gal
of milk each week at $1.69/gal and 1220 gal of milk each
week at $1.49/gal. Assume a linear relationship between
price and sales. How many gallons would she then expect to
sell each week at $1.56/gal?

36. Figure B.19 shows the graphs of the equations

17x − 10y = 57,

25x − 15y = 17.

Are these two lines parallel? If not, find their point of inter-
section. If you have a graphing utility, find the solution by
graphical approximation as well as by exact algebraic meth-
ods.

−8

−4

0

4

8

−10 −5 0 5 10
x

y

FIGURE B.19 The lines
of Problem 36.

In Problems 37 through 46, use a graphics calculator or com-
puter to approximate graphically (with three digits to the right
of the decimal correct or correctly rounded) the solution of the
given linear equation. Then check your approximate solution by
solving the system by an exact algebraic method.

37. 2x + 3y = 5
2x + 5y = 12

38. 6x + 4y = 5
8x − 6y = 13

39. 3x + 3y = 17
3x + 5y = 16

40. 2x + 3y = 17
2x + 5y = 20

41. 4x + 3y = 17
5x + 5y = 21

42. 4x + 3y = 15
5x + 5y = 29

43. 5x + 6y = 16
7x + 10y = 29

44. 5x + 11y = 21
4x + 10y = 19

45. 6x + 6y = 31
9x + 11y = 37

46. 7x + 6y = 31
11x + 11y = 47

47. Justify the phrase “no other point of the plane can do so” that
follows the first appearance of Eq. (6).

48. The discussion of the linear equation Ax+By = C in Eq. (8)
does not include a description of the graph of this equation
if A = B = 0. What is the graph in this case?

APPENDIX C: REVIEW OF TRIGONOMETRY

In elementary trigonometry, the six basic trigonometric functions of an acute angle θ

θ

hyp
opp

adj

θ

hyp
opp

adj

FIGURE C.1 The sides and angle θ

of a right triangle.

in a right triangle are defined as ratios between pairs of sides of the triangle. As in
Fig. C.1, where “adj” stands for “adjacent,” “opp” for “opposite,” and “hyp” for “hy-
potenuse,”

cos θ = adj

hyp
, sin θ = opp

hyp
, tan θ = opp

adj
,

sec θ = hyp

adj
csc θ = hyp

opp
, cot θ = adj

opp
.

(1)

We generalize these definitions to directed angles of arbitrary size in the following way.
Suppose that the initial side of the angle θ is the positive x-axis, so its vertex is at the
origin. The angle is directed if a direction of rotation from its initial side to its terminal
side is specified. We call θ a positive angle if this rotation is counterclockwise and a
negative angle if it is clockwise.

Let P(x, y) be the point at which the terminal side of θ intersects the unit circle
x2 + y2 = 1. Then we define

cos θ = x, sin θ = y, tan θ = y

x
,

sec θ = 1

x
, csc θ = 1

y
, cot θ = x

y
.

(2)
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We assume that x �= 0 in the case of tan θ and sec θ and that y �= 0 in the case of
cot θ and csc θ . If the angle θ is positive and acute, then it is clear from Fig. C.2
that the definitions in (2) agree with the right triangle definitions in (1) in terms of the
coordinates of P . A glance at the figure also shows which of the functions are positive
for angles in each of the four quadrants. Figure C.3 summarizes this information.

x2 + y2 = 1

y
P (cos

(1, 0) x

P (cos(−θ

θ, sin )θ

sin θ

), sin(−θ ))

−

1

θ

θ

FIGURE C.2 Using the unit circle
to define the trigonometric functions.

Here we discuss primarily the two most basic trigonometric functions, the sine
and the cosine. From (2) we see immediately that the other four trigonometric func-
tions are defined in terms of sin θ and cos θ by

tan θ = sin θ

cos θ
, sec θ = 1

cos θ
,

cot θ = cos θ

sin θ
, csc θ = 1

sin θ
.

(3)

Next, we compare the angles θ and −θ in Fig. C.4. We see that
Sine

Cosecant

y

Tangent
Cotangent

Cosine
Secant

All

Positive in quadrants shown

x

FIGURE C.3 The signs of the
trigonometric functions.

cos(−θ) = cos θ and sin(−θ) = −sin θ. (4)

Because x = cos θ and y = sin θ in (2), the equation x2 + y2 = 1 of the unit circle
translates immediately into the fundamental identity of trigonometry,

cos2 θ + sin2 θ = 1. (5)

Dividing each term of this fundamental identity by cos2 θ gives the identity

x

y

(1, 0)

Q (a, −b)

θ−

θ

P (a, b)

FIGURE C.4 The effect of
replacing θ with −θ in the sine and
cosine functions.

1 + tan2 θ = sec2 θ. (5′)

Similarly, dividing each term in Eq. (5) by sin2 θ yields the identity

1 + cot2 θ = csc2 θ. (5′′)

(See Problem 9 of this appendix.)
In Problems 41 and 42 we outline derivations of the addition formulas

sin(α + β) = sin α cos β + cos α sin β, (6)
cos(α + β) = cos α cos β − sin α sin β. (7)

With α = θ = β in Eqs. (6) and (7), we get the double-angle formulas

sin 2θ = 2 sin θ cos θ, (8)

cos 2θ = cos2 θ − sin2 θ (9)

= 2 cos2 θ − 1 (9a)

= 1 − 2 sin2 θ, (9b)

where Eqs. (9a) and (9b) are obtained from Eq. (9) by use of the fundamental identity
in Eq. (5).

If we solve Eq. (9a) for cos2 θ and Eq. (9b) for sin2 θ , we get the half-angle
formulas

cos2 θ = 1
2 (1 + cos 2θ), (10)

sin2 θ = 1
2 (1 − cos 2θ). (11)

Equations (10) and (11) are especially important in integral calculus.
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RADIAN MEASURE
In elementary mathematics, angles frequently are measured in degrees, with 360◦ in

= sθ

Radius 1
Arc length s

x2 + y2 = 1

FIGURE C.5 The radian measure of
an angle.

one complete revolution. In calculus it is more convenient—and often essential—to
measure angles in radians. The radian measure of an angle is the length of the arc it
subtends in (that is, the arc it cuts out of) the unit circle when the vertex of the angle is
at the center of the circle (Fig. C.5).

Recall that the area A and circumference C of a circle of radius r are given by
the formulas

A = πr2 and C = 2πr,

where the irrational number π is approximately 3.14159. Because the circumference
of the unit circle is 2π and its central angle is 360◦, it follows that

2π rad = 360◦; 180◦ = π rad ≈ 3.14159 rad. (12)

Using Eq. (12) we can easily convert back and forth between radians and degrees:
Radians Degrees

0 0
π/6 30
π/4 45
π/3 60
π/2 90

2π/3 120
3π/4 135
5π/6 150

π 180
3π/2 270
2π 360
4π 720

FIGURE C.6 Some radian-degree
conversions.

1 rad = 180◦

π
≈ 57◦ 17′ 44.8′′, (12a)

1◦ = π

180
rad ≈ 0.01745 rad. (12b)

Figure C.6 shows radian-degree conversions for some common angles.
Now consider an angle of θ radians at the center of a circle of radius r (Fig. C.7).

Denote by s the length of the arc subtended by θ ; denote by A the area of the sector of
the circle bounded by this angle. Then the proportions

s

2πr
= A

πr2
= θ

2π

give the formulas

s = rθ (θ in radians) (13)

and

A = 1
2r2θ (θ in radians). (14)

The definitions in (2) refer to trigonometric functions of angles rather than trig-

s = r

A =    r2

θ

θ1
2

Radius r

θ

FIGURE C.7 The area of a sector
and arc length of a circular arc.

onometric functions of numbers. Suppose that t is a real number. Then the number
sin t is, by definition, the sine of an angle of t radians—recall that a positive angle is di-
rected counterclockwise from the positive x-axis, whereas a negative angle is directed
clockwise. Briefly, sin t is the sine of an angle of t radians. The other trigonometric
functions of the number t have similar definitions. Hence, when we write sin t , cos t ,
and so on, with t a real number, it is always in reference to an angle to t radians.

When we need to refer to the sine of an angle of t degrees, we will henceforth
write sin t◦. The point is that sin t and sin t◦ are quite different functions of the vari-
able t . For example, you would get

sin 1◦ ≈ 0.0175 and sin 30◦ = 0.5

on a calculator set in degree mode. But in radian mode, a calculator would give

sin 1 ≈ 0.8415 and sin 30 ≈ −0.9880.

The relationship between the functions sin t and sin t◦ is

sin t◦ = sin

(
π t

180

)
. (15)

The distinction extends even to programming languages. In FORTRAN, the
function SIN is the radian sine function, and you must write sin t◦ in the form
SIND(T). In BASIC you must write SIN(Pi*T/180) to get the correct value of
the sine of an angle of t degrees.
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t

y

π

y = sin t

− 2 4

y = cos t

π π 3π π

FIGURE C.8 Periodicity of the sine and cosine functions.

An angle of 2π rad corresponds to one revolution around the unit circle. This
implies that the sine and cosine functions have period 2π , meaning that

sin(t + 2π) = sin t,

cos(t + 2π) = cos t.
(16)

It follows from the equations in (16) that

sin(t + 2nπ) = sin t and cos(t + 2nπ) = cos t (17)

for every integer n. This periodicity of the sine and cosine functions is evident in their
graphs (Fig. C.8). From the equations in (3), the other four trigonometric functions
also must be periodic, as their graphs in Figs. C.9 and C.10 show.

x

y

−π π

x

(a)

(b)

y

π
2

3π
2

5π
2

π
2

−

π2

FIGURE C.9 The graphs of (a) the
tangent function and (b) the
cotangent function.

x

(b)

y

π
2

3π
2

5π
2

x

y

−π 2ππ

(a)

−π
2

FIGURE C.10 The graphs of (a) the secant function and (b) the cosecant
function.

We see from the equations in (2) that

/6π

3

2
1

/4π

2

1

1

3

1

2

/3π

FIGURE C.11 Familiar right
triangles.

sin 0 = 0, sin
π

2
= 1, sin π = 0,

cos 0 = 1, cos
π

2
= 0, cos π = −1.

(18)

The trigonometric functions of π/6, π/4, and π/3 (the radian equivalents of 30◦, 45◦,
and 60◦, respectively) are easy to read from the well-known triangles of Fig. C.11. For
instance,

sin
π

6
= cos

π

3
= 1

2
=

√
1

2
,

sin
π

4
= cos

π

4
= 1√

2
=

√
2

2
, and

sin
π

3
= cos

π

6
=

√
3

2
.

(19)
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To find the values of trigonometric functions of angles larger than π/2, we can use
their periodicity and the identities

sin(π ± θ) = ∓ sin θ,

cos(π ± θ) = − cos θ and

tan(π ± θ) = ± tan θ

(20)

(Problems 38, 39, and 40) as well as similar identities for the cosecant, secant, and
cotangent functions.

EXAMPLE 1

sin
5π

4
= sin

(
π + π

4

)
= −sin

π

4
= −

√
2

2
;

cos
2π

3
= cos

(
π − π

3

)
= −cos

π

3
= −1

2
;

tan
2π

4
= tan

(
π − π

4

)
= −tan

π

4
= −1;

sin
7π

6
= sin

(
π + π

6

)
− sin

π

6
= −1

2
;

cos
5π

3
= cos

(
2π − π

3

)
= cos

(
− π

3

)
= cos

π

3
= 1

2
;

sin
17π

6
= sin

(
2π + 5π

6

)
= sin

5π

6

= sin

(
π − π

6

)
= sin

π

6
= 1

2
. ◗

EXAMPLE 2 Find the solutions (if any) of the equation

sin2 x − 3 cos2 x + 2 = 0

that lie in the interval [0, π ].
Solution Using the fundamental identity in Eq. (5), we substitute cos2 x = 1− sin2 x
into the given equation to obtain

sin2 x − 3(1 − sin2 x) + 2 = 0;
4 sin2 x − 1 = 0;

sin x = ± 1
2 .

Because sin x � 0 for x in [0, π ], sin x = − 1
2 is impossible. But sin x = 1

2 for x = π/6
and for x = π − π/6 = 5π/6. These are the solutions of the given equation that lie in
[0, π ]. ◗

APPENDIX C PROBLEMS

Express in radian measure the angles in Problems 1 through 5.

1. 40◦ 2. −270◦

3. 315◦ 4. 210◦

5. −150◦

In Problems 6 through 10, express in degrees the angles given in
radian measure.

6.
π

10
7.

2π

5

8. 3π 9.
15π

4

10.
23π

60

In Problems 11 through 14, evaluate the six trigonometric func-
tions of x at the given values.

11. x = −π

3
12. x = 3π

4

13. x = 7π

6
14. x = 5π

3
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Find all solutions x of each equation in Problems 15 through 23.

15. sin x = 0 16. sin x = 1

17. sin x = −1 18. cos x = 0

19. cos x = 1 20. cos x = −1

21. tan x = 0 22. tan x = 1

23. tan x = −1

24. Suppose that tan x = 3
4 and that sin x < 0. Find the values

of the other five trigonometric functions of x .

25. Suppose that csc x = − 5
3 and that cos x > 0. Find the values

of the other five trigonometric functions of x .

Deduce the identities in Problems 26 and 27 from the fundamen-
tal identity

cos2 θ + sin2 θ = 1

and from the definitions of the other four trigonometric functions.

26. 1 + tan2 θ = sec2 θ 27. 1 + cot2 θ = csc2 θ

28. Deduce from the addition formulas for the sine and cosine
the addition formula for the tangent:

tan(x + y) = tan x + tan y

1 − tan x tan y
.

In Problems 29 through 36, use the method of Example 1 to find
the indicated values.

29. sin
5π

6
30. cos

7π

6

31. sin
11π

6
32. cos

19π

6

33. sin
2π

3
34. cos

4π

3

35. sin
5π

3
36. cos

10π

3
37. Apply the addition formula for the sine, cosine, and tan-

gent functions (the latter from Problem 28) to show that if
0 < θ < π/2, then

(a) cos
(π

2
− θ

)
= sin θ ;

(b) sin
(π

2
− θ

)
= cos θ ;

(c) cot
(π

2
− θ

)
= tan θ .

The prefix co- is an abbreviation for the adjective comple-
mentary, which describes two angles whose sum is π/2. For
example, π/6 and π/3 are complementary angles, so (a) im-
plies that cos π/6 = sin π/3.

Suppose that 0 < θ < π/2. Derive the identities in Problems 38
through 40.

38. sin(π ± θ) = ∓ sin θ

39. cos(π ± θ) = − cos θ

40. tan(π ± θ) = ± tan θ

41. The points A (cos θ, − sin θ), B(1, 0), C(cos φ, sin φ), and
D(cos(θ + φ), sin(θ + φ)) are shown in Fig. C.12; all are
points on the unit circle. Deduce from the fact that the line
segments AC and B D have the same length (because they
are subtended by the same central angle θ + φ) that

cos(θ + φ) = cos θ cos φ − sin θ sin φ.

x

y

θ

D

C

B

A

φ
θ

FIGURE C.12 Deriving the cosine
addition formula (Problem 41).

42. (a) Use the triangles shown in Fig. C.13 to deduce that

sin
(
θ + π

2

)
= cos θ and cos

(
θ + π

2

)
= −sin θ.

(b) Use the results of Problem 41 and part (a) to derive the
addition formula for the sine function.

x

y

θ
/2π

FIGURE C.13 Deriving the identities of
Problem 42.

In Problems 43 through 48, find all solutions of the given equa-
tion that lie in the interval [0, π ].
43. 3 sin2 x − cos2 x = 2 44. sin2 x = cos2 x

45. 2 cos2 x + 3 sin2 x = 3 46. 2 sin2 x + cos x = 2

47. 8 sin2 x cos2 x = 1 48. cos 2θ − 3 cos θ = −2
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APPENDIX D: PROOFS OF THE LIMIT LAWS

Recall the definition of the limit:

lim
x→a

F(x) = L

provided that, given ε > 0, there exists a number δ > 0 such that

0 < |x − a| < δ implies that |F(x) − L | < ε. (1)

Note that the number ε comes first. Then a value of δ > 0 must be found so that the
implication in (1) holds. To prove that F(x) → L as x → a, you must, in effect, be
able to stop the next person you see and ask him or her to pick a positive number ε at
random. Then you must always be ready to respond with a positive number δ. This
number δ must have the property that the implication in (1) holds for your number δ

and the given number ε. The only restriction on x is that

0 < |x − a| < δ,

as given in (1).
To do all this, you will ordinarily need to give an explicit method—a recipe or

formula—for producing a value of δ that works for each value of ε. As Examples 1
through 3 show, the method will depend on the particular function F under study as
well as the values of a and L .

EXAMPLE 1 Prove that lim
x→3

(2x − 1) = 5.

Solution Given ε > 0, we must find δ > 0 such that

|(2x − 1) − 5)| < ε if 0 < |x − 3| < δ.

Now

|(2x − 1) − 5| = |2x − 6| = 2|x − 3|,
so

0 < |x − 3| <
ε

2
implies that |(2x − 1) − 5| < 2 · ε

2
= ε.

Hence, given ε > 0, it suffices to choose δ = ε/2. This illustrates the observation that
the required number δ is generally a function of the given number ε. ◗

EXAMPLE 2 Prove that lim
x→2

(3x2 + 5) = 17.

Solution Given ε > 0, we must find δ > 0 such that

0 < |x − 2| < δ implies that |(3x2 + 5) − 17| < ε.

Now

|(3x2 + 5) − 17| = |3x2 − 12| = 3 · |x + 2| · |x − 2|.
Our problem, therefore, is to show that |x + 2| · |x − 2| can be made as small as we
please by choosing x − 2 sufficiently small. The idea is that |x + 2| cannot be too large
if |x − 2| is fairly small. For example, if |x − 2| < 1, then

|x + 2| = |(x − 2) + 4| � |x − 2| + 4 < 5.

Therefore,

0 < |x − 2| < 1 implies that |(3x2 + 5) − 17| < 15 · |x − 2|.
Consequently, let us choose δ to be the minimum of the two numbers 1 and ε/15. Then

0 < |x − 2| < δ implies that |(3x2 + 5) − 17| < 15 · ε

15
= ε,

as desired. ◗
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EXAMPLE 3 Prove that

lim
x→a

1

x
= 1

a
if a �= 0.

Solution For simplicity, we will consider only the case in which a > 0 (the case
a < 0 is similar).

Suppose that ε > 0 is given. We must find a number δ such that

0 < |x − a| < δ implies that

∣∣∣∣1

x
− 1

a

∣∣∣∣ < ε.

Now ∣∣∣∣1

x
− 1

a

∣∣∣∣ =
∣∣∣∣a − x

ax

∣∣∣∣ = |x − a|
a|x | .

The idea is that 1/|x | cannot be too large if |x − a| is fairly small. For example, if
|x − a| < a/2, then a/2 < x < 3a/2. Therefore,

|x | >
a

2
, so

1

|x | <
2

a
.

In this case it would follow that∣∣∣∣1

x
− 1

a

∣∣∣∣ <
2

a2
· |x − a|

if |x − a| < a/2. Thus, if we choose δ to be the minimum of the two numbers a/2 and
a2ε/2, then

0 < |x − a| < δ implies that

∣∣∣∣1

x
− 1

a

∣∣∣∣ <
2

a2
· a2ε

2
= ε.

Therefore

lim
x→a

1

x
= 1

a
if a �= 0,

as desired. ◗

We are now ready to give proofs of the limit laws stated in Section 2.2.

Constant Law
If f (x) ≡ C , a constant, then

lim
x→a

f (x) = lim
x→a

C = C.

Proof Because |C − C | = 0, we merely choose δ = 1, regardless of the previously
given value of ε > 0. Then, if 0 < |x − a| < δ, it is automatic that |C − C | < ε. ◆

Addition Law
If lim

x→a
F(x) = L and lim

x→a
G(x) = M , then

lim
x→a

[F(x) + G(x)] = L + M.

Proof Let ε > 0 be given. Because L is the limit of F(x) as x → a, there exists a
number δ1 > 0 such that

0 < |x − a| < δ1 implies that |F(x) − L| <
ε

2
.

Because M is the limit of G(x) as x → a, there exists a number δ2 > 0 such that

0 < |x − a| < δ2 implies that |G(x) − M | <
ε

2
.
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Let δ = min{δ1, δ2}. Then 0 < |x − a| < δ implies that

|(F(x) + G(x)) − (L + M)| � |F(x) − L| + |G(x) − M | <
ε

2
+ ε

2
= ε.

Therefore

lim
x→a

[F(x) + G(x)] = L + M,

as desired. ◆

Product Law
If lim

x→a
F(x) = L and lim

x→a
G(x) = M , then

lim
x→a

[F(x) · G(x)] = L · M.

Proof Given ε > 0, we must find a number δ > 0 such that

0 < |x − a| < δ implies that |F(x) · G(x) − L · M | < ε.

But first, the triangle inequality gives the result

|F(x) · G(x) − L · M | = |F(x) · G(x) − L · G(x) + L · G(x) − L · M |
� |G(x)| · |F(x) − L| + |L| · |G(x) − M |. (2)

Because lim
x→a

F(x) = L , there exists δ1 > 0 such that

0 < |x − a| < δ1 implies that |F(x) − L| <
ε

2(|M | + 1)
. (3)

And because lim
x→a

G(x) = M , there exists δ2 > 0 such that

0 < |x − a| < δ2 implies that |G(x) − M | <
ε

2(|L| + 1)
. (4)

Moreover, there is a third number δ3 > 0 such that

0 < |x − a| < δ3 implies that |G(x) − M | < 1,

which in turn implies that

|G(x)| < |M | + 1, (5)

We now choose δ = min{δ1, δ2, δ3}. Then we substitute (3), (4), and (5) into (2) and,
finally, see that 0 < |x − a| < δ implies that

|F(x) · G(x) − L · M | < (|M | + 1) · ε

2(|M | + 1)
+ |L| · ε

2(|L| + 1)

<
ε

2
+ ε

2
= ε,

as desired. The use of |M | + 1 and |L| + 1 in the denominators avoids the technical
difficulty that arises should either L or M be zero. ◆

Substitution Law
If lim

x→a
g(x) = L and lim

x→L
f (x) = f (L), then

lim
x→a

f (g(x)) = f (L).
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Proof Let ε > 0 be given. We must find a number δ > 0 such that

0 < |x − a| < δ implies that | f (g(x)) − f (L)| < ε.

Because f (y) → f (L) as y → L , there exists δ1 > 0 such that

0 < |y − L| < δ1 implies that | f (y) − f (L)| < ε. (6)

Also, because g(x) → L as x → a, we can find δ > 0 such that

0 < |x − a| < δ implies that |g(x) − L| < δ1;
that is, such that

|y − L| < δ1,

where y = g(x). From (6) we see that 0 < |x − a| < δ implies that

| f (g(x)) − f (L)| = | f (y) − f (L)| < ε,

as desired. ◆

Reciprocal Law
If lim

x→a
g(x) = L and L �= 0, then

lim
x→a

1

g(x)
= 1

L
.

Proof Let f (x) = 1/x . Then, as we saw in Example 3,

lim
x→a

f (x) = lim
x→a

1

x
= 1

L
= f (L).

Hence the substitution law gives the result

lim
x→a

1

g(x)
= lim

x→a
f (g(x)) = f (L) = 1

L
,

as desired. ◆

Quotient Law
If lim

x→a
F(x) = L and lim

x→a
G(x) = M �= 0, then

lim
x→a

F(x)

G(x)
= L

M
.

Proof It follows immediately from the product and reciprocal laws that

lim
x→a

F(x)

G(x)
= lim

x→a
F(x) · 1

G(x)
=

(
lim
x→a

F(x)
)(

lim
x→a

1

G(x)

)
= L · 1

M
= L

M
,

as desired. ◆

Squeeze Law
Suppose that f (x) � g(x) � h(x) in some deleted neighborhood of a and that

lim
x→a

f (x) = L = lim
x→a

h(x).

Then

lim
x→a

g(x) = L .
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Proof Given ε > 0, we choose δ1 > 0 and δ2 > 0 such that

0 < |x − a| < δ1 implies that | f (x) − L| < ε

and

0 < |x − a| < δ2 implies that |h(x) − L| < ε.

Let δ = min{δ1, δ2}. Then δ > 0. Moreover, if 0 < |x − a| < δ, then both f (x) and
h(x) are points of the open interval (L − ε, L + ε). So

L − ε < f (x) � g(x) � h(x) < L + ε.

Thus

0 < |x − a| < δ implies that |g(x) − L| < ε,

as desired. ◆

APPENDIX D PROBLEMS

In Problems 1 through 10, apply the definition of the limit to es-
tablish the given equality.

1. lim
x→a

x = a 2. lim
x→2

3x = 6

3. lim
x→2

(x + 3) = 5 4. lim
x→−3

(2x + 1) = −5

5. lim
x→1

x2 = 1 6. lim
x→a

x2 = a2

7. lim
x→−1

(2x2 − 1) = 1 8. lim
x→a

1

x2
= 1

a2

9. lim
x→a

1

x2 + 1
= 1

a2 + 1
10. lim

x→a

1√
x

= 1√
a

if a > 0

11. Suppose that

lim
x→a

f (x) = L and lim
x→a

f (x) = M.

Apply the definition of the limit to prove that L = M . Thus
the limit of the function f at x = a is unique if it exists.

12. Suppose that C is a constant and that f (x) → L as x → a.
Apply the definition of the limit to prove that

lim
x→a

C · f (x) = C · L .

13. Suppose that L �= 0 and that f (x) → L as x → a. Use the
method of Example 3 and the definition of the limit to show

directly that

lim
x→a

1

f (x)
= 1

L
.

14. Use the algebraic identity

xn − an =
(x − a)(xn−1 + xn−2a + xn−3a2 + · · · + xan−2 + an−1)

to show directly from the definition of the limit that lim
x→a

xn =
an if n is a positive integer.

15. Apply the identity

∣∣√x − √
a
∣∣ = |x − a|√

x + √
a

to show directly from the definition of the limit that
lim
x→a

√
x = √

a if a > 0.

16. Suppose that f (x) → f (a) > 0 as x → a. Prove that there
exists a neighborhood of a on which f (x) > 0; that is, prove
that there exists δ > 0 such that

|x − a| < δ implies that f (x) > 0.

APPENDIX E: THE COMPLETENESS OF THE REAL NUMBER SYSTEM

Here we present a self-contained treatment of those consequences of the complete-
ness of the real number system that are relevant to this text. Our principal objective
is to prove the intermediate value theorem and the maximum value theorem. We
begin with the least upper bound property of the real numbers, which we take to
be an axiom.

DEFINITION Upper Bound and Lower Bound
The set S of real numbers is said to be bounded above if there is a number b such
that x � b for every number x in S, and the number b is then called an upper bound
for S. Similarly, if there is a number a such that x � a for every number x in S,
then S is said to be bounded below, and a is called a lower bound for S.
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DEFINITION Least Upper Bound and Greatest Lower Bound
The number λ is said to be a least upper bound for the set S of real numbers
provided that

1. λ is an upper bound for S, and
2. If b is an upper bound for S, then λ � b.

Similarly, the number γ is said to be a greatest lower bound for S if γ is a lower
bound for S and γ � a for every lower bound a of S.

EXERCISE Prove that if the set S has a least upper bound λ, then it is unique. That is,
prove that if λ and μ are least upper bounds for S, then λ = μ.

It is easy to show that the greatest lower bound γ of a set S, if any, is also unique.
At this point you should construct examples to illustrate that a set with a least upper
bound λ may or may not contain λ and that a similar statement is true of the set’s
greatest lower bound.

We now state the completeness axiom of the real number system.

Least Upper Bound Axiom
If the nonempty set S of real numbers has an upper bound, then it has a least upper
bound.

By working with the set T consisting of the numbers −x , where x is in S, it is
not difficult to show the following consequence of the least upper bound axiom: If the
nonempty set S of real numbers is bounded below, then S has a greatest lower bound.
Because of this symmetry, we need only one axiom, not two; results for least upper
bounds also hold for greatest lower bounds, provided that some attention is paid to the
directions of the inequalities.

The restriction that S be nonempty is annoying but necessary. If S is the “empty”
set of real numbers, then 15 is an upper bound for S, but S has no least upper bound
because 14, 13, 12, . . . , 0, −1, −2, . . . are also upper bounds for S.

DEFINITION Increasing, Decreasing, and Monotonic Sequences
The infinite sequence x1, x2, x3, . . . , xk, . . . is said to be nondecreasing if xn �
xn+1 for every n � 1. This sequence is said to be nonincreasing if xn � xn+1 for
every n � 1. If the sequence {xn} is either nonincreasing or nondecreasing, then it
is said to be monotonic.

Theorem 1 gives the bounded monotonic sequence property of the set of real
numbers. (Recall that a set S of real numbers is said to be bounded if it is contained
in an interval of the form [a, b].)

THEOREM 1 Bounded Monotonic Sequences
Every bounded monotonic sequence of real numbers converges.

Proof Suppose that the sequence

S = {xn} = {x1, x2, x3, . . . , xk, . . . }
is bounded and nondecreasing. By the least upper bound axiom, S has a least upper
bound λ. We claim that λ is the limit of the sequence {xn}. Consider an open interval
centered at λ—that is, an interval of the form I = (λ − ε, λ + ε), where ε > 0. Some
terms of the sequence must lie within I , else λ − ε would be an upper bound for S that
is less than its least upper bound λ. But if xN is in I , then—because we are dealing
with a nondecreasing sequence—xN � xk � λ for all k � N . That is, xk is in I for
all k � N . Because ε is an arbitrary positive number, λ is—almost by definition—
the limit of the sequence {xn}. Thus we have shown that a bounded nonincreasing
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sequence converges. A similar proof can be constructed for nonincreasing sequences
by working with the greatest lower bound. ◆

Therefore, the least upper bound axiom implies the bounded monotonic sequence
property of the real numbers. With just a little effort, you can prove that the two are
logically equivalent. That is, if you take the bounded monotonic sequence property
as an axiom, then the least upper bound property follows as a theorem. The nested
interval property of Theorem 2 is also equivalent to the least upper bound property,
but we shall prove only that it follows from the least upper bound property, because
we have chosen the latter as the fundamental completeness axiom for the real number
system.

THEOREM 2 Nested Interval Property of the Real Numbers
Suppose that I1, I2, I3, . . . , In, . . . is a sequence of closed intervals (so In is of the
form [an, bn] for each positive integer n) such that

1. In contains In+1 for each n � 1, and
2. lim

n→∞(bn − an) = 0.

Then there exists exactly one real number c such that c belongs to In for all n. Thus

{c} = I1 ∩ I2 ∩ I3 ∩ · · · .

Proof It is clear from hypothesis (2) of Theorem 2 that there is at most one such
number c. The sequence {an} of the left-hand endpoints of the intervals is a bounded
(by b1) nondecreasing sequence and thus has a limit a by the bounded monotonic
sequence property. Similarly, the sequence {bn} has a limit b. Because an � bn for all
n, it follows easily that a � b. It is clear that an � a � b � bn for all n � 1, so a and b
belong to every interval In . But then hypothesis (2) of Theorem 2 implies that a = b,
and clearly this common value—call it c—is the number satisfying the conclusion of
Theorem 2. ◆

We can now use these results to prove several important theorems used in the
text.

THEOREM 3 Intermediate Value Property of Continuous Functions
If the function f is continuous on the interval [a, b] and f (a) < K < f (b), then
K = f (c) for some number c in (a, b).

Proof Let I1 = [a, b]. Suppose that In has been defined for n � 1. We describe
(inductively) how to define In+1, and this shows in particular how to define I2, I3, and
so forth. Let an be the left-hand endpoint of In , bn be its right-hand endpoint, and mn

be its midpoint. There are now three cases to consider: f (mn) > K , f (mn) < K , and
f (mn) = K .

If f (mn) > K , then f (an) < K < f (mn); in this case, let an+1 = an , bn+1 =
mn , and In+1 = [an+1, bn+1].

If f (mn) < K , then let an+1 = mn , bn+1 = bn , and In+1 = [an+1, bn+1].
If f (mn) = K , then we simply let c = mn and the proof is complete. Otherwise,

at each stage we bisect In and let In+1 be the half of In on which f takes on values both
above and below K .

It is easy to show that the sequence {In} of intervals satisfies the hypotheses of
Theorem 2. Let c be the (unique) real number common to all the intervals In . We will
show that f (c) = K , and this will conclude the proof.

The sequence {bn} has limit c, so by the continuity of f, the sequence { f (bn)} has
limit f (c). But f (bn) > K for all n, so the limit of { f (bn)} can be no less than K ;
that is, f (c) � K . By considering the sequence {an}, it follows that f (c) � K as well.
Therefore, f (c) = K . ◆
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LEMMA 1
If f is continuous on the closed interval [a, b], then f is bounded there.

Proof Suppose by way of contradiction that f is not bounded on I1 = [a, b].
Bisect I1 and let I2 be either half of I1 on which f is unbounded. (If f is unbounded on
both halves, let I2 = I1.) In general, let In+1 be a half of In on which f is unbounded.

Again it is easy to show that the sequence {In} of closed intervals satisfies the
hypotheses of Theorem 2. Let c be the number common to them all. Because f is
continuous, there exists a number ε > 0 such that f is bounded on the interval (c −
ε, c + ε). But for sufficiently large values of n, In is a subset of (c − ε, c + ε). This
contradiction shows that f must be bounded on [a, b]. ◆

THEOREM 4 Maximum Value Property of Continuous Functions
If the function f is continuous on the closed and bounded interval [a, b], then there
exists a number c in [a, b] such that f (x) � f (c) for all x in [a, b].

Proof Consider the set S = { f (x) | a � x � b}. By Lemma 1, this set is bounded,
and it is certainly nonempty. Let λ be the least upper bound of S. Our goal is to show
that λ is a value f (x) of f.

With I1 = [a, b], bisect I1 as before. Note that λ is the least upper bound of the
values of f on at least one of the two halves of I1; let I2 be that half. Having defined
In , let In+1 be the half of In on which λ is the least upper bound of the values of f. Let
c be the number common to all these intervals. It then follows from the continuity of
f, much as in the proof of Theorem 3, that f (c) = λ. And it is clear that f (x) � λ for
all x in [a, b]. ◆

The technique we are using in these proof is called the method of bisection. We
now use it once again to establish the Bolzano–Weierstrass property of the real number
system.

DEFINITION Limit Point
Let S be a set of real numbers. The number p is said to be a limit point of S if every
open interval containing p also contains points of S other than p.

BOLZANO–WEIERSTRASS THEOREM
Every bounded infinite set of real numbers has a limit point.

Proof Let I0 be a closed interval containing the bounded infinite set S of real num-
bers. Bisect I0. Let I1 be one of the resulting closed half-intervals of I0 that contains
infinitely many points of S. If In has been chosen, let In+1 be one of the closed half-
intervals of In containing infinitely many points of S. An application of Theorem 2
yields a number p common to all the intervals In . If J is an open interval containing
p, then J contains In for some sufficiently large value of n and thus contains infinitely
many points of S. Therefore p is a limit point of S. ◆

Our final goal is in sight: We can now prove that a sequence of real numbers
converges if and only if it is a Cauchy sequence.

DEFINITION Cauchy Sequence
The sequence {an}∞1 is said to be a Cauchy sequence if, for every ε > 0, there
exists an integer N such that

|am − an| < ε

for all m, n � N .
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LEMMA 2 Convergent Subsequences
Every bounded sequence of real numbers has a convergent subsequence.

Proof If {an} has only a finite number of values, then the conclusion of Lemma 2
follows easily. We therefore focus our attention on the case in which {an} is an infinite
set. It is easy to show that this set is also bounded, and thus we may apply the Bolzano–
Weierstrass theorem to obtain a limit point p of {an}.

For each integer k � 1, let an(k) be a term of the sequence {an} such that

1. n(k + 1) > n(k) for all k � 1, and

2. |an(k) − p| <
1

k
.

It is then easy to show that {an(k)} is a convergent (to p) subsequence of {an}. ◆

THEOREM 6 Convergence of Cauchy Sequences
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof It follows immediately from the triangle inequality that every convergent se-
quence is a Cauchy sequence. Thus suppose that the sequence {an} is a Cauchy se-
quence.

Choose N such that

|am − an| < 1

if m, n � N . It follows that if n � N , then an lies in the closed interval [aN −1, aN +1].
This implies that the sequence {an} is bounded, and thus by Lemma 2 it has a conver-
gent subsequence {an(k)}. Let p be the limit of this subsequence.

We claim that {an} itself converges to p. Given ε > 0, choose M such that

|am − an| <
ε

2

if m, n � M . Next choose K such that n(K ) � M and

|an(K ) − p| <
ε

2
.

Then if n � M ,

|an − p| � |an − an(K )| + |an(K ) − p| < ε.

Therefore, {an} converges to p by definition. ◆

APPENDIX F: EXISTENCE OF THE INTEGRAL

When the basic computational algorithms of the calculus were discovered by Newton
and Leibniz in the latter half of the seventeenth century, the logical rigor that had been
a feature of the Greek method of exhaustion was largely abandoned. When computing
the area A under the curve y = f (x), for example, Newton took it as intuitively obvious
that the area function existed, and he proceeded to compute it as the antiderivative of
the height function f (x). Leibniz regarded A as an infinite sum of infinitesimal area
elements, each of the form dA = f (x) dx , but in practice computed the area

A =
∫ b

a
f (x) dx

by antidifferentiation just as Newton did—that is, by computing

A =
[

D−1 f (x)
]b

a
.
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The question of the existence of the area function—one of the conditions that
a function f must satisfy in order for its integral to exist—did not at first seem to be
of much importance. Eighteenth-century mathematicians were mainly occupied (and
satisfied) with the impressive applications of calculus to the solution of real-world
problems and did not concentrate on the logical foundations of the subject.

The first attempt at a precise definition of the integral and a proof of its existence
for continuous functions was that of the French mathematician Augustin Louis Cauchy
(1789–1857). Curiously enough, Cauchy was trained as an engineer, and much of his
research in mathematics was in fields that we today regard as applications-oriented:
hydrodynamics, waves in elastic media, vibrations of elastic membranes, polarization
of light, and the like. But he was a prolific researcher, and his writings cover the entire
spectrum of mathematics, with occasional essays into almost unrelated fields.

Around 1824, Cauchy defined the integral of a continuous function in a way that
is familiar to us, as a limit of left-endpoint approximations:∫ b

a
f (x) dx = lim

�x→0

n∑
i=1

f (xi−1) �x .

This is a much more complicated sort of limit than the ones we discussed in Chapter 2.
Cauchy was not entirely clear about the nature of the limit process involved in this
equation, nor was he clear about the precise role that the hypothesis of the continuity
of f played in proving that the limit exists.

A complete definition of the integral, as we gave in Section 5.4, was finally pro-
duced in the 1850s by the German mathematician Georg Bernhard Riemann. Riemann
was a student of Gauss; he met Gauss upon his arrival at Göttingen, Germany, for the
purpose of studying theology, when he was about 20 years old and Gauss was about
70. Riemann soon decided to study mathematics and became known as one of the
truly great mathematicians of the nineteenth century. Like Cauchy, he was particularly
interested in applications of mathematics to the real world; his research emphasized
electricity, heat, light, acoustics, fluid dynamics, and—as you might infer from the fact
that Wilhelm Weber was a major influence on Riemann’s education—magnetism. Rie-
mann also made significant contributions to mathematics itself, particularly in the field
of complex analysis. A major conjecture of his, involving the zeta function

ζ(s) =
∞∑

n=1

1

ns
, (1)

remains unsolved to this day. This conjecture has important consequences in the theory
of the distribution of prime numbers because

ζ(k) =
∏ (

1 − 1

pk

)−1

,

where the product
∏

is taken over all primes p. [The zeta function is defined in Eq. (1)
for complex numbers s to the right of the vertical line at x = 1 and is extended to
other complex numbers by the requirement that it be differentiable.] Riemann died of
tuberculosis shortly before his fortieth birthday.

Here we give a proof of the existence of the integral of a continuous function. We
will follow Riemann’s approach. Specifically, suppose that the function f is continuous
on the closed and bounded interval [a, b]. We will prove that the definite integral∫ b

a
f (x) dx

exists. That is, we will demonstrate the existence of a number I that satisfies the fol-
lowing condition: For every ε > 0 there exists δ > 0 such that, for every Riemann sum
R associated with any partition P with |P| < δ,

|I − R| < ε.
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(Recall that the norm |P| of the partition P is the length of the longest subinterval in
the partition.) In other words, every Riemann sum associated with every sufficiently
“fine” partition is close to the number I . If this happens, then the definite integral∫ b

a
f (x) dx

is said to exist, and I is its value.
Now we begin the proof. Suppose throughout that f is a function continuous on

the closed interval [a, b]. Given ε > 0, we need to show the existence of a number
δ > 0 such that ∣∣∣∣∣I −

n∑
i=1

f (x
i ) �xi

∣∣∣∣∣ < ε (2)

for every Riemann sum associated with any partition P of [a, b] with |P| < δ.
Given a partition P of [a, b] into n subintervals that are not necessarily of equal

length, let pi be a point in the subinterval [xi−1, xi ] at which f attains its minimum
value f (pi ). Similarly, let f (qi ) be its maximum value there. These numbers exist
for i = 1, 2, 3, . . . , n because of the maximum value property of continuous functions
(Theorem 4 of Appendix E).

In what follows we will denote the resulting lower and upper Riemann sums
associated with P by

L(P) =
n∑

i=1

f (pi ) �xi (3a)

and

U (P) =
n∑

i=1

f (qi ) �xi , (3a)

respectively. Then Lemma 1 is obvious.

LEMMA 1
For any partition P of [a, b], L(P) � U (P).

Now we need a definition. The partition P ′ is called a refinement of the partition
P if each subinterval of P ′ is contained in some subinterval of P . That is, P ′ is
obtained from P by adding more points of subdivision to P .

LEMMA 2

L(P) � L(P ′) � U (P ′) � U (P). (4)

Proof The inequality L(P ′) � U (P ′) is a consequence of Lemma 1. We will show
that L(P) � L(P ′); the proof that U (P ′) � U (P) is similar.

The refinement P ′ is obtained from P by adding one or more points of subdivi-
sion to P . So all we need show is that the Riemann sum L(P) cannot be decreased
by adding a single point of subdivision. Thus we will suppose that the partition P ′ is
obtained from P by dividing the kth subinterval [xk−1, xk] of P into two subintervals
[xk−1, z] and [z, xk] by means of the new subdivision point z.

The only resulting effect on the corresponding Riemann sum is to replace the
term

f (pk) · (xk − xk−1)

in L(P) with the two-term sum

f (u) · (z − xk−1) + f (v) · (xk − z),
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where f (u) is the minimum of f on [xk−1, z] and f (v) is the minimum of f on [z, xk].
But

f (pk) � f (u) and f (pk) � f (v).

Hence

f (u) · (z − xk−1) + f (v) · (xk − z) � f (pk) · (z − xk−1) + f (pk) · (xk − z)

= f (pk) · (z − xk−1 + xk − z)

= f (pk) · (xk − xk−1).

So the replacement of f (pk)·(xk−xk−1) cannot decrease the sum L(P) in question, and
therefore L(P) � L(P ′). Because this is all we needed to show, we have completed
the proof of Lemma 2. ◆

To prove that all the Riemann sums for sufficiently fine partitions are close to
some number I , we must first give a construction of I . This is accomplished through
Lemma 3.

LEMMA 3
Let Pn denote the regular partition of [a, b] into 2n subintervals of equal length.
Then the (sequential) limit

I = lim
n→∞ L(Pn) (5)

exists.

Proof We begin with the observation that each partition Pn+1 is a refinement of
Pn , so (by Lemma 2)

L(P1) � L(P2) � · · · � L(Pn) � · · · .

Therefore {L(Pn)} is a nondecreasing sequence of real numbers. Moreover,

L(Pn) =
2n∑

i=1

f (pi )�xi � M
2n∑

i−1

�xi = M(b − a),

where M is the maximum value of f on [a, b].
Theorem 1 of Appendix E guarantees that a bounded monotonic sequence of real

numbers must converge. Thus the number

I = lim
n→∞ L(Pn)

exists. This establishes Eq. (5), and the proof of Lemma 3 is complete. ◆

It is proved in advanced calculus that if f is continuous on [a, b], then—for every
number ε > 0—there exists a number δ > 0 such that

| f (u) − f (v)| < ε

for every two points u and v of [a, b] such that

|u − v| < δ.

This property of a function is called uniform continuity of f on the interval [a, b].
Thus the theorem from advanced calculus that we need to use states that every contin-
uous function on a closed and bounded interval is uniformly continuous there.

NOTE The fact that f is continuous on [a, b] means that for each number u in the
interval and each ε > 0, there exists δ > 0 such that if v is a number in the interval
with |u − v| < δ, then | f (u) − f (v)| < ε. But uniform continuity is a more stringent
condition. It means that given ε > 0, you can find not only a value δ1 that “works” for
u1, a value δ2 that works for u2, and so on, but more: You can find a universal value of
δ > 0 that works for all values of u in the interval. This should not be obvious when
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you notice the possibility that δ1 = 1, δ2 = 1
2 , δ3 = 1

3 , and so on. In any case, it is clear
that uniform continuity of f on an interval implies its continuity there.

Remember that throughout we have a continuous function f defined on the closed
interval [a, b].

LEMMA 4
Suppose that ε > 0 is given. Then there exists a number δ > 0 such that if P is a
partition of [a, b] with |P| < δ and P ′ is a refinement of P , then

|R(P) − R(P ′)| <
ε

3
(6)

for any two Riemann sums R(P) associated with P and R(P ′) associated with P ′.

Proof Because f must be uniformly continuous on [a, b], there exists a number δ > 0
such that if

|u − v| < δ, then | f (u) − f (v)| <
ε

3(b − a)
.

Suppose now that P is a partition of [a, b] with |P| < δ. Then

|U (P) − L(P)| =
n∑

i=1

| f (qi ) − f (pi )|�xi <
ε

3(b − a)

n∑
i=1

�xi = ε

3
.

This is valid because |pi − qi | < δ, for both pi and qi belong to the same subinterval
[xi−1, xi ] of P , and |P| < δ.

Now, as shown in Fig. F.1, we know that L(P) and U (P) differ by less than ε/3.R(P) R(P′)

L (P) U (P)Total width less than /3∋

FIGURE F.1 Part of the proof
of Lemma 4.

We know also that
L(P) � R(P) � U (P)

for every Riemann sum R(P) associated with P . But

L(P) � L(P ′) � U (P ′) � U (P)

by Lemma 2, because P ′ is a refinement of P; moreover,

L(P ′) � R(P ′) � U (P ′)

for every Riemann sum R(P ′) associated with P ′.
As Fig. F.1 shows, both the numbers R(P) and R(P ′) lie in the interval

[L(P), U (P)] of length less than ε/3, so Eq. (6) follows. This concludes the proof
of Lemma 4. ◆

THEOREM 1 Existence of the Integral
If f is continuous on the closed and bounded interval [a, b], then the integral∫ b

a
f (x) dx

exists.

Proof Suppose that ε > 0 is given. We must show the existence of a number δ > 0
such that, for every partition P of [a, b] with |P| < δ, we have

|I − R(P)| < ε,

where I is the number given in Lemma 3 and R(P) is an arbitrary Riemann sum for f
associated with P .

We choose the number δ provided by Lemma 4 such that

|R(P) − R(P ′)| <
ε

3

if |P| < δ and P ′ is a refinement of P .
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By Lemma 3, we can choose an integer N so large that

|PN | < δ and |L(PN ) − I | <
ε

3
. (7)

Given an arbitrary partition P such that |P| < δ, let P ′ be a common refinement of
both P and PN . You can obtain such a partition P ′, for example, by using all the points
of subdivision of both P and PN to form the subintervals of [a, b] that constitute P ′.

Because P ′ is a refinement of both P and PN and both the latter partitions have
mesh less than δ, Lemma 4 implies that

|R(P) − R(P ′)| <
ε

3
and |L(PN ) − R(P ′)| <

ε

3
. (8)

Here R(P) and R(P ′) are (arbitrary) Riemann sums associated with P and P ′, respec-
tively.

Given an arbitrary Riemann sum R(P) associated with the partition P with mesh
less than δ, we see that

|I − R(P)| = |I − L(PN ) + L(PN ) − R(P ′) + R(P ′) − R(P)|
� |I − L(PN )| + |L(PN ) − R(P ′)| + |R(P ′) − R(P)|.

In the last sum, both of the last two terms are less than ε/3 by virtue of the inequalities
in (8). We also know, by (7), that the first term is less than ε/3. Consequently,

|I − R(P)| < ε.

This establishes Theorem 1. ◆

We close with an example that shows that some hypothesis of continuity (or
perhaps some weaker assumption) is required for integrability.

EXAMPLE 1 Suppose that f is defined for 0 � x � 1 as follows:

f (x) =
{

1 if x is irrational;
0 if x is rational.

Then f is not continuous anywhere. (Why?) Given a partition P of [0, 1], let pi be a
rational point and qi an irrational point of the i th subinterval of P for each i , 1 � i � n.
As before, f attains its minimum value 0 at each pi and its maximum value 1 at each
qi . Also

L(P) =
n∑

i=1

f (pi )�xi = 0, whereas U (P) =
n∑

i=1

f (qi )�xi = 1.

Thus if we choose ε = 1
2 , then there is no number I that can lie within ε of both L(P)

and U (P), no matter how small the mesh of P . It follows that f is not integrable on
[0, 1]. ◗

REMARK This is not the end of the story of the integral. Integrals of highly discontin-
uous functions are important in many applications of physics, and near the beginning
of the twentieth century a number of mathematicians, most notably Henri Lebesgue
(1875–1941), developed more powerful integrals. The Lebesgue integral, in particu-
lar, always exists when the Riemann integral does, and gives the same value; but the
Lebesgue integral is sufficiently powerful to integrate even functions that are continu-
ous nowhere. It reports that ∫ 1

0
f (x) dx = 1

for the function f of Example 1. Other mathematicians have developed integrals with
domains far more general than sets of real numbers or subsets of the plane or space.
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APPENDIX G: APPROXIMATIONS AND RIEMANN SUMS

Several times in Chapter 6 our attempt to compute some quantity Q led to the following
situation. Beginning with a regular partition of an appropriate interval [a, b] into n
subintervals, each of length �x , we found an approximation A n to Q of the form

A n =
n∑

i=1

g(ui )h(vi ) �x, (1)

where ui and vi are two (generally different) points of the i th subinterval [xi−1, xi ].
For example, in our discussion of surface area of revolution that precedes Eq. (8) of
Section 6.4, we found the approximation

n∑
i=1

2π f (ui )
√

1 + [ f ′(vi )]2 �x (2)

to the area of the surface generated by revolving the curve y = f (x), a � x � b,
around the x-axis. (In Section 6.4 we wrote x

i for ui and x
i for vi .) Note that the

expression in (2) is the same as the right-hand side in Eq. (1); take g(x) = 2π f (x) and
h(x) = √

1 + [ f ′(x)]2.
In such a situation we observe that if ui and vi were the same point x

i of [xi−1, xi ]
for each i (i = 1, 2, 3, . . . , n), then the approximation in Eq. (1) would be a Riemann
sum for the function g(x)h(x) on [a, b]. This leads us to suspect that

lim
�x→0

n∑
i=1

g(ui )h(vi ) �x =
∫ b

a
g(x)h(x) dx . (3)

In Section 6.4, we assumed the validity of Eq. (3) and concluded from the approxima-
tion in (2) that the surface area of revolution ought to be defined to be

A = lim
�x→0

n∑
i=1

2π f (ui )
√

1 + [ f ′(vi )]2 �x =
∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx .

Theorem 1 guarantees that Eq. (3) holds under mild restrictions on the functions g and
h.

THEOREM 1 A Generalization of Riemann Sums
Suppose that h and g′ are continuous on [a, b]. Then

lim
�x→0

n∑
i=1

g(ui )h(vi ) �x =
∫ b

a
g(x)h(x) dx, (3)

where ui and vi are arbitrary points of the i th subinterval of a regular partition of
[a, b] into n subintervals, each of length �x .

Proof Let M1 and M2 denote the maximum values on [a, b] of |g′(x)| and |h(x)|,
respectively. Note that

n∑
i=1

g(ui )h(vi ) �x = R n + Sn, where R n =
n∑

i=1

g(vi )h(vi ) �x

is a Riemann sum approaching
∫ b

a g(x)h(x)dx as �x → 0, and

Sn =
n∑

i=1

[g(ui ) − g(vi )] h(vi ) �x .

To prove Eq. (3) it is sufficient to show that Sn → 0 as �x → 0. The mean value
theorem gives

|g(ui ) − g(vi )| = |g′ (xi ) | · |ui − vi | [xi in (ui , vi )]

� M1 �x,
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because both ui and vi are points of the interval [xi−1, xi ] of length �x . Then

|Sn| �
n∑

i=1

|g(ui ) − g(vi )| · |h(vi )| �x �
n∑

i=1

(M1 �x) · (M2 �x)

= (M1 M2 �x)

n∑
i=1

�x = M1 M2(b − a) �x,

from which it follows that Sn → 0 as �x → 0, as desired. ◆

As an application of Theorem 1, let us give a rigorous derivation of Eq. (2) of
Section 6.3,

V =
∫ b

a
2πx f (x) dx, (4)

for the volume of the solid generated by revolving around the y-axis the region between
the graph of y = f (x) and the x-axis for a � x � b. Beginning with the usual regular
partition of [a, b], let f (x �

i ) and f (x�

i ) denote the minimum and maximum values
of f on the i th subinterval [xi−1, xi ]. Denote by x

i the midpoint of this subinterval.
From Fig. G.1, we see that the part of the solid generated by revolving the region
below y = f (x), xi−1 � x � xi , contains a cylindrical shell with average radius x

i ,
thickness �x , and height f (x �

i ) and is contained in another cylindrical shell with the
same average radius and thickness but with height f (x�

i ). Hence the volume �Vi of
this part of the solid satisfies the inequalities

2πx
i f

(
x �

i

)
�x � �Vi � 2πx

i f
(
x�

i

)
�x .

We add these inequalities for i = 1, 2, 3, . . . , n and find that
n∑

i=1

2πx
i f

(
x �

i

)
�x � V �

n∑
i=1

2πx
i f

(
x�

i

)
�x .

Because Theorem 1 implies that both of the last two sums approach
∫ b

a 2π f (x) dx , the
squeeze law of limits now implies Eq. (4).

x

y

xi

xi
★

a bxi − 1

y = f (x)

xi

f (xi  )#
 

f (xi  )b
 

★

FIGURE G.1 A careful estimate of the volume of a
solid of revolution around the y-axis.

We will occasionally need a generalization of Theorem 1 that involves the no-
tion of a continuous function F(x, y) of two variables. We say that F is continuous
at the point (x0, y0) provided that the value F(x, y) can be made arbitrarily close to
F(x0, y0) merely by choosing the point (x, y) sufficiently close to (x0, y0). We discuss
continuity of functions of two variables in Chapter 12. Here it will suffice to accept
the following facts: If g(x) and h(y) are continuous functions of the single variables x
and y, respectively, then simple combinations such as

g(x) ± h(y), g(x)h(y), and
√

[g(x)]2 + [h(y)]2

are continuous functions of the two variables x and y.
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Now consider a regular partition of [a, b] into n subintervals, each of length �x ,
and let ui and vi denote arbitrary points of the i th subinterval [xi−1, xi ]. Theorem 2—
we omit the proof—tells us how to find the limit as �x → 0 of a sum such as

n∑
i=1

F(ui , vi ) �x .

THEOREM 2 A Further Generalization
Let F(x, y) be continuous for x and y both in the interval [a, b]. Then, in the
notation of the preceding paragraph,

lim
�x→0

n∑
i=1

F(ui , vi ) �x =
∫ b

a
F(x, x) dx . (5)

Theorem 1 is the special case F(x, y) = g(x)h(y) of Theorem 2. Moreover, the
integrand F(x, x) on the right in Eq. (5) is merely an ordinary function of the single
variable x . As a formal matter, the integral corresponding to the sum in Eq. (5) is
obtained by replacing the summation symbol with an integral sign, changing both ui

and vi to x , replacing �x with dx , and inserting the correct limits of integration. For
example, if the interval [a, b] is [0, 4], then

lim
�x→0

n∑
i=1

√
9u2

i + v4
i �x =

∫ 4

0

√
9x2 + x4 dx

=
∫ 4

0
x(9 + x2)1/2 dx =

[
1

3
(9 + x2)3/2

]4

0

= 1

3

[
(25)3/2 − (9)3/2

] = 98

3
.

APPENDIX G PROBLEMS

In Problems 1 through 7, ui and vi are arbitrary points of the
i th subinterval of a regular partition of [a, b] into n subintervals,
each of length �x. Express the given limit as an integral from a
to b, then compute the value of this integral.

1. lim
�x→0

n∑
i=1

uivi �x ; a = 0, b = 1

2. lim
�x→0

n∑
j=1

(3u j + 5v j ) �x ; a = −1, b = 3

3. lim
�x→0

n∑
i=1

ui

√
4 − v2

i �x ; a = 0, b = 2

4. lim
�x→0

n∑
i=1

ui√
16 + v2

i

�x ; a = 0, b = 3

5. lim
�x→0

n∑
i=1

sin ui cos vi �x ; a = 0, b = π/2

6. lim
�x→0

n∑
i=1

√
sin2 ui + cos2 vi �x ; a = 0, b = π

7. lim
�x→0

n∑
k=1

√
u4

k + v7
k �x ; a = 0, b = 2

8. Explain how Theorem 1 applies to show that Eq. (8) of Sec-
tion 6.4 follows from the discussion that precedes it in that
section.

9. Use Theorem 1 to derive Eq. (10) of Section 6.4.

APPENDIX H: L'HÔPITAL'S RULE AND CAUCHY'S MEAN VALUE THEOREM

Here we give a proof of l’Hôpital’s rule,

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, (1)

under the hypotheses of Theorem 1 in Section 4.8. The proof is based on a general-
ization of the mean value theorem due to the French mathematician Augustin Louis
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Cauchy. Cauchy used this generalization in the early nineteenth century to give rigor-
ous proofs of several calculus results not previously established firmly.

CAUCHY'S MEAN VALUE THEOREM
Suppose that the functions f and g are continuous on the closed and bounded interval
[a, b] and differentiable on (a, b). Then there exists a number c in (a, b) such that

[ f (b) − f (a)] g′(c) = [g(b) − g(a)] f ′(c). (2)

REMARK 1 To see that this theorem is indeed a generalization of the (ordinary) mean
value theorem, we take g(x) = x . Then g′(x) ≡ 1, and the conclusion in Eq. (2)
reduces to the fact that

f (b) − f (a) = (b − a) f ′(c)

for some number c in (a, b).

REMARK 2 Equation (2) has a geometric interpretation like that of the ordinary mean
value theorem. Let us think of the equations x = g(t), y = f (t) as describing the
motion of a point P(x, y) moving along a curve C in the xy-plane as t increases from
a to b (Fig. H.1). That is, P(x, y) = P(g(t), f (t)) is the location of the point P at
time t . Under the assumption that g(b) �= g(a), the slope of the line L connecting the
endpoints of the curve C is

m = f (b) − f (a)

g(b) − g(a)
. (3)

But if g′(c) �= 0, then the chain rule gives

dy

dx
= dy/dt

dx/dt
= f ′(c)

g′(c)
(4)

for the slope of the line tangent to the curve C at the point (g(c), f (c)). But if g(b) �=
g(a) and g′(c) �= 0, then Eq. (2) may be written in the form

f (b) − f (a)

g(b) − g(a)
= f ′(c)

g′(c)
, (5)

so the two slopes in Eqs. (3) and (4) are equal. Thus Cauchy’s mean value theorem
implies that (under our assumptions) there is a point on the curve C where the tangent
line is parallel to the line joining the endpoints of C . This is exactly what the (ordinary)
mean value theorem says for an explicitly defined curve y = f (x). This geometric
interpretation motivates the following proof of Cauchy’s mean value theorem.

x

y

(x0, y0)

f ′(c)
g′(c)

Slope:

f (b) − f (a)
g (b) − g (a)

Slope:

(g (b),  f (b))

(g (c),  f (c))

(g (a),  f (a))

L
d 90˚

FIGURE H.1 The idea of Cauchy’s mean value theorem.
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Proof The line L through the endpoints in Fig. H.1 has point-slope equation

y − f (a) = f (b) − f (a)

g(b) − g(a)
[x − g(a)] ,

which can be rewritten in the form A x + By + C = 0 with

A = g(b) − f (a), B = −[g(b) − g(a)], and

C = f (a) [g(b) − g(a)] − g(a) [ f (b) − f (a)] . (6)

According to Miscellaneous Problem 93 of Chapter 3, the (perpendicular) distance
from the point (x0, y0) to the line L is

d = |A x0 + By0 + C |√
A2 + B2

.

Figure H.1 suggests that the point (g(c), f (c)) will maximize this distance d for points
on the curve C .

We are motivated, therefore, to define the auxiliary function

φ(t) = A g(t) + B f (t) + C, (7)

with the constants A , B, and C as defined in (6). Thus φ(t) is essentially a constant
multiple of the distance from (g(t), f (t)) to the line L in Fig. H.1.

Now φ(a) = 0 = φ(b) (why?), so Rolle’s theorem (Section 4.3) implies the
existence of a number c in (a, b) such that

φ′(c) = A g′(c) + B f ′(c) = 0. (8)

We substitute the values of A and B from Eq. (6) into (8) and obtain the equation

[ f (b) − f (a)] g′(c) − [g(b) − g(a)] f ′(c) = 0.

This is the same as Eq. (2) in the conclusion of Cauchy’s mean value theorem, and the
proof is complete. ◆

NOTE Although the assumptions that g(b) �= g(a) and g′(c) �= 0 were needed for
our geometric interpretation of the theorem, they were not used in its proof—only in
the motivation for the method of proof.

PROOF OF L'HÔPITAL'S RULE Suppose that f (x)/g(x) has the indeterminate
form 0/0 at x = a. We may invoke continuity of f and g to allow the assumption that
f (a) = 0 = f (b). That is, we simply define f(a) and g(a) to be zero in case their
values at x = a are not originally given.

Now we restrict our attention to values of x �= a in a fixed neighborhood of
a on which both f and g are differentiable. Choose one such value of x and hold it
temporarily constant. Then apply Cauchy’s mean value theorem on the interval [a, x].
(If x < a, use the interval [x, a].) We find that there is a number z between a and x
that behaves as c does in Eq. (2). Hence, by virtue of Eq. (2), we obtain the equation

f (x)

g(x)
= f (x) − f (a)

g(x) − g(a)
= f ′(z)

g′(z)
.

Now z depends on x , but z is trapped between x and a, so z is forced to approach a as
x → a. We conclude that

lim
x→a

f (x)

g(x)
= lim

z→a

f ′(z)
g′(z)

= lim
x→a

f ′(x)

g′(x)
,

under the assumption that the right-hand limit exists. Thus we have verified l’Hôpital’s
rule in the form of Eq. (1). ◆

1115

www.konkur.in



A-38 APPENDICES

APPENDIX I: PROOF OF TAYLOR'S FORMULA

Several different proofs of Taylor’s formula (Theorem 2 of Section 10.4) are known,
but none of them seems very well motivated—each requires some “trick” to begin
the proof. The trick we employ here (suggested by C. R. MacCluer) is to begin by
introducing an auxiliary function F(x), defined as follows:

F(x) = f (b) − f (x) − f ′(x)(b − x) − f ′′(x)

2! (b − x)2

− · · · − f (n)(x)

n! (b − x)n − K (b − x)n+1, (1)

where the constant K is chosen so that F(a) = 0. To see that there is such a value of
k, we could substitute x = a on the right and F(x) = F(a) = 0 on the left in Eq. (1)
and then solve routinely for K , but we have no need to do this explicitly.

Equation (1) makes it quite obvious that F(b) = 0 as well. Therefore, Rolle’s
theorem (Section 4.3) implies that

F ′(z) = 0 (2)

for some point z of the open interval (a, b) (under the assumption that a < b). To see
what Eq. (2) means, we differentiate both sides of Eq. (1) and find that

F ′(x) = − f ′(x) + [
f ′(x) − f ′′(x)(b − x)

]
+

[
f ′′(x)(b − x) − 1

2! f (3)(x)(b − x)2

]

+
[

1

2! f (3)(x)(b − x)2 − 1

3! f (4)(x)(b − x)3

]

+ · · · +
[

1

(n − 1)! f (n)(x)(b − x)n−1 − 1

n! f (n+1)(x)(b − x)n

]
+ (n + 1)K (b − x)n.

Upon careful inspection of this result, we see that all terms except the final two cancel
in pairs. Thus the sum “telescopes” to give

F ′(x) = (n + 1)K (b − x)n − f (n+1)(x)

n! (b − x)n. (3)

Hence Eq. (2) means that

(n + 1)K (b − z)n − f (n+1)(z)

n! (b − z)n = 0.

Consequently we can cancel (b − z)n and solve for

K = f (n+1)(z)

(n + 1)! . (4)

Finally, we return to Eq. (1) and substitute x = a, f (x) = 0, and the value of K
given in Eq. (4). The result is the equation

0 = f (b) − f (a) − f ′(a)(b − a) − f ′′(a)

2! (b − a)2

− · · · − f (n)(a)

n! (b − a)n − f (n+1)(z)

(n + 1)! (b − a)n+1,

which is equivalent to the desired Taylor’s formula, Eq. (11) of Section 10.4. ◆
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APPENDIX J: CONIC SECTIONS AS SECTIONS OF A CONE

The parabola, hyperbola, and ellipse that we studied in Chapter 9 were originally intro-

x

y

z

u

1

x = c

(0, 0, 1)

φ

c

Conic
section

z = x2 + y2

FIGURE J.1 Finding an equation
for a conic section.

duced by the ancient Greek mathematicians as plane sections (traces) of a right circular
cone. Here we show that the intersection of a plane and a cone is, indeed, one of the
three conic sections as defined in Chapter 9.

Figure J.1 shows the cone with equation z = √
x2 + y2 and its intersection with

a plane P that passes through the point (0, 0, 1) and the line x = c > 0 in the xy-plane.
An equation of P is

z = 1 − x

c
. (1)

The angle between P and the xy-plane is φ = tan−1(1/c). We want to show that the
conic section obtained by intersecting the cone and the plane is

A parabola if φ = 45◦ (c = 1),

An ellipse if φ < 45◦ (c > 1),

A hyperbola if φ > 45◦ (c < 1).

We begin by introducing uv-coordinates in the plane P as follows. The

x

z

c

φ
1

(0, 1)

(x, z)

z

x
c

z = 1 −

FIGURE J.2 Computing
coordinates in the uv-plane.

u-coordinate of the point (x, y, z) of P is u = y. The v-coordinate of the same point
is its perpendicular distance from the line x = c. This explains the u- and v-axes indi-
cated in Fig. J.1. Figure J.2 shows the cross section in the plane y = 0 exhibiting the
relation between v, x , and z. We see that

z = v sin φ = v√
1 + c2

. (2)

Equations (1) and (2) give

x = c(1 − z) = c

(
1 − v√

1 + c2

)
. (3)

We had z2 = x2 + y2 for the equation of the cone. We make the following substitutions
in this equation: Replace y with u, and replace z and x with the expressions on the
right-hand sides of Eqs. (2) and (3), respectively. These replacements yield

v2

1 + c2
= c2

(
1 − v√

1 + c2

)2

+ u2.

After we simplify, this last equation takes the form

u2 + c2 − 1

c2 + 1
v2 − 2c2

√
1 + c2

v + c2 = 0. (4)

This is the equation of the curve in the uv-plane. We examine the three cases for the
angle φ.

Suppose first that φ = 45◦. Then c = 1, so Eq. (4) contains a term that includes
u2, another term that includes v, and a constant term. So the curve is a parabola; see
Eq. (6) of Section 9.6.

Suppose next that φ < 45◦. Then c > 1, and both the coefficients of u2 and v2

in Eq.(4) are positive. Thus the curve is an ellipse; see Eq. (17) of Section 9.6.
Finally, if φ > 45◦, then c < 1, and the coefficients of u2 and v2 in Eq. (4) have

opposite signs. So the curve is a hyperbola; see Eq. (26) of Section 9.6.
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APPENDIX K: PROOF OF THE LINEAR APPROXIMATION THEOREM

Under the hypothesis of continuous differentiability of the linear approximation theo-
rem stated in Section 12.6, we want to prove that the increment

� f = f (a + h) − f (a)

is given by

� f = ∇ f (a) · h + ε(h) · h (1)

where ε(h) = 〈ε1(h), ε2(h), . . . , εn(h)〉 is a vector such that each element εi (h) ap-
proaches zero as h → 0. [Note the symbol � for “increment” and the inverted ∇ for
“gradient” on the right-hand side in Eq. (1).]

To analyze the increment � f , we split the jump from a to a + h into n separate
steps, in each of which only a single coordinate is changed. Let ei denote the unit
n-vector with 1 in the i th position, and write

a0 = a and ai = ai−1 + hi ei (2)

for i = 1, 2, . . . , n, so that an = a + h. Then

� f = f (an) − f (a0)

= [ f (an) − f (an−1)] + [ f (an−1) − f (an−2)] + · · ·
+ [ f (a2) − f (a1)] + [ f (a1) − f (a0)];

that is,

� f =
n∑

i=1

[
f (ai ) − f (ai−1)

]
. (3)

The i th term in this sum is given by

f (ai ) − f (ai−1) = f (a1 + h1, . . . , ai−1 + hi−1, ai + hi , ai+1, . . . , an)

− f (a1 + h1, . . . , ai−1 + hi−1, ai , ai+1, . . . , an)

= gi (1) − gi (0),

where the differentiable function gi is defined by

gi (t) = f (a1 + h1, . . . , ai−1 + hi−1, ai + thi , ai+1, . . . , an).

The mean value theorem then yields

f (ai ) − f (ai−1) = gi (1) − gi (0) = g′
i ( ti )(1 − 0)

= Di f (a1 + h1, . . . , ai−1 + hi−1, ai + ti hi , ai+1, . . . , an) · hi

= Di f (ai−1 + ti hi ei ) · hi

for some ti between 0 and 1. Substitution in (2) then gives

� f =
n∑

i=1

Di f (ai−1 + ti hi ei ) · hi

=
n∑

i=1

[Di f (a) + Di f (ai−1 + ti hi ei ) − Di f (a)] · hi .

Thus

� f =
n∑

i=1

[Di f (a) + εi (h)] · hi

= ∇ f (a) · h + 〈εi (h), εi (h), . . . , εi (h)〉 · h

where
εi (h) = Di f (ai−1 + ti hi ei ) − Di f (a) → 0

(by continuity of Di f at a) as h → 0 (and hence ai−1 → a by (2)). We have therefore
established (1) and hence completed the proof. ◆
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APPENDIX L: UNITS OF MEASUREMENT AND CONVERSION FACTORS

MKS SCIENTIFIC UNITS

• Length in meters (m); mass in kilograms (kg), time in seconds (s)
• Force in newtons (N); a force of 1 N imparts an acceleration of 1 m/s2 to a mass

of 1 kg.
• Work in joules (J); 1 J is the work done by a force of 1 N acting through a distance

of 1 m.
• Power in watts (W); 1 W is 1 J/s.

BRITISH ENGINEERING UNITS (FPS)

• Length in feet (ft), force in pounds (lb), time in seconds (s)
• Mass in slugs; 1 lb of force imparts an acceleration of 1 ft/s2 to a mass of 1 slug.

A mass of m slugs at the surface of the earth has a weight of w = mg pounds
(lb), where g ≈ 32.17 ft/s2.

• Work in ft·lb, power in ft·lb/s.

CONVERSION FACTORS

1 in. = 2.54 cm = 0.0254m, 1 m ≈ 3.2808 ft

1 mi = 5280 ft; 60 mi/h = 88 ft/s

1 lb ≈ 4.4482 N; 1 slug ≈ 14.594 kg

1 hp = 550 ft·lb/s ≈ 745.7 W

• Gravitational acceleration: g ≈ 32.17 ft/s2 ≈ 9.807 m/s2

• Atmospheric pressure: 1 atm is the pressure exerted by a column of mercury 76
cm high; 1 atm ≈ 14.70 lb/in.2 ≈ 1.013 × 105 N/m2

• Heat energy: 1 Btu ≈ 778 ft·lb ≈ 252 cal, 1 cal ≈ 4.184 J

APPENDIX M: FORMULAS FROM ALGEBRA, GEOMETRY, AND TRIGONOMETRY

LAWS OF EXPONENTS

aman = am+n, (am)n = amn, (ab)n = anbn, am/n = n
√

am ;
in particular,

a1/2 = √
a.

If a �= 0, then

am−n = am

an
, a−n = 1

an
, and a0 = 1.

QUADRATIC FORMULA
The quadratic equation

ax2 + bx + c = 0 (a �= 0)

has solutions

x = −b ± √
b2 − 4ac

2a
.
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FACTORING

a2 − b2 = (a − b)(a + b)

a3 − b3 = (a − b)(a2 + ab + b2)

a4 − b4 = (a − b)(a3 + a2b + ab2 + b3)

= (a − b)(a + b)(a2 + b2)

a5 − b5 = (a − b)(a4 + a3b + a2b2 + ab3 + b4)

(The pattern continues.)

a3 + b3 = (a + b)(a2 − ab + b2)

a5 + b5 = (a + b)(a4 − a3b + a2b2 − ab3 + b4)

a7 + b7 = (a + b)(a6 − a5b + a4b2 − a3b3 + a2b4 − ab5 + b6)

(The pattern continues for odd exponents.)

BINOMIAL FORMULA

(a + b)n = an + nan−1b + n(n − 1)

1 · 2
an−2b2

+ n(n − 1)(n − 2)

1 · 2 · 3
an−3b3 + · · · + nabn−1 + bn

if n is a positive integer.

AREA AND VOLUME
In Fig. M.1, the symbols have the following meanings.

A: area b: length of base r : radius
B : area of base C : circumference V : volume
h : height �: length w: width

w

h
h

r

B

b

h

Rectangle: A = bh

b

h

Parallelogram: A = bh

r

Circle: C = 2 r  and  A =  π r2π

4
3 π r3  and  A = 4 r2πV =

e

b

h

Triangle: A = 1
2

bh Trapezoid: A = 1
2

(b1 + b2)h

b1

b2

h

r

Sphere:

r

Pyramid:
1
3 BhV =

B

h

Rectangular parallelepiped:

V = whe

h

Right circular cylinder:

V =    r2h = Bhπ
Right circular cone:

1
3

r2h =π 1
3

BhV =

B

FIGURE M.1 The basic geometric shapes.

PYTHAGOREAN THEOREM
In a right triangle with legs a and b and hypotenuse c,

a2 + b2 = c2.
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FORMULAS FROM TRIGONOMETRY

sin(−θ) = −sin θ

cos(−θ) = cos θ

sin2 θ + cos2 θ = 1

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

sin(α + β) = sin α cos β + cos α sin β

cos(α + β) = cos α cos β − sin α sin β

tan(α + β) = tan α + tan β

1 − tan α tan β

sin2 θ

2
= 1 − cos θ

2

cos2 θ

2
= 1 + cos θ

2
For an arbitrary triangle (Fig. M.2):

Law of cosines: c2 = a2 + b2 − 2ab cos C.

Law of sines:
sin A

a
= sin B

b
= sin C

c
.

a
b

c
A B

C

FIGURE M.2 An arbitrary triangle.

APPENDIX N: THE GREEK ALPHABET

A α alpha I ι iota P ρ rho
B β beta K κ kappa � σ sigma
� γ gamma � λ lambda T τ tau
� δ delta M μ mu ϒ υ upsilon
E ε epsilon N ν nu � φ phi
Z ζ zeta � ξ xi X χ chi
H η eta O o omicron " ψ psi
$ θ theta % π pi & ω omega
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T/F Study Guides—Hints &
Answers
The T/F study guide for a section is not intended to indicate a complete list of learning objectives for the section, nor to
suggest every concept you should learn as you study it. Instead, the True/False items are provided to help you check the
accuracy of your reading and retention, and to guide you systematically back through appropriate parts of the section if
you appear to need further review of certain facts and concepts before attempting to work the problems.

We suggest that you first mark each item as True or False, then consult the answers that are provided. If you
have any incorrect answers, then consult the hints for the appropriate items. The hint for each item will steer you to the
appropriate part of the section to read again in order to determine where you may have gone wrong in your first attempt.

SECTION 1.1 T/F STUDY GUIDE: HINTS

1. The 18th century began on January 1, 1701 and ended on
December 31, 1800.

2. The definition of function is on the first page of Section 1.1.

3. The notation f (x) is explained in the definition of function.

4. See the subsection entitled Domains and Intervals.

5. See Eq. (6).

6. See Fig. 1.1.9.

7. See the subsection entitled Domains and Intervals.

8. See the paragraph that precedes Example 3.

9. See the subsection entitled Domains and Intervals. Do not
be confused by Eq. (6).

10. Read the paragraph that concludes with Eq. (10).

Answers: FTTFFFTTTF

SECTION 1.2 T/F STUDY GUIDE: HINTS

1. See Example 1.

2. Read the sentence that includes Eq. (1).

3. See the solution of Example 3.

4. See the subsection entitled Graphs of Functions.

5. See the subsection entitled Graphs of Functions.

6. Study Example 7, then examine Fig. 1.2.11.

7. See the solution of Example 7.

8. Read the sentence that includes Eq. (9).

9. See the last two sentences of Example 10.

10. Read the sentence immediately following the definition of
x(t).

Answers: TFTTTFTTTF

SECTION 1.3 T/F STUDY GUIDE: HINTS

1. Read the discussion of Figs. 1.3.3 and 1.3.4.

2. See the next-to-last paragraph of the subsection entitled
Power Functions.

3. See Eq. (4).

4. See Example 3.

5. Read the first paragraph of the subsection on Polynomials.

6. Read the sentence that includes Eq. (9). The key word is
polynomials.

7. See the second paragraph of the subsection entitled Alge-
braic Functions.

8. See Example 7.

9. Apply the “vertical line test” of Section 1.2 to Fig. 1.3.25.

10. Read the paragraph immediately following Example 1.

Answers: FTTFFFTTTT

SECTION 1.4 T/F STUDY GUIDE: HINTS

1. See Eq. (2)

2. Examine Fig. 1.4.2, or read the sentence that includes
Eq. (6).

3. Read the sentence that includes Eq. (8).

4. Study the paragraph that follows Example 3.

5. See Example 4.

6. See Fig. 1.4.10.

7. See Eq. (13).

8. Examine the third displayed equation in the subsection on
Logarithmic Functions.

9. See Example 11.

10. See Example 10.

Answers: TFTFFFTTFT

From Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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SECTION 1.5 T/F STUDY GUIDE: HINTS

1. See the subsection on The Two Fundamental Problems.

2. See the subsection on The Two Fundamental Problems.

3. See the subsection on The Fundamental Relationship.

4. Read the second paragraph in the subsection on The Two
Fundamental Problems.

5. Is the y-axis tangent to the graph of the parabola y = x2

(Fig. 1.2.16) at the origin?

6. Is the x-axis tangent to the graph of y = cos2 x (Fig. 1.4.8)

at the point
(π

2
, 0

)
?

7. Read the paragraph that follows the statement of The Tan-
gent Problem.

8. Read the paragraph that follows the statement of The Area
Problem.

9. Study Example 1.

10. Read the subsection entitled The Fundamental Relationship.

Answers: TTTFFFTTFT

SECTION 2.1 T/F STUDY GUIDE: HINTS

1. See Eq. (2).

2. Read the sentence that includes Eq. (5).

3. Read the two sentences that conclude with Eq. (7). Do not
skip details.

4. Read the theorem that concludes with Eq. (9).

5. Read the sentences immediately after Eq. (11).

6. The answer is in the subsection on The Animal Pen Problem
Completed.

7. Study the subsection on The Animal Pen Problem Com-
pleted.

8. The answer is in the subsection on The Animal Pen Problem
Completed.

9. See Example 4.

10. See Example 5.

Answers: TTFTFTTFFF

SECTION 2.2 T/F STUDY GUIDE: HINTS

1. Read the entire sentence that concludes with Eq. (3).

2. Read the sentence that concludes with Eq. (3).

3. Read the paragraph entitled The Idea of the Limit.

4. Describe the values of x3 when x is very close to the number
2. Answer: “The values of x3 are all close to . . . ”

5. Study Example 2 and the Remark that follows it; alterna-
tively, use a calculator to evaluate g(2).

6. Study Example 4; if necessary, go over Example 2 again.

7. See Example 5.

8. Read the Product Law of Limits in the subsection on The
Limit Laws.

9. Read carefully the Quotient Law of Limits in the subsection
on The Limit Laws.

10. Read the Substitution Law of Limits, the paragraph that fol-
lows it, and then Eq. (11) and the material immediately be-
fore and after it.

Answers: FTTFFFFTFT

SECTION 2.3 T/F STUDY GUIDE: HINTS

1. See Theorem 1.

2. Study Example 1; in addition, ask your calculator to evaluate
0

0
.

3. See Example 2 and use a calculator (set in radian mode) to
evaluate tan 3.

4. See Eq. (3) in Appendix A.

5. Read the paragraph immediately preceding Theorem 2.

6. Study Example 5.

7. See Example 9.

8. Study the paragraph that includes Eq. (14).

9. Read the paragraphs that include Eqs. (11) and (12).

10. Read the paragraphs that include Eqs. (11) and (12).

Answers: TFFTTTTFTT

SECTION 2.4 T/F STUDY GUIDE: HINTS

1. See the definition of Continuity at a Point.

2. Read Example 1.

3. The answer is implicit in Example 3; if it isn’t clear, review
the definition of Continuity at a Point.

4. Read the paragraph that follows Example 5.

5. Read the second paragraph after Example 5.

6. See the definition of Continuity at a Point.

7. Read Theorem 1.

8. Read Theorem 2.

9. Study the second paragraph in the subsection on Continuous
Functions on Closed Intervals.

10. Read Theorem 3.

Answers: TTTTTTTTTT

SECTION 3.1 T/F STUDY GUIDE: HINTS

1. See the definition that includes Eq. (2).

2. Study the paragraph that includes Eqs. (4) and (5).

3. Compare Fig. 3.1.4 and the paragraph that includes Eqs. (6)
and (7).

4. See the sentence that ends with Eq. (9).

5. Read the paragraph that includes Eq. (10).

6. Study the paragraph that ends with Eq. (12). Note that to say
that f (t) = t2 is the same as saying that f (x) = x2.

7. See Eq. (16).

8. See the sentence that ends with Eq. (19).

9. See (13).

10. See (13). Note that to say that f (t) = t2 is the same as
saying that f (x) = x2.

Answers: TTTTTTFTTT
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SECTION 3.2 T/F STUDY GUIDE: HINTS

1. Study the first three paragraphs of Section 3.2. Note: Ques-
tion 1 is not a “trick question.”

2. Read the sentence that includes Eq. (5), the rest of that para-
graph, and the following paragraph.

3. See Example 2.

4. See Example 4.

5. Apply Eq. (15) with f (x) = x2 + 1 and g(x) = x3 − 1.

6. See Example 9.

7. If f ′(x) = g(x), then f ′(z) = g(z).

8. Apply Eq. (15) with f (x) = x and g(x) = sin x .

9. Apply Eq. (18) with f (x) = sin x and g(x) = x .

10. Apply Eq. (9′) with a = b = 1.

Answers: TFFFTTTTFT

SECTION 3.3 T/F STUDY GUIDE: HINTS

1. See Eq. (3). Remember that if f (x) = x2, then f (z) = z2.

2. See Eq. (4).

3. See Eq. (9).

4. Apply Eq. (9) with g(x) = 3x + 5 and n = 17.

5. See Eq. (4).

6. If the answer isn’t exactly right, then it’s wrong.

7. See Example 5.

8. Apply the generalized power rule—Eq. (9)—with g(x) =
sin x and n = 5.

9. Apply the chain rule—Eq. (4)—with g(x) = x5 and f (x) =
sin x .

10. Apply the chain rule with f (x) = x7 and g(x) = x3 + x2.

Answers: TTTTTFTTTF

SECTION 3.4 T/F STUDY GUIDE: HINTS

1. See Eq. (4).

2. −3

2
− 1 = −

(
3

2
+ 1

)
= · · ·

3. See Theorem 1.

4. Apply Eq. (6) with f (x) = 4 − x2 and r = 1

2
.

5. The definition of vertical tangent line follows Example 8.

6. See Example 9.

7. See Example 10 and read the paragraph that follows it.

8. Read (and memorize!) Theorem 2.

9. The graph of g(x) = |x −1|+2 is a translate of the graph of
the absolute value function (see Fig. 3.4.3) with the vertex
moved from the origin to the point (1, −2).

10. The definition of vertical tangent line follows Example 8. Is
h continuous at x = 0?

Answers: TFTFTTFTFF

SECTION 3.5 T/F STUDY GUIDE: HINTS

1. Read (and memorize) the first definition in Section 3.5.

2. See Theorem 1.

3. See Theorem 2.

4. See Example 5.

5. See Example 5.

6. Read (and memorize) Theorem 3.

7. Read the first paragraph of the subsection The Closed-
Interval Maximum-Minimum Method.

8. See Example 4.

9. See Example 5.

10. Read the first paragraph of the subsection The Closed-
Interval Maximum-Minimum Method. Observe that if a � b
and a � b, then a = b.

Answers: FTTFFTTTFT

SECTION 3.6 T/F STUDY GUIDE: HINTS

1. Read the conclusion of the solution in Example 1.

2. Read the conclusion of the solution in Example 1.

3. See Example 2.

4. If V (r) is continuous on its domain 0 < r < +∞, is there
any guarantee that V has an absolute maximum value?

5. Do the extrema of the function A(x) in Example 5 all occur
at interior points?

6. What is the area of a square inscribed in a circle of radius 1?

7. Is the area of a rectangle measured in feet? Square feet? Or
cubic feet?

8. See the statement of Example 6.

9. Examine the third paragraph of Section 3.6.

10. How is the complicated equation in the feedlot problem
solved?

Answers: TTTFFFFTTT

SECTION 3.7 T/F STUDY GUIDE: HINTS

1. See Eq. (4).

2. Read the statement of Theorem 1.

3. Apply the product rule for Dx [ f (x) · g(x)] with f (x) = x2

and g(x) = sin x , or read Example 1.

4. Apply the generalized power rule for Dt [ f (t)]r with f (t) =
2 − 3 cos t and r = 3

2
.

5. Read (and memorize) the statement of Theorem 2.

6. A general rule about trigonometric functions is that (trig x)n

may be written in the shorter form trign x provided that
n �= −1.

7. Read the statement of Theorem 2.

8. See Eq. (16).

9. Is the product of continuous functions itself continuous?

10. See Theorem 2 of Section 3.4.

Answers: TFTFTFTTTT
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SECTION 3.8 T/F STUDY GUIDE: HINTS

1. Read the sentence that includes Eq. (1).

2. See Eq. (2).

3.
(

1

2

)x

= 1

2x
.

4. See Eq. (6).

5. See Eq. (8).

6. See Example 2.

7. See Example 5.

8. See Eq. (10).

9. See Eq. (18).

10. See Example 9.

Answers: TFFFTTTTTT

SECTION 3.9 T/F STUDY GUIDE: HINTS

1. See Example 2.

2. See the statement of Example 3.

3. Read the solution of Example 6, or see Eq. (1) in Appendix
B, or look up Pythagorean theorem in the Index.

4. Examine the second paragraph of the solution of Example 7.

5. Read the first paragraph of the subsection Related Rates.

6. Study Example 1b.

7. Study Example 5.

8. Examine the solution of Example 3.

9. Examine the solution of Example 3.

10. Read the statement of Example 3, or look up the word folium
in a dictionary.

Answers: FFFTTFTFTT

SECTION 3.10 T/F STUDY GUIDE: HINTS

1. The first day of the 19th century was January 1, 1801 and the
last day of the 19th century was December 31, 1900.

2. See Example 1.

3. Read the first sentence of the subsection Newton’s Method.

4. Study the paragraph that ends with Eq. (6).

5. Examine (and memorize) Eq. (6).

6. See Example 2, then Example 1.

7. Solve for xn+1 − xn in Eq. (6).

8. See Example 3.

9. See Example 3.

10. See Example 4.

Answers: TTTTFTTTTT

SECTION 4.2 T/F STUDY GUIDE: HINTS

1. See Eq. (1) of Section 4.2.

2. See Eq. (2).

3. See Eq. (3).

4. Read Example 1.

5. Note that π �= 3.14; instead, π ≈ 3.14.

6. Study the subsection entitled The Error in Linear Approxi-
mation.

7. Examine the formulas that are listed in the subsection enti-
tled Differentials.

8. Examine the formulas that are listed in the subsection enti-
tled Differentials.

9. Examine the formulas that are listed in the subsection enti-
tled Differentials.

10. Read Example 7.

Answers: TTTFFTFTTT

SECTION 4.3 T/F STUDY GUIDE: HINTS

1. See the first definition in Section 4.3.

2. Find the subsection The Mean Value Theorem and study
there the paragraph entitled The Geometric Formulation.

3. See the statement of the mean value theorem given in the
text. Note that it consists of two entire sentences.

4. Study the first corollary to the mean value theorem.

5. Read the second corollary to the mean value theorem.

6. Read and memorize the third corollary to the mean value
theorem.

7. See Example 6.

8. See Example 8.

9. Study Example 9.

10. See the third corollary to the mean value theorem.

Answers: FTFFTTFTTT

SECTION 4.4 T/F STUDY GUIDE: HINTS

1. Read (and memorize) Theorem 1.

2. Read (and memorize) Theorem 1.

3. Study Example 1.

4. See the conclusion of Example 1.

5. See Example 1 or examine Fig. 4.4.14.

6. See Example 3 or examine Fig. 4.4.18.

7. Study Example 5.

8. See Theorem 2.

9. See Theorem 2.

10. Note that g is continuous on [−1, 2] and differentiable ex-
cept at x = 0.

Answers: TTTFTFFTTF
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SECTION 4.5 T/F STUDY GUIDE: HINTS

1. See Example 1 of Section 4.5.

2. See Example 1.

3. See Example 1 or examine Fig. 4.5.3 or examine Fig. 4.5.4.

4. See Example 2.

5. See Example 2.

6. See Example 3 or examine Fig. 4.5.7 or examine Fig. 4.5.8.

7. See Example 3 or examine Fig. 4.5.7 or examine Fig. 4.5.8.

8. Examine Fig. 4.5.6 or Fig. 4.5.8. Note that the statement
“All aardvarks are vertebrates” is not logically equivalent to
the statement “All vertebrates are aardvarks.”

9. Read the paragraph that follows Eq. (11).

10. Read the second paragraph after Eq. (11).

Answers: TFFTTFFFTT

SECTION 4.6 T/F STUDY GUIDE: HINTS

1. Examine the first displayed equation in Section 4.6.

2. See Example 1.

3. See Example 2.

4. Read the first paragraph of the subsection The Sign of the
Second Derivative.

5. Read (and memorize) Theorem 1.

6. Read (and memorize) Theorem 2.

7. See Theorem 3.

8. See Example 6 or examine Fig. 4.6.19 or Fig. 4.6.20.

9. See Example 7 and examine Fig. 4.6.22.

10. See Example 7 and examine Figs. 4.6.21b and 4.6.22.

Answers: TTFFTTTTTT

SECTION 4.7 T/F STUDY GUIDE: HINTS

1. See the sentence of Section 4.7 that includes Eq. (1).

2. See Example 1.

3. The answer is hidden in the solution of Example 9.

4. See Example 2.

5. Study the first paragraph of the subsection Horizontal
Asymptotes.

6. See Example 7.

7. See Example 8.

8. See Example 9.

9. See Example 9.

10. See Fig. 4.7.12.

Answers: TFTFFFTFTF

SECTION 4.8 T/F STUDY GUIDE: HINTS

1. Study the first paragraph of Section 4.8.

2. See Eq. (1), or examine Theorem 1 of Section 2.3, or see its
proof in the next-to-last subsection of Section 2.3.

3. See Example 1. What two equalities in Question 3 are mean-
ingless?

4. See Example 1.

5. See Example 3.

6. See Example 4.

7. See Example 6. What two equalities in Question 7 are mean-
ingless?

8. See Example 6.

9. See Example 2.

10. Learn Theorem 2 and use it to answer Question 10.

Answers: TTFTFTFTFT

SECTION 4.9 T/F STUDY GUIDE: HINTS

1. See Example 1. What two equalities in Question 1 are mean-
ingless?

2. See Example 1.

3. See Example 2.

4. See Example 3. What two equalities in Question 4 are mean-
ingless?

5. See Example 3.

6. See Example 4. What two equalities in Question 6 are mean-
ingless?

7. See Example 4.

8. See Example 4.

9. See Example 5.

10. See Example 5. What two equalities in Question 6 are mean-
ingless?

Answers: FTTFTFFTTF

SECTION 5.2 T/F STUDY GUIDE: HINTS

1. Read the sentence in Section 5.2 that includes Eq. (3).

2. See the definition of antiderivative following Eq. (4).

3. Study Example 2.

4. See Eq. (15).

5. See Example 5, or try the “surefire check” mentioned in Ex-
ample 2.

6. Read (and memorize) Theorem 2.

7. Study Example 7.

8. See Example 8.

9. See Example 9.

10. Read the first two sentences of the subsection Constant Ac-
celeration.

Answers: TTTTTFTFTT
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SECTION 5.3 T/F STUDY GUIDE: HINTS

1. Read the first paragraph in the subsection on The Concept of
Area.

2. Note that a first approximation to the area is 9.18 and that a
more accurate approximation is 9.045.

3. Examine the displayed equations that immediately precede
Example 2.

4. Look at the last computation in Example 2.

5. See Eq. (6).

6. Read (and memorize) Eq. (7).

7. See Example 6.

8. Read the first and last sentences of Example 7.

9. Read the first paragraph in the subsection Historical Note—
The Number π .

10. Every region considered in Section 5.3 has a boundary that
can be approximated with high accuracy by a finite collec-
tion of very short straight line segments, any two of which
meet—if at all—in a common endpoint.

Answers: TTFTTTFTTF

SECTION 5.4 T/F STUDY GUIDE: HINTS

1. Read the second sentence in the subsection on Riemann
Sums.

2. Read the sentence immediately preceding the definition of
Riemann sum.

3. Read (and memorize) the definition of Riemann sum.

4. Study Example 1.

5. See Example 2.

6. Read the second sentence after Eq. (7).

7. See the definition of the definite integral (this is the defini-
tion that includes Eq. (8)).

8. Read the sentence that ends with Eq. (9).

9. Read (and memorize) Theorem 1.

10. See Example 4; specifically, see Eq. (17) there.

Answers: TTTTTTTTTT

SECTION 5.5 T/F STUDY GUIDE: HINTS

1. Examine Eq. (3) very carefully.

2. Read the subsection on The Evaluation Theorem through
Eq. (7).

3. See Example 1.

4. See Example 2.

5. See Example 3.

6. Read the sentence that ends with Eq. (11).

7. Read about the sum property in the subsection on Basic
Properties of Integrals.

8. Read about the interval union property in the subsection on
Basic Properties of Integrals.

9. See Example 8.

10. See Example 9.

Answers: FTTFTTTTTT

SECTION 5.6 T/F STUDY GUIDE: HINTS

1. Memorize the definition that includes Eq. (3).

2. See Example 2.

3. Read and learn Theorem 1.

4. See Example 4.

5. Memorize Part 1 of the fundamental theorem of calculus.

6. Read Part 1 of the fundamental theorem of calculus.

7. Memorize Part 2 of the fundamental theorem of calculus.

8. See Example 6.

9. See Example 7.

10. See Example 8.

Answers: TFTTTTTTTF

SECTION 5.7 T/F STUDY GUIDE: HINTS

1. See Example 1.

2. See Example 2.

3. See Example 3.

4. See Example 4.

5. See Example 5.

6. See Example 6.

7. See Example 7.

8. See Example 9.

9. Read (and memorize) Theorem 1.

10. See Example 10.

Answers: TTFTFTTFTT

SECTION 5.8 T/F STUDY GUIDE: HINTS

1. See the definition of area between two curves—the definition
that includes Eq. (2).

2. Read the paragraph that follows Example 1.

3. See Example 1.

4. See Example 2.

5. See Example 4.

6. See Example 3.

7. See the definition of area between two curves—the definition
that includes Eq. (3).

8. See Eq. (4).

9. See Example 5.

10. Read the paragraph immediately following Eq. (3).

Answers: TTTTTTTTFF
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SECTION 5.9 T/F STUDY GUIDE: HINTS

1. See Example 3.

2. See Eq. (2).

3. See the definition of the trapezoidal approximation follow-
ing Eq. (5).

4. See Theorem 1; specifically, see Eq. (16) there.

5. See Eq. (7).

6. Read the sentence that includes Eq. (10).

7. See the definition of Simpson’s approximation following
Eq. (11).

8. Study Example 4.

9. Read Theorem 2.

10. The only discussion of nonelementary functions in Section
5.9 occurs in the first two paragraphs of the section and in
Example 3.

Answers: TFTTTTTTTF

SECTION 6.1 T/F STUDY GUIDE: HINTS

1. Turn back to Section 5.4. Read what it means for the func-
tion f to be integrable on the interval [a, b] (this term is
defined in the definition of the definite integral, which fol-
lows Eq. (7)). Then read the statement of Theorem 1 on the
next page.

2. Read the two consecutive paragraphs of Section 6.1 that end
with Eq. (6).

3. Read the first paragraph of the solution in Example 1.

4. Read the second paragraph of the solution in Example 1.

5. Read the second paragraph of the solution in Example 1.

6. Read the second paragraph of the solution in Example 1.

7. Read the last two sentences in the solution of Example 1.

8. Study Example 5.

9. Read the first paragraph in the subsection on Distance and
Velocity.

10. Read the second paragraph in the subsection on Distance
and Velocity.

Answers: TTTTTTTTTT

SECTION 6.2 T/F STUDY GUIDE: HINTS

1. Read the subsection of Section 6.2 that’s entitled Volumes of
Cylinders.

2. Read the definition of volume by cross sections. This is the
definition that includes Eq. (3).

3. Study the paragraph that includes Eq. (5).

4. Read the subsection that includes Eq. (4).

5. Study the paragraph that includes Eq. (6).

6. Does it matter whether the radius of the sphere is denoted by
r , or by R, or even by ξ?

7. Examine Eq. (7). Is it true that (p − q)2 = p2 − q2?

8. See Eq. (8).

9. See the second paragraph of the solution in Example 7.

10. Read the Historical Note at the end of the text of Section 6.2.

Answers: TTTTTTFTTT

SECTION 6.3 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eq. (1).

2. Study the sentence that ends with Eq. (2) and the sentence
that follows.

3. See Example 2.

4. Read the sentences immediately preceding and including
Eq. (3).

5. Use g(y) ≡ 0 in Eq. (4).

6. Check to see if this is the situation covered by Eq. (4).

7. See Example 3!

8. Read the sentence that follows Eq. (2).

9. See the first sentence of the solution in Example 1.

10. Read the first two sentences in Example 4.

Answers: TTTTTTFFFT

SECTION 6.4 T/F STUDY GUIDE: HINTS

1. Read the first two paragraphs in the subsection on The
Length of a Curve.

2. See Eq. (2).

3. Read the paragraph that ends with Eq. (2).

4. See Eq. (3).

5. If this proof could be found in Section 6.4, it would have to
be in the subsection on Arc Length by Integration with Re-
spect to y or in the subsection on A Symbolic Device.

6. Read the sentence that includes Eq. (6).

7. Read the sentence that ends with Eq. (8).

8. See the sentence that ends with Eq. (12).

9. Read the solution of Example 4.

10. Read the solution of Example 5.

Answers: TTTTFTTTTT

SECTION 6.5 T/F STUDY GUIDE: HINTS

1. See the sentence that includes Eq. (1).

2. Read Example 1.

3. Read the sentence that ends with Eq. (4).

4. Read the paragraph that includes Eq. (5).

5. Study the solution of Example 2.

6. Read the sentence that ends with Eq. (7).

7. Read the sentence that includes Eq. (8) and the sentence that
follows.

8. See the second paragraph of the solution of Example 4.

9. Read the first two sentences in the subsection on Force Ex-
erted by a Liquid.

10. Study Example 6.

Answers: TTTTTTTTTT
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SECTION 6.6 T/F STUDY GUIDE: HINTS

1. Study the first sentence of Section 6.6.

2. Read the sentence following the statement of the principle of
additivity of moments.

3. See Eq. (8) in Section 6.6.

4. Study Example 1.

5. Study Example 2.

6. Read the sentence preceding the statement of the first theo-
rem of Pappus.

7. Study Example 5.

8. See Eq. (14).

9. Study Example 6.

10. Study Example 8.

Answers: TTFFFFTFFF

SECTION 6.7 T/F STUDY GUIDE: HINTS

1. Read the definition that includes Eq. (3).

2. See Eq. (4).

3. See Eq. (7).

4. Study (and memorize) the definition that includes Eq. (10).

5. Read Eqs. (13), (14), and (15).

6. Memorize the sentence that includes Eq. (23).

7. Study the paragraph that includes Eqs. (27) and (28) and the
next paragraph.

8. See Eq. (28).

9. See Eq. (30).

10. See the displayed equation between Eqs. (39) and (40).

Answers: TFFTFTTFFT

SECTION 6.8 T/F STUDY GUIDE: HINTS

1. Read the first sentence of Section 6.8. Bear in mind that the
two statements “If Charlie is a cow then Charlie eats grass”
and “If Charlie eats grass then Charlie is a cow” are not log-
ically equivalent. Reason: You can give an instance of Char-
lie in which one of these statements is true and the other is
false.

2. According to Fig. 6.8.2, the graph g(x) = 1

tan x
should

have a vertical asymptote at x = 0. Examine Fig. 6.8.4 in
the light of this observation.

3. See the definition that includes Eq. (2), pay careful attention
to details, and contrast the graphs in Figs. 6.8.3 and 6.8.4.

4. See Eq. (3a).

5. Read (and memorize) Eq. (4).

6. Read the definition that includes Eq. (8); be sure that no de-
tails are incorrect in Question 6.

7. See Eq. (9a).

8. The detail −1 < x < 1 that follows Eq. (10) is redundant; it
is implied by the form of Eq. (10).

9. Examine Eq. (16). Is every detail the same as in Question 9?

10. Read and memorize Eqs. (20), (21), and (22).

Answers: FFFTTTTTFT

SECTION 6.9 T/F STUDY GUIDE: HINTS

1. See Eq. (1) of Section 6.9, with the usual attention to impor-
tant details.

2. See Eq. (2).

3. Read the second sentence in the subsection on Derivatives
and Integrals of Hyperbolic Functions.

4. See Eq. (14).

5. Study (and memorize) Eqs. (19) through (24). Note the
analogies—with exceptions in minus signs—to the formu-
las for the integrals of the corresponding trigonometric func-
tions.

6. The answer occurs somewhere in the solution in Example 3.

7. Examine Eqs. (28) through (33). Ask your instructor if they
should be memorized.

8. Examine Eqs. (28) through (33). Ask your instructor if they
should be memorized.

9. Examine Eqs. (34) through (39). Ask your instructor if they
should be memorized.

10. Examine Eqs. (40) through (44). Ask your instructor if they
should be memorized.

Answers: FTFTTTFTTT

SECTION 7.2 T/F STUDY GUIDE: HINTS

1. Study Example 1.

2. See Example 2. You may wish to test the effect of the sub-
stitution mentioned in Question 2.

3. See Example 3.

4. See Fig. 7.2.1.

5. See Fig. 7.2.1.

6. Study the third paragraph of Section 7.2.

7. Read the last sentence in the solution in Example 2.

8. Study Example 2.

9. Read the last paragraph of the text of Section 7.2.

10. Read the second paragraph in the subsection on Computer
Algebra Systems.

Answers: TFTFTTFFTF

SECTION 7.3 T/F STUDY GUIDE: HINTS

1. See Eq. (3).

2. See Eq. (3).

3. See Example 1.

4. See Example 2.

5. See all of the solution in Example 3!

6. See the last half of the solution in Example 3.

7. Study the paragraph immediately preceding Example 4.

8. Read the discussion immediately preceding Example 4.

9. See Example 4.

10. See Example 6.

Answers: TFTTFTTTFT
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SECTION 7.4 T/F STUDY GUIDE: HINTS

1. See Eq. (1); as usual, check every detail. Also examine the
last formula inside the front cover. Memorize Eqs. (10) and
(11) in Appendix C.

2. See Example 1.

3. See the first paragraph in the subsection on Integrals of Prod-
ucts of Sines and Cosines.

4. See part (b) of Example 3.

5. See Eq. (5).

6. See Eq. (7).

7. See Example 7.

8. See the displayed equation in Method 2 in the solution in Ex-
ample 8, or see Example 6 of Section 7.3, or see the integral
formula in (37) of the endpapers.

9. See the first displayed equation after Eq. (12).

10. See the first displayed equation after Eq. (12).

Answers: TTTTTTFTFT

SECTION 7.5 T/F STUDY GUIDE: HINTS

1. Study Section 7.5 from its beginning through Eq. (3) (in Ex-
ample 1).

2. See Example 2.

3. See Example 2.

4. See the solution in Example 3.

5. Examine and contrast the last two displayed equations in Ex-
ample 3.

6. Read the beginning of the solution in Example 5.

7. Read carefully the end of the solution in Example 5.

8. Examine carefully the beginning of the solution in Example
6.

9. Look at the two displayed equations immediately before Ex-
ample 6.

10. See the last displayed equation in the solution in Example 6.

Answers: TTFTFTFFTT

SECTION 7.6 T/F STUDY GUIDE: HINTS

1. Inspect the table that follows the first paragraph of Section
7.6.

2. Inspect the table that follows the first paragraph of Section
7.6.

3. Inspect the table that follows the first paragraph of Section
7.6.

4. See Example 1.

5. See Example 3.

6. Study the solution in Example 3.

7. See Example 4.

8. See the first part of the solution in Example 5.

9. See the second part of the solution in Example 5.

10. Inspect the table immediately preceding Example 5.

Answers: TFTTTTTTTT

SECTION 7.7 T/F STUDY GUIDE: HINTS

1. Examine the third displayed equation of Section 7.7.

2. Compare the first part of the solution in Example 1 with the
equation in Question 2.

3. Compare the first part of the solution in Example 1 with the
equation in Question 2.

4. Study the first part of the solution in Example 2.

5. Study the solution in Example 2.

6. Inspect either part of the solution in Example 3.

7. See Example 4.

8. Equation (2) contains only part of the antiderivative sought
in Example 4.

9. See Eq. (4) and the paragraph that follows it.

10. Read the last paragraph of Section 7.7.

Answers: TFTTTFTFTT

SECTION 7.8 T/F STUDY GUIDE: HINTS

1. Study the second paragraph of Section 7.8.

2. Study the second paragraph of Section 7.8.

3. Examine the fourth paragraph of Section 7.8.

4. Read the paragraph that inclues Eq. (1).

5. Read the sentence that includes Eq. (1) and the two preced-
ing sentences.

6. Read the sentence that includes Eq. (3).

7. Study the first paragraph of the subsection on Infinite Inte-
grands.

8. See Example 3.

9. See Example 3.

10. See Eq. (7).

Answers: TFFTTTTTFT

SECTION 8.1 T/F STUDY GUIDE: HINTS

1. Read the sentence in Section 8.1 that includes Eq. (4).

2. Read the paragraph that follows Example 1 in this section.

3. Read the paragraph that includes Eqs. (7) and (8).

4. Read the paragraph that follows Example 2, and examine
Fig. 8.1.1.

5. Study Theorem 1 and the paragraph that follows it.

6. Study the solution of Example 3, especially part (b).

7. Read the second paragraph of the subsection entitled Ra-
dioactive Decay and Radiocarbon Dating.

8. Study the paragraph that precedes Example 4.

9. Study the paragraph that precedes Example 6.

10. Study the two paragraphs that precede Example 8, and com-
pare Eqs. (28) and (29).

Answers: FFTTFFFTTF
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SECTION 8.2 T/F STUDY GUIDE: HINTS

1. Study the first paragraph of the subsection entitled Slope
Fields and Graphical Solutions.

2. Study the two paragraphs that precede Example 1 in this sec-
tion.

3. Examine Fig. 8.2.5 and read the paragraph following Exam-
ple 1 that references this figure.

4. Read the paragraph that follows Eq. (2).

5. Examine Fig. 8.2.6 and read the paragraph in Example 2 that
references this figure.

6. Examine Fig. 8.2.7 and read the final paragraph of Example
3.

7. Read the paragraph that includes Eq. (5).

8. Study the paragraph that includes Eq. (7).

9. Study the paragraph that precedes Example 4.

10. Examine Fig. 8.2.10 and read the paragraph in the Example
4 solution that references this figure.

Answers: TTTFTFFTFT

SECTION 8.3 T/F STUDY GUIDE: HINTS

1. Read the first paragraph of this section.

2. Read the paragraph that includes Eqs. (4) and (5).

3. Study Remark 2 following Example 1.

4. Read the sentences following Eq. (8) in the solution of Ex-
ample 2.

5. Examine Eq. (10) in the solution of Example 3.

6. Study the first paragraph of the subsection entitled Cooling
and Heating. In particular, examine Eq. (11).

7. Examine the expression for u(t) that is obtained in the solu-
tion of Example 4.

8. Read the first paragraph of the subsection entitled Linear
Differential Equations.

9. Study carefully the first paragraph of the subsection entitled
Linear Differential Equations.

10. Study carefully the first paragraph of the subsection entitled
Linear Differential Equations.

Answers: TTFTFFFTFT

SECTION 8.4 T/F STUDY GUIDE: HINTS

1. Study the first paragraph of Section 8.4.

2. Study the first paragraph of this section.

3. Read the paragraph that includes Eq. (3), and memorize this
formula.

4. Study Remark 2 following the 4-step Method: Solution of
First-Order Linear Equations stated in this section.

5. Read the Remark following the solution of Example 2, and
also examine Fig. 8.4.1.

6. Read the Remark following the solution of Example 3, and
also examine Fig. 8.4.2.

7. Study Theorem 1 and Remark 1 that follows it.

8. Read Remark 2 following Theorem 1.

9. Read the sentences that include Eqs. (15), (16), and (17).

10. Read the sentences that include Eqs. (22), (23), and (24).

Answers: TFTFFTTFFF

SECTION 8.5 T/F STUDY GUIDE: HINTS

1. Read the paragraph including Eq.(1) in Section 8.5.

2. Read the last paragraph of Example 1, and also examine
Fig. 8.5.1.

3. Examine Eq. (2) and read the paragraph that includes Eq. (3).

4. Read the last paragraph of Example 2, and also examine
Fig. 8.5.2.

5. Read the paragraphs that precede and follow Eq. (8), and
also examine Fig. 8.5.3.

6. Read the conclusion of Example 4.

7. Read the conclusion of Example 5.

8. Read the last paragraph of the subsection entitled Doomsday
versus Extinction.

9. Examine Fig. 8.5.5, and study the paragraph in the subsec-
tion entitled Predator-Prey Populations that references this
figure.

10. Read the first paragraph of the subsection entitled Histor-
ical Note and the last paragraph of the subsection entitled
Predator-Prey Populations (or just take a stab at it if you
think the names themselves provide an adequate clue).

Answers: FTFFTFFFTF

SECTION 8.6 T/F STUDY GUIDE: HINTS

1. Read the paragraph in Section 8.6 that includes Eq. (1).

2. Read the paragraph that includes Eq. (1).

3. Read the paragraph that includes Eq. (2).

4. Study the statement of Theorem 1 in this section.

5. Read the paragraph that follows the proof of Theorem 1.

6. Read the paragraph that includes Eq. (4), and examine
Fig. 8.6.1.

7. Read the paragraph that includes Eq. (7), and also the fol-
lowing paragraph.

8. Study the ”unequal real roots” and ”equal real roots” case
statements that include Eqs. (8) and (9). Also, look at the
solution to Example 5.

9. Study the ”complex conjugates roots” case statement that in-
cludes Eq. (12). Also, look at the solution to Example 7.

10. Study the statement of Euler’s formula in the sentence that
includes Eq. (10).

Answers: TFTTFFTFFF
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SECTION 8.7 T/F STUDY GUIDE: HINTS

1. Read the first paragraph of Section 8.7.

2. Read the paragraph that includes Eq. (1).

3. Read the first paragraph of the subsection entitled Free Un-
damped Motion.

4. Read the paragraph that includes Eqs. (6) and (7). If neces-
sary, look also at Eq. (10).

5. Compare Eqs. (10), (11), and (12).

6. Examine Fig. 8.7.3 and consider the values of α indicated in
the displayed equation beneath Eq. (11) in the text.

7. Read the sentence that includes Eq. (13).

8. Examine Eq. (19) and study the following paragraph (the one
that precedes Example 3).

9. Read the paragraphs that include Eqs. (22) through (24).

10. Study the Remark that follows Example 5 together with the
final paragraph in Section 8.7. Also, examine Fig. 8.7.10.

Answers: FFFTTFTTTT

SECTION 9.1 T/F STUDY GUIDE: HINTS

1. Read the second paragraph of Section 9.1.

2. Study Example 1.

3. Read (and memorize) the four symmetry properties that fol-
low Eq. (6).

4. See Example 2.

5. Read the first sentence in the subsection on Conic Sections.

6. See Eq. (10).

7. Read the last paragraph in Example 3.

8. Read the first paragraph in the subsection on Conic Sections.

9. If (upon appropriate choice of the x- and y-axes) the equa-
tion of a circle can be put in the form in Eq. (9), then the
circle must be an ellipse.

10. Read the last paragraph in Example 3.

Anwers: FTFFFFFFTF

SECTION 9.2 T/F STUDY GUIDE: HINTS

1. Study the second paragraph of Section 9.2.

2. See Example 1.

3. Read the sentence that contains Eq. (1).

4. See Example 4.

5. See Example 7.

6. Study the second paragraph after the end of Example 6.

7. See Example 5.

8. See Example 7.

9. See Example 8.

10. See Example 8.

Answers: TTTTFTTTFT

SECTION 9.3 T/F STUDY GUIDE: HINTS

1. Read (and memorize) the sentence that ends with Eq. (1).

2. Examine the first displayed equation in the solution in Ex-
ample 1.

3. Examine the last displayed equation in the solution in Exam-
ple 1.

4. See Example 2.

5. See Example 3.

6. See Example 3.

7. See Eq. (3).

8. See Example 2.

9. See Example 2.

10. See Example 2.

Answers: TFTTTTTTTF

SECTION 9.4 T/F STUDY GUIDE: HINTS

1. See the definition that includes Eq. (1).

2. See Example 1.

3. Read the paragraph immediately before Example 2.

4. See Example 3.

5. See Example 4.

6. See Example 5.

7. See Example 5.

8. See the Historical Note that follows Example 5.

9. Read the first paragraph of the subsection on Lines Tangent
to Parametric Curves.

10. See Example 6.

Answers: TTTTTTTTTT

SECTION 9.5 T/F STUDY GUIDE: HINTS

1. Study Case 1 following Eq. (7).

2. Study Case 1 following Eq. (7).

3. Study Case 2 following Eq. (7).

4. See Example 2.

5. Dimensional analysis strongly suggests that the area should
be proportional to a2.

6. See Eq. (9).

7. See Eq. (10).

8. See Example 3.

9. See Example 3 and pay close attention to every detail in
Question 9.

10. See Example 1.

Answers: TTTTFTTTFT
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SECTION 9.6 T/F STUDY GUIDE: HINTS

1. Read (and memorize) the first definition in Section 9.6.

2. See the sentence that ends with Eq. (1).

3. Read about the reflection property of the parabola in the sub-
section on Applications of Parabolas.

4. Read the first definition in the subsection entitled The El-
lipse.

5. Study the paragraph that follows the definition of an ellipse
and ends with Eq. (14).

6. If e = 0 then Eq. (13) implies that b2 = a2. What form does
Eq. (14) then take?

7. Read the first sentence of the subsection entitled The Hyper-
bola.

8. Study the paragraph that follows the definition of a hyper-
bola and ends with Eq. (21).

9. Read the paragraph that includes Eq. (24).

10. Read the second remark that follows Example 12.

Answers: TTTTTTTTTT

SECTION 10.2 T/F STUDY GUIDE: HINTS

1. Read the sentence that includes Eq. (1) and examine Exam-
ple 1.

2. See Example 2.

3. See the definition of Limit of a Sequence with special atten-
tion to detail in Eq. (5).

4. See Example 3.

5. See Example 4 and the sentence that immediately follows
Eq. (5).

6. Study (and memorize) the statement of Theorem 1.

7. Study (and memorize) the statement of Theorem 2.

8. See Example 9.

9. Read Theorem 4 carefully, as well as the paragraph that fol-
lows its statement.

10. Read the Bounded Monotonic Sequence Property in the sub-
section on Bounded Monotonic Sequences and, if necessary,
the statement immediately following Eq. (5).

Answers: TTFFTTTTFF

SECTION 10.3 T/F STUDY GUIDE: HINTS

1. See the first sentence of Section 10.3.

2. This question refers only to “Example 1,” not to “Example 1
Continued.”

3. Study the paragraph that includes Eq. (3).

4. Read (and memorize) the definition that includes Eq. (4).

5. See Example 2 and the definition of diverges that follows
Eq. (4).

6. See Example 3.

7. See Theorem 1.

8. Read (and memorize) Theorem 3.

9. Read Theorem 4 and the paragraph that precedes it.

10. Study the paragraph that precedes Theorem 4.

Answers: TFTTFTTTTF

SECTION 10.4 T/F STUDY GUIDE: HINTS

1. Ask yourself if this equality holds when n = 1. Or examine
Eq. (3).

2. Examine the second paragraph in the subsection on Polyno-
mial Approximations.

3. See Example 3.

4. Examine Example 4 with close attention to details.

5. See the continuation of Example 3 (it follows Eq. (13)).

6. See Eq. (19).

7. See Eq. (21).

8. See Eq. (22).

9. Read the sentence containing Eq. (27).

10. Read the last sentence of the subsection entitled Euler’s For-
mula.

Answers: FTTFTTTTTF

SECTION 10.5 T/F STUDY GUIDE: HINTS

1. Read (and memorize) the statement of Theorem 1.

2. See Example 1.

3. See Example 2.

4. See the ”specific examples” that immediately follow Exam-
ple 2.

5. See Example 3.

6. See Example 4.

7. Read the statement of Theorem 1.

8. Read the statement of Theorem 1.

9. See Example 2.

10. Read the first sentence of Example 3.

Answers: TTTFTFFFTF

SECTION 10.6 T/F STUDY GUIDE: HINTS

1. Read the second sentence of Section 10.6 or examine the
statement of Theorem 1.

2. Study the paragraph that precedes the statement of Theorem
1.

3. See Example 1.

4. See Example 2.

5. Read (and memorize) the statement of Theorem 2.

6. See Example 5.

7. Read the last sentence of the first paragraph in the subsection
on Rearrangement and Grouping.

8. Read the second paragraph in the subsection on Rearrange-
ment and Grouping.

9. See Example 6.

10. See Example 6.

Answers: TTTTTFTTTT
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SECTION 10.7 T/F STUDY GUIDE: HINTS

1. Read (and memorize) the sentence that includes Eq. (1).

2. Read (and memorize) the statement of Theorem 1.

3. See Example 2.

4. Read the sentence that includes Eq. (1) and the statement of
Theorem 1.

5. Read the definition of absolute convergence (it follows The-
orem 3).

6. Learn the statement of Theorem 3.

7. See Example 5; read and memorize the statement of Theo-
rem 4.

8. Learn the statement of Theorem 5.

9. The answer appears immediately after the proof of the root
test.

10. Study the paragraph that follows the definition of absolute
convergence.

Answers: TTFFTTTTTT

SECTION 10.8 T/F STUDY GUIDE: HINTS

1. See the paragraph that includes Eq. (5).

2. Study the paragraph that includes Eqs. (6), (7), and (8).

3. See Example 1.

4. See Example 3.

5. See Example 4.

6. See Example 6.

7. See Example 8.

8. See Theorem 3.

9. See Example 10.

10. See Example 12.

Answers: TTTFFTTTFT

SECTION 10.9 T/F STUDY GUIDE: HINTS

1. See the first sentence of the solution in Example 1.

2. See Example 2.

3. See Eq. (5).

4. See Eq. (7).

5. See Example 4.

6. See Example 5.

7. See part (a) of the solution in Example 6.

8. See part (b) of the solution in Example 6.

9. See Example 7.

10. See Examples 4 and 5.

Answers: FFFFFFFFTT

SECTION 10.10 T/F STUDY GUIDE: HINTS

1. Begin reading the subsection entitled The Power Series
Method.

2. Read the paragraph that includes Eqs. (2) and (3) in this sec-
tion.

3. Study the paragraph that precedes Example 1.

4. Study the solution of Example 1.

5. Study the solution of Example 1.

6. Study the second paragraph of the subsection entitled Shift
of Index of Summation.

7. Study the conclusion to the Example 3 solution.

8. Study Eq. (2) and the beginning of the Example 4 solution.

9. Continue reading the solution of Example 4.

10. Read the part of the subsection entitled Power Series Defini-
tions of Functions that precedes Example 5.

Answers: TTTTTTFTFT

SECTION 11.1 T/F STUDY GUIDE: HINTS

1. Check the definition in the fourth paragraph of Section 11.1.

2. Read and memorize the sentence that includes Eq. (1).

3. See the first definition in the subsection on Algebraic Oper-
ations with Vectors.

4. See the second definition in the subsection on Algebraic Op-
erations with Vectors.

5. See Example 3.

6. Study the equations in (5).

7. Read the sentence that includes Eq. (6).

8. See Example 4.

9. See Example 5.

10. See Example 6.

Answers: TTFTFTTFFT

SECTION 11.2 T/F STUDY GUIDE: HINTS

1. See Fig. 11.2.1.

2. Read the sentence of the text that refers to Fig. 11.2.5.

3. Read the paragraph that ends with Eq. (1).

4. See Example 3; pay close attention to the last sentence of the
solution.

5. The definition of equality of vectors lies between Eqs. (4)
and (5).

6. See Example 4.

7. See Eq. (8).

8. See Example 6.

9. Read (and memorize) the statement of Theorem 1.

10. Read (and memorize) the corollary immediately before Ex-
ample 7.

Answers: FTTFFFTTTT
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SECTION 11.3 T/F STUDY GUIDE: HINTS

1. See Eq. (1) of Section 11.3.

2. Read and memorize the statement of Theorem 1.

3. See Example 3.

4. Read and memorize the statement of Theorem 2.

5. See the corollary to Theorem 2 (immediately following the
proof).

6. Study the paragraph that includes Eqs. (9) and (10).

7. Study the statement of Theorem 3.

8. Examine Eq. (15) and the paragraph that contains Eq. (17).

9. Read the paragraph that follows Example 6 and the statement
of Theorem 4.

10. See Example 8.

Answers: TTTTTTTTTT

SECTION 11.4 T/F STUDY GUIDE: HINTS

1. See Example 1.

2. Read the paragraph that includes Eq. (6).

3. Read the paragraph that includes Eqs. (4) and (5).

4. See Example 3.

5. See Example 3.

6. Study the paragraph that includes Eq. (9).

7. Study the paragraph that includes Eq. (8).

8. See Example 5.

9. Read the paragraph immediately following Example 5.

10. Read Example 7.

Answers: TTTTFTTFFT

SECTION 11.5 T/F STUDY GUIDE: HINTS

1. See Example 1.

2. See Example 3.

3. Study the paragraph that follows Eq. (4).

4. See Theorem 1.

5. See Theorem 2.

6. See Theorem 2.

7. See the sentence that contains Eq. (7a).

8. See the sentence that includes Eq. (16).

9. See Example 6.

10. See Eq. (15).

Answers: TTTTTFTTFT

SECTION 11.6 T/F STUDY GUIDE: HINTS

1. See Eqs. (1) and (2).

2. Read the sentence containing Eq. (7).

3. Read the two sentences that end with Eq. (9).

4. See the sentence that contains Eq. (11).

5. See the sentence containing Eq. (12).

6. See Eqs. (23) and (24).

7. See Eq. (27).

8. Newton was born in 1642 and his Principia Mathematica
containing the inverse-square law of gravitation was pub-
lished in 1687. When did Kepler die?

9. Read Kepler’s first law in the subsection entitled Newton,
Kepler, and the Solar System.

10. Read Kepler’s third law in the subsection entitled Newton,
Kepler, and the Solar System.

Answers: TTTTTTTFFF

SECTION 11.7 T/F STUDY GUIDE: HINTS

1. Read the first paragraph of this section.

2. Read the paragraph that includes Eq. (2).

3. See Example 2.

4. See Example 4.

5. See Example 6.

6. See Example 7.

7. See Example 11.

8. See Example 12.

9. See Example 13.

10. See Examples 9 and 13.

Answers: FTTTTTTFTF

SECTION 11.8 T/F STUDY GUIDE: HINTS

1. Study the paragraph including (3) and (4).

2. Study the paragraph including (3) and (4).

3. See Example 2.

4. See Example 2.

5. Study the paragraph containing (6) and (7).

6. Study the paragraph containing (6) and (7).

7. See Example 4.

8. See Example 5.

9. See Example 6.

10. See Example 8.

Answers: TTTTTTFTTT
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SECTION 12.2 T/F STUDY GUIDE: HINTS

1. Read both the definition (of functions of two or three vari-
ables) at the beginning of this section and the paragraph that
follows this definition.

2. Read Example 1 carefully.

3. Read the paragraph that follows Example 2.

4. Study the first paragraph of the subsection entitled Graphs
and Level Curves.

5. Read Example 3.

6. Read Example 5.

7. Study the definitions in the paragraph that follows Example
5.

8. Read Example 8.

9. Read Example 9 and examine Fig. 12.2.17.

10. Read Example 11 and examine Fig. 12.2.24.

Answers: TFFTTFFFFF

SECTION 12.3 T/F STUDY GUIDE: HINTS

1. Read the definition of the limit of f (x, y) that precedes Ex-
ample 2.

2. Read Example 2.

3. Read Example 3.

4. Read the paragraph that includes Eqs. (4) through (7).

5. Read carefully the two paragraphs that precede Example 5.

6. Read carefully the paragraph that follows Example 5.

7. Read carefully the paragraph that follows Example 5.

8. Read Example 8.

9. Read Example 9.

10. Read the Remark that follows Example 9.

Answers: FTFTTFFTTF

SECTION 12.4 T/F STUDY GUIDE: HINTS

1. Study the Definition that includes Eqs. (3) and (4).

2. Study the paragraph that precedes Example 1.

3. Study Example 2.

4. Read the first paragraph of the subsection entitled Instanta-
neous Rates of Change.

5. Read Example 4.

6. Read the two paragraphs that precede Example 5.

7. Read the two paragraphs that precede Example 5.

8. Read the Definition in the subsection entitled Planes Tangent
to Surfaces.

9. Read the definitions of partial derivatives that are displayed
in the first paragraph of the subsection entitled Higher-Order
Partial Derivatives.

10. Read the Note that includes Eq. (16).

Answers: FTTFTTFTTT

SECTION 12.5 T/F STUDY GUIDE: HINTS

1. Study the statement of Theorem 1. What is the hypothesis
on the function f ?

2. Read the paragraph that precedes Example 1.

3. Read the paragraph that precedes Example 1.

4. Read the statement of Theorem 2.

5. Read the paragraph that precedes Example 3.

6. Study the statement of Theorem 3.

7. Read Example 4.

8. Study the statement of Theorem 3.

9. Study the solution of Example 6.

10. Read the first paragraph of the subsection entitled Functions
of Three or More Variables.

Answers: FTFTFTTTTT

SECTION 12.6 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eq. (7) in this section.

2. Read the paragraph that includes Eq. (8).

3. Read Example 2.

4. Read the paragraph that includes Eq. (10).

5. Read the first paragraph of the subsection entitled Functions
of Three or More Variables.

6. Read the first paragraph of the subsection entitled Linear Ap-
proximation and Differentiability.

7. Read the paragraph that includes Eq. (14).

8. Read the paragraphs that include Eqs. (18) and (19).

9. Read Example 6 and the paragraph that follows it.

10. Read the paragraph that follows Example 6.

Answers: TTTTTTTTTT

SECTION 12.7 T/F STUDY GUIDE: HINTS

1. Read Theorem 1 in this section.

2. Read the paragraph that includes Eq. (5).

3. Read the paragraph that includes Eq. (5).

4. Read Theorem 2, and suppose that n = 1 so there is a single
independent variable.

5. Read Theorem 2, and suppose that n = 2 so there are two
independent variables.

6. Read Theorem 3 with n = 1. Is this the situation in Example
8?

7. Read Theorem 3 with n = 2, and read the initial discussion
in Example 9.

8. Read the first paragraph of the subsection entitled Matrix
Form of the Chain Rule.

9. Calculate the determinant of the 2 × 2 matrix T ′(r, θ) in Ex-
ample 10.

10. Read the paragraph that includes Eq. (19a).

Answers: TTFTFFTTTT
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SECTION 12.8 T/F STUDY GUIDE: HINTS

1. Read the definition of the directional derivative, and substi-
tute x = 〈x, y〉 and u = 〈a, b〉 in Eq. (2).

2. Read the paragraph that includes Eq. (3).

3. Read Theorem 1 and the paragraph that follows it.

4. Read Example 1. What is the role played by the unit vector
u?

5. Read the definition of a gradient vector including Eq. (9).

6. Read the paragraph that includes Eq. (13).

7. Read Theorem 2 carefully.

8. Read Example 5 and the paragraph that precedes it.

9. Read Theorem 3 and its proof.

10. Read the paragraph that precedes Example 6, and rewrite
Eq. (19) in vector notation.

Answers: TTTFFTFTTT

SECTION 12.9 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eq. (1).

2. Read Theorem 1 carefully. Does it assure the existence
of a maximum value of f (x, y) subject to the constraint
g(x, y) = 0? What is the hypothesis on the function g?

3. Read Theorem 1 carefully. What if the maximum value
of f (x, y) subject to the constraint g(x, y) = 0 were an
absolute maximum value and occurred at a point P where
∇ f (P) = 0? Could ∇g(P) then be a scalar multiple of
∇ f (P)?

4. Read the first paragraph of the subsection entitled The
Method.

5. Read the paragraph that precedes Example 1.

6. Check the definition of the function f (x, y) in the solution
to Example 1.

7. Read the first paragraph of the subsection entitled Lagrange
Multipliers in Three Dimensions.

8. Read the sentences that precede Example 3 and include
Eqs. (7) and (8abc).

9. Read the paragraph that precedes Example 4.

10. Read the last two paragraphs of this section.

Answers: TFFTTTTTTT

SECTION 12.10 T/F STUDY GUIDE: HINTS

1. Read Theorem 1 in this section.

2. Read Theorem 1.

3. Read Theorem 1.

4. Read Theorem 1.

5. Read Theorem 1.

6. Read the discussion that follows the statement of Theorem 1.

7. What is the sign of �? Does Theorem 1 apply?

8. Read Example 1.

9. Read Example 2.

10. Read Example 3.

Answers: FFFFFFTTFF

SECTION 13.1 T/F STUDY GUIDE: HINTS

1. Read the first couple of paragraphs in this section.

2. Read the paragraph that includes Eq. (1), and perhaps also
the two paragraphs that precede this one.

3. Read the paragraph that includes Eq. (2).

4. Read the paragraph that includes Eq. (2).

5. Read Example 1 and the subsequent Remark 1.

6. Examine Figs. 13.1.6–13.1.8 as you read Remark 2 follow-
ing Example 1.

7. Read Theorem 1. What is the hypothesis on the function f ?

8. Read the paragraph that includes Eq. (4).

9. Read Example 2.

10. Read the first paragraph of the subsection entitled Iterated
Integrals and Cross Sections.

Answers: TTTFTTFFTT

SECTION 13.2 T/F STUDY GUIDE: HINTS

1. Read the first couple of paragraphs in this section.

2. Read the paragraph that includes Eq. (1).

3. Read the the formal definition of the double integral and the
paragraph that follows this definition.

4. Read the Note that precedes Example 1.

5. Read the solution to Example 1. How is the point (x�
i , y�

i ) in
each small square of the inner partition of R selected?.

6. Examine Figs. 13.2.2 and 13.2.3 as you read the Remark that
follows Example 1.

7. Read Theorem 1. What is the hypothesis on the function f
and the region R?

8. Read Example 2.

9. Read Example 3.

10. Read Example 4.

Answers: TTTTTTFTFF

SECTION 13.3 T/F STUDY GUIDE: HINTS

1. Read the first paragraph of this section and the definition of
volume that follows it.

2. Read the paragraph that follows the definition of volume at
the beginning of this section.

3. Read the statement that includes Eq. (2).

4. Read the statement that includes Eq. (3).

5. What is the order of integration in Example 1? Could it just
as easily be reversed?

6. Read the paragraph between Examples 1 and 2.

7. What is the order of integration in Example 2? Look at
Fig. 13.3.8 to determine whether a single double integral
would suffice if the order of integration were reversed.

8. Read Example 3.

9. Read the paragraph that precedes Example 4.

10. What is the order of integration in Example 4? Would a sin-
gle double integral suffice if the order of integration were
reversed?

Answers: TTFFTTFTFF
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SECTION 13.4 T/F STUDY GUIDE: HINTS

1. Read the first paragraph of this section.

2. Read the paragraph that concludes with Eq. (3), and remem-
ber the expressions for x and y in terms of r and θ .

3. Read carefully the paragraph that includes Eq. (4).

4. Read the paragraph that includes Eq. (4) and examine
Fig. 13.4.4.

5. Read the first paragraph of the solution to Example 1.

6. Read the second paragraph of the solution to Example 1.

7. Read the paragraph that includes Eq. (5).

8. Read the paragraph that includes Eq. (8). Also look at Ex-
ample 2.

9. Read Example 3.

10. Read Example 5.

Answers: TFFTFTTTTT

SECTION 13.5 T/F STUDY GUIDE: HINTS

1. Read the paragraphs that include Eqs. (1)–(3).

2. Study the paragraph that precedes Example 1. If the lamina
is very heavy on one side of L and very light on the other
side, would you say that it’s density function is symmetric
about L?

3. Look at the final result in Example 1.

4. Examine carefully the result of Example 2. Is it clear that
the point (x, y) lies in R if and only if both −1 � x � 2 and
x2 � y � x + 2?

5. Read both Example 3 and the paragraph that precedes Ex-
ample 1.

6. Read carefully the statement of the first theorem of Pappus.
Are its hypotheses satisfied if the circular disk is centered at
the origin?

7. Read Example 5.

8. Read the first paragraph of the subsection entitled Surface
Area and the Second Theorem of Papppus.

9. Read carefully the statement of the second theorem of Pap-
pus. Are its hypotheses satisfied if the circle is centered at
the origin?

10. Read Example 8.

Answers: TFFTTFFTFT

SECTION 13.6 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eq. (1).

2. Read the paragraph that precedes Example 1.

3. Read the sentence that includes Eq. (3).

4. Read the sentence that includes Eqs. (4abc).

5. Read the sentence that includes Eqs. (5abc).

6. Read the paragraph that includes Eq. (6).

7. Read the paragraph that includes Eq. (7).

8. Read the paragraph that includes Eq. (8).

9. Read Example 4.

10. Read Example 5.

Answers: TTTTFFFFTF

SECTION 13.7 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eq. (5).

2. Read the paragraph that includes Eq. (5).

3. Read Example 1.

4. Read Example 2 and the paragraph that follows it.

5. Read the paragraph that includes Eq. (8).

6. Read the paragraph that includes Eqs. (10) and (11).

7. Read Example 3.

8. Read Example 4 and divide the volume of the ice-cream cone
by the volume of the sphere.

9. Read Example 4 and divide the z-coordinate of the centroid
by the whole distance 2a from the cone’s vertex to its spher-
ical surface.

10. Read Examples 3 and 4 and the statement of Problem 16.

Answers: FTTFTFTFFT

SECTION 13.8 T/F STUDY GUIDE: HINTS

1. Read the paragraphs that include Eqs. (1)–(3).

2. Read Example 1.

3. Read the paragraph that includes Eq. (7).

4. Read the paragraph that includes Eq. (7).

5. Read the paragraph that includes Eq. (8).

6. Read the paragraph that includes Eq. (9).

7. Read the Remark that follows Example 2.

8. Read the paragraph that includes Eq. (10).

9. Read Example 3.

10. Read Example 5.

Answers: FTTTTFFFFF

SECTION 13.9 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eqs. (2) and (3).

2. Read Example 1.

3. Read Eq. (6) and the paragraph that follows it.

4. Read Theorem 1 and examine carefully Eqs. (7) and (8).

5. Read the paragraph that follows Theorem 1.

6. Read Example 2.

7. Read the paragraph that includes Eq. (9).

8. Read carefully the first paragraph of the subsection entitled
Change of Variables in Triple Integrals.

9. Compare Eqs. (11) and (12).

10. Read Example 5.

Answers: TFTFTTTFTF
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SECTION 14.1 T/F STUDY GUIDE: HINTS

1. Read the first paragraph in this section.

2. Read Example 1 and examine Fig. 14.1.1.

3. Read Example 2 and examine Fig. 14.1.2.

4. Read Example 3 and examine Fig. 14.1.5.

5. Read the first paragraph of the subsection entitled The Gra-
dient Vector Field.

6. Read the first paragraph of the subsection entitled The Di-
vergence of a Vector Field.

7. Read the first paragraph of the subsection entitled The Curl
of a Vector Field.

8. Examine Eqs. (7), (10), and (14).

9. Examine Eqs. (8), (11), and (15).

10. Read Example 8.

Answers: TTFFTFFTTT

SECTION 14.2 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eq. (4).

2. Read the paragraph that includes Eq. (6).

3. Read the paragraph that includes Eq. (6).

4. Read the paragraph that includes Eq. (7).

5. Read Example 2.

6. Read the paragraphs that include Eqs. (8) and (9).

7. Read the paragraph that includes Eqs. (10) and (11).

8. Read the paragraph that includes Eq. (12).

9. Read Theorem 1 in this section.

10. Read the Remark that follows Theorem 1.

Answers: TTFTFTFTTF

SECTION 14.3 T/F STUDY GUIDE: HINTS

1. Read Theorem 1 and recall that
∫

C F · T ds = ∫
C F · dr if r

is a parametrization of C.

2. Read Example 1. Does it make any difference whether we
write −k instead of k?

3. Read the definition of independence of path.

4. Read Example 3 and the paragraph that follows the proof of
Theorem 2.

5. Read Example 1 and the paragraph that precedes the subsec-
tion entitled Conservative Vector Fields.

6. Read the definition of conservative fields and potential func-
tions. What is the gradient of what?

7. Read Theorem 3 and the definition of conservative fields and
potential functions.

8. Read Example 5 and recall the definition of a conservative
vector field.

9. Read carefully the paragraph that includes Eqs. (17) and
(18).

10. Read Example 6.

Answers: TTTFTFTTFT

SECTION 14.4 T/F STUDY GUIDE: HINTS

1. Read the first paragraph of this section.

2. Read the first paragraph of this section.

3. Study the statement of Green’s theorem. How would the
value of the line integral

∮
C P dx + Q dy be affected if the

orientation of the boundary curve C were reversed?

4. Read Example 1.

5. Read the paragraph that follows Example 2.

6. Read carefully the statement (preceding Example 3) of the
Corollary to Green’s theorem.

7. Read the two paragraphs that follow Example 3.

8. Read Example 4 and the two paragraphs that follow it.

9. Read the Remark that precedes the proof given in this section
for Theorem 3 in Section 14.3.

10. Read the paragraph that includes Eq. (5).

Answers: FTTTTFFFTF

SECTION 14.5 T/F STUDY GUIDE: HINTS

1. Read the paragraph that includes Eq. (2).

2. Read the paragraphs that include Eqs. (4) and (5).

3. Read the paragraph that includes Eq. (5).

4. Examine Eq. (6).

5. Read the paragraph that include Eqs. (8) and (9).

6. Read the paragraph that precedes Example 1.

7. Read Example 1.

8. Read the paragraphs that include Eqs. (11) and (19).

9. Read the paragraph that precedes Example 3.

10. Read the paragraphs that include Eqs. (13) through (17).

Answers: TFFFFTTTFT

SECTION 14.6 T/F STUDY GUIDE: HINTS

1. Read the statement of the divergence theorem and the para-
graph that includes Eq. (4).

2. Read the solution to Example 1.

3. Read the solution to Example 3, except with P = x and
Q = R = 0.

4. Read Example 4.

5. Read the paragraph that includes Eq. (12).

6. Read the paragraph that includes Eq. (13).

7. Read the two sentences that follow Eq. (13).

8. Read the paragraph that includes Eq. (14).

9. Read the paragraph that includes Eq. (5).

10. Read the paragraph that includes Eq. (11).

Answers: TTTTFTTTTT
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SECTION 14.7 T/F STUDY GUIDE: HINTS

1. Read the paragraph that precedes the statement of Stokes’
theorem.

2. Read the statement of Stokes’ theorem in its scalar form—
Eq. (5).

3. Read the Partial Proof of Stokes’ theorem.

4. Read Example 1.

5. Read the paragraph that includes Eq. (9).

6. Read the paragraph that includes Eq. (10).

7. Read the paragraph that includes Eq. (10).

8. Read the paragraph that precedes the statement of Theorem
1.

9. Read Theorem 1.

10. Read the paragraph that includes Eq. (12).

Answers: FTTTTTFTTT
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Answers to
Odd-Numbered Problems
SECTION 1.1 (PAGE 10)

1. a. − 1

a
; b. a; c. a−1/2; d. a−2

3. a.
1

a2 + 5
; b.

a2

1 + 5a2
; c.

1

a + 5
; d.

1

a4 + 5

5. a = 1

3
7. a = 3 or a = −3

9. a = 100 11. 3h 13. 2ah + h2

15. − h

a(a + h)
17. {−1, 0, 1} 19. {−1, 1}

21. The set R of all real numbers

23. The set R of all real numbers

25.
[

5
3 , +∞)

27.
(−∞, 1

2

]
29. (−∞, 3) ∪ (3, +∞)

31. The set R of all real numbers

33. [0, 16] 35. (−∞, 0) ∪ (0, +∞)

37. C(A) = 2
√

π A, 0 � A < +∞
39. C(F) = 5

9 (F − 32), F > −459.67

41. A(x) = x
√

16 − x2, 0 � x � 4

43. C(x) = 3x2 + 1296

x
, 0 < x < +∞

45. A(r) = 2πr 2 + 2000

r
, 0 < r < +∞

47. V (x) = x(50 − 2x)2, 0 � x � 25

49. Drill ten new wells.

51. CEILING(x) = −FLOOR(−x)

53. The set of all integral multiples of 1
10

55. ROUND4(x) = 1
10000 ROUND(10000x)

57. 0.38 59. 1.24 61. 0.72

63. 3.21 65. 1.62

SECTION 1.2 (PAGE 22)

1. 2y = 3x

3. y = −5

5. y = 2x − 7

7. x + y = 6

9. y − 5 = −2(x − 1)

11. Center (2, 0), radius 2

13. Center (−1, −1), radius 2

15. Center
(− 1

2 , 1
2

)
, radius 1

17. Opens upward, vertex at (3, 0)

19. Opens upward, vertex at (−1, 3)

21. Opens upward, vertex at (−2, 3)

23. Circle, center (3, −4), radius 5

25. There are no points on the graph.

27. The graph is the straight line segment connecting the two
points (−1, 7) and (1, −3) (including those two points).

29. The graph is the parabola that opens downward, symmet-
ric around the y-axis, with vertex at (0, 10) and x-intercepts
±√

10.

31.

y = x3

x

y 33. y

x

4 − x2y =

−2 −1 1

1

2

2

35. y

x

x2 − 9y =

(−3,0) (3,0) 

37.

x−2

y

1
x + 2

y =

39. y

x1

1
(x − 2)2y =

41.

1
2x + 3

y =

y

x

1
3(0,   )

From Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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A-66 Answers to Odd-Numbered Problems

43. y

x

1 − xy =

(0, 1)

(1, 0)

45.

y =

y

x

1
  2x + 3

x = − 3
2

47.

y = |x | + x

y

x

49. yy = |2x + 5 |

x
 − 5

2

51. y

x

53.

1 2−1−2

−4

−2

2
f (x) = [[2x]]

4

y

x

55. y f (x) = [[x]] − x:
Discontinuous
at every integral
value of x

x−2

−2

−1
−1

1

1

2

2

57. (1.5, 2.5) 59. (2.25, 1.75) 61. (2.25, 8.5)

63.
(− 4

3 , 25
3

)
65. 144 ft 67. 625

69. f (x) = |x + 1|, −2 � x � 2

71. f (x) = [[2x]], −1 � x < 2

73. x(t) =
{

45t if 0 � t � 1,

75t − 30 if 1 < t � 2.

75. x(t) =
{

60t if 0 � t � 1,

90 − 30t if 1 < t � 3.

77. In dollars, C(p) = (0.03)p + 0.68, 1 � p � 100. When
p = 50, C = $2.18. Fixed cost: $0.68. Marginal cost:
3/c per page.

79. C(x) =
{

8 if 0 < x � 8,
8 − (0.8) · [[8 − x]] if 8 < x � 16:

2 4 6 8 10 12 14 16
x

2

4

6

8

10

12

14

C

81. V (0.5) ≈ 3.36, V (5) ≈ 0.336 (L):

1 2 3 4 5 6
p

2

4

6

8

V

83. x ≈ 14.45 ft. or x ≈ 22.48 ft.

SECTION 1.3 (PAGE 32)

1. ( f + g)(x) = x2 + 3x − 2, x in R. ( f · g)(x) =
x3 +3x2 − x −3, x in R. ( f/g)(x) = (x +1)/(x2 +2x −3),
x �= −3, 1.

3. ( f + g)(x) = √
x + √

x − 2 , 2 � x < +∞. ( f · g)(x) =√
x2 − 2x , 2 � x < +∞. ( f/g)(x) = √

x/(x − 2), 2 <

x < +∞.

5. All three functions have domain (−2, 2). And

( f + g)(x) =
√

x2 + 1 + 1√
4 − x2

,

( f · g)(x) =
√

x2 + 1√
4 − x2

,(
f

g

)
(x) =

√
4 + 3x2 − x4 .

7. Matches Fig. 1.3.30

−4

−2

0

2

4

−4 −2 0 2 4
x

y

9. Matches Fig. 1.3.31

−20

−10

0

10

20

−4 0
x

4

y
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Answers to Odd-Numbered Problems A-67

11. Matches Fig. 1.3.27

−20
−15
−10

−5

20
15
10

5
0

−3 −2 −1 3210
x

y

13. Matches Fig. 1.3.34

−4

−2

0

2

4

−4 −2 0 2 4
x

y

15. Matches Fig. 1.3.33

−4

−2

0

2

4

−4 −2 0 2 4
x

y

17. Matches Fig. 1.3.38

−2

4

3

2

1

0

−1

−3 −2 −1 3210
x

y

19. Matches Fig. 1.3.39

−2
−1

0
1

6
5
4
3
2

−4 −3 −2 −1 20 1 43
x

y

21. −1.88, 0.35, 1.53 23. −2.10

25. −1.30, 1 (exactly), 2.30 27. −5.70, −2.22, 7.91

29. −10.20, −7.31, 1.98, 3.25, 7.28

31.

−2−3

−20

−10

10

20

−1 1 2 3 x

y 33.

−5 −3 3 5
x

−20

−10

10

20

y

c = 5

c = −5

35.

−2 −1 1 2
x

−10

−5

5

10

y

c = 5

c = −5

37.

−10 −5 5 10
x

10

20

y

39. x ≈ 2.70 ft. or x ≈ 6.53 ft.

SECTION 1.4 (PAGE 44)

1. Matches Fig. 1.4.29 3. Matches Fig. 1.4.27

5. Matches Fig. 1.4.35 7. Matches Fig. 1.4.31

9. Matches Fig. 1.4.34

11. f (g(x)) = −4x2 − 12x − 8; g( f (x)) = −2x2 + 5

13. f (g(x)) = √
x4 + 6x2 + 6 ; g( f (x)) = x2, |x | �

√
3

15. f (g(x)) = g( f (x)) = x

17. f (g(x)) = sin x3 = sin(x3); g( f (x)) = (sin x)3 = sin3 x

19. f (g(x)) = 1 + tan2 x if x is not an odd integral multiple of
π/2; g( f (x)) = tan(1 + x2) if x2 + 1 is not an odd integral
multiple of π/2

Problems 21 through 30 have many correct answers; we give
only the most natural.

21. k = 2, g(x) = 2 + 3x 23. k = 1
2 , g(x) = 2x − x2

25. k = 3
2 , g(x) = 5 − x2 27. k = −1, g(x) = x + 1

29. k = − 1
2 , g(x) = x + 10 31. Exactly one solution

33. Exactly one solution 35. Exactly five solutions

37. Exactly three solutions 39. Exactly six solutions

41. 3.322 months 43. 27.0046 years

45. 98.149 years 47. x ≈ 4.84891

49. R ≈ 50,008 ft. ≈ 9.47 mi.

CHAPTER 1 MISCELLANEOUS PROBLEMS (PAGE 51)

1. x � 4 3. x �= ±3 5. x � 0 7. x � 2
3

9. R 11. 4 � p � 8 13. 2 < I < 4

15. V (S) = (S/6)3/2, 0 < S < +∞
17. A(P) =

(
P2

√
3
)
/36, 0 < P < +∞

19. y = 2x + 11 21. 2y + 10 = x

23. x + 2y = 11 25. Matches Fig. 1.MP.6

27. Matches Fig. 1.MP.4 29. Matches Fig. 1.MP.3

31. Matches Fig. 1.MP.7 33. Matches Fig. 1.MP.8

35. The straight line with x-intercept 7
2 and y-intercept − 7

5

37. Circle, center (1, 0), radius 1

39. Parabola, opening upward, vertex at (1, −3)

41. The graph is that of y = 1/x (Fig. 1.2.12) translated 5 units
to the left.

−8 −6 −4 −2
x

−20

−10

10

20

y

43. The graph is that of y = |x | (Fig. 1.2.11) translated 3 units
to the right.

45. Key step: |a + b + c| = |(a + b) + c| � |a + b| + |c|.
47. (−∞, −2) ∪ (3, +∞) 49. (−∞, −2) ∪ (4, +∞)
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51. −1.140 and 6.140 53. 1.191 and 2.309

55. −5.021 and 0.896 57. (2.50, 0.75)

59. (1.75, −1.25) 61. (−2.0625, 0.96875)

63. x ≈ 0.4505 65. Exactly three solutions

67. Exactly three solutions 69. Exactly three solutions

SECTION 2.1 (PAGE 62)

1. m(a) ≡ 0; y ≡ 5 3. m(a) = 2a; y = 4x − 4

5. m(a) ≡ 4; y = 4x − 5 7. m(a) = 4a − 3; y = 5x − 4

9. m(a) = 4a + 6; y = 14x − 8

11. m(a) = − 2
100 a + 2; 25y = 49x + 1

13. m(a) = 8a; y = 16x − 15

15. (0, 10) 17. (1, 0) 19. (50, 25)

21. (1, −16) 23. (35, 1225)

25. m(x) = 2x ; y = −4x − 4, 4y = x + 18

27. m(x) = 4x + 3; y = 11x − 13, x + 11y = 101

29. y(3) = 144 (ft) 31. 625

33. y = 12x − 36 35. (1, 1)

37. 12; y = 12x − 16

−2 −1 1 2 3
x

−10

10

20

30

y

39.
1

2
; y = 1

2 (x + 1)

1 2
x

1

y

41. −1; y = −x + 2

21
x

1

2

3

y

43. 0; y ≡ 1

− π
2

x

1

y

π
2

45. − 1√
2

; y −
√

2

2
= −

√
2

2

(
x − π

4

)

x

1

y

− π
2

− π
4

π
4

π
2

47. 0; y ≡ 5

−5 5
x

5

y

SECTION 2.2 (PAGE 74)

1. 36 3. 0 5.
2

3

7. 125 9. 3 11. 16
√

2

13. 1 15. 4 17. 0
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19. −1

3
21. −3

2
23. 0

25. 0 27.
3

4
29. −1

9

31. 4 33.
1

4
35. −32

37. m(x) = 3x2; y = 12x − 16

39. m(x) = − 2

x3
; x + 4y = 3

41. m(x) = − 2

(x − 1)2
; y = 6 − 2x

43. m(x) = − 1

2(x + 2)3/2
; x + 16y = 10

45. m(x) = 1√
2x + 5

; 3y = x + 7

47. 2 49.
1

6
51. −3

8

53. 1 55.
1

6
57. The limit seems to be the number e ≈ 2.71828.

59. −0.3333 61. This limit does not exist.

63. For instance, f (10−20) ≈ 0.9106. A computer graph:

−0.00001 0.00001
x

0.935

0.94

0.945

0.95

y

SECTION 2.3 (PAGE 88)

1. 0 3.
1

2
5. −∞ (or “does not exist”)

7. 5 9. Does not exist 11.
1

3

13. 0 15. 1 17.
1

2

19.
1

2
21.

1

3
23.

1

4
25. 0; a graph:

−1 1
x

−2

−1

1

2

y

27. 0 29. 3 31. This limit does not exist.

33. 0 35. 0 37. +∞ (or “does not exist”)

39. −1 41. 1 43. −1

45. 2 47. −1

49. f (x) → +∞ as x → 1+ and f (x) → −∞ as x → 1−.

51. f (x) → −∞ as x → −1+ and f (x) → +∞ as x → −1−.

53. f (x) → −∞ as x → −2+ and f (x) → +∞ as x → −2−.

55. f (x) → +∞ as x → 1.

57. f (x) → − 1
4 as x → 2, but f has no limit at −2 because

lim
x→−2+ f (x) = −∞ and lim

x→−2− f (x) = +∞.

59. f (x) → 4 as x → 2+, f (x) → −4 as x → 2−:

1 2 3 4
x

−4

−2

2

4

6

y

61. For every real number a, lim
x→a

f (x) = 2:

−1 1 2 3 4
x

1

3

4

y

63. If n is an integer, then f (x) → 10n − 1 as x → n− and
f (x) → 10n as x → n+. The limit of f (x) at x = a exists
if and only if 10a is not an integer:

−0.2 −0.1 0.1 0.2 0.3 0.4
x

−3

−2

−1

1

2

3

4

y
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65. If n is an integer, then f (x) → − 1
2 as x → n+, but

f (x) → 1
2 as x → n−. The limit of f (x) at x = a ex-

ists if and only if a is not an integer:

−1 1 2 3 4
x

−0.5

0.5

y

67. For every real number a, f (x) → −1 as x → a:

−1 1 2 3 4
x

−1.5

−0.5

0.5

y

69. The limit of g(x) at x = a exists if and only if a is not an
integral multiple of 1

10 . If b is an integral multiple of 1
10 , then

g(x) → b − 1
10 as x → b− and g(x) → b as x → b+:

−0.2 −0.1 0.1 0.2 0.3 0.4
x

−0.3
−0.2

0.1
0.2
0.3
0.4

y

71. f (x) → 0 as x → 0.

73. f (x) → 1 as x → 0:

−1 −0.5 0.5 1
x

0.5

1.5

2

y

75. Given ε > 0, let δ = ε/7.

77. Given ε > 0, let δ = ε2.

79. Given ε > 0, let δ be the minimum of the two numbers 1 and
ε/5.

81. Given ε > 0, let δ be the minimum of the two numbers 1 and
ε/29.

83. Case 1: a = 0. See Problem 78. Case 2: a > 0. Given
ε > 0, let δ be the minimum of the two numbers 1 and
ε/(2a + 1). Case 3: a < 0. Given ε > 0, let δ be the
minimum of the two numbers 1 and ε/|2a − 1|.

SECTION 2.4 (PAGE 100)

1. If a is a real number, then

lim
x→a

f (x) = lim
x→a

(2x5 − 7x2 + 13)

=
(

lim
x→a

2x5
)

−
(

lim
x→a

7x2
)

+
(

lim
x→a

13
)

=
(

lim
x→a

2
)(

lim
x→a

x
)5 −

(
lim
x→a

7
)(

lim
x→a

x
)2 + 13

= 2a5 − 7a2 + 13 = f (a).

3. Begin with the quotient law for limits.

5. Begin with the substitution law for limits.

7. Use the quotient law for limits and Theorem 1.

9. Use the quotient law for limits.

11. Use the substitution law for limits.

13. Use the quotient law for limits and Theorem 1.

15. Continuous on R, the set of all real numbers.

17. Continuous on its domain, (−∞, −3) ∪ (−3, +∞).

19. Continuous on R.

21. Continuous on its domain, (−∞, 5) ∪ (5, +∞).

23. Continuous on its domain, (−∞, 2) ∪ (2, +∞).

25. Continuous on its domain, (−∞, 1) ∪ (1, +∞).

27. Continuous on its domain, (−∞, 0) ∪ (0, 1) ∪ (1, +∞).

29. Continuous on its domain, (−2, 2).

31. Continuous on its domain, (−∞, 0) ∪ (0, +∞).

33. Continuous on its domain, the set of all real numbers other
than the integral multiples of π/2.

35. Continuous on R.

37. Nonremovable discontinuity at x = −3.

39. Nonremovable discontinuity at x = −2, removable discon-
tinuity at x = 2.

41. Nonremovable discontinuities at x = ±1.

43. Nonremovable discontinuity at x = 17.

45. Removable discontinuity at x = 0.

47. Removable discontinuity at x = 0.

49. c = 4 51. c = 0

53. Apply the intermediate value property of continuous func-
tions to f (x) = x2 − 5 on [2, 3].
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55. Apply the intermediate value property of continuous
functions to f (x) = x3 − 3x2 + 1 on [0, 1].

57. Apply the intermediate value property of continuous func-
tions to f (x) = x4 + 2x − 1 on [0, 1].

59. Examine f (x) at the endpoints of the interval [−3, −2],
[0, 1], and [1, 2].

61. Your salary after t years have elapsed will be S(t) = 25 ·
(1.06)[[t]], with a discontinuity at each positive integer in the
domain of S. A graph:

1 2 3 4
t

25

30

35

S

63. It is easy to see that h(a) and h(b) have opposite signs and
that h is continuous on [a, b]. Apply the intermediate value
property of continuous functions to h. Typical graphs:

−1 1 2 3 4
x

1

2

3

4

5

6

7 a b

p

q

f

g

65. Given a > 0, let f (x) = x2 − a. Apply the intermediate
value theorem to f on the interval [0, a + 1].

67. To show that

lim
x→a

cos x = cos a,

let h = x − a, so that x = a + h. Then use the cosine addi-
tion formula (from the endpapers).

69. Suppose by way of contradiction that f has limit L at x = a,
an arbitrary real number. Choose ε = 1

4 and use the fact that
every neighborhood of a contains both rational and irrational
numbers and the formal definition of limit to obtain a con-
tradiction.

71. 0.74

73. Left continuous but not right continuous at x = 0.

75. Left continuous but not right continuous at x = 0.

77. Right continuous but not left continuous at each odd integral
multiple of π/2.

CHAPTER 2 MISCELLANEOUS PROBLEMS (PAGE 103)

1. 4 3. 0 5. −5

3
7. −2 9. 0 11. 4

13. 8 15.
1

6
17. − 1

54
19. −1 21. 1

23. This limit does not exist.

25. +∞ (or “does not exist”)

27. +∞ (or “does not exist”)

29. −∞ (or “does not exist”)

31. 3 33.
3

2
35. 0

37.
9

4
39. 2

41. m(x) = 4x ; y = 4x + 1

43. m(x) = 6x + 4; y = 10x − 8

45. m(x) = 4x − 3; y = x − 1

47. m(x) = 4x + 3

49. m(x) = 1

(3 − x)2
51. m(x) = 1 + 1

x2

53. m(x) = − 2

(x − 1)2
55. a = 3 ± √

5

57. Nonremovable discontinuity at x = −1, removable discon-
tinuity at x = 1

59. Nonremovable discontinuity at x = −3, removable discon-
tinuity at x = 1

61. Apply the intermediate value theorem to f (x) = x5 + x − 1
on [0, 1].

63. Apply the intermediate value theorem to g(x) = x − cos x
on [0, π/2].

65. There are three such lines; their slopes are 1
4 , 1

2 , and − 1
6 .

SECTION 3.1 (PAGE 116)

1. f ′(x) ≡ 4 3. h′(z) = −2z + 25

5.
dy

dx
= 4x + 3 7.

dz

du
= 10u − 3

9.
dx

dy
= −10y + 17 11. f ′(x) ≡ 2

13. f ′(x) = 2x 15. f ′(x) = − 2

(2x + 1)2

17. f ′(x) = 1√
2x + 1

19. f ′(x) = 1

(1 − 2x)2

21. x(0) = 100 23. x(2.5) = 99

25. x(−2) = 120 27. y(2) = 64 (ft)

29. y(3) = 194 (ft) 31. Matches Fig. 3.1.28(e)

33. Matches Fig. 3.1.28(f) 35. Matches Fig. 3.1.28(d)

37. A′(C) = C

2π
39. 500 ft; 10 s

41. a. 2.5 months; b. 50 chipmunks per month
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43. v(20) ≈ 68 (mi/h); v(40) ≈ 102 (mi/h)

45.
dV

dr
= 4πr 2

47. V ′(30) = −25π

12
(cubic inches per second), so that air is

leaking out at approximately 6.545 cubic inches per second.

49. a. V ′(6) = −144π (cm3/h); b. −156π (cm3/h)

51. At t = 2 (s); y′(2) = 0 (m/s)

53. Average rate of change: 0.6 (thousands per year). The in-
stantaneous rate of change is 0.6 when t = (50 ± 10

√
7 )/9.

55. a. f ′
−(0) = 1, f ′

+(0) = 2:

−1 1
x

−1

1

2

y

b. f ′
−(0) = 0 = f ′

+(0):

−1 1
x

1

y

57. f ′
−(3) = 0 = f ′

+(3)

59. f ′
−(0) = 0, f ′

+(0) = 2; f ′(x) = 1 + |x |
x

:

-1 1
x

1

2

y

SECTION 3.2 (PAGE 128)

1. f ′(x) = 6x − 1 3. f ′(x) = 12x + 5

5. h′(x) = 3(x + 1)2 7. f ′(y) = 12y2 − 1

9. g′(x) = 1

(x − 1)2
− 1

(x + 1)2

11. h′(x) = − 6x + 3

(x2 + x + 1)2

13. g′(t) = 5t4 + 4t3 + 3t2 + 4t 15. g′(z) = 4 − 3z

6z3

17. g′(y) = 30y4 + 48y3 + 48y2 − 8y − 6

19. g′(t) = 3 − t

(1 + t)3
21. v′(t) = − 3

(t − 1)4

23. g′(x) = − 6x3 + 15

(x3 + 7x − 5)2

25. g′(x) = 4x3 − 13x2 + 12x

(2x − 3)2

27. h′(x) = 3x2 − 30x4 − 6x−5 29. y′(x) = 2x5 + 4x2 − 15

x4

31. y′(x) = 3 + 1

2x3
33. y′(x) = −12x2 + 6x − 3

(3x2 − 3x)2

35. y′(x) = x4 + 31x2 − 10x − 36

(x2 + 9)2

37. y′(x) = 30x5(5x5 − 8)

(15x5 − 4)2

39. y′(x) = x(x + 2)

(x + 1)2
41. 12x − y = 16

43. x + y = 3 45. 5x − y = 10

47. 18x − y = −25 49. 3x + y = 0

51. a. It contracts; b. −0.06427 cm3 per ◦C

53. 14400π ≈ 45239 cm3 per cm

55. y = 3x + 2

57. Suppose that the line L is tangent at the two points (a, a2)

and (b, b2). Use the derivative to show that b = a.

59. The x-intercept is
n − 1

n
x0.

61. D[ f (x)3] = f ′(x) f (x) f (x) + f (x) f ′(x) f (x) +
f (x) f (x) f ′(x)

63. Let ui (x) = f (x) for 1 � i � n. Then the left-hand side in
Eq. (16) is Dx [( f (x))n]. Now compute and simplify the
right-hand side.

65. g′(x) = 17(x3 − 17x + 35)16 · (3x2 − 17)

67. If f (x) = 1

1 + x2
then

f ′(x) = − 2x

(1 + x2)2
,

and if f (x) = x2

1 + x2
then

f ′(x) = 2x

(1 + x2)2
.

Thus there can be only one horizontal tangent. If n = 0 it is
tangent at (0, 1); if n = 2 then it is tangent at the origin.
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69. If n is an integer and n � 3, then

Dx

[
xn

1 + x2

]
= xn−1[n + (n − 2)x2]

(1 + x2)2
.

It is now easy to show that the only horizontal tangent to the
graph is tangent at the origin.

71. (0, 0),
(
−√

3 , 9
8

)
, and

(√
3 , 9

8

)
73. f ′(0) = 0:

−1 1
x

−1

1

y

75. f ′(1) = 6:

−2 −1 1 2
x

5

10

15

20
y

(1, 5)

77. f ′(1) = 1:

−1 1 2
x

1

2

y

(1, 1)

SECTION 3.3 (PAGE 137)

1.
dy

dx
= 15(3x + 4)4 3.

dy

dx
= − 3

(3x − 2)2

5.
dy

dx
= 3(x2 + 3x + 4)2(2x + 3)

7.
dy

dx
= 7(2 − x)4(3 + x)6 − 4(2 − x)3(3 + x)7

9.
dy

dx
= − 6x + 22

(3x − 4)4

11.
dy

dx
= 12[1 + (1 + x)3]3(1 + x)2

13.
dy

dx
= −6(x2 + 1)2

x7

15.
dy

dx
= 48(4x − 1)3[1 + (4x − 1)4]2

17.
dy

dx
= [(1 − x−4)3 − 3x−4(1 − x−4)2] · (−4x−5)

= · · · = 16 − 36x4 + 24x8 − 4x12

x17

19.
dy

dx
=[

2x−2(x−2−x−8)3 + 3x−4(x−2−x−8)2(1−4x−6)
] ·(−2x−3)

= · · · = 28 − 66x6 + 48x12 − 10x18

x29

21. u(x) = 2x − x2, n = 3, f ′(x) = 3(2x − x2)2(2 − 2x)

23. u(x) = 1 − x2, n = −4, f ′(x) = 8x

(1 − x2)5

25. u(x) = x + 1

x − 1
, n = 7, f ′(x) = −14 · (x + 1)6

(x − 1)8

27. g′(y) = 1 + 10(2y − 3)4

29. F ′(s) = 3(s9 − 3s3 + 2)

s7

31. f ′(u) = (1 + u)2(1 + u2)3(11u2 + 8u + 3)

33. h′(v) = 2(v − 1)(v2 − 2v + 2)

v3(2 − v)3

35. F ′(z) = 40 − 250z4

(5z5 − 4z + 3)11

37.
dy

dx
= 4(x3)3 · 3x2 = 12x11

39.
dy

dx
= 2(x2 − 1) · 2x = 4x3 − 4x

41.
dy

dx
= 4(x + 1)3 = 4x3 + 12x2 + 12x + 4

43.
dy

dx
= −2x(x2 + 1)−2 = − 2x

(x2 + 1)2

45. f ′(x) = 3x2 cos(x3) = 3x2 cos x3

47. g′(z) = 6(sin 2z)2(cos 2z) = 6 sin2 2z cos 2z

49. 40π (in.2/s) 51. 40 (in.2/s)

53. Decreasing at 600 in.3/h 55. G ′(1) = −18

57. 400π ≈ 1256.64 (cm3/s) 59. r = 5 (cm)

61. Total melting time: T =
3
√

2
3
√

2 − 1
≈ 4.8473 (h); all melted

by about 2:50:50 P.M. on the same day.

63.
du

dx
= du

dv
· dv

dx
= du

dv
· dv

dw
· dw

dx

65. h′(x) = 1

2
√

x + 4

67. h′(x) = 3x
√

x2 + 4
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SECTION 3.4 (PAGE 144)

1. f ′(x) = 10x3/2 − x−3/2 3. f ′(x) = 1√
2x + 1

5. f ′(x) = −3x−3/2 − 3

2
x1/2

7. Dx (2x + 3)3/2 = 3 · (2x + 3)1/2

9. Dx (3 − 2x2)−3/2 = 6x

(3 − 2x2)5/2

11. Dx (x3 + 1)1/2 = 1

2
(x3 + 1)−1/2 · 3x2

13. Dx (2x2 + 1)1/2 = 2x√
2x2 + 1

15. Dt

(
t3/2

√
2
) = 3

√
t√

2

17. Dx (2x2 − x + 7)3/2 = 3

2
(4x − 1)

√
2x2 − x + 7

19. Dx (x − 2x3)−4/3 = 4(6x2 − 1)

3(x − 2x3)7/3

21. f ′(x) = 1 − 2x2

√
1 − x2

23. f ′(t) = 1

2

(
t2 + 1

t2 − 1

)−1/2

· (t2 − 1)(2t) − (t2 + 1)(2t)

(t2 − 1)2

= − 2t

(t2 − 1)3/2
√

t2 + 1

25. f ′(x) = 3

(
x − 1

x

)2(
1 + 1

x2

)

27. f ′(v) = − v + 2

2v2
√

v + 1

29. Dx (1 − x2)1/3 = − 2x

3(1 − x2)2/3

31. f ′(x) = 3(1 − 2x)√
3 − 4x

33. f ′(x) = 2 − 24x − 14x2

3(2x + 4)2/3

35. g′(t) = 3t4 − 3t2 − 2t − 2

t3
√

3t2 + 1

37. f ′(x) = 23 − 24x

(3x + 4)6

39. f ′(x) = x + 3

(3x + 4)4/3(2x + 1)1/2

41. h′(y)

= y5/3
[

1
2
(1 + y)−1/2 − 1

2
(1 − y)−1/2

]− 5
3

y2/3[(1 + y)1/2 + (1 − y)1/2]
y10/3

= · · · = (7y − 10)
√

1 + y − (7y + 10)
√

1 − y

6y8/3
√

1 − y2

43. g′(t) = 1
2

[
t + (t + t1/2)1/2

]−1/2 · [
1 + 1

2 (t + t1/2)−1/2

×(
1 + 1

2 t−1/2
)]

45. There are no horizontal tangents, but there is a vertical line
tangent to the graph at (0, 0).

47. There is a horizontal line tangent to the graph at ( 1
3 , 2

9

√
3 )

and a vertical line tangent to the graph at (0, 0).

49. There are no horizontal or vertical tangent lines.

51. 2y = x + 4:

2 4 6 8
x

2

4

6

y

(4, 4)

53. 2x + y = 1:

−3 −2 −1 1
x

−2

2

4

6

8

y

(−1, 3)

55. y = 2x :

−3 −2 −1 1 2 3 4
x

−6

−4

−2

2

4

6

y

(0, 0)

57. Matches Fig. 3.4.13(d) 59. Matches Fig. 3.4.13(b)

61. Matches Fig. 3.4.13(e)

63.
π2

32
≈ 0.308 (seconds per foot)

65.
(
− 2

5

√
5 , − 1

5

√
5

)
and

(
2
5

√
5 , 1

5

√
5

)
67. x + 4y = 18

69. 3x + 2y = 5 and 3x − 2y = −5

71. Differentiation of both sides would make sense only if the al-
gebraic equation expressed an identity between the two func-
tions x3 and 3x + 8 (which it does not).
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73. In f ′(a) = lim
x→a

x1/3 − a1/3

x − a
, replacement of x − a with

(x1/3 − a1/3)(x2/3 + x1/3a1/3 + a2/3)

yields a useful cancellation.

75. The preamble to Problems 72 through 75 implies that x − a
can be written as the product of x1/q − a1/q and

x (q−1)/q + x (q−2)/qa1/q + x (q−3)/qa2/q + · · ·
+ x1/qa(q−2)/q + a(q−1)/q .

SECTION 3.5 (PAGE 153)

In the answers to Problems 1 through 39, we first give the maxi-
mum (if any), then the minimum (if any).

1. f (−1) = 2; none 3. None; f (0) = 0

5. f (4) = 2; f (2) = 0 7. f (1) = 2; f (−1) = 0

9. f (3) = − 1
6 ; f (2) = − 1

2 11. f (3) = 7; f (−2) = −8

13. h(1) = 3; h(3) = −5 15. g(4) = 9; g(1) = 0

17. f (4) = 52; f (−2) = f (1) = −2

19. h(1) = h(4) = 5; h(2) = 4

21. f (−1) = 5; f (1) = 1

23. f
(− 2

3

) = 9; f (1) = −16

25. f (−1) = 10; f (3) = −22

27. f (2) = 56; f (−2) = −56

29. f (5) = 13; f
(

7
3

) = 5

31. f (1) = 17; f (0) = 0

33. f (3) = 3
4 ; f (0) = 0

35. f (−1) = 1
2 ; f (3) = − 1

6

37. f
(

1
2

√
2

)
= 1

2 ; f
(
− 1

2

√
2

)
= − 1

2

39. f
(

3
2

) = 3 · 2−4/3 ≈ 1.190551; f (3) = −3

41. Contrast the cases A = 0 and A �= 0.

43. f ′(x) = 0 if x is not an integer; f ′(x) does not exist if x is
an integer.

45. Apply the test of the discriminant to the quadratic equation
f ′(x) = 0.

47. Matches Fig. 3.5.15(c).

49. Matches Fig. 3.5.15(d).

51. Matches Fig. 3.5.15(a).

We ignore the character and values of the endpoint extrema in
Problems 53 through 59.

53. Global minimum value approximately 6.828387610996 at
x = −1 + 1

3

√
30 ≈ 0.825741858351.

55. Global minimum value approximately −8.669500829438 at
x ≈ −0.762212740507.

57. Global maximum value approximately 8.976226903748 at
x ≈ 1.323417756580.

59. Global maximum value approximately 30.643243080334
at x ≈ −1.911336401963, local minimum value approxi-
mately −5.767229705222 at x ≈ −0.460141424682, local
maximum value approximately 21.047667292488 at x ≈
0.967947424014.

SECTION 3.6 (PAGE 164)

1. 25 and 25 3. 1250 5. 500 (in.3)

7. 1152 9. 250 11. 11,250 (yd2)

13. 128

15. Approximately 3.967◦C

17. 1000 (cm3)

19. 0.25 (m3) (all cubes, no open-topped boxes)

21. Two equal squares yield minimum total area 200; a single
square yields maximum area 400.

23. 30,000 (m2)

25. Approximately 9259.259 in.3

27. Five presses

29. The minimizing value of x is −2 + 10
3

√
6 . Result: Install

6 inches of insulation for an annual savings of about $285.

31. Either $1.10 or $1.15

33. Radius 2
3 R, height 1

3 H

35. Let R denote the [constant] radius of the circle.

37. 2000
27 π

√
3

39. Maximum 4, minimum 3
√

16

41. 1
2

√
3

43. Each plank has length 1
2

√
7 − √

17 ≈ 0.848071, width
1
8 (

√
34 − 3

√
2) ≈ 0.198539, and area 1

2

√
142 + 34

√
17 ≈

0.673500.

45. The boater should make landfall 2
3

√
3 ≈ 1.155 km from the

point on the shore closest to the island.

47. At P
(

1
3

√
3 , 0

)
49. Approximately 3.45246

51. To minimize the sum, make the sphere of radius
5
√

10/(π + 6) and the edge length of the cube twice that
amount. To maximize the sum, make the edge length of the
cube zero.

53. The maximum volume is approximately 95.406 (ft3).

55. In Problem 53, x = 4 maximizes the volume V1, and
V1(4) = 128

3

√
5 . In Problem 54, x = 8 maximizes the vol-

ume V2, and V2(8) = 256
3

√
10 .

57. The volume is maximized when the length of the base is√
A/3 and the height is half that.

59. The volume is maximized when the radius of the cylinder is√
A/(3π) and its height is the same.

61. The global maximum value on [0.5, 2] is A(1) = 1 and the
global minimum value is A(2) = 169/200 = 0.845.
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SECTION 3.7 (PAGE 177)

1. f ′(x) = 6 sin x cos x

3. f ′(x) = cos x − x sin x

5. f ′(x) = x cos x − sin x

x2

7. f ′(x) = cos3 x − 2 sin2 x cos x

9. g′(t) = 4(1 + sin t)3 · cos t

11. g′(t) = sin t − cos t

(sin t + cos t)2

13. f ′(x) = 3x2 sin x − 4x cos x + 2 sin x

15. f ′(x) = −2 sin 2x sin 3x + 3 cos 2x cos 3x

17. g′(t) = 3t2 sin2 2t + 4t3 sin 2t cos 2t

19. g′(t) = 5

2
(cos 3t + cos 5t)3/2 · (−3 sin 3t − 5 sin 5t)

21.
dy

dx
= sin

√
x cos

√
x√

x

23.
dy

dx
= 2x cos(3x2 − 1) − 6x3 sin(3x2 − 1)

25.
dy

dx
= −3 sin 2x sin 3x + 2 cos 3x cos 2x

27.
dy

dx
= −3 sin 3x sin 5x + 5 cos 3x cos 5x

sin2 5x

29.
dy

dx
= 4x sin x2 cos x2

31.
dy

dx
= cos 2

√
x√

x

33.
dy

dx
= sin x2 + 2x2 cos x2

35.
dy

dx
= sin

√
x + √

x cos
√

x

2
√

x

37.
dy

dx
= (x − cos x)3 + 6x(x − cos x)2(1 + sin x)

2
√

x

39.
dy

dx
= −2x[sin(sin x2)] cos x2

41.
dx

dt
= 7t6 sec2 t7

43.
dx

dt
= 7 tan6 t sec2 t

45.
dx

dt
= 7t6 tan 5t + 5t7 sec2 5t

47.
dx

dt
= sec

√
t + √

t sec
√

t tan
√

t

2
√

t

49.
dx

dt
= 2

t3
csc

(
1

t2

)
cot

(
1

t2

)

51.
dx

dt
= 5 cot 3t sec 5t tan 5t − 3 csc2 3t sec 5t

53.
dx

dt
= t sec2 t + sec t csc t − t csc2 t

55.
dx

dt
= [sec(sin t) tan(sin t)] · cos t

57.
dx

dt
= cos2 t − sin2 t = cos 2t

59.
dx

dt
= − 5 csc2 5t

2
√

1 + cot 5t

61. y = −x :

−2 4 6
x

−6

−4

−2

2

4

6

y

(π, −π)

63. y = 2x − 2 + 4

π
:

−1 1
x

−4

−2

2

4

6

y

(1, 4/π)

65. At every integral multiple of π/2

67. The tangent line is horizontal at all points of the form
(nπ + 1

4 π, 1
2 ) and at all points of the form (nπ + 3

4 π, − 1
2 )

where n is an integer.

69. y = x ± 2

71. See Appendix C for various trigonometric identities.

Dx cot x = Dx
cos x

sin x
= −sin2 x − cos2 x

sin2 x

= − 1

sin2 x
= − csc2 x,

Dx sec x = Dx
1

cos x
= −−sin x

cos2 x

= 1

cos x
· sin x

cos x
= sec x tan x,

and

Dx csc x = Dx
1

sin x
= − cos x

sin2 x

= − 1

sin x
· cos x

sin x
= − csc x cot x .

73. α = π/4

75. Approximately 0.4224 mi/s; that is, about 1521 mi/h
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Answers to Odd-Numbered Problems A-77

77.
2000π

27
≈ 232.71 ft/s; that is, about 158.67 mi/h

79. θ = π/3

81. 8
3 π R3, twice the volume of the sphere!

83. 3
4

√
3

85. A(θ) = s2(θ − sin θ)

2θ2

87. Show that if n is a positive integer,

h = 2

(4n + 1)π
and k = 2

(4n − 1)π
,

then

f (h) − f (0)

h
= 1 and

f (k) − f (0)

k
= −1.

SECTION 3.8 (PAGE 192)

1. f ′(x) = 2e2x 3. f ′(x) = 2x exp(x2)

5. f ′(x) = − 2

x3
exp

(
1

x2

)
7. g′(t) = 2 + t1/2

2
exp(t1/2)

9. g′(t) = (1 + 2t − t2)e−t

11. g′(t) = (− sin t) exp(cos t)

13. g′(t) = te−t + e−t − 1

t2

15. f ′(x) = (−1)ex − (1 − x)ex

(ex )2
= x − 2

ex

17. f ′(x) = ex exp(ex ) 19. f ′(x) = 2ex cos(2ex )

21. f ′(x) = 3

3x − 1
23. f ′(x) = 1

1 + 2x

25. f ′(x) = 3x2 − 1

3(x3 − x)
27. f ′(x) = − sin(ln x)

x

29. f ′(x) = − 1

x(ln x)2
31. f ′(x) = 2x2 + 1

x(x2 + 1)

33. f ′(x) = − tan x

35. f ′(t) = 2t ln(cos t) − t2 tan t

37. g′(t) = (2 + ln t) ln t

39. f ′(x) = 22x2 + 8x − 24

(2x + 1)(x2 − 4)
41. f ′(x) = 13x

(x2 − 4)(x2 + 9)

43. f ′(x) = − 2

(x − 1)(x + 1)
45. g′(t) = 2

t (t2 + 1)

47.
dy

dx
= 2x ln 2 49.

dy

dx
= 2x ln x ln x

x

51.
dy

dx
= 2 + (ln x) ln(ln x)

2x1/2 ln x
· (ln x)

√
x

53.
dy

dx
= (3x − 4x2 − x4)(1 + x2)1/2

(1 + x3)7/3

55.
dy

dx
=

[
2x3

x2 + 1
+ 2x ln(x2 + 1)

]
· (x2 + 1)x2

57.
dy

dx
= (2 + ln x)

(√
x

)√
x

4
√

x

59. y = 3e2x − 2e2 61. y = x − 1

63. It appears that f (n)(x) = 2ne2x .

65. The first maximum point occurs where x = arctan 6 and the
first minimum point occurs where x = π + arctan 6.

67. x ≈ 1.118 and y ≈ 3.059:

1.118 1.1185 1.119
x

3.05

3.06

3.07

y

69. The (rounded) values for k = 7 and k = 8 are
2.718281692545 and 2.718281814868.

71. Because ln y = ln u + ln v + ln w − ln p − ln q − ln r ,

1

y
· dy

dx

= 1

u
·du

dx
+ 1

v
·dv

dx
+ 1

w
·dw

dx
− 1

p
·dp

dx
− 1

q
·dq

dx
− 1

r
· dr

dx
,

and the generalization is obvious.

73. (a) If f (x) = log10 x , then it follows from the definition of
the derivative and properties of logarithms that

f ′(1) = lim
h→0

log10(1 + h)1/h .

(b) With h = ±0.0001 the value of log10(1 + h)1/h is ap-
proximately 0.4343.

SECTION 3.9 (PAGE 200)

1.
dy

dx
= ± x√

x2 − 1
= x

y
3.

dy

dx
= ∓ 16x

5
√

400 − 16x2

5.
dy

dx
= −

√
y

x
7.

dy

dx
= −

(
y

x

)1/3

9.
dy

dx
= 3x2 − 2xy − y2

3y2 + 2xy + x2
11.

dy

dx
= − sin y + y cos x

x cos y + sin x

13.
dy

dx
= 3ey + 2x − 2

(3 − ex )ey
15. y + 4 = 3

4
(x − 3)

17. 3x + 4y = 10 19. y ≡ −2

21. 4x = 3y 23. 4y = 5x

25. x + 2y = 10 27. 11y = 2x + 40

29. a. 5y = 4x + 12; b. y − 9

2
= −

(
x − 9

2

)

31.
(

2, 2 ± √
8

)
33. a. y = x ; b. x + e = 2ey

35. All four points where |x | = 1
4

√
6 and |y| = 1

4

√
2 ; the two

points where |x | = 1.
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A-78 Answers to Odd-Numbered Problems

37.
4

5π
≈ 0.25465 (ft/s)

39.
32π

125
≈ 0.80425 (m/h)

41. 20 (cm2/s) 43. 0.25 (cm/s)

45. 6 (ft/s) 47. 384 (mi/h)

49. (a) Decreasing at
191

1300π
≈ 0.047 (ft/min); (b) decreasing at

1337

5100π
≈ 0.083 (ft/min)

51. Moving downward at
160

9
≈ 17.78 (ft/s)

53. Increasing at 16π (cm3/s)

55. 6000 (mi/h)

57. (a) Moving downward at 11
15

√
21 ≈ 3.36 (ft/s), about 2.29

mi/h; (b) moving downward at 88
5 · (9.99965) ≈ 176 (ft/s),

about 120 mi/h; (c) moving downward at 22
15 · (3048) ≈ 4470

(ft/s), about 3048 mi/h. The results in parts (b) and (c) are
not plausible.

59. 32
√

13 ≈ 115.38 (mi)

61.
50

81π
≈ 0.1965 (ft/s)

63. Falling at
10

81π
≈ 0.0393 (in./min)

65. 5
√

2 mi/min; that is, about 424.26 mi/h

67. Lengthening at 2 ft/s

SECTION 3.10 (PAGE 214)

Note: When we used Newton’s method, we used Mathematica
and carried at least 40 decimal digits in all calculations; an-
swers shown here are correct or correctly rounded to the number
of digits shown. Your answers may show differences in the last,
or even the last few, decimal places depending on the hardware
and software you use.

1. 2.2361 3. 2.5119 5. 0.3028

7. −0.7402 9. 0.7391 11. 1.2361

13. 2.3393 15. 2.0288 17. 0.5671

19. 0.4429

21. xn+1 = 1

3

(
2xn + a

(xn)2

)
; 1.25992

23. x14 = 0.4501836113 = x15 (to ten places)

25. The first formula yields the wrong root 2.879385, as does the

second. Use x = 1√
3 − x

.

27. Let f (x) = x5 + x − 1. Use the intermediate value theorem
to show that there is at least one solution of f (x) = 0; use
the fact that f is increasing on R to show that there is at most
one real solution; to four places, x = 0.7549.

29. 0 and ±1.8955 31. −1.3578, 0.7147, and 1.2570

33. x ≈ 0.865474033102 35. x ≈ 3.452462314058

37. 0.2261 39. 2.028758 and 4.913180

41. t ≈ 0.4909, w ≈ 13.0164 (ft)

43. θ ≈ 0.0199966678; R ≈ 50008.3319 (ft), about 9.47 mi

CHAPTER 3 MISCELLANEOUS PROBLEMS (PAGE 219)

1.
dy

dx
= 2x − 6

x3
3.

dy

dx
= 3x5/6 − 2

6x4/3

5.
dy

dx
= (x − 1)6(3x + 2)8(48x − 13)

7.
dy

dx
= 4

(
3x − 1

2x2

)3

·
(

3 + 1

x3

)

9.
dy

dx
= − y

x
= − 9

x2

11.
dy

dx
= − 3(3x2 − 1)

2(x3 − x)5/2

13.
dy

dx
= 4x(x2 + 1)

(x4 + 2x2 + 2)2

15.
dy

dx
= 7

3

(
x1/2 + (2x)1/3

)4/3 ·
(

1

2
x−1/2 + 21/3

3x2/3

)

17.
dy

dx
= − 1(√

x + 1 − 1
)2 √

x + 1

19.
dy

dx
= 1 − 2xy2

2x2 y − 1
= − (x + 2y)y

(2x + y)x

21.
dy

dx
= 1

2

(
x + [

2x + (3x)1/2
]1/2

)−1/2 ·
(

1 + 1

2
[2x

+ (3x)1/2
]−1/2 ·

[
2 + 3

2
(3x)−1/2

] )
.

The symbolic algebra program Mathematica writes this an-
swer without fractional exponents as follows:

dy

dx
=

1 +
2 +

√
3

2
√

x

2
√

2x + √
3x

2
√

x +
√

2x + √
3x

.

23.
dy

dx
= −

( y

x

)2/3

25.
dy

dx
= −18 · (x3 + 3x2 + 3x + 3)2

(x + 1)10

27.
dy

dx
=

(
1 + cos x

sin2 x

)1/2

·2 sin x cos x + 2 sin x cos2 x + sin3 x

2(1 + cos x)2

29.
dy

dx
= −4 sin 2x sin 3x + 3 cos 2x cos 3x

2(sin 3x)3/2

31.
dy

dx
= ex (cos x − sin x)

33.
dy

dx
= − 3ex

(2 + 3ex )5/2
[
1 + (2 + 3ex )−3/2

]1/3

35.
dy

dx
= −cos2

([1 + ln x]1/3
)

sin
([1 + ln x]1/3

)
x[1 + ln x]2/3
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Answers to Odd-Numbered Problems A-79

37. f ′(x) = −2e−x sin(e−x ) cos(e−x )

39. f ′(x) = ex (cos 2x − 2 sin 2x)

41. g′(t) = 1 + 2t2

t

43. g′(t) = et cos(et ) cos(e−t ) + e−t sin(et ) sin(e−t )

45. g′(t) = 2et

(1 − et )2

47.
dy

dx
= 1 − yeyx cos(exy)

xexy cos(exy)

49.
dx

dy
= ey + yey , and so

dy

dx
= 1

ey + yey
= y

yey + yx
=

y

x + xy
.

51.
dy

dx
= (1 − ln y)y

x − y
= y2

xy − x2

53.
dy

dx
= xy(3x2 + 1)

(x2 − 3)(x4 + 1)
= − 3x3 + x

(3 − x2)1/2(x4 + 1)5/4

55.
dy

dx
= (13x2 + 55x + 54)y

12(x + 1)(x + 2)(x + 3)

= 13x2 + 55x + 54

12(x + 1)1/2(x + 2)2/3(x + 3)3/4

57.
dy

dx
= 1 + ln(ln x)

x
· (ln x)ln x

59. x ≡ 1 61. x ≡ 0 63.
1

2
(ft/min)

65.
1

3
67.

1

4

69. Use −1 � sin u � 1 for all u and the squeeze law to show
that the limit is zero.

71. h′(x) = − x

(x2 + 25)3/2
73. h′(x) = 5

3
(x − 1)2/3

75. h′(x) = −2x sin(x2 + 1) 77.
dV

d A
= 1

4

√
A

π

79.
2

5
π ≈ 1.2566 (mi/s), about 4524 mi/h 81. R2

83. For maximum surface area (72πV 2)1/3, make two equal
spheres. For minimum surface area (36πV 2)1/3, make only
one sphere.

85.
32

81
π R3 87.

M

2
89. 36 (ft3)

91. 3
√

3 ≈ 5.196

93. Case 1: A = 0 and B �= 0. Case 2: A �= 0 and B = 0.
Case 3: A �= 0 and B �= 0 (this is by far the longest and
hardest case).

95. The pier should be built two miles from the point on the
shore nearest the first town.

97. a. ymax = m2v2

64(m2 + 1)
; b. m = 1, α = π/4

Note: When we used Newton’s method in the following prob-
lems, we used Mathematica and carried at least 40 decimal digits
in all calculations; answers shown here are correct or correctly
rounded to the number of digits shown. Your answers may show
differences in the last, or even the last few, decimal places de-
pending on the hardware and software you use.

99. 2.6458 101. 2.3714 103. −0.3473

105. 0.5885 107. −0.7391 109. −1.2361

111. Approximately 1.547852572 ft

113. There are exactly three real solutions; approxima-
tions thereto are −2.722493355, 0.8012614801, and
2.309976541.

115. We have no formula for finding the derivative of the sum of
a variable number of terms.

117. Begin this way: z2/3 − x2/3 = (z1/3 − x1/3)(z1/3 + x1/3) and
z − x = (z1/3 − z1/3)(z2/3 + z1/3x1/3 + x2/3).

119. 4 in.2/s 121. − 50

9π
≈ −1.7684 (ft/min)

123. 1 in./min—a constant rate

125. Think of a2 − 2ax0 + y0 = 0 as a quadratic equation in the
unknown a. Use the discriminant to determine the number
of solutions of this equation.

SECTION 4.2 (PAGE 233)

1. dy =
(

6x + 8

x3

)
dx 3. dy = 3x2 + 2

√
4 − x3

2
√

4 − x3
dx

5. dy = 3

2
(7x2 − 12x)(x − 3)1/2 dx

7. dy = 3x2 + 50

2(x2 + 25)3/4
dx 9. dy = − sin

√
x

2
√

x
dx

11. dy = (2 cos2 2x − 2 sin2 2x) dx

13. dy = 2x cos 2x − sin 2x

3x2
dx

15. dy = x cos x + sin x

(1 − x sin x)2
dx

17. f (x) ≈ 1 + x 21. f (x) ≈ 1 − 3x

19. f (x) ≈ 1 + 2x 23. f (x) ≈ x

25. L(x) = 2 + 1

27
x , so 3

√
25 ≈ 79

27
≈ 2.9259.

27. L(x) = 3

2
+ 1

32
x , so 4

√
15 ≈ 63

32
= 1.96875.

29. L(x) = 5

48
− 1

1536
x , so 65−2/3 ≈ 95

1536
≈ 0.06185.

31. L(x) =
√

2

2

(
π

4
+ 1

)
−

√
2

2
x , so cos 43◦ ≈ π + 90

90
√

2
≈

0.7318.

33. L(x) = x + 1, so e0.1 ≈ 1.1.

35. 2x dx + 2y dy = 0, so
dy

dx
= − x

y
.

37. 3x2 dx + 3y2 dy = 3y dx + 3x dy, so
dy

dx
= y − x2

y2 − x
.

39. L(x) = 1 + kx
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A-80 Answers to Odd-Numbered Problems

41. The area decreases by approximately 4 square inches.

43. The volume decreases by approximately
405

2 π ≈ 636.17 cm3.

45. The range is increased by approximately 5 ft.

47. The wattage increases by approximately 6 watts.

49. 25π ≈ 78.5398 in.3 51. 4π ≈ 12.57 m2

53. (0.56, 1.44) 55. (1.74, 2.30)

57. (−0.67, 0.67) 59. (0.54, 1.01)

SECTION 4.3 (PAGE 244)

1. Increasing if x < 0, decreasing if x > 0; matching graph:
(c).

3. Decreasing if x < −2, increasing if x > −2; matching
graph: (f).

5. Increasing if x < −1, decreasing on (−1, 2), increasing if
x > 2; matching graph: (d).

7. f (x) = 2x2 + 5 9. f (x) = − 1

x
+ 2

11. Increasing on R

13. Increasing if x < 0, decreasing if x > 0:

−3 −2 −1 1 2 3 x

−10

−8

−6

−4

−2

2

4

6

8

10
y

15. Increasing if x < 3
2 , decreasing if x > 3

2 :

1 2 3 x

−2

2

4

y

17. Decreasing if x < −1, increasing on (−1, 0), decreasing on

(0, 1), increasing if x > 1:

−2 −1 1 2 x

2

4
y

19. Decreasing if x < −2, increasing on (−2, 0), decreasing on
(0, 1), increasing if x > 1:

−3 −2 −1 1 2

−20

20

40

y

x

21. Increasing if x < 2, decreasing if x > 2:

2 4 6 x

−0.5

0.5

y

23. Decreasing on (0, 1), increasing on (1, 3), decreasing if
x > 3:

1 2 3 4 5 6 x

0.1

0.2

0.3

y

25. f (0) = 0 = f (2), f ′(x) = 2x − 2; c = 1

27. c = π/4 and c = 3π/4 29. f ′(0) does not exist.

31. f (1) = e �= 0 33. c = −1

2
35. c = 35

27
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Answers to Odd-Numbered Problems A-81

37. The average slope is 1
3 , but | f ′(x)| = 1 where it is defined.

39. The average slope is 1, but f ′(x) = 0 wherever it is defined.

41. If f (x) = x5 +2x −3, then f ′(x) > 0 for all x , so the equa-
tion f (x) = 0 can have at most one solution in any interval.
Because f (1) = 0, the equation f (x) = 0 has exactly one
solution in [0, 1].

43. Let f (x) = −3 + x ln x . Show that f (2) < 0 < f (4) (so
that f (x) = 0 has at least one solution in [2, 4]) and that
f ′(x) > 0 on [2, 4] (so that f (x) = 0 has at most one solu-
tion there).

45. Compute the average speed of the car between 3:00 P.M. and
3:18 P.M., then apply the mean value theorem to the position
function of the car.

47. Let f (t) be the distance the first car has traveled (starting
at point A at time t = 0) and let g(t) be the correspond-
ing function for the second car. Apply Rolle’s theorem to
h(t) = f (t) − g(t).

49. Note first that f ′(x) = 3
2 [(1 + x)1/2 − 1].

51. You may assume that f ′(x) = an−1xn−1 + an−2xn−2 + · · · +
a1x +a0 where an−1 �= 0. Construct a polynomial p(x) such
that p′(x) = f ′(x). Conclude that f (x) = p(x) + C on
[a, b].

53. Apply the mean value theorem to f (x) on [100, 101].

55. C = −1

57. First show that the average slope of the graph of f on [−1, 2]
is 2.

59. Use the definition of the derivative to show that g′(0) = 1
2 .

Then show that g′(x) takes on values close to − 1
2 and close

to 3
2 in every subinterval containing x = 0. The graph:

−0.2 −0.1 0.1 0.2 0.3 x

−0.1

−0.05

0.05

0.1

y

61. Let h(x) = 1 − 1
2 x2 − cos x . Compute h′(x) and use the

result in Example 9.

63. Let K (x) = 1 − 1
2 x2 + 1

24 x4 − cos x . Compute K ′(x) and
apply the result in Problem 61.

SECTION 4.4 (PAGE 253)

1. Global minimum at x = 2:

−1 1 2 3 4 5 x

5

10

y

3. Local maximum at x = 0, local minimum at x = 2:

−1 1 2 3 x

−5

5

10

y

5. No extrema:

−1 1 2 3 x

−5

5

10

15

y

7. Local minimum at −2, local maximum at x = 5:

−6 −4 −2 2 4 6 8 x

−200

−100

100

200

300

400
y

9. Global minimum at x = −1 and at x = 1, local maximum
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A-82 Answers to Odd-Numbered Problems

at x = 0:

−1 1 x

−1

1

y

11. Local maximum at x = −3, local minimum at x = 3:

−5 −3 −1 1 3 5 x

−30

−20

−10

10

20

30

y

13. Global maximum at x = 1
2 :

0.5 1 1.5 x

−0.2

0.2

y

15. Global minimum at x = −4, local maximum at x = 6:

−5 5 10 15 20 25 x

10

20

30

y

17. Global maximum at x = π/2

19. Global minimum at x = −π/2, global maximum at x = π/2

21. Global minimum at x = −π , global maximum at x = π

23. Global maximum at x = √
e. The graph:

1 2 3 4 5 x

−1

−0.5

0.25

y

25. Global minimum at x = −π/4, global maximum at x =
3π/4

27. −10 and 10 29. (1, 1)

31. Base 9 in. by 18 in., height 6 in.

33. Height and diameter both 10π−1/3 ≈ 6.828 cm

35. The perimeter is minimized when all four sides have
length 10.

37. Square base of edge length 5 in., height 2.5 in.

39. Base radius (25/π)1/3 ≈ 1.9965 in., height (1600/π)1/3 ≈
7.9859 in. (four times the radius of the base)

41.
( ± √

3/2, 3/2
)

43. 8 cm

45.
(
20 + 12 3

√
4 + 12 3

√
16

)1/2 ≈ 8.323876 m

47. Minimum volume of pyramid: 32
3 a3; ratio of volume of

smallest pyramid to volume of sphere: 8/π

49. Height (6V )1/3, base edge ( 9
2 V 2)1/6

51. Base edge and height both V 1/3

53. Radius of base (V/2π)1/3, height double that

55. Simplifying assumption: The volume of material used to
make the can is accurately approximated by multiplying the
area of the top by its thickness, the area of the bottom by its
thickness, and the area of the curved side by its thickness,
then adding these products.

SECTION 4.5 (PAGE 263)

1. Matches (c) 3. Matches (d)

5. Critical point: a = 5
2 ; decreasing on (−∞, a), increasing on

(a, +∞)

7. Critical points: a = − 5
2 , b = 3; increasing on (−∞, a) and

on (b, +∞), decreasing on (a, b)

9. Critical points at x = −3, x = 0, and x = 2; decreasing
on (−∞, −3) and on (0, 2), increasing on (−3, 0) and on
(2, +∞)

11. Critical points at x = −4, x = −2, x = 2, and x = 4;
increasing on (−∞, −4), on (−2, 2), and on (4, +∞), de-
creasing on (−4, −2) and on (2, 4)

13. Critical points at x = −4, x = −2, x = 0, x = 2, and x = 4;
increasing on (−∞, −4), on (−2, 2), and on (4, +∞), de-
creasing on (−4, −2) and on (2, 4)
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15. Decreasing on (−∞, 1), increasing on (1, +∞); global min-
imum at (1, 2):

−2 −1 1 2 3 4 x

10

20

30

y

17. Increasing on (−∞, −2) and on (2, +∞), decreasing on
(−2, 2); local maximum at (−2, 16), local minimum at
(2, −16):

−4 −1−3 −2 1 2 3 4 x

−20

−10

10

20

y

19. Increasing on (−∞, 1) and on (3, +∞), decreasing on
(1, 3); local maximum at (1, 4), local minimum at (3, 0):

1 2 3 4 x

5

10

y

21. Increasing on R = (−∞, +∞); no extrema:

−3 −1−2 1 2 3 x

−50

−25

25

50

75

y

23. Decreasing on (−∞, −2) and on (− 1
2 , 1), increasing on

(−2, − 1
2 ) and on (1, +∞); global minimum at (−2, 0) and

at (1, 0), local maximum at (− 1
2 , 81

16 ):

−3 −1−2 1 2 x

5

10

15

y

25. Increasing on (0, 1), decreasing on (1, +∞); local minimum
at (0, 0), global maximum at (1, 2):

1 2 3 4 5 x

−5

−3

−1

1

3

y

27. Increasing on (−∞, −1) and on (1, +∞), decreasing on
(−1, 1); local maximum at (−1, 2), local minimum at
(1, −2):

−1 1 x

−3

−1

1

3

y

29. Decreasing on (−∞, −2) and on (0, 2), increasing on
(−2, 0) and on (2, +∞); global minimum at (−2, −9) and
at (2, −9), local maximum at (0, 7):

−3 −1−2 1 2 3 x

−10

−5

5

10

15

y
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31. Decreasing on (−∞, 3
4 ), increasing on ( 3

4 , +∞); global
minimum at ( 3

4 , − 81
8 ):

−2 −1 1 2 3 4 x

−10

−5

5

10

15

y

33. Increasing on (−∞, −2) and on (1, +∞), decreasing on
(−2, 1); local maximum at (−2, 20), local minimum at
(1, −7):

−4 −1−3 −2 1 2 3 x

−20

−10

10

20

30

y

35. Increasing on (−∞, 3
5 ) and on ( 4

5 , +∞), decreasing on
( 3

5 , 4
5 ); local maximum at ( 3

5 , 81
5 ), local minimum at ( 4

5 , 16):

0.4 0.6 0.8 1 x

16

16.5

17

y

37. Decreasing on (−∞, −1) and on (0, 2), increasing on
(−1, 0) and on (2, +∞); local minimum at (−1, 3), local
maximum at (0, 8), global minimum at (2, −24):

−2 −1 1 2 3 x

−30

−20

−10

10

20

30

y

39. Increasing on (−∞, −2) and on (2, +∞), decreasing on
(−2, 2); local maximum at (−2, 64), local minimum at
(2, −64):

−2 −1 1 2 x

−75

−50

−25

25

50

75
y

41. Increasing on R = (−∞, +∞); no extrema:

−2 −1 1 2 3 x

−40

−20

20

40

60
y

43. Increasing on (−∞, −√
2 ) and on (0,

√
2 ), decreasing

on (−√
2 , 0) and also on (

√
2 , +∞); global maximum at

(−√
2 , 16) and at (

√
2 , 16), local minimum at (0, 0):

−2 −1 1 2 x

−10

10

20
y

45. Increasing on (−∞, 0) and on (0, 1) (it is also correct to say
that f is increasing on (−∞, 1)), decreasing on (1, +∞);
global maximum at (1, 3); vertical tangent at (0, 0):

−2 2 4 6 x

−6

−4

−2

2

4

y
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47. Increasing on (−∞, 3
5 ) and on (1, +∞), decreasing on

( 3
5 , 1); local maximum where x = 3

5 (the ordinate is ap-
proximately 0.3257), local minimum at (1, 0):

−0.5 0.5 1 x

−0.5

0.5

1

y

49. Plot y = 2x3 + 3x2 − 36x − 3 to see the graph:

−6 −4 −2 2 4 x

−100

−50

50

100

150

y

51. Plot y = −2x3 − 3x2 + 36x + 15 to see the graph:

−6 −4 −2 2 4 x

−100

−50

50

100

y

53. Plot y = 3x4 − 8x3 − 30x2 + 72x + 45 to see the graph:

−3 −1 1 3 x

−100

100

200
y

55. (a) f (−2.1038034027) ≈ 7.58 × 10−9; (b) Approximate
factorization:

f (x) ≈ [x + 2.1038034027] · [x2 − (2.103803403)x

+ 1.4259887573].

(c) 1.0519017014 ± 0.5652358517i

57. Decreasing if x < 0, if 1
6 (3 − √

3) < x < 1
2 , and if

1
6 (3 + √

3) < x < 1, increasing if 0 < x < 1
6 (3 − √

3),

if 1
2 < x < 1

6 (3 + √
3), and if 1 < x ; [equal] global min-

ima where x = 0, x = 1
2 , x = 1, [equal] local maxima at

x = 1
6 (3 ± √

3)

59. (Equal) global minima at (0, 0), ( 5
9 , 0), and (1, 0); local

maxima very near the two points (0.22925, 0.0000559441)

and (0.807787, 0.0000119091). Graphs on different scales:

−0.5 0.5 1 x

0.5

1
y

0.00005

0.0001

0.2 0.4 0.6 0.8 1 x

y

SECTION 4.6 (PAGE 277)

1. f ′(x) = 8x3 − 9x2 + 6, f ′′(x) = 24x2 − 18x , f ′′′(x) =
48x − 18

3. f ′(x) = −8(2x − 1)−3, f ′′(x) = 48(2x − 1)−4, f ′′′(x) =
−384(2x − 1)−5

5. g′(t) = 4(3t − 2)1/3, g′′(t) = 4(3t − 2)−2/3, g′′′(t) =
−8(3t − 2)−5/3

7. h′(y) = (y+1)−2, h′′(y) = −2(y+1)−3, h′′′(y) = 6(y+1)−4

9. g′(t) = t (1 + 2 ln t), g′′(t) = 3 + 2 ln t , g′′′(t) = 2

t

11. f ′(x) = 3 cos 3x , f ′′(x) = −9 sin 3x , f ′′′(x) = −27 cos 3x

13. f ′(x) = cos2 x − sin2 x , f ′′(x) = −4 sin x cos x , f ′′′(x) =
4 sin2 x − 4 cos2 x

15. f ′(x) = x cos x − sin x

x2
,

f ′′(x) = (2 − x2) sin x − 2x cos x

x3
,

f ′′′(x) = (6 − x2)x cos x + (3x2 − 6) sin x

x4

17. y′(x) = −2x + y

x + 2y
, y′′(x) = − 18

(x + 2y)3

19. y′(x) = −2x + 1

3y2
, y′′(x) = −2[(2x + 1)2 + 3y3]

9y5

21. y′(x) = − y

x − cos y
, y′′(x) = − y2 sin y + 2y cos y − 2xy

(x − cos y)3

23. Critical points: (− 3, 81) and (5, −175); inflection point:
(1, −47)

25. Critical points: (−3.5, 553.5) and (4.5, −470.5); inflection
point: (0.5, 41.5)

27. Critical points: (0, 237), (−3
√

3, −492), and (3
√

3, −492);
inflection points: (−3, −168) and (3, −168)
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29. Critical points: (0, 1000) and ( 16
3 , − 181144

81 ) (approximately
(5.333, −2236.345679)); inflection point: (4, −1048)

31. Global minimum at (2, 1); no inflection points

33. Local maximum at (−1, 3), local minimum at (1, −1); in-
flection point: (0, 1)

35. Global maximum at (1, e−1), inflection point at (2, 2e−2):

1 2 3 4 5 x

−0.4

−0.2

0.2

0.4

y

37. No critical points; inflection point: (0, 0)

39. Global minimum value 0 at x = 0 and at x = 1; local maxi-
mum at ( 1

2 , 1
16 ); inflection points: ( 1

6(3 ± √
3 ), 1

36 )

41. Global maximum at (π/2, 1), global minimum at
(3π/2, −1); inflection point: (π, 0)

43. No critical points, no extrema; inflection point: (0, 0)

45. Global maximum value 1 at x = 0 and at x = π ,
global minimum at (π/2, 0); inflection points: (−π/4, 1/2),
(π/4, 1/2), (3π/4, 1/2), and (5π/4, 1/2)

47. Global maximum at ( 3
2 , 5e−3), inflection point at (2, 10e−4):

1 2 3 x

−0.75

−0.5

−0.25

0.25

y

49. Global minimum at (2 − √
3, −1.119960), local maximum

at (2 + √
3, 0.130831) (ordinates approximate); inflection

points: (1, −2e−1) and (5, 14e−5):

1 2 3 4 5 6 7 x

−0.5

−1

0.5

y

51. −10 and 10 53. (1, 1)

55. 9 in. wide, 18 in. long, 6 in. high

57. Radius 5/ 3
√

π cm, height double that

59. Square base of edge length 5 in., height 2.5 in.

61. Radius (25/π)1/3 in., height four times that

63. Increasing for x < −1 and for x > 2, decreasing on (−1, 2),
local maximum at (−1, 10), local minimum at (2, −17); in-
flection point: (0.5, −3.5):

−3 −1−2 1 2 3 4 x

−40

−20

20

y

65. Increasing for x < −2 and on (0, 2), decreasing otherwise,
global maximum at (−2, 22) and at (2, 22), local minimum
at (0, 6); inflection points: (± 2

3

√
3 , 134

9 ):

−3 −1−2 1 2 3 x

−10

10

20

y

67. Decreasing if x < −1 and on (0, 2), increasing otherwise;
local minimum at (−1, −6), local maximum at (0, −1),
global minimum at (2, −33); there are two inflection points:
( 1

3 (1 ± √
7), 1

27 (−311 ∓ 80
√

7)):

−2 −1 1 2 3 x

−20

20

40

y
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69. Increasing if x < 3
7 and if x > 1, decreasing otherwise;

local maximum at ( 3
7 , 6912

823543 ), local minimum at (1, 0); in-
flection points at (0, 0) and also at the two points for which
x = 1

7(3 ± √
2):

0.5 1 x

−0.01

0.01

0.02

y

71. Increasing for all x , no extrema; critical point, vertical tan-
gent, and inflection point at (0, 1):

−4 −2 2 4 x

−0.5

1

2

y

73. Increasing on [0, +∞), global minimum at (0, 0); inflection
point: (1, 4):

1 2 3 4 x

5

10

15

y

75. Increasing if x < 1, decreasing if x > 1, critical point, in-
flection point, and vertical tangent at (0, 0), global maximum
at (1, 3), inflection point at (−2, −6 3

√
2 ):

−6 −2−4 2 4 6 x

−15

−10

−5

5
y

77. Matches (c) 79. Matches (b) 81. Matches (d)

83. Part (a): Key step in a proof by induction: Assume that for
some integer k � 1, f (k)(x) = k! if f (x) = xk ; let g(x) =
xk+1 = x · f (x), apply the product rule to compute g′(x),
then apply the inductive assumption to g′(x).

85. Apply the product rule to
dz

dx
= dz

dy
· dy

dx
.

89. b = 1

3
V = 42.7, a = 3V 2 p ≈ 3,583,859, R = 8V p

3T
≈

81.8

91. Local maximum at (1, 2101), local minimum at (1.034,

2100.980348), inflection point at (1.017, 2100.990174) (co-
ordinates exact). To see these points clearly, plot y = f (x)

on the interval [0.96, 1.07]:

0.98 1.02 1.04 1.06 x

2100.96

2100.98

2101.02

y

SECTION 4.7 (PAGE 290)

1. 1 3. 3 5. 2 7. 1

9. 4 11. 0 13. 2

15. +∞ (or “does not exist”)

17. Matches (g) 19. Matches (a)

21. Matches (f) 23. Matches (j)

25. Matches (l) 27. Matches (k)

29. No extrema or inflection points, sole intercept (0, − 2
3 ), ver-

tical asymptote x = 3, (two-way) horizontal asymptote
y = 0:

2 4 6 x

−10

−5

5

10

y
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31. No extrema or inflection points, sole intercept (0, 3
4 ), vertical

asymptote x = −2, (two-way) horizontal asymptote y = 0:

−5 −1−4 −3 −2 1 x

25

50
y

33. No extrema or inflection points, sole intercept (0, − 1
27 ), ver-

tical asymptote x = 3
2 , (two-way) horizontal asymptote

y = 0:

1 2 3 x

−5

5

y

35. Global minimum and sole intercept (0, 0), inflection points
at (± 1

3

√
3 , 1

4 ), horizontal asymptote y = 1:

−6 −3 3 6 x

0.5

1

y

37. Local maximum and sole intercept (0, − 1
9 ), vertical asymp-

totes x = ±3, (two-way) horizontal asymptote y = 0:

−4 −2 2 4 x

−1

1

y

39. Local maximum at (− 1
2 , − 4

25 ), sole intercept (0, − 1
6 ), ver-

tical asymptotes x = −3 and x = 2, (two-way) horizontal

asymptote y = 0:

−4 −2 2 4 x

−2

−1

1

2
y

41. Local maximum at (−1, −2), local minimum at (1, 2), no in-
flection points or intercepts, vertical asymptote x = 0, slant
asymptote y = x :

−2 2 x

−4

−2

2

4

y

43. Local maximum and sole intercept (0, 0), local minimum at
(2, 4), vertical asymptote x = 1, slant asymptote y = x + 1:

−2 2 4 x

−5

5

10

y

45. No extrema or inflection points, sole intercept (0, 1), vertical
asymptote x = 1, (two-way) horizontal asymptote y = 0:

−1 2 3 x

5

10

15

y
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47. The graph is increasing everywhere, concave upward for
x < 0, concave downward for x > 0, no extrema, and in-
flection point and sole intercept (0, 1

2 ), right-hand horizontal
asymptote y = 1, left-hand horizontal asymptote y = 0:

−4 −2 2 4 x

0.5

1

y

49. Local maximum and sole extremum ( 1
2 , − 4

9 ), sole intercept
(0, − 1

2 ), vertical asymptotes x = −1 and x = 2, (two-way)
horizontal asymptote y = 0:

−2 1 3 x

−6

−3

3

6
y

51. Only intercepts (±2, 0), no inflection points or extrema, ver-
tical asymptote x = 0, slant asymptote y = x :

5 x

−5

−5

5

y

53. Sole intercept (
3
√

4 , 0), local maximum (−2, −3), no other
extrema, no inflection points, vertical asymptote x = 0, slant
asymptote y = x :

−3 −2 1 2 3 x

−5

−15

y

55. With all coordinates approximate, there are local minima
at (−1.9095, −0.3132) and (1.3907, 3.2649) and a local
maximum at (4.5188, 0.1630). There are inflection points
at (−2.8119, −0.2768) and (6.0623, 0.1449), a horizontal
asymptote y = 0, and vertical asymptotes x = 0 and x = 2.
The graph and two close-ups:

−1 1 3 x

−10

10

20

y

−6 −4 −2 x

−0.2

0.2
y

4 6 8 x

0.05

0.1

0.15

y

57. Horizontal asymptote y = 0, vertical asymptotes x = 0 and
x = 2; local minima at (−2.8173, −0.1783) and (1.4695,
5.5444), local maxima at (−1, 0) and (4.3478, 0.1998),
and inflection points at (−4.3611, −0.1576), (−1.2569,
−0.0434), and (5.7008, 0.1769) (numbers with decimal
points are approximations). The graph and two close-ups:

−2 1 3 x

−10

10

20

y

−2−6 x

−0.2

−0.1

y

−4

4 6 8 x

0.1

0.2

y

59. Horizontal asymptote y = 0, vertical asymptotes x = 0
and x = 2, local minima at (−2.6643, −0.2160), (1.2471,

14.1117), and (3, 0); local maxima at (−1, 0) and (5.4172,

0.1296); there are inflection points at (−4.0562, −0.1900),
(−1.2469, −0.0538), (3.3264, 0.0308), and (7.4969, 0.1147)
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(numbers with decimal points are approximations). The
graph and two close-ups:

−2 1 3 x

−20

−10

10

20

30
y

−6 −2−4 x

−0.2

−0.4

y

4 6 8 10 x

0.1

0.2

y

61. The x-axis is a horizontal asymptote; there are vertical
asymptotes at x = −0.5321, x = 0.6527, and x = 2.8794.
There is a local minimum at (0, 0) and a local maximum at
(

3
√

2, −0.9008). There are no inflection points. (Numbers
with decimal points are approximations.):

−2 2 4 x

−2

2

y

63. The line y = x + 3 is a slant asymptote in both the
positive and negative directions; thus there is no hori-
zontal asymptote. There is a vertical asymptote at x =
−1.1038. There are local maxima at (−2.3562, −1.8292)

and (2.3761, 18.5247), local minima at (0.8212, 0.6146)

and (5.0827, 11.0886). There are inflection points at
(1.9433, 11.3790) and (2.7040, 16.8013). (Numbers with
decimal points are approximations.) The graph and a wider
view.

−4 −1 1 3 5 7 x

−10

10

20

y

10

−10 −5 5 10 x

−10

20

y

65. The line 2y = x is a slant asymptote in both the positive
and negative directions; thus there is no horizontal asymp-
tote. There also are no vertical asymptotes. There is a local
maximum at (0.2201, 0.6001), a local minimum at (0.8222,

−2.9690), and inflection points at (−2.2417, −1.2782),

(−0.5946, −0.1211), (0.6701, −1.6820), and (0.9649,
−2.2501). (Numbers with decimal points are approxima-
tions.):

−3 −2 1 2 3 x

−3

−2

−1

1

y

67. The line 2y = x is a slant asymptote in both the pos-
itive and negative directions; thus there is no horizon-
tal asymptote. There is a vertical asymptote at x =
−1.7277. There are local maxima at (−3.1594, −2.3665)

and (1.3381, 1.7792), local minima at (−0.5379, −0.3591)

and (1.8786, 1.4388). There are inflection points at (0, 0),
(0.5324, 0.4805), (1.1607, 1.4294), and (1.4627, 1.6727).
(Numbers with decimal points are approximations.) The
graph and a close-up:

−4 −2 2 4 x

−4

−2

2

4

y

−1 1 3 x

1

2

y

69. The graph of f is decreasing for 0 < x < 1 and for x < 0,
increasing for x > 1. It is concave upward for x < − 3

√
2 and

also for x > 0, concave downward for − 3
√

2 < x < 0. The
only intercept is at (− 3

√
2, 0); this is also the only inflection

point. There is a local minimum at (1, 3). The y-axis is a
vertical asymptote:

−3 −2 1 2 3 x

−5

5

10

y

SECTION 4.8 (PAGE 300)

1.
1

2
3.

2

5
5. 0 7. 0

9.
1

2
11. 2 13. 0 15. 1

17. 1 19.
3

5
21.

3

2
23.

1

3
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25.
ln 2

ln 3
27.

1

2
29. 1 31.

1

3

33. −1

2
35. 1 37.

1

4
39.

3

2

41. 6 43.
4

3
45.

2

3
47. 0

49. lim
x→0

sin2 x

x
= 0:

−6 −3 3 6

−0.5

0.5

y

x

51. lim
x→π

sin x

x − π
= −1:

 −5 5 10 x

−1

−0.5

y

53. lim
x→0

1 − cos x

x2
= 1

2
:

−10 −5 5 10 x

0.5

y

55. lim
x→∞ f (x) = 0, lim

x→−∞ f (x) = −∞:

5 x

−0.25

0.25

y

57. lim
x→∞ f (x) = 0:

10 20 x

0.25

0.5

y

59. lim
x→0+ f (x) = −∞ and lim

x→∞ f (x) = 0:

10 20 x

−0.8

−0.4

0.4
y

61. Assume that the result holds for n = k where k is some fixed
positive integer, then apply l’Hôpital’s rule to

lim
x→∞

xk+1

ex
.

63. Global maximum at (n, nne−n), inflection points at the two
points where x2 − 2nx + n2 − n = 0.

65. With y = 1/x we have

lim
x→0+ xk ln x = lim

y→∞
− ln y

yk
= −

(
lim

y→∞
1

kyk

)
= 0.

67. Holding x fixed, apply l’Hôpital’s rule to

lim
h→0

f (x + h) − f (x − h)

2h
.

69. 1

71. If x is large then
x

e
>

e2

e
.

73. f (n − 1) < nne−n leads to e <

(
1 − 1

n

)−n

, etc.
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SECTION 4.9 (PAGE 306)

1. 1 3.
3

8
5. 1

7. 1 9. 0 11. −1

13. −∞ (or “does not exist”)

15. −∞ (or “does not exist”)

17. −1

2
19. 0 21. 1 23. 1

25. e−1/6 ≈ 0.8464817249 27. e−1/2 ≈ 0.6065306597

29. 1 31. e−1 ≈ 0.3678794412

33. −∞ (or “does not exist”)

35. f (x) → 1 as x → +∞, f (x) → 0 as x → 0+; the global
maximum is f (e) = e1/e ≈ 1.4446678610. The graph:

2.71824 2.71828 2.71832 x

y

37. f (x) → 1 as x → +∞, f (x) → 0 as x → 0+; the global
maximum is f (e) = e2/e ≈ 2.0870652286. Three separate
graphs:

0.1 0.2 0.3 x

0.00001

0.00002

0.00003

y

5000 10000 x

0.98

1.02

1.04

y

2.71828 2.71829 x

2.08707

y

39. f (x) − 1 as x → +∞ and as x → 0+; the global maximum
value of f (x) occurs at the solution of 2x2 = (1+ x2) ln(1+
x2) near x = 2; it is approximately f (1.9802913004) ≈

2.2361202715. Three separate graphs:

0.5 1 x

1

2
y

5000 10000 x

0.98

1.02

1.04

y

1.9803 1.9804 x

2.23612

y

41. f (x) → 1 as x → +∞, f (x) → 0 as x → 0+;
the global maximum is approximately f (1.2095994645) ≈
1.8793598343. Three separate graphs:

0.1 0.2 0.3 x

0.05

0.1
y

5000 10000 x

0.99

1.01

1.02

y

1.2096 1.2097

1.87936

y

x

43. lim
h→0

(1 + hx)1/h = ex

45. Approximately (0.4099776300, 0.6787405265)

49. f (x) → 1 as x → +∞, f (x) → +∞ as x → 0+; there
is a global minimum at (1, 0), an inflection point with ap-
proximate coordinates (0.8358706352, 0.1279267691), an-
other near (1.1163905964, 0.1385765415), yet another near
(8.9280076968, 1.0917274397), and a local maximum near
(5.8312001357, 1.1021470392). Five separate graphs:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

y

x
0.6 0.8 1.2 1.4 x

0.25

0.5

y
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0.1 0.2 0.3 x

0.05

0.1

y

5 6 7 8 9 x

1.095

1.105

y

500 1000 x

0.98

1.02

1.04

1.06

y

51. f (x) → +∞ as x → 0+ and as x → +∞; the global min-
imum value of f (x) is e−1/e and occurs at both x = e−1/e

and x = e1/e. There is a cusp at (1, 1) ( | f ′(x)| → +∞ as
x → 1) and there is also a local maximum at (1, 1). Four
separate graphs:

0.05 0.1 x

500

1000
y

0.25 0.5 0.75 1 x

0.5

1

y

0.9 1.1 x

0.8

0.9

1.1
y

1.5 2 x

0.7

0.8

y

53. The graph below of y = f (x) on the interval [−0.00001,
0.00001] shows clearly that e ≈ 2.71828 to five places. The
graphical method succeeds because

lim
x→0

(
1 + 1

x

)x

= e.

−1 1 x

2

4

6

8

10
y

−0.00001 0.00001 x

2.71826

2.71828

2.7183

y

CHAPTER 4 MISCELLANEOUS PROBLEMS (PAGE 309)

1. dy = 3
2 (4x − x2)1/2(4 − 2x) dx

3. dy = − 2

(x − 1)2
dx

5. dy = (
2x cos

√
x − 1

2 x3/2 sin
√

x
)

dx

7. 12801
160 = 80.00625 9. 1025.536

11. 601
60 ≈ 10.0167 13. 132.5

15. 65
32 = 2.03125 17. �V ≈ 7.5 (in.3)

19. �V ≈ 10π (cm3) 21. �T ≈ π

96
≈ 0.0327 (s)

23. c = √
3 25. c = 1 27. c =

(
11

5

)1/4

.

29. Decreasing for x < 3, increasing for x > 3, concave up-
ward everywhere, global minimum at (3, −5):

−1 1 3 5 7 x

−5

10

20

y

31. Increasing for all x , inflection points at(
−1

2

√
2 , −233

8

√
2

)
, (0, 0),

and

(
1

2

√
2 ,

233

8

√
2

)
:

−2 −1 1 2 x

−600

−300

300

600

y

33. Increasing for x < 1
4 , decreasing for x > 1

4 , vertical tan-
gent at (0, 0), global maximum at x = 1

4 , inflection points
where x = 0 and where x = − 1

2 :

−1 −0.5 0.5 1 2

−2

−1

0.5

y

x

35. f ′(x) = 3x2 − 2, f ′′(x) = 6x , and f ′′′(x) ≡ 6

1171

www.konkur.in



A-94 Answers to Odd-Numbered Problems

37. g′(t) = 2

(2t + 1)2
− 1

t2
, g′′(t) = 2

t3
− 8

(2t + 1)3
,

g′′′(t) = 48

(2t + 1)4
− 6

t4

39. f ′(t) = 3t1/2 − 4t1/3, f ′′(t) = 3

2
t−1/2 − 4

3
t−2/3,

f ′′′(t) = 8

9
t−5/3 − 3

4
t−3/2

41. h′(t) = − 4

(t − 2)2
, h′′(t) = 8

(t − 2)3
, h′′′(t) = − 24

(t − 2)4

43. g′(x) = − 4

3(5 − 4x)2/3
, g′′(x) = − 32

9(5 − 4x)5/3
,

g′′′(x) = − 640

27(5 − 4x)8/3

45.
dy

dx
= −

( y

x

)2/3
,

d2 y

dx2
= 2

3

( y

x5

)1/3

47.
dy

dx
= 1

2(5y4 − 4)
√

x
,

d2 y

dx2
= 40y4 − 25y8 − 20x1/3 y3 − 16

4x3/2(5y4 − 4)3

49.
dy

dx
= 2x − 5y

5x − 2y
,

d2 y

dx2
= − 210

(5x − 2y)3

51.
dy

dx
= − 2xy

x2 + 1 − 3y2
,

y′′(x) = 2y[3x4 − 9y4 + 6(x2 + 1)y2 + 2x2 − 1]
(x2 + 1 − 3y2)3

53. Global minimum at (2, −48), concave upward everywhere,
intercepts (0, 0) and (

3
√

32 , 0):

−2 −1 1 2 3 4 x

−50

50

100

y

55. Decreasing for x < a = − 2
3

√
3, increasing for a < x < 0,

decreasing for 0 < x < b = 2
3

√
3, increasing for x > b.

Global minima at x = a and x = b, local maximum at
x = 0, inflection points where x = ± 2

5

√
5 :

−1 1 x

−1

1

y

57. Increasing if x < 3, decreasing if x > 3; global maximum
at (3, 3), intercepts at (0, 0) and (4, 0), a vertical tangent
and inflection point at the latter, and an inflection point at
(6, −6 3

√
2):

−2 2 4 6 8 x

−10

−5

5

y

59. Increasing if x < −2 and if −2 < x < 0, decreasing if
0 < x < 2 and if x > 2; local maximum at (0, − 1

4 ), no
other extrema, no inflection points, no x-intercepts; vertical
asymptotes x = ±2 and horizontal asymptote y = 1:

−3 3 x

−5

5

y

61. Increasing if −4 < x < −1 and if −1 < x < 0, decreasing
if x < −4, if 0 < x < 2 and if x > 2. Local maxi-
mum and sole intercept (0, 0), local minimum at (−4, 16

9 ),
vertical asymptotes x = −1 and x = 2, horizontal asymp-
tote y = 2, inflection point with approximate coordinates
(−6.107243, 1.801610). Two graphs:

−2−8 −4−6 x

1.75

2.25

y

−2−4−6 1 3 5 7 x

−5

5

y

63. Decreasing for x < 1, increasing for x > 1; concave
upward for x < 0 and for x > 2

3 , concave downward
on (0, 2

3 ), global minimum at (1, −1), inflection points at
(0, 0) and at ( 2

3 , − 16
27 ), no asymptotes, and f (x) → +∞ as
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x → +∞ and as x → −∞:

−1 1 x

−1

1

2

3

y

65. Increasing if x < −1 and if −1 < x < 0, decreasing if
0 < x < 1 and if x > 1; local maximum and sole intercept
at (0, 0), no inflection points, vertical asymptotes x = ±1,
horizontal asymptote y = 1:

−2 2 x

−2

−1

2

3

4

y

67. Decreasing if x < 0 and if x > 4, increasing on (0, 4),
local minimum at (0, −10), inflection point at (2, 6), lo-
cal maximum at (4, 22); four intercepts, at (−1.180140, 0),
(1.488872, 0), (0, −10), and (5.691268, 0) (numbers with
decimals are approximations):

−2 2 4

−25

25

y

x

69. Increasing if x < −1, local maximum at (−1, 2), decreas-
ing on (−1, 1), inflection point and intercept at (0, 0), lo-
cal minimum at (1, −2), increasing if x > 1, intercepts

(±√
3 , 0):

−1−2 21

−3

3

y

x

71. Increasing if x < − 5
3 , local maximum at (− 5

3 , 256
27 ), de-

creasing on (− 5
3 , 1), inflection point at (− 1

3 , 128
27 ), local

minimum and intercept at (1, 0), increasing if x > 1, an-
other intercept at (−3, 0):

−1−3 −2 21

−5

10

15

y

x

73. Maximum value 1 = f (−1)

75. 15 cm wide, 30 cm long, 10 cm high

77. 5 in. wide, 10 in. long, 8 in. high

79. 100 · (
2
9

)2/5 ≈ 54.79 mi/h

81. Two horizontal tangents, where x = 1 − 1
3

√
3 and y ≈

±0.6204; vertical tangent lines at the x-intercepts 0, 1, and
2; inflection points where x ≈ 2.4679 and y ≈ ±1.3019:

0.5 1 1.5 2

−1

1

y

x

83. 240 ft

85. 2
√

2A(n + 2) ft

87. If x is the abscissa of the point of tangency, then the area
of the triangle is A(x) = 9/(4x), 0 < x < +∞, so there is
neither a maximum nor a minimum area.

89. 288 in.2 91. 270 cm2

93. In both cases m = 1 and b = − 2
3 .
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95.
1

4
97.

1

2
99.

1

2
101. 1

103. −∞ (or “does not exist”)

105. +∞ (or “does not exist”)

107. e2 109. − e

2

SECTION 5.2 (PAGE 326)

1. x3 + x2 + x + C 3.
3

4
x4 − 2

3
x3 + x + C

5. −3

2
x−2 + 4

5
x5/2 − x + C 7. t3/2 + 7t + C

9.
3

5
x5/3 − 16x−1/4 + C 11. x4 − 2x2 + 6x + C

13. 49ex/7 + C 15.
1

5
(x + 1)5 + C

17. −1

6
(x − 10)−6 + C 19.

2

3
x3/2 − 4

5
x5/2 + 2

7
x7/2 +C

21.
2

21
x3 − 3

14
x2 − 5

7
x−1 + C 23.

1

54
(9t + 11)6 + C

25.
1

2
e2x − 1

2
e−2x + C 27.

1

2
sin 10x + 2 cos 5x + C

29.
3

π
sin π t + 1

3π
sin 3π t + C

31. Dx

(
1
2 sin2 x + C1

) = sin x cos x = Dx

(− 1
2 cos2 x + C2

)
;

C2 − C1 = 1
2

33.
1

2
x − 1

4
sin 2x + C ;

1

2
x + 1

4
sin 2x + C

35. y(x) = x2 + x + 3 37. y(x) = 2

3
x3/2 − 16

3

39. y(x) = 2
√

x + 2 − 5 41. y(x) = 3

4
x4 − 2x−1 + 9

4

43. y(x) = 1

4
(x − 1)4 + 7

4
45. y(x) = 3e2x + 7

47. v(t) = 6t2 − 4t − 10, x(t) = 2t3 − 2t2 − 10t

49. v(t) = 2

3
t3 + 3, x(t) = 1

6
t4 + 3t − 7

51. v(t) = 1 − cos t , x(t) = t − sin t

53. x(t) = 5t if 0 � t � 5; x(t) = 10t − 1

2
t2 − 25

2
if 5 � t � 10:

2 4 6 8 10 t

10

20

30

40
x

55. x(t) = 1

2
t2 if 0 � t � 5, x(t) = 10t − 1

2
t2 − 25 if 5 � t � 10:

2 4 6 8 10 t 

10

20

30

x

57. 144 ft; 6 s 59. 144 ft 61. 5 s; 112 ft/s

63. 2
√

15 ≈ 7.746 s; 64
√

15 ≈ 247.87 ft/s

65. 120 ft/s 67. 5 s; 160 ft/s 69. 400 ft

71.
1

4

( − 5 + 2
√

145
) ≈ 4.77 s; 16

√
145 ≈ 192.6655 ft/s

73.
544

3
≈ 181.33 ft/s 75. 22 ft/s2

77. a. 96 ft/s b. about 886 ft high; aloft about 37 s

79.
25

3

√
42 ≈ 54 mi/h

SECTION 5.3 (PAGE 339)

1. 3 + 9 + 27 + 81 + 243 3.
1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6

5. 1 + 1

4
+ 1

9
+ 1

16
+ 1

25
+ 1

36

7. x + x2 + x3 + x4 + x5

9.
5∑

n=1

n2 11.
5∑

k=1

1

k
13.

6∑
m=1

1

2m

15.
5∑

n=1

(
2

3

)n

17.
10∑

n=1

1

n
xn 19. 190

21. 1165 23. 224 25. 350

27. 338,350 29.
1

3
31. n2

33.
2

5
,

3

5
35.

33

2
,

39

2
37.

6

25
,

11

25

39.
378

25
,

513

25
41.

81

400
,

121

400

43. 2 ·
n∑

i=1

i = (n + 1) + (n + 1) + · · · + (n + 1) (n terms)

45.
n(n + 1)

2n2
→ 1

2
as n → +∞

47.
81n2(n + 1)2

4n4
→ 81

4
as n → +∞

49. 5n · 1

n
− 3n(n + 1)

2n2
→ 7

2
as n → +∞

51.
bh

n2
· n(n + 1)

2
→ 1

2
bh as n → +∞

53. lim
n→∞

A n

Cn
= r

2
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SECTION 5.4 (PAGE 350)

1.
∫ 3

1
(2x − 1) dx 3.

∫ 10

0
(x2 + 4) dx

5.
∫ 9

4

√
x dx 7.

∫ 8

3

1√
1 + x

dx

9.
∫ 1/2

0
sin 2πx dx 11.

11

25
= 0.44

13.
29

20
= 1.45 15.

39

2
= 19.5

17.
294

5
= 58.8 19. −π

6
≈ −0.523598776

21.
6

25
= 0.24 23.

137

60
≈ 2.283333333

25.
33

2
= 16.5 27.

132

5
= 26.4

29.
π

6
≈ 0.523598776 31.

33

100
= 0.33

33.
6086

3465
≈ 1.756421356 35. 18

37.
1623

40
= 40.575 39. 0

41.
259775

141372
≈ 1.837527940 43.

8

3
≈ 2.666666667

45. 12 47. 30

49. Choose x�
i = xi = bi

n
and �x = b

n
.

51. Choose x�
i = xi−1 + xi

2
; note that �xi = xi − xi−1 for each

meaningful value of i .

53. Case 1: a < b. Let P = {x0, x1, x2, . . . , xn} be a parti-
tion of [a, b] and let {x�

i } be a selection for P . Note that
�xi = xi − xi−1 for 1 � i � n. Begin with the equation

∫ b

a
c dx = lim

n→∞

n∑
i=1

c �xi

and continue by expanding and simplifying the right-hand
side. Don’t forget Case 2.

55. Whatever partition P is given, a selection {x�
i } with all x�

i
irrational can be made. (An explanation follows the solu-
tion of Problem 69 of Section 2.4 in the Student Solutions
Manual.) Show that for every such selection, we have

n∑
i=1

f (x�
i ) �xi = 1.

Then show that there are also selections for which every such
Riemann sum has the value zero.

57. Follow Example 5, but choose x�
i = xi = 3i

n
and �x = 3

n
.

59. Choose x�
i = xi = kπ

n
and �x = π

n
.

61. Let

h = b − a, x�
i = xi = a + ih

n
, and �x = h

n
.

Your computer algebra system should report a result similar
to this:

n∑
i=1

sin

(
a + ih

n

)
�x

= csc
h

2n
sin

h

2
sin

(
1

2

[
2a + h + h

n

])
.

If so, you will probably need to use one of the trigonometric
identities that immediately precede Problems 59 through 62
in Section 7.4.

SECTION 5.5 (PAGE 361)

1.
55

12
≈ 4.583333333 3.

49

60
≈ 0.816666667

5. − 1

20
= −0.05 7.

1

4

9.
16

3
≈ 5.333333333 11. 24

13. 0 15.
32

3
≈ 10.666666667

17. 0 19.
93

5
= 18.6 21. 0

23.
2

3
(e3 − 1) ≈ 12.723691282

25. ln 2 ≈ 0.693147181

27.
1

2
e2 − 2e + 5

2
≈ 0.757964393

29.
1

4
31.

2

5
33. −1

3

35.
4

π
≈ 1.273239545 37. 0

39.
1

2
41.

2

3

43. 5; the region:

−2 −1 1 2 x

2

1

3

y
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45. −5

2
; the region:

1 2 3 4 x

−3

−2

−1

1

2

y

47.
25π

4
≈ 19.63495409; the region:

5 x

5

y

49. First show that 1 �
√

1 + x2 �
√

1 + x if 0 � x � 1.

51. First show that
1

1 + √
x

�
1

1 + x2
if 0 � x � 1.

53. Note first that sin t � 1 for all t .

55.
1

2
�

∫ 1

0

1

1 + x
dx � 1

57.
π

8
�

∫ π/6

0
cos2 x dx �

π

6

59. Key step: lim
�x→0

n∑
i=1

c f (x�
i ) �x = lim

�x→0
c ·

n∑
i=1

f (x�
i ) �x

61. If f (x) � M for all x in [a, b], let g(x) ≡ M and use the first
comparison property.

63. 1000 +
∫ 30

0
V ′(t) dt = 160 (gal)

65. First deduce from Fig. 5.5.11 that
12 − 4x

9
�

1

x
�

3 − x

2
.

SECTION 5.6 (PAGE 370)

1.
16

5
3.

26

3
5. 0

7.
125

4
= 31.25 9.

14

9
≈ 1.555555556

11. 0 13. 4 15.
1

3

17. −22

81
≈ −0.271604938 19. 0

21.
35

24
≈ 1.458333333 23.

(e − 1)2

e
≈ 1.086161

25. 4 27. ln 2 ≈ 0.693147181

29.
31

20
= 1.55 31.

81

2
= 40.5

33. Average height 800
3 ≈ 266.666666667 (ft), average velocity

−80 ft/s

35.
1

10

∫ 10

0
V (t) dt = 5000

3
≈ 1666.666667 (L)

37.
1

10

∫ 10

0
T (x) dx = 200

3
≈ 66.666667

39.
1

2

∫ 2

0
A(y) dt = π

3
≈ 1.047197551

41. a. A(x) = 27 − 3x2, −3 � x � 3; b. 18;
c. two; one triangle:

−3 −2 −1 1 2 3 x

2

4

6

8

y

43. a. A(x) = 2x
√

16 − x2 , 0 � x � 4; b.
32

3
;

c. two rectangles:

−4 −3 −2 −1 1 2 3 4 x

2

4

y

45. f ′(x) = (x2 + 1)17 47. h′(z) = (z − 1)1/3

49. f ′(x) = e−x − ex 51. G ′(x) = f (x) = √
x + 4

53. G ′(x) = f (x) =
√

x3 + 1

55. f ′(x) = 3 sin 9x2 57. f ′(x) = 2x sin x2

59. f ′(x) = 2x

x2 + 1
61. y(x) =

∫ x

1

1

t
dt
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63. y(x) = 10 +
∫ x

5

√
1 + t2 dt

65. The integrand is not continuous on [−1, 1].
67. (a) g(x) = x2 if 0 � x � 2; g(x) = 8x − x2 − 8 if 2 � x � 6;

g(x) = 28 − 4x if 6 � x � 8; g(x) = x2 − 20x + 92
if 8 � x � 10; (b) Increasing on (0, 4) and decreasing on
(4, 10); global maximum at (4, 8), global minimum at
(10, −8). A graph:

2 4 6 8 10 x

4

8

y

69. (a) x = 0, π , 2π , 3π , and 4π . (b) Global maximum at
x = 3π , global minimum at x = 4π . (c) Inflection points
where x ≈ 2.028757838, 4.913180439, 7.978665712, and
11.08553841. A graph:

2 4 6 8 10 12 x

−10

−5

5

10

y

SECTION 5.7 (PAGE 379)

1.
1

54
(3x − 5)18 + C 3.

1

3
(x2 + 9)3/2 + C

5. −1

5
cos 5x + C 7. −1

4
cos(2x2) + C

9.
1

6
(1 − cos x)6 + C 11.

1

7
(x + 1)7 + C

13. − 1

24
(4 − 3x)8 + C 15.

2

7
(7x + 5)1/2 + C

17. − 1

π
cos(πx + 1) + C 19.

1

2
sec 2θ + C

21. −1

2
e1−2x + C 23.

1

9
exp(3x3 − 1) + C

25.
1

2
ln |2x − 1| + C 27.

1

3
(ln x)3 + C

29.
1

2
ln(x2 + e2x ) + C 31.

1

3
(x2 − 1)3/2 + C

33. −1

9
(2 − 3x2)3/2 + C 35.

1

6
(x4 + 1)3/2 + C

37.
1

6
sin(2x3) + C 39. −1

2
exp(−x2) + C

41. −1

4
cos4 x + C 43.

1

4
tan4 θ + C

45. 2 sin(x1/2) + C 47.
1

10
(x + 1)10 + C

49.
1

2
ln |x2 + 4x + 3| + C 51.

5

72
≈ 0.069444444

53.
98

3
≈ 32.666666667 55.

1192

15
≈ 79.466666667

57.
15

128
= 0.1171875 59.

62

15
≈ 4.133333333

61. e − 1 ≈ 1.718281828 63.
√

e − 1

e
≈ 0.238651219

65.
1

2
x − 1

2
sin x cos x + C 67.

π

2
≈ 1.570796327

69. −x + tan x + C

73. If
1

2
sin2 θ + C1 = −1

2
cos2 θ + C2, then C2 − C1 = 1

2
. The

two graphs:

2 4 6 x

−0.5

0.5

y

75.
1

1 − x
− x

1 − x
= 1 − x

1 − x
≡ 1 if x �= 1. The two graphs:

−2 −1 2 3 4 x

−2

−1

1

2

y

77. Note that
∫ 0

−a
f (x) dx = −

∫ a

0
f (x) dx .

79. The tangent function is odd; the product (or quotient) of an
odd function and an even function is odd.

81. Substitute u = x + k in the first integral and simplify.

83. Substitute u = x1/2, x = u2, dx = 2u du.
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SECTION 5.8 (PAGE 390)

1.
256

3
3.

9

2

5. 32 7.
128

3

9.
11

√
33

2
≈ 31.595095 11.

1

4

13.
1

20
15. ln 3 ≈ 1.098612

17.
32

3
19.

128
√

2

3
≈ 60.339779

21.
4

3
; the region:

1 2 x

2

4

y

23.
500

3
; the region:

5 10 15 20 25 x

−5

5

y

25.
32

3
; the region:

−1 1 2 3 x

5

10

y

27.
125

6
≈ 20.833333; the region:

2 4 6 8 10 x

−2

−1

1

2

3

y

29.
√

2 − 1; the region:

0.2 0.4 0.6 0.8

0.5

1
y

x

31.
16

3
; the region:

−10 10 20 30

−3

−2

−1

y

x

33.
16

3
; the region:

10 20

1

2

y

x
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35.
3

2
− ln 2; the region:

0.5

0.5

1.5

2

y

x

37.
(e − 1)2

e
≈ 1.086161; the region:

0.5

0.5

1.5

2

2.5

3
y

x

39.
e − 1

2e
≈ 0.316060; the region:

0.5

0.25

0.5
y

x

41.
4

3
; the region:

−1 1

1

2

3
y

x

43.
5

12
+ 8

3
= 37

12
≈ 3.08333; the region:

−1 1 2

1

2

3

4

y

x

45.
45π

2
≈ 70.685835

47. A = 4
∫ a

0

b

a
(a2 − x2)1/2 dx = 4b

a

∫ a

0

√
a2 − x2 dx

49. The area of the parabolic segment is
9

2
.

51.
32

3
+ 63

2
= 253

6
≈ 42.166667

53.
40

√
5

3
≈ 29.814240

55. Approximately 1.09475; the region:

−1 −0.5 0.5 1

0.5

1

x

y

57. Approximately 3.00044; the region:

−1 −0.5 0.5 1 x

−1

−0.5

0.5

1

y

59. k = 18
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61.
253

12
≈ 21.083333; the regions:

1 2 3 4 5 x

5

10

y

63. Approximately 25.3622616057; the regions:

−1 1 3 5 x

5

10

15

y

65. Approximately 86.1489054767; the region:

2 4 6 8 10 x

10

20

30

y

67. Approximately 16.8330174093; the regions:

−2 −1 1 2 x

−5

5

y

SECTION 5.9 (PAGE 405)

1. T4 = 8; true value: 8 3. T5 ≈ 0.65; true value:
2

3

5. T3 ≈ 0.98; true value: 1 7. M4 = 8; true value: 8

9. M5 ≈ 0.67; true value:
2

3
11. M3 ≈ 1.01; true value 1

13. T4 = 8.75, S4 = 26

3
≈ 8.67; true value:

26

3

15. T4 ≈ 0.882604, S4 ≈ 0.864956; true value: 1 − e−2 ≈
0.864665

17. T6 ≈ 3.26, S6 ≈ 3.24; true value: approximately 3.24131

19. T8 ≈ 5.013970, S8 ≈ 5.019676; true value: approximately
5.02005

21. T6 = 3.02, S6 ≈ 3.07167

23. T10 = 2441, S10 = 7342

3
≈ 2447.33

25. T12 = 91150 (square feet, about 2.093 acres), S12 = 281600

3
(square feet, about 2.155 acres)

27. n = 19

29. If p(x) is a polynomial of degree at most three, then
p(4)(x) ≡ 0.

31. Expand the sum Mn + Tn using the definitions.

33. If f ′′(x) > 0 on [a, b], then the graph of f is concave up-
ward there; now examine Fig. 5.9.11. Don’t forget Case 2:
f ′′(x) < 0 on [a, b].

35. The midpoint rule yields approximately 872.476; the trape-
zoidal rule yields approximately 872.600. Note that the
graph of y = 1/(ln x) is concave upward for x > 0.

CHAPTER 5 MISCELLANEOUS PROBLEMS (PAGE 410)

1. −5

2
x−2 + 2x−1 + 1

3
x3 + C 3. − 1

30
(1 − 3x)10 + C

5.
3

16
(9 + 4x)4/3 + C 7.

1

24
(1 + x4)6 + C

9. −3

8
(1 − x2)4/3 + C

11.
1

35
(25 cos 7x + 49 sin 5x) + C

13.
1

6
(1 + x4)3/2 + C 15. − 2

1 + √
x

+ C

17.
1

12
sin 4x3 + C 19.

1

30
(x2 + 1)15 + C

21.
2

5
(4 − x)5/2 − 8

3
(4 − x)3/2 + C

23.
√

1 + x4 + C 25. y(x) = x3 + x2 + 5

27. y(x) = 1

12
(2x + 1)6 + 23

12
29. y(x) = 3x2/3 − 1

2

31. 6 (s); 396 (ft) 33. 120 (ft/s)

35. Impact time: 2
√

10 (s); impact speed: 20
√

10 (ft/s)

37. 176 (ft) 39. 1700 41. 2845

43.
∫ 2

1
x−1/2 dx = 2

√
2 − 2
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45.
∫ 1

0
2πx

√
1 + x2 dx = 2π

3

(
2
√

2 − 1
)

47. Show that every Riemann sum is equal to c(b − a).

49. If m is the global minimum value of f (x) on [a, b], then
m > 0. Now apply the second comparison property.

51.
2
√

2

3
x3/2 + 2

√
3

3x1/2
+ C 53. − 2

x
− 1

4
x2 + C

55.
2

3
sin x3/2 + C 57. cos

1

t
+ C

59. −3

8
(1 + u4/3)−2 + C 61.

38

3

63. Let u = 1/x ; result:
(4x2 − 1)3/2

3x3
+ C

65.
1

30
≈ 0.033333333 67.

44

15
≈ 2.933333333

69.
125

6
≈ 20.833333333 71.

π

2
≈ 1.570796327

73. One solution is f (x) = √
4x2 − 1 .

75. Use n � 5. L5 ≈ 1.10873, R5 ≈ 1.19157. The integrand is
increasing on [0, 1], so the value of the integral is 1.15015±
0.04142. Its true value is

1

2

[√
2 + ln

(
1 + √

2
)] ≈ 1.147793574696319.

77. M5 ≈ 0.28667, T5 ≈ 0.28971. They bound the true value of
the integral because the second derivative of the integrand is
positive on [1, 2].

79. Show that xi−1 <
√

xi−1xi < xi and that

n∑
i=1

1

(x�
i )

2
�xi =

n∑
i=1

(
1

xi−1
− 1

xi

)
,

then expand the right-hand side.

SECTION 6.1 (PAGE 423)

1. 1 3.
2

π
5.

98

3

7. 1 − 1

e
≈ 0.632120559 9.

1

2
ln 5 ≈ 0.804718956

11.
∫ 4

1
2πx f (x) dx 13.

∫ 10

0

√
1 + [ f (x)]2 dx

15. M = 1000 (grams) 17. M = 500

3
(grams)

19. Net distance: −320; total distance: 320

21. Net distance: −50; total distance: 106.25

23. Net distance: 65; total distance: 97

25. Net distance: 1; total distance: 1

27. Net distance: 0; total distance:
4

π

29. Net distance:
70

3
; total distance: 65

31. Net distance:
3

4
; total distance approximately 7.73330

33. Net distance: π ; total distance approximately 4.26379

35. Total mass: approximately
n∑

i=1

2πx�
i ρ(x�

i ) �x

37. M = 625π

2
≈ 981.747704

39. 550 (gal) 41. 695000

43. a = 0.2, b = 0.1; average rainfall: 73 inches per year

45.
3

4

47. W = 700π

3
≈ 733.038286 (pounds)

49. 100 0.000
95 22.774
90 52.416
85 91.569
80 144.141
75 216.049

51. Approximately 7.035 liters per minute

SECTION 6.2 (PAGE 433)

1.
π

5
3. 8π 5.

1

3
π 7.

3

10
π

9. π ln 5 ≈ 5.05619832 11.
16

15
π ≈ 3.351032164

13.
π

2
15. 8π

17.
121

210
π ≈ 1.810155767 19. 8π

21.
49

30
π ≈ 5.131268001 23.

17

10
π ≈ 5.340707511

25.
1

2
π2 ≈ 4.934802201 27.

π

2

29.
1

4
π(4 − π) ≈ 0.674191553

31. Approximately 2.998 + 267.442 = 270.440

33. Approximately 3.67743

35. 9π 37.
4

3
πa2b 39.

16

3
a3 41.

4
√

3

3
a3

43. Paraboloid volume: πph2

47.
16

3
a3 49. Torus volume: 2π2a2b

51. Barrel volume:
πh

3

(
2R2 + r 2 − 2

5
δ2

)

53. T6 ≈ 3037.83 and S6 ≈ 3000.56; to the nearest hundred,
$3000

57.
πb3

12a
(8a − 3b)
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SECTION 6.3 (PAGE 443)

1. 8π 3.
625π

2
≈ 981.747704

5. 16π 7. π

9.
6π

5
≈ 3.769911 11.

256π

15
≈ 53.616515

13.
4π

15
≈ 0.837758 15.

11π

15
≈ 2.303835

17.
56π

5
≈ 35.185838 19.

8π

3
≈ 8.377580

21.
2π

15
≈ 0.418879 23.

π

2

25.
π(e − 1)

e
≈ 1.985865 27. 4π

29. Approximately 23.2990983149

31. Approximately 1.0602688478

33. Approximately 8.1334538068

37.
4

3
πa2b 39. V = 2π 2a2b

41. V = 2π2a3 43. (a) V = π

6
h3

45. a.
625π

12
≈ 163.624617; b.

400π
√

5

7
≈ 401.417985;

c.
1600π

√
5

21
≈ 535.223980

47. a. 400π ≈ 1256.637061; b.
250π

3
≈ 261.799388

SECTION 6.4 (PAGE 455)

1.
∫ 1

0

√
1 + 4x2 dx 3.

∫ 2

0

√
1 + 36x2(x − 1)2 dx

5.
∫ 100

0

√
1 + 4x2 dx 7.

∫ 2

−1

√
1 + 16y6 dy

9.
∫ 2

1

(
1 + 1

x2

)1/2

dx 11.
∫ 4

0
2πx2

√
1 + 4x2 dx

13.
∫ 1

0
2π(x − x2)

√
4x2 − 4x + 2 dx

15.
∫ 1

0
2π(2 − x)

√
1 + 4x2 dx

17.
∫ 3

2
2πx · x2 + 1

x2 − 1
dx 19.

∫ 1

0
2π

√
x2 + 2x + 2 dx

21.
22

3
23.

14

3

25.
123

32
= 3.84375 27.

e2 − 1

2e
≈ 1.175201

29.
5
√

5 − 1

6
π ≈ 5.330414 31.

339π

16
≈ 66.562494

33.
82

√
82 − 1

9
π ≈ 258.846843

35.
115π

12
≈ 30.106930

37. S6 = π

18

(
4 + 2

√
2 + 2

√
5 + 4

√
7

) ≈ 3.819403

41. Avoid the problem when x = 0 as follows: Let α = 1
4

√
2.

Then

L = 8
∫ 1

α

1

x1/3
dx = 6.

45. First establish that y(x) = H

S 2
x2.

SECTION 6.5 (PAGE 465)

1. 30 3. 9 5. 0 7. 15 ft·lb
9. 2.816 × 109 ft·lb

11. 13000π ≈ 40840.7045 ft·lb
13.

125000π

3
≈ 130899.694 ft·lb

15. 156000π ≈ 490088.454 ft·lb
17. With water density ρ = 62.4 lb/ft3: 4160000π ≈ 13069025

ft·lb
19. 8750 ft·lb 21. 11250 ft·lb
23.

2500

12
(10 − 103/5) ≈ 1253.943395 ft·lb

25. 16π ≈ 50.265482 ft·lb
27. 1382400π ≈ 4.342938 × 106 ft·lb

29.
15625

√
2

32
≈ 690.533966 ft·lb

31. 249.6 lb 33. 748.8 lb 35. 19500 lb

37. 14560 lb 39. Approximately 6.51 × 107 lb

SECTION 6.6 (PAGE 475)

1. (2, 3) 3. (1, 1) 5.
(

4

3
,

2

3

)

7.
(

3

2
,

6

5

)
9.

(
0, −8

5

)
11.

(
0,

8

5

)

13.
(

3

4
,

9

10

)
15.

(
−1

2
, 2

)
17.

(
3

5
,

12

35

)

19.
(

4r

3π
,

4r

3π

)
21.

(
2r

π
,

2r

π

)

25. A =
(

2 · πr

2

)√
r 2 + h2

27. A = 2π ·
(

r1 + r2

2

)
[(r2 − r1)

2 + h2]1/2

29. y = 4a2 + 3πab + 6b2

12b + 3πa
; V = 1

3
πa(4a2 + 3πab + 6b2)

33. The centroid is at

(
1

2
,

2

5

)
, at distance

√
2

20
from the axis of

rotation. The volume is V = π
√

2/60.
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SECTION 6.7 (PAGE 486)

1. f ′(x) = 10x ln 10 3. f ′(x) =
(

3

4

)x

ln

(
3

4

)

5. f ′(x) = −(7cos x ln 7) · sin x

7. f ′(x) = 3

2
x1/2

(
2x3/2

ln 2
)

9. f ′(x) = 1

x
(2ln x ln 2)

11. f ′(x) = 17x ln 17 13. f ′(x) = − 1

x2
(101/x ln 10)

15. f ′(x) = 22x · 2x · (ln 2)2 17. f ′(x) = x

(x2 + 4) ln 3

19. f ′(x) = ln 2

ln 3
21. f ′(x) = 1

(x ln x) ln 2

23. f ′(x) = exp(log10 x)

x ln 10
25.

32x

2 ln 3
+ C

27.
2 · 2

√
x

ln 2
+ C 29.

7(x3+1)

3 ln 7
+ C

31.
(ln x)2

2 ln 2
+ C 33. R ≈ (290.903) · W −0.2473

35.
(

1

ln 2
,

1

21/(ln 2) ln 2

)
37. V ≈ 1.343088216395

39. az = c, ax = b, and by = c, so axy = by = c = az .

41.
dy

dx
= − ln 2

x(ln x)2

SECTION 6.8 (PAGE 497)

1.
π

6
, −π

6
,
π

4
, −π

3
3. 0,

π

4
, −π

4
,
π

3

5. f ′(x) = 100x99

√
1 − x200

7. f ′(x) = 1

x | ln x |√(ln x)2 − 1

9. f ′(x) = sec2 x√
1 − tan2 x

11. f ′(x) = ex

√
1 − e2x

13. f ′(x) = − 2√
1 − x2

15. f ′(x) = − 2

x
√

x4 − 1

17. f ′(x) = − 1

(1 + x2)(arctan x)2

19. f ′(x) = 1

x[1 + (ln x)2] 21. f ′(x) = 2ex

1 + e2x

23. f ′(x) = cos(arctan x)

1 + x2
= 1

(1 + x2)3/2

25. f ′(x) = 1 − 4x arctan x

(1 + x2)3

27. y = 2 − x 29. x + y = √
2

31.
π

4
33.

π

12

35.
π

12
37.

1

2
arcsin 2x + C

39.
1

5
arcsec

|x |
5

+ C 41. arctan(ex ) + C

43.
1

15
arcsec

|x3|
5

+ C

45. arcsin(2x − 1) + C1 = 2 arcsin
√

x + C2

47.
1

50
arctan(x50) + C

49. arctan(ln x) + C 51.
π

4

53.
π

2
55.

π

12

57. Suppose that u < −1 and let x = −u; apply the chain rule.

59. The substitution yields
1

a

∫
1

1 + x2
dx .

61. In the case x < −1, note that −x > 0, so that
√

(−x)2 =
−x .

65. 8 m

67. The circumference is 8
∫ a/

√
2

0

a√
a2 − x2

dx .

69. The area is
π

2
.

71. A = 1 − π

3
and B = 1 + 2π

3
; the graph:

−3 −2 −1 1 2 3 x

0.5

1

y

75. Approximately (2.689220, 0.928343); the graph:

2 4 6 8 10 x

0.5

1

y
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SECTION 6.9 (PAGE 506)

1. f ′(x) = 3 sinh(3x − 2)

3. f ′(x) = 2x tanh

(
1

x

)
− sech2

(
1

x

)

5. f ′(x) = −12 coth2 4x csch2 4x

7. f ′(x) = −(csch x coth x) exp(csch x)

9. f ′(x) = (cosh x) cos(sinh x)

11. f ′(x) = 4x3 cosh x4

13. f ′(x) = − 1 + sech2 x

(x + tanh x)2

15.
1

2
cosh x2 + C 17. x − 1

3
tanh 3x + C

19.
1

6
sinh3 2x + C 21. −1

2
sech2 x + C

23. −1

2
coth2 x + C1 = −1

2
csch2 x + C2

25. ln(1 + cosh x) + C

27.
1

4
tanh x + C1 = −1

4
e−x sech x + C2

29. f ′(x) = 2√
1 + 4x2

31. f ′(x) = 1

2(1 − x)
√

x

33. f ′(x) = x

|x |√x2 − 1
35. f ′(x) = 3

√
sinh−1 x

2
√

1 + x2

37. f ′(x) = 1

(1 − x2) tanh−1 x

39. arcsinh

(
x

3

)
+ C

41.
1

2

[
tanh−1

(
1

2

)
− tanh−1

(
1

4

)]
= 1

4
ln

(
9

5

)
≈ 0.146947

43. −1

2
sech−1

∣∣∣∣3x

2

∣∣∣∣ + C

45. sinh−1(ex ) + C 47. −sech−1(ex ) + C

49. Expand and simplify

sinh x cosh y + cosh x sinh y − sinh(x + y).

51. First substitute y for x in Eq. (8) of the section.

53. sinh a

55. Begin with the equation for A(θ), differentiate both sides
with respect to θ , and then simplify.

57. Let y = sinh−1(1); use Eq. (1) and the quadratic formula to
solve for ey = 1 + √

2, whence sinh−1(1) = ln(1 + √
2).

67. Here,

f ′(x) = −2(e4x − 2e2x − 1)

e2x (e2x + 1)2
,

and therefore f ′(x) = 0 when x = 1

2
ln(1 + √

2) ≈
0.440687.

CHAPTER 6 MISCELLANEOUS PROBLEMS (PAGE 510)

1. Net: −3

2
; total:

31

6
3. Net: 1; total : 3

5.
14

3
7.

2π

15
9. 12 in. 11.

41π

105

13.
85π

8
15. V =

∫ h

0

πab

h2
z2 dz

17. V =
∫ a+h

a
πy2 dx = πb2

a2

∫ a+h

a
(x2 − a2) dx

19. f (x) = √
1 + 3x 21.

8

π
− 2π

3

23.
10

3
25.

63

8
27.

52π

5

29. Substitute 2r for h in the formula derived in Problem 28.

31. 1 (ft) 33. 4πρR 4

35. 10454400 (ft·lb) 37. 72800000 (lb)

39. No maximum; minimum when c = 1

3

√
5

41.
(

393

352
,

268

165

)
43.

(
111

112
,

1136

245

)

45.
(

16

21
, 0

)
47.

4b

3π

49. (a) A is the sum of the area of a triangle and the area of a
parallelogram, minus the area of another triangle. (b) Use
the result in Problem 46. (c) V = 2π y A. (d) A = pw/2.
(e) S = 2πw(b + d)/2. (f) V = 2π y A again.

51. Centroid:

(
n + 1

3(n + 2)
,

2(n + 1)

3(2n + 1)

)

53. −1

2
ln |1 − 2x | + C 55.

1

2
ln |1 + 6x − x2| + C

57. − ln(2 + cos x) + C 59.
2 · 10

√
x

ln 10
+ C

61.
2

3
(1 + ex )3/2 + C 63.

6x

ln 6
+ C

65. Sell immediately!

67. 90 lots of 11 samples and one lot of 10 samples; total cost
about $978

69. f ′(x) = 3√
1 − 9x2

71. g′(t) = 2

t
√

t4 − 1

73. f ′(x) = − sin x

| sin x |

75. g′(t) = 10√
100t2 − 1

, t >
1

10

77. f ′(x) = − 2

x
√

x4 − 1

79. f ′(x) = 1

2
√

1 − x
√

x

81. f ′(x) = 2x

x4 + 2x2 + 2
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83. f ′(x) = e2x cosh ex + ex sinh ex

85. f ′(x) ≡ 0 87. f ′(x) = x

|x |√x2 + 1

89.
1

2
sin−1 2x + C 91. arcsin

( x

2

)
+ C

93. arcsin(ex ) + C 95.
1

2
arcsin

(
2x

3

)
+ C

97.
1

3
arctan(x3) + C 99. arcsec |2x | + C

101. arcsec(ex ) + C 103. 2 cosh
√

x + C

105.
1

2
(arctan x)2 + C 107.

1

2
sinh−1

(
2x

3

)
+ C

109.
π 2

6

111. Use (in order) Eqs. (36), (37), (35), and (38) of Section 6.9.

113. Approximately 4.7300407449; the difficulty is in showing
that there is no smaller positive solution. The two graphs:

2 4 6 x

−1

−0.5

0.5

1

y

115. (c) p = e

SECTION 7.2 (PAGE 519)

1. − 1

15
(2 − 3x)5 + C 3.

1

9
(2x3 − 4)3/2 + C

5.
3

4
(2x2 + 3)2/3 + C 7. −2 csc

√
y + C

9.
1

6
(1 + sin θ)6 + C 11. exp(− cot x) + C

13.
1

11
(ln t)11 + C 15.

1

3
arcsin(3t) + C

17.
1

2
arctan(e2x ) + C 19.

3

2
arcsin(x2) + C

21.
1

15
tan5 3x + C 23. arctan (sin θ) + C

25.
2

5

(
1 + √

x
)5 + C 27. ln |arctan t | + C

29. arcsec(ex ) + C = arctan
(√

e2x − 1
) + C

31.
2

7
(x − 2)7/2 + 8

5
(x − 2)5/2 + 8

3
(x − 2)3/2 + C

33.
1

6
(2x + 3)3/2 − 3

2
(2x + 3)1/2 + C

35.
3

5
(x + 1)5/3 − 3

2
(x + 1)2/3 + C

37.
1

60
ln

∣∣∣∣3x + 10

3x − 10

∣∣∣∣ + C

39.
1

2
x(4 + 9x2)1/2 + 2

3
ln(3x + (4 + 9x2)1/2) + C

41.
1

32
x
√

16x2 + 9 − 9

128
ln

(
4x +

√
16x2 + 9

) + C

43.
1

128
x(32x2 − 25)

√
25 − 16x2 + 625

512
arcsin

(
4x

5

)
+ C

45.
1

2
ex

√
9 + e2x + 9

2
ln

(
ex +

√
9 + e2x

) + C

47.
1

2

√
x4 − 1 − 1

2
arcsec(x2) + C

49.
1

8
(ln x)[2(ln x)2 + 1]√1 + (ln x)2

− 1

8
ln

(
ln x + √

1 + (ln x)2
) + C

51. Illegal substitution: x = √
u � 0, but x < 0 for many x in

[−1, 1].
53. arcsin(x − 1) + C

55.
1

2
tan−1 x2 = π

4
− 1

2
tan−1 x−2 if x �= 0; both are an-

tiderivatives of x/(1 + x4).

57. G ′(x) = H ′(x) = √
1 + x2 and G(0) = H(0), so G(x) =

H(x) for all x .

SECTION 7.3 (PAGE 526)

1.
1

2
xe2x − 1

4
e2x + C 3. −t cos t + sin t + C

5.
1

3
x sin 3x + 1

9
cos 3x + C 7.

1

4
x4 ln x − 1

16
x4 + C

9. x arctan x − 1

2
ln(1 + x2) + C

11.
2

3
y3/2 ln y − 4

9
y3/2 + C 13. t (ln t)2 − 2t ln t + 2t + C

15.
2

5
(x − 2)(x + 3)3/2 + C

17.
2

45
(x3 + 1)3/2(3x3 − 2) + C

19. −1

2
csc θ cot θ − 1

2
ln | csc θ + cot θ | + C

21.
1

3
x3 arctan x − 1

6
x2 + 1

6
ln(x2 + 1) + C

23. x arcsec(x1/2) − (x − 1)1/2 + C

25. (x + 1) arctan(x1/2) − x1/2 + C

27. −x cot x + ln |sin x | + C

29.
1

2
x2 sin x2 + 1

2
cos x2 + C

31. −2 ln x

x1/2
− 4

x1/2
+ C
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33. x sinh x − cosh x + C

35.
1

2
(−x2 cos x2 + sin x2) + C

37. −2
√

x exp
( − √

x
) − 2 exp

( − √
x

) + C

39. π(π − 2) ≈ 3.5864190939

41.
π(e2 + 1)

2
≈ 13.1774985055

43. V ≈ 1.06027 45. V ≈ 22.7894

47.
1

2
xex cos x + 1

2
(x − 1)ex sin x + C

49. Let u = xn and dv = ex dx .

51. Let u = (ln x)n and dv = dx .

53. Let u = (sin x)n−1 and dv = sin x dx .

55. 6 − 2e ≈ 0.5634363431

57. 6 − 2e ≈ 0.5634363431 [sic]

65.
π2

80

(
2π4 − 10π 2 + 15

)
67. A = 56 ln 2 − 36

3 ln 2
≈ 1.35433

x̄ = 12[3 − 14 ln 2 + 15(ln 2)2]
(−36 + 56 ln 2)(ln 2)

≈ 3.090471,

y = 225 − 372 ln 2

45 − 70 ln 2
≈ 9.331797

SECTION 7.4 (PAGE 534)

1.
1

2
(x − sin x cos x) + C 3. 2 tan

x

2
+ C

5.
1

3
ln | sec x | + C 7.

1

3
ln | sec 3x + tan 3x | + C

9.
1

2
(x − sin x cos x) + C 11.

1

3
cos3 x − cos x + C

13.
1

3
sin3 θ − 1

5
sin5 θ + C

15.
1

5
sin5 x − 2

3
sin3 x + sin x + C

17.
2

5
(cos x)5/2 − 2(cos x)1/2 + C

19. − 1

14
cos7 2z + 1

5
cos5 2z − 1

6
cos3 2z + C

21.
1

4
(sec 4x + cos 4x) + C

23. tan t + 1

3
tan3 t + C

25. −1

4
csc2 2x − 1

2
ln | sin 2x | + C

27.
1

12
sec6 2x − 1

4
sec4 2x + 1

4
sec2 2x + C

29. − 1

10
cot5 2t − 1

3
cot3 2t − 1

2
cot 2t + C

31.
1

4
sin4 θ + C

33.
2

3
(sec t)3/2 + 2(cos t)1/2 + C

35.
1

3
sin3 θ + C

37.
1

5
sin 5t − 1

15
sin3 5t + C

39. −1

9
cot3 3t + 1

3
cot 3t + t + C

41. −1

5
(cos 2t)5/2 + 2

9
(cos 2t)9/2 − 1

13
(cos 2t)13/2 + C

43.
1

2
sin2 x − cos x + C

45.
4

3
47.

3π + 4

8

49. 0 ; the graph:

2 4 6 x

−0.2

0.2
y

51.
3π 2

8
53.

2π

3

(
4π − 3

√
3

) ≈ 15.436149

55. a.
π

4
; b.

π

4
(8 − π) ≈ 3.815784

57.
1

4
sec4 x + C 59.

1

4
cos 2x − 1

16
cos 8x + C

61.
1

6
sin 3x + 1

10
sin 5x + C

SECTION 7.5 (PAGE 542)

1.
1

2
x2 − x + ln |x + 1| + C 3.

1

3
ln

∣∣∣∣ x − 3

x

∣∣∣∣ + C

5.
1

5
(ln |x − 2| − ln |x − 3|) + C

7.
1

4
ln |x | − 1

8
ln(x2 + 4) + C

9.
1

3
x3 − 4x + 8 arctan

(
x

2

)
+ C

11. x − 2 ln |x + 1| + C 13. x + 1

x + 1
+ C

15.
1

4
ln |x − 2| − 1

4
ln |x + 2| + C

17.
3

2
ln |2x − 1| − ln |x + 3| + C

19.
2

x + 1
+ ln |x | + C
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21.
1

2
(3 ln |x − 2| + ln |x − 1| + ln |x + 1| + 3 ln |x + 2|)+C

23.
4

x + 2
− 2

(x + 2)2
+ ln |x + 2| + C

25.
1

2
ln

(
x2

x2 + 1

)
+ C

27. ln |x | − 1

2
ln(x2 + 4) + 1

2
arctan

(
x

2

)
+ C

29. −1

2
ln |x + 1| + 1

4
ln(x2 + 1) + 1

2
arctan x + C

31. arctan

(
x

2

)
− 3

√
2

2
arctan

(
x
√

2
) + C

33.
1

2
ln(x2 + 3) +

√
2

2
arctan

(
x
√

2

2

)
+ C

35. x + 1

2
ln |x −1|− 5

2(x − 1)
+ 3

4
ln(x2 +1)+2 arctan x +C

37. − 1

2(e2t − 1)
− 1

4(e2t − 1)2
+ C

39.
1

4
ln |3 + 2 ln t | + 1

4(3 + 2 ln t)
+ C

41. 5 ln 2 ≈ 3.465736

43.
1

3
(23 ln 2 − 7 ln 5) ≈ 1.558773

45. V = 2π(1 + 6 ln 2) ≈ 32.414218

47. V = 2π(7 ln 5 − 2 − 10 ln 2) ≈ 14.668684

49. V = π

2
(13 + 16 ln 2) ≈ 37.841041

51. V = π

3
(−4 + 6 ln 2) ≈ 0.166382

53. 93 ln |x − 7| + 49 ln |x − 5| − 44 ln |x | − 280

x
+ C

55. −104

3
ln |x − 4| − 48

x − 4
+ 567

16
ln |x − 3| − 37

48
ln |x + 5|

+ 39

2(x + 5)
+ C

57. − 1

3x − 1
+ arctan

x

5
+ 2 ln |3x − 1| + 2 ln |2x − 1|

+ ln(x2 + 25) + C

59. Choose a = 0, b �= 0 (but otherwise arbitrary), and c =
−b.

61. Choose a and b not both zero (but otherwise arbitrary) and
let c = −(8a + 8b)/5.

SECTION 7.6 (PAGE 547)

1. arcsin

(
x

4

)
+ C 3. −

√
4 − x2

4x
+ C

5. 8 arcsin

(
x

4

)
− x

√
16 − x2

2
+ C

7.
x

9
√

9 − 16x2
+ C

9. ln
∣∣x +

√
x2 − 1

∣∣ −
√

x2 − 1

x
+ C

11.
243

16

[
1

5
· (9 + 4x2)5/2

243
− 1

3
· (9 + 4x2)3/2

27

]
+ C

= 8x4 + 6x2 − 27

40

√
9 + 4x2 + C

13. ln(4x2) − ln |2x | − ln
(
1 +

√
1 − 4x2

) +
√

1 − 4x2 + C

15.
1

2
ln

∣∣∣∣∣
√

9 + 4x2

3
+ 2x

3

∣∣∣∣∣ + C

17.
25

2
arcsin

(
x

5

)
− x

2

√
25 − x2 + C

19.
1

2

[
x
√

1 + x2 − ln
(
x +

√
1 + x2

)] + C

21.
2

27

[
3x

√
4 + 9x2

4
− ln

(
3x + √

4 + 9x2

2

)]
+ C

23.
x√

1 + x2
+ C

25.
1

512

[
32x

(4 − x2)2
+ 12x

4 − x2
+ 3 ln

∣∣∣∣2 + x

2 − x

∣∣∣∣
]

+ C

27.
9

8

[
4x

√
9 + 16x2

9
+ ln

(
4x

√
9 + 16x2

3

)]
+ C

29.
√

x2 − 25 − 5 arcsec
∣∣∣ x

5

∣∣∣ + C

31.
1

4
x3

√
x2 − 1 − 1

8
x
√

x2 − 1 − 1

8
ln

∣∣x +
√

x2 − 1
∣∣ + C

33. − x√
4x2 − 1

+ C

35. ln

∣∣∣∣∣ x + √
x2 − 5√
5

∣∣∣∣∣ −
√

x2 − 5

x
+ C

37. sinh−1

(
x

5

)
+ C

39. cosh−1

(
x

2

)
−

√
x2 − 4

x
+ C

41.
1

8

[
x(2x2 + 1)

√
1 + x2 − sinh−1 x

] + C

43. The area A of sector O BC is

A = πa2

4
− a2

2
arcsin

(
x

a

)
.

Now use the fact that x = a cos θ .

45.
π

32

[
18

√
5 − ln

(
2 + √

5
)] ≈ 3.809730

47. ln
(√

2 + 1
) − ln

(√
5 + 1

) + ln 2 + √
5 − √

2 ≈ 1.222016

49. The surface area is

S = 4πa
∫ b+a

b−a

x√
a2 − (x − b)2

dx .

Now substitute x = b + a sin θ .
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51. A = 2π
[√

2 + ln(1 + √
2 )

] ≈ 14.4236

53. The surface area is

A = 4πb

a2

∫ a

0

√
a4 + (b2 − a2)x2 dx .

Note that as b → a+,
b + c

a
≈ 1 + c

a
.

55.
20

3
(million dollars)

SECTION 7.7 (PAGE 553)

1. arctan(x + 2) + C

3. −3

2
ln(x2 + 4x + 5) + 11 arctan(x + 2) + C

5. arcsin

(
x + 1

2

)
+ C

7. −1

3
(3 − 2x − x2)3/2 − 2 arcsin

(
x + 1

2

)

− x + 1

2

√
3 − 2x − x2 + C

9.
3

4
ln

∣∣∣∣∣
√

4x2 + 4x − 3

2

∣∣∣∣∣ + 1

8
ln

∣∣∣∣ 2x − 1√
4x2 + 4x − 3

∣∣∣∣ + C

11.
1

3
arctan

(
x + 2

3

)
+ C

13.
1

4
ln

∣∣∣∣ x + 1

x − 3

∣∣∣∣ + C

15. ln(x2 + 2x + 2) − 7 arctan(x + 1) + C

17.
2

9
arcsin

(
3x − 2

3

)
− 1

9

√
5 + 12x − 9x2 + C

19.
25

4

[
3 arcsin

(
2x − 4

5

)
+ 3

25
(2x − 4)

√
9 + 16x − 4x2

+ 2

75
(9 + 16x − 4x2)3/2

]
+ C

21.
7x − 12

9
√

6x − x2
+ C

23. − 1

4(4x2 + 12x + 13)
+ C

25.
3

2
ln(x2 + x + 1) − 5

√
3

3
arctan

(√
3

3
[2x + 1]

)
+ C

27. − 1

16

(
2x

x2 − 4
+ ln

∣∣∣∣ x − 2√
x2 − 4

∣∣∣∣
)

+C by trigonometric sub-

stitution;

1

32
ln

∣∣∣∣ x + 2

x − 2

∣∣∣∣− x

8(x2 − 4)
+C by partial fractions (the an-

swers are the same).

29. ln |x | − 2
√

3

3
arctan

(√
3

3
[2x + 1]

)
+ C

31.
1

4
ln

∣∣∣∣ x + 1

x − 1

∣∣∣∣ − 5x

2(x2 − 1)
+ C

33.
3x2 + 4x + 1

8(x2 + 2x + 5)
− 1

8
arctan

(
x + 1

2

)
+ C

37. The substitution x = 1 + 2 tan u yields A = π

4
.

39. The substitution x = 1 + 2 tan u yields

V = 5π 2 + 8π

160
≈ 0.465505.

41. The substitution x = 5

2
+ tan u yields

V = 5π

2
arctan

(
3

2

)
≈ 7.718844.

43. The length is

√
377

4
arcsin

(
260

377

)
≈ 3.694049 mi.

45. ln |x − 1| − 1

2
(x2 + 2x + 2) + arctan(x + 1) + C

47.
1

2
x2 + ln |x − 1| + 1

2
ln(x2 + x + 1)

+
√

3

3
arctan

(
2x + 1√

3

)
+ C

49.
1

2
ln(x4 + x2 + 1) − 2

√
3

3
arctan

( √
3

2x2 + 1

)
+ C

51. 7 ln |x−1|+ 11

2
arctan(x+1)+ 11(x + 1) − 6(x + 1)2

2(x2 + 2x + 2)
+C

53.
7

8
ln |x − 5| + 9

8
ln |x + 3| − 11

64
arctan

(
2x + 1

2

)

− 11

32
· 2x + 1

4x2 + 4x + 5
+ 3

32
· (2x + 1)2

4x2 + 4x + 5
+ C

55. Choose a �= 0 and b = 2a to obtain − a

2(x2 + 4x + 5)
+C .

57. The only solution is a = b = c = 0.

SECTION 7.8 (PAGE 566)

1.
√

2 3. +∞ 5. +∞ 7. 1

9. +∞ 11. −1

2
13.

9

2
15. +∞

17. Does not converge

19. 2(e − 1) 21.
1

9
23.

1

2
25.

π

2

27. Does not converge 29. +∞

31.
1

ln 2
33. 2 35. −1 37. −∞

39. The first integral diverges; the second (from 1 to +∞) con-
verges to ln 2.

41. Both converge to
π

2
.

43. Converges to
1

1 − k
if k < 1, diverges if k � 1.
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45. Converges to − 1

(k + 1)2
if k > −1, diverges if k � − 1.

47. Write the definition of 
(t + 1), integrate by parts with
u = xt and dv = e−x dx , and use Problem 61 of Section
4.8.

49. The area is A =
∫ ∞

1

1

x
dx .

51. The surface area is S = 2π

∫ ∞

1

√
x4 + 1

x3
dx .

59. π 63. Substitute t = x√
2

.

65.
∫ 60

0
x5e−x dx ≈ 119.99999999999999999258

67. If b = 10240 then k ≈ 2.000176.

69. If b = 10 and if b = 100 then k ≈ 3.5449077018110321.

71. a. About 49.50%; b. about 4.78%

73. a. About 90.44%; b. about 0.04%

75. a. About 7.86%; b. about 0.23%

77. About 97.23%

CHAPTER 7 MISCELLANEOUS PROBLEMS (PAGE 571)

1. 2 arctan
√

x + C

3. ln | sec x | + C

5.
1

2
sec2 θ + C

7. x tan x + ln | cos x | − 1

2
x2 + C

9. −2

9
x3(2 − x3)3/2 − 4

45
(2 − x3)5/2 + C

11.
1

2
x
√

25 + x2 − 25

2
ln

(
x +

√
25 + x2

) + C

13.
2
√

3

3
arctan

(√
3

3
[2x − 1]

)
+ C

15.
103

√
29

87
arctan

(
3x − 2√

29

)
+ 5

6
ln(3x2 − 4x + 11) + C

17.
2

9
(1 + x3)3/2 + C

19. arcsin

(
sin x

2

)
+ C

21. − ln |ln(cos x)| + C

23. (1 + x) ln(1 + x) − x + C

25.
1

2
x
√

x2 + 9 + 9

2
ln

(
x +

√
x2 + 9

) + C

27.
1

2
arcsin(x − 1) + 1

2
(x − 1)

√
2x − x2 + C

29.
1

3
x3 + 2x + √

2 ln

∣∣∣∣∣ x − √
2

x + √
2

∣∣∣∣∣ + C

31.
x2 + x

2(x2 + 2x + 2)
− 1

2
arctan(x + 1) + C

33. 1
2 tan θ + C

35. 1
5 sec5 x − 1

3 sec3 x + C

37.
x2

8
[4(ln x)3 − 6(ln x)2 + 6(ln x) − 3] + C

39.
1

2
ex

√
1 + e2x + 1

2
ln

(
ex +

√
1 + e2x

) + C

41.
1

54
arcsec

(
x

3

)
+

√
x2 − 9

18x2
+ C

43. ln |x | + 1
2 arctan(2x) + C

45. 1
2 (sec x tan x − ln |sec x + tan x |) + C

47. ln |x + 1| − 2

3x3
+ C

49. ln |x − 1| + 1

x − 1
+ ln(x2 + x + 1) − 2

x2 + x + 1
+ C

51. x(ln x)2 − 6x(ln x)5 + 30x(ln x)4 − 120x(ln x)3

+ 360x(ln x)2 − 720x ln x + 720x + C

53. 1
3 (arcsin x)3 + C

55. 1
2 sec2 z + ln | cos z| + C

57. 1
2 arctan(exp(x2)) + C

59. − x2 + 1

2
exp(−x2) + C

61. − 1

x
arcsin x + ln

(
1 −

√
1 − x2

) − ln |x | + C

63. 1
8 x(2x2 − 1)

√
1 − x2 + 1

8 arcsin x + C

65.
1

4
ln |2x + 1| + 5

4(2x + 1)
+ C

67. 1
2 ln |e2x − 1| + C

69. 2 ln |x + 1| + 3

x + 1
− 5

3(x + 1)3
+ C

71.
1

2
ln(x2 + 1) + arctan x − 1

2(x2 + 1)
+ C

73. 2
45 (3x6 − x3 − 2)

√
x3 − 1 + C

75. 2
3 (1 + sin x)3/2 + C

77. 1
2 ln |sec x + tan x | + C

79. −2
√

1 − sin t + C if cos t � 0, 2
√

1 − sin t + C if cos t � 0

81. x ln(x2 + x + 1) − 2x + √
3 arctan

(
2x + 1√

3

)

+ 1

2
ln(x2 + x + 1) + C

83. − 1

x
arctan x + ln |x | − 1

2
ln(x2 + 1) + C

85.
1

2
ln(x2 + 1) + 1

2(x2 + 1)
+ C

87.
x − 6

2
√

x2 + 4
+ C
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89. 1
3 (1 + sin2 x)3/2 + C

91. 1
2 ex (x sin x − x cos x + cos x) + C

93. − arctan x

2(x − 1)2
+ 1

4

(
1

2
ln(x2 + 1) − 1

x − 1
− ln |x − 1|

)
+C

95.
11

9
arcsin

(
3x − 1

2

)
− 2

9

√
3 + 6x − 9x2 + C

97.
1

3
x3 + x2 + 3x − 1

x − 1
+ 4 ln |x − 1| + C

99. x arcsec
(√

x
) − √

x − 1 + C

101.
π

4
(4 + e2 − e−2) ≈ 8.838652

103. A t = π
[√

2 + ln
(
1 + √

2
) − e−t

√
1 + e−2t

− ln
(
e−t +

√
1 + e−2t

)];
A = π

[√
2 + ln

(
1 + √

2
)] ≈ 7.211800

105. 2π
√

2

[√
7

2
− 1

4
ln

(
2 +

√
7

2

)
− 1

2

√
1

2

+ 1

4
ln

(
1 +

√
1

2

)]
≈ 11.663529

107. Assume that m and n are integers with n � 0 and m � 2. Let
u = (sin x)m−1 and dv = (cos x)n sin x dx .

109.
5π

4
≈ 3.926991

111. The value of the integral is 1
630 .

113. 1
2

[
5
√

6 − 3
√

2 + ln
(√

6 + √
3 − 2 − √

2
)] ≈ 3.869983

115.
2
√

3

3
arctan

(
2ex + 1√

3

)
+ C

117. − ln(1 + e−x ) + C

119.

√
2

4

[
2 arctan

(
−1 + √

2 tan θ
)
+2 arctan

(
1 + √

2 tan θ
)

+ ln
(
tan θ −√

2 tan θ +1
)− ln

(
tan θ +√

2 tan θ +1
)]+C

121.
2(3x − 2)3/2

25515
(945x3 + 540x2 + 288x + 128) + C

123.
3(x2 − 3)

4(x2 − 1)1/3
+ C

125.
2

9
(x2 − 2)

√
x3 + 1 + C

127. 2 arctan

(
1 + x

1 − x

)1/2

−
√

1 − x2 + C

129. 3(x + 1)1/3 + ln
∣∣(x + 1)1/3 − 1

∣∣
− √

3 arctan
(

2(x+1)1/3+1√
3

)
− 1

2 ln
(
(x + 1)2/3 + (x + 1)1/3 + 1

) + C

131.
√

1 + e2x + 1

2
ln

∣∣∣∣∣−1 + √
1 + e2x

1 + √
1 + e2x

∣∣∣∣∣ + C

133.
8

15
135.

sin θ

1 + cos θ
+ C

137. − 2 + 2 cos θ

1 + sin θ + cos θ
+ C

139.
√

2

[
ln

(
−1 + √

2 + 1 − cos θ

sin θ

)

−1

2
ln

(
1 + 2 − 2 cos θ

sin θ
− (1 − cos θ)2

sin2 θ

)]
+ C

141. − ln(2 + cos θ) + C

SECTION 8.1 (PAGE 586)

1. y(x) = 3e2x−2 3. y(x) = 3

43 − 6x

5. y(x) = (x + 3)2 7. y(x) = 6ex − 1

9. y(x) = ln(x + e2) 11.
dy

dx
= x + y

13.
dy

dx
= x

1 − y
15.

dy

dx
= y − x

y + x

17.
dv

dt
= −kv2 (k > 0 constant)

19.
d N

dt
= k(P − N ) (k > 0 constant)

21. $119.35; $396.24

23. Approximately 3 h 52 min

25. Between 650 and 700 years old

27. $44.52 29. About 39 days 31. About 35 years

33. a. P(t) = 49 · 6t ; b. 971; c. 3:21 P.M.

35. a. A(t) = 15 · (
2
3

)t/5
; b. approximately 7.84;

c. After about 33.4 months

37. About 74000 years ago

39. Three hours

41. About 1 h 19 min

43. 1:20 P.M.

45. About 6 min 3 s

47. y = 4x4; approximately 0.02887 in.
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SECTION 8.2 (PAGE 597)

1.

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
x

y

3.

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
x

y

5.

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
x

y

7.

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
x

y

9.

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
x

y

11. To three places: approximations: 1.125 and 1.181; true
value: 1.213.

13. To three places: approximations: 2.125 and 2.221; true
value: 2.297.

15. To three places: approximations: 0.938 and 0.889; true
value: 0.851.

17. To three places: approximations: 2.859 and 2.737; true
value: 2.647.

19. To three places: approximations: 1.267 and 1.278; true
value: 1.287.

21. Your figure should indicate that y(−4) ≈ 3; the exact solu-
tion is y(−4) = 3 + e−4 ≈ 3.018316.

−2

0

2

4

−4

−4

−2 0

(0, 0)

(−4, ?)

2 4
x

y

23. Your figure should indicate that y(2) ≈ 1. The exact value
is closer to 1.004. See the Solutions Manual for additional

details.

−2

−1

0

1

2

−2 −1 0

(0, 0)

(2, ?)

1 2
x

y

25. Your figure should indicate that the limiting velocity is
about 20 ft/s (quite survivable) and that the time to reach
19 ft/s is a little less than two seconds. An exact solution
gives v(t) = 19 when t = 5

8 ln 20 ≈ 1.872333.

0
0

t

5
10
15
20
25
30
35
40

1 2 3 54

27. With h = 10−4 and h = 10−5 we find that y(2) ≈ 1.004 to
three places.

29. No guarantee of uniqueness because Dy(−
√

1 − y2 ) is not
continuous at (0, 1).

31. For fixed a � 0, let y(x) = x3 if x � 0, y(x) = 0 if 0 � x � a,
and y(x) = (x − a)3 if a � x . Then y(x) is (for each a)
a solution of the given initial value problem. No contradic-
tion because uniqueness is guaranteed only “near” the point
(−1, 1).

SECTION 8.3 (PAGE 606)

1. y(x) = 1
4 (x2 + C)2 3. y(x) = 3

C − x3

5. y(x) = 1 + 1
4 (x2 + C)2

7. 3y + 2y3/2 = 3x + 2x3/2 + C

9. y3 + y = x − 1

x
+ C 11. y(x) = 1

1 − x

13. y(x) = (x + 1)1/4 15. y(x) = 36

(3 − 2x3/2)2

17. y(x) = −√
169 − x2 19. y(x) = 1

1 + x − x3

21. y(x) = 2ex − 1 23. y(x) = 1

2
(e2x + 3)

25. x(t) = 1 − e2t 27. x(t) = 27e5t − 2

29. v(t) = 10(1 − e−10t )

31. Approximately 4.87 million

33. Justify P(t + �t) − P(t) ≈ r P(t) �t − c �t , divide both
sides by �t , and finally let �t → 0.

35. After about 46 days
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37. About $2183.15 per month

39. About 3679 41. At 6:00 A.M.

SECTION 8.4 (PAGE 617)

1. ρ(x) = ex ; y(x) = 2(1 − e−x )

3. ρ(x) = e3x ; y(x) = e−3x (x2 + C )

5. ρ(x) = x2; y(x) = x + 4x−2

7. ρ(x) = x1/2; y(x) = 5x1/2 + Cx−1/2

9. ρ(x) = x−1; y(x) = 7x + x ln x

11. ρ(x) = xe−3x ; y(x) ≡ 0

13. ρ(x) = ex ; y(x) = cosh x

15. ρ(x) = exp(x2); y(x) = 1 − 5 exp(−x2)

2

17. ρ(x) = 1 + x ; y(x) = 1 + sin x

1 + x

19. ρ(x) = sin x ; y(x) = C csc x + 1

2
sin x

= C1 csc x − 1
2 cos x cot x

21. ρ(x) = exp(−x2); y(x) = [exp(x2)]
[√

π

2
erf(x) + C

]

23. t = 200 ln 10 seconds, about 7 min 40.517 s

25. 4 ln 4 ≈ 5.5452 years 27. 393.75 lb

29. (a) A (t) = 360[e(0.06)t − e(0.05)t ]; (b) $1,308,283.30 (minus
taxes)

31. t = 10 ln 5

ln(5/3)
≈ 31.507 s 33.

400

ln 2
≈ 577 ft

35. v(t) = 400

t + 10
; x(60) = 400 ln 7 ≈ 778.4 ft

37. (a) 100 ft/s; (b) t = 10 ln 10 ≈ 23.03 s; about 1402.6 ft

39. 50 ft/s

41. Maximum height: about 108.28 m; impact speed: about
43.23 m/s

43. Limiting velocity: vτ = − g

k

SECTION 8.5 (PAGE 628)

1. x(t) = 2

2 − e−t
3. x(t) = 2e2t + 1

2e2t − 1

5. x(t) = 40

8 − 3e−15t
7. x(t) = 77

11 − 4e−28t

9. 484 rabbits

11. a. P(t) =
(

1

2
kt + √

P0

)2

; b. 256 fish

13. a. P(t) = P0

1 − k P0t
; b. 30 months

15.
200

1 + e−6/5
≈ 153.7 million

17. a.
5

4
ln 3 ≈ 1.373 (seconds); b. lim

t→∞ x(t) = 200

19. a. 100 ln
9

5
≈ 58.779 years; b. 100 ln 2 ≈ 69.315 years

23. About 44.22 months 25. About 24.41 months

27. A little less than 35 days

29. (a) P(140) ≈ 127.008; (b) About 210.544 million; (c) In
2000, we have P ≈ 196.169, whereas the actual population
was about 281.422 million.

SECTION 8.6 (PAGE 640)

1. y(x) = c1e2x + c2e5x 3. y(x) = c1e−x/2 + c2e3x/2

5. y(x) = c1 exp
([ − 2 + √

3
]
x
) + c2 exp

([ − 2 − √
3

]
x
)

7. y(x) = (c1 + c2x)e−3x/2

9. y(x) = (c1 + c2x)e2x/5

11. y(x) = e−3x (c1 cos 2x + c2 sin 2x)

13. y(x) = e−x/3(c1 cos 5x + c2 sin 5x)

15. y(x) = 2e3x/2 + 3e4x

17. y(x) = 9e7x − 5e11x

19. y(x) = (2 − 3x)e−11x

21. y(x) = 7 cos 5x + 2 sin 5x

23. y(x) = e−2x (9 cos 4x + 7 sin 4x)

25. y(x) = e−x/2(10 cos 5x + 6 sin 5x)

27. y′′ + 10y′ = 0

29. y′′ + 20y′ + 100y = 0

31. y′′ = 0

33. 25y′′ + 250y′ + 626y = 0

35. General solution: y(x) = c1 cos 5x + c2 sin 5x . (a) y(x) =
c2 sin x is a solution for every real value of the constant c2;
(b) the two “initial conditions” (they are actually boundary
conditions) imply that c1 = c2 = 0.

SECTION 8.7 (PAGE 651)

1. x(t) = 5 cos
(
5t − tan−1 3

4

)
3. x(t) = 13 cos

(
3t − π − tan−1 12

5

)
5. x(t) = 4e−2t − 2e−4t ; overdamped

7. x(t) = (5 + 10t)e−4t ; critically damped

9. x(t) = e−4t (5 cos 2t + 12 sin 2t)

= 13e−4t cos
(
2t − tan−1 12

5

) ; underdamped

11. x(t) = 2 cos 2t − 2 cos 3t

13. x(t) = 4 sin 5t − 2 sin 10t

15. xsp(t) = − 50
13 cos 3t + 120

13 sin 3t

= 10 cos
(
3t − π + tan−1 12

5

)
17. xsp(t) = 3 sin 3t − cos 3t = √

10 cos(3t − π + tan−1 3);
xtr (t) = e−2t (cos t − 7 sin t) = 5e−2t

√
2 cos(t + tan−1 7)

19. T = π s; ν = 1/π s−1
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21. Amplitude 2 m, frequency 5 rad/s, period 2π/5 s

23. Begin with

mx ′′ + cx ′ + kx = F(t) + mg; x(0) = x0, x ′(0) = v0.

25. The radius is approximately 3.8078 in.

27. a. x(t) = 50(e−2t/5 − e−t/2); b. 4.096

29. (a) The position function is

x(t) = 2√
3

e−4t cos

(
4t

√
3 − π

6

)
.

(b) Frequency 4
√

3 rad/s, time-varying amplitude 2/
√

3 ft,
phase angle π/6.

37. (a) If x(t) = A cos 3t + B sin 3t , then x ′′ + 9x ≡ 0.

CHAPTER 8 MISCELLANEOUS PROBLEMS (PAGE 654)

1. y(x) = x2 + sin x 3. y(x) = −1 − 1

x + C

5. y(x) = 1

1 − x3
7. y(x) =

(
C − 3

x

)1/3

9. y(x) = 1

1 − sin x

11. y−1 − 2y−1/2 = x−1 − 2x−1/2 + C

13. Linear: y(x) = Cx3 + x3 ln x

15. Separable: y(x) = C exp

(
1 − x

x3

)

17. Linear: y(x) = C + ln x

x2

19. Linear: y(x) = (x3 + C)e−3x

21. Linear: y(x) = 2x−3/2 + Cx−3

23. Separable: y(x) = x1/2

6x2 + Cx1/2 + 2

25. Linear: y(x) = (x + C)ex

27. Both methods yield y(x) = −7 + C exp(x3).

29. x(t) = 21et − 16

8 − 7et

31. Approximately 4.2521 × 109 years old

33. About 2 min 25 s

35. (a) Approximately 20.4986 in; approximately 9.604 in.;
(b) approximately 18,230 ft; (c) about 13.86 in. of mercury

37. A little over 325 days

39. y(x) = 4e3x/2 + 9e5x/3

41. y(x) = (17x + 11)e−7x/11

43. y(x) = e−x/10(10 cos 10x + sin 10x)

45. a. N (t) = 29ert ; b. about 33.4%; c. about 24.9 months;
d. about 44.7 million

47. 20 weeks

49. 169 thousand in the year 2000; 200 thousand about June 1,
2011

51. P(t) → +∞ as t → 6−

53. 20 weeks

55. At 8%, the monthly payment is $925.21; at 12% it is
$1262.87.

57. At about 9:34 P.M. on the following day

59. v(10) ≈ 111.253 ft/s, about 75.854 mi/h; the limiting veloc-
ity is 176 ft/s, exactly 120 mi/h.

61. (b) Approximately $1,308,283.30

63. α ≈ 0.39148754; the limiting population is about
2.152 × 106 (cells).

SECTION 9.1 (PAGE 664)

1. x + 2y + 3 = 0

3. 3x − 4y = 25

5. x + y = 1

7. Center (−1, 0), radius
√

5

9. Center (2, −3), radius 4

11. Center ( 1
2 , 0), radius 1

13. Center ( 1
2 , − 3

2 ), radius 3

15. Center (− 1
3 , 4

3 ), radius 2

17. The single point (3, 2)

19. There are no points on the graph.

21. (x + 1)2 + (y + 2)2 = 34

23. (x − 6)2 + (y − 6)2 = 4
5

25. The locus is the perpendicular bisector of the segment join-
ing the two given points; it has equation 2x + y = 13.

27. The circle with center (6, 11) and radius 3
√

2

29. The locus has equation 9x2+25y2 = 225; it is an ellipse with
center (0, 0), horizontal major axis of length 10, vertical mi-
nor axis of length 6, and intercepts (±5, 0) and (0, ±3):

−6 −4 −2 2 4 6

−4

−2

2

4 y

x

31. There are two such lines, with equations
y − 1 = (

4 ± 2
√

3
) · (x − 2).

33. There are two such lines, with equations y − 1 = 4(x − 4)

and y + 1 = 4(x + 4).
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SECTION 9.2 (PAGE 671)

1. a.
(

1
2

√
2, 1

2

√
2

)
; b.

(
1, −√

3
)

; c.
(

1
2 , − 1

2

√
3

)
;

d. (0, −3); e.
(√

2, −√
2

)
; f.

(√
3, −1

)
; g.

(
−√

3, 1
)

3. r = 4 sec θ 5. θ = tan−1

(
1

3

)

7. r 2 = sec θ csc θ 9. r = sec θ tan θ

11. x2 + y2 = 9 13. x2 + y2 + 5x = 0

15. (x2 + y2)3 = 4y4 17. x = 3

19. r = 2 sec θ ; x = 2

21. r = 1

cos θ + sin θ
; x + y = 1

23. r = 2

sin θ − cos θ
; y = x + 2

25. r + 8 sin θ = 0; x2 + y2 + 8y = 0

27. r = 2(cos θ + sin θ); x2 + y2 = 2x + 2y

29. Matches Fig. 9.2.23. 31. Matches Fig. 9.2.24.

33. Matches Fig. 9.2.26. 35. Matches Fig. 9.2.25.

37. Circle, center ( 1
2 a, 1

2 b), radius 1
2

√
a2 + b2

39. Circle, center (1, 0), radius 1, symmetric around the x-axis:

1 2 x 

−1

1

y

41. Cardioid, cusp at the origin (where θ = π ), symmetric
around the x-axis:

1 2

−1

1

y

x

43. Limaçon, symmetric around the y-axis:

−3 −2 −1 1 2 3

1

3

5

y

x

45. Lemniscate lying in the first and third quadrants, symmetric
around the lines y = x and y = −x and with respect to the
pole:

−1.5 1.5

−1.5

1.5

y

x

47. Four-leaved rose, symmetric around both coordinate axes,
around both lines y = ±x , and with respect to the pole:

−1.5 −1 1 1.5

1

1.5

y

x

49. Three-leaved rose, symmetric around the x-axis, unchanged
through any rotation around the origin of an integral multiple
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of 2π/3:

−2 −1 1 2 3

−2

1

2

y

x

51. Five-leaved rose, symmetric around the y-axis, unchanged
through any rotation around the origin of an integral multi-
ple of 2π/5:

−1.5 1.5

−1

1

2
y

x

53. The only point of intersection has coordinates (1, 0):

−1 1 x

−1

1

y

55. The points of intersection are ( 1
2 , 1

6 π), ( 1
2 , 5

6 π), (−1, 3
2 π),

and (0, 0):

−0.5−1 10.5 x

−0.5

−1

0.5

1

y

57. The points of intersection are (0, 0), (2, π),(
2
√

2 − 2, cos−1
(
3 − 2

√
2

))
and(

2
√

2 − 2, − cos−1
(
3 − 2

√
2

)) :

−2 −1 1 2 x

−1

1

y

61. The polar equation can be written in the form r = ±a +
b sin θ . If |a| = |b| and neither is zero, then the graph is a
cardioid. If |a| �= |b| and neither a nor b is zero, then the
graph is a limaçon. If either a or b is zero and the other is
not, then the graph is a circle. If a = b = 0 then the graph
consists of the pole alone.

SECTION 9.3 (PAGE 678)

1.

−3 −2 −1 0.5 x

1

2

y

3.

−0.3 −0.2 −0.1 0.1 x

−0.2

−0.1

0.1

y
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5.

0.5 1 x

0.1

0.2

0.3

y

7. π 9.
3

2
π 11.

9

2
π

13. 4π

15.
19

2
π ; the region:

−4 −2 2 x

−3

−2

−1

1

2

3

y

17.
1

2
π 19.

1

4
π 21. 2

23. 4; the region:

−1 1 x

−2

−1

1

2

y

25.
2π + 3

√
3

6
; the figure:

−1 1 x

−1

1

2

y

27.
5π − 6

√
3

24
; the figure:

−0.5 0.5 x

−0.5

1

y

29.
39

√
3 − 10π

6
; the figure:

−4 −2 2 4 x

−4

−2

2

4

y

31.
2 − √

2

2
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33.
20π + 21

√
3

6
; the figure:

−1 1 2 3 4 x

−2

−1

1

2

y

35.
π − 2

2
; the figure:

−1 1 2 x

−1

1

2

y

37.
(
x − 1

2

)2 + (
y − 1

2

)2 = 1
2 ; area 1

2 π

39. a. A1 = 1

2

∫ 2π

0
a2θ2 dθ ;

b. A2 = 1

2

∫ 4π

2π

a2θ 2 dθ ;

c. R2 = A2 − A1;

d. If n � 2, then An = 1

2

∫ 2nπ

2(n−1)π

a2θ 2 dθ .

41. a. 5
2

(
1 − e−2π/5

)2
; b. 5

2 e−2(n−1)π/5
(
1 − e−2π/5

)2

43. Approximately 1.58069

SECTION 9.4 (PAGE 687)

1. y = 2x − 3:

−1 1 2 3 x

−4

−2

2

y

3. y2 = x3:

1 2 3 4 5 x

−10

−5

5

10

y

5. y = 2x2 − 5x + 2:

−1 1 2 3 x

−2

2

4

6

8

y

7. y = 4x2, x > 0:

1 2 3 4 5 x

20

40

60

80

100

y

9. 9x2 + 25y2 = 225:

−4 −2 2 4 x

−3

−2

−1

1

2

3

y
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11. 9x2 − 4y2 = 36:

2 4 6 8 x

−10

−5

5

10

y

13. x2 + y2 = 1:

−1 −0.5 0.5 1 x

−1

−0.5

0.5

1

y

15. y = 1 − x , 0 � x � 1

17. 9x = 4y + 7; concave upward

19. 2πx + 4y = π2; concave downward

21. ψ = π

6

23. ψ = π

2
25. Horizontal tangents at (1, −2) and (1, 2); vertical tangent at

(0, 0) and no tangent line at (3, 0).

27. Horizontal tangents at
(

3
4 , ± 3

4

√
3
)

and at (0, 0); vertical tan-

gent at (2, 0).

29.
dy

dx
= −2e3t and

d2 y

dx2
= 6e4t . The curve:

1 2 x

25

50

y

31. x = p

m2
, y = 2p

m
, −∞ < m < +∞

33. The slope of the line containing P0 and P is

1 + cos θ

sin θ
,

and this is also the value of dy/dx at the point P .

35. The identities cos 3t = cos3 t − 3 sin2 t cos t and sin 3t =
3 sin t cos2 t − sin3 t will be very helpful.

41. x = 5t2

1 + t5
, y = 5t3

1 + t5
, 0 � t < +∞

43. No horizontal tangents; vertical tangents at (−3, 2) and
(1, 0); inflection point at (−1, 1):

−4 22 x

−1

1

2

3

y

45. Horizontal tangents at (0, −2.3077), (0, 1), and (0, 2.1433)

(numbers with decimal points are approximations); ver-
tical tangents at (−1.8559, 1.7321), (2.4324, −1.7321),
and (1.5874, 0); inflection points at (−5.1505, −3.1103),
(0, −2.3077), (2.0370, −1.0443), (1.5874, 0), (0, 1),
(0, 2.1433), and (4.2661, 2.8565). To see the graph, use
a computer algebra system to plot the parametric equations
x = (t5 − 5t3 + 4)1/3, y = t with the [suggested] range
−2.7 � t � 2.7:

−3 −2 −1 1 2 3 x

−2

−1

1

2

y

SECTION 9.5 (PAGE 695)

1.
22

5
3.

4

3

5.
1

2
(eπ + 1) 7.

358π

35

9.
16π

15
11.

74

3

13.
π

√
2

4
15. (e2π − 1)

√
5

17.
8π

3

(
53/2 − 23/2

)
19.

2π

27

(
133/2 − 8

)
21. 16π2 23. 5π 2a3
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25. a. πab; b.
4

3
πab2

27.
1

2

[
2π

√
1 + 4π 2 + ln

(
2π +

√
1 + 4π 2

)]

29.
3

8
πa2 31.

12

5
πa2

33.
216

√
3

5
35.

243π
√

3

4

37. The length is 2
∫ 1

0

3
√

t8 + 4t6 − 4t5 − 4t3 + 4t2 + 1

(t3 + 1)2
dt

≈ 4.9174887217.

39. 6π 3a3 41.
5

6
π3a2

43.
∫ π

0

√
45 + 36 cos 6θ dθ ≈ 20.0473398308

45.
∫ 2π

0

√
10 − 6 cos 4θ dθ ≈ 19.3768964411

47.
∫ 2π

0

√
106 + 90 cos θ dθ ≈ 61.0035813739

49.
∫ 3π

0

1

3

√
29 − 20 cos( 14

3 θ) dθ ≈ 16.3428333739

51. (a) Approximately 16.0570275666; (b)
16π

15

53.
∫ 2π

0

√
25 cos2 5t + 9 sin2 3t dt ≈ 24.6029616185

55. Length:
∫ 2π

0

√
[x ′(t)]2 + [y′(t)]2 dt ≈ 39.4035787129.

The curve:

x

y

SECTION 9.6 (PAGE 715)

1. Opens to the right; equation y2 = 12x :

1 2 x

−4

−2

2

4

y

3. Opens downward; equation (x − 2)2 = −8(y − 3):

−2 2 4 6 x

1

2

3

y

5. Opens to the left; equation (y − 3)2 = −8(x − 2):

1 2 x

2

4

6

y

7. Opens downward; equation x2 = −6(y + 3
2 ):

−4 −2 2 4 x

−6

−4

−2

y
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9. Opens upward; equation x2 = 4(y + 1):

−2 −1 1 2 x

−1

1

y

11. Opens to the right, vertex at (0, 0), axis the x-axis, focus at
(3, 0), directrix x = −3:

−4 −2 2 4 x

−6

−3

3

6

y

13. Opens to the left, vertex at (0, 0), axis the x-axis, focus at
(− 3

2 , 0), directrix x = 3
2 :

−2 −1 1 2 x

−4

−2

2

4

y

15. Opens upward, vertex at (2, −1), axis x = 2, focus at (2, 0),
directrix y = −2:

−2 2 4 6 x

−3

−1

1

3

5

y

17. Opens downward, vertex at (− 1
2 , −3), axis x = − 1

2 , focus

at (− 1
2 , − 13

4 ), directrix y = − 11
4 :

−2 −1 2

−6

−4

−2

x

y

19.
(

x

4

)2

+
(

y

5

)2

= 1 21.
(

x

15

)2

+
(

y

17

)2

= 1

23.
(

x

4

)2

+
(

y√
7

)2

= 1 25.
x2

100
+ y2

75
= 1

27.
x2

16
+ y2

12
= 1 29.

(
x − 2

4

)2

+
(

y − 3

2

)2

= 1

31.
(

x − 1

5

)2

+
(

y − 1

4

)2

= 1 33.
(x − 1)2

81
+ (y − 2)2

72
= 1

35. Center (0, 0), foci
(±2

√
5, 0

)
, axes 12 and 8:

−6 −3 3 6

−4

−2

2

4
y

x

37. Center (0, 4), foci
(
0, 4 ± √

5
)
, axes 6 and 4:

−2 −1 1 2

2

4

6

y

x

39.
x2

1
− y2

15
= 1 41.

(
x

4

)2

−
(

y

3

)2

= 1

43.
(

y

5

)2

−
(

x

5

)2

= 1 45.
y2

9
− x2

27
= 1

1200

www.konkur.in
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47.
x2

4
− y2

12
= 1 49.

(x − 2)2

9
− (y − 2)2

27
= 1

51.
(

y + 2

3

)2

−
(

x − 1

2

)2

= 1

53. Center (1, 2), foci (1±√
2, 2), asymptotes y−2 = ±(x−1):

−1 1 3

2

4

x

y

55. Center (0, 3), foci (0, 3 ± 2
√

3), asymptotes y = 3 ± x
√

3 :

−2 2

−2

2

4

6

8
y

x

57. Center (−1, 1), foci (−1 ± √
13, 1), asymptotes y − 1 =

± 3
2 (x + 1):

−6 −4 −2 2 4

−6

−4

−2

2

4

6

8 y

x

59. Parabola, opening to the left, vertex (3, 0), axis the x-axis:

−1 1 2 3

−6

−3

3

6

x

y

61. Parabola, opening to the right, vertex (− 3
2 , 0), axis the

x-axis:

−1 1 2 3

−4

−2

2

4

y

x

63. Ellipse, center (0, 2), vertices at (0, 6) and (0, −2):

−3 −2 −1 1 2 3

−2

2

4

6

x

y

65. Minimize (x − p)2 + y2 where x = y2/(4p).

69. About 16 h 38 min

71. Maximize R(α) = (v2
0 sin 2α)/g.

73. Approximately 14◦ 40′ 13′′ and 75◦ 19′ 47′′

75. Square the given equation twice to eliminate radicals, con-
vert to polar form, rotate 45◦ by replacing θ with θ + (π/4),
and finally return to Cartesian coordinates. You will recog-
nize the equation as that of a parabola.

77. a. About 322 billion miles; b. about 120 billion miles

79. With focus F(0, c) and directrix the line L: y = c/e2

(0 < e < 1), begin with |P F | = e · |P L|, eliminate rad-
icals, simplify, replace a2(1 − e2) with b2, and convert the
resulting Cartesian equation to “standard form.”
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81. Go to edmath.org/MATtours/ellipses/ellipses1.09.2.html.

83. The only solution is
(x − 1)2

4
+ 3y2

16
= 1.

85. (c) In this case there are no points on the graph.

89. 16x2 + 50xy + 16y2 = 369

91. If A is at (−50, 0) and B is at (50, 0), then the x-coordinate
of the plane is approximately 41.3395 (in mi).

93. 2000 mi

95. Begin with r = pe/(1 − e cos θ) and first show that the area
of the ellipse is

A = 2
∫ π

0

1

2
r 2 dθ = a2(1 − e2)2 I

where

I =
∫ π

0

1

(1 − e cos θ)2
dθ.

Then use the substitution discussed after Miscellaneous
Problem 134 of Chapter 7.

CHAPTER 9 MISCELLANEOUS PROBLEMS (PAGE 718)

1. Circle, center (1, 1), radius 2:

1 2

1

2

x

y

3. Circle, center (3, −1), radius 1:

1 2 3 4

−2

−1

y
x

5. Parabola, vertex (4, −2), focus (4, −17/8), opening down-
ward:

4 8

−10

−5

y
x

7. Ellipse, center (2, 0), vertices at (0, 0), (4, 0), (2, 3), and
(2, −3), foci (2, ±√

5):

1 2 3 4 x 

−3

−2

−1

1

2

3

y

9. Hyperbola, center (−1, 1), foci (−1, 1 ± √
3), vertices

(−1, 1 ± √
2):

−3 −2 −1 1

−2

−1

1

2

3

4

y

x

11. There are no points on the graph.

13. Hyperbola, center (1, 0), vertices (3, 0) and (−1, 0), foci
(1 ± √

13, 0):

−2 2 4

−4

−2

2

4

x

y

15. Circle, center (4, 1), radius 1:

1 2 3 4 5

1

2

y

x

17. The graph consists of the straight line y = −x together with
the isolated point (2, 2); it is not a conic section.
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19. Circle, center (−1, 0), radius 1:

−2 −1

−1

1

x

y

21. The straight line with Cartesian equation y = x + 1

23. The horizontal line y = 3

25. A pair of tangent ovals through the origin; the figure is sym-
metric around the y-axis:

−2 −1 1 2

−1

1

y

x

27. A limaçon symmetric around the y-axis:

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

y

x

29. Ellipse, center (− 4
3 , 0), horizontal semimajor axis of

length 8
3 , semiminor axis of length 4

3

√
3, vertices (−4, 0),

(0, ± 4
3

√
3 ), and ( 4

3 , 0), foci (− 8
3 , 0) and (0, 0):

−4 −3 −2 −1 1

−2

1

2

y

x

31.
π − 2

2
; the figure:

−1 1 2 x

−1

1

2

y

33.
39

√
3 − 10π

6
; the figure:

−4 −2 2 4 x

−4

−2

2

4

y

35. 2; the figure:

−1.5 −1 1 1.5 x

−1.5

−1

1

1.5

y

37.
5π

4
; the figure:

−0.5 0.5 1.5 x

−1

1

y

39. The straight line y = x + 2
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41. The circle with center (2, 1) and radius 1:

1 2 3 x

1

2
y

43. The “semicubical parabola” with Cartesian equation
y2 = (x − 1)3:

1 2 3 4 5

−8

−4

4

8
y

x

45. y = − 4
3

(
x − 3

√
2

)
47. 4x + 2πy = π 2

49. 24 51. 3π

53.
13

√
13 − 8

27
55.

43

6

57. 1 + 9
√

5

10
arcsin

√
5

3
−

√
31

8
− 9

√
5

10
arcsin

√
5

6

59.
471295π

1024
61.

π (eπ + 1)
√

5

2
63. Suppose that the circle rolls to the right through a central

angle θ . Then x = aθ − b sin θ , y = a − b cos θ .

65. If the epicycloid is shifted a units to the left, its equations
will be

x = 2a cos θ − a cos 2θ − a, y = 2a sin θ − a sin 2θ.

Now compute and simplify r 2 = x2 + y2.

67. 6π3a3 69. r = 2p cos(θ − α)

71. Maximum 2a, minimum 2b

73. y = 4hx(b − x)

b2

75. The ellipse has equation

(
x

a

)2

+
(

y

b

)2

= 1.

79. e = 2

81. A = 9
∫ π/4

0

sec2 θ tan2 θ

(1 + tan3 θ)2
dθ = 3

2
.

83. If B < 5
2 , then the conic is an ellipse; if B > 5

2 , it is a hy-
perbola. If B = 5

2 the graph is a degenerate parabola: two
parallel lines. If the graph is normal to the y-axis at the point
(0, 4), then the graph is the ellipse with equation(

x

5

)2

+
(

y

4

)2

= 1.

SECTION 10.2 (PAGE 730)

1. an = n2 for n � 1. 3. an = 3−n for n � 1.

5. an = (3n − 1)−1 for n � 1. 7. an = 1 + (−1)n for n � 1.

9.
2

5
11. 0 13. 1

15. Diverges 17. 0 19. 0

21. 0 23. 1 25. 0

27. 0 29. 0 31. 0

33. e 35.
1

e2
37. 2

39. 1 41. Diverges 43. 1

45. 2 47. 1 49. π

51. To begin, suppose (without loss of generality) that A > 0.

53. Let L = lim
n→∞ xn . Then L = lim

n→∞ xn+1.

55. (b) G1 = G2 = G3 = 1; Gn+1 = Gn + Gn−2 for n � 3.
Check: G25 = 5896.

57. (b) 4

SECTION 10.3 (PAGE 741)

1.
3

2

3. Diverges (the k th partial sum is k2).

5. Diverges (geometric with ratio −2).

7. 6

9. Diverges (geometric with ratio 1.01).

11. Diverges by the nth-term test.

13. Diverges (geometric with ratio −3/e).

15. 2 + √
2

17. Diverges by the nth-term test.

19.
1

12
21.

e

π − e

23. Diverges (geometric with ratio 100
99 ).

25.
65

12
27.

247

8
29.

1

4

31. Diverges by the nth-term test.

33. Diverges (geometric with ratio tan 1 > 1).

35.
π

4 − π

37. Diverges: Show that Sk �
∫ k+1

2

1

x ln x
dx > ln(ln(k+1)).

39.
47

99
41.

41

333
43.

314156

99999

45. Converges to
x

3 − x
if −3 < x < 3.
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47. Converges to
x − 2

5 − x
if −1 < x < 5.

49. Converges to
5x2

16 − 4x2
if −2 < x < 2.

51.
1

6
53.

1

4
(Beaverbock’s constant)

55.
3

4
57. 2 59.

1

3

61. Use the converse of part 2 of Theorem 2.

65. 4.5 s

67. Mn → 0 as n → +∞.

69. Peter:
4

7
; Paul:

2

7
; Mary:

1

7

71.
1

12
of the incident light

SECTION 10.4 (PAGE 755)

1. e−x = 1−x + x2

2! − x3

3! + x4

4! − x5

5! + x6

6! e−z for some number

z between 0 and x .

3. cos x = 1− x2

2! + x4

4! − x5

5! sin z for some number z between

0 and x .

5.
√

1 + x = 1 + x

2
− x2

8
+ x3

16
− 5x4

128(1 + z)7/2
for some

number z between 0 and x .

7. tan x = x + x3

3
+ x4

4! (16 sec4 z tan z + 8 sec2 z tan3 z) for

some number z between 0 and x .

9. arcsin x = x + x3(1 + 2z2)

3!(1 − z2)5/2
for some number z between 0

and x .

11. ex = e + e(x − 1)+ e

2
(x − 1)2 + e

6
(x − 1)3 + e

24
(x − 1)4 +

ez

120
(x − 1)5 for some number z between 1 and x .

13. sin x = 1

2
+

√
3

2

(
x − π

6

)
− 1

4

(
x − π

6

)2

−
√

3

12

(
x − π

6

)3

+
sin z

24

(
x − π

6

)4

for some number z between π/6 and x .

15.
1

(x − 4)2
= 1 − 2(x − 5) + 3(x − 5)2 − 4(x − 5)3+

5(x − 5)4 − 6(x − 5)5 + (x−5)6

720 · 5040
(z−4)8 for some number z

between 5 and x .

17. cos x = −1+ (x − π)2

2
− (x − π)4

24
− sin z

120
(x−π)5 for some

number z between π and x .

19. x3/2 = 1+ 3

2
(x−1)+ 3

8
(x−1)2− 1

16
(x−1)3+ 3

128
(x−1)4−

(x − 1)5

120
· 45

32z7/2
for some number z between 1 and x .

21. e−x =
∞∑

n=0

(−1)n xn

n! . This representation is valid for all x .

23. e−3x =
∞∑

n=0

(−1)n3n xn

n! . This representation is valid for all

x .

25. sin 2x =
∞∑

n=0

(−1)n(2x)2n+1

(2n + 1)! . This representation is valid for

all x .

27. sin(x2) =
∞∑

n=0

(−1)n x4n+2

(2n + 1)! . This representation is valid for

all x .

29. ln(1 + x) =
∞∑

n=1

(−1)n+1xn

n
. This representation is valid if

−1 < x � 1.

31. e−x =
∞∑

n=0

(−1)n xn

n! . This representation is valid for all x .

33. ln x =
∞∑

n=1

(−1)n+1(x − 1)n

n
. This representation is valid if

0 < x � 2.

35. cos x =
√

2

2
−

√
2

2

(
x − π

4

)
−

√
2

2! · 2

(
x − π

4

)2

+
√

2

3! · 2

(
x − π

4

)3

+
√

2

4! · 2

(
x − π

4

)4

− · · · .

This representation is valid for all x .

37.
1

x
=

∞∑
n=0

(−1)n(x − 1)n . This representation is valid for

0 < x < 2.

39. sin x =
√

2

2
+

√
2

2

(
x − π

4

)
−

√
2

2! · 2

(
x − π

4

)2

−
√

2

3! · 2

×
(

x − π

4

)3

+
√

2

4! · 2

(
x − π

4

)4

+
√

2

5! · 2

(
x − π

4

)5

− · · · .

This representation is valid for all x .

45. Given f (x) = e−x , its plot together with that of

P3(x) = 1 − x + x2

2! − x3

3!
are shown next.

−3 −2 −1 1 2 3 x

10

20

30

y

y = e−x

y = P3(x)

The graphs of f (x) = e−x and

P6(x) = 1 − x + x2

2! − x3

3! + x4

4! − x5

5! + x6

6!
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are shown together next.

−3 −2 −1 1 2 3 x

10

20

30

y

y = P6(x)

y = e−x

47. Given f (x) = cos x , two of its Taylor polynomials are

P4(x) = 1− x2

2! + x4

4! and P8(x) = 1− x2

2! + x4

4! − x6

6! + x8

8! .

The graphs of f and P4 are shown next, on the left; the graph
of f and P8 are on the right.

−4 −2 2 4 x

−1

1

2

3

y

y = cos x

y = P4(x)

−4 −2 2 4 x

−1

1

2

3

y y = P8(x)

y = cos x

49. Given f (x) = 1

1 + x
, two of its Taylor polynomials are

P3(x) = 1−x+x2−x3 and P4(x) = 1−x+x2−x3+x4.

The graphs of f and P3 are shown together next, on the left;
the graphs of f and P4 are on the right.

−0.5 0.5 1 x

−1

1

2

3

4

5

y

y = P3(x)

y = 1
1 + x

−0.5 0.5 1 x
−1

1

2

3

4

5

y

y = P4(x)

y = 1
1 + x

51. The graph of the Taylor polynomial

P8(x) = 1 − x

2! + x2

4! − · · · − x7

14! + x8

16!
of f (x) and the graph of g(x) are shown together, next.

25 50 x

5

y

y = P8(x)

y = g(x)

57. By Theorem 4 of Section 10.3, S is not a number. Hence
attempts to do arithmetic with S will generally lead to false
or meaningless results.

59. Results: With x = 1 in the Maclaurin series in Problem 56,
we find that

a =
50∑

n=1

(−1)n+1

n
≈ 0.68324716057591818842565811649.

With x = 1
3 in the second series in Problem 58, we find that

b =
49∑

n=1
n odd

2

n · 3n
≈ 0.69314718055994530941723210107.

Because |a − ln 2| ≈ 0.009900019984, whereas |b − ln 2| ≈
2.039 × 10−26, it is clear that the second series of Problem
58 is far superior to the series of Problem 56 for the accurate
approximation of ln 2.

SECTION 10.5 (PAGE 763)

1. Diverges:
∫ ∞

1

x

x2 + 1
dx =

[
1

2
ln(x2 + 1)

]∞

1

= +∞.

3. Diverges:
∫ ∞

1
(x + 1)−1/2 dx =

[
2(x + 1)1/2

]∞

1
= +∞.

5. Converges:
∫ ∞

1

1

x2 + 1
dx =

[
arctan x

]∞

1
= π

4
< +∞.

7. Diverges:
∫ ∞

2

1

x ln x
dx =

[
ln(ln x)

]∞

2
= +∞.

9. Converges (to 1):∫ ∞

1
2−x dx =

[
− 1

2x ln 2

]∞

1

= 1

2 ln 2
< +∞.

11. Converges:∫ ∞

1
x2e−x dx = −

[
(x2 + 2x + 2)e−x

]∞

1
= 5/e < +∞.

13. Converges:
∫ ∞

1

ln x

x2
dx =

[
−1 + ln x

x

]∞

1

= 1 + 0

1
− lim

x→∞
1 + ln x

x
= 1 < +∞.

15. Converges:∫ ∞

1

x

x4 + 1
dx =

[
1

2
arctan(x2)

]∞

1

= π

8
< +∞.

17. Diverges:∫ ∞

1

2x + 5

x2 + 5x + 17
dx =

[
ln(x2 + 5x + 17)

]∞

1
= +∞.

19. Converges:
∫ ∞

1
ln

(
1 + 1

x2

)
dx = π

2
− ln 2 < +∞.

21. Diverges:
∫ ∞

1

x

4x2 + 5
dx =

[
1

8
ln(4x2 + 5)

]∞

1

= +∞.

23. Diverges:
∫ ∞

2

1

x
√

ln x
dx =

∫ ∞

2

(ln x)−1/2

x
dx

=
[
2(ln x)1/2

]∞

2
= +∞.
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25. Converges:
∫ ∞

1

1

4x2 + 9
dx =

[
1

6
arctan

(
2x

3

)]∞

1

= π

12
− 1

6
arctan

(
2

3

)
< +∞.

27. Converges:∫ ∞

1

x

(x2 + 1)2
dx =

[
− 1

2(x2 + 1)

]∞

1

= 1

4
< +∞.

29. Converges:∫ ∞

1

arctan x

x2 + 1
dx =

[
1

2
(arctan x)2

]∞

1

= 3π2

32
< +∞.

31. This is not a positive-term series.

33. The terms of this series are not monotonically decreasing.

35. Diverges if 0 < p � 1, converges if p > 1.

37. Diverges if p � 1, converges otherwise.

39. n > 10,000 41. n > 100 43. n > 160,000

45. n � 15 47. p > 1

49. Sloppy answer: Over 604,414 centuries. A more precise an-
swer: A little over 922,460 centuries.

51. Apply Theorem 4 and Problem 52 of Section 10.2.

SECTION 10.6 (PAGE 770)

1. Converges: Dominated by the p-series with p = 2.

3. Diverges by limit-comparison with the harmonic series.

5. Converges: Dominated by the geometric series with ratio 1
3 .

7. Diverges by limit-comparison with the harmonic series.

9. Converges: Dominated by the p-series with p = 3
2 .

11. Converges: Dominated by the p-series with p = 3
2 .

13. Diverges by comparison with the harmonic series.

15. Converges: Dominated by the p-series with p = 2.

17. Converges: Dominated by a geometric series with ratio 2
3 .

19. Converges by comparison with the p-series with p = 2.

21. Converges: Dominated by the p-series with p = 3
2 (among

others).

23. Converges: Dominated by the p-series with p = 2.

25. Converges: Dominated by the geometric series with ratio
2

e
.

27. Diverges by limit-comparison with the p-series with p = 1
2 .

29. Diverges by limit-comparison with the p-series with p = 1
2 .

31. Converges by comparison with a geometric series with ratio
2
3 and by limit comparison with a geometric series with ratio
1
3 .

33. Converges by comparison with the p-series with p = 2.

35. Diverges by limit-comparison with the harmonic series.

37. S10 ≈ 0.981793 with error less than 0.094882.

39. S10 ≈ 0.528870 with error less than 0.1.

41. n = 10; the sum is approximately 0.686503.

43. n = 3; the sum is approximately 0.100714.

45. Use the converse of Theorem 3 in Section 10.3.

47. Use the comparison test.

49. Apply the converse of Theorem 3 in Section 10.3 and the
result in Problem 48.

51. Use the result in Problem 50 in Section 10.5.

SECTION 10.7 (PAGE 778)

1. Converges (to 1
12 π2) by the alternating series test.

3. Diverges by the nth-term test for divergence.

5. Diverges by the nth-term test for divergence.

7. Diverges by the nth-term test for divergence.

9. Converges (to − 2
9 ) by the alternating series test.

11. Converges by the alternating series test. (The sum is approx-
imately −0.1782434556.)

13. Converges by the alternating series test. (The sum is approx-
imately 0.711944418056.)

15. Converges by the alternating series test. (The sum is roughly
−0.550796848134.)

17. Diverges by the nth-term test for divergence.

19. Diverges by the nth-term test for divergence.

21. Converges absolutely by the ratio test. (The sum is 1
3 .)

23. Converges by the alternating series test, but only condi-
tionally by the integral test. (The sum is approximately
0.159868903742.)

25. Converges absolutely by the root test. (The sum is approxi-
mately 186.724948614024.)

27. Converges absolutely by the ratio test. (The sum is e−10 ≈
0.00004539992976.)

29. Diverges by the nth-term test for divergence.

31. Converges absolutely by the root test. (The sum is approxi-
mately 0.187967875056.)

33. Converges by the alternating series test, but only condition-
ally by the comparison test. (The sum is approximately
0.760209625219.)

35. Diverges by the nth-term test for divergence.

37. Diverges by the nth-term test for divergence.

39. Converges absolutely by the ratio test. (The sum is approxi-
mately 0.586781998767.)

41. Converges absolutely by the ratio test. (The sum is approxi-
mately 2.807109464185.)

43. 0.9044; 0.005; 0.90

45. 0.6319; 0.0002; 0.632

47. 0.6532; 0.08; 0.7

49. n = 6; 0.947 (the sum is 7
720 π4)
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51. n = 5; 0.6065 53. n = 4; 0.86603

55. The sequence of terms is not monotonically decreasing; the
series diverges by comparison with the harmonic series.

57. Let an = bn = (−1)n

√
n

.

63. 1 + 1

3
− 1

2
+ 1

5
− 1

4
+ 1

7
+ 1

9
− 1

6
+ 1

11
+ 1

13
− 1

8
+ 1

15

65. It converges to zero.

SECTION 10.8 (PAGE 792)

1. (−1, 1) 3. (−2, 2)

5. [0, 0] 7.
[
−1

3
,

1

3

]

9.
(

−1

2
,

1

2

)
[−2, 2]

13. (−3, 3) 15.
(

2

5
,

4

5

)

17.
[

5

2
,

7

2

]
19. [0, 0]

21. (−4, 2) 23. [2, 4]
25. [5, 5] 27. (−1, 1) 29. (−∞, +∞)

31. f (x) = x + x2 + x3 + x4 + x5 + · · · ; R = 1

33. f (x) =
∞∑

n=0

(−1)n3n xn+2

n! ; R = +∞

35. f (x) =
∞∑

n=0

(−1)n x4n+2

(2n + 1)! ; R = +∞

37. f (x) = 1 − 1

3
x − 2

32
· x2

2! − 2 · 5

33
· x3

3! − 2 · 5 · 8

34
· x4

4!
− 2 · 5 · 8 · 11

35
· x5

5! − · · · ; R = 1

39. f (x) = (1 + x)−3 = 1 − 3x + 3 · 4 · x2

2! − 3 · 4 · 5 · x3

3!
+ 3 · 4 · 5 · 6 · x4

4! − · · · ; R = 1

41. f (x) =
∞∑

n=0

(−1)n xn

n + 1
; R = 1

43. f (x) =
∞∑

n=0

(−1)n x6n+4

(2n + 1)! · (6n + 4)
; R = +∞

45. f (x) =
∞∑

n=0

(−1)n x3n+1

n! · (3n + 1)
; R = +∞

47. f (x) =
∞∑

n=1

(−1)n+1x2n−1

n! · (2n − 1)
; R = +∞

49.
x

(1 − x)2
,

−1 < x < 1

51.
x(1 + x)

(1 − x)3
,

−1 < x < 1

61. f (x) =
∞∑

n=0

(−1)n x2n

(2n + 1)! , −∞ < x < +∞; the graphs of

y = f (x) and y = Pk(x) with k = 4, 6, 8:

1 3 x

−1

1

2

y
k = 4 

k = 8 

k = 6 

f

SECTION 10.9 (PAGE 800)

1. 651/3 = 4 ·
(

1 + 1

64

)1/3

≈ 4 + 4

3
· 1

64
≈ 4.021.

3. sin(0.5) ≈ 1

2
− 1

3! · 23
≈ 0.479.

5. tan−1(0.5) ≈ 1

2
− 1

3 · 23
+ 1

5 · 25
− 1

7 · 27
≈ 0.464

7. sin
( π

10

)
≈ π

10
− π3

3! · 103
≈ 0.309.

9. sin
( π

18

)
≈ π

18
− π3

3! · 183
≈ 0.174.

11.
∫ 1

0

sin x

x
dx ≈ 1 − 1

3!3 + 1

5!5 − 1

7!7 ≈ 0.9641.

13.
∫ 1/2

0

arctan x

x
dx ≈ 1

2
− 1

23 · 32
+ 1

25 · 52
− 1

27 · 72
≈ 0.4872.

15.
∫ 0.1

0

ln(1 + x)

x
dx ≈ 1

10
− 1

4 · 102
+ 1

9 · 103
≈ 0.0976.

17.
∫ 1/2

0

1 − e−x

x
dx ≈ 1

2
− 1

2! · 2 · 22
+ 1

3! · 3 · 23
− 1

4! · 4 · 24

+ 1

5! · 5 · 25
≈ 0.4438.

19.
∫ 1

0
e−x2

dx ≈ 1 − 1

3
+ 1

2! · 5
− 1

3! · 7
+ 1

4! · 9
≈ 0.7468

21.
∫ 1/2

0

3
√

1 + x2 dx ≈ 1

2
+ 1

9 · 23
− 1

45 · 25
+ 5

567 · 27

≈ 0.5133

23. −1

2
− x

6
− x2

24
− · · · → −1

2
as x → +∞.

25. lim
x→0

1

2! − x2

4! + x4

6! − · · ·

1 + x

2! + x2

3! + · · ·
= 1

2
.

27. lim
x→0

− x

3! + x3

5! − x5

7! + · · ·

1 − x2

3! + x4

5! − · · ·
= 0

1
= 0.

29. sin 80◦ ≈ 1 − 1

2! ·
(

π

18

)2

≈ 0.9848.
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31. cos 47◦ ≈
√

2

2

[
1 − π

90
− (π/90)2

2! + (π/90)3

3!
]

≈ 0.681998

33. Six-place accuracy

35. Five-place accuracy

37. e1/3 ≈ 1.39

39. a. |R3(x)| < 0.000002; b. |R3(x)| < 0.000000003

41. V = 2π

∫ π

0

sin2 x

x2
dx = (2π)2

2! − (2π)4

4! · 3
+ (2π)6

6! · 5
− · · ·

≈ 8.9105091465101038.

43. V = 2π

∫ 2π

0

1 − cos x

x
dx = (2π)3

2! · 2
− (2π)5

4! · 4
+ (2π)7

6! · 6
−

· · · ≈ 15.316227983254.

47. a0 +(a1 −a0)x +(a2 −a1)x2 +(a3 −a2)x3 +(a4 −a3)x4 +· · ·
= 1

49. a0 + a1x +
(

a2 − 1

2
a0

)
x2 +

(
a3 − 1

2
a1

)
x3

+
(

a4 − 1

2
a2 + 1

24
a0

)
x4 + · · · = 1;

sec x = 1 + 1

2
x2 + 5

24
x4 + 61

720
x6 + · · · .

51. 1 + x = a0 + a1x +
(

a2 − 1

2
a1

)
x2 +

(
a3 − a2 + 1

3
a1

)
x3

+ · · · .

53. Apply Theorem 1 to determine R.

55.
∫ 1/2

0

1

1 + x2 + x4
dx = 1

2
− 1

23 · 3
+ 1

27 · 7
− 1

29 · 9

+ 1

213 · 13
− · · · ≈ 0.4592398250.

57.

−8 −4 4 8 x

−1

1

y k = 3 k = 9 

k = 6 

59. −1

SECTION 10.10 (PAGE 811)

1. y(x) = a0

∞∑
n=0

xn

n! = a0ex ; R = +∞

3. y(x) = a0

∞∑
n=0

(−1)n

n!
(

3x

2

)n

= a0e−3x/2; R = +∞

5. y(x) = a0

[
1 + 1

1! · x3

3
+ 1

2!
(

x3

3

)2

+ 1

3!
(

x3

3

)3

+ · · ·
]

= a0 exp

(
x3

3

)
; R = +∞

7. y(x) = a0

∞∑
n=0

2n xn = a0

∞∑
n=0

(2x)n = a0

1 − 2x
; R = 1

2

9. y(x) = a0

∞∑
n=0

(n + 1)xn = a0

(1 − x)2
; R = 1

11. y(x) = a0

(
1 + x2

2! + x4

4! + x6

6! + · · ·
)

+ a1

(
x + x3

3! + x5

5! + x7

7! + · · ·
)

= a0 cosh x + a1 sinh x; R = +∞

13. y(x) = a0

(
1 − 9x2

2! + 92x4

4! − 93x6

6! + · · ·
)

+ a1

(
x − 9x3

3! + 92x5

5! − 93x7

7! + · · ·
)

= a0 cos 3x + a1

3
sin 3x = c1 cos 3x + c2 sin 3x;

R = +∞
15. a0 = 0 and (n + 1)an = 0 if n � 1, so y(x) ≡ 0.

17. a0 = a1 = 0 and (n−1)an−1+an = 0 for n � 2, so y(x) ≡ 0.

19. y(x) = 3

2
sin 2x 21. y(x) = xex

23. c1 = c2 = 0 and

cn = − n − 1

n2 − n + 1
cn−1

if n � 2, so y(x) ≡ 0.

25. x + 1

3
x3 + 2

15
x5 + 17

315
x7 + 62

2835
x9 + 1382

155925
x11

+ 21844

6081075
x13 + 929569

638512875
x15 + · · ·

CHAPTER 10 MISCELLANEOUS PROBLEMS
(PAGE 813)

1. 1 3. 10 5. 0 7. 0

9. The limit does not exist. 11. 0

13. +∞ (or “Does not exist.”) 15. 1

17. Converges by the alternating series test. (The sum is approx-
imately 0.080357603217.)

19. Converges by the ratio test. (The sum is approximately
1.405253880284.)

21. Converges by the comparison test and Theorem 3 of Sec-
tion 10.7. (The sum is approximately 0.230836643803.)

23. Diverges by the nth-term test for divergence.

25. Converges by the comparison test. (The sum is approxi-
mately 1.459973884376.)

27. Converges by the alternating series test. (The sum is approx-
imately 0.378868816198.)

29. Diverges by the integral test.

31. Converges by the ratio test; the sum is e2x and the radius of
convergence is +∞.

33. The interval of convergence is [−2, 4).

35. The interval of convergence is [−1, 1].
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37. The series converges only if x = 0.

39. The series converges to cosh x on (−∞, +∞).

41. Diverges for all x by the nth-term test for divergence.

43. Converges for all x to exp (ex ).

45. Let an = bn = (−1)n · n−1/2.

51. 1.084 53. 0.461 55. 0.797

65. a0 = 2 and an = 4 for all n � 1.

SECTION 11.1 (PAGE 823)

1. v = RS
−→ = 〈2, 3〉:

1 2 3 x

1

2

3

4

5
y

P

O

S

R

3. v = RS
−→ = 〈−10, −20〉:

−10 −5 5 x

−20

−10

10

y

P

S

R

5. w = u + v = 〈4, 2〉:

1 2 3 4 x

−2

2
y

u
v

w = u + v

7. u + v = 5i − 2j:

3 5 x

−2

5

y

u

v

u + v

9.
√

5, 2
√

13, 4
√

2, 〈−2, 0〉, 〈9, −10〉
11. 2

√
2, 10,

√
5, 〈−5, −6〉, 〈0, 2〉

13.
√

10, 2
√

29,
√

65, 3i − 2j, −i + 19j

15. 4, 14,
√

65, 4i − 7j, 12i + 14j

17. u = −3

5
i − 4

5
j, v = 3

5
i + 4

5
j

19. u = 8

17
i + 15

17
j, v = − 8

17
i − 15

17
j

21. a = P Q
−−→ = −4j

23. a = P Q
−−→ = 8i − 14j

25. a ⊥ b

27. a ⊥ b

29. i = −4a + 3b and j = 3a − 2b

31. c = −1

2
a + 5

2
b

33. a. 15i − 21j; b.
5

3
i − 7

3
j

35. a.
5
√

58

58
(7i − 3j); b. −5

√
89

89
(8i + 5j)

37. c = 0 is the unique solution.

43. T1 = T2 = 100

45. T1 ≈ 71.971, T2 ≈ 96.121 (lb)

47. Compass bearing 86◦13′, airspeed approximately 537 mi/h

49. Compass bearing 320◦43′, airspeed approximately 502 mi/h

SECTION 11.2 (PAGE 833)

1. 〈5, 8, −11〉; 〈2, 23, 0〉; 4;
√

51; 1
15

√
5〈2, 5, −4〉

3. 〈2, 3, 1〉; 〈3, −1, 7〉; 0;
√

5; 1
3

√
3〈1, 1, 1〉

5. 〈4, −1, −3〉; 〈6, −7, 12〉; −1;
√

17; 1
5

√
5〈2, −1, 0〉

7. θ ≈ 81◦ 9. θ = 90◦ 11. θ ≈ 98◦

13. compab = 4
15

√
5; compba = 2

7

√
14

15. compab = 0 = compba

17. compab = − 1
5

√
5; compba = − 1

10

√
10

19. x2 − 6x + y2 − 2y + z2 − 4z = 11

21. x2 − 10x + y2 − 8y + z2 + 2z + 33 = 0

23. x2 + y2 + z2 − 4z = 0
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25. Center (−2, 3, 0), radius
√

13

27. Center (0, 0, 3), radius 5

29. The xy-plane

31. The plane through (0, 0, 10) parallel to the xy-plane

33. The union of the three coordinate planes

35. The single point (0, 0, 0)

37. The single point (3, −4, 0)

39. Parallel (and not perpendicular)

41. Parallel (and not perpendicular)

43. The points lie on one line.

45. All three angles have measure 60◦.

47. � A ≈ 79◦, � B ≈ 64◦, � C ≈ 37◦

49. α ≈ 74.206831◦, β = γ ≈ 47.124011◦

51. α ≈ 64.895910◦, β ≈ 55.550098◦, γ = 45◦

53. 3

55. Approximately 7323.385 cal

57. W = mgh

59. Begin with |a + b|2 = (a + b) · (a + b) and expand the
right-hand side.

61. Any nonzero multiple of w = 〈−2, 7, 4 〉

65. α = b2c1 − b1c2

a1b2 − a2b1
, β = a1c2 − a2c1

a1b2 − a2b1

67. 2x +9y −5z = 23; the plane that bisects AB and is perpen-
dicular to that segment

69. The angle between any two edges is π/3.

SECTION 11.3 (PAGE 842)

1. 〈0, −14, 7〉 3. −10i − 7j + k

5. 〈0, 0, 22〉 7. ± 1
13 〈12, −3, 4〉

11. a × (b × c) = −k �= −i + j = (a × b) × c.

13. b × c is parallel to a.

15. 1
2

√
2546 17. a. 55; b. 55

6

19. Coplanar 21. Not coplanar; volume V = 1

23. The area is approximately 4395.6569291026 m2.

25. The area is approximately 31271.643253 ft2.

29. (a) Begin with the observation that the area of the triangle in

Fig. 11.3.13 is 1
2 |P Q

−−→| · d . (b) d ≈ 2.610707

31. Begin with the observation that a vector perpendicular to

both lines is n = P1 Q1
−−−→ × P2 Q2

−−−→
.

33. Use Eq. (12) and the result in Problem 32.

35. See the discussion following Eq. (3) in the text.

SECTION 11.4 (PAGE 849)

1. x = t , y = 2t , z = 3t ,

3. x = 2t + 4, y = 13, z = −3t − 3,

5. x = −6t , y = 3t , z = 5t ,

7. x = 3t + 3, y = 5, z = −3t + 7,

9. Parametric equations x = t + 2, y = −t + 3, z = −2t − 4;
symmetric equations

x − 2 = −y + 3 = − z + 4

2
.

11. Parametric equations x = 1, y = 1, z = t + 1; Cartesian
equations x = 1, y = 1.

13. Parametric equations x = 2t + 2 , y = −t − 3, z = 3t + 4;
symmetric equations

x − 2

2
= −(y + 3) = z − 4

3
.

15. The lines meet at (and only at) the point (2, −1, 3).

17. L 1 and L 2 are skew lines.

19. L 1 and L 2 are parallel and distinct.

21. x + 2y + 3z = 0

23. x − z + 8 = 0

25. y = 7

27. 7x + 11y = 114

29. 3x + 4y − z = 0

31. 2x − y − z = 0

33. 2x − 7y + 17z = 78

35. L and P are parallel and have no points in common.

37. They meet at (and only at) the point ( 9
2 , 9

4 , 17
4 ).

39. The angle between the planes is θ = arccos(1/
√

3 ).

41. The angle between the planes is θ = 0 because the planes
are parallel.

43. Parametric equations x = 10 , y = t , z = −10 − t ,
−∞ < t < +∞; Cartesian equations x = 10, y = −10 − z

45. There is no line of intersection because the planes are
parallel.

47. Parametric equations x = 3, y = 3 − t , z = 1 + t ,
−∞ < t < +∞; Cartesian equations x = 3, z = 4 − y.

49. 3x + 2y + z = 6

51. 7x − 5y − 2z = 9

53. x − 2y + 4z = 3

55.
10

√
3

3
59. Part (b):

133
√

501

501
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SECTION 11.5 (PAGE 862)

1. Because y2 + z2 = 1 while x is arbitrary, the graph lies on
the cylinder of radius 1 with axis the x-axis. A small part of
the graph is shown in Fig. 11.5.17.

3. Because x2 + y2 = t2 = z2, the graph lies on the cone with
axis the z-axis and equation z2 = x2 + y2. A small part of
the graph is shown in Fig. 11.5.16.

5. r′(1) = 0 = r′′(1)

7. r′(0) = 2i − j and r′′(0) = 4i + j

9. r′
(

3

4

)
= 6π i and r′′

(
3

4

)
= 12π2j

11. v(t) = 〈1, 2t, 3t2〉, v(t) = √
1 + 4t2 + 9t4,

a(t) = 〈0, 2, 6t〉
13. v(t) = 〈1, 3et , 4et 〉, v(t) =

√
1 + 25e2t , a(t) = 〈0, 3et , 4et 〉

15. v(t) = 〈−3 sin t, 3 cos t, −4〉,
v(t) =

√
9 sin2 t + 9 cos2 t + 16 = 5,

a(t) = 〈−3 cos t, −3 sin t, 0〉

17.

〈
2 − √

2

2
,
√

2

〉

19.
484

15
i 21. 11 23. 0

25. r(t) = 〈1, 0, t〉 27. r(t) = 〈t2, 10t, −2t2〉
29. r(t) = 〈2, t2, 5t − t3〉

31. r(t) =
〈

1

6
t3 + 10,

1

12
t4 + 10t,

1

20
t5

〉

33. r(t) = 〈1 − t − cos t, 1 + t − sin t, 5t〉
35. v

(
7
8 π

) = 〈
3
√

2, 3
√

2, 8
〉
, v

(
7
8 π

) = 10, and

a
(

7
8 π

) = 〈 − 6
√

2, 6
√

2, 0
〉

37. u(t) × v′(t) + u′(t) × v(t) = 〈0, 40t, −15〉
= Dt [u(t) × v(t)].

41. Height 100 ft; speed = √
6425 ≈ 80.156 ft/s

43. v0 = √
32 · 5280 = 32

√
165 ≈ 411.047442517284 ft/s

47. (a) Range: 400
√

3 ft, maximum height 100 ft. (b) Range:
800 ft, maximum height 200 ft; (c) Range: 400

√
3 ft, maxi-

mum height 300 ft

49. 70
√

10 ≈ 221.36 m/s

51. Angle of inclination: approximately 41◦50′33.739224′′; ini-
tial velocity: approximately 133.6459515485 m/s.

53. First assume that u(t) = 〈 u1(t), u2(t)〉 and v(t) = 〈v1(t),
v2(t)〉. Your proof will be easy to generalize to vectors with
three or more components.

55. First show that Dt [v(t) · v(t)] = 0.

57. A central repulsive force with magnitude proportional to dis-
tance from the origin.

63. 5 ft north

65. b. 12 s; c. 2400 ft north, 144 ft east; d. 784 ft

SECTION 11.6 (PAGE 877)

1. 10π 3. 19(e − 1) ≈ 32.647355

5.
20 + 9 ln 3

10
≈ 2.988751 7. κ(0) = 0

9. κ(0) = 1 11. κ

(
π

4

)
= 40

√
82

1681
≈ 0.215476

13.
(
− 1

2 ln 2, 1
2

√
2

)
15. Maximum at (±5, 0), minimum at (0, ±3)

17. T(−1) =
〈√

10

10
,

3
√

10

10

〉
, N(−1) =

〈
3
√

10

10
, −

√
10

10

〉

19. T(π/6) =
〈√

57

19
, −4

√
19

19

〉
,

N(π/6) =
〈
−4

√
19

19
, −

√
57

19

〉

21. T(3π/4) =
〈
−

√
2

2
, −

√
2

2

〉
, N(3π/4) =

〈
−

√
2

2
,

√
2

2

〉

23. aT = 18t√
9t2 + 1

, aN = 6√
9t2 + 1

25. aT = t√
t2 + 1

, aN = t2 + 2√
t2 + 1

27. κ = 1

a
29. x2 + (

y − 1
2

)2 = 1
4

31. (x − 2)2 + (y − 2)2 = 2 33. κ(t) ≡ 1
2

35. κ(t) =
√

2

3
e−t 37. aT = 0 = aN

39. aT = 4t + 18t3

√
1 + 4t2 + 9t4

, aN =
√

4 + 36t2 + 36t4

√
1 + 4t2 + 9t4

41. aT = t√
t2 + 2

, aN =
√

t4 + 5t2 + 8√
t2 + 2

43. T(0) =
〈√

2

2
,

√
2

2
, 0

〉
, N(0) = 〈0, 0, −1〉

45. T(0) =
〈√

3

3
,

√
3

3
,

√
3

3

〉
, N(0) =

〈
−

√
2

2
,

√
2

2
, 0

〉

47. x(s) = 2 + 4s

13
, y(s) = 1 − 12s

13
, z(s) = 3 + 3s

13

49. x(s) = 3 cos
s

5
, y(s) = 3 sin

s

5
, z(s) = 4s

5
51. Note that Dt (v · v) = 0 (why?).

53. κ(t) = 1

|t |
55. y = 3x5 − 8x4 + 6x3

57. Approximately 36.651 mi/s; 24.130 mi/s

59. Approximately 0.672 mi/s; 0.602 mi/s

61. About 1065 mi above the surface of the earth.

63. Approximately 1 h 42 min 2.588 s

65. Begin with Eq. (42), substitute Eqs. (37) and (41).
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SECTION 11.7 (PAGE 886)

1. The plane with intercepts x = 20
3 , y = 10, and z = 2:

−5

0

5
−5

0

5

y

0
2

4
z

x

3. Circular cylinder, radius 3, axis the z-axis:

0

3

0

3y

−3

0

3

z

−3

x

−3

5. A hyperbolic cylinder with rulings parallel to the z-axis and
meeting the xy-plane in the hyperbola with equation xy = 4:

−5

0

5 −5

0

5

y

−5

0

5

z

x

7. Elliptic paraboloid, axis the z-axis, vertex at the origin, open-
ing upward:

−2

0

2
x

−2

0

2y

0

1

2

3

z

9. Circular paraboloid, axis the z-axis, vertex at (0, 0, 4), open-
ing downward:

−2 0 2

x

0
2

y

−4

0

4

z

−2

11. Circular paraboloid, axis the z-axis, vertex at the origin,
opening upward:

−2

2
x −2

0

2

y
0

2

z

0

13. Both nappes of a circular cone, axis the z-axis, vertex at the
origin; upper nappe:

−2

0

2
x

−2

0

2y

0

2

4

z

15. Parabolic cylinder parallel to the y-axis, opening upward,
lowest points those on the line z = −2, x = 0:

−3

0

3
x −3

0

3

y
−2

0

2

z
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17. Elliptical cylinder parallel to the z-axis, centerline the z-axis:

−1 0 1

x

−2

0

2y

−2

0

2

z

19. Both nappes of an elliptical cone, axis the x-axis, vertex at
the origin:

−5

0

5

x

−3

0

3

y

−2

0

2

z

21. Paraboloid opening downward, axis the negative z-axis, ver-
tex at the origin:

−3

0

3
x

−3

0

3

y

−2

0
z

23. Hyperbolic paraboloid, saddle point at the origin; to see it,
execute the Mathematica command

ParametricPlot3D[ { 2∗y∗y - z∗z, y, z },
{ y, -1, 1 }, { z, -1, 1 } ];

−1
0

1

2
x

−1

0

1

y

−1

0

1

z

25. Hyperboloid of one sheet, axis the z-axis:

0

4

−4
0

4

−0.5

0

0.5

z

−4

27. Elliptical paraboloid, axis the nonnegative y-axis, vertex at
the origin:

0
1x

0

10

−1
0
1

z

−1
0

5y

29. Hyperboloid of two sheets, axis the y-axis, center the origin,
intercepts (0, ±6, 0):

−10
0

10x

−20
−10

0
10

20
y

−10

0

10

z

31. Equation x = 2(y2 + z2); circular paraboloid opening along
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the positive x-axis:

0

4

8

x −2

0

2

y

−2

0

2

z

33. Equation x2 + y2 − z2 = 1; circular hyperboloid of one sheet
with axis the z-axis:

−3

0

3
x

−3

0

3y

−2

0

2

z

35. Equation: 4x = y2+z2; circular paraboloid, axis the positive
x-axis, vertex at the origin:

0

4x

0

4y

−4

0

4

z

−4

37. Equation: z = exp(−x2 − y2):

−2
0

2

0
2

0

1

−2

39. Equation: z2 = 4(x2 + y2); both nappes of a right circular

cone with axis the z-axis and vertex at the origin:

−2 0 2

x

−2
0

2
y

−5

0

5

z

41. The traces in horizontal planes are ellipses with centers on
the z-axis and semiaxes 2 and 1.

43. The traces in the planes x = a are circles if |a| < 2, single
points if |a| = 2, empty if |a| > 2.

45. The trace in the plane x = a is a parabola opening upward
with vertex at (a, 0, 4a2).

47. The traces are generally parabolas; some open upward, some
downward; rotate the surface of Fig. 11.7.22 around the z-
axis 45◦ to see the surface.

SECTION 11.8 (PAGE 893)

1. (0, 1, 2) 3.
( − √

2,
√

2, 3
)

5.
(
1,

√
3, −5

)
7. (0, 0, 2)

9. (−3, 0, 0) 11.
(
0, −√

3, 1
)

Note that a given point does not have unique cylindrical or spher-
ical coordinates. Indeed, there are infinitely many correct an-
swers to Problem 13 through 22. If a computer programmed to
implement Eqs. (3) and (6) converts your answer to correct rect-
angular coordinates, your answer is almost certainly correct.

13. Cylindrical: (0, 0, 5); spherical: (5, 0, 0)

15. Cylindrical:
(√

2, π/4, 0
)
; spherical:

(√
2, π/2, π/4

)
17. Cylindrical:

(√
2, π/4, 1

)
; spherical:

(√
3, cos−1

√
3

3
,
π

4

)

19. Cylindrical:
(√

5, tan−1
(

1
2

)
, −2

)
;

spherical:
(
3, cos−1

(− 2
3

)
, tan−1

(
1
2

))
21. Cylindrical:

(
5, arctan 4

3 , 12
)
;

spherical:
(
13, arcsin 5

13 , arctan 4
3

)
23. Cylinder, radius 5, axis the z-axis

25. The vertical plane y = x

27. The circular cone z2 = 3x2 + 3y2 with axis the z-axis and
vertex at the origin

29. The xy-plane

31. The ellipsoid with center at the origin and intercepts
(±√

2, 0, 0), (0, ±√
2, 0), and (0, 0, ±2)

33. Circular cylinder, radius 2, axis the vertical line x = 2,
y = 0

35. Two concentric circular cylinders with common axis the
z-axis and radii 1 and 3
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37. Two congruent circular paraboloids, each with axis the
z-axis and vertex at the origin; one opens upward, the other
downward

39. Cylindrical: r 2 + z2 = 25; spherical: ρ = 5 (the same as the
graph of ρ = ±5)

41. Cylindrical: r cos θ + r sin θ + z = 1;
spspherical: ρ sin φ cos θ + ρ sin φ sin θ + ρ cos φ = 1

43. Cylindrical: r 2 + z2 = r cos θ + r sin θ + z;
spherical: ρ2 = ρ sin φ cos θ + ρ sin φ sin θ + ρ cos φ

(it’s legal to cancel ρ from both sides of the last equation).

45. The part of the cylinder of radius 3 and centerline the z-axis
that lies between the planes z = −1 and z = 1:

−3

0

3

x
−3

0

3

y
−1

0

1
z

47. The part of the spherical surface of radius 2 and center the
origin that lies between the two horizontal planes z = −1
and z = 1:

−2

0

2
x −2

0

2

y
−1

0

1

z

49. The solid is bounded above by the plane z = 2, below by
the plane z = −2, outside by the cylinder of radius 3 with
centerline the z-axis, and inside by the cylinder of radius 1
with centerline the z-axis.

51. The solid is the region between two concentric spherical sur-
faces centered at the origin, one of radius 3 and the other of
radius 5:

−5
0

5

x

0

5y

0

5

z

−5

53. z = r 2

55. a. −√
4 − r 2 � z �

√
4 − r 2, 1 � r � 2, 0 � θ � 2π ;

b. csc φ � ρ � 2, π/6 � φ � 5π/6, 0 � θ � 2π

57. About 3821 mi (about 6149 km)

59. A little less than 31 mi (50 km)

61. 0 � ρ �
√

R 2 + H 2, 0 � θ � 2π, φ = arctan

(
R

H

)

63. a. 4a2(x2 + y2) = (x2 + y2 + z2 + a2 − b2)2;
b. (r − a)2 + z2 = b2;
c. 2aρ sin φ = ρ2 + a2 − b2

CHAPTER 11 MISCELLANEOUS PROBLEMS
(PAGE 896)

1.
1

2

(
AP
−−→+ AQ

−−→) = 1

2

(
AM
−−→− P M

−−→+ AM
−−→+ M Q

−−→) = AM
−−→

.

5. Note that A = 1

2

∣∣P Q
−−→ × P R

−−→∣∣.
7. Parametric equations

x = 1 + 2t, y = −1 + 3t, z = 2 − 3t, −∞ < t < +∞,

symmetric equations

x − 1

2
= y + 1

3
= z − 2

−3
.

9. Both lines are parallel to u = 〈6, 3, 2〉; the plane has
Cartesian equation 13x − 22y − 6z = 23.

11. x − y + 2z = 3 15. 3

19. The position vector r(t) = 〈− sin t, cos t〉 traces the circle of
radius 1 with center (0, 0).

21. Two solutions: α ≈ 0.033364 (about 1◦54′42′′) and α ≈
1.291156 (about 73◦58′40′′)

23. κ(1) = 1
9 , aT (1) = 2, aN (1) = 1

25. Begin with the observation that v1 × v2 is normal to the
plane.

27. 3x − 3y + z = 1 33. ρ = 2 cos φ

35. ρ2 = 2 cos 2φ:

−0.5
0 0.5

x

−0.5

0

y

−1

0

1

z

39. Minimal at every integral multiple of π , maximal at every
odd integral multiple of π/2
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41. T = 1√
π 2 + 4

〈−π, 2〉, N = 1√
π2 + 4

〈−2, −π〉

43. y(x) = 15

8
x − 5

4
x3 + 3

8
x5

SECTION 12.2 (PAGE 908)

1. The entire xy-plane

3. The entire xy-plane except for the origin (0, 0)

5. All points of the xy-plane

7. All points on and within the unit circle

9. The entire xy-plane

11. The region above the straight line with equation y = x

13. All points of the xy-plane not on either coordinate axis

15. All points of the xy-plane not on either straight line y = x or
y = −x

17. All points in space other than the origin (0, 0, 0)

19. All points of space strictly above the paraboloid z = x2 + y2

21. The horizontal plane through (0, 0, 10)

23. The plane with equation z = x + y

25. A circular paraboloid with axis the nonnegative z-axis, open-
ing upward, vertex at the origin

27. The upper half of the spherical surface with radius 2 and
center (0, 0, 0)

29. The lower nappe of a circular cone with axis the z-axis and
vertex at (0, 0, 10)

31. Straight lines of the form x − y = c (where c is a constant):

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
y

x

33. Ellipses centered at the origin with major axes on the x-axis
and minor axes on the y-axis:

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y

x

35. Curves with equations of the form y = x3 + C (C is a
constant):

−1 1

−1

1

y

x

37. Circles centered at the point (2, 0):

−6 −3 3 6

−6

−3

3

6

y

x
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39. Circles centered at the origin:

−2 −1 1 2 x

−2

−1

1

2
y

41. Congruent circular paraboloids all with axis the z-axis and
all opening upward

43. Spherical surfaces centered at the point (2, 1, 3)

45. The level surfaces of f are elliptical cylinders parallel to the
z-axis and centered on the vertical line that meets the xy-
plane at the point (2, 1, 0). The ellipse in which each such
cylinder meets the xy-plane has major axis parallel to the x-
axis, minor axis parallel to the y-axis, and the major axis is
twice the length of the minor axis.

47. Matches Fig. 12.2.32 49. Matches Fig. 12.2.30

51. Matches Fig. 12.2.28 53. Matches Fig. 12.2.41

55. Matches Fig. 12.2.42 57. Matches Fig. 12.2.44

59. If a and b are not both zero, then the surface has one pit and
one peak. With a = 2 and b = 1:

2
−2

0

2

−1

0

1

z

−2

0
x

y

61. Apparently n peaks and n pits alternately surround the ori-
gin.

SECTION 12.3 (PAGE 917)

1. 7 3. e 5.
5

3

7. 0 9. 1 11. −3

2

13. 1 15. −4 17. y; x

19. y2; 2xy 21. 0 23.
1

3

25. 0

27. Does not exist; it is also correct to indicate that the limit
is +∞.

29. 0

31. All points (x, y) such that y > −x

33. All points (x, y) such that x2 + y2 > 1

35. Continuous at all points (x, y) other than (0, 0)

37. 0 39. 0 41. 0

43. Does not exist 45. Does not exist

47. Does not exist; the graph:

0

2 −2

0

2−2

−1

0

1

z

−2

x
y

49. Does not exist; the graph:

−1

0

1

−0.2

0

0.2

z

−1 0
1

x

y

55. Continuous for all (x, y)

SECTION 12.4 (PAGE 928)

1.
∂ f

∂x
= 4x3 − 3x2 y + 2xy2 − y3 and

∂ f

∂y
= −x3 + 2x2 y − 3xy2 + 4y3.

3.
∂ f

∂x
= ex (cos y − sin y) and

∂ f

∂y
= −ex (cos y + sin y).

5.
∂ f

∂x
= − 2y

(x − y)2
and

∂ f

∂y
= 2x

(x − y)2
.

7.
∂ f

∂x
= 2x

x2 + y2
and

∂ f

∂y
= 2y

x2 + y2
.

9.
∂ f

∂x
= yx y−1 and

∂ f

∂y
= x y ln x .

11.
∂ f

∂x
= 2xy3z4,

∂ f

∂y
= 3x2 y2z4, and

∂ f

∂z
= 4x2 y3z3.

13.
∂ f

∂x
= yzexyz,

∂ f

∂y
= xzexyz, and

∂ f

∂z
= xyexyz .
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15.
∂ f

∂x
= 2xey ln z,

∂ f

∂y
= x2ey ln z, and

∂ f

∂z
= x2ey

z
.

17.
∂ f

∂r
= 4rs2

(r 2 + s2)2
and

∂ f

∂s
= − 4r 2s

(r 2 + s2)2
.

19.
∂ f

∂u
= weu +ev,

∂ f

∂v
= uev+ew, and

∂ f

∂w
= eu +vew.

21. zx (x, y) = 2x − 4y, zy(x, y) = −4x + 6y, zxy(x, y) = −4,
zyx (x, y) = −4.

23. zx (x, y) = 2x exp(−y2), zy(x, y) = −2x2 y exp(−y2),

zxy(x, y) = −4xy exp(−y2),

zyx (x, y) = −4xy exp(−y2).

25. zx (x, y) = 1

x + y
= zy(x, y) and

zxy(x, y) = − 1

(x + y)2
= zyx (x, y).

27. zx (x, y) = −3e−3x cos y, zy(x, y) = −e−3x sin y,

zxy(x, y) = 3e−3x sin y, zyx (x, y) = 3e−3x sin y.

29. zx (x, y) = 2x cosh

(
1

y2

)
, zy(x, y) = −2x2

y3
sinh

(
1

y2

)
,

zxy(x, y) = −4x

y3
sinh

(
1

y2

)
, zyx (x, y) = −4x

y3
sinh

(
1

y2

)
.

31. z = 6x + 8y − 25 33. z = −1

35. z = 27x − 12y − 38 37. z = 1 − x + y

39. z = 10x − 16y − 9

41. One answer: f (x, y) = x2 y3

43. fxy(x, y) = −2x sin xy cos xy �= −2y sin xy cos xy
= fyx (x, y).

45. Matches Fig. 12.4.14 47. Matches Fig. 12.4.13

49. Matches Fig. 12.4.15

51. fxy(x, y) = mnxm−1 yn−1 = fyx (x, y).

53. fxx (x, y, z) = y2z2exyz , fxy(x, y, z) = fyx (x, y, z) =
(xyz2 + z)exyz ,
fxz(x, y, z) = fzx (x, y, z) = (y + xy2z)exyz ,
fyz(x, y, z) = fzy(x, y, z) = (x + x2 yz)exyz ,
fyy(x, y, z) = x2z2exyz,

fzz(x, y, z) = x2 y2exyz ,
fxyz(x, y, z) = (1 + 3xyz + x2 y2z2)exyz .

55. ut (x, t) = −n2k exp(−n2kt) sin nx ,
ux (x, t) = n exp(−n2kt) cos nx , and
uxx (x, t) = −n2 exp(−n2kt) sin nx .

57. Part (a): yt (x, t) = a cos(x + at),
yx (x, t) = cos(x + at),
ytt (x, t) = −a2 sin(x + at),
yxx (x, t) = − sin(x + at).

Part (b): yt (x, t) = −3a sinh(3(x − at)),
yx (x, t) = 3 sinh(3(x − at)),
ytt (x, t) = 9a2 cosh(3(x − at)),
yxx (x, t) = 9 cosh(3(x − at)).

Part (c): yt (x, t) = −ka sin kx sin kat,
yx (x, t) = k cos kx cos kat,
ytt (x, t) = −k2a2 sin kx cos kat,
yxx (x, t) = −k2 sin kx cos kat.

59. yt (x, t) = a f ′(x + at) − ag′(x − at),
ytt (x, t) = a2 f ′′(x + at) + a2g′′(x − at),
yx (x, t) = f ′(x + at) + g′(x − at),
yxx (x, t) = f ′′(x + at) + g′′(x − at).

61. u(0, t) = T0 + a0e0 cos(ωt − 0) = T0 + a0 cos ωt ;
ut (x, t) = −a0ω exp

( − x
√

ω/2k
)

sin
(
ωt − x

√
ω/2k

)
,

ux (x, t) = −a0

(√
ω/2k

)
exp

( − x
√

ω/2k
)

×[
cos

(
ωt − x

√
ω/2k

) − sin
(
ωt − x

√
ω/2k

)]
,

uxx (x, t) = −a0ω

k
exp

( − x
√

ω/2k
)

sin
(
ωt − x

√
ω/2k

)
.

65. (10, −7, −58)

67. a. �V ≈ −2570 (cm3); b. �V ≈ 82.51 (cm3)

69. a. fxx (x, y) = − sin x sinh(π − y) = − fyy(x, y).
b. fxx (x, y) = 4 sinh 2x sin 2y = − fyy(x, y).
c. fxx (x, y) = −9 sin 3x sinh 3y = − fyy(x, y).
d. fxx (x, y) = 16 sinh 4(π − x) sin 4y = − fyy(x, y).

71. a. Initially descending at 45◦;
b. initially ascending at 45◦

SECTION 12.5 (PAGE 940)

1. There are no horizontal tangent planes.

3. (0, 0, 5) 5. (3, −1, −5) 7. (−2, 0, −4)

9. (−2, 0, −7) and (−2, 1, −9)

11. (±1, 0, 2e−1), (0, ±1, 3e−1), and (0, 0, 0)

13. Lowest point (1, 1, 1)

15. Equally high highest points (1, −1, 2) and (1, 1, 2)

17. Lowest point (2, 3, −50)

19. Equally low lowest points (−4, 2, −16) and (4, −2, −16)

21. Highest point (1, −2, e5)

23. −3 and 3 25. −1 and 4

27. −1 and 1 29. (12, 4, 3)

31. (15, 5, 4) 33.
(√

2,
√

2, 1
)

35. 64,000 37. 10 × 10 × 10 in.

39. Base 10 by 10 in., height 6 in.

41. Base and top 15 × 10 in., front and back 15 × 5 in., sides
10 × 5 in.

43. 40 ft wide (in front), 20 ft deep, 10 ft high

45.
1331

567
47. 11664 in.3

49.
1

2
51. 51/6(18πV 2)1/3

53.
(

2

3
,

1

3

)

55. Base of front 25/6V 1/3, height of front half that, depth of
house 21/3V 1/3

57. Maximum area: Make one square. Minimum area: Make
three equal squares.

59. Maximum cross-sectional area 1
12 L2

√
3
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61. a. x = 45
11 , y = 48

11 ; b. x = 37
5 , y = 98

15

63. Raise 40 hogs and 40 head of cattle per unit of land, but no
sheep.

69. The function g has no extrema, local or global.

SECTION 12.6 (PAGE 949)

1. dw = (6x + 4y) dx + (4x − 6y2) dy

3. dw = x dx + y dy√
1 + x2 + y2

5. dw = y dx − x dy

x2 + y2

7. dw = 2x dx + 2y dy + 2z dz

x2 + y2 + z2

9. dw = tan yz dx + xz sec2 yz dy + xy sec2 yz dz

11. dw = −yze−xyz dx − xze−xyz dy − xye−xyz dz

13. dw = 2u exp(−v2) du − 2u2v exp(−v2) dv

15. dw = x dx + y dy + z dz√
x2 + y2 + z2

17. 5.014 19. 0.0993

21.
16953

1300
≈ 13.040769 23. 1.06

25. 191.1 27. 1.4

29.
333

26
≈ 12.807692 31. 2.08

33. 2.5 35.
25π

6
≈ 13.089969

37. 300 + 4375π
√

3

36
≈ 961.281018 ft2, about 0.022068 acres

39.
17π

1920
≈ 0.027816

41. 125
√

3 + 250π

9
≈ 303.772814

43. a. Let (x, y) → (0, 0) along the lines y = x and y = 0;
b. you should find that fx (0, 0) = 0 = fy(0, 0).

SECTION 12.7 (PAGE 960)

1.
dw

dt
= −(2t + 1) exp(−t2 − t)

3.
dw

dt
= 6t5 cos t6 5.

∂w

∂s
= 2

s + t
= ∂w

∂t

7.
∂w

∂s
= 0,

∂w

∂t
= 5et

9.
∂r

∂x
= (y + z) exp(yz + xz + xy),

∂r

∂y
= (x + z) exp(yz + xz + xy), and

∂r

∂z
= (x + y) exp(yz + xz + xy)

11. Here we have

∂r

∂x
= (2y + 3z)

√
xy2z3

2x(x + 2y + 3z)3/2
cos

( √
xy2z3

√
x + 2y + 3z

)
,

∂r

∂y
= (x + y + 3z)

√
xy2z3

y(x + 2y + 3z)3/2
cos

( √
xy2z3

√
x + 2y + 3z

)
,

and

∂r

∂z
= 3(x + 2y + 2z)

√
xy2z3

2z(x + 2y + 3z)3/2
cos

( √
xy2z3

√
x + 2y + 3z

)
.

13. The formulas are
∂p

∂u
= ∂ f

∂x
· ∂x

∂u
+ ∂ f

∂y
· ∂y

∂u
,

∂p

∂v
= ∂ f

∂x
· ∂x

∂v
+ ∂ f

∂y
· ∂y

∂v
, and

∂p

∂w
= ∂ f

∂x
· ∂x

∂w
+ ∂ f

∂y
· ∂y

∂w
.

15. Answer:
∂p

∂x
= ∂ f

∂u
· ∂u

∂x
+ ∂ f

∂v
· ∂v

∂x
+ ∂ f

∂w
· ∂w

∂x
,

∂p

∂y
= ∂ f

∂u
· ∂u

∂y
+ ∂ f

∂v
· ∂v

∂y
+ ∂ f

∂w
· ∂w

∂y
, and

∂p

∂z
= ∂ f

∂u
· ∂u

∂z
+ ∂ f

∂v
· ∂v

∂z
+ ∂ f

∂w
· ∂w

∂z
.

17.
∂p

∂x
= f ′(w) · ∂w

∂x
,

∂p

∂y
= f ′(w) · ∂w

∂y
,

∂p

∂z
= f ′(w) · ∂w

∂z
,

∂p

∂u
= f ′(w) · ∂w

∂u
, and

∂p

∂v
= f ′(w) · ∂w

∂v
.

19.
∂z

∂x
= − z1/3

x1/3
,

∂z

∂y
= − z1/3

y1/3

21.
∂z

∂x
= −exy + xyexy + yzezx + yzexy

xyezx + exy
,

∂z

∂y
= − x2exy + ezx + xzexy

xyezx + exy

23.
∂z

∂x
= −c2x

a2z
,

∂z

∂y
= −c2 y

b2z

25.
∂w

∂x
= 6x ,

∂w

∂y
= 6y

27. Answer:

∂w

∂x
= 2x2 y

3(x2 + y2)2/3
[
(x2 + y2)1/3 + (x3 + y3)1/2

]
+ 3x3 y

2(x3 + y3)1/2
[
(x2 + y2)1/3 + (x3 + y3)1/2

]
+ y ln

(
( x2 + y2)1/3 + (x3 + y3)1/2

)
and

∂w

∂y
= 2xy2

3(x2 + y2)2/3
[
(x2 + y2)1/3 + (x3 + y3)1/2

]
+ 3xy3

2(x3 + y3)1/2
[
(x2 + y2)1/3 + (x3 + y3)1/2

]
+ x ln

(
( x2 + y2)1/3 + (x3 + y3)1/2

)
.
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29. x + 2y + 2z = 9 31. z = x − y

33. −2880 in.3/h 35.
26π

5
≈ 16.3363 ft3/min

37. Decreasing at
14

3
L/min 57. It will break.

SECTION 12.8 (PAGE 971)

1. 〈3, −7〉 3. 〈0, 0〉
5. 〈0, 6, −4〉 7. 〈1, 1, 1〉
9.

〈
2, − 3

2 , −2
〉

11. 8
√

2

13.
12

13

√
13 15. −13

20

17. −1

6
19. −6

√
2

21.
√

170 and 〈7, 11〉 23.
2

5
and 〈3, 4〉

25. 14
√

2 and 〈3, 5, −8〉 27. 2
√

14 and 〈1, 2, 3〉
29. 3x + 4y = 25 31. 29x − 4y = 70

33. x + y + z = 1

39. Use the fact that ∇(− f (P)) = −∇ f (P).

45. 14 deg/min

47. a. 34
3

◦C/ft; b. 13, in the direction 〈4, 3, 12〉
49. a. z = 0.3x + 0.2y − 0.4;

b. approximately 0.44 (true value: 0.448)

51. x − 2y + z + 10 = 0

55. Each such pyramid has volume 4.5.

57. Heading approximately 36◦ 52′11.6′′; up at an angle of 45◦

59. Heading approximately 203◦ 11′54.9′′; up at an angle of ap-
proximately 75◦17′ 8.327′′

61. a. Descending, angle about 8◦ 2′58.1′′;
b. Descending, angle about 3◦ 37′39.2′′

SECTION 12.9 (PAGE 981)

1. Maximum
√

5, minimum −√
5

3. Maximum 4, minimum −4

5. Maximum 3, minimum −3

7. No maximum; minimum
18

7

9. Maximum 7, minimum −7

11. Maximum 20, minimum −20

13. Maximum
81

4
, minimum 0

15. No maximum; minimum
25

3

17. Maximum 1 + √
2, minimum 1 − √

2

19. (12, 16) 21. (12, 4, 3)

23. (15, 5, 4) 25.
(√

2,
√

2, 1
)

27. Maximum: 64,000 29. Minimum: 10 × 10 × 10 in.

31. 10 × 10 × 6 in.

33. Front 15 in. wide and 5 in. high, depth 10 in.

35. Two closest points: (2, −2, 1) and (−2, 2, 1)

39. (2, 3) and (−2, −3)

41. Highest point
(

2
5

√
5, 1

5

√
5, −4 + √

5
)

,

lowest point
(
− 2

5

√
5, − 1

5

√
5, −4 − √

5
)

43. Closest point

(
3
20

[
−5 + 3

√
5

]
, 3

10

[
−5 + 3

√
5

]
, 3

4

[
3 − √

5
])

,

farthest point

(
− 3

20

[
5 + 3

√
5

]
, − 3

10

[
5 + 3

√
5

]
, 3

4

[
3 + √

5
])

,

47. Maximum area: 1
4

(
3 − 2

√
2

)
P2 ≈ (0.043)P2

51. (0.410245, 0.347810) (coordinates approximate)

53. (4, 6)

55. Closest (−0.604, −1.207, −1.811),
farthest (2.604, 5.207, 7.811) (coordinates approximate)

57. Closest point
(

9
13

√
13, 4

13

√
13

)
,

farthest point
(
− 9

13

√
13, − 4

13

√
13

)

59.
81

4

√
2

63. The minimum is
(
a2/3 + b2/3

)3/2
.

65. (7, 43, −21) on L 1 and (12, 41, −22) on L 2

SECTION 12.10 (PAGE 990)

1. Local (in fact, global) minimum at (−1, 2). Contour plot:

−4 −2 2

−2

2

4
y

x
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3. Saddle point at
( − 1

2 , − 1
2

)
. Contour plot:

−3 −2 −1 1 2

−3

−2

−1

1

2

x

y

5. Local (in fact, global) minimum at (−3, 4). Contour plot:

−4 −3 −2 −1 1 2 x

−2
−1

1
2

y

7. Local maximum at (−1, −1), saddle point at (0, 0). Contour
plots:

−1.4 −1.2 −1 −0.8 −0.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

9. No extrema; Contour plots:

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

11. Local (in fact, global) minima at (−1, −1) and (1, 1), saddle

point at (0, 0). Contour plots:

−1.4 −1.2 −1 −0.8 −0.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

13. Saddle point at (−1, 1), local minimum at (3, −3). Contour
plots:

−2.5 −2 −1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

2

2.5

2 2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

15. Local minimum at (−5, 3), saddle point at (0, −2). Contour
plots:

−6 −5.5 −5 −4.5 −4
2

2.5

3

3.5

4

−1 −0.5 0 0.5 1
−3

−2.5

−2

−1.5

−1

17. Local (in fact global) maxima at (−1, −2) and (1, 2), saddle
point at (0, 0). Contour plots:

−1.4 −1.2 −1 −0.8 −0.6

−2.4

−2.2

−2

−1.8

−1.6

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

19. Saddle point at (−1, 0), local minimum at (2, 0). Contour
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plot:

−2 −1 0 1 2 3

−2

−1

0

1

2

21. Saddle point at (0, 0), local (in fact, global) maxima at( − 1
2

√
2, − 1

2

√
2

)
and

(
1
2

√
2, 1

2

√
2

)
, local (in fact, global)

minima at
(

1
2

√
2, − 1

2

√
2

)
and

( − 1
2

√
2, 1

2

√
2

)
. Contour

plot:

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

23. Global minimum at (0, 0)

25. Global maximum at (0, 0)

27. Global minimum value 3 at (−1, −1) and (1, 1), no ex-
tremum at (0, 0)

29. The global maximum value 900 occurs on the boundary of
the domain.

31. If x and y are both even integers, then there is a saddle point
at (x, y); if x and y are odd integers both of the form 4k + 1
or both of the form 4k + 3, then there is a global maximum
at (x, y); if x and y are odd integers one of which is of the
form 4k + 1 and the other of which is of the form 4k + 3,
then there is a global minimum at (x, y).

33. Examine the behavior of f (x, y) on lines of the form y =
mx .

35. Local minimum at (1.532, 0) (numbers with decimals are
approximations), saddle point at (0.347, 0), global minimum
at (−1.879, 0)

37. Local (indeed, global) minimum at (−1.879, 1.879) (num-
bers with decimals are approximations), saddle point at
(0.347, −0.347), local minimum at (1.532, −1.532)

39. Global minimum at (3.625, −3.984) (numbers with deci-
mals are approximations) and at (3.625, 3.984), saddle point
at (0, 0)

CHAPTER 12 MISCELLANEOUS PROBLEMS
(PAGE 994)

1. You should obtain r 2 sin2 θ cos2 θ → 0 as r → 0.

3. g(x, y) → 1

2
�= g(0, 0) as (x, y) → (0, 0) along the line

y = x .

5. f (x, y) = x2 y3 + ex sin y + y + C (where C is an arbitrary
constant).

7. The origin and points on the circle formed by the intersection
of the paraboloid and the horizontal plane z = 1

2 .

9. You should find that the normal to the cone at (a, b, c) (ex-
tended, if necessary) passes through the point (0, 0, 2c).

11. You should find that

uxx (x, y, t) = x2 − 2kt

16k3π t3
exp

(
− x2 + y2

4kt

)
.

13. You should find that

rx × ry = 〈− fx (x, y), − fy(x, y), 1〉 = ∇g(x, y, z)

where g(x, y, z) = z − f (x, y).

15. The base of the shipping crate will be a square 2 · 31/3 ≈
2.884449914 feet on each side and the height of the crate
will be 5 · 31/3 ≈ 7.21124785 feet.

17. The estimate of the error is 2 �.

19. The maximum error will be approximately 3%.

21. The six points (±4, 0, 0), (0, ±2, 0), and
(
0, 0, ± 4

3

)
.

23. First rename a, b, and c (if necessary) so that a, b, c forms a
right-handed triple, and thus a × b = c, etc.

25. Either 〈−4, 3〉 or 〈4, −3〉. 27. 1

29. The global minimum value of f (x, y) is 0 = f (0, 0).

31. The semiaxes have lengths 1 and 2.

33. The minimum occurs when the triangle is totally degener-
ate: Its three vertices are all located at the same point of the
circumference of the circle.

35. The closest and farthest points are (respectively)(
1

3

√
6,

1

6

√
6

)
and

(
−1

3

√
6, −1

6

√
6

)
.

37. Let n be a fixed positive integer and let f (x1, x2, . . . , xn) =
x1 + x2 + · · · + xn . Maximize this function subject to the
constraint

g(x1, x2, . . . , xn) = x2
1 + x2

2 + · · · + x2
n − a2 = 0

where a is a fixed but otherwise arbitrary nonnegative real
number.

39. Maximum: 1; minimum: −1

2
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41. Theorem 1 of Section 12.10 yields these results:

At P(−1, −1) : A = 6, B = 0, C = 2, � = 12,
f (P) = −1: Local minimum;

At Q(0, 0): A = 0, B = −3, C = 2, � = −9,
f (Q) = 0: Saddle point;

At R
(
−√

3, 0
)

: A = 0, B = 6, C = 2, � = −36,

f (R) = 0: Saddle point;

At S
(√

3, 0
)

: A = 0, B = 6, C = 2, � = −36,

f (S) = 0 : Saddle point;

At T (1, 1): A = 6, B = 0, C = 2, � = 12,
f (T ) = −1 : Local minimum.

There are no global extrema (examine f (x, y) on the lines
y = ±x).

43. Saddle point at (0, 0), local (not global) minimum at (2, 2)

45. Local maximum at ( 1
2 , 1

3 ), saddle point at (0, 1), local max-
imum at every point of the x-axis for which x < 0 or
x > 1, local minimum at every point of the x-axis for which
0 < x < 1, and no global extrema.

47. Saddle point at (0, 0), global minimum at every point of the
hyperbola with equation xy = ln 2, and no other extrema.

49. Saddle points at (−1, −1) and (1, 1); no extrema.

51. The coefficients m and b are the (generally) unique solutions
of the equations

b
n∑

i=1

xi + m
n∑

i=1

(xi )
2 =

n∑
i=1

xi yi and

b
n∑

i=1

1 + m
n∑

i=1

xi =
n∑

i=1

yi .

SECTION 13.1 (PAGE 1004)

1. a. 198; b. 480 3. 8

5. 88 7.
1

2
π2

9. L � M � U 11. 80

13. −78 15. 128.25

17. −4.5 19. 1

21.
e − 1

2
23. 2e − 2

25.
π 4 + 8π

4
27. 1

29. 2 ln 2 31. Both values: −32

33. Both values:
4

15

(
9
√

3 − 8
√

2 + 1
)

35.
∫ 1

0

∫ 1

0
xn yn dx dy = 1

(n + 1)2
.

37. Note that 0 � f (x, y) � sin 1
2 π = 1 if (x, y) is a point of R.

SECTION 13.2 (PAGE 1011)

1.
5

6
3.

1

2
5.

1

12

7.
1

20
9. − 1

18
11.

e − 2

2

13.
61

3

15. 0; the region:

−2 −1 1 2 x

2

4

y

17. 0; the region:

−2 −1 1 2 x

2

4

6

8
y

19. π ; the region:

1 2 3 x

0.5

1

y

21. 1; the region:

1 2 3 x

1

2

3

y
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23. 2; the region:

−2 −1 1 x

0.5

1

y

25.
512

21
; the region:

−2 −1 1 2 x

1

2

3

4

y

27.
32

3
; the region:

−1 1 2 3 x

2

4

6

8

y

29.
4

3
; the region:

1 2 x

2

4

y

31. 2

33.
π

8
; the region:

0.5 1 x

0.5

1

y

35. Approximately 7.9517471897

37. 0 39. 0 41. 0 43. 0

53. Midpoint approximation: 0.109696; exact value:
e − 2

4
.

The inner partition:

0.2 0.4 0.6 0.8 1 x

0.2

0.4

0.6

0.8

1

y

SECTION 13.3 (PAGE 1018)

1.
1

6
; the region:

0.5 1 x

0.5

1

y

3.
32

3
1225

www.konkur.in



A-148 Answers to Odd-Numbered Problems

5.
5

6
; the region:

1 2 x

1

y

7.
32

3

9. ln 2; the region:

1 2 x

1

2
y

11. 2 13. 2e

15.
1

3
; the region:

0.5 1 x

0.5

1

y

17.
41

60
; the region:

0.5 1 x

0.5

1

y

19.
4

15
; the region:

−1 1 x

1

y

21.
10

3

23. 19; the region:

1 2 3 x

1

2

y

25.
4

3
27. 6

29. 24; the region:

1 2 3 4 5 x

1

2

3

4

y

31. π 33.
π

3

(
32 − 12

√
3

)
35.

1

6
abc

37.
2

3

39. The volume is V = 8
∫ a

0

∫ √
a2−x2

0

√
a2 − x2 − y2 dy dx .

41.
625π

2

43.
3
√

3 + 2π

6
R 3

45.
256

15
47. Approximately 3.5729749639

49. 8π 51. 108π

53. The “hole volume” is approximately 26.7782.

SECTION 13.4 (PAGE 1026)

1.
∫ 2π

0

∫ 1

0
r dr dθ = π 3.

3

2
π

1226
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5.
4π − 3

√
3

6
; the two circles:

−1 1

−1

1

2

y

x

7.
2π − 3

√
3

2
9.

16π

3

11.
23π

8
13.

π ln 2

4

15.
16π

5

17.
π

4
(1 − cos 1) ≈ 0.361046

19. 2π

21. 4π

23.
∫ 2π

0

∫ a

0
2r

√
a2 − r 2 dr dθ

25.
∫ 2π

0

∫ a

0
(h + r cos θ) · r dr dθ

27. 2π 29.
1

3
π

(
2 − √

2
)
a3

31.
π

4
; the lemniscate:

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

35. 2π 2a2b 37. 8π

39. 24π 41.
4π

3

[
b3 − (b2 − a2)3/2

]
43. Hexagonal hole: 9.83041 (numbers with decimals are ap-

proximations). Pentagonal hole: 9.03688. Heptagonal hole:
10.32347. 17-sided hole: 11.49809.

SECTION 13.5 (PAGE 1036)

1. (2, 3) 3. (1, 1)

5.
(

4

3
,

2

3

)
7.

(
3

2
,

6

5

)

9.
(

0, −8

5

)
11.

1

24
;

(
2

5
,

2

5

)

13.
256

15
;

(
0,

16

7

)
15.

1

12
;

(
9

14
,

9

14

)

17.
8

3
;

(
0,

43

35

)
19. 2;

(
π

2
,
π

8

)

21. a3;

(
7a

12
,

7a

12

)
23.

128

5
;

(
0,

20

7

)

25. π ;

(
π 2 − 4

π
,
π

8

)
27.

1

3
πa3;

(
0,

3a

2π

)

29.
8π + 3

√
3

12
;

(
0,

36π + 33
√

3

32π + 12
√

3

)

31. I0 = 2πan+4

n + 4

33. I0 = 3

2
πk 35. I0 = 2

9

37. x̂ = 2

21

√
105, ŷ = 4

3

√
5 39. x̂ = ŷ = 1

10
a
√

30

41.
(

4r

3π
,

4r

3π

)
43.

(
2r

π
,

2r

π

)

51. a. Centroid

(
0,

4a2 + 3πab + 6b2

3πa + 12b

)
;

b. volume
πa

3
· (4a2 + 3πab + 6b2)

53. I0 = 1

12
m(a2 + b2) 55. I0 = 484

3
k

57. Mass π , centroid

(
0,

5

4

)

59. Mass
π

2
, centroid

(
5

4
,

4

3π

)

SECTION 13.6 (PAGE 1046)

1. 18 3. 128 5.
1

60

7. −1

6
9. 12 11. 6

13.
128

5
; two views:

−2

0

2

0

4

z

2

4

2

x y
−2

0

2

x

4

z

0

2

4

y

2

15.
332

105
17.

256

15
19.

11

30
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21. Mass
128

5
; centroid

(
0,

20

7
,

10

7

)

23.
(

0,
8

7
,

12

7

)

25.
(

0,
44 − 9π

72 − 9π
,

9π − 16

72 − 9π

)

27. Iy = 8

7
29. Iz = 1

30

31. Mass m = 1

2
πh2, Myz = 0, Mxz = 0, Mxy = 1

3
πh3

33. Iz = 2

3
a5 35. Iz = 38

45
ka7

37. Iz = 1

3
k 39.

(
9π

64
,

9π

64
,

3

8

)

41. 24π 43.
1

6
π

45.
(

2

5
,

3

5
,

12

5

)
49. δ = 3

2

49.
1

4
51. d = 49

10

53.
1

72

[
18

√
3 − 3π + 24 csch−1

√
2 − 2 ln 4096

+ 48 ln(1 + √
3)

] ≈ 0.960592.

SECTION 13.7 (PAGE 1055)

1. 8π

3. V = 2
∫ 2π

0

∫ a

0

∫ √
a2−r2

0
r dz dr dθ

5.
4π

3

(
8 − 3

√
3

)
7.

1

2
πa2h2

9. Iz = 1

4
πa4h2 11.

81π

2
; (0, 0, 3)

13. 24π 15.
π

6

(
8
√

2 − 7
)

17. Ix = 1

12
δπa2h(3a2 + 4h2) = 1

12
m(3a2 + 4h2)

19.
π

3
21.

(
0, 0,

3

8
a

)

23. V =
∫ 2π

0

∫ π/4

0

∫ sec φ

0
ρ2 sin φ dρ dφ dθ = π

3

25. m = π

3

(
2 − √

2
)
a3; x = y = 0, z = 3

16

(
2 + √

2
)
a

27. Iz = 28

15
πδa5 = 7

5
ma2

29. This “pinched torus” has volume V = 2π2a3.

31. Ix = 2

15

(
128 − 51

√
3

)
πδa5

33. Mass
37

48
πa4; x = y = 0, z = 105

74
a

37. (a)
4

3
π [1 − exp(−a3)]

39. d = 3

4
a

41. Iz =
∫∫

S

δ(x2 + y2) d A where d A = a2 sin φ dφ dθ

45.
3768

11
π

49. x ≈ 2.76447 × 106 (meters); mantle thickness:
about 3606 km

SECTION 13.8 (PAGE 1062)

1. 6π
√

11 3.
π

6

(
17

√
17 − 1

)

5. 3
√

2 + 1

2
ln

(
3 + 2

√
2

)
7. 3

√
14

9.
2π

3

(
2
√

2 − 1
)

11.
π

6

(
65

√
65 − 1

)

13. A =
∫ 2π

0

∫ h

0
a dz dθ 15. 8a2

23. A =
∫ 2π

0

∫ h

0
r dz dθ

25. a.
1

3

(
12 − tan−1 4

3
+ 7 ln 5

)
≈ 7.44626

b.
1

3

(
2
√

5 + 5
√

2 sinh−1

√
2

3

− tan−1 72 − 25
√

5

71
− tan−1 72 − 25

√
5

29

)
≈ 3.00463

The surface in part (a):

1

−1

1

0

1

2

z

−1

0
x

0

y

27. a.
2

9

(
6
√

3 − π + 6 ln(7 + 4
√

3)
)

≈ 5.123157;

b.
1

6

(
4
√

2 + 7
√

2 ln 3 − 2 tan−1 56
√

2

17

)
≈ 2.302311
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The surface in part (a):

1

−1

1

0

1

2

z

−1

0
x

0

y

29. Elliptic paraboloid; with a = 2, b = 1, c = 3:

−1

0

1

y

0

1

2

3

z

−2
−1

0
1

2
x

31. Hyperboloid of two sheets; with a = 2, b = 1, c = 4:

−2
−1

0
1

2
−1

0

1

y

3

4

5

6

z

x

33. Approximately 111.545770

SECTION 13.9 (PAGE 1071)

1. x = u + v

2
, y = u − v

2
;

∂(x, y)

∂(u, v)
= −1

2

3. Two solutions: x = ±(u/v)1/2, y = ±(uv)1/2 (choose the
same sign); the Jacobian is 1/(2v) in each case.

5. x = u + v

2
, y = ±

√
u − v

2
(choose the sign so that y � 0);

the Jacobian is

∂(x, y)

∂(u, v)
= − 1

4
√

u − v
.

7.
3

5
9. ln 2 11.

2 − √
2

8

13.
39π

2
15. 8

17. First use the substitution x = u + v, y = u − v. The value
of the integral is

2π

3

(
1 − 1

e3

)√
3 ≈ 3.446991.

21. Iz =
∫ 2π

θ=0

∫ π

φ=0

∫ 1

ρ=0
(ρ2 sin2 φ)(a2 cos2 θ

+ b2 sin2 θ)δabcρ2 sin φ dρ dφ dθ

23. (x , y ) =
(

72
√

3 − 40
√

6

15 ln 2
,

6
√

6 − 8
√

3

ln 2

)

25. Iz = 1

5
M(a2 + b2); the other moments follow by symmetry.

27. 2.30026852

CHAPTER 13 MISCELLANEOUS PROBLEMS
(PAGE 1075)

1.
∫ 1

x=0

∫ x3

y=0

1√
1 + x2

dy dx = 2 − √
2

3

3.
e − 1

2e
5.

e4 − 1

4

7.
4

3
9. 9π;

(
0, 0,

9

16

)

11. 4π 13. 4π

15.
π − 2

16
17.

128

15
;

(
32

7
, 0

)

19. kπ ; (1, 0) 21. y = 4b

3π

23.
(

0,
8

5

)
25.

10π

3

(√
5 − 2

)

27. Iz = 3

10
Ma2

29. Ix = 4

15
πabc(b2 + c2) = 1

5
M(b2 + c2)

31. Iz = 128

225
(15π − 26) 33.

8π

3

35.
1

4
M(3a2 + 4b2) where M = 2π 2δa2b is the mass of the

torus.

37. d = 1

πa2

∫ π

0

∫ 2a sin θ

0
r 2 dr dθ

39. d = 3

4πa3

∫ 2π

0

∫ π

0

∫ a

0
ρ3 sin φ dρ dφ dθ

41. Use the spheres ρ = 2 cos φ and ρ = 4 cos φ.

d = 3

28π

∫ 2π

0

∫ π/2

0

∫ 4 cos φ

2 cos φ

ρ3 sin φ dρ dφ dθ = 18

7
.

43.
π

6

(
37

√
37 − 17

√
17

)
47. 4

√
2

51. I0 = 3δ 53.
8

15
πabc
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SECTION 14.1 (PAGE 1085)

1. y

x

3. y

x

5. y

x

7. z

y

9. y

x

11.

−2

0

1

1

−1

−1−2 2

2

0
x

y

13.

−1

0

0.5

0.5

−0.5

−0.5−1 1

1

0
x

y

15. ∇ · F = 3, ∇ × F = 0

17. ∇ · F = 0, ∇ × F = 0

19. ∇ · F = x2 + y2 + z2, ∇ × F = 〈−2yz, −2xz, −2xy〉
21. ∇ · F = 0, ∇ × F = 〈2y − 2z, 2z − 2x, 2x − 2y〉
23. ∇ · F = 3, ∇ × F = 〈x cos xy − x cos xz,

y cos yz − y cos xy, z cos xz − z cos yz〉
35. See the answer to Problem 15.

37. Use the results in Problems 28 and 35.

41. Use the results in Problems 28, 35, and 39.

SECTION 14.2 (PAGE 1095)

1.
310

3
,

248

3
, and 62 3. 3

√
2, 3, and 3

5.
49

24
,

3

2
, and

4

3
7.

6

5

9. 315 11.
19

60

13. π(1 + 2π) 15. 28

17.
14

√
14 − 1

6
19.

(
0,

2a

π

)
21. Mass 10kπ ; centroid (0, 0, 4π)

23. Mass
1

2
ka3; centroid

(
2

3
a,

2

3
a, 0

)
; Ix = Iy = 1

2
ma2;

I0 = ma2

25. I0 = 3k = 1

2
m where m is the mass of the wire

27.
4a

π

29.
1

2
+

√
3

12
arctanh

√
3

2
≈ 0.690086 31.

1

2

33. a.
1

2
k ln 2; b. −1

2
k ln 2

37. Note that F is normal to the sphere.

39. 15,000 ft·lb 41. 20,000 ft·lb

SECTION 14.3 (PAGE 1104)

1. φ(x, y) = x2 + 3xy + y2

3. φ(x, y) = x3 + 2xy2 + 2y3

5. Not conservative

7. φ(x, y) = 1

4
x4 + y ln x + 1

3
y3

9. φ(x, y) = sin x + x ln y + ey

11. Not conservative

13. φ(x, y) = x3 y3 + xy4 + 1

5
y5

15. φ(x, y) = x2

y
+ 2

√
y + y2

x3

17. φ(x, y) = x3 + 2xy2 + 2y3

19. φ(x, y) = x3 y3 + xy4 + 1

5
y5

21. 6 23.
1

e
25. −π 27. φ(x, y, z) = xyz

29. φ(x, y, z) = xy cos z − yzex

37. W = 8.04442 × 1010 N·m

SECTION 14.4 (PAGE 1114)

1. 0 3. 3 5.
3

10

7. 2 9. 0 11.
16

105

13.
∫ 2π

0
a2 cos2 t dt = πa2

15.
3π

8
17. 30π 19.

972

5

21. 30π 23. 45 33.
3

2

39. a.
3

4

√
3; b.

5

8

√
10 + 2

√
5
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SECTION 14.5 (PAGE 1125)

1.

√
3

3
3. 27π

√
14 5.

π

6

( − 1 + 17
√

17
)

7.
81

2
πδ

√
3 = 9

2
m where m is the mass of S

9.
10

3
πδ = 5

6
m where m is the mass of S

11.
520

3
πδ = 26

3
m where m is the mass of S

13. 36π 15. 24π 17. 0

19. 6 21. 0 23. 1458π

25.
(

1

2
a,

1

2
a,

1

2
a

)

27. x = 0 = y,

z = (24a4 + 2a2 − 1)
√

1 + 4a2 + 1

10
[
(1 + 4a2)3/2 − 1

] ;

Iz = 1

60
πδ

[
(24a4 + 2a2 − 1)

√
1 + 4a2 + 1

]

29.
(

4

3π − 6
, 0,

π

2π − 4

)

31.
460

√
17 + 13 arcsinh 4

48
35. −1728π

37. Iz ≈ 5157.168115 39. Iz ≈ 98546.934874

SECTION 14.6 (PAGE 1134)

1.
∫∫∫

B

∇ · F dV = 4π =
∫∫

S

F · n d S

3. 24 5.
1

2

7.
2385π

2
9.

1

4

11.
703125π

4
13. 16π

23.
482620 + 29403 ln 11

48
π

SECTION 14.7 (PAGE 1142)

1. −20π 3. 0 5. −52π

7. −8π 9. −2

11. φ(x, y, z) = 3xy − 2xz + yz

13. φ(x, y, z) = 3xez + 17z + 5y cos x

CHAPTER 14 MISCELLANEOUS PROBLEMS
(PAGE 1145)

1.
125

3
3.

69

8
5.

2148

5

7. First assume (by way of contradiction) that there exists a
function φ(x, y) such that ∇φ = 〈x2 y, xy2〉.

9. m = 5
√

5 − 1

3
; Iy = 50

√
5 + 2

15
11.

2816

7

13. Both integrals are zero.

15. Begin with the observation that 〈P, Q〉 = ∇φ for some dif-
ferentiable function φ.

17.
371π

30
19. 60π + 12π = 72π

29. a.
r
r
φ′(r); b. 3φ(r) + r

dφ

dr
; c. 0

APPENDIX A (PAGE A-5)

1. 14 3.
1

2
5. 25 7. 27

9.
22

7
− π

(
because π < 22

7

)
11. 3 − x

13. (−∞, 2) 15. [7, +∞) 17.
(− 5

3 , +∞)
19. (−4, 1) 21.

(
3
2 , 11

2

]
23. (−1, 4)

25.
(−∞, 1

3

) ∪ (1, +∞) 27.
[
0, 2

5

] ∪ [
6
5 , 8

5

]
29.

(
7
3 , 37

15

]
31.

(−∞, 1
5

) ∪ (
1
5 , +∞)

33. (−∞, −2) ∪ (4, +∞) 35.
(−∞, 1

2

] ∪ [
3
2 , +∞)

37. 4 � p � 8 39. 2 < I < 4

APPENDIX B (PAGE A-12)

1. They lie on one line.

3. They do not lie on one line.

5. This parallelogram is a rectangle!

7. Right angle at A

9. Slope 2
3 , y-intercept 0

11. Slope 2, y-intercept 3

13. Slope − 2
5 , y-intercept 3

5

15. y = −5 17. y = 2x − 7 19. y = 6 − x

21. 2x + y = 7 23. 2y = 13 − x 25.
4

13

√
26

31. P1 M and M P2 have the same slope
y1 − y2

x1 − x2
.

33. K = 125F + 57461

225

35. 1136 gal/wk 37. x = −11

4
, y = 7

2

39. x = 37

6
, y = −1

2
41. x = 22

5
, y = −1

5

43. x = −7

4
, y = 33

8
45. x = 119

12
, y = −19

4
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A-154 Answers to Odd-Numbered Problems

APPENDIX C (PAGE A-17)

1.
2

9
π (rad) 3.

7

4
π (rad) 5. −5

6
π (rad)

7. 72◦ 9. 675◦

11. If x = −π

3
, then the values of the six trigonometric func-

tions are given in the following table.

sin x cos x tan x sec x csc x cot x

−
√

3

2

1

2
−√

3 2 −2
√

3

3
−

√
3

3

13. If x = 7π

6
, then the values of the six trigonometric functions

are given in the following table.

sin x cos x tan x sec x csc x cot x

−1

2
−

√
3

2

√
3

3
−2

√
3

3
−2

√
3

15. x = nπ where n is an integer

17. x = 2nπ − π

2
where n is an integer

19. x = 2nπ where n is an integer

21. x = nπ where n is an integer

23. x = nπ − π

4
where n is an integer

25. The results are in the next table.

sin x cos x tan x sec x csc x cot x

−3

5

4

5
−3

4

5

4
−5

3
−4

3

29.
1

2
31. −1

2
33.

√
3

2

35. −
√

3

2
43.

π

3
,

2π

3
45.

π

2

47.
π

8
,

3π

8
,

5π

8
,

7π

8

APPENDIX D (PAGE A-23)

1. Given ε > 0, let δ = ε.

3. Given ε > 0, let δ = ε.

5. Given ε > 0, let δ be the minimum of 1 and ε/3.

7. Given ε > 0, let δ be the minimum of 1 and ε/6.

9. Consider three cases: a > 0, a < 0, and a = 0.

13. Consider two cases: L > 0 and L < 0.

15. Given a > 0 and ε > 0, let δ be the minimum of a/2 and
ε
√

2a.

APPENDIX G (PAGE A-35)

1.
1

3
3.

8

3
5.

1

2
7.

52

9
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References for
Further Study

References 2, 3, 7, and 10 may be consulted for historical topics pertinent to calculus.
Reference 14 provides a more theoretical treatment of single-variable calculus topics
than ours. References 4, 5, 8, and 15 include advanced topics in multivariable cal-
culus. Reference 11 is a standard work on infinite series. References 1, 9, and 13 are
differential equations textbooks. Reference 6 discusses topics in calculus together with
computing and programming in BASIC. Those who would like to pursue the topic of
fractals should look at reference 12.

1. Boyce, William E. and Richard C. DiPrima, Elementary Dif-
ferential Equations (7th ed.). New York: John Wiley, 2001.

2. Boyer, Carl B., A History of Mathematics (2nd ed.). New
York: John Wiley, 1991.

3. Boyer, Carl B., The History of the Calculus and Its Concep-
tual Development. New York: Dover Publications, 1959.

4. Buck, R. Creighton, Advanced Calculus (3rd ed.). New
York: McGraw-Hill, 1977.

5. Courant, Richard and Fritz John, Introduction to Calculus
and Analysis. Vols. I and II. New York: Springer-Verlag,
1982.

6. Edwards, C. H., Jr., Calculus and the Personal Computer.
Englewood Cliffs, NJ: Prentice-Hall, 1986.

7. Edwards, C. H., Jr., The Historical Development of the Cal-
culus. New York: Springer-Verlag, 1979.

8. Edwards, C. H., Jr., Advanced Calculus of Several Variables.
New York: Dover Publications, 1994.

9. Edwards, C. H., Jr. and David E. Penney, Differential Equa-
tions with Boundary Value Problems: Computing and Mod-
eling (3rd ed.). Upper Saddle River, NJ: Prentice Hall, 2004.

10. Kline, Morris, Mathematical Thought from Ancient to Mod-
ern Times. Vols. I, II, and III. New York: Oxford University
Press, 1972.

11. Knopp, Konrad, Theory and Application of Infinite Series
(2nd ed.). New York: Hafner Press, 1990.

12. Peitgen, H.-O. and P. H. Richter, The Beauty of Fractals.
New York: Springer-Verlag, 1986.

13. Simmons, George F., Differential Equations with Applica-
tions and Historical Notes (2nd ed.). New York: McGraw-
Hill, 1991.

14. Spivak, Michael E., Calculus (2nd ed.). Berkeley: Publish or
Perish, 1980.

15. Taylor, Angus E. and W. Robert Mann, Advanced Calculus
(3rd ed.). New York: John Wiley, 1983.

From Calculus, Early Transcendentals, Seventh Edition. C. Henry Edwards, David E. Penney.  
Copyright  ©    2008 by Pearson Education, Inc. All rights reserved. 
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Index

Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

A
Abscissa, 665, 1084, 1173
Absolute maximum or minimum, 278
Absolute value, 15, 41, 113, 141-142, 189, 359, 368,

402, 408, 419, 495, 498, 622, 774, 819, 833,
840, 843, 867, 928, 936, 1066, 1070, 1080,
1083, 1125

defined, 141-142, 189, 402, 498, 840, 867, 1066,
1070, 1080, 1083

functions, 15, 41, 141, 189, 495, 498, 1125
inequalities, 359, 1080, 1083
properties of, 843, 1080, 1083
real numbers, 819, 833, 1080, 1083

Acceleration, 2, 112-114, 116, 218, 245, 307, 321-325,
327-328, 371, 409, 411, 490, 527, 586, 590,
615, 618-619, 656, 702, 854-865, 867,
869-875, 877-878, 895-897, 1119, 1127

Accuracy, 8, 162, 194, 205-206, 208, 214-216, 222,
231, 234, 261, 336, 338-339, 352, 400, 402,
406-407, 456, 565, 593-594, 596, 721, 743,
749, 754, 757, 762, 772-773, 794, 798-802,
817, 945, 999, 1063-1064, 1123, 1128, 1209

Addition, 6, 31, 34, 36, 94, 170, 255, 261, 282, 295,
416, 498, 603, 641, 643-645, 728, 736, 744,
754, 756-757, 760, 791, 802, 812, 819,
821-822, 827, 833, 860, 864, 874, 895, 992,
1052, 1092, 1096, 1098, 1124, 1149

mental, 754
Algebra, 7, 27-28, 76, 90, 116, 131, 157, 161, 169,

181, 196, 204-205, 214, 236, 255, 262, 265,
280, 290, 348, 351-352, 392, 399, 407-408,
468, 476, 485, 493, 498, 515, 518, 520, 527,
535, 540, 543, 554, 562-565, 569, 589-590,
597-599, 602, 612, 616, 623, 627, 631, 660,
664, 669-670, 684, 697, 722, 726, 736,
741-742, 745, 756, 761, 763, 787, 793,
795-796, 801-802, 810, 819, 824, 829, 836,
839, 889, 891, 894, 920, 942, 970, 975,
979-980, 982-983, 990-991, 1005,
1019-1020, 1028, 1038, 1048, 1056-1057,
1063-1064, 1072, 1074, 1089, 1119, 1130,
1156, 1175, 1198

Algebraic equations, 659
Algebraic expressions, 543
Algebraic functions, 24-25, 27, 29, 31-33, 138-141,

143, 145, 219, 495, 1123
Algorithms, 1105
Alternating harmonic series, 771, 775, 779-780
Angle of depression, 178, 490

defined, 490
Angle of elevation, 178, 220, 222, 897, 900
Angles, 167, 170, 179, 203, 253, 338, 435, 645, 701,

706, 711, 798-799, 801-803, 808, 830-831,
834, 838, 842, 863, 889, 891, 895-896, 982,
1091-1093, 1095-1096, 1211

acute, 831, 1091-1092
adjacent, 842, 1091
complementary, 1096
corresponding, 179, 798-799
right, 167, 179, 203, 253, 435, 701, 798, 802, 830,

838, 889, 982, 1091-1092, 1211
sides of, 170, 1091
straight, 167, 179, 203, 831, 834, 863
vertex of, 1093
vertical, 167, 203, 701, 706, 834, 889

Annual percentage increase, 579, 655
Annual yield, 307
Annuity, 48, 561, 567
Antiderivatives, 314-317, 319, 321, 323, 325-327,

354-355, 366, 393, 409, 516, 518-520, 532,
553, 600, 611, 1019, 1185

applications of, 354

Antidifferentiation, 314-315, 317-318, 320-323, 329,
373, 375, 409, 479, 521, 616, 859-860, 1105

properties of, 409
Applied problems, 5, 46, 54, 102, 410, 654, 896, 935
Approximately equal to, 382, 674, 1059
Approximation, 3, 39, 60, 63, 75, 82, 111, 206-207,

210, 214, 226-231, 233-234, 301, 308-309,
330, 350, 352, 383, 393-409, 412, 413,
415-418, 420-421, 426, 436-438, 440-441,
447-449, 451-452, 456, 477, 508, 561, 563,
565, 592-593, 596, 612, 620, 624, 626, 630,
698, 713, 721, 743-749, 754, 761, 773,
793-795, 797-802, 815, 858, 864, 942-952,
958, 983, 993, 998-1000, 1003, 1005, 1008,
1011, 1040, 1059, 1091, 1111, 1118, 1126,
1128-1129, 1137, 1206, 1225

of area, 350, 383, 409, 415, 438, 998, 1128
Arc length, 45, 314, 446-451, 453, 455-456, 472, 508,

510, 548, 690-697, 717, 719, 802, 865-867,
869, 876-878, 895-897, 899, 1032, 1073,
1093, 1129

finding, 446, 449, 508, 510, 896
Arcs, 449, 455, 548, 696, 871, 891, 1007
Area, 2, 5-11, 19, 23, 29, 47-49, 51-52, 60, 63, 84, 96,

115, 118, 136, 138, 145-146, 156-157,
159-169, 175-176, 178-179, 202-203,
220-222, 234, 250, 253-255, 269-270, 307,
309-312, 313-314, 329-342, 344-345, 348,
350, 352-354, 357-358, 361, 364-365,
367-368, 370-372, 382-393, 395-398, 403,
406, 409-410, 412, 413-416, 418-420, 422,
424-433, 435-438, 441-443, 445-447,
449-456, 460-463, 465, 467, 469-478, 487,
498-499, 506-512, 515, 527, 534, 542,
547-548, 553, 555-561, 566, 572-573,
583-584, 587, 655, 659, 674-679, 690-697,
716-720, 738, 758, 795, 800-801, 837-838,
840-843, 873, 875, 895-896, 898, 899, 930,
940-941, 950, 960, 975-976, 981-983, 995,
997-999, 1002-1004, 1006, 1010,
1013-1023, 1025-1029, 1031-1034,
1036-1038, 1049, 1054, 1056-1066, 1068,
1070-1071, 1073-1077, 1093, 1105-1106,
1111, 1120, 1124-1125, 1128, 1133, 1139,
1153, 1157-1158, 1160, 1173, 1179,
1183-1184, 1187-1189, 1197, 1202, 1211,
1219, 1221

of a circle, 2, 10, 51, 118, 138, 234, 309, 313, 338,
340, 387, 389, 420, 422, 445, 450, 498,
679, 692, 696, 1093, 1133

of a parallelogram, 837, 895, 898, 1065, 1184
of a rectangle, 11, 63, 156, 164-165, 167, 178,

202-203, 220, 329, 357, 364, 372, 382,
469, 474, 941, 950, 1029, 1064, 1125

of a square, 10, 51, 115, 138, 165, 234, 941, 1125
of a trapezoid, 179, 221, 398
of a triangle, 84, 329, 338, 340, 838, 981, 1184

Areas, 46, 48, 51, 165, 168, 313, 329-330, 332,
335-336, 341, 345, 348, 362, 364, 381-385,
387, 389-393, 395, 398, 409-410, 412,
413-414, 427, 432, 436, 451, 453, 474, 548,
555, 566, 584, 626, 674, 679, 718, 738, 873,
896, 898, 991, 997-998, 1036, 1074-1075

Argument, 84, 239, 293, 339, 378, 735, 769, 784, 933,
967, 976, 1008, 1088

Arithmetic, 161, 363, 536, 698, 761, 802, 983, 996,
1206

Arithmetic mean, 698, 802, 996
Array, 521, 957
Asymptotes, 30-33, 36, 50, 280-281, 283-287, 289,

291-292, 308-310, 708-710, 714-715, 718,
1127, 1166-1168, 1172-1173, 1201

Auxiliary equation, 634
Average, 24, 35-36, 110-112, 114, 116, 118-119, 124,

155, 177, 206, 218, 236, 239, 332, 348, 360,
363-366, 369-372, 394-395, 399, 401, 406,
409-410, 419, 424, 437, 440, 442, 450-452,

454, 459-460, 463, 498, 623, 628, 698, 761,
802, 832, 854, 930, 963, 1002, 1013, 1020,
1029, 1048, 1056, 1063, 1072, 1076-1077,
1112, 1150, 1159, 1176, 1181

Average rate of change, 110-111, 114, 116, 118-119,
124, 372, 963, 1150

defined, 114, 116, 119
finding, 119

Average value, 363-366, 369-372, 409, 460, 1002,
1013, 1048, 1056, 1063

Average velocity, 112, 239, 365, 369, 371, 419, 1176
Averages, 1085
Axes, 164, 167, 169, 192, 254, 292, 311, 381, 433,

435, 466-467, 469, 472, 474, 509, 548, 553,
587, 663-665, 688, 700, 703, 707, 715-716,
719, 825, 828, 835, 848, 879, 882-884, 886,
902, 918, 937, 983, 1007, 1012-1013,
1036-1037, 1041, 1043-1045, 1072, 1076,
1084, 1117, 1133, 1194, 1200, 1217

horizontal and vertical, 716, 886
Axis, 1, 21, 25, 28-29, 32, 38, 47, 49, 62-63, 67, 76,

92, 95, 97-99, 111-113, 164-165, 179, 186,
203, 207, 221-222, 241, 244, 248, 257-260,
262, 265, 273-275, 280, 284-286, 301, 307,
310, 312, 314, 321-324, 327, 330, 338,
340-341, 344-345, 348, 353, 367, 370-372,
381, 384, 389, 391-392, 395, 411, 418,
422-423, 425, 427-446, 449-456, 458, 462,
464-470, 472-475, 487, 498, 506, 508-513,
526-527, 534, 542-543, 548, 553, 555,
566-567, 572-573, 578, 586-588, 590, 607,
610, 612, 615, 618, 651, 661-666, 668-670,
673-677, 679, 682, 684, 687-691, 693-697,
700-704, 706-708, 710, 712-720, 801, 819,
825, 834, 841, 848, 851, 856, 860, 862, 864,
867, 869, 879-882, 884, 886-889, 891, 894,
898, 904-906, 929, 931, 935, 937, 941, 964,
973, 982, 994, 1003, 1012, 1014,
1028-1029, 1031-1038, 1041, 1043-1044,
1047, 1049-1050, 1052-1057, 1061,
1063-1064, 1069, 1072-1073, 1075-1076,
1084, 1087, 1091, 1093, 1111-1112, 1124,
1143, 1168, 1182, 1193-1195, 1200-1201,
1203-1204, 1212-1218, 1224

ellipse, 307, 312, 391, 434, 456, 510-512, 548,
662-664, 695, 702-704, 706-708,
712-720, 851, 879-882, 884, 886-887,
898, 906, 973, 982, 1064, 1075, 1193,
1201, 1203-1204, 1218

B
Base, 5-6, 9-11, 19, 38, 40, 60, 63, 76, 96, 100, 112,

146, 156-157, 160-161, 164-165, 168-169,
175, 180, 182, 184-185, 188-189, 193, 198,
202-204, 221-222, 254-255, 269-270, 311,
313, 328-332, 335, 338, 340, 353, 357, 364,
371-372, 392, 398, 406, 415, 419, 425-427,
429, 431-432, 435-436, 438, 450, 461,
465-467, 469, 475, 482, 484-485, 510, 515,
583, 662, 719, 738, 837, 840, 863, 907, 941,
950, 960, 983, 998, 1000, 1013, 1015-1016,
1020, 1035, 1037-1038, 1041-1042, 1047,
1050, 1054-1055, 1062, 1076, 1120, 1153,
1160, 1164, 1219, 1223

logarithmic, 40, 180, 185, 189, 193, 510
Bearing, 1210
Binomial expansion, 131, 520
Binomial theorem, 787
Binomials, 211
Bits, 627
Bounded intervals, 246
Brachistochrone, 682, 686

C
Calculators, 7, 16, 38, 40, 105, 210, 352, 485, 503,

670, 742, 1089
Calculus, 1-2, 20, 24, 28-29, 31, 34, 45-49, 53-54, 56,
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58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80,
82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102,
104, 105, 131, 155-156, 161, 163, 169, 173,
180, 182, 187, 225-226, 231-232, 236, 288,
293, 295, 301, 306, 313-314, 338, 354, 360,
362-363, 365-373, 387, 393, 397, 404,
409-410, 412, 413, 416, 418, 423, 432, 448,
476-477, 490, 498-499, 506, 515-516, 520,
522, 528, 554-555, 575, 588, 659-660, 697,
716, 719-720, 721-722, 748, 752, 775, 788,
803, 817-818, 824, 852, 857, 861, 864, 866,
873, 875, 879, 891, 899-900, 902, 922, 926,
930-931, 941, 955, 979, 983, 997-998, 1000,
1006, 1040-1041, 1079, 1081, 1092-1093,
1105-1106, 1108, 1114, 1123, 1128, 1143,
1233

defined, 2, 20, 31, 34, 54, 58, 64, 66, 76, 78, 80,
92, 94, 96, 100, 182, 187, 226, 231, 306,
338, 354, 360, 363, 366-367, 370, 413,
476, 490, 498-499, 588, 659, 752, 818,
852, 899-900, 902, 926, 930-931, 955,
1000, 1006, 1081, 1092, 1106, 1114

instantaneous rate of change, 926
limits, 53, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88,

94, 102, 293, 306, 354, 409-410, 506,
575, 852, 857, 900, 1041

power functions, 24, 28, 31, 1123
tangent line to, 20, 64, 169
Taylor polynomials, 748

Capacity, 591, 622, 653, 1068
Cardioid, 668-670, 673-674, 678-679, 688, 693-696,

719, 1026, 1037, 1076, 1194-1195
Carrying, 45, 106, 251, 254, 564, 591, 622, 643, 653,

773
Cartesian coordinate system, 1084
Cartesian equations, 1211
Cartesian plane, 1, 818, 822, 1084
Census, 112, 579, 623
Center, 1, 13-14, 22, 103, 128, 161, 167, 179, 213,

216, 253, 314, 340, 371, 419, 424, 435-436,
438-439, 442, 445, 459, 462, 465-470, 472,
474, 498, 511, 560, 651-652, 660-661,
664-667, 672, 679, 682, 686, 688-689, 691,
695, 704-705, 708, 710, 713, 715, 717-720,
786, 793, 797, 817, 826-827, 833, 835,
863-864, 868-869, 873, 877-878, 880, 882,
890-891, 898, 911, 983, 995, 999-1000,
1004, 1019-1020, 1023, 1025, 1028,
1031-1034, 1036, 1039, 1042, 1055-1057,
1063, 1069, 1076, 1091, 1093, 1143, 1145,
1193-1194, 1200-1204, 1211, 1214-1217

Central angle, 45, 84, 215-216, 338, 476, 548, 675,
1020, 1093, 1096, 1204

defined, 338, 476, 1020
finding, 215

Central limit theorem, 564
Chain Rule, 130-138, 140-142, 171-173, 184,

187-188, 193-197, 218-220, 232-233, 368,
373-374, 377, 436, 483, 485, 490, 492-494,
497, 501, 568, 600, 626, 630, 683, 863, 875,
879, 900, 951-955, 957-962, 965-966, 968,
974, 989, 993-994, 1067, 1071, 1114, 1125,
1137, 1183

Chaos, 105
Circles, 18, 22, 45, 50, 313, 361, 419, 430, 474, 512,

660, 666-667, 669, 679, 698, 720, 817, 869,
871, 880, 884, 906, 1011, 1026, 1036, 1071,
1075-1076, 1215, 1217-1218, 1227

area of, 361, 474, 512, 679, 1036, 1071,
1075-1076

center, 22, 419, 474, 660, 666-667, 679, 720, 817,
869, 880, 1036, 1076, 1215, 1217

completing the square, 18, 22
defined, 50, 474, 869, 1011, 1076
equation of, 18, 22, 50, 660, 667, 679, 869, 884,

906
finding, 50, 667, 679, 1075
graphing, 22, 45
radius, 22, 45, 313, 419, 430, 474, 512, 660,

666-667, 679, 869, 871, 880, 1036, 1076,
1215, 1217

Circular cylinders, 169, 255-256, 435, 437, 1215
volume of, 255, 435, 437

Circular disks, 425, 433, 437
Circumference, 2, 10, 118, 166, 234, 340, 420, 422,

431, 446, 451-452, 455-456, 474, 498, 548,
682, 688, 721, 866, 891, 1031, 1033, 1036,
1093, 1120, 1183, 1223

Circumference of a circle, 234, 340, 420, 498

Closed interval, 4, 9, 26, 50, 60, 96-99, 102, 143,
146-157, 160, 163, 175, 218-219, 226, 237,
239-240, 242-243, 245, 314, 330, 351, 360,
365-366, 370, 379, 409, 446, 555,
1081-1082, 1104-1105, 1107, 1109

Closed intervals, 96-97, 101, 143, 146-147, 149, 151,
153, 155, 1103-1104, 1124

Coefficient, 14, 18, 32, 253, 307, 318, 549, 601, 608,
611, 631, 633, 635, 640, 652-654, 701, 742,
768, 788, 796, 809, 834, 1087

binomial, 788
leading, 32, 253, 633

Coefficients, 13, 27, 59, 131, 196-197, 205, 265,
395-397, 399, 401, 536-540, 543, 550, 554,
599, 602-603, 605, 607, 613, 621, 626-627,
631, 633-634, 640-643, 647-649, 652, 697,
704, 709, 744-745, 780, 796, 801, 803-804,
807, 810, 828, 845-846, 874, 885-886, 942,
944, 989, 1063, 1117, 1224

Cofunction, 172, 495
Combinations, 26, 50, 92, 102, 107, 121, 170, 205,

393, 499, 516, 631-632, 810, 821, 895, 1112
Common logarithm, 185
Complementary angles, 1096
Completing the square, 14, 18-20, 22-23, 52, 204,

549-550, 552, 568, 570, 700, 702, 704, 709,
826, 890, 988, 1044

circles, 18, 22
quadratic functions, 19-20

Complex conjugates, 1132
theorem, 1132

Complex numbers, 211-213, 755, 1106
Complex plane, 212, 659
Composition of functions, 34, 36-37
Concavity, 266-267, 269-275, 277, 279, 308-309, 684,

746
Cones, 313, 449-450, 664, 882, 886, 895, 941, 982,

1050
surface area of, 449-450, 941
volume of, 895, 941, 982, 1050

Conic sections, 313, 660-663, 698-699, 701, 703, 705,
707, 709, 711-713, 715, 1117, 1133

circle, 313, 660-661, 703, 705, 713, 1133
defined, 1117
ellipse, 662-663, 698, 703, 705, 707, 711-713, 715,

1117, 1133
hyperbola, 662-663, 707, 709, 711-712, 715, 1117
parabola, 662-663, 698-699, 701, 703, 711, 713,

715, 1117
Conjugates, 1132

complex, 1132
Constant, 11, 20, 24, 26-27, 38, 68, 72, 76, 92, 100,

102, 106-107, 110, 113, 118, 120-122, 127,
136, 138, 158, 162, 167, 173-174, 176,
178-180, 183-184, 191, 193, 195, 199,
203-204, 221-222, 228, 234, 239-240, 243,
245, 261, 279, 301, 304, 307-308, 313-314,
316, 318-325, 328, 333, 351, 354, 357, 362,
366-367, 371, 375, 382, 409, 411, 420-421,
436, 457-461, 463-465, 467, 469, 478-479,
484, 487-488, 490, 498, 507, 517-518,
521-522, 537, 539, 549-551, 567, 575-576,
578-586, 588, 590-591, 595, 598-603,
605-613, 615, 618-622, 624-627, 629-630,
632-636, 638-643, 649, 651, 653-657,
679-681, 688, 702, 705-706, 716-717,
735-736, 741, 743, 746, 755, 757, 764, 766,
768, 779-780, 782, 784, 786, 793, 803-804,
806-807, 809, 832, 834, 854-859, 862-864,
867, 870-871, 873-876, 878, 888-889,
897-898, 903-904, 907, 913, 915, 920-922,
926-930, 943, 947-950, 961, 974, 988, 995,
1001, 1005, 1010, 1028-1030, 1032,
1034-1035, 1037-1039, 1043, 1047, 1052,
1055, 1064-1065, 1072, 1075-1076, 1087,
1098, 1101, 1115-1117, 1127, 1153, 1157,
1190, 1192, 1205, 1217, 1223

Constant functions, 308
Constant of integration, 518, 521-522, 857
Constant of proportionality, 641
Constant term, 107, 158, 549, 635, 735, 746, 786,

807, 809, 1117
Constrained optimization, 973, 975, 977, 979, 981,

983
Constraint, 8, 159, 899, 974-977, 979-981, 983, 993,

1138, 1223
Constraints, 978-982, 993, 996
Continuity, 16, 90-91, 93-97, 99, 101-102, 143, 147,

218, 273, 294, 437, 443, 446, 595, 726, 895,

910-913, 915-917, 919, 948, 993,
1103-1104, 1106, 1108-1110, 1112, 1115,
1118, 1124

and differentiability, 143, 993
Continuous compounding, 582
Continuous function, 95, 97, 142, 147-149, 151, 184,

346-347, 354, 360, 362, 365, 381-382, 384,
393, 409, 411, 422, 487-488, 555, 758,
913-914, 918, 934, 998, 1013, 1028, 1049,
1106, 1108-1109, 1112

average value of, 365, 409
Contour plots, 990, 1222
Contours, 905, 909, 985
Convergence, 207-208, 214, 218, 566, 726, 728-729,

732-735, 737-739, 741, 743, 757, 763,
765-767, 769, 771-777, 779-785, 787-792,
796-797, 800-801, 803, 806-808, 811-813,
1105, 1135, 1209

Coordinate plane, 12, 171, 286, 382, 665, 673, 680,
818, 824, 887, 898, 910, 922, 957,
1084-1087

Coordinate systems, 825, 887, 1064
cylindrical, 887
polar, 887, 1064

Coordinates, 1, 12, 18, 22, 54, 64, 76, 155, 185, 189,
191, 193, 197, 265, 272-273, 277, 280, 289,
292, 385, 388, 391-392, 468, 470, 472-474,
476, 509, 592, 627, 631, 659-660, 662,
664-680, 682, 684-688, 690, 692-694, 696,
698, 700, 702, 704, 706, 708, 710, 712-714,
716-720, 817, 825-826, 841-842, 844, 851,
873, 879, 887-898, 899-900, 902, 907, 914,
917-918, 925, 931, 945, 954, 958, 962, 980,
983, 994-995, 1012, 1014-1015, 1020-1030,
1035-1036, 1041-1045, 1047-1056,
1058-1064, 1071-1076, 1084-1085, 1087,
1089-1090, 1092, 1117, 1165, 1167, 1170,
1172, 1195, 1201, 1215, 1221

Cosecant, 171, 218, 494, 499, 532, 1092, 1094-1095
defined, 218, 494, 499, 1092
inverse of, 494

Cosine, 35, 50, 76, 93, 99, 101, 169-172, 218, 245,
381, 493, 499-500, 529, 570, 636, 638, 640,
642-645, 648, 650, 752, 756-757, 786,
791-794, 801-803, 808, 811, 814, 1023,
1038, 1092, 1094, 1096, 1149

Cosines, 170, 204, 338, 528-529, 533, 570, 573, 647,
802, 829-831, 982, 996, 1057, 1121, 1131

defined, 338, 996, 1057
fundamental identity, 528
law of, 204, 829, 982, 996, 1057, 1121
proof, 170, 338, 829
theorem, 170, 829, 982, 1131

Costs, 6, 10, 23, 158-159, 165-167, 254-256, 310,
446, 512, 554, 900, 940-941, 981-982, 995

fixed, 23, 158, 165-166, 254-255, 310, 900,
940-941, 981-982

marginal, 23
total, 6, 10, 23, 158-159, 165-166, 254-256, 310,

512, 554, 900, 940-941, 982, 995
Cotangent, 171, 218, 490, 499, 505, 532, 1092,

1094-1095
Counting, 30, 603, 786, 804
Critical point, 149-154, 156-157, 160-161, 176, 185,

189, 214, 218, 246, 248-252, 260, 268-270,
273, 276-278, 280, 285-286, 289, 498, 507,
521, 523, 932, 934-935, 939, 942, 984-992,
995, 1160, 1165

Critical values, 257
Cross products, 839, 841, 896
Cube-root, 142

defined, 142
Cubes, 165, 168, 222, 334, 659, 941, 1153
Cubic polynomials, 261
Cups, 272, 275
Curve fitting, 111
Curve sketching, 256-257, 259, 261, 263, 265, 273,

280-281, 283, 285, 287, 289, 291
Curves, parametric, 717
Cycloid, 682-684, 686, 688-689, 692-694, 717, 719

D
Data, 7-8, 12, 21, 65-67, 77-78, 83, 111-112, 114, 118,

137, 159, 175, 183, 198-199, 257, 279,
321-323, 337-338, 396-397, 400, 421, 425,
436, 479-480, 487, 579, 584, 623-624, 628,
630, 667, 704, 714, 899, 908, 911, 986, 996

definition of, 65, 118, 908, 911
Data points, 21, 479, 624, 996
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Data sets, 624
Days, 24, 45, 47, 101, 105, 177, 215, 406, 424, 461,

480, 587, 625, 655, 716-717, 876, 879,
904-905, 1190-1193

Decay, 34, 579-583, 585-587, 626, 653-656, 1131
exponential, 34, 579, 582, 585, 653, 656
radioactive, 580-581, 585-587, 653, 655, 1131

Decimal point, 52, 75, 215
Decimals, 1173, 1223, 1227
Decreasing function, 111, 115, 235, 240, 323, 405,

483, 490, 493, 579, 621, 758, 935
derivative and, 111, 115

Defining relation, 875
Definite integral, 329, 345, 350, 354, 373, 379, 393,

399, 409-410, 414, 417, 454, 495, 516, 554,
556-557, 1106-1107, 1128-1129

approximating, 329, 409, 414
Degree, 24-25, 27-29, 32-33, 99, 153, 169-170, 173,

200, 205-206, 208, 213, 245, 253, 255, 263,
277, 279, 287-288, 290, 339, 348, 388, 406,
536, 568, 684, 743-752, 754-756, 772, 781,
785-786, 797-799, 812-813, 833-834, 882,
886, 891, 936, 961, 966, 1093, 1180

Degrees, 34, 51, 170, 173, 175, 215, 290, 338, 364,
790, 799, 802, 891, 921, 931, 960, 962, 964,
966-967, 972-973, 1083, 1088, 1093, 1095

measure of angles, 170
Denominator, 30-31, 36, 65, 69-70, 72-73, 75, 77, 93,

95, 107, 111, 142, 146, 161, 171, 193, 212,
222, 256, 259-260, 281-284, 286, 288-290,
294-295, 302, 349, 397, 402, 512, 530,
535-539, 541, 551-552, 554, 568, 622,
625-626, 683-684, 712-713, 725, 767, 797,
914, 1072, 1082

Denominators, 16, 162, 914, 1099
Density function, 423-424, 1029-1030, 1035-1036,

1038, 1040-1041, 1045, 1048, 1055-1056,
1139

Dependent variable, 3, 5-7, 9, 20, 109, 115, 135,
156-158, 164, 249, 320, 428-429, 439, 453,
479, 576-577, 599, 602, 617, 631, 901, 937,
944, 952-953, 957, 959-960

Derivatives, 46, 48, 58, 106-107, 115, 119-120, 122,
124, 127-128, 130-133, 135, 137-141, 143,
145, 156, 169-173, 175, 177, 179, 182, 187,
189-190, 195, 218-220, 226, 232, 239,
266-267, 269, 271, 273, 275, 277, 279, 284,
287, 290, 292-294, 298, 308-310, 314, 317,
360, 362, 375-376, 403, 408-409, 483, 495,
500, 503-504, 506, 509-510, 519, 521, 576,
595, 628, 631, 647, 651, 655, 683-684, 693,
745-747, 749, 751, 785-788, 791, 799, 803,
808, 854, 857, 867-868, 900, 919-929,
931-936, 938-939, 942-944, 946-951,
953-955, 957-959, 961-965, 967-969, 971,
973, 978, 984-986, 988-989, 992-995, 997,
1057, 1130, 1137

and concavity, 266-267, 269, 271, 273, 275, 277,
279

calculating, 58, 182, 219, 292, 309, 314, 510, 519,
628, 684, 927, 994

first, 46, 106-107, 120, 131, 133, 135, 137,
139-140, 156, 169, 173, 175, 182,
189-190, 220, 226, 239, 266-267, 269,
271, 273, 275, 277, 279, 284, 287,
292-294, 308-310, 362, 408, 483, 506,
509-510, 521, 576, 631, 651, 684, 693,
745-747, 751, 799, 803, 808, 867, 900,
926-929, 931, 933-935, 942, 946-951,
953-954, 961-964, 973, 984-986, 989,
994-995, 1057, 1130, 1137

higher-order, 926-927, 993-994, 1137
higher-order partial, 926-927, 993-994, 1137
of exponential functions, 182
partial, 595, 628, 900, 919-929, 931-936, 938-939,

942-944, 946-951, 953-955, 957-959,
961-965, 968, 971, 978, 984-986,
988-989, 992-995, 1057, 1137

second, 106, 115, 131, 138, 169, 220, 266-267,
269, 271, 273, 279, 294, 298, 308-309,
362, 409, 509, 521, 595, 631, 651, 684,
745-746, 803, 900, 926, 928-929, 931,
934, 938, 948, 965, 984, 986, 988-989,
992-993, 1130

Determinants, 835-836, 1071
defined, 835

Diagrams, 882
Difference, 9, 21, 26, 38, 53-54, 57, 60-61, 63-64, 68,

85, 90, 92, 102, 108, 141, 186, 222, 228,

230, 238, 242, 245, 253, 255, 301, 314, 336,
354, 360-361, 370, 402, 420, 437, 451, 495,
499-500, 549, 556, 566, 570, 586, 602,
618-619, 665, 671, 705, 707-709, 712, 717,
748, 760-761, 774, 782, 802, 820, 822, 827,
855, 864, 925, 946, 950, 953, 998, 1080,
1140

function, 9, 21, 26, 38, 57, 60-61, 68, 90, 92, 102,
108, 141, 186, 228, 230, 238, 242, 245,
253, 255, 301, 314, 354, 360, 370, 420,
495, 499, 556, 566, 570, 586, 618, 748,
761, 802, 864, 925, 946, 950, 953, 998

real numbers, 9, 186, 253, 822, 1080
Difference quotient, 57, 60-61, 63-64, 102, 141, 301,

925
Difference quotients, 102
Differentiability, 119, 141, 143-144, 146, 160, 946-949,

955, 993, 1118, 1137
Differentiable function, 134, 138, 140, 143, 148,

150-151, 153, 157, 159, 184, 187, 190, 195,
221, 226, 236-237, 239, 245-246, 266, 268,
372-373, 483, 485, 490, 492-494, 501, 600,
933, 951, 955, 959, 965, 967-968, 970-972,
984, 1062, 1118, 1231

Differential equations, 314, 320, 409, 575-576, 578,
580, 582, 584, 586, 588-590, 592, 594-596,
598, 600, 602, 604, 606, 608, 610, 612-614,
616-618, 620, 622, 624, 626, 628, 630, 632,
634, 636, 638, 640-642, 644, 646-648, 650,
652-657, 803, 805, 807-809, 811-812, 994,
1132, 1233

exact, 592
separable, 613, 617, 630, 653-655
solving, 575, 608, 634, 654, 803, 811, 994

Differentials, 109, 131, 226-227, 229, 231, 233, 309,
575, 599, 945-946, 950, 993-995, 1001,
1126

Differentiation, 106-108, 114, 116, 119-121, 123,
125-129, 135, 138, 146, 170, 172-173, 178,
184, 187-188, 190-203, 218-220, 225-226,
232, 267, 308, 310, 314-315, 317-318, 326,
362, 367, 375, 381-382, 444-445, 484, 486,
490, 492, 497, 501, 504, 513, 516, 525,
531-532, 568, 632, 636-637, 683, 756,
788-789, 792-793, 797, 803, 812, 853-854,
856, 868, 874, 878, 895, 899-900, 902, 904,
906, 908, 910, 912, 914, 916, 918, 920, 922,
924, 926, 928, 930, 932, 934, 936, 938, 940,
942, 944, 946, 948, 950, 952, 954-956, 958,
960, 962, 964, 966, 968, 970, 972, 974, 976,
978, 980, 982, 984, 986, 988, 990, 992-996,
1152

and tangent lines, 219
implicit, 194-203, 218-220, 267, 310, 497, 868,

878, 955-956, 968, 974, 978, 993
order of, 127, 308, 854, 926
steps for, 190

Digits, 11-12, 22, 43, 52, 75, 193, 208, 215, 217, 630,
698, 732, 743, 756-757, 764, 1048, 1091,
1156-1157

Directed line segments, 819
Discriminant, 536, 984, 993, 1153, 1157

quadratic formula, 536
Distance, 2, 13, 23, 34, 46-49, 109, 112, 118, 128,

154, 162-163, 167, 169, 178-179, 197-199,
203-204, 216, 221-222, 239, 244, 254-255,
286, 301, 316, 323, 328, 370-371, 400-401,
416, 418-419, 422-424, 446, 456-457,
459-462, 464-467, 472-474, 476, 508,
510-512, 548, 560, 591-593, 607, 619, 641,
651, 656, 660-662, 665, 670, 682, 689, 702,
704-706, 712, 714, 716-717, 719, 722, 742,
825-827, 832-834, 842-843, 850, 854, 859,
863, 877, 879, 889, 891-894, 897, 906-907,
911, 921, 940, 947, 962-963, 966-967, 970,
972-973, 975, 980-982, 990, 995-996, 1020,
1028-1036, 1039, 1047-1048, 1053,
1055-1056, 1069, 1072-1073, 1076-1077,
1080, 1084-1085, 1090, 1115, 1117, 1119,
1129, 1139, 1159, 1181-1182, 1212

angle of elevation, 178, 222, 897
formula, 2, 13, 118, 128, 203-204, 222, 255, 416,

422-424, 456, 460, 465-467, 473, 508,
510-511, 548, 660, 717, 722, 825-827,
832, 843, 850, 877, 879, 889, 907, 967,
972, 981, 996, 1028, 1030-1032, 1034,
1039, 1053, 1055, 1069, 1076,
1084-1085, 1119

minimizing, 167, 254, 980, 996

Distribution, 167, 220, 413, 764, 787, 1106
Distributions, 562

normal, 562
Division, 5, 31, 74, 139-140, 145, 170, 215, 262,

287-288, 330, 340-341, 407, 414, 450, 528,
536, 554, 568, 570, 572, 601, 607, 611, 615,
710, 736, 797, 801, 856, 901

long, 262, 287-288, 536, 554, 568, 570, 572, 736,
801

of integers, 140
Divisor, 536
Divisors, 723
Domain, 2-7, 9-10, 12, 15, 20-22, 25-26, 31-33, 37,

40, 50-51, 92, 94, 96-97, 100, 147-150,
152-153, 156-158, 160, 162-163, 176,
186-188, 192, 200, 243, 246, 250, 255, 270,
286, 488-489, 491, 495-496, 502, 506, 545,
681, 722, 889, 900-902, 907-908, 911,
931-932, 935, 937, 984, 1022-1023, 1058,
1070, 1072, 1125, 1144, 1148-1149, 1223

defined, 2-5, 7, 9, 20-21, 25-26, 31-32, 37, 50, 92,
94, 96-97, 100, 147-149, 186-188, 192,
200, 243, 246, 250, 286, 488-489, 491,
502, 900-902, 907, 911, 931, 984, 1058,
1070, 1072

determining, 50
exponential functions, 40, 50
rational functions, 31
relations, 186, 188, 889

Dot product, 828-831, 833-835, 837, 839, 841, 863,
872, 895, 897, 946-947, 965

Double integral, 998-1000, 1003-1006, 1008,
1010-1011, 1013, 1017, 1019-1023,
1025-1026, 1028, 1039, 1059, 1064-1065,
1067, 1069, 1073-1076, 1138

Doubling time, 39
Dummy variable, 345, 353, 365

E
Eccentricity, 215, 631, 662-664, 698, 702-703,

705-706, 712-718, 720, 802, 875
ellipse, 662-664, 698, 702-703, 705-706, 712-718,

720, 802, 875
hyperbola, 662-664, 706, 712, 714-715, 717-718,

720
Ellipse, 167, 276, 307, 312, 391, 434, 456, 510-512,

547-548, 662-664, 695, 698, 702-708,
711-720, 802, 851, 863, 873, 875, 877,
879-884, 886-887, 897-898, 902, 906,
972-973, 976, 978-979, 982-983, 985,
995-996, 1060, 1062, 1064, 1070, 1075,
1117, 1133-1134, 1193, 1201-1204, 1218

defined, 167, 276, 706, 714, 851, 863, 877, 902,
996, 1060, 1062, 1070, 1117

equation of, 456, 664, 702-704, 706-707, 712,
714-719, 879, 882-884, 886, 897-898,
906, 972, 1117, 1133

reflection property, 706, 711, 716-717, 1134
Ellipsis, 131, 722
Elliptic paraboloid, 883, 885, 942, 983, 988, 1047,

1213, 1229
Empty set, 704
Endpoints, 4, 9, 59, 143, 147, 149-151, 154, 156-157,

159-161, 176, 179, 195, 236, 238, 249, 254,
311, 331-332, 345, 347, 362, 379, 399, 404,
417, 446, 448, 476-477, 664, 679, 683, 688,
704, 782, 784, 788, 792, 819, 898, 935,
1001, 1008, 1014, 1033, 1041, 1043-1044,
1052, 1080-1081, 1085, 1090, 1103,
1114-1115, 1149

Equality, 353, 564, 701, 819, 947, 997, 1080, 1088,
1101, 1134-1135

Equations, 8, 12-15, 17, 19, 21-24, 34, 36, 41, 45, 50,
52, 59, 62-63, 71, 89-90, 97, 102-103, 105,
159, 177-178, 194, 199-200, 204-206, 226,
261, 263, 265, 280, 314, 318, 320, 323-324,
340, 401-402, 409, 452, 468-469, 471, 476,
487, 504, 537-540, 564, 572, 575-590,
592-596, 598-618, 620, 622-624, 626, 628,
630-642, 644, 646-648, 650, 652-657, 659,
662, 664, 666-673, 677, 680-683, 685-689,
692-693, 696-697, 700, 704-705, 709, 712,
714-715, 717-719, 742, 745-746, 752, 796,
803, 805, 807-809, 811-812, 822, 831,
842-851, 853-854, 859, 862, 865-866,
870-872, 874-876, 879-880, 882, 884,
886-893, 895-898, 933-939, 942, 954, 957,
961, 969, 974-986, 991, 994, 1009, 1020,
1024, 1046, 1059-1061, 1063-1065, 1067,
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1069, 1086-1087, 1089-1092, 1094, 1114,
1117, 1128, 1131-1132, 1135, 1193, 1198,
1204, 1211, 1216-1217, 1224, 1233

exponential, 34, 41, 50, 409, 476, 504, 578-579,
582, 585, 622, 637, 639-640, 653, 656,
752, 811

logarithmic, 34, 41, 50, 409, 686, 688
logistic, 596, 598, 622-624, 628, 630, 653-654
point-slope, 12-13, 21, 50, 59, 1087
polynomial, 34, 36, 50, 90, 205, 263, 265, 280, 572,

595, 745-746, 808-809, 812, 984
rational, 50, 89, 102, 537-539, 572
slope-intercept, 12-13, 21, 50, 1087

Equilateral triangle, 51, 138, 167, 202, 435, 467, 802
Equilibrium position, 641-645, 651-653
Equivalence, 729

defined, 729
Error, 3, 84-85, 127, 161-162, 198, 208, 228-230,

232-234, 308, 329, 398-399, 402, 404, 406,
408-409, 412, 413, 432, 516, 532, 562, 612,
618, 620, 744, 748, 753, 760, 763, 770,
772-773, 779, 794-795, 798-799, 945-947,
950, 995, 1126, 1207, 1223

chance, 516
relative, 229, 308, 950
standard, 84, 516, 562, 995

Estimate, 21, 24, 86, 111, 118, 184, 206, 210, 222,
226-228, 234, 306-307, 309, 332, 338, 362,
400-403, 405-406, 412, 420-421, 423-424,
436, 448, 456, 466, 477, 498, 507, 526, 582,
590, 598, 612, 618, 630, 656, 679, 698, 713,
748-749, 753, 760-762, 764, 768, 770,
772-773, 779, 794, 798-799, 801, 812-814,
894, 921, 930, 943-945, 948-950, 994-995,
1065, 1112, 1223

Estimation, 798
Euler Leonhard, 478, 515, 559, 899
Euler, Leonhard, 478, 515, 559, 899
Even functions, 381, 1110
Even root, 139-140
Events, 570
Experiment, 279, 689, 942, 1038
Experimentation, 49
Experiments, 105, 111, 580
Explicit formula, 616, 723, 815
Exponential decay, 579, 656
Exponential functions, 38-40, 50, 180, 182, 317, 478,

482, 509, 585, 639
defined, 50, 182
domain of, 40, 50
evaluating, 585
graphing, 182, 478

Exponential growth, 579, 582
Exponential Rule, 218
Exponents, 126, 139-140, 181-183, 187, 218, 318,

481-483, 485, 509, 913, 1119-1120, 1156
integral, 126, 139, 181, 318, 481-483, 485, 509
irrational, 181-182, 481-482
negative integral, 126
rational, 139-140, 181-182, 481-483
zero, 139-140, 485

Extrema, 148-150, 156-157, 246-247, 252, 264,
273-274, 280, 290-291, 297, 308-309,
932-935, 938, 975-977, 985, 991, 993, 1125,
1153, 1159, 1161-1162, 1164-1167, 1172,
1220, 1222, 1224

absolute, 149-150, 156-157, 246, 252, 308, 932,
934-935, 938, 993, 1125

relative, 246, 308

F
Factor theorem, 262
Factorials, 773
Factoring, 222, 257, 302, 526, 634, 1120
Factors, 125, 152, 181, 184, 193, 242, 249, 259, 273,

453, 536-539, 541-542, 553, 568, 570, 616,
636, 766, 839, 854, 900, 1119

defined, 181, 184, 249, 900
Feet, 2, 12, 24, 45, 47, 49, 51, 63, 113, 117-118, 145,

162, 198, 203, 220, 309, 324, 328, 406, 411,
424, 436, 466-467, 490, 511, 572, 583, 587,
607, 618-619, 656, 706, 742, 802, 832, 865,
903, 931, 972-973, 1083, 1119, 1125, 1180,
1223

Fibonacci sequence, 723, 729, 731, 814
First coordinate, 15
First derivative, 235, 246-253, 255, 257, 259, 261,

266-271, 273, 280, 308-309, 631, 684,
744-745

First quadrant, 100, 164, 185, 196, 220, 254, 289, 311,
387, 433-434, 441, 475-476, 510, 512, 627,
643, 670, 882, 935, 937, 1007, 1013, 1018,
1022, 1037, 1075

Fixed costs, 166
Fixed points, 575, 720
Formulas, 3, 9, 26, 50, 54, 60, 106, 111, 119-120, 131,

146, 164, 170-173, 177-178, 192, 198, 205,
215, 218, 229-231, 262-263, 308, 313, 317,
321, 326, 334, 340, 348, 361, 367, 375-376,
384, 399, 402, 409-410, 414-416, 438, 441,
453, 469, 474, 483, 485-486, 495, 500-501,
503-504, 508-509, 512, 515-516, 518,
526-527, 529, 532, 544, 568, 570, 572, 592,
646, 693, 717, 721, 756, 791, 802, 810, 854,
872, 895, 957-960, 965, 1028, 1032,
1035-1036, 1045, 1092-1093, 1096, 1119,
1121, 1126, 1130, 1220

as functions, 693, 960
defined, 3, 9, 26, 50, 54, 106, 119, 172, 192, 218,

229, 231, 367, 399, 402, 414, 438, 474,
486, 504, 508, 756, 810, 957, 965, 1032,
1035, 1092

Fourth derivative, 402, 409
Fourth quadrant, 643, 666
Fractals, 1233
Fractions, 131, 163, 535-537, 539, 541-542, 554,

568-570, 572, 621, 625, 628, 654, 731, 734,
1188

comparing, 163
dividing, 536
improper, 554, 570
like, 537, 539, 572
powers of, 539
proper, 536-537, 539, 568, 570
unit, 625

Frequency, 41-43, 642-643, 645-654, 1193
Function notation, 120, 132, 266, 515, 722, 951

defined, 132, 951
Functions, 1-46, 48, 50-52, 53, 58, 62, 69, 71, 73-74,

76, 78, 88-89, 92-94, 96-103, 106-107, 111,
115, 121-122, 124-128, 130-133, 135,
137-141, 143-147, 149, 151, 153, 155, 164,
169-177, 179-183, 185-198, 200, 204,
210-211, 218-220, 226, 231-232, 234-235,
237, 239-246, 253, 261, 267, 269, 277-278,
282, 288, 293-294, 296, 298-300, 306,
308-310, 314-318, 326, 346, 348, 357-358,
360, 367, 375, 379, 381-382, 386, 389,
392-393, 400, 410, 413, 448, 451, 472, 476,
478-479, 481-482, 484, 486, 488-491, 493,
495, 497-507, 509-510, 513, 515-516,
520-521, 523-524, 528, 532-533, 535, 537,
539, 541, 543-545, 559, 568, 576, 585, 588,
595, 598, 605, 607-608, 611-612, 616-617,
620, 626, 631-633, 636, 638-640, 680-681,
686-687, 693, 722, 725-726, 743-744, 756,
758, 764-765, 780, 785-787, 791-794, 796,
802-803, 808, 810-813, 818, 824-825,
851-854, 856-857, 861, 863, 873, 878,
895-896, 899-903, 905, 907-910, 912-917,
919-920, 924-926, 929-932, 938, 945-949,
951-955, 957, 959-961, 965, 969, 972,
974-982, 984-985, 987, 989-991, 993-994,
996, 997-998, 1007-1008, 1010, 1031, 1042,
1048-1049, 1057-1059, 1061, 1091-1096,
1103-1104, 1106-1107, 1110-1112, 1114,
1123-1125, 1129-1130, 1135, 1137, 1140,
1144, 1148-1149, 1152, 1232

algebraic, 24-27, 29, 31-34, 50-51, 73, 102,
106-107, 127, 138-141, 143, 145-146,
180, 219, 226, 293-294, 299, 495, 504,
516, 535, 537, 543, 595, 693, 803, 895,
1091, 1123, 1135, 1152

average rate of change, 111, 124
compositions of, 94, 102, 914, 917
constant, 11, 20, 24, 26-27, 38, 76, 92, 100, 102,

106-107, 121-122, 127, 138, 173-174,
176, 179-180, 183, 191, 193, 195, 204,
234, 239-240, 243, 245, 261, 308, 314,
316, 318, 357, 367, 375, 382, 478-479,
484, 488, 490, 498, 507, 521, 537, 539,
576, 585, 588, 595, 598, 605, 607-608,
611-612, 620, 626, 632-633, 636,
638-640, 680-681, 743, 764, 780, 786,
793, 803, 854, 856-857, 863, 873, 878,
903, 907, 913, 915, 920, 926, 929-930,
947-949, 961, 974, 1010

cube, 25, 51, 101, 169, 186, 309, 413, 873,

945-946, 1048
defined, 2-5, 7, 9, 13, 20-21, 25-26, 31-32, 34, 37,

50, 58, 71, 73, 76, 78, 89, 92-94, 96-97,
99-101, 103, 106, 126, 132, 138-141,
143, 147, 149, 172, 181-182, 186-189,
192, 194-196, 200, 210-211, 218-220,
226, 231, 240, 243, 245-246, 267, 277,
296, 306, 310, 315, 360, 367, 389, 392,
413, 472, 476, 481, 484, 486, 488-491,
493, 498-499, 502, 504-505, 559, 588,
595, 605, 612, 617, 620, 631, 726, 756,
786, 793, 808, 810-811, 818, 851-853,
856, 863, 899-902, 907, 912, 914-917,
919-920, 924-926, 930-931, 945-947,
951, 955, 957, 961, 965, 984, 994, 996,
1007, 1048-1049, 1057-1058, 1061,
1091-1092, 1103-1104, 1106, 1110-1111,
1114, 1129

difference, 9, 21, 26, 38, 53, 92, 102, 141, 186,
242, 245, 253, 314, 360, 451, 495,
499-500, 802, 925, 946, 953, 998, 1140

domain and range, 50, 506, 545
evaluating, 379, 410, 498-499, 510, 568, 585, 605,

913, 1048
even, 8, 24-25, 28, 38-39, 48, 69, 71, 96, 107, 124,

130-131, 139-140, 149, 153, 176, 192,
253, 282, 300, 346, 381, 451, 491, 500,
515-516, 532, 631, 744, 764, 780, 786,
803, 808, 818, 825, 947-949, 1093, 1110,
1129

exponential, 34, 38-41, 43, 50-51, 100, 135,
180-183, 185, 187-189, 191, 193,
218-219, 298, 308, 317, 375, 393, 476,
478, 481-482, 484, 486, 504, 509-510,
515, 585, 639-640, 744, 756, 792, 811

family of, 515
function notation, 132, 515, 722, 951
graphs of, 12-15, 17, 19, 21-25, 27-31, 38, 41-42,

50, 52, 92, 101, 103, 127, 139-140,
171-172, 182, 188, 193-194, 200, 204,
219, 231, 261, 278, 288, 300, 306,
309-310, 316, 326, 382, 386, 472, 476,
478, 481, 500, 506, 513, 521, 523-524,
528, 535, 537, 636, 680-681, 743, 756,
787, 793, 808, 825, 896, 902, 909, 929,
994, 1031, 1091, 1094, 1123

greatest integer, 3-4, 16, 23-24, 88-89, 244
identity, 121, 146, 187-188, 193, 195, 232, 490,

493, 498-499, 503-504, 506, 515, 528,
532, 537, 543-544, 576, 680, 693, 756,
803, 1092, 1095-1096, 1152

inverse, 40, 48, 185-188, 191-193, 218, 243, 367,
481, 484, 488-491, 493, 495, 497-498,
502-506, 509-510, 543, 545, 744, 812,
818, 873

linear, 13, 23, 27, 43, 92, 107, 121, 194, 226,
231-232, 234, 245, 308-309, 318, 537,
539, 541, 568, 605, 607-608, 611-612,
616-617, 631-633, 636, 638-640, 744,
803, 895, 915, 945-949, 951-952, 961,
979, 993, 1091, 1137

logarithmic, 34, 40-41, 43, 50-51, 135, 180-181,
183, 185, 187, 189-193, 218-220, 308,
393, 413, 510, 686, 1123

maximum value, 6-7, 12, 19, 43-44, 146-147, 149,
151, 153, 164, 176, 237, 246, 269, 277,
288, 306, 310, 498, 507, 931-932, 938,
976, 980-981, 984, 989-990, 996, 1010,
1104, 1107, 1110, 1125

minimum value, 23, 43, 147, 149, 151, 153, 218,
237, 246, 253, 269, 278, 288, 513,
931-932, 938, 975-976, 981, 984,
989-990, 1010, 1107, 1110

notation, 4, 20, 25, 37-38, 50, 76, 88, 106, 115,
122, 132, 137, 176, 188, 192, 218,
231-232, 318, 410, 482, 489, 499, 515,
523, 722, 916, 920, 925, 946, 951, 961,
989-990, 993, 1123

odd, 24-25, 28, 32, 36, 94, 96, 99, 139, 153, 171,
176, 192, 381, 500, 532, 765, 811, 1144,
1148-1149, 1152, 1232

one-to-one, 482, 488-489, 825
piecewise, 1007
polynomial, 27-34, 36, 38, 43, 50-51, 92-93, 96,

98-99, 131, 145, 153, 218, 242, 245, 253,
277, 282, 300, 310, 393, 535, 541, 568,
595, 743-744, 756, 808, 812-813,
913-914, 917, 984

product, 23, 26, 31, 37, 69, 74, 92, 102, 121,
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124-127, 130, 133, 143, 145, 164, 170,
196, 218, 232, 253, 282, 310, 472, 521,
528, 533, 539, 568, 605, 608, 725, 796,
812, 854, 863, 895-896, 913-914, 917,
946-947, 957, 965, 977, 1031, 1049,
1058, 1061, 1106, 1124-1125

quadratic, 7-8, 11, 17, 19-20, 27-28, 32, 43, 50, 52,
58, 62, 107, 145, 155, 182, 200, 204,
219, 261, 392, 537, 539, 568, 639, 989

quotient, 25-26, 30-31, 69, 73-74, 76, 93, 102, 124,
126-127, 135, 140-141, 171-172, 185,
189-190, 218, 232, 267, 282, 293-294,
296, 298-299, 501, 535, 568, 796, 854,
913, 917, 925, 1124, 1148

rational, 25, 30-33, 43, 50-51, 69, 89, 93, 99,
101-102, 107, 138-141, 143, 146,
181-182, 188, 191, 282, 478-479,
481-482, 484, 486, 535, 537, 539, 541,
543, 568, 743-744, 764-765, 813, 948,
1110, 1149

square, 2-3, 5, 9-12, 14, 18-20, 22-23, 25, 51-52,
96, 98, 101, 115, 138, 140, 164, 169, 186,
188, 204, 218, 234, 269, 310, 314, 413,
510, 515, 543-544, 568, 744, 802, 818,
873, 902, 959-960, 975, 980-982,
990-991, 996, 1007, 1125

sum, 23, 26-27, 51, 71, 73-74, 92, 102, 121-122,
124-125, 164, 232, 282, 310, 317-318,
346, 348, 357-358, 367, 386, 389,
392-393, 410, 451, 515, 535, 537, 539,
568, 639, 722, 743, 756, 764, 780, 792,
794, 803, 810, 812-813, 908-909,
913-914, 917, 930, 946, 953, 959,
977-978, 991, 996, 997-998, 1007, 1031,
1059, 1096, 1106-1107, 1110-1111

transcendental, 34-35, 37, 39, 41, 43, 50, 200, 516,
607, 744, 764, 786, 802, 813

translations, 825
trigonometric, 4, 34-36, 38-41, 43, 50-51, 76, 88,

93, 102, 107, 135, 169-177, 179-180,
192, 218-219, 226, 232, 293, 317, 375,
393, 488-489, 491, 493, 495, 497-501,
506, 510, 515, 528, 532-533, 535,
543-545, 568, 792-793, 802-803, 1061,
1091-1096, 1125, 1130, 1232

vertical line test, 15, 50, 1123
Fundamental identity, 499, 528, 532, 680, 1092,

1095-1096
Fundamental theorem of algebra, 27-28

G
Gallons, 111, 362, 424, 614, 1091
Gamma function, 559-560, 565-566, 810
General solution, 320, 325, 576-578, 586, 599, 601,

605, 608-611, 617-618, 626, 633-636,
638-640, 642, 644-648, 650, 653-654, 804,
807, 809, 811, 1192

Geometric interpretation, 80, 236, 308, 316, 555, 557,
819-820, 829, 837, 840, 895, 922-924, 965,
975, 993, 1079, 1114-1115

Geometric mean, 983
Geometric series, 734-736, 740-743, 765-766, 771,

775-777, 780, 785, 789-790, 792, 794, 801,
806, 812-813, 1072, 1207

defined, 1072
infinite, 734-736, 740-743, 765-766, 771, 776-777,

780, 790, 792, 794, 806, 812-813, 1072
Geometry, 1, 24, 34, 45, 54, 76, 120, 148, 207,

282-283, 313, 395, 413, 659-664, 824-825,
853-854, 879, 973, 978-979, 1084-1085,
1089, 1119

Grams, 2, 131-132, 417, 423-424, 612, 629, 1181
Graphing calculator, 1, 16, 22, 24, 29, 33-34, 41-42,

44-45, 51, 65, 75, 88-89, 98, 101, 144,
152-153, 182, 231, 262, 265, 280, 290, 300,
359, 388, 478, 540, 599, 631, 681, 697, 726,
756, 793

and limits, 280
Graphs, 1-2, 4, 6, 8, 10, 12-32, 34-36, 38, 40-42,

44-46, 48, 50, 52, 61, 76, 90, 92, 101, 103,
115, 127, 139-140, 152, 171-172, 182-183,
188, 192-195, 200, 204, 209, 215, 219, 231,
236, 257, 261, 263, 269, 278, 282, 288, 292,
296, 300-301, 306, 309-310, 316, 326, 330,
359, 364, 380-383, 386, 391-392, 408-409,
430, 433, 440, 442-443, 446, 471-472, 476,
478, 481, 483, 488, 492, 500, 506, 511, 513,
518-519, 521, 523-524, 528, 535-537,
559-560, 593, 601, 636, 644-645, 649, 655,

657, 664, 667-671, 673, 676, 680-681, 715,
718, 743, 747, 756, 782-783, 787, 790, 793,
797, 799, 808-810, 825, 882, 884, 886,
895-896, 902, 909, 929, 932, 942, 993-994,
1031, 1046, 1091, 1094, 1123, 1130, 1137,
1149, 1163, 1170-1172, 1177, 1185,
1205-1206, 1208

asymptotes of, 30, 292
of intervals, 4
of inverse functions, 488
of straight line, 446

Greater than, 83, 92, 208, 246, 298, 377, 562,
590-591, 616, 625, 706, 714, 739-740, 780,
936, 996, 1080

Growth, 34, 38, 40, 47-49, 111, 118, 219, 314, 356,
362, 484, 510, 576, 578-580, 582, 585-587,
591, 603-604, 619-620, 623-624, 626, 628,
641, 650, 653-655, 775

exponential, 34, 38, 40, 219, 484, 510, 578-579,
582, 585, 619, 653

limited, 591, 624
Growth rate, 579, 603-604, 624, 628, 655

H
Half-angle identities, 380, 528

using, 528
Half-life, 580-581, 585-586, 655
Half-open interval, 4, 26, 1081-1082
Hemisphere, 217, 234, 254, 467, 475, 587, 891, 941,

1037, 1047, 1055
Homogeneous differential equation, 634, 636, 638,

647-648
Horizontal asymptotes, 283, 292, 308, 1127

graphing, 308
Horizontal axis, 47, 715, 1034
Horizontal line, 13, 39, 62, 87, 97, 153, 283, 391, 434,

478, 489, 491, 511, 590-591, 622, 630, 672,
699-701, 716, 720, 919, 1014, 1084, 1087,
1152, 1203

graph of, 13, 62, 87, 97, 153, 391, 489, 491, 672,
700, 720

slope of, 13, 701, 716
Horizontal lines, 13, 70, 86, 283, 386, 389, 440, 724,

1010, 1064, 1086
graphing, 13
test, 440

Hours, 20, 23, 46, 109, 177, 181-182, 371, 484, 510,
587, 606, 1190

Hyperbola, 24, 499, 511, 662-665, 706-712, 714-715,
717-718, 720, 863, 883-885, 893, 898, 904,
975, 980, 982, 1117, 1134, 1202, 1204,
1213, 1224

defined, 499, 706, 714, 863, 1117
eccentricity, 662-664, 706, 712, 714-715, 717-718,

720
equation of, 664-665, 706-707, 709, 712, 714-715,

717-718, 883-885, 898, 1117
finding, 718, 980, 1117
graphing, 24
reflection property, 706, 711, 717, 1134
writing, 718

Hypotenuse, 175, 200, 220, 225, 822, 1084, 1091,
1120

I
Icosahedron, 817
Identity, 77, 121, 146, 187-188, 193, 195, 232, 327,

340, 380, 412, 490, 492-493, 498-499,
503-504, 506, 515, 528-532, 537, 543-544,
546, 573, 576, 680, 688, 692-694, 701, 716,
735, 753, 756, 803-805, 807, 809, 837, 842,
869, 887, 1072, 1092, 1095-1096, 1101,
1152

defined, 187-188, 195, 490, 493, 498-499, 504,
756, 869, 1072, 1092

property, 121, 498, 701, 716, 1101
Image, 815, 957, 974, 1057-1060, 1062, 1064-1065,

1069-1070, 1072
Imaginary part, 211, 413
Implicit differentiation, 194-203, 218-220, 267, 310,

497, 868, 878, 955
Improper integrals, 554-559, 561, 563, 565-567, 570,

758
Inches, 11, 40, 118, 166, 202, 222, 228, 256, 424, 448,

468, 510, 568, 655, 802, 1082-1083, 1150,
1153, 1158, 1181

Increasing function, 182, 191, 235-236, 240-242, 267,
269, 307, 335, 341, 405, 477-478, 480,

482-483, 579, 683, 866, 1024
derivative and, 182

Indefinite integral, 316-317, 320, 354, 356, 373-374,
535-537, 543, 554, 577, 608

Independence, 1140
Independent variable, 3, 5-6, 9, 106, 108-109, 114,

119, 121, 124-127, 130, 135, 139, 141,
156-158, 164, 180, 194, 196, 226, 231-232,
317, 319, 345, 353, 368, 428, 439, 449,
453-454, 478-479, 576-577, 585, 599, 602,
605, 631, 680, 780, 907, 920, 927, 943, 946,
952, 959-960, 1137

Independent variables, 50, 115, 156, 164, 825,
900-902, 908, 919, 925-926, 937, 943, 948,
953-954, 957, 959, 961, 972, 976, 979, 989,
993, 995, 1066, 1137

Indeterminate forms, 293, 295, 297, 299, 301, 303,
305-308, 575, 797, 800, 812

Index of summation, 345, 804-807, 811, 1135
defined, 345, 811

Indicated sum, 361
Inequalities, 52, 78, 84, 147, 330, 336, 359, 407, 460,

750, 760, 764, 773, 893, 1008, 1010, 1012,
1020, 1022-1023, 1025-1026, 1039-1041,
1051, 1053, 1069, 1079-1083, 1102, 1110,
1112

absolute value, 359, 1080, 1083
defined, 78, 147, 330, 1020, 1069, 1080-1081,

1083, 1110
interval notation, 1083
polynomial, 750
properties of, 1010, 1012, 1079-1081, 1083
quadratic, 52
rational, 764, 1079, 1110

Inference, 337, 589
Infinite, 16, 36, 41, 78, 82, 87, 91, 93-96, 102,

280-282, 295, 307-309, 515, 527, 555-558,
561, 566-567, 570, 576, 721-744, 746, 748,
750, 752, 754, 756-766, 768-772, 774,
776-780, 782, 784, 786-788, 790, 792, 794,
796, 798, 800, 802, 804-806, 808, 810,
812-815, 1072, 1102, 1104-1105, 1131, 1233

geometric series, 734-736, 740-743, 765-766, 771,
776-777, 780, 790, 792, 794, 806,
812-813, 1072

sequences, 722-731, 736-737, 765, 812, 1102,
1105

series, 515, 721-722, 724, 726, 728, 730, 732-744,
746, 748, 750, 752, 754, 756-766,
768-772, 774, 776-780, 782, 784,
786-788, 790, 792, 794, 796, 798, 800,
802, 804-806, 808, 810, 812-815, 1072,
1233

Infinite sequence, 722, 728, 732-733, 812-813, 1102
Infinity, 28, 82, 256, 263, 280, 282, 300, 308-309,

556-558, 566, 713, 725, 728, 739, 757-758,
1081

Inflection point of, 272, 277
Inflection points, 258, 270, 272-275, 277-280,

284-285, 288-289, 291-293, 297, 301,
307-310, 373, 684-685, 1163-1169,
1171-1173, 1177, 1198

Initial condition, 320, 576, 585-586, 596, 598-600, 603,
605, 609-610, 617, 630, 654-656

Initial point, 212, 588, 591-593, 635, 818, 831, 837,
840-841, 856, 866, 878

Inputs, 488
Instantaneous rate of change, 109-111, 113-114, 116,

118-119, 218, 919, 921, 926-927, 963-964,
966, 970, 993, 1150

defined, 114, 116, 119, 218, 919, 926-927
Integers, 4, 16, 25, 29-31, 75-76, 138-140, 144, 181,

193, 333-334, 339, 407, 413, 476, 527, 529,
534, 565, 567, 659, 673, 722-723, 736, 750,
757-758, 765, 773, 800, 815, 894, 913, 929,
992, 1079, 1190, 1223

comparing, 193, 765
graphs of, 25, 29-31, 139-140, 193, 476, 673, 929
multiplying, 815

Integral exponents, 126, 139
negative, 126, 139

Integral sign, 345, 357, 1113
Integrals, 47-48, 314, 317, 326, 329, 345, 348,

352-355, 357-362, 367, 370, 372, 375-377,
380-381, 384, 389, 391, 393, 397, 400,
405-406, 409-411, 413, 415, 425, 433-434,
441, 448, 457, 460, 463, 468, 470, 472-473,
483, 486, 495, 499-501, 504, 506, 508-510,
512-513, 516-519, 522, 526-534, 539,
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542-544, 547, 549-551, 553-559, 561, 563,
565-571, 573, 599, 605, 608, 611, 690-691,
695, 721, 758, 761, 794, 800-802, 812,
856-857, 862, 896, 997-1018, 1020-1048,
1050, 1052, 1054, 1056, 1058, 1060-1062,
1064-1074, 1076, 1110, 1128, 1130-1131,
1138-1139, 1231

convergent, 565, 794
definite, 329, 345, 354, 377, 380, 389, 393,

409-410, 470, 495, 516, 522, 554,
556-557, 570, 1128

divergent, 565
evaluating, 361, 410, 499, 510, 526, 534, 568, 570,

605, 691, 1012, 1048, 1070, 1074
improper, 554-559, 561, 563, 565-567, 570, 758,

1024-1025
indefinite, 317, 326, 329, 354, 375, 377, 380,

409-410, 512, 522, 543, 554, 605, 608,
611, 857

Integrand, 345, 353, 355, 365, 367-368, 373-375, 378,
405, 408, 441, 448, 517, 521, 526, 528-529,
531, 533-534, 538, 540, 543, 550, 555, 558,
566, 568, 572-573, 802, 865, 1002,
1066-1067, 1072, 1113, 1177, 1181

Integration, 314, 345-346, 348, 351, 362, 367,
372-375, 377, 379, 381, 387, 393, 395, 397,
399, 401-403, 405-407, 409, 413, 427-428,
441-442, 448-449, 452, 454, 463, 495,
515-516, 518, 520-528, 530, 532, 534-536,
538-540, 542, 544-546, 548, 550, 552, 554,
556, 558, 560-562, 564, 566-568, 570, 572,
577, 584, 600-601, 608-610, 677, 679, 691,
694, 698, 788-794, 801, 812-814, 856-858,
895, 997, 1001, 1003, 1008-1015,
1017-1023, 1025-1027, 1034, 1040-1041,
1043, 1046, 1049-1055, 1057, 1062, 1070,
1072-1075, 1113, 1129, 1138

and area, 409, 1062
by substitution, 373-375, 377, 379, 381, 409, 521,

568, 570, 691
constant of, 518, 521-522, 857
factor, 375, 402, 521, 523, 532, 536, 538-539, 545,

554, 572, 601, 608-610
formulas for, 375, 399, 895
limits of, 346, 377, 442, 449, 452, 556, 558, 570,

677, 694, 812, 1001, 1015, 1021, 1023,
1025, 1041, 1049, 1057, 1113

numerical, 393, 395, 397, 399, 401-403, 405, 407,
409, 515, 540, 554, 561-562, 698, 792,
794, 813-814, 1070

region of, 367, 406, 428, 441, 527, 534, 542, 677,
679, 801, 1008-1010, 1012, 1034, 1040,
1055, 1070, 1072, 1075

Integration by parts, 521-523, 525-527, 560, 567-568,
570

repeated, 523, 525
Intercepts, 1, 27, 30, 32, 36, 129, 151, 186, 258-259,

261-262, 285-286, 291-292, 367, 703-704,
707, 718, 720, 883, 902, 945, 995, 1143,
1166-1167, 1172-1173, 1193, 1213-1215

Interest, 29, 39, 53, 113, 187, 229, 307, 512, 561, 567,
582, 585-586, 604, 606, 618, 656, 723, 926,
931, 975, 1013

simple, 585, 604, 931, 1013
Interest rate, 307, 561, 567, 582, 586, 606, 656

annual, 307, 561, 567, 582, 586, 606, 656
Intermediate value theorem, 97-98, 100-101, 184,

1101, 1149, 1156
Interpolation, 194, 214
Intersecting lines, 849, 885
Interval notation, 4, 50, 1083

defined, 4, 50, 1083
Intervals, 4-5, 8, 24, 31, 89, 92, 96-97, 101, 111, 115,

127, 143, 146-147, 149, 151, 153, 155, 181,
241-242, 244, 246-249, 256-260, 262-264,
272-275, 284-286, 301, 309-310, 362-363,
367, 372, 406, 420-421, 423, 425, 436,
493-494, 594, 668, 688, 782, 796, 865, 903,
1005, 1007, 1051, 1081-1082, 1103-1104,
1123-1124

of convergence, 782, 796
Inverse, 40, 48, 185-188, 191-193, 218, 243, 362, 367,

408, 480-481, 484, 488-491, 493-495,
497-498, 502-506, 509-510, 543, 545, 554,
575, 642, 666, 683, 744, 753-754, 812, 814,
818, 866, 873-875, 1064, 1070-1071, 1074,
1136

functions, 40, 48, 185-188, 191-193, 218, 243, 367,
481, 484, 488-491, 493, 495, 497-498,

502-506, 509-510, 543, 545, 744, 812,
818, 873

Inverse functions, 185-188, 192, 218, 481, 488, 490,
495, 497

defined, 186-188, 192, 218, 481, 488, 490
finding, 192
one-to-one, 488
trigonometric, 192, 218, 488, 495, 497

Irrational exponents, 181, 481
Irrational number, 40, 75, 182, 689, 1079, 1093
Irrational numbers, 728, 736, 1149
Isosceles triangles, 433, 941
Iterated integration, 1003, 1008, 1011, 1013, 1017,

1026, 1046, 1073

K
Kepler, Johannes, 480, 817, 873

L
Lagrange multipliers, 973-979, 981, 983, 993-994,

996, 1138
Leading coefficient, 32, 253, 633

defined, 32
test, 253

Least common denominator, 538
equations, 538

Length, 5-7, 9-12, 19, 34, 42, 45, 51-52, 60, 63, 96,
111, 115, 118, 145-146, 156-158, 161-163,
165-167, 169, 175, 179, 181, 202-204, 208,
216, 220-221, 226, 234, 251-252, 254-255,
270, 309-311, 314, 329-332, 335, 337,
340-342, 344, 346-347, 350, 353, 356-357,
364, 382, 384, 386, 393, 395, 399, 401, 404,
406-407, 414, 416-420, 422-424, 426-427,
435, 438, 440, 446-451, 453-458, 460-463,
465-467, 469-470, 472-473, 477, 498,
506-508, 510-512, 534, 548, 553, 567, 572,
588, 620, 668, 674, 682, 688, 690-698,
704-706, 712, 715-719, 722, 738, 802,
818-823, 826-828, 831, 833, 835, 837-838,
841, 856, 864-867, 869, 874, 876-878,
894-897, 899-901, 907, 916, 937, 941, 945,
950, 967, 983, 996, 997, 1002, 1004-1005,
1007, 1019-1020, 1028-1029, 1032-1033,
1036, 1038-1040, 1047, 1051, 1065, 1073,
1076-1077, 1080, 1083-1084, 1090-1091,
1093, 1096, 1107-1109, 1111-1113,
1119-1120, 1129, 1153, 1160, 1164, 1188,
1193, 1199, 1203, 1218

Like terms, 648
Limiting value, 56, 58, 67, 73, 84, 414, 591
Limits, 53, 65-71, 73-89, 91, 93-95, 102-103, 106, 119,

121-122, 124, 133, 143, 148, 170, 220, 259,
280-282, 284, 290-291, 293, 298-300, 303,
306, 308-309, 311, 336, 340, 346, 348, 354,
377-378, 385, 409-410, 442, 449, 452, 460,
470, 472, 480-481, 483, 487, 495, 506, 556,
558, 570, 575, 611, 677, 691, 694, 724-726,
737, 797, 812-813, 852-853, 857, 863, 895,
900, 910-920, 927, 962, 993-994, 1001,
1003, 1010, 1014-1015, 1021-1023, 1025,
1041, 1043, 1048-1049, 1052, 1054, 1057,
1067, 1112-1113, 1124, 1148

algebraic, 73, 75, 102, 106, 143, 293, 299, 495,
895

at infinity, 280, 282, 308-309
existence of, 81, 102, 309, 346, 409, 912, 918, 993
of constant, 913
of integration, 346, 377, 409, 442, 449, 452, 556,

558, 570, 677, 694, 857, 1001, 1010,
1014-1015, 1021, 1023, 1025, 1041,
1049, 1057, 1113

of rational functions, 282
properties of, 409, 895, 910, 1010

Line, 3, 9, 12-13, 15-16, 19-23, 27, 31-32, 39, 41-42,
45-51, 54-64, 70-73, 75-76, 81-82, 87, 93,
95, 97-99, 102-103, 106-110, 112-113,
115-117, 120, 123, 128-130, 142-146, 148,
151-154, 164-165, 169, 171, 174, 177-178,
183, 186, 192, 195-197, 199-203, 207, 218,
220-221, 223, 225-227, 230-231, 236-238,
241, 243, 245, 248, 253-254, 256-257,
259-260, 267-268, 270, 275-277, 280-287,
290, 296, 299, 302-303, 305, 311, 314, 321,
325, 328-330, 362, 369, 371-372, 383, 385,
389, 391-392, 398, 422-423, 425, 427, 431,
434, 441-442, 444-450, 455-457, 463, 467,
469, 475-476, 478-481, 488-494, 497, 502,

507, 510-512, 521, 526, 554-556, 565, 586,
588-592, 596, 599, 601, 619, 622, 630, 635,
638, 659-662, 664-665, 667, 672-673, 677,
682-688, 699-703, 706-707, 711-712, 714,
716-720, 724, 728, 742, 744-746, 761, 783,
786, 818-819, 823-824, 826-827, 831-832,
834, 841-850, 853-855, 859, 863-864,
866-867, 871, 878, 880, 882-883, 886-887,
896-897, 900, 915, 917-919, 922-924, 928,
930, 933, 935, 938, 941-942, 956, 969-970,
972-973, 981, 983, 990, 994-996, 1009,
1012, 1014-1015, 1017, 1023, 1027,
1029-1030, 1033, 1035-1038, 1041-1044,
1048-1049, 1054-1055, 1075-1077,
1079-1081, 1084-1091, 1096, 1106,
1114-1115, 1117, 1123, 1125, 1128, 1140,
1143, 1145, 1150, 1152, 1154, 1168, 1198,
1201-1203, 1211, 1213, 1215, 1217-1218,
1223, 1231

horizontal, 13, 19-20, 22, 39, 47, 60, 62-63, 70, 72,
87, 97, 102, 112-113, 115, 117, 120,
129-130, 142, 144, 148, 152-153,
177-178, 201-202, 220-221, 237, 245,
256-257, 259-260, 268, 275, 283-287,
290, 296, 302-303, 305, 389, 391-392,
434, 457, 463, 467, 476, 478, 489-491,
511, 588, 590-592, 596, 622, 630, 672,
683-684, 687-688, 699-702, 716, 720,
724, 834, 845, 859, 863-864, 880, 883,
886, 897, 919, 923, 930, 933, 941, 973,
994-996, 1009, 1014, 1084, 1086-1088,
1090, 1150, 1152, 1154, 1168, 1198,
1203, 1215, 1217, 1223

of symmetry, 469, 700-701, 1029, 1035-1036,
1054-1055, 1076, 1084

point-slope equation of, 59-60, 123, 1087
secant, 54-55, 57-58, 102, 108-109, 171, 218, 299,

493-494
slope of, 13, 21, 46-47, 49, 54-61, 63, 72-73, 76,

81, 102-103, 108, 110, 112, 123, 145,
171, 183, 195-196, 207, 231, 236, 586,
592, 687-688, 701, 716, 922-923, 928,
1085-1086, 1088, 1090-1091, 1114, 1198

slope-intercept equation of, 13, 660
tangent, 19-20, 45-49, 54-64, 71-73, 75-76, 81-82,

87, 95, 102-103, 106-110, 112, 115-116,
120, 123, 128-130, 142-146, 148,
151-152, 169, 171, 177-178, 183, 192,
195-197, 200-202, 207, 218, 220-221,
223, 226-227, 230-231, 236-238, 243,
245, 254, 256-257, 259-260, 267-268,
270, 275-277, 285-286, 299, 311, 314,
362, 392, 398, 446, 489-490, 497, 586,
588, 596, 635, 659, 664-665, 682-688,
701, 706, 711, 716-720, 744-746,
853-854, 863, 867, 871, 883, 896-897,
922-924, 928, 930, 933, 956, 969-970,
972-973, 994-996, 1023, 1048, 1055,
1076, 1088, 1091, 1096, 1114, 1125,
1150, 1152, 1154, 1198, 1203

Line segments, 41-42, 98, 151, 329, 446-447, 510,
588-589, 592, 819, 1096, 1128

Linear combination, 121, 631-633, 636, 638-640, 650,
821, 828, 979, 995

Linear equations, 607, 609, 611, 613, 615, 617, 631,
633, 654, 848-849, 983, 1089, 1132

parallel lines, 849
slope, 654, 1089, 1132
system of, 613, 849, 983

Linear functions, 605, 616, 639
Linear relationship, 166, 1091

defined, 1091
Linear systems, 1089
Linearization, 233
Lines, 11-13, 21, 30, 32, 45-47, 50-51, 54-59, 61-63,

70-71, 76, 78, 81, 86-87, 102-103, 106, 109,
115, 129, 141, 143, 145-146, 157, 169,
177-178, 183, 201, 219, 223, 269-270, 281,
283, 289, 310, 314, 343, 382-384, 386,
388-389, 429, 434, 440, 510, 588, 653, 660,
664-665, 674-677, 683-684, 706, 708-711,
716-718, 724, 835, 843-845, 847-850, 880,
884-885, 895-897, 903-905, 915, 917, 922,
924, 928, 931, 942, 971, 980, 983, 990-991,
994, 1010, 1012, 1029, 1064, 1071-1073,
1075, 1084-1091, 1133, 1149, 1152, 1173,
1193-1194, 1204, 1211, 1216-1217, 1220,
1223-1224

graphing, 13, 45, 51, 388, 1089, 1091

1240

www.konkur.in



parallel, 13, 21, 51, 157, 310, 588, 664-665, 711,
843-845, 847-850, 880, 884-885,
895-897, 922, 1012, 1087-1091, 1204,
1211, 1216

perpendicular, 21, 51, 54, 59, 62, 146, 157, 429,
510, 660, 664-665, 706, 835, 843, 845,
847, 849-850, 896-897, 971, 1029, 1084,
1087-1091, 1193, 1211

slope of, 13, 21, 46-47, 54-59, 61, 63, 76, 81,
102-103, 145, 183, 716, 922, 928,
1085-1086, 1088, 1090-1091

Liters, 2, 24, 118, 131-132, 371, 405, 416-417,
421-422, 424, 487, 587, 612, 952, 1181

LN key, 40, 76, 403
Local maximum or minimum, 149, 652, 933, 939, 949,

973
Location, 1, 33, 101, 112, 117, 157, 162, 177, 204,

307, 363, 456, 464, 468, 825, 841, 852, 855,
900, 904, 929-930, 936, 950, 964, 971, 991,
1114

LOG key, 40, 193, 408, 485
Logarithmic functions, 34, 40-41, 51, 180-181, 183,

185, 187, 189, 191, 193, 219, 308, 393, 510,
1123

common, 40, 185
defined, 34, 181, 187, 189, 219
evaluating, 510
graphing, 34, 41, 51, 308
natural, 40, 185, 189

Logarithms, 40, 76, 185, 187, 189-192, 218-219, 406,
476, 478-480, 482, 485-486, 509-510, 515,
538, 543, 554, 757, 1155

defined, 76, 187, 189, 192, 218-219, 476, 480, 486
power rule, 218
quotient rule, 185, 189-190, 218

Logistic equation, 591, 598, 621-625, 627-630, 653
Logistic model, 623

logistic equation, 623
Long division, 287-288, 536, 554, 568, 570, 572, 736,

801
Loops, 392, 668-669, 673, 676, 678, 689, 697, 719
Lower bound, 313, 362, 1101-1103

M
Maclaurin series, 751-753, 755-757, 786-787,

791-793, 796-797, 800-801, 811-814, 1206
Magnitude, 25, 30, 41, 281, 296-297, 308, 324, 327,

457, 483, 494, 582, 589, 653, 749, 767,
794-795, 798, 818, 823, 827, 871, 1212

Mandelbrot set, 659
Marginal cost, 23, 1144
Mass, 136, 138, 155, 220, 307, 321, 416-417,

423-424, 468-469, 510, 560, 567, 604, 613,
615, 618, 641-654, 657, 742, 818, 841, 863,
874, 876, 998, 1028-1030, 1032, 1034-1036,
1038-1041, 1045, 1053-1057, 1072-1076,
1079, 1119, 1181, 1227-1231

Mathematical induction, 527, 729
defined, 729
proof by, 729

Mathematical models, 163, 314, 576, 624
Matrices, 957

defined, 957
equations, 957
row, 957

Matrix, 957-959, 961-962, 993, 1070, 1137
Maxima, 146-149, 151, 153, 155, 174, 248, 257,

263-264, 278, 292, 310, 932, 996, 1163,
1167-1168, 1222-1223

absolute, 149, 151, 153, 263, 278, 932
Maximum, 6-7, 9, 12, 19-20, 23, 28-29, 34, 43-44, 60,

63, 114, 117-118, 146-167, 169, 174-176,
179, 185, 193, 203, 208, 218-221, 223, 228,
234, 237-238, 246-253, 255, 258-261, 263,
265, 268-269, 273-274, 277-278, 280, 285,
288, 292, 298, 301, 306, 308, 310-311,
324-325, 327-328, 350, 359, 365, 372-373,
389, 402-403, 408, 411, 423-424, 446, 498,
507, 579, 591, 615-616, 618-619, 622, 629,
631, 652, 655-656, 702, 705-706, 716, 719,
862-864, 877, 885, 891, 899-900, 905,
931-942, 945, 949-950, 967, 971-981,
983-986, 989-990, 993-996, 998, 1010,
1013, 1020, 1035, 1039, 1101, 1104,
1107-1108, 1110-1112, 1125, 1138, 1153,
1155, 1157, 1159-1173, 1177, 1184, 1192,
1204, 1212, 1219, 1221-1224

Maximum profit, 159
Maximum-minimum problems, 156, 174, 219, 249,

269, 308, 899, 937, 976, 993-994
Mean, 20, 23, 45, 82, 86-87, 100, 110, 142, 170, 182,

205, 226, 235-241, 243-245, 286, 308-309,
316-317, 354, 364, 367, 406, 447, 489, 519,
543-545, 562-564, 568, 637, 698, 705, 722,
748, 763, 798, 802, 807, 829, 939, 949, 983,
996, 1001, 1006, 1063, 1079, 1111,
1113-1115, 1118, 1126, 1159

defined, 20, 100, 142, 182, 226, 240, 243, 245,
286, 354, 367, 489, 562, 564, 637, 939,
996, 1006, 1063, 1111, 1114-1115, 1118,
1159

finding, 20, 309, 763
geometric, 45, 86, 236, 308-309, 316, 829, 983,

1079, 1114-1115, 1126
harmonic, 763
quadratic, 20, 182, 568, 637

Means, 3, 39, 43, 53-55, 65, 74, 84, 91, 95, 127, 140,
148, 155, 176, 205-207, 210, 231, 235, 252,
283, 295, 313-314, 345, 367, 381, 393, 414,
418, 468, 471, 476, 480, 493, 519, 533, 547,
559, 579, 582, 590-591, 595, 632, 649, 659,
665, 669, 700, 705, 711, 724, 731-732, 750,
752, 773, 775, 786, 793, 798, 808, 822, 825,
827, 839, 845, 851, 880, 887, 916, 920, 937,
947-948, 964, 969, 979, 990, 1000, 1003,
1008, 1017, 1028, 1040-1041, 1059, 1061,
1063, 1069, 1080, 1107-1108, 1116, 1129

Measures, 45, 643, 746, 841, 858, 871, 898, 906, 947,
950

Median, 1091
Meters, 47, 118, 252, 456-457, 464, 642, 655, 712,

832, 940, 968, 972, 995, 1119, 1228
Midpoint, 36, 165, 216, 254, 342-344, 350-352,

395-409, 412, 417, 423, 438, 440, 451, 463,
469, 474-475, 660, 683, 688, 799-800, 824,
826, 834, 896-897, 950, 999-1000,
1003-1005, 1007, 1011, 1020, 1037, 1085,
1091, 1103, 1112, 1180, 1225

Midpoint formula, 1085, 1091
Midpoint Rule, 1180
Minima, 146-149, 151, 153, 155, 174, 248, 253, 257,

261, 263-264, 278, 292, 310, 932, 996, 1163,
1167-1168, 1172, 1222-1223

absolute, 149, 151, 153, 253, 263, 278, 932
Minimum, 19-20, 23, 28, 43, 146-158, 162-165, 167,

169, 174, 179, 193, 203, 218-221, 237-238,
246-255, 258-261, 263, 265, 268-270,
273-274, 276, 278, 280, 287-288, 292-293,
304, 307-308, 310-311, 359, 365, 372-373,
389, 423, 445, 512-513, 526, 631, 652,
705-706, 714, 716-717, 719, 885, 899-900,
905, 931-942, 949, 971, 973-979, 981,
983-991, 993-994, 996, 1010, 1013,
1097-1098, 1107-1108, 1110, 1112, 1125,
1148, 1153, 1155, 1157, 1159-1166, 1168,
1170-1173, 1177, 1181, 1184, 1204, 1212,
1219, 1221-1224, 1232

Minutes, 111, 371, 424, 587, 602, 618, 655, 761, 832,
972

Mixture problems, 612, 617, 653-654
Mode, 76, 670, 681, 726, 915, 1093, 1124
Models, 1-2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,

28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
52, 163, 176, 314, 576-577, 579, 581-583,
585, 587, 614, 619, 621, 623-625, 627, 629,
642

defined, 2, 4, 20, 26, 32, 34, 50
radioactive decay, 581

Multiples, 27, 36, 95, 666, 680, 683-684, 780, 844,
913, 1143, 1148

Multiplication, 26, 31, 37, 121, 242, 249, 599, 607,
609-610, 691, 712, 736, 744, 796, 812,
819-821, 827, 829, 833, 839, 895, 957-958,
962

Multiplicity, 537-539, 541, 669

N
Natural logarithms, 76, 190, 406, 515, 757

defined, 76
Negative exponent, 39
Negative exponents, 318
Negative integral exponents, 126
Negative numbers, 1079, 1083-1084
Newton, Isaac, 2, 9, 48, 105, 205, 352, 682
Nonhomogeneous differential equation, 647-648, 650,

653
nonlinear, 227, 631, 937, 983, 1090

solving, 1090

Nonlinear functions, 631
Notation, 4, 20, 25, 37-38, 50, 54, 76, 88, 106,

108-109, 115-116, 119-120, 122, 132, 137,
168, 176, 188, 192, 218, 225, 231-232, 266,
318, 333, 339-341, 343, 345, 349-350, 374,
384, 394, 409-410, 423, 473, 482, 489, 499,
515, 523, 599, 604, 613, 652, 689, 712,
722-723, 788, 805, 819, 821, 855, 916, 920,
925, 941, 944, 946, 951, 961, 963, 989-990,
993, 1003, 1032, 1045, 1066, 1080-1081,
1083, 1113, 1123, 1138

exponential, 38, 50, 188, 218, 409, 482, 515
interval, 4, 20, 50, 116, 176, 192, 218, 231,

340-341, 345, 350, 384, 409, 423, 489,
613, 722, 1081, 1083, 1113

Leibniz, 225, 231, 345
limit, 54, 76, 88, 106, 116, 340-341, 345, 349-350,

409-410, 423, 916, 920, 925, 951, 963,
993, 1003, 1045, 1113

set, 4, 76, 176, 341, 423, 652, 722, 916, 1066,
1081, 1083

sigma, 333
summation, 333, 339, 343, 345, 409-410, 515, 788,

805, 1113
nth partial sum, 733-735, 737-738, 740-743, 757,

760-761, 772, 781
nth root, 216
nth term, 722-723, 732, 734, 738, 786

defined, 723, 786
Number line, 221, 248, 1079, 1084
Numbers, 2-5, 9-10, 23, 27, 52, 59, 63, 89, 91,

100-101, 118, 120-121, 133, 147, 150, 161,
164-165, 167, 176, 182, 184, 186, 191, 206,
211-213, 235, 244, 247, 253, 262, 283, 307,
310, 333, 341, 345, 352, 356, 363, 407,
413-414, 451, 469, 478, 480, 482-483, 485,
487-489, 498, 520, 529, 554, 559-560, 562,
581, 587, 599, 620, 627, 629-631, 655, 703,
722, 725, 728-732, 736, 739, 753, 755, 764,
767, 771, 781, 784, 794, 818-819, 821-823,
825, 829, 833, 841, 879, 894-896, 904, 916,
936, 940, 959, 979, 983, 996, 1011, 1019,
1051, 1079-1084, 1093, 1097-1098,
1101-1110, 1143, 1148-1149, 1167-1168,
1173, 1198, 1223, 1227

composite, 959
irrational, 89, 101, 182, 184, 482, 728, 736, 764,

1079, 1093, 1110, 1149
positive, 5, 23, 52, 63, 91, 100-101, 120-121, 164,

182, 186, 206, 253, 307, 310, 333, 341,
407, 413-414, 478, 480, 482-483, 485,
488, 529, 554, 559-560, 620, 627, 722,
725, 729-732, 739, 767, 771, 781, 819,
821, 825, 894, 936, 940, 983, 1019,
1079-1080, 1082-1084, 1093, 1097,
1101-1103, 1149, 1168, 1223

prime, 407, 413, 764, 1106
rational, 89, 101, 182, 191, 478, 482-483, 554, 728,

736, 764, 1079, 1110, 1149
real, 2-5, 9-10, 27, 52, 100-101, 120-121, 164-165,

167, 176, 182, 186, 211-212, 253, 262,
307, 310, 341, 413, 478, 480, 482-483,
487-489, 529, 559-560, 562, 620, 722,
725, 728-729, 731-732, 753, 755, 764,
781, 794, 818-819, 821-822, 825, 829,
833, 879, 916, 996, 1079-1081,
1083-1084, 1093, 1101-1106, 1108, 1110,
1143, 1148-1149, 1223

signed, 345, 825
whole, 9, 253, 469, 587, 732, 794, 916

Numerators, 537

O
Observational data, 714
Odd functions, 381
Open interval, 4-5, 9, 26, 65, 79, 81, 85, 92, 96,

148-149, 152-153, 156, 161, 187, 234,
237-239, 243, 245-246, 249-253, 268-270,
272, 276-277, 280, 316, 367, 598, 611, 631,
730, 793, 803, 810-811, 1081-1082,
1101-1102, 1104, 1116

Open intervals, 4-5, 92, 115, 241, 244, 247-248,
257-260, 273, 284, 286, 1081-1082

Opposites, 185, 315
Optimal, 7, 155, 166, 256, 938, 972, 979, 982, 997,

1038
Optimization problems, 149, 156-157, 159, 161,

163-165, 167, 309, 899, 931, 933, 935, 937,
939, 941, 979, 994
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Ordered pair, 665, 818, 822
Ordered triple, 879
Ordinate, 665, 1084, 1163
Origin, 13-14, 17, 21-22, 24-25, 31, 35, 63, 76, 79, 82,

92, 107, 109, 112, 141-142, 164, 167,
196-197, 201, 221, 225, 243, 248, 259, 261,
293, 299, 323, 327, 345, 424, 446, 458, 468,
510, 512, 610, 652, 661, 663-666, 668-670,
672-673, 682, 685, 687-689, 700, 702, 704,
712-713, 716, 719, 817-819, 824-825,
827-828, 842, 849-850, 854, 856, 860,
862-864, 868, 873-875, 877, 879, 885,
889-890, 894, 897-898, 901, 904, 906-907,
914-915, 917-918, 921, 930-931, 933-934,
941-942, 950, 956, 973, 975, 980-984, 986,
988, 990-992, 995-996, 1023, 1030,
1034-1035, 1038, 1042, 1047-1048, 1054,
1056-1057, 1072, 1074, 1077, 1084, 1091,
1124-1125, 1139, 1150-1151, 1194-1195,
1203, 1212-1218, 1223

coordinate system, 167, 323, 665, 712-713, 825,
873, 877, 1084

symmetry, 196, 661, 668, 700, 983, 1023, 1030,
1035, 1047, 1054, 1056-1057, 1084

Ounces, 4, 10, 23, 128, 446
Outputs, 488

P
Parabola, 17-19, 21-22, 24, 26-27, 46, 50, 52, 54,

56-60, 62-63, 72, 97, 102-104, 107, 116,
145-146, 167, 188, 194, 223, 241, 254, 292,
330, 372, 385, 389, 392, 428, 435-436, 448,
456, 466, 548, 587, 662-665, 681, 686-687,
698-703, 711, 713-720, 745, 855, 863,
868-869, 881, 883, 885, 893, 901, 906, 915,
918, 941, 982, 995, 1009, 1012, 1015, 1017,
1029-1030, 1035, 1044, 1075, 1117, 1124,
1134, 1143, 1145, 1201-1202, 1204, 1215

defined, 21, 26, 50, 54, 58-59, 97, 103, 116, 167,
188, 194, 330, 389, 392, 714, 863, 869,
901, 915, 1017, 1035, 1117

equation of, 18, 21-22, 50, 56-57, 59-60, 62, 102,
116, 456, 664-665, 686-687, 699-700,
702-703, 714-719, 869, 883, 885, 906,
1117

general form, 700
graphing, 22, 24, 681
intercepts, 27, 292, 703, 718, 720, 883, 995, 1143,

1215
reflection property, 701, 711, 716-717, 1134
vertex, 17-19, 21-22, 62, 104, 372, 392, 466, 587,

662, 700-701, 714-716, 901, 906, 941,
1143, 1145, 1201-1202, 1215

Parallel lines, 13, 21, 844, 849, 1087-1088, 1090,
1204

defined, 13, 21
vectors, 844

Parallelogram law, 819, 822, 827
Parameters, 562, 621, 657, 865, 894, 910, 1058-1059
Parametric curves, 659-660, 662, 664, 666, 668, 670,

672, 674, 676, 678, 680-698, 700, 702, 704,
706, 708, 710, 712, 714, 716-718, 720, 851,
865, 1058, 1133

Parametric equations, 680-683, 685-689, 692-693,
696-697, 717, 719, 844-845, 848-851,
853-854, 859, 862, 865-866, 870-872, 880,
896-897, 1061, 1064, 1198, 1211, 1216

defined, 851, 853, 862, 1061
writing, 681, 896, 1064

Partial derivatives, 595, 919-929, 931-936, 938-939,
942-944, 946-951, 953-955, 957-959,
961-963, 965, 968, 971, 984-986, 988-989,
992-995, 1057, 1137

finding, 932, 934, 950, 993-994
geometric interpretation of, 922-924, 965, 993
with respect to x and y, 920, 954

Partial fractions, 535-537, 539, 541-542, 554,
568-570, 572, 621, 625, 628, 654, 734, 1188

decomposition, 535-537, 539, 541, 554, 570, 734
repeated linear factor, 539, 541

Paths, 705, 841, 873, 915, 953, 955
length of, 841

Patterns, 120, 172, 211, 518, 905
Perfect square, 14, 549
Perimeter, 10-11, 51, 63, 164, 166, 221, 254, 340, 455,

693, 698, 802, 941, 981-982, 996, 1064,
1160

Periods, 648
Perpendicular lines, 21, 51, 59, 1087-1088

defined, 21, 59
graphing, 51

Plane, 1, 12-15, 47, 49, 63, 162, 171, 178, 204, 212,
216, 222, 286, 329, 339, 371, 382-383, 385,
387, 389-391, 412, 425, 427-428, 430-431,
433, 435-436, 438, 445, 449, 468-469,
471-476, 488, 509-512, 542, 566, 578, 585,
588, 595-596, 605, 627, 631, 641, 659-662,
664-665, 670, 673, 678, 680, 686-688, 694,
699, 714, 716-717, 720, 726, 818-819,
821-825, 827-828, 830, 833-834, 837, 840,
842-843, 845-852, 854-855, 859-861,
863-867, 869-871, 873, 876-891, 894-898,
899-900, 902-903, 905-907, 910, 912, 916,
918, 921-925, 927-928, 930-934, 936-937,
939-942, 949-950, 956-957, 959-960, 966,
969-974, 978-979, 982-983, 993-996, 998,
1003, 1006-1008, 1011-1029, 1031-1033,
1035-1038, 1041-1050, 1055, 1057-1077,
1084-1087, 1089, 1091, 1110, 1114, 1117,
1202, 1211, 1213, 1215-1218, 1223

Plane geometry, 979
Plots, 29, 41, 182, 292, 330, 825, 862, 905, 909, 990,

1222
contour, 905, 990, 1222

Plotting, 17, 42, 63, 177, 476, 479, 598, 602, 627, 664,
666, 668, 670, 680, 756, 889, 891, 905-906

Plotting points, 42
Point, 1-2, 6, 9, 12-25, 28-31, 35, 40-42, 45-47, 49-50,

52, 54-67, 70-73, 75-76, 79-83, 85-86,
88-98, 100-103, 105-106, 110-113, 115-116,
118-120, 123, 128-130, 133, 141-157,
160-164, 167-169, 171, 176-179, 183, 185,
187, 189, 191-193, 195-197, 200-204,
207-208, 212, 214-215, 218, 220-221, 223,
226-227, 230-231, 233-239, 242, 245-255,
260, 268-274, 276-280, 282-283, 285-287,
289-290, 292, 294-296, 298-301, 304,
307-309, 311, 316, 320-322, 328, 332,
341-343, 346, 351, 356, 362, 365, 386-388,
392, 396, 398, 414-418, 420, 422-427, 429,
431, 436-437, 443, 446-447, 450-451,
456-458, 462, 466, 468-472, 474-476, 478,
486-488, 491, 497-499, 506-508, 510,
512-513, 521, 523, 527, 548, 554-555, 558,
567, 575-576, 578, 586, 588-589, 591-593,
595-596, 599, 605, 607, 611, 622, 627,
630-631, 633, 635, 646, 659-666, 668-670,
672-674, 680-689, 696-697, 699-702, 704,
706, 711, 713-714, 716-717, 719-720, 722,
724, 728, 730, 739, 744-746, 755, 783, 800,
805, 812, 818-819, 823-827, 831, 833-834,
837, 840-845, 847-859, 861-873, 876-878,
880-883, 885, 887-891, 893-894, 896-898,
900-901, 904-908, 910-917, 919, 921-945,
947-951, 953-960, 962-976, 978-996,
998-999, 1002, 1004-1006, 1009, 1013,
1020, 1028-1030, 1032-1033, 1035,
1037-1038, 1040, 1044, 1047-1048,
1050-1051, 1053-1054, 1056-1058, 1061,
1064-1065, 1068-1069, 1076, 1079,
1084-1091, 1093, 1102, 1104-1105, 1107,
1110-1112, 1114-1117, 1124-1125,
1138-1139, 1153, 1155, 1157, 1159-1160,
1163-1165, 1167-1168, 1170, 1172-1173,
1191, 1193, 1195, 1198, 1202, 1204, 1211,
1214-1215, 1217-1219, 1221-1224

critical, 130, 149-154, 156-157, 160-161, 176, 185,
189, 214, 218, 242, 246, 248-253, 255,
260, 268-270, 272-273, 276-278, 280,
285-286, 289-290, 292, 307-309, 498,
507, 521, 523, 684-685, 689, 906, 932,
934-935, 937, 939, 942, 974, 984-996,
1160, 1163-1165

equilibrium, 591, 622
of discontinuity, 16, 22
of inflection, 308

Points, 1, 9, 13, 15-17, 21-22, 29, 32, 41-42, 49-50,
54-55, 62, 64-65, 71, 76, 86, 93, 95, 98, 100,
102-103, 115, 119, 129-130, 133, 137,
141-145, 147-151, 153-154, 156-157,
159-160, 167-168, 175-177, 182, 185,
192-193, 195-196, 201-202, 204, 215, 221,
226, 230-231, 236, 240-242, 245, 248-249,
252-260, 262, 264-265, 269-270, 272-280,
284-285, 288-293, 297, 301, 307-310,
341-342, 349, 351, 371, 373, 384-385,
390-392, 395, 401, 419, 426, 430, 433-434,
444, 446, 448-449, 460, 468, 479-480, 487,

489, 491, 507, 510, 519, 524, 526, 528, 553,
575, 588, 592-594, 597, 605, 607, 618, 624,
627-628, 631, 651, 659-661, 663-673,
676-677, 679-681, 683-685, 687-689, 699,
701-704, 706-707, 709-710, 714, 716, 718,
720, 724, 726, 728, 744, 748, 819-828,
833-835, 837, 840-846, 848-850, 856, 860,
864, 867-870, 873-874, 877-880, 884,
887-888, 891, 893, 896-898, 899, 901-902,
905-907, 911-912, 914-916, 918-919,
931-937, 939, 941-942, 947, 956, 963, 967,
973-996, 998, 1004-1007, 1010, 1012-1013,
1015-1016, 1022, 1026, 1029-1030, 1040,
1044, 1048, 1053, 1056, 1064, 1069, 1072,
1076-1077, 1079, 1084-1087, 1090, 1096,
1101, 1104, 1107-1108, 1110-1113, 1115,
1125, 1143, 1150, 1154-1155, 1160,
1163-1169, 1171-1173, 1177, 1193, 1195,
1198, 1202, 1211, 1213, 1215, 1217-1219,
1221, 1223-1224

Point-slope equation, 12-13, 21, 46, 57, 59-61, 123,
1087-1088, 1115

Polar coordinate system, 713
polar axis, 713

Polar equations, 669-670, 673, 677, 718, 1067
graphing, 670

Polygons, 329-331, 336, 338, 389, 753
regular, 338
sides of, 753

Polynomial, 27-34, 36, 38, 43, 50-51, 90, 92-93, 96,
98-99, 123, 131, 145, 153-154, 160, 205,
212-213, 218, 242, 245, 253, 256-257, 259,
263, 265, 277, 279-280, 282, 290, 300, 307,
310, 393, 406, 529, 535-536, 541-542, 549,
553, 568, 570, 572, 595, 684, 743-748, 750,
754-756, 781, 797-798, 808-809, 812-813,
913-914, 917, 927, 984, 1134, 1159, 1180,
1206

Polynomial functions, 36
Polynomials, 24-25, 27-31, 33, 69, 93, 102, 107, 121,

141, 261, 263, 265, 308-309, 348, 535, 538,
549, 551, 553, 568, 570, 573, 743, 745,
747-751, 753, 755-756, 780, 787, 790, 793,
795, 802, 927, 948, 1123, 1206

defined, 25, 31, 93, 141, 756, 793, 927
degree of, 33, 568
multiplying, 753
quadratic, 27-28, 107, 261, 549, 551, 553, 568,

570, 747
Pooling, 512
Population, 21, 39, 43-45, 47-49, 109, 111-112,

118-119, 181, 219, 221, 314, 356, 362, 371,
424, 484, 510, 512, 562, 568, 576, 579-580,
585-587, 591, 598, 603-604, 606, 619-630,
653-657, 1192-1193

census, 112, 579, 623
Population growth, 49, 111, 314, 510, 576, 579, 586,

603, 619, 623
Position vector, 818, 823-824, 827, 843, 852-856,

858-863, 865, 867-869, 871-874, 876-878,
897, 963, 965, 1057, 1074, 1216

Positive integers, 31, 76, 144, 193, 333-334, 407, 476,
527, 534, 567, 659, 673, 722-723, 800, 815,
894, 929

Positive numbers, 23, 63, 164, 478, 480, 485, 554,
767, 771, 894, 940, 983, 1079, 1083-1084

Pounds, 128, 202, 424, 457, 459-460, 464-465, 467,
487, 511, 548, 619, 822-824, 832,
1082-1083, 1119, 1181

Power, 24-25, 27-28, 31, 38, 40, 48, 50, 120-121, 123,
126-128, 131, 134-136, 138-141, 146, 163,
167, 169, 176, 180-181, 185, 188, 192-193,
218, 282, 297-298, 305, 317, 319, 356, 373,
409, 420, 459, 466, 479, 481, 484, 486, 513,
524, 528, 531, 533, 537, 539, 549, 568, 587,
617, 619, 655-656, 725, 743, 754, 764,
780-804, 806-808, 810-814, 832, 834, 996,
1054, 1119, 1123, 1125, 1135

defined, 25, 31, 50, 126, 136, 138-141, 167, 181,
188, 192, 218, 459, 481, 484, 486, 617,
781, 786, 793, 808, 810-811, 814, 832,
996

logarithms, 40, 185, 192, 218, 479, 486
Power functions, 24-25, 27-28, 31, 317, 1123
Power Rule, 120-121, 123, 126-128, 134-136,

138-141, 146, 188, 218, 319, 356, 373, 409,
484, 1125

Power series, 743, 780-797, 799-804, 806-808,
810-814, 1135
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Powers, 130, 138, 181, 225, 256, 261, 318, 334, 410,
481-482, 528-529, 531, 533, 538-540, 631,
745-746, 780-781, 784, 786, 791, 795-796,
812, 1072

Prediction, 54, 106, 580
Present value, 561, 567
Price, 48, 158-159, 166, 445-446, 512, 567, 941-942,

1091
sale, 446
total, 158-159, 166, 512, 567, 941-942

Prime numbers, 407, 413, 764, 1106
Principal, 1-2, 28, 33, 225, 236, 297-298, 314, 504,

517, 642, 685, 795, 868-870, 872, 895,
897-898, 1101

Probabilities, 563, 737, 742-743
Probability, 512, 561-562, 564, 568, 570, 736-737,

742-743, 997
Product, 23, 26, 31, 37, 59, 63, 69, 72, 74, 77, 79, 92,

102, 109, 121, 124-127, 130, 133, 142-143,
145, 156, 162, 164-165, 170, 184, 196, 218,
225, 230, 232, 253, 282, 301, 310, 329, 338,
345, 373, 425, 432, 437, 457, 472-474, 521,
526-529, 533, 536, 539, 568, 583, 586, 599,
605, 608-609, 624-625, 629, 634, 660, 720,
725, 737, 796, 812, 814-815, 828-843,
846-847, 854, 863, 872, 895-898, 913-914,
917, 921, 940-942, 946-947, 957, 962, 965,
977, 1015, 1031, 1033, 1036, 1049, 1053,
1058, 1061-1062, 1065, 1083, 1099-1100,
1106, 1124-1125, 1153, 1165, 1177

Product Rule, 124-126, 130, 142, 170, 184, 196, 218,
225, 521, 568, 854, 921, 1125, 1165

for differentiation, 126, 225, 568
Profit, 48, 158-159, 166, 416, 446, 512, 900, 941-942

total, 158-159, 166, 416, 512, 900, 941-942
Projectile, 63, 178, 222, 234, 328, 619, 702, 716, 859,

863-864, 896, 950
Proportionality, 313, 576, 579, 590, 602, 615, 641, 876

constant of, 641
Proportionality constant, 313, 576, 579, 590, 602, 615,

876
Proportions, 338, 1093
Pyramid, 48, 168, 254-255, 427, 435, 461, 465, 840,

842-843, 973, 995, 1041-1042, 1047-1048,
1120, 1160, 1221

volume of, 168, 254-255, 427, 435, 840, 842-843,
995, 1047-1048, 1160

Pythagorean theorem, 13, 160-162, 197-199, 216,
432, 449, 690, 822, 825, 1084-1085, 1120,
1126

defined, 13, 1085

Q
Quadrants, 668-669, 976, 1092, 1194
Quadratic, 7-8, 11, 17, 19-20, 27-28, 32, 43, 50, 52,

58, 60, 62, 72, 105, 107-108, 145, 154-155,
182, 200, 204, 219, 223, 259, 261-262, 274,
279, 297, 392, 536-537, 539, 542, 549-553,
568, 570, 572, 634, 637, 639, 700-701, 709,
729, 732, 747, 942, 988-989, 1119, 1153,
1157, 1184

Quadratic formula, 7-8, 11, 52, 105, 204, 223, 259,
261, 274, 536, 634, 637, 732, 1119, 1184

discriminant, 536
using, 7, 536, 637

Quadratic functions, 19-20, 50, 58, 62, 107, 219
completing the square, 19-20
defined, 20, 50, 58, 219
maximum and minimum, 20, 219

Quadratic polynomials, 549, 551, 553, 570
Quotient, 25-26, 30-31, 57, 60-61, 63-64, 69-70,

72-74, 76, 82-83, 93, 102, 109-110, 114, 119,
124, 126-127, 135, 140-141, 171-172, 185,
189-190, 218, 232, 236, 262, 265, 267,
281-282, 286, 293-294, 296, 298-299, 301,
501, 535-536, 568, 573, 796, 854, 913, 917,
925, 963, 1100, 1124, 1148, 1177

functions, 25-26, 30-31, 69, 73-74, 76, 93, 102,
124, 126-127, 135, 140-141, 171-172,
185, 189-190, 218, 232, 267, 282,
293-294, 296, 298-299, 501, 535, 568,
796, 854, 913, 917, 925, 1124, 1148

real numbers, 262, 1148
Quotient Rule, 124, 126-127, 135, 171-172, 185,

189-190, 218, 267, 286, 501
Quotients, 102, 393, 632, 744, 914, 925

R

Radian measure, 34, 137, 170, 173, 1093, 1095
Radicals, 140, 731, 1201

defined, 140, 731
Radicand, 901
Radioactive decay, 580-581, 586, 653, 655, 1131
Radius vector, 873, 875
Random sampling, 563, 570
Random variable, 562-564, 568
Range, 2-4, 8-11, 28-29, 48, 50-51, 152, 163, 178,

186, 188, 222, 225, 231, 234, 306, 341, 379,
407, 421, 446, 489, 491, 493, 495, 506, 516,
545, 562, 578, 621, 666, 669-670, 672-673,
702, 716, 756, 762, 863, 890, 897, 899, 903,
950, 1072, 1082-1083, 1158, 1198, 1212

determining, 50
Rates, 106-107, 109, 111, 113-115, 117, 135, 194-195,

197-201, 203, 218-219, 226, 314, 420, 603,
613-614, 618-620, 624, 629, 763, 900, 910,
921, 952, 960, 962, 993, 1126, 1137

unit, 114, 603, 620, 921, 962
Rates of change, 106-107, 109, 111, 113-115, 117,

135, 197-198, 219, 900, 910, 921, 952, 962,
993, 1137

average, 111, 114
instantaneous, 109, 111, 113-114, 921, 993, 1137
related, 197-198, 219

Ratio, 47, 75, 110-111, 166-167, 216, 229, 231, 313,
420, 575, 586, 607, 638, 734-736, 740, 743,
775-779, 781-784, 786, 788, 791, 793, 812,
923, 1034, 1068, 1079, 1085, 1088, 1160,
1204, 1207, 1209

common, 75, 229, 420, 734
Ratio test, 775-779, 781-784, 786, 788, 791, 793, 812,

1207, 1209
Rational exponents, 140, 181-182

defined, 140, 181-182
radicals, 140
roots, 140, 181

Rational functions, 30-31, 69, 102, 107, 141, 282, 535,
537, 539, 541, 948

defined, 31, 141
domain, 31

Rational numbers, 182, 191, 728
Ratios, 152, 198, 427, 575, 1086, 1088, 1091

unit, 1091
Ray, 162, 167, 665, 701, 711, 856

defined, 167, 856
Rays, 163, 581, 666, 676-678, 701-702, 711, 714, 900,

915
Real numbers, 2-5, 9-10, 27, 52, 100-101, 120-121,

164-165, 167, 176, 186, 211, 253, 262, 307,
341, 482-483, 487-489, 559-560, 722, 725,
728-729, 731-732, 781, 794, 818-819,
821-822, 825, 829, 833, 879, 916, 996,
1079-1081, 1083, 1101-1105, 1108, 1110,
1143, 1148

absolute value, 819, 833, 1080, 1083
complex, 3, 27, 211, 262
defined, 2-5, 9, 100-101, 167, 186, 211, 341,

488-489, 559-560, 728-729, 731, 781,
818, 916, 996, 1080-1081, 1083,
1103-1104, 1110

imaginary, 211, 262
in calculus, 1081
inequalities, 52, 1079-1081, 1083, 1102, 1110
integers, 4, 722, 1079
irrational, 101, 482, 728, 1079, 1110
ordered pair, 818, 822
properties of, 728, 821, 829, 1079-1081, 1083
rational, 101, 482-483, 728, 1079, 1110
real, 2-5, 9-10, 27, 52, 100-101, 120-121, 164-165,

167, 176, 186, 211, 253, 262, 307, 341,
482-483, 487-489, 559-560, 722, 725,
728-729, 731-732, 781, 794, 818-819,
821-822, 825, 829, 833, 879, 916, 996,
1079-1081, 1083, 1101-1105, 1108, 1110,
1143, 1148

Real part, 211, 413, 764
Reciprocals, 84, 144, 318, 773, 1089
Rectangle, 6, 8, 10-11, 19, 23, 63, 156, 160, 162,

164-167, 175-176, 178, 193, 202-203, 205,
208, 212-213, 220, 250, 254, 310, 329-332,
335, 343-344, 353, 357, 364, 371-372, 382,
384, 386, 398, 415, 435, 438, 462-463, 469,
471, 474, 708, 738, 880, 932, 936, 939, 941,
950, 998-1006, 1008, 1010, 1012-1013,
1015, 1017, 1020-1021, 1025, 1029, 1031,
1046, 1058, 1060, 1063-1065, 1070, 1073,
1120, 1125, 1231

fundamental, 329, 371-372, 1000
Rectangles, 6, 96, 175, 330-332, 335-336, 338-339,

341-343, 345, 361, 371-372, 389, 397, 469,
477, 738, 941, 998-1000, 1002, 1004, 1006,
1011, 1013, 1020, 1058, 1065-1066,
1073-1074, 1176

similar, 6
Rectangular coordinate system, 825, 1084
Rectangular equations, 889
Reduction formula, 524-525, 527, 532-533, 535, 552,

570, 572, 814
theorem, 535

Reflection, 162, 186, 381, 489, 491, 493-494, 701,
706, 711, 715-717, 1134

defined, 186, 489, 491, 493-494, 706
ellipse, 706, 711, 715-717, 1134
hyperbola, 706, 711, 715, 717, 1134
parabola, 701, 711, 715-717, 1134

Regular polygons, 338
Related rates, 194-195, 197, 199-201, 203, 1126
Relations, 164, 170, 186, 188, 666-667, 682, 792, 812,

839, 887, 889, 891
defined, 186, 188
graphs of, 188, 667

Relative error, 229, 950
Remainder, 229, 536, 579, 748-751, 754-755,

760-764, 768, 770, 772-773, 779, 784-785,
794, 799, 812-814, 873, 906, 915, 965

Revenue, 158, 166, 512, 655
total, 158, 166, 512

Rhombus, 897, 1090
Riemann sums, 341-349, 351-352, 354, 357, 362-363,

369, 382, 384, 393, 407, 409-411, 413-414,
424, 455, 460, 462, 464, 466, 470, 508, 510,
674, 1003-1005, 1008, 1011-1013, 1020,
1022, 1040, 1045, 1051, 1066, 1073-1074,
1107-1111, 1128

Right angles, 203, 253, 435
Right triangles, 329, 450, 825, 1088, 1094

Pythagorean theorem, 825
trigonometric functions of, 1094

Rise, 12, 35, 40, 47, 116, 188, 327, 513, 923, 971,
973, 978, 997, 1085

Roots, 52, 73, 101, 138, 140, 167, 181, 186, 188, 192,
205, 209, 215-216, 222, 250, 254-255, 257,
265, 318, 393, 413, 536, 634-640, 642,
644-646, 648, 653, 666, 729, 761, 800, 803,
888, 945, 1132

cube root, 101, 186, 215, 222, 413
inverse functions, 186, 188, 192
nth root, 216
of the equation, 209, 216, 250, 635-636, 639-640,

653, 666, 888
radicals, 140

Rotations, 825
Rounding, 206, 761, 779, 803
Run, 12, 47, 158, 166-167, 169, 606, 629, 923, 971,

973, 1085

S
Saddle point, 885, 904-905, 907-908, 915, 933, 938,

942, 984-985, 987-988, 991, 1214,
1222-1224

Sample, 24, 123, 130, 202, 564, 580-581, 585, 927,
960

Sampling, 563, 570
proportion, 563
random, 563, 570

Savings, 166, 561, 582, 585-586, 604, 723, 1153
Scalar multiplication, 820-821, 827, 833, 895

parallelogram law, 827
vectors, 820-821, 827, 833, 895

Scalar quantities, 895
Scalars, 818, 823, 834, 843, 916
Scores, 563, 568
Secant, 54-55, 57-58, 102, 108-109, 171, 218, 299,

493-494, 498-500, 509, 532, 545, 570, 1092,
1094-1095

defined, 54, 58, 218, 493-494, 498-499, 1092
graphs of, 171, 500, 1094
inverse of, 494

Secant line, 54-55, 57-58, 108-109, 299
Second coordinate, 15
Second derivatives, 309, 803, 989
Second quadrant, 888
Second-order partial derivatives, 926, 928-929, 931,

984, 986, 988-989, 992
Seconds, 2, 23, 40, 47, 51, 63, 113, 115, 117-118, 136,

145, 203, 220, 307, 309, 323-324, 328, 371,

1243
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416, 421, 424, 490, 583, 594-595, 612,
615-616, 619, 629, 643, 650, 656, 702, 742,
864, 1083, 1119, 1152, 1191-1192

Semicircle, 143, 175, 179, 221, 372, 428, 435, 463,
467, 470, 472, 696-697, 891, 1015, 1031

Separable differential equations, 653
Separation of variables, 575, 600-601, 605, 617, 653,

804, 806
Sequences, 209, 346, 362, 722-731, 736-737, 765,

812, 1102-1103, 1105, 1134
defined, 723-724, 726-729, 731, 1103
finite, 722, 728, 765, 1105
geometric, 736, 765, 812
infinite, 722-731, 736-737, 765, 812, 1102, 1105
limits of, 346, 724-726, 812
nth term, 722-723

Series, 51, 53, 515, 682, 721-722, 724, 726, 728, 730,
732-815, 1072, 1083, 1135, 1206-1210,
1233

arithmetic, 761, 802, 1206
defined, 724, 726, 728, 752, 756, 781, 786, 793,

808, 810-811, 814, 1072, 1083
geometric, 682, 734-736, 740-743, 765-766, 771,

775-777, 780, 785, 789-790, 792, 794,
801, 806, 808, 812-813, 1072, 1207

mean, 722, 748, 763, 798, 802, 807
summation notation, 788

Sets, 1, 389, 607, 624, 904, 941, 997, 1081-1083,
1110

intersection, 1, 904, 1083
solution, 1, 624, 904, 1081-1083
union, 1081-1082

Sides, 5-6, 10-11, 48, 67, 73, 96, 146, 156-157,
163-167, 169-170, 179, 189-191, 194-195,
197-198, 200, 215, 220-221, 247, 253-255,
257, 261, 269-270, 310, 321, 329, 338,
388-389, 412, 455, 468-469, 474, 478, 485,
488, 490, 492-494, 498, 504, 506-507, 515,
524, 528, 537-538, 540, 577-578, 585, 588,
599, 601, 607-610, 615, 647, 663, 667, 694,
703-704, 707, 753, 756, 780, 815, 819, 824,
829, 834, 837, 841, 844, 859, 864, 874,
897-898, 902, 937-938, 940-941, 947, 950,
981-982, 995, 1001, 1012-1013, 1016, 1020,
1025, 1029, 1059, 1084, 1086, 1088,
1090-1091, 1116-1117, 1152, 1160, 1184,
1191, 1216, 1219

of an angle, 170
Signal, 190, 711, 717, 985
Signs, 172, 177, 241-242, 247, 249, 253, 257, 259,

271, 273, 275, 344, 628, 641, 643, 652, 666,
669, 708-709, 752, 774, 799, 836, 888, 988,
990, 1080, 1092, 1117, 1130, 1149

Simplification, 102, 107, 267, 294, 299, 517, 848, 1087
Simplify, 10, 72, 106, 155, 163, 169, 182, 190, 192,

262, 286, 290, 303, 335, 351, 394, 455, 466,
530, 604, 707, 834, 902, 946, 984, 1061,
1082-1083, 1117, 1150, 1177, 1184, 1201,
1204

defined, 106, 182, 192, 286, 351, 902, 946, 984,
1061, 1083, 1117

radicals, 1201
Sine, 35, 50, 76, 78, 93-95, 99, 101, 169-173, 218,

245, 344, 381, 454, 456, 491-493, 499-500,
509, 529, 548, 570, 636, 638, 640, 643, 650,
752, 756-757, 791-794, 798, 802, 808, 811,
1023, 1038, 1092-1094, 1096

inverse, 218, 491, 493, 509
Sines, 167, 170, 338, 528-529, 533, 570, 573, 647,

802, 1121, 1131
defined, 167, 338
fundamental identity, 528
law of, 1121

Sketching graphs, 309, 896
Slant asymptote, 287-290, 311, 1166-1168
Slant asymptotes, 286, 292, 308
Slope, 12-13, 16, 21-23, 46-47, 49-51, 54-64, 71-73,

75-76, 81-82, 92, 102-103, 106-110, 112,
116, 120, 123, 129-130, 145, 171, 177,
183-184, 195-197, 201, 207, 218, 222, 231,
236, 238, 299, 314, 479-480, 586, 588-593,
595-598, 630, 635, 653-654, 660, 672, 683,
685, 687-688, 701, 716, 745-746, 878,
897-898, 915, 922-923, 928, 956,
1085-1091, 1114-1115, 1132, 1159, 1198,
1231

applications of, 46, 236, 238, 480, 701
of tangent, 59, 81, 102
undefined, 81, 171, 1086

Slope fields, 588-589, 591, 593, 595, 597-598, 630,
653, 1132

Slope-intercept equation, 12-13, 21, 660, 1087
Solid of revolution, 427-429, 431, 437-438, 440-443,

465, 472, 508, 982, 1031, 1112
Solution set, 52, 1081-1083
Solutions, 1, 11, 33, 36, 38, 41, 43, 45, 48, 50, 52, 90,

97-98, 101-103, 105, 114, 129, 146, 150,
158, 194, 205, 208-211, 213, 215-217, 222,
257, 261-263, 265, 273, 289, 297, 320, 537,
576, 588-589, 591, 595-596, 598-599, 601,
605-606, 610, 614, 617, 628, 631-640, 649,
653-655, 657, 669, 676-677, 803, 805,
807-811, 813, 848-849, 936, 979, 987, 994,
1081-1082, 1090, 1095-1096, 1119, 1132,
1145-1146, 1157, 1175, 1191, 1216, 1224,
1229

checking, 811
of an equation, 50, 98, 205, 261

Speed, 2, 20, 48, 112-113, 118, 167, 178, 197-199,
202-204, 215, 220, 222, 244, 307, 310, 328,
353, 411, 418, 491, 590, 615-616, 619,
651-652, 656, 659, 688, 698, 702, 705, 711,
717, 818, 834, 854-856, 859-863, 865-867,
869-872, 877-879, 895, 897, 965-968, 972,
993, 1034-1035, 1038-1039, 1159, 1180,
1192, 1212

Spheres, 220, 313, 436, 817, 882, 894-896, 904, 995,
1050, 1055, 1076, 1157, 1229

surface area of, 220, 1076
volume of, 220, 436, 895, 995, 1050, 1055, 1076

Spiral of Archimedes, 673, 679, 685, 688, 898
Spirals, 510, 679

logarithmic, 510, 679
Square, 2-3, 5, 9-12, 14, 18-20, 22-23, 25, 51-52, 81,

96, 98, 101, 115, 118, 138, 140, 157,
161-169, 186, 188, 202-205, 208, 213-214,
218, 221-222, 234, 254-256, 269-270, 310,
313-314, 361, 413, 424, 427, 435, 461, 467,
480, 492, 510, 512, 515, 543-544, 546,
549-552, 568-570, 586, 619, 629, 663,
666-667, 698, 700-702, 704-705, 709-710,
744, 761, 800, 802, 818, 826-827, 834, 837,
871, 873-875, 877, 888, 890, 898, 902, 933,
936-937, 940-941, 959-960, 975, 980-982,
988, 990-991, 996, 999, 1007, 1012,
1019-1020, 1025-1026, 1029, 1036, 1044,
1047, 1053, 1063, 1072, 1076-1077,
1082-1083, 1125, 1136, 1138, 1153, 1158,
1160, 1164, 1180, 1201, 1219, 1223

matrix, 959
Square roots, 186, 188, 666, 761, 800, 888

defined, 186, 188
functions, 186, 188

Squares, 2, 11, 157-158, 164-165, 220, 222, 250, 310,
333-334, 539, 549, 570, 661, 703, 709, 898,
941, 991, 995-996, 1004, 1007-1008, 1153,
1219

area of, 11, 157, 164-165, 220, 222, 250, 310, 898,
941

perfect, 549
Squaring, 2-3, 164, 186, 188, 388
Standard deviation, 562-564, 568
Standard deviations, 562
Standard form, 212, 520, 700, 884, 1201

complex numbers, 212
Statements, 47-48, 100, 916-917, 1079, 1086, 1130,

1132
defined, 100, 916-917, 1086

Statistics, 561-562, 565, 624
population, 562, 624

Steepest ascent, 971
path of, 971

Subset, 659, 900, 1104
Substitution, 8, 66, 70-71, 74, 95, 102, 123, 136, 198,

215, 238, 262, 373-379, 381, 387, 391,
409-410, 449, 452-453, 496, 505, 516-521,
523, 526, 528-531, 542-547, 549-553,
567-570, 572-573, 596, 611, 627, 634,
690-691, 725-727, 752, 918, 924, 1061,
1064, 1072, 1089, 1099-1100, 1118, 1124,
1130, 1148, 1183, 1185, 1188, 1202, 1229

Subtraction, 31
Sum, 23, 26-27, 51, 63, 68, 71-74, 92, 102, 121-122,

124-125, 158-159, 164-168, 217, 230, 232,
282, 310, 317-318, 329-330, 332-337,
339-346, 348-352, 356-358, 361-363, 367,
383-384, 386, 389, 391-393, 395-396,
398-399, 405, 410-411, 414-415, 417-426,

438-439, 441, 443, 447, 449, 451, 457, 466,
468-469, 508, 515, 535-537, 539, 549-550,
561, 566, 568, 570, 586, 639, 647, 649-651,
659, 665, 675, 679, 706, 722-723, 732-743,
752, 756-757, 760-764, 766, 769-770,
772-773, 775, 778-781, 783-784, 788, 792,
794-795, 803-805, 807, 809-810, 812-813,
819-820, 822-823, 827-828, 831, 834, 898,
906, 908-909, 913-914, 917, 930, 940-941,
943, 946, 953, 959, 977-978, 991, 995-996,
997-1000, 1002-1007, 1011, 1020-1021,
1028, 1031, 1038, 1040, 1052, 1059, 1074,
1083, 1096, 1105-1111, 1113, 1116, 1118,
1128, 1153, 1157, 1175, 1180-1181, 1184,
1204, 1207, 1209

antiderivative of, 317, 358, 362, 1105
Summation notation, 333, 339, 343, 409-410, 788

defined, 339
Sums, 122, 333, 335-336, 339-349, 351-352, 354,

357, 362-363, 369, 382, 384, 389, 393-394,
407, 409-411, 413-414, 423-424, 447, 455,
457, 460, 462, 464, 466, 470, 508, 510, 674,
732-743, 750, 756-758, 765, 771-773, 775,
778-780, 782-783, 792-793, 797, 812, 821,
854, 896, 914, 1003-1005, 1008, 1011-1013,
1020, 1022, 1040, 1045, 1051, 1066,
1073-1074, 1107-1112, 1128

Surface area, 2, 5, 9-11, 51, 118, 136, 138, 145, 165,
169, 220-222, 234, 254-255, 307, 311-312,
314, 424, 437, 446-447, 449-456, 473-475,
508-512, 548, 566, 573, 691-697, 717, 930,
940-941, 950, 960, 995, 998, 1032-1033,
1036-1037, 1057-1063, 1073-1074,
1076-1077, 1111, 1139, 1157, 1187-1189

of a cone, 449-451, 510, 717
of a cube, 51, 118
of a sphere, 2, 10, 118, 145, 220, 234, 307, 312,

424, 449-450, 511-512, 695, 1062-1063
Surface of revolution, 449, 456, 473, 690-691, 695,

882, 1033, 1063-1064
Survey, 24, 34
Symbols, 109, 121, 131, 889, 1081, 1083, 1120
Symmetry, 116, 196, 432, 462, 469-471, 473-475,

562-564, 661, 668, 675, 677, 697, 700-701,
983, 1012, 1015-1017, 1019, 1023-1024,
1029-1030, 1032-1033, 1035-1037, 1045,
1047, 1050, 1053-1057, 1073, 1076, 1084,
1102, 1133, 1229

line of, 469, 983, 1029, 1036, 1055

T
Tables, 7, 12, 53, 56, 111, 286, 516-519, 570, 706,

810, 1074
Tangent, 19-20, 25, 45-49, 54-64, 71-73, 75-76, 81-82,

87, 95, 102-103, 106-110, 112, 115-116, 120,
123, 128-130, 141-146, 148, 151-152, 162,
169, 171, 177-178, 183, 192, 195-197,
200-202, 207, 214, 218-221, 223, 226-227,
230-231, 236-238, 243, 245, 251, 254,
256-257, 259-261, 267-270, 272, 274-277,
279, 285-286, 289, 299, 310-311, 314, 362,
392, 398, 408, 446, 489-490, 497, 499-500,
505, 509, 513, 532, 570, 586, 588, 596, 635,
642, 659, 664-666, 682-688, 696, 701, 706,
711, 716-720, 744-746, 753-754, 756,
796-797, 800, 802, 812, 814, 833, 853-854,
862-863, 867-871, 873, 876-877, 879, 883,
890, 895-898, 922-925, 928, 930, 933-934,
940, 949, 955-956, 960, 965, 968-973, 975,
978, 993-996, 1023, 1048, 1055, 1058,
1061, 1074, 1076, 1088, 1091-1092, 1094,
1096, 1114, 1124-1125, 1133, 1137,
1150-1152, 1154, 1162, 1165, 1171-1173,
1177, 1198, 1203, 1219

defined, 20, 25, 54, 58-59, 64, 71, 73, 76, 81, 95,
103, 106, 116, 141-143, 148, 192,
195-196, 200, 218-221, 226, 231, 243,
245, 267, 276-277, 286, 310, 392, 446,
489-490, 499, 505, 588, 596, 659, 706,
756, 814, 853, 862-863, 867, 869, 877,
924-925, 930, 940, 955-956, 965, 994,
996, 1048, 1058, 1061, 1074, 1076,
1091-1092, 1114

graphs of, 19, 25, 103, 152, 171, 200, 219, 231,
261, 310, 408, 446, 500, 513, 664, 718,
756, 797, 896, 994, 1091, 1094

inverse of, 489, 744
Tangent lines, 46-47, 54-55, 57-59, 61, 63, 76, 81,

102, 115, 129, 141, 143, 145, 177-178, 183,
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219, 269-270, 289, 310, 314, 588, 684,
717-718, 924, 994, 1152, 1173

finding, 54, 63, 102, 219, 718, 994
slope of, 46-47, 54-55, 57-59, 61, 63, 76, 81, 102,

145, 183
Taylor polynomials, 743, 745, 747-751, 753, 755-756,

787, 790, 793, 802, 1206
Taylor series, 722, 743, 745, 747, 749-751, 753,

755-757, 780, 783, 785-786, 788-789, 791,
793, 795, 798-800, 808, 811-813

Temperature, 10, 24, 35-36, 51, 118, 123, 130, 165,
177, 216, 279, 314-315, 363-364, 371, 406,
602, 605-606, 655-656, 787, 818, 900-901,
904, 916, 921-922, 927, 929-930, 944, 950,
960-962, 964, 966-968, 970-972, 1079,
1083, 1091

Terminal, 76, 619, 665, 818, 856, 861, 1091
Terms of sequences, 346
Third derivative, 266
Third quadrant, 99, 196, 643, 666, 669, 890
Total cost, 6, 10, 158-159, 166, 168-169, 254-256,

310, 548, 554, 900, 937, 940, 995, 1184
Total profit, 942
Transcendental functions, 34-35, 37, 39, 41, 43, 516,

744, 764, 786, 802, 813
defined, 34, 37, 786

Translations, 425, 825
horizontal, 825
vertical, 825

Transverse axis, 707-708, 710, 715
Trapezoidal Rule, 1180
Trapezoids, 395-396, 398

area of, 395, 398
Triangles, 84, 198, 200, 216, 251, 255, 329-330, 338,

361, 371, 389, 427, 429, 431-433, 450, 461,
808, 825, 842, 886, 890, 941, 981, 1086,
1088, 1094, 1096

acute, 1088
area of, 84, 329-330, 338, 361, 371, 389, 427, 429,

431-432, 450, 842, 941, 981
congruent, 255, 886
equilateral, 981
isosceles, 431-433, 941
right, 200, 251, 255, 329-330, 429, 431-432, 450,

825, 941, 1088, 1094
theorem, 198, 216, 361, 371, 432, 825, 981, 1088

Trigonometric functions, 4, 34-36, 38, 40, 76, 93, 102,
107, 135, 169, 171-177, 179-180, 192, 219,
226, 293, 375, 488-489, 491, 493, 495,
497-501, 510, 515, 533, 543-545, 792-793,
802-803, 1091-1096, 1125, 1130, 1232

compositions of, 102
cosecant, 171, 499, 1092, 1094-1095
cotangent, 171, 499, 1092, 1094-1095
domain and range, 545
evaluating, 498-499, 510
inverse functions, 192, 488, 495, 497
secant, 102, 171, 493, 498-500, 545, 1092,

1094-1095
sine and cosine, 35, 76, 93, 169, 171-172,

792-793, 802, 1092, 1094, 1096
tangent, 76, 102, 107, 169, 171, 177, 192, 219,

226, 489, 497, 499-500, 802, 1091-1092,
1094, 1096, 1125

transcendental, 34-35, 802
Trigonometric identities, 434, 499, 506, 532, 534-535,

573, 802, 1154, 1175
fundamental, 499, 506, 532
reduction formula, 532, 535

Trigonometry, 34, 40, 499, 515, 532, 680, 1091-1092,
1119, 1121

functions, 34, 40, 499, 515, 532, 680, 1091-1092
identities, 499, 515, 532
law of cosines, 1121
law of sines, 1121
parametric equations, 680

Trinomials, 684
Turning point, 105

U
Unit circle, 76, 178, 338, 387, 455, 476, 478, 506, 515,

664, 680-681, 753, 852, 939, 981-982, 996,
1007, 1013, 1060, 1091-1094, 1096, 1217

defined, 76, 338, 476, 852, 939, 996, 1007, 1013,
1060, 1091-1092

Unit vectors, 821, 828, 838-839, 842, 871, 873, 878,
895-896, 962-963, 995

Unknown values, 938
Upper bound, 362, 729, 731, 768, 794, 1101-1104

V
Values of a function, 7, 218-219, 230, 246, 993-994
Variables, 2, 5, 13-14, 50, 115, 132, 135, 156, 164,

194, 198-199, 234, 487, 573, 575, 577-578,
585, 588, 595, 599-603, 605, 617, 620-621,
625-626, 653, 666, 680, 700, 704, 804, 806,
825-826, 879-882, 900-905, 907-913,
916-917, 919, 921, 925-926, 928, 930-932,
937-939, 943-949, 952-954, 957, 959, 961,
963-965, 969-970, 972, 976-977, 979-985,
987, 989, 991, 993-996, 998, 1025, 1046,
1049, 1052, 1057-1058, 1064-1071,
1074-1075, 1112, 1137, 1139, 1233

equations with one, 577
functions, 2, 5, 13-14, 50, 115, 132, 135, 164, 194,

198, 234, 585, 588, 595, 605, 617, 620,
626, 680, 825, 900-903, 905, 907-910,
912-913, 916-917, 919, 925-926,
930-932, 938, 945-949, 952-954, 957,
959, 961, 965, 969, 972, 976-977,
979-982, 984-985, 987, 989, 991,
993-994, 996, 998, 1049, 1057-1058,
1112, 1137

Variance, 85
Variation, 130, 148, 627, 930
Variations, 295, 627, 891, 899, 905
Vectors, 817-848, 850, 852, 854-858, 860, 862-864,

866, 868-874, 876-878, 880, 882, 884, 886,
888, 890, 892, 894-898, 916, 946, 962-963,
965, 968-976, 978-980, 982, 994-996,
1057-1058, 1061, 1065, 1074, 1135, 1212

addition, 819, 821-822, 827, 833, 860, 864, 874,
895

defined, 818, 820, 832, 835, 840-841, 852, 856,
862-863, 869, 877, 916, 946, 962, 965,
994, 996, 1057-1058, 1061, 1065, 1074

direction of, 818, 825, 831, 837, 843, 854, 866,
868-869, 871, 878, 962-963, 970-972,
995

dot product, 828-831, 833-835, 837, 839, 841, 863,
872, 895, 897, 946, 965

equality, 819, 1135
linear combination of, 821, 828, 979, 995
orthogonal, 973
parallel, 819, 824, 827, 829, 831, 834, 837, 841,

843-848, 850, 856, 880, 882, 884, 886,
894-898, 969-970, 972, 995-996

perpendicular, 822-823, 825, 829-831, 833-835,
837-838, 840-843, 845, 847, 850, 854,
862-864, 868-869, 878, 896-898,
968-969, 971, 973-974, 976, 978, 982,
995, 1061

position vector, 818, 823-824, 827, 843, 852,
854-856, 858, 860, 862-863, 868-869,
871-874, 876-878, 897, 963, 965, 1057,
1074

radius vector, 873
scalar multiplication, 820-821, 827, 833, 895
scalar product, 828
unit, 821, 823, 828, 831-832, 834, 838-839,

842-843, 852, 856, 868-873, 876-878,
895-898, 916, 962-963, 965, 968, 970,
973, 982, 995-996

vector quantities, 818, 822
zero, 819, 828-830, 834-835, 837, 840, 845-848,

863, 866, 869, 896, 898, 979, 994
Velocity, 23, 46-49, 63, 112-114, 116-118, 174-175,

178, 218-219, 221-222, 234, 239, 245, 307,
314, 321-325, 327-328, 365, 369-371, 400,
409, 411, 418-420, 422-424, 508, 510,
560-561, 583, 586, 589-590, 594-595, 598,
614-619, 641, 643, 645, 650-653, 656, 702,
716, 818, 824, 841, 854-867, 869-874,
876-877, 895-897, 950, 965, 971, 1034,
1038-1039, 1065, 1079, 1129, 1176,
1191-1193, 1212

angular, 856, 863, 897, 1034, 1038
linear, 23, 234, 245, 321, 589, 615-617, 619, 641,

650, 653, 895, 1034, 1038, 1193
Vertex, 17-19, 21-22, 62, 76, 104, 164-165, 203, 222,

371-372, 392, 466, 475, 512, 572, 587, 662,
700-701, 714-716, 842, 862, 894, 898, 901,
906, 941, 977, 1037, 1047-1048, 1050,
1054-1055, 1058, 1076, 1085, 1090-1091,
1093, 1125, 1139, 1143, 1145, 1200-1202,
1213-1217

even, 512, 1093
odd, 906, 1143, 1145, 1200-1202, 1213-1217

Vertical, 5, 13, 15, 21-22, 26, 28, 30-33, 36, 47, 50, 70,
86, 111, 113, 128, 141-144, 151, 167, 169,
174, 197, 201-203, 214, 216, 218, 222,
237-238, 255, 260-261, 272, 275-277,
281-282, 284-290, 292, 295, 302, 308, 310,
316, 324, 327, 330, 382-384, 388-389, 391,
406, 409, 414, 431, 434, 439, 441-442, 445,
457, 461-463, 465, 467, 474, 489, 491, 498,
509, 511, 555, 572, 587-588, 592, 615, 619,
651-652, 662, 667-668, 672, 683-684, 688,
699-702, 704, 706, 708, 712, 714-716, 822,
825, 834, 852, 854, 856, 862, 864-865,
880-886, 889, 903, 906, 919, 922-923, 932,
941, 956, 971, 981, 1001, 1003, 1008,
1013-1014, 1016, 1019, 1035, 1039,
1041-1044, 1048, 1057, 1060, 1062, 1064,
1084, 1086-1088, 1090, 1106, 1123, 1125,
1130, 1152, 1162, 1165-1168, 1171-1173,
1193, 1198, 1215, 1218

line test, 15, 50, 1123
Vertical asymptotes, 31-33, 36, 281, 284, 292, 308,

1166-1168, 1172-1173
defined, 31-32
graphing, 33, 308

Vertical axis, 47, 111, 203, 445, 465, 715-716, 864,
941, 1035

Vertical line, 13, 15, 21, 50, 70, 142, 151, 282, 330,
383, 391, 431, 434, 441-442, 445, 489, 491,
555, 619, 662, 667, 672, 699-702, 706, 712,
714, 716, 880, 919, 1014, 1041, 1048, 1084,
1087, 1106, 1123, 1152, 1215, 1218

graph of, 13, 15, 21, 50, 70, 142, 151, 282, 330,
391, 442, 445, 489, 491, 667, 672, 700,
880

slope of, 13, 21, 701, 716
Vertical lines, 13, 30, 86, 281, 382-384, 388-389,

1064, 1086
Vertical tangent, 141-143, 151, 214, 218, 237, 261,

272, 276-277, 310, 684, 688, 956, 1125,
1152, 1162, 1165, 1171-1173, 1198

Viewing, 19, 28-29, 33, 152, 193, 205, 241, 263, 285,
301, 478, 599, 627, 685, 799, 1089

Viewing window, 19, 28-29, 152, 205, 241, 263, 285,
301, 478, 599, 685, 799, 1089

Volume, 2, 5, 9-12, 24, 51, 109, 111, 118, 123,
129-130, 135-136, 138, 145, 157-160,
163-169, 178-179, 202-204, 208-209,
216-217, 220-222, 228-229, 234, 250,
254-256, 269-270, 279, 309-311, 313-314,
342, 353, 362, 413, 416, 419-421, 424-445,
460-462, 467, 472, 474-476, 487, 498, 506,
508-513, 516, 526-527, 534, 542-543, 553,
566-567, 583, 587, 612-614, 618-619,
690-692, 695-697, 717, 719, 801, 840-843,
895, 900, 921-922, 927, 930, 937-938,
940-941, 944-946, 950, 952, 960-961, 973,
977-978, 981-983, 995, 997-1000, 1003,
1006, 1013-1028, 1031-1032, 1036-1040,
1042-1056, 1062-1063, 1068-1069, 1071,
1073-1077, 1082-1083, 1112, 1120, 1129,
1138-1139, 1153, 1155, 1158, 1160,
1181-1182, 1211, 1221, 1226-1228

of a cone, 167, 179, 203, 436, 510, 717
of a cube, 51, 118, 168, 309, 946
of a sphere, 2, 10, 118, 145, 216, 220, 234, 309,

313, 424, 428, 432-433, 445, 511-512,
695, 1019-1020, 1027-1028, 1055,
1062-1063

W
Weight, 128, 424, 457-463, 465-467, 487, 511, 562,

586, 619, 641, 651-652, 655, 822, 824, 834,
1035, 1119

X
x-axis, 1, 21, 28-29, 32, 38, 47, 49, 62-63, 76, 92, 95,

97-99, 113, 164-165, 179, 186, 207, 221,
241, 244, 248, 257-260, 262, 273-275, 280,
284-286, 301, 307, 310, 312, 314, 321-323,
327, 330, 338, 340, 344-345, 348, 353, 367,
370-372, 381, 384, 389, 391-392, 395, 411,
418, 422-423, 425, 427-428, 430-437,
439-445, 450-456, 458, 465, 468-469, 472,
474-475, 487, 498, 506, 508-512, 526-527,
534, 542-543, 548, 553, 555, 566-567,
572-573, 578, 586, 612, 661, 663-665, 668,
670, 676, 682, 687-691, 693-697, 701-702,
706, 716, 719-720, 801, 819, 825, 834, 848,
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862, 864, 867, 869, 879, 881-882, 884,
886-887, 889, 891, 904-905, 929, 931, 935,
937, 964, 973, 1003, 1012, 1014, 1031,
1033-1035, 1037-1038, 1044, 1056,
1075-1076, 1084, 1087, 1091, 1093,
1111-1112, 1124, 1168, 1194, 1200-1201,
1212, 1214-1215, 1217, 1224

x-coordinate, 97-98, 112, 152, 177, 321, 371-372, 388,
475, 478, 922, 950, 1038, 1084, 1086, 1202

x-intercept, 22, 72, 99, 129, 188, 258, 287, 1090,
1145, 1150

defined, 99, 188
parabola, 22, 72, 188, 1145

xy-plane, 12, 14, 63, 371, 435, 438, 469, 474, 476,
488, 510, 578, 585, 588, 595-596, 605, 627,
659-660, 688, 694, 720, 726, 825, 827,
833-834, 843, 845, 847-852, 854, 860, 866,
869-871, 877, 879-883, 885-890, 902-903,
905-906, 916, 918, 921, 923, 930, 934,
936-937, 939, 941, 950, 956, 959, 972-973,
983, 998, 1003, 1006, 1013-1019,
1021-1023, 1025-1028, 1033, 1035, 1038,
1041-1047, 1049, 1055, 1058-1060,
1062-1067, 1069-1076, 1089, 1114, 1117,
1211, 1213, 1215, 1217-1218

Y
Yards, 163
y-axis, 21, 25, 67, 97, 164, 265, 324, 381, 425, 427,

429-445, 452-456, 462, 464, 466-470,
472-473, 475, 498, 508, 510-511, 513,
526-527, 542-543, 548, 553, 567, 587-588,
590, 607, 610, 615, 618, 661, 668, 684, 688,
690, 694-697, 700, 704, 708, 716, 719-720,
801, 825, 848, 860, 879, 881, 884, 886,
904-905, 931, 935, 937, 973, 982, 1003,
1014, 1029, 1031-1037, 1043-1044, 1047,
1076, 1084, 1112, 1124, 1143, 1168,
1194-1195, 1203-1204, 1213-1214,
1217-1218

symmetry, 432, 462, 469-470, 473, 475, 661, 668,
697, 700, 1029, 1032-1033, 1035-1037,
1047, 1076, 1084

y-coordinate, 59, 155, 171, 512, 922, 945, 950, 1075,
1084, 1086

Years, 1, 39, 43, 45, 48, 54, 101, 105, 119, 225, 307,
329, 339, 352, 362, 407, 413, 424, 512, 561,
563, 567, 579-582, 585-587, 591, 603-604,
606, 613-614, 618, 620, 623, 629-630,
655-656, 705, 721, 723, 762, 899, 1106,
1145, 1149, 1190, 1192-1193

y-intercept, 12, 21-22, 51, 75, 258-259, 276, 285-288,
307, 479-480, 660, 707, 1087, 1090, 1145,
1231

defined, 21, 276, 286, 480
parabola, 21-22, 1145

Z
z-axis, 825, 848, 851, 856, 879-882, 884, 886,

888-889, 891, 894, 898, 906, 973, 994,
1033, 1035, 1041, 1047, 1049-1050,
1052-1053, 1055-1056, 1061, 1063-1064,
1069, 1072, 1076, 1212-1218

Zero, 5-6, 8, 13, 15-16, 21, 25, 27-28, 30-32, 40, 44,
55-56, 58-59, 62, 64-65, 67-70, 75-76,
78-84, 91, 93, 95, 100, 106, 114, 116-117,
120, 125, 133, 136, 139-140, 142, 148-152,
154-155, 157, 161, 168-169, 171, 186, 214,
219, 228, 230, 234, 237, 239-241, 245, 256,
259, 269-270, 272, 281-282, 284-286,
288-289, 293, 295, 298, 304, 306-308, 322,
325, 331, 335-337, 345, 384, 397, 414, 443,
451, 476, 485, 491, 521-523, 543, 554, 556,
566, 579-580, 583, 612, 620, 622, 625-626,
634-635, 651, 683-684, 686, 690, 703, 705,
713-714, 724, 726, 738, 743, 749, 751,
767-769, 771, 776, 786, 788, 793, 819,
828-830, 834-835, 837, 840, 845-848, 863,
866-867, 869, 896, 898, 901, 914-915, 927,
933-935, 938, 942, 947, 958, 979, 984-986,
988-990, 994, 998, 1003, 1006, 1011, 1023,
1028, 1040, 1045, 1051, 1079-1080, 1084,
1086, 1099, 1115, 1118, 1153, 1157, 1175,
1187, 1195, 1208, 1218, 1231

exponent, 25, 120, 139-140, 523
matrix, 958
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